HIGH FREQUENCY WAVE PROPAGATION

IN THE EARTH: THEORY AND OBSERVATION

Thesis by

David Paul Hill

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1971

(Submitted May 18, 1971)



ik

ACKNOWLEDGMENTSS

The author gratefully acknowledges the advice and encouragement
given by Dr. C. B. Archambeau throughout the development of this study.
In addition, the author is indebted to the staff of the Seismological
Laboratory for many stimulating and useful discussions, and in partic-
ular to Drs. D. L. Anderson, D. L. Helmberger, and D. Harkrider. Dr.
Paul Richards (now at the University of California at San Diego) pro-
vided invaluable assistance in the early stages of the mathematical
development of this study. Mr. Thomas Hanks read most of the manuscript
and supplied many helpful comments.

The author is especially grateful to Mr.Laszlo Lenches for pre-
paration of the figures and to Mrs. Barbara Sloan for the difficult
task of typing the manuscript.

During the period of this research the author was supported by the
U. S. Geological Survey through the Government Training Act. This
research was also supported by the Advanced Research Projects Agency of
the Department of Defense and was monitored by the Air Force Office of

Scientific Research under Contract No. F44620-69-C-0067.



194"

ABSTRACT

The wave-theoretical analysis of acoustic and elastic waves
refracted by a spherical boundary across which both velocity and
density increase abruptly and thence either increase or decrease
continuously with depth is formulated in terms of the general
problem of waves generated at a steady point source and scattered
by a radially heterogeneous spherical body. A displacement potential
representation is used for the elastic problem that results in high
frequency decoupling of P-SV motion in a spherically symmetric,
radially heterogeneous medium. Through the application of an earth-
flattening transformation on the radial solution and the Watson
transform on the sum over eigenfunctions, the solution to the
spherical problem for high frequencies is expressed as a Weyl
integral for the corresponding half-space problem in which the
effect of boundary curvature maps into an effective positive velocity
gradient. The results of both analytical and numerical evaluation
of this integral can be summarized as follows for body waves in
the crust and upper mantle:

1) In the special case of a critical velocity gradient (a gradient
equal and opposite to the effective curvature gradient), the
critically refracted wave reduces to the classical head wave for

flat, homogeneous layers.
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2) For gradients more negative than critical, the amplitude
of the critically refracted wave decays more rapidly with distance
than the classical head wave.

3) For positive, null, and gradients less negative than
critical, the amplitude of the critically refracted wave decays
less rapidly with distance than the classical head wave, and at
sufficiently large distances, the refracted wave can be adequately
described in terms of ray-theoretical diving waves. At intermediate
distances from the critical point, the spectral amplitude of the
refracted wave is scalloped due to multiple diving wave interference.

These theoretical results applied to published amplitude data
for P-waves refracted by the major crustal and upper mantle horizons
(the Pg, P*, and Pn travel-time branches) suggest that the 'granitic'
upper crust, the 'basaltic' lower crust, and the mantle 1lid all
have negative or near-critical velocity gradients in the tectonically
active western United States. On the other hand, the corresponding
horizons in the stable eastern United States appear to have null
or slightly positive velocity gradients. The distribution of
negative and positive velocity gradients correlates closely with
high heat flow in tectonic regions and normal heat flow in stable
regions. The velocity gradients inferred from the amplitude data

are generally consistent with those inferred from ultrasonic



measurements of the effects of temperature and pressure on crustal
and mantle rocks and probable geothermal gradients. A notable
exception is the strong positive velocity gradient in the mantle

1id beneath the eastern United States (2 x 10-_3 sec—l), which appears
to require a compositional gradient to counter the effect of even

a small geothermal gradient.

New seismic-refraction data were recorded along a 800 km
profile extending due south from the Canadian border across the
Columbia Plateau into eastern Oregon. The source for the seismic
waves was a series of 20 high-energy chemical explosions detonated
by the Canadian government in Greenbush Lake, British Columbia.

The first arrivals recorded along this profile are on the Pn travel-
time branch. In northern Washington and central Oregon their travel
time is described by T = A/8.0 + 7.7 sec, but in the Columbia

Plateau the Pn arrivals are as much as 0.9 sec early with respect

to this line. An interpretation of these Pn arrivals together with
later crustal arrivals suggest that the crust under the Columbia
Plateau is thinner by about 10 km and has a higher average P-wave
velocity than the 35-km-thick, 62-km/sec crust under the granitic-
metamorphic terrain of northern Washington. A tentative interpretation
of later arrivals recorded beyond 500 km from the shots suggests that

a thin 8.4-km/sec horizon may be present in the upper mantle beneath
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the Columbia Plateau and that this horizon may form the 1id to a

pronounced low-velocity zone extending to a depth of about 140 km.
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GENERAL INTRODUCTION

During the last decade considerable advances were made in the
definition of the velocity structure of the crust and upper mantle
based on studies of elastic body wave propagation through the earth.

To a large extent, these advances were made possible through the
advent of both large stationary arrays and mobile recording units with
broad band instrumentation and uniform recording characteristics
together with improved methods of data processing by digital computers.
These body wave studies have primarily centered around two approaches.
One involves the accurate determination of phase velocities with

which different arrivals sweep across a large, fixed array from sources
at varying distances and azimuths (dT/dA methods). The second,

and much more common approach, is based on the standard seismic
refraction and reflection techniques of recording waves from a

fixed source with a number of recording units at varying distances.

