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ABSTRACT 

A general definition of interpreted formal language is presented. 

The notion ''is a part of" is formally developed and models of the 

resulting part theory are used as universes of discourse of the forrnal 

languages. It is shown that certain Boolean algebras are models of 

part theory. 

With this development, the structure imposed upon the universe 

of discourse by a forma l language is characterized by a group of 

automorphisms of the model of part theory. If the model of part 

theory is thought of as a static world, the automorphisms become the 

changes which take place in the world. Using this formalism, we 

discuss a notion of abstraction and the concept of definability. A 

Galois connection between the groups characterizing formal languages 

and a language-like closure over the groups is determined. 

It is shown that a set theory can be developed within models of 

p art theory such that certain strong formal languages can be said to 

determin e the ir own set theory. This development is such that for a 

given forma l l anguage whose universe of discourse is a model of pai:t 

theory, a set the ory can b e imb edde d as a submode! of part theory so 

that the formal l anguage has parts which are sets as its discursive 

entities, 
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I. INTRODUCTION 

The study of formal languages in the abstract has applications in 

mathema tical log ic, linguistics, and information science. In linguis­

tics formal languages are used to approximate natural languages [2, 

3, 4, 5 ]. 

In information science, formal l anguage theory has been used to 

describe computer programming languages , for exa1nple [33 ], 

design question answering systems [8 ], and h as potential applications 

in furthering the understanding of information system behavior. 

Possibly the greatest b enefit to be gained from abstract formal 

language th e ory is the under standing of the limitations of formal 

languages, Recursive function theory [18, 9, 22 J has made a major 

contribution to our understanding of these limitations , but we feel 

that much remains to be gained by considering both the syntax and 

semantics of formal languages abstractly. 

Fc::irmal syntax has been quite thoroughly explored, for example 

[11, 15, 19, 25 ]. Ginsberg [11 J has an extensive bibliography on 

formal syntax, Forma l l anguage semantics have b een define d [ 1 7, 

32, 33 ], but previously lit tle was k nown about the properties of 

forma l l anguages with both a syntactic and semantic co1nponent. This 

dissertation considers certa in properties of such formal languages . 

Following Thompson [ 32 ], we define a formal l anguage as a collec ­

tion of semantic transforrnations on some universe of discourse. We 
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then show that each collection of semantic transformations gives rise 

to an associated syntax which is the syntax of the formal language. 

To provide a uniform and highly homogeneous universe of 

discourse for all formal lan_guages, we consider part theory in 

Chapter III. Part theory is based on an axiomitization of the notion 

"is a part of 11
, as in "the leg is a part of the table. 11 We can consider 

a formal language to give a particular structure to the universe of 

parts, and we characterize this structure by a group of automorph­

isms of the universe of parts. 

Our intuition indicates that for each pair of formal l anguages 

there is a language powerful enough to de s cribe anything which is 

d escribable in either of the original language s, and that there is a 

language in which the only describable entities are those describable 

in both orig inal languages . For exa mple, the computer programming 

languages Algol and Fortran are similar , containing so1ne similar 

syntactic constructions to d es cribe the same process. The algebraic 

expr essions of the two l anguages are in this category. A language 

consisting of just algebraic expressions is a lower bound l anguage to 

Algol and Fortran. As a more powe rful language in which we c an 

express anything expressible in either Algol or Fortran, we tak e the 

assembly l anguage of the c omputer. This is an upper bound language 

for Algol and Fortran. The problem of finding upper and lower bound 

languages for a p a ir of for mal l anguages is partially solved by 

considering the lattice of groups of automorphisms and the Galois 

connection between the groups associated w ith formal l anguages and 

the semantic transforma tion closure on t he groups. 
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The intuition also indicates that the universe of discourse of a 

formal language can always be considered to be a model of set 

theory. In Chapter V we show that it is possible to imbed a set 

theory within a sufficiently l arge model of part theory so that a given 

formal langua ge simultaneously has both parts and sets as discursive 

entities. The central result of this dissertation is that certain strong 

formal languages determine their own set theory. 

Finally, in Chapter VI we consider various research problems 

which the material in this dissertation has suggested. One of the 

more interesting of these is the possibility of defining formally our 

intuitive feeling about the distance between languages. For example, 

we feel that Algol and Fortran are much closer to each other than 

either is to Cobol. If we can realize this intention, our understand­

ing of languages will be greatly enhanced. 
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II. FORMAL LANGUAGES 

We present here material sufficient to define the general notion of 

a formal language as it will be treated in the sequel. A fuller treat-

ment, including motivational material, is in Thompson [32 ], to 

which this chapter owes its genesis. 

A language is often considered to have two components, syntactic 

and semantic, The syntax determines which sequences of words are 

well-formed or grammatical. The semantics establishes the n1ean -

ings of the grammatical sequences. For us, a formal language will 

refer to a formalized semantics, from. which a syntax can be derived. 

Universe of Discourse 

A formal language must talk about something, its universe of 

discourse. Since we are attempting to formalize notions of language, 

we will assume we have at our disposal a set theory, which we will 

use in the usual informal mathematical manner. In order to dis tin-

guish between this "outside 11 set theory and any particular model of 

set theory which may be the universe of discourse of a given formal 

l anguage, we will refer, throughout the dissertation, to "outside 11 

sets as classes and sets in any given model of set theory as sets. 

Since we will follow the Z ermelo - Fraenkel axiomitization of set 
.. 

theory, the class- set distinction of Bernays - Godel will not be 

ne ede d . 
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The universe of discourse of a formal lang uage is a model of a 

relational system, U = < U 
0

, R 1 , R 2 , ••• , Rn, ••• > where U 
0 

is an 

abstract class and the R. are finitary relations defined on U 
1 0 

Hence, the objects inte rrelated by a formal language are elements of 

u 
0 

In mathematical model theory there is usually some relationship 

between the formal lang uage and the relations, R. , of the model U , 
1 

but no such restriction is implied here. 

Suppose the universe of discourse is given as the relational 

system U = < U
0

, R
1

, R 2 , Furthermore, suppose we 

have a model of set theory M = < M , e > , where e is the relation 
0 

"is a membe.r of". Then we can always n1.odel the given relational 

system within M, and we may, if we so desire, consider any formal 

language to have a model of set theory as its univers e of discourse. 

Semantic Categor ies 

A semantic c ategory is to be thought of as a coll ection of objects 

having some property in common. For example, if the model U is a 

ring, the zero-divisors of U can be thought of as a semantic category. 

Since a formal language is to have a finite "computable" cha racter 

(as opposed to a natural l anguage , which may not be definable or 

computable), we will insist that a given formal language posse ss a 

finite number of semantic categories. Each semantic category may 

contain an infinite number of objects, and the semantic categor ies 

need not be disjoint. Furthermore, in the 11m etatheory" there may 

be an infinite number of categ ories, each corresponding to a 
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property of U = < U 
0

, R 1 , .•• , Rn' .•• > , but only a finite collection 

of these are in a given formal language over U • 

Let n be an integer, i.e., n E w. Then K = {C. /iE n} is a collec-
1 

tion of semantic categories if each C. is a subclass of U 
l 0 

Semantic Transformations 

The semantic transformations of a given formal language are the 

means for moving from object to object in the universe of discourse. 

For example, if the universe of discourse is a model of set 

theory, then the function s such that s(x} = x + {x} is such a semantic 

transformation, where + denotes set union. 

Again, we will insist that a formal language be based on only a 

finite number of semantic transformations. 

A semantic transformation is in general quite complex. It may 

take a sequence of objects into another sequence of objects and thus 

both its doma in and its range may be subdirect products of sem:antic 

categories, Here range mea ns the image of the domain under the 

given semantic transformation. 

Let rn. be an integer. 

Definition: T = {T. / j E m} is a collection of semantic transformations 
J 

over K = {Ci Ii E n} , if for each j E m the following hold: 

i} There exists a domain function, d . , from an ·integer 
J 

6. to ·n, 
J 

d.:6. -n, 
J J 

ii} There exists a range function, r. , from an integer 
J 

p. ton , 
J 

r.:p. - n, and 
J J 

iii) T. is a function from a sub direc t product of 
J 
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cd.(l)x cd.(2) x. . . x c - 1) d. (o . 
J J J J 

to a subdirect product of 

c x c 
r. (2) x • c r. (1) . . x 

r. (p . - 1) J J . 
J J 

The domain functions, d. , and the range functions, r. , select 
J J 

the p articul ar semantic categories used to form the direct products 

contain ing the domain and range of each semantic transformation. 

The "property " that a semantic c a t egory is to correspond to, is 

the property of being a projection of the domain or image of a 

semantic transformation. We can say that a semantic category is a 

domain or image class of a sernantic transformation. 

Structural Semantic Transformations 

A semantic transformation may be closely related to it s universe 

of discourse in that it depends only upon the given relational struc-

ture. To make this notion precise, consider any permution, 'I , of 

U We write x'{ for the value of'{ when applied to x. We say that 
0 

'{ commutes with a semantic transformation, T , if 

whenever 

= 

D efinition : A semantic transforina tion is structural if it commutes 

with every permutation that preserves the rela tions R
1

, R
2

, •.• , of 

u. 
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As an exa1nple, let M = < M , e, 0 > be a model of set theory, · 
0 

where e is the binary relation "is a member of" and 0 is the empty 

set. The proper automorphisms of M are determined by permuta-

tions of the individuals of the set theory which are not the empty set, 

and any such permutation determines an automorphism. Then the 

function Li st (x ) = { {y} I ye x} is structural. That is, the value of 

List (x) depends only on the set-theoretical structure of x and not on 

whether x is a particular set or indiv idual. 

If the model of set theory is pure, that is, the o n ly individual is 

the empty set, then there are no proper automorphisms of the inodel; 

every semantic transformation is structural. This is a consequence 

of the extensionality of pure set theory, and suggests that one of the 

reasons for the general acceptance of set theory as a foundation for 

mathematics is the completely structural character of a pure set 

theory. 

Constructive Semantic Transformations 

A semantic transformation may be constructive . By this we mean 

that the semantic transformation can be defined in terms of given 

primitive semantic transforinations by given methods of construction. 

To fonnalize this notion in any particular c ase , one must d ec ide upon 

the primitive semantic transformations and what methods will be 

considered constructive. 

The following example i s a straight-forward generalization of the 

methods of recursive function theory, as found in Kleene [ 18 J or 

Davis [9 ], and illustrates one notion of constructiv ity. 
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The universe of discourse is a model of set theory. A semanti c 

transformation, T is constructive if there exists a finite class of 

defining equations from which the values of T can be effectively 

computed in terms of the arguments of T • The defining equations 

are written in terms of the primitive functions which follow: set 

union, written + ; s et inter section, written • ; set difference, - ; 

and the sing l eton function, s • s(x) is tha t set whose sole men1ber is 

x , that is, s(x) = {x } , Clea rly these primitive functions are struc­

tural. To give power to the r ecursive d efinitions , we include a 

choice function, c , among the primitive functions. The choic e func­

tion is undefined on the i ndividuals of the model. If the model of set 

theory includes two or more individuals other than the empty set, no 

choic e function is structural. 

We can now give the defining equations for the semantic transfor­

mation List(x ) • 

List(x ) = s( s c x ) + List(x - s c x} 

List(O) = 0 

where s c x means s(c(x}} and 0 i s the name of the empty set. We 

include equations of the form 

Li st (a } = a 

for every i ndividual a 1n U • 

To show that List is structural and constructive on finite sets, 

we first require that U have but a finite number of individuals, in 

which case the set of defining equa tions is finite. Now, by induction, 
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List ( {x1 , •.• , xn}) = { {x1 }, ••• , {xn}} , independent of the choice 

function, c • Hence, List is well defined and structural. Since List 

is only defined on finite sets, its domain is the semantic category of 

finite sets and its range is the cla ss of those finite sets whose 

elements are singleton sets, 

If a formal language is defined over a model of set theory, it 

seems reasonable to insist that the semantic transformations of the 

language depend only on the set-theoretica l structure of the model, 

that is, that they be structural, and further, that they be constructive 

as illustrated above. Thompson [ 32 J has taken this approach. In 

Chapter III we indicate that the structural semantic transformations 

are essentially trivial when the universe of discourse is a model of 

part theory. 

Refer ents 

Continuing to d efine the general notion of a formal l anguage , we 

requir e a set of referents, Each referent is an entry point into th e 

semantic structure of the formal l anguage , the obj ect that a word of 

the forinal l anguage names. 

Definition: Let K = {C. j i E n} be a collection of semantic categories, 
l 

If X is a subclass of the "union of the C. , then X is a collection of 
l 

referents. 

D efinition of~ Formal Language 

A formal language is a triple < T, K, X> over a given universe 

of discourse U such that : 
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i} K is a finite collection of semantic categories over U , 

ii} T is a finite collection of semantic transformations over 

K 
' 

and 

iii} X is a finite collection of referents over K • 

Syntax 

We discuss the relationship between a formal language and the 

usual notions of syntax as given in [32 ], [3 ], or [33 ]. 

A syntax is a quadruple <V, W, G, D> where: V and Ware 

finite classes of abstract symbols such that W c V • V is the vocab-

ulary of the syntax and W is the class of terminal symbols, or words. 

G is a disjoint union of G and G , each of which is a finite class of 
v w 

grammar rules. A grammar rule is an ordered pair of strings over 

V , written a - f3 , where f3 may be substituted for any occurrence of 

a as a substring in a string to produce a new string. The rules of 

G are over V-W , and the rules of G are of the form v - w 
v w 

where v E V-W and w E W • Dis a finite class of distinguished 

strings. 

The language of the syntax< V, W, G, D > is that class of strings 

over W which can be produced from D by repeated application of the 

grarnn1ar rules. 

The connection between a formal language and a syntax is given 

by the following correspon dence. 

If there exists a one-to-one correspondence, ¢ , between: 

i} X and W , 

ii} Kand V-W such tha t if xE X and xE C. then 
l 
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if> (C.) - if> (x) is a grammar rule of G , and 
1 w 

iii) T and G such that if TE T has range in 
v C. X •o• X 

and domain in 

grammar rule 

ef>(C. )ef>(C . ) 
31 J2 

x ·~· x c. 
\s 

J1 
then <P (T) is the 

then the syntax< V, W, G, D > is a proposed syntax for the formal 

language < T, K, X>. If, in addition , for each string d E D there is 

a semantic transformation with range in C. x ••• xC. 
J1 JP 

such that 

ef>(C. ) •• • ef>(C. ) = d then <V, 
J 1 J p 

W, G, D > is a syntax for the formal 

l anguage < T, K, X> • 

One may wish to impose additional restrictions on D , the class 

of preferred strings, so that for each d E D, starting fro1n r eferents , 

and by repeated applications of semantic transformations in T , it is 

possible to reach some <y
1

, ... ' 
sponds to d E D • 

y >cC.x ••• 
p J 1 

x C. which corre­
Jp 

A significant aspect of the corr espondence between the formal 

l anguage and its syntax is the relationship between the repeated 

applications of grammar rules and compos ition of the semantic 

transformations. 

We can describe the correspondence, <P , between the syntax and 

semantics as a contra variant functor [24 ], as i ndicated by the 

following diagrams: 

x E C 

w v 
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and 

T ; c. X •cio x c. c. x CICl-CI x c. 
11 io J1 JP 

<fit <Pi 

cP (T ); v. v . - v. v . 
11 16 J1 JP 

Note that the language of the syntax is in general larger than the 

class of meaningful strings, where "meaningful 11 means: m a pping the 

strings into sequences of referents via cfi and applying semantic 

transforn1ations to obta in sequences of ob j ects in th e correct semantic 

categori es to correspond to an element of D , The syntactic l anguage 

is larger since the range of a semantic transformation may be a 

subdirect product of it s i mage semantic c ategories, thus dis a llowing 

certain compositions of semantic transformations which appear 

syntactica lly corre ct, Similarly, if the do1nain of a semantic tran s -

form a tion is the subdir ect product of semantic categor ies, certa in 

string s of wor d s may b e syntactically corr e ct, while t heir s emantic 

counterpa rt will not be in the domai n of any s emantic transformation, 

This is reasonable in view of Chomsky 's example [2, p. 15] 

"Gr een ideas sleep furiously . 11
, 

which, while syntactic a lly corre ct, is u sually considere d to b e mean-

ingless . 

A grammar rule is called context-free if it is of t he form v - f3 

where v is a single s ymbol of V - W • If a semantic transformation i s 

in corre spondence with a context-free grammar rul e , the semantic 

transfonnation is a l so called context-free. A context- free semantic 

transformation resembles the usual mathematical function, as i s 
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illustrated by the following commuting diag r am. 

T c. X ••o X c. c 
11 lo p 

l <P l <P 

cP(T): v. v . - v 
11 lo p 

The above diagram a lso illustrat es that we c an conside r a 

grammar rul e as th e abstraction of th e corresponding semantic 

transformation to the range and domain o f the semantic tran sforma-

tion. We c an say that the syntax i s the surface effect of a s emantic 

system. 

What we have called here a fo rmal l anguage c an a l s o be consider-

ed the abstract semantics for the usual notion of a syntactic l anguage , 

as in Ginsberg [11 ]. Since we have insisted upon a one -to-one 

corr espondence between the formal l anguage (semantics ) and a syntax 

fo r it, we can construct a syntax for a g iven formal l anguage if 

n ecessary, and so we will consider on ly formal l anguages in the 

sequel. 

D er ived Semantic Transformations 

Semantic transformations can be composed in a manner similar to 

functiona l composition, although in a more complex f a shion. The 

compositions of semantic transformations into derived semantic 

transformations is entirely ana logous to the use of several grammar 

r ules in the production of one syntactic string from another. 

A s a syntactic exa mple, suppose we have the grammar r ules 
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where o: , 13 , "( , o are strings over the non-terminal vocabulary, 

V-W • Then we can derive [3 ri o from o: by applying the rules in the 

above order. We will mirror just this kind of process in composing 

semantic transformations. 

