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Abstract

With the aim of uncovering regulatory relationships that underly biological processes, we

constructed a framework of computational tools and techniques to relate disparate genome-

scale data within and across datasets. Using these tools we focus on the yeast cell cycle and

the transcriptional network driving the transition into and out of G1. Through integrative

analysis of genome-scale datasets we were able to recover many of the previously known

transcriptional regulatory connections within the yeast cell cycle. We also found several

novel hypothetical connections yet to be experimentally validated.

Much of the analysis of large-scale gene expression data has relied heavily on the ap-

plication of clustering algorithms to identify sets of co-expressed genes (clusters). In chap-

ter 2 we introduce several new techniques for comparing and evaluating microarray data,

specifically focusing on clustering results. We discuss the need for quantitative methods

for evaluating clustering methods, and discuss the application of comparative analysis of

clustering results.

Remarkably, our analysis shows the results from any clustering algorithm are quite

sensitive to slight perturbations to the data. Yet, the underlying structure revealed by most

clustering algorithms remains fairly stable. These findings have a pragmatic impact on

how clustering results should be interpreted and used. Chapter 3 uses the tools introduced

in chapter 2 and performs a systematic comparison of the influence of noise on the stability

and reliability of clustering results.

In chapter 4 we demonstrate the use of artificial neural networks (ANNs) to infer reg-

ulatory networks by combining expression data and protein:DNA binding data. We then

compare these regulatory relationships to the presence of transcription factor binding sites.

We also note evolutionary stability in some of the components of this network by compar-
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ing results to other species of yeast.
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Chapter 1

Introduction

The interactions of transcriptional regulators with target genes form regulatory networks

that partially control many biological processes. The recent proliferation of sequenced

genomes and the development of genome-scale functional assays provide a new context

in which to better understand these regulatory networks. Using this data we can address

questions regarding the evolution, structure and function of transcriptional regulatory net-

works more comprehensively across entire genomes. This complements and contrasts data

from more conventional methods, which largely, are based on extrapolation from detailed

studies of small numbers of genes.

1.1 The Yeast Cell Cycle: A Model of What’s To Come

Throughout this work we use the yeast cell cycle as both a test case for evaluating new

computational techniques and as an illustration of how these techniques can improve our

understanding of the regulatory networks underlying a biological process. Much is un-

derstood regarding the genetics and molecular biology of the yeast cell cycle (for a recent

review see [Breeden, 2003]). For evaluating the relative significance and abilities of new

computational techniques this is quite valuable as the existing knowledge can be used as a

type of internal control to compare results against. Further, because of the ease of exper-

imentation, the well-established genetics, and a relatively small well-annotated genome,

there has been an early adoption of high-throughput methods and genome-scale technolo-

gies in yeast. This has resulted in a vast amount of publically available high quality data
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[Dolinski et al., 2004, Csank et al., 2002]. Complementing this, several additional yeast

genomes have been fully sequenced: 7 relatedSaccharomycesspecies [Cliften et al., 2003,

Kellis et al., 2003] and the more distantly relatedSchizosaccharomyces pombe[Wood et al., 2002]

and Candida albicans [Jones et al., 2004].

Gene expression is carefully regulated within the yeast cell cycle and between 10-20%

of genes have been observed to exhibit cell cycle-dependent gene expression [Lichtenberg et al., 2004].

Complex post-translational regulation, in particular a network of kinases (Cdks) and reg-

ulated proteolysis, is integral to regulating and maintaining the proper progression of the

yeast cell cycle [Mendenhall and Hodge, 1998]. However, the downstream effect of many

of these reactions is to change the transcription of genes which in turn play a pivotal role

in the progression of the yeast cell cycle (reviewed [Breeden, 2000, Breeden, 2003]).

An overall conclusion from genome-wide RNA expression profiling throughout the cell

cycle is that each phase of the cell cycle is characterized by very specific gene expression

patterns [Cho et al., 1998, Spellman et al., 1998]. Transitions into and maintenance of cel-

lular states, such as the cell cycle phases, are of particular interest in not only the cell cycle

but also in development. The relationship between the structural features of the regulatory

network and the functional mechanisms that underlie cell cycle progression may be similar

in some developmental contexts as well.

The cell cycle is broken into four major phases that are recognized primarily based

on their cellular activities. We focus on the transcriptional network underlying cell cycle

progression. Specifically, G1 and the transition into it from M phase and the progression

out of it into S phase. The G1 phase of the cell cycle is of particular interest as its du-

ration, unlike other phases, is controlled depending on the growth conditions of the cell

[Forsburg and Nurse, 1991]. In addition, based on genome-wide expression profiling the

G1 phase of the cell cycle has the most pronounced gene expression pattern of any of the

cell cycle phases (chapters 2 and 3).

Two Swi6-containing dimeric complexes, SBF (SCB binding factor) and MBF (MCB

binding factor) have been identified and are considered to be the primary transcriptional

regulators of G1 gene expression [Andrews and Herskowitz, 1989, Koch et al., 1993]. SBF

binds DNA together with Swi4 and recognizes the SCB (Swi4 cell cycle box) binding site
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while MBF binds DNA with Mbp1 and recognizes the MCB (Mlu I cell cycle box) binding

site [Nasmyth, 1985, Breeden and Nasmyth, 1987, Koch et al., 1993]. Remarkably many

genes that appear to be primarily regulated by MBF contain only a single instance of MCB,

its consensus binding site (chapter 4). Yet a single site is not sufficient to drive expression

in vivo when placed in a reporter construct [Lowndes et al., 1991]. We discuss this further

in chapters 4 and 5.

Progression out of G1 and into S phase is termedStart. It marks the initiation of DNA

replication and commits the cell to mitosis. This is a highly guarded process and check-

points, such as the DNA damage checkpoint, are in place to ensure that cellular and hered-

itary integrity are maintained. Ultimately the activity of Cdc28, primarily modulated by

the G1 cyclins Cln1, Cln2 and Cln3, controls the exit from G1 and the entry into S (re-

viewed [Mendenhall and Hodge, 1998]). Once pastStart the transcription of the mitotic

cyclins increases and they, in turn, repress the G1 cyclins [Amon et al., 1994]. Coupled

with the inherent instability of the Cln proteins the cell is able to shut down the G1 pro-

cesses [Schneider et al., 1998].

At the M/G1 transition many of the B-type cyclins (Clbs) are targeted for proteoly-

sis by the anaphase promoting complex (APC). During this process Swi5 is dephospho-

rylated by Cdc14 because of the degradation of Clb5. Dephosphorylation of Swi5 al-

lows it to translocate to the nucleus where it begins activating early G1 gene expression

[Visintin et al., 1998]. Among the genes activated by Swi5 are Sic1 and Rme1. Expression

of Sic1, a cdk inhibitor, further inactivates any remaining Clbs [Knapp et al., 1996]. Rme1

encodes a nuclear localized transcription factor which seems to be involved in the induc-

tion of CLN2 and also inhibits meiosis through repression of IME1 (Initiator of Meiosis 1)

[Frenz et al., 2001].

Meanwhile, mediated by the ECB (Early cell cycle box) binding site, SWI4 and CLN3

transcription is also activated during the M/G1 transition [MacKay et al., 2001]. The speci-

ficity of the ECB site comes from its interplay with neighboring sites and transcriptional

cofactors. The MADS box protein Mcm1 is boundin vivo to ECB elements throughout the

cell cycle, so is unlikely to impart cell cycle phase specificity on its targets [Mai et al., 2002].

Neighboring sites for the transcriptional repressors Yox1 and/or Yhp1 have been identified
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and shown to be functional in many of the M/G1 expressed genes (including SWI4 and

CLN3) [Pramila et al., 2002]. Also adding specificity are flanking forkhead sites which

recruit Fkh2-Ndd1 complexes [Koranda et al., 2000].

1.2 A Genomic Context

1.2.1 Genetic Regulatory Networks

As observed in the yeast cell cycle, one perspective is that the repertoire and dynamics of

gene expression largely control the state and fate of a cell [Davidson, 2001, Ptashne and Gann, 2002].

Although the exact biochemical process of transcriptional regulation is complex and not

fully understood, simplifying models can provide critical insights [Bolouri and Davidson, 2002].

For instance, genetic regulatory network models that relate transcriptional regulators to tar-

get genes and the cis-elements they bind have been shown to provide a scaffold of informa-

tion on which to build new hypotheses and better understand development [Davidson et al., 2003].

Likewise, interaction models based on protein:protein [Uetz et al., 2000, Ho et al., 2002]

and protein:DNA interaction measurements [Lee et al., 2002, Horak et al., 2002, Harbison et al., 2004]

have been superimposed onto biochemical and genetic pathways to better understand the

evolution and relationship of these pathways in different species [Kelley et al., 2004].

1.2.2 Transcriptional Regulatory Networks and Co-expression

Many genes show similar expression patterns and can be classified into co-expression

groups which exhibit comparable expression patterns across a variety of conditions [DeRisi et al., 1997,

Wodicka et al., 1997, Cho et al., 1998, Spellman et al., 1998]. Specific cis-regulatory inter-

actions of transcriptional regulators play a central role in transcriptional control for most

genes. As such, many co-expressed genes also appear to be regulated by the same transcrip-

tional regulators [Spellman et al., 1998, Cho et al., 1998]. However, not all co-expressed

genes are co-regulated, and not all co-regulated genes are co-expressed (chapters 2 and 4).

These observations lead to many questions regarding the nature of co-expression.

Why are co-expressed genes co-expressed? Do the same set of transcriptional regula-
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tors drive their expression? What features of the regulatory sequence of these genes are

important in driving their expression patterns? How do regulatory features evolve? An-

swers to these questions will yield information on how genetic regulatory networks drive

cellular physiology and development. Although only partially addressed within this thesis,

these questions underlie much of the work presented.

1.3 Relating Genome-Scale Data to Transcriptional Reg-

ulatory Networks

1.3.1 Dealing With Data Quality

High throughput techniques create vast amounts of genome-scale data. Yet, a caveat of

these new approaches is often increased noise and loss of experimental precision. Repli-

cation and careful experimental design can only alleviate some of these problems. As

an example, when performing genome-wide RNA expression profiling using microarrays,

noise is introduced at each step of the experiment. Tu et al. (2002) systematically surveyed

the amount of noise introduced at the critical steps during a typical microarray experiment:

RNA extraction, RNA-to-target synthesis, and hybridization. The RNA extraction and tar-

get synthesis were found to be the dominant source of noise within a particular experiment.

However, the variance between complete biological replicates dwarfed these sources of

noise. Chapter 3 focuses on gaining a better understanding of the implications of noise on

our ability to identify groups of co-expressed genes, or clusters. By developing metrics to

quantify and dissect the consistency of clustering results we gain an appreciation for which

features of clustering results are likely artifact and which features are likely true.

Gaining a more detailed understanding of clustering results is clearly important as they

often form the basis for downstream analysis, such as the network inference discussed in

chapter 4. Further, cluster membership is often used as the basis for the functional an-

notation of genes in many databases, such as Saccharomyces Genome Database (SGD)

[Dolinski et al., 2004]. Different clustering results can also arise from clustering data from

different experiments, such as time-course RNA expression data collected from cells ex-
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posed to different stimuli. Chapter 2 describes a computational framework built around

the need to be able to better understand the differences and similarities between cluster-

ing results. We then show how these differences and similarities can have implications on

uncovering functional relationships between co-expression and regulatory networks.

Although large-scale datasets have limitations, they are mostly accurate. As discussed

in the following sections, different large-scale datasets impinge on regulatory networks dif-

ferently. By leveraging multiple large-scale datasets together some of their limitations can

be overcome. We use this idea in chapter 4 to infer cell cycle phase-specific transcriptional

regulatory connections from genome-wide RNA expression data and genome-wide pro-

tein:DNA binding data. Gifford and co-workers also applied this idea when devising the

GRAM (Genetic Regulatory Modules) algorithm. Similarly, working to discern regulatory

modules from ChIP/chip data in yeast they demonstrate that when genes show a persistent

pattern of co-expression across a wide variety of conditions they could include binding

measurements that would have otherwise been considered marginal, without sacrificing

false positive rates [Bar-Joseph et al., 2003].

1.3.2 Expression Profiling: DNA Microarrays

The ability to measure co-expression on a genomic scale has been largely driven by the de-

velopment of microarray technologies during the past decade [Pease et al., 1994, Schena et al., 1995].

They have been used to study many model organisms. A common feature in each imple-

mentation of the technology is the linking of DNA molecules of known sequence to specific

locations on a solid substrate. Each of these features, known as probes, are complementary

to a target sequence that is produced from each gene’s mRNA. Current state of the art tech-

nologies allow for the creation of arrays capable of measuring the expression levels of up to

� 40; 000 genes simultaneously. Although specifics vary between microarray platforms, in

each case RNA is extracted from cells and labeled targets are produced representing each

RNA molecule. The labeled targets are then hybridized to the microarray and the relative

amount of label at each feature is converted to a relative expression level for each gene.

These measurements comprise the gene expression profile, or expression signature of the
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cells being assayed. Gene expression profiles for cells under varying conditions are typi-

cally assembled into a single dataset. These varying conditions can be: kinetic time-points

across a biological process; dose-response measurements; different tissues; diseased tissues

such as tumors; or different mutant strains or individuals. In each case, the expression level

of each gene across each condition is referred to as an expression trajectory or expression

vector.

Expression data provides a very powerful readout of the activity of genetic regulatory

networks but cannot be used in isolation to understand the architecture of the network.

The expression level of a gene is a result of both the rate of transcription and the rate of

degradation of the mRNA. Although often the impact of post-transcriptional regulation on

expression levels is ignored, these processes can affect the measured expression level for

a gene. For instance, in yeast the half-life of the vast majority of poly-A mRNA has been

shown to vary between 10 and 30 minutes, although in the extremes decay rates vary be-

tween 3 and 90 minutes [Wang et al., 2002]. Another complication is that the expression

level of an mRNA molecule is only a surrogate for measuring the actual protein concentra-

tions in the cell, and the protein product of a gene is often what invokes influence in cellular

behavior. Further post-translational modification of proteins is often critical in regulating

many processes.

1.3.3 Measuringin vivoTranscription Factor Interactions : Chromatin

Immunoprecipitation / Microarray analysis (ChIP/chip)

Chromatin immunoprecipitation (ChIP) is an assay to measure thein vivo binding ac-

tivity of transcriptional regulators [Orlando, 2000]. By exposing cells to a crosslinking

agent such as formaldehyde, the protein:DNA interactions that are occurring at the time of

crosslinking are captured. Using antibodies or an affinity tag directed specifically against

a particular regulator, both the regulator and the DNA to which it is bound at the point of

crosslinking can be retrieved. Using gene specific primers, a PCR assay can be used to

show selective enrichment for DNA of a particular regulatory sequence. This method has

been extended using microarray technology, where intergenic sequences are printed onto
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slides. The bound DNA is then evaluated by ligation-mediated PCR amplification, labeling

and hybridization to the intergenic microarray. By using microarrays as opposed to conven-

tional methods, thein vivo binding activity of a transcriptional regulator can be measured

across an entire small genome [Ren et al., 2000, Iyer et al., 2001] or one or two chromo-

somes in larger genomes [Martone et al., 2003, Cawley et al., 2004]. This technique is of-

ten referred to as ChIP/chip or ChIP/array. High throughput application of this methods

has allowed Young and colleagues to collect thein vivobinding profiles for nearly all tran-

scriptional regulators in yeast [Lee et al., 2002, Harbison et al., 2004]. These methods are

especially powerful in gaining a better understanding regulatory networks, as they provide

a direct measure of the transcriptional interactions which underlie many cellular processes.

Current experimental limitations, mostly cost and time constraints, in the large-scale

application of ChIP/chip prevent resolving the cellular context of the measured interactions.

Investigators can only survey the binding activity of all transcriptional regulators either in

a single cellular state, or a heterogeneous population of cellular states. As a consequence

many relevant regulatory connections are either missed, or the time and space domain in

which observed connections have regulatory significance is blurred. Further, regulators

may bind upstream to a genein vivo with no effect. As discussed in chapter 5 in some

cases, but likely not all cases, this may be because the regulator influences the transcription

of a neighboring gene.

The kinetics of the transcriptional response of a cell can be well captured using existing

microarray technology in some settings, such as yeast cultures. Changes in the gene ex-

pression signature of a cell are reflections of the underlying regulatory network that drives

them. Coupling kinetic expression data to heterogeneous ChIP/chip data allows for the

dynamics of one set of measurements to be imposed on another set of non-dynamic mea-

surements (Chapter 4). More direct time resolved ChIP/chip data would also facilitate this,

but this is currently impractical on a large scale.
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1.3.4 Genomic Sequence

Expression data can be kinetic and ChIP/chip binding data is usually collected from phys-

iologically heterogeneous cells and is not dynamic. The genome underlying all of it is

static, with only a few exception such as mating type switching in yeast. However, the

genome is mostly informationally complete since it contains the information necessary to

regulate itself. Understanding how all the information encoded within a genome relates

to the functional regulatory networks of the cell is a long term goal. Working towards

this goal, in chapters 4 and 5 we first infer cell cycle phase-specific regulatory connections

from expression data and chIP/chip data. We then relate some of the regulatory connec-

tions to conserved enrichment and disenrichment of specific transcription factor binding

sites upstream of genes that show phase-specific expression patterns.

Mapping regulatory connections between transcriptional regulators and target genes is

difficult in part because the regulatory sequences to which they bind are difficult to define

either experimentally or computationally. Experimentally, SELEX methods can be used to

define binding sequences. These methods use a particular transcription factor to enrich for

a biased sub-population of randomized oligonucleotides [Klug and Famulok, 1994]. Other

in vitro methods also exist, but none isolate thein vivobinding sequences for a transcription

factor. This results in the loss of both the cellular and genomic context of a binding site

which can influence its function. For example, in yeast Ndd1 interacts with DNA through

Fkh2, and the binding activity of Fkh2 is likely modulated by Ndd1 as deletion of Fkh2

suppresses the lethality of Ndd1 depletion [Koranda et al., 2000]. Therefore, unless the

assay surveyed the Ndd1-Fkh2 complex, the measuredin vitro binding affinities may be

different than what occursin vivo.