The majority of the published studies taking either of the above
approaches use ray-theoretical methods to invert the data for
velocity structure, and their success attests to the wide validity
of geometrical ray theory in describing body wave propagation in
the earth. However, inspite of the great success of ray-theoretical
methods, a large part of the radiation field can only be

explained in part, or not at all by ray theory. Some well known



examples of such events include surface waves, diffracted waves (e.g.
P-waves diffracted by the core-mantle boundary), and critically
refracted energy, or head waves. Furthermore, ray theory will not
in general give a valid description of waves propagating through
media with continuously varying properties or transition zones
(although for arbitrarily high frequencies, the ray-theoretical
description will become arbitrarily good). Thus, if we are to make
maximum use of the information contained on a seismogram in
attempting to interpret the fine structure of the earth it is
necessary to supplement the ray-theoretical methods with more complete
wave-theoretical solutions.

In this thesis we are primarily concerned with the wave-
theoretical nature of energy that is critically refracted or nearly
critically refracted by an abrupt increase in velocity. Waves
associated with such energy are commonly the first arrivals recorded
on seismograms out to distances of 1000 km or more from the source.
They form the well known Pg and Pn branches on local travel-time
curves and represent the primary data of classical seismic-refraction
studies. Nearly all that is known about the best established and
most widely recognized structures in the outer 200 km of the earth
(e.g. the 'granitic layer' in the continental crust or the

Mohorovichic discontinuity, which defines the top of the mantle



1id) is derived from ray-theoretical studies of the travel times

of these phases. Clearly a thorough understanding of the effects of
boundary curvature, velocity gradients, transition zones, and
anelasticity on the waveform or spectrum of these phases is crucial
in further attempts to refine our understanding of the major
structural units of the crust and upper mantle. Equally important
is the ability to account for these propagation effects in studies
of body wave spectra aimed at determining source parameters.

A principle contribution of this thesis is the extension of
wave—-theoretical solutions for critically refracted and nearly
critically refracted waves (hereafter collectively referred to as
near-critical waves) to include the effects of boundary curvature
and continuous velocity gradients in the medium beneath the boundary.

The theoretical treatment presented here differs from the earlier
works on the effects of small gradients on near-critical waves
by Chekin (1964, 1965) in the following respects; 1) we include the
effects of boundary curvature, which is of the same order as the
effects of small velocity gradients, 2) we use a potential representa-
tion introduced by Richards (1970) that results in true high-frequency
decoupling of P-SV motion in a heterogeneous elastic medium, 3) we
obtain a complete solution for the turning point problem in the case

of a positive velocity gradient in the refractor, and 4) we evaluate



the basic integral exactly by numerical integration, which serves
as a check on the asymptotic solutions and extends the results to
include lower frequencies and more complicated interference
phenomena.

In Chapter 1 the basic problem is formulated in terms of waves
generated by a point source and scattered by a spherical body within
which the material properties may be radially heterogeneous.

Through the devices of an exact earth-flattening transformation and
the Watson transform, the spherical solution is converted from an
infinite sum over spherical eigenfunctions to an integral over
continuous wave numbers. For high-frequency waves, this integral
reduces to the form of the Weyl integral associated with plane-
boundary problems. This integral is then evaluated both analytically
and numerically to obtain expressions and curves for the spectral
amplitudes of waves reflected and refracted by a spherical horizon
within which the wave velocity may either increase or decrease with
depth.

The results of the theoretical work in Chapter 1 are applied
to published amplitude data for waves refracted by the major boundaries
in the crust and upper mantle (the Pg, P*, and Pn waves) in Chapter 2
in a first attempt to determine velocity gradients within these

major structural units. Knowledge of the distribution and size of



velocity gradients in the crust and mantle provides an important
constraint on the compositional and geothermal regimes in the earth.
On the basis of this preliminary .study, we find negative velocity
gradients in the crust and mantle 1id in the western United States
which correlate with high heat flow and high geothermal gradients
and positive velocity gradients in the eastern United States which
correlate with lower heat flow and lower geothermal gradients. An
important conclusion reached in this chapter is that a compositional
gradient appears to be required in the mantle 1id beneath the stable
eastern United States to explain the inferred positive velocity
gradients in terms of available geothermal data and laboratory
measurement of physical properties for mantle material.

In Chapters 1 and 2 the earth is regarded as being radially
heterogeneous but laterally homogeneous. However, we can expect
the assumption of lateral homogeneity to be only approximately
true even in under the 'simplest' and most uniform geologic provinces.
In Chapter 3 we consider new seismic data over an area previously
unexplored by deep seismic-refraction methods and find evidence for
strong lateral variations. The area is the Columbia Plateau flood
basalt province in eastern Washington and Oregon, and the data were
obtained by recordings of large chemical explosions detonated in
southern British Columbia along a 800-km profile from the Canadian

border into central Oregon. Because of the obvious lateral variations



along this profile, we have not attempted an analysis of the amplitude
data using the wave-theoretical results obtained in Chapter 1.

Instead we concentrated on a ray-theoretical analysis of the travel-
time data in an attempt to define the gross radial and lateral velocity

variations in the crust and upper mantle under the Columbia Plateau.



