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Abstract 

The distal half of the bacteriophage T4 tail fiber interacts 

with the surface of the bacterium during adsorption. The largest 
. 

polypeptide in this half fiber is the product of gene 37 (P37). 

During assembly of the tail fiber, P37 interacts with the product 

of gene 38 (P38). These two gene products are incompatible with the 

corresponding gene products from the related phage T2. T2 P37 does 

not interact with T4 P38 and T2 P38 does not interact with T4 P37. 

Crosses between T2 and T4 phages mutant in genes 37 and 38 have shown 

that the carboxyl end of P37 interacts with P38 and with the bacterial 

surface. In the corresponding region of gene 37 and in gene 38 there 

is no recombination between T2 and T4. In the rest of gene 37 there 

are two small regions with relatively high recombination and a region 

of low recombination. 

When T2/T4 heteroduplex DNA molecules are examined in the electron 

microscope four nonhomologous loops appear in the region of genes 37 

and 38. Heteroduplexes between hybrid phages which have part of 

gene 37 from T4 and part from T2 have roughly located gene 37 mutations 

in the heteroduplex pattern. For a more precise location of the 

mutations a physical map of gene 37 was constructed by determining the 

molecular weigh.ts of amber polypeptide fragments on polyacrylamide gels 

in the presence of soditun dodecyl sulfate. When the physical and 

heteroduplex maps are aligned, the regions of low recombination 
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correspond to regions of nonhomology between T2 and T4. Regions 

with relatively high recombination are homologous. 

The molecular weight of T2 P37 is about 13,000 greater than that 

of T4 P37. Analysis of hybrid phage has shown that this molecular 

weight difference is all at the carboxyl end of P37. 

An antiserum has been prepared which is specific for the distal 

half fiber of T4. Tests of the ability of gene 37 hybrids to block 

this antiserum show that there are at least 4 subclasses of antigen 

specified by different parts of P37. 

Observations in the electron microscope of the tailfiber - anti

body complexes formed by the gene 37 hybrids and the specific anti

serum have shown that P37 is oriented linearly in the distal half 

fiber with its N-terminus near the joint between the two half fibers 

and its C-terminus near the tip of the fiber. These observations lead 

to a simple model for the structure of the distal half fiber. 

The high recombination in T4 gene 34 was also investigated. A 

comparison of genetic and physical maps of gene 34 showed that there 

is a gradient of increasing recombination near one end of the gene. 
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General Introduction 

Interactions between protein molecules and complex carbohydrates 

on the surface of cells are important in a variety of biological 

processes. Interaction of humoral or cellular antibodies with 

cellular carbohydrate antigens, cellLcell recognition and sorting 

during development, and attachment of viruses to the surface of host 

cells are all examples of this type of interaction. The cellular 

receptors for a number of viruses have been intensively studied and 

in several cases the composition and sequence of monomers in the 

polysaccharide portion of. the receptor have been determined. In 

.bacterial systems, cells with altered bacteriophage receptors have 

been used to determine which part of the receptor molecule is necessary . 

for the attachment of a particular phage. Very clear requirements 

· have emerged for a number of phages (Rapin and Kalckar, 1971). 

However, in none of these cases has the second component of the 

system, that part of the phage which interacts with the surface of 

the bacterium, been investigated. In fact, most of the work has been 

done with phages which are quite poorly characterized by criteria other 

than their adsorption specificity. 
i. 

These considerations led me to study adsorption of bacteriophage 

T4, a coliphage whose adsorption apparatus has been intensively 

investigated. Most of this thesis is a study of the structure of 

the tail- fibers of T4 which interact with the bacterial surface during 

adsorption. Some experiments aimed at understanding the bacterial 
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receptor for these fibers are described in the general discussion. 

T4 tail fibers were chosen for study for a number of reasons. 

During adsorption the tips of these tail fibers attach specifically 

to the lipopolysaccharide of the bacterial cell wall (Simon and 

Anderson, 1967; Wilson, Luftig and Wbod, 1970). T4 is very easy to 

manipulate genetically. There are a large number of mutants available, 

and functional and recombinational analysis of them is rapid and 

precise. Genes specifying all of the major polypeptides of the tail 

fiber have been identified as well as two genes which are necessary 

for tail fiber assembly but do not contribute proteins to the structure 

(King and Laemmli, 1972; Ward and Dickson, 1972; Eiserling and Dickson, 

1972). Most of the pathway of tail fiber assembly has been worked out 

(Edgar and Lielausis, 1965; King and Wood, 1969). 

Parts I and II of this thesis are concerned with the structure of 

the distal half of the T4 tail fiber, the structure of gene 37, which 

codes for the major polypeptide of the distal half fiber, and of gene 

38, the product of which interacts with the gene 37 product during 

tail fiber assembly. As will be seen in part I the gene 37 product 

is the protein which interacts with the bacterial receptor. 

Part I is a comparison of genes 37 and 38 between T4 and the 

closely related phage T2, which adsorbs to different bacterial 

receptors than T4. The parts of these genes which have become non

homologous during divergence of T4 and T2, and the part of the gene 37 

product which interacts with the bacterium and with the gene 38 

product are identified. 
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Part II describes the distribution of antigens along the tail 

fiber and the conformation of the gene 37 product in the assembled 

fiber. 

Section III describes an investigation unrelated to the structure 

of the tail fiber. It is shown that the large genetic size of T4 

gene 34 results from a gradient of increasing recombination near the 

end of gene 34. 
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1. Introduction 

Bacteriophages T2 and T4 are so closely related that a gene 

product missing from one of the phages due to an amber mutation can 

usually be replaced by the corresponding gene product from the other 

phage (Russell, 1967). The only two exceptions are the products of 

genes 37 and 38 (P37 and P38). These interact during assembly of the 

distal half of the phage tail fiber (King & Wood, 1969), P37 being 

incorporated as the major polypeptide of this half fiber (Ward et al., 

1970). P38, while necessary for fiber formation, is not incorporated 

into the assembled structure (King & Laemmli, 1972; Eiserling & Dickson, 

1972). During adsorption the distal half fiber interacts with specific 

receptors on the surface of the bacterium (Wilson, Luftig & Wood, 1970). 

The specificity of this interaction is at least partially controlled by 

P37, since host range mutations of T4 map in gene 37 (Beckendorf, in 

preparation). P37 and P38 cannot be exchanged by T2 and T4 because P37 

from T4 (P374 ) cannot interact with P38 from T2 (P382 ) and P372 cannot 

interact with P384 (Russell, 1967). The T2 and T4 gene products must 

also differ functionally, since the two phages attach to very different 

receptors on the bacterial surface (Jesaitis & Goebel, 1953). Despite 

+ these differences there is a low level of am recombinants in crosses 

of the type T2 a.m37 x T4 am38 or T4 am37 x T2 am38 (Russell, 1967). 

These results suggest that, despite the incompatibility of the finished 

T2 and T4 gene products, there are at least some regions of the two 

genes which are mutually compatible~ 

,• 
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To determine which regions are compatible and which are incom-

patible, we have carried out intertype crosses between T2 and T4 mutants 

defective in genes 37 and 38. Analysis of these crosses and of the 

T2:T4 hybrid phage produced has allowed us to locate the host range (!!) 

determinant, the site of P37 interaction with P38, and the regions of 

these genes which are not homologous between T2 and T4. 

2. Materials and Methods 

(a) Phage and bacterial strains 

Phage strains derived from the wild type T4D were obtained from 

the collection of R. S. Edgar and have bean described elsewhere (Epstein 

et al., 1963; Edgar & Lielausis, 1965; Wilson & Kells, 1972; Bernstein, 

Edgar & Denhardt, 1965 ). T4B !'._H23 is an rII deletion mutant of T4B 

which is missing both the rIIA and !:_IIB cistrons (Benzer, 1959). Most 

of the phage strains derived from wild type T2L were obtained from the 

collection of R. L. Russell and have also been previously described 

(Russell, 1967). T2 rH23 is a recombinant between T2L and T4B rH23 which 

was selected to retain T2 host range, and the rII deletion. It is homo-

logous with T2 throughout the tail fiber region (Kim & Davidson, 1972). 

T2:T4 hybrid phage made during this study are described in Table l. 

Escherichia coli strain CR63 was used as permissive host for T4 

amber mutants, strain CR63r6r;4 as a permissive host for T2 amber mutants 

(Georgopoulous & Revel, 1971) and strain s/6/5 as restrictive host for 

both T2 and T4 ambers. Strain Bb was used as nonpermissive host for all 

lysates (Wilson et al., 1970). Strains B/2 and S/4 were used as select

ive indicators to determine T2 or T4 host range (h2 or h4 ). Identifica-
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Table 1 

T2:T4 Hybrid Phage 

Hybrid Phage Composition Host Range 

~l aml23+ amB280+ rdf41 h2 
-

~2 aml25+ amE2060+ rdf41 h4 

Ezll aml23+ amN52+ h2 

~44 aml23+ amC290+ h2 

~54 aml25+ amE2060+ h4 

~215 aml25+ amNG220+ h4 

~217-5 aml29+ amE2082+ rdf 41 h2 

~267 aml23+ a.mNG182+ h2 

The designation ~23+ ~280+ for ~ indicates 

that ~l is a.n am+ recombinant from a cross between T2 

aml23 and T4 amB280. This same convention is used for 

all of the hybrids. The position of the T2 and T4 

mutations in genes 37 and 38 are shown in Figure 1 and 

Figure 2a. ~1, ~2, and ~217-5 also carry the £.II 

deletion rdf41. 
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tion of both h2 and h
4 

phage on the same plate was done by plating on 

BIX, a 3:1 mixture of S/6/5 and B/2, each at about 2 x 109 cells/ml. 

On this indicator h2 phage made turbid plaques, h
4 

phage make clear 

plaques. 

(b) Media 

H broth used for phage and ba~terial growh and EHA top and bot-

tom agar used for plating assays were prepared as described by Steinberg 

& Edgar (1962). Dilution buffer. was prepared as described by King (1968). 

Minimal growth medium for preparation of radioactively labeled infected 

cell lysates contained per liter 7 gm Na
2

HPo4 , 3 gm KH2Po4 , l gm NaCl, 

1 gm NH4c1, 0.12 gm Mgso4 , and 4 gm glucose. 

14 (c) C-labeled lysates 

Strain Bb was grown to 5 x 107 cells/ml. in minimal growth 

medium, collected by centrifugation, and resuspended at 2-4 x 108 cells/ 

ml. One ml. aliquots of this suspension were warmed to 37°c, infected 

with phage at a multiplicity of 4, and aerated by agitation on a rotary 

shaker. 14 min after infection 2 µC of a uniformly-labeled 14c amino 

acid mixture (Schwarz-Mann) were added. At 45 min the lysates were added 

to an equal volume of cold 10% TCA and dialyzed against 0.065 M Tris-

HCl, pH 6.8, 1% SDS. 

(d) Electron microscopY 

Electron microscopic techniques for examining heteroduplex DNA 

are described in Davis et al. (1971), and Westmoreland, Szybalski & Ris 

(1969). Details of our procedure are given in Wilson, Kim & Abelson 

(1972). Briefly, the heteroduplex DNA was prepared by alkaline lysis of 

a mixture Of two phages and renaturation of the DNA .in the presence of 
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formamide, stained with uranyl acetate, and shadowed with platinum-

palladium, Under these conditions singl~-stranded DNA is extended into 

a measureable form and appears thinner and kinkier than does double-

stranded DNA. Both single- and double-stranded ¢Xl74 DNA (5200 bases 

long, N. Davidson, personal communication) were added as internal stan-

dards. 

The crossover points (XOP's) of the hybrid phages were determined 

by making heteroduplexes of their DNA with that of T4B rH23 and T2L rH23 

or, if the hybrids carried the rII deletion rdf4l, with that of T4B and 

T2L. The rII deletions served as markers to orient the heteroduplexes. 

(e) Gel electrophoresis and autoradiography 
~ 

Procedures for the preparation and running of discontinuous poly-

acrylamide gels containing SDS were as described by Laemmli (1970). 

Sample preparation, staining, destaining, and autoradiography of the 

gels were as described by Wilson & Kells (1972). For molecular weight 

determinations the gels were standardized as described by Beckendorf & 

Wilson (1972). 

(f) Phage crosses 

Standard phage crosses were a modification of the procedure of 

Steinberg & Edgar (1962). T4D crosses were done at 30°C in CR63. Cross-

es involving T2L or its mutants as one or more parents were done at 25°C 

in CR63r6r;4 • A stationary culture of the host cells was diluted 1:1000 

or 1:500 in H broth and grown for 2.5 hr at 30°C. Cells were collected 

by centrifugation, resuspended at 4 x 108 cells/ml., and KCN was added 

to an equal volume of the parental phage strain.sat a multiplicity of 7.5 
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each at 30°C or 25°c. A~er 10 min anti-T4 serum, anti-T2 serum, or 

a mixture of both sera was added to inactivate all unadsorbed phage. 

15 min after infection the cells were diluted 1-4 x 104 into _H. broth 

at 30°C or 25°c. 90 or 110 min after infection CHc1
3 

was added. 

(g) Conventions 

All maps are represented as they would appear if viewed from 

the center of the circular T4 genetic map (see Mosig, 1970, for a recent 

version of this map). Thus gene 37 is to the le~ of gene 38. To 

facilitate comparisons of maps constructed by various means, the posi-

tions of markers are often given in fractional parts of T4 gene 37, 

measured from its le~ end. As will be seen in section 3.(d), synthesis 

of P37 begins at the left end of gene 37. 