Computationally even describing the sequences to which regulators bind to is a chal-

lenge. Qualitative descriptions, such as an IUPAC consensus, specify the allowed degener-

acy for each position within the recognition site a transcriptional regulator binds to. These

descriptions lack any ability to describe position specific base biases. More quantitative

descriptions based on a weight matrix can describe position specific base biases, but both

of these descriptions implicitly assume that each position in the sequences that a transcrip-
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tional regulator binds to is independent from every other [Benos et al., 2002].

Beyond defining and describing the sequences to which transcriptional regulators bind,

another challenge is identifying which occurrences of these sequences within the genome

are functional. This is an especially extensive problem in larger genomes such as mouse

and human because of the vast amounts of intergenic sequence. Although several databases

have been constructed to maintain a compendium of binding sites [Galperin, 2004], there

are large inconsistencies in the quality and source of the binding site descriptions. By

using comparative genomics, regulatory sequences that are under selection can be iso-

lated to help uncover functional elements (reviewed in [Miller et al., 2004]). Comparative

analysis can also be employed to highlight other characteristics that have been conserved

throughout evolution, such as the statistical enrichment of the presence of binding sites

(Chapter 4). In addition, by using comparative genomics to map gene orthologues be-

tween different species, expression datasets as well as regulatory networks can be com-

pared [Stuart et al., 2003, Kelley et al., 2004]. By leveraging the similarities and differ-

ences across different species, evolutionary relationships can be exposed onto the underly-

ing regulatory networks.

In the following chapters, using several different large-scale datasets we explore the

biology of the yeast cell cycle.
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Part I

Comparing, Mining and Understanding

Clustering Results
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Chapter 2

Framework for Quantitative
Comparison and Exploration of
Microarray Clusterings

2.1 Introduction

A key step in analyzing most large-scale gene expression studies is clustering or oth-

erwise grouping gene expression data vectors and conditions (individual RNA samples)

into sets that contain members more similar to each other than to the remainder of the

data. To do this biologists have at their disposal a wide range of techniques including

supervised and unsupervised machine learning algorithms and various heuristics, such

as k-means, phylogenic-like hierarchical clustering, Expectation Maximization of Mix-

ture models, Self Organizing Maps, Support Vector Machines, statistical models, Fourier

analysis, etc. [Cho et al., 1998, Eisen et al., 1998, Golub et al., 1999, Tamayo et al., 1999,

Ross et al., 2000, Ihmels et al., 2002]. Their purpose is to detect underlying relationships

in the data, but different algorithms applied to a given dataset typically deliver different and

only partly concordant results. Sometimes the differences in cluster organization and con-

tent are so large as to cast doubt on any resulting gene or condition lists. Still more diverse

outcomes arise from using different distance metrics, initialization conditions, and data pre-

processing protocols. Is one clustering result objectively more correct than another? How

important are the differences and what specific gene groups or samples within a clustering

are most affected? Are specific intersecting subsets of genes robust and consistent from
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one algorithm to another? Do the inconsistencies highlight overall dataset properties that

are important or are they concentrated on differences of marginal biological significance?

To answer such objectively we needed a way to make systematic, quantitative comparisons

and we needed tools to effectively mine the resulting comparisons. In a similar manner,

as data sources become more extensive, there is a growing need to quantitatively compare

clustering results derived from different studies, and good comparative tools should also

handle this class of problems.

To address these needs, we developed a mathematical and computational framework

designed for comparative clustering analysis. Confusion matrices are the foundation for

the comparisons. A confusion matrix effectively summarizes the pairwise intersections

between clusters derived from two clustering results. These similarities can then be quan-

tified by applying scoring functions to the confusion matrix. We use two different scor-

ing functions for this purpose: 1) Normalized Mutual Information (NMI) which mea-

sures the amount of information shared between the two clustering results [Forbes, 1995].

2) A linear assignment (LA) method which quantifies the similarity of two clusterings

by finding the optimal pairing of clusters between two clustering results and measuring

the degree of agreement across this pairing [Gusfield, 2002]; this work. Prior to this

work, metrics for evaluating the total number of data point pairs grouped together be-

tween two different clusterings began to address the need for quantifying overall differences

[Rand, 1971, Hubert and Arabie, 1985, Levine and Domany, 2001, Ben-Hur et al., 2002].

Ben-Hur et al. (2002) used this to help determine an optimal number of clusters (K) and

to assess the overall validity of a clustering. These prior techniques did not, however, offer

the capacity to isolate and inspect the similarities and differences between two different

clusterings. We also introduce application of receiver operator characteristic (ROC) anal-

ysis to this class of problems [Peterson, 1954, Swets, 1988]. ROC enables us to quantify

the distinctness of a given cluster relative to another cluster or relative to all non-cluster

members.

The comparison algorithms are integrated into a set of interactive analysis tools col-

lectively called CompClust. It enables a user to organize, interrogate and visualize the

comparisons. In addition to comparative cluster analysis an important feature of this soft-
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ware is that it establishes and maintains a link between the outputs of clustering analy-

ses and the primary expression data, and, critically, with all other desired annotations. In

the sense used here, "annotations" include other kinds of primary and metadata of diverse

types. This gives important flexibility in data mining and permits expanded analyses that

include results from other kinds of experiments such as global protein:DNA interactions

(ChIP/Array), protein:protein interactions, comparative genome analysis, or information

from gene ontologies.

CompClust methods and tools are agnostic about the kind of microarray data (ratio-

metric, Affymetrix, other ) and the types of algorithms used. We used the tools to analyze

two different sets of yeast cell cycle expression data that were clustered by four very dif-

ferent methods: A statistical clustering algorithm (Expectation Maximization of a Mixture

of Diagonal Gaussian distributions (EM MoDG)) (this work); a human-driven heuristic

[Cho et al., 1998]; a Fourier transform algorithm designed to take advantage of a periodic

time course patterns [Spellman et al., 1998]; and an agglomerative version of the Xclust

phylogenetic ordering algorithm [Eisen et al., 1998]; and this work. We then show that

gene groups derived from these comparative analyses can be integrated with data on evo-

lutionarily conserved transcription factor binding sites to identify regulatory modules. The

results begin to illustrate how a more quantitative and nuanced understanding of both global

and local features in the data can be achieved, and how these can be linked with diverse

kinds of data types to infer connectivity between regulators and their target gene modules.

2.2 Results

2.2.1 Mathematical tools for organizing and quantifying microarray

clusterings

Confusion matrices and comparative metrics. A confusion matrix summarizes all pair-

wise intersections between all clusters from any two clusterings of the same data. A confu-

sion matrix is the matrix of cardinalities of all pairwise intersections between two different

clusterings (see Methods). We then apply different scoring functions to the confusion ma-
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trix to quantify similarity: 1) Normalized Mutual Information (NMI) measures the amount

of information shared between two clusterings [Forbes, 1995], 2) Linear Assignment (LA)

optimizes the number of data vectors in clusters that correspond to each other, thereby

identifying the optimal pairing of clusters. LA also reports the percentage of data vectors

contained within those clusters, and this can be used to assess similarity of results globally

over the entire dataset and locally on a cluster pair by cluster pair basis ([Gusfield, 2002];

and this work). See methods for mathematical descriptions of confusion matrices, NMI

and LA. The combined use of LA and NMI metrics can provide immediate insight into

the nature of global differences between two microarray clusterings by capitalizing on the

fact that NMI is asymmetric and LA is symmetric (see methods 2.4.5 and table 2.1). This

readily discriminates instances in which one clustering is different from the other, but is

essentially a refinement of the other verses a fundamentally different view of the data struc-

ture.

Confusion arrays organize and display comparative analysesGiven two different

clusterings of a dataset and a global evaluation of their similarity via NMI and LA, we

next needed a way to systematically compare clusters derived from one algorithm with

those from another in a way that is more effective and intuitive than inspection of gene

lists. To do this we define the confusion array, which is a direct extension of a formal con-

fusion matrix. Each cell of such a confusion array for two different clusterings contains the

intersection set between the two parent clusters (as opposed to the cardinality of this set,

as in a confusion matrix; see Methods 2.4.2). In the context of the CompClust system, the

confusion array cells can then be interactively mined. Confusion arrays for two different

clusterings, one an Affymetrix yeast cell cycle dataset [Cho et al., 1998] and the other a

deposition ratiometric dataset [Spellman et al., 1998] are shown in Figures 2.1 and 2.5, and

are analyzed further below.

Understanding cluster relatedness: Receiver Operator Characteristic (ROC) mea-

sures cluster overlap Whatever algorithm has been used to cluster data, it is useful to

find out how distinct each cluster is from all the others and how distinct any particular
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Figure 2.1: Comparing two clustering results using a confusion array. Shown in this com-
parison is a supervised clustering result published in the original study by Cho et al. (1998)
and results from running an unsupervised clustering (EM MoDG, see methods) on the same
Affymetrix microarray dataset profiling yeast gene expression through two cell cycles. The
confusion array is composed of a grid of summary plots. Each summary plot displays the
mean (blue or solid) expression level of a group of genes as well as the standard deviation
(red or dashed). Summary plots with a white background represent clusters from either the
the Cho et al. (1998) clustering result (along the right most column) or the EM MoDG clus-
tering result (along the top row), cluster names are in the lower right corner, and the number
of genes in each cluster is displayed in the upper left corner. Summary plots with a colored
background represent cells within the confusion array (see methods) where each cellCij
represents the intersection set of genes that are in common between the Cho et al. (1998)
clusteri and the EM MoDG result clusterj. Again the upper left hand corner display the
number of genes within a confusion matrix cell. The background of each plot is colored
according to a heat-map (scale below) that registers the proportionate number of genes in
the cell compared with the corresponding cluster in the EM MoDG result. Intersection
cells with dark outlines indicate the optimal pairings between the two data partitions, as
determined from the linear assignment calculation (eq. 2.2). Quantitative measures of
overall similarity between the two clustering results using both Linear Assignment (LA)
and Normalized Mutual Information (NMI), are displayed in the graph title (see methods).
.
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cluster is from another specific cluster. This is especially pertinent when membership in a

cluster will be translated into a gene list that ultimately becomes a functional annotation or

defines which genes will be input into higher-order analyses. To address this issue we ap-

plied classical Receiver Operator Characteristic (ROC) analysis (Methods). In this context,

cluster assignment is used as the “diagnosis” and the distance of each expression vector

from the cluster mean vector is the “decision criterion”. The corresponding ROC curve

plots the proportion of cluster members versus the proportion of non-cluster members as

the distance from the cluster centroid increases (figure 2.2). This can be interpreted geo-

metrically as expansion of a hypersphere from the cluster centroid until all members of the

cluster are enclosed. Thus, when one cluster is completely separate from all other data, all

of its members are closer to the cluster center than all non-members and the area under the

ROC curve is 1.0 (Figure 2.2B). When a cluster is not fully separable from the remainder

of the data, the ROC curve rises more slowly and the area under the ROC curve < 1.0. In

the limit, when the two classes are perfectly mixed, the ROC curve closely follows X=Y

and the area under the curve drops to� 0:5 (figure 2.2D). The shape of the ROC curve also

contains additional information about how cluster overlap is distributed, and this informa-

tion can be used to choose useful data mining cut-offs that mark discontinuities and cluster

substructure (see below in section 2.2.5 and figure 2.4). It can also be used interactively

within CompClust to explore and select data vectors (genes) that are closer or more distant

from the cluster center. Selection of vectors not assigned to the cluster yet positioned at

overlapping distances from its center, is also possible and is often instructive (section 2.2.5

and figures 2.2, 2.4 below).

2.2.2 Comparing clusterings of yeast cell cycle microarray datasets

We next performed comparative analyses on clustering results from two different yeast

microarray time course datasets (one Affymetrix and one ratiometric), each composed of

genes that are differentially expressed over the cell cycle [Cho et al., 1998, Spellman et al., 1998].

These comparisons provide valuable perspective, since gene classification results from the

original gene clusterings of these time courses have been mined in many subsequent stud-
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Figure 2.2: Example receiver operator characteristic (ROC) curves to assess cluster over-
lap. An ROC curve (panels B and D, left side) is drawn as a function of moving outward
from a cluster center and counting the proportion of cluster members (blue points) encoun-
tered along the Y-axis vs the proportion of non-cluster members (red points) encountered
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right side). Shown in red is the distance histogram for cluster members and cluster non-
members are shown in blue. Two extreme cases are exemplified in this figure.A) Example
expression data falling into two completely discrete clusters highlighted in red and blue.
B) The corresponding ROC curve (left) and distance histograms (right) for the sample data
shown in panel A. Notice since all cluster members are encountered before any non-cluster
members the area under the ROC curve is 1.0. The distance histograms also show this
perfect separation.C) Example expression data falling into two completely overlapping
clusters highlighted in red and blue.D) The corresponding ROC curve (left) and distance
histograms (right) for sample data shown in panel B. Notice since cluster members and
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cluster center the ROC curve approximates the lineX = Y and the area under the ROC
curve� 0:5. This overlap is also highlighted in the distance histograms because the distri-
butions of distances for cluster members completely overlaps with that of the distribution
of distances for non-cluster members.
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ies and have been introduced as gene annotations in widely used databases (Incytes’ YPD

[Csank et al., 2002], SGD (http://yeastgenome.org )). We generated a new clustering for

each dataset, in each instance selecting an algorithm that differs substantially from the one

used in the original publication but should also be entirely appropriate for the dataset. For

the Cho et al. (1998) dataset we used EM MoDG (Expectation Maximization of a Mix-

ture of Diagonal Gaussians [Dempster et al., 1977], which is an unsupervised method that

searches for the best statistical fit to the data modeled as a mixture of Gaussian distribu-

tions. The heuristic used in the original report [Cho et al., 1998] is a supervised method

based on biologist’s knowledge of cell cycle phases. The heuristic focused on the time of

peak expression for each gene trajectory to guide assignment of each gene to one of five

time domains associated with Early G1, Late G1, S, G2, and M phases of the cell cycle.

For the second dataset [Spellman et al., 1998], we performed agglomerative phylogenic hi-

erarchical clustering of the tsCDC15-mutant synchronized data. This algorithm is based on

the widely used Xclust phylogenetic ordering algorithm [Eisen et al., 1998], onto which we

grafted an agglomeration step designed to establish objective boundaries in the tree (Meth-

ods). This result was compared to the result reported by [Spellman et al., 1998], in which

they used a Fourier transform-based algorithm to assign expression vectors to phases of the

cell cycle.

2.2.3 Global similarity measures

Comparison of the two clusterings of Affymetrix data from Cho et al. (1998) gave a global

Linear Alignment (LA) score of 0.63 and Normalized Mutual Information (NMI) scores of

0.52 and 0.50, immediately indicating that EM MoDG and the heuristic classification have

produced substantially different results. The LA value of 0.63 says that the optimal pairing

of clusters still classifies 37% of the genes differently between the two algorithms. ROC

curves and ROC areas were generated for each cluster (figure 2.3). Viewed in aggregate,

this ROC analysis showed that clusters from EM MoDG are all better separated from each

other than are any clusters from the original Cho et al. (1998) heuristic. Thus the ROC

indices for EM MoDG are all 0.96 or above, and four of the five clusters are� 0:98. In
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contrast, the heuristic classification groups had ROC values as low as 0.82 for S phase and

no better than 0.97 (M phase). By this criterion, we can say that EM clustering is a superior

representation of the underlying data structure.

How are these differences between clustering results distributed over the dataset? We

used PCA (Principle Component Analysis) to determine whether the two clusterings were

globally similar or different in the way they partitioned the dataspace. PCA projects

high dimensional gene expression vectors (each dimension here corresponding to a dif-

ferent RNA sample) into a different and lower dimensional space (usually two or three)

[S. Raychaudhuri, 2000], in which the new PCA dimensions have each been selected to

explain the maximal amount of variance in the data. A common feature of microarray

datasets is that the first few principle components often capture most of the variation in

the data (here 64%). Using CompClust to view the cluster means in PCA space allowed

us to assess relationships between clusters from the two algorithms. Relative positions of

cluster means in the PCA display the cell cycle progression in a counterclockwise pattern

that is quite similar for the two algorithms. The absolute positions of the cluster centers in

PCA space differ, but not extravagantly so, for most clusters. This is interesting because

the coherence in overall structure would seem to contradict the rather high dissimilarities

in cluster composition measured by the criteria LA and NMI, and shown graphically in

the confusion array (figure 2.1). Considered together the results argue that the overall data

structure, reflecting phases of the cell cycle, is robust and has been treated rather similarly

by the two algorithms, even though 37% of individual gene expression vectors were as-

signed differently. This raises the question of which gene vectors have been differentially

assigned and what biological meaning, if any, should be attached to the differences. These

questions are addressed in sections 2.2.4, 2.2.6 and 2.3.2 by examining specific gene groups

in the confusion array.

Using the ratiometric data of Spellman et. al. (1998) a comparison of the original

Fourier-based algorithm versus agglomerated Xclust produced NMI and LA scores of 0.39,

0.41 and 0.60, respectively. These scores indicate the two clusterings are even more dif-

ferent in membership assignment, with 40% of genes falling outside the optimal linear

assignment pairing. Since both NMI and LA scores are low, gene memberships for some
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Figure 2.3: Principle component analysis, receiver operator characteristic (ROC) plots,
and trajectory summary views of clusters from the Cho classification and an unsupervised
clustering (EM MoDG) of an Affymetrix yeast cell cycle time course [Cho et al., 1998].
The top panel for each clustering results shows cluster means projected into the top two
dimensions of the principle component space defined by the expression data (capturing
64% of the variance). The area of the marker size for each cluster is proportional to the
number of genes in each cluster. Below are ROC curves (left) and trajectory summaries
(right) for each cluster. The trajectory summaries display every gene’s expression profile
within a cluster as a blue line with time along the X-axis and expression along the Y-
axis. The red line within each trajectory summary represents the mean expression level
for the cluster. ROC area values are displayed within the ROC curve for each cluster.
The background colors for the trajectory summaries and the PCA projection have been
matched within each clustering result. In addition linear assignment was used to find the
optimal mapping of clusters between the Cho classification and the EM MoDG result and
the colors have been set accordingly.
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clusters must be truly scrambled rather than being simple combinations of cluster unions

and subsets (see Methods 2.4.5 and Table 2.1). PCA projection (figure 2.6) showed that

some major cluster centers from the two algorithms are positioned very differently, both

absolutely and relatively (note the yellow cluster corresponding to the Fourier S-phase

group). The confusion array shows that XclustAgglom clusters often combine genes that

are members of adjacent Fourier clusters, though in some cases it joins vectors from non-

adjacent groups (the confusion around S phase is complex). ROC curves and scores also

indicate that XclustAgglom has done a slightly better job of segregating data into discrete

groups that reflect underlying data structure, while the Fourier analysis groups are less co-

herent and often seem to mix members of kinetically adjacent groups as detailed in the

confusion array (Figures 2.5 and 2.6). This may be due, in part, to the use of a small num-

ber of then known genes to center landmark phases by the Fourier algorithm. The fact that

this phase assignment was a "somewhat arbitrary" step in the original analysis was pointed

out by Spellman et al. (1998).