CHAPTER I

Introduction:

The general problem of waves from a concentrated source
reflected by a layered velocity structure is of considerable interest
to seismologists, and a wealth of solutions for a variety of
structures can be found in the literature. These solutions can be
broadly divided into two groups; (1) time-domain solutions of
progressive waves based on an initial-boundary-value formulation,
and (2) frequency-domain solutions of steady waves based solely on
a boundary value formulation. A concise review of the basic methods
involved is given in Chapter 6 of Grant and West (1965).

Time-domain solutions formulated as initial-value problems
have an inherent advantage in seismological applications since
nearly all wave phenomena in the earth of seismological interest,
and body waves in particular, involve the propagation of transient
effects. The technique introduced by Cagniard (1939) and its
modification by de Hoop (1960) have been particularly successful
for obtaining exact, whole-wave solutions for pulses reflected
from a plane boundary between two homogeneous media. Helmberger
(1968) has recently extended this approach to successfully generate
synthetic seismograms for pulses reflected from an arbitrary number

of homogeneous layers. A principle limitation of the Cagniard



method is that the technique depends on having a frequency-independent
reflection coefficient. Thus problems involving media with velocity
gradients or curved boundaries (both of which result in a frequency-
dependent reflection coefficient) are not particularly well-suited

to this approach, although approximate solutions for the vicinity

of a wave front have been obtained for some problems of this sort
(Knopoff and Gilbert, 1959, and Gilbert and Helmberger, 1971).

In this study of waves reflected by curved boundaries and
heterogeneous layers we will take the second approach and work for
solutions in the frequency domain based on a steady-state boundary-
value formulation of the problem. This approach has the advantage
that solutions in the frequency domain are readily interpretable
in terms of seismological data; in fact, it is common to find
seismological data presented in terms of spectral amplitudes and
phases. Thus, it is generally not necessary to do the final integration
over frequency (the inverse Fourier transform) to obtain a
considerable amount of useful information about the problem. This
is clearly a significant advantage in doing problems that yield a
complicated, frequency-dependent reflection coefficient. Of course
it is always possible, in principle at least, to do the final
integration over frequency either numerically or by approximate

analytical methods to express the solution in the time domain.



However, the integral is not necessarily convergent, and considerable
care must be exercised if the integration is attempted. In this
study we will leave the solutions in the frequency domain and not
attempt to do the final inverse Fourier transform.

Because the basic problem we are considering involves waves
from a point source scattered by a finite,heterogeneous body embedded
in an infinite homogeneous space, we avoid a fundamental difficulty
associated with the steady-state approach to wave propagation
problems of choosing the proper radiation conditions at infinity.
The well-known Sommerfeld condition, which in essence requires that
the wave at infinity from a point source in a homogeneous medium
be outgoing (Stoker, 1957), applies in this case. However, it is
not at all clear that analogous conditions can be applied when one
or more boundaries or a material heterogeneity extends to infinity
(Dix, 1952; Stoker, 1957). When working with the flat earth analog
of the spherical problem obtained by an earth-flattening transformation
in Section 3 of this Chapter (a case in which the boundary as well
as the heterogeneity of the lower half space extends to infinity) we
can appeal to the Rainbow expansion (Bremmer, 1949) for waves in
a closed spherical body to obtain the approximate radiation conditions.
In addition, we present some plausibility arguments for the proper
radiation condition in the heterogeneous half-space as such.

A considerable body of literature exists on wave propagation
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problems in the frequency domain formulated as steady-state boundary-
value problems. Many of the solutions and mathematical techniques
for treating heterogeneous media and spherical geometry that were
developed in the study of radio wave propagation in the ionosphere
and in acoustics have only recently been applied to wave problems
in solid earth geophysics. Fairly complete reviews of these methods
and solutions can be found in books by Brekhovskikh (1960), Budden
(1960, 1961), and Bremmer (1949).

The basic problem of steady~state spherical waves reflected by
a plane boundary between two homogeneous half-spaces has been
thoroughly studied. Brekhovskikh (1948) first formulated the problem
with a steady point source and evaluated the branch cut in a Weyl
integral to obtain an expression for the head wave, and later Heelan
(1953) obtained analogous expressions for head waves in two elastic
half spaces with a finite cylindrical source. Cerveny (1965) has
treated this problem in considerable detail with particular emphasis
given to evaluating the wave field in the immediate vicinity of the
critical point, which is complicated by the close proximity of the
'head wave' branch cut and the reflected wave saddle point. A
review of this problem with references to additional literature
is given by Onda (1968). Berry and West (1966) extended this basic
solution to obtain solutions of both reflected and head waves from

several homogeneous layers in terms of generalized rays.
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Some of the effects of small velocity gradients in the refracting
medium on reflected and head waves have been investigated by Chekin
(1964, 1965). He considered the effects of negative gradients on
elastic P-SV waves and positive gradients on acoustic waves. However,
as pointed out by Richards (1971), Chekin did not choose the proper
potential representation for P-SV motion in a heterogeneous medium.
His formulation of the positive gradient problem for acoustic waves
is incomplete in the sense that this reflection coefficient does
not contain both up-going and down-going waves between the turning
point and the reflecting boundary. The effects of positive gradients
on acoustic 'head waves' have also been investigated by Cerveny and
Jansky (1967) and Cerveny (1966). Their conclusions are primarily
based on Chekin's (1965) results and ray-theoretical solutions. The
effects of transition zones on reflected wave amplitudes have been
studied by a number of authors, including Nakamura (1964), Fuchs
(1968), and most recently by Hirasawa and Berry (1971).

