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ABSTRACT

The wave-theoretical analysis of acoustic and elastic waves
refracted by a spherical boundary across which both velocity and
density increase abruptly and thence either increase or decrease
continuously with depth is formulated in terms of the general
problem of waves generated at a steady point source and scattered
by a radially heterogeneous spherical body. A displacement potential
representation is used for the elastic problem that results in high
frequency decoupling of P-SV motion in a spherically symmetric,
radially heterogeneous medium. Through the application of an earth-
flattening transformation on the radial solution and the Watson
transform on the sum over eigenfunctions, the solution to the
spherical problem for high frequencies is expressed as a Weyl
integral for the corresponding half-space problem in which the
effect of boundary curvature maps into an effective positive velocity
gradient. The results of both analytical and numerical evaluation
of this integral can be summarized as follows for body waves in
the crust and upper mantle:

1) In the special case of a critical velocity gradient (a gradient
equal and opposite to the effective curvature gradient), the
critically refracted wave reduces to the classical head wave for

flat, homogeneous layers.
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2) For gradients more negative than critical, the amplitude
of the critically refracted wave decays more rapidly with distance
than the classical head wave.

3) For positive, null, and gradients less negative than
critical, the amplitude of the critically refracted wave decays
less rapidly with distance than the classical head wave, and at
sufficiently large distances, the refracted wave can be adequately
described in terms of ray-theoretical diving waves. At intermediate
distances from the critical point, the spectral amplitude of the
refracted wave is scalloped due to multiple diving wave interference.

These theoretical results applied to published amplitude data
for P-waves refracted by the major crustal and upper mantle horizons
(the Pg, P*, and Pn travel-time branches) suggest that the 'granitic'
upper crust, the 'basaltic' lower crust, and the mantle 1lid all
have negative or near-critical velocity gradients in the tectonically
active western United States. On the other hand, the corresponding
horizons in the stable eastern United States appear to have null
or slightly positive velocity gradients. The distribution of
negative and positive velocity gradients correlates closely with
high heat flow in tectonic regions and normal heat flow in stable
regions. The velocity gradients inferred from the amplitude data

are generally consistent with those inferred from ultrasonic



measurements of the effects of temperature and pressure on crustal
and mantle rocks and probable geothermal gradients. A notable
exception is the strong positive velocity gradient in the mantle

1id beneath the eastern United States (2 x 10-_3 sec—l), which appears
to require a compositional gradient to counter the effect of even

a small geothermal gradient.

New seismic-refraction data were recorded along a 800 km
profile extending due south from the Canadian border across the
Columbia Plateau into eastern Oregon. The source for the seismic
waves was a series of 20 high-energy chemical explosions detonated
by the Canadian government in Greenbush Lake, British Columbia.

The first arrivals recorded along this profile are on the Pn travel-
time branch. In northern Washington and central Oregon their travel
time is described by T = A/8.0 + 7.7 sec, but in the Columbia

Plateau the Pn arrivals are as much as 0.9 sec early with respect

to this line. An interpretation of these Pn arrivals together with
later crustal arrivals suggest that the crust under the Columbia
Plateau is thinner by about 10 km and has a higher average P-wave
velocity than the 35-km-thick, 62-km/sec crust under the granitic-
metamorphic terrain of northern Washington. A tentative interpretation
of later arrivals recorded beyond 500 km from the shots suggests that

a thin 8.4-km/sec horizon may be present in the upper mantle beneath



vi

the Columbia Plateau and that this horizon may form the 1id to a

pronounced low-velocity zone extending to a depth of about 140 km.
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GENERAL INTRODUCTION

During the last decade considerable advances were made in the
definition of the velocity structure of the crust and upper mantle
based on studies of elastic body wave propagation through the earth.

To a large extent, these advances were made possible through the
advent of both large stationary arrays and mobile recording units with
broad band instrumentation and uniform recording characteristics
together with improved methods of data processing by digital computers.
These body wave studies have primarily centered around two approaches.
One involves the accurate determination of phase velocities with

which different arrivals sweep across a large, fixed array from sources
at varying distances and azimuths (dT/dA methods). The second,

and much more common approach, is based on the standard seismic
refraction and reflection techniques of recording waves from a

fixed source with a number of recording units at varying distances.

The majority of the published studies taking either of the above
approaches use ray-theoretical methods to invert the data for
velocity structure, and their success attests to the wide validity
of geometrical ray theory in describing body wave propagation in
the earth. However, inspite of the great success of ray-theoretical
methods, a large part of the radiation field can only be

explained in part, or not at all by ray theory. Some well known



examples of such events include surface waves, diffracted waves (e.g.
P-waves diffracted by the core-mantle boundary), and critically
refracted energy, or head waves. Furthermore, ray theory will not
in general give a valid description of waves propagating through
media with continuously varying properties or transition zones
(although for arbitrarily high frequencies, the ray-theoretical
description will become arbitrarily good). Thus, if we are to make
maximum use of the information contained on a seismogram in
attempting to interpret the fine structure of the earth it is
necessary to supplement the ray-theoretical methods with more complete
wave-theoretical solutions.

In this thesis we are primarily concerned with the wave-
theoretical nature of energy that is critically refracted or nearly
critically refracted by an abrupt increase in velocity. Waves
associated with such energy are commonly the first arrivals recorded
on seismograms out to distances of 1000 km or more from the source.
They form the well known Pg and Pn branches on local travel-time
curves and represent the primary data of classical seismic-refraction
studies. Nearly all that is known about the best established and
most widely recognized structures in the outer 200 km of the earth
(e.g. the 'granitic layer' in the continental crust or the

Mohorovichic discontinuity, which defines the top of the mantle



1id) is derived from ray-theoretical studies of the travel times

of these phases. Clearly a thorough understanding of the effects of
boundary curvature, velocity gradients, transition zones, and
anelasticity on the waveform or spectrum of these phases is crucial
in further attempts to refine our understanding of the major
structural units of the crust and upper mantle. Equally important
is the ability to account for these propagation effects in studies
of body wave spectra aimed at determining source parameters.

A principle contribution of this thesis is the extension of
wave—-theoretical solutions for critically refracted and nearly
critically refracted waves (hereafter collectively referred to as
near-critical waves) to include the effects of boundary curvature
and continuous velocity gradients in the medium beneath the boundary.

The theoretical treatment presented here differs from the earlier
works on the effects of small gradients on near-critical waves
by Chekin (1964, 1965) in the following respects; 1) we include the
effects of boundary curvature, which is of the same order as the
effects of small velocity gradients, 2) we use a potential representa-
tion introduced by Richards (1970) that results in true high-frequency
decoupling of P-SV motion in a heterogeneous elastic medium, 3) we
obtain a complete solution for the turning point problem in the case

of a positive velocity gradient in the refractor, and 4) we evaluate



the basic integral exactly by numerical integration, which serves
as a check on the asymptotic solutions and extends the results to
include lower frequencies and more complicated interference
phenomena.

In Chapter 1 the basic problem is formulated in terms of waves
generated by a point source and scattered by a spherical body within
which the material properties may be radially heterogeneous.

Through the devices of an exact earth-flattening transformation and
the Watson transform, the spherical solution is converted from an
infinite sum over spherical eigenfunctions to an integral over
continuous wave numbers. For high-frequency waves, this integral
reduces to the form of the Weyl integral associated with plane-
boundary problems. This integral is then evaluated both analytically
and numerically to obtain expressions and curves for the spectral
amplitudes of waves reflected and refracted by a spherical horizon
within which the wave velocity may either increase or decrease with
depth.

The results of the theoretical work in Chapter 1 are applied
to published amplitude data for waves refracted by the major boundaries
in the crust and upper mantle (the Pg, P*, and Pn waves) in Chapter 2
in a first attempt to determine velocity gradients within these

major structural units. Knowledge of the distribution and size of



velocity gradients in the crust and mantle provides an important
constraint on the compositional and geothermal regimes in the earth.
On the basis of this preliminary .study, we find negative velocity
gradients in the crust and mantle 1id in the western United States
which correlate with high heat flow and high geothermal gradients
and positive velocity gradients in the eastern United States which
correlate with lower heat flow and lower geothermal gradients. An
important conclusion reached in this chapter is that a compositional
gradient appears to be required in the mantle 1id beneath the stable
eastern United States to explain the inferred positive velocity
gradients in terms of available geothermal data and laboratory
measurement of physical properties for mantle material.

In Chapters 1 and 2 the earth is regarded as being radially
heterogeneous but laterally homogeneous. However, we can expect
the assumption of lateral homogeneity to be only approximately
true even in under the 'simplest' and most uniform geologic provinces.
In Chapter 3 we consider new seismic data over an area previously
unexplored by deep seismic-refraction methods and find evidence for
strong lateral variations. The area is the Columbia Plateau flood
basalt province in eastern Washington and Oregon, and the data were
obtained by recordings of large chemical explosions detonated in
southern British Columbia along a 800-km profile from the Canadian

border into central Oregon. Because of the obvious lateral variations



along this profile, we have not attempted an analysis of the amplitude
data using the wave-theoretical results obtained in Chapter 1.

Instead we concentrated on a ray-theoretical analysis of the travel-
time data in an attempt to define the gross radial and lateral velocity

variations in the crust and upper mantle under the Columbia Plateau.



CHAPTER I

Introduction:

The general problem of waves from a concentrated source
reflected by a layered velocity structure is of considerable interest
to seismologists, and a wealth of solutions for a variety of
structures can be found in the literature. These solutions can be
broadly divided into two groups; (1) time-domain solutions of
progressive waves based on an initial-boundary-value formulation,
and (2) frequency-domain solutions of steady waves based solely on
a boundary value formulation. A concise review of the basic methods
involved is given in Chapter 6 of Grant and West (1965).

Time-domain solutions formulated as initial-value problems
have an inherent advantage in seismological applications since
nearly all wave phenomena in the earth of seismological interest,
and body waves in particular, involve the propagation of transient
effects. The technique introduced by Cagniard (1939) and its
modification by de Hoop (1960) have been particularly successful
for obtaining exact, whole-wave solutions for pulses reflected
from a plane boundary between two homogeneous media. Helmberger
(1968) has recently extended this approach to successfully generate
synthetic seismograms for pulses reflected from an arbitrary number

of homogeneous layers. A principle limitation of the Cagniard



method is that the technique depends on having a frequency-independent
reflection coefficient. Thus problems involving media with velocity
gradients or curved boundaries (both of which result in a frequency-
dependent reflection coefficient) are not particularly well-suited

to this approach, although approximate solutions for the vicinity

of a wave front have been obtained for some problems of this sort
(Knopoff and Gilbert, 1959, and Gilbert and Helmberger, 1971).

In this study of waves reflected by curved boundaries and
heterogeneous layers we will take the second approach and work for
solutions in the frequency domain based on a steady-state boundary-
value formulation of the problem. This approach has the advantage
that solutions in the frequency domain are readily interpretable
in terms of seismological data; in fact, it is common to find
seismological data presented in terms of spectral amplitudes and
phases. Thus, it is generally not necessary to do the final integration
over frequency (the inverse Fourier transform) to obtain a
considerable amount of useful information about the problem. This
is clearly a significant advantage in doing problems that yield a
complicated, frequency-dependent reflection coefficient. Of course
it is always possible, in principle at least, to do the final
integration over frequency either numerically or by approximate

analytical methods to express the solution in the time domain.



However, the integral is not necessarily convergent, and considerable
care must be exercised if the integration is attempted. In this
study we will leave the solutions in the frequency domain and not
attempt to do the final inverse Fourier transform.

Because the basic problem we are considering involves waves
from a point source scattered by a finite,heterogeneous body embedded
in an infinite homogeneous space, we avoid a fundamental difficulty
associated with the steady-state approach to wave propagation
problems of choosing the proper radiation conditions at infinity.
The well-known Sommerfeld condition, which in essence requires that
the wave at infinity from a point source in a homogeneous medium
be outgoing (Stoker, 1957), applies in this case. However, it is
not at all clear that analogous conditions can be applied when one
or more boundaries or a material heterogeneity extends to infinity
(Dix, 1952; Stoker, 1957). When working with the flat earth analog
of the spherical problem obtained by an earth-flattening transformation
in Section 3 of this Chapter (a case in which the boundary as well
as the heterogeneity of the lower half space extends to infinity) we
can appeal to the Rainbow expansion (Bremmer, 1949) for waves in
a closed spherical body to obtain the approximate radiation conditions.
In addition, we present some plausibility arguments for the proper
radiation condition in the heterogeneous half-space as such.

A considerable body of literature exists on wave propagation
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problems in the frequency domain formulated as steady-state boundary-
value problems. Many of the solutions and mathematical techniques
for treating heterogeneous media and spherical geometry that were
developed in the study of radio wave propagation in the ionosphere
and in acoustics have only recently been applied to wave problems
in solid earth geophysics. Fairly complete reviews of these methods
and solutions can be found in books by Brekhovskikh (1960), Budden
(1960, 1961), and Bremmer (1949).

The basic problem of steady~state spherical waves reflected by
a plane boundary between two homogeneous half-spaces has been
thoroughly studied. Brekhovskikh (1948) first formulated the problem
with a steady point source and evaluated the branch cut in a Weyl
integral to obtain an expression for the head wave, and later Heelan
(1953) obtained analogous expressions for head waves in two elastic
half spaces with a finite cylindrical source. Cerveny (1965) has
treated this problem in considerable detail with particular emphasis
given to evaluating the wave field in the immediate vicinity of the
critical point, which is complicated by the close proximity of the
'head wave' branch cut and the reflected wave saddle point. A
review of this problem with references to additional literature
is given by Onda (1968). Berry and West (1966) extended this basic
solution to obtain solutions of both reflected and head waves from

several homogeneous layers in terms of generalized rays.
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Some of the effects of small velocity gradients in the refracting
medium on reflected and head waves have been investigated by Chekin
(1964, 1965). He considered the effects of negative gradients on
elastic P-SV waves and positive gradients on acoustic waves. However,
as pointed out by Richards (1971), Chekin did not choose the proper
potential representation for P-SV motion in a heterogeneous medium.
His formulation of the positive gradient problem for acoustic waves
is incomplete in the sense that this reflection coefficient does
not contain both up-going and down-going waves between the turning
point and the reflecting boundary. The effects of positive gradients
on acoustic 'head waves' have also been investigated by Cerveny and
Jansky (1967) and Cerveny (1966). Their conclusions are primarily
based on Chekin's (1965) results and ray-theoretical solutions. The
effects of transition zones on reflected wave amplitudes have been
studied by a number of authors, including Nakamura (1964), Fuchs
(1968), and most recently by Hirasawa and Berry (1971).

Most of the work mentioned above is based on a Weyl or
Sommerfeld integral formulation of a steady spherical wave (see
Chapter 6 in Grant and West, 1965). This work is wave-theoretical
in the sense that the reflection coefficient in the integral is
usually obtained from exact solutions to Helmholtz equation. A
somewhat different approach, generally referred to as asymptotic
ray theory, is beginning to find its way into the geophysical

literature. This approach is based on an expansion of the field
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quantities in a powers series of inverse frequency (1/w) introduced
by Kline (1951) and Karal and Keller (1959). Hron and Kanasewich
(1971) have used this approach from a generalized ray point of view
to obtain synthetic seismograms for waves from a point source
reflected and refracted by an arbitrary number of plane, homogeneous
layers. Their work is essentially the high frequency  analog of
Helmberger's (1968) work based on the Cagniard-de Hoop method.

The first seismological application of the Watson transform
for studying waves reflected from a spherical body was made by
Scholte (1956). Since then a number of authors (Knopoff and Gilbert,
1961; Phinney and Alexander, 1966; Sato, 1968; Phinney and Cathles,
1969; Teng and Richards, 1969; Richards, 1970; Chapman, 1969) have
applied this approach to the study of waves diffracted by the
earth's core. Gilbert and Helmberger (1971) have recently applied
the Watson transform to formulate a generalized ray theory for a
layered sphere for pulse problems in the time domain. To take
advantage of the Cagniard-de Hoop technique, they expand the spherical
reflection coefficient in an asymptotic, frequency-independent form.

In this study of waves reflected by spherical boundaries and
heterogeneocus media, we will rely on techniques developed for both
the Watson transform and the Weyl integral solutlon. Our
approach will be to model the earth as a spherically symmetric,

radially heterogeneous body in a homogeneous space. We will take
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the material velocity at the surface of the body to be greater than

in the surrounding homogeneous space and consider the wave fileld
scattered by the body from a steady point source located in the
homogeneous space (see Figure 1). This corresponds to the geophysical
problem of a source in a homogeneous layer over a first order
discontinuity in velocity below which the velocity may vary smoothly
with depth, however in this treatment we neglect the effects of
layering and the free surface above the source.

In formulating the elastic prcblem, we use the displacement
potential representation introduced by Richards (1971) which results
in the approximate decoupling of the equations of motion for P and
SV waves at high frequencies in an isotropic spherically symmetric,
radially heterogeneous body. By using this representation the
equations of motion for P, SV, SH, as well as acoustic waves can
be expressed as separate canonical wave equations.

The wave equations are operated on by a Fourier transform
with respect to time to reduce them to Helmholtz equations in the
frequency domain, where we have used the following convention for

the Fourier transform pair:

£ (sid =jf P &% s

- 00

F(t)=3 / £(u) e 19F gy

-0
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The general solution to the Helmholtz equations and boundary
conditions for the wave field scattered by the spherical body can
then be expressed in terms of an infinite sum over discrete wave
numbers. In Section 2 we develop an expression for this general
solution, and then, by applying an earth-flattening transformation
to the radial part of the solution and the Watson transform to

the angular part of the solution, we convert the solution from a
sum over discrete wave numbers (or order numbers) to an integral
over a continuum of wave numbers in a flat earth. The earth-
flattening transformation is exact for the homogeneous Helmholtz
equation and spherical boundary conditions, but when the point
source is included, the transformation is wvalid only for sources
not too far from the boundary compared with the radius of the
boundary and for wave lengths significantly less than the radius
of the boundary. This integral expression is in the form of a
Weyl integral, and we can take advantage of many of the techniques
developed for its analytical evaluation. Because the reflection
coefficient in the integral, in principle at least, contains the
exact spherical eigenfunctions for the radially heterogenous body,
its evaluation will give a valid approximation for the wave field
reflected at an arbitrary depth within the spherical body by an
arbitrary heterogeneity. For example, it appears that this integral

representation when coupled with the Epstein method for evaluating
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flat problems with continuous velocity variations (Epstein, 1930;
also see Phinney, 1970, for a discussion of geophysical applications
of this method) provides a promising approach for studying waves
reflected from a variety of interesting transition zones in a
spherical earth.

Here we are primarily interested in the effects of curvature
and velocity gradients in the immediate vicinity of the boundary on
waves near the critical angle of incidence. To simplify the analysis,
we will use a linear approximation to the earth-flattening trans-
formation which is wvalid in the vicinity of the boundary. The
principle effect of the linear transformation is to superimpose
a linear velocity gradient on the physical velocity in the flat
problem. High frequency asymptotic solutions to the Helmholtz
equations of the type described by Langer (1949) can then be used
to describe the wave field din the heterogeneous medium with the
curvature-mapping gradient included. However, in carrying out
the actual analysis, we will choose the form of the velocity
variations so that the solutions to the Helmholtz equations are
exactly Airy functions. In Section 3 we carry out this program in
detail for acoustic waves in fluid media for both negative and
positive velocity gradients. Using the acoustic case as a guide,
we then do the complete elastic case for SH and decoupled P-SV

motion. Finally, in Section 4, we consider the implications of
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our results for a number of geophysically interesting situations
and compare the asymptotic analytical solutions with exact solutions
obtained by numerical integration of the Weyl integral.

Through this chapter we will use the word heterogeneous to
refer to continuous variations in the physical properties of a medium
and reserve the word inhomogeneous for describing differential

equations with a source term on the right.
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1. Equations of motion and potential representations

We will restrict our considerations to plane-layered and
spherically~-layered heterogeneous, isotropic media. Specifically,
we will consider acoustic and elastic isotropic media in which the
scalar material parameters vary smoothly as a function of either
depth or radius alone and in which there is a single surface
(z = const or r = const) across which the parameters change
discontinuously. Furthermore, we will consider a single, isotropic
point source so that the resulting fileld depends only on two
coordinates (z and r in a cylindrical system and r and 6 in a
spherical system).

In an inviscid fluid media the acoustic approximation to the

equations of motion are

v (1a1)

where V is the particle velocity (assumed to be infinitesimal),

P is the deviation from the static ambient pressure, p is the density
and ¢ 1s the acoustic velocity (both considered to be a function of
depth or radius only), The following assumptions are made in obtaining

(1.1)
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The first inequality limits considerations to small density gradients
such that the term on the right is the product of two small
quantities. The second inequality is a statement of the usual
linearity approximation in hydrodynamics.

Taking the Fourier transform of (1.1) and eliminating V gives

V2D 4 &2P = g~ Py = O (1.3)

where P is the Fourier transform of P, k = w/c is a wave number

and w is the angular frequency. Following Brekhovskikh (1960) we

introduce the pressure potential

1
=)

® =P p , (1.4)

which reduces (1.3) to the form of a Helmholtz equation
V20 + k?¢ = 0 (1.5)

In obtaining (1.5) we have made the assumption that

k2| > | %- v2p - 3—2 ve)2 |, (1.6)
0 40
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i.e. that density gradients are small with respect to the wave
number. In this system a steady point pressure source, P is represented
by the potential

8(r-r_) 6(-0) RIS

D=Pp = 2qrzsin §)

8(z=z,) 6(r-0,) e "

2mr

in a spherical or cylindrical system respectively.

Richards (1970) has developed potential representations for the
vector wave equation in radially heterogeneous and vertically
heterogeneous (in spherical and Cartesian systems, respectively)
isotropic, elastic media. From his formulation he is able to show
that 1) coupled P and SV solutions exist for all possible displacement
solutions, 2) SH solutions are decoupled from the P-SV solutions,
and 3) at sufficiently high frequencies P-SV solutions tend to
decouple into forms that can be identified with the standard
irrotational P-wave and solenoidal SV-wave solutions in homogeneous
media. The last two results are of particular interest here because
they permit formulation of the radially or vertically inhomogeneous
elastic wave propagation problems in terms of three uncoupled
Helmholtz equations for frequencies commonly encountered in crustal

and upper mantle seismic-refraction studies.
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In a spherically symmetric system, Richard's displacement
potentials for P, SV, and SH motion (P,S, and T, respectively) have

the following relation to the displacement vector, U(r),

at r = (r,0,¢)

=

U(r) =[f (rﬂ grad __£££l; P(r) | + curl curl -££££l—; S(x),0,0
’ [p(x)]™? [p(r)]~

(1-7)
+ cur],<———¥5—j: T(E),0,0>
lu(x)]™

where p(r) and u(r), the density and shear modulus, are functions

of radius and where the scale factor, f(r), is any sufficiently

smooth, bounded function of radius. The associated source potentials

are related to the applied force per unit mass, £ , by

g =f"1 {grad (_f__ D> + curl curl (ETf- F,0,0)}
3
p p

(1.8)
4 cur1<r—1 E,0,0>
&)
u

The spheroidal (P-SV) equations of motion can be written in

N

terms of P(r) and S(r) as a fourth and fifth order pair of coupled
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equations. Richards (1971) shows that if the scaling factor, f(r),

is chosen such that

? T 1]
AL, _g__=9__+_%u____ )
A+ 20 ° a+ 2u
where A and u are Lame parameters and the prime indicates

differentiation with respect to radius, and if the source potential is

of the form

-iwt
S(r—ro) 6(8-0+) e

D= 5 F=20 4 E=0
2n1r2 sin 6

then the following relations between P and S are both sufficient
and necessary for high frequency decoupling of the P and S potentials

in the spheroidal equations of motion:
[ 2
pD 2 Pw” 5 .
A+2u+VP+A+2uP 0(1)-P (1.9a)

and

S = 0(w2).P (1.9b)
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Richards shows that as a consequence of (1.9b)

2
v2g + 9%—»5 = 0 (1.10)

Noting that V2P = 0(w?)P, we see that the right hand side of
(1.9a) is two orders down in frequency with respect to the left
hand side. Thus for sufficiently high frequencies, (1.9a) can be

written

2p + 8 p o« bE

% 421 Boe=e +2u (1.11)

where, by (1.9b), the S coupled potential is two orders down in
frequency with respect to P. In other words, for an appropriate
source of compressional energy and for sufficiently high frequencies,
the P and S displacement potentials approximately satisfy the
separate Helmholtz equations (1.10) and (1.11).

The toroidal, or SH, equation of motion is simply

2
V2T + T4 e (1) T=-5E
U T( ) U

for a steady source of the form
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é(r—ro) §(9) St

E = e , D=0, F=020
21r? sin O
where
e o= 1ful 2+£L_ZU'
1 4\ u 2y Ty

(Richards, 1971). If we assume that shear modulus gradients are

small with respect to the SH wave number so that

pw? |

el << | 22

then the torsional potential satisfies a Helmholtz equation as well

2
g2 4 BY o L B g (1.12)
" u

Note that the assumption of small shear modulus gradients is
analogous to the assumption of small density gradients made in
obtaining the Helmholtz representation for acoustic motion (1.5).
The displacement potential representation for a vertically heteroge-
neous Cartesian system are similar to those for a spherical system.
In particular, the displacement and source vectors are represented

at the point r = (x,y,z) by
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U(x) ={f (z% {grad (&; P(£)> + curl curl(0,0, —MI/— S(£)>}
: [

[p(2)] p(z)]”?

- curl(o,o, [ w(z) 177 T(;)) (1.13)

and

© Im

X

g =g {grad( D> + curl curl(0,0, % F)}
OZ
(1.1%)
-k
+ curl(0,0,l—l 2 E>

These potentials decouple at high frequencies in the same manner as

those in the spherical system. Equations (l.éa,b) and (1.10) apply to

both systems.

Richards (1971) points out that the commonly chosen potential

representation for P-SV motion

U = grad ¢ + curl curl (0,0,X) (1.15)

where ® and X are assumed to satisfy

Z
0o, wexa4B(2)uwty g (1.16)

2 p(z) w?
e e A(z) + u(z)

(D:
2u(z)
does not lead to decoupled equations in ¢ and X at high frequencies
except in the special case of constant density. Thus, if we are to

allow for the effects of a variable density, the potential representations

(1.7) or (1.13) must be used.
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2. Earth-flattening transformation for the Helmholtz equation and

a point source

Earth-flattening approximations have been used for some time in
making corrections for the earth's curvature in radio-wave propagation
problems (see Budden, 1960). More recently, Kovach and Anderson
(1962) and Anderson and Toksoz (1963) have introduced an earth-
flattening transformation for Love waves that involves transforming
radially symmetric, isotropic shells into flat, vertically inhomo-
geneous, anisotropic layers. Biswas and Knopoff (1970) have modified
this transformation such that SH wave motion in a flat, vertically
inhomogeneous isotropic problem can be transformed exactly to SH
motion in a spherical radially inhomogeneous, isotropic earth.
‘Somewhat earlier, Sato (1968) independently developed an exact
earth-flattening transformation for SH motion. These exact earth-
flattening transformations apply only to homogeneous equations (no
source), and are thus most useful for surface wave and normal mode
problems. Analogous exact transformations for Rayleigh waves
(P-SV motion) have not been considered. One might expect that such
a transformation cannot be made exactly since the velocity gradients
that serve to map spherical to plane geometries would introduce
spurious P-SV coupling.

In this section an earth-flattening transformation is introduced

that will allow body wave solutions from a point source in a spherical
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earth to be expressed in terms of solutions to analogous point source
problems in a flat geometry. This transformation will be developed
for the inhomogeneous Helmholtz equation to take advantage of the
potential representations presented in the preceding section. The
transformation involving the point source (and a spherical wave front)
will be approximate; however, in the process of its derivation we will
obtain an exact earth-flattening transformation for the homogeneous
(no source) Helmholtz equation. This in turn, will be an exact
transformation for acoustic and SH motion in homogeneous spherical
media (although it will be approximate if the media properties vary
with radius in accordance with the small density- and shear modulus -
gradient assumption made in obtaining (1.5) and (1.10)). It will
also, of course, be an approximate transformation for P and SV
motion because of the decoupling assumption made in obtaining (1.9).
Consider a spherically symmetric medium that is homogeneous
for r > a and radially heterogeneous for r < a and in which the
scalar field, Yy, satisfies the Helmholtz equation. If a point source
is located in the homogeneous medium at r = r (rO > a) and@ = 0+,

the field, ¢, will be given by

—G(r-ro) 6(6—O+)

2 .
2
Vzw + i mr” sin 6

% 0 5 & 5 (2.1
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where ko = const and k = k(r) (see Figure 1). The general solution

te (2.1) dn v » a will be

b=yt (2.2)

where wo is the solution to the homogeneous equation, which includes

the effects of both a boundary at r = a and the underlying heterogeneous
medium in a reflection coefficient, and wp is a particular solution to
the inhomogeneous equation.

An appropriate solution to (2.1) is the infinite space Green's

function, or

Yy = (2.3)

where R is the straight line distance between the source at
r = (ro,0+) and any point r = (r,8). Using equations (10.1.45)
and (10.1.46) in Abramowitz and Stegun (1964), the particular

solution can be represented as

(1)

- jg(kr) hg (kro) r<r

y= ik ) (22 + 1) P (cosB);
P ° y=0 jz(kro) hél)(kr) & ro>r
(2.4

(1)

where jz and hl

are spherical Bessel and Hankel functions and P2

is a Legendre polynomial.
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Figure 1
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We apply a Legendre transform to (2.1), where the Legendre

transform pair is defined by

i
¢£ =./~ wPl(cos 0) sin 0 d6
0
(2.5)
Y = E (2 + l) ) P (cos 6)
2 A .
2=0
and obtain
—é[r—ro)
2/\ 78 2
d wg ) dwz 2(2+1) 27Tr
— 2_——— " =
5 +rdr + | k £ % (2.6)
dr i
0

Our aim is to rearrange the homogeneous part of (2.6) into a

form that can be identified with the analogous differential equation

in z for a cylindrical system r = (p,0,2)
d?¢ 22
4 (k ey 1 ) 6 =0 (2+17)
d22 i

To accomplish this we first transform the independent variable in

(2.6) according to

- 2z = a ln(a/r), (2.8)
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which gives

~ d{]\) 2
Por &y e (E)T A Vs (2.9)
2 a dz a 2 L
dz 2

and then transform the dependent variable according to

. 1/2 "
b, = ¢2(%> = ¢,ve 2/ 24 (2.10)
to get
d%¢ 2 4
dz a

which is the desired result.
A direct comparison between (2.11) and (2.7) yields the following

exact earth-flattening transformation for the homogeneous Helmholtz

equation:
- &
o 2(0+l) + 1/4
Kl =
2
a
2.12
with ( )
z/a
r=ae

=
1l
ﬁ
=
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where kf and k are the flat and spherical wave numbers respectively.
Note in particular that the expression in the brackets multiplying
¢£ in (2.11) is the radial (vertical) wave number in the spherical

case. Thus we identify k in (2.12) as the angular (horizontal) wave

number, and from this we obtain the well known relation
ka = & + 1/2.

The propagation velocity in the medium is given by ¢ = w/k, thus

c. = c e—z/a (2:13)

where Cr and CR refer to the velocities in the flat and spherical

systems respectively. If we are interested in the field in the

vicinity of r = a, the transformation can be approximated by

(@]
R

Cs(l—z/a)

<< 1 (2.14)

Z
| 2

a(l+z/a)

(5
I

These represent the earth-flattening approximations used by earlier
workers (Budden, 1960).

The above development is similar to that of Biswas and Knopoff
(1970) or Sato (1968) for their exact transformation of the
homogeneous equation for SH motion, although the particular potential

representation used results in minor differences in the transformation.
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In making the above transformation, we have implicitly assumed
that the properties of the medium vary smoothly with radius. If
we allow a discontinuous jump in properties at some level, say r=a,
it is necessary to consider how the continuity (boundary) conditions
for this jump transform. To illustrate this we will compare the
spherical and flat boundary conditions for SH waves under the above
transformation.

Continuity of both displacement and stress are required across
a welded boundary. For SH (or torsional) motion across a spherical

boundary these conditions are

[u €r¢]a+ = fu 8r¢]a-
or
ou U oU U
u(__ﬂi__‘b B Y )
or 5 or r
at a-

for stress. Using the displacement potential representation for

SH motion in a spherical system given by the last term in (1.7) or

S .
|g|"’U¢)— r 36

ET-T 5
2
u
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the continuity conditions become

T d T
1/:| = ) I: (2..15)
u2 at+ H a-

N

[e54

==
N

1:|H

).

The potential, T, satisfies the Helmholtz equation

M H

() (4 () 4

respectively.
(1.10), and its eigenfunctions in a spherical system are of the form

Tg(r,e) = <JL +%>']A.‘2(r) Pl(cos 9)

where fz(r) is the radial variable-separable solution. Putting this

into the continuity conditions (3.15) we obtain

Tiu ik = T/u -
(2.16)
) d_<i_ _;<f_> _ U[L(i)_l(i)]
dr ]f5> a u% adk dr u% A U% b

By (2.12), the mapping of f(r) into the flat potential, Tf(z), is

given by



sss s

<§;>% _ e—z/Za

r

and the derivative terms in the stress boundary condition assume the

>3/2

form

~

T
d -4 4 -z/2a | dz _ | u' Yo _ £
{ W Tela) e ] = [ 372 T BT -3,

o

dr

dz

where the primes indicate differentiation with respect to z.

Accordingly, the exact boundary conditions in a spherical system map

into

On the other hand, the analogous continuity conditions for a
flat boundary are

[U,1g, = 10,10

for displacement (¢ represents the angular coordinate in a cylindrical
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system or the xcoordinate in a Cartesian system), and

PG PE(E)])

for stress (p represents the radial or x coordinate in cylindrical
and Cartesian systems respectively). In this case, Tp, is the
displacement potential for a plane system given by the last term

fn (lell), er

(sl slE ).

Again, the potential, Tp, satisfies the Helmholtz equation, and

its eigenfunctions in a cylindrical system, for example, are

Tp = Tp(z) JO(Kp)

Thus, the above continuity conditions become
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g & s »

u T = W =T

P p

0+

and R R
d :EP_ d ER
v =\
UP. O+ UZ

or, expressed in a form similar to (2.17)

(2.18)

where, again, the primes indicate differentiation with respect to =z.

Comparing (2.18) with (2.17), we see that the boundary conditions

for the spherical boundary expressed in terms of the earth-flattening

transformation are identical to the boundary conditions for the plane

boundary except for the term of order (Tf/a) subtracted from T' in the

f

stress condition in the spherical case. Because the two potentials

~

Tp and ff enter the boundary conditions in the same way, it is
possible to use the plane boundary formulation and potential
representation to obtain solutions for the spherical boundary problem,

although for an exact spherical solution, conditions (2.17) must

be used rather than the natural conditions for a plane boundary, (2.18).
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However, we note that

where n is a vertical wave number. Thus the additional term
in the spherical stress boundary condition (2.17) is of order
(na)~! with respect to f%. In most crustal and upper mantle body
wave problems [(na)‘ll will be small (provided we avoid grazing
angles of incidence), and the natural plane boundary conditions
(2.18) can be used with little loss in accuracy. Similar remarks
hold for the transformation of boundary conditions for the decoupled
P-SV system and for acoustic motion.

We now turn to the development of an approximate earth-

flattening transformation when the point source of spherical waves

is inlcuded. To keep the algebra to a minimum, we will use the
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acoustic case as an example; the elastic SH and P-SV cases follow
in a parallel manner.

The model is shown in Figure 1 and the Legendre transformed
field equations are given by (2.6). Here we take y to be the pressure
potential defined by (1.4). By comparing the form of the sum in the
inverse Legendre transform with the series representation of the

particular solution (2.4), we see that

’ (@D)
- j%(kor) by (k x.) rsr, 199
P oY . (1) )
g | 50T by kym) ro>ox

Accordingly, the general form of the solution can be written as

(1) : (1)
wol = 21kO h2 (koro) Jz(kor) + A h2 (kor), a <1 & r
(2.20)
3 1/2
wlz=B(?> L £ %8

The first term in the solution for r > a is the source field (2.19),
and the second term is the field scattered by the sphere. In the
second term, A 1is a constant determined by the boundary conditions
and hél)(kor) is a solution to (2.6) representing outward traveling
waves for r >> 1. We represent the solution to the field inside

the sphere, which may be radially heterogeneous, in terms of the

exact earth-flattening transformation (2.11) and (2.12).
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The boundary conditions at the surface of the sphere, r = a,
require continuity of pressure and the normal component of particle

velocity for an acoustic field, or

[ . l"osa] [pl ‘”12]
a+ a-

(2..27L)
-1d_ Lo~ _ -1d | %~
[po dr( o LpOSL)il - [pl dr( R KU
a+t SE
Putting (2.20) into these boundary conditions gives
1 1 1 1
B (1) _ sfa\= 5,
o b (er) HE 9 [er sk
& =318
L 4 (1) Lfa - d .
2 Deie o o] 2 B
?o dr h2 (kor) pl dr [ (r ) é} £ Po dr Jz(kor)
where S = 21 k h(l)(koro). Solving this system for A we obtain
5 [k a)
how G n el B g (2.22)
oL o (1)
h [k a}
& o

where V can be regarded as a generalized spherical reflection

coefficient given by
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s -1d [ a\%, ] P \% 3 (1)
°6 P1 ar L 1t ') - P > QR o) Jzik ri
Vv =
_ = (12"
L -1d _a_>1/2 +<p_1)1/2 D (i x)
Pre g \Prr ) By )b 2D (i 1)
- 2 o r=a

s B

The expression for the spectral amplitude and phase of the
external field can now be obtained by applying the inverse Legendre
transform (2.5) towA,O2 in (2.20) with A given by (2.22). Thus

it is necessary to sum the series

Il o>~1 8

o s -
wo =3 (29+1) wOR Pz(cos 8)

2=0

1
5

This series is known to converge slowly for large % ka , which

is just the range of interest for body wave studies. The standard
way around this problem is to convert the sum into an integral
using the Watson transform (see, for example, Bremmer, 1949;
Scholte, 1956; Chapman, 1969; or Gilbert and Helmberger, 1971).

Accordingly, we obtain

<
]

1 vdv A
o 71'/ ey 11)0(\)) P\)_I/2 [cos (n—e)] (2:23)

<

where v ka = ¢ + 1/2, @o(v) = @02, and the contour, ¢, is shown

in Figure 2. The integrand in (2.23) is odd since @O(v) = @O(-V)
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and Pv—%(U) = P—v

(W) so that the path, c, can be transformed into
=2
cy] or cy as shown in Figure 2.
At this stage we decompose the integrand in (2.23) into terms

that can more readily be given a physical interpretation. Using

the identity

jg(kor) =%— [hél) (k r) + héz) (kor)] , (2.24)

the spherical Bessel function in the source term can be separated
into spherical Hankel functions representing outgoing and ingoing
traveling waves. Physically, of course, we are only interested in
the incoming waves from the source. Introducing this separation

into @O(v) as it appears in (2.23), we obtain

wo(v) = ikohiii (koro) héi;(kor) + hif;(kor) + (Al + A%)hiii(kor)

where A; and A, are the parts of A associated with the outgoing

and ingoing waves from the source. A little algebra shows that

- & (1)
Ay = - ik b7 (kT)
(2.25)
(2)
h (k a)
By = - ik b ry —FECS— v
K hv—%(koa)
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where

—_

) ¢ (V) -<pl/p3> $(v) k_ h

r=a

L -1d
pl dr

©
o
©
=
R |

2

-14 b §
0 P11 4f ("1 > ¢ (v)

(2.26)

N
o

r=a

L
+<ol/po>2 $(v) k_ hy

with

Ir=a

- (1)* (1)
by = [ hyT) (k x) / hv_l/z(kor)]

and

=
Il

(23" (2)
, [hv_l/z a0 / h\)_%(kor)il

Thus we see that the scattered field associated with the outgoing
source field exactly cancels the outgoing source field (Phinney

and Alexander, 1966), and we are left with

(2)
h 1/(k a)
v (v) = ik h(li(k r ) h(zi(k r) + \21; - \ h“i(k r)
o O VvV-% 0 O V=% 0 hv_b(koa) V=23 0

(2.271)
in the integral (2.23).