Consider the following direct product of semantic categories 

A l x • • • x A a x B l x • . • x Bb x Cl x • • • x Cc 

where either a or b may be 0, 

If we have a semantic transformation, T 
1 

, with domain a 

subdirect product of 

and range a subdirect product of 

then we may "derive" a subdirect product, K , of 

corresponding to the image of Tl • If this subdirect product overlaps 

the don1ain of a semantic transforma tion, T
2 

, that is, the domain of 

T
2 

is a subdir ec t product of 

A 1 x ... x Aa x D 1 x ... x Dd x c 1 x ... x Cc 

which has a non-null intersection with K , then we may compose T 1 

and T2 to obtain a derived semantic transformation whose domain is 
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the subdirect product of 

A l x ••• x A a x B l x ••• x Bb x C l x ••• x Cc 

determined by 'f 
1 

and the extent of the inter section with the domain 

of ,-2 , and whose range is a subdirect product of 

where the range of ,-2 is also a subdirect product of E
1 

x ••• x Ee. 

Because a derived semantic transformation depends on the 

subdirect product structure of the participa ting semantic transforma­

tion, derivations which are syntactica lly correct (that is, the 

appropriate direct products of semantic categories overlap), may not 

be semantically allowed. A study of syntax alone may not enable one 

to determine what phrases of a l anguage are meaningful. If the 

domain and rang e of every semantic transformation are direct 

products of semantic c ateg ories, then every synta ctically correct 

phrase is meaningful, at l east in the sense that a derived semantic 

transformation can be applied to the objects corresponding to the 

words of the phrase . 

The analysis of syntax in terms of semantic transformations 

suggests why linguists are curren tly using transformational gram­

mars to study the regula rities of natural language . Transformational 

gramma rs [ 4, 5 J allow for more complex rules for transforming one 

string into another than simply repla cing the occurrence of on e string 

for another , as we have de s cribe d above. 
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Definable Objects 

What objects in a universe of discourse are definable by a formal 

language over that universe? There does not appear to be a unique 

answer to this question, so we will d efine and di scuss two possible 

answers. 

First we will agree that the referents of a given formal language 

are definable objects. Each referent corresponds to a word in the 

vocabulary of the syntax, i. e,, objects with a name. Now suppose 

we have sequence of definable obj ects , for example a sequence of 

referents, (r 
1

, ••• , rn) , togethe r with a semantic transformation, 

T, definedon (r 1 , ... , rn)suchthat 

Then we can agree tha t x is also a definable object. For example, 

the obj ect defined by "All red ships are red. 11 is the obj ect corre-

sponding to the word ' 1true. 11 

However, if (r
1

, •.• , rn) is a sequence of definable objects and 

it is not clear that each of x
1 

••• , ~ is a definable object, if we 

assmne they are not otherwise d efinable. Thi s obscurity leads to the 

two d efinitions of definable obj ects. The first declares that the x. 
l 

are not d efinable; the second admits each of the x. as a definable 
l 

object, but only in the conte J>..'t of the remaining x
1

, ..• , ~ • 

Definition: An object, x, of a g iven universe of discourse, U , is 
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context-fr ee definable relative to the formal l anguage < T, K, X> if 

it is a referent in X or if there is a sequence of referents 

(r , ••• , r ) and a semantic transformation, T , derived from the 
1 n 

transformations of T , such that 

Definition: An obj ect, x, of a given universe of discourse, U, is 

contextually definable relative to the formal language < T, K, X> if 

it is a refer ent in X or if there is a sequence of referents 

(r
1

, •··, rn) and a semantic transformation, T, derived from the 

transformations of T , such that 

= 

and for some i ~ n , x. = x , 
l 

In the first d efinition, an object may be context-free definable 

although some of the semantic transformations in T used to d efine the 

obj ect are not context-free semantic transformations. In the second 

definition, an obj ect , x. , is contextually definable only if the objects 
l 

entering into the derivation of (x
1

, ... , xn) from (r
1

, ••. , rn) are all 

contextually definable, We have the obvious corollary of the above 

definitions that every context-free definable object is contextually 

definable, 

The following example illustrates the notion of definable object. 

Suppose 112 11 is the name of a defina ble object in the universe of 

discourse, and suppose there is a semantic transformation whose 

value is the square root of its argument, Then, 1. 4 14 ... i s a defin-
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able object of the given universe. 

Sentences 

So far we have not discussed the question of what constitutes a 

sentence of a formal language. Syntactically, a sentence, as a 

phrase, is a distinguished string of the syntax, usually consisting of 

one symbol. As for words, a sentence is any string of words , i.e., 

any string over W , which can be produced by the repeated application 

of grammar rules from the distinguished string. This definition of a 

sentence, while mathematically productive (for example, see 

Ginsberg [ 11 ]), seems to be imposed on the syntax instead of arising 

naturally from the given language structure. In Chapter VI, we 

suggest possibilities for defining a sentence which m a y be more 

"natural". 

We mirror the above definition of a sentence in the semantic 

structure by selecting a distinguish e d semantic category, S • The 

syntactic counterpart of S is a distinguishe d string in D . If there is 

a sequence of referents (r
1

, ••• , r ) and a derived semantic trans-. n 

formation, 'T , such that 

we say that the string of words corresponding to (r
1

, ... , rn) is a 

sentence, and that 'T is a sentential sernantic trans formation. If we 

feel that a sentence must b e either "true " or 11f a lse", then the seman-

tic category S is a class consisting of two objects, say 0 and 1 • In a 

multi-valued logic system, Sis a class consisting of as many distinct 
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object s as there are values to the logic, and if a sentence possesses 

a "probability" of being true, then S is the unit interval of the real 

line. Because of the apparent artificiality of the above definition of a 

sentence , we will consider d efinabl e objects and the semantic coun­

terpart of phrases, rather than sentences, to be the basic units of 

meaning in the sequel. 

Ana lytic vs. Productive Language Models 

We have tr eated the semantic transformations of a formal 

language as analytic transformations. That is, as the r ec ipient of a 

sequence of words would analyze the phrase to discover its meaning. 

At the same time, the syntax has been treated productively. Starting 

with a distinguished phrase, grammar rules are repeatedly applied 

until a string of words over the terminal vocabulary results. 

However , by l etting the semantics determine the syntax, we are in 

effect using the syntactic structure in an analytic manner as well. 

A complete definition of a formal l anguage should include a 

method for synthesizing sequences of utterable words . It should 

provide for transforming definable objects into sequences of refer­

ent s , which in tur n correspond to strings of words . One possibility 

is to insist that every semantic transformation be invertible, so that 

it could be used either analytically or productively; another is that 

different collections of semantic transformations are used to produce 

phrases and to recognize phrases. 

We will concentrate on analytic formal languages, and leave their 

exact relationship to productive forn1 a l langua ges an open problem. 
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III. PART THEORY 

We mentioned that the universe of discourse can always be 

considered to be a model of set theory. This implies that we are 

willing to m a ke certain strong ontological assumptions about the 

universe of discourse, n arnely that various infinite sets exist and 

that the world is atomic and almost well-founded. By atomic, we 

mean that there are entities which h ave no proper subsets other than 

the empty set and that every entity is a union of atomic sets. By 

almost well-founded, we mean that the axiom of regularity holds for 

all sets except possibly certain individua l s which have no members 

but are not the empty set. 

Presumably there is no difficulty about accepting finite sets. 

However, to have a set theory, we must admit some very large sets, 

such as the continuum, and impredicatively d efine d sets. Even the 

set of integers may be suspect due to the following reasoning. We 

define the integers by stating certain properties of the successor 

function . This statement is a linguistic process and we can argue 

that the set of integers is actually just the lingui stic statement 

defining the integers . For mathematics, this distinction makes no 

differ ence , for we still have entities satisfying the axioms of set 

theory. However , in the view of set theory in which only linguistic 

elements exist, the only sets are those which can be defined by a 

formula of set th e ory. This i s very close to the constructivist point 
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of view [ 6, 13] in which the continuum, for example, does not seem 

to match our intuition regarding the real line , This linguistic view 

of set theory can be said to regar d l arge sets as fictions, As Cohen 

observes, "The great defect with this view is that it l eaves unexplain­

ed why this fiction is successful and how a presumably incorrect 

intuition has led us to such a remarkable system, " [ 6, p. 150 ]. 

The material in Chapter V suggests an explanation of why this fiction 

is successful, 

The second difficulty with set theory is its atomic character , 

While obviously useful for mathematics, it is not clear that we can 

adequately model th e real world in set theory p artly because of this 

property. If we model an electron as a set we must decide what its 

elements are to be. For different purposes we model it differ ently, 

for example as a collection of quantum states or as a point charge. 

It is not clear that a single model of an electron can subsume all the 

models of an electron that we may w ish to make , e specially consider­

ing that new properties of electrons may be discovered, fo r example, 

superconductivity, What appears to be required is a model of the 

world which allows for new properties of entities to be discovered 

and new interre l ationships to be explored. 

The fact that almost everything must be constructed on the empty 

set i s another problem with set theory. Thi s is closely related to 

atomicity, and l eads to the same conclusion that every interrelation­

ship among entities modeled by sets and individuals is inherent in the 

set theory, and there is no room for discoveries, Suppose the set 

theory is pure, that is, there are no indiv idua ls, Then every set is 
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well-founded and let us consider modeling the electron again. An 

electron in the model is some complicated set, but all of whose 

elements are set-theoretical constructions built on top of nothing, 

that is, on the empty set. If we find this notion philosophically 

unpalatable, then we can consider including some individuals in our 

set theory. Now the electron set can have individuals as members of 

members of... • However, there is nothing within set theory which 

allows us to distinguish between individuals and thus between sets 

with the same structure over "different" individuals. So the electron 

set's elements are set-theoretical constructions built on top of 

nothing or on top of indistinguishable structureless somethings. This 

does not appear any more acceptable than a pure set theory. 

Since accepting set theory as the universe of discourse requires 

accepting atomicity, well-foundednes s, and the existence of large and 

strangely defined sets, and these lead to philosophical difficulties, 

we ask what can be accomplished by making weaker ontologica l 

assumptions than those required by set theory. We will assume only 

that an entity c an be part of another entity. The sole predicate of the 

theory is the notion "x is a part of y", formalized as x rr y • The 

theory of the part-whole relationship as developed in the next section 

requires only three axio~s and one axiom schema, indicative of the 

weaker ontology. Earlier discussions of the theory of parts appear 

in Goodman [ 14] and Tar ski [2 9 ]. Tar ski's axiom system d epends 

on the availability of a set theory. The approach here is to develop 

part theory independently of set theo ry. Goodrnan considers his part 

theory to be a calculus of individuals . Our axiom system is similar 
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in intent to Goodman 's, although more completely formalized. We 

assurn e that the only entities are the "individua ls". 

The theory of parts i ncludes a means of construct ing entities 

from parts described by a formula, in analogy to the axiom of 

replacement of set theory. However, the entities formed in this way 

do not appear to have a diffe r ent cha r a cter than other p arts . In set 

theory, our i n tuition becomes shakier as we m ove from the integer s 

to the countable ordinals to the continuum and i mpredicatively d efined 

sets. In p ar t theory, the world is far more homogeneous and every 

part has about the same credibility as a "r eal" entity. Since a model 

of p art theory need not have atoms, we c an l a b e l c ert a in parts of an 

electron as distinguished and then fin d proper p arts of the distin­

guished p a rts to explore and so on. 

Well-foundedness does not apply to the theory of parts, and we 

can l abel a particular part as an e l ectron without having specified 

anything about it s structure. Because o f homogeneity, the electron 

looks approximatel y like any other part, but we accept this situation 

as follows . The "s tructure" of any part is imposed on it by an 

obs erver . As the formal development shows , t he homegeneity of 

p arts means that any t w o parts c an have the same "structure ". 

Another way of saying this i s that every part can have any structure 

and the particular structure of a p ar t, say an electron, is that one 

selected by an observer. This ontological position i s deve l oped 

forina lly i n Chapter IV, with a for mal l anguage replacing an 

"observer". As we will see , we c an recover a set theory from 

within a model of part theory, den1onstr a ting the existence of any 
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particular set-theory-based structure tha t we please. 

As a method of exploring linguistic and mathematical notions, 

the theory of parts seems to be a powerful tool. It also seems to be 

in line with some current thought in the philosophy and history of 

science [26, 20 ]. As to whether it is a completely adequate model of 

reality, the answer is of course no. It does seem to offer possibili­

ties for furthering our understanding of formal linguistics and the 

relationship between a language and its universe of discourse. 

Axioms and Basic Theorems 

This axiomitization of part theory was developed by 

F. B. Thompson. Some of the theorems in this section are due to 

F. B. Thompson, the remainder to R. Lambert [21 ]. The theorems 

are stated here without proof, but we attempt to give the intuition 

behind the axioms and b as ic theorems of the system, 

Axiom 1: Va Vb[a = b - Vc(c rra ._ ... c rrb)] • 

a is the same entity as b if and only if they share all their 

parts in common. This axiom of extensionality for parts could alter­

nately be taken as a definition of equality in part theory. Note that a 

and b are not necessarily parts of any entity. 

Axiom 2: VaVb[arrb -3:c(arrc) &V d(d rra - drrb)] . 

a is a part of b if and only if a is p art of something and every 

part of a is a part of b • This axiom is a strong form of transitivity 

for p ar ts. 

The following three theorems establish that rr is a partial order-
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ing. 

Theorem 3: Va[3:c(a1Tc)-.. a1Ta] • 

Theorem 4 : VaVb[a1Tb & b1Ta- a= b] • 

Theorem 5: VaVbVc[a1Tb &b1T c- a1Tc] • 

Definition 6: Let F(a; x , ••• , x 
1

) b e a formula of th e lowe r 
o n-

predicate calculus in whi ch b , c , d and e are not fr ee . The only 

pr edicat e in F is 1T and x , ••• , x 
1 

are the n ames of n entities. o n-

Then, c 1T Pa [F(a ; x
0

, •• • , xn- l)] if and only if 

Vd[d1Tc-3:a3:e[F(a; x, •• • , x 
1

) &e1Ta&e1Td ]] &3:f (c1Tf). 
o n-

P [F(a)] i s that entity formed by "conglomerating" all the a 
a 

such that F(a) • In forming the c ongl omerate , parts other than the a 

satisfying F(a) may be parts of the conglomerate and the definition 

specifies which parts are to be i ncluded. In words , c is a p art of the 

conglornerate i f every part of c meets some a satisfying F(a) • This 

d efinition and the following axiom schema hold a position in the 

theory of parts analogous to the axiom of replacement in Zerrn.elo-

Fraenkel set theory, While the axiom of r e placement guarantees 

that the range of a function i s a set, here the following axiom schema 

gua r antees that each con.glomerate exists and is the l east upper 

bound to the collection of a s atisfying F (a ) • That is, we c an find an 

entity whose parts are just those defined by the formula F together 

with all of their parts and the various combinations of these. 

Axiom Schema 7 : 3:b V c [c 1Tb - c 1T Pa [F(a; x
0

, ••• ' x l)J] • n-
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Theorem8: 3:!bVc[cTib...-cTIP [F(a; x, ••. , x 
1
)]]. 

a o n-

The conglomerate is unique and thus is the least upper bound, 

with respect to the partial ordering 1T , to the collection of a sati sfy-

ing F(a) • 

Axiom 9: VaVb[1 a1Tb &3:c(a1Tc)- 3:d(d 1Ta &Ve 1 [e1Td &e1Tb])] • 

If a is not a p art of b and a is part of something, then there is 

a p art of a which i s disjoint from b , that is, has no part in common 

with b • This axiom guarantees that a and b are distinguishable by 

some part which they do not share. The following theoren1 illustra tes 

t h is. 

Theorem 10: VaVb[aTib- Vc(cTia - 3:d(d1Tc &d1Tb)) & 3:e(a1Te)) 

a is a part of b if and only if every part of a has a p art in 

common with b and a is p art of sorn.ething. 

The or em 11: Vb[b =P [aTib] ] . a 

This theorem shows that the theory of p arts is well-formed; 

b is the conglomerate or l east upp er bound of the collection of its 

part s and since every p art c an be defined by a formula, every part 

has roughly the same d egree of cr edibility. 

A xioms 1, 2, and 9 together with axiom schema 7 consti tute the 

main collection of axioms of the theory of parts. The remaining 

d efinitions and theorems develop the theory far enough to make it 

clear that a Bool ean algebra c an be a model of part theory. 

D efinition 12: l =P [a=a ] a . 
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1 is the universe of parts, obtaine d by taking the conglomer-

ate over a t a utology. 

Theorem 13: Va[arrl - 3:b(arrb)] • 

Every entity which is a p art is a part of the universe and 

vice versa. 

Definition 14: b + c = P [arrb V arrc] • 
a 

This defines the union of the p arts b and c , but does not 

guarantee that b + c is a part of the universe. 

Theoreml5: b+c=P[a=bVa=c]. 
a 

This theorem illustrat es the nature of conglomerating. 

P [a = b V a = c J has as parts every part of b and every part of c 
a 

as the following theorem shows. 

Theorem 16: Va Vb\fc[arrb V arrc - arrb + c] • 

Theorem 17: VbVcVd[( Va [arrbV arrc -- arrd] &[b+crrl])-b+crrd]. 

If b + c is a part of the universe, then b + c is the least upper 

bound of b and c • 

Definition 18: b • c = P [arr b & arr c J • 
a . 

This d efines the intersection of two p arts , which may not 

always exist as a part of the universe. 

Theor em 19: Va VbVc[arrb & arrc - arrb• c] • 

b · c is the greatest lower bound of b and c • 
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Theorem 2 0: Vb Ve [b • c n 1 - b • c n c & b • c n b] • 

If b • c is part of the universe, then it is a part of b and a part 

of c • 

Definition 21: 0 = P [a f- a] • a 

Zero is the conglomerate over a contradiction. Zero is not 

part of any entity and has no parts as the following two theorems 

show. This is one of the more pleasing aspects of the theory of 

parts. Zero is the only entity without parts and can be said to be 

"nothing at all 11. This is contrasted with the empty set which has 

many relations with the remaining sets, such as being a subs et of 

every set and being a member of certain sets. 

Theorem 22: 1 [On1] • 

Zero is not a part of the universe, so by Theorem 13, it is 

not a part of any entity. 

Theorem 23: Va[(Vb 1 (bna)) - a= OJ • 

Zero has no parts, including itself, and is the only such 

entity. 

Theorem24: VbVc[ 1 3:a (a1Tb&a1Tc)-b·c=0]. 

band c h a ve no p a rt in cornmon if and on ly if their inter sec-

tion is zero. This theor e m is another indication tha t the theory is 

well - form e d. 

