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ABSTRACT

A general definition of interpreted formal language is presented.
The 'notion ""is a part of'' is formally developed and models of the
resulting part theory are used as universes of discourse of the formal
languages, It is shown that certain Boolean algebras are models of
part theory.

With this development, the structure imposed upon the universe
of discourse by a formal language is characterized by a group of
automorphisms of the model of part theory, If the model of part
theory is thought of as a static world, the automorphisms become the
changes which take place in the world, Using this formalism, we
discuss a notion of abstraction and the concept of definability, A
Galois connection between the groups characterizing formal languages
and a language-like closure over the groups is determined,

It is shown that a set theory can be developed within models of
part theory such that certain strong formal languages can be said to
éeterﬁline their own set theory, This development is such that for a
given formal language whose universe of discourse is a model of part
theory, a set theory can be imbedded as a submodel of part theory so
that the formal language has parts which are sets as its discursive

entities,
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I, INTRODUCTION

The study of formal languages in the abstract has applications in
mathematical logic, linguistics, and information science, In linguis-
tics formal languages are used to approximate natural languages [2,
3, 4, 5].

In information science, formal language theory has been used to
describe computer programming languages, for example [33],
design question answering systems [8], and has potential applications
in furthering the understanding of information system behavior,
Possibly the greatest benefit to be gained from abstract formal
language theory is the understanding of the limitations of formal
languages. Recursive function theory [18, 9, 22 ] has made a major
contribution to our understanding of these limitations, but we feel
that much remains to be gained by considering both the syntax and
semantics of formal languages abstractly,

Formal syntax has been quite thoroughly explored, for example
[11, 15, 19, 25]. Ginsberg [11] has an extensive bibliography on
formal syntax, Formal ianguage semantics have been defined [17,
32, 33], but previously little was known about the properties of
formal languages with both a syntactic and semantic component, This
dissertation considers certain properties of such formal languages.
Following Thompson [32 ], we define a formal language as a collec-

tion of semantic transformations on some universe of discourse, We
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then show that each collection of semantic transformations gives rise
to an associated syntax which is the syntax of the formal language.

To provide a uniform and highly homogeneous universe of
discourse for all formal languages, we consider part theory in
Chapter III. Part theory is based on an axiomitization of the notion
"is a part of', as in ''the leg is a part of the table,'" We can consider
a formal language to give a particular structure to the universe of
parts, and we characterize this structure by a group of automorph-
isms of the universe of parts,

Our intuition indicates that for each pair of formal languages
there is a language powerful enough to describe anything which is
describable in either of the original languages, and that there is a
language in which the only describable entities are those describable
in both original languages., For example, the computer programming
languages Algol and Fortran are similar, containing some similar
syntactic constructions to describe the same process, The algebraic
expressions of the two languages are in this category. A language
consisting of just algebraic expressions is a lower bound language to
Algol and Fortran, As a more powerful language in which we can
express anything expressible in either Algol or Fortran, we take the
assembly language of the computer, This is an upper bound language
for Algol and Fortran, The problem of finding upper and lower bound
languages for a pair of formal languages is partially solved by
considering the lattice of groups of automorphisms and the Galois
connection between the groups associated with formal languages and

the semantic transformation closure on the groups,
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The intuition also indicates that the universe of discourse of a
formal language can always be considered to be a model of set
theory, In Chapter V we show that it is possible to imbed a set
theory within a sufficiently large model of part theory so that a given
formal language simultaneously has both parts and sets as discursive
entities, The central result of this dissertation is that certain strong
formal languages determine their own set theory,

Finally, in Chapter VI we consider various research problems
which the material in this dissertation has suggested, One of the
more interesting of these is the possibility of defining formally our
intuitive feeling about the distance between languages, For example,
we feel that Algol and Fortran are much closer to each other than
either is to Cobol, If we can realize this intention, our understand-

ing of languages will be greatly enhanced,



II, FORMAL LANGUAGES

We present here material sufficient to define the general notion of
a formal language as it will be treated in the sequel, A fuller treat-
ment, including motivational material, is in Thompson [32], to
which this chapter owes its genesis,

A language is often considered to have two components, syntactic
and semantic, The syntax determines which sequences of words are
well-formed or grammatical, The semantics establishes the mean-
ings of the grammatical sequences, For us, a formal language will

refer to a formalized semantics, from which a syntax can be derived,

Universe of Discourse

A formal language must talk about something, its universe of
discourse, Since we are attempting to formalize notions of language,
we will assume we have at our disposal a set theory, which we will
use in the usual informal mathematical manner, In order to distin-
guish between this "outside" set theory and any particular model of
set theory which may be the universe of discourse of a given formal
language, we will refer, throughout the dissertation, to '"outside"
sets as classes and sets in any given model of set theory as sets,
Since we will follow the Zermelo - Fraenkel axiomitization of set
theory, the class-set distinction of Bernays - Gadel will not be

needed,
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The universe of discourse of a formal language is a model of a
relational system, U=< U, R,, R,, ..., R, ...> where U_is an
o 1 2 n o
abstract class and the Ri are finitary relations defined on Uo g
Hence, the objects interrelated by a formal language are elements of

U .
o
In mathematical model theory there is usually some relationship
between the formal language and the relations, Ri , of the model U,
but no such restriction is implied here,
Suppose the universe of discourse is given as the relational

system U =< Uo’ R RZ’ Sty Rn> . Furthermore, suppose we

1’
have a model of set theory M =< Mo’ e> , where e is the relation
""is 2 member of', Then we can always model the given relational

system within M , and we may, if we so desire, consider any formal

language to have a model of set theory as its universe of discourse,

Semantic Categories

A sem.antic category is to be thought of as a collection of objects
having some property in common, For example, if the model U is a
ring, the zero-divisors of U can be thought of as a semantic category,

Since a formal language is to have a finite '""computable'' character
(as opposed to a natural language, which may not be definable or
computable), we will insist that a given formal language possess a
finite number of semantic categories, Each semantic catégory may
contain an infinite number of objects, and the semantic categories
need not be disjoint, Furthermore, in the '"metatheory' there may

be an infinite number of categories, each corresponding to a
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property of U = <Uo’ Rl’ 45T i Rn’ ... >, but only a finite collection
of these are in a given formal language over U,

Let n be an integer, i.e., n€ w. Then K = {Cilie n} is a collec-

tion of semantic categories if each Ci is a subclass of Uo .

Semantic Transformations

The semantic transformations of a given formal language are the
means for moving from object to object in the universe of discourse,

For example, if the universe of discourse is a model of set
theory, then the function s such that s(x) = x + {x} is such a semantic
transformation, where + denotes set union,

Again, we will insist that a formal language be based on only a
finite number of semantic transformations,

A semantic transformation is in general quite complex, It may
take a sequence of objects into another sequence of objects and thus
both its domain and its range may be subdirect products of semantic
categories, Here range means the image of the domain under the
given semantic transformation,

Let m be an integer,
Definition: T = {Tj lj € m} is a collection of semantic transformations
over K = {Ci ,i€ 0}, if for each j € m the following hold:
i) There exists a domain function, dj , from an integer
6. ton , d.:5. —n ,
J 3 J
ii) There exists a range function, rJ. , from an integer
pj ton, rj:pj — n , and

iii) Tj is a function from a subdirect product of
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C x C X x C
d.(1 d.(2 gl it d.(6. -1
S48 s(2 i
to a subdirect product of

G x G
rj(l) rJ.(Z)x. % - Xcrj(Pj %

The domain functions, dj , and the range functions, rj , select
the particular semantic categories used to form the direct products
containing the domain and range of each semantic transformation,

The '"property' that a semantic category is to correspond to, is
the property of being a projection of the domain or image of a
semantic transformation, We can say that a semantic category is a

domain or image class of a semantic transformation,

Structural Semantic Transformations

A semantic transformation may be closely related to its universe
of discourse in that it depends only upon the given relational struc-
ture. To ﬁake this notion precise, consider any permution, Y , of
Uo . We write xy for the value of Y when applied to x, We say that

Y commutes with a semantic transformation, 7, if
TN, wees XY ) = {YgYs wees YY)
whenever
T(xp s Xg) = (ygs e yp) »

Definition: A semantic transformation is structural if it commutes
with every permutation that preserves the relations Rl’ RZ’ wee n OF

U.



-

As an example, let M = <Mo’ e, 0> be a model of set theory,"
where e is the binary relation 'is a member of' and 0 is the empty
set, The proper automorphisms of M are determined by permuta-
tions of the individuals of the set theory which are not the empty set,
and any such permutation determines an automorphism, Then the
function List (x) = {{y}lyex} is structural, That is, the value of
List (x) depends only on the set-theoretical structure of x and not on
whether x is a particular set or individual,

If the model of set theory is pure, that is, the only individual is
the empty set, then there are no proper automorphisms of the model;
every semantic transformation is structural, This is a consequence
of the extensionality of pure set theory, and suggests that one of the
reasons for the general acceptance of set theory as a foundation for
mathematics is the completely structural character of a pure set

theory.,

Constructive Semantic Transformations

A semantic transformation may be constructive, By this we mean
that the semantic transformation can be defined in terms of given
primitive semantic transformations by given methods of construction,
To formalize this notion in any particular case, one must decide upon
the primitive semantic transformations and what methods will be
considered constructive,

The following example is a straight-forward generalization of the
methods of recursive function theory, as found in Kleene [18] or

Davis [9], and illustrates one notion of constructivity,
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The universe of discourse is a model of set theory, A seméntic
transformation, T, is constructive if there exists a finite class of
defining equations from which the values of T can be effectively
computed in terms of the arguments of T, The defining equations
are written in terms of the primitive functions which follow: set
union, written 4+ ; set intersection, written -« ; set difference, e 8
and the singleton function, s . s(x) is that set whose sole rﬁenlber is
x , that is, s(x) = {x}. Clearly these primitive functions are struc-
tural, To give power to the recursive definitions, we include a
choice function, ¢, among the primitive functions, The choice func-
tion is undefined on the individuals of the model, If the model of set
theory includes two or more individuals other than the empty set, no
choice function is structural,

We can now give the defining equations for the semantic transfor-

mation List(x) .

List(x) = s(scx) + List(x - s cx)

]
o

List(0)
where s ¢ x means s(c(x)) and 0 is the name of the empty set, We
include equations of the form

List(a) = a

for every individual a in U,
To show that List is structural and constructive on finite sets,
we first require that U have but a finite number of individuals, in

which case the set of defining equations is finite, Now, by induction,
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List ({xy, ..., x }) = {{x; }s eees {x,}}, independent of the choice
function, ¢ . Hence, List is well defined and structural, Since List
is only defined on finite sets, its domain is the semantic category of
finite sets and its range is the class of those finite sets whose
elements are singleton sets,

If a formal language is defined over a model of set theory, it
seems reasonable to insist that the semantic transformations of the
language depend only on the set-theoretical structure of the model,
that is, that they be structural, and further, that they be constructive
as illustrated above. Thompson [32 ] has taken this approach, In
Chapter III we indicate that the structural semantic transformations
are essentially trivial when the universe of discourse is a model of

part theory,

Referents

Continuing to define the general notion of a formal language, we
require a set of referents, Each referent is an entry point into the
semantic structure of the formal language, the object that a word of

the formal language names,

Definition: Let K = {Ci Ii € n} be a collection of semantic categories,
If X is a subclass of the union of the Ci , then X is a collection of

referents,

Definition of a Formal Language

A formal language is a triple <T, K, X> over a given universe

of discourse U such that:
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i) K is a finite collection of semantic categories over U,
ii) T is a finite collection of semantic transformations over
K, and

iii) X is a finite collection of referents over K,

Syntax

We discuss the relationship between a formal language and the
usual notions of syntax as given in [32], [3], or {33}

A syntax is a quadruple <V, W, G, D> where: V and W are
finite classes of abstract symbols such that W< V, V is the vocab-
ulary of the syntax and W is the class of terminal symbols, or words.
G is a disjoint union of Gv and GW , each of which is a finite class of
grammar rules, A grammar rule is an ordered pair of strings over
V , written « — B, where p may be substituted for any occurrence of
o as a substring in a string to produce a new string, The rules of
Gv are over V-W , and the rules of Gw are of the form v — w,
where ve V-W and we W, D is a finite class of distinguished
strings.

The language of the syntax <V, W, G, D> is that class of strings
over W which can be produced from D by repeated application of the
grammar rules,

The connection between a formal language and a syntax is given
by the following correspondence,

If there exists a one-to-one correspondence, ¢ , between:

i) Xand W ,

ii) K and V-W such that if x€ X and x€ Ci then
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¢ (Ci) — ¢ (x) is a grammar rule of Gw , and

iii) T and G, such that if T € T has range in Cj X eoe X Cj
1 P
and domain in Ci % e X Ci then ¢ (7) is the
1 &
grammar rule
¢(C' )¢(C )Ont ¢(C' )--'> ¢(C' )ooo ¢(C‘ ) ’
J1 J2 o *3 s

then the syntax <V, W, G, D> is a proposed syntax for the formal
language < T, K, X>, If, in addition, for each string d € D there is

a semantic transformation with range in Cj X wow X G, such that
1 P
Y v (fi(Cj ) =d then<V, W, G, D> is a syntax for the formal
1 P
language <T, K, X> ,

One may wish to impose additional restrictions on D, the class
of preferred strings, so that for each de D, starting from referents,
and by repeated applications of semantic transformations in T , it is
possible to reach some SYqr oo Yp> € lex i Cj which corre-
sponds to de D, 4

A significant aspect of the correspondence between the formal
language and its syntax is the relationship between the repeated
applications of grammar rules and composition of the semantic
transformations.

We can describe the correspondence, ¢ , between the syntax and

semantics as a contravariant functor [24], as indicated by the

following diagrams:

X € C
¢ | i ¢
W - v
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and

¢(T): Ve ceoe V. =0 eec ¥ o °
E | b -
1 6 I3 o

Note that the language of the syntax is in general larger than the
class of meaningful strings, where "meaningful' means: mapping the
strings into sequences of referents via ¢ and applying semantic
transformations to obtain sequences of objects in the correct semantic
categories to correspond to an element of D, The syntactic language
is larger since the range of a semantic transformation may be a
subdirect product of its image semantic categories, thus disallowing
certain compositions of semantic tfansformations which appear
syntactically correct, Similarly, if the domain of a semantic trans-
formation is the subdirect product of semantic categories, certain
strings of words may be syntactically correct, while their seméntic
counterpart will not be in the domain of any semantic transformation,

This is reasonable in view of Chomsky's example [2, p. 15]

"Green ideas sleep furiously, ",
which, while syntactically correct, is usually considered to be mean-
ingless,

A grammar rule is called context-free if it is of the fé)rm v—B
where v is a single symbol of V-W , If a semantic transformation is
in correspondence with a context-free grammar rule, the semantic
transformation is also called context-free., A context-free semaqtic

transformation resembles the usual mathematical function, as is
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illustrated by the following commuting diagram,

A x.,.xCi — C
1 5 P

1¢ ¢
¢(T): Vil eoe vi6 - vp

The above diagram also illustrates that we can consider a
grammar rule as the abstraction of the corresponding semantic
transformation to the range and domain of the semantic transforma-
tion., We can say that the syntax is the surface effect of a semantic
system,

What we have called here a formal language can also be consider-
ed the abstract semantics for the usual notion of a syntactic language,
as in Ginsberg [11]. Since we have insisted upon a one-to-one
correspondence between the formal language (semantics) and a syntax
for it, we can construct a syntax for a given formal language if

necessary, and so we will consider only formal languages in the

sequel,

Derived Semantic Transformations

Semantic transformations can be composed in a manner similar to
functional composition, although in a more complex fashion, The
compositions of semantic transformations into derived semantic
transformations is entirely analogous to the use of several grammar
rules in the production of one syntactic string from another,

As a syntactic example, suppose we have the grammar rules



=15

a— By &

Y —~ 1
where a , B, Y , 6 are strings over the non-terminal vocabulary,
V-W ., Then we can derive pnd from o by applying the rules in the
above order, We will mirror just this kind of process in composing
semantic transformations,

Consider the following direct product of semantic categories

Alx...anxB X"'XBbXCIX"'XCC

1

where either a or b may be 0,

If we have a semantic transformation, Ty s with domain a

subdirect product of

B. X .00 X B

1 b

and range a subdirect product of

then we may ''derive' a subdirect product, K, of

Alx.‘.,anxDlx.,.dexClx...,xCC

corresponding to the image of Ty If this subdirect product overlaps

the domain of a semantic transformation, T that is, the domain of

2 3

TS is a subdirect product of

R e D G . X

A x...anxD a 1 =

1 1

which has a non-null intersection with K, then we may compose T

and T, to obtain a derived semantic transformation whose domain is
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the subdirect product of
B Rnae A B
1 _ a

] Xeee X Bb % C1 5 g Cc

determined by T and the extent of the intersection with the domain

of T and whose range is a subdirect product of

E1 Kopee X Ee

where the range of T is also a subdirect product of El X oot Ee .