3. Results 

(a) Genetic maps of genes 37 and 38 

The genetic map of T4 genes 37 and 38 presented here (abscissa 

Fig. 2a) is a composite of two previous maps. The first, a map of gene 

37 presented by Bernstein and Fisher (1968), contains three am sites, 

amA481, amN52, and amB280, and most of the ts sites in gene 37. The data 

used to construct this map was generously supplied to us by Harris 

Bernstein. The second map, which we constructed, contained three gene 37 

ts sites, tsL37, tsP43, and tsL93, all of the gene 37 ~sites, and the 

~and~ sites in gene 38. To combine the two maps .we crossed~ mutants 

which had been located on our map with ts mutants expected to be nearby. 

,1 
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In this way we determined which ts sites lay in each interval between the 

~sites on the map we had constructed. The order of the ts sites and 

their relative spacing within the intervals between ~'a are essentially 

as determined by Bernstein & Fisher (1968). The resulting map differs 

in two important respects from that published by Bernstein & Fisher. 

We find that tsL19, which is their left-hand terminal marker, is actual

ly in gene 36 not gene 37 (Beckendorf, unpublished). We also find, from 

the results of two and three-factor crosses, that the ts site defined 

by tsCB81 is to the left of the tsL37 site rather than to the right of 

amA481 as published (Beckendorf & Lielausis, unpublished). 

The genetic map of T2 genes 37 and 38 (Fig. 1) was constructed 

from recombination frequencies determined in two-factor crosses between 

all of the available am mutants in these genes. 

(b) Intertype crosses 

We have crossed the ts and am mutants in T4 genes 37 and 38 with 

the three available a.m's in T2 gene 37 and am125 in T2 gene 38. The re

sults of these crosses show that most of the recombination occurs in 

one short segment of gene 37. The crosses have also allowed us to lo

cate the region which controls the difference between T2 and T4 host 

range. 

As discussed below, two factors, DNA non-homology and protein in

compatibility, might affect the number of recombinants arising in such 

crosses. Because the DNA molecules would be less likely to pair pro

perly, we would expect a reduction or lack of recombination in nonhomo

logous regions. The results in section 3.(c) show that most of the T2 

and T4 DNA in this region is partially or completely non-homologous. 
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Fig. 1. Genetic mnp of T2 genes 37 and 38. The % recombination 

for each interval is listed below the map and was calculated as (am+ 

recombinants/tote.l progeny) x 200%.· All values are the average of re

combination frequencies obtained in twp independent crosses. All mutants 

are ambers. 
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Protein incompatibilities should also affect the apparent frequency of 

recombination. The interaction of P37 and P38 is a.n example of such an 

incompatibility. Any recombinant in which the int eracting sites of the 

two proteins do not come from the same parental phage will be unable to 

make tail fibers. As another example, a phage carrying part of gene 37 

from T2 and pa.rt from T4 might make A protein which would be unable to 

fold correctly. Either of these examples of protein incompatibility would, 

like DNA nonhomology, lead to apparent low recombination, since recom-

binant phage would be unable to form a plaque and would not be scored. 

To locate the host range (!!_) determinant, we have tested whether 

the am+ ts+ recombinants have T2 or T4 host range (!!_ 2 or !!_ 4 ). If, as 

shown at the le~ below, the region opposite a mutation is compatible 

with either host range, both h2 and h4 recombinants will occur. However, 

as shown at the right, if such a region uniquely determines h4 (is in

compatible with h2), all recombinants will be g_4• 

T2 --- --*---+- - -I T2---- - . - --+-~-I 

'--- '---T4 X T4--"'*""-----------+------i 

OR 

T2-----7(----f-- J 

\ I 
T4---iX----------~l--------i~ 

t..__ ___ h determinant _____ ___, 
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To simplify the discussion of these results, gene 37 has been 

divided into 4 segments, ~, b, .£_, and 2:_ (see Fig. 2a). As will be 

seen T4 phage carrying mutations in the same segment behave similarly 

in these crosses. 

(i) T2 aml25 and T2 'amFS4 x T4 mutants. Figure 2a and Table 2 

show the results of crosses of T2 aml25 in gene 38 and T2 amFS4 in seg-

ment 2:, of gene 37 with T4 am and ts mutants defective in genes 37 and 

38. These crosses gave two types of results. If the T4 mutations were 

in segment d or gene 38, few if any rec0mbinants were recovered. When 

the T4 mutants were in segment~, b, or.£_, am+ts+ recombinants were re

covered but all were h4 • In none of the crosses were any h2 recombin-

ants Iound. Therefore, these crosses are analogous to the second possi-

bility diagrammed above, and the region opposite aml26 and amFS4 (seg

ment 2:_ and gene 38, Fig. 2a) must determine h4 • Since no recombinants 

were formed when both the T2 and T4 mutations were in segment d or gene 

38, this region in addition to determining host range must either be non-

homologous, specify incompatible polypeptides, or both. 

Crosses with T4 mutants in the rest of gene 37 yield about 0.5% 
4 of recombinants all of which are h • Since these recombinants incorpor-

ate at least that part of '1'2 gene 37 opposite the T4 mutation, the left 
I 

hand part of the T2 gene, segments ~' b, .£_, must not contain a region 

h . h ·f· h2 w ic speci ies _ • Since all of the hybrids contain T4 ' gene 38 and it 

must interact with a T4 site in gene 37, this site cannot be in segments 

~, b, or £_, but must be in segment d. 

In crosses between two T4 mutants or two ~2 mutants, the frequency 

of recombinants increases as the distance between the two mutations 
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Fig. 2. T2:T4 intertype crosses in genes 37 and 38. Forty ~ 

and ts mutants in T4 genes 37 and 38 were crossed to three ~mutants 

in T2 gene 37 and to aml25 in T2 gene 38 (see legend, Table 2). Each 

graph represents the results of cross~ng one or two of the T2 mutants 

to most of the T4 mutants. Both ,h.2 (A) and !!_4 (0 or 0) recombinants 

are represented when present. a. T2 aml25 (0) and T2 amFS4 (I) by T4 

mutants. b. T2 aml23 by T4 mutants. c. T2 aml29 by T4 mutants. The 

abscissa of the graphs is the genetic map of T4 genes 37 and 38 constructed 

as described in the text. The prefix ts has been omitted from the 

designation of all ~mutants. + + % recombination was calculated as (~ ts 

recombinants/total progeny) x 200%. 

,• 
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Table 2 

Intertype Recombination in Genes 37 and 38 

T2 Mutants 
T4 mutants 

aml25 amFS4 aml23 am129 
~4 ~4 h4 h2 h4 h2 . 

tsLl76 .45 * 
tsN31 .49 * 
tsN2 .25 * 
tsCB81 .41 .88 .63 * • 32 <.01 

tsB32 .26 * 
tsB68 .41 • 24 * 
~L37 .38 .64 • 21 * .22 <.02 

tsP43 .18 .53 t * .016 t 

a.mA48l • 34 .70 t t .039 .0017 

amNG182 .23 .61 t .0013 .041 .0019 

amN52 • 35 .57 .0023 .067 t .015 

tsCB108 • 36 • 51 .0026 .021 .0035 .012 

amE2060 .22 • 59 t .083 .0016 .045 

tsL20 .15 .46 .0023 .042 .0031 .010 

~2082 • 36 .042 .18 

amB280 .17 .33 .054 • 35 .036 • 20 

tsB78 .057 .19 

t sC13 .026 • 31 

t sL168 .023 .18 

tsN36 .020 .13 

tsB7 .015 .12 

tsB67 .018 .16 

~B26 .016 .14 

amNG220 .o4o .0062 .24 

tsB36 t .29 

tsB46 * • 39 
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Table 2 (continued) 

T2 Mutants 

T4 mutants aml25 amFS4 aml23 aml29 
h4 ~4 h4 h2 h4 h2 

arnNG187 t t t .24 t • 36 

tsB72 t * • 21 

amNG475 t t .26 

tsCB17 t t • 36 

tsCB77 t t .32 

tsNlO t t .19 

tsAl6 t * .18 

tsCB89 t t .18 

tsA3l t * .23 

tsL93 t 

tsCT32 t 

amB262 * t * .47 

amC290 t t * • 51 t • 39 

tsCT30 t * .23 

Phage crosses were as described in Materials and Methods. A mixture 

of anti-T2 and anti-T4 serum was used to inactivate unad~orbed phage. All 

values given are per cent recombination calculated as (am+ ts+ recombinants/ 

total progeny) x 200%. + The host range of the ~ progeny was usually 

determined by plating the phage on BIX. Occasionally to confirm the host 

range determined from the BIX plating, plaques were transferred with a 

sterile pin onto three plates previously seeded with B/2, S/4, a.nd S/6/5 

respectively. * <.003% R; t <.001% R. 
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increases. However in these intertype crosses, the frequency of re-

combina.nts remains approximately constant throughout segments ~ and £_. 

This observation suggests that almost all of the recombination is occur-

ring in segment .£ and that most of the recombinants carry all of segments 

a and b from T2. 

(ii) T2 aml23 and T2 ~29 x T4 mutants. The results of crosses 

with these two mutants are very similar (Table 2 and Figs.2b and 2c). 

In the crosses with aml23 the lack of recombinants at the le~ end of 

segment £. identifies the area on the T4 map opposite aml23. No such 

· landmark locates aml29, but its position relative to the T4 map can be 

determined from the molecular weight of the §.:!!!.fragment produced in su-

cells infected with aml29 (see section 3f). This fragment of 37,000 

daltons locates a.ml29 opposite the gap on the T4 map between amNG182 and 

amN52 (see Fig. 5). 

The finding that crosses of either aml23 or aml29 by T4 mutants 

2 defective in gene 38 or segment~ of gene 37 yield only!!_ recombinants, 

confirms that this region controls host range. 

In crosses of aml23 and a.ml29 with T4 mutants defective in segment 

c both h 2 and h4 recombinants occur. Thus the polypeptides coded by this 

region must be functionally interchangeable. 

When recombination is forced to occur in segment £. because both 

the T2 and T4 mutations are located in E._, the number of recombinants 

found ranges from 5-30% of the number found when recombination can occur 

in other regions as well. One possible explanation of this low recombina-

tion is that the polypeptides made by this region are partially incompati-

ble. This partial protein incompatibility would allow a small piece of 
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· T2 protein to be incorporated trom this region, but any large T2 piece 
1 . . I 

combined with the predo*1inantly , T~ molecule would, according to this 

model, render the protein inactive. Thus to produce an active molecule 

two crossovers would have to occur, one on each side of the T4 marker. 

T2 -------------*9-----
)\ _______ 

I 
This requirement for ~ double crossover would account for t he decreased 

recombinati on in b. 

To test this hypothesis, the T4 double mutant ~sL37:81J!A481 was 

constructed and crossed to T2 aml29. 

am 129· 

T2 ~-------------~-----

tsL31 amA481 
+ am recombinants were selected and tested for the presence 'of_ the ts 

marker. If protein incompatibility were causing the low recombination, 

' + I a large majority of the am recombinants should carry tsL37. The results 

+ showed that only 4 .1% ot the ~ recombinants were al,so ~· Thus the 
• {f ,,. 1' ... : 

most likely explanation tor the low recombination in segment b is that 
. . . -· ... 

the DNA molecules are partially nonhomologous. Direct evidence for partial 
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nonhomology in this region is presented in section 3c. 

When the T4 mutations are in segment ~ the total nl.Ullber of re

combinants is similar to that in ~ and ~' yet no !!_
2 

recombinants have 

been found. Since both aml23 and aml29 are in segment E_, recombinants 

in these crosses must incorporate T2 segment ~and T4 segment b. The 

lack of ~2 recombinants would be explained if the combination of the T2 

polypeptide coded by segment ~with the T4 polypeptide coded by segment 

E_ caused the phage to have T4 host range. Alternatively, since the for-

2 mation of h 's in these crosses requires a double crossover, the double 

T2 ----~-------

\ ___ / 
T4 

a b c d 

recombinants might be so infrequent that they were not detected. 

distinguish these possibilities we constructed two hybrid strains. 

To 

+ + am ts 

recombinants from a cross between these strains will contain T2 segment ~ 

and T4 segment E_, but h2 recombinants will be formed by a single crossover, 

h4 recombinants by a double (see Fig. 3). When these strains were crossed 

% + + 2 % +t +h4 29 of the progeny were ~ ts !!_ and 15 were ~ ~. _ • These results 
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Fig. 3. Construction of hybrid phage for test of recombination 

between segments a and b. The dotted lines represent T2 gene 37 and the 

thin solid lines represent T4 gene 37. The heavy so~id lines represent 

the selected recombinant. T2 tsl5 ma~s near aml29 and to its right. In 

+ the cross T2 tsl5 x T4 tsL37:~481, ts recombinants were selected and 

tested for the presence of amA481. In the cross T2 aml23:aml29 x 

T4 tsL37:amNG187, am+ recombinants were selected and tested for the 

presence of tsL37· In the final cross am+ts+ recombinants were selected 

and scored for host range by plating on BIX. 
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ts 15 oml23 oml29 
--------r----------- ----r--+-------------

\ __ _ ____,/ 
ts L37 om A481 

L 
tsL37 omNGl87 

omA481 

--------------
tsL37 
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demonstrate that the combination of T2 segment ~ and T4 segment ~ does 

not specify h4 and suggest that the absence of !!_21 s in the previous 

crosses was due to nonhomology in segment ~ which prevented double re-

combinant formation. In the test cross just described double recombinants 

(am+ts+h4 ) were formed at a high frequency, probably because segments b 

and c of the pa.rental phage were homologous. 