Theor e m 25: 3:b 3:c [b n 1 & c n 1 & b f- c] -

1 Vb V c [b 1T 1 & c 1T 1 - b • c Tr 1 J • 
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Theorem 26: Vb[b+O = b] • 

Theorem 2 7: Vb [b • 0 = 0] • 

The above three theorems illustrate the relations between zero 

and other entities. 

Theorem 28: Va[a1Tb·c - a1Tb &a1Tc] • 

Definition 29: 15 = P [Vc(c1Ta- 1 C1Tb)] • 
a 

This defines the complement of b , which is unique by 

theorem 8 • 

~ 

Theorem 30: 0 = 1 & 1 = 0 • 

Theorem 31: Va Vb 1 [a1Tb & a1To] • 

b and its complement are disjoint. 

Theorem 32: Va[a+a = 1] • 

Part Theory and Boolean Algebra 

The theorern.s of the previous section indicate that a model of 

part theory is also a model of a Boolean algebra. What Boolean 

· algebras are models of part theory? The answer is only very 

uniform Boolean algebras. We will show that a Boolean algebra 

which is a direct product of an atomic Boolean algebra a!:'.d an atom-

less Boolean algebra is a model of part theory. We let a 1Tb 

correspond to (a ~ b & a f: 0) in the Boolean algebra and proceed to 

prove the axioms of part theory as theorems of Boolean algebra. As 

we will demonstrate, all of the axioms are straight-forward to prove, 
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except axiom schema 7. The proof of axiom schema 7 requires that 

the least upper bound of 

fa\ F(a ; x , •.• , x 
1
)} 

o n-

e x ist in the Boolean algebra. This existence proof is obtained by 

applying the method of elimination of quantifiers [ 31 J to 

F(a; x , ••• , x 
1

) , reducing this formula to a standard form for 
o n-

which it is possible to show t he existence of the l east upper bound. 

Since the proof outlined here i s l ong, it has been r elegated to the 

appendix. The proof u ses, crit i cally and in two different places, 

t hat the Boolean algebra i s a direct product of atomic and atomless 

f actors. T his makes it most likely that the direct product condition 

i s necessary i n order that a Boolean algebra be a model of part 

theory. Now, assuming that ~ a exists , we prove the axioms of 
F(a ) 

part theory as Boolean algebraic theorems. 

Let a nb be interprete d as (a ::; b & a f; 0) in the Boolean algebra. 

The operations in the proofs to follow are Boolean algebraic and the 

0 and 1 of part theory will be interpreted as the 0 and 1 of the 

Boolean algebra, 

Axiom 1: Va Vb[a = b - Vc(c na ....._.. c nb)] 

Proof: Assume a = b • Then c ::; a i f and only if c ::; b • Now assume 

Vc(c na .-. c nb ). In particular , (a ::; a & a f; 0) - (a ::; b & a f; 0) 

and b ~ b - b ~a , hence a = b , 

Axiom 2: Va Vb[anb ...- 3:c(anc ) & Vd(dna - dnb)]) 

Proof: Assume a nb • Then a ~ a and every d l ess than or equal to 
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a is also le ss than or equal to b • Now assurne 

3:c(a1Tc) & Vd(drra -d1Tb). Then if 1 (a -:Sb), the re is an e -:Sa 

such that..., (e -:S b) , con tradiction. 

Axiom schema 7: 3:bVc[crrb ...- C1TP [F(a)]] where we have drop­
a 

ped the p a ramete rs x , ••• , x 
1 

in F for cla rity. 
o n-

We requir e t w o l emma s b efore proceeding w ith the proof of 

axiom schema 7. 

Lemma 1: I; a exists and is equal to a. 
e-:Sa 

Proof: We k now that a is an upp e r bound to the set {e I e-:Sa } • Since 

a E {e I e-:Sa} , it is the l east upper bound, 

Lemma 2: If I; a exists, then 
F(a ) 

L, a = 
F(a ) 

I; [I; e] 
F(a ) e-:Sa 

= L, e 
e -:Sa&F (a ) 

Proof: Thi s i s a simple application of i nfinite associativity, as in 

Sikorski [2 8 , p . 59 J. 

We turn to the proof of axiom schema 7. Reca ll that c rr P [F( a )] 
a 

if and only if 

Vd[d rr c - 3:a3:e[F(a) & erra &e1Td ]] & 3:f(c rrf ) • 

Consider b = I; a, which exists by the proof i n the appendix, By 
F(a ) 

l emma 2, b = I; e • Consider any c-:Sb which is not 0 . 
e -:Sa&F {a ) 

Fir st of all, 3:f (crrf ) since for all c 
' 

c .::; 1 • Now cons ider any 

d -:S c whi ch is not 0 • Suppos e for all e i n {e I e -:S a & e ~ 0 & F(a)} 

i t is the c ase that e 4 d • Then d is disjoint from each e so that 
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d - b-!- 0, contradicting d ~ b. Hence, 3:a3:e[F(a) & erra & errd] • 

Now suppose there exists a c satisfying 

Vd[drrc 3:a3:e(F(a) & erra & errd)] We will show that 

c ~ b = I; a , Suppose the contrary. Then x = c - b is not zero 
F(a) 

and x ~ c, But then 3:a3:e(F(a) & e ~a & e ~x & e f- 0) which 

implies that e ~ b, and e ~ b & e ~ x contradicts X • b = 0 • 

The Model 

If we accept "is a part of" as th e funda1nental notion for discuss-

ing i nformational entities , then we must face the question of how 

many parts the universe possesses. The answer m .ust be an infinite 

number. Conside r some part, say a sheet of paper. It possesses 

conc eptual parts like the top two-thirds and the margin. These 

parts are potentially infinite. Are there any parts which possess no 

proper subparts, that is, are there any parts which are atoms? 

Assuming tha t there are no atoms, we can always divide any part of 

the universe into smaller subpa rts. For example, an electron can be 

divide d into its mass, momentum, position, charge, and so on, 

while the electron's mass can be divided into re st mass and energy 

mass, and so on as long as we please. There is no claim here tha t 

the parts i nto which we divide the electron are unique or necessarily 

useful for physical theory. The only claim is that we always find a 

prope r p ar t of any p art of an electron. 

The assumption of atomlessness c an be formali ze d as an addition-

al axiom of part theory as follows : 

Va [ a f- 0 - 3: b (b rr a & b f- a)] . 
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With this axiom, only the atomless, therefor e infinit e , Boolean 

algebras are models of p art theory. We know from the Lowenheim-

Skolem theorem that any set of axioms has a countable model. In 

p a rticular, the theory of a tomless p arts has a countable model. 

Without becoming involved in model-theoretic considerations we 

present a countable atomless Boolean algebra, P , as a mode l of 

part theory. Conside r h a lf-op en interva ls (x, y J such that 

0 ~ x , y ~ 1 and such that x and y are rational. Each such interval 

is a part where (x1 , y
1

J1T (x2 , Yz J if and only if x 1 ~ x 2 and 

y
1 
~ Yz • (0, 1] is the universal p a rt of part theory and the unit of 

the Boolean algebra. Finite unions of parts are p art s. Furthermore, 

this model is i somorphic to every countable atomless Boolean 

algebra and to the free Boolean algebra on a countabl e number of 

generators [ 10, p. 54 ]. Pis the smallest of the class of models we 

consider. The rema ining sections of this cha pter discuss properties 

of P. Larger models, under suitable conditions, also possess· these 

properties. 

Size 

The size of each part of P can be d efined by defining a measure 

on P. Such a measure exists . For example, a normed finitely 

additive effective measure can be obtained as follows [10; p. 56 ]: 

since each part of P is uniquely expressible as a finit e union of 

disjoint parts, say, p = .~ (x ., y . J , we define the measure, µ , on 
iEn 1 i 

each part as µ (p) = . ~ (y . - x.) , whe re here ~ means addition and 
i E:n i i 

y. - x. is the l ength of the interval (x. , y. ]. Define the measure of 
1 1 1 1 
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the zero of P to be 0 • 

The size of a part can be thought of as the importance of the part, 

its probability, or as its "physica l'' size. Also, the measure can be 

used to define a metric on P by s etting the distance between two 

parts, p
1 

and Pz , in P to the measure of their symmetric differ ence, 

We prove a lemma us eful in the following section. 

Lemma : Given E > 0 and a sequence of disjoint p arts p
1

, p
2

, ••• , 

if µ(p.) ~ E for each i , then the sequence is finite, p
1

, . •• , p • 
1 n 

Proof: µ(p. + p.) = µ(p.) + µ(p.) for all i I= j since p. and p. are 
1 J 1 J 1 J 

disjoint. The measure of the union of at most 1 / E of the p. is equal 
1 

to 1 • Sinc e the measure of all parts i s l ess than or equal to 1 , 

ther e are only a finite number of disjoint parts with measure ~ E • 

Limit Points and Measure 

Let Y ·be a subclass of a model of part theory. A point is a limit 

point of Y if there is a sequence of points in Y which, eventually , do 

not exclude any part of the lim it point and eventually do not include 

?-ny point not part of the limit point. Formally, we have 

Definition: y is a limit ~oint of Y if there i s a sequence y
1

, y 2 , ••. 

of elements of Y such that for any z I= 0 , there exists an N for which 

j > N i mplies z• (y..!..y. ) I= 0. 
J 

To show that this is equivalent to the sentence above the definition, 

let z ::::::: y , z I= 0 • Then for some N and all j > N , 

z . (y ..!.. y .) = z • [ (y. y.) + (y . y.) J = z • y. I= 0 . 
J J J J 
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Hence z is not excluded. Sim ilarly, let z :::;; y , z /:. 0 • Then for 

some N and all j > N , 

z • (y .:.. y.) = z. y. y. = z. y. /:. 0 
J J J 

so that z is not include d. 

Let P be the model of p a rt the ory previously defined and l e t µ be the 

normed finit e ly additive effective measure we hav e define d on it. We 

define d the distance between x and yin P by d{x, y) = µ(x.:.. y) • We 

wish to show that a point is a limit p oint of a s e quence in P if and 

only i f it is a limit poin t in the metric space determine d by the meas-

ure. Hence the topol ogy d ete rmined by the definition of limit point 

given above and the metric topology determined by the measure can 

be made to coincide. 

Theor em : y is a lim it poin t of Y if and o n ly if µ(y ~ y.) - 0 as 
1 

i _,.. ro for some sequence y
1

, y
2

, •.• i n Y. 

Proof : Suppose µ (y.:.. yi} _.. 0 as i - 00 for some s equence y
1

, y 2 , ••• 

Conside r any z /:. 0 • z h as non-zero measure since µ, is effective. 

There exists an N such that for all j > N , µ, (y.:.. y.) < µ(z) , and so 
J 

for all j > N, z • (y.:.. y.) /:. 0. For suppose for some k > N, 
J 

z. (y.:.. yk) = 0 . Then z :::;; (y.:.. yk) thus ~L {z} :::;; (y.:.. yk} , contradic-

tion . This shows that y is a lim it point of (y
1

, y
2

, ••• } • 

Suppos e y is a limit point defined by the sequence y
1

, y 2 , .• • and 

that µ (y .:.. y.) does not converge to 0 • We will show that for some 
1 

E > 0 the r e is an infinite subsequence of y. such that 
1 

µ,(y.:..y.):e:E 
1 

For if µ.(y.:.. y.) does not conve rge to 0 there is an 
1 
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E > 0 such that for all M there exists an i> M such that p. (y ..:... y.) ~ E 
l 

Since y is a limit point, there exists an N such that for all 

j > N (y..:... y.) 1 (y..:... y . ). We form the infinite subsequence as 
l J 

follows: Let M = 1 • Then there is an i
1 

such that p.{y..:... y. ) ~ E 
- 11 

i
1 

determines an N such that for all j > N (y..:... y. ) 1 (y..:... y.). Now 
11 J 

let M = max(i
1

, N) to determine i 2 • Continuing in this way, we have 

ik < ik+ 1 and for each k, p. {y ..:... y ik) ~ E • By the lemma of the 

previous section, the {y..:... y. ) of this subsequence are not disjoint. 
. lk 

In fact, the lemma shows there must be a z t 0 such that 

z ~ (y..:... y. ) for an infinite number of k. This contradicts the 
lk 

assumption that y is a limit point, proving that p. (y..:... y.) - 0 as 
l 

i - ro if y is a limit point. 

Automorphisms 

An automorphism on P is a one-to-one function, g , from P onto 

P such that g(x)rrg(y) iff xrry. If Pis countable and atomless, P 

has 2w automorphisms [10, p. 50 ]. If Pis a model of a static 

world, then the automorphisms model the changes which take place 

in that world. If an automorphism g interchanges two parts, then the 

change which has taken place is that interchange. This notion of 

change is very general and does not l ead directly to a notion of time. 

However, by metrizing the group of automorphisms of P , we c an 

consider time to be a continuous map from the real line to the group 

of automorphisrns. If g and hare automorphisms, define d':' [ g, h] = 

suppd[g(x), h{x)] . 

There are some philosophical difficulties associated with this 
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notion of change, which the following example illustrates. Suppose 

we have a red pencil, which burns and changes to black soot. If the 

redness of the pencil is a part of the pencil, then under the auto­

morphism changing the red pencil into black soot, the "red" part is 

transformed into some part of the soot, and the soot is not red. 

Hence the automorphism does not preserve sensual redness. 

Furthermore, some part of the red pencil must be transformed into 

the "black" part of the soot even though it appears that the red pencil 

has no black part. For the time being, we just accept this difficulty 

as indicating that our notion of change is a rather crude one. We will 

return to this problem in Chapter VI, after having considered the 

relationship between part theory and formal languages. 
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IV. GROUPS OF AUTOMORPHISMS 

In this chapter we develop some of the consequences of consider­

ing a formal language to have a model of part th e ory as its universe 

of discourse, One of these consequences is that the structural 

semantic transformations are the Boolean functions on the model of 

part theory, including the infinite Boolean function s defined in terms 

of the abstraction operation considered i n this cha pte r. The 

interesting semantic transformations are not~ priori structural but 

impose a richer structure on the model of part theory tha n it orig­

inally poss esse d. In this sense we can say that a formal language 

determine s the structure of it s universe of discourse. 

This structure c an be characteriz e d by a group of automorph­

isms. The results in this chapter stem fron~ considering the groups 

of automorphisms associated with formal language s. With each 

formal language we associate the largest group of automorphisms 

under which the fo rrnal l anguage i s invariant. The characterization 

of a forma l l anguage by its associated group is imperfect in the 

sense that several formal l anguages may be associated with a given 

group. However one may then say that these several l anguages all 

give the same structure to the universe of discourse. 

In considering thi s structure, we see that the p arts definable by 

the formal l anguage are those to which it g ives additional structure , 

and undefinable parts are l e ft unrestricted, except i n so far as they 
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are parts of definable entities. The following example illustrates 

several matters which are treated formally in the remainder of the 

chapter. 

Suppose we have a formal language which discusses the interrela­

tionships of objects in a room. The referent words of the l anguage 

may be "desk", "table", and "chair 11 together with function words 

which select particular semantic transformations, such as "to the 

l eft of" and "under ". In this formal language, the l eft two-thirds of 

a desk is an undefinable part. Without additional referents and 

possibly additional semantic transformations, this entity is 

indescribable in the given formal language. In this case a desk is an 

atom in the algebra of definable parts. 

Continuing this example , suppose in the room which i s our 

universe of discourse every desk is to the left of a table. If we 

permute the desks then the structure "every desk is to the left of a 

table" remains invariant. These permutations are in the group of 

the formal language provided they preserve all of the structure 

determined by the formal langua ge. Assuming the permutations of 

desks do preserve the langua ge, we see that two desks cannot be 

distinguished if they are permuted one into the other. As far as this 

formal language is concerned they are indistinguishable and the 

syntactic entities which name or describe them are synonomous , 

The Group of~ Formal Lang uag e 

Let F = < T, K, X > be a formal l a nguag e over a model of part 

theory, P • 



Definition: Let G be a subgroup of the group of all automorphisms of 

P • G is the group of the formal language F if for every basic or 

derived semantic transformation, T , of F and every sequence 

(x
1

, ••• , xn} of referents in X such that 

and for every g in G , 

Unde r this definition, G is the group of the formal language F if 

every autornorphis1n in G commutes with every semantic transforma-

tion of F whenever the semantic transformation is defined. We may 

symbolize the fact that the automorphism g commutes with the 

semantic transfonnation T , in the sense of the definition, by 

g T = T g • The group G is said to leave the formal language F invar-

iant since for each change in G and each semantic transformation of 

F we obtain the same result no matter whether the change or the 

semantic transformation is done first. 

We now define indistinguishability of parts. 

. . 
Definition: 6. is an orbit of P under G if 6. is a subclass of P and for 

every x and y in 6. there .is a g in G such that g(x} = y • 

Definition: Let GF be the group of the formal language F • If two 

parts are in the sa1n e orbit under GF , then they are indistinguish-

able by F. 

As another exa mple of indistinguishability suppose we have a 
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formal language which includes the word "Scott" and the phrase 

"author of Waverly''. "Scott" is interpreted as some part x and 

"author of Waverly" as some other part, y • Now if there is an 

automorphism g in the group of the formal language such that g(x} = y 

then "Scott" and "author of Waverly" are indistinguishable by the 

the formal language under consideration. To say "Scott is the author 

of Waverly" is to assert that x and y are equivalent under the group 

of the form a l language and x may or may not be equal toy • Now 

suppose there is a phrase involving the word "Scott" corresponding 

to the semantic transformation T on the sequence of referents 

(x, z 1, •.. , zk) such that T(x, z 1, ••• , zk) = (w 1, ... , wn) • Then 

T(y, g{z 1 ), ••. , g(zk)) = (g(w 1 ), .•• , g(wn)). This shows that we 

can replace "Scott" by "author of Waverly" in the given phrase and 

the new phrase 1 s meaning is indistinguishable from the original 

phrase. 

Transformation Clo sure of~ Group 

The structure d etermined by a formal l anguage may also be 

characteriz ed by the collection of all semantic transformations 

invariant under the group of the formal l anguage . The semantic 

transformation closure of a group of automorphisms is the collection 

of all semantic transformations which co1nmute with every auto­

morphism in the group. The formal definition follows. 