2.2.4 High resolution cluster comparison

Confusion arrays can be used to explore issues raised by global analyses and to mine rela-

tionships between individual clusters in more detail. The latter activity can then be used to

make refined and edited gene lists based on expert opinion or on computationally objective

criteria. We applied linear assignment to the confusion matrix of the Cho heuristic and the

EM MoDG results and produced the corresponding adjacency matrix (Methods, Equation

2.3). This delivered an objectively optimized pairing of EM cluster 1 with Cho "Early G1";

EM cluster 2 with Cho "Late G1", and so on, as shown in the array visualization (figure

2.1). Each cell in the confusion array contains the corresponding gene vectors and displays

the calculated mean vector for each intersect cell in the array.

The confusion array highlighted relationships that were not clear from figures 2.3 or 2.6.

For example, in the Affymetrix platform data [Cho et al., 1998], both algorithms identified

two gene classes within G1, (red and yellow respectively in the PCA analysis of figure 2.3).

However, the EM-1 cluster shares only 67% of its content with the Cho "Early G1," and
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Figure 2.4: Receiver operator characteristic (ROC) analysis of the S phase cluster of Cho et
al. 1998.A) ROC curve (left) shows the overlap between this cluster of 74 genes and genes
from all other clusters in the time course analysis (383 genes in total, selected by inspection
by Cho et al (1998) for cycling behavior). The area under the ROC curve is 0.82. The area
under the curve highlighted in green demonstrates selection of genes from S-phase that
overlap with other clusters least. At the shown distance threshold, 66% of genes from the
Cho determined S-phase cluster are selected, and the overlap with only� 20% non-S-phase
genes. (A Right) Correlation distance histograms illustrating the distribution of distances
to the center of the S phase cluster for non-cluster members (bottom/blue) and for all S
phase cluster members (top/red). B) Expression trajectories for the 74 genes in the S phase
cluster, highlighting in green cluster members represented by the green highlight in panel
A. C) Expression trajectories for all genes outside the S phase cluster of the Cho clustering
highlighting in green non-cluster members represented by the green highlight in panel A.
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most remaining genes fall into the Cho "Late G1" cluster (Figure 2.7A). A straightforward

hypothesis is that the statistical EM algorithm simply could not justify dividing G1 vectors

into early and late G1 kinetic groups as the heuristic had. The confusion array, however,

makes it clear at a glance that a different data feature is driving the G1 sub-groupings. EM1

genes are upregulated only in the second cycle, while EM2 genes are upregulated in both

cycles. The array also shows that the Cho Early G1 group contains a set of 10 genes that

appear much more consistent with a coherent M phase group that corresponds to EM5.

Because the focus of the heuristic classification was mainly on the second oscillation, it

suppressed the distinction between single cycle and two cycle G1 patterns, while "paying

more attention" to fine-structure kinetic differences of the second cycle. EM MoDG, on

the other hand, treated all features with equal weight, and centered the clusters without

prior guidance about their relationship to cell cycle phase. The confusion array intersect

cells then parsed fine kinetic differences with EM1 by separating 47 vectors that more

closely resemble the early G1 cluster versus 18 that are more like late G1 cluster. Thus the

intersect cell captured the two distinct ways in which the algorithms segregate G1 genes

and dissected parent clusters accordingly.

In the confusion array the distribution of members from Cho "S-phase" cluster are

shown to overlap almost evenly between either EM2 (41%) or EM3 (49%) from the EM

MoDG result. A simple biological interpretation is that the kinetic boundary between Late

G1 and S-phase is not very crisp, regardless of whichever algorithm is used to try to define

them. An alternative explanation is that this is an instance where one algorithm is frankly

superior to the other in defining a coherent expression group. The latter explanation is sup-

ported by the ROC curves (Figure 2.3). The EM3 ROC area is a very high value at 0.98

versus 0.82 for the Cho heuristic S phase group, indicating that the Cho S-phase group

overlaps much more with data outside its group than does the corresponding EM3 cluster.

2.2.5 Dissecting individual clusters using ROC

Further ROC-based analysis of the S phase cluster from the Cho et al. (1998) classification

is shown in figure 2.4. The ROC curve shows how far from the cluster mean one needs
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Figure 2.7: .
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showing the S-phase cluster of the Cho classification is subdivided nearly equally among
EM-2, EM-3 (optimal match by LA) clusters.
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to expand a hypersphere to include a given fraction of vectors from the cluster. Inspec-

tion of the ROC curve and the corresponding histogram (Figure 2.4A) identified a natural

discontinuity separating the first 66% of genes that are nearer the cluster center from the

remainder. For additional data mining, we therefore set a boundary at 66% on the ROC

curve and then inspected all gene vectors from the entire cell cycle dataset that fall within

that boundary.�20% of gene vectors inside this dataspace threshold had been assigned to

other clusters. Panels 2.4B and 2.4C allow inspection of gene trajectories that were either

interior or exterior to the boundary. This tool is useful for reviewing and "pruning" lists of

putatively co-expressed genes in an objective manner.

2.2.6 Comparative clustering integrated with transcription factor mo-

tifs to identify regulatory modules

CompClust is designed to integrate different kinds of data by linking each gene with other

data, annotations, and results of meta-analyses. There are many ways to use other data sets

to identify relationships between, for example, observed patterns of RNA co-expression

and other data that help to answer the question: Are similarly expressed genes co-regulated?

A group of genes that are co-expressed may also be co-regulated, but this is far from as-

sured. Co-expressed genes can instead arrive at the same expression pattern by the action

of two (or more) different regulators. Conversely, genes that are co-regulated by the same

factor(s) at the transcriptional level may not display identical RNA expression patterns for

a variety of reasons, including differential turnover rates. For these reasons other kinds

of data are needed to help determine which co-expressed genes are, in fact, transcription-

ally co-regulated and to provide evidence for the identity of factor(s) driving co-regulation.

Here we show how the occurrence of evolutionarily persistent transcription factor binding

sites can be mapped informatively onto gene expression clusters from a confusion array to

predict the structure of transcription modules.

The observation of two distinct sets of genes, one that peaks during both the first

and second cell cycles after release from arrest, and another restricted to only the sec-

ond oscillation (figure 2.7), suggests that they might be regulated differently at the level
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of transcription. Prior work has led to the view that MCB and SCB sequence motifs bind

Mbp1/Swi6 (MBF) or Swi4/Swi6 (SBF) factor complexes to drive G1 specific transcrip-

tion [Nasmyth, 1985, Breeden and Nasmyth, 1987, Koch et al., 1993]. Thus many genes

are believed to be selectively and specifically expressed in G1 due to their membership in

either MBF or SBF regulatory modules. The two modules are also thought to be partly dis-

tinct from each other, with some genes apparently being strongly governed by either Swi4

or Mbp1 [Horak et al., 2002, Iyer et al., 2001], and reviewed by [Breeden, 2003].

We therefore calculated a motif conservation score (MCS, see Methods) to quantify the

conserved enrichment of a consensus site within 1kb of the start ATG in sequence data from

the seven available yeast genomes [Cliften et al., 2003, Kellis et al., 2003]. We then asked

if different intersect cells within the confusion array are differentially and significantly

enriched for these known candidate motifs. The EM2/Late G1 intersect cell was highly

enriched, above chance, for MCB and SCB. 79 of 113 genes (70%) were enriched for

MCB compared with the expectation of 13 such genes for randomly selected samples of

113 yeast genes. 18% are enriched for SCB sites compared with an expectation of only 6

genes by chance (figure 2.8A). Also, the vast majority of genes with above threshold MCB

or SCB MCS scores also have significant in vivo binding activity for either MBF or SBF as

measured by Lee et al. (2002) (figure 2.8 C and D). In contrast, the EM1/Early G1 intersect

cell, whose genes peak only once during the time course, showed no significant enrichment

for either MCB or SCB (figure 2.8A).

Given that the genes in the EM1/Early G1 confusion array cell show low MCS scores

for both MCB or SCB, what factor(s) could be responsible for the EM1/Early G1 intersect

pattern? We searched for another binding motif that showed an enrichment for this group

and found that the SWI5/ACE2 motif is enriched so that� 30% are above threshold, a

value double that expected by chance (figure 2.8A). Figure 2.8B shows these genes ordered

according to their Swi5 MCS scores, where the highest Swi5 MCS scores correlate with

very intense expression in the second cycle. This, in turn, correlates strongly with in vivo

factor binding by both Swi5 and Ace2 taken from the chromatin immunoprecipitation data

of Lee et al., (2002).
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2.3 Discussion

As illustrated for yeast cell cycle data, differences among clustering algorithms, imple-

mentation parameters, and individual dataset structures make it difficult - even limiting - to

simply select one clustering result and expect it to produce a fully informative data model.

And without objective comparative criteria, it is difficult to tell by inspection whether one

clustering is significantly "better" than another. The mathematical, computational and vi-

sualization tools that collectively comprise CompClust allow one to run diverse unsuper-

vised and supervised algorithms, compare the results using unbiased quantitative tools,

and dissect similarities and differences between clusters and clusterings. Specifically, we

showed that linear assignment (LA) and normalized mutual information (NMI) metrics,

receiver operator characteristic (ROC) analysis, principle component analysis (PCA) pro-

jections, and interactive confusion array analysis can effectively quantify and visualize

similarities and differences. By coupling the resulting comparative analyses with a flex-

ible visualization system within CompClust and, especially, by using confusion arrays to

organize comparisons, it becomes relatively easy to identify global and local trends in ex-

pression patterns and to find out which features are fragile to algorithm choice or other

variations. The tools are also useful for investigating substructure within individual gene

clusters and for showing how a cluster from one analysis relates to a cluster from an-

other analysis. CompClust (including source code) and associated tutorials are available at

http://woldlab.caltech.edu/compClust/. The principle capabilities presented above can be

used through a graphical user interface (GUI) that is introduced within the tutorials using

examples presented above.

2.3.1 Is one data model quantitatively better than the other?

By using LA and NMI metrics, we found that four different algorithms applied to two

yeast cell cycle datasets produced clusterings that differed substantially. It is noteworthy

that these differences were in the classification of gene expression vectors that all exhibit

cycling behavior, since the data had been prefiltered to include only genes that cycle by

the authors of the original papers. This means that differences in clustering results are not
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attributable to the manner with which each algorithm handles background "noise" from

genes that do not cycle or are not expressed significantly.

The magnitude of difference revealed by LA and NMI quantification raises the ques-

tion of whether one data model is objectively superior to the other. ROC curves and area

calculations delivered some useful guidance. Clusters from the original Cho heuristic and

Fourier algorithms shared more internal overlap among clusters than do clusters from the

EM MoDG or XclustAgglom algorithm. In the case of the Affymetrix dataset, the EM

MoDG algorithm produced an objectively superior data partition partly because all parts

of expression trajectories were weighted equally. This is not surprising since the statisti-

cally based EM MoDG algorithm should locate optimal natural groupings and define the

best-justified boundaries between them based on the entire data vector for each gene. In

contrast, the expert-supervised heuristic was tuned to a model of cell cycle expression that

emphasized peak expression values and focused selectively on the second oscillation in the

timecourse. This expert-imposed emphasis produced different cluster memberships, and it

is left to the biologist to determine which is most appropriate for a given use and to decide

how to use information on intersection and mutual exclusion of individual genes. In other

studies using entirely different datasets, we have seen that one clustering is sometimes

broadly and irrefutable superior to another, and in such cases poor ROC values across an

entire clustering are diagnostic of poor quality. As such, we believe ROC can be useful for

quickly screening out clusterings that are frankly inferior.

More detailed comparative analysis showed that for the Affymetrix dataset [Cho et al., 1998],

EM MoDG and the Cho heuristic found a basic data structure dominated by, and consistent

with, the major phases of the cell cycle (figure 2.3). This presented an apparent paradox,

since the overall cell cycle phase structure was highlighted similarly by both algorithms,

while the assignment of specific gene vectors to individual clusters was quite different, as

shown by the LA and NMI scores (figure 2.1). Further investigation of cluster relationships

in the context of confusion arrays, local ROC analysis, and ROC curve structure helped

to resolve the paradox and, in doing so pointed to both technical quality issues between

algorithms and to biologically pertinent substructure in the data. Thus, in some instances,

assignment of gene vectors differed because the boundaries between clusters, such as G1
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and S, were not as well chosen by one algorithm as by the other. Inspection of intersections

in the confusion arrays also identified specific expression vectors and groups of vectors that

were the most “ambiguous”. Sometimes the ambiguity appeared to be a data quality issue

for a given gene, and highlighting these affords a user the opportunity to trim gene lists

accordingly. In other cases differences between algorithms in cluster assignment portrays

correctly the notion that phases of the cell cycle are not entirely separate with respect to

mRNA synthesis and decay.

2.3.2 Inference of transcriptional modules

By analyzing gene groups corresponding to confusion array intersect cells we showed that

G1 gene expression that peaks during both first and second cycles (confusion array intersect

cell EM2/Late G1 of figures 2.7A and 2.8A) is prominently associated with a conserved en-

richment of either MCB or SCB, the known “classical” G1 cis-acting regulatory sequence

motifs [Nasmyth, 1985, Breeden and Nasmyth, 1987, Koch et al., 1993]. CompClust link-

ing capabilities were then used to visualize correlations with in vivo protein:DNA binding

data for Swi4 and Mbp1 [Lee et al., 2002], the factors that are expected to bind active SCB

and MCB sites. In contrast we found that genes expressed solely during the second cell

cycle oscillation (EM1/Early G1 intersection cell) are not enriched for MCB or SCB sites.

We then identified an enrichment for the Swi5/Ace2 binding motif for this group (figure

2.8A); about 30% of the genes in the EM1/Early G1 intersect cell. Remarkably only� 4%
of the EM2/late G1 group (which has the MCB/SCB two-oscillation pattern) was enriched

for Swi5/Ace2 binding sites. Further independent support for a Swi5/Ace2 G1 regulatory

node that includes these target genes comes from two sources. A prior study had identi-

fied Swi5 as the primary regulator conferring Early G1 gene expression to the EGT2 gene

[Kovacech et al., 1996]. And another study [Doolin et al., 2001] identified 15 genes regu-

lated by either Swi5 or Ace2. Of these, 11 are present in the input cycling group of 383

genes [Cho et al., 1998]. Seven of these are in the EM1/Early G1 group and have high

Swi5 MCS scores. EGT2 is notably absent because Cho et al. (1998) had not included

it in their original analysis. However, its expression pattern is consistent with this group
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and has a very high Swi5 MCS score. Second, as with the MCB/SCB regulatory mod-

ule, independent supporting data comes from in vivo protein:DNA interaction data from

global chromatin immunoprecipitation [Lee et al., 2002]. Thus,� 60% of this EM1/Early

G1 Swi5/Ace2 group have p-values below 0.05 for Swi5 or Ace2 in the global chromatin

immunoprecipitation study of Lee et. al. (2002), and still more are relatively strong binders

as indicated by the p-values shown in figure 2.8B.

Our observations raise questions about the structure of the G1 regulatory network and

the regulatory modules that comprise it. The top scoring members of each candidate co-

expression/co-regulation module displayed strong positive signals for transcription factor

motif enrichment, good p-values for putative in vivo binding by the corresponding fac-

tor (or heteromeric complexes, in the case of Mbp1-Swi6 (MBF) and Swi4-Swi6 (SBF)),

and typically they were among the most robust examples of their subcluster RNA expres-

sion pattern. These are reminiscent of classical molecular genetic studies performed on a

“model gene”. Systematically defining these genes as members of G1 regulatory modules

(MCB, SCB, or Swi5/Ace2) was relatively straightforward. However, these robust tran-

scriptional connections to a given expression pattern capture and account for only apart

of each expression group. We think that the high quality connections supported by all data

types generate, in effect a sparse network scaffold, rather than a complete and compre-

hensive network model, even though the input data are from comprehensive genome-scale

assays. Thus, in the major confusion array sub-clusters we studied in detail, a substan-

tial proportion of genes display the group-defining RNA expression pattern, yet they lack

convincing motif enrichment scores and/or high level ChIP/chip binding. An interesting bi-

ological explanation is that there are additional regulatory factors that can also drive these

G1 patterns of expression. Since G1 regulation in yeast already uses at least three regu-

latory modules, it seems entirely plausible that others might exist, and new datasets are

likely to uncover theses. In addition, combinatoric regulatory modules likely account for

expression of some G1 genes, and especially strong output from a single binding site based

on its position, orientation or in vivo affinity, might account for others. Such combinatoric

and single site configurations are likely to have marginal MCS scores, but other algorithms

that explicitly address these alternatives can be added to CompClust to help identify them.
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Other explanations for connections of uncertain quality include assay sensitivity and the

incompleteness of current datasets. For example, reliable in vivo binding data (from mi-

croarray based ChromatinIPs) in the current state of the art may be biased in favor of genes

having multiple binding motif instances for a factor rather than just one or two sites. With

respect to completeness more comprehensive ChIP-chip data will add results for factors

not included in the currently available data (R. Young, personal communication), making

possible identification of new candidate regulators associated with particular gene sets, if

they exist.