Because a derived semantic transformation depends on the
subdirect product structure of the participating semantic transforma-
tion, derivations which are syntactically correct (that is, the
appropriate direct products of semantic categories overlap), may not
be semantically allowed, A study of syntax alone may not enable one
to determine what phrases of a language are meaningful, If the
domain and range of every semantic transformation are direct
products of semantic categories, then every syntactically correct
phrase is meaningful, at least in the sense that a derived semantic
transformation can be applied to the objects corresponding to the
words of the phrase,

The analysis of syntax in terms of semantic transformations
suggests why linguists are currently using transformational gram-
mars to study the regularities of natural language., Transformational
grammars [ 4, 5] allow for more complex rules for transforming one
st;ring into another than simply replacing the occurrence of one string

for another, as we have described above,
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Definable Objects

What objects in a universe of discourse are definable by a formal
language over that universe? There does not appear to be a unique
answer to this question, so we will define and discuss two possible
answers,

First we will agree that the referents of a given formal language
are definable objects, FEach referen;c corresponds to a word in the
vocabulary of the syntax, i.e,, objects with a name, Now suppose
we have sequence of definable objects, for example a sequence of
referbents, (rl, — rn) , together with a semantic transformation,

T, defined on (rl, 5t rn) such that

T(I‘l, ek rn) = T e

Then we can agree that x is also a definable object. For example,
the object defined by '"All red ships are red. ' is the object corre-
1"

sponding to the word '"true,

However, if (1‘1, Sy rn) is a sequence of definable objects and

T(rl’ eoe 3 rn) = (Xls eeo 3 Xk)

it is not clear that each of Xy eees X is a definable object, if we
assume they are not otherwise definable. This obscurity leads to the
two definitions of definable objects., The first declares that the X
are not definable; the second admits each of the Xi as a definable

object, but only in the context of the remaining Xl’ A xk .

Definition: An object, x, of a given universe of discourse, U, is
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context-free definable relative to the formal language <T, K, X> if
it is a referent in X or if there is a sequence of referents
(Fhry it 5 rn) and a semantic transformation, T , derived from the

1
transformations of T , such that

-r(rl, — rn):x .

Definition: An object, x, of a given universe of discourse, U, is
contextually definable relative to the formal language <T, K, X> if
it is a referent in X or if there is a sequence of referents

(rl, e rn) and a semantic transformation, T, derived from the

transformations of T , such that

T(rI, eoe 3 rn) = (le eeo 3 Xn)

and for some i € n, X, =X,

In the first definition, an object may be context-free definable
although some of the semantic transformations in T used to define the
object are not context-free semantic transformations, In the second
definition, an object, X is contextually definable only if the objects
entering into the derivation of (xl, P xn) from (rl, E. rn) are all
contextually definable, We have the obvious corollary of the above
definitions that every context-free definable object is contextually
definable.

The following example illustrates the notion of definable object.
Suppose '"2'"' is the name of a definable object in the universe of
discourse, and suppose there is a semantic transformation whose

value is the square root of its argument, Then, 1,414,,, is a defin-
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able object of the given universe,

Sentences

So far we have not discussed the question of what constitutes a
sentence of a formal language. Syntactically, a sentence, as a
phrase, is a distinguished string of the syntax, usually consisting of
one symbol, As for words, a sentence is any string of words, i,e,,
any string over W , which can be produced by the repeated application
of grammar rules from the distinguished string, This definition of a
sentence, while mathematically productive (for example, see
Ginsberg [117), seems to be imposed on the syntax instead of arising
naturally from the given language structure. In Chapter VI, we
suggest possibilities for defining a sentence which may be more
"matural', |

We mirror the above definition of a sentence in the semantic
structure by selecting a distinguished semantic category, S. The
syntactic counterpart of S is a distinguished string in D, If there is
a sequence of referents (rl, o e rn) and a derived semantic trans-

formation, T, such that

'r(rl, el rn) € S

we say that the string of words corresponding to (rl, ol rn) is a
sentence, and that T is a sentential semantic transformation, If we
feel that a sentence must be either '"true' or '"false', then the seman-
tic category S is a class consisting of two objects, say O and 1. In a

multi-valued logic system, S is a class consisting of as many distinct
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objects as there are values to the logic, and if a sentence possesses
a "'probability' of being true, then S is the unit interval of the real
line, Because of the apparent artificiality of the above definition of a
sentence, we will consider definable objects and the semantic coun-
terpart of phrases, rather than sentences, to be the basic units of

meaning in the sequel,

Analytic vs, Productive Language Models

We have treated the semantic transformations of a formal
language as analytic transformations, That is, as the recipient of a
sequence of words would analyze the phrase to discover its meaning,
At the same time, the syntax has been treated productively., Starting
with a distinguished phrase, grammar rules are repeatedly applied
until a string of words over the terminal vocabulary results,
However, by letting the semantics determine the syntax, we are in
effect using the syntactic structure in an analytic manner as well,

A complete definition of a formal language should include a
method for synthesizing sequences of utterable words, It should
provide for transforming definable objects into sequences of refer-
ents, which in turn correspond to strings of words, One possibility
is to insist that every semantic transformation be invertible, so that
it could be used either analytically or productively; another is that
different collections of semantic transformations are used to produce
phrases and to recognize phrases,

We will concentrate on analytic formal languages, and leave their

exact relationship to productive formal languages an open problem,
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I,  PART . THEORY

We mentioned that the universe of discourse can always be
considered to be a model of set theory, This implies that we are
willing to make certain strong ontological assumptions about' the
universe of discourse, namely that various infinite sets exist and
that the world is atomic and almost well-founded, By atomic, we
mean that there are entities which have no proper subsets other than
the empty set and that every entity is a union of atomic sets, By
almost well-founded, we mean that the axiom of regularity holds for
all sets except possibly certain individuals which have no members
but are not the empty set,

'Presurnably there is no difficulty about accepting finite sets,
However, to have a set theory, we must admit some very large' sets,
such as the continuum, and impredicatively defined sets, Even the
set of integers may be suspect due to the following reasoning., We
define the integers by stating certain properties of the successor
function, This statement is a linguistic process and we can argue
that the set of integers is actually just the linguistic statement
defining the integers, For mathematics, this distinction ‘makes no
difference, for we still have entities satisfying the axioms of set
theory. However, in the view of set theory in which only linguistic
elements exist, the only sets are those which can be defined by a

formula of set theory, This is very close to the constructivist point
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of view [6, 13] in which the continuum, for example, does not seem
to match our intuition regarding the real line, This linguistic view
of set theory can be said to regard large sets as fictions, As Cohen
observes, '"'"The great defect with this view is that it leaves unexplain-
ed why this fiction is successful and how a presumably incorrect
intuition has led us to such a remarkable system, " [6, p. 150],

The material in Chapter V suggests an explanation of why this fiction
is successful,

The second difficulty with set theory is its atomic character,
While obviously useful for mathematics, it is not clear that we can
adequately model the real world in set theory partly because of this
property, If we model an electron as a set we must decide what its
elements are to be. For different purposes we model it differently,
for example as a collection of quantum states or as a point charge,

It is not clear that a single model of an electron can subsume all the
models of an electron that we may wish to make, especially consider-
ing that new properties of electrons may be discovered, for example,
superconductivity, What appears to be required is a model of the
world which allows for new properties of entities to be discovered
and new interrelationships to be explored, ‘

The fact that almost everything must be constructed on the empty
set is another problem with set theory, This is closely related to
atomicity, and leads to the same conclusion that every interrelation-
ship among entities modeled by sets and individuals is inherent in the
set theory, and there is no room for discoveries, Suppose the set

theory is pure, that is, there are no individuals, Then every set is
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well-founded and let us consider modeling the electron again, An
electron in the model is some complicated set, but all of whose
elements are set-theoretical constructions built on top of nothing,
that is, on the empty set. If we find this notion philosophically
unpalatable, then we can consider including some individuals in our
set theory. Now the electron set can have individuals as members of
members of ..., . However, there is nothing within set theory which
allows us to distinguish between individuals and thus between sets
with the same structure over ''different' individuals, So the electron
set's elements are set-theoretical constructions built on top of
nothing or on top of indistinguishable structureless somethings, This
does not appear any more acceptable than a pure set theory.

Since accepting set theory as the universe of discourse requires
accepting atomicity, well-foundedness, and the existence of large and
strangely defined sets, and these lead to philosophical difficulties,
we ask what can be accomplished by making weaker ontological
assumptions than those required by set theory., We will assume only
that an entity can be part of another entity, The sole predicate of the
theory is the notion ''x is a part of y'", formalized as xwy . The
theory of the part-whole relationship as developed in the next section
requires only three axioms and one axiom schema, indicative of the
weaker ontology., Earlier discussions of the theory of parts appear
in Goodman [14] and Tarski [29]. Tarski's axiom system depends
on the availability of a set theory., The approach here is to develop
part theory independently of set theory, Goodman considers his part

theory to be a calculus of individuals, Our axiom system is similar
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in intent to Goodman's, although more completely formalized. We
assume that the only entities are the '"individuals'',

The theory of parts includes a means of constructing entities
from parts described by a formula, in analogy to the axiom of
replacement of set theory, However, the entities formed in this way
do not appear to have a different character than other parts, In set
theory, our intuition becomes shakier as we move from the integers
to the countable ordinals to the continuum and impredicatively defined
sets, In part theory, the world is far more homogeneous and every
part has about the same credibility as a '"'real'' entity, Since a model
of part theory need not have atoms, we can label certain parts of an
electron as distinguished and then find proper parts of the distin-
guished parts to explore and so on,

Well-foundedness does not apply to the theory of parts, and we
can label a particular part as an electron without having specified
anything about its structure. Because of homogeneity, the electron
looks approximately like any other part, but we accept this situation
as follows, The ''structure' of any part is imposed on it by an
observer, As the formal development shows, the homegeneity of
parts means that any two parts can have the same '"'structure'’,
Another way of saying this is that every part can have any structure
and the particular structure of a part, say an electron, is that one
selected by an 6bserver. This ontological position is developed
formally in Chapter IV, with a formal language replacing an
"observer', As we will see, we can recover a set theory from

within a model of part theory, demonstrating the existence of any
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particular set-theory-based structure that we please,

As a method of exploring linguistic and mathematical notions,
thé theory of parts seems to be a powerful tool, It also seems to be
in line with some current thought in the philosophy and history of
science [26, 20]. As to whether it is a completely adequate model of
reality, the answer is of course no, It does seem to offer possibili-
ties for furthering our understanding of formal linguistics and the

relationship between a language and its universe of discourse,

Axioms and Basic Theorems

This axiomitization of part theory was developed by
F. B, Thompson, Some of the theorems in this section are due to
F, B. Thompson, the remainder to R, Lambert [21]. The theorems
are stated here without proof, but we attempt to give the intuition

behind the axioms and basic theorems of the system,

Axiom 1: VaVb[a = b« Vc(cma ~> cmb)] .

a is the same entity as b if and only if they share all their
parts in common, This axiom of extensionality for parts could alter-
nately be taken as a definition of equality in part theory. Note that a

and b are not necessarily parts of any entity,

Axiom 2: VaVb[awb «+Hc(awc) &Vd(dwra — dub)] .
a is a part of b if and only if a is part of something and every
part of a is a part of b, This axiom is a strong form of transitivity

for parts,

The following three theorems establish that w is a partial order-
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ing,
Theorem 3: Va[Hdc(awc)— ama] .
Theoretn VaVblamb &bma—a =b] .,
Theorem 5: VaVbVc[amb &bmc— arwc] .

Definition 6: Let F(a; X eees Xn-l) be a formula of the lower
predicate calculus in which b, ¢, d and e are not free. The only
predicate in F is m and X s eeey X g are the names of n entities,

Then, CTrPa[F(a; X s sens xn_l)] if and only if
Vd[dmc — Tade[F(a; X s e Xn_l)&ewa &end]] & df(cnf) .

Pa[F(a)] is that entity formed by ''conglomerating' all the a
such that F(a) . In forming the conglomerate, parts other than the a
satisfying F(a) may be parts of the conglomerate and the definition
specifies which parts are to be included. In words, c is a part of the
conglomerate if every part of ¢ meets some a satisfying F(a). This
definition and the following axiom schema hold a position in the
theory of parts analogous to the axiom of replacement in Zermelo-
Fraenkel set theory, While the axiom of replacement guarantees
that tl.1e range of a function is a set, here the following axiom schema
guarantees that each conglomerate exists and is the least upper
bound to the collection of a satisfying F(a), That is, we can find an
entity whose parts are just those defined by the formula F together

with all of their parts and the various combinations of these,

)17 .

Axiom Schema 7: AbVc[cmb« cwP [F(a; X, s0o, X
a o n-1
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. ! i N .
Theorem 8: d!b Vc[crb cha[F(a, X s wees xn_l)]] )

The conglomerate is unique and thus is the least upper bound,
with respect to the partial ordering w, to the collection of a satisfy-

ing F(a).
Axiom 9: VaVb[arwb &Hc(awc) — Hd(dma &Ve 5 [end &enwb])] .

If a is not a part of b and a is part of something, then there is
a part of a which is disjoint from b, that is, has no part in common
with b, This axiom guarantees that a and b are distinguishable by
some part which they do not share., The following theorem illustrates

this,
Theorem 10: Vvavb[anb «— Vc(cma — Hd[dmc &drb]) & He(awe)]

a is a part of b if and only if every part of a has a part in

common with b and a is part of something,

Theorem 11: Vb[b = Pa[awb]]

This theorem shows that the theory of parts is well-formed;
b is the conglomerate or least upper bound of the collection of its
parts and since every part can be defined by a formula, every part

has roughly the same degree of credibility,

Axioms 1, 2, and 9 together with axiom schema 7 constitute the
main collection of axioms of the theory of parts, The remaining
definitions and theorems develop the theory far enough to make it

clear that a Boolean algebra can be a model of part theory,

Definition 12: 1 = Pa[a =al
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1 is the universe of parts, obtained by taking the conglomer-

ate over a tautology.

Theorem 13: Valawl - db(awb)] .

Every entity which is a part is a part of the universe and

vice versa,
Definition 14: b+ ¢ = Pa[anb Vawc] .
This defines the union of the parts b and ¢, but does not
guarantee that b + ¢ is a part of the universe,
Theorem 15: b+ c = Pa[a =V a=&] .
This theorem illustrates the nature of conglomerating.

Pa[a =bV a=c] has as parts every part of b and every part of c,

as the following theorem shows,
Theorem 16: VaVbVcl[awmbV amc —-arb+c] .
Theorem 17: VbvVcVd[(valambyv anmc —anwd] &[btcwl])—btcnwd] .

If b + ¢ is a part of the universe, then b + c is the least upper

bound of b and ¢,
Definition 18: b-ec = Pa[aTrb &amwc] .
This defines the intersection of two parts, which may not
always exist as a part of the universe,
Theorem 19: VaVbVc[anmb &anc —~anb-c] .

b« c is the greatest lower bound of b and c .
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Theorem 20: VbVvc[bscml —b.cmc &b.cwb] .

If b.c is part of the universe, then it is a part of b and a part

of ¢ ,

Definition 21: 0 = Pa[a fal .

Zero is the conglomerate over a contradiction, Zero is not
part of any entity and has no parts as the following two theofems
show. This is one of the more pleasing aspects of the theory of
parts, Zero is the only entity without parts and can be said to be
"nothing at all', This is contrasted with the empty set which has
many relations with the remaining sets, such as being a subset of

every set and being a member of certain sets,

Theorem 22: —[0wl] .

Zero is not a part of the universe, so by Theorem 13, it is

not a part of any entity,
Theorem 23: Va[(Vb— (bwa)) <« a =0] .
Zero has no parts, including itself, and is the only such
entity,
Theorem 24: VbVc[— Ja(awb &amwc)«s bec=0] .

b and ¢ have no part in commeon if and only if their intersec-
tion is zero. This theorem is another indication that the theory is

well-formed,

Theorem 25: bdc[bwl &cwl &b fc]—

- VbVe[brml &cwl -~ b.cwl] .
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Theorem 26: Vb[b+0 =b] ,
Theorem 27: Vb[b.0=0] .