Most of the work mentioned above is based on a Weyl or
Sommerfeld integral formulation of a steady spherical wave (see
Chapter 6 in Grant and West, 1965). This work is wave-theoretical
in the sense that the reflection coefficient in the integral is
usually obtained from exact solutions to Helmholtz equation. A
somewhat different approach, generally referred to as asymptotic
ray theory, is beginning to find its way into the geophysical

literature. This approach is based on an expansion of the field
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quantities in a powers series of inverse frequency (1/w) introduced
by Kline (1951) and Karal and Keller (1959). Hron and Kanasewich
(1971) have used this approach from a generalized ray point of view
to obtain synthetic seismograms for waves from a point source
reflected and refracted by an arbitrary number of plane, homogeneous
layers. Their work is essentially the high frequency  analog of
Helmberger's (1968) work based on the Cagniard-de Hoop method.

The first seismological application of the Watson transform
for studying waves reflected from a spherical body was made by
Scholte (1956). Since then a number of authors (Knopoff and Gilbert,
1961; Phinney and Alexander, 1966; Sato, 1968; Phinney and Cathles,
1969; Teng and Richards, 1969; Richards, 1970; Chapman, 1969) have
applied this approach to the study of waves diffracted by the
earth's core. Gilbert and Helmberger (1971) have recently applied
the Watson transform to formulate a generalized ray theory for a
layered sphere for pulse problems in the time domain. To take
advantage of the Cagniard-de Hoop technique, they expand the spherical
reflection coefficient in an asymptotic, frequency-independent form.

In this study of waves reflected by spherical boundaries and
heterogeneocus media, we will rely on techniques developed for both
the Watson transform and the Weyl integral solutlon. Our
approach will be to model the earth as a spherically symmetric,

radially heterogeneous body in a homogeneous space. We will take



T B

the material velocity at the surface of the body to be greater than

in the surrounding homogeneous space and consider the wave fileld
scattered by the body from a steady point source located in the
homogeneous space (see Figure 1). This corresponds to the geophysical
problem of a source in a homogeneous layer over a first order
discontinuity in velocity below which the velocity may vary smoothly
with depth, however in this treatment we neglect the effects of
layering and the free surface above the source.

In formulating the elastic prcblem, we use the displacement
potential representation introduced by Richards (1971) which results
in the approximate decoupling of the equations of motion for P and
SV waves at high frequencies in an isotropic spherically symmetric,
radially heterogeneous body. By using this representation the
equations of motion for P, SV, SH, as well as acoustic waves can
be expressed as separate canonical wave equations.

The wave equations are operated on by a Fourier transform
with respect to time to reduce them to Helmholtz equations in the
frequency domain, where we have used the following convention for

the Fourier transform pair:

£ (sid =jf P &% s

- 00

F(t)=3 / £(u) e 19F gy

-0
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The general solution to the Helmholtz equations and boundary
conditions for the wave field scattered by the spherical body can
then be expressed in terms of an infinite sum over discrete wave
numbers. In Section 2 we develop an expression for this general
solution, and then, by applying an earth-flattening transformation
to the radial part of the solution and the Watson transform to

the angular part of the solution, we convert the solution from a
sum over discrete wave numbers (or order numbers) to an integral
over a continuum of wave numbers in a flat earth. The earth-
flattening transformation is exact for the homogeneous Helmholtz
equation and spherical boundary conditions, but when the point
source is included, the transformation is wvalid only for sources
not too far from the boundary compared with the radius of the
boundary and for wave lengths significantly less than the radius
of the boundary. This integral expression is in the form of a
Weyl integral, and we can take advantage of many of the techniques
developed for its analytical evaluation. Because the reflection
coefficient in the integral, in principle at least, contains the
exact spherical eigenfunctions for the radially heterogenous body,
its evaluation will give a valid approximation for the wave field
reflected at an arbitrary depth within the spherical body by an
arbitrary heterogeneity. For example, it appears that this integral

representation when coupled with the Epstein method for evaluating
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flat problems with continuous velocity variations (Epstein, 1930;
also see Phinney, 1970, for a discussion of geophysical applications
of this method) provides a promising approach for studying waves
reflected from a variety of interesting transition zones in a
spherical earth.

Here we are primarily interested in the effects of curvature
and velocity gradients in the immediate vicinity of the boundary on
waves near the critical angle of incidence. To simplify the analysis,
we will use a linear approximation to the earth-flattening trans-
formation which is wvalid in the vicinity of the boundary. The
principle effect of the linear transformation is to superimpose
a linear velocity gradient on the physical velocity in the flat
problem. High frequency asymptotic solutions to the Helmholtz
equations of the type described by Langer (1949) can then be used
to describe the wave field din the heterogeneous medium with the
curvature-mapping gradient included. However, in carrying out
the actual analysis, we will choose the form of the velocity
variations so that the solutions to the Helmholtz equations are
exactly Airy functions. In Section 3 we carry out this program in
detail for acoustic waves in fluid media for both negative and
positive velocity gradients. Using the acoustic case as a guide,
we then do the complete elastic case for SH and decoupled P-SV

motion. Finally, in Section 4, we consider the implications of
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our results for a number of geophysically interesting situations
and compare the asymptotic analytical solutions with exact solutions
obtained by numerical integration of the Weyl integral.