2.4 Methods

2.4.1 CompClust

As shown above the maturation of additional large-scale data types (global chromatin im-

munoprecipitation assays, more complete and highly articulated protein:protein interaction

maps, GO ontology categories, evolutionarily conserved sequence features, other covari-

ates) shifts the emphasis from analyzing and mining expression data alone to integrating

disparate data types. A key feature of any system designed for integration is the ability to

provide a many-to-many mapping of labels to data features and data features to other data

features in a global way. CompClust provides these capabilities by maintaining and track-

ing linkages of multiple arbitrary annotations and co-variates with data features through

almost any data transformation, merger, selection, or aggregation. In addition, many su-

pervised and unsupervised machine learning algorithms are easily accessible within Com-

pClust.

CompClust is primarily accessible through an application programming interface (API)

and, with the use of Python’s exposed interpretor, this provides a very rich command line

interface (CLI). The major capabilities illustrated in this paper are accessible through a

set of simple graphical user interfaces (GUIs) to offer a convenient starting point without

learning Python commands. These GUIs will permit users to perform the major classes of

analyses shown, though we note that these comprise only a fraction of CompClust capabil-
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ities, as the flexibility and diversity of analysis paths is too great to reduce all of them to

GUI form. This limitation can be overcome by using the Python command line environ-

ment. Python commands can be learned at the level needed in a relatively short time (a few

weeks of part time effort) by users who do not have prior programming experience. The

benefit is access to remarkable flexibility in interrogating datasets. This is a much closer

match to the diversity of questions and comparisons that biologists usually want to make

and to the spectrum of specific needs that arise in different studies.

The choice to implement CompClust in Python over other languages was made for

several reasons which, considered in aggregate, argue it is the best available language to

support the capabilities and analysis goals of CompClust: 1) Using Python’s exposed in-

terpretor, our API becomes immediately useful for analysis without the construction of a

complex GUI. The exposed interpretor also speeds the development time. 2) Python’s syn-

tax is fairly straightforward and easy to learn for even non-programmers. 3) It is freely

available and distributable under an open-source license. 4) Python has an extensive and

standard library and in addition 3rd party extensions, including the Numeric package which

provides powerful numeric analysis routines. 5) Python is also platform neutral and runs

on the majority of systems including unix/linux, Microsoft Windows and the Mac OS.

2.4.2 Pairwise comparison of clusterings (partitions) using confusion

arrays and matrices

Confusion arrays and matrices were used to make pairwise comparisons between different

clusterings (mathematical partitions). A set of metrics were then applied to the confu-

sion matrix to measure the nature and degree of similarity between two dataset partitions.

Briefly, a confusion matrixM is the matrix of the cardinalities of all pairwise intersections

between two partitions,A andB (eq. 2.1), where a partition of a datasetD is defined as a

set of disjoint subsets ofD whose union contains all elements ofD. We define a confusion

array simply as an array of all pairwise intersections between two partitionsA andB of a

datasetD. The cardinalities of these intersection sets form the confusion matrixC, whose

elements are given by equation 2.1.C is a confusion matrix where:
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Ci;j = jAi\Bjj (2.1)

and,

Ai: The data members of class i in A

Bj: The data members of class j in B

2.4.3 Linear Assignment

The Linear Assignment (LA) value for a confusion matrix is calculated between two par-

titions (clusterings)A andB by generating an optimal pairing so that there is, at most,

a one-to-one pairing between every class in partitionsA andB. This pairing is calcu-

lated by optimizing the objective function in equation 2.2, using the constraints given in

equation 2.3 thus defining a linear assignment problem. Next, the maximum-cardinality bi-

partite matching of maximum weights algorithm [Gabow, 1973] was implemented for the

optimization. After finding the optimal pairing, the LA score is simply the proportion of

vectors (e.g. gene expression trajectories or conditions) included in the optimally paired

clusters (eq 2.4). It is important to note that LA, unlike NMI, is a symmetric score so that

LA(A;B) = LA(B;A). In addition to quantifying the degree of similarity or difference

between two partitions, the adjacency matrixM (eq 2.3) also provides a way to identify

pairs of clusters that are globally most similar to each other between two partitions of the

data. As illustrated for clusterings of yeast cell cycle regulated genes, this is especially

useful for interactive examination of two clusterings.

E = �Xab MabCab (2.2)

where,

Mab 2 f0; 1g ^ Xa Mab � 1 ^ Xb Mab � 1 (2.3)

Now,
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LA =
P
a;b MabCabP

a;b Cab (2.4)

where,

M : adjacency matrix describing the pairing between A and B

C: the confusion matrix (eq. 1)

2.4.4 Normalized Mutual Information

The NMI (normalized mutual information) index [Forbes, 1995] quantifies how much in-

formation is lost, on average, when one clustering is regenerated from a second classifica-

tion (Equation 2.5). A noteworthy difference from LA is that NMI is asymmetric.

NMI(A;B) = I(A;B)H(A) = H(A)�H(B)�H(A;B)H(A) = 1� H(A;B)�H(B)H(A) (2.5)

whereI(A;B) is the shared information between the two partitions and it is normalized

by the entropy of partitionA, H(A) defined as:

H(A) = X
i2partitions pi � log �pi (2.6)

and,

pi =
P
j Ci;j
n (2.7)

and the joint-information is:

H(A;B) = H(C) =Xj
X
i
Ci;jn log(Ci;jn ) (2.8)

and
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n =Xi;j Ci;j (2.9)

2.4.5 Combined Use of Normalized Mutual Information (NMI) and

Linear Assignment (LA)

NMI(A,B) NMI(B,A) LA Implies
Low Low Low Poor Similarity
Low High Low B refines A
High Low Low A refines B
High High High Good Similarity

Table 2.1: Interpretations of commonly observed combinations of LA and NMI scores.

Given two clustering results A and B for which both NMI(A,B), NMI(B,A) and LA(A,B)

values are high (nearing the maximum value of 1.0) the two clusterings are very similar,

and when all three are significantly lower, they are very different. But when NMI(A,B) is

high, NMI(B,A) is low and LA is low, then it is likely that A is a refinement of B. In this

case, many clusters in B have been broken into two or more clusters in A (possible com-

binations summarized in here) (2.1). The magnitude of dissimilarity that is important is

defined by the user and may vary considerably with the dataset, although values below 0.7

for both LA and NMI are usually viewed as quite different. Additional interpretation of dif-

ferences measured by LA and NMI depends on more detailed analysis of the dissimilarities

and their distribution over the dataset, as outlined above.

2.4.6 EM MoDG clustering of yeast cell cycle data

Expectation Maximization of a Mixture model of Gaussians was implemented with a diag-

onal covariance matrix model because the number of samples in the [Cho et al., 1998] cell

cycle dataset was too small to fit a statistically valid full covariance matrix to each cluster

[Dempster et al., 1977]. In order to ensure a near optimal initialization, each EM MoDG

results was a result of selection of the best of 30 runs each initialized by placing the ini-

tial cluster centroids on K randomly selected datapoints. The run with best fit to the data
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(i.e. had the lowest log-likelihood score) was used for the final clustering. Multiple best-

of-30 runs were performed to verify that the quantitative measures and gene lists results

reported here did not vary significantly. The EM MoDG code used here was developed by

the NASA/JPL Machine Learning Systems Group.

2.4.7 XclustAgglom

We agglomerate the hierarchical tree returned by Xclust [Sherlock, 2000] based on a maxi-

mal cluster size threshold. Starting from the root, any subtree with in the tree with less than

the maximal cluster size threshold is agglomerated into a cluster. In order to work with the

familiar parameter K (number of clusters) we iteratively find the size threshold that will

return as close to K clusters as possible. In practice this simple heuristic works best when

K is over specified by roughly 2-4 times the expected number of clusters because it will

generate several very small (often singleton) clusters that are outliers to core major clusters

in the data (figure 2.5)

2.4.8 Data Preprocessing

Each microarray dataset was obtained from the cited authors. For the Cho et. al. (1998)

data we removed any gene that did not show a sustained absolute expression level of at

least 8 for 30 consecutive minutes. We then for each gene vector divided each timepoint

measurement by the median expression value for the gene. For the Spellman et al. (1998)

we linearly interpolated missing values using the available adjacent time points. For both

datasets welog2 transformed the resulting gene expression matrices. The datasets where

then annotated with the original clustering results as published.

2.4.9 Motif Conserved Enrichment Score (MCS)

For each motif we translated the IUPAC consensus (Swi5/Ace2: KGCTGR, MCB: ACGCGT,

SCB: CACGAAA) into a position weight matrix (PWM) where the probabilities or fre-

quencies in the PWM is determined by the degeneracy of the IUPAC symbol. We calculate

a log-odds ratio as described in equation 2.4.9 for the PWM occurring at every position in
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the 1KB upstream of each ORF for each species available. We then sum the log-odds ratio

over all possible positions where the log-odds ratio is greater than 7. The summed log-odds

ratios for each species is then averaged together to generate an ORF specific motif enrich-

ment score. In equation 2.4.9 below N is the total number of species compared, W is the

length of the motif,pni is the probability from the PWM of position i being the nucleotide

n, n 2 A;C; T;G andbg represents the probability of the window being generated from a

background sequence model based on a second order hidden Markov model.

MCS = 1N
X

8windows
QWi=0 pnibg
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Chapter 3

Influences of Measurement Noise, Data
Preprocessing, and Algorithm Choice on
Microarray Clustering Results

3.1 Introduction

Large scale gene expression data provides a global perspective on the diversity of ex-

pression patterns that occur through biological processes both with and without pertur-

bations. Many clustering techniques have been applied to these data and have been shown

to uncover natural groupings of co-expressed genes [Cho et al., 1998, Eisen et al., 1998,

Golub et al., 1999, Tamayo et al., 1999, Ross et al., 2000, Ihmels et al., 2002]. Further anal-

ysis of groups of co-expression genes have led to the isolation of functional regulatory

modules ([M. A. Beer, 2004, Tavazoie et al., 1999] and section 2) and correlations with

functional annotations such as those found in the gene ontology [GOConsortium, 2001]

resource have been utilized to gain a basic understanding of the types of processes that

are being modulated [Doniger et al., 2003]. Clustering results also give insights into the

general trends of expression behaviors that are utilized to respond to varying conditions.

Although the underlying goal of most clustering algorithms is to uncover clusters of

genes with behaviors more similar to each other than to non-cluster members, the results

can be strikingly different (Table 3.1). The results of a given algorithm can be confounded

by selection of varying algorithm parameters such as initialization, seeding, distance metric

or the number of clusters to find. It is important to understand the influences of these
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parameters in the resilience of clustering results for biological interpretations.
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KMeans - 1.0 0.72
XClust - - 1.0

a) Yeast Cell Cycle Data
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KMeans - 1.0 .42
XClust - - 1.0

b) Tumor Data

Figure 3.1: Cluster similarity as measured by linear assignment (LA) scores (section 2.4.3)
comparing clustering results of three different clustering algorithms when used with com-
parable parameters on exactly the same dataset. a) Clustering comparisons from a microar-
ray dataset measuring the expression levels of all genes in yeast through two cell cycles
[Cho et al., 1998]. b) Comparisons from a microarray dataset surveying the expression
profiles of several different human breast tumors [Perou et al., 2000]

.

Microarray data is also often confused by measurement and biological noise [Tu et al., 2002,

Novak et al., 2002, Yang et al., 2002]. When drawing on clustering results as a foundation

for building new hypotheses and understanding a biological process, the stability of both the

cluster memberships and also the cluster behaviors are important. Another source of vari-

ance in clustering comes from preprocessing and the decisions of which genes to cluster.

An understanding of these influences on clustering results can seriously alter downstream

interpretations of the results. Particularly sensitive to the reliability and the inclusion of

genes that may or may not be warranted in clustering results are those methods that search

for statistical biases within cluster members, such as those looking for enrichment of bind-

ing sites or GO categories.

Discerning an “optimal” or “best” clustering algorithm to use is dependent on far too

many factors ranging from data quality, dataset size (ie. number of genes and number

of conditions), and most importantly the underlying questions that need to be addressed.

Using the CompClust framework we can gain an understanding of how the reproducibility

of clustering results are effected by features of microarray data, such as noise, and the

typical ways in which we process them.

Here we present a framework to understand the sensitivities and influences of measure-
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ment noise, data preprocessing, and algorithm choice. We compare several clusterings of

a time-resolved microarray experiment measuring the expression levels of every gene in

yeast through two cell cycles. We also demonstrate the applicability of these methods on

a microarray dataset measuring expression profiles of different breast tumor samples. We

compare three different widely used decisive clustering algorithms: an expectation maxi-

mization (EM) based algorithm fitting data to a mixture of Gaussian [Dempster et al., 1977,

Ghosh and Chinnaiyan, 2002] (and chapter 2), KMeans [Tavazoie et al., 1999], and an ag-

glomerated phylogenetic clustering algorithm (Eisen et al. 1998, and Chapter 2) . Although

there are many other clustering techniques available, these provide a baseline of sensitiv-

ities on a set of prototypical algorithms. We do not include self organizing maps (SOMs)

[Tamayo et al., 1999] even though it is an often used technique for microarray analysis.

Although an end result of the SOMs is a decisive clustering, the projection of the data onto

a lower dimensional space is its primary advantage. Further, when using SOMs in a map

agnostic fashion it is algorithmically quite similar to KMeans.

3.2 Methods

3.2.1 Dataset Preprocessing:

Each dataset was obtained from the original authors and loaded into CompClust. The yeast

cell cycle data [Cho et al., 1998] was passed through a filter to ensure that all genes showed

significant expression (an absolute intensity of 8) for at least 30 consecutive minutes. The

“cycling” genes as identified by the original authors were primarily used for our clustering

analysis. For the breast tumor dataset [Perou et al., 2000] we loaded the same normalized

intensity data as the authors and used their selection of 1753 genes which exhibited a mini-

mal of 4-fold change in at least one tumor sample from the mean expression level measured

across all tumors. For both datasets noise was always added to the intensity data directly

before we computed the log ratios that are used for visualization and clustering.
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3.2.2 Comparing Clustering Results:

Every clustering result was compared pairwise using the CompClust framework as de-

scribed in chapter 2. Specifically we constructed confusion matrices and quantified the

similarity between any two clustering results using either linear assignment (LA) or nor-

malized mutual information (NMI) (section 2.4).

3.2.3 Clustering Methods:

Each of the clustering algorithms were used as part of the CompClust framework. The

EM MoDG and XClust with agglomeration are described in more detail in section 2.4.

Because KMeans and EM MoDG are both initialized by randomly seeding the algorithms

with starting cluster means we selected an optimal seeding. The optimal seed was selected

in both cases for every clustering result reported. In order to select the optimal seed, each

algorithm was run on the dataset 30 times with each repeated run starting from a different

random seeding. The seeding that resulting in the best-fit model to the data was then

reported as the final clustering result.

3.2.4 Perturbing Datasets With Synthetic Noise and Mix-in Data Vec-

tors:

We perturbed our expression datasets to asses the stability of clustering results as a func-

tion of noise. For our synthetic noise experiments we add simple Gaussian noise to each

intensity measurement before calculating ratio values. Since we are focusing on genes that

have significant expression, this simple model approximates more complex functions that

indicate low intensity values are subject to more noise [Tu et al., 2002]. The variance of the

noise added to each dataset was proportional to the mean intensity value for the dataset. We

added Gaussian noise that was pulled from a distribution of mean zero and a variance that

was: 0.5%, 1.0%, 2.0%, 4.0%, 8.0% 16.0%, 32.0%, and 64.0% of the mean intensity value

for the dataset. Estimations of noise values that occur during typical microarray experi-

ments are dependent on several factors but for technical replicates the variance expected
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is between 4.0% - 8.0% of the measured intensity value and biological repeats between

16%-32.0% [Tu et al., 2002, Novak et al., 2002, Yang et al., 2002]1

3.3 Results

Although largely reproducible microarray measurements are subject to a significant amount

of noise [Tu et al., 2002, Yang et al., 2002, Novak et al., 2002]. Further, isolation of genes

that are “of interest” which form the input to clustering algorithms often rely on methodolo-

gies that do not have easily definable boundaries, such as p-value cut-offs. We demonstrate

here that these uncertainties have a significant impact on clustering results, especially with

regard to the determination of cluster membership boundaries.

3.3.1 The Influence of Measurement Noise of Clustering Results

We compared the influence of noise on clustering results using two different datasets, one a

time-course experiment measuring yeast gene expression through two cell cycles collected

using Affymetrix gene chips [Cho et al., 1998], the other a comparison of different human

breast tumor surgical samples collected using deposition microarrays [Perou et al., 2000].

We compared the clustering results before and after the addition of increasing amounts of

noise (see methods) using three different clustering algorithms that are commonly used in

microarray data analysis; Expectation Maximization fitting a mixture of diagonal Gaus-

sians (MoDG) (chapter 2), K-Means [Tavazoie et al., 1999], and an agglomerated phyloge-

netic clustering algorithm (XClust) (chapter 2).

3.3.1.1 Global Influences of Noise on Cluster Membership:

The overall performance of each algorithm in the presence of increasing amounts of noise

is summarized in figure 3.2 for both the yeast cell cycle time course data and the tumor

sample dataset. Comparisons show that EM MoDG is slightly more tolerable to noise than

1Although these studies don’t explicitly provide these data, our analysis of both published and unpublished
datasets from a variety of platforms and experimental systems are largely in agreement with these estimates
based on cited published reports.
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are KMeans or XClust, especially at modest noise levels. XClust and KMeans both show

very large standard deviation of similarity scores even at a noise level that introduces a

perturbation of only 0.5%, much less than the typical observed noise which are greater

that 16%. However, all algorithms show dramatic sensitivity when noise level climb above

16%.

3.3.1.2 Differential Influence of noise on Clustering Results:

Figure 3.2 demonstrates that clustering results show substantial variations in the presence

of noise. Naturally an understanding of how these differences are distributed through a

dataset is critical. Are some genes consistently clustered the same while others are con-

sistently clustered differently in each run of the algorithms? Figure 3.3 illustrates that the

fluctuations in cluster assignments are not evenly distributed across the datasets and that

some genes are almost always clustered similarly, but other genes are more often differen-

tially clustered. Inspection of the results from the yeast cell cycle microarray data show that

at low to moderate noise levels EM MoDG performs especially well and 90% of genes are

classified the same in every run of the algorithm. As the noise levels increases EM MoDG

clusters 75% of the genes the same way in roughly 75% of the runs. Comparatively, just

over 50% of genes are classified the same way when using KMeans or XClust even when

the datasets are permuted with very modest levels of noise (0.5%). XClust performance

seems to be intermediate between EM MoDG and KMeans at moderate to high levels of

noise where 75% of genes are classified the same in roughly 50% of runs. These obser-

vations are similar when clustering the breast tumor dataset. Fundamentally these results

strongly indicate that cluster membership for a large proportion of data vectors is not a

robust property.