The above three theorems illustrate the relations between zero

and other entities,
Theorem 28: Valamwb.c— arwb &amwc] .

Definition 29: b = Pa[Vc(c ma—- — cmwb)] .

%

This defines the complement of b , which is unique by

theorem 8 ,
Theore.m 30: 0 =1 &‘i =) S
Theorem 31: VaVb—[awb &anB] .
b and its complement are di.sjoint.

Theorem 32: Valata =1] .

Part Theory and Boolean Algebra

The theorems of the previous section indicate that a model of
part theory is also a model of a Boolean algebra, What Boolean
-algebras are models of part theory? The answer is only very
uniform Boolean algebras, We will show that a Boolean algebra
which is a direct product of an atomic Boolean algebra and an atom-
less Boolean algebra is a model of part theory, We letamwb
correspond to (2 < b & a # 0) in the Boolean algebra and proceed to
prove the axioms of part theory as theorems of Boolean algebra, As

we will demonstrate, all of the axioms are straight-forward to prove,
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except axiom schema 7, The proof of axiom schema 7 requires that

the least upper bound of

{a\ F(a; X 3 eves Xn—l)}

exist in the Boolean algebré. This existence proof is obtained by
applying the method of elimination of quantifiers [ 317] to
F(a; X s eees Xn—l) , reducing this formula to a standard form for
which it is possible to show the existence of the least upper bound,
Since the proof outlined here is long, it has been relegated to the
appendix, The proof uses, critically and in two different places,
that the Boolean algebra is a direct product of atomic and atomless
factors, This makes it most likely that the direct product condition
is necessary in order that a Boolean algebra be a model of part
theory. Now, assuming that X a exists, we prove the axioms of
part theory as Boolean algebrzgi)theorems.

Let awb be interpreted as (a <b &a # 0) in the Boolean algebra,
The opel-‘ations in the proofs to follow are Boolean algebraic and the

0 and 1 of part theory will be interpreted as the 0 and 1 of the

Boolean algebra,
Axiom 1: VaVb[a =b «~= Vc(cma == c7b)] .

Proof: Assume a =b, Thenc <aifandonlyifc <b. Now assume
vc(cwa <= cwb), In particular, (a <a &a#0)—(a<b&ato)

and b < b—+b <a, hencea=">,
Axiom 2: VaVb[awb « Hc(awc) & Vd(dma — d7wb)])

Proof: Assume awb, Then a < a and every d less than or equal to
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a is also less than or equal to b, Now assume
Hc(awc) & Vd(dma —dwb)., Then if m(a < b), thereisane < a

such that — (e < b), contradiction,

Axiom schema 7: AbVc[cab «— CTTPa[F(a)]] where we have drop-

ped the parameters X s eens x 1 in F for clarity,

We require two lemmas before proceeding with the proof of

axiom schema 7,

Lemma 1: X a exists and is equal to a,
e<a

Proof: We know that a is an upper bound to the set {eleSa} . Since

a€ {e|e<a}, it is the least upper bound,

Lemma 2: If ) a exists, then

F(a)

Bas B 1B el = r e
F(a) F(a) e<a e<agF(a)

Proof: This is a simple application of infinite associativity, as in

Sikorski [28, p. 59].

We turn to the proof of axiom schema 7. Recall that c TrPa [F(a)]

if and only if
Vd[dnc — JTade[F(a) & emma &end]]& Af(cwf) .

Consider b = X a, which exists by the proof in the appeﬁdix. By
F(a)
lemma 2, b = z e . Consider any c¢<b which is not 0,
' e<a&F(a) '
First of all, Hf(cwf) since for allc, ¢ €1, Now consider any

d < ¢ which is not 0, Suppose for all e in {e’e Saé&e# 0 &F(a)}

it is the case that e § d. Then d is disjoint from each e so that
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d-b#0, contradicting d < b, Hence, Hade[F(a) &ema &ewd] .
Now suppose there exists a ¢ satisfying
Vdldmec — Hade(F(a) &ema &ewd)] . We will show that
c <b= 2 a,., Suppose the contrary, Then x=c - b is not zero
and x < lc::‘(fi) But then HaHde(F(a) &e < a &e <x &e # 0) which

implies that e < b, and e £ b & e < x contradicts x.b =0,

The Model

If we accept "is a part of' as the fundamental notion for discuss-
ing informational entities, then we must face the question of how
many parts the universe possesses, The answer must be an infinite
number, Consider some part, say a sheet of paper., It possesses
conceptual parts like the top two-thirds and the margin, These
parts are potentially infinite, Are there any parts which possess no
proper subparts, that is, are there any parts which are atoms?
Assuming that there are no atoms, we can always divide any part of
the universe into smaller subparts., For example, an electron can be
divided into its mass, momentum, position, charge, and so on,
while the electron's mass can be divided into rest mass and energy
mass, and so on as long as we please, There is no claim here that
the parts into which we divide the electron are unique or necessarily
useful for physical theory, The only claim is that we always find a
proper part of any part of an electron,

The assumption of atomlessness can be formalized as an addition-

al axiom of part theory as follows:

Vala £ 0 — db(bwa &b £ a)] .
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With this axiom, only the atomless, therefore infinite, Boolean
algebras are models of part theory, We know from the Lowenheim-
Skolem theorem that any set of axioms has a countable model., In
particular, the theory of atomless parts has a countable model,
Without becoming involved in model-theoretic considerations we
present a countable atomless Boolean algebra, P, as a model of
part theory. Consider half-open intervals (x, y] such that
0 <x, y <1 and such that x and y are rational. FEach such interval
is a part where (Xl’ yl] T (XZ, yz] if and only if 3 = %, and
Yy < Yy - (0, 1] is the universal part of part theory and the unit of
the Boolean algebra, Finite unions of parts are parts, Furthermore,
this model is isomorphic to every countable atomless Boolean
algebra and to the free Boolean algebra on a countable number of
generators [10, p. 54]. P is the smallest of the class of models we
consider, The remaining sections of this chapter discuss properties
of P, Larger models, under suitable conditions, also possess these

properties,

Size

The size of each part of P can be defined by defining a measure
on P, Such a measure exists, For example, a normed finitely
additive effective measure can be obtained as follows [10, p. 56]:
since each part of P is uniquely expressible as a finite union of
disjoint parts, say, p = i?n(xi’ yi] , we define the measure, B, on
each part as P (p) = i?n(yi - Xi) , where here 2 means addition and

Vi © X is the length of the interval (Xi’ Y5 ]. Define the measure of
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the zero of P to be 0,

The size of a part can be thought of as the importance of the part,
its probability, or as its ''physical'' size., Also, the measure can be
used to define a metric on P by setting the distance between two
parts, p, and Py s in P to the measure of their symmetric difference,
d(p;s pp) =#(py = pp) s wherep, = p, = (p; - p,) + (P, - Py).

We prove a lemma useful in the following section,

Lemma: Given € > 0 and a sequence of disjoint parts Pys Pps eees

if pL(pi)?e for each i, then the sequence is finite, Pps sees P oo

Proof: }L(pi + pj) = H(pi) + P(pj) for all i # j since p, and P are
disjoint. The measure of the union of at most 1/€ of the P, is equal
to 1, Since the measure of all parts is less than or equal to 1,

there are only a finite number of disjoint parts with measure =€ ,

I.imit Points and Measure

Let Y be a subclass of 2 model of part theory., A point is a limit
point of Y if there is a sequence of points in Y which, eventually, do
not exclude any part of the limit point and eventually do not include

any point not part of the limit point, Formally, we have

Definition: y is a limit point of Y if there is a sequence Yys Yoo e
of elements of Y such that for any z £ 0, there exists an N for which
j > N implies z- ({r_——'—_gr;) 0

To show that this is equivalent to the sentence above the definition,

letz <y, z#0. Then for some Nand all j> N,

z-(V—'YJ-) = B [(Y-YJ-)+ (§.§j)] =B ¥ £0
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Hence z is not excluded, Similarly, letz <y, z # 0, Then for

some N and all j > N,

.T—: _— o~n~.: o~, O
z «(y YJ) 2259, ZYJ¢

so that z is not included,

Let P be the model of part theory previously defined and let p be the
normed finitely additive effective measure we have defined on it, We
defined the distance between x and y in P by d(x, y) = p(x=-y). We
wish to show that a point is a limit point of a sequence in P if and
only if it is a limit point in the metric space determined by the meas-
ure, Hence the topology determined by the definition of limit point
given above and the metric topology determined by the measure can

be made to coincide,

Theorem: vy is a limit point of Y if and only if p(y = yi) — 0 as

i — o for some sequence Yis Yoo eee inY ,

Proof: Suppose pu(y = Yi) — 0 as i — @ for some sequence Y12 Vs eee -
Consider any z # 0, z has non-zero measure since p is effective,
There exists an N such that for all j > N, u(y = yj) < wp(z) , and so
forallj> N, z- (377-_373.) # 0, For suppose for somek > N,

Z . (y_—'——y—k) =0, Thenz = (y=> yk) thus p(z) < (y = yk) , contradic-

tion, This shows that y is a limit point of {yl, Vs eee } .

Suppose y is a limit point defined by the sequence Vyr Yo eee and
that p(y = yi) does not converge to 0, We will show that for some
€ > 0 there is an infinite subsequence of vy such that

ply = yi) = € , For if ply = Yi) does not converge to 0 there is an
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€>0 such that for all M there exists an i>M such that p(y = yi) =€ ,
Since y is a limit point, there exists an N such that for all
j>N (y = yi) £ (y = yj) . We form the infinite subsequence as
follows: Let M =1. Then there is an il such that p(y = yil) =08
il determines an N such that for all j > N (y = Yil) £ (y = yj) . Now
let M = max(il, N) to determine i2 . Continuing in this way, we have
e < e

previous section, the (y = A ) of this subsequence are not disjoint,

and for each k, p(y =~ Y3 ) 2 € . By the lemma of the
k

In fact, the lemma shows there must be a z # 0 such that
z < (y =~ Y5 ) for an infinite number of k , This contradicts the
assumption that y is a limit point, proving that R(y = Yi) — 0 as

i— o if y is a limit point,

Automorphisms

An automorphism on P is a one-to-one function, g, from P onto
P such that g(x)wg(y) iff xwy . If P is countable and atomless, P
has 2° automorphisms [10, p. 50], If P is a model of a static
world, then the automorphisms model the changes which take place
in that world, If an automorphism g interchanges two parts, then the
change which has taken place is that interchange., This notion of
change is very general and does not lead directly to a notion of time,
However, by metrizing the group of automorphisms of P, we can
consider time to be a continuous map from the real line to the group
of automorphisms, If g and h are automorphisms, define d*[g, h] =
suppd[g(x), bix)1.

There are some philosophical difficulties associated with this
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notion of change, which the following example illustrates, Suppose
we have a red pencil, which burns and changes to black soot, If the
redness of the pencil is a part of the pencil, then under the auto-
morphism changing the red pencil into black soot, the ''red'" part is
transformed into some part of the soot, and the soot is not red.
Hence the automorphism does not preserve sensual redness,
Furthermore, some part of the red pencil must be transforrhed into
the '"black' part of the soot even though it appears that the red pencil
has no black part, For the time being, we just accept this difficulty
as indicating that our notion of change is a rather crude one, We will
return to this problem in Chapter VI, after having considered the

relationship between part theory and formal languages.
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IV, GROUPS OF AUTOMORPHISMS

In this chapter we develop some of the consequences of consider-
ing a formal language to have a model of part theory as its universe
of discourse, One of these consequences is that the structural
semantic transformations are the Boolean functions on the model of
part theory, including the infinite Boolean functions defined in terms
of the abstraction operation considered in this chapter, The
interesting semantic transformations are not a priori structural but
impose a richer structure on the model of part theory than it orig-
inally possessed. In this sense we can say that a formal language
determines the structure of its universe of discourse,

This structure can be characterized by a group of automorph-
isms, The results in this chapter stem from considering the groups
of automorphisms associated with formal languages. With each
formal language we associate the largest group of automorphisms
under which the formal language is invariant, The characterization
of a fc‘)rmal language by its associated group is imperfect in the
sense that several formal languages may be associated with a given
group, However one may then say that these several languages all
give the same structure to the universe of discourse,

In considering this structure, we see that the parts definable by
the formal language are those to which it gives additional structure,

and undefinable parts are left unrestricted, except in so far as they
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are parts of definable entities, The following example illustrates
several matters which are treated formally in the remainder of the
chapter,

Suppose we have a formal language which discusses the interrela-
tionships of objects in a room, The referent words of the language
may be '"'desk', "table', and ''chair'' together with function words
which select particular semantic transformations, such as 'to the
left of'" and "under'., In this formal language, the left two-thirds of
a desk is an undefinable part, Without additional referents aﬁd
possibly additional semantic transformations, this entity is
indescribable in the given formal language., In this case a desk is an
atom in the algebra of definable parts.

Continuing this example, suppose in the room which is our
universe of discourse every desk is to the left of a table, If we
permute the desks then the structure ''every desk is to the left of a
table'" remains invariant, These permutations are in the group of
the formal language provided they preserve all of the structure
determined by the formal language, Assuming the permutations of
desks do preserve the language, we see that two desks cannot be
distin‘guished if they are permuted one into the other, As far as this
formal language is concerned they are indistinguishable and the

syntactic entities which name or describe them are synonomous,

The Group of a Formal Language

Let F =< T, K, X> be a formal language over a model of part

theory, P ,
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Definition: Let G be a subgroup of the group of all automorphisms of
P . G is the group of the formal language F if for every basic or
derived semantic transformation, 7, of F and every sequence

(Xl’ oLy xn) of referents in X such that
T(le eoe Xn) = (Yls ece 3 Yk)

and for every g in G,
T(g(x)s wees g(x ) = (8y;)s «evs glyg)) &

Under this definition, G is the group of the formal language F if
every automorphism in G commutes with every semantic transforma-
tion of F whenever the semantic transformation is defined, We may
symbolize the fact that the automorphism g commutes with the
semantic transformation 7, in the sense of the definition, by
gT=7g. The group G is said to leave the formal language F invar-
jant since for each change in G and each semantic transformation of
F we obtain the same result no matter whether the change or the
semantic transformation is done first,

We now define indistinguishability of parts,

Definition: A is an orbit of P under G if A is a subclass of P and for

every x and y in A there is a g in G such that g(x) =y .

Definition: Let GF be the group of the formal language ¥, If two
parts are in the same orbit under GF , then they are indistinguish-

able by F,

As another example of indistinguishability suppose we have a
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formal language which includes the word '"'Scott' and the phrase
"author of Waverly'. '"Scott'" is interpreted as some part x and
"author of Waverly' as some other part, y. Now if there is an
automorphism g in the group of the formal language such that g(x) =y
then '"'Scott' and "author of Waverly' are indistinguishable by the
the formal language under consideration, To say ''Scott is the author
of Waverly'" is to assert that x and y are equivalent under the group
of the formal language and x may or may not be equal toy . Now
suppose there is a phrase involving the word '"'Scott'" corresponding
to the semantic transformation T on the sequence of referents
(=, Zis eees zk) such that 7(x, Zis eees zk) = (wl, S5 wn) . Then
7(y, g(zl), el g(Zk)) = (g(wl)’ G g(wn)) . This shows that we
can replace "'Scott'" by '"author of Waverly' in the given phrase and
the new phrase's meaning is indistinguishable from the original

phrase,

Transformation Closure of a Group

The structure determined by a formal language may also be
characterized by the collection of all semantic transformations
invariant under the group of the formal language., The semantic
transformation closure of a group of automorphisms is the collection
of all semantic transformations which commute with every auto-

morphism in the group, The formal definition follows,

Definition: LG is the semantic transformation closure of G if L.G is
the collection of all semantic transformations, 7, satisfying the

following property: for each pair of sequences of parts (Xl’ voo s Xn)
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and (yl, s yk) such that

T(Xl’ eeo 3 xn) = (y1’ Ll Yk)
then for each g in G we have
T(g(x))s eees glx))) = (g8ly )y oens glyg)) ©

If GF is the group of a formal language F then LGF includes
every basic and derived semantic transformation of F then these
transformations are considered to be restricted to definable parts,
LGF may be thought of as the collection of all semantic transforma-
tions admissable under GF , While we can think of LGF as
constructible by infinite methods from ¥ , LGF is not in general
finitely constructible from F as the following argument shows,

Given a group of automorphisms, G, consider the collection of
all parts in P which are fixed under the action of G, These form a
subalgebra of P, say B, Now consider all the functions from B to
B . Each such function is admissable under G and so is a semantic
transformation in .G, If B is infinite, then the collection of all
functions from B to B is uncountable and hence so is LG .