Through this chapter we will use the word heterogeneous to
refer to continuous variations in the physical properties of a medium
and reserve the word inhomogeneous for describing differential

equations with a source term on the right.
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1. Equations of motion and potential representations

We will restrict our considerations to plane-layered and
spherically~-layered heterogeneous, isotropic media. Specifically,
we will consider acoustic and elastic isotropic media in which the
scalar material parameters vary smoothly as a function of either
depth or radius alone and in which there is a single surface
(z = const or r = const) across which the parameters change
discontinuously. Furthermore, we will consider a single, isotropic
point source so that the resulting fileld depends only on two
coordinates (z and r in a cylindrical system and r and 6 in a
spherical system).

In an inviscid fluid media the acoustic approximation to the

equations of motion are

v (1a1)

where V is the particle velocity (assumed to be infinitesimal),

P is the deviation from the static ambient pressure, p is the density
and ¢ 1s the acoustic velocity (both considered to be a function of
depth or radius only), The following assumptions are made in obtaining

(1.1)
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The first inequality limits considerations to small density gradients
such that the term on the right is the product of two small
quantities. The second inequality is a statement of the usual
linearity approximation in hydrodynamics.

Taking the Fourier transform of (1.1) and eliminating V gives

V2D 4 &2P = g~ Py = O (1.3)

where P is the Fourier transform of P, k = w/c is a wave number

and w is the angular frequency. Following Brekhovskikh (1960) we

introduce the pressure potential

1
=)

® =P p , (1.4)

which reduces (1.3) to the form of a Helmholtz equation
V20 + k?¢ = 0 (1.5)

In obtaining (1.5) we have made the assumption that

k2| > | %- v2p - 3—2 ve)2 |, (1.6)
0 40
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i.e. that density gradients are small with respect to the wave
number. In this system a steady point pressure source, P is represented
by the potential

8(r-r_) 6(-0) RIS

D=Pp = 2qrzsin §)

8(z=z,) 6(r-0,) e "

2mr

in a spherical or cylindrical system respectively.

Richards (1970) has developed potential representations for the
vector wave equation in radially heterogeneous and vertically
heterogeneous (in spherical and Cartesian systems, respectively)
isotropic, elastic media. From his formulation he is able to show
that 1) coupled P and SV solutions exist for all possible displacement
solutions, 2) SH solutions are decoupled from the P-SV solutions,
and 3) at sufficiently high frequencies P-SV solutions tend to
decouple into forms that can be identified with the standard
irrotational P-wave and solenoidal SV-wave solutions in homogeneous
media. The last two results are of particular interest here because
they permit formulation of the radially or vertically inhomogeneous
elastic wave propagation problems in terms of three uncoupled
Helmholtz equations for frequencies commonly encountered in crustal

and upper mantle seismic-refraction studies.
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In a spherically symmetric system, Richard's displacement
potentials for P, SV, and SH motion (P,S, and T, respectively) have

the following relation to the displacement vector, U(r),

at r = (r,0,¢)

=

U(r) =[f (rﬂ grad __£££l; P(r) | + curl curl -££££l—; S(x),0,0
’ [p(x)]™? [p(r)]~

(1-7)
+ cur],<———¥5—j: T(E),0,0>
lu(x)]™

where p(r) and u(r), the density and shear modulus, are functions

of radius and where the scale factor, f(r), is any sufficiently

smooth, bounded function of radius. The associated source potentials

are related to the applied force per unit mass, £ , by

g =f"1 {grad (_f__ D> + curl curl (ETf- F,0,0)}
3
p p

(1.8)
4 cur1<r—1 E,0,0>
&)
u

The spheroidal (P-SV) equations of motion can be written in

N

terms of P(r) and S(r) as a fourth and fifth order pair of coupled
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equations. Richards (1971) shows that if the scaling factor, f(r),

is chosen such that

? T 1]
AL, _g__=9__+_%u____ )
A+ 20 ° a+ 2u
where A and u are Lame parameters and the prime indicates

differentiation with respect to radius, and if the source potential is

of the form

-iwt
S(r—ro) 6(8-0+) e

D= 5 F=20 4 E=0
2n1r2 sin 6

then the following relations between P and S are both sufficient
and necessary for high frequency decoupling of the P and S potentials

in the spheroidal equations of motion:
[ 2
pD 2 Pw” 5 .
A+2u+VP+A+2uP 0(1)-P (1.9a)

and

S = 0(w2).P (1.9b)
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Richards shows that as a consequence of (1.9b)

2
v2g + 9%—»5 = 0 (1.10)

Noting that V2P = 0(w?)P, we see that the right hand side of
(1.9a) is two orders down in frequency with respect to the left
hand side. Thus for sufficiently high frequencies, (1.9a) can be

written

2p + 8 p o« bE

% 421 Boe=e +2u (1.11)

where, by (1.9b), the S coupled potential is two orders down in
frequency with respect to P. In other words, for an appropriate
source of compressional energy and for sufficiently high frequencies,
the P and S displacement potentials approximately satisfy the
separate Helmholtz equations (1.10) and (1.11).