Figure 3.3 illustrates that cluster membership is unstable for a large proportion of genes

but does not address how these genes are distributed within the dataset. We find that some

clusters have a higher proportion of similarly clustered genes and less differentially clus-

tered genes then other clusters. In particular the G1 cluster found in the yeast cell cycle

expression dataset [Cho et al., 1998] contains genes that are clustered identically in almost

every clustering run even at moderate noise levels when the other clusters are starting to
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Cell Cycle Microarray Data [Cho et al., 1998]
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Breast Tumor Microarray Data [Perou et al., 2000]
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Figure 3.2: Performance vs Noise plots for each algorithm. In each plot the reference
dataset was permuted by adding noise 30 times for each noise level. Each noise level adds
Gaussian noise centered with mean zero and variance proportional to 0.5%, 1.0%, 2.0%,
4.0%, 8.0% 16.0%, 32.0%, and 64.0% of the mean intensity value for the dataset. The
clustering result for each run was then compared with the clustering result before any noise
was added to the dataset. a-c) EM MoDG, KMeans and XClust run on the “cycling” genes
from yeast cell cycling microarray dataset [Cho et al., 1998]. d-e) The same algorithms run
on the breast tumor microarray dataset [Perou et al., 2000]. All algorithm parameters were
unaltered between the noise added and the original datasets. Similarity was quantified using
linear assignment (LA) (chapter 2). Drawn is the mean similarity line for each algorithm,
and the error bars show the standard deviation in the LA scores
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Cell Cycle Microarray Data [Cho et al., 1998]
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Breast Tumor Microarray Data [Perou et al., 2000]
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Figure 3.3: Cluster Consistency Curves Across Increasing Noise. Each line draws the pro-
portion of genes being clustered identically (y-axis) vs the proportion of clustering runs that
classify them identically (x-axis) as computed by adjacency during the linear assignment
computation (section 2.4.3). If every run of the algorithm returned the same clustering
result a horizontal line at y=1.0 would be drawn. As points within the line pull towards
the origin of the graph the clustering results are becoming less consistent with each other.
Each line on these plots represents the consistency curve for the designated algorithm on
the designated dataset at a specific noise level (see methods 3.2.4). The lighter the line the
higher the noise levels. a-c) show consistency plots for EM MoDG, KMeans and XClust
run on the yeast cell cycle dataset [Cho et al., 1998] respectively. d-e) show consistency
plots for the algorithms on the breast tumor dataset [Perou et al., 2000]
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contain many more genes that differentially clustered (figure 3.4). Similarly we find clus-

ters in the breast tumor dataset [Perou et al., 2000] that are also more stable in the presence

of noise (data not shown).

In addition to the cluster memberships of some clusters showing more fluctuations than

other clusters the properties of the cluster means are also less stable. Cluster means provide

a reduction of a complex microarray dataset into a small set of core prototype expression

behaviors. In general these core behaviors are fairly stable and are recognizably similar

to the means found in the original unperturbed dataset at modest noise levels. The PCA

projections in figure 3.5 show again that the G1 (positioned at three-o’clock in the PCA

projection) and M (positioned at six-o’clock in the PCA projection) clusters in the yeast

cell cycle microarray dataset, in addition to having a more stable cluster membership, also

exhibit high stability in the dataspace.

3.4 The Influence of Gene Filtering on Clustering Results

A major step in preprocessing microarray data before clustering revolves around selection

of the interesting genes to cluster. Many techniques have been utilized for this and selection

of the proper technique ultimately depends on the underlying biological questions that are

being asked and the nature of the data. In the case of the cell cycle data, clustering and

further analysis was performed on genes that exhibited cycling behaviors. With the breast

tumor data, genes that show differential expression across the tumor samples were selected

for clustering. Roughly 400 genes, or 6% of the data, was selected in the case of the yeast

cell cycle, and� 1800 genes, 20% of the breast tumor data. As in most cases, these two

analysis relied on hand tuning the input set of genes for further analysis or creating an ar-

bitrary threshold on significance based on a particular measure (ie. p-value, fold-change).

We sought to understand how diluting the selected genes with unselected, putatively “un-

interesting” genes, would effect the clustering results of each of these algorithms.

Figure 3.6 shows the influence of dilution on clustering results when we dilute selected

“interesting” genes with additional genes from the remainder of the data. These addi-

tional genes we refer to as “background” genes. Both the cell cycle and the breast tumor
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(f) XClust

Figure 3.4: Cluster by cluster consistency analysis for clustering runs on the yeast mi-
croarray dataset [Cho et al., 1998] at a low noise level of 4.0% and a higher level of noise
16.0%. For each noise level each algorithm (EM MoDG (a,d), KMeans (b,e), and XClust
(c,f)) was run 30 times after the dataset was perturbed by adding noise at the indicated level
3.2.4. The means from each clustering result were clustered into super-clusters using the
algorithm that generated the clusters. Cluster consistency curves for all the genes that are
contained within any cluster within the super-cluster are drawn on the left most column of
each subfigure. The cluster means that compose each super-cluster is shown in the center
column of each subfigure. The right most column of each subfigure shows all gene vectors
contained within any of the clusters from the super-cluster. The gene vectors highlighted
in red are clustered the same in at least 90% of the 30 clustering runs.
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Perturbed with 2.0% noise
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Figure 3.5: PCA cluster consistency for clustering runs on the yeast microarray dataset
[Cho et al., 1998] at three noise levels, 0.2%, 4.0% and 16.0%. Clusterings were performed
as described in figure 3.4. Each cluster mean was then projected into the top two dimen-
sions of the PCA space defined by original data. Roughly as found in 2.3 the PCA space
maps expression trajectories such that progression through the cell cycle is mapped into
a counter-clockwise movement in the PCA space starting with G1 expression at three-
o’clock and ending with M-phase at six-o’clock. Each mean is colored accordingly to its
membership in super-clusters (as generated as in figure 3.4)
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dataset were augmented with increasing numbers of “background” gene vectors from the

unselected set of genes. We created augmented datasets from the original datasets that con-

tain 20%, 40%, 80%, 160%, 320% and 640% “background” genes as compared with the

original number of selected “interesting” genes. As with the permuted datasets in section

3.3.1 these augmented datasets were clustered and compared with clustering results from

the original unaugmented dataset. Since each of the algorithms requires the specification

of the number of clusters to identify (K) and the larger augmented datasets may require a

higher or lower K value, we clustered each augmented dataset with varying K values al-

lowing it to fluctuate +/- 2 from the K specified in the original clustering. We then chose

the clustering result from augmented dataset that was most similar to the original clustering

for comparisons.

Although the results from all of the algorithms are effected by dilution of the selected

genes with “background” gene vectors, KMeans is most severely effected. Even at modest

levels of noise nearly 30% of the genes are differentially classified. EM MoDG and XClust

are similarly effected at low and modest levels of dilution, but EM MoDG shows more

resilience in its classification at severe dilution. XClust also shows a much larger variability

in its clustering results than does EM MoDG or KMeans as indicated by the error bars in

figure 3.6.

As with the differential results observed between clustering results before and after

addition of noise (figure 3.3), dilution results in some genes having more highly variable

cluster membership while other genes are quite stable (figure 3.7). The cluster consistency

curves in figure 3.7 again show KMeans performance being the most severely effected by

diluting “interesting” genes with “background” genes. In the cell cycle data only� 65%
of the genes retain there cluster memberships across just� 75% of the clustering runs. EM

MoDG and XClust both showed better performance although XClust tends, to in few of the

clustering runs, misclassify large proportions of the genes in the dataset. This behavior is

exaggerated by increasing the dilution level.

We attempt to isolate the genes that are systematically differentially clustered after

augmenting the dataset with “background” vectors in figure 3.8. As in figure 3.4 cluster

consistency is visualized for each of the prototype behaviors in the yeast microarray dataset.
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Cell Cycle Microarray Data [Cho et al., 1998]
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Breast Tumor Microarray Data [Perou et al., 2000]
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Figure 3.6: Performance vs “background” gene dilution for each algorithm. In each plot the
reference dataset was permuted by adding “background” gene vectors. For each dataset the
reference dataset was based on the selection of interesting genes by the original authors.
In the yeast cell cycle data, these were genes that were identified to be cycling, for the
breast tumor dataset these were genes that showed large amounts of differential expression
3.2.4. We created mixed datasets containing all the selected interesting genes and increas-
ing numbers of gene vectors from the remainder of the dataset. Shown are results from
clustering datasets containing 20%, 40%, 80%, 160%, 320% and 640% “background” vec-
tors as compared to with the dataset. The clustering result for each run was then compared
with the clustering result before any background vectors were added to the dataset, and
only the forementioned selected interesting genes were used in scoring. a-c) EM MoDG,
KMeans and XClust run on the yeast cell cycling microarray dataset [Cho et al., 1998].
d-e) The same algorithms run on the breast tumor microarray dataset [Perou et al., 2000].
All algorithm parameters were unaltered between the mixed dataset added and the original
datasets. Similarity was quantified using linear assignment (LA) (Chapter 2). Drawn is the
mean similarity line for each algorithm, and the error bars show the standard deviation in
the LA scores across 30 separate mix-in clustering experiments
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Cell Cycle Microarray Data [Cho et al., 1998]
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Breast Tumor Microarray Data [Perou et al., 2000]
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Figure 3.7: Cluster Consistency Curves Across Increasing Amounts of Dilution. As in
figure 3.3 plot shows the degree of consistency between clusterings of an permuted dataset
and in this case a dataset with “background” gene vectors augmented to it. Each line on
these plots represents the consistency curve for the designated algorithm on the designated
dataset with specific degree of dilution (see methods 3.2.4). The lighter the line the higher
the dilution. a-c) show consistency plots for EM MoDG, KMeans and XClust run on the
yeast cell cycle dataset [Cho et al., 1998] respectively. d-e) show consistency plots for the
algorithms on the breast tumor dataset [Perou et al., 2000]
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Interestingly as opposed to the consistency results after addition of Gaussian noise, dilution

effects the clusters more evenly. The G1 expression clusters tend to be slightly more stable,

but not appreciably so. The PCA projection of cluster means in figure 3.9 illustrates that

the “background” effect these data because they exist in the the middle of the dataspace

thereby imposing a balanced effect on cluster membership.

3.5 Discussion

Clustering techniques provide biologists with a statistically based method for reduction of

the inherent complexity in expression datasets often needed to relate existing knowledge to

the data and more importantly to extract new relationships from the data. Although cluster-

ing techniques are very powerful techniques caution needs to be utilized when leveraging

their results. We demonstrate that the inherent noise in microarray datasets, even at the

level of technical noise and certainly at the level of biological noise can have significant in-

fluences on clustering results (figure 3.2). Further we show that variations in preprocessing

in the form of data selection also effects the clustering results (figure 3.6).

By isolating the stable features within clustering results and highlighting those features

that are less stable to perturbations we gain a better perspective on global features of the

data that are real and interesting as opposed to potentially artifact. For instance in the yeast

cell cycle microarray experiment the core phases of the cell cycle are easily discernible

by every algorithm we ran. Remarkably even when the majority genes are being differen-

tially clustered in the majority of clustering runs this fundamental structure remains clear,

especially in the case of EM MoDG. We can also use this analysis to identify genes that

are particularly stable in cluster analysis and clustered identically even through multiple

clusterings as highlighted in figure 3.4.

Efficient mining of large-scale expression data provided by microarrays requires care-

ful selection of statistical tools to aid biologists in addressing hypotheses both conceived

before the experiment and derived from the experimental data themselves. Often clustering

provides an intermediate reduction of this data before secondary and tertiary analysis is

applied to uncover functional relationships from the correlative relationships suggested by
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Additional 20% more “background” genes
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(c) XClust
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(f) XClust

Figure 3.8: Cluster by cluster consistency analysis for clustering runs on the yeast microar-
ray dataset [Cho et al., 1998] at both a modest and large dilution of genes. As described
in section 3.2.4 data was clustered after varying the dilution of “interesting genes” with
“background” genes. Sub-figures display cluster consistency curves on a cluster by cluster
basis as in figure 3.4 for dilution level and for each algorithm (EM MoDG (a,d), KMeans
(b,e), and XClust (c,f))
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Figure 3.9: PCA cluster consistency for clustering runs on the yeast microarray dataset
[Cho et al., 1998] at two dilution levels; 20% and 320%. Clusterings were performed as
described in figure 3.8. As in figure 3.5 each cluster mean was then projected into the top
two dimensions of the PCA space defined by original data.
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the clustering results. These techniques provide a foundation to evaluate and interrogate the

nature of the clustering results to ensure that meaningful relationships are being pursued

rather than artifacts.
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Part II

Integrative Analysis of Gene Expression

Data and Protein:DNA Interaction Data
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Chapter 4

Inference of Cell Cycle Phase Specific
Regulator-To-Gene Connections Using
Artificial Neural Networks
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Abstract

The yeast cell cycle is often divided into four distinct phases. Transcriptional regulation

plays an important role in both the maintenance of, and the transitions between, these

phases. Each phase has been shown to correspond with a group, or cluster, of genes that

have phase-specific peak RNA expression, and are concordantly expressed throughout the

cell cycle. We trained artificial neural networks to predict gene RNA expression patterns

based solely on which transcriptional regulators have been measured to bind upstream. As

the artificial neural networks share some structural properties with the transcriptional reg-

ulatory network that we are seeking to understand, we were able to derive a map of cell

cycle phase-specific regulator-to-gene connections. Many of the inferred connections cor-

responded with previously identified regulatory connections. In addition, these connections

often correspond to the conserved presence of known transcriptional binding sites across

multiple yeast species.
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4.1 Introduction

Cellular or developmental states are often characterized by sets of genes that are expressed

consistently together. The yeast cell cycle is broken into at least four major cellular states.

These states are referred to as the cell cycle phases. Genome-wide RNA expression profil-

ing has associated each cell cycle phase with sets of genes, or clusters, that are observed to

have phase-specific expression [Cho et al., 1998, Spellman et al., 1998]. We focus here on

dissecting the transcriptional regulatory connections associated with each cell cycle phase.

These regulatory connections are likely to underlie, in part, the establishment and execution

of each phase, and the transitions between them.

One major goal of the work described in this chapter is to infer the temporal, or cell

cycle phase, association of transcriptional regulatory interactions. Chromatin immunopre-

cipitation followed by microarray analysis (ChIP/chip) can assay the binding activity of a

transcriptional regulator upstream of nearly every predicted gene in yeast. Through high-

throughput adoption of ChIP/chip techniques [Ren et al., 2000, Iyer et al., 2001], Young

and colleagues collected data for 204 of the currently 275 annotated yeast transcriptional

regulators1 for their respective binding activity upstream of nearly every gene in yeast

[Lee et al., 2002, Harbison et al., 2004]. However, these data lack time or cell cycle phase

resolution. In ChIP/chip experiments, for each measured transcriptional regulator a yeast

strain is engineered such that the wildtype transcriptional regulator is replaced with an

epitope-tagged version. Each strain was then grown and exposed to a cross-linker. Af-

ter crosslinking the tagged transcriptional regulator, among other things, is covalently at-

tached to the DNA in which it was bound toin vivo at the time of crosslinking. Using the

epitope tag, the bound DNA is retrieved, amplified, labeled and hybridized to a DNA mi-

croarray with spots representing the intergenic, presumably regulatory, regions of the yeast

genome. Mostly due to time and cost constraints these measurements are not performed

time-resolved. As such, these data were collected from cells that are freely cycling. There-

fore, the measured interactions between a transcriptional regulator and its target genes are

the summation of all interactions that occur during any phase of the cell cycle that was suf-

1This number is derived from gene ontology annotations obtained from http://www.yeastgenome.org at
the time of writing.
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ficiently represented in the unsynchronized culture. Thus, the temporal, or phase-specific,

aspects of these interactions are not explicit within the dataset and need to be reestablished

from other data.

Using artificial neural networks (ANNs) we demonstrate that by coupling genome-

wide time-resolved RNA expression data from microarrays [Cho et al., 1998] with large-

scale measurements of genome-wide protein:DNA interactions from ChIP/chip experi-

ments [Lee et al., 2002, Harbison et al., 2004] many of the known previously discovered

regulatory connections associated with the cell cycle can be identified. In addition, several

novel hypothetical regulatory associations are also found. With each of these regulatory

relationships we also capture the cell cycle phase in which these regulatory associations

are likely to be pertinent. From this, we begin to build a map of cell cycle phase specific

regulator-to-gene connections.

Transcriptional regulation often relies on the aggregate effect of the interactions of mul-

tiple transcriptional regulators on a given target gene. These interactions of transcriptional

regulators can have dramatic influences on theirin vivo activity. For example, for many of

the genes that show M-phase specific accumulation of mRNA during the yeast cell cycle,

Mcm1 is bound upstream and capable of driving transcription constitutively throughout the

cell cycle. For many Mcm1 dependent genes, expression is restricted to M-phase through

adjacent binding of the transcriptional repressors Yox1 and Yhp1 [Pramila et al., 2002].

An important aspect of gaining an understanding of the regulatory networks that define and

allow for the transitions between cell cycle phases, and cellular states in general, involves

capturing these diverse kinds of regulatory interactions.

ANNs are structural models that have a long history in pattern recognition [Bishop, 1995].

They are often used in machine learning as “black boxes” to perform classification tasks.

However, in this application the ANN model is of interest because the underlying struc-

ture of the network reflects structural properties underlying the regulatory networks we are

seeking to understand, such as non-linear sparse interactions between transcriptional reg-

ulators and target genes [Mjolsness et al., 1991, Weaver et al., 1999, Vohradsky, 2001]. In

this study we construct a simple ANN classifier that can be used to predict the expression

behavior of a gene given only information regarding transcription factor binding activity
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upstream of that gene. The ability of the ANN to predict expression behavior solely based

on the binding activity of transcriptional regulators is a strong indication that the primary

regulation of that gene’s mRNA concentration is determined by the measured factors as op-

posed to other complicated regulatory processes such as highly controlled RNA processing,

including degradation, or chromatin modifications.