Roughly speaking, in LGF there is a serﬁantic transformation
from almost any sequence of definable parts into almost any other
sequence, Somewhat more precisely, LGF includes every potential,
applicable semantic transformation, given the particular synonymi-
ties of the group G, In LGF we can get to any definable part from
the referents of ¥, Can we get to any other parts by the application

of semantic transformations in LGF which are not derivable from the



44 .
basic semantic transformations of F? In general the answer is yes,
however, in the next section, we describe how F can be strong enough

so that everything definable by LGF is also definable by F ,

Definability

Definition: Let F be a formal language <T, K, X> , Then let DF
be the collection of contextually definable parts relative to the formal
language F, Let DLGF be the collection of contextually definable
parts relative to the class of referents X and the collection of

semantic transformations LGF .

Clearly DF is a subclass of DLGF , We are interested in deter-
mining when DF = DLGF , This requires considering the topology of

P .

Theorem: Every automorphism of P is a homeomorphism when P is

endowed with the metric topology induced by the measure p .

Proof: Let g be an automorphism of P, Suppose lim X, =P and

lim g(x;) # g(p) . Then lim (g(x;) - g(p)) = c # 0. Hence for some

N and for all j > N, cv(g(xj) - g(p)) , so that g—l (c) (Xj - p) and
g-l(c) # 0, contradicting lim X, =P. Thus g preserves all the limit

points in P .

If there is a2 sequence of parts % in DF such that lim X, =Y,
then we say that DF has y as a limit point, If all the limit points of
DF are in DF , then DF is closed., If y is a limit point of DF and g
is any automorphism, then the image of DF under g possesses g(y)

as a limit point, So if DF has a limit point, there is a semantic
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transformation in LGF from at least one definable part of DF to the
limit point, For if lim X, =Y, and every X is in DF , then a
semantic transformation, T, defined only on the x, such that 'r(xi) = ap
commutes with every g in G . This shows that limit points of DF are

in DL.GF and suggests the following theorem,

Theorem: If DF is closed in the measure topology, then DLGF is

equal to the subalgebra generated by DF ,

Proof: Since DLGF properly contéins DF , there is a semantic
transformation in LGF from a sequence of parts in DF to a sequence
of parts in DLGF - DF , This in turn implies the existence of a
semantic transformation in LGFE from a sequence of parts in DF to a
single part in DLGF - DF . So suppose we have T(Xl, cers xn) 2 W
where X1 eees X ave in DF and y is not in the subalgebra generated
by DF ., Then we will show that there is an automorphism, g, in
GF such that X5 eew, X arve fixed under g while g(y) # y . This
means that T is not a semantic transformation in LGF and y is not in

DLGE, .,

The proof is completed by considering the various possible
Boolean algebraic relationships between y and the subalgebra gener-
ated by DF ,

(i) y is disjoint from every x in DF , Then there are two
subcases. First, y is the largest part disjoint from every x in DF A
In this case ¥ = L DF and since DF is closed, ZTDF is in DF and so y
is in the subalgebra generated by DF , Second, y is not the comple-

ment of ZDF , Then there is some z such that ywz and z is disjoint
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from every x in DF , Consider the group of all automorphisms of
the principal ideal generated by z . These automorphisms can be
extended to automorphisms of P by considering them to act trivially
on the parts of z , Since every x in DF is a part of z , these auto-
morphisms are the identity on every definable part, including
Xpveens X o Furthermore, some of these automorphisms move y .
Since these automorphisms fix the definable parts, this group is a
subgroup of G, We have obtained a contradiction, which shows that
if (%), o0, x )=y, then either y = U DF or y has a part in common
with some x in DF ,
(ii) Now if y is not covered by parts in DF , then there is
some part of y to which (i) applies. So we will assume that y is a
part of some x in the subalgebra generated by DF ., Since 'y is, by
assumption, not in the subalgebra generated by DF , it must be the
case that some part of y is a proper part of an atom of the subalge-
bra, say z . Now consider the group of automorphisms of (z) as
extended to automorphisms of P, The analysis in (i) applies to show
that for some g in GF , y is moved while Xps eees X are not,
The fact that DF is closed has been used implicitly in the proof,
For if DF were not closed, then limit points of DF would not be in

the algebra generated by DF although they are preserved by GF .,

Closures on Formal Languages

With the above theorem in mind, we study two closures on

formal languages,

The question of when DF = DLGF is of some importance if we
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feel that the essentially infinite processes, the undefinable semantic
transformations, described as LGF , should be admitted as the
completion of a formal language. That is, if we speak a completely
formal language as described here, then our "intuition' roughly
corresponds to the undefinable transformations in LGF . If this
seems reasonable, then for DF to equal DLGF means we have a
language powerful enough to formally define everything we can
"intuitively'' define beginning with the synonymities and structure
described by G .

As we show, a language is "intuitively'' complete when every
limit point of the definable parts is determined by a single semantic
transformation. An example is the set of all integers considered as
a limit determined by the successor function,

Given a formal language <T, K, X> over a model of part theory,
P, we can always extend the formal language to include those
semantic transformations which are invariant under every auto-.-
morphism of P, These semantic transformations include part
theoretic union, intersection, and complement, a selection function
€ , and all of the projection functions 6? . The selection function
{(x, vy, z)is equal to y if x = 0 and is equal to z otherwise, The
projection function 6? projects onto the itll- component of a sequence
of length n , 6?(x1, el Xn) =% . .

We define BF , where F =<T, K, X>, to be the collection of
semantic transformations derivable from T together with the
Boolean operations on P, Q- , and the 6? . Because of the projection

functions, any part definable by BF from X is context-free definable,
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If we considered only a finite number of projection functions, we
could extend F to another formal language, F¥', whose basic
semantic transformations are those in T together with { , the finite
collection of projection functions, and the Boolean operations on P,
In either case the definable parts, DBF or DF', are their own
subalgebras,

The second closure on a formal language involves an abstraction
operator, The abstraction operator takes the conglomerate over
semantic transformations rather than formulas, We then show that
the semantic transformations derived from BF by abstraction are in

LGF ., In the following development we write xg for g(x) and y for
Y1’ eo0o 3 Yn °

Theorem: If g is an automorphism of a model of part theory, then
ey [F(z)]g = Pzg[F(z)]

where F(z) is a formula with z free,

Proof: Vd[dny <+ dgwyg] since g is an automorphism, Thus we

have
ygTrPZg[F(z)]
~—Vd[dgrnyg — HzHe(F(z) & egmzg & egmndg)] & Af(ygwi)
«—Vd[dnry = TzHe(F(z) & enwz & ewd)] & Tf(y wf)

- yan[F(z)] .

— ygmP [F(2)]g .
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Theorem: If F (z, y) is a formula of the lower predicate calculus

whose atomic formulas are of the form tl(i) = t2(§) and t,» t, are

semantic transformations, then
P [F(z, y)] = P, [7(z, ¥) = 0]

where T(z, y) is a semantic transformation,

Proof: (i) Any atomic formula tl('i) = 1:2(§) can be reduced to

tl(SE) o tz(SZ) = 0, where = denotes symmetric difference,

(ii) tl(EE) =0& t2(§) =0 iff tl(i) + tZ(SE) =,

t1(§) = BN t2(§) = 0 4ff tl(E).tZ(SE) =8
(iii) t(x) # 0 iff B [t(X) = 0] =0, where z is not free in t(x).
(iv) dy[tly, X) = 0] iff Py[t(y, X)=0]40

iff PZ[Py[t(y, X)=0]=0] =0, where z is not free in

t(x) . Note that here I means there is a part,

Thus any formula is reducible to 7(x) = 0 for the appropriate 7
involving the original semantic transformations of the formula, and
the additional operations =~ , +, «, and PZ[ |

We can now define the abstraction of a semantic transformation,

Definition: If 7(y, X) is a semantic transformation, define

Tq(§) = pY[T(Y’ x)=0] .

The following lemma shows that if T is in LG for some G, then
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so Tq , if it exists,

Lemma: Let g be an automorphism of a model of part theory, If
(y. X)g = 7lyg, Xg)then 7 (x)g =T (xg) .

Proof: Suppose T(y, X)g = 7(yg, xg). By the theorem above we

have

g =R [y, N =0lg=F [y, ®=0]=F [y gt %) =0],

and by definition,
T ixeg)l=P [vly, xg)=0] .
q%8) = E [7ly, xg) = 0]

If we can show that T(g—ly, x) = 0 «—T(y, gx) = 0 then 'rq(x)g =
-rq(?c_g) . Recalling that xg = 0 == x = 0, we have 7(y g_l, x} = O iff

T(y gﬁl, X)g = 0 and T(y g_l, x)g = 7(y, xg), completing the proof,

The following is an intuitive justification for considering the
abstraction operation as a linguistic process, If Yys sees ¥, aTe
definable parts such that 'r(yi, x) = 0, we know the structure of
Yy eees Yy in the context X as determined by the 'formula' or
semantic transformation T(y, x) = 0, The intuition is that we know
enough to abstract to that part which is the conglomerate of all parts,
y , with the structure determined by 7(y, X) = 0, although all of these
parts may not be definable,

For example, if we know a few men, say John, Jack, and Joe,
‘'we can abstract to "man'', without having met all men, While the
extension of ''man' is presumably the class of all living men, the

abstraction we obtain by conglomerating is somewhat closer to the
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intension of man, that is, the conglomerate of those entities with the
structure of any man, Furthermore we can reach the abstraction
"man'' without having enumerated all men,

It is reasonable to assume that formal languages of any strength
include quantifiers and the sentential connectives, The sentential
connectives correspond to the Boolean semantic transformations and
the quantifiers correspond to the abstraction operation, as illustrated
in the following paragraph,

Suppose, in a given formal language, we have a grammatical
string of words, Wi eeo Wo o corresponding to the sequence of
referents (Xl’ - xn) . Further suppose that Wi eee W is a logical
sentence, either true or false, whose truth value is determined by a
semantic tfansforrnation T with value 0 just in case (xl, b xn)
corresponds to a true sentence, T can be thought of as a characteris-
tic function on sequences of length n, We assume that there is
another such string wj ... w  with associated characteristic function

i)

IR and W'1 WI"n” is true just in case

ik 1 o : . 1" :
T(xl, “es 3 xn) T (Xl’ a5 xm) 0., Consider the phrase ""There is a

7', Then "w

Wy such that Wi ees W oo "' This is a true sentence just in case there

is a part y such that 7(y, Xos eees xn) =0, Now
H = i 1 =

y[*(y, Xos eees X)) 0] if and only if Py['r(y, Xpp wees X ) D140,
We may rewrite the latter as Tq(XZ, FALE- xn) # 0, This shows that
quantification on the syntactic level corresponds to abstraction on
the semantic level,

The closure BF of a formal language F includes the Boolean

semantic transformations, To include the abstraction operation, and
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thus the quantifiers, we define the abstraction closure of a formal

language,

Definition: If F is a formal language, then PF is the smallest class

including BF and, if T is in PF , then Tq ig in PE .,

Suppose for every limit point, y , of DPF there is a sequence X,
converging to y and the collection %, is exactly the image of some T
in PF , If each x; is part of y we have y = PZ [Ix(T(x) = z)] and if y
is part of each X, Y= Pz [VXVW(T(X) =w —z+.w =12)]. Thus DPF
is closed. By the above lemma, the formulas inside PZ[ ] can be
replaced by semantic transformations, Under these conditions we
have DPF = DLGF , If some other part theoretic relationship holds
between the sequence x, and y , then this method of obtaining the
limit point by abstraction does not appear to work, In any case, if
there is a limit point of DPF for which no sequence converging to it
is definable by a finite number of semantic transformations, then

DPF is not closed,

Galois Connection

In developing the Galois connection [7] between the groups of
formal languages and the semantic transformation closures of the
groups, we assume that the formal languages all have the same
collection of referents, X, If we have two formal languages

=T, K., X> and B, =<T

1 gr Peye 2 2 KZ’ X>, by the union of the two

languages, ¥, + FZ , we mean the formal language

1

<T1 + TZ’ Kl + KZ’ X> , CF denotes the collection of all derived
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semantic transformations of ¥ , By the union-of two groups,
G1 + GZ , we mean the smallest group including both C‘x1 and G2 .

Since the proofs of the lemmas which establish the Galois connec-
tion are straight-forward, we use the following notation, By 1 €F we
mean that T is a basic semantic transformation of ¥, By gt =71g,
we mean that the semantic transformation T commutes with the auto-
morphism g in the manner used to define the group of a formal
language.

The first seven lemmas develop the Galois connection for

arbitrary groups of automorphisms and their semantic transforma-

tion closures,
Iemmma 17 G <SGLG. .

e o
Proof: geGo—> VTELGO( gT="Tg)— geGLGO ¢
Lemma 2: LGLG = 1LG_ .,

o o
Proof: Te LGO — Vge GLGo(gT =Tg)— TE LGLGO !
TELGLGO — VgEGLGO(gT = 5y
g VgGGo(gT =Tg)— TGLGO v

Lemma 3: G € G, — LG 2 LG, .

o 1 0 1

Proof: Assume GOE Gl . Then 'rGLG:l — VgGGl(g-r = 7g)
- VgEGo(g'r =Tg) — TELGO P

Lemma 4: Gl +1G, = G(LG1 . LGZ)

2 =
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Proof: geG; + G, — VT€LG, +LG,(gT = 7g) — geG(LG, - LG,) .

Lemma 5: L(Gl + Gz) — 301 LG2 .

1

Proof: 'l'GJL(G1 - GZ) e VgeGl + GZ(gT =18}
-~ VgeGl(gT =Tg) & VgEGZ(gT =7 g}

-~ 'reLGl &T€LG2 ~— 'reLG1 . LG2 "

Lemma 6: LG(LG, LGZ) = LG, - LG

1 1 2z

Proof: Apply lemma 5, lemma 2, and then lemma 5 again,

Lemma 7: L(G1 . GZ)E LG1 + LGZ .

Proof: 7€ LG, + LG2 — vVgeG

1 -GZ(gT:Tg)—»TGL(Gl'GZ) .

1

The remaining results complete the Galois connection for groups

over formal languages and their semantic transformation closures,
Lemma 8: GLGF = GF .,

Proof: Since we have lemma 1, it only remains to show that
GLGF € GF ., Suppose there is a gec GLGF not in GF, Then
g does not commute with some semantic transformation in
CF, and since CF £ LGF , g does not commute with every

semantic transformation in GLGF , contradiction,
Lemma 9: G(LGFl + LGFZ) = GFI . GF2 .

Proof: ge G(LGF, + LGFZ)

1

— VTE LGFl(gT =7T1g)&VrTe LGFZ(gT = Tg)
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~—ge GF, &ge GF2<—»gG GF, - GF

1 1 & %

Lemma 10: GF ’GFZ:G(F +F2) .

1 1

Proef: ge'GE -GF2 ~— V7€ Fl(g'r =Tg)& Vre Fz(g'r =T g)

1

-~ ¥re F, + F (g7 = Tg) =+ ge G(F, +F,) .

Lemma 11: G(LGF .LGFZ)EG(CFI-CFZ) .

1

Proof: ge G(LGF, . LGFZ) — V7e 1L.GF. » LGF,(gT = T} .,

1
-CFZELGFloLGF

1

Since CF € L.GF we have CFI 2

Thus ge G(LGF; « LGF,) —~ Vre CF

1 1

Lemma 12: LGFl'LGFZ QLG(CFI'CFZ) .

Proof: Apply lemmas 3 and 2 to the result of lemma 11,

Theorem 13: G(CF, - CFZ) = GLGE . » LGFZ) :

1 1

Proof: By lemma 12 we have

e . [ | .
LGF, + LGF, £ LG(CF, *CF,) . So

ge G(CF, - CFZ) — VTE LG(CF1 . CFZ) (gT=71g)

1

— V7€ LGF, * LGF,(gT = 7g)

— g€ G(LGF, - LGF,) .