Following Chapman (1969), we now introduce the representation

for Legendre functions given by
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13 (cos 8) + i e—iﬂv Q§23 (cos 0)
2 ==

-

Pv_% [Cos (w—e)] = = i eiﬂv Qé

(2.28)
where asymptotically
1.9 Fi(vo-m/4)
Qé_; ) (cos 8)~ < (2.29)
2

1
(2mv sin 6)7

for e<6<m-¢, |v|]> 1, and |v] € >> 1 (Nussenzveig, 1965).
Substituting (2.28) together with the expansion

+2imvn

e : o n
[cos (vn)] 1 _ Zeilyﬂ 2: (-1) e
h=0

into the integral (2.23), we obtain

wo(v)

Y| [ evmi o fY) (cos 8) &P vay
n=0 &

5

(—l)n @O(v) Qé}i (cos ©) e—iZwvn vdv

4

I
) Te2) .. & :
From the asymptotic representation of Qé ; ) it is evident that the
-2

nth term in the first integral represents waves having traveled

around the earth n times in the +0 direction, while the corresponding,
term in the second series represents waves having made n circuits

in the -6 direction. Thus direct body waves propagating in the +0

direction are represented by the first integral with n = 0, or
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IPO(\)) =f 1@0(\)) Q\()El)/z (cos 6) vdv (2.30)

)

It now remains to be shown that this direct body wave integral
reduces to the form of a Weyl integral for a point source and
flat geometry for the case of body waves in the crust and upper
mantle. To show this we introduce the asymptotic forms for spherical

Hankel functions given by Nussenzeig (1965).

(2 .3
2 - 2 2.y -1
hé)(p)~oz(o—v) T mix(e)
where
2 2k -1
x() = (@=v)? - v cos © (v/p) - /b
v =2 +-% v < p
The corresponding asymptotic forms of the derivatives are
1) 2\ (1)
1 ; Ve 1
hy (p)~1<l~pz> b= (o)
(2:32)

2

{ 2 %
0 (o) ~ - i(l —i——) n? (o)

Thus the terms in h; and h, (2.26) become



woili

1
h(23 (k r) L
V=3 O k2 5 e L
—257——‘__— ~-1]1-—-— = 1—(—.<k2 . .
h'"/ (k 1) et o\ °
V=7 o] r=a (o]
and
1
h(li (k ) . ;
v o’ N }_<kz _ K2>/2
h(ll)(k £} ko o o
v=*%" 0 r=a
so that V becomes
pI
. 1 1
¢ (v) 1mn+—‘~§g]+¢'(v)
L Zpl
V == (2.33)
[ P11
¢ (v) imn—;p*“rz*a]—d)'(v)
L 1

where the implicit differentiation with respect to r has been
carried out, and the primes here indicate differentiation with

1
3

respect to z; m = pl/p, and n = (kg - k2) This is precisely the
form of the reflection coefficient obtained for plane waves incident
on a plane boundary when the transformed spherical boundary
conditions are used and ¢(v) is a solution to (2.11) in the lower
medium. If the natural boundary conditions for a plane boundary are
used, the term (1/2a) will be absent, and V will be the true
plane wave-plane boundary reflection coefficient (see 3.22, 3.23,
3.24). As indicated above, | %g | << |nm| for crustal and upper

mantle body waves, and the true plane wave reflection coefficient
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can be used in (2.30) with no significant loss in accuracy.

Substituting the asymptotic forms (2.31) and (2.32) into the
remaining terms in wo(v) (2.27) and using the linear approximation
to the earth-flattening transformation (2.14), we obtain
. { e—ln(z—zo) e1n(z+zo) ] }

@O(v) e e + i

= o : (2.34)
a

which is the form of the source and reflected solutions for the flat
problem (see (3.18) and (3.24)). Finally, substituting the
asymptotic form for QSZR (2.29) into the integral (2.30), we have

=g

i(ne)

: M e
o 4 l‘()O(Tj) = vdv (2.35)

T
(2mv sin 06)7*
€1

If we consider only the reflected field (the second term in (2.34)),

then

N

T )
ig ) f elko[aep+q(z+zo)] o P

>
(27a sin 0)7° €y

dp (2.36)

where the variable of integration has been changed to sine of the

2
angle of incidence, p, (k = kop), and q - n/ko = (1 - p2)~. If we
restrict our considerations to relatively small angular distances,

6, such that

ag ~ p , a sin 0 ~ p
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where p is arc distance, then

Yy ~e

r

e \

™
i = k L ik [pP+(z+z )q] L
% < L) a g e (2.37)

2mp

“1

This integral is identical with the asymptotic form of the Weyl
integral for the reflected field from a point source over a plane
boundary (see (3.28)).

Thus we can obtain approximate solutions for crustal and upper
mantle point source body wave problems in a spherically symmetric
earth by solving the analogous flat problem using 1) the velocity
modified by (2.14), and 2) the modified Weyl integral (2.36) with
angular distance replacing horizontal distance. The resulting
approximate solutions will be valid under the conditions:

1) |z/a| << 1; the source and receiver distances from the
boundary at r = a are small with respect to a.

2) |ka| << 1 and |na| >> 1; the wave length is much less than
the radius, a, and both near normal and near grazing angles of
incidence are avoided.

3) 6 2> e, where |Ka| € >> 1; near normal angles of incidence
are avoided. This is consistent with (2) above as well as the
assumption made in taking the asymptotic form of the Bessel function
for the flat case to obtain (3.28).

Note that this approximate solution can be extended to fairly
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large angular distances (provided we don't approach grazing angles
of incidence) if (2.36) is used. However, even if the tangent
distance is used in (2.37), the solution will be valid up to angular
distances of 10° for a 17 error in amplitude (i.e. for sin 6 ~ 8).
Note also that, other than the assumptions made in section 1 to

put the equations of motion in canonical form, there are no
restrictions made on the velocity variation below the boundary at

a. Thus, since the functions [(a/r)% ®(v)] in the reflection
coefficient, V, are the exact spherical eigenfunctions for r > a,
the integral (2.36) will give a valid approximation to the reflected
field for r < a with an arbitrary velocity variation for r < a.

In practice, of course, we are limited by the number of velocity
variations for which we can obtain exact solutions to (2.11) and

(2.12)
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3. Acoustic formulation.

In this section we will develop in detail asymptotic expressions
for acoustic waves from a point source reflected at a plane boundary
below which the acoustic velocity and density may either decrease
or increase continuously with depth. Having obtained the solutions
for the plane boundary, we will then apply the earth-flattening
transformation presented in the last section to obtain analogous
expressions for acoustic waves reflected from a spherical boundary.
Finally, we will compare the asymptotic analytic solutions with
those obtained by direct numerical integration of the inverse Hankel

transform.

Reflection coefficient for a point source and plane boundary.-

Consider two fluid, inviscid half-spaces joined at z = 0 in a
cylindrical coordinate system r = (p,$,z). Let the upper half-space
(z > 0) be homogeneous in density and acoustic velocity, and in the
lower half-space (z < 0) let both density and velocity vary in the

z direction only. Our goal is to determine the acoustic field

in the upper, homogeneous half-space due to a steady, isotropic
point source of acoustic energy at r = (O, zo). In this formulation
the field is symmetric about the =z axis and independent of the

angular coordinate, ¢.
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The total acoustic field in the upper half space is a
combination of direct energy from the source and energy reflected
from the lower, heterogeneous half-space. We are interested in
the latter portion of the field for the case in which both the
velocity and density of the heterogeneous half-space are greater
than in the homogeneous half-space at z = 0 and either decrease
or increase smoothly away from the boundary in the negative =z
direction. The relation between the source and receiver to the
boundary between the two half spaces is illustrated in Figure 3a.

For the problem described above, and illustrated in Figure 3a,

the acoustic pressure potential field is described by

5(p) 6(2—20)

72 2 2 o
@1 + ko ¢, B z >0
(3.1)
V20, + k%(2) ¢, = 0 z< 0
with the boundary conditions at z = 0
L 2
p; 9, = p(2)* ®,; (continuity of pressure) (3wdd
) L = 9 L (continuity of vertical
ol L 2 g - 1 A 2 s
Po 3z <po 91> p 2 (2) oz <p(z) ®2> ’ component of particle
velocity)
(3..3)

together with the appropriate radiation conditigns.

The general solution to (3.1) for z > 0 is of the form
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Figure 3
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where ¢ 1is the particular solution and @O is the homogeneous
P
solution. As was indicated in section 1, the particular solution

for a spherically symmetric point source in a homogeneous medium is
ik R
o

e
¢p ~ R (3.4)

1
2

where R = [ p2 + (z—zo)z}
To obtain the solutions for @O and ¢, we operate on the

homogeneous form of (3.1) with a Hankel transform defined by

jee]

(2 ,k,w) =.)(.JO(KD) o(z,p>w) pdp

0 (Ie5)
¢(z,p,w) =/ JO(KD) 0 (z,k,w) kdk.
0
to get
d2@o
— T+ k2-K2>q> = (3.6)
dz? - =
d?e, A
+\ k2(z) - «2 e, = 0. (3.7)
dz?
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Performing the same operation on the particular solution (3.4)

gives

>
1l

(3.8)

where n = (kg —v<2)1/2 (Ewing et al., 1957).

Here we note that ko is the magnitude of the wave number
vector, k, in the homogeneogs medium and that k and n are the
p and z components of this vector, respectively. Thus k = kO sin ©

and n = ko cos 0, where 6 is the angle of incidence. We introduce

the notation

p = sin ©

L (3.9)
cos 6§ = [1-p2]°*

Nal
1l

so that «

kop and n = koq, and we take the root of q defined

by Re(q) > 0 in the complex p-plane.

The solutions to (3.6) are familiar and can be written down

immediately. They are
b =ve "+ Ue (3.10)

where V and U are arbitrary functions of «.

Exact solutions to (3.7) can be obtained only for a few

specific functional variations of the wave number, k(z), or acoustic
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velocity c(z) = w/k(z). In general, these solutions will be rather
complicated hypergeometric functions. However, even for some of

the simplest velocity variations, the solutions will be expressed in
terms of Bessel functions whose order is some function of the
parameters defining the velocity variation. (See Bhattacharyo
(1971) for a summary of solutions to equation (3.7) for a number

of specific velocity laws.) As an example, solutions to (3.7)

for a linear velocity gradient

c(z) = co<n;l - Yz)

are of the form

Iiv(v)'

K (v)
\V

1

LSS

where Iv and Kv are modified Bessel functions and

L

V] i<€2 - l/4>2
v = e_l n_l - vz
p o i

6 = y/k0

(see Nakamura, 1964). Although the properties of these Bessel
functions, as well as some of the more general hypergeometric
functions, are well known, they are often inconvenient to work with

in carrying out the analysis required to invert the Hankel transform.
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Approximate solutions to (3.7) can be obtained by applying
the classical WKB method (see Brekhovskikh (1960) for a detailed
discussion of the WKB method applied to vertically heterogeneous
wave propagation problems). WKB approximations corresond to ray-
theoretical solutions, and they break down when the vertical wave
number, (k2 (z) - K2), approaches zero (e.g. in the vicinity of a
turning point). Furthermore, special care must be taken to insure
that the WKB solutions on either side of a turning point are
properly matched. Because the dynamic properties of waves are
often strongly influenced by velocity variations in the immediate
vicinity of a turning point, WKB solutions have limited application
in theoretical studies of wave amplitudes.

An approach intermediate to obtaining exact solutions or
approximate WKB ray-theoretical solutions is described by Langer
(1949). He has shown that solutions to linear second-order

differential equations of the form

d2y

dz?

s [AZp(z) + q(z,A)]w =0 (3.11)

can be represented in terms of one-third order Hankel functions (or
Airy functions) plus terms of order lk‘ll provided that
1) p(z) is analytic in a region R with a zero at z = Z and

2) q(z,\) is analytic in =z for z DR.
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(Here p and q are not related to the definition (3.9).) This
approach has the double advantage that the resulting solutions are
valid at the turning point and that Airy functions are particularly
convenient to work in the analysis of wave propagation problems.

A concise summary of the principal results obtained by Langer for
complex values of A is given in section 10.4 of Abramowitz and
Stegun (1964).

For most cases of interest, k%(z) in (3.7) can be put in the
form kgp(z), where ko represents the magnitude of the wave number
at some reference point in the medium (at the boundary z = 0, for
example). Accordingly, (3.7) has the form of (3.11) with X (or ko)
real and positive in the case of a losless medium. Following
the outline in Abramowitz and Stegun (1964), we introduce the

transformation

E= E(a) , w= [ B2} TE () ]4 D

where ¢ is defined by

VA
27 -2 | Yipaz 5 pz) =o.
Z
(@]

This puts the original differential equation (3.11) into the form
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2
9—3-+-[A2g + f(g,x)] u = 0.
de?

Solutions to this equation are such that

AL (-xwa)[ 1+ 0<r1)J
Bi<—>\2/3£>[ 1+ O(A"l)]

uniformly on the bounded interval a < £ < b which includes the
origin (£&=0). Thus solutions to the original differential

equation (3.11) are

-5 Ai <—x2/3g>[:1 + O(A”l)}
w=|p(z)/g(z)
Bi <—>\2/3 >[ 1+ O(kl)]

where Al and Bi are Airy functions.

Using this approach, it is possible to obtain high frequency
(ko >>1) asymptotic solutions to (3.7) for velocity variations that
either increase of decrease in a monotonic, but otherwise artibrary,
way. (The monotonic requirement is imposed by the restriction that
there be a single zero of p(z) in R.) Chekin . (1964, 1965) used
asymptotic solutions of this form (but expressed in terms of one-

third order Hankel functions) in his analysis of the effects of
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small velocity gradients on reflected waves.
In the present case, we will take the following specific form
for the variation of acoustic velocity, c;, and density, P>

in the lower, heterogeneous half space:

va)
%
: yz>

where <, and o, are the velocity and density in the upper,

N

c,(z)

1}
o)
o
P
=
oN
I+

z <0 (3.12)
p,y(2)

1l
fo)
(]
SO
(=]
o N
+

homogeneous half-space, no o= CO/CI(O) is the index of refraction
at the boundary z = 0, and #y is a gradient parameter defining
increasing (4+) and decreasing (-) velocities with depth. These
functions are illustrated in Figure 3b. This particular form
for the velocity variation has the following advantages:

1) It results in exact solutions to the differential equation
(3.7), and thus allows us to put off the need to work with
asymptotic form until later stages in the analysis.

2) The exact solutions are Airy functions which are convenient
to use in wave propagation problems, and as indicated above, they
form the leading term in the high-frequency asymptotic solutions to
(3.7) for more general velocity laws.

In other words, we are interested in the effects of small

velocity gradients, and detailed differences in the exact form
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of the velocity laws for small gradients will not change things
significantly. Thus for convenience, we choose to use the velocity
law that gives the leading term in the more general asymptotic
solution as the exact solution. Finally, a third advantage is
that the above velocity law is physically well suited to half-space
problems; in particular, it does not result in negative acoustic
velocities in the negative gradient case. The density was chosen
to parallel the velocity law on the basis that this is a commonly
observed relation in geophysical materials.

Note that the gradient parameter, y, in (3.12) is essentially
an index of refraction gradient with dimensions of km™l. The

corresponding velocity gradient for 'y| << 1 4dis given by

y = v (3.12a)

where ; N has dimensions km/sec/km, or sec™l.
To obtain solutions to (3.7) for the velocity law given by

(3.12), we note that the square of the wave number, k(z), is

k? = (w/c )2 z >0
o 0

W2(2) = (3.13)

kg(ng * yz) z < 0

So that (3.7) becomes
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Transforming the independent variable by introducing

2(z) = e-2<n§ - p?x vz>; e = (y/ko>”3 (3.14)

then gives

d?s,

~

+ 70, = 0 (3.15)

dc?

This is Stokes’ differential equation, and its solutions are Airy
functions. Some of the properties of Airy functions useful for
our purposes are described in Appendix I. Although numerically
it is immaterial which independent pair of Airy functions are
taken for solutions to (3.15), we will choose the following two

sets for physical reasons

.2 . 2
13— —13—
5 T Ai,(— ce + 8 Ai\- ge ; Yy <O (3.16)

=T, Ai (-2) + 5, Bi (-0) y>0  (3.17)

LS
Il

0
N
|

In (3.16) the Airy functions associated with T and S represent
down-going and up-going traveling waves, respectively, for large

argument, while those in (3.17) represent standing waves when ¢ > 0
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and exponentially decaying and growing waves when ¢ < 0 (see
Appendix I). These asymptotic properties are obviously useful in
choosing solutions that will satisfy the radiation conditions for
the respective problems.

We now proceed with the evaluation of the arbitrary functions
of ¥ in the solutions for éo (3.10) and @2 (3.16) and (3.17) by
first applying the appropriate radiation conditions at infinity
and then the continuity conditions at the boundary z = O.

In taking the Hankel transform of @O and %o, we implicitly
made an assumption about the condition at infinity in the p
direction. That is, if the integral in (3.5) is to be convergent,
we must have

L
p” ¢(z,p,w) >0 as p >

Next, to preclude waves propagating downward from z = + « (i.e.
from above the source) we must set U = 0 in (3.10). This is an
application of the Sommerfeld radiation condition, which in
essence states that the wave at infinity from a point source in a
homogeneous medium behaves like an outgoing spherical wave (Stoker,
pg. 175,1957). The corresponding radiation condition at z = - =
in the heterogeneous medium is not so obvious. The difficulty
arises because waves propagating in a heterogeneous medium are

continually back-scattered by the local heterogeneities along the way.
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In the case of the negative gradient (y < 0 in (3.12)), the
velocity gradient dc(z)/dz > 0 as z » - «», and we will assume that
the analogous conditions applies. In particular, we assume that
in the neighborhood of z = - « the wave is downgoing, and we set
S =0 1in (3.16). This assumption is justified by two arguments
presented in Appendix II. Briefly stated, these arguments are:

1) The back-scattering due to the inhomogeneity becomes
negligibly small as z + - « for the velocity variation (3.12) with
Yy < 0, and

2) The reflaction coefficient obtained using this assumption
is the leading term in the generalized ray expansion of the reflection
coefficient for the case in which the inhomogeneous medium is bounded
below by a second homogeneous medium, which in turn, extends to -
(i.e. a case in which the radiation condition can be properly applied).

In the case of the positive gradient (y > 0 in (3.1)) all of
the waves entering the lower medium are turned around at a finite
depth. Above the turning point depth there will be a system of
down-going and upgoing traveling waves, which combine to form a standing

wave in a steady state. Below the turning point depth the waves
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behave exponentially. Thus, to insure a bounded solution as z - — «,
we assume exponentially decaying waves with depth and set S+ = 0 in
(3.17).

The loci of turning points for the negative and positive
gradients can be determined by noting that the vertical wave number
is zero at a turning point. Thus from (3.14) the loci of turning

points in the p-z plane are given by

This function is plotted in Figure 4 illustrating the effect of
negative, positive, and zero gradients on the locus of turning points
as a function of angle of incidence and depth. Also shown is the
nature of the vertical wave field with respect to the locus of
turning points and the boundary at z = 0 as defined by the radiation
conditions assumed above.

Having applied the radiation conditions, the complete solutions

are now in the form

-in(z—zo)
b, = - “EL—f—_————'+ v el z >0 (3.18)
1 Fr -



-

y <O

Figure 4
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( . 2ﬂ>
~ 8
By WL e =0 (3.19)

when these equations are substituted into the Hankel transformed
boundary conditions (3.2) and (3.3), the following systems are

obtained for y < O

inzO
1
1 - m? A.(l)(—c ) v g
i o - in
12T B inz
. A ) Y (13" ~3 3] 1
2
- = o T -
in m [Ai( go) e ( Co)e Yy e B e
(3.20)
and for y > O
inz
1 5 AL ( ) e
Bt . Qo Vs in
:,' & 2 = Y. —'2 -
| in m [Ai( CO) ZE§£~'+ Ai( CO) 7%y Ty, e
(3.21)

where m = p(O_)/pO (the density ratio at the boundary), and
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for brevity. Solving these systems for the reflection coefficients,

v,, gives for y < 0

2T
(1) ; g3 I < A LIy .
Ai (-CO) igqm + p o + e € Ai ( QO) inz_
= = o ; &
_ lgﬂ "
(1) . g8 3 (1)
Ai (—CO) igm Tng; - e £ Ai ( Co)
(3.22)
and for vy >0
_. 3 '
Ai (_CO) igm - Zn_gm - € Ai(—Co) lﬂZO
— = = . &
Vg = = 3 - il = (3.23)
. € Y o
Ai(_Co) S % 4ngm = = Ai( Eo)

where v_ and v, are the spherical wave reflection coefficients for
the negative and positive velocity and density gradients defined by

(3.12) and with a point source at r = (0,20). The corresponding
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plane wave reflection coefficients are identical to the above
inzo
but without the factor (e /in). Thus

(3.24)

where v are the plane-wave reflection coefficient for the

+
negative and positive gradients, respectively.

The modulus and phase of the plane-wave reflection coefficient
for the negative gradient case (Vp ) are plotted in Figure 5 with

/3

1
e = (Y/ko) as a parameter. Note that as e becomes very small,

the modulus and phase approach the limiting values for two
homogeneous media. This can also be seen analytically by substituting
the asymptotic forms of the Airy functions (Appendix I) into vp

The result is

mq - né - p2
v_ = = (3.25)
o
Py oy 4w
mgq + no P

which is just the plane-wave reflection coefficient for two homogeneous
media (Brekhovskikh, 1960).
The modulus of the plane-wave reflection coefficient for the
positive gradient case (v_ ) is unity. In other words, all of the
-+
energy entering the lower medium is eventually reflected into the upper,

homogeneous half space, and the reflection coefficient can be expressed

as
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A (-5

A = exp | 12 tan-l n—mr(-:c—)
13 (o]

(3.26)
Py

For p > n (i.e. angle of incidence greater than critical), (2.23)
also goes to the homogeneous reflection coefficient (3.25) when
the asymptotic forms of the Airy functions are substituted. For

p < o the analogous limiting process is complicated by the diving
wave phenomenon. We will consider this later.

The effect of the density gradient in the lower medium enters
the reflection coefficients through the second term in the brackets
multiplying Ail)(—go) and Ai(—go) in (3.22) and (3.23) respectively.
Under the assumption of small density gradients made in obtaining

(1.5), we have

Imql >> 53/4n§m

except when g ~ 0. Thus since q = cos 6, the density gradient in the
lower medium has a negligible effect on the reflected wave except
near grazing angles of incidence. We will neglect the effect of

the density gradient in most of what follows.

Integral representation for the reflected field.-An expression

describing the spectral amplitude and phase of the acoustic field
in the homogeneous medium can now be obtained by taking the inverse

Hankel transform of (3.18). Thus
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ik R
e o
R

inz
+ JO(KQ) V:(K) e kdi

¢, (o, z,0) =
0

where V;(K) is given by (3.22) or (3.23) for the negative and
positive gradient cases, respectively. As indicated earlier, the
first term on the right gives the direct field from the source,
and the second term gives the field reflected from the lower
inhomogeneous medium. We are primarily interested in the latter,
which on changing the variable of integration to p (3.9), can be

written as

in(z+z )

o = & o P
+(p, z,0) i ko Jo(kopp) Vp;(P) e ” dp

0

where we have introduced the plane wave reflection coefficients

according to (3.24). Using the identities

Jo(u) =-% [ Hél)(u) + Héz)(u) }

and

1)

Héz)(u e_iﬁ)= Héz)(—u ) = - Hé (u)

(section 9.1, Abramowitz and Stegun, 1964) together with the
faet that Vp_(—p) = vp_(p), the above integral can be rewritten
s ¥

as
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ik in(z+z )
0

0:(g z0) = 5> | uPGeep) v ) e 2dp (3.27)

q

—CO

which is the desired integral representation for the reflected field.

The form of (3.27) is identical to equation (19.6) in
Brekhovskikh (1960) for the field from a point source reflected at
a plane boundary except that here the variable of integration is
p = sin 0 instead of the angle of incidence, 6. This is a form
of the Weyl integral representation, and as such, can be interpreted
as a means of summing up plane waves to generate a spherical wave
front (see Chapter 6 in Grant and West (1965)). Formally, the
integral can be considered as an operator on the plane wave
reflection coefficients, Vp(p), for an arbitrary layered inhomogeneous
half space to yield the reflected field in the overlying homogeneous
half space containing a point source.

We are mainly interested in the reflected field from incident
waves near the critical angle and beyond. These are the waves that
are ‘'critically' refracted and give rise to the head wave. For
most geophysical applications the product (kopp) will be large
for critical waves, and we can rewrite the Weyl integral (3.27) in
an approximate form using the asymptotic form for large argument

of H(l)(u), where
© )

i(u -
H(El)(u)rv V %{1— e : lul 5% 1

e



e

Thus

i s 7 ik + q(z+ 3y
d_(p z,w) e14 EQ—- ’ e1 O[ o e Zo)] v (p) Ej— d
TR %5 27p P: 8 q b

or, since from Figure 1, (z+zo) = quo and p = RlPO

. = Jo
e " 14 E elkoRl(qqo o ppo) v () P dp (3.28)
T p, Z, e v 27rp p:— P q

where By T sin 80, Go is then an angle of incidence for a wave

reflected at the boundary and recorded at r = (p,z), and q, = l—pO .
The integral is now in a form that can be evaluated by saddle point
methods for (koRl) large and real. We will consider the asymptotic

evaluation of the integral (3.28) for the negative and positive

velocity gradients separately.
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Asymptotic evaluation of Weyl integral-negative gradient.-We

consider the approximate integral (3.28) with the plane wave
reflection coefficient Vp— given by (3.22) and (3.24). The integrand
has branch points at p = * 1 associated with q = \[l—pz and at p = 0

1
%
associated with p*. We choose the branch cuts such that

L < T
7 < arg(q) = 5

1
<€ B
) =5

- = < arg(p
2
on the upper Reimann sheet. The location of the branch cuts in
the p-plane and the sign of the real and imaginary parts of the
radical q on the upper sheet are shown in Figure (6a) together with
the integration path. Note that the Airy functions in Vp_(p) are

entire functions in the finite complex p-plane.

The integral we are considering (3.28) is of the form

1 =f PEPIp ey dp (3.29)

- 0O

~
h b =%kRy, f = i + d F = 2. Th
where oR1s (p) l(qqO ppo), and F(p) Vp_(p) g e

saddle point for the integrand is determined by

afp) _ o _ P _
dp Py q

QK
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In other words, the saddle point is on the real p axis and is equal
to the sine of the angle of incidence, 80

To determine the steepest descents path across the saddle point
we put

£(p) = £(p_) - s*

where s 1is real and varies between -« and . This insures that
f(p) remains real and that the exponential term decreases rapidly
along the integration path on either side of the saddle point. The

appropriate path, I'y is found to be given by

Re { qqO + pp0 } =1

As shown in Figure (6b), T approaches the saddle point along a path
from the second quadrant in the p plane (asymptotic to a line at
an angle of (m - tan 60) from the origin as s » - «) and crosses
the saddle point at an angle of 37n/4. Beyond p = l/po, we can let
the deformed path, T', coincide with the original path just below
the cut along the positive real p axis since here Im(£(p)) > O
and exp [kbR é(p)] is decreasing exponentially.

According to the theory of the saddle point method, the only
significant contributionsto the integral come from the immediate
vicinity of the saddle point plus any singularities passed over
in deforming the integration path. As indicated in Figure (6b),

the deformed contour, I', does not cross any of the branch cuts in
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Figure 6b
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the p-plane, but as will be shown below, it does cross a line of
poles associated with the reflection coefficient Vp_(p) when

Py > n (i.e. when the angle of incidence, 60, is greater than the
critical angle 60). It will turn out that these poles give rise to
the head wave while the saddle point gives rise to the wave reflected
at the boundary z = 0. We will represent these '"separate"

contributions from the integral for the total reflected field, ¢ _,

using the following notation

- (3.30)

where @r_ is the saddle-point contribution giving the reflected

wave and @n_ is the contribution from the poles giving the head

wave. For near-critical angles of incidence (poaV no) the phase

difference between these ''separate" contributions is small, and

it is no longer meaningful to make a distinction between the two.
Having deformed the original integration path into the steepest

descents path, (3.29) becomes

I, = / T ®) 5 ) ap

r

plus the sum of residues of any poles crossed. Methods for
approximately evaluating the above integral over the steepest descents

path are well known (see Brekhovskikh (1960) or Ewing et al. (1957)).
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The result as given in Brekhovskikh (1960) is

5 bf(p) 1 L i
- \/—b[w(0)+4bw(o)+m] (3.31)
where
b(0) = [— —ﬁ—] ¥
1y 1 ity 2 i
o) = pof - Bl E 3 (7 I

GOSN COE

Substituting the appropriate variables into the above formula and
multiplying by the leading factor in (3.28) thus gives

1k0R1

e

@r_(n,z,w) = —_ET_— vp_(po) (3.32)

to first order. This expression is the geometrical ray theory

approximation to the field reflected from the boundary at z = 0

for waves at an angle of incidence 60. It is valid as long as the

source and receiver are not too close to the reflecting boundary,

or as long as the angle of incidence is not near grazing. For these

cases additional terms must be retained in (3.31). Equation (3.32)

also breaks down near the critical angle, ec; here the saddle point

and "head wave' poles interfere and require a more elaborate analysis.
We now turn to the problem of determining the singularities in

the reflection coefficient, Vp (p), and evaluating their contribution
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to the integral expression for the reflected field. In what follows

it will be convenient to introduce the notation

% (p) = N(p)/D(p)

where N(p) and D(p) are the numerator and denominator of the plane
wave reflection coefficient (vp i

As remarked above, the Air; functions 1in the reflection
coefficient have no singularities in the p plane, and the branch
cuts associated with q = (l—pz)l/2 have already been accounted for.
Thus any singularities of vp (v) must be due to zeros of D(p). On
purely physical grounds we w;uld expect to find one or more zeros
of D(p) in the vicinity of p = nos where n is the index of refraction
(co/c(o)) at the boundary and is equal to the sine of the critical
angle, BC. In other words, we expect the head wave to have a
horizontal phase velocity close to cr = w/(kO sin 0‘). Thus we
begin by considering the properties of D(p) for small arguments
of its Airy functions. For convenience in what follows we will

refer to the region ]p—no| << L ag K ,

Expanding gb(p) about p = n gives

z,(p) = =2 (ng—pz) =eg=2 { - 2n_(p-n_) + 0 [(p—no)z] g .
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so that the arguments of the Airy functions are approximately given

by

, 21 . 2
i i i
- C, e = - 2nO € (no—p) e = -1

for lno—pl << 1, It is known that both Ai(-1) and Ai'(-t) have zeros
on the positive real 1 axis only (Abramowitz and Stegun, p. 450,

1964). Thus since

2 .
—_— B4 elﬂ/3

ot om (3.33)
)

both Ai(-t) and Ai'(-t1) will have their zeros along a line extending
from p = n at an angle of n/3 with the positive p axis in R.

Now from (3.22), we see that in R ,D(p) has the form

D(p) = Ai(-1) O<‘}l—n§> - Ai'(-1) 0C(e).

Thus under the condition that

>>

Ai'(-t) 0(e)
max max

Ai(-1) o( 1-n?
Q

the zeros of D(p) will be given by the zeros of Ai(-7) plus a small
correction. The above condition will be maintained as long as

1 - n?
o

2
2

(3.34)

An approximate analytic expression for the zeros of D(p) in
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R can be obtained using the Newton-Raphson root-finding algorithm.
Let aj be the jth zero of Ai(-t). Then the jth zero of D(r), where

T = 1(p), will approximately be given by

J

or, after performing the indicated differentiation,

i(2n/3)
T, %a, bEee—— o (3.35)
J 3J 3
where L
& ]/,
g, = 1 = H2 = €2a.el(2ﬂ/3) ” (l_nZ) 3
j o) J o

Putting (3.35) into (3.33), the location of the zeros of D(p) is

approximately given by

€2
em A3

d
e
i o 2nO

Thus the poles of Vp (p) lie approximately along a line extending
from p = n into the_first quadrant of the p-plane at an angle of
m/3 (see Figure 6a and 6b).

It now remains to evaluate the residues of the integrand for

the poles of D(p) crossed over in deforming the path of integration

to the steepest descents path when the saddle point, Pos is beyond
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no (see Figure 6b). By the residue theorem

. 27k N
6 = i el(“/[*)\/ —=2 3 Res
10 P -:1

J

where N is the number of poles crossed, p(1) is given by (3.33)

B () = Ai(—T)[jﬁm'(T) - Teei<2”/3)] —-Ai'(—T)[iﬂq(T) -

and
5
Res [F(Tj)] = ﬁ*‘N(T)
dt
1 et
D' (1) dp
2 10/ 3)
q('r) = J l_ni == ”—e____
2 4/1-n?
o
2n e—i<ﬂ/3)
art _ o
dp 2
Expanding Ai(-t) about 1 = aj, we have

I

Ai(-1)

I

Ai(-1) Ai'(—aj)

ik
i ORl(qqo

B, ) = AL'{a,) (ra,) + =»s
J J |

L1 @n/3)

(3+36)

(3 37)

3

4n’m
o)

]
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which together with the above gives

1
2

p* N(1) . -i €3
q ' él 2
D' (1) ar — " n_g.m
J
for Ezaj << |m2q2!. Putting (3.33) and (3.37) into the exponential

term in (3.36) we have

€2T eiﬂ/3
+ =
k Ri(pp  +qq) = kRifp (n + n_
g2t eiﬂ/3
+ q, Jl—n2 - + 0(e")

=k Ry cos (6 -6 )
o c o

et eiﬂ/3
+k R ———— = sin © - tan 6 cos ©
o 2n o c 0

(o}

or using the geometric relations shown in Figure (1),

kOL e? i%
koRl(ppo + qqo) = ko(Ls + Lr) + kL | + ~§;;—— Te (3.38)

where LS and Lr are the source-refractor and refractor-receiver
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'ray' path lengths, L is the path length along the refractor, and

k; is the wave number just below the boundary in the lower medium
(ky = noko). Here we recognize the first term on the right as being
the ray-theoretical phase of the head wave, ¢o’ and the second

term as a complex correction factor due to the velocity gradient.

Substituting for the remaining terms in (3.36) we obtain

3 13
Res [F(T,) ] 2= ~—Ijji————— exp | i ¢O + kOLCZT_ e 3/(2r10)
J mn° (1-n2) J
o o
Thus
2rk el(¢o + w/4)
@n_(r,z,w) = 4 - 3
o m(1l-n")
© (3.39)
g AL
N k LEZTi,e 3
o
X Z exp | i o™
j=1 o

which is an expression for the head wave spectral amplitude and
phase for the model shown in Figure (1).
This expression can be recast into a simpler and more useful

form for two limiting cases. We define the parameter, o , to be



.

2
A 2/3 koLe in/3
LT E on_ © (3.40)

o

and consider the cases for which |o|<<l and [O_|>>l.

In the first case (lo |<<l) we attempt to sum the series in

(3.30). Thus consider

N :
o= 3 @ Y (3.41)

To first order, the zeros of Ai(-1), and thus the approximate zeros

of D(t), are given by

2/3
aj:[%m—l)]

(Abramowitz and Stegun, p. 450, 1964). Accordingly, we let
Tj = (45 - 1)2/3 in (3.41) where the factor (371/8)2/3 has been
included in the definition of o . Using the Euler-Maclaurin

summation formula (Abramowitz and Stegun, p. 16, 1964),(3.41) can

be rewritten as

N+1
“O_T(X)
SN = e dx -

0

[f(O) + f(N)] +%[f'(N) + f'(O)] i v

N =

(3.42)
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where j has been replaced by the continuous variable, x, in the
—o_r(x)
integral and f(x) = e . To evaluate the integral in SN we

consider the limit as N - «, in other words

1 Bl —O_T(x) “ —O_T(X)
o 20 e dst = e dx (3.43)
N->o0

0 0

Note that by (3.34), we must have

lim L- ng
2
pix sl (3.44)
Ll T T
2

In other words, €“ must approach zero more rapidly than 1, approaches

N

infinity as N - «,

Changing the variable of integration in (3.43) to

(sx - 1)2/3

fa=
Il

gives

The integral is now in a form of the integral representation of an

incomplete Gamma function (Abramowitz and Stegun, 6.5.10,
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p. 262, 1964). Thus

=252 12,0 = 26732 ray [1 - 21 Y*(3/2a0_):|

where T(3/2) = % m° and
—-O_ -
% = > = (e
s LV § : r(3/2 + 1 + n) o | <
n=0
Recalling that f(x) = e_qT(X) and 1(x) = (4x - 1)2/3, we have
=i : -0 lim _ lim _

flo) = e s £¥e) = 1 8/3 & 4 Noseo f(N) =0, Noo f'(N) = 0, etc.,

and (3.42) becomes

T
3/2 * %

Lim S _ -2 no "
N- “N mk 3/2
o L Y

o n
x 1 - 03/2 e—q E _ - g:l<
n:



~90-

where

_ 2 Yo &e i) eiﬂ/4
&8~ Tk L L

2

Thus, in the limit as €“ » 0, we can rewrite (3.39) in the form

(S
R

(34459

b

7 . 1
N recrid + e s o
7 t% °- )

gy O 5
o K SR ZT(H/2+n)_g~<

n=0

Note that the leading term in the brackets is just the head wave
potential for the case in which the lower medium is homogeneous (see
Brekhoviskikh, 1960). This expression is valid in the limit of small e,
but at large distances from the critical point, many terms in the
series must be included. At relatively small distance from the
critical point, such that |o‘ << 1, we have
At
Zino e ¢O

0] ] 1 -

O3/2

(3.46)
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In the immediate vicinity of the critical point itself, (3.45)
and (3.46) are invalid because of the interaction of the saddle
point and head wave poles. However, because L <<1 and Io_| becomes
negligibly small as the critical point is approached, we expect
that the theory previously worked out for waves reflected and
refracted from a homogeneous medium in the vicinity of the critical
point by Cerveny (1965) will be a good approximation to the
inhomogeneous case as well.

To obtain an expreésion for (3.39) in the case ]o_’ 2> L
it is convenient to separate the argument of the exponential terms

under the summation sign into real and imaginary parts, where

by (3.33) and (3.40)

3m =L i%E
arg [ exp] = - — o} a, + i —“ e
8 ~= N mq

and where the first few aj (zeros of Ai(-t)) are given on pg. 478
of Abramowitz and Stegun (1964) to be aj; = 2.338, a, = 4.008,

ds = 5.521, ete. Thus

Re o

arg [exp] = (3.47)

2
In I S SR
41’10 j 4 m/l._ng
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Now because the real part of the exponential term is negative, the
pole nearest the real p-axis (or the first term in the series
in (3.39)) gives the largest contribution, and for [O_] >> 1, the

contributions from the remaining poles will be negligible. Hence,

m
i(e + ) .
21k 5% = 4 k L ale elﬂ/3
> = - = exp 3 2 B
" P m(l - ng) o
(3.48)

for [o_| >> I, o

@n_ 2 = = exXp | = 7 T, ai mased

P m(l - ng) o /3m V1-q%

(3.49)
where 6_ = Im [arg (exp)] in (3.47)

From the last expression, we see that at large distances from
the critical point (L >> 1), the head wave spectral amplitude decays
exponentially as (gzL). We also see that because of §_, there is
an additional phase shift; furthermore, since §_ is a function of
the wave number ko, the head wave is slightly dispersed by the
negative velocity gradient. In particular, at large distance, the

horizontal phase velocity of the head wave is approximately given by
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c = CO/ [sin(no + 6_)] :

Asymptotic evaluation of Weyl integral-positive gradient.-We now

turn to the evaluation of (3.28) with the plane wave reflection

coefficient for the positive gradient, v given by (3.23) and

p+’
(3.24). The branch cuts for q and pl/2 will be taken as defined
for the negative gradient case (see Figure 6a). Evaluation of the
saddle point and steepest descents contour for the reflected wave
remains the same as in the negative gradient case. However, as we
will see, poles of the reflection coefficient now lie just above
the real p-axis in the interval 0 < p < n (see Figure 7). This
simple change in the position of the poles results in a marked
difference in both analyses and the nature of the reflected field.
For angles of incidence greater than critical (po > no) we can make
a distinction between 'separate' contributions to the total

reflected field similar to (3.30) in the negative gradient case.

That is

where, as before, ¢ is the saddle point contribution giving the

r+

reflected wave and o is the contribution from the poles giving the

+
"refracted" waves. By the same argument leading to (3.31), the

first-order saddle-point contribution yields the geometrical ray

theory approximation for waves reflected at the boundary z = 0
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Figure 7

ReP
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q) o il L R, .
r+ R, vp+(po) > Py o)

For angles of incidence less that critical (pO < no) the saddle

point lies near the line of poles. To handle this case, we will
modify our approach by expanding the reflection coefficient. 1In
doing so, we will find that a similar separation of contributions

can be made, i.e.

where ®r+ is again the saddle-point contribution giving the reflected
wave, but where ®d is now a series of saddle points giving the diving

wave contributions.