The structural nature of the ANN model can be interrogated to build a map of regulator-

to-target gene associations. It also provides a ranking of these associations for each regu-

lator on regulating a particular RNA expression behavior. These relationships in effect cast

the kinetic context of expression data onto connections implied from non-kinetic ChIP/chip

studies. We constructed a simple single layer network (Figure 4.1) partially because we can

more easily gain an intuitive understanding of the ANN. Further, addition of multiple lay-

ers into the network provided little gain in prediction accuracy. It is important to appreciate

that, although the weights in this network do not have a direct biological analogy, they

do provide a clue in understanding the importance of a regulator’s binding or absence of

binding in producing a particular gene expression pattern.

4.1.1 Methods

4.1.1.1 Data Preprocessing:

The microarray dataset measuring expression levels of nearly every gene in yeast through-

out two cell cycles was obtained from the cited authors of Cho et al. (1998). These data

were collected by Cho and colleagues from yeast cells synchronized using a cdc28TS ar-

rest. RNA was extracted from the cells every 10 minutes for 170 minutes. Labeled target

was synthesized from the extracted RNA and then hybridized to Affymetrix arrays. The

resulting data processing was the same as in section 3.2.1. Briefly, any gene that did not

show a sustained absolute expression level of at least 8 for 30 consecutive minutes was

removed from the analysis. For each of the remaining 6174 gene vectors we divided each

timepoint measurement by the median expression value across all time points for the gene.

The log2 of each ratio was then used to create the expression matrices that we used. Much

of our analysis focuses on a set of 384 “cycling” genes in which Cho et al., 1998 identified
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Figure 4.1:The Artificial Neural Network Architecture (ANN) A) Shown is the sim-
ple single layer network we trained to predict expression behavior based on thein vivo
binding activity of� 75% of the transcription regulators in yeast. A 204 dimension vec-
tor containing the measured binding data from [Harbison et al., 2004] is used as the input
vector. Given this binding vector the ANN was trained to predict during which of the five
canonical cell cycle expression groups it is likely to be expressed. These expression classes
were determined using EM MoDG (section 2.4.6) B) Matrix representation of the ANN.
Each matrix cell,Wc;r, represents the real-valued connection strength, or weight, between
a regulator (r) and an expression class (c) and is shown in A as an edge between a regulator
and an expression class. These weights represent the importance of a regulator’s binding
activity or inactivity in the associated expression class
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to show cell cycle dependent expression and which also passed our thresholds for being

significantly expressed.

The protein:DNA interaction dataset (ChIP/chip) was collected from the cited authors

of Harbison et al. (2004). No further processing was necessary with these data and the

reported p-values were used for all of our analyses. Briefly, for each of the 204 assayed

transcriptional regulators, Harbison and colleagues labeled targets synthesized from DNA

that were enriched through chromatin immunoprecipitation (ChIP) using an affinity tag

directed against the specific transcriptional regulator being measured. The targets synthe-

sized from the ChIP enriched DNA was then co-hybridized along with targets synthesized

and differently labeled from control DNA. Nearly every intergenic sequence in yeast was

represented as a single feature on the microarrays. A binding ratio was then calculated

based on the relative hybridization signal for targets synthesized from ChIP enrichment vs

control DNA. Three biological replicates, starting from fresh yeast cultures each time, were

performed. Based on an error model first described in [Hughes et al., 2000] and the three

replicate binding ratios for each intergenic sequence, a p-value was calculated for each in-

tergenic sequence. This p-value estimates the probability that a given transcription factor

was bound to it.

4.1.1.2 Neural Network Implementation and Training:

Figure 4.1 illustrates the overall structure of the artificial neural networks (ANN) that we

trained. We used backpropagation implemented by the UWBP package [Maclin et al., 1992]

to train a simple single layer network with no hidden units. The “cycling” genes from the

yeast microarray dataset were clustered using an expectation maximization algorithm fit-

ting the data to a mixture of diagonal covariance Gaussians probability distributions (EM

MoDG, section 2.4.6). We then trained artificial neural networks to predict the cluster

membership of each gene based on the input vector of the binding probabilities for the 204

measured regulators. A best average network was created by iteratively splitting the data

into testing and training datasets in which the training dataset contained 80% of the data

and the testing dataset contained the remaining 20%. For each dataset split, ten neural net-

works were trained using different random seeds for each network. The network with the
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best prediction accuracy on the testing dataset was then selected. This process was then

repeated 40 times splitting the dataset into different testing and training datasets. The net-

work weights from the resulting 40 selected “best” networks were then averaged together

to create the average-of-bests neural network. We focused on this network for subsequent

biological interpretation. The main goal was to identify regulatory connections between

transcription factors and their target genes.

4.1.1.3 Consensus Site Enrichment Calculations:

In order to determine whether an expression cluster showed an enrichment in genes that

contain a particular consensus site we calculated the likelihood of the observed enrich-

ment, or depletion, being a chance occurrence according to a binomial model of occurrence

probabilities. We count the observed number of genes that have at least one instance of a

consensus sequence within the 1KB directly upstream of the coding sequence for all genes

in an expression cluster versus the number of genes that would be expected by chance. As

no known background sequence model is completely provably correct, for each consen-

sus sequence we calculate the expected background frequency (f̂ ) using a bootstrapping

method. We randomly selected 1000 different sets of genes the same size as the cluster

being compared (n). These randomly selected background sets are drawn from either the

entire genome or from only the “cycling” genes which were used in training the ANNs.

The number of genes that contain at least a single instance of the consensus is counted

for each randomly selected set. The average count across the 1000 samples is normalized

and used as our estimate of the expected number of genes within a cluster that have a sin-

gle occurrence within 1KB upstream (Ec). Since the chances of any given gene within a

cluster having a given consensus sequence within the 1KB upstream can be assumed to

be independent, we can estimate the probability of finding the observed number of counts

(Oc) using a standard binomial distribution (4.1). If the site is enriched we estimate the

p-value for the likelihood of finding at least the observed count, but if the site is depleted

we calculate likelihood of finding at most the observed count (equation 4.2).
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P (ijc; n) = �ni
�� cn

�i �1� cn
�n�i

(4.1)

p =
8<
:
Pni=0c P (ijEc; n) if Oc > Ec
1�Pni=0c P (ijEc; n) if Oc � Ec (4.2)

4.1.2 Results

4.1.2.1 Predictability of Expression Patterns

Using only the binding activity upstream of a gene across 204 of the 275 annotated tran-

scriptional regulators in yeast, as measured by the global binding data reported by Harbison

et al. (2004), our neural network classifier was able to place 86% of cell cycle regulated

genes into their proper phase specific expression pattern (Figure 4.2). Although we were

able to construct an average-of-bests network that showed this high degree of reliability in

predicting gene expression behavior, individual ANNs trained on only 80% of the data and

tested on the remaining 20% had an average predication accuracy of� 50%, a minimal

prediction accuracy of� 40% and a maximal prediction accuracy of� 65%. Interestingly

125 genes in the dataset were predicted correctly by every ANN we trained, and 108 genes

in the dataset were incorrectly classified by every ANN trained. The remaining genes in

the dataset were predicted correctly only by a fraction of the individual ANN runs. Shown

in figure 4.3 is the relative reproducibility of the rank order of regulators when we compare

a best-of-average ANN built on the first 20 ANN runs with a best-of-average ANN built

on the second 20 ANN runs. The ranking of regulators was based on the sum-of-squared

weights taken across all expression classes for each regulator. This ranking paradigm fo-

cuses on the regulators that have the most significant weights, both positive and negative, in

the ANNs computation of expression class predictions. In general, the ranks of regulators

are stable across multiple training runs. Figure 4.4 shows the distribution of predictabil-

ity across the EM clusters. There is an enrichment among genes that show the highest

predictability to be in EM2; cluster that corresponds best to late G1.

In contrast to the predictability biases found from inspection of individual ANN runs,
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Figure 4.2:Confusion Array showing the average-of-best ANN vs EM MoDG expres-
sion classes(see methods 4.1.1.2). Here we compare the expression class prediction of
the average-of-bests ANN which was created by averaging 40 ANNs trained to predict ex-
pression behavior from the binding data available for a gene. Each of the 40 ANNs were
trained on 80% of the data and tested on the remaining 20% and they were selected as the
best performing network out 10 networks trained on the same data split but initialized with
differing seeds. These two classifications have a similarity of .86 by linear assignment
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Figure 4.3:ANN Prediction Accuracy Histogram and correlations with binding and
expression levels. We trained 40 ANNs (see methods 4.1.1.2) to predict a gene expression
behavior from only the regulator binding activity upstream to its start of transcription. For
each network we trained on 80% of the data and tested on the remaining 20%. a) The distri-
bution of ANN accuracy across the 40 trained ANNs. Along the x-axis are bins of accuracy
ranges, the y-axis counts the number of ANNs that showed the designated prediction ac-
curacy. b) Displays the relative reproducibility of the ANN rankings. Each regulator was
ranked by its net influence in the ANN using the sum of squared weights across the classes
in the weight matrix (

Pcw2c;r). Shown is a scatter plot of the regulator ranks from the first
20 ANNs vs the second 20 ANNs trained. c) Scatter plot of the predictability (fraction of
ANNs correctly classifying a gene correctly) vs mean absolute expression level of the 4
highest measured time points for each gene. d) Predictability vs mean binding level for the
10 highest bound regulators.
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Figure 4.4: Distribution of Neural Network Prediction Accuracy across EM MoDG
Clusters. The y-axis on the top panel measures the number of genes correctly classified
by the indicated fraction of the trained ANNs (x-axis, bin range specified in the lower right
corner of corresponding confusion array cells). Each bin is then broken up across the 5 EM
MoDG clusters using a confusion array. The color map within the confusion array in the
lower panel is shown as in figure 2.1
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the average-of-bests ANN does not show a bias in expression class prediction. The confu-

sion array shown in figure 4.2 illustrates that expression class prediction errors are evenly

distributed throughout the dataset and is not specific to a single phase of the cell cycle

for the average-of-bests ANN. Further, in the case of predicting the canonical G1 expres-

sion behavior which is represented by EM2, 65% of the misclassifications are slight errors

whereby a gene is predicted to be expressed in either of the neighboring classes (ie. EM1

or EM3). However, in the case of EM1 56% of the errors are by misclassification into one

non-adjacent kinetic expression cluster EM4.

4.1.2.2 Parsing the ANN Weight Matrix and Relating Inferred Regulatory Presence

to Binding Site Presence

We next interrogated the weight matrix from the average of best network to find out which

regulator’s binding, or absence of binding, is important for predicting a gene’s expres-

sion class. By sorting the regulators by their sum-of-squares ranks over of the expression

classes, many previously known associations found by the network are highlighted. Figure

4.5 shows the weight matrix from the average-of-best network after sorting the regulators

by importance. Shown are the top scoring 20% measured by using the sum of squared

weights across the different expression classes. The very top regulators Swi6, Ndd1, Stb1,

Fkh2, Mbp1 are all known regulators of the cell cycle and show appropriate associations

with the expression patterns for which they are well known. For instance, Swi6 and Mbp1

are the first and sixth ranked regulators. They are known to function together as a het-

erodimer [Koch et al., 1993] and are well established positive activators of G1 gene expres-

sion. This is exactly where the weight matrix shows the strongest positive associations. The

absence of swi6 binding relative to other clusters is also used by the networks as a strong

indicator of gene expression during G2/M as represented by the low weights for Swi6 in

EM4 and EM5. Ndd1 and Fkh2, the second and fourth ranked regulators, are another set

of transcription factors which are functional together in a complex [Koranda et al., 2000].

They are found to have associations with S/G2 behavior in the neural networks, again re-

capitulating the activity of its known target genes.

Inspection of regulator weights, sorted on an expression class by expression class basis,
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Figure 4.5:Weight matrix for the Average-of-bests ANN. Shown are the top 20 regula-
tors after sorting each regulator by importance in predicting expression behavior using a
sum-of-squared weights measure. The left hand column shows a trajectory summary for
each expression cluster as classified by EM MoDG. The right hand color map represents
the weight matrix where expression classes are displayed along the rows corresponding to
the drawn trajectory summaries. Regulators are sorted along the columns in rank order.
Each cell is colored proportional to its value in the weight matrix.
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Figure 4.6: ANN weights sorted on an expression class basis. Shown are the ANN
weights from the average-of-best network as in figure 4.5 with the exception that the top
and bottom regulators for each class are displayed. The regulator ranking for each class
is simply based on its weight in the weight matrix for each expression class. Detailed
annotations for these regulators are listed in table A

reveals even more details of the connections inferred by the ANNs. Figure 4.6 and Table

A show for each expression class the top ten positive and negatively associated regulators.

The associations discovered by the neural networks imply a domain of activity or inactiv-

ity during the cell cycle that would be otherwise difficult to reveal using simple statistics,

such as mean binding activity across an expression class. This is true even though the

network weights are not directly interpretable as functional interactions. We observed that

sometimes when a regulator is implicated with a particular expression class there is a cor-

responding enrichment of genes whose upstream genomic sequence contain the regulator’s

binding site (Figure 4.7). Site enrichment patterns for genes containing at least one binding

site for a given factor are further supported by the conservation of this phenomenon across

several of the sequenced species of Saccharomyces.

Interpretation of the ANN revealed a strong negative association of Swi6 and Mbp1,
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Figure 4.7: Binding Site Enrichment and Depletion. For several of the regulators high-
lighted by strong positive or negative association with particular expression classes (figure
4.6) we calculated site enrichment p-values for each EM MoDG cluster across each of
seven sequenced Saccharomyces species (see methods 4.1.1.3). Each p-value was calcu-
lated using only the cell cycle identified genes that were also used as input genes to the
ANN. Each block of bars along the x-axis represent log p-values (y-axis) for a EM MoDG
clusters. Each bar within these blocks are log p-value measurements for a different Saccha-
romyces species as indicated by the color legend. Enrichment is shown as positive values
(-log p-values) and depletion is shown as negative values( log p-values). The species have
been arranged by evolutionary distance from S. cerevisiae. From left to right: S. cerevisiae,
S. paradoxus, S. mikatae, S. bayanus. A dashed line along the graphs at p-value = .05
has been drawn to help visualize the scale difference between the plots. a-h) enrichment
bar charts for the specified binding sites, if the binding site is referred to by a name other
than the regulator that binds to it, the regulators that bind are parenthetically shown. i) A
displaying the color map used for each bar.
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Figure 4.8: Binding Site Enrichment and Depletion using whole genomes for back-
grounds. As shown in figure 4.7 enrichment p-value across each of the sequenced Saccha-
romyces species is shown. In this case, cluster enrichment p-values are calculated using
the whole genome as the background set rather than just the cell cycle group.
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Figure 4.9:Influence of MCB site specification on Enrichment and Depletion Statis-
tics Enrichment and Depletion p-values for increasingly stringent definitions of the MCB
binding site. As shown in figures 4.7 and 4.8 site enrichment statistics for each site defi-
nition are shown using only “cycling” genes (a,c,e) or all genes (b,d,f) for the background
expectation calculations.
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Figure 4.10: Binding Site Enrichment and Depletion for S. Pombe. Shown are the MCB
enrichment p-values for S. pombe based an EM MoDG clustering of the expression data
from Rustici et al., 2004. Cluster summaries for each of the expression clusters are shown
along the top panels, red lines are the mean expression trajectory and cluster sizes are in
the upper left corner. Below is a bar chart of p-values. Shown are the p-values normalized
against only the cycling genes (blue) and p-values normalized against the whole genome
(red).

with EM4 and EM5. This lead us to ask if the canonical hexameric binding site for MBF,

the complex of Mbp1 and Swi6 which binds to the MCB site, was statistically depleted in

those clusters. We did not find a statistically conserved depletion of MCB sites in either

EM4 and EM5. Although, we do find a statistically significant enrichment of MCB sites

within EM2, the cluster most strongly associated with Mbp1 and Swi6. This enrichment

and depletion pattern remains conserved even in S. pombe (Figure 4.10). We investigated

the dependency of this phenomenon on the definition of the binding site by repeating the

analysis for 3 differing site definitions; the core ’CGCG’, the canonical ’ACGCGT’ and

the extended site ’ACGCGTNA’. Even the core 4-mer, although to a lesser degree, showed

significant enrichment in EM2. The most stringent site revealed very similar patterns of

occurrence to the canonical site.

To directly compare the enrichment of sites to the observed binding data we performed

an analogous computational experiment but instead of counting the number of genes in

each cluster with at least one binding site, we counted the number of genes that were mea-

sured to have significant binding by ChIP/chip. As in the site presence experiments we

calculated the probability of the observed gene count for each EM MoDG cluster (Fig-
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Figure 4.11:Enrichment and depletion of regulator binding within each EM cluster.
We calculated an enrichment p-value measuring the degree in which each EM MoDG clus-
ter is enriched or depleted for genes that are boundin vivoby the shown regulators. A gene
was considered bound if it had been measured to have a p-value� .05 by Harbison et al.,
2004. Shown with blue bars are the enrichment values when each cluster’s enrichment is
estimated using only genes within the “cycling” genes, yellow bars using all genes in the
genome. These calculations are analogous to those discussed in section 4.1.1.3. Dashed
lines at p�.05 are shown to visualize the scale difference.
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ure 4.11). The enrichment for binding closely parallels the enrichment we observe for the

site presence data for many of the regulators. However, the binding pattern of Swi5 and

Ace2, which both bind to the same binding site, havein vivobinding patterns that are much

more consistent with the known biological roles of Swi5 and Ace2 in early G1 regulation

[Doolin et al., 2001]. The binding pattern of Yox1, whose sequence presence showed vir-

tually no enrichment or depletion, shows striking agreement with the known biology of its

involvement as transcriptional repressor whose action restricts gene expression to M phase

[Pramila et al., 2002]. It should be noted that these simple statistics do not reveal the same

level of structure as did the ANN weight matrix. For example, the ANNs provide a relative

ranking of each regulator association within each RNA expression class.