1

Together with lemma 11, this proves the theorem,

«CF,(gT = Tg)— g€ G(CFlc CFZ)'
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& LGF, - LGF,
G(LGF, * LGF,) = LG(CF, *CF,)
= G(CF, - CF,) : :
GF, + GF,
LGF
GF, <
LGF, + LGF,
GFy+ GF,
=G(F; +T;) ¥ =g L(GF, - GF,)

Diagram of the
Galois Connection
Between
Formal Languages
and Their

Semantic Transformation Closure,
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V. SET THEORY

In Chapter II we mentioned that the universe of discourse of a
formal language can always be considered a model of set theory and
in Chapter IV we considered the universe of discourse a model of
part theory, Of course we can always model part theory in set
theory to obtain a set-theoretical universe of discourse for a formal
language., Can we, for a given formal language, find a submodel of
an appropriate model of part theory which is both a set theory and
the universe of discourse of the language? This question is not
trivial since part theory is weaker than set theory and since we are
looking for a set theory which can serve as the universe of discourse
of a given language, In this chapter we show that a set theory can be
imbedded in appropriate models of part tﬁeory. This imbedding is
not arbitrary, but the consequence of certain strong formal
languages. Indeed one may say that the central result of this thesis
is the fact that strong formal languages determine their own set
theory, which is stru‘cturally determined by the formal language and
intimately connected with the part-whole relation, This is very
different from the rather ad hoc relationship between an !"outside' set
theory and a model of part theory,

We assume we have a semantic transformation s which satisfies
the following two properties, where we write sx for s(x):

(i) VxHzVy(x#y — zwsx-sy) ,
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(i) Vx(sx 7 1)

The first property guarantees that s is one-to-one since there is a
part which distinguishes sx from sy for all y, This semantic trans-
formation is to be thought of as the singleton function of set theory,
sx = x}. s need only be defined on those parts which are '"'sets", but
we can also assume that s is defined on all of the model of part
theory. If s is not everywhere defined, then property (i) can be
rewritten to hold only for those x such that sx is defined, We can
think of s as a predicate true of (x, y) iff sx =y,

In order to develop the set theory, we require that the model of

part theory, P, have the following property:

If F(z) is any formula with z free over the predi-
cates m and s, then PZ[F(z)] exists in P,
This is considerably stronger than the original axiom schema of
part theory, although maintaining its flavor, In particular, the
countable atomless Boolean algebra does not have the above property
for any s,
Now we can say that a part x is a set if it satisfies the following
equation:

x = Pz[z mx &dy(sy = z)] .

This equation will be denoted by Set(x) in the sequel, The equation
guarantees that x is a set just in case it is the least upper bound of
all the singletons which are part of x, We define set membership as
follows:

x €y = Set(y) &sxnwy ,
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We can now prove that the singleton parts are sets,
Lemma: Vx[Set(sx)]

Proof: By property (ii) of s together with theorems 13 and 3 of part
theory, sx w P [z m sx &dy(sy = z)] . It remains to show that

Pz[z msx & dy(sy = z)] w sx, Suppose there is some

w T Pz[z m sx & Jy(sy = z)] such that w is disjoint from sx . But
since every part of w must have all of its parts in common with the
various sy in the conglomerate, there is at least one Y, ¥ #x, such
that sy = PZ[z msx & dy(sy = z)]. However, every part of sy must
have a part in common with sx in order that sy be part of

Pz[z m sx & dy(sy = z)], so sy cannot satisfy property (i), and we

have obtained a contradiction, Hence

SX——P[ZTTSX&E[Y =z)] .

The following lemma shows that singleton sets have no sets as

proper parts,
Lemma: Vx[dy(x 7 sy & x # sy) — — Set(x)]

Proof: Assume Hy(x 7 sy &x # sy) . We must show that

x = [z mx & Hy(sy = z)]., First we note that since x 7w sy , xis
not the zero of the part theory., Now suppose x is a set, Then every
singleton set which is a part of x is a proper part of sy , contradict-

ing property (i) of s,

We use the Zermelo-Fraenkel axiom system for set theory. We
will show that those parts of P for which Set(x) holds satisfy the

Zermelo-Fraenkel axioms, except for regularity and choice, At that
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point two alternatives are open to us, We can assume that the s
function satisfies the axiom of regularity or we can develop a
constructive theory of sets, in which the axiom of regularity can be
proved, Not every part satisfying Set(x) is a constructive set,
however. This latter approach has the advantage that Godel [12, 13]
has proved the axiom of choice for the constructive sets, Since
Cohen [6] has given a clear exposition of the constructive method for
Zermelo-Fraenkel set theory, our presentation is formal, completing
the details of Cohen's presentation,

We can write a predicate of set theory which is true just in case
its argument is constructive, With the aid of the imbedding to be
presented, this predicate can also be written for part theory, and
those parts which satisfy this predicate are the sets satisfying all the
axioms of set theory, including regularity and choice,

We turn to the prooof of the axioms of set theory within part

theory, We recall that
x €y - Set(y) &sxmy .

With the aid of this definition, we translate the axioms of set theory
into statements of part theory for the proofs to follow, The order

and presentation of the axioms of set theory follows Cohen [6],
1. Extensionality
VxVy [Set(x) & Set(y) — (Vz[sz w x «— sz Tyl —x=y)]

Proof: Suppose x and y are sets and that every singleton part of x is

a part of y. We will show that Vz(z mx — z wy). Consider any
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z mx, Then since x1is a set, we have z « Pz[z m™x &dw(sw = z)],
that is, Vdldnz - dade(fanx &dw(sw=2a)&ema &e wd)].
Since every singleton part of x is a part of y we have z my . The

same proof in the other direction shows that x =y ,
2, Null Set
Tx[Set(x) & Vy(— sy mx)]

Proof: 0 is a set which has no parts, Thus the zero of part theory

can be used as the null set,
3. Unordered Pairs
VxVy[Set(x) & Set(y) — Hz(Set(z) & Vwlsw 1z ~> w=xVw=y])]

Proof: Given sets x and y , consider z = sx + sy , where + is part
theoretic union, By property (i) of s, the only singleton sets which
are part of z are sx and sy, Also, z is a set since it is the least

upper bound of sx and sy ,
4, TUnion
vx[Set(x) — HAy(Set(y) & Vzlsz 7y < Ht(Set(t) & sz w t& st wx)])]

Proof: Consider y = Pt[st mx & Set(t)]. Suppose y is not a set,
Then there is a ¢ wy such that c is disjoint from each singleton set
in y . Call this part S But every part, d, of £, must have a part
in common with some td such that std ™TX & Set(td) S0 5 shares a
part with some singleton part of t, hence of y, This contradiction

shows that y is a set, Now, if we have some t and z such that

Set(t) & sz mt & st m x, we have sz 1y . For the reverse implica-
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tion let sz be some singleton part of y for which it is not the case
that Hdt(Set(t) & sz wt & st mx), We will use property (i) of s to
derive a contradiction., By property (i) there is a part of sz, say w,
which has no part in common with any other singleton set. But every
part d of w must have a part in common with some t . such that

d
sty mx & Set(td) . Hence w shares a part with some singleton part of
some t, contradiction, Thus if sz wy then
Ht(set(t) & sz mt & st m x), completing the proof of the union axiom,

Note that Set(t) in Pt[st m x & Set(t)] can be rewritten as

[Vd[dnt -~ Tade(F(a) &ema&end)]&tnl]
&[(Vd[d mrc - TaTe(F(a) &ema &end)] &cwl)—cmt]

where

F(a) = a vt &dw(sw = a)

which shows that Set(t) is a formula over m and s alone, and so we

have guaranteed the existence of Pt[st ™ x & Set(t)] .
5. Infinity
Hx[Set(x) & s0 mx &Vy(sy mx — s(y + sy) 7 x)]
Proof: Let ©2(x) be the following formula of part theory:
s0 mx &Vy(sy mx — s(y + sy) 7 x) .

Let w = PZ[Q(Z) & Vx(2(x) = z mx)] . Clearly o satisfies  and so it
satisfies the axiom of infinity if it is a set, If wis not a set then
there is some ¢ w ® such that c is disjoint from every singleton set in
w, In this case w' = w - ¢ satisfies 2 , and since w satisfies 2 we

have wm w - ¢, showing that ¢ = 0, contradicting ¢ # w, So we have
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Set(w) ,

6n' Replacement

To state the axiom of replacement, we enumerate the formu-
las of part theory over m and s with at least two free variables,
An(x, v; tl’ g =, tk) where k depends on n, We may think of the

t as parameters of the formula A . The axiom of replace-

1, eve tk

ment then reads

Vt) oot [Vx(Set(x) —~ 3!y [Set(y) &'An(x, Yitys oo §)1) — V23w B(z, w)]

where
B(z, w) «— [Set(z) — Set(w) & Vr(sr mw <«—

FqlSet(q) &sqmz &A (q, 15 t, ..o, £)D] .

Fixing tl, e tk 5 1t An(x, y) determines y uniquely for each set
x, y = f(x), then the range of f, when f is restricted to the set z , is

a set,

Proof: Suppose it is the case that Vx(Set(x) — H!y[Set(y) & An(x, v)])

where we assume t., ..., t, are fixed and so have dropped them from

1’
our formal presentation, To show that Vzdw B(z, w), let z be any

part satisfying Set(z), Define

w = Pa[ﬂb(sb

a &dq[Set(q) &sqmz & A (g, B)])] .

w is a set since it is a conglomerate of singletons, Furthermore we

have

Vr(sr m w = dql[Set(q) &sq 7z & An(q, r)])
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since if sr m w then by the definition of w we have
HqlSet(q) & sq mz & A (g, r)] while if we are given an r such that
dq[Set(q) & sq mz & A (q, r)] then sr m w, again by the definition of

w . Hence the axiom of replacement holds,

7. Power Set

We define the subset relation by
z € X~ Vw(sw Tz — swTXx) .

Then the statement of the power set axiom we prove here is

Vxdy Vz[sz my ~—zSx] .

This version of the power set axiom is much stronger than is requir-
ed to show that the power set of every set exists, For we have here
that the power parts of every part, set or not, are parts, As the
proof indicates, the smallest power part is a set so that the power

set axiom holds when it is restricted to those parts satisfying Set(x) .

Proof: Given a part x, consider y = Pa[Hb(sb =a &bgesx)] . Since
y is a conglomerate of singletons, we have Set(y) , whether x is a set
or not, Clearly if z is a subset of x then sz my . Now consider any
singleton which is a part of y, Since the singletons are unique func-
tions of their arguments by property (i) , any singleton part of y must
satisfy the formula defin-ing y . Hence y is exactly the power set of

>, G
8. Axiom of Regularity
Vx[Set(x) &x # 0 — Hy(Set(y) & sy 1 x & Vz[sz 1 x - sz wy])]

Parts satisfying this axiom are said to be well-founded. As was
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remarked earlier, the singleton function s has not been restricted
enough to prove the axiom of regularity., However, with the seven
axioms we have proved, it is possible to consider just the construc-

tive sets, for which the axiom of regularity can be proved,

Constructive Set Theory

In order to describe the constructive set theory, we define the

ordinals of the model of set theory,
Definition: A part x is transitive if
szwy &8y TX — Sz TX ,

Definition: A part x is well-ordered by € if € orders xand if y w x
and y is a set then Hz[ze y &Vw(w € y — — w € z)], where

a € b« Set(b) &sawhb .,

Definition: A part o is an ordinal if ¢ is a set well-ordered by € and

o 1s transitive,

Next we will define an ordinal sequence of sets which contain all
the constructible sets, We will require a method which given a set,

X , obtains the set, X', of all sets constructible from X ,

Definition: ILet X be a set, We define the set X' by forming the union
of X and the set of all sets y defined by a formula restricted to X,
That is, consider any formula over w and s with at least one free

variable,

A(z; ty, ees f )
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Then let AX(z; tl’ via'els tk) be the formula A with all bound variablés
restricted to sets in X, Let Xis eees X be fixed sets in X, and

define

= PSZ[sz ™ X &AX’(Z; Xis eees xk)] 2

Now let Y = Psy[ if A(z; t1s eees tk) is a formula over w and s then

v = Psz[sz T X & Ay(z; Xy, e, xk)]] , andlet X' = X+Y .

This definition still requires a complete formalization, This is
done by defining a single formula B(X, z) which is satisfied just in
case z = X', We return to this after completing the presentation of

constructive set theory,

Definition: If ¢ is an ordinal larger than 0, define Ma = - Mﬁ)' ’
p<a
where the union is set theoretic, X MB is guaranteed to exist by the
B <«

replacement and union axioms, Define Mo = 0.

Definition: A set x is constructible if there exists an ordinal, o,

such that x € Ma L

It only remains to show that the Zermelo-Fraenkel axioms hold
for the constructible sets, Since this is done in Cohen [6, p. 891,
we do not repeat the proofs here, The only axiom we must independ-
ently check is the axiom of infinity since Cohen's proof appears to
require the axiom of regularity, Since in our proof of the axiom of
infinity we demonstrated the set of all integers, w, we only need to
note that w is an ordinal and that w € Mw+1 , to show that w is

constructible,

We turn to formalizing the relation Y = X', For each r 20 let



67~
Xr denote the set of all sets S of sequences of length n ,
(xl, et xn) , for which there is a formula
A(Xl’ cees X ; tl’ e tm) with exactly r quantifiers and ¥ & X such

that

S = {(X1’ o0 3 xn)le(Xl’ eco Xn; Yl’ o090 3 Ym)}

Then X' is the set of all sequences of length 1 which are in any Xr .
We show that the relation Y = Xr is expressible in part theory
with s, The relation Y = Xo is expressed by defining the sets S
which arise from the quantifier-free formulas by induction on the
length of the formula, The following formulas are used in defining
the relation Y = X0 . The notation here is that <x, y> is the ordered

pair composed of x and y and <x, y, z> = <x, <y, z>> ,

Hl(X, Y) +— Vx(x€ Y —
Hyly € Y& Vz(z € y - Huldv(z = <u, v> &v € x &u € X))

&VuvviHz(ue X&veEx—z=<u v>&z € y)])

HZ(X’ Y)~—Vx(x€ Y — Vt(t € X —
dyly € Y &VzHuldv(z e y—~u€eté&vexé&z=<u v>

&EVuVviz(ue t&vex—z=<u v>&z € vy)]))

H3(X, Y) «> Vx(x€ Y =-'Vt(t € X —
dyly € Y& VzHudv(z ey -teué&ue X&v e x&z=<u v>)

&EVuVviz(te u&ue X&vex-—-z=<u v>&z € y)l)
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H4(X, Y)~— Vx(x€ Y —
AylyeY & VzAudvAw(z €y — uev &gueX &veX &wex & z=<u, v, w>)

&EVuVvVwiHz(uev &ueX&veX &wex — z=<u,v,w> &ze€y)])

conjunction:

Ji(X, Y) — VxVy(xe Y&y € Y —x.y € Y)
negation:
JZ(X’ Y)«~—VxVy(x€e Y&y€e Y —-x-y € Y)

rearrangement:

II(X’ Y) > Vx(x€ Y & VzHulv(z € x > 2 =<uy,v> &ueX &veX) —
yly € Y&VzHuldv(z € y — 2z = <v, u> & <u, v> € Xx)

& VuVv Hz(<u, v> € x —- 2z =<v, u> &z € y)])

IZ(X, Y)«~—Vx(x €Y & VzHuldviHw(z €x — z=<u, v, w> & ueX & veX)—
Ayly € Y& VzHudvidw(z € y — 2z =<v, u, w> &<u, v, w> € x)

& VuVvVwidz(<u, v, w> € x -z = <v, u, w> &z € y)])

terminal elements:

GI(X’ Y)~—Xe€eY
GZ(X, Y)-~— XEY
G3(X, Y)«~—>Vi(t € X -Hyly e Y& Vz(z e y~—t € z &z € X)])

G4(X, Y) «= Vx(x€eX &VzHudv(zex — z=<u,v> &ueX &veX)—

Ayly €e Y& VzHudv(z € y~>ru€ v&z€x&z = <u, v>)])
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We now define the formula QO(X, Y) which is true if and only if
Y 2 Xo where Xo denotes the set of all sets S of n-tuples

<x1, o xn> for which there is a quantifier-free formula
A(xl, oo X3 tl’ o tm) and there are yiex such that

S = {<X1, ey Xn> IA(Xls ceo 3 Xn; Y1: ece 3 Ym)} .

QO(X, Y) < Gl(X, Y) & GZ(X, Y) & G3(X, X)e G4(X, ¥}

& H, (X, Y) & Hy(X, Y)&Hy(X, Y)&H,(X, Y)

2
& L(X, Y)& L(X, Y)

4

& X, XY & 1% ¥) .