(c) DNA heteroduplex mapping of the host range region 

Heteroduplex DNA from a mixture of T2 and T4 phage (T2/T4 hetero-

duplex) shows a characteristic pattern of substitution and deletion loops 

when examined in the electron microscope. This pattern of loops has 

been oriented relative to the standard T4 genetic map by using deletions 

of genes e and rII as markers (Kim and Davidson, 1972). Plate 1 is an 

electron micrograph of the region near genes 37 and 38. The top line of 

Figure 4 is a schematic representation of the loop pattern in this region. 

Loop 4 is present in all T2/T4 heteroduplexes. In contrast loops 2 and 

3 are present in only about 50% of the heteroduplexes and are quite 

variable in size. Occasionally loops 1 and 2 or loops 2 and 3 open up 

together. Unless it is combined with loop 2, loop 1 is present in all 

T2/T4 heteroduplexes. These results indicate that from the right end of 

loop 1 to the right end of loop 3 the T2 and T4 strands are partially non-

homologous. In loops 1 and 4 the T2 and T4 strands appear completely 

nonhomologous by this technique, while in the regions between 0 and l 

and between 3 and 4 they appear completely homologous. 

By making heteroduplexes between T2 or T4 and the phages which 

have a hybrid gene 37, it is possible to map the crossover points (XOP's) 

of the hybrids onto the heteroduplex loop pattern·, as shown by the fol

lowing examples. !!z54 is an am+ recombinant from the cross T4 amE2060 x 
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Plate l. Electron micrograph of the host range region of a T2/T4 

heteroduplex. Heteroduplex molecules were prepared and visualized as 

. 0 
described in Materials a.nd Methods. Ba.r represents 1000 A. 
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Fig. 4. Heteroduplex loop patterns. Heteroduplex molecules 

were prepared~ visualized and measured as described in Materials and 

Methods. The loops are numbered 1-4 to correspond to Plate 4. Dimen

sions are given . in nucleotides. 
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T2/T4rH23 

hy54/T4rH23 

hy54/T2rH23 

2 3 • '~~===t;~ 
1 •"'··==-(____ _ _____) 7000--1 ~.·····--- 1550 s ~···" --+--630 --l 490 f--1080 

"""==~~ ~. · · ····==...... 10,500 s ~~~· .... ~~~~~ 

~~/ ==f======-

hy 11/T2rH23 

hy 11/T4rH23 """·===--==== ....... 

hyl 1/hy54 ~··· ··:=====----~· ..... 

hy54~~~~==::::r::=========== hyl I 12 
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T2 a.ml25. It has T4 host range and from the results in Figure 2a its 

XOP must be between amE2060 and the h determinant. A heteroduplex be-

tween ~54 and T4 E_H23 shows loops 1, 2, and 3 but not 4 (Fig. 4). Thus 

~54 must be homologous with T4 in the region of loop 4, but not in the 

region of loops l, 2, and 3. The heteroduplex !!1..54/T2 E_H23 demonstrates 

that ~54 is homologous with T2 in the region of loops 1, 2, 3 and con-

firms that it is homologous with T4 in the loop 4 region. These two 

heteroduplex patterns locate the XOP in ~54 between loops 3 and 4. 

~ll is an am+h2 recombinant from the cross T4 amN52 x T2 a.ml23. 

Heteroduplexes between it and T2 or T4 indicate that the region of loops 

1 and 2 is homologous to T4 and the region of loops 3 and 4 is homologous 

to T2 (Fig. 4). Then the XOP in !!l_ll is between loops 2 and 3, confirming 

our expectation from the genetic results that the XOP's in !!Y.11 and ~54 

are at different points. The heteroduplex !!l_ll/.!!z54 has loops 1, 2, and 

4 but is homologous in the region of loop 3 as predicted from the above 

results. 

From the two heteroduplexes .!!l_54/T4 E_H23 and .£:i.11/T2 E_H23 it is 

possible to establish that the longer strand in loop 4 comes from T2 and 

the shorter from T4. In .!!l_54/T4 E_H23 the distance from the E_II deletion 

loop to the right end of loop 1 is 10,500 nucleotides. In this case the 

region corresponding to loop 4 is duplex T4 DNA. In ~ll/T2 E_H23 the 

loop 4 region is duplex T2 DNA and the distance from the rII deletion to 

the right end of loop 1 is 11,700 nucleotides. Therefore the T2 DNA in 

loop 4 is longer--1200 nucleotides from this calculation, 1080 nucleotides 

from directly measuring the strands of the loop. 

A number of other hybrid phage have been heteroduplexed with T2 

or T4 and the resulting loop patterns determined (Table 3). The results 



Table 3 

Heteroduplexes of Hybrid Phage 

Host Number of molecules with 
Total number Heteroduplex XOP Range of Molecules Loop 1 Loop 2 Loop 3 Loop 4 

~ll/T2E_H23 .21-.48 h2 9 4 0 0 9 

hz.ll:-/T4E_H23 0 0 6 7 7 

~54/T2!_H23 • 52-. 85 h4 0 0 0 9 9 

~54/T4!_H23 23 14 9 0 23 

!!l.11/~54 9 3 0 9 9 w 
~ 

!!l.l/T4B .35-.68 h2 0 0 0 16 . 16 

!!l.2/T4!_H23 .52-.85 ~4 6 4 4 0 6 

!!l.44/T2£.H23 .21-.85 h2 7 4 3 0 7 

!!l.44 /T4!_H23 0 0 0 16 16 

!!l.215/T2!_H23 .80-.85 h4 0 0 0 20 20 

~217-5/T4!_H23 • 35-. 58 h2 13 8 5 0 13 

The XOP's and host ranges given refer to the hybrid phage in each heteroduplex. The 

XOP's are expressed as fractions of gene 37 and were calculated from the position of the 

appropriate ~ mutations on the genetic and translational maps (Fig. 2a, Table 4). The 

heteroduplex molecules were prepared and visualized as described in Materials and Methods. 
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demonstrate that the origin of the DNA in the region corresponding to 

loop 4 determines the host range of the phage. 

The location of XOP's in two different regions of the heteroduplex 

loop pattern and the correspondence of the !!_determinant with loop 4 

partially align T4 genes 37 and 38 with the heteroduplex map. To directly 

compare the results of the intertype c~osses with the regions of non-

homology, we need a physical map of mutations in gene 37 and a precise 

way of positioning it relative to the heteroduplex loop pattern. These 

requirements are met in the next section. 

(d) Translational mapping of T4 gene 37 

Since polypeptide chain termination occurs at the amber codon 

under nonpermissive conditions, the site of an amber mutation can be 

physically positioned within a gene by determining the relative sizes 

of the wild type product and the amber fragment, using the technique 

of polyacryla.mide gel electrophoresis in the presence of sodium dodecyl 
. 14 
sulfate (SDS ). C-labeled lysates of T4 and seven different T4 gene 37 

am's grown under nonpermissive conditions were analyzed on discontinuous 

SDS gels (Laemmli, 1970). From autoradiographs of the gels we were 

able to identify five P37 amber fragments (Plate 2) and, by comparison 

with a standard curve, to determine their molecular weights (Table 4). 

Two other fragments, that from amB280 and that from amN52, were not 

visible apparently because they coelectrophoresed with other bands. To 

visualize these fragments we constructed multiple mutants carrying either 

amB280 or amN52 and ~mutations in genes whose product was thought to 

be obscuring the P37 fragment . Gels of these multiple mutants revealed 

that the amB280 fragment runs at the same position as P20 and the a.mN52 
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Plate 2. 
4 14 Identification of P37 am fragments. C-labeled 

lysates were prepared as described in Materials and Methods and electro

phoresed on 7.5% discontinuous polyacrylamide gels containing SDS. After 

staining and destaining the cylindric~ gels were sliced longitudinally. 

The slices were dried and autoradiographed on Kodak No Screen X-ray film. 

The differences in absolute migration of corresponding bands in the 

three groups reflects normal daily fluctuations. 
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Plate 3. Identification of amB280 and amN52 fragments in multiple 

mutants. For procedure see Plate 2. Mutants used: 20- - arnN50; 23-24- -

amB272 amB26. 
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Table 4 

Molecular Weights of P37
4

, P372 , a.nd Amber Fragments of Each 

4 P37 am Fragments 

amN52 

amE2060 

amE2082 

amB280 

amNG220 

amNG187 

amNG475 

P37
4 

P372 ~ Fragments 

aml29 

amFS4 

P37
2 

50 

55 

61 

72 

84 

89 

90 

105 

37 

124 

120 

Molecular weights of the gene products and ~ fragments 

was determined by comparing their migration on SDS polyacrylamide 

gels with the migration of standard proteins as described in 

Materials a.nd Methods a.nd Beckendorf & Wilson (1972). 
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fragment runs very close to the position of P23 (Plate 3). From the 

molecular weights of these two fragments (Table 4) and the previously 

determined five fragments, we have constructed the translational map of 

T4 gene 37 shown in Figure 5. 

The nearer the am mutation is to the right end of gene 37, the 

larger is the size of the ~ fragment, Thus the direction of translation 

is from left to right. Studies of the polarity of a gene 36 ~mutation 

(amEl) on the production of P37 and the polarity of a gene 37 ~mutation 

(amN52) on the production of P38 have shown that the direction of trans-

cription of gene 37 is also from le~ to right (King and Laemmli, 1972). 

This translational map can be aligned with the DNA heteroduplex 

' map in the following way. ~215 is an am+ recombinant from the cross of 

T4 amNG220 by T2 aml25. Therefore amNG220 must be located to the le~ of 

the XOP in this hybrid. 
. . + 

!!:l_217-5 is an am recombinant from the cross 

of T2 aml29 by T4 amE2082 rdf41; amE2082 must be to the right of the XOP 

in this hybrid. Heteroduplexes of these hybrids with T2 rH23 show that 

the XOP's in both hybrids lie between loop 3 and loop 4 (Table 3). Thus 

both ~mutations must also lie between loops 3 and 4. The distance 

from loop 3 to loop 4 is about 630 nucleotides (Fig. 4). The same figure, 

630 nucleotides, is obtained when the interval between the two ~muta-

tions is calculated from their separation on the translational map 

(assuming 3 nucleotides per amino acid and an average residue molecular 

weight of 110 per amino acid). Therefore we have aligned the translational 

and heteroduplex maps so that ~2082 coincides with the le~ end of loop 

4. 

This alignment permits the le~ end of gene 37 to be located on 
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Fig. 5. Comparison of heteroduplex, translational, and genetic 

maps of genes 37 and 38. From top to bottom the maps are T2 gene 37 

translational map, T2/T4 heteroduplex map of genes 37 and 38, T4 gene 37 

translational map, T4 genetic map of genes 37 and 38. The scale at the 

bottom is calibrated in fractional parts of T4 gene 37. The maps were 

oriented so that the ends of T4 gene 37 were aligned. The prefix ts has 

been omitted from the designation of all ts mutants. 
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the heteroduplex map. The amber fragment of amNG220 is 84,000 daltons, 

which corresponds to 2310 nucleotides. The left end must then be 2310 

nucleotides to the le~ of the le~ end of loop 4 or 110 nucleotides to 

the le~ of loop l. By similar calculations the right end of gene 37 

is within loop 4, 560 nucleotides from the le~ end. 

The alignment of the translational and heteroduplex maps also 

determines the positions of the seven translationally mapped ~mutants . 

on the heteroduplex map (Fig. 5). To understand the results of the 

intertype crosses, it would be useful to know the positions of the ts 

mutants and the other am mutants as well. The genetic map can be used 

to locate these positions, since the frequency of recombination per unit 

length is nearly constant throughout the gene. Figure 6 compares the am 

fragments map with the recombination map by plotting the per cent re-

combination per 1000 mol. wt. of protein (R1000 ) for each interval on the 

translational map. Since the value of R1000 varies only slightly through

out the gene (.12-.36), the genetic map can be aligned with the two 

physical maps as shown in Figure 5. 

(e) Translational mapping of T2 gene 37 

14 In SDS polyacrylamide gel patterns of C-labeled lysates of 

T4-infected cells, the three most slowly migrating bands have been 

identified as P34, P7, and P37 (King and Laemmli, 1972; Ward and Dickson, 

1972; King and Laemmli, in preparation). When a gel pattern from T2-

infected cells is compared with the T4 pattern, it is clear that bands 

corresponding to P34 and P7 are present but that no band corresponding 

4 to P37 is present. Instead another band, which migrates more slowly 

than P7, is present in the T2 pattern (Plate 4). This new band is P372 , 
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Fig. 6. Comparison of genetic and translational maps of T4 gene 

37. The heavy bar near the bottom of the graph is the translational map 

of the gene with am mutants located along it. R1000 , the per cent re

combination per 1000 mol. wt. of prot~in, is plotted for each interval 

on the translational map. 
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Plate 4. Comparison of T4D and T2L proteins. For procedure see 

Plate 2. Besides the difference in mobility of P37, a number of other 

bands do not correspond on the two gels, notably P20 and Pl2. 
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T4D T2L 
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as shown by its absence in T2 aml23- and aml29-infected cells (Plate 5) . . 

The difference in the rates of migration of the two polypeptides suggests 

that P372 is 13,000 mol. wt. larger than P37
4 

(Table 4). 