The toroidal, or SH, equation of motion is simply

2
V2T + T4 e (1) T=-5E
U T( ) U

for a steady source of the form
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é(r—ro) §(9) St

E = e , D=0, F=020
21r? sin O
where
e o= 1ful 2+£L_ZU'
1 4\ u 2y Ty

(Richards, 1971). If we assume that shear modulus gradients are

small with respect to the SH wave number so that

pw? |

el << | 22

then the torsional potential satisfies a Helmholtz equation as well

2
g2 4 BY o L B g (1.12)
" u

Note that the assumption of small shear modulus gradients is
analogous to the assumption of small density gradients made in
obtaining the Helmholtz representation for acoustic motion (1.5).
The displacement potential representation for a vertically heteroge-
neous Cartesian system are similar to those for a spherical system.
In particular, the displacement and source vectors are represented

at the point r = (x,y,z) by
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U(x) ={f (z% {grad (&; P(£)> + curl curl(0,0, —MI/— S(£)>}
: [

[p(2)] p(z)]”?

- curl(o,o, [ w(z) 177 T(;)) (1.13)

and

© Im

X

g =g {grad( D> + curl curl(0,0, % F)}
OZ
(1.1%)
-k
+ curl(0,0,l—l 2 E>

These potentials decouple at high frequencies in the same manner as

those in the spherical system. Equations (l.éa,b) and (1.10) apply to

both systems.

Richards (1971) points out that the commonly chosen potential

representation for P-SV motion

U = grad ¢ + curl curl (0,0,X) (1.15)

where ® and X are assumed to satisfy

Z
0o, wexa4B(2)uwty g (1.16)

2 p(z) w?
e e A(z) + u(z)

(D:
2u(z)
does not lead to decoupled equations in ¢ and X at high frequencies
except in the special case of constant density. Thus, if we are to

allow for the effects of a variable density, the potential representations

(1.7) or (1.13) must be used.
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2. Earth-flattening transformation for the Helmholtz equation and

a point source

Earth-flattening approximations have been used for some time in
making corrections for the earth's curvature in radio-wave propagation
problems (see Budden, 1960). More recently, Kovach and Anderson
(1962) and Anderson and Toksoz (1963) have introduced an earth-
flattening transformation for Love waves that involves transforming
radially symmetric, isotropic shells into flat, vertically inhomo-
geneous, anisotropic layers. Biswas and Knopoff (1970) have modified
this transformation such that SH wave motion in a flat, vertically
inhomogeneous isotropic problem can be transformed exactly to SH
motion in a spherical radially inhomogeneous, isotropic earth.
‘Somewhat earlier, Sato (1968) independently developed an exact
earth-flattening transformation for SH motion. These exact earth-
flattening transformations apply only to homogeneous equations (no
source), and are thus most useful for surface wave and normal mode
problems. Analogous exact transformations for Rayleigh waves
(P-SV motion) have not been considered. One might expect that such
a transformation cannot be made exactly since the velocity gradients
that serve to map spherical to plane geometries would introduce
spurious P-SV coupling.

In this section an earth-flattening transformation is introduced

that will allow body wave solutions from a point source in a spherical
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earth to be expressed in terms of solutions to analogous point source
problems in a flat geometry. This transformation will be developed
for the inhomogeneous Helmholtz equation to take advantage of the
potential representations presented in the preceding section. The
transformation involving the point source (and a spherical wave front)
will be approximate; however, in the process of its derivation we will
obtain an exact earth-flattening transformation for the homogeneous
(no source) Helmholtz equation. This in turn, will be an exact
transformation for acoustic and SH motion in homogeneous spherical
media (although it will be approximate if the media properties vary
with radius in accordance with the small density- and shear modulus -
gradient assumption made in obtaining (1.5) and (1.10)). It will
also, of course, be an approximate transformation for P and SV
motion because of the decoupling assumption made in obtaining (1.9).
Consider a spherically symmetric medium that is homogeneous
for r > a and radially heterogeneous for r < a and in which the
scalar field, Yy, satisfies the Helmholtz equation. If a point source
is located in the homogeneous medium at r = r (rO > a) and@ = 0+,

the field, ¢, will be given by

—G(r-ro) 6(6—O+)

2 .
2
Vzw + i mr” sin 6

% 0 5 & 5 (2.1
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where ko = const and k = k(r) (see Figure 1). The general solution

te (2.1) dn v » a will be

b=yt (2.2)

where wo is the solution to the homogeneous equation, which includes

the effects of both a boundary at r = a and the underlying heterogeneous
medium in a reflection coefficient, and wp is a particular solution to
the inhomogeneous equation.