Definition : LG is the sernantic transforma tion closure of G if LG is 

the collection of all sern.antic transformations, T , satisfying the 

follow ing prop e rty: for each pair of sequences of parts (x
1

, ... , xn) 
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and (y
1

, ••• , yk) such that 

then for each g in G we have 

If GF is the group of a formal language F then LGF includes 

every basic and derived semantic transformation of F when these 

transformations are considered to be restricted to definable parts. 

LGF may be thought of as the collection of all semantic transforma­

tions admissable under GF. While we c an think of LGF as 

constructible by infinite methods from F , LGF is not in general 

finit e ly constructible from F as the following argument shows. 

Given a group of automorphisms, G , conside r the collection of 

all parts in P which are fixe d under the action of G • These form a 

subalgebra of P , s ay B • Now consider all the functions from B to 

B • Each such function is admissable under G and so is a semantic 

transformation in LG , If B is infinite , then the collection of all 

functions from B to B is uncountable and hence so is LG , 

Roughly speaking, in LGF there is a sern.antic transformation 

from alrnost any sequence of defina ble parts into almost any other 

seque nce, Somewha t more precisely, LGF includes every potentia l, 

applicable semantic transformation, given the p articula r synonymi­

ties of the group G , In LGF we c an get to any d e finable p art from 

the referents of F • Can we get to any other parts by the application 

of sernantic transforma tions i n LGF which are not deriva ble from the 
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basic semantic transformations of F? In general the answer is y e s, 

however , in the next section, we d escrib e how F c an be strong enough 

so that everything definable by LGF is also definabl e by F • 

Definability 

Definition : Let F be a forma l l a n guage < T, K, X> • Then let DF 

be the collection of contextually definable p arts relative to the formal 

lang u age F • Let DLGF b e the collection of contextually definable 

parts relative to the class of referents X and the collection of 

sern.antic transformations LGF • 

Clearly D F i s a subclass of DLGF • We are interested in deter -

mining when DF = DLGF • Thi s requires considering t he topology of 

P. 

Theorem: Every automorphism of P is a horn.eomorphi sm when P is 

endowed with the metric topology i nduced by the measure µ • 

Proof : Let g be an automorphism of P • Suppose lim x. = p and 
1 

lim g (x .) t g (p ) • T hen lim (g (x .) - g (p)) = c t 0 • Hence for some 
1 1 

N and for all j > N, c rr (g (x .) - g(p)), 
J 

g- l (c} t 0 , c ontradicting lim x . = p • 
1 

points i n P , 

-1 so that g (c) rr (x. - p) and 
J 

Thus g preserves all the limit 

If there is a sequence of parts x . i n DF such that lim x. = y , 
1 1 

t hen we say that DF has y as a limit point. If all the limit points of 

D F are in DF , t hen DF is closed. If y is a limit p o i nt of DF and g 

is any automorphism, then the image of DF under g possess es g (y ) 

as a limit point. So if DF has a limit point, there is a semantic 
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transformation in LGF from at least one definable part of DF to the 

limit point. For if lim x. = y , and every x. is in DF , then a 
1 1 

semantic transfonnation, T , defined only on the x . such that T(x.) = y 
1 1 

commutes with every g in G_. This shows that limit points of DF are 

in DLGF and suggests the following theorem. 

Theorem: If DF is closed in the measure topology, then DLGF is 

equal to the subalgebra generated by DF • 

Proof: Since DLGF properl y contains DF , there is a semantic 

transformation in LGF from a sequence of parts in DF to a sequence 

of parts in DLGF - DF • This in turn implies the existence of a 

s emantic transformation in LGF from a sequence of parts in DF to a 

single part in DLGF - DF • So suppose we have T(x
1

, ••• , x ) = y 
. n 

where x
1

, ••• , xn are in DF and y is not in the subalgebra generated 

by DF • Then we will show that there is an automorphism, g , in 

GF such that x
1

, ••• , xn are fixed under g while g(y) I- y • This 

means that T is not a semantic transfonnation in LGF and y is not in 

DLGF. 

The proof is com plete d by conside ring the various possible 

Boolean algebraic relationships between y and the suba lgebra gener-

ated by DF. 

(i) y is disjoint from every x in DF . Then there are two 

subcases. First, y is the l a rgest p a rt disjoint from every x in DF. 

In this case y = ~DF and since DF is closed, ~DF is in DF and soy 

is in the subalgebra generated by DF. Second, y is not the comple-

ment of ~DF . Then there is some z such tha t y rr z and z is disjoint 
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from every x in DF • Consider the group of all automorphisms of 

the principal ideal generated by z • These automorphisms can be 

extended to automorphisms of P by considering them to act trivia lly 

on the parts of z . Since every x in DF is a part of z, these auto­

morphisms are the identity on every definabl e part, including 

x
1

, ••• , xn • Furthermore, some of these automorphisms move y • 

Since these automorphisms fix the definable p a rts, this group is a 

subgroup of G • We have obtained a contradiction, which shows that 

if T(x
1

, ••• , xn) = y , then either y = ~ DF or y h as a part in common 

with some x in DF • 

(ii) Now if y is not covered by p arts in DF , then there is 

some part of y to which (i) applies. So we will assume that y is a 

p a rt of some x in the subalgebra generated by DF • Since y is, by 

assumption, not in the subalgebra generated by DF , it must be the 

case that some part of y is a proper part of an atom of the subalge­

bra, say z • Now con s ider the group of automorphisrn.s of (z ) as 

extended to automorphisms of P • The analysis in (i) applies to show 

that for some g in GF , y is moved whil e x
1

, •.• , xn are not. 

The fact that DF is closed has been used implicitly in the proof. 

For if DF were not clos e d, then limit points of DF would not be in 

th e algebra generated by DF although they are pr eserved by GF • 

Closures on Formal Languages 

With the above theorem in mind, we study two closur es on 

formal l anguages. 

The question of when DF = DLGF is of some importance if we 
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feel that the essentially infinite processes, the undefinable semantic 

transformations, described as LGF , should be admitted as the 

completion of a formal language. That is, i f we speak a completely 

formal l anguage as described here, then our "intuition" roughly 

corre sponds to the undefinable transformations in LGF • If this 

seems reasonable, then for DF to equal DLGF means we have a 

l anguage powerful enough to formally define everything we c an 

"intuitively" define beginning with the synonymities and structure 

d escribed by G • 

As we show , a language is "intuitively" complete when every 

limit point of the definable parts is d etermined by a single semantic 

transformation. An example is the set of all integers considered as 

a limit determine d by the successor function. 

Given a formal language < T, K, X> over a model of part theory, 

P , we can always extend the formal language to include those 

semantic transformations which are invariant under every auto-

morphism of P • These semantic transforn1ations include p art 

theoretic union, inters ection, and complement, a selection function 

!;, , and all of the projection functions o~ . The selection function 
1 

s(x , y, z) is equal toy if x = 0 and is equal to z otherwise. The 

projection function o~ projects onto the ith component of a sequence 
1 

n 
of length n • o. (x

1
, •.• , x } = x .• 

1 n 1 

We d efine BF , where F = < T, K, X>, to be the collection of 

semantic transformations derivable from T together with the 

Boolean operations on P, s , and the 0::1. Because of the proj ection 
1 

functions, any part definable by BF from X is context-free definable. 
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If we considered only a finite number of projection fi.inctions , we 

could extend F to another forinal l anguage, F 1 , whose basic 

semantic transformations are those in T together with s , the finite 

collection of projection functions, and the Boolean operations on P • 

In either case the definable parts, DBF or DF 1 , are their own 

subalgebras. 

The second closure on a formal language involves an abstraction 

operator . The abstraction operator takes the conglomerate over 

semantic transformations rather than formulas. We then show that 

the semantic transformations derived from BF by abstraction are in 

LGF • In the follow ing development we write x g for g(x) and y for 

Theorem : If g is an automorphism of a model of part theory, th en 

P [F( z )] g = P [F(z)] z zg 

where F(z) i s a formula with z fr ee . 

Proof: Vd[dny- dgnyg] since g is an automorphism. Thus we 

have 

ygnP [F( z )] 
zg 

-Vd[dgnyg -3:z3:e (F (z) & egnzg & egndg)] & 3:f(ygrrf) 

-..Vd[dny -3:z3:e(F(z) & enz & end)] & 3:f(ynf) 

-ynP [F( z )]. 
z 

- ygnP [F(z)]g z 
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Th e orem: If F (z, y) is a formula of the lower predicate c alculu s 

Vfhose atomic formulas are of the form t
1 

(x ) = t
2 

(x) and t
1 

, t
2 

are 

semantic transformations, then 

P [ F ( z, y) ) = P [ T ( z, y) = 0 J 
z z 

where T(z, y) is a semantic transformation. 

Proof: (i} Any atomic formula t
1 

(x) = t 2 (x ) c an be reduced to 

t
1 

(x} ~ t
2 

(x ) = 0 , where ~ denotes symmetric difference. 

t 
1 

(x) = o v t 2 (x) = o iff t 
1 

(x ) • t 2 (x ) = o • 

(iii) t(x ) f 0 iff P [ t(x) = 0 J = 0 , where z i s not free in t(x ). 
z 

(iv ) 3:y [ t (y , x ) = OJ i ff P [t(y, :X) =OJ f o 
y 

iff P [ P [t(y , x ) = OJ = OJ = 0, where z is not free in 
z y 

t(x ) • Note that here 3: means there is a part. 

T hus any formula i s reducible to T(x) = 0 for the appropriate T 

invol ving the o riginal semantic transformations of the formuJ.a, an d 

t he additional operations ~ , + , • , and P [ J • 
z 

We c an now d efine the abstraction of a semantic transforrn.ati on. 

Definition : If T(y, x) is a semantic transformation, define 

The following l emma shows that if T is in LG for some G , then 
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Lemma: Let g be an automorphism of a model of part theory. If 

T(y, X) g = T(y g, xg) then T (x) g = T (xg) • 
q q 

Proof: Suppose T(y, x) g = T(y g, x g) • By the theorem above we 

have 

T (x) g = p [ T ( y, X) = 
q y 

and by definition, 

OJ g = p [ T(y, x) 
yg 

T (xg) = P [T(y, xg) =OJ • 
q y 

= oJ = P [ T(y g-
1

, x) =OJ. 
y 

-1 - -If we can show that T(g y, x) = 0 -..T(y, g x) = 0 then T (x) g = 
q 

- -1 -
T (xg). Recalling that xg = 0 - x = 0, we have T(y g , x) = 0 iff 

q . 
-1 - -1 - . -

T(y g , x) g = 0 and T(y g , x) g = T(y, x g) , completing the proof. 

The following is an intuitive justification for considering the 

abstraction operation as a linguistic process. If y 
1

, ••• , y n are 

definable parts such that T(y., x) = 0, we know the structure of 
1 

y 
1

, ••. , y n in the context x as determined by the "formula" or 

semantic transforination T(y, x) = 0 • The intuition is that we know 

enough to abstract to that part which is the c:onglomerate of all p a rts, 

y , with the structure determined by T(y, x) = 0 , although all of these 

parts may not be d efin able. 

For example, if we know a f ew men, say John , Jack, and Joe, 

we can abstract to "man", without h a ving m.e t all men. While the 

extension of "man'' is presuma bly the class of all living men, the 

abstr a ction we obta in by conglom e rating i s somewhat closer to t he 
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intension of man, that is, the conglomerate of those entities with the 

structure of any man. Furthermore we can reach the abstraction 

"man" without having enumerated all men. 

It is reasonable to assume that formal languages of any strength 

include quantifiers and the sentential connectives . The sentential 

connectives correspond to the Boolean semantic transformations and 

the quantifiers correspond to the abstra ction operation, as illustrated 

in the following paragraph. 

Suppose , in a given formal language, we h ave a grammatical 

string of words, w
1 

••• wn , corresponding to the sequen ce of 

referents (x
1

, •.• , xn). Further suppose that w
1 

••• wn is a logical 

sentence, either true or false, whos e truth value is determined by a 

semantic transformation T with value 0 just in c ase (x
1

, ... , xn) 

corresponds to a true s entence. T can be thought of as a characteris-

tic function on sequences of length n • We assurne t hat there is 

anoth e r such string wJ. ••• w~ with associated characteristic function 

T1 
• Then 11w 1 ••• wn and wJ. ••• w~" is true just in case 

• 0. ' x' ) = 0 • m 
Cons ider the phrase "There is a 

w 
1 

such that w 
1 

••• w n • " This is a true sentence just in case there 

is a p arty such that T(y, x 2 , ••• , xn) = 0 • Now 

3:y[T(y, x 2 , ••• , xn) =OJ if and only if Py[T(y, x 2 , ... , x
11

) =OJ I 0. 

We may r ewrite the l atter as T (x
2

, ... , x ) f 0 • This shows that 
q n 

quantification on the syntactic l evel corresponds to abstraction on 

th e semantic l evel. 

Th e clo sure BF of a formal l anguage F includes the Boolean 

semantic transformation s. To include the abstraction opera tion, and 
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thus the quantifiers, we define the abstraction closure of a formal 

language. 

Definition: If Fis a formal language, then PF is the smallest class 

including BF and, if T is in PF , then T is in PF • 
q 

Suppose for every limit point, y , of DPF there is a sequence x. 
l 

converging to y and the collection x. is exactly the image of some T 
1 

in PF • If each x. is part of y we have y :::: P Pix(T(x) :::: z)] and if y 
l z 

is part of each x. , y :::: P [VxVw(T(x ) :::: w - z • w :::: z)] • Thus DPF 
l z 

is closed. By the above l emma, the formulas inside P [ J can be 
z 

replaced by semantic transforinations. Under these conditions we 

have DPF :::: DLGF • If some other part theoretic relationship holds 

between the sequence x. and y , then this method of obtaining the 
l 

limit point by abstraction does not appear to work. In any case, if 

there is a limit point of DPF for which no sequence converging to it 

is definable by a finite nurn.ber of semantic transformations, then 

DPF is not clos ed. 

Galois Connection 

In developing th e Ga loi s connection [ 7 J between the groups of 

formal l anguages and the semantic transforination closures of the 

groups, we assuine that the formal l anguages all have the same 

coll ection of referents, X • If we have two formal l anguages 

F
1

:::: <T
1

, K
1

, X> and F
2

:::: <T
2

, K
2

, X>, by the union of the two 

languages , F 
1 

+ F 
2 

, we mean the formal lang uage 

< T 
1 

+ T 
2

, K
1 

+ K 2 , X > . CF d enotes the collection of all derived 
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semantic transformations of F • By the union· of two groups, 

G
1 

+ G
2 

, we mean the smallest group including both G
1 

and G
2 

• 

Since the proofs of the l emmas which establish the Galois connec -

tion are straight-forward, we use the following notation. By TE F we 

mean that T is a basic semantic transformation of F • By g T = T g , 

we mean that the semantic transformation T commutes with the auto-

morphism g in the manner used to define the group of a formal 

language. 

The first seven l emmas develop the Galois connection for 

arbitrary groups of automorphisms and their semantic transforma-

tion closures. 

Lemma 1: G E. GLG 
0 0 

Proof: g E G - \/TE LG ( g T = T g) - g E GLG • 
0 0 0 

Lemma 2: LGLG =LG 
0 0 

Proof: TE LG - VgE GLG (g T = T g ) - TE LGLG 
0 0 0 

TE LGLG VgE GLG (g T = T g) 
0 0 

v g E G ( g T = T g ) - TE LG 
0 0 

Lemma 3: G c G
1 

- LG => LG
1 o ·o 

Proof: Assume G
0 

.5:. G 1 • Then TE LG
1 

- VgE G
1 

(g T = T g) 

-VgEG(gT = Tg)-TELG. 
0 0 
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Proof: gE G
1 

+ G2 -- VTE LG 1 • LG2 (g T = T g) -- gE G(LG
1

• LG2 ) • 

Lemma 5: L(G
1 

+ G2 ) = LG1 • LG2 • 

Proof: TEL(Gl + Gz) - VgEGl + Gz(gT = T g) 

- TE LG
1 

& TE LG2 - TE LG
1

• LG2 

Lemma 6: LG(LG1 • LG2 ) = LG 1 • LG2 • 

Proof: Apply lemma 5, lemma 2, and then lemma 5 again. 

Lemma 7: L(G 1 • G2 ) ~ LG 1 + LG2 • 

Proof: TE LG 1 + LG2 - VgE G 1 • G 2 (g T = T g) - TE L(G 1 • G 2 ) • 

The remaining results complete the Galois connection for groups 

over formal langua ges and their semantic transforma tion closures. 

Lemma 8: GLGF = GF • 

Proof: Since we have l emma 1, it only rema ins to show that 

GLGF ~ GF • Suppose there is a gE GLGF not in GF • Then 

g does not commute with some sema ntic transformation in 

CF , and since CF~ LGF , g does not commute with every 

semantic tra nsformation in GLGF , contradiction. 

Lemma 9: G(LGF 1 + LGF2 ) = GF 1 • GF2 • 

Proof: gE G(LGF l + LGF 2 ) 

- VTE LGF 1(gT = Tg) & VTE LGF2 (gT = Tg} 
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--gE GF
1 

&gE GF
2 

_.. gE GF
1 

• GF
2 

, 

Lemma 10: GF
1 

• GF2 = G(F1 + F 2 ) • 

Proof: gEGF
1 

·GF2 - VTEF
1

(gT = Tg)& VTEF
2

(gT = Tg) 

Lemmall: G(LGF
1

.LGF
2
)cG(CF

1
.cF

2
). 

Proof: gE G(LGF 
1

• LGF 2 ) - VTE LGF 
1

• LGF 
2 

(g T = T g) • 

Since CF c: LGF we have CF l • CF 2 c LGF l • LGF 2 • 

Thus gE G(LGFl. LGF2)- VTE CF
1 

• CF2 (gT = Tg)- gE G(CF
1 

• CF
2

). 

Lemma 12: LGF I• LGF 2 c LG(CF l ·CF 2 ) • 

Proof: Apply lemmas 3 and 2 to the result of l emma 11. 