The molecular weights of T2 gene 37 ~ fragments were determined 

in the same way as the T4 fragments. Two of the three T2 gene 37 mutants 

produced recognizable~ fragments (P~ate 5). The molecular weight of 

the aml29 fragment is 37,000 which places aml29 opposite the large gap 

2 in the T4 genetic map (Fig. 5), as expected from the reversal of Q. and 

h4 frequencies in this region in the crosses of arol29 by the T4 mutants 

(Fig. 2c). The a.mFS4 gel shows no band at the position of P37
2

, but 

there is a band with lower mobility between the positions of P372 and 

P34. A gene 22 ~ fragment with a lower mobility than the wild type 

product has previously been reported (Laemmli, 1970), but no explanation 

for this effect has been found. 

(f) Location of the molecular weight difference between P3I2 _and P37
4 

To determine whether the molecular weight difference between 

p372 and P374 is localized in one part of the gene or dispersed throughout 

14 it, we analyzed C-labeled lysates made with hybrid phages which have part 

of their gene 37 from T2 and part from T4. As shown in Plate 6 the P37 

from these hybrid phages has either the mobility of P372 or P37
4

• Since 

there are no bands with intermediate rates of migration, the difference 

in molecular weight must be localized in one region of the gene. As 

shown in Table 5, the molecular weight difference is controlled by the 

right end of gene 37. If segment~ comes from T2, the P37 band cor-

2 4 
responds to P37 ; if d comes from T4, the P37 band corresponds to P37 • 
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Plate 5. Identification of P372 a.nd its am fragments. For 

procedure see Plate 2. The banding pattern on the first gel is identical 

to that of T2L. No am fragment can be seen on the aml23 gel. 
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aml25 aml23 aml29 amFS4 
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Plate 6. Migration of P37 in T2:T4 hybrid phage. For procedure 

see Plate 2. 14c-labeled lysates of four independent a.m+ recombinants 

from the cross T2 a.ml23 x T4 amC290 were run on the first four gels. 

14c-labeled lysates of three independ~nt am+ recombinants from the cross 

T2 aml25 x T4 amE2060 were run on the last three gels. That the 

recombinants are in fact hybrids can be seen from the pattern of the lower 

molecular weight bands (compare with Plate 4). The bars at the bottom 

represent the composition of gene 37. The filled-in region represents 

T4 DNA; the open region T2 DNA. The XOP lies within the hatched region. 

/ 
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Table 5 

Migration of P37 from Hybrid Phage 

Hybrid Host Range XOP P37
2 

P37
4 

!!J:ll h2 .21-.48 + 

h2 
. 

!!l_44 .21-.85 + 

!!J:54 h4 .52-.85 + 

!!J:215 h4 .80-.85 + 

The XOP's a.re expressed as fractions of gene 37 and 

were calculated from the position of the appropriate am 

mutations on the genetic and ~ fragment maps (Fig. 2a, 

Table 4). 
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4. Discussion 

(a) Recombination frequencies between T2 and T4 markers in 

genes 37 and 38 

It was previously noted that in T2 by T4 crosses recombination 

between genes 37 and 38 was much lower than expected from the T2 by T2 

or T4 by T4 crosses (Russell, 1967). The results in this paper provide 

some explanations for this low frequency. There are two regions of genes 

37 and 38 which in T2 and T4 are nonhomologous. We have not detected 

recombination in either of them. ?2 aml23 does not recombine with two 

T4 mutants which are 1.7 map units apart on the T4 chromosome (tsP43 

and amA481, Table 2). Although these mutants have not been physically 

mapped, they are opposite the nonhomologous loop 1 when the genetic map 

is aligned with the heteroduplex map (Fig. 5). Similarly, no recombina-

tion has been detected between mutants in gene 38 and segment S!_ of gene 

37, which correspond to nonhomologous loop 4. Also contributing to 

decreased recombination in gene 37 is segment £_to the right of amA481, 

in which there is only 5-30% of the number of recombinants as in segments 

a and c. This low recombination is correlated with partial nonhomology 

of the DNA in this region. 

Thus most of the recombination in genes 37 and. 38 in T2: T4 

crosses occurs in two relatively short regions, a and c. But even in 

£the frequency of recombination is strikingly low. It is possible to 

calculate R1000 for two intervals in £ using the .§:!:!!. fragment molecular 

weights for amNG220, amB280~ and a.mE2082 and the recombination frequencies 

from crosses of T2 aml25 by these T4 mutants. These calculations give 

values of 0.011 and 0.017 for R1000 , or about tenfold less than for 



T4 x T4 crosses in gene 37. This low value might be explained if crosses 

of T2 x T4 give drastically fewer recombinants in all regions of the map 

than do the T2 x T2 or T4 x T4 crosses. However, Russell (1967) found 

that in gene 34 T2 x T4 crosses gave 40 to 50% as many recombinants as 

did the corresponding T2 x T2 or T4 x T4 crosses. [These results are 

calculated only for the N-terminal end of gene 34--from aroB25 to amN58 . ~ ~ 

in T4 and from aml2 to aml35 in T2. This part of gene 34 does not show 

abnormally high values of R1000 (Beckendorf & Wilson, 1972).) Since DNA 

with a small a.mount of mismatching will appear annealed in the electron 

microscope, the low recombination in region£ might be due to partial 

nonhomology. Alternatively a normal number of recombinants might be 

formed but only a few would produce active protein and thus be scored by 

our techniques. A third alternative is that the nonhomologous and 

partially nonhomologous regions flanking _£might sterically inhibit 

pairing and genetic exchange in c. This last alternative differs from 

the first two by not requiring region £ to be different in T2 and T4. 

(b) Structural and functional observations 

Although T2 and T4 a.re similar enough to be called members of 

the same species (Russell, 1967), their genes 37 and 38 have diverged 

sharply. At least 75% of the length of gene 37 and all of gene 38 are 

partially or completely nonhomologous between the two phages. This 

nonhomology can be separated into two classes. The functional speci

ficities of gene 38 and segment ~of gene 37 have changed during divergence 

while those of segments ~ E_ and £have apparently been unaltered. 

Segment d codes for two :functions, the interaction of the tail 

fiber with its specific receptor on the bacterial surface and the interaction 
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of P37 a.nd P38 during assembly of the tail fiber. Both of these :functions 

are type specific. Whether or not the host range determinant is the 

same as the site of interaction between P37 and P38 has not been established. 

Since we have not been able to detect any recombination in d in inter-

type crosses, it has not been possible to determine whether the two 

specificities are genetically separab~e. Host range mutations of T4 

which allow it to infect T4 resistant strains of !· coli Kl2 map at two 

very tightly linked sites within segment d rather than throughout the 

segment (Beckendorf, in preparation). 

Along with the functional changes, the physical sizes of segment 

~ and possibly gene 38 have changed during the divergence of T2 and T4. 

Segment ~ of T2 is 60% larger than T4 segment ~· If we assume that 

there is no space between genes 37 and 38 and that gene 38 extends from 

the end of gene 37 to the right end of loop 4, we can calculate a 

4 
molecular weight for P38 of 35,000. The molecular weight has been 

estimated from SDS gels as 26,000 (King & Laemmli, 1972). If T2 gene 38 

also occupies the right hand portion of loop 4, its predicted molecular 

weight would be 60,000. 

The :functional specificity of segments !!:_, !?_ and ~has apparently 

not changed during the divergence of T2 and T4. In the formation of 

hybrid phage the T2 and T4 protein coded by these regions has been 
' 

spliced in a number of places, indicating that the proteins are func-

tionally interchangeable. Since the DNA of segment £_ is largely non-

homologous, it is surprising that splices in£. produce active proteins. 

This suggests that the structure of the protein coded by !?_is quite 

simple without much interaction between amino acids which are separated 



in the primary sequence. 

Despite the sequence divergence of the rest of the gene, segments 

a and c have been conserved with the same or very similar sequences. It 

ma.y be that their function is more strictly prescribed than that of 

segment E_. As discussed in the accompanying paper the portion of P37 

coded by segment ~ is located in the ~ssembled tail fiber adjacent to 

P36 and probably interacts with it (Beckendorf, 1972). Since P36 does 

not seem to be type specific (Russell, 1967 and Beckendorf, unpublished), 

the requirement that the portion of P37 coded by segment ~ interact with 

P36 might cause its sequence to be conserved. The function of the portion 

of P37 coded by segment .£has not been determined. Two possibilities 

are discussed at the conclusion of the accompanying paper (Beckendorf, 

1972). 
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1. Introduction 

The assembly of the distal half of the T4 tail fiber requires 

the action of five genes, as shown in Figure 1. Two antigenic deter-

mina.nts B and C have been distinguished on this half fiber (Edgar & 

Lielausis, 1965). Genes 37, 38 and 57 act to produce a.n intermediate 

which contains two copies of a single polypeptide chain, product of 

gene 37 (P37) (King & Laemmli, 1971; Ward & Dickson, 197 ). This 

0 
intermediate is 560 A long and carries a serum blocking antigen desig-

nated C (Ward et· al., 1970). Neither P38 nor P57 are incorporated 

into tail fibers (King & Laemmli, 1971; Eiserling & Dickson, 1972). 

The action of gene 36 adds two copies of a second protein, P36, in

creases the length of the intermediate to 690 X and adds the B antigen 

(Ward et al., 1970; King & Laemmli, 1971). The action of gene 35 then 

adds one copy of a third protein, P35, a.nd prepares the distal half 

fiber for addition to the proximal half fiber (Eiserling & Dickson, 

1972; King & Wood, 1969). The addition of P35 to the BC half fiber 

intermediate changes neither its length nor its antigens. The final 

intermediate is designated as the BC' half fiber to distinguish it 

from the BC half fiber. Finally the BC' half fiber spontaneously com-

bines with the A half fiber to produce the finished tail fiber. 

The B antigen is located on the distal half fiber near its 

joint with the proximal half fiber, while the C antigen is distributed 

over the rest of the distal half fiber (Yanagida & Ahmad-Zadeh, 1970). 

The investigations reported here have had two aims. First we 

wished to determine whether the C antigen was made ~p of a number of 

subsets with different specificities and whether these subsets could 
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Fig. 1. The pathway of tail fiber assembly. Arrows indicate 

the steps of assembly under the control of the numbered genes shown 

above them. The structures shown as intermediates are drawn to a~

proximate their appearance in the el;ctron microscope, their lengths 

a.re given, and their antigens are designated above them. The number, 

molecular weight, and gene product identification of the polypeptides 

contained in each intermediate a.re also shown (adapted from Eiserling 

& Dickson, 1972) . 
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be located on the half fiber. To do this we have exploited a series 

of T2:T4 hybrid phage which have part of their gene 37 from T2 and 

pa.rt from T4 (Beckendorf et al., 1972) and a T4 specific antiserum 

which will react only with the T4 portion of p37. 

Second we wished to determine the orientation of P37 in the 

assembled half fiber. This has been accomplished by reacting the T4 

specific serum with the hybrid phage and observing the resulting tail 

fiber:a.ntibody complexes in the electron microscope. 

2. Materials and Methods 

(a) Phage and bacterial strains 

Strains of T4D and T2L were as described by Beckendorf et al. 

(1972). T2:T4 hybrid phage used during this study are described in 

Table 1. 

In addition to the Escherichia coli strains listed in Beckendorf 

et~· (1972), strain CR63(A) was used as a selective indicator which 

does not allow rII mutants to grow. 

(b) Media and buffers 

H broth used for phage and bacterial growth and ERA top and 

bottom agar used for plating assays were prepared as described by 

Steinberg & Edgar (1962). Dilution buffer was prepared as described 

by King (1968). For electron microscopy sera were diluted in a buffer 

-3 containing 0.05 M potassium phosphate, pH 7.0, 1.5 x 10 M Na.N
3

• All , 

serum blocking experiments were carried out in SBA buffer (0.01 M 

6 -3 -3 sodium phosphate, pH .8, 5 x 10 M Mgso4 , 1.5 x 10 M Na.N
3

, 1 g/l 

bovine serum albumin). 
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Table 1 

T2:T4 hybrid phage 

Hybrid phage Composition Host range 

!:!.l.l 
+ + 

aml23 amB280 r df41 h2 

Ex.2 aml25+amE2060+rdf41 h4 

Ex.3 
+ + + 

aml23 !i-TUl.29 ts_L37 rdf41 h4 

!!l_5 
+ + + 

aml23 aml29 amN52 rdf41 h2 

~l aml23+ amN52+ h2 

~16a aml23 + amB280 + h2h 

hy44 -·- ~23 + amC290 + h2 

!:x_54 aml25+amE2060+ h4 

!:x_l 72 aml23+aml29+arnE2082+amNG220+ h4 

~7l~ aml23+aml29+a.mE2082+ h4 

Sl_l76b aml29+ a.nu'l'Gl82+ h4 

Ex.215 aml25+amNG220+ h4 

Ex.217-5 aml29+amE2082+amNG220+rdf41 h2 

EJ:217-6 aml29+amE2082+amNG220+rdf41 h4 

E.J:266 aml25+amNG220+rdf41 h4 

The designation aml23+amB280+ for Sl1 indicates that gzl 

+ is an am recombinant from a cross between T2aml23 and T4amB280. 

This same convention is used for all of the hybrids. The posi-

tion in genes 37 and 38 of the T2 and T4 mutations listed here 

are shown in the accompanying paper (Figs. 1 and 2a.). Several 

of the mutants also carry the r_II deletion rdf41. gzl6a is a 

hybrid which is able to infect both B/2 and S/4. For the ex-

2 periments of this paper it behaves as a normal h • 



67 

(c) Specific antisera 

The anti-T4 BC' an.ti serum was prepared by injection of rabbi ts 

with purified T4 BC' half fibers. Its preparation and properties have 

been described (Ward et al., 1970). The adsorption of this serum with 

T2 ,;:H23 and the properties of the resulting serum, ASl, are described 

in sections of the Results. 