The following theorem shows that there is a formula of part
theory over the predicates m and s which expresses the relation

= X
o
Theorem: Xo = PZ[QO(X, z) & VX(QO(X, x) > zwx)] .

Proof: By induction on the length of the formulas,
1. Atomic formulas:
i) x; € Vi . This case is handled by G, and H, , together

H1 which is required in '""build up' to the i+-1§—t place from the nt-}—l-
place and then from the i - lﬂ: place to the first place,. G1 is requir-
ed to start constructing the direct product.

ii) Yj € % . This case is handled by G3 and H3 .

iii) x, € xj . This case is handled by G4 and H4 together
with Il and I2 to allow rearrangement of the n-tuples so that we can

have i different from j + 1,
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iv) y; € Yj . Trivial since this formula is either true or
false, so adds no new n-tuples,
2, :Induction:
i) If we have

S = {<X1’ eo® 3 Xn> l A(Xli eeo0 X ; Yl! 900 3 Ym)}

A n
and
Sp = {<x1, ey X > | B(x1, eees X5 Vps eees ymf}
then
Sp*Sp = {<x), wes x> | A(...) & B(...)]
This is the purpose of Jl A
ii) If we have
Sy = {<x, wey x> | Al.)]
then

S_ a= [exyy wees x> | 4 AC..)]

This is the purpose of JZ . Since every element of an n-tuple is
restricted to X, if we remove from the direct product, X X ees X
_v———/
‘ ] n-times
the n-tuples corresponding to A, we have the set of
n-tuples corresponding to 5 A,

It remains to show that

PZ[QO(X, z) & Vx(Q (X, x) ~z 7 x)]QXO g

Clearly every element of PZ[ ... ] is a set of n-tuples, each n-tuple of
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which is over X, Since Pz[ .o ] is the smallest set satisfying
QO(X s, Y), every element of Pz[ ... ] has been generated by one of
the G, H, I, J '""processes'' defined above, and each process corre-
sponds to a "'construction' of the lower predicate calculus over € .,
Hence each element of Pz[ iy corresponds to some quantifier-free
formula restricted to X,

We now define Xr+ in terms of Xr . This definition corresponds

1

to adding one quantifier, H or V, to the formulas defining the

n-tuples in Xr , where the range of the quantifier is restricted to X,

X€ Xr+1 ~— Hdt[Set(t) & (te Xr — Vzlzex - Aw(weX & <w, z> € t)])]

v dt[Set(t) & (te Xr — Vz[zex ~— Vw(weX — <w, z> € t)])].

Finally, we can define X' in terms of X formally by:

b ale—teal Psz[Set(z) & (x€z — x€X) & Hr(rew & ze€ Xr)] :

This completes our imbedding of set theory in a model of part

theory,

Set Theories Under a Formal Language

We have developed some of the consequences of assuming that a
formal language has a model of part theory as its universe of
discourse., In particulax:, a formal language is characterized, albeit
imperfectly, by the group of automorphisms which leave the language
invariant, We also have shown that if the model of part theory has a
sfrong property then we can imbed a set theory in the collection of

parts, In this section we discuss the relationship between the group
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of a formal language and models of set theory, Assuming that the
universe of discourse is strong enough to support a set theory, we
would like to show that we can always find a set theory within the
parts such that the formal language can be construed to have the
collection of sets as its universe of discourse, That is, for all parts
x definable by the formal language, x satisfies Set(x), given some
fixed singleton function,

The simplest case is when the formal language F has such a
singleton function as one of its basic semantic transformations,

Then GF fixes every part x which satisfies Set(x) and which is well-
founded, since a model of set theory has no proper automorphisms.
It is worth noting that GF itself is larger than the identity automorph-
ism since there are proper parts of each singleton which can be
permuted among themselves without affecting the sets,

We digress to reconsider what property a model of part theory
must possess to obtain a set theory, The existence of the
conglomerate of every formula over w and s is certainly stronger
than is required, since we need only use 7 in order to define € ,
With the help of property (ii) of s we can show that sx m y if and only
if sx.y = sx, Recalling the results of the previous chapter on the
relationship between formulas and abstraction, we see that it is
sufficient, for the imbedding of a set theory, to insist upon the
existence of the abstraction of every semantic transformation in a

formal language with a singleton function and the Boolean functions,

Lemma: sx Ty «— sX.y = 8X
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Proof: By axiom 2 of part theory, sx 1y — Vz(z rsx -z wy)., So
using theorem 19, Vvz(z mw sx — z 7 sx.y). By theorem 28,
Vz(z m sx.y — z m sx) ., Combining the last two formulas and using
axiom 1 we have sx 1y — sx..y = sx, Now assume sx.y = sx, By
axiom 1, Vz(z wsx—z 7 sx-'y) . Combining these with property

(ii) of s and applying axiom 2 we have sx 7y,

To return to the discussion of set theories under formal
languages, suppose F is such that GF has an infinite number of
fixed points which form an atomic subalgebra of the algebra of parts.
Then since the Skolem-Lowenheim theorem guarantees that there is
a countable model of set theory, LGF contains a singleton function
defined on the fixed points of GF and the singleton function defines a
set theory.,

Even if the fixed points of GF do not form an infinite atomic
subalgebra, we can find a set theory under ¥, There is a subgroup,
N, of GF which fixes every part definable by ¥, If F defines ;Ln
infinite number of parts which generate an atomic subalgebra then
LN contains a singleton function, Further, every part definable by
F satisfies Set(x) . N is a normal subgroup of GF , as we show
below. The factor group GF/N can be thought of as the automorph-
isms of the sets which leave F invariant, If GF/N is larger than the
identity then the singleton function is not invariant under CF/N and F
is not strong enough to define a set theory. For example, suppose
the only basic semantic transformation in F is List(x) = {{y} ‘ y € x}
where € is defined by a particular singleton function in LN, Then

GF/N contains, among others, the automorphism which permutes
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{kZ }k and {k3 }k for all k =1 where {lx}l = {x} and
{k+lx]k+l 3 {k{x}}k A

The subalgebra generated by the definable parts may contain
non-atomic parts, The only way to include the non-atomic parts in
the set theory is to widen the definition of the predicate ""Set' to
include individuals and consider the non-atomic parts to be individuals
of the set theory.‘

If the formla language F defines only a finite number of parts we
can still find a set theory under F, For each atom x of the algebra
of definable parts we can choose an infinite number of proper parts of
x which form an atomic Boolean algebra when relativized to x, Then
GF has a normal subgroup, N, which fixes the chosen algebras and
LN has a set theory defining singleton function, In this set theory
each part definable by F is an infinite set, This is not pleasing to the
intuition, for one feels that if there are only a finite number of
definable parts then the formal language ought to be discussing the
interrelations among a few finite sets, rather than infinite sets, If
the part theoretic union, y , of the definable parts does not reach the
universal part, 1, then the intuition can be satisfied by developing
the set theory within the complement of y, using the algebra of the
definable parts as some of the finite sets,

We turn now to the proof that the subgroup N of GF is normal in
GF , for any formal language F whose definable parts generate an
atomic subalgebra,

Given a group G, which is a group over a formal language, and

the collection, X, of parts contextually definable by the formal
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language, we obtain the collection of G-definable parts by taking the
set-theoretic union of the orbits under G of every x in X, That is,
if x is definable, then g(x) is G-definable for every gin G, Let B
be the sub-Boolean algebra (submodel of part theory) generated by
the G-definable parts,

Now consider the largest subgroup, N, of G which leaves every-
part in B fixed, To show that N is normal in G, we prove éome

lemmas,
Lemma: If x is in B, then for all gin G, g(x)is in B,

Proof: Let x be in the subalgebra B, Then x is the Boolean union,
intersection or complement of G-definable parts, Hence g(x) is also

a Boolean combination of G-definable parts., Thus g(x) is in B,

Lemma: If x is an atom of B, then for all g in G, g(x) is an atom of

B o

Proof: Suppose x is an atom of B and for some g in G, g(x) is ‘not an
atom of B, Since g(x) is in B, g(x) possesses a proper part which
isin B, say z . But then g—l(z) is a proper part of x which is in B,

contradiction,

Notation: G restrictedtox, G ] x , is the collection of all auto-
morphisms in G with the domain of each automorphism restricted to

the parts of x,

Lemma: If x is an atom of B, then

le: Glx: A(x)

where A(x) is the full group of automorphisms of the principal ideal
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generated by x,

Proof: Since G is a group over a formal language, it is the largest
group satisfying the commuting property on the definable parts,
Since no proper part of x is definable, G‘ xis A(x). N l x =G |x

since N is, by definition, the largest subgroup of G leaving B fixed,

In the following lemma and theorem the automorphisms act on the

right, so that xg is the value of g when applied to x,
Lemma: If x is an atom of B, then
VginG VninN Hm in N Vznx[zgng—l = ],

Proof: Consider any gin G, nin N, and supposexg =y . We can
consider any g in G taking x to y , when restricted to x, as the
product of two maps, The first is a ""translation' depending only on
xandy , i , and the second some in A .« Thatis, b :
e N B, in Aly) gl P

Thus
-1

o 5 B 1
B Sy T ey

where n is considered to be restricted to y , and g is considered to
be restricted to x. Now pgnpél is an element of A(y), say m', and
m' ixy-l is an element of A(x), say m , So we have

i
- 4
gn g-l x=m | x which proves the lemma,

Theorem: If B is atomic then N is normal in G .

Proof: Since all automorphisms preserve least upper bounds we have
X = Exa if and only if xg = Exag for every x in the model and every g

in G, For every x in the model, we can write x = Exa where each
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x, is a part of an atom of B, If we consider N to be restricted to

the parts of the atoms, a, of B, then N is the direct product
A(al) sap Pl A(aa) Kiveei

since N fixes a, and is unrestricted on the proper parts of a, . Now
consider n in N where N is thought of as acting on the full model,
Then xn = Zxan where, if a, is the atom of B such that x, T2, then
xpma, . For any g in G we have xg n g—l = Zxa gn g-l and by the
previous lemma, for each a there is an m in A(aa) such that
xgng—l =Zx m . Since N is the direct product of the full auto-

o

morphism groups A(aa) , there is an m in N such that ml a,=m_,

hence gng"l =m in N,
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Vi, CONCLUSIONS AND FURTHER RESEARCH

Formal Language Definitions

We defined, following Thompson [ 327, a general notion of formal
language which includes the current notions of syntax, where we
considered the syntactic elements of the language to arise from a
functionally oriented semantic system, The syntax of a formal
language is in general a Post production system and we mentioned
that, in this formulation, certain strings may be syntactically
correct but not meaningful because of semantic considerations, The
semantic considerations have been formalized by allowing a semantic
transformation to be defined on a subdirect product of semantic
categories, that is, only on those elements of a direct product of
semantic category satisfying certain constraints, If these
constraints can be described using syntactic notions alone, then they
may be considered structural constraints and the notions of transfor-
mational grammar [4, 5] may apply., However, some further study
will be required before the relationship between formal languages

and transformational grammars is completely understood,
Groups

By considering a formal language to have a model of part theory
as its universe of discourse we can consider the formal language to

be characterized by a group of automorphisms of the model, Since
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the groups are partially ordered by inclusion, we can preorder the
formal languages by defining Fl F whenever GF1 = GF The
relation on formal languages is a preordering since two formal
languages may be associated with the same group as the following
example illustrates,

We define two formal languages over the same model of set
theory which we may consider as imbedded in a given model of part
theory, F1 has as its sole semantic transformation a characteristic
function defined on sets, Char(x) = {0} if x £ 0 and Char(0) =0,
The sole semantic category of Fl is the class of all sets and the
class of referents of Fl is any finite collection of sets which includes
0 and {0} . F, has as its sole semantic transformation a slightly
different characteristic function on sets, Empty(x) = {0} if 0 ¢ x
and Empty(x) = 0 if 0 € x, where € is the membership relation for
the model of set theory, GFl is generated by all permutations of the
singleton sets which leave {0} fixed, since all automorphisms of a
Boolean algebra fix 0 and if x # 0, then xg # 0 and Char(xg) = {0}
which implies g({0}) = {0} . Since every set can be expressed as a
union of singletons, we see that GFl is as stated, The semantic
transformation Empty has the special property that {0} is in its
range and 0 € x if and only if {0} is a subset of x, This implies
that any automorphism in G:F2 must leave {0} fixed, and if g is any
auromorphism with this property, then 0 € x iff 0 € xg so we have
Empty(xg) = Empty(x) . Thus GF1 = GF2 "

A possible method of avoiding this difficulty is to consider the

semigroup of endomorphisms which leave a given language invariant.
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The lemmas establishing the nature of the Galois connection between
GF and LGF also hold if endomorphisms are considered rather than
automorphisms, so that these resulté are available, but further study
is required to determine if each formal language uniquely determines
a semigroup of endomorphisms,

The Galois connection between GF and LGF suggests that each
pair of languages possesses an upper bound and a lower bound
language, By an upper bound language for Fl and F2 we mean a

language which can express anything expressible in Fl and in FZ .

LR o e as defined in the section on the Galois connection, is such

1 o ®
an upper bound language, although not necessarily a least upper
bound., By a lower bound language for Fl and F2 we mean a language
in which the only entities definable are also definable in F1 and in FZ "
If it is possible to find a finite collection of basic semantic transfor-

mations, T, such that CT & CF, * CF then from T we can form a

1 2°

lower bound language, If CT = CF1 2 CF2 then from T we can form a
"greatest' lower bound language., T may not be unique, however,
which implies that there is not, in general, a unique greatest lower
bound, As an example, if GFl . CF2 is the collection of all Boolean
functions, then as basic semantic transforrn.ations for T we can take
intersection and complement, or the Boolean ring sum and product,

These considerations suggest studying the conditions under which
two formal languages have reasonably unique least upper bound and
greatest iower bound languages, Further, the Galois connection
becomes considerably more difficult to analyze if ¥, and FZ do not

1

possess the same collection of referents, This analysis will be



=81~
carried out and it may indicate the conditions under which least
upper bound and greatest lower bound languages exist, One result
" that we do have that will be useful in studying least upper bound
languages is that every pair of formal languages has a common set
theory underlying them, The sets are the elements of the subalgebra
generated by the parts definable in either language.

Another problem suggested by the many-one correspondence
between formal languages and their groups, and also by the nature of
the Galois connection, is determining the class of formal languages
which are associated with a given group of automorphisms, At

present, no work has been done on this problem,

Part Theory, Set Theory

The relatively weak ontology of assuming the universe to be part
theoretic has enabled us to consider automorphisms of the model of
part theory as the changes taking place in the world, and character-
ize the stz;uctul‘e which the formal language discusses as a group of
automorphisms, If the model of part theory is strong enough, for
example a complete Boolean algebra, then a model of set theory is
imbeddable in the model of part theory. At the same time, we have
avoided assuming that the world is atomistic and in fact have implic-
itly assumed throughout Chapters IV and V that it is atomless, The
fact that we can imbed a set theory implies that any partiéular
atomic view of the universe can be accommodated, There remains
the question, however, of the relationship between a non-atomic

subalgebra of parts defined by a formal language and a set theory
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imbedded in the model of part theory, If there is room in the model
for both the non-atomic subalgebra of parts and a set theory, then,
letting N be the group of the set theory, LN will contain a function,
f, from the non-atomic definable parts to the sets such that if
x 7y then f(x) £f(y) . Then in LN we should be able to discuss these
parts as if they were large sets, The exact situation here remains
unclear,

The view of a set theory as a particular collection of parts may
have value in the theory of sets itself, Cohen, in discussing models
of set theory in which the axiom of choice fails, points out that a
standard model of set theory has no proper automorphisms, but that
""the basic idea of having some kind of symmetry remains, "

[ 6, p. 1367]. The collection of parts fixed by a group N can, if it
is large enough, be thought of as a set theory determined by a
particular singleton function in LN , There are many such singleton
functions in LN and it may be possible to consider Cohen's "forcing"
as a method of selecting among these functions,

Another aspect of the relationship between a formal language and
a set theory beneath it we wish to determine is when it is possible to
find a set theory such that every basic semantic transformation of the
formal language is recursively definable in terms of the operations of
the set theory, as discussed in Chapter 1I, This result should be
suggestive of the adequacy of a model of part theory as the sole
universe of discourse for formal languages, When it is possible to
find a set theory for which the formal language is recursively

definable, any objections from the constructivists are met since the
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semantic transformations are effectively computable in terms of

intuitively satisfying primitive operations,

Sentences

In Chapter II we indicated that the position of sentences as a
subclass of the phrases of a language is unclear, We can a priori
distinguish sentences by syntactic means, but this leaves open the
question of why those particular phrases are distinguished from the
remaining ones, It may be possible to consider sentences as distin-
guished by an algebraic property based on the universe of discourse,
For example, it may be that certain systems of endomorphisms
leave invariant the structure which the intuition says is associated
with sentences but not with phrases of the language, Here the first
step is to state the problem more clearly than we have been able to

do.