Proof: By lemma 12 we have 

gE G(CFl. CF2)- VTE LG(CFl. CF2)(gT = Tg) 

- v TE LG F 1 . LG F 2 ( g T = T g) 

- gE G(LGF l • LGF2 ) • 

Together with l emma 11, this proves the theorem, 



G(LGF l • LGF 2 ) 

= G(CF1 • CF2 ) 

GF1 

GF
1

•GF2 
=G(F1 +F2 ) 
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Diagram of the 

G a loi s Connection 

Between 

Formal L anguages 

and Thei1· 

LGF • LGF 1 2 
= LG(CF l ·CF 2 ) 

LGF 2 

L(GF • GF ) 1 2 . 

Semantic Transforma tion Closure. 
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V. SET THEORY 

In Chapter II we mentioned that the universe of discourse of a 

formal language can always be considered a model of set theory an d 

in Chapter IV we considered the universe of discourse a model of 

part theory. Of course we can always model part theory in set 

theory to obtain a set-theoretical universe of discourse for a formal 

language. Can we, for a given formal l anguage, find a submode! of 

an appropriate mode l of p art theory which is both a set theory and 

the universe of discourse of the l anguage ? This question is not 

trivia l since part theory is weaker than set theory and since we are 

looking for a set theory which can serve as the universe of discourse 

of a given l angu age. In this chapter we show that a set theory c an be 

imbedded in appropriate models of part theory. This imbedding is 

not arbitrary, but the con sequence of certain strong formal 

languages. Indeed one may say that the central result of this thesis 

is the fact tha t strong formal l anguages determine their own set 

theory, which is structurally determined by the formal l anguage and 

intimately connec ted with the part-whole relation . This is very 

differ ent from the r a ther ad hoc relationship between an '. 1outside" set 

theory and a rn.odel of part theory. 

Vve assume we h ave a semantic tr a nsforn1ation s which satisfies 

the following two prope rti es , where we write sx for s (x): 

(i) Vx3:z Vy (x /: y - z rr sx - sy ) , 
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-(ii) Vx( sx rr 1) 

The first property guarantees that s is on e -to-one since there i s a 

part which distinguishes sx from sy for all y • This semantic trans -

formation is to be thought of as the singleton function of set theory, 

sx = [x}. s need only be defined on those p arts which are "sets", but 

we can also assume that s is defined on all of the model of part 

theory. If s is not everywhere defined, then property (i ) can be 

rewritten to hold only for those x such that sx is d efine d. We c an 

think of s as a predicate true of (x, y) iff sx = y • 

In order to develop the set theory, we require that the rn.odel of 

part theory, P , have the following property: 

If F(z) is any formula with z free over the predi-

cates rr and s , then P [F(z)] exists in P. 
z 

This is considerably stronger than the original axiom schema of 

part theory, although maintaining its flavor. In particular, the 

countable atomless Boolean algebra does not have the above property 

for any s • 

Now we can say that a part xis a set if it satisfies the following 

equation: 

x = P [z rr x & 3: y ( s y = z) J . z . 

This equation will b e denoted by S et (x) in the sequel. The equation 

guarantee s that xis a set just in case it is the least upper bound of 

all the singl e tons which are part of x. We define set membership as 

follows: 

x E: y - S et (y) & sx rr y • 
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We can now prove that the singleton p arts are sets. 

Lemma: Vx[Set(sx)] 

Proof: By property (ii) of s together with theorems 13 and 3 of part 

theory, sx 'TT P [z 'TT sx & 3:y(sy = z)] • It remains to show that 
z 

P [z 'TT sx & 3:y(sy = z)] 'TT sx. Suppose there is some 
z 

w 'TT P [z Tr sx & 3:y(sy = z) J such that w is disjoint from sx. But 
z 

since every p art of w must h a ve all of its parts in common with the 

various sy in the conglomerate, there is at l east one y, y {: x , such 

that sy 'TT P [z 'TT sx & 3:y(sy = z) J • However , every part of sy must 
z 

have a part in common with sx in orde r that sy be p a rt of 

P [z 'TT sx & 3:y(sy = z) J , so sy cannot satisfy property (i), and we 
z 

have obtained a contradiction. Hence 

sx=P[z'!Tsx &3:y(sy=z)]. 
z 

The following lemma shows that singleton sets have no sets as 

proper parts. 

Lemma : Vx[3:y(x 'TT sy & x {: sy) - -1 S e t(x ) J 

Proof: Assume 3:y(x 'TT sy & x {: sy) • We must show that 

x {: P [z 'TT x & 3:y(sy = z) J • First we note that since x 'TT sy , xis 
z 

not the zero of the part theory. Now suppose x is a set. Then every 

sing l eton set which is a part of xis a proper part of sy , contradict-

ing property (i) of s . 

We use the Zermelo-Fraenkel axiom system for set theory. We 

will show that those parts of P for which Set(x) holds satisfy the 

Zermelo-Fra enk e l axioms , except for regularity and choice. At that 
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point two alternatives are open to us. We can assume that the s 

function satisfies the axiom of regularity or we can develop a 

constructive theory of sets, in which the axiom of regularity can be 

proved. Not every part satisfying Set(x) is a constructive set, 

however. This latter approach has the advantage that Godel [ 12, 13 J 

has proved the axiom of choice for the constructive sets. Since 

Cohen [6 J has given a clear exposition of the constructive method for 

Zermelo-Fraenkel set theory, our presentation is formal, completing 

the details of Cohen's presentation. 

We can write a predicate of set theory which is true just in case 

its argument is constructive. With the aid of the imbedding to be 

presented, this predicate can also be written for part theory, and 

those parts which satisfy this predicate are the s e ts satisfying all the 

axioms of set theory, including regularity and choice. 

We turn to the prooof of the axioms of set theory within part 

theory. We recall that 

x E y - Set(y) & sx rr y • 

With the aid of this definition, we translate the axioms of set theory 

into statements of part theory for the proofs to follow. The order 

and presentation of the axioms of set theory follows Cohen [6]. 

1. Exten sionality 

VxVy [Set(x) & Set(y) - ( Vz[sz rr x - sz rr y] - x = y)] 

Proof: Suppose x and y are sets and that every singleton part of x is 

a part of y. We will show tha t Vz(z rr x - z rr y) • Cons ider any 
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z if x. Then since xis a set, we have z if P [z TI x & 3:w(sw = z)] 
z 

that is, Vd[d TI z -- 3:a3:e(a TI x & 3:w(sw = a) & e TI a & e TI d)] • 

Since every singleton part of x is a part of y we have z TI y • The 

same proof in th e othe r direction shows that x = y • 

2. Null Set 

3:x[Set (x ) & Vy( 1 sy if x)] 

Proof: 0 is a set which has no parts. Thus the zero of p art theory 

can be used as the null s et. 

3. Unordered Pairs 

VxVy[Set(x) & Set(y) -- 3:z(Set(z) & Vw[sw TI z - w = x Vw = y])] 

Proof: Given sets x an d y , consider z = sx + sy , where + is part 

theoretic union. By property (i) of s , th e only singleton sets which 

are part of z are sx and sy • Also, z is a set since it is the l east 

upper bound of sx and sy • 

4. Union 

vx[Set(x) -> 3:y(Set(y) & Vz[sz if y -- 3:t(Set(t) & sz TI t & st rrx)])] 

Proof: Consider y = Pt [st if x & Set(t) J . Suppose y is not a set. 

Then there is a c TI y such that c i s disjoint from each singleton set 

in y • Call this part c , But every part, d , of c must have a part 
0 0 

in common with some td such that std TI x & Set(td) • So c shares a 
0 

p art with some singleton part oft , hence of y , This contradiction 

shows that y is a set, Now, if we have sorne t and z such that 

S et (t) & sz if t & st TI x , we have sz TI y • For the reverse implica-
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tion let sz be some singleton part of y for which it is not the case 

that 3:t(Set(t) & sz 1T t & st 1T x) • We will use property (i) of s to 

derive a contradiction. By property (i) there is a part of sz , say w , 

which has no part in common with any other singleton set. But every 

part d of w must have a part in common with some td such that 

std 1T x & Set(td). Hence w shares a part with some singleton part of 

some t , contradiction. Thus if sz 1T y then 

3."t( set(t) & sz 1T t & st 1T x) , completing the proof of the union axiom. 

Note that Set(t) in Pt[st 1T x & Set(t)] c an be r ewritten as 

[Vd[d 1T t - 3:a3:e(F(a) & err a & e 1T d)] & t rr 1] 

&[(Vd[d rr c - 3:a3:e(F(a) & err a & err d)] & c rr 1) - c rr t] 

where 

F(a) - a 1T t & 3."w(sw = a) 

which shows that Set(t) is a formula over rr and s alone, and so we 

have guaranteed the existence of Pt [st rr x & Set(t) J • 

5. Infinity 

3."x[Set(x) & sO rr x &Vy(sy 1T x - s(y + sy) rr x)] 

Proof: Let st (x ) be the following formula of part theory: 

sO rr x &Vy (sy rr x - s(y + sy) 1T x ). 

L et w = P [st (z ) & Vx (st (x) - z rr x ) J . Clearly w satisfies st and so it 
z 

s atisfies the axiom of infinity i f it is a set. If w is not a set then 

there is some c 1T w such that c is disjoint fr01n every singleton set in 

w. In this case w' = w - c satisfies st , and since w satisfies st we 

h ave w 'IT w - c , showing tha t c = 0 , contradicting c 'IT w . So we h ave 
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Set(w) • 

6 • Replacement 
n 

To state the axiom of replacement, we enumerate the formu-

las of part theory over rr and s with at least two free variables, 

An (x, y; t 1 , ••• , \:) where k depends on n • We may think of the 

t
1

, ... , tk as parameters of the formula An • The axiom of replace­

ment then reads 

vt
1 

... \:[Vx(Set(x)-<3:!y[Set(y) &An(x,y;t 1 , ••• , \:)])- Vz3:wB(z,w)] 

where 

B (z, w) - [Set(z) - Set(w) & Vr(sr rr w -

3:q[Set(q) & sq rr z & An(q, r; t
1

, ••• , \:)])] • 

Fixing t
1

, ••• , \: , if An (x, y) determines y uniquely for each set 

x, y = f(x) , then the range off, when f is restricted to the set z , is 

a set, 

Proof: Suppose it is the case that Vx(Set(x) - 3:! y[Set(y) & A (x, y)]) 
n 

where we assume t
1

, ,,, , \:are fixed and so have dropped them from 

our formal presentation, To show that Vz 3:w B(z, w) , let z be any 

part satisfying Set (z) , D efine 

w = P [3:b(sb = a & 3:q[Set(q) & sq rr z & A (q, b)]).] , 
a n 

w is a set sinc e it is a conglomerate of singletons, Furthermore we 

have 

Vr(s r rr w - 3:q[Set(q) & sq rr z & A (q, r)]) 
n 
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since if sr 'IT w then by the definition of w we have 

3:q[Set(q} & sq 'IT z & A (q, r}] while if we are given an r such that 
n 

3:q[Set(q} & sq 'IT z & A (q, r)] then sr 'IT w, again by the definition of 
n 

w • Hence the aximn of replacement holds. 

7. Power Set 

We define the subset relation by 

zs::.x-Vw(SW'ITZ-SW'ITX}. 

Then the statement of the power set axiom we prove here is 

Vx3:yVz[sz'!Ty-zcx]. 

This version of the power set axiom is much stronger than is requir-

ed to show that the power set of every set exists. For we have here 

that the power parts of every part, set or not, are parts. As the 

proof indicates, the smallest power part is a set so that the power 

set axiom holds when it is restricted to those parts satisfying Set(x) 

Proof: Given a part x, consider y ~ P [3:b(sb =a & b c x}] • Since 
a 

y is a conglomerate of singletons, we have Set(y) , whether x is a set 

or not. Clearly if z is a subset of x then sz 'IT y • Now consider any 

~inglE;ton which is a part of y • Since the singletons are unique func-

tions of their arguments by property (i) , any singleton part of y must 

satisfy the formula d e fining y • Hence y is exactly the power set of 

x. 

8. Axiom of Regularity 

Vx[Set(x} & x-/: 0 - 3:y(Set(y) & sy rr x & Vz [sz 'IT x - 1 sz 'IT y ])] 

P a rts satisfying t h is axiom a re 's a id to b e well-founded. As w a s 
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remarked earlier, the singleton function s has not been restricted 

enough to prove the axiom of regularity. However, with the seven 

axioms we have proved, it is possible to consider just the construc­

tive sets, for which the axiom of regularity can be proved. 

Constructive Set Theory 

In order to describe the constructive set theory, we define the 

ordinals of the model of set theory. 

Definition: A part x is transitive if 

sz 1T y & sy 1T x - sz rr x • 

Definition: A part xis well-ordered by E if E orders x and if y rr x 

and y is a set then 3:z[zE y & Vw(w E y - 1 w E z)], where 

a E b - Set(b) & sa rr b • 

Definition: A part a is an ordinal if a is a set well-ordered by E and 

a is transitive. 

Next we will define an ordinal sequence of sets which contain all 

the constructible sets. We will require a method which given a set, 

X , obtains the set, X' , of all sets constructible from X • 

Definition: Let X be a set. We define the set X' by forming the union 

of X and the set of all sets y defined by a formula restricted to X • 

That is, conside r any formula ove r rr and s with at least on e free 

variable, 

A(z; t 1, ••• , ~) • 
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Then let AX(z; t
1

, ••• , 1'_) be the formula A with all bound variables 

restrict e d to sets in X. Let x
1

, ••• , ~be fixed sets in X, and 

define 

Now let Y = Psy [ if A{z; t 1, ••• , 1k) is a formula over TI and s then 

y = Psz[sz TIX & AX(z; x 1, ••• , ~)]], and let X' = X+Y. 

This d efinition still requires a complete formaliz a tion. This is 

done by d e finin g a single formula B(X, z) which is satisfied just in 

case z = X' • We return to this after completing the presentation of 

constructive set theory. 

Definition: If QI is an ordina l l arge r than 0 , d efine M = ( L- M )' , 
QI 13<QI 13 

where the union is set theoretic. I; Ml3 is guaranteed to exist by the 
13 <QI 

replacement and union axioms. D efine M = 0 • 
0 

Definition : A s et x is con s tructibl e if there exists an ordinal, QI , 

such that x E M 
QI 

It only r emains to show that the Zermelo-Fraenkel axioms hold 

for the constructible sets. Since thi s is done in Cohen [6, p. 89 ], 

we do not repeat the proofs here. The only axiom we must inde pend-

ently check is t he axiom of infinity since Cohen 's proof appears to 

requir e the axiom of r egul arity. Sinc e in our proof of the axiom of 

infinity we demonstrated the set of all integers, w , we only need to 

note that w i s an ordinal and that w E Mw+ 
1 

, to show that w is 

constructible. 

We turn to formalizing the relation Y = X' . For each r ~ 0 l et 
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X denote the set of all sets S of sequences of length n, 
r 

(x
1

, •.• , xn) , for which there is a formula 

A(x
1

, ••• , xn; t 1 , ••• , tm) with exactly r quantifiers and yi E X such 

that 

Then X' is the set of all sequences of length 1 which are in any X 
r 

We show that the relation Y = X is expressible in part theory 
. r 

with s • The relation Y = X is expressed by d efining the sets S 
0 

which arise from the quantifier-free formulas by induction on the 

l ength of the formula. The following formulas are used in defining 

the relation Y = X The notation here is that <x, y> is the ordered 
0 

pair composed of x and y and <x, y, z> = <x, <y , z>> • 

H 1 (X, Y) - Vx(x E Y -

3:y[y E Y &Vz(z E y-3:u3:v(z = <u, v> &v Ex &u EX)) 

&VuVv3:z(u EX & v Ex- z = <u, v> & z E y)]) 

H
2 

(X, Y) - Vx(x E Y - Vt(t E X -

3:y[y E Y &Vz 3:u3:v(z E y- u Et &v Ex & z = <u, v>) 

&VuVv3:z(u Et &v Ex- z = <u, v> &z E y)])) 

H3( X , Y) - Vx(x E y - ·vt (t E x -

3:y [y E Y & V z 3:u 3:v(z E y - t E u & u E X & v E x & z = <u, v> ) 

&VuVv3:z(t Eu &u E X&v Ex- z = <u, v> &z E y)])) 
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H4 (X, Y) - Vx(x E Y -

3:y[y E y & Vz3:u3:v3:w(z Ey - u EV & u Ex & v Ex & w EX & z=<u, v, w>) 

& Vu Vv Vw 3:z(u Ev & u EX & v EX & w Ex - z=<u, v, w> & z Ey) ]} 

conjunction: 

Jl(X, Y) -vxVy(x E y &y E y - X•y E Y) 

negation: 

J z ( X, Y} - V x Vy ( x E Y & y E Y -+- x - y E Y) 

rearrangement: 

11 (X, Y) - Vx(x E Y & Vz 3:u3:v(z E x - z = <u, v> & u € X & vE X) -

3:y[y E Y & Vz3:u3:v(z E y - z = <v, u> & <u, v> E x) 

& Vu Vv 3:z(<u, v> E x - z = <v, u> & z E y)]) 

I2 (X, Y) - Vx(x E Y & Vz3:u3:v3:w(z Ex - z = <u, v, w> & uEX & vEX)-

3:y[y E Y & Vz3:u3:v3:w(z E y - z = <v, u, w> & <u, v, w> E x) 

& Vu Vv Vw 3:z(<u, v, w> E x -z = <v, u, w> & z E y)]) 

terminal elements: 

G 1 (X, Y) - XE Y 

G 3 (X , Y} - Vt(t E X - 3:y[y E Y & Vz (z E y - t E z & z E X)]) 

G4 (X, Y} - Vx(xEX &Vz3:u3:v(zE x-- z=<u,v> &uEX &vEX} --

3:y-[y E Y & Vz3:u3:v(z E y-u Ev &z Ex &z = <u, v>)]} 
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We now define the formula Q (X, Y) which is true if and only if 
0 

Y .2 X where X denotes the set of all s ets S of n-tuples 
0 0 

<x
1

, ... , xn> for which there is a quantifier-free formula 

••• J t ) and there are y. EX such that 
m i 

Q (X, 
0 

Y) - .. G 1 (X, Y) & G
2

(X, Y) & G
3

(X, Y) & G
4

(X, Y) 

& H
1 

(X, Y) & H
2

(X, Y) & H
3

(X, Y) & H
4

(X, Y) 

& 1
1 

(X, Y) & 1
2

(X, Y) 

& J 1 (X, Y)& J2 (X, Y) . 