(d) Serum blocking assays 

A modification of the end point serum blocking assay described 

by Ward et al. (1970) was used to determine the specificity of the 

antigens carried by a phage. . -1 ASl was diluted to k = 0.1 min in SBA 

buffer. Several threefold serial dilutions of the samples to be 

assayed were made in the serum and incubated 10 to 16 hr at 46 to 48°c. 

The residual k in each tube was determined by adding a known number 

of T4D tester phage, incubating for 46 min and then plating the entire 

contents of the tube with CR63(A) indicator bacteria to measure the 

surviving fraction of tester phage. All of the phage whose blocking 

ability was being assayed carried one of two rII deletions, rdf41 or 

Ef123, and thus were unable to make plaques on CR63( A). When a sample 

was expected to block most of the serum, about 800 tester phage were 

added to each tube. When a sample was expected to block only a small 

fraction of the serum, about 2500 tester phage were added. The per cent 

by which the original ~ is decreased when antigen is in excess is a 

measure of the per cent of the antibodies which are able to combine 

with the antigens of the sample. 

(e) Electron microscopy 

Specimens of the complex between phage and antibodies were 
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prepared on electron microscope grids essentially as described by 

Yanagida & Ahmad-Zadeh (1970). One drop of phage suspension (1-5 x 

11 10 phage/ml.) was placed on a carbon-coated Parlodion grid and after 

about 30 sec washed off with a drop of distilled water. The grid was 

floated specimen side down on a large drop of antiserum at k = 2.5 

and incubated 2-6 hr at 37°c. The specimen was fixed by floating the 

grid on a drop of 1% glutaraldehyde, 0.5 M potassium phosphate, pH 7.0, 

for 10-15 min. The grid was then washed with 1 or 2 drops of distilled 

water and stained with a drop of 2% phosphotungstic acid pH 7.0 for 

30 sec. Excess stain was removed with filter paper. 

(f) Terminology 

The crossover point (XOP) refers to the position at which a 

genetic exchange took place to produce a recombinant. In this paper 

the recombinant phage are hybrids between T2 and T4 and the XOP is in 

gene 37. XOP's are expressed as fractional parts of gene 37 measured 

from its left end. Because a gene and the polypeptide coded by it are 

colinear (Sarabhai, Stretton, Brenner & Bolle, 1964), the point on a 

hybrid P37 at which protein coded by T2 is joined to that coded by T4 

has the same fractional value as the corresponding XOP. 

In the assembled tail fiber the point at which T2 and T4 protein 

are joined is defined as the transition point (TP). TP's are expressed 

0 
as A between the proximal end of P37 in the distal half fiber (assumed 

to be 130 i distal to the joint between the half fibers [see section 

3(c)(iii) and Ward et al., 1970)). 

P preceding the number of a gene specifies the product of that 

gene. Superscript 4 or 2 following the number of the gene indicates 
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that the product came from T4 or T2 respectively. Thus P374 indicates 

the product of T4 gene 37. 

3. Results 

(a) Inactivation of T2 and T4 by anti-T4 BC' serum 

To investigate the similarity of the B and C antigens of T2 

and T4 we measured the inactivation of the two phages by antiserum 

prepared by immunizing rabbits with purified T4 BC' half fibers (a.nti-T4 

BC' serum) (Ward et al., 1970). As shown in Figure 2, T4 is rapidly 

inactivated while T2 is inactivated slowly if at all. Three T2:T4 

hybrid phages, which have part of gene 37 from T2 and part from T4 

(Beckendorf et al., 1972), were also tested and are inactivated at 

intermediate rates. Therefore, the distal half fiber antigens of T2 

and T4 are not identical and the specificity of the antigens is at 

least partially determined by the origin of the P37 in the half fiber. 

(b) Serum blocking 

Two possibilities might explain the decreased rate of serum 

inactivation of the gene 37 hybrids relative to T4. The C antigen of 

T4 might be composed of a number of different antigenic sites capable 

of interacting with different classes of antibodies. These sites would 

be interspersed throughout the length of P37 so that any segment of 

4 P37 would have the same antigenic specificity as any other. The C 

antigen of T2 would have a different set of antigenic sites distributed 

in the same way. A phage with a T2:T4 hybrid P37 would then have a 

reduced amount of T4 C antigen and would be inactivated at a lower rate 

than T4. But the hybrid would carry all of the antigenic specificities 

of the T4 C antigen. This possibility seemed attractive since, besides 
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Fig. 2. Inactivation of T4, T2, and hybrid phage by anti-T4 

BC' serum. At t = O, 0.1 ml. of a phage suspension was added to 0.9 ml. 

of SBA buffer containing anti-T4 BC' serum at K ~ 0.1. The mixture 

was incubated at 48 + 2° and at vari9us times aliquots were removed and 

plated on CR63r6-r24- indicator bacteria. 6 T4D, 0 T2L, 0 hl_ll, ~44, 

~ ~54. 

,• 
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P37, two other gene products are necessary for the appearance of C 

antigen. In the absence of P38 or P57, normal amounts of P37 are made, 

but do not become antigenic (Ward & Dickson, 1971; King & Laemmli, 

1971). It has been suggested that these gene products might modify P37, 

thereby producing the antigens. If either P38 or P57 modified a number 

of residues in a similar way, perhaps·by adding carbohydrates, the 

antigenic site on each modified residue would be the same or nearly 

the same as all others produced by that gene product. Since the C 

antigen is distributed throughout much of the distal half (Yanagida & 

Ahmad-Zadeh, 1970), these identical antigenic sites might also be 

distributed throughout the fiber and presumably throughout the length 

Of p37. 

The other explanation for the low rate of inactivation of the 

gene 37 hybrids is that the C antigen is composed of a number of 

different antigenic sites and that these are located in discrete units 

at different locations along p37. Under this explanation any gene 37 

hybrid would receive only a fraction of these sites from T4. Thus it 

would interact with only a few of the classes of antibodies in the serum 

and would be killed at a lower rate than T4. 

These two possibilities can be distinguished by incubating an 

excess of hybrid phage with the serum until the reaction has gone to 

completion and then testing the amount of serum activity which has been 

eliminated or blocked. The first possibility discussed above would 

predict that the hybrids would block all of the serum activity. The 

second possibility would predict that the hybrids would block only a 
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fraction of the serum and that different hybrids would block different 

fractions. 

(i) A T4-specific anti-BC' serum. T2 was inactivated slowly 

if at all by the anti-T4 BC' serum (Fig. 2). A serum blocking experi

ment showed that T2 was able to block about 8% of the neutralizing 

activity of this serum. Since we wanted to investigate the location 

of the T4-specific antigens on P37 we adsorbed this serum with an excess 

of T2 rH23 to remove all antibodies able to react with T2. The resulting 

serum, ASl, is not blocked at all by T2 £H23, but as expected is blocked 

completely by T4 rdf41. 

About 10% of the activity of the unadsorbed serum is directed 

against the B antigen (Ward et al., 1970; Beckendorf, unpublished). This 

antigen is added to the C half fiber by the action of P36. Since we 

were mainly interested in the distribution of the C antigen along P37 

and the C half fiber, we tested to see how much of the anti-B activity 

remained in ASl. A 36- lysate of T4, which contains C but not B antigen, 

was able to block 89% of the ASl activity indicating that the adsorp

tion with T2 £H23 had removed about equal fractions of anti-B and anti-C 

antibodies. 

(ii) Serum blocking by gene 37 hybrids. We next tested the 

ability of several hybrid phages to block ASl (Fig. 3 and Table 2). 

Most of the hybrids block only part of the serum activity. Therefore 

the antigens are not interspersed throughout the length of P37. 

The T4 antigens carried by~ and ~266 are largely different, 

since their mixture blocks much more of the serum than either hybrid 

a.lone (Table 2). The same can be said for the mixtures of !!z.5 and E;[2 
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Fig. 3. Blocking of ASl by hybrids. Serum blocking was carried 

out as described in Materials and Methods. 

!!z5 + &266' 0 hx_217-5 + hl_266. 

!:z.5, V hl_266, A ~217-5, 



75 

100 
0 
w 
~ 
u 
0 
_J 

en 
>-

50 r--> -r-
u 
<t: 

2 
~ 
a:: 

0 w 
(/) 

LL 
0 

~ 0 

107 108 109 1010 

PHAGE CONCENTRATION (PFU/ML) 



Phage 

l:!x.3 

!!1_5 

!!1_217-5 

!!1_2 

~266 

!!;[217-6 

~5 + ~266 

.!:D:5 + !!;[2 

l:!x.217-5 + !!1_266 

76 

Table 2 

ASl serum blocking by hybrid phage 

XOP 

.08-.13 

• 35-. 48 t :mm 

.58 

.58-.80 woac :i 

.80 

• 35-58 :: Vi'l/llllll c ' 
• 80 

% Blocked 

100 

47 

64 

61 

48 

100 

74 

91 

100 

Serum blocking was carried out as described in Materials and 

Methods. The XOP's are expressed as fractions of gene 37 and were 

determined by genetic and physical mapping (Beckendorf et al., 1972). 

The bars in column 3 depict the composition of gene 37. The solid 

region represents T4 DNA; the open region T2 DNA. The XOP is located 

within the hatched region. The percentage of the serum activity 

blocked was determined by averaging the results from the two or three 

tubes with the highest phage concentration (see Fig. 3 and Materials 

and Methods ) • 
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or ~217-5 and !!z.266. Although there are clearly differences in the 

antigens carried by the two members of each of these pairs, in no case 

does the mixture block a.s much of the serum as the sum of the blocking 

abilities of the individual hybrids. This result implies that in every 

case the two hybrids in a mixture carry some antigens in common. Per-

haps the two ends of P37 have a common antigen. Another possible 

explanation is that all of the hybrids carry T4 gene 36 and all are 

blocking the antibodies specific for the T4 B antigen. 

In ~217-6 the region from .58 to .80 fractional length of P37 

comes from T2. Yet, despite the fact that 22% of its P37 comes from T2, 

this hybrid blocks all of the activity of ASl. Therefore, either there 

are no T4-specific antigens in this region of P37
4 

or these antigens 

are repeated in other regions of p37. A comparison between f!J'.:.2 and 

~266 demonstrates that there are T4-specific antigens in this region. 

Antigens which react with 13% of the serum are present in hI._2 but not 

~266. Then these antigens must be duplicated elsewhere in the protein, 

e.nd since they are not present in !!z.266, the region in which they are 

duplicated must be to the le~ of .58. 

If ~5 carried the duplicated antigens the two mixtures ~5 + 

~266 e.nd ~5 + !!z.2 should block the same amount of the serum. However, 

the first mixture blocks 17% less of the serum than does the second 

(Table 2). Therefore, !:!z5 does not contain the duplicated antigens. 

Since from the previous arguments these antigens must be duplicated 

to the le~ of .58, they must be between the XOP of Ez5 and .58. The 

difference in blocking between ~5 and ~217-5 is.17% or· approximately 

the same as the difference between ~2 and ~266 which defined the 



78 

duplicated antibodies. Thus the region from the ~5 XOP to .58 may 

contain only the repeated antigens. 

hz.3 blocks all of the activity of ASl although the le~ end of 

its gene 37 comes from T2. This result might also be explained in two 

ways, lack of T4-specific antigens in this region or redundancy of its 

antigens with antigens in the rest of p37. Although it has not been 

possible to test the two possibilities for this region, it seems likely, 

since T2 and T4 a.re homologous in this region (Beckendorf et al., 1972), 

that adsorption of the T4 BC' serum with T2 removed all antibodies · 

specific for this region; that is, this region probably lacks T4-specific 

antigens. 

(c) Electron microscopy of tail fiber:antibody complexes 

4 
The preceding section demonstrates that most parts of P37 deter-

mine T4 specific antigens and that a T4 segment within a largely T2 P37 

still specifies T4 antigens. The T2 adsorbed serum ASl can be used as 

a specific stain so that such a segment can be visualized by electron 

microscopy. In this wa;y the transition point (TP) between T2 and T4 

protein in the half fiber can be determined. By comparing these TP's 

with the XOP's established by genetic and physical mapping of gene 37, 

we have been able to determine the topology of P37 in the ~alf fiber 

and to gain some understanding of its conformation. 

(i) Binding of anti-T4 BC' serum to T2 and T4. When anti-T4 

BC' serum was reacted with T4, the entire distal half of the tail fiber 

was covered with antibodies (Plate la). Similar results were obtained 

by Yanagida & Ahmad-Zadeh (1970) using whole anti-T4 serum which had 

been adsorbed with a 37- lysate. 
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Plate 1. Attachment of antibodies to the tail fibers of T4 

and T2. Phage placed on grids, incubated with antiserum, fixed and 

stained as described in Materials and Methods. The scale in each 

0 

frame represents 500 A. a. T4 with anti T4 BC' serum. b. T2 with 

anti T4 . BC' serum. c. T4 with AS! •• 
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When T2 was incubated with the anti-T4 BC' serum for 4-6 hours, 

much of the proximal part of the distal half fiber was covered with 

antibodies. However, when the incubation was only 2 hours the antibody 

0 
was clustered at two narrow zones, from 150 to 250 A and from 490 to 

0 
570 A from the joint between the half fibers (Plate lb). Under compar-

able conditions T4 fibers are completely covered. These results are 

consistent with the fact that T2 blocks only 8% of thisserum and suggest 

that most of the crossreacting antibodies are directed against two 

small segments of the T2 distal half fiber. 