To determine the position of the poles of vp+(p), we proceed

as before and define

By the same argument used in the negative gradient case, we expect
the zeros of D+(p) to be near the zeros of Ai(—co) for |p2 - ng < 1,
Hence in this region, the zeros of D+(p) will be given by

By, © H —[D(co)/D'(co)]

C0=aj



.

where

D'(CO) = Ai(—CO) [iq'm + ego] + Ai'(—go) [iqm +

Accordingly, we find that

o) 7 g
eAi’ ( Co_)
N|

B ] a8
-Ai(-z_ )| iqm +

0. 2

N 4nom

or

Expanding p about ¢ = 0, we get

(3.5L)

(332)

(3+53)
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where, as before q. = \/1 = ni.

(In the negative gradient case
only the first two terms in the expansions for p and q were kept,
however in this case, it is necessary to carry the next term in the
expansions to insure the convergence when we attempt to sum the

residues of the poles.) Putting (3.50) into (3.51), gives for the

location of the poles in the p-plane as

g2 € e'a,
p. = n—ga, + i = l+—-‘l
J E o) J qm 8n2

Thus, as indicated above, the poles lie just above the real p axis
for p < n. Furthermore, they move gradually away from the real
axis (in a positive imaginary direction) as aj gets larger and p - O.
This is just the behavior required for convergence indicated above.
It turns out that for |p2 = né] > 1, the position of the poles is

dominated by the Ai'(—;o) term in D+(co), and the poles move up the
positive imaginary axis.

The contribution to the integral by the poles crossed in
deforming the original contour along the real p axis into the

steepest descents path is given by

E- 2ﬂko N
®n+ =1ie > E Res F(Co,) (3.54)
3=0 ;
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where
Y N, (z )
Res| F(¢z ) = Fo g ew
0. q (3.55)
h| dg
\
D+(co) dp _
Co Qo_
i)
and

v = 1k0R1(ppo + qq)

Note that when the angle of incidence is greater than critical so
that the saddle point, P> is greater than n s all of the poles
in the interval 0 < p < ng will have been crossed as shown in

Figure 7. Expanding Ai(—co) about go and using relations (3.50)

]
through (3.53) gives
5
o N+(§o) ied
q R > — (3.56)
' _ 9 r gm
D+(QO) o V o'o
Co=£o,
J
for ¢ << q and ng - p2| << lq2m2|. Substituting (3.52) and (3.53)

into the expression for Y gives
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k Le3 k €2 : 3 9
b - 1o Low atl ¥ s o FL (3.57)
© e o n’q m J on2 J
o0 o
where
= + = L + L + kL
¢o koRl(qoqc pono) ko( s r) 1
(the ray-theoretical head~wave phase)
p
g o= L+ =
3
dc
and
DC = critical distance.
(See the geometric relations illustrated in Figure 4.) Thus (3.54)
becomes K Le3
ip - mo—
o 2n q.m
. fokara
1 = 21k 3
s & o @ 4 o) ee
n+ on

(3.58)
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This expression is comparable with (3.39) for the negative gradient
case. It can be regarded as a sum over normal modes leaking into

' formed

the overlying homogeneous half space from the "wave guide'
by the first order discontinuity in velocity at z = 0 above and the
continuous increase in velocity below.

To identify a head wave-like contribution, from the poles,

we want to sum the series (3.58) as was done for (3.39) in the

negative — gradient case. Thus consider

N
. p 2
SN = E exp - 1w, (1 - ing) aj + Azaj (3.59)
=1

where we define
k L 2
0

+ 2n
o

(3.60)
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R

2/3
Recall that for j >> 1; aj [ %E-(4j—l)] , where aj is the jth

zero of Ai(-a). To allow for this approximate expression for aj,

we rewrite (3.59) as

N
SN = E exp - i 0+ [(1—1A1) Tj + Asz] + AM (3.61)

5=1

where

o
1l

3m 23
[-g— (43-1) for all j and

M
_2; > . 2
Am = exp i O+_[(l ihy) aj + Azaj

j=1

M
2
- ex - io (1-ihq) 1. + Aot
E P +[ DTy 2J]

3=1

For j = 3, aj and Tj differ by only 0.2%, thus in practice M = 3
is probably sufficient for computing the correction term, AM. As

before, we apply the Euler-Maclaurin summation formula to the

first term in SN (3.61)
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N+1 )
-io, g(x
S =~/~ e dx - %-[f(O) + f(N)] +'%E'[f'(N) - f'(O)] s &b

0
(3.62)
where
g(x) = (1 - ihy)) 1(x) + A2T2(X)
3 m 2/3
(%) = [-g— (4x - l)]
-io, g(x)
filx) = e ¥

and consider the limit of SN and N > «», The remainder terms in

SN (3.62) have the form
—iO+(K1 + Ajp)
f(0) = e

80+
f'(0)=i—3‘-‘ >\1+2>\2Je

-io g(N)
f(N) = e *

—10+(X1 + Xz)

/3

-io, g(N)
+ 2%, (4N - 1)1/3](3 ¥

£r(N) = - io+~§- \:Al(AN N lel
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where

13

g(N) = {: AN - D23 4, e - 1)1/3]

=2
i
|

= b(l - iAy), Ay = b2A,
- (3m\ 2/3
b—@>
Because g(N) has a negative imaginary part, the exponential terms in

f(N) and £'(N) result in

Lim £(N)
N0 £'(N)

Now consider the integral in (3.62), which has the form

N+1
—-io+ [(l—iAl) T(x) + AZTZ(Xi]

I = e dx
0
Let u = (4x - 1)2/3, du = %‘(4X - l)_l/3 dx , so that we can consider,
vy -1]2/3 ?
o= A (3.63)

where ); and A, are defined above. Note that

i
A= g e

§ = tan ! (—d€3 )
n2q m
0-C =

\
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The integral in (3.63) has a form similar to that of the integral
representation of a parabolic cylinder function of three-halves

order ((3), 8.3, Erdelyi, et al., wol. 2, 1953).

(o0

31

- 27/4 1

D ()—L—/e_}t_—z—tt%dt (3.64)
=312 ¥ T T A :

To identify (3.68) with (3.64), we define

iﬂ/4

so that
iﬂ/4 _,ﬂ/4

e e
gE——0%t 4 da =

V2O+X2 V20+X2

Thus (3.63) can be written as

e
I_ = DN T e t ot - IO (3.65)

3/4
(20+X2) /
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where

1 —j_g+()\1u * )\zuz) 1L
e u%du (3.66)
0

The first integral on the right is now identical to that of (3.64)
except that the integration path is along a line inclined at w/4
instead of along the real t axis. In Appendix III we show that in

this case the two paths are equivalent, and we can write

s T
-1 2t M
< - T i | 2 _
L. =% 374 F(z) eF M0y = 1
QO+X2)

The asymptotic form of D_3/2(z) for |z] >> ] can be written as

_,-3/2 -32/4 (3/4) (5/4
D—3/2(}‘) = }. e s 1+ n n
H n!(—-'l % n
2

+ O|;? ]_

where the notation (x)n is defined as

(x)n =x(x+1) «+++ (x+n-1)

(Erdelyi, et al., 1953). Substituting this asymptotic form into

the above expression for L, together with the definitions of A; and

Ao gives
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.31/ 4
-1

2% e N o@are) /6
n n

de3
L =42 2 R ey | -
o ﬂ 3/2 _3/2 3 2 9 0
k L € n"q m L 5
1wl - —~}- n

where

koL . dg? iﬂ/4
}_= " - i e
2dnO n qm

e

When |0| << 1, we can obtain an approximate expression for IO
(3.66) by expanding the exponential and integrating term by term.

Thus

1

1
LT = %/ []_ = iO+()\1U. o} )\2112) - 92— ()\1‘\12 g 2>\l)‘2U3 s )\2UL+) + ,,]uz E
0

or
4/3 k Le?
A P B o 4
L =5 15(8> n_ + 0(e") (3.67)

Combining the above results and substituting into (3.58) gives
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on

" 2n q m (3/4) _ (5/4)
gl ° ¢ 2 B 4 0(e0?)

n=1 n!(— %—;ﬂ‘l

(3.68)

where the leading term in the brackets is the head-wave potential for

a zero gradient in the lower medium and

k L /b
14 T I3l > |
2dn§

3m 243
o+(X1 + Ay) ~ o, (g—-) '

This expression is analogous to (3.45) in the negative-gradient case.

It expresses the result that for |o| << 1 and |}”| >> 1, the
"critically refracted" field from a medium with a positive velocity
gradient looks like the head-wave potential from a homogeneous medium

plus a connection series. Keeping only the
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first term in (3.68), we have

i¢
Zino e O

b = T 1+ e0,8 (3.69)

i km(l—ni) 0? L3/2

where
io (3ﬂ>2/3
L T+l s

) mk L 3 _iﬂ/4 1, 8 1

& = 2n € 2" ¢ q.m
o) c

This expression is analogous to (3.46) for negative gradients. As
the distance, L, increases for a given gradient and frequency, the
magnitude of o, increases, and it is necessary to include terms of
increasing order in o, in (3.68). At sufficiently large distances
(L) this becomes impractical, and another approach is required.

As indicated earlier the approach we take is to expand the

plane-~wave reflection coefficient, v We will do so using the

pt’
asymptotic forms for the Airy functions given in Appendix I. The
result will be an expression for the refracted field at large L
in terms of diving waves, which at sufficiently high frequencies
represent rays turned around by the increasing gradient. Some

aspects of geometrical ray theory for the positive-gradient case

are summarized in Appendix IV.
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Substitution of the asymptotic form for Ai(—go) and Ai'(—co)

into Vp+ ((3.23) and (3.24)) gives

igm sin B + né - p2 cos B

v = (3.70)

pt+
iqm sin B - \/né - p2 cos B

for [QO[ >> 1 and where
B=w_ + n/b
o

~ 2 =3 g3 _ 92 3[2
W 3 € (no p=) .

Using the exponential representation for circular functions, (3.70)

can be rewritten as

o (g N (- (T
(4 - V7 2 - (am v 225D

or

e o i (3.71)
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where

< _\,—7_—;
N e

This expression for e is the same as (3.25); it is the plane wave
reflection coefficient for the case in which both the upper and
lower half-spaces are homogeneous. For p < n_, |vo] < 1, and we

expand (3.71) to obtain
i2R i28 2 148 m  i2mR
e ° o 'v e

which can be rewitten as

i48

+ v(l - Vg) e R vn(l - vg) elz(n+l)B +

Putting this into the asymptotic form of the Weyl integral (3.28), gives

ﬁ/dp

- . ik (xrp + qz + z_))
[ Z V g) elZ(rH—l)B] o © o

o (3.72)

a B
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Equation (3.71) is a valid approximation to v

£ s .
ok or 0< p <« n

Thus the above integral will only give a valid approximation to
that part of the reflected field arising from contributions to the
original integral (3.28) along the interval 0< p < n_ .

The above integral has branch points at p = * n associated

/2

with the radical(ni - p2)3 in B (see equation 3.70) in addition

to those already discussed. We choose this branch cut such that
L

Re [(né - p2)2] < 0 (see Figure 8). This insures that

Im [(n§ = p2)3/2] > 0 along the original integration path for

|p| > 1. It also insures that we stay slightly below the real p

axis over the interval n > p > 1, along which our expansion of

(3.71) might not converge.

We rewrite (3.72) in the following form

o =0 + ¢ (3.73)

where

k 1ko(rp + qlz + zo)

. /p
®r+ e B e L a dp (3.74)

—w
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Im(P) A

Figure 8a
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Figure 8b
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and
m o
.o : +
i ko I 1k0(rp + q(z zo))
P, ~ - e et L0 LN
d 27p q

(e o]

E: (L g2y DB g
(0] o

n=0

(3..75)

X

Thus we identify the 'separate' contributions to the total reflected
field for angles of incidence less than critical (p < no) as indicated
at the beginning of this section.

The saddle-point evaluation of ®r+ (3.74) goes exactly as
before, and we obtain the geometrical ray-theory result for waves
reflected at the boundary z = 0 for angles of incidence less than
critical, i.e.

ik Ry

~ e .
¢r+ = R, vo(po) s P <n (3.76)

Turning to the evaluation of @d (3.75), we interchange the
order of integration and summation and consider the saddle point

approximation to the nth term

s 22 . (n+D)7

i== fK k f (p) +i—F———
Q(n)z_e 4"L/ G 2 (1 - v2) —Eydp
d Zﬂp (¢} (0] q

(3+77)
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where

3/2

. 4(n+l) 2 _ .2
E® =1 ep+ (z+2z2)q+3—" - (n? - p?) (3.78)
The saddle point is given by
4Re
dp
or
4 (n+1l >
O—*‘E“—‘(Z+ZO)—_(nTlp(n§-p2)2 = (3.79)
l—p2

From the geometrical ray relationships outlined in Appendix IV we
have the following expression for the horizontal distance covered
by a diving wave entering the lower medium at an angle of incidence,
@n, and reflecting n times at the boundary z = 0 before arriving
at the point r = (% Z)

B 4(n+l)
p = ——— gz + zo) +-——j?——— P

. L
(nz . p2)2
n (o] T

(see Figure A4-1). Comparing this with (3.79), we see that

=R, = 85 On (3.80)
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is the saddle point for the nth term in the series. The steepest
descents path for this integrand approaches the saddle point at an
angle of 3n/4 as illustrated in Figure 8b. No singularities are
crossed in deforming the contour, so that the entire contribution
for each term in the series comes from the immediate vicinity of
the respective saddle points. Note that P < n for all n, and
the integral (3.45) thus will give a valid approximation to the
field in the upper medium from the waves reflected by the positive
gradient in the lower medium (the so-called diving waves).

Using the formulae presented earlier for the saddle point method

(3.31), and noting that

(e + zo) 4(n+l) (ng B 2p§)
EnPy) = -1 2372 " Y 2 _ 2%
(1 - pn) (no - Pn)
we obtain to first order
5 (n+1)
(n) 2 Y
@d 2= e 0
3/2 . o 2+
p_(1-p_) (n2-p2) k £ (p_)
” n n o *n vn(l—vg) Jonn

1
4(n+l) qg(ng—Zpg) + y(ng—przl)2 (z+zo)

(3.81)
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where fn(pn) is given by (3.78) and vo(pn) is given by (3.25). This
result expresses the geometrical ray-theory phase and amplitude for
the diving wave reflected n times at the boundary z = 0 (although
it does include a -m/2 phase shift acquired by a wave each time it
passes through a turning point, which is not predicted by geometrical
ray theory ), In particular, we note the following aspects of the
above result:

1) The argument of the exponent, fn(pn), is the phase of the
nth diving wave derived using Snell's law in Appendix IV.

2) The factor (1 - vg(pn)) is the product of the homogeneous,
plane-wave transmission coefficients for energy entering and leaving
the lower half space at an incident angle of On (i.e. m_l(l + vo(pn))
and m(1 - vo(pn)), respectively.

3) The factor VZ (pn) is the product of n reflection
coefficients for the n reflections at the boundary z = 0. The
reflection coefficient for waves reflecting at z = 0 from below,
vy, is the negative of v, Thus the strict representation for this
product of reflection coefficients is (- vo(pn))n. In (3.81) this
sign is carried in the leading exponential.

4) The leading exponential, - exp [ i(n+l) w/2], contains the
-m/2 phase shift acquired by the wave when passing through each
of the (n+l) turning points, as well as the (=15 sign required

n g
for the factor VO mentioned above.
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5) The remaining radical gives the spreading factor for a

tube of rays leaving the point source (0, zo) and arriving at (p, z).
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The range of validity of the diving wave result (3.81) is
limited by two approximations. The first is the assumption that
‘Co‘ >> 1 made in obtaining the asymptotic form of the reflection

coefficient (3.70). TFor most purposes, it will be adequate to take

9
o Y o
This restriction can be translated into limitations on the minimum
depth of penetration by the diving wave below the boundary, z = 0,
and the minimum horizontal distance traveled by the diving wave in
the lower medium using the geometrical ray theory results presented

in Appendix IV. The maximum depth of penetration in the lower medium

for a ray incident on the boundary at an angle en is

by (A4-5), where P, and sin Gn. Thus by the above restriction
the diving wave result will be valid for waves that bottom at depths

greater than z ., where
min

5 . w By B2 M3 (3.82)
min (&

By (A4-9), the corresponding horizontal distance covered by the ray

bottoming at z is
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and the diving wave result will be valid for waves at distances

greater than

p
o . _ n (Z + z ) + M ( Yz . o n2 >
= o min

1/3 o
()
o

The second approximation comes from retaining only the first

(3.83)

term in the steepest descents evaluation of the integral (3.77);
this is the geometrical ray-theory approximation. To obtain a
frequency-dependent connection to the geometrical ray-theory
approximation, it is necessary to include the next term in the
steepest-descent result. Referring to (3.31), we see that if the
second term is included, the diving wave expression will be of the
form

gV o gl g g G_

do d1 4k0

where @éT) is given by (3.77),
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and fn is given by (3.78). (Here the primes indicate differentiation
with respect to p.) Obviously, the form of the correction term

is cumbersome, and in practice, it will be expedient to proceed
directly with an "exact" numerical saddle point integration of

(3.77) rather than to work with this analytic form. Here we only

need note that G = 0(y) so that

(n) _ . (n) ¥
@dz @dl [1+O<ko>}

We can summarize our results for the effect of a positive
gradient on refracted waves as follows:

1) At relatively short distances beyond the critical distance,
such that ]0+| >> 1 or

2n
o)

1/3
()

(see (3.60)), the head wave can be represented by (3.68) or (3.69)

1L <€

as a sum of '"mormal modes' propagating between the discontinuous
boundary and the underlying positive gradient and leaking into the
overlying half space.

2) At sufficiently large distances beyond the critical

distance, such that
4y3 P,

>
d 5 \1/3 ?
(%)

the refracted field can be described as a sum of diving waves
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n=0

(n)

where ®d is given by (3.81) in the ray-theoretical limit

(ly/ko[ << 1); and L, is the horizontal distance covered by the

d
direct diving wave (see (3.83) or (A4-9)). By (3.82), the expression

for any given diving wave, , will be valid as long as the wave

/3

@én)
bottoms at a depth greater than at least z ~ (Az/y)l beneath
the boundary =z = 0.

At this point we can infer some simple time-~domain properties
of waves refracted by a positive gradient from the phase and spectral
variations obtained above. The ray-theoretical expression for
diving wave travel times (A4-17) shows that at sufficiently large
distances the direct diving wave will arrive first and will be
followed at successively later times by waves reflecting an
increasing number of times beneath the boundary z = 0. The last
group of waves to arrive will be those that are very close to
critical incidence and propagate just below the boundary making a
great many reflections; their travel time will essentially be that
of the true head wave in the case of a zero gradient. However,
because these waves are confined to a thin zone just below the
boundary, the ray-theoretical expression for their amplitudes (3.81)

will not be valid except at very high frequencies by (3.82).
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We can obtain an expression for the combined effect of these
boundary-layer waves by referring to the normal mode equation (3.58).
For iO+| >> 1, the phases of the modes are well separated (i.e. the
poles are spread out in the p-plane), and the phase of the first
mode (j = 1) is nearest to that of a head wave for zero gradient.
Thus we can expect that this first mode represents the combined
effects of the boundary-layer diving waves and corresponds most
closely to what might be considered a true head wave at large
distances in the presence of a positive gradient. From (3.58),

the expression for this boundary-layer wave (or head wave) is

,

5, 1 = 27k 3 3 kT,

P = - e * °© £ exp ! i(¢ -6,) - £ B g

pno 2m o + " m 2 no
de ode
(3.84)
kOL€2

where io+| = o= >> 1, and 6+ = (0+al s

o

This expression is similar to that for the head wave at large
distances, |0_’ >> 1, in the negative~gradient case (3.49). The
primary difference is that in the positive-gradient case, the
exponential decay of the amplitude goes as g3 compared with £2 in
the negative gradient case. In other words, the high-frequency
components of the 'head wave' die off less rapidly with distance
for a positive gradient than for a negative gradient when the

magnitudes of the gradients are comparable. A second difference
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is that the factor 6+ is subtracted from the homogeneous head

wave phase, ¢O, so that the head wave for the positive gradient is
also slightly dispersed, but in the opposite sense from the negative
gradient case. The horizontal phase velocity for the positive

gradient 'head wave' is given by

C 41 ® co/[ sin (no - 6+)] "

Thus, in view of the above remarks, we can expect that a
seismogram of the refracted waves in the case of a positive gradient
would be spread in time between the first arrival of the direct
diving wave and the last arrival of the boundary layer, or 'head
wave'. This spread in time will increase with increasing distance.
At short distances everything will arrive at nearly the same time,
and the combined effect will give an arrival very much like the
classical head wave in character as indicated by (3.69). In the
time domain, this arrival will look like the time integral of the
direct arrival. At larger distances the character of the refracted
wave group will be dominated by the large amplitudes of the first
few diving waves (P, PP, etc.), and, in practice, the true head
wave would probably be difficult to identify. In the time domain,
the individual diving waves will have the same wave form as the

direct wave.
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Results for a spherical boundary-We now wish to extend the

above results for a plane boundary to obtain expressions for waves
reflected from a spherical boundary. Taking advantage of the earth-

flattening transformation with a point source presented in Section 2,

we assume that both source and receivers are such that z/a| gz 1
and that ]koa| >> 1. Furthermore, we are primarily concerned with
waves near critical angles of incidence, which for most crustal
and upper mantle problems are neither near-normal nor near-grazing
angles. Thus, according to the results in Section 2, all that is
necessary is to put the plane~wave reflection coefficient for the
velocity distribution modified according to the earth-flattening
transformation (2.13) or (2.14) into the Weyl integral (2.36) or
(2:.37)

To introduce the approximate linear velocity earth-flattening
transformation (2.37) into the form of the velocity variation (3.1),
we expand (3.1) and match coefficients of like powers of z. The

result gives the following correspondence between the flat velocity

gradient, vy, and the curvature mapping gradient (1/a).

.
a 21,12
(o]

for |l/a| << 1 and IYI << 1. Thus the appropriate earth-flattening

velocity transformation is
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2n? ~1749
- 2 o .
c = c n- + (-—— & Y) z . (3.85)

Yy = oy (3.86)

where the first term on the right is the modified curvature-mapping
gradient and the second term is the velocity gradient in (3.1)
describing the physical velocity variation, so that (3.85) becomes

~1/2
2

¢, = Co n + Y 2 (3:87)

This is the same form as (3.1) and the solution to (3.9) will still
be the Airy functions given by (3.19) but with T in place of vy.

The form of the integrand of the Weyl integral remains unchanged
by the earth-flattening transformation under our approximations
(the changes introduced in the exponential term inside the integral

(2.36) by replacing 'p' by 'ab' are of order (z/a) and can be
neglected), and the rest of the analysis proceeds as before.

Thus the asymptotic expressions for waves reflected from a spherical
boundary are obtained simply by replacing y by Yo in the flat
expression, and for distances greater than about 10 degrees replacing
p—l/2 by (a sin 6)_%.

An obvious consequence of the velocity transformation (3.87)

and the definition of Ys is that an effective null gradient corresponds
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to a physical gradient y = - Zné/a, and thus that the negative and
positive asymptotic solutions for the flat case correspond to
physical velocity gradients more negative and less negative than
(—2ni/a), respectively, in the case of a spherical boundary. This
is the most significant effect of curvature, and we will return to
it shortly.

However, at this point a few comments on the radiation conditions

used in obtaining the plane wave reflection coefficients vpi and
their relation to the spherical problem are in order. Obviously,
inside the spherical boundary r = a, there will be a system of
'upgoing' and 'downgoing' traveling waves because of internal

reflections at r = a. In the case of a homogeneous sphere, for

example, the appropriate solution for (2.20) is

U1 =B i (kir) 5 r<a

where kj is the wave number in the sphere. The spherical Bessel
function jz(klr) represents a system of standing waves and is finite

at r = 0. By (2.24) it can be represented as a combination of

h(l) and h(z)

ingoing and outgoing traveling waves, ) 0

, both of which,
however, are infinite at r = 0.

Through the device of the rainbow expansion (Bremmer, 1949)

the complete response involving jl(klr), say, can be split into an
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infinite number of terms, each of which represents a generalized

ray reflecting a given number of times at the boundary r = a.

Some of the individual terms may become infinite at r = 0. In the
case we are considering of a single boundary, the first term in

the expansion represents the generalized ray reflected externally

at the boundary r = a, the second term represents a generalized ray
penetrating the boundary and emerging again with no internal
reflections (P in upper mantle seismology), the third represents

PP, and so on. See Richards (1970) or Chapman (1969) for a detailed
discussion of the rainbow expansion.

The reflection coefficient in the first term of the rainbow
expansion can be obtained by applying the usual continuity conditions
at r = a and assuming only downgoing waves for r < a. Thus the
radiation condition applied in the flat case with a negative velocity
gradient corresponds to keeping only the first term in the rainbow
expansion on transformation to the spherical case. For the positive
velocity gradient in the flat case, both upgoing and downgoing
waves were retained. This corresponds to obtaining the complete
response, and the decomposition into diving waves (3.72) corresponds
to the complete rainbow expansion on transformation to the spherical
case.

The effects of curvature can be summarized by noting that

through the earth-flattening transformation (3.86) the effective
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null gradient case actually corresponds to a critical negative
velocity gradient, y = - 2n§/a, as noted above. In geometrical

ray theory, this critical gradient corresponds to the case in which
the curvature of a ray at its turning point matches the curvature

of the earth (see sec. 7.2.3 in Bullen (1963)). Here the ray is
trapped and continues around the earth at a constant radius. In
this particular case, the transformed reflection coefficient reduces
to the plane wave reflection coefficient for two homogeneous media
(3.25), and evaluation of the Weyl integral follows standard methods
for obtaining the classical head wave result (see Cerveny (1965)

or Brekhovskikh (1960))

2in i¢
e o 6 ©
h L
k mq p2L3/2
o}
where ¢o is the head wave phase (see 3.38). Thus when curvature
is included, the results for negative and positive velocity gradients
obtained for the flat case apply to physical velocity gradients more
negative and less negative than (- 2n§/a), respectively. It follows,
of course, that there will be an effective positive gradient equal
to (2n§/a) when v = 0 and the medium below the boundary r = a is
homogeneous.

It should be emphasized that this effect of curvature on

critically or near-critically refracted waves is independent of
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distance, and in principal, should be included even in studies of
head wave amplitudes from crustal layers. At the same time, the
effect of curvature on waves reflected at the boundary r = a is

small and can be neglected under our assumptions. (This follows from
the develcpment leading to (3.32) or (3.76) where it was demonstrated
that small velocity gradients have a negligible effect on waves
reflected from a plane boundary.)

All of the remarks regarding the effects of negative and positive
velocity gradients for the plane boundary carry over to the spherical
boundary with vy replaced by Ygr For example, we can use the diving
wave results in the case of a positive gradient to assess the
validity of ray theory for a homogeneous crust and upper mantle
(here s = 2n§/a). Assuming a 30 km thick crust with a P-wave
velocity of 6.4 km/sec over a homogeneous upper mantle with a
velocity of 8.0 km/sec (and also assumming that the basic properties
of acoustic waves apply to elastic P-waves), we find by (3.82) that
for a valid ray-theoretical description, the direct P-wave must
bottom at depths greater than 50 km beneath the M-discontinuity
for 1-~Hz waves. For 5-Hz waves the minimum depth is 20 km. By
(3.83), the corresponding minimum distances for an adequate ray-
theoretical description of the direct P-wave are 1600 km and 800 km
for 1 Hz and 5 Hz waves, respectively.

Finally, there is one further restriction on the results for
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a spherical boundary in addition to those summarized at the end

of Section 2. Because we have used the linear form of the earth-
flattening velocity transformation instead of the exact, exponential
form (2.13), there will be a depth (z < 0) below which our trans-
formation becomes increasingly inaccurate. For a 1% error, this

depth will be approximately given by

4 ~ 2 x 102 a.
max

Accordingly, our results for the spherical boundary are limited in
the case of an effective positive gradient to diving waves that
bottom at depths less than Z ax? and in all cases to wave lengths
that are less than Z ax' For example, in the case of the Mohorovicic’
discontinuity and a homogeneous upper mantle, this maximum depth is
approximately 150 km and the maximum wave period is about 20 sec.

In practice, the limiting depth and period will usually be imposed by
theknown velocity structure in the mantle at shallower depths than

Z (e.g. the top of the low-velocity zone).

ma

4. Elastic fomulation

In this section we apply the methods developed for acoustic
waves to the analogous elastic case. Thus we consider two isotropic
elastic half spaces welded together at the boundary z = 0. We take

the upper half-space to be homogeneous with compressional and shear
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velocities o and 80, density Pys and Lamé constants AO and o3
and we let the lower half space be vertically heterogeneous. As in
the acoustic case, our goal is to determine the elastic field
generated by a point source in the homogeneous medium and reflected
by the boundary and the underlying heterogencus medium. The basic
geometric relations for the elastic problem are the same as in the
acoustic case (Figure 3a).

Following the arguments presented in the acoustic case, we
will take the specific functional forms for the compressional and

shear velocities in the heterogeneous medium to be

-3
al(z) =0, (n§ iyaz> 2 ¥ oz <0 C4+1)
Bl(z) = Bo<n§iygz>—;§ Y z<0 (4.2)

where o, and n8 are the compressional and shear indices of refraction
across the boundary z = 0, and Ty and Yg are the corresponding
gradient parameters. Again, for empirical reasons, we will let the

density variation parallel the velocity variation

pl(z) o (ns & ypz:)“;5 : z <0 (4.3)

which in turn suggests that the Lamé constants may vary as

uy(2) U -3/2
1 @ <n2 £y z> (b b)
Ay (2) A ¥

]
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However, as in the acoustic case, it will turn out that for small
gradients the variations in density or in the elastic parameters
are not important except near grazing angles of incidence, and all
we really require is that their functional forms be consistent with

]b

s
(4.1) and (4.2) through o = [(A + 2u)/pl? and § = [u/p]z. The

variation of elastic velocities as a function of depth is illustrated
in Figure 9.

We will not repeat the formal arguments leading to the integral
representation in terms of the Weyl integral (3.27) for the elastic
case. Instead, we will apply the Weyl integral directly to the
elastic plane wave reflection coefficients taking advantage of the
properties of the Weyl integral as an operator on plane wave solutions
to yield the spherical wave field from a point source. We will treat

the SH and P-SV cases separately.

SH motion.-The appropriate potential representation for SH,

or torsional, waves is given by (1.12) to be

-
u = curl,[0,0, [u(z)] T(pzz)] (4.5)
where the potential, T, satisfies
P
== §(z~z_) &(r) z» 0
u o
V2T + k2T = (4.6)
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Figure 9
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in a cylindrical coordinate system (see 1.12).

To determine the plane-wave reflection coefficient, we will
transform to Cartesian coordinates and consider a plane wave
propagating in the x-z plane and incident on the boundary at an

angle 6. In this case, the SH-wave displacement will be given by

u=e; u (z) T (4.7)

where e, is the unit vector in the vy~ coordinate, and the

displacement potential will satisfy

V2T + k2(z) T =0 (4.8)
where by (4.2)
kg z >0
K (Y = (4.9)
2 s 2 2
kl(z) = ko (nB + vyz) z <0

The elastic boundary conditions for a welded interface require
continuity of displacement and stress. For SH-motion these conditions

become

u(0 ) = u(0 )
AT e (4.10)

t,(0) = T, (0)

respectively (also see Section 2).

We assume a standard variable-separable solution to (4.8) of
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the form

Txzx) = X(x) T(2) (4.11)
and obtain
2
47X +k2X =0 (4.12)
dx?
25 A
a°T ['k2(2> - KzJ =0 (4.13)
dz?

where the separation constant, k, is identified as the horizontal
shear wave number. Equations (4.12) and (4.13) have the same form

as (3.6) and (3.7) in the acoustic case, and their solutions are

X.(x) = A, elKX + B, e_lKX
in g —ian
T (z) =C, e B+ Dj ¢
0] N (4.14)
. 2713 _i2ﬂ/3
Tl(z) Ej&l { =€ et F1Ai<~(;_ e
= +
T,(2) BpAf(-C,) FoBi(-c,)

where the subscript, j, refers to a negative gradient when equal

to 1 and a positive gradient when equal to 2, and where
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L =) 1/3
= 2—-22 = 2—2+ =
g (ko KB) > Ty € (n p* £ v}, €g (YB/kO) ;
p = sin 0.
Taking the incident plane wave to have unit amplitude and
assuming radiation conditions at z = - « analogous to those in the

acoustic case for negative and positive gradients, the solution

(4.11) becomes

i(kx - nBz) i(kx + nBz) z > 1
Toj(x,z) = g + VSH ;e
(4.15)
i21T/3
Tl(x,z) USHl Ai <—C_ e '
_ ik, x
e
T5(x:2) USHZ Ai(—C+). 7 < 1
(4.16)

Substituting these solutions into the boundary conditions

(4.10) we obtain

e BTO. 5 9T,
Ho 9x M (0) 9xX
z=0 z=0

and



or
1
1n8

where

Hy

Hy
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H,
J
' d
ih e
2 My + dz
i27r/3

Al (—c+)

3

in

g = (uo/ul(O)),

and the primes indicate differentiation with respect to z.

for the plane-wave reflection coefficients we obtain

and

VSH, =

s EB 4 2
Al(—CO) iqs - <'ﬁg ) - &g Ai (—CO)
= = 5y
[ S EB 2 2
Al(-go) ] igs: + Z <§ > k + 88 Ai (—CO)
( g 3 7] .2m/3
) , s{°B i E i
Ai(-z )| igs + . <”g > + e €q Ai'( co)
] & 23 ] 21/3
. 7 - B _ .1 2 s
Al(-go) iqs - 7 <n8 ) | e €g Ai'( co)

B

>0

; J=ly2
B
Solving
(4.17)
T % O

(4.18)



~139~

Referring back to the acoustic case, we see that the SH plane-
wave reflection coefficients have the same form as the
acoustic plane-wave reflections coefficients (3.22) and (3.23).

The only difference is that the shear modulus ratio, s, enters the
SH reflection coefficients in place of the density ratio, m, in the
acoustic case.

It follows that upon substitution of these SH reflection
coefficients into the Weyl integral (3.27), the asymptotic evaluation
of the integral will proceed exactly as in the acoustic case. Thus,
we can take the results for acoustic waves obtained in the previous
section for both negative and positive gradients and simply replace
m by s to obtain the corresponding expressions for the SH displacement
potential for the flat boundary. For completeness, these results
are summarized below.

For a negative gradient (y, < 0) the refracted part of the

B
field is given by
( i¢
[ r-at®] e for] << 1
O
21k 3
T~ < . O —£7  exp | i(¢_+ 8, + n/4) (4.19)
hl o) 2 o)
s(1l-n%)
8
Ekng
- Y2 o B al_——g———- ; ‘0|>>l
4 nB 1

2.5
/?s(l—ng)



where

ai

For a

classical,

For a

]
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<3 >2/3 kOL EB iTr/3
-t 8 2n €
B
k L 62
o B
7 a; , and
B

2.338 (the first zero of Ai(-a)).

2i n
= g -
) 172 372 (the homogeneous head-wave modulus)
k (1-n)) o L
s 8
= kO(Ls + Lr) + kL (the homogeneous head-wave phase)

null gradient (y = 0) the refracted field becomes the

homogeneous head wave

T =T e (4.20)
positive gradient (y > 0) the refracted field becomes

i¢o
Th 1+ 8662 g | e |02| ge L
o

= (4.21)

E Tc(ln) lop] > 1
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where

aQ
1l
P S
=5
ISD ~
-
NS
Ny
e
=
e
~
/-\
N | =
+
[
|
e
a
N
P
o |w
i SO
N
~
w
S
|
2
—
=

(n)

and where the nth diving wave, Td

, 1s given by

/2 1/2

(nt+1l)m

3
p (1~p. )
T(n) o el 5 , Y8 n n
d ol

1,
4(nt+l) q3(n?2-2p ) + v _(n? - p2)* (z+z )
n B n B o n o]

B3
(nB pn)

£ (p )

n n ' n

.V D
g Tl @ (4.22)
with
I
L R v (the homogeneous plane-wave reflection
& 9dys 7Py coefficient).

2
fn(pn) =1 [ pp + (z+zo) q + ﬁé?iil (né_pi)B/ }

The field reflected directly at the boundary is given by
T 8 ———y (4.23)

for all of the above cases.
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To modify these expressions for flat geometry to those
appropriate for a spherical boundary at radius r = a, all that is

required is to substitute the modified gradient parameter

for YB and the modified distance factor

p = a sin A

(where p is the angular distance in radians) for p.

P-SV motion.-To determine the plane-wave reflection coefficient
for P-SV motion, we consider a plane P-wave propagating in the x-z
plane at an angle of incidence, 6, with respect to the boundary
at z = 0 in a Cartesian coordinate system, as shown in Figure (10).

By (1.13) the appropriate potential representation is

u = £l grad (f¢) + curl curl (0,0,fy) (4.24)
where
P S
¢ = Y = (4.25)
2 2
p P

and the potential P and S satisfy separate Helmholtz equations

V2P 4+ h2(z) P =

2
o

(4.26)

V25 4+ k2(z) S =

2
o

(4= 27)
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Figure 10
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at high frequencies as discussed in Section 1. Again, by (4.2),

the P and SV wave numbers for z < 0 are given by

h
i} = { o (4.28)
1
2 3
ho(na + Yaz)
k
k(z) = { & , s (4.29)
2
ko(n8 + de)
respectively, where n, = ao/al(O) and n, = (80/81(0))'

Using standard vector notation and the properties of the vector

operator, V, we can rewrite (4.24) as

1 |
u = Vo +~%— ¢+-gz-§— x Vx (0,0,9) +V xV x (0,0,9)

Now by (1.7a), the ratio (f'/f) must have the following form for
high-frequency P-SV decoupling

|

A+2u]| p' il
A+ U

' =
£r/E o A+ 2u

where primes indicate differentiation with respect to z. From the

form of 5 and ;; for z < 0 in (4.3) and (4.4), we see that the terms
involving the ratio (f'/f) are or order (y) and (Yko) in ¢ and Y,

respectively, while the term v¢ and v x v x y are of order (ho)

and kg) respectively. Thus for high frequencies and small gradients
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(e.g. |Y/kol << 1) the terms involving the ratio (£'/f) can be

neglected, and (4.24) becomes

u = grad ¢ + curl curl (0,0,y)

or in component form

u = é—- 82 U]
b4 90X 0X9d2z
_ 3 32
uz T oz ¥ - 2 v
90X

with u = eju_ + ésu_.
== X z

(4.30)

(4.31)

The appropriate boundary conditions for a plane, welded inter-

face for P-SV motion are
w () =u (0) , ul(0)= u/(0)
for continuity of displacement and
sz(o+) - sz(o—) 2 Tzz(0+) - Tzz(o—)

for continuity of stress, where

auz aux
o = — 4
rxz I‘l<ax 02z

8uX auZ auZ
—= 4 +
A(ax 3z > M oz

—
I

zZ

(4.32)

(4.33)
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Again, we assume standard variable-separable solutions to

(4.26) and (4.27)

p(x,2z) = XP(X) P(z)

il

s(x, z) X (x) $(z)

so that we obtain

N

a%x
S 4+ k2% =0
dx2 -
24 .
> . [ K2(z) - K2] §=0
dz2

for SV motion. Here the separation constants h and « are identified
as the horizontal components of the P and SV wave numbers, respectively.
These equations and their solutions have the same form as in the

acoustic and SH cases, and we can write the complete solutions
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immediately as

i(hx = n z) i(hx + n 2)
P .(x,2z) = e L e ¢ s §=1,2 5z > 0
o] PP.
J
(4.34)
P ALY 5
1(x,2) Uppl Aj ( COL—) ihlx
= e s z< 0
B, (x,2) Upp Al(—€u+)
2
i(kx + n,z)
_ B .
S .(x,2) =V e I ; z > 1
0] Ps.
J
(4.35)
@
S1(x,2) U Az )(-é )
PS1 =
= 5 Z % l
So(x,2) Up82 AL(-E))
where
2_ p2ye 2y%
Ty ® (no— ) © = ho(l - p4)* = hoq
1
= g .. 252 _ 2 PNE _
np (ko K<) ho(2 Pe) hov
r = e 2(% p2 ; vy z) e = (y /n )l/3
o a o ¥ ’ a a' o
£ = e %(a? - p? 5 v,2) e, = (v, /n)/3
- % ' ¥ Ty s b b’ %o

= QZYB , P = sin ©
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and j = 1,2 refers to a negative or positive gradient respectively.