The following theorem shows that there i s a formula of part 

theory over the predicates 1T ands which expresses the relation 

Y=X 
0 

Theorem: X = P [Q (X, z) & Vx(Q (X, x ) - z 1T x ) J . 
0 z 0 0 

Proof: By induction o n the length of the formulas. 

1. Atomic formulas: 

i) xi E yj . This case is handled by G 2 and H 2 , together 

H
1 

which is required in "build up' 1 to the i + -1 ~ pla ce from the nth 

place and then from the i - 1 ~ pla c e to th e first pla ce, G
1 

is requir-

ed to start constructing the dir e ct product. 

ii) y. E x .• This case is handled by G3 and H
3

. 
J l 

iii) x. EX., This cas e is handl e d by G
4 

and H
4 

togethe r 
l J 

with 1
1 

and 1
2 

to allow rearrangement of the n-tuples so that we can 

have i different from j + 1 • 
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iv) y. E y .• Trivial since this formula is either true or 
1 ~ 

false, so adds no new n-tuples, 

2. Induction: 

i) If we have 

and 

• 0 0 ' 
x > 

n I A(xl' ••• ' x· 
n' 

x·y n' l' •••• 

then 

then 

SA•SB = [<x1, ••• , xn> I A( ••• ) &B ( ••• )} 

This is the purpose of J 
1 

• 

ii) If we have 

... ' x > n A( ••• )} 

This is the purpose of J 2 • Since every element of an n-tuple is 

restricted to X , if we remove from the direct product, X x • •• x X , ----------­n - times 
then-tuples corresponding to A , we have the set of 

n-tupl es corresponding to 1 A 

It remains to show tha t 

P[Q(X, z}&Vx(Q(X, x)-znx)]CX. 
z 0 0 0 

Clearly every element of P [ ••. J is a set of n-tupl es , each n-tupl e of 
z 
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which is over X. Since P [ •.• J is the smallest set satisfying 
z 

Q {X , Y) , every element of P [ ••• J has been generated by on e of 
0 z 

the G, H, I, J ''processes" defined above, and each process corre-

sponds to a "construction" of the lower predicate calculus over E • 

Hence each element of P [ ••• J corresponds to some quantifier-free 
z 

formula restricted to X. 

We now define Xr+l in terms of Xr This definition corresponds 

to adding one quantifier, 3: or V, to the formulas defining the 

n-tuples in X , where the range of the quantifier is restricted to X • 
r 

- 3:t [Set(t) & (tE X - Vz [z Ex - 3:w(wE X & <w, z> E t) ]) J 
r 

V 3:t [Set(t) & (tE X 
r 

Vz[zEx- Vw(wEX- <w,z>E t)J)J. 

Finally, we can define X 1 in terms of X formally by: 

X 1 = X + P [Set(z) & (x Ez - xEX) & 3:r(rEUJ & zEX )] • 
sz r 

This completes our imbedding of set theory in a model of part 

theory. 

Set Theories Unde r~ Forma l Language 

W _e have developed some of the consequences of assuming that a 

formal languag e has a model of p a rt theory as its universe of 

discourse. In particular , a forma l language is chara cterized, albeit 

impe rfectly, by the group of automorphisms which leave the language 

invariant. We also h ave shown that if the model of part th eory has a 

strong property then we can imbed a set theory in the collection of 

parts. In this section we discuss the r e l ationship between the group 
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of a formal language and models of set theory. Assuming that the 

universe of discourse is strong enough to support a set theory, we 

would like to show that we can always find a set theory within the 

parts such that the formal language c an be construed to have the 

collection of sets as its universe of discourse. That is, for all parts 

x definable by the formal language, x satisfies Set(x} , given some 

fixed singleton function. 

The simplest case is when the formal languag e F has such a 

singleton function as one of its basic semantic transformations. 

Then GF fixes every part x which satisfies Set(x) and which is well­

founded, since a model of set theory has no proper automorphisms. 

It is worth noting that GF itself is larger than the identity automorph­

ism since there are prope r parts of each singleton which can be 

permuted among themselves without affecting the sets. 

We digre ss to reconside r what property a model of part theory 

must possess to obtain a set theory. The existence of the 

conglomerate of every formula over 1T an d s is certainly stronger 

than is requir e d, since we ne e d only use 1T in orde r to define E • 

With the help of property (ii) of s we can show that sx 1T y if and only 

if sx. y = sx • R ecalling the r esults of the previous chapter on the 

relationship between formulas and abstraction, we se e that it is 

sufficient, for the imbedding of a set theory, to insist upon the 

existence of the abstraction of every semantic transformation in a 

forma l l anguage with a singleton function and the Boolean functions . 

Lernma : sx 1T y - S X• y = sx 
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Proof: By axiom 2 of part theory, sx 1T y - Vz(z 1T sx - z 1T y) So 

using theorem 19, Vz(z 1T SX _.. Z 1T SX•y). By theorem 28, 

Vz(z 1T sx • y - z 1T sx) • Combining the last two formulas and using 

axiom 1 we have sx 1T y - sx. y = sx. Now assume sx. y = sx. By 

a xiom 1, Vz(z 1T s x - z 1T s x • y) • Combining these with property 

(ii) of s and applying axiom 2 we have s x 1T y • 

To return to the discussion of set theories under formal 

languages, suppose F is such that GF has an i nfini te number of 

fixed points which form an atomic subalgebra of the algebra of p arts. 

Then since the Skolem-Lowenheim theorem guarantees that there is 

a countable model of set theory, LGF contains a singleton function 

d efined on the fixed points of GF and the singleton function defines a 

set theory. 

Even i f the fixed points of GF do not form an infinite atomic 

suba l gebra, we can find a set theory under F • There is a subgroup, 

N , of GF which fixes every part definable by F • If F defines an 

infinite number of parts which generate an atomic subalgebra then 

LN contains a singleton function. Further, every part definable by 

F satisfies Set (x ) • N is a normal subgroup_ of GF , as we show 

below. The factor group GF /N can be thought of as the automorph­

isms of the sets which leave F inva riant. If GF /N is larger than the 

identity then the singleton function i s not invariant unde r GF /N and F 

i s not strong enough to define a set theory. For example, suppose 

the only basic semantic transformation in Fis List(x) = [ [y} \ y c x} 

where c i s defin e d by a particular singleton function in LN • Then 

GF /N conta ins, among others, the automorphism which permutes 
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[k2 }k and [k3 }k for all k ::::: 1 where [ 1x }1 = [x} and 

rk+lx}k+l = [k[x} }k. 

The subalgebra generated by the definable parts may contain 

non-atomic parts. The only way to include the non-atomic parts in 

the set theory is to widen the definition of the predicate "Set" to 

include individuals and consider the non-atomic parts to be individuals 

of the set theory. 

If the formla language F defines only a finite number of p a rts we 

can still find a set theory under F • For each atom x of the algebra 

of definable parts we can choose an infinite number of proper parts of 

x which form an atomic Boolean algebra when relativized to x • Then 

GF has a normal subgroup, N , which fixes the chosen algebras and 

LN has a set theory defining singleton function. In this set theory 

each part definable by F is an infinite set. This is not pleasing to the 

intuition , for one feels that if ther e are only a finite number of 

d efinable p a rts then the formal language ought to be discus sing the 

interr e lations among a few finite sets, rathe r than infinite sets. If 

the part theo retic union, y , of the d e finabl e parts does not reach the 

univers a l part, 1 , then the intuition c an be s atisfied by developing 

the set theory within the complement of y, using the algebra of the 

definable parts as some of the finite sets. 

We turn now to the proof that the subgroup N of GF is normal in 

GF, for any formal l anguage F whose definable parts generate an 

atomic subalgebra. 

Given a group G , which is a group over a formal languag e, and 

the coll e ction , X , of p a rts contextu a lly d e finable by the formal 
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language, we obta in the collection of G-definable parts by taking the 

set-theoretic union of the orbits under G of every x in X • That is, 

if xis definable, then g(x) is G-definable for every g in G . Let B 

be the sub-Boolean algebra (submode! of part theory) generated by 

the G-definable parts. 

Now consider the largest subgroup, N , of G which leaves every. 

part in B fixed. To show that N is normal in G , we prove some 

lemmas. 

Lemma: If xis in B , then for all g in G , g(x) is in B • 

Proof: Let x be in the subalgebra B . Then x is the Boolean union, 

intersection or complement of G-definabl e parts. Hence g(x) is also 

a Boolean combination of G-definable parts. Thus g(x) is in B. 

Lemma: If x is an atom of B , then for all g in G , g(x) is an atom of 

B. 

Proof: Suppose x is an atom of B and for some g in G , g(x) is not an 

atom of B. Sinc e g(x) is in B , g(x) possesses a prope r part which 

is in B , say z • But then g -l (z) is a proper p a rt of x which is i n B , 

contradiction. 

Notation: G restricte d to x , GI x , is the collection of all auto­

morphisms in G with the dom ain of each automorphism restricte d to 

th e parts of x . 

Lemma: If x is an atom of B , then 

N! x= Glx = A(x) 

where A (x ) is the full g r oup of automorphisms of the p r in cipa l ideal 
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generated by x • 

Proof: Since G is a group over a formal language, it is the largest 

group satisfying the commuting property on the definable parts. 

Since no proper part of x is definable, G \ x is A(x} • N \ x = G \x 

since N is, by definition, the largest subgroup of G leaving B fixed. 

In the following lemma and theorem the automorphisms act on the 

right, so that xg is the value of g when applied to x • 

Lemma: If x is an atom of B , then 

[ -1 
Vg in G Vn in N 3:m in N Vzrrx zgng = xm] • 

Proof: Consider any gin G, n in N, and suppose xg = y. We can 

consider any g in G taking x toy , when restricted to x , as the 

product of two maps. The first is a "tran s l ation" d epending only on 

x and y , i , and the second some p in A(y} • That is, g \ x = i p • ry g ryg 

Thus 

-1 gng 1 
xy 

-1 

where n is considered to be restricted to y , and g is considered to 

-1 be restricted to x • Now p n p is an element of A(y} , s a y m' , and 
g g 

i m 1 i -l is an element of A(x) , say m • So we h ave 
xy ry 

g n g-l Ix= m Ix which proves th e l emma. 

Theorem: If B is atomic then N is normal in G . 

Proof : Since all automorphi sn~s preserve l east upper bounds we have 

x = I: x if and only if xg = I: x g for every x in the model and every g 
a a 

in G • For every x in the model, we c an write x = ~ x where each 
a 
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x is a part of an atom of B 
ct 

If we consider N to be restricted to 

the parts of the atoms, a 
ct 

of B , then N is the direct product 

since N fixes a and is unrestricted on the proper parts of a • Now 
ct ct 

consider n in N where N is thought of as acting on the full model. 

Then xn 

x n TT a 
ct ct 

= L x n where, if a is the atom of B 
ct ct 

such that x rra , then 
ct ct 

-1 
For any g in G we h ave xg n g 

-1 = L x g n g and by the 
ct 

previous lemma, for each ct there is an m in A(a } such that 
ct ct 

xgng-l = LX m • Since N is the direct product of the full auto­
ct ct 

morphism groups A(a } , there is an m in N such that m I a = m 
ct ct ct 

-1 
hence g n g = m in N • 
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VI. CONCLUSIONS AND FURTHER RESEARCH 

Formal Language Definitions 

We defined, following Thompson [ 32 ], a general notion of formal 

language which includes the current notions of syntax, where we 

considered the syntactic elements of the language to arise from a 

functiona lly oriented sernantic system. The syntax of a formal 

language is in general a Post production system and we mentioned 

that, in this formulation, c e rtain strings may be syntactically 

correct but not meaningful because of semantic con siderations. The 

sern.antic considerations have been formalized by allowing a semantic 

transformation to be defined on a subdirect product of semantic 

categories , that is, only on tho se elements of a dir ect product of 

semantic category satisfying certain constraints. If these 

constraints can be d escribe d using syntactic notions alone, then they 

may be considered structural constraints and the notions of transfor­

:r;natio!lal grammar [ 4, 5 J may apply. However, some further study 

will be required before the relationship between form.al languages 

and transformational grammars is completely understood. 

Groups 

By considering a formal l anguage to have a model of part theory 

as its universe of discourse we can consider the formal language to 

be characterized by a group of automorphisms of the model. Since 
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the groups are partially ordered by inclus ion, we can preorder the 

forma l languages by defining F 
1 

~ F 
2 

whenever GF 
1 
~ GF 

2 
• The 

relation on formal l angu ages is a preordering since two formal 

languages may be associated with the same group as the following 

example illustrates. 

We d efine two formal l anguages over the same model of set 

theory which we may consider as imbedded in a given model of p art 

theory. F
1 

has as it s sole semantic transformation a cha racteristic 

function defined on sets. Char{x) = [O} if x -/:. 0 and Char {O) = 0 • 

The sole semantic category of F 
1 

is the class of all sets and the 

class of referents of F 
1 

is any finit e coll ection of sets which includes 

0 and [O} • F 2 has as its sole semantic transformation a slightly 

differ ent characteristic function on sets. Empty{x ) = [O} if 0 f. x 

and Empty{x) = 0 if 0 E x , where E is the membership r e lation for 

the model of set theory. GF 
1 

is gene r ated by all permutations of the 

singleton sets which l eave [O} fixed, since a ll automorphisms of a 

Boolean algebra fix 0 and if x-/:. 0 , then xg -/:. 0 and Char{xg) = [O} 

which implies g{ [O}) = [O} • Since every set c an be expressed as a 

union of singletons, we see that GF 
1 

is as stated. The semantic 

transformation Empty has the special property that [O} i s in its 

rang e and 0 E x if and only i f [O} is a subset of x. This implies 

that any automorphism in GF 
2 

must leave [ 0} fixed, and if g is any 

auromorphism with this property, then 0 E x iff 0 E xg so we have 

Empty{xg) = Empty(x) • Thus GF l = GF 2 • 

A possible method of avoiding this difficulty is to consider the 

s emigroup of endomorphisrns which l eave a given language invariant. 
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The lemmas establishing the nature of the Galois conn e ction between 

GF and LGF also hold if endomorphisms are considered rather tha n 

automorphisms, so that these results are available, but further study 

is required to determine if each formal language uniquely determines 

a semigroup of endomorphisms. 

The Galois connection between GF and LGF suggests that each 

p air of languages possesses an upper bound and a lower bound 

l anguage. By an upper bound language for F 
1 

and F 
2 

we mean a 

l anguage which c a n express anything expressible in F 
1 

and in F 
2 

• 

F 
1 

+ F 
2 

, as defined in the section on the Galois connection, is such 

an upper bound language , although not necessarily a l ea st upper 

bound. By a lower bound language for F 
1 

and F 2 we rn.ean a l a nguage 

in which the only entities d efinable are also d efinable in F 
1 

and in F 2 • 

If it is possible to find a finite collection of b asic semantic transfor­

mations, T , such that CT c CF 
1 

• CF 
2 

, then from T we c an form a 

lower bound l anguage . If CT = CF 
1 

• CF 2 then from T we can form a 

"greatest " lowe r bound l angu a ge. T may not be unique, however, 

which implies that there is not, in general, a unique greatest lower 

bound. As an example, if GF 
1

•CF2 is the collection of all Boolean 

functions , then as b as ic semantic transformations for T we can take 

inte rsection an d complement, or th e Boolean ring sum and product. 

Thes e cons iderations suggest studying the conditions under which 

t w o formal l anguages have reasonably unique l east upper bound and 

greate st lower bound l anguages . Further , t he G a loi s conne ction 

b ecomes cons iderabl y more difficult to analyze if F 
1 

and F 
2 

do not 

po ssess the san1e coll ection of refer ents . This analysis will be 
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carried out and it may indicate the conditions under which least 

upper bound and greatest lower bound languages exist. One result 

that we do have that will be useful in studying least upper bound 

languages is that every pair of formal languages has a common set 

theory underlying them. The sets are the elements of the subalgebra 

generated by the parts definable in either language. 

Another problem suggested by the many-one correspondence 

between formal languages and their groups, and also by the nature of 

the Galois connection, is determining the class of formal languages 

which are associated with a given group of automorphisms . At 

present, no work has been done on this problem. 

Part Theory, S e t Theory 

The relatively weak ontology of assuming the universe to be part 

theoretic has enabled us to consider automorphisms of the model of 

part theory as the changes t aking place in the world, and character­

ize the structure which the formal l anguage discusses as a group of 

autom orphisms , If the model of part theory is strong enough, for 

example a complete Boolean algebra, then a model of set theory is 

imbeddable in the mode l of part theory. At the same time, we have 

avoided assuming that th.e world is atomistic and in fact have implic­

itly assumed throughout Chapte rs IV and V that it is atomless, The 

fact that we c an imbe d a set theory implies that any particular 

atomic view of the universe c an be accommoda t e d, There r emains 

the question, however , of the relationship between a non-atomic 

suba l gebra of parts defined by a formal l anguage and a set theory 
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imbedded in the model of part theory. If there is room in the model 

for both the non-atomic subalgebra of parts and a s e t theory, then, 

letting N be the group of the set theory, LN will con tain a function, 

f , from the non-atomic definable parts to the s ets such that if 

x 1T y then f(x) c f(y). Then in LN we should be able to discuss these 

parts as if they were l arge s ets . The exact situation here remains 

unclear. 

The view of a set theory as a particular collection of parts may 

have value in the theory of sets itself. Cohen, in discus sing models 

of set theory in which the axiom of choice fails, points out that a 

standa rd model of set theory h as no proper automorphisms, but that 

"the basic idea of h aving some kind of symmetry remains . " 

[ 6, p. 136 ]. The collection of parts fixed by a group N can, if it 

is large enough, be thought of as a set theory determined by a 

particular singleton function in LN • There are many such singleton 

functions in LN and it may be possible to cons ider Cohen 's "forcing" 

as a method of s electing among these functions. 

Another aspect of the relationship between a formal language and 

a set theory beneath it we wish to determine is when it is possible to 

find a set theory such that every basic semantic transformation of the 

formal language i s recursively definable in terms of the operations of 

the set theory, as discussed in Chapter II. This result should be 

suggestiv e of the adequacy of a model of part theory as the sole 

universe of discourse for formal l anguages. When it is pos sible to 

find a set theory for which th e formal language is recursively 

definable, any objections fro n1 the constructivists are met since the 
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semantic transformations are effectively computable in terms of 

intuitively satisfying primitive operations. 