4.1.3 Discussion

We show that the majority of cell cycle regulated genes can be classified into expression

classes based solely on which transcriptional regulators have been measured to bindin vivo

to a gene’s upstream activating sequence. By using artificial neural networks (ANNs) to

construct the classifier we also gain a structural model that relates both the presence and

the absence of regulator binding activity to phase specific cell cycle gene expression. By

ranking both positive and negative weights from ANNs we were able to assign priorities to

both known and and previously unknown associations that regulate the cell cycle.

4.1.4 Examining the Connections Inferred by the ANN

The sum-of-squared weights sort order used in figure 4.5 highlights the most important cell

cycle regulators as found by the ANNs. The top 12 regulators, with the exception of Dal81

and Usv1, all have well established roles in cell cycle regulation. Although neither Dal81

or Usv1 have been implicated in cell cycle regulation, because they were given high phase

specific weights by the ANNs (figure 4.6), it suggest they may either directly or indirectly

play a role in the cell cycle.

The weight matrix of the ANN as sorted and displayed in figure 4.6 more directly

associates regulators with particular expression classes. We find that Swi5 and Ace2 are
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among the top four genes positively associated with EM1. As discussed in more detail in

chapters 1 and 2, Swi5 activates early G1 genes after being dephosphorylated by cdc14 and

entering the nucleus [Visintin et al., 1998].

Swi6 and Mbp1 are represented in EM2, the canonical G1 cluster. These are the two

canonical components of MBF, the heterodimeric complex that binds the MCB element

and drives G1 expression [Koch et al., 1993]. The next most important regulator of the G1

group, according to the results from the ANN, was Stb1, which has recently been shown to

act in vivo at MBF-regulated genes through interaction with Swi6 [Costanzo et al., 2003].

Missing from what would be expected from previous experiments is Swi4. This is inter-

esting as it indicates the Swi4 binding has little predictive power in associating genes with

G1. This is further supported in figure 4.11 where, although there is a large enrichment

for Swi4 binding in EM2 when compared to the entire genome, there is only a marginally

significant enrichment when we compared the enrichment for Swi4 binding in EM2 with

only cell cycle genes. This could be an artifact of poor ChIP/chip efficiency or rather it

might be a reflection of a more diffuse role for Swi4 in the cell cycle, although we know

of no experimental support for such a function. Additional specific measurements of Swi6

activity and binding could be made to answer this question.

Fkh1 and Fkh2 are both found associated with EM3, the S/G2 expression cluster, which

parallels the inferences made regarding their function in double knockout experiments

[Zhu et al., 2000]. Ndd1 has a large positive weight in the weight matrix for EM4, in-

dicating that as the cell progresses closer towards M-phase the role of Ndd1 in regulating

this pattern increases, as is thought to be the case from more conventional experiments

involving single gene chromatin immunoprecipitation experiments [Koranda et al., 2000].

Lastly during M-phase, the ANN implicates Yox1 and Mcm1 as the two largest transcrip-

tional contributors to this expression pattern. Pramila et al. (2002) show that Yox1 and/or

Yhp1 act as a transcriptional repressor to restrict transcription of genes containing the early

cell cycle box (ECB) from being driven by Mcm1. Yox1 is shown by the weight matrix to

have a positive association with M-phase expression, even though the factor is a repressor

of transcription. Although perhaps counter-intuitive, this is actually expected and under-

standable because the net effect of having Yox1 binding is indeed to restrict expression to
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M-phase dynamics.

The weight matrix from the ANN also associates many transcriptional regulators with

phase-specific activity in the cell cycle that may no be appreciated yet. Many of the top

ranking regulators appear to be involved in metabolic or related processes (table A). Given

the central role of the cell cycle, finding hypothetical associations is not surprising. It is

encouraging, however, many of the previously known regulatory connections are revealed.

Also, several of the newly suggested connections have supporting data in the literature.

For instance SUT1 is strongly implicated in early G1 by the ANNs. Little is known

about SUT1 other than that it is involved in regulating hypoxic genes and has been shown

to work through physical interaction with the cyc8-Tup1 complex [Regnacq et al., 2001].

This is interesting as cyc8-Tup1, like Swi5, is a general transcription factor that recruits

the chromatin modifying complexes SWI/SNF and SAGA complexes to derepress genes.

Additionally the kinase activity of the cyclin dependent kinase (cdk) Srb10 (also known as

Ssn3) contributes to the repression of roughly 15% of Tup1 repressed genes [Green and Johnson, 2004].

SUT1 may play a role in the regulation of early G1 gene expression. Because of the nature

of cdc28 arrest it is likely that SUT1 activity is involved in regulating genes during the

M/G1 transition before cdc28 become active.

SFL1 is another gene which has not yet been associated with the cell cycle, but it has

a strong positive association with the EM2 cluster and a negative association with EM3.

It has been identified as a transcriptional repressor that acts through interactions with the

Srb/mediator proteins to inhibit transcription [Song and Carlson, 1998] with involvement

in pseudohyphal differentiation through interaction with protein kinase A [Pan and Heitman, 2002].

SFL1 repression might be important in regulating some G1 genes.

The associations highlighted by analysis of the weights matrix of the ANNs are highly

overlapping with the cell cycle modules identified by different techniques of Gifford, Young

and colleagues [Lee et al., 2002, Bar-Joseph et al., 2003, Harbison et al., 2004]. Using an

algorithm referred to as GRAM (Genetic Regulator Modules). It works by using RNA

co-expression to add support to regulatory interactions as measured by ChIP/chip measure-

ments that would have otherwise been slightly below statistically significance [Lee et al., 2002,

Bar-Joseph et al., 2003, Harbison et al., 2004]. As they focused on identifying more gen-
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eral transcriptional modules our results are not directly comparable. However, we identified

and properly associated the all core cell cycle regulators that they identified, with the ex-

ceptions of Swi4 and Skn7.

4.1.5 Prediction Accuracy

The average-of-best ANN was able to achieve an in-sample prediction accuracy of 86%

(Figure 4.2). We also tested the out-of-sample accuracy, or the ability of our training

paradigm to generalize to another set of independently collected binding measurements.

When we trained an average-of-bests network using only binding measurements from the

111 regulators available in both the Harbison et al. (2004) study and the independent Lee

et al., 2002 study, the proper expression class for 56% of the genes was correctly predicted

(Figure 4.12). This is still a highly significant 17 standard deviations from the average

linear assignment score (0:27 � 0:017) of a random partitioning of the genes where class

sizes are determined by drawing from a multinomial distribution based on the EM MoDG

cluster sizes.

The prediction accuracy of any specific ANN was much lower (Figure 4.3). About

one half of the genes were correctly classified in a small percentage of the trained ANNs,

and around one quarter were never classified correctly. Likewise, roughly one third of the

genes were always classified correctly and many more were classified correctly in the ma-

jority of ANNs trained. These observations are interesting as they may suggest that these

“unpredictable” genes whose expression class could not be predicted from their regulator

binding data may be subject to more complicated regulation involving other mechanisms

than cis-regulation, such as chromatin remodeling or post-transcriptional regulation. The

EM2 cluster has the highest proportion of highly predictable genes (4.4). This might be

explained by the fact that the expression signature of EM2 is more well defined than the

other clusters. This observation parallels those of chapters 2 and 3 where we also found

the expression signature of EM2 the most distinct and robust to additional noise. Although

we see a bias in predictability dependent on expression class we see no observable bias

for predictability based on simple statistics such as absolute expression level (Figure 4.3c)
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Figure 4.12:ANN prediction accuracy using a validation dataset. As in figure 4.2 a
confusion array is shown between prediction classes (columns) and the EM MoDG expres-
sion classes (rows) used in training. In this case, the average-of-bests network was trained
using only binding measurements from the 111 regulators available in both the Harbison et
al., 2004 study and the independent Lee et al., 2002 study. After training the average-of-
bests network using data from the Harbison et al., 2004 study, predictions were calculated
based on the independent measurements from the Lee et al., 2002 study. Using the Lee
et al, 2002 data as a validation dataset our training paradigm achieved a linear assignment
score of .56 when compared to the EM MoDG classification.
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or binding level (Figure 4.3d). Although not evident from the reported data, the high pre-

dictability of EM2 genes, and the poor predictability of EM5 genes could also be a result

of better, or worse, chIP/chip measurements. Since the duration of each phase of the cell

cycle is not equal, the longer phases of the cell cycle, such as G1, will be represented by

more cells in freely cycling cultures. This is likely to result in more reliable chIP/chip

measurements, especially for transient interactions.

4.1.6 Site Enrichment

The structure of the ANN also revealed principles of regulation that are conserved through

several sequenced species of budding yeast. We find a conserved correlative enrichment

for genes containing the respective binding sites for many of the strong positive and nega-

tive associations revealed in weight matrix of the ANN (Figure 4.6 and 4.7). For instance

the weight matrix, as expected from previously known interactions, uncovers a very strong

positive association with Swi6 and Mbp1 with the EM2 cluster (the G1 cluster). These

two regulators form a heterodimeric complex which binds to the MCB binding site. We

calculated how many genes from S. cerevisiae contain at least one site within the 1KB di-

rectly upstream from the coding domain within each of the EM clusters and compared it to

how many we would expect by chance. We find that there is a conserved enrichment in the

G1 cluster (EM2) across all species we compared. This suggests there is an extraordinary

positive selective pressure for MBF sites in a specific subgroup of G1 genes.

To probe this hypothesis further we examined the fission yeastS. pombe, which is much

more distantly related toS. cerevisiaethan to any of the 7 sequenced budding yeast species.

It is separated fromS. cerevisiaeby�400 mya. Starting from completely independent ex-

pression data and an independent clustering of this data we once again observe a significant

enrichment of G1 genes that contain MCB sites (Figure 4.10). These results suggest, in the

case of MCB, there are strong selective pressures acting to conserve the regulatory connec-

tion between MCB site presence and G1 RNA expression. Further, in plants and animals

the MBF homologue E2F also shares a very similar binding site and is associated with G1

gene expression [Hateboer et al., 1998]. Although this level of conservation is probably



87

rare among binding sites, further experiments could ask how much functional complemen-

tation can be observed when either the DNA binding domain of MBF, or the whole complex

from yeast is replaced with the corresponding domains or proteins from E2F.



88

Chapter 5

Conclusions and Directions

Most of the ideas regarding gene networks are based on studies of specific transcription

factor interactions with one or a few “model” genes. A different approach regarding how

regulatory connections both function and are maintained through evolution can be gained

from the expansion of both the number of fully sequenced genomes and the availability of

high throughput genome-scale functional assays. Network inferences based on these com-

prehensive, or nearly comprehensive, datasets provide the possibility to more globally map

network connections in a direct and complete manner. However, these datasets introduce

uncertainties and bioinformatic challenges associated with data quality and significance.

Based on the work presented in the preceding chapters we have constructed a new map of

transcriptional connections that are involved in the yeast cell cycle. This chapter discusses

a few of the questions raised by the analysis described in the preceding chapters.

5.1 How Are Regulators Regulated?

Transcriptional regulation plays a significant role in the yeast cell cycle [Breeden, 2003]. In

the previous chapters we developed computational methods to identify candidate transcrip-

tional regulators from genome scale data. In figure 5.1 we show both the RNA expression

pattern and thein vivo upstream binding activity for the summed set of the newly identi-

fied and previously known regulators of the cell cycle. We find the expression patterns for

roughly half of these regulators of the cell cycle to have both lower amplitude dynamics

and they do not fall as strictly into the identified expression classes as do many of their
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target genes. Furthermore, the regulator binding occupancy for these genes do not show an

obvious correlation with the bound regulator’s RNA expression pattern. This suggests that

the activities of these regulators are controlled through mechanisms that are not directly

linked to their RNA expression.

As expected several of the regulators that function in the M/G1 transition show bind-

ing of Mcm1, Fkh1, Fkh2, and Ndd1, all of which have been shown to function together

[Breeden, 2003]. The figure illustrates that although they are all known to function to-

gether at the protein level during one part of the cell cycle, their RNA expression is not

coordinated. In this case, Mcm1 is constitutively expressed and, by extrapolating from de-

tailed chromatin immunoprecipitation experiments of three target genes of MCM1 (CLN3,

SWI4, and CDC6), it has been suggested that Mcm1 is bound to ECB sites throughout the

cell cycle[Mai et al., 2002]. Its activity is modulated through its interactions with other

regulators. Fkh1 and Fkh2 can bind to DNA in a phase independent manner, but re-

cruitment of Ndd1 only occurs around M-phase [Koranda et al., 2000]. Interestingly, the

DNA binding activity of Fkh1 and Fkh2 are thought to be interchangeable, and the func-

tional differences have been ascribed to structural differences between the two proteins

[Hollenhorst et al., 2000]. We find that Ace2, Yhp1, Fkh1 and Fkh2 are strong binders up-

stream of Swi5. Yet only Fkh2 binds upstream of Fkh1, possibly preventing a feedback

loop that would have otherwise existed. Within these core cell cycle regulators we find

Swi4, Sut1, and Tec1 are the only regulators that form direct feedback loops. Overall there

are only 15 regulators out of the 206 regulators surveyed that show binding activity to their

own upstream regulatory sequence at a p� 0.001.

In this core network, as expected from the known biology, Swi5 and Ace2 become

active in late M-phase/early G1 through the regulation of Mcm1, Ndd1 and Fkh2. Swi5

then binds upstream of Ash1 and Tec1. Mcm1 also binds to Swi4 which binds upstream

to Tec1, Yox1, Yhp1, Ndd1 and to itself. Yox1 and Yhp1 likely get expressed and begin

to repress Mcm1 dependent M-phase genes. These observations are quite similar to our

expectations that have been based on a survey of the current literature. Although, the set of

regulators shown is likely an incomplete set of yeast cell cycle transcriptional regulators,

it is still surprising that neither Mbp1 or Stb1 are bound significantly by any of these core
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Figure 5.1: RNA Expression and Regulation of Cell Cycle Transcriptional Regulators.
Shown on the right are the RNA expression trajectories for several previously known and
hypothetical cell cycle transcriptional regulators. Genes are arranged along the rows and
time is along the columns. On the left for each gene is a vector of binding values for each
regulator of the cell cycle regulators. The gray scale is proportional to the�log p-value of
binding for each measurement as reported by Harbison et al., 2004. The order along both
the rows and columns is fixed and based on the order of RNA expression through the cell
cycle. Eleven of the 17 regulators were identified by both our ANN analysis and previously
in the literature. These regulators are Mcm1, Swi5, Ace2, Fkh2, Mbp1, Fkh1, Ndd1, Swi6,
Yox1, Swi4, and Stb1. Yhp1, Rme1 and Ah1 were identified only in the literature, and
were not found by the ANNs. Tec1, Dal81 and Sut1 were suggested by our analysis to be
cell cycle regulators, but have not, as of now, been recognized as such.

regulators. It is especially odd given they play a central role in regulating many G1 genes

as discussed in chapter 4. Searching outside of these core regulators reveals that Pho2 is the

regulator that binds most strongly (p=0.001) to Mbp1. Gcn4 and Rap1 are the regulators

that bind most strongly to Stb1. This suggests that unlike most of the other regulators in this

core network, the transcriptional regulation of both Mbp1 and Stb1 is primary regulating

through connections that are indirectly linked to the core cell cycle network that we have

defined.
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5.2 Why are G1 genes co-expressed?

The most simple explanation for two genes being co-expressed is that they are also func-

tionally co-regulated. For genes expressed coordinately during the late G1 phase of the

cell cycle, detailed prior molecular and genetic studies have shown that two primary reg-

ulatory complexes have evolved; MBF (MCB binding factor) and SBF (SCB binding fac-

tor) [Andrews and Herskowitz, 1989, Koch et al., 1993]. Using artificial neural networks

in chapter 4 and using simpler statistics in chapter 2 we find that both site presence and

binding of these regulators are highly correlated with late G1 gene expression. Yet, in

agreement with observations by Brown and colleagues [Iyer et al., 2001] we find only 60%

of the genes in the G1 cluster (EM2) are bound by Swi6 (p�.05), the common component

of both MBF and SBF (figure 5.2). In addition, Horak et al. (2002) showed that 40% of

genes that are actively bound by either MBF or SBF only bind one of the two factors, pro-

viding further evidence of the distinct roles for each binding complex [Horak et al., 2002].

Although neither MBP1 or SWI4 deletions are lethal by themselves, double deletions are

[Koch et al., 1993]. It is still unclear exactly what the distinctions are between the roles

of MBF and SBF, and how mutant strains retain viability. Experiments directly surveying

deletion strains for expression and binding patterns may help further our understanding.

As shown in figure 5.2, 95% of genes in EM2 are either bound by (p�.05), or contain

the binding site for SBF or MBF within 1 KB upstream inSaccharomyces cerevisiae. Of

the genes that contain at least a single instance of either MCB or SCB, 60% are also bound

(p�.05) by at least one component of MBF or SBF (i.e. Swi4, Swi6, or Mbp1). This

leaves 40% of genes with late G1 expression kinetics that contain at least one identified

MCB or SCB binding site, but no significant observed binding to either MBF or SBF at

a p�.05. These numbers may represent poor descriptions of the binding sites, limitations

of the binding data, or the possibility that other transcriptional and/or post-transcriptional

mechanisms are operating on these genes. Yet, even considering the potential shortcomings

of the data, there is a large degree of agreement with expectations.