We are also using the convention

for brevity. In writing the above solutions, we have made the
following assumptions:

(1) The dincident plane P wave has unit amplitude.

(2) Both P and SV waves may be reflected into the upper homoge-
neous half space and transmitted into the lower heterogeneous half space.

(3) The radiation conditions for both P and SV waves in the
heterogeneous half-space are analogous to those assumed in the
acoustic case for negative and positive gradients as z » — «.

The four constants, V. , V., U | and U , can be evaluated by

PP ps PP ps

putting (4.34) and (4.35) into the four boundary condition equations

(4.32) and (4.33). Making these substitutions, we obtain the four

equations
(30 . a2y || [ 30, a%pﬂ
o] s o] S T S —— (4.36a)
90X 0Xdz Ix 0Xdz
L d 0 L 40
+ -
B EELE
o] _ o] e | —d o ——d (4.36Db)
Laz 2 Jdo L ¥2 8x2 -0
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(4.36c¢)

329, 320, 320, 33y,
1 2 2 M1 2 2
9X 2z 0 9z 9X%dz O_

326 33y . a3y . 920, a3y, 9%y,
g [2 of . __9j N - 1, [2 S50 I R 1] ]
o 0 0
+ —_

Ix3z°  3x°

(4.364d)

where

g ihlx

¢, = U z) A, e
] PP Py (2) oj

L 1(xx - n_2z)
V.=V p e 5
0] ps. o

J
o ik x
— .=2

by = U e a) Ag, e ,1=1,

and we define
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Aoy Ai(l)(—c_)
Aaz Ai(—c+) z=0
A8, ar e )
AB Ad (~E,)
’ + z=0

Completing the indicated differentiation, we obtain the following

fourth order matrix equation.
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where

L. g2 1
Ea,(z ) = h?xqha, = (A + 2 2 =—— | p 2o,
i CO 1 j 1 u1) 3] 122 Py i
L g2 L
E = 2 + . < 2}
Bj(co) inq [h /\Bj h " <plAPj>]

Here the derivatives of the terms (QI5AB) and (p;ﬁAa) with respect

to z are given by

(1
- s f AP
d - po Ea ©
— = h
da . Aop © 4n3/2 Ai(—co)
(4.38)
.27/ 3 :
e” P o)
.7 0
+ pl2 ea
— LY~ )
o
NB, -4 3 -Ai(l)(—€ )
d -1 h 6 b ©
LR -
dz 1 o 3/2 3 7
A, 4np Al(—go)
(4.39)
.2ﬂ/3 1
et Ai(l) (=& )
1
poE
+ 1 Eb
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iél ?)p_l/zaL+
-5 3 o «a (1)
pP17C e + 772 Ai (—CO)
8n
p
o
" 30028a
3 .
p CO = 7/2 Al(_g )
8n
P
.2m/3 ;
et AP )
Ai (—co)
(4.40)
e p-l/zeL+
1
=5 o b o )
8n
p
-L oy
F 3p e
-4 o b .
1 " 7/2 AL(-€ )
8n
p
2n/3
o Ll
e Ai ¢ go)
AL (~E )

(4.41)
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where we have taken YO = Ya = YB.

It now remains to solve this fourth order system for the plane-
wave reflection coefficients Vpp and Vps’ operate on these reflection
coefficients with the Weyl integral (3.28), and evaluate the integral.
In principle, we can solve for the reflection coefficients analytically
and evaluate the Weyl integral asymptotically as was done for the
simpler acoustic and SH wave cases. In fact, we will do this for
the case of negative velocity gradients to indicate how the elastic
P-SV result for reflected P-waves compares with the result for
reflected acoustic waves. However, the result is cumbersome, and
in practice it will be more expedient to formally invert the fourth
order matrix equation (4.37) and proceed directly with a numerical
integration of the Weyl integral.

In carrying out the analytical evaluation of the reflected P
wave field for the case of a negative gradient, we will assume
uo= AO and uy o= Xl. Substitution of the upper terms in equations

(4.38) through (4.41) into the matrix equation (4.37) gives
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.5 & R AN g ,
im h vm —-iAi (-¢ ) ih G(& )
o o o o
1. 1 (1)
. 2 2.2 - 2p -
-iqm hop m G(CO) hop Ai ( go)
9 5 2 5
-(1+2q )uom —21hop vuom UIH(CO) 2h0P2”1G(50)
1 1
2 ; 2_02 2 . .
2qu_m ih(2p =29 m 211G (¢ ) ipgh H(E )
L |
\ =i
PPy
\ = 1g
PS; ) ml/z
U 1-2q2
ppl ( 4 )IJO
Upsl 2qp0
(4.42)
where
mbea Al
(1 = '
G(r) = —% i V() - cae * artV (-z,) (4.43)
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5 B3 ;21
1
6@ = —z AP ey - e T aW ) (4. 44
4n
p
b L
.4m/3 e m?
. 2 1 3 "u o Ldd o
H(c ) =] p +3z—:a(c e +8n7/2> £ -k )
p
(4.45)
"
€m . 27/3 s
r3ame m e
T
o
€‘+m1/2
4m/3 3 7b (1)
H(E ) = | -p2 + &2 (g et T8I > AL (=€)
o b o n
P
(4.46)
ewt 9n/e
b i . (D)
+ 2n3/2 e Al ('go)
p

and as before, p = sin 6, q = cos 6, with 6 as the angle of incidence.
We are interested in comparing the form of the solution for

the reflected P-waves with the form of the solution for reflected

acoustic waves. Thus we solve (4.42) for Vpp using Cramer's rule.

By expanding the determinants forming the numerator and denominator

of Vpp about their third columns, we can express the P-P reflection

coefficient in a form analogous to the acoustic reflection coefficient

(3,22), that is
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.2m/3 i
2t e 3 5 - 5 & A<y oy
Vo= = - ° (4.47)

PP () 203 gy ,
Ai (—Qo) E - eae Ai (—CO) Ey

v’

where the terms multiplying Ai(l)(—go) and Ai (—CO) have the

following form

1 .21/ 3 . 1

" = Ai(l)(-E ) o oo Ai(l) (- ) %3

o) . b 1

D; Gy Q,
(4.48)

and

2 2

E 0] 21/3 , 9)

3

= a1 W g + e At e

o 9 b e} 7

E; Qs o,
(4.49)

The Qi are rather complicated algebraic functions of p involving
the elastic constants, density, and gradients. The details of this
expansion and expressions for the Qg are given in Appendix V.

As before, the integral expression for the reflected field
from a point source is obtained by putting the plane-wave reflection
coefficient, Vpp’ into the Weyl integral. Thus the reflected P-wave

field is given by
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[

TT [oe]
i h ik R(qq + pp ) 5
Bowog ? \/ ——O/ e © 0 ° ° vy dp (4.50)
21p PP; 9

The integrand has branch points at p = * 1 and p = 0 associated with
! 1
the radicals q = (1 - pz)/2 and p° as in the acoustic case. In addition,

there are branch points at p = * £ associated with the radical

I,
v = (22 - p2)2, Recall that %

Il

(ko/ho) = (aO/BO), thus 2| > 1.
We will choose the branch cuts in the same way as in the acoustic

case; in particular

-m/2 < arg(q) < w/2

-1/2 < arg(v) < w/2

The position of the branch cuts in the complex P-plane and
are shown in Figure (4.4) for the P-SV case.

Furthermore, the integrand now has two lines of poles defined
by the zeros of the denominator of Vpp instead of the single line
associated with the reflection coefficients for the acoustic and
elastic SH waves. These lines of poles are approximately located
where Ai(l)(—co) = 0 and Ai(l)(—go) = 0, respectively; both
extend into the first quadrant of the complex p-plane at an

angle of /3 with respect to the real p axis. The poles associated
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with the zeros of Ai(l)(—co) extend from the point p = n an the
real p axis, while those associated with the zeros of Ai(l)(—go)
extend from the point p = o, where n = aO/Bl(O)(see Figure 4.4)).
In most geophysical applications, a ? Bl(O), so that o> 1, and
the second line of poles will not be crossed in deforming the
original contour into the steepest descent path as is indicated

in Figure (11 ). However, in the case that o < B7(0), the second
line of poles will move to the left of p = 1, and we get a double
head wave contribution; one of the form PP P and the other of the
form PSqP.

In this development, we will restrict the compressional velocity
in the upper medium to be greater than the shear velocity in the
lower medium (nb > 1) and concentrate on the contribution from
the poles extending from the compressional-wave index of refraction,

n . The exponential term in the integrand, and thus the saddle

point and steepest-descents contour are the same as in the acoustic

case. Hence, by analogy, we can write the saddle-point contribution

to the integral as

5 @B 5 (4.51)

which expresses the ray-theoretical P-wave field reflected directly

from the boundary, z = O.
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Figure 11
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When the angle of incidence, 60, is greater than the critical
angle for P waves (i.e. P > na), some of the poles associated with
the zeros of Ai(l)(—go) will be crossed in deforming the original
contour into the steepest-descents path. The contribution of these
poles to the integral represent the PPlP head wave. To evaluate
the contribution from these poles, we begin as in the acoustic

case by expanding the arguments of the Airy functions about p = n .

o
In particular, we write the argument of Ai(l)(—co) as
i27r/3
-z e = -1
o
which gives
€T iﬂ/3
o) :na+?r;— e (4.52)

for |p - na|<< 1 (see the development leading to (3.33)). The

argument of Ai(l)(—go) expressed in terms of T becomes

2r 2n
3 _  =@.8 B 3 -4/3
EO e == gy (nb na) e % e
Under the condition that
g B 043
(nb - na)i
‘T|<< 82 s
b
we can let
=25 2 2
~ o 4.53
go Eb (nb na) ( 4
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It is evident that as long as n -n | is not too small (which will

B

be the case in most geophysical situations) and G, <<1, the arguments

b

(1), NE LU . .
of Ai ¢ &o) and Ai (—&O) will be large, and their asymptotic
forms (Al-5) and (Al-6) can be used in evaluating contributions to
the integral in the vicinity of p = n .

Let the numerator and denominator of the reflection coefficient

be represented as

v =N /D .
PP PP PP

Then the contribution of the N poles crossed in deforming the

integration contour into its steepest-descents path when P, > n,

is given by

iﬂ/4 2th N
P ~1ie 0 z Res [F ] (4.54)
n p PP
J=l
where
ih R, (qq_ +pp )
e ] - o, B L
PP g =t
J
and

d dt
G =N = —
PP pp/ dt pp dp

The approximate locations of the zeros, Tj’ of Dpp in the vicinity

of p = n, are

(4.56)
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where aj is the jth zero of Ai(-x). The derivative term occurring

in both (4.55) and (4.56) is
2n/3
d . . i
Dppl = Al(—r)[dT E + e T ElJ

drt
.21/ 3
LT e i d_
Al(T)[E+€ae dTEl} 3

and from (4.52)

dt =2 =i
— = 2n € e
dp o

Substuting the expressions for the D's and E's (4.48) and (4.49)
(1) (!

with the Airy functions Ai (—&O) and Ai (—go) replaced by

their asymptotic forms into the above expressions, we obtain

i2ﬂ/3
T, *a, —eJe (4.57)
J J o
where
2 2 ok 2
QZ - i(nb na) Qq
4 &= 2 2\% .2 252
Q) - i(nb - na) (R3 = 2°0,)
and
1 L
e’ J[Q - i(nf - n2)2]
. a 1 o
[G ]= = - 10 1 R (4.58)
P Jr=14 « [10]+ @f - 0" @5-2a))]
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Expressions for Qi are given in Appendix V.
The expansion of the argument of the exponential term in (4.55)
parallels the acoustic case (see equation (3.38)); in the present

case it becomes

5 iﬂ/3 5 iTr/3
€T, e € T, €
h Ry(qq + pp ) * h R p [n + S X U S q l—n2 SR B (E——
o} fo) o) o) ol a 2na o) o
7 1ot
o
hOLei .m/3
2 -+
¢o 2na Tj = (4.59)

where ¢O is the classical PP,P head-wave phase for two homogeneous

media and is given by

¢, = ho[ L, + L, ] + h;L

Thus the residue (4.55) becomes

2
(o}

I
where qa = (1-n“)"? and

(J(Qi ~ i(nﬁ = né)%ﬁ

[ iQf * (a2 - ni)l/2 (Q§22Q§)]

K:
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The contribution from the first N poles (4.54) describing the
PP‘P head-wave potential then becomes

L 5 i(¢o + m/4)

N
0 o St
~ K '
Fn pn q Z . 2n ©

Je=d

(4.60)

This expression has the same form as the analogous results for

the acoustic case (3.39). The only difference is that the simple
density ratio, m, in the acoustic case is replaced by the
complicated ratio of elastic constants, K, multiplying the sum and
by the ratio J in Tj. From the expressions for Qg in Appendix V
and the definition (4.57), we see that J is of the form

2 2
uob1 + uoulbz + u1b3

2 2
uobh + uoulb5 + ulb6

where the b's are complicated algebraic functions of the indices
of refraction, ns nB, and % only. Similarly, from the definition

of K above, we see that

211 1 211 |2
uobl + poulbz + u1b3

2, 1 1 Pir. 1
pobq + uople + u1b6
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where the bl's are in general different functions of n s nB, and 2.
The summation in (4.60) is completed exactly as in the acoustic

case. We define the parameter

)
oo i(ﬁ >2/3 h Le /3 (4.61)

e
2n
o

and follow the development from (3.40) to (3.46), which yields an

expression for the PP;P head-wave potential for |Oa| < 1

p = 21na K 1¢O 3/2
——————2;375 e 1 - Oul
hoqa o L

(4.62)

As was also true in the acoustic case, the poles spread out
and move away from the real p axis in a positive imaginary direction
as |Oa| increases. For IGal >> 1, the pole nearest the real p axis
will dominate, and the asymptotic expression for the PP, P head wave

becomes

(4.63)
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where

Both (4.62) and (4.63) have the same form as their corresponding
equations (3.46) and (3.49) in the acoustic case. 1In particular,
we see that the spectral amplitude of the PP;P head wave for P-SV
motion is the same as that for acoustic motion aside from the
constant scaling factor, K.

The analysis of the PP;P ''head wave' in the case of a positive

velocity gradient will lead to a similar result for small values

of the parameter S That is, for
2
h Le’
o ot
|o | = << 1
oo 2n
a

The spectral amplitude of the PP;P wave will be the same as for

the acoustic case (3.69) except for the ratio of elastic constants,
K, multiplying the result. The analysis of the diving wave will
be more complicated, however. Mathematically the difficulty arises
from the necessity of expanding the reflection coefficient V. , in
terms of both sets of Airy functions, Ai(—c+) and Ai(—€+). Physically
the difficulty is related to the fact that P to SV or SV-P mode

conversion will occur at each reflection of the higher order

diving waves at the underside of the boundary at z = 0. Nevertheless,
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we can expect that the direct diving P-wave will have the same
form as that for the acoustic case (equation (3.81) with n = 1)

with VO replaced by V where Vpp is the PP reflection coefficient

o’ o

for two homogeneous media.

To convert the results for P-SV motion for a plane boundary
to those appropriate for a spherical boundary, it is necessary to
see how the continuity conditions across a jump in elastic properties
behave under the earth-flattening transformation. This is done
in Appendix VI, where we see that the transformed spherical boundary
conditions have the same form as the plane boundary conditions
when |Ka\ >> 1. Thus for crustal and upper mantle wave propagation
problems we can use the results based on the plane layer reflection
coefficient noting that the P and SV displacement potentials in a

spherical and flat system have the following correspondence
P, == P S5, «* a8

where the subscript f refers to the flat system. As indicated
in Appendix VI, the factor a (the radius to the boundary), is
required in the relation between SV potentials to keep things
dimensionally correct. This factor can be included in the SV
reflection and transmission coefficients VpS and Ups in (4.35)

when making the earth-flattening transformation. It does not
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enter into the analysis of the reflection and refraction of P-waves.
Thus to complete the conversion of above results for a plane
boundary to those for a spherical boundary at radius r = a for

reflected P-waves, it is only necessary to introduce the spherical

1 1
=5 =%

mapping gradient and replace the distance factor p ° by [a sin A]

In this case the mapping applies to both compressional and shear

velocities, and we replace the gradient parameters y and YB by
o

2n3
a

Y o
0.s a o

1+
=5

and 3
2
"8

= —
YBs a Ya
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5. Numerical results

We now wish to consider some of the implications of the
foregoing analysis in terms of numerical results for several
specific models. We will consider numerical results based on both
the analytic asymptotic expressions obtained for the refracted and
reflected waves as well as results obtained by exact numerical
integration .of the Weyl integral (2.37) containing the appropriate
reflection coefficients. The consideration of both asymptotic
solutions and exact numerical solutions together provides insight
into the problem that would not be realized through either approach
by itself. Through the asymptotic solution we can see explicitly‘
how various physical parameters affect the solution over limited
ranges and we can 'understand' the predicted wave phenomena in terms
of mode and ray propagation through the study of poles and saddle
points. On the other hand exact numerical methods provide a means
for obtaining solutions over an arbitrary range of parameters
(i.e. arbitrary frequencies and gradients) and may reveal important
properties of the wave field for situations in which existing
asymptotic solutions do not apply. In the case of a positive
velocity gradient, for example, numerical integration reveals some

interesting interference properties of the diving wave field in
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the intermediate distance range not covered by either wave- or
ray-theoretical asymptotic results. The inversion of seismic
data can be accomplished quickly and cheaply for situations in
which the asymptotic solutions are valid. When conditions are not
so favorable (which is probably the case in most situations), more
expensive and time-consuming exact numerical methods must be used.
However, the process of numerical inversion can often be optimized
when asymptotic solutions are available to serve as a guide. Finally,
the agreement between asymptotic and exact numerical solutions for
appropriate ranges of parameters provides an important internal
consistency check on the solutions to the problem as posed.

By exact numerical integration of the integral, we mean that the
answer is limited only by computational considerations such as
word length and round-off error and not by analytical approximations
to the integral itself. Thus the answers obtained by numerical
integration of the Weyl integral are not constrained by the
assumption of high frequencies and small gradients (e << 1) made
in the analytical evaluation of the integral using the asymptotic
forms of the Airy functions occurring in the reflection coefficients.
Of course the answer will still be limited by the assumptions made
in section 1 which were to put the equations of motion in the form

of canonical Helmholtz equations. For acoustic and elastic SH-
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motion these assumptions required small density and shear modulus
gradients, and for decoupled elastic P-SV motion they required
high frequencies. Similarly, in the case of a spherical earth,

the 'exact' answer will be limited to the extent that the Weyl
integral (2.37) is an approximation to the original integral (2.30)
for direct waves from a point source in a spherical earth.

The actual numerical integration is completed in a manner
similar to that described by Phinney and Cathles (1969) or Richards
(1970). 1In particular, the original integral along the real p axis
is deformed into a finite path in the complex p-plane such that
contributions with the appropriate phase (or angle of incidence) are
included near the center of the path and such that the integrand
decays exponentially toward both ends of the path. This path will
often roughly parallel a steepest descents path through the saddle
point, although it need not coincide with the true steepest descents
path at any point. The integral is then evaluated by applying a
standard Simpson integration algorithm separately to the real
and imaginary parts of the integrand along this path. Naturally
the path must be of sufficient length that the contributions from
either end of the path are numerically insignificant with respect
to those along the central portion of the path. A single path
can be used to evaluate the integral for a range of distances and

frequencies thus considerably reducing the computation time. A
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modification of the program EXACT based on these principles written
by Richards (1970) was used to evaluate the Weyl integral numerically
in the examples presented below. A description of this program

can be found in Richards' thesis (Richards, 1970).

The Airy functions occurring in the reflection coefficients
in the Weyl integral were numerically evaluated using SHARE sub-
routine HF13, which computes Hankel functions of 1/3 order for
complex argument (Berry, 1964). The method used for obtaining Airy
functions from one-—third order Hankel functions is summarized in
Appendix I. Using these procedures in a single precision program
on an IBM 360-75 computer, the values of the Airy functions (or the
modified Hankel functions discussed in Appendix I) check to an
accuracy of at least four significant figures with the tabulated
values for modified Hankel functions with complex arguments compiled
by the Staff of the Computation Laboratory (1945).

We will begin our discussion of the numerical results for
specific models by considering the amplitude spectra of both
reflected and refracted waves obtained by the exact numerical
integration of the Weyl integral in the case of a flat geometry.
This will provide an opportunity to illustrate the integration paths
used in doing the numerical integration in the case of both negative
and positive velocity gradients as well as in the classical case

of a homogeneous refractor. We will then compare the results
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obtained by exact numerical integration with the asymptotic solutions
obtained in the preceding sections and finally consider the numerical
results for some sphefical earth models.

Thus, consider the flat acoustic model illustrated in Figure 12
consisting of a homogeneous half space with a velocity of 7.0 km/sec
over a half space in which the velocity is 8.0 km/sec at the boundary,
below which it may either increase or decrease with depth according
to (3.12) and with a density ratio, m, of 1.2 across the boundary.
Both the source and receiver are taken to be at a height of 30 km
above the boundary. The theoretical amplitudes of three spectral
components, 0.75, 1.0, and 1.5 Hz, are plotted as a function of
distance from the source for both reflected and refracted waves in
Figure 12. These amplitudes were computed by exact numerical
integration of the Weyl integral (3.28) as described above for three
values of the gradient parameter, v, —10—3, 0, and ~i—lO_3 km_l (see
equation 3.12). Note that by (3.12a), the corresponding physical
velocity gradients in the lower half space are %5.2 x lO—3 km/sec/km.

The ray-theoretical critical distance for this model and source-—
receiver geometry occurs at 108 km from the source as indicated by
the arrows in Figure 12. The reflected and head wave amplitudes
for the homogeneous case (y = 0) and their relation to the ray-
theoretical critical point are just as described earlier by Cerveny

(1965, 1964). In particular, note that
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1) the maximum amplitude of the reflected wave occurs at
successively larger distances from the critical point for successively
lower frequencies and not at the critical point itself,

2) the reflected wave amplitudes are frequency dependent in the
vicinity of the critical point (from about 70 km to 220 km), but
on either side of this interval the amplitudes of the three frequencies
coincide and the reflected wave can be accurately described by the
ray theoretical result (3.32),

3) beyond about 200 km the head wave amplitudes behave according

to the classical asymptotic result

2n
o

Z
ko(l~n0)m 0

0] o«

n L 3/2
Y

and

4) it is not possible to make a useful distinction between
the reflected and head wave contributors to the amplitudes from
the vicinity of the critical point out to about 200 km.

The integration paths used in doing the numerical integration
for the homogeneous case are shown in Figure 13 a and b. Here the
branch cut associated with the reflection coefficient for two

homogeneous half spaces (3.25) was chosen such that
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_ 71 Al
aﬁarg[ My = P ]<4

on the upper Riemann sheet. For this choice, the branch cut extends
into the positive imaginary half of the p-plane at a right angle

to the real axis, and the integrand on either side of the cut decays
in an exponential manner away from the branch point on the real axis.
When the saddle point (indicated by a cross on the real axis in
Figure 13) is a sufficient distance beyond the branch point
(corresponding to distances greater than 200 km in Figure 12) it

is possible to resolve the separate contributions for the head wave
(the branch cut) and the reflected wave (the saddle point) using
separate contours as shown in Figure 13a. The contributions of the
integrand near the leading and tailing end of these contours are
numerically insignificant with respect to the contributions near

the branch and saddle points. However, when the saddle point
approaches the branch point from the right, the contributions from
the tailing end of the branch cut contour and the leading edge of
the 'saddle point' contour become significant, and it is no longer
possible to make a definite distinction between the head wave and
reflected wave contributions. This situation corresponds to the
distance interval between the critical point and about 200 km in
Figure 12. 1In this case, the combined contribution is obtained by

integrating along the single contour shown in Figure 13b. When



-179-

the saddle point is to the left of the branch point, a single straight
line contour passing approximately through the saddle point at an
angle of 37/4 is sufficient to obtain the amplitude for the sub-
critical reflection.

The 'head wave' amplitudes for the three frequencies in the case
of a negative velocity gradient in the lower half-space (y = -1073km™1)
are shown as heavy solid lines in Figure 12. Note that they approach
the homogeneous head wave amplitudes as the critical point is
approached from the right and that they tend to fall off exponentially
with increasing distance as predicted by the asymptotic result (3.49).
Also note that the spread between frequencies increases with increasing
distance such that the high frequency amplitudes fall off at a more
rapid rate than the lower frequency amplitudes.

The paths for numerical integration of the Weyl integral in the
case of a negative gradient are shown in Figure 13c. As in the
homogeneous case, it is possible to separate the 'head' and reflected
wave contributions when the saddle point is a sufficient distance to
the right of the line of 'head wave' poles. In this case, the 'head
wave' contribution is obtained from the V-shaped contour including
the lines of poles. The contribution for the reflected wave is
obtained from the same contour used in the homogeneous case. Again
when the saddle point is sufficiently close to the line of

poles, the two contributions
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are not distinct, and a single contour like the one shown in Figure
13b is used to obtain the combined contributions of the poles and
the saddle point. For the frequencies and gradients we are
considering, there is not a significant numerical difference between
the amplitudes of the reflected waves in the presence of a negative
gradient and those from a homogeneous half-space.

The heavy dashed lines in Figure 12 represent the amplitudes
of the 0.75 and 1.5 Hz 'head waves' in the case of a positive
gradient in the lower half-space (y = 1073 km~1). Actually these
curves represent the envelopes of scalloped amplitude curves
generated by the interference of multiple diving waves or normal
modes set up between the boundary and the underlying positive
velocity gradient. We will consider the details of these scalloped
amplitude curves associated with the positive gradient later. Here
we only wish to point out the general characteristic of their
envelopes. In particular, note that they approach the homogeneous
head wave amplitudes as the critical distance is approached and
that they decay less rapidly with increasing distance than the
homogeneous head wave amplitudes. Also note that the high-frequency
curve (1.5 Hz) dies off less rapidly than the low frequency curve
(0.75 Hz) with increasing distance. The ray-theoretical amplitudes

of the first two diving waves for the positive gradient case are
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also plotted in Figure 12 for reference. Note that in this case,
the ray-theoretical amplitude for the direct diving wave is only
valid beyond 550 km for the 1.5 Hz wave according to the criteria
established in section 3 (see equation 3.83). The direct diving
wave amplitudes for the 0.75 Hz wave as well as the amplitudes for
the diving wave making one reflection for both 1.5 and 0.75 Hz
are valid only at distances greater than 600 km. 'Exact' amplitudes
for the diving waves were not computed beyond 300 km because the
spectrum becomes increasingly rough with distance and the computation
time goes up accordingly. These envelope and ray-theoretical
amplitude curves are qualitatively similar to those published by
Cerveny and Jansky (1966) and Cerveny (1966) for a positive gradient,
although these authors as well as Checkin (1965), who did the
original analytical work on the effects of positive gradients, do
not mention the scalloping of the amplitude curves associated with
diving wave interference.

The contours used for numerical integration in the case of
the positive gradient are shown in Figure 13d. As before, when
the saddle point is a sufficient distance from the last diving wave
pole, the diving wave and reflected wave contributions can be
numerically separated.

Having established the method for exact numerical integration

of the Weyl integral and applied it to the foregoing model, we now
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wish to see how the asymptotic analytic solutions compare with the
exact answer. For this purpose we will consider acoustic waves in

a spherical earth model composed of a crust 30 km thick with an
average velocity of 6.4 km/sec and a mantle with a velocity of

8.0 km/sec just below the M discontinuity at a radius of 6367 km.

We will take the source and receiver to be located on the 'surface'
30 km above the M-discontinuity, although as indicated earlier the
effects of a free surface are not included in these calculations.
The theoretical amplitude curves for 1.0 and 5.0 Hz waves refracted
by the M-discontinuity in the case of negative and positive velocity
gradients of 5 x 10~3 km/sec/km below the M-discontinuity are shown
in Figures 14a and 14b, respectively. The ray-theoretical critical
distances for this model is at 0.72 degrees or 80 km from the source
as indicated by the arrows in Figures l4a and b. The exact
amplitude curves for the classical head wave are plotted as a dash-
dot line in both Figures for reference.

In Figure l4a the exact theoretical amplitude curves for 1.0
and 5.0 Hz head waves refracted by a mantle with a negative gradient
are plotted as solid lines. We see that these curves have the
same relation to the exact classical head wave amplitude curves
noted in the previous example and illustrated in Figure 12. The
dashed curves associated with the two exact curves are the head

wave amplitudes predicted by the asymptotic solutions (3.46) for
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Io_{ << 1 and (3.49) for \0_| >> 1. The distances at which o_
becomes unity for frequencies of 1.0 and 5.0 Hz are also indicated
in the figure. It is evident that the asymptotic solutions for
\o_l >> 1 (3.49) is a good approximation to the exact solution for
both frequencies at distances not too far beyond the point at which
]0_‘ = 1, and that the approximation becomes very good indeed at
large distances. On the other hand, the solution for ]o_‘ << 1
(3.46) approximates the exact solution over a fairly short interval
(between about 0.8 and 1.0 degrees) at 5.0 Hz, and is not a very
useful approximation at all to the 1.0 Hz case. Evidently it is
necessary to include more terms than just the first to make the
asymptotic solution obtained by summing the poles (3.45) an adequate
approximation to the exact solution for the frequencies and gradients
considered here. For higher frequencies and smaller gradients
these asymptotic approximations improve according to the assumptions
made in deriving them,; however the approximation for lo_| << 1
keeping only the first term is probably never much better than the
asymptotic solution for the classical head wave itself.

In Figure 14b the envelopes of the scalloped amplitudes of
the interfering diving waves refracted by a mantle with a positive
gradient are plotted as solid lines (see Figure 21 for the exact

nature of the amplitude curves). The ray-theoretical amplitude of
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the diving wave is also plotted as a solid line beyond the minimum
distance for which it provides an adequate description of the 5.0 Hz
wave. At shorter distances the ray-theoretical diving wave amplitude
is plotted as a dashed line. The 'head wave' amplitudes predicted

by the asymptotic solution for IO_] << 1 (3.69) are plotted as

short dashed lines for the two frequencies 1.0 and 5.0 Hz, and the
distances at which o_ = 1 for these two frequencies are also indicated.
These curves are smooth and describe the 'head wave' at very small
distances from the critical point where the scalloping due to
interference has not yet had a chance to develop (i.e., see Figure
17). As was true in the negative gradient case, it appears that the
asymptotic solution for the 'head wave' in the case of a positive
gradient for |o+‘ << 1 is of little use when only the first term is
retained. Note that the terms involving the derivatives of f(0) in
the original Euler-Maclaurin summation formula (3.62) are oscillatory,
and as more of these terms are retained, the approximation to the
exact scalloped amplitude will improve. Note also that the amplitudes
predicted by (3.69) have approximately the same shape as the exact
envelope curves, although the predicted curves die off more rapidly
with distance than the exact envelopes. However, there is no reason
to believe that the two should have any correspondence.

We will use the same basic model of a 6.4 km/sec crust 30 km
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thick over a mantle with a 8.0 km/sec velocity immediately below
the M-discontinuity to illustrate the effects of curvature and
velocity gradients in the mantle on the spectral amplitudes of
waves reflected and refracted by the M-discontinuity. The general
relations between curvature and velocity gradients in the mantle
and their effects on critically and near-critically refracted waves
discussed at the end of section 3 are illustrated in Figure 15.
Recall in particular, that the classical head wave is generated
at the M-discontinuity when the velocity gradient beneath this
discontinuity is equal to the negative critical velocity gradient,
Ty &~ V/r, as indicated in Figure 15c. For the model we are
considering, this critical velocity gradient is -1.25 x 10~3 km/sec/
km, and we will use the classical head wave associated with this
gradient as a reference case in each of the following examples.
Recall that because of curvature, velocity gradients less negative
the critical, null, and positive velocity gradients result in an
effective positive velocity gradient as indicated in 15a and 15b,
and that velocity gradients more negative than critical result in an
effective negative velocity gradient as indicated in Figure 15d.

The theoretical amplitude curves for waves reflected and
refracted in the case of a homogeneous crust and mantle (YC = 0,
Figure 15b) for three frequencies out to a distance of 30° are shown

in Figure 16. The classical head wave amplitudes associated with
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the critical negative gradient are plotted as light dash-dotted lines
and the reflected wave amplitude is plotted as a heavy dash-dotted
line. The details of the reflected wave amplitudes near the
critical distance (A = 0.72 degrees) have been omitted. The
amplitudes of the first two diving waves (P and PP) are plotted

as solid lines with a short vertical bar indicating the minimum
distance at which the ray-theoretical description of the wave
amplitude becomes valid for the three frequencies 5.0, 1.0, and
0.5 Hz. These distances are approximately 10, 16, and 20 degrees
for 5.0, 1.0, and 0.5 Hz waves respectively for the direct diving
wave (PP). The direct waves arriving at 10, 16, and 20 degrees
from the source have their turning points at depths of 18, 52, and
82 km beneath the M-discontinuity respectively. The PP diving
wave arriving at 18 degrees has its turning points at a depth of
13 km below the M-discontinuity.

The envelopes of the amplitudes of the near-critically refracted
waves in the vicinity of the critical are plotted as heavy dashed
lines. These curves have the same general character as the envelope
curves for the positive gradient case in the flat example discussed
above. They die off less rapidly with distance than the classical
head wave amplitudes and the high frequency components gain on

the low frequency components with increasing distance. The details
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of these amplitude curves are shown in Figure 17. These theoretical
amplitudes were obtained by numerically integrating the Weyl
integral along the contour labeled D in Figure 13d. The most
significant aspects of these amplitude curves are the following:

1) At small distances beyond the critical point the amplitudes
of the waves refracted by the spherical boundary closely follow
the exact classical head wave amplitudes (the dash-dotted lines)
but have slightly higher amplitudes.

2) As the distance increases away from the critical point,
the amplitude curves become noticeably scalloped. This scalloping
increases in amplitude and decreases slightly in spatial period
with increasing distance.

3) The maxima of the scalloped curves decrease less rapidly
with distance than the classical head wave amplitudes, and the
maxima of the higher frequency components gain on the lower frequency
components with increasing distance as was indicated in describing
the envelopes of these curves above.

4) The spatial period of the scalloping decreases with
increasing frequency.

The amplitude spectra of the waves refracted by the spherical
boundary are plotted in Figure 18 for distances of 1.0 and 3.0

degrees from the source. These amplitude spectra were also
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obtained by numerically integrating the Weyl integral using the
contour, D, shown in Figure 13d. At a distance of 1.0 degree from
the source the amplitude spectrum of the refracted waves closely
follows that of the classical head wave from about 0.3 Hz up to
about 1.0 Hz. For frequencies higher than 1.0 Hz, the spectrum

of the refracted wave becomes increasingly scalloped and the maximum
amplitude of the scalloping dies off slightly less rapidly with
increasing frequency than the classical head wave spectrum. The
frequency of the scalloping also increases slightly with increasing
wave frequency, although not as strongly as is at first apparent

on this log frequency plot. At a distance of 3.0 degrees, the
spectrum of the refracted wave is already strongly scalloped at

a frequency of 0.1 Hz, and the scalloping increases in both amplitude
and frequency with increasing wave frequency. The envelope of the
scalloped spectrum has a higher amplitude and falls off noticeably
less rapidly with frequency than the inverse frequency fall-off

of the classical head wave at this distance. We will postpone a
discussion of the significance of the scalloped spectrum until the
effects of different velocity gradients have been considered;
however, it is evident that the scalloping is due to the interference
of the multiple diving waves or normal modes propagating in the

refracting medium.
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The theoretical amplitude curves for waves reflected and

refracted in the same earth model but with velocity gradients of

+5 x 1073 sec™! and +1 x 1072 sec! in the upper mantle are plotted
in Figures 19 and 20 respectively. The amplitude curves for the
head waves associatedwith the negative velocity gradients are shown
as heavy solid lines in both figures. These curves exhibit the
same general behavior found before in the case of a negative gradient;
they approach the classical head wave amplitudes in the vicinity
of the critical point and tend toward an exponential decay with
increasing distance from the critical point. The effect of the
negative gradient to increase the spread between the amplitude curves
for different frequency components with distance is quite evident

in both figures. The result is that the high frequency components
of a head wave are strongly attenuated by the negative velocity
gradient, and we can anticipate that when such waves are observed
at moderate distance beyond the critical distance, they will have

a low amplitude and low frequency character. Note that the effect
of doubling the negative velocity gradient from -5 x 1073 sec™!
(Figure 19) to -1 x 1072 gec™! (Figure 20) results in an order of
magnitude decrease in the amplitude of the 1.0 Hz wave at 5.0 degrees.
The amplitudes of the 5.0 and 0.5 Hz waves are decreased by greater
and lesser amounts, respectively. This sensitivity of the head

wave amplitudes to small differences in velocity gradients provides
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a potentially useful criteria for detecting negative velocity
gradients in major seismic refractors.

The ray-theoretical amplitudes of the first two diving waves
(the direct P and the reflected PP paths) are also plotted in
Figures 19 and 20. As before, the minimum distances at which the
ray—theoretical amplitudes become valid for the three frequency
components are indicated by short vertical bars. Comparing the
positions of these bars in Figures 19 and 20 with those plotted for
the case of a homogeneous mantle in Figure 16, we can see how
increasingly strong positive gradients serve to reduce the minimum
distance for a valid ray-theoretical description of a given frequency
component in the direct diving wave. For example, as the velocity
gradient increases from zero in the homogeneous case through
5% 1073 to 1 x 10_2, the minimum distance at which the ray-
theoretical amplitude of the 5.0 Hz diving wave reduces from
10 degrees, through 3.2 degrees to 2.2 degrees with the lower
frequency component following a similar pattern. A second effect of
an increase in the positive gradients is to increase the amplitudes
of the diving waves at a given distance. From Figures 19 and 20,
we see that a doubling of the positive gradient from 5 x 10-3 to
1 x 1072 sec™! increases the amplitudes of both the P and PP diving
waves by a factor of about 2.5 at 5 degrees.

The envelopes of the amplitudes of the interfering diving
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wave modes near the critical distance (indicated by the heavy
dashed lines in Figures 19 and 20) fall off less rapidly with
distance for increasing positive gradients. Note also that these
envelopes tend to level off at amplitudes corresponding to the
maximum ray-theoretical amplitudes for the direct diving wave.
The details of the amplitude curves for the interfering diving wave
modes near the critical distance for the case of a 5 x 1077 sec™!
gradient are shown in Figure 21. Comparing these curves with those
plotted in Figure 17 for the homogeneous mantle, we see that the
scalloping is more pronounced at a given distance and the envelopes
of the scalloped curves fall off less rapidly with distance than
for the 5 x 1073 gsec™! gradient than for the homogeneous mantle.
(Recall that the homogeneous mantle has an effective positive
gradient of 1.25 x 103 sec™! due to curvature of the M-discontinuity.)
The theoretical spectral amplitudes of the interfering diving
waves at distances of 1.0 and 3.0 degrees from the source for a
5 x 1073 sec ! gradient are plotted in Figure 22. Again, comparing
these curves with those in Figure 18 for the homogeneous mantle,
we see that the scalloping is more pronounced and the envelopes
die off less rapidly with frequency than those in the homogeneous
case. Note in particular that the envelope of the scalloped spectral
amplitude curve at 3.0 degrees is almost flat, i.e. it approaches

the spectrum of the source, which in this case is a delta function.
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At large distances where the individual diving waves are well separated
in time, we expect the spectrum of an individual diving wave to be
that of the source and be flat as well.

The amplitude spectra of the head waves from the negative

gradient -5 x 1073 sec™!

are also shown in Figure 22 (they are
plotted as heavy dash-dotted lines). Note that they are smooth

and fall off more rapidly with frequency than the inverse frequency
fall off of the classical head wave. This feature of the head-waves
from a negative gradient was alluded to above when we pointed out

the larger spread in their amplitude curves compared to the classical
head wave amplitude curves. The effect of increasingly strong
negative gradients is to increase the rate of fall-off of the head
wave spectral amplitudes with frequency as can be seen in Figures

19 and 20. This attenuation of high frequency with respect to

low frequency components by the negative velocity gradient is just

the opposite behavior one might intuitively expect if one's 'intuition'
is based primarily on a surface wave analog. In particular, it

may at first sight seem reasonable to expect the longer wave lengths
to "feel' the lower velocities at depth and to be selectively

leaked off as was suggested by Archambeau et al. (1969). On the

other hand, as was pointed out in the introduction, the problem of the
effect of a negative gradient on a critically refracted wave is

mathematically akin to a diffraction problem. Thus, if one's
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intuition happens to be based on a diffraction analog, the
theoretically predicted relative attenuation of high frequencies
would have been anticipated.