Sentences 

In Chapter II we indicated that the position of sentences as a 

subclass of the phrases of a language is unclear. We can a priori 

distinguish sentences by syntactic means, but this leaves open the 

question of why those particular phrases are distinguished from the 

remaining ones. It may be possible to consider sentences as distin­

guished by an algebraic property based on the universe of discourse. 

For example, it may be that certain systems of endomorphisms 

leave invariant the structure which the intuition says is associated 

with sentences but not with phrases of the language. Here the first 

step is to state the problem more clearly than we have been able to 

do. 

Transformations of Qualities 

We return to the problem posed by the red pencil burning into 

black soot. Suppose we have a formal language in which "The red 

pencil burns into black soot." is a sentence; corresponding to some 

derived semantic transformation. In this l anguage "the red pencil" 

corresponds to some p a rt x and "black soot" to some part y • The 

change describe d in the formal language by "the red pencil burns into 

black soot. '' is an automorphism, g , such that g(x) = y • This auto­

morphism is not in the group of the formal language since the red 

pencil and the black soot, x and y , are distingui shabl e. If x and y 
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are atoms of the subalgebra of definable parts, then there is no 

"red" part of x or "black" part of y as far as this formal l anguage is 

conc erned since x and y are structureless. Any automorphism 

taking x toy is an equally valid change irrespective of how the auto­

morphism takes proper parts of x into proper parts of y • In this 

formal language , there is no red part to be transformed. 

Suppose x and y are not atoms, x h a ving a red part and y having 

a black one. The automorphism taking x to y need not preserve the 

structur e of x since it is not in the group of the form a l language , and 

so there is no requirement for the red part of x to map into any 

particular part of y • The distinguishability of x and y imply that the 

transformation of x into y is a change obse rvable by a spea ker of the 

given formal language . A change is observable because of the change 

in structure, where the structure is d ete rmined by the language. 

The sentence "The red pencil burns into black soot. " d enotes that the 

entity with the structure of a r e d pencil has been transformed into an 

entity with the structur e of black soot without specifying the transfor­

mation of substructures like the r e d p art of the red p encil. We can, 

if we like, consider the red p art of x to be transformed into the black 

p art of y since this preserves some structure ass ociate d with color. 

If we have a much mor e d etailed formal l anguage in which we can 

discuss th e intera ction of molecules and light, there is a sentence 

which explains the transformation of sensual red into sensual black in 

a way that preserves far more structure than our original sentence . 

Even here, however , the entire structure is not pr eserve d since the 

c hange i s observable. 
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This discussion has served to illustrate that in relation to a fixe d 

formal language ther e is no difficulty associated with the transforma­

tion of the qualities of a part when the part is transformed, Either 

the entire structure of the part is preserved, in which case the part 

and its transform are indistinguishable by the formal language, or the 

entire structure is not preserved and the transform of a part is 

distinguishabl e from the part itself, 

Groups as Function Spaces 

We would like to formalize the intuitive notion of the distance 

betwe en forma l languages , There appears to be some possibility of 

doing so along the following lines , 

Given a model of p a rt theory, P , together with a measure µ on 

P , we can cons ider any group of automorphisms as a function space 

by d efining, for any two automorphisms g and h , 

d ':' [ g, h] = sup d[ xg, xh] 

where d is the metric defined by µ , 

If each automorphism in a group G is uniformly continuous as a 

J:iome?morphism of P , then G is a topolog ical group, as we prove 

below, G, Birkhoff [ l, p. 169] d escribes a complete measure 

algebra, M , unique up to i sometr ic isomorphism, which is obviously 

a model of part theory, Since M is metrically complete, it is 

comple te as a metric spa ce, Furthermore, M is totally bounded so 

M is compa ct [ 16, p . 84 J and thus every automorphism of M is 

uniform ly continuous [ 16, p. 30 J. If F is a formal language w ith M 
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as its universe of discourse, GF is a toplogical group. The conse-

quences of this fact may have interesting implications for the study 

of formal languages. In particular, it enhances the prospects for 

finding an intuitively reason_able metric topology on the lattice of 

groups of formal languages. If this can be done, then we can define 

the psuedo-distance between two formal languages as the distance 

between their associated groups. There remains, of course, the 

difficulty that two distinct formal l anguage s may share the same 

group, so that the collection of formal languages is, under these 

assumptions, a psuedo-metric space. While it may be possible to 

circumvent this difficulty by considering semigroups of endomorph-

isms associated with formal languages rather than groups of 

automorphisms , further study is clearly required to analyze the 

situation. 

We now show that if every automorphism in a group G is 

uniforn1ly continuous as a map on P to P , then G is a topological 

group. We first prove that the map from G to G that takes each 

· ·automorphism into its inverse is continuous in the d':' topology. 

Lemma : For all g in G and for all E > 0 there is a o such that if 

d':' [ g, h J < o then d':' [ g- l, h- l J < E • 

Proof: Fir st we note that if for all x, d [ xg, xh J < E , then 

d':' [ g, h J ~ E • So if we c an show that for all E there exists a o such 

[ J [ -1 -1 
that Vx(d xg, xh < o) - Vx(d xg , xh ]< E) we can complete the 

proof since d':' [ g, h J < o implies Vx( d[ xg, xh J < o) which in turn 

. l" d' [ - l h-l J Th f h 0 . k s: h h t 1mp 1es "' g , :5: E • en, or eac E > , pie u sue t a -
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d':< [ g, h] < o implies d':' [ g- 1, h-l J ~ E /2 < E • 

The uniform continuity of g-l implies that for all E there exists 

a o such that Vx(d[xg, xh] < o) - Vx(d[xg-l, xh-l] < E) • For if 

not, 

that 

then there exists an E such that for all o we can find an h such 
0 

Vx(d[xg, xh] < o) & 3:x(d[xg-l, xh-l] ~ E ) • The uniform 
0 

continuity of g-l guarantees that for E there exists o such that for 
0 0 

all xg and all xh , d[xg, xh] < o - d[x, xhg-l] < E • Combining 
0 0 

this with the supposition above we have for E and o an h such that 
. 0 0 0 

Vx(d[xg, xh J < o ) which implies Vx(d[ x, xhg-l J < E ) , via 
0 0 0 

continuity. The latter statement can be rewritten, by setting y = xh , 

[ -1 1 
as Vy(d yh , yg- J < E ) , which is a contradiction, and completes 

0 

the proof. 

The following lemma shows that the map from G x G to G which 

takes (g
1

, g 2 ) to g
1

g
2 

is continuous. Take n together, the two 

lemmas imply that G is a topological group. 

Lemma: Given g
1 

and g
2 

in G , for all E there exists o 
1 

and o 2 such 

that if d':'[g
1

, h
1

] < o 1 and d':' [g2 , h 2 ] <oz then d':' [g
1

gz, h 1h 2 ]<E. 

Proof: Sinc e d':' [g1g 2 , h 1hz] ~ d':' [g1gz, h 1g 2 J + d':' [h
1
gz, h 1h 2 ], 

if we can find o
1 

and oz such that each of d ':' [ g
1 

g 2 , h
1 

g 2 J and 

d':' [ h
1 

g 2 , h
1 
hz] is less than or equal to E /3 , then 

d':' [ g 1 g 2 , h 1 h 2 J < E Sin ce sup d[ xh
1 

g z, xh
1 
hz J = 

sup d[ygz, yh2 ] = d':' [g2 , h 2 ], let o 2 = E/3. By the uniform 

continuity of g2 we have that for all E there exists o such that for all 

x, d[xg
1

, xh 1 J < o - d[xg
1

g 2 , xh
1

g 2 J < E /3 • Given E , we 

·pick o 
1 

such that d':' [ g
1

, h
1

] < o 
1 

and thus by the s entence above 
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Vx(d [ xgl g2, xh
1

g 2 ] < E/3), implying d':' [g
1

g 2 , h
1

g 2 ] ~ E/3 • 
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APPENDIX 

The appendix is in two sections. In the first, we prove in the 

affirmative the decision problem for the elementary theory of 

Boolean algebras which are direct products of atomic and atomles s 

Boolean algebras. The main interest in this result is the decision 

method, which shows that every formula in the elementary theory is 

equivalent to a quantifier-free formula. In the second section, the 

results obtained from the decision method are used to prove the 

existence of the union of all elements of a direct product Boolean 

algebra which satisfy a given elementary formula . This result 

shows that every direct product Boolean a lgebra possess e s a very 

restricted completeness property, nam ely that the union of a class of 

elements exists when the class is definable by elementary formulas. 

Tarski [ 30] has proved in the affirmative the decision problem 

for general Boolean algebras, but the results, as they appear in the 

literature, do not enable one to prove that ~ a exists. Since this 
F(a) 

union must exist in order that a Boolean algebra b e a model of p a rt 

theory, we require the d e cision method presented below, 

The D ec ision Method 

This section follows the following outline , We define a standa rd 

form for forrn.ulas and proceed to show that Boolean connections of 

the se formulas c an be r educed to standard form, Next we show that 
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a standard form formula involving a quantifier is equivalent to a 

standard form formula without the quantifier. Using these results, 

we argue that any formula of the lower predicate calculus whose only 

predicate is 11 ~ 11 is equivalent to a formula in standard form. 

Finally we prove that this decision method is only valid for Boolean 

algebras which are direct products of atomic and atomless Boolean 

algebras. Implicitly we are using the fact that every Boolean algebra 

is the subdirect product of atomic and atomles s Boolean algebras. 

Let Zn be the collection of all functions from n to (0, 1} • Let 

For r E Zn let r 1 = (i \ r(i) = 1} , 

r
0 = (i \ r(i) = 0} Given x , 

0 ••• ' xn-1 let y 
r 

D efinition: FR (x
0

, ••• , xn- l) is in S-form iff 

where At(k, £, m; y) is a predicate satisfied by k, £, m, and y 

just in case 

y is atomic iff k = 1 

y is not atomic iff k = 0 , 

y has >- n atoms iff £ = 1 and n = m 

and y has exactly n atoms iff £ = 0 and n = m • 

We may write FR for FR (x
0

, •• • , xn- l) • We will c ons i der k and £ 

to be elements of the two element Boolean algebra, (0, 1}. 

Professor F. B. Thompson pointed out this standard form 

(S- form) for use in proving the decision problem. Essentially, the 

y are the atoms of the subalgebra finitely generated by 
r 
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x
0

, ••• , xn-l • As we will show here, the elementary formulas can 

only specify unions, intersections, complements, and the atomic 

structure of the y and hence of the x .• 
r 1 

n 
Lemma: If r , s E 2 and r -/: s , then y • y = 0 • r s 

Proof: For some i E n , x. occurs in y uncomplemented and occurs 
1 r 

in y complemented, or vice versa. Since y and y are inter sec-
s r s 

tions of the x., y • y = 0 • 
1 r s 

We define formulas to be used in the next theorem. 

GS (a, b, c; x , • • • , x 1 } = /\ ( y = O ) & /\ [ y -/: o & At (a, b, c; y ) ] • 
o n- 0 s S s s 

SE.:> SE 

••• , x 1>. n-

... ' xn-l)=V 
fEA 

r 

[ /\ (y = 0) 
- s 

SES 

where 

& /\
8

[ys-/: O &At(f
1

(s},f2 (s},f3 (s);ys)]] 
SE 

&(f1 (s) = kr & f 2 (s) = 0) - (f3 (s) < mr) 

&(f
1

(s) = kr &f2 (s} = 1) - (f3 (s} = mr + 1 & f,r = O)} • 

I~ is a disjunction of formulas, one of which will hold if 

1 At(k , 
r 

f, , 
r 

m. 
r' 

The class A i s the means of selecting the 
r 
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the atomic conditions, one of which must hold if At(k , .l , m · y } 
r r r' r 

does not, 

We may drop (x , ••• , x 1 } when writing G, H, and I for 
o n-

compactness of expression. 

Theorem: (Not) Let FR(x , ••• , x 1 ) be a formula i n S-form. o n-

NR (x 0, ... , xn_ 1 )= V [ V HS]v V [ V HS v V 

Then 1 FR (x
0

, ... ' 

rER rES czn rER rf:S~2n 

x 1 } - NR(x , n- o • • • • x 1) • n-

Proof: 1 FR(x , ... , x 1} -o n-

v (y I= 0) v 
- r rER 

v [ y = 0 V 1 At (k , .l , 
rER r r r 

m. 
r' 

Let 

(i) yr f: 0 iff since V HS implies yr I= 0 

rES~2n 

by the construction of HS and yr I= 0 gives no condition on the 

rema ining members of R , or on the ir atomic structure. HS has 

been defined so that any con dition on the remaining members of 

R is satisfied by one of the HS in 

(ii) yr= 0 iff This case is like (i). All 

possible conditions on the remaining members of R are covered 

by the disjunction. 

(iii) [ y f. 0 & I At(k ' r r .l ' r 
m. 

r' y )] -r 

If y is not zero and does not have the atomic structure 
r 

(k , .l , m ) , then it has some other ato1nic structur e and every r r r 
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possibility is in the disjunction of the I~ . If some disjunction in 

one of the I8r is true, then y I= 0 and y does not have the atomic 
r r 

structure (k , t , m ) • 
r r r 

Theorem: (Or) If D
1 

and D
2 

are disjunctions of S-form formulas, 

then D
1 

V D
2 

is a disjunction of S-form formulas, 

To prove a similar result for conjunctions, we first require a 

lemma which enables us to increase the number of variables on 

which a formula depends. With this result, we can then as surne that 

the two formulas in a conjunction are both over the same variables. 

We define certain classes in order to state the lemma. We first 

require the notation that if s E 2m and m > n , then r = s I n means 

that r is the restriction of the function s to the first n integers. 

Definitions: 
n 

For R c 2 and n < m , 

R,:, = [S 5: 2m I VrER 3:sES(r = s \n) & VrER Vs[ r = s I n - sES]} • 

·'-
The class R.,. will be used to expand the number of variables from n 

tom • Roughly, R':' will allow us to expan d in every possible 

manner. 

The follow ing d efinitions lead to a class · of triples of functions, 

each triple d ete rmining an atomic structure for an "expanded" yr • 

Er = [ s E 2m I r = s I n} 

K 
-r 

E 
= [Kr E 2 r J ff 

SEE 
r 

K (s) = k } 
r r 
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E 
L = {L E 2 rl ~ L (s) = f, } • -r r 

sEE 
r r 

r 

E 
and M = {M E Ul rl ~ M (s) = m } 

-r r 
SEE 

r r 
r 

& f3 ( s) = M I ( s) E M I & s E s } . s n -s n 

Lemma: (Adding Variables) Let FR (x
0

, ••• , xn-l) be a formula in 

S-form. . .. ' x 1) = m-

V~_ V [ /\ (y = 0) s 
SES SER ... <f

1
,f

2
,f

3
> EQS 

& /\ [ y s I 0 & At(f 1 (s), f 2 (s), f 3 (s); y s)] J • 
SES 

If n < m then FR(x , ••• , x 1 ) - AR(x , •.• , x 1 ) • . o n- o m-

Proof: Assume FR(x , ••• , x 
1

) • Let x , ••• , x 
1 

take on any 
o n- n m-

particular values. Then at least one of the conjunctions in AR holds 

since . 

(i) 0 - y = 0 Yr = ~ for r = s In 

and (ii) if y I 0 & At(k , f, , m ; y ) th en each piece of y 
r r r r r . r 

determined by an s such that r = s \ n must p artake of the give 

atomic structure of y • In p a rticular, if y is atomic, i. e. , 
r r 

k = 1 , then each y f 0 such that r = s In must be atomic. The . r s 

cons truction of QS gua r a nte es thi s by forcing f
1 

(s) = 1 for s E S 
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If y is not atomic, 
r 

i. e. , k = 0 , then there 
r 

is some s such that r = s \ n and y I 0 and y is not atomic, again 
s s 

by the construction of 0
8 

• A similar argument holds for the t 

and m parameters dete rmining the number of atoms in any piece. 

Now assume AR(x , ••• , x 
1

) , hence at least one of the o m-

conjunctions in AR holds. We will show that the restriction of this 

conjunction to n variables is satisfied. 