(ii) Binding of ASl to T4. When T4 is reacted with ASl the 

0 
fibers are densely coated with antibodies from a point 170 A away from 

the joint to their distal ends (Plate le). Sometimes a small amount 

of antibody is visible right next to the joint. Thus most of the anti

bodies in the anti-T4 BC' serum which reacted with the proximal 170 i 

were removed by adsorption with T2. 1'he antibody sometimes visible 

near the joint probably represents the anti- B antibodies which remain 

in ASl. 

(iii) Binding of ASl to hybrid phage. Hybrid phage .hx..5 has 

the le~ end of its gene 37 from T4 and the right end from T2. From 

genetic and physical mapping of gene 37 (Beckendorf et al., 1972) the 

intersection between T4 and T2 DNA occurs between ,35 and .48. When 

reacted with ASl only part of the distal half fiber of Ex.5 is coated 

with antibody (Plate 2a). 
0 

The 170 A nearest the joint of the fiber 

0 
is uncoated, as it is in T4, and the terminal 310 A is also uncoated. 

E1:,54, on the other hand, has T2 DNA at the le~ and T4 DNA at the right 

end of gene 37 with an XOP between .50 and .81. As shown in Plate 2b, 
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Plate 2. Attachment of antibodies to the tail fibers of T2:T4 

hybrid phages. Phage were placed on grids, incubated with antiserum, 

fixed and stained as described in Materials and Methods. The scale 
Q 

in each frame represents 500 A. a. EY. 54 with ASl. b. EY. 5 

with ASl. 
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!!l,54 when reacted with ASl has antibodies complexed with only the 

distal end of the fiber. These two results indicate that the protein 

coded by the le~ end of gene 37 is located near the joint between the 

two half fibers, and the protein coded by the right end is located 

near the distal tip of the BC' half fiber. Since gene 37 is translated 

from le~ to right, the amino terminus of P37 is near the joint and 

the carboxy terminus is near the tip of the BC' half fiber. 

P37 must become considerably condensed during assembly, since 

in an extended or alpha-helical ferro it would be three or more times as 

long as the C half fiber (Ward et al., 1970; Cummings et al., 1970). 

It is possible to envision any number of configurations having the N 

terminus at one end and the C terminus at the other. To investigate 

the topology of P37 in the half fiber we have determined the position 

of ASl antibodies on the tail fibers of six hybrid phages (Table 3). 

From these measurements we have calculated the transition points (TP's) 

between T2 and T4 protein in the assembled fiber, and compared them 

with the XOP's established by mapping of gene 37. 

Two types of corrections have been applied to the measurements 

of antibody coated fibers in determining TP position. First, since BC' 

half fibers which had antibodies on their tips were about 100 i longer 

than those without and since antibody molecules are about 100 K long 

(Feinstein & Rowe, 1965), this distance was subtracted from the length 

of those tail fibers with antibodies on their tips. This correction 

aligned the TP's of reciprocal hybrids, one of which had T4 protein at 

the distal end of its tail fiber and one of which had T2 protein at 

this end. Second, since the C half fiber, which contains only P37, is 



Table 3 

Location of ASl Antibodies Attached to Tail Fibers 
' 

Phage Joint to Ab1 Ab1 to Ab2 Ab- to BC' Ab , Ab2 tip 

T4D 170:+:_30(5) 610:!:_50(9) 790:!:_75(5) 

!!l.3 I Yo; ::;.::" : $, • I I .:::::·:::J 180+50(10) 590~5(20) 790:+:_60( 10) o:> 
v-

!!l.5 I·,, :::::' Jl/Jl//l I 170:+:_45(9) 200:+:_52(15) 320:+:_70( 23 ) 670:!:_40(12) 

!!l.16a I:.;: -""'· ·z:::~ . . VJ/i1 I 170+45(8) 270:!_50(30) 280+60(20) 720:!_40(6) 

~54 I F/11//fl/I . : ) ~ 450!_50(9) 330:!:_25(17) 780:!:_50(9) 

~172 I .. .j ;: : VOW/I c::.M 170!_40(10) 200:!:.70 ( 6) 170:+:_30(6) 260.:!:_50(6) 790:!:_60(10) 

!!I_l 74 I .·::::•' Y 11 lllZl.ZZZZmZt /i.. : . 'J 170:+:_40(11) 130:!:_30 ( 8) 170:!:_30(8) 310!_65(6) 790:!:_30(9) 
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Table 3 (continued) 

Location of ASl antibodies attached to tail fibers. The bars in 

column 2 depict the composition of gene 37 (see Table 2). The measured 

0 
lengths are given in A + the standard deviation. The numbers in 

parentheses are the number of f ibers measured. All values were normal-

ized by assuming that the A half fibers measured on the same. grids were 

690 ~long (Ward et al., 1970). Column 3 gives the distances from the 

joint between the two half fibers to the first antibody cluster. Column 

4 gives the size of the first antibody cluster, column 5 the distance 

between the first and second clusters, and column 6 the size of the 

second cluster. Column 7 gives the distance from the last antibody 

cluster to the tip of the fiber, and column 8 gives the total length 

of the BC' fiber with its attached antibodies. 
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0 

130 A shorter than the finished BC' half fiber which also contains P36 

and probably P35 (Eiserling & Dickson, 1972), and since the B antigen, 
< J 

whose appearance is controlled by P36 (Edgar & Lielausis, 1964), is 

located at the joint between the A and BC' half fibers (Yanagida & 

Ahmad-Zadeh, 1970), the proximal 130 i of the half fiber was assumed 

not to be P37 and was subtracted from all fiber lengths. This correc-

tion aligned the TP of ~3 which is very near the amino terminus of 

the protein with its genetically determined XOP. The values of the 

TP's obtained af'ter these corrections are listed in Table 4 along with 

the XOP's. 

The XOP's can be arranged in a linear sequence of four non-

overlapping groups, thereby dividing the gene into 5 nonoverlapping 

parts (Table 5). By comparing this sequence with that of the TP's we 

can determine whether or not the corresponding 5 parts of P37 are ar-

ranged in a linear order in the assembled fiber. Table 5 shows that 

the TP order is in complete agreemen~ with the XOP order. We conclude 

that P37 in the assembled tail fiber is colinear with the polypeptide 

chain and with gene 37. 

(iv) Structure of the tip of the tail fiber. Besides establish-

ing the linearity of P37 in the half fiber, these results can be used 

to suggest differences along the fiber in the conformation of p37. If 

the conformation were the same throughout the fiber, each ~ a.long the 

fiber would contain the same number of amino acids or the same fraction 

of p37. Given such a P37 structure, a plot of TP's (as A between the 

proximal end of P37 in the fiber and the transition from T2 to T4 protein) 

against the corresponding XOP's (as the fraction of P37 to the le~ of 
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Table 4 

Transition points of hybrid phages 

Transition points 

Hybrid XOP Proximal 560-(TP to 
end to TP distal end) 

50 + 50 70 !.. 95 -~3 .08-.13 

!!l.5 .35-.48 240 !.. 52 240 !.. 70 

!!Y-160. • 58-. 613 310 !.. 50 280 + 60 

Ex_54 . 58-. 80 320 !.. 50 330 !.. 25 

~172 .35-.52 240 !.. 70 230 !.. 60 

• 80 410 !.. 76 400 !.. 50 

El_l 74 • 35-. 52 170 !.. 30 180 !.. 71 

• 52-. 80 340 !.. 43 350 !.. 65 

XOP's were calculated as for Table 2. The TP's 

were determined from the data in Table 3 after two 

corrections were made (see text). (1) When antibodies 

coated the distal end of a tail fiber, 100 i were 

subtracted from its distal end. (2) 130 A were sub-

tracted from the proximal end of all measured fibers. 

Af'ter these corrections the position of each TP was 

determined twice, as indicated at the tops of the two 

0 
columns. The TP positions are expressed as A away 

from the proximal end of P37 !.. the standard deviation. 
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Table 5 

Linearity of P37 in BC' 

Ex_3 < hz.l 74-A, h:[l 72-A, Ex_5 < Ex_l6a, !!x_54, .!!;y_l 74-B < &172-B 

ORDER OF TP's 

hz.3 < E.J:l 74-A < !!l_l 72-A, h:[5 < £!l.16a, Qx.54, hz.174-B < Ex_l 72-B 

!!l_l72-A .represents the proximal and ~172-B represents the 

distal XOP or TP in Ex_l72. The same notation is used for !!l_l74. 
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the same transition) would yield a straight line. When such a plot is 

constructed, most of the points lie above this line. Although there 

are large uncertainties in the positions of all of the points, these 

data suggest that P37 is in a relatively more extended configuration 

near the distal end of the fiber (dotted line, Fig. 4). Since P37 is 

the only protein in this end of the·tail fiber , if it were in an 

extended form, the diameter of the fiber would be less than in the 

rest of the fiber. This prediction prompted a survey of available 

electron micrographs of T4. In fact high resolution micrographs o~en 

show near the distal tip of the tail fiber a thinner portion which in 

some preparations is bent at an angle relative to the rest of the fiber· 

(Plate 5). This thin portion is not the result of a staining artifact 

near the ends of all fibers since isolated C, BC, and BC' half fibers 

o~en show a single thin end very similar to that seen on phage or 

isolated whole fibers (see Ward et al., 1970, Plate III). A number of 

electron micrographs which showed this thin portion were kindly loaned 

to me by Dr. R. C. Williams. The thin parts of 33 fibers were measured 

and found to be 180 + 30 A long. 

4. Discussion 

(a) Antigenic specificities on the BC' half fiber 

Serum blocking experiments with the phages which carry a T2:T4 

hybrid gene 37 allow the antigens determined by gene 37 to be divided 

into at least four and maybe five classes with different specificities 

(see Table 6). Class four is deduced from the fact that when T2 is 

reacted with anti-T4 BC' serum, antibodies are attached to the fibers 

in a region corresponding to .58-.80 of P374 (Plate lb). This region 
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Fig. 4. Comparison of XOP's and TP's. The XOP's are expressed 

0 
as fraction of gene 37 and TP's as A away from the proximal end of P37 

(see Table 4). The solid line is that expected if the structure of P37 

were constant throughout the fiber •. The dotted line is suggested by 

the data (see text). 
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Plate 3. T4D negatively stained with phosphotungstic acid. 

Electron micrograph taken by R. C. Williams under conditions of 

minimal illumination by the electron beam in order to preserve 

detail in the specimen (Williams and Fisher, 1970). Arrows indicate 

the thin portions of the distal half fiber discussed in the text. 
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Table 6 

Antigens specified by gene 37 

Class Location in gene 37 Specificity 

1 0 - XOP3 Common with T2 

2 XOP3 XOP5 Unique 

3 XOP5 - .58 Shared with • 58-. 80 

4 .58-.80 Common with T2 

5 • 80-1. 0 Unique 

XOP3 a.nd XOP5 indicate the XOP's of !!J:.3 and !!;'[5 re

spectively. Classes l, 2, 3, 5 were deduced from the serum 

blocking results with ASl (Table 2). Class 4, deduced from 

interaction of a.nti-T4 BC' serum with T2 (Plate 2), may 

share all or part of its specificity with Class 1. 
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of T4 was previously shown to be homologous to T2 (Beckendorf et al. , 

1972), s o some cross reactivity was expected. 

Do genes other than 37 specify some of these antigens? Since 

genes 57 and 38 are involved in the assembly of the C half fiber, they 

are obvious candidates for the role. 

P57 is also involved in the assembly of the A half fiber which 

carries no antigens which cross react with the C or BC' half fibers. 

Therefore, P57 probably does not specify any antigens. It still might 

modify amino acids of P37 and in the process create antigens, but the 

specificity of these antigens would be determined by the amino acid 

sequence of P37, not by p57. 

We cannot tell whether P38 adds antigens to the C half fiber. 

Since the host range region of T4 gene 37 is always associated with T4 

gene 38, the function of P38 might well be to modify P37 thereby allowing 

its attachment to polysaccharides in the cell wall . 

The possibility that an undiscovered tail fiber gene or genes 

might control the specificity of the C antigens seems remote . Numerous 

searches for additional essential T4 genes (Edgar & Lielausis, unpublished) 

or specifically for essential tail fiber genes (Beckendorf & Lielausis, 

unpublished) have proven fruitless. Isolation of mutants in T2 and T6 have 

also turned up no new tail fiber genes (Russell, 1967). 

Since there are at least four distinct subsets of the C antigen 

and only one gene besides gene 37 which might be contributing to them, 

the amino acid sequence of P37 must determine most of the antigens. It 

was shown above that some antigenic sites are present in more than one 

part of the gene product. All of the antigens in 22% of the gene 
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product are repeated and are probably the only antigens in another 

10-20%. These observations suggest that there are some repeating amino 

acid sequences in P37 and perhaps that the fiber has some regular, 

periodic structure over part of its length. 

(b) Structure of the assembled BC' half fiber 

The results in section 3(c)(iii) establish that P37 is oriented 

linearly with its amino terminus near the joint between the two half 

fibers and its carboxyl terminus near the distal tip of the BC' half 

fiber. An alternative model which proposed that P37 was folded back 

on itself twice to yield a three-stranded structure (Cununings et al., 

1970) is clearly ruled out. 

The C half fiber contains two copies of P37 and no other proteins 

(Eiserling & Dickson, 1972). It is an asymmetrical structure, with one 

thin end which eventually becomes the distal tip of the finished fiber. 