The sensitivity of the spectral-amplitude fall-off with
frequency to velocity gradients in the refracting horizon summarized
in Figure 22 provides an additional criteria for determining
velocity gradients using mnear-critical wave data. At the same time,
it is clear that these propagation effects on near-critical waves
should be recognized and taken into account in studies of source
parameters using body wave spectra.

The interpretation of the scalloped amplitude curves and
spectra of the interfering diving waves or modes associated with
the positive velocity gradient is directly related to the problem
of interpreting the spectrum of a number of wave forms spread over
an extended interval in the time domain. For this reason, the
spectral amplitude curves for the positive gradient case (including
the homogeneous case with curvature) cannot be readily interpreted
in terms of first arrival amplitudes in the range beyond a short
distance from the critical point to the minimum distance at which
the ray-theoretical description of the diving waves becomes valid.

In principle, it is possible to in some sense obtain the
spectral amplitude of the 'first arriving' energy by choosing the

contour for numerical integration such that only contributions with
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a limited range of phase velocities (or angles of incidence) are
included. In the case of the classical head wave or the head wave
from a negative gradient this is a simple matter because the dominant
contributions from the contours labeled H in Figures 13a and 13c
come from the immediate vicinity of the branch point or the end of
the line of poles, which corresponds to the angle of incidence of
the critical ray (p «,no). However, in the case of a positive
gradient, the diving wave contribution is spread out along the real
axis from p ~n to p = 0 under the line of poles (see Figure 13d),
and there is no simple criteria for judging just where a contour
should cut through the line of poles to limit the range of phase
velocities contributing to the integral. A different spectral result
is obtained depending on where the contour cuts through the line

of poles in the interval 0 < p < . This is directly analogous

to the fact that a different spectral result is obtained in the
Fourier analysis of a time series depending on where the time series
is truncated following its onset. It is because of this complication
that the frequency-domain,wave—theoretical description of waves
refracted by a medium with an effective positive gradient is not
well-suited to the study of first motion amplitudes in the region

of diving wave interference. In this case, there is clearly some
value in attempting to complete the analysis by taking the inverse

Fourier transform of the frequency-domain solution convolved with
q ¥
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a band-limited source to express the solution in the time domain.
Because the theoretical scalloped diving-wave spectral

amplitudes presented above were obtained using the contour, D,

shown in Figure 13d, contributions from all the normal modes

(poles) propagating in the lower, positive gradient medium are

included. Theseincluded modes with high phase velocities and low

group velocities that 'feel' the deeper regions of the velocity

profile. Thus, because the actual velocity profile used in obtaining

these results (3.12) deviates from the exact spherical mapping profile

(2.13) at depth, we cannot expect the details of these scalloped

amplitudes curves to correspond to those that would be obtained

for the exact exponential profile. It remains as a future task

to assess the effects of the deeper regions of the velocity profiles

on the spectral amplitude of the entire diving wave series, as well

as to obtain a time-domain representation for the first arrivals.
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6. Conclusions

The problem of waves generated at a point source and reflected
by a closed spherical boundary within which the medium is radially
heterogeneous can be expressed in terms of spherical waves reflected
from a vertically heterogeneous half space by 1) applying an earth-
flattening transformation to the radial differential equation and
2) using the Watson transform to convert the solution from a sum
over discrete mode numbers to an integral over continuous wave numbers.
Curvature enters the 'equivalent' half-space problem through an
effective velocity gradient superimposed on the original physical
velocity variation. The result is an integral expression (the Weyl
integral) containing the spherical reflection coefficient for the
radially heterogeneous medium that represents a valid solution to the
original spherical problem for high frequency waves with source and
receiver positions small distances above the boundary with respect
to the radius of the boundary. In principle, this integral
representation can be used to obtain expressions for waves reflected
by prescribed velocity distributions at arbitrary depths within the
spherical boundary. This approach is well suited to the study of
acoustic waves in fluid media and SH waves in elastic media; it
can also be used to study P-SV waves in elastic media provided a
potential representation is used that results in the high-frequency

decoupling of P- and SV-waves.
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In applying the above approach to the analysis of waves
critically refracted by a discontinuous increase in velocity at a
spherical boundary we find that in the special case of a critical
negative velocity gradient (a physical gradient equal and opposite
to the effective curvature gradient), the critically refracted wave
assumes the form of the classical head wave for a plane boundary
between two homogeneous media. Mathematically, this true head wave
arises from the contribution of a branch cut in the complex wave -
number plane associated with a radical in the reflection coefficient.
In the case of a physical velocity gradient more negative than the
critical gradient, the spectral amplitude of the resulting critically
refracted wave decays more rapidly with distance than the classical
head wave. For narrow bandwidth data, this decay cannot be
distinguished from the effect of anelasticity (Q’l) on a classical
head wave. However, the frequency dependence of the two effects
is different, and in principle, it should be possible to separate
the effects of negative gradients and anelasticity with broad band
data. Finally, in the case of physical gradients that are positive,
null, or less negative than the critical gradient, the spectral
amplitude of the near-critical waves decays less rapidly with distance
than the classical head wave. At sufficiently large distances,
or for sufficiently strong positive gradients, the refracted waves
separate into an infinite series of diving, immersed waves, the

first of which represents the direct wave (or cord wave in the case
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of a spherical boundary between two homogenecus media).
Mathematically, the near—critical waves in the case of velocity
gradients either greater or less than the critical gradient arise
from the contribution of a line of poles associated with the zeros
of the denominator of the appropriate reflection coefficient.
As the velocity gradient approaches the critical gradient from either
side, the poles move together and collapse into the classical head
wave branch cut. In the case of a moderate negative velocity
gradient, the poles spread apart and extend upward in the positive
imaginary half of the complex wave number plane at an angle of
m/3 with respect to the real axis. These poles behave very much
like the scattering poles that give rise to the diffracted wave in
the core shadow (see Nussenzveig, 1965; Richards, 1970; or Chapman,
1970). The wave number, k, enters the contribution from these poles

173

to the near-critical wave as k , which is also characteristic of
diffracted waves. Thus we find that in very real sense, the near-
critical wave associated with a velocity gradient less than the
cricital gradient is a diffraction phenomenon. When the physical
velocity gradient is greater than the critical gradient, the poles
lie just above the real wave number axis. These poles also have the
character of scattering poles, but for moderate gradients or large

distances, it is convenient for analytical reasons to expand the

reflection coefficient into a series whose terms arise from an
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infinite number of saddle points along the real axis. Each of these
saddle points gives a contribution that can be identified with the
ray path of a wave reflecting a given number of times from the bottom
of the discontinuity. Examples of such waves in the earth are given
by the phases PP...P in the upper mantle or PKK...KP in the core.
At sufficiently large distances, these diving waves can be described
quite adequately in terms of geometrical ray theory, and indeed the
ray-theoretical methods described by Bullen (1963) are generally
successful in predicting amplitudes of the direct P- and S-waves
at teleseismic distances.

Thus the true head wave in the classical sense is a fragile
thing. Its character is destroyed by small velocity gradients in
the refracting horizon as well as by slight curvature of the boundary.
Cerveny (1966) recognized this and concluded that there is no practical
sense in using head wave amplitude to determine absorption coefficients.
However, it is just the sensitivity of the near-critical wave to small
velocity gradients that makes the study of its amplitude potentially
useful for determining the fine velocity structure in the crust
and upper mantle. For example, with the prospect of broad band
digital field instruments of the type described by Burke et. al.
(1970), the outlook for using the spectral amplitudes of critically
refracted waves to separate absorption and gradients effects in the

major crust and upper mantle refractors is extremely promising.
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This is particularly true for the longer period body waves (from

5 to 20 sec), which are both less attenuated by the propagation
characteristics of critically refracted waves and less effected

by the small scale heterogeneities in the crust and upper mantle
which result in the notorious scatter in short period body wave
amplitudes. On the other hand, because of the sensitivity of the
spectral amplitudes of near-critical waves to small velocity
gradients in the major refractors, it is clear that these propagation
effects must be considered in studies of source parameters of local
earthquakes using body wave spectra as described by Thatcher and

Hanks (1971).
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Chapter 2

1. Introduction

Much of our current knowledge of crustal and upper mantle
structure is based on ray-theoretical methods of interpreting seismic
reflection and refraction data. These methods are quite adequate
in many situations, but as we attempt to extract more information
from the seismograms and consider finer details of crustal structure,
we find that in a number of important situations ray theory is
inadequate and a higher order wave theory is required.

We found in the first chapter that although the travel times
of critically refracted, or head waves are correctly predicted by
ray theory, their amplitudes are not. Furthermore, we found that
the spectral amplitudes of near-critical waves and head waves are
extremely sensitive both to small velocity gradients directly beneath
the refracting boundary and curvature along the refracting boundary.
Thus attempts at complete interpretation of seismic-refraction data must
consider both travel time and amplitudes of the various refracted
branches in light of wave-theoretical results. It is clear, for
example, that attempts to determine anelasticity (Q_l) or velocity
gradients in crustal horizons from refraction data using ray theory
can lead to serious error and must be reevaluated in terms of the

wave-theoretical results.
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The purpose of this chapter is two-fold. First we wish to consider
published amplitude data for the major refraction branches ( Pg, P* and
Pn) in terms of the effects of small velocity gradients, as developed
in Chapter 1, together with the effects of anelastic attenuation in a
preliminary attempt to determine the possible existence and distribution
of velocity gradients in the mantle 1id and well established crustal
horizons. Secondly, we wish to evaluate the plausibility of the in-
ferred velocity gradients in light of physical properties of crustal
rocks measured in the laboratory and their relation to heat flow and
geothermal gradients.

Throughout this Chapter the following convention will be adopted
for major compressional wave phases propogating in the crust and upper
mantle:

Pg - 1st arrivals critically refracted or nearly critically

refracted from the upper crystalline horizon having a
P-wave velocity of 6.0 + 0.2 km/sec.

P* - 1st arrivals critically refracted or nearly critically
refracted from an horizon of moderate depth having a
P-wave velocity of 6.8 + 0.2 km/sec.

Pn - 1lst arrivals refracted from the M-discontinuity.

P - The extension of Pg following Pn as a train of strong

secondary arrivals presumably involving multiple reflected
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waves or a guided mode of propagation in the crust.

(This follows the convention introduced by Gutenberg.)
In addition, we will make a distinction between a purely anelastic
Q, defined by

QY = (1/2m) aw/w

where W is the total elastic energy stored per unit volume per cycle,
and AW is the fraction of W dissipated per cycle, and an effective Q,
which will be designated as Q'. Under Q' we will include processes

that result in either the real or apparent attenuation (or gain)

of seismic waves regarded as propagating through perfectly elastic,
homogeneous media. Such processes include scattering by inhomogeneities
with dimensions of the order of a wavelength and velocity gradients,

as well as the anelastic Q defined above.

2. Effects of velocity gradients and anelasticity on critically

refracted waves.

The effects of small velocity gradients in the refractor and
curvature of the refractor boundary on the spectral amplitudes of
near-critical waves and head waves are summarized by equations (4.19)
through (4.23) and by Figures 13, 16, 19, and 20 in Chapter 1. If
the refracting medium has a critical negative velocity gradient
(or is homogeneous in a flat geometry) and is anelastic with a

frequency-independent Q, the asymptotic expression for the head wave
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amplitude is given by

-kL
A~A e 20 (1

where AO is the classical head-wave amplitude

1

A ®© —_—
o) K pl/2L3/2

(2)

k is the wave number, and L is the distance traveled along the
refractor as described in Chapter 1. The effect of anelasticity in
the case of a critical gradient is compared with the effects of
sub-critical gradients in Figures 23 and 24 for various frequencies
and Q's together with curves showing the exact solutions for the
effects of negative gradients obtained by the numerical integration
of the Weyl integral.

As can be seen in Figure 24, the effects on the head wave
amplitude fall-off with distance due to a Q of 300 in a homogeneous
refractor and to a lossless refractor with a negative gradient of
10__3 km_l are quite similar. 1In fact, considering the usual scatter
in amplitude data, it is not practical to attempt to distinguish
between the two effects for narrow band width spectral amplitude
data. In principle, however, spectral ratio techniques similar to
that described by Kanamori (1967) could be used to discriminate

between the two effects for data of sufficiently wide band width.

Figure 25 summarizes the effects of gradients in the refracting
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medium on head wave amplitudes found in Chapter 1. The reflected
wave amplitude, which is essentially unaffected by small gradients

in the lower medium, is shown for reference.

3. Analysis of Published Amplitude Data

A number of authors reporting on crustal and upper mantle
seismic refraction measurements include amplitude data for first
arrivals defining the major branches of the observed travel time
curves. Typically the amplitudes are obtained by measuring the
first peak-to-trough displacement on the seismogram and correcting
for instrument response to ground displacement. The dominant period
of the arrival is usually estimated as twice the time between the
first peak and trough (i.e., see Eaton, 1963). In effect, then,
we will be considering displacement amplitudes of a single spectral
component (for crustal arrivals this component is commonly about
5 Hz and for Pn arrivals it is commonly between 2 and 4 Hz), and
thus, as was noted in the preceding section, we cannot expect to
distinguish between the effects of anelasticity (Q—l) and negative
gradients using these data. In most cases the amplitude data were
taken just as published. 1In a few cases, the most distant amplitude
points were omitted when it was clear from the accompanying
discussion that these measurements were uncertain because of low
signal to noise ratios.

Layer velocities and depths were taken from interpretations
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given in the respective papers. In carrying out the analysis
described below, the velocity structure above the particular refracting
horizon of interest was replaced by single velocity representing

the average velocity structure as seen by a wave near the critical
angle of incidence. This is necessary because the theory developed
in Chapter 1 is based on a single, homogeneous 'layer' over the
refracting medium. For this purpose, the average velocity is defined
such that both the vertical travel time (i.e. the intercept time)

and the ray-theoretical critical distance of the refracted travel
time branch are conserved. According to this definition, the average
velocity of the overlying structure, Va’ is found from the following

two equations

m
TN B 2 12N B
HQL= VAR = Y oh (- VD (3)
i=1
v _/V) o V. /Y )
H a 8y - h __i_—__—n (4)

. 1
1 1 _v2 /272
(l_vi/vi)é i1 (1 Vi/vn)

where Vi = velocity in the ith layer
hi = thickness of the ith layer
Vn = velocity of the refractor, and
H = the effective thickness of the overlying structure

with velocity, Va'
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Here equation (3) expresses the conservation of vertical travel
time and (4) expresses the conservation of critical distance. Note
that in general the effective thickness, H, will differ from the

reported model thickness, -

T = E h,
1

i=1

However, in all cases, the two thicknesses differ by less than

107%. Furthermore, the method of fitting the data described below
is considerably less sensitive to small variations in layer
thickness than it is to small variations in the critical distance
(which is directly related to L in equations 1 and 2). In fact,
this is the reason for constraining the critical distance to be
constant rather than the layer thickness in the averaging process.
Equations 3 and 4 can be solved explicitly for the average velocity

and effective depth. The result is

cv: =y
va =¥ 5 1 (5)
H
L
H = [C1C2Vn ] (6)

where C; and C, are the values of the sums on the right hand sides
of equations 3 and 4, respectively.

The approach taken in analyzing these amplitude data was to
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initially regard the first arrivals as classical head waves
propagating through a refractor with a critical velocity gradient

P B = Vn/r, (or a homogeneous refractor with y = 0 in the flat
case) as illustrated in Figure 4, and to attribute any systematic
deviation of their amplitudes from this ideal case to an effective
Q(Q"). The Q' for each set of arrivals was obtained by fitting

the following form of equation (1) through the appropriate amplitude

(A) vs distance (p) data

b -aL

A=me (7)

Here o and b are adjustable parameters with

o = (8)

where f = frequency and Vn = the P-wave velocity of the refracting
horizon. The actual fit was made by taking the log of equation (7)
and using a standard least—-squares estimation of nonlinear
parameters algorithm (Share program #3094).

Using the effects summarized in Figure 25 as a guide, the
results of this process are interpreted in the following manner:

1) A negative Q' implies a gradient greater than critical
g P g
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(Yi = - Vn/r sec 1) in the refractor. A negative anelastic Q

is not physically possible in a passive system such as the earth,
but as indicated in Figure 25, velocity gradients greater than
critical in the refracting horizon results in an effective increase
in amplitudes with respect to the critical case.

2) |Q'| > 1000 implies a near critical velocity gradient in
the refractor, depending on the degree of true anelasticity (Q_l)
in the refractor.

3) 0> Q' < 1000 implies a) velocity gradient less than
critical, b) a moderate to high anelasticity (Q_l), or c) scattering
by relief on the refractor.

In the above interpretations of Q', we have ignored the effects
of possible lateral velocity variations within the refracting
horizon. Of course, this effect can potentially have a strong
influence on body wave amplitudes and Q' as we are using it here.
But in most cases both the data and existing theory are inadequate
to take it into proper account. We will also ignore the effect
of a dipping refractor. It can be shown that small dips have only
a very minor effect on the fall-off of head wave amplitudes, and
we will not consider data from profiles in which the layers appear
to be strongly dipping.

The theoretical results summarized above have been applied to
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the data for which 0 < Q' < 1000 in an attempt to estimate maximum
negative gradients in the respective refracting horizons. Because
of the problems involved in interpreting the theoretical spectral
amplitudes of the interfering diving waves in terms of first arrival
amplitudes as discussed in Section 5 of Chapter 1, we will make only
a qualitative evaluation of gradients greater than critical using
the data considered here.

In attempting a quantitative evaluation of gradients less
than critical, it turns out that in most cases the asymptotic
expression for head wave amplitudes for IO_’ << 1 or |0_| > 1
(i.e. see equations 3.46 and 3.49 in Chapter 1) cannot be used to
obtain uniformly valid fits over the entire distance range covered
by the data sets. This situation arises because the parameter
o_ becomes unity at an intermediate distance in the data sets as
is illustrated in Figure 23. To handle these cases, an empirical
corresponding was established between gradients and Q''s by fitting
equation (7) through points obtained from numerical integration of
the Weyl integral for a number of gradients. The resulting
empirical curve relating Q' and negative gradients is shown in
Figure 26 as a straight line fitted through these points in a
least-squares sense on a log-log plot. The values of the gradient

obtained from this empirical curve are within 157% of values that would
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be obtained if theoretical amplitude curves based on numerical
integration of the Weyl integral had been fitted to the data. Attempts
to determine the gradient directly by fitting the asymptotic
expression for Io_l >> 1 (3.49) through selected data sets are
indicated by crosses, and as can be seen in the figure, the

results differ from the empirical curve by as much as a factor of

two for low Q' values.

Crustal amplitude data - The majority of the data used in this

analysis of crustal data are first arrival amplitudes of the Pg
branch. This branch is generally well recorded in the distance
interval 5 km to 10 km from the shot point out to 100 km or more.
The 6.0 * 0.2 km/sec Pg refracting horizon is commonly found at
depths of 0.5 km to 4 km and is overlain by material with P-wave
velocities ranging between 2 km and 4 km/sec. Exceptions to this are:
1) The San Francisco to Fallon amplitude data presented here
are for the 5.36 km/sec 'Pg' branch recorded between 20 km to 100 km
east of San Francisco (Eaton, 1963). 'Pg' velocities of 5.6 km/sec
or lower are common in central California east of the San Andreas
fault and are presumably representative of the Franciscan basement.
2) The amplitude data for the Snake River Plain (Hill and
Pakiser, 1966), Lake Superior (0'Brien, 1968) and Mississippi

(Warren et al., 1966) are from the P* branch refracted from an
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intermediate layer (6.8 * 0.2 km/sec) at depths between 10 km and
16 km.

Figures 27 through 31 are plots of the crustal amplitude data
used in this ¢udy showing the fit for Q' according to equations
(1) and (8) for each data set. The results of the analysis of these
data in terms of Q' and velocity gradients are summarized in Table 1
and Figure 32.

The scatter typical in crustal body wave amplitude data is
evident in Figures 27-31. A measure of this scatter is given by
the standard error for Q_l in Table 1. From this table, we see
that the standard error is at best one-tenth of Q'_l, and that in
about 207% of the cases it is actually larger than Q'—l. Thus,
although arguments based on the results for any single profile
cannot carry much weight, consistent trends between profiles within
a given region are regarded as significant.

The most obvious trend in the results is that the bulk of the
Pg data in the Basin and Range Province have a Q' less than 1000,
while most of the data elsewhere have a Q' that is either greater
than 1000 or negative. Hence, according to our criteria for
interpreting Q', the Pg refractor (the upper part of the crystalline
crust) may have slight negative velocity gradients in the Basin and
Range Province, while the gradient is either nearly critical or

slightly positive elsewhere.
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The results for the two P* data sets show a Q' of 337 for the
Snake River Plain, 32,000 for Lake Superior, and -382 for Mississippi.
Again, this may be interpreted as a possible negative gradient

(-4.5 x 10"5

sec—l) in the upper part of the 6.7 km/sec refractor
under the Snake River Plain and a null or slightly positive gradient
under Lake Superior and Mississippi.

An interesting exception to the generally high or negative Q'
values found for California is provided by the Pg amplitude data
along the profile southeast from San Juan in the Gabilan range
described in a preliminary report by Stewart (1968). The Pg branch
from 3.5 km to 40 km southeast of the San Juan shot point has an
apparent velocity of 6.06 km/sec and a slightly negative Q'.

Between 40 km and 75 km southeast of the shot point the first
arrivals define an apparent velocity of 6.35 km/sec. The amplitudes
of these first arrivals fall off quite rapidly with distance giving
a Q" of only 54. If these results are treated in a straightforward
manner assuming horizontal layers and using the Q'-gradient relation
described above, we would expect a slight positive velocity gradient
beneath the 6.06 km/sec refractor and a negative gradient of 2 x lO-2
km/sec/km beneath the 6.35 km/sec refractor.

The values of Q' determined in this paper for first arrival

crustal body waves tend to average somewhat higher than the values

of crustal Q determined by Sutton et al. (1967) and Press (1964),
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using Pg (ﬁ'according to the convention used in this paper) and Lg
amplitudes. They report values of Q generally less than 500 in
the western U. S. and greater than 500 in the east. The maximum
value in the eastern U.S. reported by Sutton et al. (1967) is 1000.
P and Lg are both presumed to be guided waves involving most of the
crust, and thus Q determined from these phases represents minimum
averages for the entire crust. The values are minimum estimates
because the effects of mode leakage and scattering have been
neglected. Most of the propagation paths studied by these authors
cross one or more geologic province boundaries, and such boundaries
can have a severe scattering effect on P (and presumably Lg as well).
Thus we might expect that the true anelastic Q of the crust
(particularly in the western U.S., where province boundaries tend
to be relatively close together) is actually significantly higher
than reported in these papers. In fact, Clowes and Kanasewich
(1970) report Q values for the lower crust in southern Alberta
of 1500 based on the spectral analysis of deep crustal reflections.
However, it should be realized that if the Q values reported
by Sutton et al. (1967) and Press (1964) for the western U.S. do
represent the actual anelastic Q of the crust, the somewhat higher
Q' values found in this paper for the Basin and Range Province
would imply slightly positive velocity gradients for the crystalline

crust of this province as well.
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In Figure 32 contours have been drawn which roughly separate
regions having Q' values greater than 1000 (or negative values)
from the region having Q' values less than 1000. Considering the
scatter in the amplitude data, the 1000 Q' contour corresponds
remarkably well with the 2.0 HFU contours presented by Archambeau
et al. (1968) (Figure 32), or Roy et al. (1970) (Figure 33). The
low Q' values (and possible negative velocity gradients) in the
Basin and Range and Snake River Plain fall in the high heat flow
province (q > 2 upcal/cm?/sec), while the higher Q' values (and
positive velocity gradients) fall in the low heat flow provinces
(q < 2 pcal/cm?/sec). Correlations also hold for other geophysical
parameters characteristic of the heat flow provinces. For example,
low Q' values are generally associated with low Pn velocities and
lower average crustal velocities in the Basin and Range, while high
or negative Q' values are associated with high Pn velocities and
higher average crustal velocities in the eastern U.S. and the

California coast (see Pakiser and Steinhart, 1964).

Pn amplitude data - A considerable body of Pn amplitude data

has been reported in the literature based on recordings of both
high-energy chemical explosions and nuclear events. In this study
of Pn first motion amplitudes, we will limit our consideration
primarily to data recorded from nuclear events. First arrivals

from nuclear explosions are commonly well recorded to distances
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beyond 500 km, and we can be reasonably assured that the amplitude
measurements based on these arrivals are significant. On the other
hand, Pn arrivals from chemical explosions are generally not reliably
recorded at distances much beyond 300 km, and the first motion of the
arrivals is commonly near the noise level at even smaller distances.
A singular exception to this is provided by the EARLY RISE series
of chemical explosions detonated in Lake Superior in 1966 (Iyer,
et al., 1969). First arrivals from these explosions were well
recorced to distances of 2000 km and beyond, and we will include
some of these data recorded in the central and eastern United
States in this analysis. We will also include one set of oceanic
Pn amplitude data from a profile described by Helmberger and Morris
(1969) over the proposed Mohole site northeast of the Hawaiian
Islands.

Figures 34 through 37 are plots of the Pn amplitude data used
in this study showing the fit for Q' according to equations (7)
and (8) for each data set. The results of the analysis of these
data in terms of Q' and velocity gradients are summarized in Table 2
and Figure 38.

Referring to Figures 34-37, we see that there is considerable
scatter in the Pn amplitude data. As was true for the crustal

amplitude data, the standard error for the Pn data is at best
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one—-tenth of (Q')—l as shown in Table 2. However, in this case the
standard error values are all less than the (Q')--l (with the single
exception of the NTS-Boise data, in which case the standard error
is slightly larger than (Q')_l) suggesting that the Pn amplitudes
are,in general,better behaved than the crustal data. Nevertheless,
we still cannot place much weight on the results for any given
profile, but must look for trends in the data common to a given
region.

As can be seen in Figure 38, there is a consistent and marked
difference in the Q' values between the profiles radiating from
Lake Superior and the EARLY RISE events in the eastern United States
and the profiles in the western United States associated with various
nuclear events. The Q' values for the EARLY RISE profiles are
consistently less than -600 indicating an appreciable gain of the
observed data with respect to the classical head wave amplitude with
distance. This relative gain can be clearly seen in Figures 36a-36d;
here all of the data points lie distinctly above the dashed line
defining the classical head wave amplitude. On the other hand, the
Q' values associated with profiles in the western United States are
positive (indicating a slight amplitude loss with distance). The
relation of these data with respect to the reference head wave
amplitudes are illustrated in Figures 34 and 35. The Q' value

associated with the oceanic profile is -1200, and as shown in Figure
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36, the least-squares fit though the data falls off slightly less
rapidly with distance than the classical head wave.

Simply on the basis that clear P-wave arrivals were recorded out
to distances of 2000 km from 10,000 pound chemical explosions in Lake
Superior, it seems evident that the P-wave velocity in the upper
mantle under much of eastern North America must increase in some
manner with depth to focus much of the initially downward radiated
energy back to the surface. In fact, published velocity structures
based on the EARLY RISE data are composed almost entirely of positive
velocity gradients and abrupt increases in velocity with only minor
velocity reversals. (See Julian, 1970; Iyer et al., 1969; Green
and Hales, 1968, and Lewis and Meyer, 1968.) Most of these studies
are based on an inversion of travel-time data with only a qualitative
reference to amplitudes. However, Julian (1970) considered the
absolute amplitude data using a quantitative estimate of the EARLY
RISE source function together with a first-order ray theory. He
concluded that positive velocity gradients on the order of at least
o d 10_3 sec—l are required in the upper mantle to explain the
large amplitudes of the observed data.

According to the ray-theoretical asymptotic solution for diving
waves in a spherical earth developed in Chapter 1, first-order
ray theory should provide an adequate description of first arrival

amplitudes of 2 Hz waves (the dominant frequency of the EARLY RISE



-253-

source) propagating through a mantle with a 2 x lO_3 sec_l gradient
beyond about 600 km. Julian's analysis included data beyond this
distance, and his results should be valid in this respect.
Comparison of the general trend in the EARLY RISE amplitude
data and its relation to the classical head wave amplitude curves
in Figures 36a-36d with the theoretical amplitude curves for
diving waves in a spherical earth in Figures 19 and 20, shows that
velocity gradients on the order of 5 x lO_3 sec“l in the mantle 1lid
beneath the eastern United States are quite reasonable. However,
on the basis of this rather cursory treatment of the data, we can
only say that the velocity beneath the M discontinuity increases

in some average way at a rate on the order of 2 x lO_3 to 5 x 10_5

sec , and not necessarily in a smooth continuous gradient.

It has been recognized for some time that Pn amplitudes
recorded in the western United States from nuclear events decay
more rapidly with distance than predicted by classical body wave
theory. Reported Pn amplitude decays proportional to A3 are well
established in the literature (see Romny, 1959; Ryall and Stuart,
1963; and Hill and Pakiser, 1966; for examples). Here we note
that at large distances from the critical point, the classical

head wave amplitude decays approximately as A™2. This relative

decay of observed Pn amplitudes with respect to the classical head
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wave is generally confirmed by the data presented in Figures 35
and 36a-36d. On the basis of the criteria for interpreting Q'
values established earlier, we conclude that velocity gradients
more negative than the critical gradient may be characteristic

of the mantle 1lid in the western United States. According to the
empirical relation between Q' and y in Figure 26, these gradients
could be as low as -6.8 x 10"3 sec—l east of the SHOAL event (near
Fallon, Nevada) and southeast of NTS (the LOGAN-BLANCA profiles).
The NTS-Boise profile has a Q' of -1558, suggesting a small
effective positive gradient, or a nearly homogeneous mantle. The
data recorded to the east and to the west of the GNOME event in
southeastern New Mexico (Romny, et al., 1962) have Q' values

of 898 and 647 suggesting subcritical gradients of -2.7 x lO_3 and
-3.5 x lO_3 sec_l, respectively. These results are summarized

in Table 1.

The BILBY Pn data summarized in Figure 34c and represented by
the long dashed line in Figure 38 are taken from Archambeau et al.
(1969). The data points represent the Fourier spectral amplitudes
of the Pn arrival at 0.45, 1.0, and 1.5 Hz recorded on LRSM stations
along two profiles extending roughly northwest and southeast from
NTS. The data extend to nearly 2000 km from the source at NTS,

although Pn becomes a second arrival beyond about 1000 km. Where

it occurs as a second arrival, the Pn phase was identified using
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a non-linear polarization filter (Archambeau, et al, 1969). Because
these data are combined from two azimuths and cover such a large
distance range (each profile crosses several geologic provinces),
they can be regarded as sampling the mantle lid under the west-
central section of the United States in some average sense.
Considering the scatter in the spectral amplitude points, it is
somewhat surprising that the least-square fits to each frequency
have the close relationship to each other and to the classical

head wave curves shown in Figure 34c. Note that the least-square
curves have essentially the same separation as the classical head
wave amplitude curves but that they fall off somewhat less rapidly
with distance than the reference curves. Comparing these curves
with the theoretical amplitude curves for a homogeneous crust and
upper mantle in Figure 16 (which is based on a structure very similar
to that obtained by Archambeau et al., 1969, using the BILBY data),
we see that the difference between the observed amplitudes and the
classical head wave amplitude in Figure 34a is somewhat less than
the predicted difference between the classical head wave and the
direct diving wave at distances between 1500 and 2000 km (13 to

18 degrees) in Figure 16. Accordingly, we can interpret these data
as suggesting that, on the average, the mantle 1lid under the west-
central United States has a slight negative velocity gradient.

This gradient cannot be as negative as the critical gradient
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(-1.2 x 10—3 sec—l) and is probably at most a null gradient
(depending on the physical Q in the 1id). This is consistent with
the result obtained by Archambeau et al. (1969). Using a ray-
theoretical analysis of these amplitude data, they conclude that
the mantle 1lid has a negative velocity gradient on the order of
ol w 107 s

The Q' values associated with the profiles described above are
plotted on a map of the United States in Figure 38 together with
contours showing the distribution of heat flow according to Roy
et al (1971) and Pn velocities according to Pakiser and Steinhart
(1964). It is evident from this map that positive Q values (and
possible negative velocity gradients) correlate with the high heat
flow (greater than 2.0 HFU) and low Pn velocities (less than 8.0
km/sec) associated with the tectonically active western United States.
On the other hand, the small, negative Q' values (positive velocity
gradients) are confined to the stable eastern United States where
the heat flow is normal or low (less than 1.0 HFU) and the Pn

velocities are 8.0 km/sec or greater.

4, Velocity and Geothermal Gradients

The correlation of the low Q' values found for both crustal

and Pn amplitude data with the high heat-flow, tectonically active
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western United States may be due to a combination of any of the
following factors:

(1) Scattering may be a more important factor in the tectonic
provinces than in the stable, relatively unfaulted eastern crust.
The major fault blocks in the Basin and Range, for example, have
characteristic widths of 25 km to 50 km. The Pg crustal phase is
normally recorded as a first arrival out to distances of 100 km
and thus we might expect to see the effects of these major faults
as rather abrupt changes in Pg amplitudes at discrete distances
rather than the more nearly random scatter typically observed
for the Basin and Range Pg amplitudes. Of course, smaller, more
closely spaced faults could effectively produce the observed low
Q' values and cannot be ruled out. The relief on the M-discontinuity
inferred by Hill and Pakiser (1966) from Pn time delays on the NTS
Boise profile would certainly effect the observed Pn amplitudes,
and no doubt some of the scatter in the amplitude data can be
attributed to such effects. In the case of negative or near critical
velocity gradients in the mantle 1id, relief on the M-discontinuity
would serve to decrease the observed Q' values by scattering the
head wave. However, in the case of a positive gradient in the
mantle 1id, the principle effect of such relief would be to focus

and defocus the emerging diving waves resulting in peaks and troughs
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in the amplitude data but not a net decrease in the average level

of the amplitudes with distance. Thus, although we may attribute

the Pn low Q' values in the west more to relief on the M-discontinuity
than to negative gradients in the mantle 1id, it is unlikely that

the mantle 1id has a significant positive gradient.

(2) A temperature dependent anelastic Q may also explain the
observed correlation of low Q' and high heat flow. According to
geotherms published by Roy et al. (1968) and Lachenbruch (1970),
the temperaturein the Basin and Range is higher by 30° to 50°C
at depths of 3 to 5 km and about 300°C at the base of the crust
than temperatures at equivalent depths under the eastern United
States. Q shows a strong temperature dependence at high pressures
for many materials (Jackson and Anderson, 1970), but the appropriate
measurements have not been made on rocks at temperatures and pressures
typical of the crust and mantle 1lid, nor has a likely mechanism
been proposed. Thus a temperature-dependent Q remains a possible,
but presently inaccessible factor.

(3) Finally, we consider the possibility that temperature is
a dominant factor controlling velocity gradients in major refracting
horizons in the crust and upper mantle and that the low Q' values
in the western high heat flow province are primarily due to negative

velocity gradients associated with high geothermal gradients. The
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velocity gradient in a rock of homogeneous composition and structure

is related to pressure and temperature effects according to

dv AY AY
P _p}) g {_2p}) 4 (9)
dz oP dz 9T dz
gl P
: : dp dT : ;
where z is a depth coordinate, — and — are the lithostatic and
dz dz 3V 3V
geothermal gradients respectively, and EER T and 552- p are

obtained from laboratory measurements on the variation of P-wave
velocities (Vp) due to pressure and temperature.

The temperature curves published by Roy et al. (1968) for their
heat flow provinces indicate that crustal geothermal gradients in the
Basin and Range and eastern United States are about 30°/km and 15°/km,
respectively. According to the temperature curves published by
Lachenbruch (1970) and to recent work on the systematic inversion of
temperature data for geothermal structure by Minster and Archambeau
(1970), the crustal gradient may be as high as 40°/km and 20°/km for
the Basin and Range and eastern United States. According to these
same workers, geothermal gradients in the mantle lid are about 20°/km
and 10°/km under the Basin and Range and eastern United States, respec-
tively, although these values are less certain from those in the crust.

Lithostatic gradients in the crust are essentially determined
by local density and should be about 0.27 kb/km in the crystalline

"granitic" crust, 0.3 kb/km in the more basic "intermediate" layer,
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and 0.33 kb/km in the mantle 1lid.
Hughes and Maurette (1956) have measured variations in both
compressional and shear waves in granites for crustal temperatures

oV
and pressures. From their data we can estimate values for ——R) p

- oT
and 552- T at pressure-temperature conditions approximate for the

upper part of the crystalline crust, which we will take to be 1 kb
EAY
and 100°C. At 1 kb the average of -2 p is approximately

oT
9.0 x lO_4 km/sec/C°, using the data for the  granites published
by Hughes and Maurette (1956) or the curves given by Press and
Biehler (1964) based on these data.

EAY
Extrapolation of values for ——R>,T1neasured in the laboratory

oP
to actual conditions in the upper crust involves some difficulties.
Velocities of samples measured in the laboratory rise rapidly with
increasing pressures up to about 1 kb as cracks and open spaces in
the sample are closed. Beyond 1 kb the velocity increases with
pressure much more slowly. Presumably rocks that have been in place
at pressures in the order of 0.5 to 1 kb for geologic time periods
have had any original cracks or open spaces closed by non-elastic
flow or creep processes so that the high pressure derivatives
measured in laboratory samples in this pressure range are considerably
higher than values that would be measured in situ. Furthermore,

Nur and Simmons (1969) have shown that at pressures less than 1 kb,

P-wave velocities are significantly higher in water-saturated samples
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than in dry samples and that the knee in the pressure-velocity curve
is shifted to lower pressures. Accordingly variations in P-wave

velocities on the high pressure side of the knee (between 1 and

Y
2 kb) were used to estimate 5§E~ T from Hughes and Maurette's data.
v
The average results for three granites at 100°C gives (-a#1>qgv0.07 kb/km.

When these values are put into equation (9), we obtain

dv -0.008 km/sec/km under the Basin and Range
dz 0.005 km/sec/km under the eastern U. S.

which indicates that it is reasonable to expect negative velocity
gradients in the upper part of the crystalline crust in the high
heat flow Basin and Range Province and small positive gradients in
the normal eastern United States in accord with our interpretation
of Pg Q' values in terms of velocity gradients.
A similar calculation using data published by Hughes and

Maurette (1957) for basic igneous rocks gives the following result
for velocity gradients at the top of the intermediate layer under

the Snake River Plain, Lake Superior, and Mississippi.

dav -0.016 km/sec/km under Snake River Plain
dz -0.003 km/sec/km under Lake Superior

In this calculation the partial derivatives for pressure and

temperature were evaluated at 3 kb and 200°C and geothermal gradients
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of 30°C/km were assumed for the Snake River Plain and 15°C/km

for Lake Superior and Mississippi. In fact, it turns out that at
depths much below 5 km, the pressure partials are quite small, and
for any reasonable geothermal gradients it is difficult to avoid
negative velocity gradients in chemically homogeneous horizons

in the lower crust and upper mantle using Hughes and Maurette's
data.

The analogous calculation for velocity gradients expected in
the mantle 1lid under the western tectonic provinces and the stable
eastern provinces is based on pressure and temperature data for
olivine (forsterite) reported by Anderson and Sammis (1970). The

pertinent values are

aV 3
352 10.3 x 10~ km/sec/kb
298°K

oV 4
_P -4,1 x 10" km/sec/°K 3
oT

1 bar

which when put in equation (9) together with the geothermal gradients

appropriate for the mantle 1id mentioned above yield

dv -4.8 x ]_O-_3 sec—-l under the western United States

-0.7 x 10_3 s‘.ec—1 under the eastern United States
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However, the partial derivative data used in this calculation were
measured at room temperature and pressure instead of at upper mantle
temperatures and pressures (Anderson et al., 1968). Correction of
the partial derivative data to the appropriate P-T conditions would
serve to increase the magnitude of the temperature partial with
respect to the pressure partial (Sammis, 1971), and the proper
velocity gradients are probably somewhat more negative than those
obtained above. Thus, again, it is difficult to avoid negative
velocity gradients in a mantle 1id of uniform composition assuming
reasonable geothermal gradients.

In computing velocity gradients by equation (9), we are taking
the difference between two small relatively uncertain quantities;
thus the above should be taken as plausibility arguments. As was
indicated earlier, the geothermal gradients could be as high as
40°/km and 20°/km in the crust under the Basin and Range and eastern
United States, which would result in negative velocity gradients in
both regions. On the other hand, Birch's velocity-temperature
measurements (Birch, 1958) give temperature partial derivatives
nearly an order of magnitude smaller than those of Hughes and Maurette,
which would result in positive velocity gradients everywhere.
(However, Hughes and Maurette's values seem to be more in line
with recent measurements on single crystals and powdered ceramics —

see Anderson and Sammis (1970)). Finally, we note that if a given
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refracting horizon has a vertical variation in composition, C, a

A%
term SEE %% must be added to equation (7), which could change

the sign of a velocity gradient computed assuming homogeneity.