(i) If y = 0 for all s such that r = s In then clearly y = 0 • s · r 

(ii) If (i) is not the cas e for a given r then there is an s such 

that r = s \ n and y s I 0 • Hence y I 0 since y is the inte rsec-
r r 

tion of the first n variables (complemente d or not) whose 

intersection with the remaining m - n variables is y • If y I 0 , s r 

consider the terms 

for which r = s \ n in the satisfied conjunction of AR • Since 

Y = ~ y , we have 
r s 

r =s\n 

A [ y I 0 & At(k ' 1, ' 
m . y )] -

r=s\n 
s s s s' s 

[y IO &At(Jlk, ~ 1, s' r s ~m· 
s' yr)] . 

s s s 

Now by the construction of these terms i n AR , we have 

T(k = k 
s r 

s 

Lemma 1: If FR (x , 
1 0 

... ' 

and~ m = m s r Therefore AR - FR • 
s 

xn- l) and F Rz (x
0

, • , • , xn- l) are 
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formulas in S-form, then FR (x , 
1 0 

•• 0 ' x l) & FR (x , ••• , x l) n- 2 o n-

is satisfied only if R
1 

= R 2 • 

Proof: Suppose R
1 

t R 2 • Then there is an r in the symmetric 

difference of R
1 

and R
2 

, say in R
1 

but not in R
2 

• 

FR but y = 0 in FR , hence FR & FR is false. 
1 r 2 1 2 

Hence y t 0 in 
r 

i 
Notation: Let k 

r 
;} , mi be the atomic structure parameters in 

r r 

FR if i = 1 and in GR if i = 2 • 

Lemma 2: If FR and GR are S-form formulas then FR & GR only if 

1 2 
VrER[k =k] 

r r 

1 
& VrE"R [(.R, 

r 

& VrE"R [(..e1 
r = 0 & ..e2 = 

r 

& VrE"R[(..e
1

=1 & i = O)-m1 ~ m
2

] 
r r r r 

Proof: k
1 

= k
2 

for otherwise y is both atomic and not atomic. 
r r r 

Similar ly, if ..e
1 

= ..e2 = 0 then y has exactly m 1 = m 2 
atoms. If 

r r ' r r r 

.t1 = 0 and ..e
2 = 1 , then y has exactly m 1 and greater than or equal 

r r r r 

to m
2 

atoms, hence m 
1 ~ m

2 
• Similarly if ..e

1 = 1 and ..e2 = 0 • 
r r r r r 

To state the the orem for conjunctions we use the formula 

CR(x , •.• , x l) = f\ [ y = 0 J 
o n- rER r 

/\ 1 2 1 2 
& /\ [y t 0 &At(k , .R, • £ ·,ma x(m ,m };y }] 

R 
r r r r r r r 

TE 

Theor em : (And} If FR (x , ... , x 
1

) and FR (x , •.• , x 
1

) are 
1 o n- 2 o n-
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formulas in S-form, then FR (x , •.• , x 
1

} & FR (x , •.• , x 
1

} iff 
1 

o n- 2 o n-

CR (x , •.• , x 1} and lemmas 1 and 2 hold for FR and FR • 
1 ° n- 1 2 

Proof: Assume FR & FR • Then R 1 = R
2 

by lemma 1 and the 
1 2 

atomic structur e s of F 1 and F 
2 

are interrelated as described in 

lemma 2. Let R = R
1 

• It remains to show that CR(x , ••• , x 
1

} 
o n-

is satisfied, Since R 1 = R 2 , if yr = 0 in F 1 and F 2 by the construe-

tion of CR the same term is pr esent in CR • Similarly if y f:. 0 in 
r 

F 
1 

and F 
2 

• The on ly remaining question is the atomic structure of 

yr f: 0 in CR • Since lemma 2 holds, the parameters 

1 2 1 2 
(k , J, • J, , max(m , m )} do describe the atomic structure 

r r r r r of y • 
r 

k l = k2 1 2 1 2 1 For, - , and if J, = J, = 0 , then max(m , m } = m r r r r · r r r 
2 = m 
r ' 

1 2 1 2 1 2 
while if J, = 0 and J, = 1 , max(m , m ) = m ;;>: m , 

r r r r r r 

Now assume that R
1 

= R
2 

= R and the conditions on the atomic 

structure parameters are as described in lemma 2, and that 

CR(x , ••• , x 
1

) is satisfied. o n- Then it is clear that FR is satisfied 
1 

and so is FR hence FR & FR is satisfied. 
2 1 2 

We use the following classes and formula to state the elimination 

of quantifiers theorem. If S ~ 2n+l , then 

... _ 

3:) s(sES- r =sin)}, and R-··= [rERI r=stn-s(n)=l}, 

For rER, let k = rr k 
s ' 

J, = ~ J, and m = ~ m 
r 

SEE 
r 

sEE s ' r 
SEE 

s 
r r r 

Note that E contains at most two 
r 

elements for each r • 

Define WR (x, ••• , x 
1

) = (\ [y =0] & (\ [y f:.O &At(k , J, ,m ;y )]. 
o n- -R r R r r r r r rE rE 
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Theorem: (Elim ination of Quantifier s} If F
5

(x , ••• , x 
1

, x } is a 
o n- n 

formula in S-form then 3:xnF 5 (x
0

, ••• , xn} - WR (x
0

, ••• , xn-l} • 

Proof: Assume WR(x , ••• , x 
1

) • We will show that o n-

3:x F
5

(x , 
n o . ~. ' x ) • 

n 
As a notational convenience, we write x 0 for x 

1 
and x for x. 

i 
If rE R , for any x , x ·yr = 0 for i = 0 , 1 , since y = 0 • 

r By 

the definition of R , rE R implies any extension of r ton+ 1 variables 

is a member of S • Hence for each s such that s \ nER , [ y = OJ s 

is satisfied. 

+ Consider rE R • We must show that 

[ 1-i J [ i J_ i ) J y • x = 0 & y • x r 0 & At(k, t, m; Yr• xn 
r n . r n 

in F Sis satisfied for each rE R+, where i depends on r • Since 

+ rE R , we know that 

sinc e W is satisfied, and by construction, k = k , J, = J, , and 
r r r 

m =m 
r 

i = O· then 
r 

Let z = ~ y 
o .... r 

rER··-

Yr • z o = 1f _,_ (yr ; y t) 
tER··· 

::.::: 

+ i For each rE R , z ;;:: y o r 

Now rl. R since i = 0 
r 

and sinc e a ll the y' s are disjoint, 

thus y • z = yr r o 

Yr .· zo = ~ (y • Y } 
-·- r t tE R-.-

Now suppose i = 1 • Then 
r 

For if 
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,,, 

and since this time r is a member of R-·- and yr• y t = 0 if t f. r , we 

have y · • z = y • 
r o r 

S . i h 1-i 0 1n c e z ~ y , we ave y • z = • 
o r r o 

So if we set x = z , all 
n o 

of the terms in F S under consideration are satisfied. Combining the 

results for rE°R and rE R + , we see that /\ [ y = 0 J is satisfied. 
SES s 

The remaining terms of F S to be satisfied are of the form 

(y •x f. 0 &At(k
1

, t
1

, m
1

; y •x )] 
r n r n 

& (y ·x f. O &At(k
2

, 1, m
2

; y •x )] 
r n 2 r n 

for rE R - R + . In WR the corresponding terms are 

Here it is necessary to divide y into two pieces such that each has 
r 

the atomic structure specified in F S • To show that this is possible, 

we will consider cases. 

That is, bothy • x and y • x are atomic, 
r n r n 

If t
1 

= t
2 

= 0 , then yr has exactly m 
1 

+ m
2 

atoms, so there is a 

z ~ y with exactly m
2 

atoms, hence 
r r 

At(k1 , t 1 , m 1; yr· zr) and At(k2 , t
2

, m 2 ; yr ·zr) • If t
1 

= 1 

and t 2 = 0 , then yr has ~ m
1 

+ m
2 

atoms, and again there is a 

zr ~ yr with exactly m 2 atoms such that At(k
1

, t
1

, m ·
1

; yr• 'Zr) 

and At(k2 , t 2 , m 2 ; yr· zr). Similarly if t
1 

= t
2 

= 1 or if 

.el = 0 ' 1z = 1 • 

(ii) k
1 

= 0 and k 2 = 1 • Then y is not atomic. Now if 
r 

t 1 = t 2 = 0 , t hen yr h a s exactly m
1 

+ m
2 

atoms , and if we let 
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zr be the union of exactly m 2 atoms of yr , we satisfy the 

appropriate terms in F S • If t
1 

= 0 and ,e,2 = 1 , then yr has 

~ m
1 

+ m 2 atoms, and if we let zr be th e union of all but m
1 

atoms of yr , again we satisfy th e terms in F S • Similarly for 

the remaining combinations of t
1 

and t
2 

• 

(iii) k
1 

= 1 and k 2 = 0 • This case is like (ii) except that we 

find some z ~ y • 
r r 

Then y · is not atom.ic and we must find a 
r 

z ~ y such that both y • z and y • z are not atomic with the 
r r r r r r 

appropriate numbers of atoms. Sinc e t he Boolean algebra is the 

direct product of an atomic and an atomles .s Boolean algebra, this 

is always possible, 

Let z = z + 
0 1; +Zr • 

rER-R 
Then z s ati sfies F

5
(x , ••• , x 

1
, z) • 

o n-

For the proof i n the other direction, assume 3:x F
5

(x , ••• , x · 
1

, x ) • 
n o n- n 

Then z as constructed above also satisfies F
5

(x , ••• , x 
1

, z) , and o n-

so WR(x , •• • , x 
1

) is satisfied, o n-

It remains to show that every formula of the lower predicate 

calculus with ~ as the only predicate is equivalent to a disjunction of 

S-form formulas. This is done by induction on the length of a form-

ula . 

Terms : x
0 

~ x
1 

is equivalent to a disjunction of cert~in 

F 
5

(x
0

, x
1

) • This disjunction i ncludes the various possible atomic 

conditions on x~ • x{ in the form At (l, 1, l; x~ • x{) or 

At(O, 1, O; x~. x{) . The F s are of the form X O. xl = 0 rn con junction 

with XO. x l. XO. xl. XO. xl either equal to zero or not equal to zero in 
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all possible ways, and whenever x~ • x{ t 0 , one of the two atomic 

conditions. The disjunction of these twenty...:five S-form formulas is 

satisfied if and only if x ~ x
1 

• 
. 0 

Negation: If D is a disjunction of formulas in S-form, say 

then -, D - 1 F 1 & ••• & 1 F p - N 1 & ••• & Np , where Ni is related 

to F. by the "not" theorem. By redistributing among the N
1

, ••• , N , 
l . p 

we obtain a disjunction of conjunctions of formulas in S-form, provid-

ed that all the F. are over the same variables. The adding variables 
l 

lemma guarantees that we c an find the appropriate formulas 

equivalent to the F .• 
l 

Conjunction: If C is a conjunction of formulas in S-form, by the 

adding variables lemma, C is equivalent to a conjunction of S-form 

formulas all over the same variables. By then applying the "and 11 

theorem sufficiently often we obtain an equivalent S-form formula or 

a contradiction. 

Quantifiers: If D is a disjunction of S-form formulas , 

D ::: F 
1 

V ••• V F p , then 3:xD - 3:xF 1 V ••• V 3:xF p and 

VxD - 1 3:x 1 D • Since 1 D is equivalent to a disjunction of 

S-form formulas, say F 
1

1 V • •• V F q' , then 

VxD - 1 (3:xF 
1

1 V ••• V 3:xF q') • By elimination of quantifie rs, 

disjunctions of S -form formulas equivalent to 3:xD and VxD are 

obtained. 

This completes the decision method for the elementary theory of 

direct product Boolean a l gebras . Next we show that the elimination 
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of quantifiers theorem requires that the Boolean algebra be a direct 

product of an atomic and an atomless Boolean algebra. Assuming 

that the Boolean algebra is a subdirect product of an atomic and an 

atomless Boolean algebra possessing just the properties necessary 

for the proof of the elimination of quantifiers theorem, we prove that 

the Boolean algebra must be the direct product of its factors. 

Let B be a subdirect product of A x N where A is an atomic 

Boolean algebra and N is an atomless Boolean algebra. If b EB , we 

write b = <a, n> where a and n are the projections of b onto A and 

N, respectively. Let B possess the following property: 

{i} If <a, n> EB and a is the union of m atoms then for all 

m 1 ~ m there is an a 1 ~ a such that a 1 is the union of m 1 atoms 

and<a', O>EB. 

B must possess this property for the proof of the elimination of 

quantifiers theorem to be valid. 

Lemma: For all a EA , <a, 0> is in B • 

Proof: For some n EN , <a, n> is in B • Then by (i} , <a, 0> EB • 

Lemma: If< a, n> EB then< 0, n> EB. 

Proof: Using the previous lemma, <a, 0> EB • Hence 

<a, n> - <a, 0> = < 0, n> is in B • 

Theorem: B is the direct product A x N • 

Proof: First, for all n EN , < 0, n> is in B since for all n EN there 

is some a EA such that <a, n> EB and applying the lemma above 

gives the result. Now let a be any member of A , n any member of 
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N • Then < a, 0> + < 0, n> = <a, n> EB • 

Existence of Unions 

Let F(x , ••• , x l' a) be a formula of the lower predicate o n-

calculus over the predicate 11 s; 11 
• We will show that 

F(x , 
0 

~a 

... ' x 
1

, a) 
n-

exists in any Boolean algebra which is the direct product of an atomic 

and an atomless Boolean algebra. By the decision method in the first 

section, it suffices to show that the union exists for formulas which 

are disjunctions of S-form form ulas. Suppose F 
1

, ••• , F n are 

S-form formulas such that the union exists for each formula, Then 

the union exists for the formula F 
1 

V ••• V F n by the following 

argument. For each i , let T. = [a I F. (a)} and let 
1 1 

Then T is the union of th e T. and 
1 

from Sikorski [ 2 8 , p. 59] we have 

where the existence of the left side implies the existence of the right. 

It remains to show that the union exists for any S-forrn. formula . 

Let FS(x , .•• , x 
1

, a) be an S-form formula. The first n variables 
o n-

can be considered to be parameters since we are taking the union of 

all a satisfying FS(x , ••• , x 
1

, a) • So consider x , ••• , x 
1 

to 
o n- o n-

be fixed elements of the Boolean algebra such that F S is true for at 

l east one a • Unde r th ese conditions we will find an equivalent 
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formula from which the union can be determined directly. We use an 

intermediate formula which is F S rewritten to display the variable a • 

For s ES and r = s \ n , let y = 7T x. • T( x. . Then 
r. l1. 0 1 

lEr lEr 

F S(x
0

, ••• , xn-l' a) is equivalent to BS(y 
0

, ••• , yp; a) where 

= /\ 
SES 

[ s(n) yl •a =0] s n 

For each r E 2n exactly one of the following four cases is a conjunc-

tion in BS and the cases, repeated enough times, exhaust BS • If 

yr satisfies case j , we may index yr as yjk • 

1. {y • a = 0) & (y • a = 0) ;, In this c ase y = 0 and terms of r r r 

this type imply no restriction on a • So BS is equivalent to a formula 

with terms satisfying this case removed. 

2. {y •a= 0) & (y •a I 0 &At{k, £, m; yr·a)) • In this 
r r 

case we have (a :::0: yr) and BS is equivalent to a formula with terms 

of this type replaced by {a :::o: y 2k) for an appropriate indexing set, 

k E [l, ..• , q} • 

3. {y ·a= 0) & (y ·a IO &At(k, £, m; yr•a)) • Here we 
r r 

have (a ~ yr) and BS is equivalent to a formula with terms of this 

type replaced by (a ~ y 3k) fork E [l, ••• , t} . 

In cas e these three c ases exhaust BS , we have the equival ent 

formula 
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Since yr ~ y s for all s -f r and yr f- y s for all r and s , we have that 

the least upper bound of all a satisfying the above conjunction is the 

intersection of the y 3k , :Ea = y 31 ••• y 3 t • If there are no terms of 

type 3 in BS , :Ea = 1 • 

If BS has terms of type 4 below, we use the fact that the Boolean 

algebra is a direct product to determine :Ea. Let a be the projec-

tion onto the atomic factor, 13 the projection onto the atomless factor, 

and let b be the least upper bound of the a satisfying the above 

conjunction, that is, the least upper bound of the a satisfying all 

terms in BS of the first three types. If terms of type 3 exist, 

b = )7 31 ••• y 3t, otherwise b = 1 • Let the y satisfying terms of 
r 

type 4 below be indexed y 41 , ••• , y 4 u • We will determine :Ea by 

determining :E a(a) and :E 13 (a) • 

4. {yr •a f 0 & At{k', V, m'; Y • a)) 
r 

& {y •a -f 0 & At{k, i, m; y •a)) 
r r 

Since BS holds, so does At(k' + k, f,' + £, m' + m; yr). a(yr ·a) is 

the union of m atoms of y if i, = 0 , the union of at least m atoms 
r 

if £=1. C _onsider the y 
43

. such that At(k, 0, O; y 
4

. •a) • 
. J 

Let them 

beindexedasy1, ••• , Yv· For e ach y. , a(y. ·a) = 0 so 
l 1 

a{a) ~ a{)Ti) • If v -f 0, let c = y 1 ••• yv, otherwise c = 1 • Then for 

every a satisfying all t e r ms of type 4 in BS it is the case that 

a{a) ~ a{c). Now l e t the y 4 j which are not in (y
1

, ••• , yv} be 

indexe d as y 1, .•• , yw. For each of these, a{yj •a) conta ins at leas t 

one atom. Thus, the least upper bound for a {a) such tha t a satisfies 

all terms of type 4 i n BS contains every atom in each of y 
1

, ••• , y w 
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and thus all of d = [ a(y 1 ) + ••• + a(y ) J • By our previous results, 
'\V 

a(b) • a(c) is an upper bound to a(a) • Since all the y are disjoint, 

d ~ a(b) • a(c) • We will show that a(b) • a(c) is the least upper bound. 

Suppose there is some z < a(b) • a(c) which is an upper bound to all 

a(a) such tha t a satisfies BS • Consider z' = a(b) •a( c) - z • z' 

meets some y -/:. 0 , or else is in the complement of the union of all 
r 

they • If z' meets somey -/:. 0 then since z' < a(b)·a(c), they 
r r r 

must either satisfy case 2 or else be in [y 
1

, ••• , y w } . . In either 

case there is an a such that a· z' -/:. 0 , contradiction, Hence z' 

must be in the complement of the union of all the y • In this case, 
r 

Y • z' = 0 and y • z' - y for all r • r r - r Therefore if a satisfies BS 

then a + z' satisfies BS , hence z is not an upper bound, We have 

proved that 

:Ea (a) = a (b) • a ( c) • 

To determine :Ef3(a) we consider four subcases, 

( i) k = 1 and k' = 1 • In this case y is atomic and 
r 

13(y ·a) = 13(0) for any a • 
r 

This subcase does not restrict f3(a) 

in any way and we need not conside r it further . 

(ii) k = 1 and k' = 0 • That is, 
,., 

y •a is atomic and y • a 
r r 

is not atomic. We h ave the condition f3(y •a) = f3(0) , or 
r 

13(a) ~ 13(y r) • Let the y 4 j in BS which sati sfy subcase (ii) be 

indexedy 1, •• • , yx and let e = y
1 

(iii) k = 0 and k' = 1 . That is, y • a is not atomic and 
r 

yr· a is atomic. We have the condition 13(y r. a) = 13(0) , or 

Let f be the union of the y satisfying this 
r 
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subcase. Any upper bound of 13(a) must include 13(f). 

{iv) k = 0 and k' = 0 • In this case y •a is not atomic and 
r 

y • a is not atomic. Since any a such that y ·a and y • a are 
r r r 

not atomic satisfies this subcase, any upper bound of 13 (a) 

includes all of 13(y ) • Since 13(y ) ~ 13(y ) for all s f:. r , and 
r r s 

13{f) ~ 13(b) • 13(e) , we have 

I; 13 (a) = 13 (b) • 13 ( e) 

by essentially the same proof as for the atomic factor. 

Combining the atomic and atomless least upper bounds, we 

have 

I; a = < Cl' (b) • Cl' ( c) , 13 (b) • 13 ( e) > 

as the least upper bound for the a satisfying BS • 
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