An appropriate solution to (2.1) is the infinite space Green's

function, or

Yy = (2.3)

where R is the straight line distance between the source at
r = (ro,0+) and any point r = (r,8). Using equations (10.1.45)
and (10.1.46) in Abramowitz and Stegun (1964), the particular

solution can be represented as

(1)

- jg(kr) hg (kro) r<r

y= ik ) (22 + 1) P (cosB);
P ° y=0 jz(kro) hél)(kr) & ro>r
(2.4

(1)

where jz and hl

are spherical Bessel and Hankel functions and P2

is a Legendre polynomial.
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Figure 1
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We apply a Legendre transform to (2.1), where the Legendre

transform pair is defined by

i
¢£ =./~ wPl(cos 0) sin 0 d6
0
(2.5)
Y = E (2 + l) ) P (cos 6)
2 A .
2=0
and obtain
—é[r—ro)
2/\ 78 2
d wg ) dwz 2(2+1) 27Tr
— 2_——— " =
5 +rdr + | k £ % (2.6)
dr i
0

Our aim is to rearrange the homogeneous part of (2.6) into a

form that can be identified with the analogous differential equation

in z for a cylindrical system r = (p,0,2)
d?¢ 22
4 (k ey 1 ) 6 =0 (2+17)
d22 i

To accomplish this we first transform the independent variable in

(2.6) according to

- 2z = a ln(a/r), (2.8)



-30-

which gives

~ d{]\) 2
Por &y e (E)T A Vs (2.9)
2 a dz a 2 L
dz 2

and then transform the dependent variable according to

. 1/2 "
b, = ¢2(%> = ¢,ve 2/ 24 (2.10)
to get
d%¢ 2 4
dz a

which is the desired result.
A direct comparison between (2.11) and (2.7) yields the following

exact earth-flattening transformation for the homogeneous Helmholtz

equation:
- &
o 2(0+l) + 1/4
Kl =
2
a
2.12
with ( )
z/a
r=ae

=
1l
ﬁ
=
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where kf and k are the flat and spherical wave numbers respectively.
Note in particular that the expression in the brackets multiplying
¢£ in (2.11) is the radial (vertical) wave number in the spherical

case. Thus we identify k in (2.12) as the angular (horizontal) wave

number, and from this we obtain the well known relation
ka = & + 1/2.

The propagation velocity in the medium is given by ¢ = w/k, thus

c. = c e—z/a (2:13)

where Cr and CR refer to the velocities in the flat and spherical

systems respectively. If we are interested in the field in the

vicinity of r = a, the transformation can be approximated by

(@]
R

Cs(l—z/a)

<< 1 (2.14)

Z
| 2

a(l+z/a)

(5
I

These represent the earth-flattening approximations used by earlier
workers (Budden, 1960).

The above development is similar to that of Biswas and Knopoff
(1970) or Sato (1968) for their exact transformation of the
homogeneous equation for SH motion, although the particular potential

representation used results in minor differences in the transformation.
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In making the above transformation, we have implicitly assumed
that the properties of the medium vary smoothly with radius. If
we allow a discontinuous jump in properties at some level, say r=a,
it is necessary to consider how the continuity (boundary) conditions
for this jump transform. To illustrate this we will compare the
spherical and flat boundary conditions for SH waves under the above
transformation.

Continuity of both displacement and stress are required across
a welded boundary. For SH (or torsional) motion across a spherical

boundary these conditions are

[u €r¢]a+ = fu 8r¢]a-
or
ou U oU U
u(__ﬂi__‘b B Y )
or 5 or r
at a-

for stress. Using the displacement potential representation for

SH motion in a spherical system given by the last term in (1.7) or

S .
|g|"’U¢)— r 36

ET-T 5
2
u
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the continuity conditions become

T d T
1/:| = ) I: (2..15)
u2 at+ H a-

N

[e54

==
N

1:|H

).

The potential, T, satisfies the Helmholtz equation

M H

() (4 () 4

respectively.
(1.10), and its eigenfunctions in a spherical system are of the form

Tg(r,e) = <JL +%>']A.‘2(r) Pl(cos 9)

where fz(r) is the radial variable-separable solution. Putting this

into the continuity conditions (3.15) we obtain

Tiu ik = T/u -
(2.16)
) d_<i_ _;<f_> _ U[L(i)_l(i)]
dr ]f5> a u% adk dr u% A U% b

By (2.12), the mapping of f(r) into the flat potential, Tf(z), is

given by



sss s

<§;>% _ e—z/Za

r

and the derivative terms in the stress boundary condition assume the

>3/2

form

~

T
d -4 4 -z/2a | dz _ | u' Yo _ £
{ W Tela) e ] = [ 372 T BT -3,

o

dr

dz

where the primes indicate differentiation with respect to z.

Accordingly, the exact boundary conditions in a spherical system map

into

On the other hand, the analogous continuity conditions for a
flat boundary are

[U,1g, = 10,10

for displacement (¢ represents the angular coordinate in a cylindrical
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system or the xcoordinate in a Cartesian system), and

PG PE(E)])

for stress (p represents the radial or x coordinate in cylindrical
and Cartesian systems respectively). In this case, Tp, is the
displacement potential for a plane system given by the last term

fn (lell), er

(sl slE ).

Again, the potential, Tp, satisfies the Helmholtz equation, and

its eigenfunctions in a cylindrical system, for example, are

Tp = Tp(z) JO(Kp)

Thus, the above continuity conditions become
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g & s »

u T = W =T

P p

0+

and R R
d :EP_ d ER
v =\
UP. O+ UZ

or, expressed in a form similar to (2.17)

(2.18)

where, again, the primes indicate differentiation with respect to =z.