This asymmetry, as well as the results obtained from the electron 

microscopic observations of antibodies attached to hybrid phage, shows 

that the two copies of P37 are oriented parallel to each other in the 

assembled fiber. 

The final .20 at the carboxyl end of P37 determines the host 

range of the phage, interacts with P38, and probably interacts with 

the bacterial surface (Beckendorf et al., 1972). This region contains 

about 190 amino acids and from the position of the distal XOP in Si,172 

0 
occupies the distal 160 + 50 A of the tail fiber. Thus this functionally 

specialized region corresponds quite closely with the structurally 

specialized thin tip which occupies the distal 180 + 30 i. Assuming 

0 
the structure is constant for this 180 A, the thin tip would contain 
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about 210 amino acids. The thick part of P37 in the fiber is then about 

380 A long and contains about 740 amino acids. By dividing the length 

of a region of the tail fiber by the number of amino acids it contains, 

a parameter d, the distance, measured along the fiber axis, from one 

amino acid to the next, can be calculated. In Table 7 values of d for 

the thin and thick parts of P37 valu~s are compared with similar values 

for several protein secondary structures. As can be seen, only the y 

helix is compact enough to fit the host range region. None of the 

structures is appropriate for the proximal part of p37. The y helix 

was proposed by Pauling & Corey (1951) as a possible protein conforma-

tion, but if it existed it would be extremely unstable (Ra.makrishnan & 

Rwnachandran, 1965). Since tail fibers are stable to a number of 

denaturing conditions it seems unlikely that the tip is made up of y 

helix. Therefore, P37 in the C half fiber, which consists of just two 

polypeptide chains oriented linearly and parallel to one another, does 

not seem to assume any of the simple secondary structures which have 

been proposed. 

The data presented in this paper and the accompanying one 

(Beckendorf et al., 1972) can be summarized in a model of the distal 

half fiber (Fig. 5). 

Several indirect· lines of evidence suggest that P36 occupies 

0 
the proximal 130 A of the half fiber. It is responsible for the pro-

duction of the B antigen (Edgar & Lielausis, 1965), which is localized 

near the joint between the half fibers (Yanagida & Ahmad-Zadeh, 1970). 

P36 is incorporated into the half fiber (Eiserling & Dickson, 1972) 
0 . 0 

and causes the elongation of the 560 A C half fiber to the 690 A BC 
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Table 7 

Comparison of P37 and known polypeptide structure 

d 

P37 thick . 51 

P37 thin .86 

y helix .98 

'1T helix 1.15 

a helix 1.50 

coll a.gen helix 2.95 

f3 structure 3.45 

For the two parts of P37, dis t he length in 
0 
A divided by the number of amino acids in that part 

[based on a molecular weight of 105,000 for P37 

(Beckendorf et ai., 1972)). For the other structures, 

d is the rise in X along the helix axis per amino a.cid . 

The values of d for these structures are from Ramakrishnan 

& Ramachandran (1965). 
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Fig. 5. A model of the BC' ha.lf fiber. The distal end of the 

ha.lf fiber is to the right. Each enclosed area represents a polypeptide 

chain. The question mark following "spacer" indicates that this is a 

hypothetical function for this region. Two possibilities for the func

tion of the adjacent region are proposed in the text. 

; 
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half fiber (Ward et al., 1970). Since both the C and BC fibers have a 

similar thin end which eventually becomes the distal end of the fiber, 

P36 must not be added to the distal end. If P36 increased the length 

of the thick part of the half fiber by intertwining with P37, the P37 

in this part of the fiber would be extended relative to the C half 

0 
fiber and the proximal end of P37 would be closer than 130 A to the 

joint. The position of the TP in !!z.3 indicates that P37 is not in an 

extended form distal to this TP. Therefore, P36 might be intertwined 

with the proximal 0.10 of P37 or it might be separate as shown. 

An important feature of the model is that it shows several 

functional regions of p37. As discussed in the accompanying paper, 

these can be correlated with regions which differ in their amount of 

homology between T2 and T4. At the proximal end of P37 is a region 

which must interact with P36. Some ~mutations of this region 

apparently prevent this interaction. Cells infected with these mutants 

produce normal amounts of C antigen but no B antigen (Edgar & Lielausis, 

1965). The T4 DNA which codes for this region of P37 is homologous 

with the corresponding T2 DNA and the regions cross react serologically 

as might be expected if they have to interact with similar sites on 

P362 and P364• In agreement with this idea is the finding that P362 

and P364 are functionally i~terchangeable (Russell, 1967). 

The adjacent region has a.n apparently uniform structure for 

over 300 i. The serum blocking results suggest that the structure is 

repetitive and periodic. It is coded for by DNA which is largely 

nonhomologous between T2 and T4 and yet is interchangeable in part or 

in toto between the two phages. These results suggest that the function 
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of this region is not dependent on a specific amino acid sequence and 

thus a large number of functionally neutral mutations have occurred 

since the divergence of T2 and T4. This region may be thought of as 

a structural spacer between two specifically functioning regions. 

Adjacent to the spacer region is a short region whose DNA is 

homologous between T2 and T4 a.nd whose antigens cross react. That T2:T4 

homology has been retained may indicate that this region has a more 

specialized function than the adjacent spacer region. The change in 

diameter of the fiber occurs either in this region or at its distal 

end. The point at which the change occurs is not as rigid as the rest 

of the fiber since a bend is sometimes seen at this point in electron 

micrographs. It could be that this region is still homologous in T2 and 

T4 because a particular sequence is required for the change in structure. 

Another possible function for this region is interaction of BC' with the 

phage head. Both kinetic (Terzaghi, 1971) and serological (J. Latta & 

W. B. Wood, personal communication) evidence suggests that BC' inter

acts with the head during attachment of tail fibers to fiberless parti

cles. In assembled phage only this short homologous segment and the 

host range region are far enough away from the baseplate to interact 

with the head. 

At the tip of the fiber is the structurally specialized host 

range region with a smaller diameter than the rest of the fiber. As 

might be expected from the difference in the bacterial receptors for T2 

and T4, this region has changed most during the evolutionary divergence 

of the two phages. The T2 and T4 DNA sequences coding for this region 
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a.re completely nonhomologous and specify polypeptide sequences of dif

ferent length. 
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General Discussion 

The results in parts I and II of this thesis extend our knowledge 

of the structure of the distal half fiber, which is the phage component 

in the interaction between T4 and the bacterial surf ace. To under

stand this interaction, we need to know the structure of the bacterial 

component and to have more detailed information about tail fiber 

structure. The first part of the discussion below describes a number 

of experiments aimed at understanding the bacterial receptor for T4. 

The second part proposes a detailed model for the structure of the 

distal half fiber and discusses experiments suggested by this model. 

Very little work has been done on structure of the bacterial 

receptor for T4 since Weidel and coworkers demonstrated that lipopoly

saccharide (LPS) extracted from sensitive cells is able to inactivate 

T4 (Weidel, 1958). These workers also showed that LPS from a resistant 

cell is unable to inactivate T4 and that, while LPS from sensitive 

cells contains glucose and galactose, the LPS from resistant cells 

contains no detectable hexose. Thus it appears that T4 requires 

hexose or some other constituent which was present in the wild type, 

but not the mutant, LPS. · wilson, Luftig, and Wood (1970) confirmed 

that LPS inactivates T4 and showed that it interacts with the tip 

of the tail fiber. 

To determine more precisely which constituents of the LPS are 

important for T4 attachment, I have isolated a large number of 

T4-resistant strains of E. coli Kl2. Those which are sensitive to 
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T4 host range (h) mutants have been selected for further study because 

they were expected to have small changes in their LPS. Analysis 

of the polysaccharide composition of the LPS from these strains would 

show how the LPS can be changed to prevent T4 adsorption. It might 

then be possible to deduce which parts of the LPS are essential for 

T4 attachment. 

These resistant bacteria can be divided into at least six 

classes by their sensitivity to T4 h mutants and other bacteriophages. 

The alterations in the LPS of some of the bacteria change the 

specificity of tail fiber attachment while others apparently change 

the rate of attachment. These results suggest that there is considerable 

variety in the T4-receptors of these strains. Therefore, chemical 

analysis of their LPS should help to characterize the structure of 

the receptor. 

For any meaningful understanding of adsorption, the structure of 

the distal half fiber must be known in detail. The model presented in 

the discussion of part II accounts for all of the data which has been 

presented, but it is still quite incomplete. It does not specify the 

secondary structure of P37 nor any interactions between the two copies 

of P37. Furthermore it does not specify the location of the third 

protein in the half fiber, P35. For these reasons I have constructed 

a more detailed and more speculative model of the distal tail fiber. 

This model makes some predictions which should be experimentally 

testable. 

As pointed out above, the thick part of P37 and probably the 
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thin part as well are too condensed to fit any known helical protein 

structure. I propose that the two copies of P37 in the thick part 

of the half fiber are coiled into a single, two-stranded helix so 

that they fonn a hollow cylinder. If this cylinder were cut down 

one side and laid flat, the polypep~ide chains would be arranged as 

in a parallel S-pleated sheet (Pauling and Corey, 1951) with the two 

copies of P37 alternating as the parallel polypeptide chains. Since 
0 

the spacing between two chains in a S-sheet is about 4.5 A and there 

are two copies of P37 in the tail fiber, the distance between turns 

0 

for one of the chains would be about 9 A. The rise per residue for 

0 

this part of the fiber is 0.5 A/aa so there would be 18 aa/turn of 

0 

the helix. The spacing between amino acids on one chain is 3.5 A for 

0 

S-structures so the diameter of the helix would be about 20 A. Since 

0 

the amino acid side chains will extend about 2.5 A on either side 

0 

of the backbone, the diameter of the fiber would be about 25 A and 

0 

the diameter of the inner hole would be about 15 A. 

A similar structure can be constructed for the thin tip of the 

0 

fiber. It has 10 aa per turn, an outer diameter of 16 A and an inner 

. 0 

diameter of 6 A. 

The molecular weight of P36 has been measured as 24,000 (Eiserling 

and Dickson, 1972). 
0 

If P36 occupies the proximal 130 A of the half 

fiber (see part II, discussion), then it would have a rise per residue 

0 

of 0.6 A/aa. With a structure similar to P37 it would have 15 aa per 

0 

turn of helix, an outer diameter of 22 A and an inner diameter of 

0 

12 A, essentially the same structure as the thick part of P37. 
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This model predicts that there is a hole in the center of P36 

and at least the proximal part of P37. A third protein, probably P35, 

has been found in this half fiber (Eiserling and Dickson, 1972). 

Unlike P36 and P37 it is present in only one copy in the tail fiber 

and does not add any antigens to th~ fiber. A possible explanation 

for these facts is that P35 fills the hole in the proximal part of 

the half fiber. This hole is just about large enough in diameter to 

accept a single copy of an a-helical protein. In filling this hole 

P35 might stabilize the complex of P36 and P37. This 'idea would 

explain why purified C and BC half fiber intermediates are inactive, 

while BC' half fibers are active (Ward et al., 1970). This model 

might also explain how P35 prepares the distal half fiber for attach-

ment to the proximal one. The length of the thick part of the half 

0 

fiber and presumably of the hole in its center is about 510 A. An 

a-helical protein the size of P35 (40,000 daltons, Eiserling and 

0 

Dickson, 1972) would be about 550 A long. Thus P35 might project 

proximally to the proximal end of P36. If there were a corresponding 

hole in the proximal half fiber, the end of P35 might fit into it, 

thereby making the rigid joint between the two half fibers (Brenner 

et al., 1959; Ward et al., 1970). 

This model might also explain the instability of free P35 (King 

and Wood, 1969). A protein in close contact with other proteins on 

all sides would probably be very hydrophobic, and if free in solution, 

would probably aggregate with itself or other hydrophobic molecules. 

The model suggests several directions for future research. The 
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low angle X-ray patterns of aligned half fibers should show a high 

degree of order and strong periodic reflections indicating the 

periodicity of the helix. Furthermore, the pattern should differ in 

a regular way in the absence of P35. 

Analysis of the sequence of P37 might well yield information 

about the structure of the fiber. A number of methods have been 

developed for predicting .structure from primary sequence (Venkatachalam 

and Ramachandran, 1969). Although the methods have not been developed 

for a parallel S-structure, similar approaches might yield useful 

information. The observation of repeated antigens in the thick part 

of P37 suggests repeated amino acid sequences which might be valuable 

in predicting structure. The model predicts a similar structure for 

P36 and P37. This similarity might be evident in their sequences. 
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INTRODUCTION 

Analysis of recombination within T4 genes 34 and 35, using a 

standard T4 mapping function to relate recombination and physical 

distance, suggests that these genes are quite large relative to other 

T4 genes (Stahl, Edgar and Steinberg, 196~). However, the size of 

the polypeptide produced by gene 34 'King and Laemmli, 1972; Ward and 

Dickson, 1972) and a physical map of the T4 chromosome (Mosig, 1968) 

indicate that the actual .size of genes 34 and 35 is well below the 

genetic estimate. The inadequacy of the mapping function to determine 

the physical size of these genes suggests a recombinational anomaly in 

this region of the T4 genome. This anomaly apparently does not exist 

in the very closely related phage T2. T2 genes 34 and 35, which can 

substitute for the corresponding T4 genes, appear as normal sized genes 

on the T2 genetic map (Russell, 1967). 