Conclusions

The amplitude spectra of critically refracted waves (head waves)
are sensitive to small velocity gradients in the refracting horizon,
and in principle, the analysis of amplitudes of these waves provides
a direct method for determining either negative or positive velocity
gradients in crustal and upper mantle refracting horizons. However,
for narrow band width data it is not possible to distinguish between
the effects of small negative velocity gradients and anelasticity
(Q) or scattering. In this case it is only possible to estimate
maximum negative velocity gradients from the effective Q(Q') of the
amplitude data, which is a measure of the decay or gain with distance
of observed amplitudes with respect to theoretical amplitudes for
head waves refracted from critical velocity gradients in a spherical
earth (or a homogeneous medium in a flat earth).

Q' values computed for critically refracted first arrival Pg,
P*, and Pn amplitudes recorded in the continental United States
show an inverse correlation with heat flow. Crustal Q' values in

the eastern United States and west coast normal heat flow provinces
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are greater than 1000 or negative, which according to theoretical
results on the effects of small gradients on head wave amplitudes
implies critical, null, or small positive velbcity gradients for
the upper portions of the crystalline crust (''granitic layer'")
and intermediate layer in these regions. Crustal Q' values in the
Basin and Range high heat flow province, which probably includes
the Snake River Plain, are generally less than 1000. Similarly,
Q' values for Pn amplitudes are small and negative in the stable
eastern United States and predominantly positive in the tectonically
active western United States. The positive Q' values common
to the western United States may be due to

1) scattering of the critically refracted waves by relief
on the refractor associated with major crustal faulting (as in
the Basin and Range province),

2) a temperature dependent anelastic Q,

3) negative velocity gradients in the major crustal and upper
mantle horizons associated with high geothermal gradients.

Available information is insufficient to quantitatively assess
effects of the first two, and they remain as possible contributing
factors. The third factor can be assessed quantitatively and is
found to be consistent with the observed Q' - heat flow correlation.

The values of Q' found for Basin and Range Pg amplitudes can be
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interpreted as being due to negative velocity gradients of the order
of 1 % lO_2 km/sec/km in at least the upper section of the crystalline
crust (the 6.0 km/sec "granitic" horizon). Heat flow work suggests
that the crustal geothermal gradients in the Basin and Range heat
flow province is 30°/km or possibly somewhat higher. This gradient
combined with partial derivatives of P-wave velocities in granites
with respect to pressure and temperature measured in the laboratory
suggests negative velocity gradients in the upper crystalline crust
of about 0.8 x 10_2 km/sec/km under the Basin and Range. The lower
geothermal gradients (about 15°/km) associated with the normal heat
flow province combined with the same partial derivative data suggest
positive velocity gradients of about 0.5 x 10_—2 km/sec/km in the
upper crystalline crust. Thus velocity gradients in the upper

part of the crystalline crust (Pg refractor) determined from Pg
amplitudes and geothermal gradients agree reasonably well in the
Basin and Range and eastern United States - west coast heat flow
provinces.

Similar calculations assuming geothermal gradients of 30°/km
under the Snake River Plain and 15°/km under Lake Superior and
Mississippi suggests negative velocity gradients of 1.6 x lO—2
km/sec/km in the intermediate layer under the Snake River Plain,

0+.3 = 10—2 km/sec/km under Lake Superior and Mississippi. These
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velocity gradients are more negative than those implied by the Q'
values obtained from the P* amplitude data. If we take this result
at face value, then a compositional gradient (e.g. increasing mafic
content with depth) is required in the upper part of the intermediate
layer to bring the velocity gradient estimated from the geothermal
gradient in line with that estimated from Q'. However, neither the
amplitude nor the thermal data are of sufficient accuracy for this
conclusion to warrant much confidence.

On the basis of laboratory measurements of pressure and
temperature partials for olivine and inferred geothermal gradients
at the base of the crust of 10°C/km under the stable eastern province,
and 20°C/km under the tectonic western provinces, it appears that
velocity gradients in the mantle 1id are in the neighborhood of
=08 x lO—3 sec_l in the eastern provinces, and -4.7 x 10_3 sec_l
in the western provinces. Negative velocity gradients of this order
are consistent with Q' values for Pn in the western tectonic provinces,
and it is reasonable to expect that at least part of the relative
attenuation of Pn amplitudes in these provinces is due to negative
velocity gradients in an essentially homogeneous mantle lid. On
the other hand, the positive velocity gradients in the mantle 1lid

under the eastern United States required by the high Pn amplitudes

are difficult to reconcile with the data from laboratory physical
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property measurements and geothermal gradients for a 1lid of uniform
composition. If we accept Julian's (1970) estimate for velocity
gradients in the upper mantle under the eastern United States of

2 x lO—3 sec—1 and the pressure and temperature partials for olivine
given above, then by (%) we would require a geothermal gradient of
3.5°C/km or less in a mantle 1id of uniform composition. By all
estimates this is too low, and we conclude that the mantle 1id under
the eastern United States very likely has a compositional gradient
of some sort to counter the effect of the geothermal gradient on

the velocity gradient. It remains to be seen whether such a gradient
can be attributed to a systematic change in basic mineralogy with
depth or to a temperature-dependent dehydration reaction as in the
case of serpentine.

The positive velocity gradient for the mantle 1id implied by
the negative Q' for Hawaii (Mohole site) oceanic Pn amplitudes
occurs in a region of normal oceanic heat flow (Sclater and Corry,
1967). Assuming a uniform mantle 1lid and using the pressure and
temperature partials given by Anderson and Sammis (1970) for olivine,
the geothermal gradient in the mantle 1id under the Mohole site must
be less than 8°C/km to give a positive velocity gradient. Again, a
compositional gradient in the mantle 1id is required to give a
positive velocity gradient if the geothermal gradient is greater

than 8°C/km, and evidently the oceanic geothermal gradient may be
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as high as 20°C/km (Slater and Francheteau, 1970).

Thus on the basis of Pg amplitudes and thermal data, we
conclude that a slight P-wave low velocity zone may exist in the
upper crystalline crust in the Basin and Range high heat flow province
and that such zones are unlikely in the eastern United States and
west coast normal heat flow provinces. In the Basin and Range
Province the crustal low velocity zone would have the form of a
gradual decrease in velocity from the top of the crystalline crust
downward (at a maximum rate of about 1 x 10_2 km/sec/km) and would
terminate more or less abruptly at the top of the intermediate
layer. An abrupt, pronounced crustal low velocity zone at depths
of about 10 km of the type proposed by Muller and Landisman (1966)
could be present but would be difficult to detect using the data
and methods described in this paper.

Similarly, the mantle 1id under the tectonically active western
United States may have a slight negative velocity gradient, but
the Pn amplitude data require a positive velocity gradient for the
mantle 1id under the stable, eastern United States. A systematic
change in composition with depth is required in the eastern mantle
1id on the basis of laboratory physical-properties measurements and

anticipated geothermal gradients.
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Chapter 3

1. Introduction

The massive Miocene basalt fields of the Columbia Plateau in
eastern Washington and Oregon hold an intriguing but poorly understood
relation to the development of western North America in terms of
recently advanced ideas in plate tectonics (Atwater, 1970). Surprisingly,
very little is known about the deep crustal and upper mantle structure
of this important tectonic unit. An opportunity to obtain some
deep seismic-refraction data in the Columbia Plateau was provided
by the series of high-energy chemical explosions detonated in
Greenbush Lake, British Columbia, by the Dominion Observatory of
Canada under project EDZOE. This chapter is a summary of the results
obtained by recording these shots along a profile directly south
across the Columbia Plateau from the Canadian border into central
Oregon.

The location of the Columbia Plateau and its relation to major
geologic units in the Pacific Northwest is shown in Figure 39. An
excellent summary of the general geologic and tectonic setting of
the Columbia Plateau is given by Waters (1962). The Columbia
Plateau is one of the largest flood basalt provinces in the world.

It is composed of massive tholeiitic basalt flows of Miocene and
early Pliocene age (the Columbia River basalts). On the west, it

is bounded by the more recent andesitic volcanoes of the High
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Cascades, and to the south it is separated from the high-~alumina
basalt fields of eastern Oregon by the Blue Mountain uplift. The
Columbia River basalts lap against the Cretaceous Idaho Batholith to
the east and Paleczoic granitic and metamorphic terrain to the north
and northeast. A direct connection is made to the related Pliocene-
Pleistocene basalt flows of the western Snake River Plain at the
southeastern corner of the Plateau between the Blue Mountains and
the Idaho Batholith. Potassium-Argon dating put the age of the
Columbia River basalts somewhere between 12 and 16 m.y. (Swanson,
1967).

Published models of the crustal structure in the Pacific Northwest
(Washington and Oregon) are based largely on regional studies of
body wave travel-times from local earthquakes (Dehlinger, Chiburis,
and Collver, 1965; and Dehlinger, Couch, and Gemperle, 1968) and
surface wave phase velocities (Chiburis, 1966). These studies
suggest that the crust east of the Cascades is about 40 km thick
and that the P-wave velocity in the mantle just below the M-
discontinuity is 7.9 km/sec. Johnson and Couch (1970) obtained
data from the series of EDZOE explosions along two profiles that
cut diagonally across the Cascades to the northwest of the Columbia
Plateau. They conclude that the crust thins from about 35 km thick

near Revelstoke, B.C. (adjacent to the EDZOE shot point) to between
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25 and 30 km under the Cascades, and that the Cascades lack a
significant root. In making their interpretation of these data,
Johnson and Couch (1970) assume an upper mantle P-wave velocity
of 7.96 km/sec based primarily on the earlier work of Dehlinger
et al. (1965, 1968).

Some relatively detailed crustal seismic-refraction studies
have been made in areas adjacent to the Columbia Plateau. White
et al. (1968) conclude that the crust in southern British Columbia
north of the Columbia Plateau is 30 to 35 km thick with a P-wave
velocity of 6.1 km/sec from their interpretation of a series of
reversed seismic-refraction profiles. They indicate that the true
Pn velocity (the P-wave velocity just below the M-discontinuity)
is 7.8 to 8.0 km/sec depending on the dip of the M-discontinuity.
White and Savage (1965) report a crustal thickness in excess of
40 km in the vicinity of Vancouver Island, British Columbia, and
a shallow (~ 10 km) 6.7-km/sec crustal layer, which may be related
to the Eocene mafic volcanic rocks and associated gravity high in
northwestern Washington described by Stuart (1961). The Snake River
Plain to the southeast of the Columbia Plateau is commonly regarded
as a closely related tectonic unit (i.e. a flood basalt plain).
Hill and Pakiser (1966) interpreted a series of reversed seismic-
refraction profiles across the western Snake River Plain in terms

of crust 45 km thick composed of a 5.2-km/sec layer 10 km thick
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over a 6.7-km/sec layer about 35 km thick. They find the Pn
velocity under the Snake River Plain to be 7.9 km/sec. Prodehl
(1970) derived a similar model making a reinterpretation of these

same data.

2. Observations.

As part of project EDZOE, the Dominion Observatory of Canada
detonated a series of 20 high-energy chemical explosions in Greenbush
Lake, British Columbia, in August of 1969. The charges of the
explosions were approximately equivalent to 10,000 1lbs of geogel,
although the first nine shots were partial misfires resulting in a
smaller effective charge for these shots. The coordinates of all
the shots are given as 50.782°N latitude and 118.344°W longitude.

The shots were detonated in about 60 meters of water and at an
elevation of about 982 meters.

Seismic waves from the explosions were recorded along a profile
extending 800 km due south from the shot point from the Canadian border
into central Oregon as shown in Figure 39. A total of 42 sites
were occupied along this profile by three recording units. Two
of the recording units used were California Institute of Technology
trailers, which are capable of recording three seismic channels
plus timing on film and magnetic tape. For this experiment, the

output of a single, vertical seismometer with a natural period of
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1.0 sec was recorded at two levels on tape and a single level on film.
The third unit was used as a standard U. S. Geological Survey eight-
channel seismic-refraction truck. This unit recorded the output of
six vertical seismometers with a natural period of 1.0 sec equally
spaced in a linear array 2.5 km long. In addition, the output of a
pair of horizontal seismometers, located near one of the verticals
in the array, was recorded to provide one three-component station.
The output of all eight seismic channels was recorded at two levels
on photographic paper and magnetic tape. Timing for all three units
was based on WWV or WWVB radio signals and is accurate to a tenth
of a second or better. Data were also obtained from the EDZOE
events on the seven-station Hanford array located in the central part
of the Columbia Plateau and operated by the U.S. Geological Survey.
The data from this array are telemetered to the National Center for
Earthquake Research in Menlo Park, California and recorded on 35 mm
film. The location of the Hanford array stations are indicated by
open circles in Figure 39. The locations and elevations of all the
recording sites used in this study are tabulatedin Table 3.

Distances between the shot point and receivers were computed
using a program for a spherical earth written by Bruce Julian (1970).
These distances together with the total travel-times and the travel-

times reduced by T-A/8.0 sec for first arrivals and prominent later
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arrivals are listed in Table 4. The reduced travel-times of these
arrivals are plotted as a function of distance from the shot point

in Figure 40. A record section of the seismic waves recorded by

the eight-channel mobile unit along this profile is plotted in Figure
41. Each trace in the figure is taken from one of six comprising

the 2.5 km array. An effort was made to choose a trace for plotting
that was in some sense representative of the character of the
arrivals on all six traces. The generally high quality of the

data recorded out to more than 700 km is evident in this record

section.

3. Interpretation.

Crustal structure — All of the first arrivals recorded along

this profile are on the Pn travel-time branch. That is, the first
arrivals are waves that have traveled downward through the crust from
the shot point to be critically refracted at the M-discontinuity and
thence propagated along this boundary as a head wave at the P-wave
velocity of the mantle 1lid. As is evident from Figures 40 and 41,

an average line drawn through the first arrivals has a slightly
negative slope in these reduced travel-time plots. Thus the average
phase velocity of Pn along this profile is slightly greater than

the reducing velocity of 8.0 km/sec. However, because this profile

is unreversed, it is not possible to unambiguously determine the
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true P-wave velocity of the mantle at the M-discontinuity from this
phase velocity. Here we will assume a Pn velocity of 7.9 km/sec
based on the regional travel-time data from local earthquakes in the
Pacific Northwest published by Dehlinger et al. (1965).

Perhaps the most striking aspect of the Pn arrivals in Figures
40 and 41 is the group of early arrivals between 400 and 600 km from
the shot point. These arrivals are as much as 0.9 sec early with
respect to a line, T = A/8.2 + 7.7, drawn through the first arrivals
on either side of this distance range (see Figure 20). These early
arrivals were recorded in the central part of the Columbia Plateau,
just north of the Oregon-Washington border (see Figure 39) in the
Pasco Basin, and they indicate strong lateral variations in the
crustal and upper mantle structure in this vicinity.

A set of strong secondary arrivals following the Pn arrivals
of successively larger times with distance are clearly visible on
the record section in Figure 41. 1In fact, they are the most prominent
event on the seismograms. These arrivals represent the P phase
in crustal seismology, and the sustained character of the phase is
most likely due to multiple critical reflections and refractions
within the crust between the M-discontinuity and the surface. The
onset of the P phase has an apparent velocity of about 6.2 km/sec
(see Figure 40), which may in some sense approximate the average

velocity within the crust.
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A set of weaker, but still distinct arrivals can be seen one
to two seconds ahead of the E-phase out to about 400 km in Figure 41.
These arrivals have an apparent veloclty of agbout 6.6 km/sec as
indicated in Figure 40 and are interpreted here as waves that have been
critically refracted by the "intermediate" layer in the crust (the P¥%
phase).

Figure 42 shows a crustal model along this profile through the
Columbia Plateau based on an interpretation of the arrival described
above. The crustal structure for the granitic-metamorphic terrain
north of the Plateau was obtained by interpreting the Pn and P%*
travel-time branches using standard seismic-refractlion methods and
assuming: (1) the upper crust has a P-wave velocity of about 6.0
km/sec as found by White et al. (1968) a short distance to the north,
(2) the intermediate layer is approximately horizontal and has a
P-wave velocity of 6.6 km/sec, and (3) the upper mantle P-wave
velocity is 7.9 km/sec (as indicated above). The result is a crust
composed of a 6.0 km/sec layer about 22 km thick over 6.6 km/sec
layer 8 to 15 km thick with a total thickness of about 35 km. The
base of the crust in this model dips at a small angle (about 1.5°)
to the north. The average crustal velocity for this model seen by
a ray critically reflected from the M-discontinuity is about 6.2
km/sec, which is consistent with the phase velocity of the onset of

the P event. This structure is in reasonable agreement with that
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obtained by White et al. (1968) in British Columbia just to the
north, although these authors did not present any evidence for an
intermediate layer in the lower crust.

The structure of the M-discontinuity south of the granitic-
metamorphic terrain under the Columbia Plateau and the Blue Mountain
uplift is based on the observed variations in Pn arrival times plotted
above the structure section in Figure 42. Variations in Pn arrival
times (Pn delays) provide a direct measure of variations in P-wave
travel-times thr;ugh the crust from the M-discontinuity to the surface
under the recording stations. Thus, in the absence of additional
information on velocity structure within the crust, Pn delays provide
a measure of variations in the ratio of crustal thickness to the
average P-wave velocity in the crust along the profile. Using the
crust under the granitic-metamorphic terrain as a reference (a 35 km
thick crust with an average P-wave velocity of 6.2 km/sec), we can
consider two extreme interpretations of the variations in Pn arrival
times plotted in Figure 42:

1) Crustal thickness is essentially constant along the profile
and the early Pn arrivals over the Columbia Plateau are due entirely
to an increase in the average P-wave velocity in the crust from 6.2
km/sec in the granitic-metamorphic terrain to about 7.0 km/sec in

the Columbia Plateau, or
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2) The average crustal P-wave velocity is essentially constant
along the profile and the early Pn arrivals are due entirely to a
decrease in crustal thickness from 35 km under the granitic terrain
to about 20 km under the Columbia Plateau.

The first interpretation can be dispensed with because of the
high average crustal P-wave velocity required to explain the data.
P-wave velocitles as high as 7.0 km/sec have been reported for the
lower portions of the crust in some regions, but it is difficult to
believe that the average velocity for the entire crust can be anywhere
near this value. On the other hand, the second interpretation can
be retained as a possible model; there is nothing at this stage to
indicate that the crust under the Columbia Plateau cannot be as thin
as 20 km.

The model shown in Figure 42 is a compromise between the above
two interpretations. Here, using the velocity structure for the
western Snake River Plain reported by Hill and Pakiser (1966) as a
guide, we assume an average crustal velocity of 6.4 km/sec for the
Columbia Plateau and obtain a crustal thickness of about 23 km.

The average crustal velocity south of the Columbia Plateau was
arbitrarily chosen to be 6.3 km/sec, which gives a crustal thickness
of about 30 km under the Blue Mountain uplift.

Theoretical travel-times for the model in Figure 42 were computed

using a ray-tracing program for waves in a laterally heterogeneous,
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spherical earth written by Bruce Julian (1970). As shown in Figure
43, the agreement between observed and theoretical Pn travel-times
is quite good. Thus, although the details of the structure shown in
Figure 42 may change as more data accumulates, it seems clear that
the crust under the central part of the Columbia Plateau is
substantially thinner, and probably has a somewhat higher P-wave
velocity, than the crust in the granitic-metamorphic terrain to

the north and the.Blue Mountains to the south.

Upper mantle structure - Beyond about 500 km, a number of events

occur on the seismograms between Pn and P as can be seen in the record
section (Figure 41). Note in particular the rather abrupt increase

in signal level at T-A/8.0 = 12 to 16 seconds between records on
either side of A= 550 km. These events are very likely associated
with waves that have penetrated into the upper mantle beneath the
Columbia Plateau. However, the identification of these phases is

much less certain than is the case for the crustal arrivals, and

the following interpretation of these events in terms of upper mantle
structure must be regarded as tentative.

Consider first the set of arrivals that follow Pn by 2 to 3
seconds starting just beyond 500 km. These arrivals have a slightly
higher apparent velocity than Pn and may be explained in terms of
waves refracted by an abrupt increase in velocity from about 8.0 to

8.4 km/sec at a depth of about 100 km. Evidence for a similar
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high velocity horizon at depths of 70 to 120 km beneath the eastern
United States has been found in data from the EARLY RISE experiment
interpreted by Green and Hales (1968), Lewis and Meyer (1968),

and Julian (1970). Hales et al. (1970) also find evidence for a high
velocity horizon (8.6 km/sec) at a depth of 60 km beneath the Gulf

of Mexico, from their interpretation of long-range seismic-refraction
data between Florida and Mexico.

A later group of arrivals can be seen to begin about 8 sec
behind Pn at 560 km and at successively smaller times behind Pn with
increasing distance. These arrivals are characterized by a somewhat
lower frequency and general increase in amplitude with respect to
the coda of the preceding few seconds, although the amplitude increase
is not consistent from record to record. We tentatively identify
these arrivals as waves reflected from the bottom of the low velocity
zone. If this identification is correct, it would appear that the
cusp for this reflection occurs at about 550 km (at smaller
distances, the seismograms are relatively quiet in this time interval).

Two models of the upper mantle have been constructed to explain
these arrivals. They are plotted in Figure 44 together with the
model constructed by Julian (1970) using data recorded along a
profile due north from the Nevada Test Site (NTS). The profile
from NTS north is parallel to, and about 100 km to the east of the

profile we are considering here. The first model (CP1l) includes
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the 8.4 km/sec horizon at a depth of 100 km. This horizon is only
about 10 km thick and serves as a 1lid to a rather deep (in velocity)
low velocity zone. The low velocity zone bottoms very abruptly

at a depth of about 145 km. The second model (CP2) does not include
the high velocity horizon at 100 km, but grades directly into a
wedge shaped low velocity =zone beginning at 60 km and ending at about
130 km. The 100 km high velocity horizon is omitted in the second
model on the hypothesis that the first set of arrivals described
above has an alternate explanation such as lateral refraction or
reverberation within a gradient or transition zone.

Theoretical travel-times for both these models were computed
using a ray—-tracing program for a spherical earth with lateral
variations (Julian, 1970). The theoretical travel-times for CPl are
plotted in Figure 43 and those for CP2 in Figure 45. 1In Figure 43,
we see that theoretical travel-times from both the 8.4 km/sec horizon
at 100 km and the bottom of the low velocity zone agree reasonably well
with the picked arrivals, although the cusp of the reflection from
the low velocity zone occurs at about 650 km instead of 550 km as
suggested by the observed arrivals. To bring the cusp back toward
550 km, it would be necessary to further decrease the velocity
in the low velocity zone and move the bottom of the zone to a
shallower depth in CP1l. 1In Figure 45, we see again that the

theoretical travel times for the reflection from the bottom of the
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low velocity zone in CP2 agree with the times of the picked arrivals,
but that the cusp occurs at too large a distance. As before, to
move the theoretical cusp back it would be necessary to decrease

the velocity in the low velocity zone and have it bottom to a
shallower depth. The points plotted as crosses between 800 and

1400 km in this. figure are the first arrivals refracted from the
bottom of the low velocity zone recorded on the profile north of

NTS as interpreted by Julian (1970). This NTS north data samples

an equivalent section of the mantle 100 km due ecast of the Columbia
Plateau profile. The fact that the NTS data are essentially
continuous with the events identified as reflections from the

bottom of the low velocity zone in the Columbia Plateau provides

some assurance that these events were identified correctly - assuming,
of course, that the upper mantle structure does not change
significantly over the 100 km between the profiles.

The models shown in Figure 44 may serve as a first approximation
to the actual structure in the upper mantle under the Columbia
Plateau. However, it should be realized that the inversion of body
wave travel time data is at best non-unique, and thus considering
the limited data set available in this analysis, these models must

be regarded as tentative approximations.
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4, Summary and Conclusions

Early Pn arrivals recorded across the Columbia Plateau from the
EDZOE explosions indicate that the crust under the Plateau is both
thinner and has a higher average P-wave velocity than the 35 km
thick - 6.2 km/sec_crust under the granitic-metamorphic terrain
of northeastern Washington. If the average P-wave velocity in
the crust under the Columbia Plateau is similar to that of the
western Snake River Plain (both are flood basalt provinces), then
the crust thins to about 23 km under the central part of the Plateau
and has an average P-wave velocity of 6.4 km/sec. The P-wave velocity
of the mantle at the M-discontinuity in this region is assumed to
be about 7.9 km/sec on the basis of travel time curves for the
Pacific Northwest from local earthquakes (Dehlinger et al., 1969).

Secondary arrivals following Pn by 2 to 8 seconds at distances
beyond 500 km suggest that a thin (10 km thick) horizon with a P-
wave velocity of 8.4 km/sec may exist at a depth of about 100 km and
that this horizon is underlain by a rather sharp low velocity =zone
extending to a depth of about 140 km. If the thin high-velocity
horizon at 100 km is not present (and the associated arrivals have
another explanation) the low velocity zone may extend over a depth
interval from 60 to 130 km. Either interpretation of upper mantle
structure is based on a limited data set and must be regarded as

tentative.
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Hales (1969) has summarized some of the evidence for a high-
velocity horizon at a depth of 80 to 90 km beneath the eastern
United States. He postulates that this horizon may represent a
phase transition from spinel to garnet peridotite. The inferred
8.4 km/sec horizon at 100 km beneath the Columbia Plateau may
represent such a phase transition. An alternate explanation of
the arrivals following Pn by 2 to 3 seconds at distances beyond 500
km is that they represent lateral refractions from the postulated
down-going 1lithosphere beneath the 'island-arc' structure of the
Cascade Range (Atwater, 1970). Julian (1970) has found some
evidence to support the existence of such a structure in the
distribution of teleseismic P residuals from the Puget Sound
earthquake of April 29, 1965. Confirmation of either of these
possibilities must await more complete studies.

Hamilton and Myers (1966) have suggested that the flood basalt
provinces of the Columbia Plateau and the Snake River Plain are the
result of major crustal rifting in the Cenozoic. Hill and Pakiser
(1966) came to a similar conclusion for the Snake River Plain; they
found no evidence of the typical 6.0 km/sec continental crust, but
rather a 10 km thick layer of 5.4 km/sec 'eruptive volcanics'
underlain by a 35 km thick layer of 6.6 km/sec 'intruded mafic rocks'.
It remains to be seen whether or not the velocity structure within

the Columbia Plateau is analogous to that of the Snake River Plain,
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but the present data are at least consistent with the rifting
hypotheses.

However, there is one striking difference between the Columbia
Plateau and the Snake River Plain - that of crustal thickness. The
crust under the Columbia Plateau is thin (25 km or less) while
that under the Snake River Plain is thick (40 km or more). This
difference is directly reflected in Pn delays over each region
(Hill and Pakiser, 1966). If the two regions are in fact genetically
the same, perhaps this difference is related to the evolutionary
development of a continental flood basalt province, with the Snake
River Plain representing the younger, currently active stage.

The earliest Pn arrivals in the Columbia Plateau are associated
with the Pasco Basin, a region just north of the Oregon-Washington
border and approximately in the center of the Columbia River lava
field. Hence, this is also the region of the thinest crust and/or
highest crustal P-wave velocity. Danes (1969, and personal
communication, 1970) has established a network of stations in
eastern Washington and found a 50 to 60 milligal gravity high
approximately centered over the Pasco Basin. On the basis of these
observations, it seems likely that the Pasco Basin area may have
been a primary source region, at least in the early stages in the
development of the Columbia Plateau. The only major source areas

for the Columbia River basalts recognized from field observations
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of exposed flows and dike systems are limited to the southern
and southwestern edges of the Columbia Plateau (Waters, 1961, and
Swanson, 1967). ﬁowever, it is not unreasonable to expect that
early sources associated with initial rifting of the crust may

now be deeply buried beneath later flows from peripheral sources.
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Appendix I

Some Properties of Airy Functions

Solutions to Stokes' differential equation

—+ U =0 (A1-1)

can be expressed either in terms of one-third order Bessel functions
or as Airy functions. One-third order Hankel functions, which are
the most commonly used Bessel function representations for solutions
to (Al-1), possess a branch point at = 0. This branch point is
artificial in the sense that it is nullified by a function of ¢
multiplying the Hankel function required to give the proper solution.
Nevertheless, great care must be taken in the analytic continuation
of the Hankel function from any (g einﬂ) to any (z) across the
branch point. These unnecessary complications associated with
the branch cut in the Hankel functions can be avoided by using the
Airy function representation for solutions to (Al-1). Airy functions
are entire and singleevalued in the finite complex ¢ plane, which
is an obvious advantage in analysis.

In wave propagation problems it is convenient to work with
the following two pairs of independent solutions to Stokes'equation

(Al-1):
U(g) = Ai(-z), Bi(-g) (A1~2)
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and

ks -z
U(z) = Ai| -ze 3 (A1-3)

For sufficiently large argument (|§| > 3 for most purposes) the first
pair (Al-2) represent standiné waves (for ¢ > 0) or exponentially
growing and decaying waves (for ¢ < 0), and the second pair (Al1-3)
represent downgoing and upgoing traveling waves.

The following properties of Airy functions are summarized
here for convenient reference; most can be found in standard references;
(i.e. Abramowitz and Stegun, 1964). However, some of the properties
of Ai(-—get i2ﬂ/3) given below are not commonly tabulated. For
a detailed discussion of the analytic properties of Airy functions
see Chapter 15 in Budden (1961).

The relation between the pairs of solutions (Al-2 and Al-3)

is given by 10.4.9 in Abramowitz and Stegun (1964) as

2m il
._13—‘ 1 ilg
Ai| - ce = B e Ai(-z) ¥ i Bi(-¢g) (A1-4)

+q 20 Fi T 1
- T3 1 "3 .3 I
Ai - Ce =5 e Ai'(-z) ¥ i Bi'(-7) (A1-5)

where the prime indicates differentiation with respect to the

argument.
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Asymptotic forms for the pair (Al-2) and their derivatives for

large argument are

1 L
~5 %

Ai(-C) ~ T c sin(w + w/4)

S S
M@~ i e
(Al-6)
1 _1/21’5
Ai'(-g) ~ = 1 “ ¢" cos(w + m/4)
T T
AL ~ -1 gt e
and
TS S —
Bi(-g) ~ m 2 ¢ ? cos(w + m/4)
<z L
Bi(z) ~w 2 ¢ *e”
aA1-7)
B
Bi'(-z) ~ m * ¢* sin(w + w/4)
5 % ow
Bi'(g) ~m * e
where
w =‘% C3/2 (A1-8)
(Abramowitz and Stegun, 1964, sec 10.4).
From (Al-4), (A1-5), (Al-6), (Al-7), we have
+ 420 1 ii% ii(‘*’J"'TéTI)
Ai |- ce 3 ~E =8 = g (A1-9)
2 2 4

™z



1 h~

ti%ﬂ 1 zi% C‘/z.etl(w+4)
Ai'| - ce ~=-= e (A1-10)

Relations between the pair (Al1-3) and Hankel functions of

one-third order are

Ly 6
Ad_(— e > ) =1L g\ (A1-11)
2 3
-1/3
L2 A (l
& = ke 1 =
Ai' (- re 3 ) i e 6 H g (w) (A1-12)
2V3 ~2/3

These can be deduced using (Al-1), (Al-2), and relations 10.4.15

through 10.4.21 in Abramowitz and Stegun (1964) reproduced below:

) L | /e L -in/6 (2)
A1) = 2J—3 [e Hypstod + B Bzt )j!

(A1-13)
I [
<y -4 T -in/6 (l) in/6 (2)
Ai'(-¢) = = e 2/3( w) + e 2/3( )_
oy i [T | e ) ins6 (@)
Bi(-g) = 24‘3 7w - 1w
(Al-14)
] -1 C | -in/6 (l) _ 1ﬂ/6 )
BilC-E) =5 e Hyy3(w) —e™" iy 5 (W)




=315~

In working numerical computations, Airy functions can be

evaluated for complex argument using the SHARE program #1489

(NBS HF13), which computes Hankel functions of one-third and two-

third orders, together with the properties of modified Hankel

functions of one-third order and their tabulated values for complex

argument (Staff of the Computation Laboratory, 1945).

Modified Hankel functions of one-third order are defined in

terms of Hankel functions as (loc. cit: 1945)

1/3
hi(2) = <§ c3/2> Hi}%(% r,3/2>
1/3
(2 32 @ (2 3/2
ha(2) = <3 - > H1/3(3 ¢ > (A1-15)
1/3
B (x) = (%) c H_%%(% 2;3/2>

1/3
' 2 ) 2 .3/2
b, (2) = <§> cH_2/3(§c )

In turn, Airy functions can be defined in terms of modified Hankel

functions as (loc. cit., 1945)

s i i
Al(_?;) = ﬁ hl(E) + 2—

o h, (z)

(Al-16)

r 1 1 1
AL(-g) = - 5 h (@) - 5% hi()
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and
Bi(-2) = 5 m (@) - Zk* hy ()
(A1-17)
Bi'(-5) = 5 h L 8 * 5o Zk* h) ()
where
k= (1) M6 TITI6 e _ (19y1/6 (iT/6

Furthermore, from the properties of Airy functions given above,

we obtain the additional relations

_y2n
W e 3 I Bl ERC
(A1-18)
g AL 4 &
| e > - . 3 e
Al ( Ce 7k e hl(C)
AL 1 I
v 3 > _ 1 3 <y
Ai (— ce == 5px © hz(g).

Because of the symmetry relations between modified Hankel functions

* %*
[h?_(g)] , hy (%) = [ hl(c)]
- (A1-19)
* *
[h;_(g) ] ,  hl(g*) = [ hl(c)]

hl(C*)

]

hy (%)
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it is only necessary to evaluate both kinds of functions in the
upper half of the complex ¢-plane to obtain values for any one
kind of function over the entire z-plane. (Note that similar

symmetry relations also hold for Airy functions.)

(k)

The SHARE subroutine HF13 computes values for Hv (w) in the
following form
H\Ek) [(uR,wI) elbz“] - &' (HR,HI) (A1-20)
where k = 1,2; v =1/3,2/3; b = - 1,0,1, wR = Real (w), wl = Imag (W),

and - 1 arg(w) < w. For Airy functions

3/2
aot

(=
]
wro

and we must consider the mapping of the upper half of the ¢-plane to
w-plane (keeping in mind the cut in the w-plane) to determine the

proper values of b to be used in (A1-20). If we let

T =re and w = p e

we can see from Figure (Al-1) that the proper choice of b is

given by

o
IN
I
IN

wlg:

=
IN
D
IA
3
o

I
o

(A1-21)

s, —m < 8 £ -

I

©-
IA
3
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21/ 3 C’
B
b=0
~b=1 \4)
§=reiq5

Figure Al-1
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Thus, Airy functions can be evaluated over the entire - plane
using relations (Al-15) and (Al1-16) together with either (Al1-17) or
(A1-18); by putting b = O for O < arg(z) < 2n/3 and b = 1 for
2n/3 < arg (g) £ 7w in (A1-20); and by using the symmetry relations
(A1-19) for m < arg(zg) < 2m.

Because the exponent, M, in (Al-20) can become very large
(and result in numerical overflow in a computer), it is convenient
to work with ratios of Airy functions when possible. This can be

done for the reflection coefficients in Chapter 1, and we note the

following useful relations:

AL’ (— cet 2“/3> - i%ﬁ h; (2)

= - e T ST———— (Al~22)
~ h
A (_ Lol 27T/3> (@)
and /

b \ge_i 2ﬂ/3>
1

Ai'(-g) _ i %1 (A1-23)

m_—c)—‘ = e hl (Z;e—i 21T/3)
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Appendix II

A Justification of the Radiation Condition

for the Negative Gradient Half-Space

In developing the solution for spherical waves reflected from
a half-space with a negative velocity gradient, we assumed that the
appropriate radiation condition was for the wave at z = - « to be
downgoing. Here we present two arguments to justify this
assumption. The first involves showing that the asymptotic form
of the reflection coefficient obtained by making this assumption
is identical with the asymptotic expansion of the reflection
coefficient obtained for the case in which the negative velocity
gradient is terminated at a finite depth by a constant velocity,
homogeneous half-space. In this case the appropriate radiation
condition for a wave incident on the layer from above is that the
wave emerging from beneath the heterogeneous layer be downgoing.
The second argument involves showing that the backscattering from
the particular velocity gradient considered (3.12) becomes
arbitrarily small as z + — «.

Consider a heterogeneous fluid layer of thickness, h, bounded
above and below by homogeneous fluid half-spaces with the origin
of a Cartesian coordinate system placed at the upper boundary of

the layer as shown in Figure (A2-1). We will take the variation of
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z A @ zA @
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O — 0 C co/no=C
0
(:1(z)=co(n(2)—yz)_]/2
-h I ..
(:2=co(ng+yh)—‘/2

Figure A2-1
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acoustic velocity with depth to be given by

G z > 0
(o)

c(z) = { C1(2) = C_(n2 - vz) 8> 2> <k (A2-1)

1
—3

- 2 4 _
Cy Co(no vh) z < h

where the velocity variation in the heterogeneous layer, C;(z), has
the same form as (3.12). We will assume that the density variation
parallels the velocity variation.

Because we are interested in the general form of the reflection
coefficient, it will be sufficient to determine the plane-wave
coefficient, keeping in mind that the cylindrical case can be obtained

inozo

simply by including the factor (i/no) e (see equation 3.42).
Thus we consider a plane wave of unit amplitude incident on the
upper boundary of the homogeneous layer at a angle, 6. In this case
the solutions to the equations of motion (Helmholtz equations) will
be

ik x + n 2) ik x + n z2)

o o o
v = e + V5 &

in. 2
[vz aiP ) + v, Ai(z)(—;)] e '  0>z>»-h (A2-2)

<
—
I

v, =V, e z<-h
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where

.2"/3 .Zﬂ/3
Ai(l) (=) = Ai<—-Cel > i Ai(2) (-7) = Ai (—ge‘l )

¢ = e ?(n2 - p? - v2)

sin 6 " g = (y/ko)l/3

hol
]

as in section 3 of Chapter 1. Here we allow both upgoing and
downgoing waves in the heterogeneous layer and require only downgoing
waves in the lower half space.

Applying the continuity conditions (3.2) and (3.3) to (A2-2)

at the upper boundary (z = 0) of the heterogeneous layer, we obtain

Vi

1 a1V (¢ ) a1 P (¢ ) -1
(0] o
V2 =
iq —m_éA(l)(—Co) —m_éA(z)(—Co) iq
V3
(A2-3)
where
23 ;
AP gy =aPyp +eet mP )

. [n3 i
- 2
2P ey =a@ gy et P )
EO = 8—2(n§ - pi) s DO = 83/4n2m9
q, = cos 6 m = (pl(O)/pO)
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Solving (A2-3) for the reflection coefficient, V,, we can write

vy = —2 (A2-3a)

where

Vo A(l)(—co) + V3 A(Z)(—ao)

R = (A2-4)

V2 Ai(l)(—go) + V3 Ai(Z)(—EO)

Here we note that if V, = 0, the reflection coefficient, V;, reduces
to the plane wave reflection coefficient for the negative gradient
half-space (3.22).

To evaluate the constants V; and V,, we next apply the continuity
conditions to the lower boundary of the heterogeneous layer (z = - h).