Given that we find a dramatic enrichment of MCB sites in the EM2 G1 group, relative

to other cell cycle clusters and to all other genes in the genome, (figures 4.7 and 4.8) it is
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(a) SBF with SCB (b) MBF with MCB

(c) Swi6 and SCB or MCB

Figure 5.2:Observed Binding Site and in vivo binding Overlaps for 149 late G1 genes.
a and b) We compare the number of genes that have either individual or combinedin vivo
binding of SBF (Swi4 and Swi6) or MBF (Mbp1 and Swi6) with the presence of at least
one copy of the consensus binding site within 1 kb upstream. c) Compares the number of
genes that show binding of either MBF or SBF (by way of binding of Swi6 the common
subunit of the two heterodimeric complexes) and presence of either MCB or SCB sites.
In each case the percent coverage represents the total number of genes in EM2 that are
represented in the union of all three sets.
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possible that even a single site has biological significance. This is particularly interesting

because one report showed that a single MCB site placed upstream of a gene failed to drive

a reporter construct. However, two sites were able to drive the same reporter construct

very well [Lowndes et al., 1991]. On the other hand, mutational analysis of a prominent

MBF target, DNA polymerase I, showed that a single MBF site is necessary and sufficient

for its cyclic expression [Gordon and Campbell, 1991]. The observation that two or more

Mbp1 sites adjacent to a gene is a powerful predictor of strong G1 specific expression was

supported by interrogating our cell cycle network. We find 24 out of the 25 cycling genes

that have two or more MCB sites are in EM2. The one remaining gene that is not found

in EM2 is found in EM1 and has an expression pattern that could be argued to be G1-like

(figure 5.3a). In contrast, most of the genes that were not classified as being in the cycling

set, but contain two or more MCB sites within 1KB upstream lack G1 expression (figure

5.3b). However, upon closer inspection, nearly all genes that have two MCB sites upstream,

and exhibit no appreciable G1 RNA expression pattern, share intergenic space with a G1

gene. About 50% have obvious high amplitude G1 patterns, and the other 50% show

much diminished, but still observable G1 patterns (figure 5.4). Interestingly, given that the

canonical consensus is palindromic, this analysis shows there is a remarkable specificity for

MCB sites to influence the transcription of only one of the two genes that share upstream

regulatory sequence. This is even true when the two genes are very close to each other.

Does a single hexameric MCB site have functional consequences? Of the cycling genes

that have exactly one MCB site, 52 are in EM2. Of the remaining, 14 are in EM1, 9

are in EM3, 2 are in EM4, but no genes in EM5 are found to have a single MCB site.

Thus a primary conclusion is that there is strong evidence that a single MCB site can be

functionally important. This is particularly striking in the EM2 G1 group of genes, where

the enrichment of MCB containing genes is highly significant. In addition many of the

MCB site occurrences in the EM2 genes are also evolutionarily conserved (figures 4.7 and

4.8). This does not, however, prove that the MCB site is acting alone, and future studies

of how MBF possibly used in combination with the other cell cycle regulators will address

that issue. The complete absence of MCB sites from EM5, which precedes G1 kinetically,

raises the question of whether they are devoid of these sites, because expression of many
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(a) Cycling with� 2 MCB Sites (b) Non-cycling with� 2 MCB Sites

Figure 5.3: Gene Expression Trajectories for genes with 2 MCB Sites. As in previous
figures trajectory summaries are shown with time along the x-axis and expression level on
the y-axis. a) Shown are the 25 trajectories for all genes in the cycling set as defined by
Cho et al., 1998. Highlighted in red is the one gene that was not classified by EM into the
late G1 group (EM2). b) Trajectory summaries for the 27 genes in the yeast genome that
are not in the cycling set, but do contain two or more MCB sites. In each case, the bottom
panel is a heatmap representation of the same genes.
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(a) Cycling with� 2 MCB Sites

(b) Non-cycling with� 2 MCB Sites

Figure 5.4: MCB sites have directional specificityIn Panel (a) the selected ORFs are
“cycling genes” that contain two MCB sites with in the upstream 1KB. In panel (b) the
selected ORFs are all genes in the genome that have 2 MCB sites upstream but are not in
the “cycling genes”. In each case, these gene sets are the same as in figure 5.3. In both
panel a and b the heat map displays on the right and left are drawn as in figure 5.3. The
right panel shows the expression profiles for the selected ORFs. The left panel shows the
expression profile for the ORF directly upstream of each ORF on the right panel. The center
diagram represents a scaled version of shared intergenic sequence. The scale is set such
that the two vertical lines span 1 KB. Red ticks are MCB sites, blue ticks are SCB sites,
and the arrows at the end of each line indicate the direction of transcription. The circles
adjacent to each line indicate observedin vivobinding activity for either Mbp1 (red), Swi4
(blue), or Swi6 (green) where the area is proportional to the measured -log(p-value) with a
maximal size set at p� 0.05. As shown above, nearly all genes with two MCB sites that
do not exhibit an G1 RNA expression pattern share intergenic space with a gene that does.
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of these during G1 would be deleterious. It would be particularly interesting if insertion of

MCB sites within M-phase genes had a more dramatic effect on cell cycle progression than

a insertion elsewhere in the genome.

5.3 Putting Networks Together

Progression through cellular states is often manifested through processes that modulate

regulatory connections. For example, Swi5 enters the nucleus after it becomes dephospho-

rylated by cdc14 in response to the degradation of Clb5 during the transition between M

and G1. Thereby, Swi5 binds to target genes creating regulatory connections between it

and its targets. These newly formed connections, in part, pushes the cell from M-phase

into G1. In this example, Swi5 recruits the chromatin modifying complexes Swi/Snf

and SAGA [Neely et al., 1999]. This is thought to facilitate interaction with other se-

quence specific factors such as Swi4. A specific gene where this has been shown is HO

[Cosma et al., 1999, Cosma et al., 2001].

Each phase of the cell cycle could be considered a unique state, discernible by a dis-

tinct gene expression signature [Cho et al., 1998, Spellman et al., 1998]. If you consider

the regulatory network of the cell to be dynamic, where connections are created and de-

stroyed as they become active or inactive, then there would also be a unique transcriptional

regulatory network underlying each of the the cell cycle phases. Understanding the re-

lationships between kinetically adjacent states and the changes in regulatory connections

between them should lead to testable hypotheses regarding mechanisms that might underlie

the transitions. For instance, in chapter 4 we identified Sut1 to be strongly associated with

EM1 (early G1). Figure 5.1 shows that Sut1 is expressed during M-phase and many of the

cell cycle regulators bind upstream to it. Also, Sut1 binds to many of the early G1/Late

M-phase regulators. As such, Sut1 is likely to play a role in the regulation of G1 genes.

The artificial neural networks (ANNs) constructed in chapter 4 are an example of a

state-centric modeling approach. The weights in the network were inferred based on a clas-

sification of genes that focused on grouping genes into cell cycle phases. These groups, or

clusters, represent the five most prominent expression patterns in the data. The synchro-
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Figure 5.5:ANN weights sorted on an expression class basis after merging EM1 and
EM2. Shown are the ANN weights from the average-of-best network as in figure 4.6. EM1
represents genes that only peak during the G1 phase of the second observed cell cycle,
while EM2 represents genes that peak during both observed G1 phases. When merged,
many of the known regulatory connections are changed. Notably Mbp1 and Ace2 are not
recovered as important regulators of this merged G1 cluster

nization method of the Cho et al. (1998) microarray data was based on a temperature

sensitive cdc28 mutant which arrests the cells at the edge ofStart. As mentioned in chapter

2 we could have clustered the data by ignoring the effects of this synchronization method,

but by using it we were able to resolve aspects of the regulatory differences between early

G1 as found in EM1 and late G1 as found in EM2. Indeed, if we perform analogous neural

network experiments but group all of EM1 genes and EM2 genes together many of the

inferred regulatory connections change, for instance Mbp1 is no longer identified as a G1

regulator (Figure 5.5).

Although the regulators identified in the ANN included many of the known cell cycle

regulators that are important in facilitating the transition between cell cycle phases, Swi4

was a notable exception. This is interesting in terms of regulatory networks because Swi4

is known to be important in regulating G1 expression. On closer inspection, the binding
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data available for Swi4 shows it has diffuse binding in genes throughout EM1, EM2 and

EM3. 47% of the genes that have significant binding (p� .05) to Swi4 are not in EM2.

Thus the networks found little predictive power in using Swi4 in classifying genes into a

single expression group. Likely this is an indication that Swi4’s role during the cell cycle

spans multiple phases. Figure 5.1 lends support to this as Swi4 binds to Yox1 and Yhp1

which likely aids in the shutting down of M-phase genes during early G1. Swi4 also binds

to Ndd1 which according to our analysis in chapter 4 plays a central role in regulating early

M-phase.

The conserved presence of transcription factor binding sites within groups of co-expressed

genes reveal part of the regulatory network that has been maintained through evolution. As

discussed in chapter 4 the MCB binding site is dramatically enriched in G1 genes (Figure

4.7). Further the enrichment patterns were conserved across most of the sequenced Sac-

charomyces and even persisted in S. pombe (Figure 4.10). SCB, the binding site for SBF,

does not show nearly the same level of conserved enrichment. This parallels observations

from the binding data as well (Figure 4.11), and furthers the argument that Swi4 functions

less in the regulation of G1 specific genes, but instead functions throughout the G1 and S

transition.

In part I of this thesis we focused on developing and testing methods and tools for ana-

lyzing large-scale gene expression data. This allowed us to evaluate the reproducibility of

commonly used clustering algorithms in the presence of different types of noise. We also

showed an example of manually mining expression data, protein:DNA binding data, and

sequence data with the assistance of comparative clustering techniques to more finely de-

fine the G1 gene expression cluster. In part II, using the tools and techniques introduced in

Part I, we constructed a new, more comprehensive, transcriptional connectivity map for the

yeast cell cycle based primarily on genome-scale data. This map included nearly all previ-

ously known regulators of the cell cycle and also several new candidate regulators. These

connections inferred using artificial neural networks are based on the idea that changes in

cellular behavior are, in part, the result of connectivity changes in the underlying regulatory

networks.
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Appendix A

Average-of-Bests Regulators

Gene Descriptions for the top ten positively and negatively associated regulators for each

cluster as determined by the ANN weights matrix figure 4.6. (Source http://www.yeastgenome.org)
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Cluster � Regulator Description

+ SUT1 Involved in sterol uptake
+ SWI5 transcriptional activator
+ HAP5 Regulates respiratory functions; subunit of a heterotrimeric complex

required for CCAAT binding
+ ACE2 involved in transcriptional regulation of CUP1. enters nucleus only

at the end of mitosis.
+ RTS2 similar to mouse KIN7 protein
+ DAL80 Negative regulator of multiple nitrogen catabolic genes
+ TEC1 transcription factor of the TEA/ATTS DNA-binding domain family,

regulator of Ty1 expression
+ AZF1 probable transcription factor, suppressor of mutation in the nuclear

gene for the core subunit of mitochondrial RNA polymerase
+ YFL044C None
+ MOT3 DNA-binding protein implicated in heme-dependent repression, re-

pression of a subset of hypoxic genes by Rox1p, repression of
several DAN/TIR genes during aerobic growth, and regulation of
membrane-related genes

EM 1

- NDD1 Nuclear Division Defective 1
- YJL206C None
- HAP2 Global regulator of respiratory genes
- STB4 binds Sin3p in two-hybrid assay
- GLN3 Responsible for nitrogen catabolite repression (NCR)-sensitive tran-

scription. During nitrogen starvation, Gln3 is nuclear. Under excess
nitrogen, Gln3 is cytoplasmic. Also regulates glutamine-repressible
gene products.

- YAP3 bZIP protein; transcription factor
- WAR1
- SFL1 Transcription factor with domains homologous to myc oncoprotein

and yeast Hsf1p required for normal cell surface assembly and floc-
culence

- CAD1 Transcriptional activator involved in resistance to 1,10-
phenanthroline; member of yeast Jun-family of transcription
factors related to mammalian c-jun

- PHO2 Regulation of phosphate metabolism
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Cluster � Regulator Description

+ SWI6 Involved in cell cycle dependent gene expression
+ MBP1 transcription factor
+ STB1 binds Sin3p in two-hybrid assay and is present in a large protein

complex with Sin3p and Stb2p
+ SFL1 Transcription factor with domains homologous to myc oncoprotein

and yeast Hsf1p required for normal cell surface assembly and floc-
culence

+ WTM1 WD repeat containing transcriptional modulator 1
+ LEU3 Regulates genes involved in branched chain amino acid biosynthe-

sis and in ammonia assimilation. Positively regulated by alpha-
isopropylmalate, an intermediate in leucine biosynthesis.

+ GAT1 activator of transcription of nitrogen-regulated genes; inactivated by
increases in intracellular glutamate levels

+ YPR196W None
+ HAP3 Regulates respiratory functions; encodes divergent overlapping tran-

scripts
+ NDT80 Meiosis-specific gene; mRNA is sporulation specific; required for

exit from pachytene and for full meiotic recombination
EM 2

- FKH2 Fork Head homolog two
- NRG1 involved in regulation of glucose repression
- PUT3 Positive regulator of PUT (proline utilization) genes
- USV1 None
- NDD1 Nuclear Division Defective 1
- YOX1 Homeodomain protein that binds leu-tRNA gene. acts as a repressor

at early cell cycle boxes (ECBs) to restrict their activity to the M/G1
phase of the cell cycle.

- MIG3
- UME6 Regulator of both repression and induction of early meiotic genes.

Ume6p requires Ume4 for mitotic repression and interacts with and
requires Ime1p and Rim11p for induction of meiosis-specific tran-
scription

- SMP1 Second MEF2-like Protein 1<br>Transcription factor of the MADS
(Mcm1p, Agamous, Deficiens, SRF) box family; closely related to
RLM1

- ARO80
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Cluster � Regulator Description

+ FKH1 forkhead protein
+ PUT3 Positive regulator of PUT (proline utilization) genes
+ FKH2 Fork Head homolog two
+ USV1 None
+ ARR1 Similar to transcriptional regulatory elements YAP1 and cad1
+ RLM1 serum response factor-like protein that may function downstream of

MPK1 (SLT2) MAP-kinase pathway
+ YKL222C None
+ WTM2 WD repeat containing transcriptional modulator 2
+ BYE1
+ MAL33 Part of complex locus MAL3; nonfunctional in S288C, shows ho-

mology to both functional & nonfunctional MAL-activator proteins
in other Sc strains & to other nonfunctional MAL-activator se-
quences from S288C (i.e. MAL33, YPR196W, & YFL052W)

EM 3

- WTM1 WD repeat containing transcriptional modulator 1
- ACE2 involved in transcriptional regulation of CUP1. enters nucleus only

at the end of mitosis.
- ARG81 Regulator of arginine-responsive genes with ARG80 and ARG82
- IFH1 Interacts with fork head protein. Protein controlling pre-rRNA pro-

cessing machinery in conjunction with Fhl1p
- SMK1 SMK1 encodes a mitogen-activated protein kinase required for spore

morphogenesis that is expressed as a middle sporulation-specific
gene.

- RPI1 possesses a transcriptional activation domain and affects the mRNA
levels of several cell wall metabolism genes.

- HAP4 Regulates respiratory functions; encodes divergent overlapping tran-
scripts

- INO2 Transcription factor required for derepression of inositol-choline-
regulated genes involved in phospholipid synthesis

- SFL1 Transcription factor with domains homologous to myc oncoprotein
and yeast Hsf1p required for normal cell surface assembly and floc-
culence

- RAP1 DNA-binding protein involved in either activation or repression of
transcription, depending on binding site context. Also binds telom-
ere sequences and plays a role in telomeric position effect (silencing)
and telomere structure.
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Cluster � Regulator Description

+ NDD1 Nuclear Division Defective 1
+ DAL81 Positive regulator of multiple nitrogen catabolic genes
+ ACA1 contains an ATF/CREB-like bZIP domain; transcriptional activator
+ PDC2 Regulates transcription of PDC1 and PDC5, which encode pyruvate

decarboxylase
+ FKH2 Fork Head homolog two
+ IME4 IME4 appears to activate IME1 in response to cell-type and nutri-

tional signals and thereby regulate meiosis
+ MBF1
+ WAR1
+ INO4 Transcription factor required for derepression of inositol-choline-

regulated genes involved in phospholipid synthesis
+ UME6 Regulator of both repression and induction of early meiotic genes.

Ume6p requires Ume4 for mitotic repression and interacts with and
requires Ime1p and Rim11p for induction of meiosis-specific tran-
scription

EM 4

- SWI6 Involved in cell cycle dependent gene expression
- GAT1 activator of transcription of nitrogen-regulated genes; inactivated by

increases in intracellular glutamate levels
- FAP7
- MAC1 metal-binding transcriptional activator
- YAP6 bZIP protein
- HIR1 Involved in cell-cycle regulation of histone transcription
- HAP5 Regulates respiratory functions; subunit of a heterotrimeric complex

required for CCAAT binding
- TEC1 transcription factor of the TEA/ATTS DNA-binding domain family,

regulator of Ty1 expression
- SWI5 transcriptional activator
- MBP1 transcription factor
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Cluster � Regulator Description

+ YOX1 Homeodomain protein that binds leu-tRNA gene. acts as a repressor
at early cell cycle boxes (ECBs) to restrict their activity to the M/G1
phase of the cell cycle.

+ MCM1 Involved in cell-type-specific transcription and pheromone response
+ FAP7
+ CRZ1 calcineurin responsive zinc-finger
+ NRG1 involved in regulation of glucose repression
+ HAP5 Regulates respiratory functions; subunit of a heterotrimeric complex

required for CCAAT binding
+ PHO4 Transcription factor that activates expression of phosphate pathway
+ YDR049W None
+ PHD1 protein similar to StuA of Aspergillus nidulans
+ SPT23 Dosage dependent suppressor of Ty-induced promoter mutations.

Homolog of Mga2. Spt23p and Mga2p differentially activate and
regulate OLE1 transcription.

EM 5

- HMS1 High-copy mep2 suppressor
- SWI6 Involved in cell cycle dependent gene expression
- HSF1 heat shock transcription factor
- LEU3 Regulates genes involved in branched chain amino acid biosynthe-

sis and in ammonia assimilation. Positively regulated by alpha-
isopropylmalate, an intermediate in leucine biosynthesis.

- STP2 Involved in pre-tRNA splicing and in uptake of branched-chain
amino acids

- BAS1 Transcription factor regulating basal and induced activity of histi-
dine and adenine biosynthesis genes

- MAL13 Part of complex locus MAL1; nonfunctional in S288C, shows ho-
mology to both functional & nonfunctional MAL-activator proteins
in other Sc strains & to other nonfunctional MAL-activator se-
quences from S288C (i.e. MAL33, YPR196W, & YFL052W)

- HIR3 Involved in cell-cycle regulation of histone transcription
- UME6 Regulator of both repression and induction of early meiotic genes.

Ume6p requires Ume4 for mitotic repression and interacts with and
requires Ime1p and Rim11p for induction of meiosis-specific tran-
scription

- PPR1 Positive regulator of URA1 and URA3

Table A.1:
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