To determine whether the high rec~~bination in T4 gene 34 is 

due to one or a few recombinational hot spots or to a homogeneous 

increase in recombination throughout the gene, we have compared physical 

and genetic maps of T4 gene 34 and T2 gene 34. Since polypeptide chain 

termination occurs at the amber codon under nonpermissive conditions, 

an amber mutation can be positioned physically within a gene by deter

mining the relative sizes of the wild type product and the amber fragment 

using the technique of polyacrylamide gel electro~horesis in the presence 

of sodium dodecyl sulfate (SDS). Because the product of gene 34 (P34) 

is the largest polypeptide in the phage, its amber fragments are 

relatively easy to identify. If there is a homogeneous increase in 

recombination throughout the gene, the genetic and physical positions 
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of the amber mutations will agree. In contrast, if there are recombin

ational hot spots, the genetic and physical positions of the amber 

mutations will differ, and in the region near a hot spot the genetic 

map will be distorted relative to the physical map. 

MATERIALS AND METHODS 

Phage and bacterial strains~ Phage strains derived from the 

wild type T4D were obtained from the collection of R. S. Edgar and have 

been described elsewhere (Epstein et al ., 1963; Edgar and Lielausis, 

1965; Wilson and Kells, 1972). Phage strains derived from wild type T2L 

were obtained from the collection of R. L. Russell. 

Es cherichia coli strain CR63 was used as permissive host for T4. 

amber (am) mutants, strain CR63r6-r24- as permissive host for T2 am 

mutants(Georgopoulous and Revel, 1971), and strain S/6/5 as nonpermissive 

host for both T2 and T4 ~mutants. Strain Bb, which is also non

permissive for am mutants, was used as host in the preparation of all 

lysates (Wilson et al. , 1970). 

Media. H broth used for phage and bacterial growth, and EHA top 

and bottom agar used for plating assays, were prepared as described by 

Steinberg and Edgar (1962). Dilution buffer was prepared as described 

by King (1968). Two different minimal growth media were used for 

preparation of radioactively labeled infected-cell lysates. Minimal 

medium A, contained per liter 7 gm Na2HP04 , 3 gm KH2 ·P04 , 6 gm NaCl, 

l gm NH4c1, 0.12 gm Mgso4 , 0.01 gm CaC12 , and 4 gm glucose. Minimal 

medium B is identical to minimal medium A except that it has only l gm 

NaCl and no CaC12 added per liter. No differences were detected iri 

results obtained with the two minimal media. 
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14 7 C-labeled lysates. Strain Bb was grovm to 5 x 10 cells/ml in 

minimal medium A or B, collected by centrifugation, and resuspended in 

minimal medium at 2-4 x 108 cells/ml. One ml aliquots of this suspension 

were warmed to 37°, infected with phage at a multiplicity of 4-10, and 

aerated by bubbling or by agitation on a rotary shaker. 14 or 15 min 

after infection 2-4 µC of a uniformly·labeled 14c amino acid mixture 

(Schwarz-Mann) were added. At 45 min after infection the samples were 

treated one of two ways. In the first method 2 drops of CHC1
3 

were 

added to each sample and the samples were thoroughly mixed. The lysates 

were then frozen in dry ice-ethanol and thawed. DNase (2.5 µg/ml) and 

lysozyme (10 µg/ml) were added and the lysates were incubated at 37° for 

15 min. In the second method the lysates were added at 45 min to an 

equal volume of cold 10% TCA. All lysates were dialyzed against 0.065 M 

Tris-HCl, pH 6.8, 1.0% SDS. When the lysates are analyzed on discon-

tinuous polyacrylamide gels containing SDS, the two methods give different 

relative amounts for some of the bands but the relative rates of migration 

of the bands are identical. 

Gel electrophoresis and autoradiography. Procedures for the 

preparation and running of discontinuous polyacrylamide gels cont~ining 

SDS were as described by Laemmli (1970). Sample preparation, staining, 

destaining and autoradiography of the gels were as described by Wilson 

and Kells (1972). The autoradiographs were traced at 2- to 20-fold 

magnification with a Joyce-Loebl microdensitometer and the migrations 

of particular bands relative to the dye marker or to another reference 

band were determined from the tracings. The molecular weights of the 

amber fragments were determined by comparing their migration with that 
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of a set of standard proteins (Fig. 1). Although the standard proteins 

r'lll'l at the same relative rates in standard and discontinuous SDS gels 

(i.e . , a plot of mobility against the log of molecular weight yields a 

straight line with both systems), we find that several of the phage 

proteins do not. This discrepancy between the two gel systems has also 

been noticed by R. C. Dickson (personal communication). Perhaps because 

of this a.nomolous behavior or because of other differences in procedure 

the molecular weight values we have 'determined from discontinuous SDS 

gels differ from those previously reported. Specifically we have 

determined the molecular weights of T4 P34 and P37 to be 130,000 daltons 

a.nd 105 ,000 dal tons respectively whereas t .he previously published 

figures were 150,000 daltons for P34 a.nd about 120,000 daltons for P37 

(Ward and Dickson, 1972; King a.nd Laemmli, 1972). We have recently 

obtained independent evidence that the value of 105,000 daltons for 

P37 is closer to the actual value than the previously determined 120,000 

daltons (Beckendorf, Kim and Lielausis, 1972). 

Phage crosses. Standard phage crosses were done as described 

by Wilson a.nd Kells (1972) . CR63 was used as host for T4 crosses. 

CR63r6-r24- was used as host for T2 crosses. T4 crosses were done at 

30°, T2 crosses at 25°. 

RESULTS 

Genetic maps of gene 34 in T2 and T4 were constructed from the 

results of two factor crosses and are presented in Figs. 2 and 3, Only 

four am mutants were available in T2 gene 34. In agreement with previous 

results (Stahl et al., 1964; Russell, 1967) the total amount of re

combination in T4 gene 34 (42%) is greater than that in T2 gene 34 (16%). 
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Fig. 1. Mobility on discontinuous SDS gels of proteins used as 

molecular weight standards. Mobilities are relative to bromphenol blue 

(Rf= migration of protein/migration of bromphenol blue). The standard 

proteins in order of decreasing molec4lar weight are y- globulin, S

galactosidase, phosphorylase a monomer, serum albumin, catalase, H-chain 

y- globulin , ovalbumin, L chain y- globulin . The sources and molecular 

weights of these proteins are in Weber and Osborn (1969). 
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Fig. 2. Genetic map of T2 gene 34. % recombination is listed 

below the map and was calculated as (am+ recombinants/total progeny) x 

200%. 
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Fig. 3. Genetic map of T4 gene 34. % recombination is listed 

below the map and was calculated as (am+ recombinants/total progeny) x 

200%. Superscripts indicate the number of times the recombination in an 

interval was determined. The order o~ the non-NG amber mutations agrees 

with previously published data (Nakata and Stahl, 1967). The ambers 

designated NG have been ordered as best fits the two factor mapping data. 

The order of amNG506 and amNG144 relative to the mutations which flank 

them are verified by the physical mapping data. 
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Plates 1 and 2 show band patterns produced by electrophoresis 

14 of C-labeled lysates of ~mutants in T2 and T4 genes 34. The position 

of most of the amber fragments was determined simply by the appearance 

of a new band. Since the fragment produced during infection with T4 

amN58 runs very near the third band, P37, the position of the amN58 

fragment was determined after infection with a double mutant between 

arnN52, a mutant in gene 37, and amN58. In this way the gene 37 product 

was removed and the position of the a.mN58 fragment became apparent. 

The molecular weights of the amber fragments were determined from the 

standard curve and a.re listed in Table 1. The physical maps for T2 and 

T4 were constructed from these data and are presented as the abscissas 

in Fig. 4. 

To compare the genetic and physical maps we calculated, for the 

interval between two mutations>a ratio of genetic distance to physical 

distance. This ratio, R1000 , is the per cent recombination across the 

interval (determined from Figs. 2 and 3) per 1000 daltons of protein 

coded by the interval (determined from Table 1). In Figs. 4a and 4b 

this ratio, calculated for each appropriate interval in T2 and T4 genes 

34,is plotted against the respective physical maps. For T2 gene 34 

the value of R1000 is relatively low and varies only slightly (.1-.2). 

In T4 gene 34 over 80% of the gene has a similar low value of R1000 

(.2). However, in the 20% of gene 34 nearest gene 35 the value of R1000 

increases sharply reaching 1.7 at the end of the gene, 

DISCUSSION 

These results demonstrate that the higher frequency of recombin-

ation within T4 gene 34 compared with T2 gene 34 is not due to a single 
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Plate l. Identification of P34
4 

am fragments. 14 C-labeled 

lysates were prepared as described in Materials and Methods and electro

phoresed on 7.5% polyacrylEjJllide gels containing SDS. After staining 

and destaining the cylindrical gels were sliced. The slices were 

dried and autoradiographed on Kodak No Screen X-ray film. For 

amA455, amB258 and amNG144 the top band is the P34 fragment . The 

amA459 fragment is indicated by the line at the right. 
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Plate 2. Identification of P34
2 ~fragments . For procedure 

see Plate 1. 
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TABLE 1 

Molecular Weights of T2 P34, T4 P34, a.nd Their~ Fragments 

T2 P34 ~ Fragments 

a.ml35 

am74 

am75 

T2 P34 

T4 P34 am Fragments 

amN58 

amNG506 

amA459 

amNG144 

amB258 

arnA455 

T4 P34 

101 

121 

128 

130 

103 

110 

111 

123 

125 

129 

130 

Molecular weights of the gene products and !E!! fragments 

were determined by comparing their migration on SDS poly

acrylamide gels with the migration of standard proteins as 

described in Materials and Methods. 
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Fig. 4. Comparison between genetic and physical maps of T2 and 

T4 genes 34. The heavy bar at the bottom of each graph is the physical 

map of the gene with am mutants located on it. R1000 , the percent 

recombination per 1000 MW of protein is plotted for each interval on 

the physical map. 

a. T2 gene 34 

b. T4 gene 34 
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recombinationa.l hot spot nor to a homogeneous increase in recombination 

along the entire length of T4 gene 34. Instead there is a sharp gradient 

of recombination near one end of the T4 gene, but none in the T2 gene. 

This gradient extends over at least 700 nucleotides at the end of T4 gene 

34 (ca.lculated from Table 1 assuming 3 nucleotides per amino acid and 

an average residue molecular weight of 110). A sharp increase in R1000 

near the end of a gene is not characteristic of all T4 genes, however. 

The value of R1000 is nearly constant throughout T4 gene 37 (Beckendorf 

et al., 1972). Therefore there must be something unique about the 

structure of gene 34 or the area adjacent to it which causes the abnormally 

high recombination. However, a unique structure for T4 gene 34, while 

necessary, is not sufficient to explain the high recombination. T2 gene 

34 assumes the same high recombination frequency as T4 gene 34 when it 

is transferred intact into the T4 genome (G. Rosen and R. L. Russell, 

persona.l communication). Thus it appears that some other part of the 

T4 genome is also necessary to generate high recombination in gene 34. 

This other function must not exist in T2. 

T4 gene 35 a.lso shows increased recombination, so perhaps the 

gradient of R1000 continues into gene 35, However, since P35 has not 

been identified on gels, we have not been able to extend our studies 

into gene 35, 

Current theories of recombination in T4 and other bacteriophages 

(Broker and Lehman, 1971; Cassuto et a.l., 1971) propose that recombination 

is initiated by single-strand nicks in the DNA. If a fixed site had a 

high probability of having a single-strand nick, recombination between 

markers on either side of the nick might be very high. Bacteriophage 
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T5 may show this effect. There are three nicks in T5 DNA (Abelson and 

Thomas, 1966; Brejard, 1969) and a recently constructed genetic map of 

T5 has four very weakly linked groups of markers (Hendrickson and 

McCorquodale, 1971). One of the nicks seems to separate one of the 

marker groups, the FST segment, from the rest of the genome (Brejard, 

1969). Maximal recombination occurs between markers in this segment 

and all other markers (Lanni, Lanni and Tevethia, 1966; Hendrickson 

and McCorquodale, 1971). Although it has not been established whether 

the other nicks are located between the other groups of markers, it 

seems reasonable that these nicks are also involved in the high re

combination between the groups of markers. 

If recombination occurs at a specific site, during T4 infection, 

there is a high probability of a second recombinational event occurring 

very close to the first. This probability decreases rapidly with 

distance away from the first site (Chase and Deerman, 1958). This effect, 

known as high negative interference, is caused in part by the formation 

of insertion heterozygotes in which a small single-stranded piece of 

DNA from one parental phage is inserted into the DNA of the other 

(Mosig, 1970). When insertion heterozygote DNA is replicated, one of 

the daughter duplexes is a double recombi nant. 

These considerations lead to a possible explanation of the 

recombination gradient in T4 gene 34. The formation of insertion 

heterozygotes, as well as single recombination events, should be facil

itated by the presence of a ·nick in the DNA. If the site of this nick 

were fixed, one of the two crossovers necessary for the formation of 

an insertion heterozygote would occur at this fixed site . The second 
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would occur adjacent to this site, with decreasing probability at larger 

distances from the initial site. In other words there would be a de-

creasing gradient of recombination as the physical distance away from 

the initial site increases. If this mechanism is responsible for the 

gradient of R1000 we have found in gene 34, there should be, between 

genes 34 and 35 or in gene 35, a site with a high probability of being 

nicked. There should also be a gradient, similar to the one we have 

found but with the opposite slope, on the other side of this nick. 

Thus this explanation suggests that the recombination gradient 

in T4 gene 34 is the direct result of a recom3inational hot spot 

adjacent to gene 34. If this is correct, the abnormally high recombin-

ation in gene 34 which we measure is a consequence of secondary exchanges 

adjacent to the primary exchanges at the hot spot. 
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