In this case

Ai(l) (—CZ) Ai(z) ("QZ) v, -insh L

=V, e
A <z, £ gy Vs 14z

(A2-5)
where
.2ﬂ/3 1
A(l)(-C2) = Ai(l)(—gz) D, + ¢ et Ai(l) (-CZ)
.21/3

APy =Py redt T P )
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e3

= e=2(n? - p2 4+ - £°
z 5 (nO 28 yh) » Dy =7

2 4 vyt
, (no vh)

Thus we see that

[ a® () - iq Ai(z)(—Cz)]
V2 = Vq (A2—6)
A

[0, 58P 2 - 4P |
V3 = Vq (A2—7)
A

where

b= APy st P ) - aW ) 41D gy

Substitution of these expressions for V; and V, into (A2-4) gives
the following result for R,
1 2
s VYery +paPer)
0 o

R = (A2-8)
Ai(l>(—co) * £ Ai(z)(—co)

where

iq, Ai(l)(—Cz) = A(l)(—cz)

—iq, AP g, + 4P )
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We are interested in the form of the reflection coefficient,
V;, (A2-3a)when the thickness of the layer is large with respect to
the wave lengths considered and the characteristic dimension of

the gradient. Thus when |Yh1 >> 1 and € << 1

l2,] = [e7%@2 - p2 + yn) | > 1,

and we can use the asymptotic forms for the Airy functions with

arguments (—Qz) given in Appendix I. In addition, note the following
relations:
Lim Lim Y

P2 = pow T (0 T W 2

Lim _ Lim 2 -1 ] B
el R S [ 1- (no + vh) P, =1

Accordingly, we find that

21(w2 + 7m/12)

il T (A2-9)

h->e

where

_ 2 —mew 5 3/2
Wy, = 3 € (no po + vh)

Dividing both numerator and denominator of (A2-8) by

Ai(l)(—co), we can write R in the following form
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R = §3—1;1335— (A2-10)
L+ #g,
with
g1 = A(1>(—co)/Ai(l)(—co)
By = A(z)(—ao)/Ai(l>(—co)
gy = Ai(z)(-co)/Ai(l)(—co)

Using (A2-10) it is now possible to put the reflection coefficient,
Vl’ in a form that contains the reflection coefficient for a

negative gradient half-space, Vp , as a separate term, i.e.

vV +Q
vy o= =
1 o (A2-11)
Q+
where (f -1 J
B T gm B
Q, =
3
L. = - g,

Our goal is to expand (A2-11) into an infinite series with
VP— as the leading term. To accomplish this, we will use the

asymptotic forms of the Airy functions for ’Col >> 1 given in

Appendix I.
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Thus we find

Ny

1
o T s 3
g, ~ DO i eco T eco + 0(e?)

-i(2W + 77/6)
o

g ~1 eg’ e + 0(e3)
2 o

o

-i(2W_+ 77/6)
g3~_e ©

where 3/2

2 _-8#3 _ _2
Wo ™ 3 o (no po)

and we require
“2(02 — 52Y| >
= (no po)l 1

(i.e. the gradient is small, and the angle of incidence is not
too near the critical angle). Using these approximate relations

for the g's, we find

Q_ Vo
126 (A2-12)
Q, 1
where
¢ = (W3 - Wyp)
and
_ 2 2
mqo no Py
\Y = )
o) I
qo 72 - pz
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which we recognize as the plane-wave reflection coefficient for
two hcmogeneous half-spaces (3.25).

Combining (A2-11) and (A2-12), we see that

which, on expanding the denominator, can be written as

gy <Vp_ 4 120 Vo> ( Lol i jyn 1200 +>
(A2-13)

In Section 3 of Chapter 1, we saw that when the asymptotic forms
of the Airy functions were used in the plane-wave reflection
coefficient for the negative gradient, Vp_, it reduced to the

reflection coefficient for two homogeneous half-spaces. That is for

\e—z(ng - pg)\ >> 1

then

when VO is substituted for Vp— in (A2-13) and the multiplication is
carried out, all of the terms cancel but the first, and we are left

with
Vi~V (A2-14)
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Thus the asymptotic form for the reflection coefficient for
the negative-gradient layer defined by (A2-1) with the proper
radiation condition applied to waves in the lower, homogeneous
half space reduces to the asymptotic form of the reflection coefficient
for the negative-gradient half-space based on the assumed radiation
condition of downgoing waves at z = - «,

We now turn to the problem of showing that the backscattering
due to the heterogeneity of the negative gradient becomes arbitrarily
small as z » - », In Chapter 3 of his book on waves in layered
media, Brekhovskikh (1960) develops an expression describing the
relative size of the first order waves backscattered by the
heterogeneity of a continuous nonoscillatory velocity gradient.

His approach is based on assuming a generalized form of the WKB

solution.
Z
da f(x)[xl exp<iko/n cos © dz>
0 (A2-15)
Z
+ xzexp<——1ko n cos 0 dz>
0

in a heterogeneous medium. Here Xy and X, are undetermined functions

of z satisfying
dx;
3z = eh1(2) x,(2)

(A2-16)
dx,
. = EKZ(Z) XZ(Z)
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where

z
A (z) = exp < —Zikof n cos 6 dz)
0
Z

exp <Ziko n cos 6 dz)
0

i

Ao (2)

In these equations n = n(z) is an index of refraction with respect

to the point z = 0, and

cos 6 =-l
n

(n? - sin?p)
where 0 is an angle of incidence. Note that for small gradients
Y, the term, €, will be a small quantity since

d_ cos 0(z) _
i <ln ——;RES—— > = 0(y).

The approach is to solve (A2-16) by successive approximations.
Solutions to the coupled pair of equations (A2-16) can be expressed

as two convergent series

(0) .5 S n_(n)
x, =X, tex; T+ +e X, ot
(0) (1) n (n) , ..
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(Brekhovskikh, 1960). When these are substituted into (A2-16)
and the coefficients of like powers of & are equated, the following

recursion relations between successive approximations are obtained

(m)
dx _
L = @, " P @
(m)
dx "
2 =@ P,

We are interested in comparing the first-order backscattered

wave with the direct, zeroth-order down-going wave, i.e.

D
S WO
dz 1 Xo
where X(O) is constant in the zeroth-order WKB approximation.
2

Putting this relation in (A2-16) and integrating, we obtain

z 2
Exél) = % Xgo)/ [g—z In <-C—ZS—Q> } exp <Ziko/ n cos 6 d})dz .

0

For the first~order backscattering term to be small in (A2-15),
we require the above integral to be small. This will be true if
the integral over each half period of the exponential is small.
Assuming that the gradient changes only slightly over one wave

length, the duantity in the brackets will vary slowly and
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can be taken outside the integral. Thus the modulus of the integral

over one half period will be no greater than

Xo d 1n COS 0
4n cos O dz n ?

where AO/4n cos 8 is the approximate magnitude of the half-period
of the exponential. Hence the requirement for small backscattering

becomes

A
o d cos B
4no cos 6 dz ( n > = g
(Brekhovskikh, 1960).
For the velocity gradient we are considering, n? = ng - Yz

(see equation 3.12). In this case

né - sin?p - Yz

g__< cos > I
dz n 7 2 _ 2 . et Zie
(nO Yz) Z(no Yz)(no sin“0-vyz)

so that
A E [
o _d cos 0 - o . PO
4cos26 ez < n > Y}\on (no HLOe ¥2) *

-

1
2
1
2_ain? b D B B 2 et P NP
4(nO sin 8)(2n0+ynoz Yz )(nO yz)
L
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Now since the numerator is of order z and the denominator is of

order z5/2, we have
: A
Lim o d fcos 6 -0
Zr— 4cos?0 dz n

and the backscattering term becomes arbitrarily small as z»r—«,

We justify the radiation condition assumed for the negative -
gradient half space on the basis of these two arguments. In
particular we have shown that the reflection coefficient for the
well-posed problem of waves reflected from the negative-gradient
layer between two homogeneous half spaces is equivalent to the
reflection coefficient obtained for the negative-gradient half
space assuming downgoing waves at z = - « when the layer thickness
is large with respect to the characteristic dimension of the
gradient and the wave length. The demonstration that waves back-
scattered by the negative gradient disappear as z > - « is
consistent with the assumption that only down-going waves exist

in the neighborhood of z = - «,
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Appendix III

Convergence of the Integral Representation

for D_3/2 Over the Modified Contour FZ'

The integral representation for the parabolic-cylinder function

D_3/2(}) is of the form

- _ 2 1
I =/ e # L /2 t* dt (A3-1)
0

(Erdelyi, et al., vol. 2, 1953). The integral we wish to evaluate

(3.65) is of the form

IF2

_ o L
/ o FE T2 (A3-2)
Iy
ei(ﬂ/4—6)

where 3 = , 6§ > 0 (see 3.64), and I'y, extends from the

origin at an angle of w/4 to infinity in the complex t-plane as
shown in Figure (A3-1).

Léet £ = 8 e1¢. Then (A3-1) and (A3-2) can be written as

i - 5
IF =[ exp {-— ps el(ﬂ/4 §) - % sz:\ s? ds (A3-3)
1

0

over I';, and
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(A3-4)

over I's. To demonstrate the equivalence of I and I we close
2 q Iy Tz’

the contour between I'y and Ty, along C, where C 1is defined by

t=Re , 0 < ¢ <L /b

(see Figure (A3-1)). The integral over C 1is given by

/4 ; m . 3¢
i(e + - -96) ¢ i
IC = iR3/2/ exp[ ~ AR & 4 —% R? elzq)] e 2 d¢

0
or
/4
.7 R?
I = iR exp - pR cos(¢ + /4 - &) + 5 cos 2¢
e
0
3
. exp{—i\:pR sin(¢+m/4-8) + 1;—- sin 2¢ + -g—q)-:| }] d¢
(A3-5)

Now as R - «, the integrand is dominated by a term of the form

R3/2 exp(-peR) since even at ¢ = nw/4, cos(¢p+n/4-8) ~ € > 0. Thus

and because there are no singularities included in the contour



Im(t) A
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Y

Figure A3-1

= Re(1)
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or

¥ /4

-
]
H
|

p, = Ip, = D_gpp() TG3/2) e

which is the desired result.

(A3-6)
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Appendix IV

Geometrical Ray Theory for the Positive

Gradient Acoustic Case

In this appendix, we develop some aspects of geometrical ray
theory that will be useful in discussing the wave~-theoretical
solutions to the positive-gradient, acoustic case. The velocity
distribution is taken as defined by (3.12). The point source and
receiver are located at (O,Zo) and (p,z) with respect to the
velocity discontinuity at z = 0, as shown in Figure (A4-1).

From (3.1) we have the following variation of the index of

refraction with depth

1 z >0 (A4-1)
n(z) =
L
(ng + yz)* z <0 (A4-2)
By Snell's law
n(z) sin 0(z) = sin 0, - (A4-3)

where eo is the angle of incidence of a given ray at the boundary
z = 0. As in section 3, Chapter 1, we let p = sin 9, so that (A4-3)

becomes 1.
p(z) = (A4-4)

(ni + yz)lﬁ
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Figure A4-la
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| z 4
d, |0 3Js
r %
¢TP o ¢ -
6\
kp pemn- :h %%‘—Tone
8=¢p+% %é ~cos 8

Figure A4-1b



.

The maximum depth of penetration into the lower medium, z >
for a ray with an angle of incidence, Gn, is obtained directly from

(A4-4) by noting that at this depth; p(z) = 0. Thus

7 e (A4-5)

which is identical with the equation defining the loci of turning
points for the positive gradient case discussed in section 3. (See
Figure 4 also.)

The horizontal distance covered by the ray in the lower medium,

P> can be found using the relation

%% = - tan 0(z) = _=plz)

b

(1-p?(2))
Thus
z p dz
p(z) = - 20 ; >
i (no - p, t Yz)
or
2p
o 2 24} 2 2 b
p(z) = (no - po) - (nO = yz) (A4-6)

The distance covered by the ray reaching its maximum depth, z is

thus
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Noting that the horizontal distance covered by a ray between the

source and the boundary and between the boundary and the receiver is

we obtain for the total horizontal distance covered by the ray

leaving the source at an angle ©

or

Py 41)o
z4 ) +— n? - p2 (A4-8)
o Y o

1-n?2
o

The total horizontal distance covered by a ray that reflects n times
at the boundary z = 0 before returning to the upper half space is
P 4(ntl) p_ 1
g, =zt (45 ) +—" (0 = g}~ (A4-9)
2 o Y o n
1-p
n
where P, = sin en’ and en is the angle of incidence. For a fixed
P> this equation defines the relation between the angles of
incidence for the direct diving ray, eo, and the ray making n

reflections, en
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The geometry of a ray path in the lower medium can be found by

re-writing (A-6) in the following form:
py = —2 02 = p2)E | = (£ = o2 + y2)®
1 o ) R
or by squaring both sides and using (A4-7)

by - pm)2 =y| T—2+z (A4-10)

This is the equation of a parabola with its vertex at (p,z) =

nl - g2 2 - po
B gk e 2 its focus at (p,z) =|p , - 2.2 y/4 |, and
m"\ % b ) ma Y )

with a latus rectum of y. (See Figure(A4-2)).

The ray-theoretical phase (eiconal) is given by

¢ =f£ . d_s_ (A4-11)

S

where k is the wave number vector and ds is a vector increment along

the ray path s in our coordinate system (Figure (A4-1))

— — + 1 t—1 — +
k ko cos 0(z) ko sin 6(z) kz kp

where L&| = ko, 0 (z) is the local angle of incidence, and the
vertical and horizontal components of the wave number, kz and kp,

are given by
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4 \

Figure A4-2



-346-

k cos 6 z >0
o o
kz(z) = (AL-12)
kon(z) cos 0(z) z € 0
and
k =%k sin 6 . (A4-13)
o o o

1
where cos 6(z) = (1-p2(z))?. Using the forms for p(z) and h(z)

given by (A4-4) and (A4-2), the integral for the phase (A4-11)

becomes
Z
r (0] w 5 Z
= - — 2 _ w2 %

) ko{/ podp [qodz 2/ (nO po+yz) dz +/q dz}

Z o o

o
or

_ 4 o _ _2,3/2 .
o) ko [ pop + (z + zo) qo + 3y (no po) (AL4-14)

This is the ray-theoretical phase of a wave leaving the source
at an angle 60, bottoming at depth, z in the lower medium, and
arriving at (z,r). The phase of a wave that reflects .n times
at the boundary z = 0 before leaving the lower medium to arrive

at (z,r) is given by

B 4 (n+l) 9 B 3/2 K4=15)
by = ko[pnp + i+ zo) 9o * 3y (no pn) ( '
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where 4 = (1 - pi), p- = sinzen, and 6n is the angle of incidence

2
n
(see (A4-9)). This expression for ¢n is purely geometric; it
does not include the phase shift associated with the reflection
coefficient for a wave incident at the boundary z = 0 from below,
nor does it include a wave-theoretical -m/2 phase shift acquired

at each bottoming (turning) point.

The travel time along a ray is given by

_ ds
t‘[c(s)

where c(s) is the material velocity along the ray path S. In this

case

v A
dz
t —J—
f‘}l—pz(Z) elz)
0

Using (3.1) and (A4-4), the total travel time for a ray bottoming

once in the lower medium will be

Z
o m 2 z
dz 2 (no ¥+ yz) d= dz

= c ¢ PR c

%% o (ng - pg + vz)~? 9%

or

(z + 2z ) 1
5 0 4 2 2 2 _ _2y% AL-16)
£ = 5 + 3y (no + 2p0) (nO po) (
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The total travel time for a ray reflecting n times at the

boundary z = 0 is
(z+ 2z )
L o 4(n+l) 5 2y (n2 _ o2y
by = <, q + 3y (no + 2pn)(no pn) (AL-17)

From this expression, it is evident that energy following the
direct diving ray will be a first arrival, and that energy
following rays that reflect a successively greater number of times

at the boundary z = 0 will arrive at successively later times.
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Appendix V

Inversion of the P-SV Boundary Conditions

for the PP Reflection Coefficient - Negative Gradient Case

The fourth order matrix equation (4.42) expressing the boundary
conditions for P-SV motion when the lower half-space has negative

compressional and shear velocity gradients is of the form

MV = a (A5-1)
Solving this equation for the first element in V (i.e. Vpp) by
Cramer's rule gives

v _ det N
PP

oL

o

o
=

(A5-2)

where the matrix N is formed by replacing the first column in M by
the vector a.

By expanding each of the determinants in (A5-2)

about their third columns (the columns containing the Airy functions
|
Ai(l)(—co) and Ai(l) (—Co)) we obtain

det ﬁ

Cl ok ol Cl
(D) 1 2 3 . b

2 D CIION NP B cICIDN BN R L ICIDN RPN RS (L (] I
det M cy B e =

(A5-3)
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where Ci and Ci(i = 1,4) are the appropriate cofactors of the

matrices N and M, respectively. These equations can be rewritten

using the definitions of G(go) and H(CO)(equations (4.43) and

(4.45)) as

det N D .21/ 3 i D,
=~ 2 Mg te e a1 )
det M E Eq
where
3 %
i, 1
D c cl\ %™ [+ o2 0y
= - T 1_1 + 3/2 (AS—[‘)
5 o1 4n 5 5
E C1 Cy Cp + 2iuy Cy
and
1 ) 1 ; 1
D, C, + 21u1 Cy ; ei e C3
Eq c, + 2ip, Cy o Cj
i L
with " i&ﬂ/B 3 ei m*>
A =
m p* + 3€a CO e + 3
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The cofactors, Ci, have the following form

. g
-iq p? —p2aif )(~£o)
J . 2 5 2 9452 2
C1 hom cj(l + 2q )uo 2ip vu 2p ulc(go)
o =i 2 . .
2u q 1 T+2pu o dnHE )
—éjl v 1G(€O)
. 2 e B 2
¢l - hZm 5j(l +29%) 2ip“vu 2p%u,G (€ )
. FroeD 9 .
2uq 17 H+2pT)u iy H(E )
-§.1 v i G(§ )
j
2L .
c% - hgm -iq p? —p2A1( )(_go)

s 7 remiD) 2 ;
2uoq L™ 4H2p<)u 1u1H(€O)
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and
-6 i v iG(g )
i o
J _ 42 o ) _2.(1)
= hom iq p pAi (go)
2 D 2
éj(l+2q ) . 2ip“vu 2p=u,G(E )
where j = 1,2 and
1 =1
§, =
3
-1 j =2

Since the factor him is common to all terms in the numerator and
denominator of the reflection coefficient, Vpp’ it will cancel,
and we will not include it in what follows.

To express the D's and E's in the form of equations (4.48) and
(4.49), we expand each of the above cofactors about their third

columns. Thus

j__z.(l)__ | _ 9 ] : ]
C1 = -p?Ai " (=€ )g 2p7uG (€ Jgy  + 1w H(E gy
J _ o | ) ] . h|
Cy = 16(E Js; pn B e, ¥ L B(E e
¢d = 16(c )¢ +p2a1 W e ygd o+ e ed
3 o""2 oL 1 0" “g
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_ , e . .
c; = 1G(£O)g1 4 p2A1( )(—éo)gé +2p2u1G(£o)gé

where gi A=1, 6; =1, 2) are the appropriate cofactors.
Substituting for the definitions of (4.44) and (4.46), G(go) and

H(Eo) in the above and neglecting terms of order E; in (A5-4)

and (A5-5) we obtain (4.48) and (4.49)

—

4]
D

1) g U C ALY L

= Ai (—50) . t g € Al (—&O)
Dl QZ Q

Q2

’ (1) : IS e E

= Ai (- g) . +oey e Ai (—CO)
El QZ 2

with \

o)
[
Il
[SN

i . ) j + j + 4 - j
1 p <gl Woulg4> 1111'"1 83 TTOU186

@l = iy (n + 207

> (A5-6)
j = 2 4+ 3 J
Q w, (2p% + in )g;

j= 2 j_- j - 7 j+'j
Q = 2p ul(gL+ 21u1g6> 1-<g1 21,8, )
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where j = 1,2 and

L
8n
P

The cofactors gi (i=1,6; j=1,2) are given by

g, = i [dj(l + 2q%) (2p2 - 22) + 4qp2v J

g) = -u_qs?
gg = - uopz[qu +6,(1 - 2q2)]
(A5-7)
gﬂ =¥, [6j(2p2 - 22) - 2qv]
gg = - 6j3uov
gg = i(=6,p% + qv)
In the evaulation of the contribution of the poles of Vp to

the integrand (4.54), the Qi will be evaluated with p given by

(4.52). Accordingly, in (A5-7)

p=n + 0(62)
o o
= + 0(g2) : = (l—nz)12
q qO. EOL > qOL -
y = = (22 = g2)=

v + D(a2) 3V
o Q. a
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)
1l

n’ 4 Bl
o o

g ) ) i41r/3
- na + (nb - nu) e + O(Ea).

=
f—
Il

When these are substituted into (A5-6), we obtain the following

expressions for the Qi
J = e 2 2 2 2 . g2
Ql ip no [4qunava + Sj(l -+ 2qa)(2na 2 )]

" : 2 2 b 2_02y
uouls imng [anva + 6j(l+2qa)] +nal}j(2na 2<) 2qava] s

+ 27 .n?(=6.02 + q v )
114 Joa o o
] : 7
o - .13 + 2n
Qz 6J uoulva(nl a)
S 2 .
2y = uoulqu2n2(2 + 1)

O
R

s [4q nty o+ g (L + 2q2)(2n2—22)]
o o o 0O J o o

2
+ -2
6j2uou1na(l 22)
2.2 9
+ - +
4ulna( éjna vaqa)

where j = 1,2 and 6j = {
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Appendix VI

Earth-Flattening Transformation of the P-SV

Displacement Potentials

In this appendix we develop the form of the continuity
conditions for the decoupled P-SV displacement potentials across
a discontinuous jump in elastic properties at r = a under the earth-
flattening transformation. The analogous transformation for SH
motion was presented in Section 2 of Chapter 1.

Following the argument leading to (4.30), the decoupled P-SV

potential representation in a spherical system can be written as

u(r) = grad ¢ + curl curi (ry,0,0) (A6-1)

when !Ys/nol << 1 and |Y8/kol << 1. From (1.7) we have

P(x) S(x)
, B, 5 s (A6-2)

® . e
[p(z) 1™

5 [e®)]®

Assuming no dependence of the ¢ coordinate, (A6-1) can be written

in component form as
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(A6-3)

==

d 32
[ 26 © T Brao (rS)]

where e, and e, are unit vectors in the r and 6 directions, respectively.
The potentials P and S approximately satisfy the Helmholtz

equation at high frequencies

V2P + h?P = 0 and V2SS 4+ k28 = 0

and their eigenfunctions are

P(Q) = (2 + 1/2) @l(r) Pz(cos 0)
(A6-4)
s 2y 4 1/2) 8,(c) P, (cos 0)
where
5,0 = B @)/ [p ()]
(A6-5)
3,(r) = §,@)/[p ()]

and ﬁl(r) and ég(r) are solutions to equation (2.6).
The boundary conditions at r = a require continuity of

displacement, or
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[u_]

£ art r-a-

]
=
c
bed

(A6-7)

|
N—

[
—

[u81a+ -

where u and u, are the r and 6 components of the displacement u(r)

8

in (A6-3), and continuity of stress, or

[o 1, = [o ]

rr-at rr-a-

(A6-8)

]

[o

[Ore a+ rG]a—

In spherical coordinates the stresses are related to displacements

by
[ Ju 2u Jdu Ju
5 r 0 cot O
= e —_—
Orr A or T * ro 6 T Yg * 2 ar
L.
_ (A6-9)
N I Wi e
ro H r 9 or r
-

Substituting (A6-4) into the first displacement boundary

condition (A6-8) using (A6-3), we have

d - 1 o d , d
{ PQ(X) dr wz " r sin 6 Ql de [ AR € dé PQ(X{]}r=a+
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where we understand that { }r means

L

and PQ(X) = Pg(cos 0). Noting that

Ei‘iﬁ%& [ sind g—e— Pz(x)] = (1-x%) PY(x) ~2xP] (x)

and then that the two terms on the right are the first two terms

in Legendre's equation we obtain

1 d d _
—Tn 5 48 sin 8 a0 PQ(X) = - 2(2 + 1) PQ(X)

since P (x) is a solution to the homogeneous Legendre equation.
The Legendre polynomials P (x) thus cancel, and the r-component

of the displacement boundary ocondition becomes

{d_ A " 2 (2+1) 5 } (A6-10)
dr "2 a 2
r=a*t

The 6-component of the displacement boundary condition is

g de

+

{w i—P(x)+ (r<1>) P(x)
r=a



=360~

Here the 6 derivatives of PQ(X) cancel, and we are left with

{ J,Q ¥ %; (réz) } (A6-11)

r=a*

The Foge stress boundary condition is

d. fdd 5 . A 2 2) d » 2@+l o
{(H_ZU) [PQ(X) dr(dr w!L # T ®2>]+ T PSL (x) < dr wSL i ¥ (DIL>

e F @ d A d% d
+~;‘<w2 e (r®2)> ['555 Pg(x) + cot @ EE-PQ(X)] } .

Again, we note that

d? cos 8 d
o PG + 209 @ B ™

(1-x2) PZ(X) - ZXPi(X)
= - 2(+1) PQ(X)

so the PQ'S cancel, and we have

d d - L(8+1) - A d = 2(+1) =
{W“) H;[a . %]+ a [2<a b+ HTE %)

(A6-12)
2(2+1) o d A
- N < wQ, + E (r®2)>:l }rzai
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Finally, the L stress boundary condition is

1fd . L 204D o\ d_ d o .42 5|4
{u[r<dr Yo TS %) d Do) +<dr LI 12 (r%)> dp P

1] - d A d
- ?[ L (r%)] as T ] }
r=at

Again, the 0 derivatives of PQ(X) cancel, and we have
1fd g 204D 2 ), d (17 . d o
{U[a<dr w2+ a ®2>+dr<r lI)JL"-dr (r®2)>

(A6-13)
l ~ d ~
~a (”’z ™ (rq’z)ﬂ }
r=at

We now introduce the earth-flattening transformation (2.12)

on the independent variable

and the dependent variables

@Q(r) = <%)1/2 v(z), 2, (x) =<%>1/2 b (z)

into the boundary conditions (A6-10) through (A6-13) and complete

the implicit derivatives. The result is
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. 7\ N
{<¢' - —")+ L e } (A6-14)
< a z=0*
{@Jran)' +l<5; (A6-15)
2 z=0%
1 £ _3_ 3(2+1) S éé
{(A + 211)[1}) - v+ 4a2 + . <¢ > a)}
(A6-16)
s (5o 1 9)]
a z=0%

(A6-17)

_24‘1’_+aqj"+é<w)_+§>] }
a 2 2
a z=0%

where the primes indicate differentiation with respect to z.

For body wave problems in the crust and upper mantle,’K2a2|>>
Furthermore, we

Thus from (2.12) we will have k2a2 = 2(2+1).

~

will have

[t feln Bl > | 2]

and
P |x | > | ==
(6 Jelngél > | & |
8 are vertical components of the compressional and
Thus, neglecting terms of order (na)~! in the

where na and n

shear wave numbers.
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above equations, we obtain the following approximate spherical

boundary conditions,

bor v iy |, \

U+ (ad') $

z=0%

{(x+zu)[1?'+-K2(aé')J t KKZ[ﬁ3+'(aé')] } > (A6-18)
Z

=0z
u 2@'[+ (aé”) + Kz(a&)] }
z=0%

The analogous boundary conditions for a plane boundary are
given by (4.36a) - (4.36d). The eigenfunctions for the P and SV

displacement potentials in Cartesian coordinates are of the form.

y tik x " + iKBX
P, = y.(a) e - s 8. =0.(2) e (A6-19)
where we let
by = 22§ () =3B (46-20)
[p(2)] [p(2)1?

and ﬁ(z) and é(z) are solutions to (2.7). Substituting (A6-18) and
(A6-19) into the boundary condition equations (4.36a) through

(4.36d), we obtain
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Al 2,\1 _ 2 ~ ~
{(x+2u) [ be + Kafbf:I Aed [wf * %] }z=0+ (A6-21)

Comparing (A6-20) with (A6-17), we see that the approximate
spherical boundary conditions for |ka| >> 1 are equivalent to
the exact flat boundary conditions and that the corresponding

potentials are related by
S

~

Ve T

=5
P
-
LSl
Hh
1]

(a$£)

or

P.=p 3 S. = aS

The factor a (the radius to the boundary) in the transformation

of the SH potentials serves to keep the correspondence dimensionally
correct. From the original definitions of the potentials (1.7) and
(1.11), it is evident that the spherical SV-potential has the
dimensions of area while the flat SV-potential has the dimensions of

volume. The P-potential has the dimensions of area in both cases.
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Table Headings

Table 1. Summary of Q' and velocity gradients from crustal amplitude
data. Std. error refers to Q'—l fit to amplitude data
according to equation (7). <y is gradient parameter in
equation (3.12) and Y; is velocitv gradient related to Y by
equation (3.12a). 'Crit.' and '+' in7Y and Y columns indicate
near critical (~ -1.2 x lO_3 sec_l), and positive gradients,
respectively. *Easton (1963), tHill and Pakiser (1966),
fRyall and Stuart (1963), SHealy (1963), {/Roller and
Healy (1963), TStewart (1968), **Roller (1965), ftStewart
(1968), FtWarren et al. (1966), §50'Brien (1968).

Table 2. Summary of Q' and velocity gradients from Pn amplitude
data. Std. error refers to Q'_l fit to amplitude data
according to equation (7). Y(km—l) is index of refraction
gradient and Y. (sec_l) is velocity gradient (see equation
3.12a in Chapter 1). 'Crit.' and '+' indicate near critical
(~=1.2 x 10_3 sec_l) and positive gradients, respectively.
*Hill and Pakiser (1966), *Ryall and Stuart (1963),
fArchambeau et al. (1969), SRomny (1959), |/ Roller and
Jackson (1966), fRomny et al. (1962), **Green and Hales

(1968), ftIyer et al. (19 ), 88Helmberger and Morris (1969).
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Table 3. List of station locations and elevations for the Columbia
Plateau profile. T4 and TS5 are sites occupied by the two
California Institute of Technology trailers; R1 and R6
are sites of first and last seismometers in the 6-element,
2.5-km array set up for the U.S. Geological Survey
recording unit; H1 through H7 are locations of stations
in the Hanford array.

Table 4. Distances and travel-times for stations on the Columbia
Plateau profile from the EDZOE explsions. EDZ-5 refers
to the fifth shot in the EDZOE series. '"Corrected time'
is actual travel-time between source and reciever;'Reduced
TT' is 'Corrected time' with source and receiver elevation

corrections included and A/8.0 sec”! subtracted.



REGION

Profile
BASIN AND RANGE
Fallon-Eureka*
Fallon-S.F.*
Fallon-Owens V.#
Eureka-Fallon*
Eureka-Northt
Mt. City-Southft

NTS-East¥

CALIFORNIA
S. F.-Fallon¥*®
S. F.-S. Monicas

Camp Roberts$

S. Monica-L. Meadl

PHASE

Pg
Pg
Pg

Pg

Pg

Pg

Pg
Pg
Pg

Pg

Table 1

Q' gt—>
(1x10™3)

471 2.10
760 1.32
-446 -2, 50
972 1.03
-1290 -0.77
403 2.48
117 8.50
3810 0.262
-1580 -0.63
2860 0.349
230 4.34

std.

error
(1x1073)

1.16
0.47

0.88

0.076

y (km™ 1)
(1x10™3)

=057

-0.36

-0.28

-0.68

=Ze 2

criks

erits.

=il

Yc(sec'l)
(1x10™3)

~13.

=L9g=

~18.

=26,

crits

crits

=19,



REGION

Profile

San Juan (6.06)1

San Juan (6.35)1

COLORADO PLATEAU
Hanksville*#*

Chinle#*%*

MISSOURI

Hannibaltt

Swan L.-Hannibaltt
Swan L.-St. Josephtt

St. Joseph T7

PHASE

Pg

Pg?

Pg

Pg

Pg
Pg
Pg

Pg

Table 1 (continued)

~47

54

1260

221

-613

-549

-1960

=475

_ Std. (Sec_l)
1 error (km‘}) Ye
(1x1073) (1x10™3) (1x10 3) (1x10~3)

-21. 4.9 + +
18. a7 -4,7 -20.
0.795 1.02 Erit, crit.
4.53 1.33 -1.3 -16
-1.63 0.86 + +
-1.82 0..54 + +
-0.511 0.633 + +
-2.10 0.63 + +

=89¢=



REGION

Profile

MISSISSIPPIT#
LAKE SUPERIORS S
SNAKE RIVER PLAIN

Boise-SouthT

PHASE

P*

Table 1 (continued)

-382

31,700

337

std.

Q"1 error
(1x1073)  (1x10™3)

~2.62 0.92
0.0315 0.604
297 0.84

y (km™1)
(1x1073)

crit.

-0.80

Yc(seC‘l)
(1x10~3)

el ts

-4.4

=698~



PROFILE

NTS -
Boise®*
OrdwayT

BILBYF

LOGAN BLANCAS
SHOAL -

Eastil
GNOME -

Eastf

Westf

f(Hz)

-1558

676

-458

-649

-1038

307

303

898

647

Table 2.

Q' std.
(1x10™3) error.
(1x1073)
-0.642 0.697
1.48 0.370
-2.18 1.94
-1.54 1.29
-0.966 0.92
3.25 0.461
3.29 0.892
1.11 0.884
1.54 0.604

v (km~ 1)
(1x1073)

erit.,
-0. 34
crit.
crits
EELt,

-0.80

-0.81

-0.25

-0.37

Yc(sec'l)
(1x1073)

(-1.2)
-3.6

(-1.2)

(=L1s2)

(-1.2)

-6.8

~ 2o 1

=35

S0LE-



Tabie 2 (continued)

PROFILE f(Hz) ot Q'~1 std. v (km~ 1) Yc(sec‘l)
(1x1073) error (1x10-3) -
(1x10™3) (1x10~3)
EARLY RISE -
Little Rock** 4.0 -565 -1,77 0.180 + +
Wichita#** 4.0 -451 =2.22 0.204 + +
Coloradot+ 3.6 -588 ~1.70 0.480 + 3
Montanatt 3.6 -285 -3.50 0.610 + +
HAWAII -

Mohole site8§8§ 8.0 -1200 -0.836 1.04 + +

=LlE=
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Table 3
LIST OF STATIONS
N NAME LAT LON ELEV (KM)
i T4-1 T68.97333 -118,58833 0.890 il
2 R1-2 48.80516 -118,63632 0.853
3 R5-2 4R.TBT66 =118.64417 0.799% ‘—
& T75~3 6870667 -118.59816 la112
& Té-6 6R,57933 ~L1R.612366 1,036
. 6 RI=S5  4R.66T69  -118,74333 0.588
77 R6-5 48,42732 -118.72682 T T 0.573 7 T T
8 T5-6 4B.32683 -118.66116 1.158
T TSR T 48.22516 7 ~118.66849 0.561 N )
10 Ri-8 48.03032 ~118.46066 0,439
11 R6-8 48.01033 —118.67017 0.617
12 T4=9  47,95250 ~119.71869 0.588
13 R1-i0 47.86699 -118.65500 7 T0.813 T It
14 R6-10 4TB666T -118,65517 0.805
16 75=11 7 T TTeT.T4416 T =118.673237 T T oLtV T T T T T T T
16 Y4-12 47.61269 -118.71666 Q. 640
17 Ri-13 4741969 -118.71950 0.574
18 Ré6-13 47,465749 ~118.7195%0 0.557
19 T5-14 LT.%0369 7 -118.755837  0.500 .
20 Y4=-15 _ 47.26166 ~118.78133 0,508
21 Ri1-16 T 47.15866 -118.76717 0.476
22 R6-16 47.13683 -118,76717 0497
23 V5-17 47.03465 “118,78932 0,463
24 Y4=18  46,92366 _ -118.80032 0.416
25 Ri1-19 TTTTab.81332 -118.81499 0,335
_ 26 R6-19 46,79332 -118.82500 00350
2777V8=207 T T 46.67999  -118.79532 0.361 .
28 T4-218 46.56400 ~118.79633 0,354
29 R1-22 4645799 ~118,82433 0.325
30 R6-22 _ 46.63565 -118,82433 00280
31 75-23 TT46.35149  -118.83499 0.302
32 T4-24 46021149 ~11R.B84532 0,238
347 R1=25  46.09499 T -118.75850 0.276
34 R6-25 46.07565 -118.77066 0,158
35 15-26 45,98265 -118.90199 00460
36 V6=2T7  45,86499 -118.85399 0,468
37 Ri-28 a5, 75465 T =118.76532 0 0,696 -
38 R6-28 _45.73299  -118.76532 0,499 .
397 75-29 T T645,62700 -118.,93300 TTT0.495 -
40  T6-130 4552516 ~118.89049 0,546
%1 RiI-31 45.466350 =119,01700 0.823
62 R6=3L 45.62082  -119.01666 0.893
%3 Y5-32 65,28766 -118.95299 T 1ll.326 T T T T
64 R1-33  45.17899 -118.92032 1.086 ,
45 R6-33 45,15700 =118.92082 T, 067 T
46 T46-34 45.06282 -11R.93365 1.210
47 Y5-235 46,96666 ~11R.95349 1<058
48 Ri-36 66,79999 -118.85233 1.195
49 R6-36 64,77966 ~118.85432 1.073
50  14-37 44,68765  ~118.95166 1.396 o
51 R1-38 46,61299 ~119.19482 1.320
52 R6-38 44.59166 -119.19482 1.326
53 14-40 45.37233 ~118.98082 1.207
56 R1-642 _ 46.09982 _ -119.00432 1,448
: T8 5 T Re=42 44.07967 -119.00732° 77T 1,605 T T T T T
56 T4=46 43,91832 -118.96516 1.373
57 Ri=646 43,67532 ~119.07883 1.393
58 R6=64h__ 43,65399 -119.08333 1le323
59 ~R1-49 43,31667 ~118.97766 1.250
60  R5-649 %3,29500 ~11B.97766 1,250
61 R6-49 43,29517 -118.97766 1.252
62 M1 464234666  -119.31749 0,475 - o
T T Te3 M2 T T T T T T 46.46500 -119.05832 T 0.2l T
646 H3 46.59833 ~119645915 00330 X _
T T 68 we T T T 67,30666 ~-118, 74500 0,520 B
66 HS _46,73999 __ ~119,21666 _  0.384 . L
67 H6 66.61333 ~119.76082 0,372 ’
_ 68 N7 46,86333 _ =119,61800 0.268 )
T 7 7769 BMO 44,86888 ~117.3055% 1.1R9
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Table 4