Transformations of Qualities

We return to the problem posed by the red pencil burning into
black soot, Suppose we have a formal language in which "The red
pencil burns into black soot, " is a sentence, corresponding to some
derived semantic transformation, In this language '"'the red pencil"
corresponds to some part x and ''black soot'" to some party . The
change described in the formal language by ''the red pencil burns into
black soot, ' is an automorphism, g, such that g(x) =y . This auto-
morphism is not in the group of the formal language since the red

pencil and the black soot, x and y, are distinguishable, If xandy
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are atoms of the subalgebra of definable parts, then there is no
"red'" part of x or "black' part of y as far as this formal language is
concerned since x and y are structureless, Any automorphism
taking x to y is an equally vglid change irrespective of how the auto-
morphism takes proper parts of x into proper parts of y . In this
formal language, there is no red part to be transformed,

Suppose x and y are not atoms, x having a red part and y having
a black one, The automorphism taking x to y need not preserve the
structure of x since it is not in the group of the formal language, and
so there is no requirement for the red part of x to map into any
particular part of y . The distinguishability of x and y imply that the
transformation of x into y is a change observable by a speaker of the
given formal language., A change is observable because of the change
in structure, where the structure is determined by the language,
The sentence ""The red pencil burns into black soot, '"" denotes that the
entity with the structure of a red pencil has been transformed into an
entity with the structure of black soot without specifying the transfor-
mation of substructures like the red part of the red pencil, We can,
if we like, consider the red part of x to be transformed into the black
part of y since this preserves some structure associated with color,

If we have a much more detailed formal language in which we can
discuss the interaction of molecules and light, there is a sentence
which explains the transformation of sensual red into sensual black in
a way that preserves far more structure than our original sentence,
Even here, -however, the entire structure is not preserved since the

change is observable,



~-85-

This discussion has served to illustrate that in relation to a fixed
formal language there is no difficulty associated with the transforma-
tion of the qualities of a part when the part is transformed, Either
the entire structure of the part is preserved, in which case the part
and its transform are indistinguishable by the formal language, or the
entire structure is not preserved and the transform of a part is

distinguishable from the part itself,

Groups as Function Spaces

We would like to formalize the intuitive notion of the distance
between formal languages, There appears to be some possibility of
doing so along the following lines,

Given a model of part theory, P, together with a measure y on
P, we can consider any group of automorphisms as a function space

by defining, for any two automorphisms g and h ,
d«[ g, h] = sup d[xg, xh]

where d is the metric defined by p .

If each automorphism in a group G is uniformly continuous as a
homeomorphism of P, then G is a topological group, as we prove
below. G. Birkhoff [ 1, p., 169] describes a complete measure
algebra, M , unique up t'o isometric isomorphism, which is obviously
a model of part theory, Since M is metrically complete, it is
complete as a metric space, Furthermore, M is totally bounded so
ﬁ is compact [ 16, p. 847 and thus every automorphism of M is

uniformly continuous [ 16, p. 307, If F is a formal language with M
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as its universe of discourse, GF is a toplogical group., The conse-
quences of this fact may have interesting implications for the study
of formal languages., In particular, it enhances the prospects for
finding an intuitively reason_abl-e metric topology on the lattice of
groups of formal languages, If this can be done, then we can define
the psuedo-distance between two formal languages as the distance
between their associated groups, There remains, of course, the
difficulty that two distinct formal languages may share the same
group, so that the collection of formal languages is, under these
assumptions, a psuedo-metric space, While it may be possible to
circumvent this difficulty by considering semigroups of endomorph-
isms associated with formal languages rather than groups of
automorphisms, further study is clearly required to analyze the
situation,

We now show that if every automorphism in a group G is
uniformly continuous as a map on P to P, then G is a topological
group, We first prove that the map from G to G that takes each

automorphism into its inverse is continuous in the d* topology.

Lemma: For all g in G and for all € > 0 there is a § such that if

d«[g, h] < & then d*[g-l, h-1] < €.

Proof: First we note that if for all x, d[ xg, xh] < € , then
d*[g, h] <€ . So if we can show that for all € there exists a § such

1, xh-1]< €) we can complete the

that Vx(d{xg, xh] < 8) — vx(d[ xg~
proof since d*[g, h] < & implies Vx(d[ xg, xh] < §) which in turn

implies d*[g-l, h-I] < € , Then, for each € > 0, pick & such that
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a[g, h] <6 implies a*[g !, h'l1<ef2 < €.

The uniform continuity of g-l implies that for all € there exists
a & such that vx(d[xg, xh] < §) — Vx(d[xg—l, xh—l] < e€)., Forif
not, then there exists an SR such that for all § we can find an h such
that vx(d[ xg, xh] < &) &E[x(d[xg-l, xh-]‘:] > 60) . The uniform
continuity of g"1 guarantees that for €, there exists 60 such 'that for
all xg and all xh, d[ xg, xh] < 60 — d[x, xhg_lj e Combining
this with the supposition above we have for €. and 60 an ho such that
vx(d[xg, xh_ ] < 6 ) which implies vx(dlx, xhg™1] < €.), via
continuity, Thé latter statement can be rewritten, by setting y = xh ,
as Vy(d[yh-l, yg-lj < eo) , which is a contradiction, and completes

the proof,

The following lemma shows that the map from G x G to G which
takes (gl, gz) to g8, is continuous, Taken together, the two

lemmas imply that G is a topological group.

Lemma: Given € and g, in G, for all € there exists 61 and 62 such

that if d*[gl, hl] < §, and d*[gz, hZ] <d, then d*[glgz, hlhz'_l "

1
Proof: Since d*[glgz, hth] < d*[glgz, h1g2] + d*[hlgz, h1h2] ;
if we can find &, and §, such that each of d*[glgz, h,g,] and

ds[h h.h,] is less than or equal to € /3, then

1527 213

d:::[glgz, h1h2] < € ., Since sup d[xhlgz, xh1h2] =

sup d[ygz, th] = d*[gz, h2] , let 6, = € /3. By the uniform
continuity of g, we have that for all € there exists § such that for all

A d[xgl, xhl] < & — d[xglgz, xhlgz] < €/3 . Given € , we

" pick 61 such that d*[gl, hlj = 61 and thus by the sentence above
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Vx(d[xglgz, xh1g2] < €/3), implying d*[glgz, hlgz]

<

€/3
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APPENDIX

The appendix is in two sections, In the first, we prove in the
affirmative the decision problem for the elementary theory of
Boolean algebras which are direct products of atomic and atomless
Boolean algebras., The main interest in this result is the decision
method, which shows that every fofmula in the elementary theory is
equivalent to a quantifier-free formula. In the second section, the
results obtained from the decision method are used to prove the
existence of the union of all elements of a direct product Boolean
algebra which satisfy a given elementary formula, This result
shows that every direct product Boolean algebra possesses a very
restricted completeness property, namely that the union of a class of
elements exists when the class is definable by elementary formulas,

Tarski [ 30] has proved in the affirmative the decision problem
for general Boolean algebras, but the results, as they appear in the
literature, do not enable one to prove that X a exists, Since this
union must exist in order that a Boolean algégz‘a be a model of part

theory, we require the decision method presented below,

The Decision Method

This section follows the following outline, We define a standard
form for formulas and proceed to show that Boolean connections of

these formulas can be reduced to standard form. Next we show that
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a standard form formula involving a quantifier is equivalent to a
standard form formula without the quantifier, Using these results,
we argue that any formula of the lower predicate calculus whose only
predicate is '""<'" is equivalent to a formula in standard form,
Finally we prove that this decision method is only valid for Boolean
algebras which are direct products of atomic and atomless Boolean
algebras, Implicitly we are using the fact that every Booleén algebra
is the subdirect product of atomic and atomless Boolean algebras,

Let 2" be the collection of all fﬁnctions fromnto {0, 1} , Let
RS, K=2"-R. Forre M letr = filre=1%,

0 o ) : N 5 =
T = {1| r(i) =0} . Given X s eees X 1 lety = Tl 1xi T £ .
i€r ier®
Definition: F (3 , .03 X ) is in S-form iff
R> 6 n-1 _

Frle, o x )= Ny, =008 Ny #0eatk, £, m_;y)]
reR reR
where At(k, £, m; y) is a predicate satisfied by k, 4, m, andy
just in case
y is atomic iff k =1,
y is not atomic iff k = 0,
y has = n atoms iff £ = 1andn¥m,
and y has exactly n atoms iff 4 =0andn=m ,
We may write FR for FR(xO, oy xn—l) . We will consider k and £

to be elements of the two element Boolean algebra, {0, 1}.

Professor ¥, B, Thompson pointed out this standard form
(S-form) for use in proving the decision problem, Essentially, the

y, are the atoms of the subalgebra finitely generated by



s

Dl As we will show here, the elementary formulas can

o n-1"*
only specify unions, intersections, complements, and the atomic

structure of the : and hence of the X, .
Lemma: Ifr, se€ 2" and r £ s, theny -y =0,

Proof: For some i1 € n, x, occurs in L uncomplemented and occurs
in ¥i complemented, or vice versa, Since ¥ and yg are intersec-

tions of the X, Y oV = 0-,
We define formulas to be used in the next theorem,

Gglasb, cix,eerx, )= D (v =0) & NIy #0 &Ata,b,ciy))] .
seS s€S

g des 3 n_l)

Hs(xo, e s xn_l) = Gs(l, 1L £ X

VGs(Os 1: 0; XO’ eco 3 xn—l) .

(TR T R i e

n-

feA seS
X
e N\ Ly, #0 & At (s), £,(s), £5(s) y,)]]
s€S
where
A ={f|f=<f,f,6.>8f ,f€2° af ca®
r 1 igetg® S5ty 3

&(f(s) =1 -k )= (f,(s) =1 &f,(s) =1 -k )
&-(fl(s) = kr &fz(s) =0) — (f3(s) < mr)
&(f (s) =k _&f,(s)=1)— (fy(s)=m_+1&4 = 0)} .

I; is a disjunction of formulas, one of which will hold if

- At(kr, J&r, T yr) . The class Ar is the means of selecting the

) o5



-92-
the atomic conditions, one of which must hold if At(kr, ﬂ,r, m_; yr)
does not,

We may drop (xo, e Xn-l) when writing G, H, and I for

compactness of expression,

Theorem: (Not) Let FR(XO, L xn-l) be a formula in S-form, Let
Ny T
NG, ey %)= VIV HIv Vo \V Hg v My
reR reS<2 reR r¢Sc2 resc2™

Then -—,FR(XO, Cosis xn_l)«——NR(xo, it xn—l) )

Proof: ——'FR(XO’ eco 3 Xn-l)H

\/__ (yr £0)V \/ [yr = 0V -—,At(kr, 'Zr’ m_; yr)] A
reR reR

1) v, £ 0 iff \/ Hg since \/ Hg implies y_ £0

ress2” ress2”
by the construction of HS and ) # 0 gives no condition on the
remaining members of R, or on their atomic structure, HS has
been defined so that any condition on the remaining members of

R is satisfied by one of the HS in \/ HS .
res<2”

(ii) y,_ =0 iff \V Hg . This case is like (i), All
r¢sc2™

possible conditions on the remaining members of R are covered
by the disjunction,

(iii) [yr £0 &— At(k, £, m_; yr)] s \/ I

res<2”

r
S .
If Vi is not zero and does not have the atomic structure

(kr, Zr, mr) , then it has some other atomic structure and every
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possibility is in the disjunction of the I; . If some disjunction in
one of the I;

structure (k. , £, m_ ).
e T

is true, theny # 0 and ¥, does not have the atomic

Theorem: (Or) If D, and D, are disjunctions of S-form formulas,

1

then D, V D, is a disjunction of S-form formulas,

1 2
To prove a similar result for conjunctions, we first require a
lemma which enables us to increase the number of variables on
which a formula depends, With this result, we can then assume that
the two formulas in a conjunction are both over the same variables,
We define certain classes in order to state the lemma, We first
require the notation that if s € 2™ andm > n , then ¥ = s‘ n means

that r is the restriction of the function s to the first n integers,
Definitions: For RS 2" andn <m :

R = {SE2™|VreRTseS(r = s|n) & VreRVs[r = s| n — s€5]} .
The class R will be used to expand the number of variables from n
to m ., Roughly, R will allow us to expand in every possible
manner,

The following definitions lead to a class of triples of functions,

each triple determining an atomic structure for an "expanded" ¥

E
r

{seZm‘r:sln} £

E
(e 2T S el m e B
seEr
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E
r
L.={L_€2 - L (s) = zr} :
seE
Ir
Er
and M_={M_€w e > M_(s)=m_3} .
SEEr

Q. = fef il > | fl(s):Ks‘n(s) e}_{s‘n&fz(s):l.sln(s) EESI £
&f4(s) = Msl L(s) € Msln Eses) ,

Lemma: (Adding Variables) Let FR(XO, LS Xn—l) be a formula in
S-form, Let AR(XO, sees xm-l) =

V V [\ v =0

SeR <f1,f2,f3>€QS s€S

& /\S[ys 40 & AL (s), £,(s), 5050 y,)]] .
S€

3 eeo ) x _1) .

If n < m then FR(XO, ive 3 Xn-l) s AR(x 24

(e]

Proof: Assume FR(xo, s Xn-l) o ' Let Ko eeer ¥ g take on any

particular values, Then at least one of the conjunctions in AR holds

since.

(i) yr:O — yS:O forr:sln

and (ii) if Yy #0 & At(kr, oot s yr) then each piece of y

T’ r
determined by an s such that r = s ln must partake of the give
atomic structure of . o In particular, if ¥ is atomie; 1.€.,

kr =1, then each ¥ # 0 such that r = s l n must be atomic, The

construction of QS guarantees this by forcing fl(s) =] for s €S
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such that r'= s/ |n', 1If b is not atomic, i, e., kr = 0, then theré
is some s such that r = s ‘n and ¥a # 0 and ¥ is not atomic, again
by the construction of QS . A similar argument holds for the £

and m parameters determining the number of atoms in any piece,

Now assume AR(x 5 ey X ) , hence at least one of the
o m-1
conjunctions in AR holds, We will show that the restriction of this
conjunction to n variables is satisfied,
(i) If o 0 for all s such thatr = s I n then clearly ¥o = ¢
(ii) If (i) is not the case for a given r then there is an s such
that r = sln and y # 0. Hence # 0 since ¥ s is the intersec-
tion of the first n variables (complemented or not) whose

intersection with the remaining m - n variables is g If o £ 0,

consider the terms

Ve 40 & At(ks, ,%s, m_; ys)

for which r = s \ n in the satisfied conjunction of AR . Since

Yoo 08 ¥ wehave
r=s|n
N Ly #0&atx,, £, m;y)]—

r:s‘n

[y, #0 &At(TSl“ks, Z fo Tog vy )]

Now by the construction of these terms in AR , we have

?ks:kr’ }izs: Ly s and}_s?ms =m_ . Therefore AR—’FR.

Lemma 1: If FRI(XO’ el s Xn—l) and FRZ(XO, ey xn—l) are



~96-

formulas in S-form, then FRl(xo, wsis xn-l) & FRZ(XO’ I 1)

is satisfied only if Rl = R2 "

Proof: Suppose R1 £ RZ . Then there is an r in the symmetric
difference of R, and R2 , say in R

1
F butyr=0inFR ,henceFR &FR

s | 2 1 2

1 but not in R2 . Hence . i £ 0 in

is false,

Notation: Let k; - .@; A m; be the atomic structure parameters in

FR if'i=]1 andin GR i =g,
Lemma 2: If FR and GR are S-form formulas then FR & GR only if
| R
VreR[kr ~kr]
& vreR[(8L = 22 = 0) - m! = m?]
g S T T
& FreRTIE = D 8 15 = 1) +.am) = m>]
r 5 r r
L VeRTE S A =0) = bl = m™]
g X T T

Proof: ki = ki for otherwise is both atomic and not atomic.