AZTMUTH ~ ~CORRECTED ELIP  ELEV CURR ~REDUCED

SOURCE RCVR DELTA §==>R R==>$  TIHE CORR SRCE RCVR 1F
DEG WM DEG 0EG SEC SEC SEC SEC SEC
E0Z 2 Ta4-1 1.817 202.0 18S.1 4.9 32.31 0.0 =0.14 =0.13 "~ 7¥.06 — 77
EDZ 2 R1=2 1,988  221.0 185.6 5.4  35.87 0.0 =0ol% —~0.13 8.25
EDZ 2 R1-2 1.688  221.0  185.6 5.4 37039 0.0 =0.14 =0.13  9.77 7T
EDZ 2 R1-2 1,988  221.0 185.6 504 34.81 0.0 =0.14 =0.13 7o19
€0Z 2 Ri-2 1.988 221.0 18%.6 .4 36,59 0.0 ~-0el& -0.13 8.97
ENZ 2 RS-=2 2,006 222.9 185.7 5.5 35,03 0.0 ~0o1% ~0,12 Ts16
€07 2 RS5-2 2,006 222.9 T185.7 5.5 36.14 0.0 =0.16 =0.12 8,27
ENZ 2  RS5-2 2,006 222.9 185.7 5¢5 37,40 0.0 =0,14 =0.12 9.53
TEDE TS TRS<2T T Z2.0067  222.9 185.7 BeD 36.85 7 0.0 T=0516 =0L,12 7 78,08 T T T 07 -
€DZ 2 V5-3 2,084  231.6 1B4%.6 40% 36,03 0.0 =-0ol%4 -0.16 7.08
EDZ 3  14-4 2,212 245.8 184.6 Gol  AB.25 0.0 =0ol& =0.15 Te52
EDZ 3 RL=-S 20351 2613 18645 602 39,76 0.0 =0.l4 =0,09 7.09
€07 3 Ri-5 2.351 261.3 18645 6.2 4259 0.0 =0.146"-0.09%9 9,92 T
FDZ 3 R6-5 20370  263.4 186.2 5.9 39,96 0.0 =-0.16 -0.08 7.03
ED7 37 T R6=5 T 2,370 263.46 (86,2 5.9 42,89 (0.0 ~0.14 -0.08 §.96
EDZ 3 T15-6 2.466  274,1 184.9 beT 41,25 0.0 =0.1%4 =017 6,98
EDZ &  15-7 Z2.568  285.6 184.9 4.6  44.40 0.0 =~0.14 -0.08 8,72
EDZ &  T5-7 2.568 2P5.4 184.9 bob 42,74 0.0 =0.14 =-0.08 7.06
¥DZ % T5-7 2:568 T 285.% 184,97 T 4ob 46,05 0.0 =0.16 =0,08 10.37 T T T
FDZ &4  T5-7 2,568  285.4 196.9 6.6 46,30 0.0 =0.14 ~0.08 10,62
EDZ % R1=8  2.762° 307.0 1Bbe& 4e?2 46,55 0.0 -0.14 =0.06 8,17
EDZ & R1-8 2.762  307.0 1R4%.4 4.2 67,80 0,0 =0a.14 =0.06 9,62
EDZ & Ri-A 2,762 307.0 184.4 6,2 50.93 0.0 =-0.14 =0.,06 12.55
EDZ & R1-R 2762 307.0 18&4.4 4,2 49,32 0.0 =001% =0,06 10.96
EDZ &  RI-A 2,762 T 307.0 186.4& 4.2 45,13 7 0.0 =0O.lé -0,06 6,15
FDZ & R6-8 2.TR2  309.3 186.5 4.3 45,60 0.0 ~0oléb -0,06 6,74
E0Z & RE6-8 251827 30903 184%.5 4.3 46,81 0.0 <=0.14 =0.667 805 T
EDZ & R6-8 2,782  309.3 184.5 4.3 69,81 0,0 =0.14 =0.06 11.15
EDZ & R6-% 2.7687  309.3 184,.5 4.3 48,08 0.0 =0.1l& ~0.06 .42
EDZ 4 R6-8 2,782 309.3 1R4.5 6.3 51.45 0.0 =0o1% —0.06 12.79
EDZ 37 T4=9 2.843  316.0 185.1 4.8 46,29 0.0 ~0.147-0.09 6,79 7
EDZ & T&-9 2.843 316.0 185.1 6.8  51.79 0.0 =0a.14 =0.09 12.29
EDZTE T T4=9 T 2,843 T 316.0  185.T 1 4.8 46475 0.0 S04 T=0.09 ¥R T T T
€ENZ 5  R1-10 2,925 325.1 186,.1 3.9 48,84 0.0 =0.l4 =-0.12 8.20
€DZ 5 R1-10 2,925 325.1 186.1 3.9  49.49 0.0 -0.14 -0.12 8.85
_____EDZ S__R1-10__ 2.925 _ 325.1 1841 3.9  47.56 0.0 =0.14 =0,12 6.92
EDZ' ST R1-10 2,925 T7325.1 184,17 3.9 83,70 T 0.0 -0.1& -0.52 13,06 T T
EDZ 5 R1-10 2,925 325.1 184.1 3.9 52,09 0.0 =0.14 =-0.12 11,65
EDZ 5 R6=10 20947 327.6 184.1 3.8 49,72 0.0 =0.1& =0.12° “B.rT T T
EDZ 5 R6-10 2,967  327.6 186.1 3.8 47.80 0.0 =0.14 -0.12 6.85
€02 5  R6-10 20947  327.6h 186.1 3.8 49,03 0.0 <-0.14 -0.12 8.08
__ ENPZ S __R6-10 2,947 _ 327.6 184.1 3.8 52.45 0.0 =0.14 -0.12 11.50
EDZ 5 R6-10 2.947 7 327.6 184.1 3.8 754,10 " 0.0 =0.14 =0.12 " 13.15 T
EDZ 5  TS5-11 3,048 338.8 184%.2 3.9 58042 0.0 -0.14 -0,10 16.07
—E0Z'S T T5-11 3,048  338.8 "1B4.2 3.9  49.527 0.0 =0.14 =0.10 ~ 7,17 T T T
FDZ 5  T5-11 3,048  33R.8 1LR4o2 3.9 56.38 0.0 =0.14 -0.10 14,03
EDZ & 15-11 3,048 338.8 184.2 3.9 55,27 0.0 ~0.14 =0.10 12,92
____FDZ. 5 _ Y5-11 3,048 _ 338.8 1B6,2 3.9 S1.43 0.0 -0.l4 -0.10 9.08
EDZ 6 T4=-12 3.182 353.7 186.6 T64.3 7 7T87.37 T 0.0 =0014 =0.09 13,17 777 TTOTTTT
EDZ 6 T4-12 3.182  353.7 1R6.6 4.3  50.83 0.0 -0.1% =009 6.62




-374-

Table 4 (continued)

AZIMUTH CORRECTED ELTIP ~ ELEV CORR REDUCED
SOURCE RCVR DELTA §==>R R-~>S  TIME CORR SRCE KCVR YT
DEG KM DEG DEG SEC SEC SEC  SEC SEC
TTTEnz 6 T4=12 73,1827 353,77 184.6 4.3  56.18 0.0 =0.16 -0.09  11.97 ~ =
____EDZ 6  R1-13 3,315 368.4 184e4 4ol 52,64 0.0 =0.16 -0.08 6059
£D7 6 R1-~13 3,315 T36R.46 1864 6.1 58,80 0.0 <-0.14 ~0.08 12.75° T
__ENZ A RI=13 3,315 368.4 184.4 4.1 54.10 0.0 =0.1% ~0.08 8.05
TTEDZ 6 R1-13 3,315  36R.4 LRG.4&4 4,17 55,68 0.0 =0.1%4 -0.08 §.63
EDZ 6 R1~13 3,315 368.4 184.4 4.1 60093 0.0 =0.14 =D.08 14,88
€07 6  R6-13 3,337 370.9 1i86.4 4. 59,29 0.0 ~0.16 0,08 12.9%
ENZ 6 R6~13 3,337  370.9 184.4 Gol 61036 0.0 =0ol& =0.08 14,98
- ENZ 6 R6=137 3,337 370.97 18404 T 4. T 856.04 0.0 T=0.14 =0.08 " .68 ST
EDZ 6 R6-13 3,337 370.9 184.4 4.1 54.38 0.0 =-0o14 —-0,08 8.02
N7 6 R6-13  3.337 370.9 1fR4.4 4.1  53.02 0.0 -C.iéd =0.08 G.67
EDZ 6 T5-14 3,392 377.1_ 184.7 4.4 61,70 0.0 =0.14 =0.07 14,57
EDZ &  ¥S5~14 3,392 37Tl 184.7 4.4 58,92 0.0 =0.16 =0.07 V1,79  ~ T T T
EDZ 6  T5-14 3,392 377.1 184.7 bol 53,85 0.0 =0el% =0.07 6.72
TUENZ 6T TS=167 73,392 T TITTI T Y847 T 4.4 53085 0.0 TS0.1%47=0.07 6.7Z T T
FDZ14  Hé 3,488 387.7 1B6,5 402 55.23 0.0 =0olé =-0.08 6,76
€02 7 RL-16  3.637 &404.3 18446 4.2 66255 0.0 =0.14 0,07 16,02
ENZ 7 Rl-16  3.637 4604.3 1R4.6 4e2  64o14 0.0 =0ol% -0.07 13,61 :
TTTEDZ T TRLI=16TT TR BT L0463 184,67 4e27 61629 0.0 =0.146 =007 10,75~~~ 777
EDZ 7 R1=16 3.637 404,33 1B4.6 4,2 58,40 0.0 =~0o14 =0.07 7.87
TUUEDZ T T ORIS16T 30637 40463 T1B4eb T 442 T 857,137 T0L0 T S0 1A T=0.07T b 60T T T T
£DZ 7 R6~-16 3,659 40607 184.5 402 66692 0.0 =0.14 -0.07 16,08
€07 7 R6-16 3,659  406.7 184.5 5.2 64.46 0.0 =0.1% =0.07 13762
EDZ 7 R6~-16 3,659 &06.7 184.5 4e2 61.55 0.0 =-0o146 =0.07 10,71
ENZ 77 TR6=167 T 3,659 406,77 184.5 = 4.2 58,65 0.0 =0.1& =0.07 7.81 T
ENZ 7  R6=16 3,659 406.7 184.5 4,2 5747 0.0 =0al& =0.07 6463
““““ EDZ 7 T T5<S1T T TUA.762 7 T TA18.2 T84T T 4.3 768,80 7 0.0 =0.1% =0.07 653 T T T T
EDZ 7 T5=17 3,762 418.2 184.7 4.3 66662 0.0 =0.14 =0.07 14.35
EDZ 7  15-17 3,762  &1iB.2 184,17 %.3  68.51 0.0 =0.14 =0.07 Y6.24
EDZ 8 R1=-19 3,984 462,8 184.7 43 61,48 0.0 =0.14 -0.05 6,12
FNZ 8 T R1-19 73,9846 442.8 184,77 4.3 14,32 T T 0.0 -=0.14 0,05 IB.9T T T T T
EDZ 8 R1-19 3.984 442.8 184.7 4.3 7139 0.0 =~0.1% -0,05 16.03
T epz 87 RiI-19 3.9R4  642.8 186.T T 4,37 62.80 7 0.0 =0.1& =0,085 T 7,44~ T
EDZ B R6=19 46,006 465.1 186,7 4ot T4ob66 0.0 =0.1%4 -0.05 19.00
€07 8  RA-19 4,004 &&S5.1 184a7 4.k T1e69 0.0 =0.1% =0.05 16.05
__EDZ B R6=19 4,004 _445.1 184.7 bob 63,09 0.0 =0.14 -0,05 To45
EDZ 8 R6=19 4,004 4&5.1 184,77 h.b  61.79 7 0.0 =0.1%7=0.057 6.5 T T T
__ EDZL4 _HT 4,011l  445,5 1926  1le7 62,04 0,0 =-0.14 -0.04 6031
TUEDZLe T T HS T T T4, 0B6 454,27 188457 7.8 63,39 70,00 =0.1% 0,06 T b.6I T T T
FDZ10  T4-218 4,232  470.4 1864,2 3,9 T76.68 0.0 =0.14 -0.05 17.89
ENZ10 Y4=218B 4,232 470.4 18402 3.9 65.6%4 0.0 =0.1% =0,05 6,85
_ FDZ10 _ T4=21B _ 4e232 470.4 1B4.2 3.9 64,89 0.0 =0.1%4 -0.05 6.10
T UEDZ10 T T T4=21B7 46232 6T0.4 184.2 3.9 T78.79 7 0.0 =0.14 -0.05 T19.99 S
___FDZ10  T4-21B 4,232  4T0.4 184,2 3.9 T72.54 0.0 =-0.1%4 -0.05 13,74
ED716  H3 60251 472.6 1904 9.6 63.98 0.0 =0.1%4 -0.,05 46,9177 -
_EDZ14 M6 4,276 _ 675.3  193.2 12,2  65.82 0.0 -0.14 -0.05 6o61
TEDZ10  R1=22 4,339 482.3 184.4 4.0 80,49 0.0 =0.1% <0,05 20.20
__EDZ10  R1-22 4339 4B82.3 184t 4.0 67,25 0.0 =0.1% -0.05 6096
ENZ10  R1-22 46339 T 482.3 184,46 7 4.0 65,917 0.0  =0.14 -0.05 5062
_EDZ14 W2 _ 60346 4B3.)1  186.5 6.0 66,85 0.0 =0.14 =0.03 6446
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Table 4 (continued)

AZTMOTH ~— "CORRECTED ELIP ELEV CORR REDUCED

SOURCE RCVR DELTA §=~>R R==>5 TIME CORR _SRCE_ RCVR TT
DEG [} DEG DEG SEC SEC SECT ~ SEC SECT
EDZLI0 R6-22 4.36l 484.8 1844 4,0 80,87 0.0 =0.1%4 -0.06 20.27 7 ]
ED210  R6-22 64361  48%4.8 184.4 4.0  T6.80 0.0 =0.16 =0.04 16,21
€0Z10 ~ R6-22 4.361  4R4.8 184.4 4,0 76,53 0.0 =0.14 ~0.064 15.9¢ =~ -
EDZ10  R6-22  4.36L 48408 184.4 400 67461 0.0 =0.14 =0.04% 6462
EDZI0  R6-22  64.361 4B4eR8 184o4 4.0 66.16 0.0 =014 -0.0% 557
EDZI0  V5-23  4.446 49402 184,64 4.0 82.71 0.0 =0016 =~0.04 20.9%
€DZid ¥5-23  T4o446  %94.2 184.4 4.0  6T7.81 0.0 =0.16 <0.04 .04 7T
EDZLO  T5-23 4,646 494,22 184.4 6,0 T7.01 0.0 =0ol% -0.04 15,24
TTTOENIT0 T 15-23 7 hlb46 494,2  184.4 T 4.0 88,067 0.0 =0.14-0.046 26,29 T T T
EDZ10  T5=23 4,446  4696,2 184.4 4.0 128,46 0.0 =-0ol& -0.046 66069
EDZLZ2 14-26 6.586 509.7 1iB4.& 4.0 70.66 0.0 =0.14 =0.0%4 6.9
ENZ12  V4-24 4,586  509.7 184.4 4.0 69,59 0.0 =0.14 =0.04 5.87
EDZLZ V4-24 4.586 509.7 184.% 4,0 75,69 0.0 -0.14 -0.064 11,97
ED212 T4~26 6.5R6 509.7 184.4 4,0 B82.84 0.0 =0a14 -0.046 19,12
D214 "RHY 4,596 7 B10.9  188.5  Te7  69.46 T 0.0 =0e16 =0.07 T 6,89 T T
EDZ12 R1=25 4,699  522.3 183.5 3.2 73.67 0.0 =0.1%4 -0,03 8.39
EDZ12 R1-25 4,699 522.3 1B3.5 3.2 70,89 0.0 =-0.14 -0.03 5,61
ED712 R6-25 4.TL8 524.5 183.6 3.3 73.94 - 0.0 =0.14 -0.02 8039
EDZ12  R6=257T 4,718 5265 183.6 3.3 71,25 0.0 <=0.14 =0.02 65,69 T
EDZL2 V5-26 4.8L0  534.7 184.6 42 69,13 0.0 =~0.14 =0.07 2,29
FOZ13 ~ T4=27 44932 568.2 18%.2 3.8 8248 0.0 =0al4 =0.07 13,95  — T T
EN213  V4=~27 40932 548.2 184.2 3.8 75.18 0.0 =0.14 -0.07 6465
D713  V4-27 4.932 568.,2 184.2 3.8 14,38 0.0 =0.14 -0.07 5.85
EDZ13  T4=27 4,932 _548.2 184.2 3.8 90,79 _ 0.0 =0.14 =0.07 22,27
E0Z1T TT4-27  4.932  548.2 184.2 3,8 71,61 T 0.0 =0.14 =0.07 9.09 o
ENZLI3  T6=2T7 4,932 5648.2 18B4.2 3.8 78,50 0.0 =0.16 =-0.07 9,97
EDZL3  R1-28 5.039  560.1 183.4 3.0 87,18 0.0 =0.1la =0.07 "17.08 T
EDZ13 R1-28  5.039 560.1 183.4 3,0  85.47 0.0 -0.1% =0.07 15046
EDZL13 R1-28 5,039 560.1 1i83.4 3.0  B4.50 0.0 =0.14 ~0.07 14450
EDZ13 _ RY=?8  5.039 S560.1 183.4 3.0 __83.36 0.0 =-0.14 =0,07 13.35
EDZ13 ~ R1-28  5.039  560.1 183.4 3.0 78.04 0.0 =0.14 =0,07 78,03 T T
EDZ13 R1-28 5.039 560.1 183,46 3.0 76036 0.0 =0.1% -0.07 6035
€N213 7 R6=-28  5.060 562.5 183.3 3.0 87.54 0.0 =0.14 -0,07 17,23 ~ 707777
FDZ13  R6-28  5.060 562.5 183.3 3.0 85073 0.0 ~0o1%4 -0.07 15.43
EDZ13 R6-28  5.060 562.5 183.3 3.0 84.86 0.0 -0.14 =0.07 14.53
___EDZ13_ R6-28_ 5,060 _ 562.5 183.3 3.0 _ 83.64 0.0 =0.14 =-0.07 13,34
T EDZLI3  R6-28 5,060 562.5 183.3 30077 78032 0.0 =0.1% -0.07 8,02 T T T T T
D713 R6-2R 5,060  562.5 183,.3 3,0 76,65 0.0 =0.14 -0,07 6034
€0T1e T T5-29  5.173  575.0 184.6  4e2 69,77 0.0 =0o14 -0.07 =-2.11 ~~ T
EDZ216  ¥5-29 5,173 575.0 184.6 4,2 80.26 0.0 -0.1%4 -0.07 8.38
E0Z14  75-29 S.173 §75.0 18446 442 66,48 0.0 -0.14 -0,07 =%.40
ENZ14  ¥5-29 5,173  575.0 184.6 4.2 61,82 0.0 =0.14 —-0,07 -10.06
TTTEDZIG T T5-297 S 1737 675.0 T 184.6 6.2 80,07 0.0 =0.l4 -0.07 " 8.197 T T T T
FOZ16 RL1-31 5,361 595.9 185.1 4.6 90.03 0.0 =0.1% -0.12 15,54
EDZ14 RLI-31 5,361  595.9 185.1 4.6  88.01 7 T0.07 S0.tk =012 13,527 T 7T
EDZ14 __ R1-31 5,361  595.9 185.1 4.6 R2.88 0,0 =016 =0,12 8.39
0716  R1I-31 5,361  595.9 185.1 4.6 80.47 0.0 -0.l& -0,12 5.98
__ ED714__R1-31__ 5.361 _ 595.9 _185.1 _ 4.6 81.92 0.0 =0.14 -0.12 Tat3
T FnZie T R6-31 50384  598.%4 185,.1 4.6 779043577 0.0 =0e14 =0.13 T15.,55 T 77T 7
EDZ14 R&-31  S5.384 59804 185.1 bab 88.19 0.0 =0.14 =0.13 13,40
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Table 4 (continued)

AZIMUTH CORRECTED ELTIP ~ ELEV CORR REDUCED ~ —— ~
SOURCE RCVR DELTA §==3R R=->$ T IME CORR  SRCE RCVR T
DEG KM DEG DEG SEC SEC SEC SEC SEC
EDZ14 ~ R6-31 T 6.384  598.4 1B85.1 4.6 83,21 0.0 -0a.1% =0.137 T H,6l T
EDZLl4 _ R6-31 54384 _ 59R.4 185.1 4.6 80.85 0.0 =0o.14 ~0.13 6,05
0214 R6-31 5386  598.4 185.1 4.6 82.87 0.0 =0.1% =0.13  8.0Y T T
ENZIS  T5-32  5.513 _ 612.8_ 1845 4,0  83.47 0,0 =0el% =0.20 6.87
EDZ1S 75-32 5,5L3 612.8 184.5 4.0 102.02 0.0 =0a.1% =0.20 25,4 77
FDZ15 _ ¥5-32 5,513 612.8 184,.5 4.0  91.32 0.0 =0el&s =020 14,72
EDZ1S ¥5-32 5,513 612.8 LlR4.5 4,0 89,02 0.0 =0.14 =0.20 L2.42
EDZ15  T5-32 5.513 612.8 184.5 4,0 84024 0.0 =-0.1% -0.20 Tobb
EDZ15 7 T RE-33  5.620 T 624.6 (84,2 T 3.7 793,49 0.0 ~0.14 -0.16 T1l5.61 T o
FDZ1S  21-33__ 5.620  624.6_ 184.2 3.7 87,26 0.0 =0.1%4 =0,16 9,18
ED715 RL=-33 5,620 624.6 1R4.2 37 86,35 0.0 -0.1%4 -0.16 .27
EDZ15 _ R1-33 5,620  624.6 184.2 3.7 85,06 0.0 =0.14 -0,16 6,98
EDZ15  R6-33  5.642 627.1 186.2 P 93,82 0.0 =0.1%& =0.16 15,63 — 77 -
EDZLS  R6-33  5.642 627.1 184.2 3.7 BT7o64 0.0 =0.1% -0.16 9,25
EOZ1S T RA=33 8,642 T 627.1 184,27 T 3,7 86,95 0.0 =0.1% -0.16 " 8.56 i
EDZL5 R6-33 5,662 6271 184.2 3.7  87.31 0,0 —=0o14 -0,16 8.93
EDZ15  Vé-34 5.736 637.6 184.2 3.8 Bl.96 0.0 ~0.i& -0.18 B.26
EDZ15  T4=34  5.736  637.6 184.2 3.8 90,81 0.0 =0aolé4 =0.18 11,11
EDZ16 ~ 15-35  5.853 /50,6 184,3 3.8 89,327 70,0 ~0.14 <d.16 T 8.00 T 7
EDZ16  T5-35 5,853  650.6 184.3 3.8 99.78 0.0 =0.16 -0.16 18,46
EDZLI6  T15-35 5,853 6506 18&.3 3.8 93,83 0.0 -0.i4 -0.16 "L2.51 T 7
EDZ16  T5-35 5,853  650.6 184.3 3.8 90.23 0.0 =0o14 -0,16 8.91
ED2L7 BMO 5,978 6b4.% 172.9 353.6 90.19 0.0 =-0.1% =0.18 T.1% .
EDZ16 R1=36 5,995 666.4 183.5 3.1 91.08 0.0 =-0o16 -0.18 7.78
T EDZY6  RI=367 5,995 66&.6 183,57 7 317 T90.187 0.0 0416 =018 77686 T T T &
FNZ16 R1-36 5.995 666.4 183.5 3.1 89,53 0.0 =0o.l& =-0.18 6+23
EDZY6 T PL=36 T 5,995 666.4 183.5 3,17 100317 0,07 =0.167=-0,18 17,017 77
£0Z1h Ri-36 5.995 666.4 183.5 3.1 94,46 0.0 =061% =0.18 1ll.16
EDZ16  A6-36 6,016 668.6 183.5 3.1 GL o287 0.0 -0e14 =0.16 T7.70 T
ED216  R6-36  6.016 668.6 183.5 3.1 90,43 0.0 =-0ol% =0.16  6.85
EDZ16 T R6-36 6,016  66R.6 183.% 3.1 89.787 0.0 =0.1% =0.16 T&.20 T 7T
EDZ16 R6=36 6.016 668.6 183.5 3.1 100.48 0.0 <=0.1%4 ~0.16 16.90
TTTED?16 T TR6-36 T $.0167 T 66806 183,57 73,17 7798.83777 0.0 TS00147 =016 T 15.25 T T
FDZ16  R6-36 6,016  668.6 183.5 3.1 94,71 0.0 =00l =0.16 11.13
EDZ17  R1-38  6.199 6R9.0 185.6 5.0 104,69 0.0 =0o1%4 =0.19 18.57
EDZ17 RI-38 6,199 689.0 185.6 5.0 100.75 0.0 =0.14 =0.19 14.62
TTEDZL7 T T R1-387 76,199 T 689.0 1R5.6 5.0 97.537 0.0 T=0.14 -0.19 Il.4l T 77T
EDZL7 R1-38 6.199 689.0 185.6 5.0 93,72 0.0 =0ol% =-0,19 7.59
TTENZIT T R1I-38 7T 6,199 689.0 185.6 5.0 92.797 0,0 =0.1%4 =0.19 T b.66 T T T T
EDZ17 R6-38 6.220 691l.4 185.6 5.0 104094 0.0 =0.1%4 -0.20 18,52
0217~ R6-38~ 6.220 691.%4 185.6 5.0 100.86 0.0 =0.14 =0.20 T&.%%
EDZ17 R6-3B  6.220 691.4 185.6 5.0 97.79 0.0 =-0.14 -0,20 11,37
- ED7LT T RE=3R T 6,220 69l.4 185.6 T 5.0 T 93.94 T 0.0 =0.14 =0.20 L -
EDZL7T R6-3B  6.220 691.56 185.6 5.0 93.09 0.0 =-0.14 -0,20 6.67
ENZI87 RI-42 6701 T T44.7 184.1  TT3.6 108.59 T 0.0  =0.1%4 ~0.22 15.50 .
FDZ18  R1-42 6,701 T4%4.7 184l 3.6 107,50 0.0 =-0.14 -0.22 14.41
EDZ18  RL-62  6.701  74&.7 186.1 3,6 102.417 0.0 =-0.14-0.22 932
EDZ18 R1-42 6.701 T6&4.7 184.1 3.6 10089 0.0 =0.16 =022 7.80
0218 T RIS42 T 670 T Ta4.7 T 1B6.17 3.6 77 99,757 0.0 "-0.14 =0.22  6.66 -
EDZ18 R6-62 6,721 T467.0 184.1 3.6 108.79 0.0 =-0.14 =0.24 15.42
EN718 R6=42 6,721 767.0 184,.1 3.6 107.71 0.0 =0.1%4 =0,26 14o33
__EDZ1R R6=42 6,721 __ T47.0 184.1 3.6 102.68 0.0 =0.1% —=0.24 9.31
EDZ18 R6-62 6,721 T47.0 184.1 7 3.6 101.13 0.0 =0.14 -0s24 ~T.76 T
EBZ718  R6-=42 6,721 T47.0 1B&4.1 3.6 100.08 0.0 =-0,14 -0,24 6.71
ENZ19  RLI=%46 7,127 1792.2 184.3 3.8 113,74 0.0 =0.14 -0.,21 (4,72
___EDZ19 _R1-66  T7.127 _T92.2 184.3 3.8 109.59 0.0 =0.1%4 =-0.21 10457
TTEN719 T R1-46  T.127 T 792.2 T1R4.3 T 3,87 108,56 0.0 =0.14 =0.21 9.54 T T
EDZ19 R1-46 T.127 792.2 184.3 3.8 108,29 0.0 -0.14 -0.21 9.27
TTENZ19 T TR6-46 1 T.169 T T94.6 184.3 T 3.8 114,08 7 0.0 =-0.14 =0.20 14.76
EDZI9  R6-46_ To149 _ T94a6 184,3 3,8 110,10 0.0 =-0.16 -
EN7 19 R6-46  1.169  T194.6 1R4.13 3.8 109.05 0.0 =014 —(
EDZ19  R6-66  Tol49  T96.6 1R4e3 3.8 108,60 0.0 =0.14 -0,20
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Figure 2.

Figure 3a.

3be

Figure 4.
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Figure Captions

Coordinate system for a spherically symmetric medium with
a discontinuous boundary at r = a between a homogeneous
region (Co) and a radially heterogeneous region (C(r)). The
point source and receiver are located at r, and r,
respectively.

Integration path for Watson transform in complex v-plane
The heavy line, C, is original contour, and dashed lines,
C; and Cy, represent alternate positions for deformed
contour.

Coordinate system and parameters for acoustic waves
reflected from a plane boundary. The point source is at
eR Z s and the receiver is at (z,p).

Acoustic velocity, C, as a function of depth. Negative
and positive gradient cases are represented by solid

and dashed lines, respectively, for z < O.

Locus of turning points (heavy lines) in the lower half-
space for positive, null, and negative velocity gradients
as a function of the parameter, p = sin 0. Wavy lines
represent traveling waves with arrow indicating direction
of propagation; exponential curves represent evanescent

waves.



Figure 5a.

5b.

Figure 6a.

6b.

Figure 7.

Figure 8a.

8b.

Figure 9.
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Modulus of the plane wave reflection coefficient,

Vp_, for different values of €= (y/ko)l/B.

Phase of the reflection coefficient V__

Branch cuts and original contour for Weyl integral in
the complex p-plane. (+,-) indicates signs of real

and imaginary parts of the radical /T:EE- in each
quadrant.

Steepest descents path and head-wave poles in complex
p-plane for negative gradient case. PO is saddle point
n_ is index of refraction at boundary.

Steepest descents path and diving wave poles in complex
p-plane for positive gradient case.

Branch cuts and original contour for Weyl integral for
generalized ray expansion of reflection coefficient

for positive gradient, V+.
Steepest descents path for nth diving wave. Pn is
the saddle point.

Compressional and shear wave velocities as a function
of depth for reflection of elastic waves from a plane

boundary. Negative and positive gradient cases are

represented by solid and dashed lines, respectively.



Figure 10.

Figure 11.

Figure 12.

Figure 13.

a)

b)
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Coordinate system for computing plane wave reflection
coefficient in elastic medium with a plane boundary.
Complex p-plane showing steepest descents path, head-
wave poles, and branch cuts for the reflection of elastic
P-SV wave from a negative gradient.

Theoretical amplitudes for reflected and refracted waves
from a plane boundary and vertically heterogeneous half-
space. Both source and receiver are 30 km above the
boundary at which n, = 0.875, m = 1.2. Dash-dot curves
are classical head wave amplitudes (y = 0); heavy solid
curves are head wave amplitudes for negative gradient

(y = - lO'3km_1); heavy dashed curves are envelope of
amplitude curves for positive gradient (y = 1073 km™1);
light solid curves are amplitudes of reflected waves.
Ray-theoretical amplitudes of direct (0) and once-
reflected (1) diving waves are indicated by light

dashed lines.

Contours for numerical integration of Weyl integral.

X is location of saddle point:

Homogeneous case: separate contributions for head

wave (H) and reflected wave (R).

Homogeneous case: combined contributions for head

and reflected waves (HR)
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c) Negative gradient case: separate contributions for head
wave (H) and reflected wave (R)
d) Positive gradient case: separate contributions for
diving waves (0) and reflected wave (R).

Figure l4a. Comparison of exact numerical solutions (solid lines)
and asymptotic solutions (dashed lines) for head waves
from a spherical boundary with a subcritical velocity
gradient in the lower medium. Short and long dashed
lines indicate asymptotic solutions for |0_| << 1 and
|0_| >> 1, respectively. Exact solution for classical
head waves are indicated by dash-dotted curves for
reference. Both source and receiver are 30 km above
the boundary at which n = 0.80, m = 1.2.

14b. Comparison of exact numerical solutions and asymptotic
solutions for diving waves from the same model as in
l4a. but with a positive velocity gradient in the lower
medium. Solid lines are envelopes for exact diving wave
amplitudes; short dashed lines are asymptotic solutions
for |0+[ << 1; long dashed line is ray-theoretical
amplitude for direct diving wave.

Figure 15. Schematic representation of effects of curvature and
velocity gradients on near-critical waves:

a) Positive gradient case showing two diving waves
b) Homogeneous case showing two diving waves
c) Critical negative gradient case showing classical

head wave path.



-381-

d) Sub-critical negative gradient case showing inward
curving ray and 'diffracted' head wave to surface.

Figure 16. Theoretical amplitude curves for reflected and refracted
waves from a spherical M-discontinuity and a homogeneous,
8.0-km/sec mantle; source and receiver are 30 km above
the M-discontinuity in a 6.4-km/sec 'crust'. Solid
lines are ray-theoretical amplitudes for direct (0) and
once reflected (1) diving waves; vertical bars show
minimum distance for valid description for wave of
indicated frequency. Heavy dashed lines indicate
envelopes of interfering diving wave amplitudes. Light
dash—~dotted lines are classical head wave amplitudes,
and heavy dash-dotted line is reflected wave amplitude.

Figure 17. Details of exact numerical solution for diving wave
amplitudes in model described in Figure 16. Dash-dotted
lines are classical head wave amplitudes.

Figure 18. Spectral amplitudes of diving wave at distances of 1.0
and 3.0 degrees for model described in Figure 16. Dashed
lines are classical head wave spectra.

Figure 19. Theoretical amplitude curves for reflected and refracted
waves in same model as in Figure 16 but with negative
and positive velocity gradients in mantle of #0.5 x 1073

sec ~. Heavy solid lines are head wave amplitudes



Figure 20.

Figure 21.

Figure 22.

Figure 23.
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in negative gradient case; code for curves in positive
gradient case is the same as in Figure 16.

Theoretical amplitude curves for reflected and refracted
waves in same model as in Figures 16 and 19 but with
positive and negative velocity gradients in the mantle
of £1 x 10-2 sec—l. Code for curves is same as in
Figures 16 and 19.

Details of exact numerical solution for diving wave
amplitudes for model in Figure 19 with a positive
gradient 5 x 10-3 sec_l.

Spectral amplitudes of refracted waves at distances of

1.0 and 3.0 degrees for model in Figure 19. Solid
curve is spectrum for interfering diving waves
(YC =+ 5x 1073 sec—l); dash-dotted curve is spectrum

of head wave from negative gradient (YC =~ 5% 1073

sec™1); dashed curve is spectrum for classical head wave.

Head wave amplitude vs. distance at 5 Hz for a 3.0

km/sec layer 2 km thick over a 6.0 km/sec horizon.

Squares are amplitudes for classical head wave with

Q = 10,000. Circles are asymptotic amplitudes for the

negative gradient case (y = 1073 km 1) for |o_| << 1

and [0 I >>1. The dashed line represents the exact
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amplitude for the negative gradient case obtained by
numerical integration of Weyl integral. Q = «
for the critical gradient case.

Figure 24. Head wave amplitude vs. distance for same model as in
Figure 2 illustrating effects of Q and frequency.
Squares, circles, and triangles are amplitudes for
classical head wave with Q = 300 at 2, 5, and 10 Hz,
respectively. The dashed, dotted, and dash-dot lines
are amplitudes from a negative gradient half space
with vy = 1073 at 2, 5, and 10 Hz obtained by numerical
integration of Weyl integral. Note that the 5 Hz
negative gradient case is the same as shown in Figure 2.

Figure 25. Amplitude curves illustrating effect of greater-than-
critical or positive (YC > — V1/t), critiecal (YC = - Vi/r)
and sub-critical (YC < - Vi/r) velocity gradients on
head wave amplitudes. The reflected wave amplitude
which is insensitive to small gradients in the
refracting medium, is shown for reference. The arrow at
C.D. indicates the ray-theoretical critical point.
These curves were generated for 6 Hz waves in a 6.4 km/

sec layer 30 km thick over an 8.0 km/sec refractor.



Figure 26.

Figure 27.

Figure 28.
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Empirical relation between gradient parameter, v,
(equation (3,12) and Q'. Circles are points determined
by fitting equation (7) for Q' through theoretical
amplitudes of head waves refracted through media with
negative velocity gradients. The theoretical amplitude
are for a frequency of 5 Hz and were obtained by
numerical integration of Weyl integral. Crosses are
points obtained by fitting asymptotic solutions for the
negative gradient through observed amplitude data.
Amplitude data for Pg first arrivals in the Basin and
Range Province. Solid line is fit of equation (7)
through the data points. a) Fallon to Eureka (Eaton),
1963), b) Fallon to San Franciso (Eaton, 1963),
c) Fallon to Owens Valley (Eaton, 1963), d) Eureka
to Fallon (Eaton, 1963), e) Eureka north (Hill and
Pakiser, 1966), f) Mountain City south (Hill and Pakiser,
1966), g) Nevada Test Site east (Ryall and Stuart,
1963). Dashed line shows amplitude decay with Q' =
infinity for comparison.
Amplitude data for Pg first arrivals in California. Solid
line is fit of equation (7) through the data points.

a) San Francisco to Fallon (Eaton, 1963), b) Combination



Figure 29.

Figure 30.

Figure 31.
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of Pg data from San Francisco south and Santa Monica
north (Healy, 1963), c¢) Combination of Pg data north

and south of Camp Roberts (Healy, 1963), d) Santa
Monica to Lake Mead (Roller and Healy, 1963), e) San
Juan south - 6.06 km/sec branch (Stewart, 1968),

f) San Juan south - 6.35 km/sec branch (Stewart, 1968).
Dashed line shows amplitude decay with Q' = infinity

for comparison.

Amplitude data for Pg first arrivals in the Colorado
Plateau Province. Solid line is fit of equation (7)
through the data points. a) Hanksville south (Roller,
1965), b) Chinle north (Roller, 1965). Dashed line
shows amplitude decay with Q' = infinity for comparison.
Amplitude data for Pg first arrivals in Missouri. Solid
line is fit of equation (7) through the data points.

a) Hannibal west (Stewart, 1968), b) Swan Lake to Hannibal
(Stewart, 1968), c) Swan Lake to St. Joseph (Stewart,
1968), d) St. Joseph east (Stewart, 1968). Dashed line
shows amplitude decay with Q' = infinity for comparison.
Amplitude data for P* first arrivals. Solid line is fit
of equation (7) through the data points. a) Combination
of P* amplitudes from shot points at Ansley, Raleigh,

and Dribble, Mississippi (Warren et al., 1966),



Figure 32.

Figure 33.

Figure 34.

a)
b)

c)
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b) Combined P* amplitudes from the Lake Superior
experiment (0'Brien, 1968), c¢) P* amplitudes from Boise
south in Snake River Plain (Hill and Pakiser, 1966).
Dashed line shows amplitude decay with Q' = infinity for
comparison.

Map showing location of crustal profiles and the relation
of Q' to heat flow. Number beside each profile is

Q' x 1072, The heavy dashed contour separates the
region in which Q' is less than lO3 from that in which
it is either greater than 103 or negative. Regional
heat flow patterns are from Archambeau et al. (1969).
Same map as in Figure 32 but with regional heat flow
patterns from Roy et al. (1970).

Amplitude data for Pn first arrivals from nuclear events
at the Nevada Test Site (NTS). Solid line is fit of
equation (7) through data points; dashed line shows
amplitude decay with Q' = infinity for reference.

NTS to Boise, Idaho (Hill and Pakiser, 1966)

NTS to Ordway, Colorado (Ryall and Stuart, 1963)
Combined data recorded from Bilby event recorded along
profiles northeast and southeast from NTS (Archambeau,

et al., 1969)



Figure 35.

Figure 36.

d)

a)

b)

c)

d)
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Combined data from LOGAN and BLANCA events recorded
southeast from NTS (Romny, 1959).

Amplitude data for Pn first arrivals. a) SHOAL (near
Fallon, Nevada) recorded along a profile to the east
(Roller and Jackson, 1966), b) GNOME (in New Mexico)
west (Romny et al., 1962), c) GNOME east (Romny et al.,
1962). Solid line is fit of equation (7) through data
points; dashed line shows amplitude decay with Q' =
infinity for reference.

Amplitude data for Pn first arrivals from EARLY RISE
series of chemical explosions in Lake Superior. Solid
line is fit of equation (7) through data points; dashed
line shows amplitude decay with Q' = infinity for
reference:

Little Rock, Ark. profile (the data points plotted are
seven point moving average of all amplitude data;
Green and Hales, 1965)

Wichita, Kansas profile (the data points plotted are
seven point moving average of all amplitude data;
Green and Hales, 1968)

Colorado profile (Iyer et al., 1969)

Montana profile (Iyer et al., 1969)
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Figure 37. Amplitude data for Pn first arrivals at proposed Mohole
site (SH31) (Helmberger and Morris, 1969). Solid line
is fit of equation (7) through the data points. Dashed
line shows amplitude decay with Q' = infinity for comparison.

Figure 38. Map showing location of profiles used for Pn amplitudes.
Number associated with each profile is Q'. Dashed
'profiles' indicate general trend stations distributed
over a wide area. BILBY profile is combination of
northeast (shown) and southeast profiles. Regional
heat flow pattern is from Roy et al. (1970). Hashed
contours separate region of lower than normal Pn
velocities (< 8.0 km/sec) from normal velocities
( =z 8.0 km/sec) according to Pakiser and Steinhart
(1964).

Figure 39. Map showing location of recording sites and EDZOE
series of explosions for the Columbia Plateau profile.
Solid circles are sites occupied by the two CIT trailers;
bars are sites occupied by U.S.G.S. 8-channel unit; and
open circles are station locations in Hanford array.
Major geologic units are indicated by dashed boundaries;
heavy dashed lines indicate approximate limits of Blue

Mountain uplift.



Figure 40.

Figure 41.

Figure 42.

Figure 43.

Figure 44,
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Reduced travel-time plot of all picked arrivals listed

in Table 3.

Record section compiled from seismograms recorded by

the 8-channel U.S.G.S. refraction unit. Each trace is
chosen from the output of one of six vertical seismometers
in a 2.5 km array.

Section showing inferred crustal structure together with
reduced travel-time plot of Pn arrivals along profile
from Canadian border across the Columbia Plateau to
central-east Oregon. Geologic boundaries correspond to
those in Figure 39. Open circles are CIT trailer sites,
bars are U.S.G.S. 8-channel unit sites, and solid circles
are Hanford array stations.

Theoretical travel-times for crustal structure shown

in Figure 42 and upper mantle structure for CPl in

Figure 44. Squares are observed arrivals. Lower

diagram shows ray paths for this structure.

Upper mantle velocity structures for the Columbia Plateau
inferred from later arrivals in Figures 40 and 41. The
dashed line is the structure obtained by Julian (1970)
from data along a profile north from the Nevada Test

Site (NTS).
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Figure 45. Theoretical travel-times for upper mantle structure
CP2 shown in Figure 44. Squares arc observed arrivals
on Columbia Plateau profile; crosses are arrivals
refracted from bottom of low-velocity zone on NTS-
north profile as interpreted by Julian (1970).

Lower diagram shows ray paths for this structure.

Figure Al-1. Mapping of the y-plane into the w-plane for computing
Airy functions from Hankel functions of one-third order.

Figure A2-1la. Model and coordinate system for analysis of plane-
wave reflection coefficient from flat, heterogeneous
layer between two homogeneous half spaces.

A2-1b., Acoustic velocity as a function of depth through the
heterogeneous layer in (a).

Figure A3-1. Contours for the integral representation of the
parabolic-cylinder function of two-thirds order.

Figure A4-la. Parameters and geometry of direct and once-reflected
diving rays in the case of a positive gradient in
the lower medium. The source and reciever at (O,zo)
and (p,z), respectively.

A4-1Db. Geometric relations for wave vector, k, and ray segment,
dS, in the coordinate system shown in (a).

Figure A4-2. Details of geometry for direct diving ray.