Bindlandy. i 2 =l =0y Hheny Bas exactiviEnd = 5 losse s
T r r r r
.@i = 0 and Zi =1 , then ¥ has exactly m:_ and greater than or equal

to rn2 atoms, hence ml = m2 . Similarly if 21 =1 and 22 =0,
r T r r r
To state the theorem for conjunctions we use the formula

& xn_l): /\—.[eroj

(X 3 eee
R reR

O

_ T yolzd
& r/e\R [yr £0 & At(kr, Er . f'r’ max(mr, mr), yr)]

Theorem: (And) If FRl e 2(XO, cees Xn—l) are
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formulas in S-form, then FRl(xo, e Xn-l) & FRZ(XO, P = 1 Xn-l) iff
& X ) and lemmas 1 and 2 hold for F and F ”
o n-1 R

G 1 By
Proof: Assume FR & FR . Then R, = R, by lemma 1 and the
1 2 1,74
atomic structures of Fl and FZ are interrelated as described in

Jemama 2, Let R = R, . It remains to show that C_(x , ..., X )

1 R**o n-1
is satisfied, Since R1 = R2 SiE y P 0 in Fl and FZ by the construc-
tion of CR the same term is present in CR . Similarly if . I £ 0 in
Fl and FZ . The only remaining question is the atomic structure of

Yy # 0 in Cr - Since lemma 2 holds, the parameters

(k. Ll . JZZ, max(ml, mz)) do describe the atomic structure of y_ .
T r  » r
For, k1 = k2 , and if El = LZ =0 , then max(ml, mz) = m1 = rn2 "
T T r T r F T 5
while if ,61 = 0 and 22 = 1 rnax(ml, mz) = nn1 > m2 .
r r T r r r

Now assume that R1 = R2 = R and the conditions on the atomic
structure parameters are as described in lemma 2, and that

Ck® 5 sen s X ) is satisfied, Then it is clear that F is satisfied
REdo n-1 R

1
and so is FRZ hence FR1 &FRZ is satisfied,

We use the following classes and formula to state the elimination
alas : skl
of quantifiers theorem, If S <2 , then

R = {re2"| r = s|n for seS}, E_ = {s] r=s]|n &sesS},

Rt = {reR] Hq! 8(seS —+>1r = sln)} , and " {reRl r:stn»s(n):l}.

For reR,letk. = 1l kx , 4. = % 4 ,andm = T m
r s T s T
s€Er seEr sekE

Note that Er contains at most two elements for each r .

)= N y.=01e N [y 40 aatp, 2, m ;v

Define \VR(XO, S s
reR reR

n-1
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Theorem: (Elimination of Quantifiers) If FS(xo, oo X 15 xn) is a

formula in S-form then HanS(xo, oo s xn) > WR(XO, ey X _1) 2

Proof: Assume W 1) . We will show that

A

R

. 2 : o
HanS(xo, At xn) . As a notational convenience, we write x for %

and x:l for x .

If reR, for any x, xi-yr:O for i=0, 1, sincey =0, By
the definition of R, re R implies any extension of r to n+1 variables
is a member of S, Hence for each s such that s ‘ne? A [ys = 0]
is satisfied,

Consider re R+ . We must show that

Jo i _ i
[yr-xn =0] & [yr-xnf 0 & At(k, £, m; yr-xn)]

in FS is satisfied for each re R+ , where i depends on r, Since

re R+ , we know that

Ly, #0&Atk,, 2, m; y.))]

since Wr is satisfied, and by construction, k = kr = zr s and

m=m_, Letz = T ¥_ . Foreachr€R+,212y o EDEIE
r o BLE o ¥

reR’

y B 5 7T>1<(Yr.yt) i
te R

Now rfé R since i =0, and since all the y's are disjoint,

Yt 2yr , thus yr- zo = Yr . Now suppose lr =1 .4 Then

Y2, = & (Y, *v)
te R



-99.
and since this time r is a member of R and Yo ¥ D it 2 1., we

have Y2 =¥,

Since z' > y_, we have y VLD So i we st x =3 , all
o r T Un nieTh

of the terms in FS under consideration are satisfied, Combining the

results for reR and re R+ , we see that /\ [ys = 0] is satisfied,
seS
The remaining terms of FS to be satisfied are of the form

[y, %, # 0 & Atl), 4, m); y, -%)]

& [yr'xn £0 &At(kz, 22, m,; yr'xn)]

for re R - R+ . In W the corresponding terms are

R

[y, # 0 & Atlk) Xy, &) + £, m) +my5 v,)] .

Here it is necessary to divide into two pieces such that each has
the atomic structure specified in FS . To show that this is possible,
we will consider cases,
(i) kl — k2 =1, Thatis, both V.o X, and y,.x are atomic,
If £, = £, =0, then y_ has exactly m, + m_ atoms, so there is a
2 T

1 1 2

z < 4% with exactly m, atoms, hence

At(kl, ﬁl, m; oy, - zr) and At(kz, 1,2, m,; yr-zr) A 17,1 =
and 22 = 0, then 1 has = m, + m, atoms, and again there is a
5B with exactly m, atoms such that At(kl, Zl, my; ¥, Zr)

and At(kz, EZ’ m,; y. Zr) . Similarly if 12,1 = .%2 = 1o if

(ii) k1 = 0 and k2 =0 O S hien is not atomic, Now if

Jll = 1'2 = 0, then y,. has exactly m, +m, atoms, and if we let
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z. be the union of exactly m, atoms of Y. We satisfy the
appropriate terms in FS R - 3 21 = 0 and =1, then 2 has

=m. + m, atoms, and if we let z. be the union of all but my

1

atoms of Ky » again we satisfy the terms in Fs . Similarly for

the remaining combinations of £, and £, .

1
(iii) kl =1 and k2 = 0, This case is like (ii) except that we

find some z_ <y_ .
r r

(iv) k1 = k2 =0, Then ¥ is not atomic and we must find a
z_ < y_ such that bothy_+*z_andy_*Z_ are not atomic with the
¥ r i S
appropriate numbers of atoms, Since the Boolean algebra is the

direct product of an atomic and an atomless Boolean algebra, this

is always possible,

Letz =2z + z
re R-R
For the proof in the other direction, assume CEIanS(xo, s Xn-l' xn).

P Then z satisfies FS(XO, ey X gy z) .

Then z as constructed above also satisfies Fs(xo, oe gl X

o1’ z)_, and

so WR(XO, e xn—l) is satisfied,

It remains to show that every formula of the lower predicate
calculus ;)vith < as the only predicate is equivalent to a disjunction of
S-form formulas, This is done by induction on the length of a form-
ula,

Terms: X, < X is equivalent to a disjunction of certain
Fs(xo, Xl) . This disjunction includes the various possible atomic
conditions on xi)' le in the form At(l, 1, 1; xio' x*}) or
. xj) . The F_ are of the form x_+X%. = 0 in conjunction

S o 1

with X%y, '5'{0- X5 3&0-3&1 either equal to zero or not equal to zero in

AE(O S0 S5
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all possible ways, and whenever xi)- le # 0, one of the two atomic
conditions, The disjunction of these twenty-five S-form formulas is
satisfied if and only if xo < Xl .

Negation: If D is a disjunction of formulas in S-form, say

D = F V oo V F
1 p

then 4 D~~~ F.  &,. & 4 Fp > N, &... & Np , where Ni is related

1 1
to Fi by the "not' theorem, By redistributing among the Nl’ ineg AN

’

P
we obtain a disjunction of conjunctions of formulas in S-form, provid-

ed that all the Fi are over the same variables, The adding variables
lemma guarantees that we can find the appropriate formulas
equivalent to the Fi .

Conjunction: If C is a conjunction of formulas in S-form, by the
adding variables lemma, C is equivalent to a conjunction of S-form
formulas all over the same variables.. By then applying the '"and"
theorem sufficiently often we obtain an equivalent S-form formula or
a contradiction,

Quantifiers: If D is a disjunction of S-form formulas,

1 1

VxD = —dx D, Since — D is equivalent' to a disjunction of

B=F_ V ...V Fp’ then XD <«— AxF. V ,.. V (':IXFP and

S-form formulas, say F.'V .., V Fq' , then

1

VxD «— — (IxF.'V ., V E{xFq') . By elimination of quantifiers,

1
disjunctions of S-form formulas equivalent to HxD and VxD are
obtained,

This completes the decision method for the elementary theory of

direct product Boolean algebras, Next we show that the elimination
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of quantifiers theorem requires that the Boolean algebra be a direct
product of an atomic and an atomless Boolean algebra, Assuming
that the Boolean algebra is a subdirect product of an atomic and an
atomless Boolean algebra possessing just the properties necessary
for the proof of the elimination of quantifiers theorem, we prove that
the Boolean algebra must be the direct product of its factors,

Let B be a subdirect product of A x N where A is an atomic
Boolean algebra and N is an atomless Boolean algebra, If beB, we
write b = <a, n> where a and n are the projections of b onto A and
N, respectively, Let B possess the following property:

(i) If <a, n>€B and a is the union of m atoms then for all

m' £ m there is an a' £ a such that a' is the union of m' atoms

and <a', 0>€B .,

B must possess this property for the proof of the elimination of

quantifiers theorem to be valid,

Lemma: Foralla€eA, <a, 0> isin B,

Proof: For someneN, <a, n> is in B, Then by (i), <a, 0>€B,
L.emma: If <a, n>€B then €0, n>€B .,

Proof: Using the previous lemma, <a, 0>e€B, Hence

<a, nr o <ay 0> =<0, n>dsin B,
Theorem: B is the direct product A x N,

Proof: First, for allneN, <0, n> is in B since for all n € N there
is some a € A such that <a, n> €B and applying the lemma above

gives the result, Now let a be any member of A, n any member of
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N .. Then <a, 0> 4+ <0, n> = <4, n>e€B ,

Existence of Unions

Let F(xo, s X 1o a) be a formula of the lower predicate

calculus over the predicate '"<'" , We will show that

Za

F(xo, wsas X9 a)
exists in any Boolean algebra which is the direct product of an atomic
and an atomless Boolean algebra, By the decision method in the first
section, it suffices to show that the union exists for formulas which
are disjunctions of S-form formulas., Suppose Fl, A Fn are
S-form formulas such that the union exists for each formula, Then
the union exists for the formula Fl Ve VF by the following
argument. For eachi, let T, = {a| Fi(a)} and let
= {a‘ Fl(a) VR L Y Fn(a)} . Then T is the union of the Ti and

from Sikorski [ 28, p. 59] we have

2is A ot FEEEESR =

teT b teT . teT £
1 n

where the existence of the left side implies the existence of the right,
It remains to show that the union exists for any S-form formula,

Let Fs(xo, e X a) be an S-form formula, The first n variables

n=1*

can be considered to be parameters since we are taking the union of

all a satisfying Fs(xo, ey X , a) . So consider X s weees X 4 to

n-1

be fixed elements of the Boolean algebra such that FS is true for at

least one a . Under these conditions we will find an equivalent
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formula from which the union can be determined directly, We use an
intermediate formula which is FS rewritten to display the variable a ,

~

For s€S andr:s‘n, letyr: 7T xi' T( xi . Then

. . O
1€YT 1ex

Fs(xo, ees X9 a) is equivalent to Bs(yo, e s yp; a) where

S(Y"’C’Y’a) /\[Y ):0]

seS

& /\ [y as(n) £0 &At(ks, ﬂ's’ m_ ¥y as(n))]

g€5 S s\n

For each r € 2" exactly one of the following four cases is a conjunc-
tion in BS and the cases, repeated enough times, exhaust BS o sIE
i satisfies case j , we may index ¥, 2s ij H

1. (y,-ra=0)& (yr-'é.' = 0) . Inthis casey =0 andterms of
this type imply no restriction ona . So Bg is equivalent to a formula
with terms satisfying this case removed,

2, (yr'ﬁ =0) & (y.*2a £0 & At(k, 4, m; yr'a)) . In this
case we have (a = yr) and BS is equivalent to a formula with terms
of this type replaced by (a = y2k) for an appropriate indexing set,
A U RSO Ty

A (yr'a =0) & (yr"éi 0 &At(k, £, m; yr'g)) . Here we
have (a2 < ?r) and BS is equivalent to a formula with terms of this
type replaced by (a < §3k) for ke i, ..., t}

In case these three cases exhaust B we have the equivalent

S 3

formula

(a 2 y21) & ... &(a = yzq) & (a < y31) &... &fa < Y3t)



-105-
Since ?r 2y foralls # r and Y, # y, for all r and s, we have that
the least upper bound of all a satisfying the above conjunction is the
intersection of the §3k 51 ‘}‘;31 I ?3t . If there are no terms of

type 3 in B =1

S
If BS has terms of type 4 below, we use the fact that the Boolean
algebra is a direct product to determine Za , Let o be the projec-
tion onto the atomic factor, P the projection onto the atomleés factor,
and let b be the least upper bound of the a satisfying the above
conjunction, that is, the least upper bound of the a satisfyiﬁg all

terms in B, of the first three types., If terms of type 3 exist,

S
b=F3, e V3., otherwise b=1. Letthey satisfying terms of
type 4 below be indexed Y417 o0 Y4y * We will determine T a by
determining Teo(a) and Zp(a).

4, (Yr'a # 0 & At(k', &', m'; Yr'a))
& (yr-a £ 0 & At(k, £, m; yroa))

Since BS holds, so does At(k' +k, £' + £, m' + m; yr). oz(yr- a) is
the union of m atoms of 0 if £ =0, the union of at least m atoms
if £=1, Consider the y4j such that At(k, Q, 0; Y4j' a) . Let them
be indexed as Vs eees Vg o For each Y5 a(yi- a)=0 so

ala) < a({ri) . v £0 et ¢ = ?1 S;v , otherwise ¢ =1, Then for
every a satisfying all terms of type 4 in BS it is the case‘that

o(a) € a(c). Now let the y4j which are not in {yl, o Yv} be
indexed as Yy eees Vg o For each of these, a(yj - a) contains at least

one atom, Thus, the least upper bound for «(a) such that a satisfies

all terms of type 4 in BS contains every atom in each of Vs isonn o
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and thus all of d = [a(yl) F e oz(yw)] . By our previous results,
a(b)c a(c) is an upper bound to a(a) . Since all the y are disjoint,
d < a(b)-a(c) . We will show that a(b)* a(c) is the least upper bound,
Suppose there is some z < a(b). a(c) which is an upper bound to all

a(a) such that a satisfies B Consider z' = (b)) a(c) - z ., z'

g
meets some : # 0, or else is in the complement of the union of all
they . If z' meets some y_ # 0 then since z' < a(b):a(c), the ¥,
must either satisfy case 2 or else be in {yl, s yw}. . In either
case there is an a such that a+z' # 0, contradiction, Hence z'
must be in the complement of the union of all the 3" In this case,

y.*z'=0and y %' =y_ forall r, Thereforeif a satisfies Bg

T
then a + z' satisfies BS , hence z is not an upper bound., We have

proved that
Za(a) = a(b)-a(c) .

To determine L f(a) we consider four subcases,

(i) k=1 and k' =1 , In this case Yy, is atomic and
ﬁ(yr' a) = B(0) for any a . This subcase does not restrict p(a)
in any way and we need not consider it further,

(i1} k='1 and k' =0 , That is, y,.*a is atomic and yroa
is not atomic, We ha:ve the condition 5(yr- a) = B0}, or

B(a) < B@r) . Let the V43 in B, which satisfy subcase (ii) be

S
indexed Vs oo Yy and let e = Vi oeer Vo
(1) k=10 and k' = 1,  That is, ¥ 3 is not atomic and

Yr'g is atomic, We have the condition B(yr-'éi) = B{0) , or

B(a) = B(yr) . Let f be the union of the y, satisfying this
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subcase., Any upper bound of B(a) must include B(f) .

(iv) k =0 and k'=0 ., Inthis case V.2 is ﬁot atomic and
yr-?:i is not atomic. Since any a such that y_-a and yr-'é are
not atomic satisfies this subcase, any upper bound of B(a)
includes all of B(y ). Since B(y ) < ﬁ(’{rs) for all s £ r, and
B(f) < B(b)-B(e), we have

Zp(a) = p(b)-P(e)
by essentially the same proof as for the atomic factor,
Combining the atomic and atomless least upper bounds, we

have
Ta = <a(b)-a(c), B(b):-p(e)>

as the least upper bound for the a satisfying BS -
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