Comparing (2.18) with (2.17), we see that the boundary conditions

for the spherical boundary expressed in terms of the earth-flattening

transformation are identical to the boundary conditions for the plane

boundary except for the term of order (Tf/a) subtracted from T' in the

f

stress condition in the spherical case. Because the two potentials

~

Tp and ff enter the boundary conditions in the same way, it is
possible to use the plane boundary formulation and potential
representation to obtain solutions for the spherical boundary problem,

although for an exact spherical solution, conditions (2.17) must

be used rather than the natural conditions for a plane boundary, (2.18).
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However, we note that

where n is a vertical wave number. Thus the additional term
in the spherical stress boundary condition (2.17) is of order
(na)~! with respect to f%. In most crustal and upper mantle body
wave problems [(na)‘ll will be small (provided we avoid grazing
angles of incidence), and the natural plane boundary conditions
(2.18) can be used with little loss in accuracy. Similar remarks
hold for the transformation of boundary conditions for the decoupled
P-SV system and for acoustic motion.

We now turn to the development of an approximate earth-

flattening transformation when the point source of spherical waves

is inlcuded. To keep the algebra to a minimum, we will use the
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acoustic case as an example; the elastic SH and P-SV cases follow
in a parallel manner.

The model is shown in Figure 1 and the Legendre transformed
field equations are given by (2.6). Here we take y to be the pressure
potential defined by (1.4). By comparing the form of the sum in the
inverse Legendre transform with the series representation of the

particular solution (2.4), we see that

’ (@D)
- j%(kor) by (k x.) rsr, 199
P oY . (1) )
g | 50T by kym) ro>ox

Accordingly, the general form of the solution can be written as

(1) : (1)
wol = 21kO h2 (koro) Jz(kor) + A h2 (kor), a <1 & r
(2.20)
3 1/2
wlz=B(?> L £ %8

The first term in the solution for r > a is the source field (2.19),
and the second term is the field scattered by the sphere. In the
second term, A 1is a constant determined by the boundary conditions
and hél)(kor) is a solution to (2.6) representing outward traveling
waves for r >> 1. We represent the solution to the field inside

the sphere, which may be radially heterogeneous, in terms of the

exact earth-flattening transformation (2.11) and (2.12).
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The boundary conditions at the surface of the sphere, r = a,
require continuity of pressure and the normal component of particle

velocity for an acoustic field, or

[ . l"osa] [pl ‘”12]
a+ a-

(2..27L)
-1d_ Lo~ _ -1d | %~
[po dr( o LpOSL)il - [pl dr( R KU
a+t SE
Putting (2.20) into these boundary conditions gives
1 1 1 1
B (1) _ sfa\= 5,
o b (er) HE 9 [er sk
& =318
L 4 (1) Lfa - d .
2 Deie o o] 2 B
?o dr h2 (kor) pl dr [ (r ) é} £ Po dr Jz(kor)
where S = 21 k h(l)(koro). Solving this system for A we obtain
5 [k a)
how G n el B g (2.22)
oL o (1)
h [k a}
& o

where V can be regarded as a generalized spherical reflection

coefficient given by
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s -1d [ a\%, ] P \% 3 (1)
°6 P1 ar L 1t ') - P > QR o) Jzik ri
Vv =
_ = (12"
L -1d _a_>1/2 +<p_1)1/2 D (i x)
Pre g \Prr ) By )b 2D (i 1)
- 2 o r=a

s B

The expression for the spectral amplitude and phase of the
external field can now be obtained by applying the inverse Legendre
transform (2.5) towA,O2 in (2.20) with A given by (2.22). Thus

it is necessary to sum the series

Il o>~1 8

o s -
wo =3 (29+1) wOR Pz(cos 8)

2=0

1
5

This series is known to converge slowly for large % ka , which

is just the range of interest for body wave studies. The standard
way around this problem is to convert the sum into an integral
using the Watson transform (see, for example, Bremmer, 1949;
Scholte, 1956; Chapman, 1969; or Gilbert and Helmberger, 1971).

Accordingly, we obtain

<
]

1 vdv A
o 71'/ ey 11)0(\)) P\)_I/2 [cos (n—e)] (2:23)

<

where v ka = ¢ + 1/2, @o(v) = @02, and the contour, ¢, is shown

in Figure 2. The integrand in (2.23) is odd since @O(v) = @O(-V)
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and Pv—%(U) = P—v

(W) so that the path, c, can be transformed into
=2
cy] or cy as shown in Figure 2.
At this stage we decompose the integrand in (2.23) into terms

that can more readily be given a physical interpretation. Using

the identity

jg(kor) =%— [hél) (k r) + héz) (kor)] , (2.24)

the spherical Bessel function in the source term can be separated
into spherical Hankel functions representing outgoing and ingoing
traveling waves. Physically, of course, we are only interested in
the incoming waves from the source. Introducing this separation

into @O(v) as it appears in (2.23), we obtain

wo(v) = ikohiii (koro) héi;(kor) + hif;(kor) + (Al + A%)hiii(kor)

where A; and A, are the parts of A associated with the outgoing

and ingoing waves from the source. A little algebra shows that

- & (1)
Ay = - ik b7 (kT)
(2.25)
(2)
h (k a)
By = - ik b ry —FECS— v
K hv—%(koa)
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where

—_

) ¢ (V) -<pl/p3> $(v) k_ h

r=a

L -1d
pl dr

©
o
©
=
R |

2

-14 b §
0 P11 4f ("1 > ¢ (v)

(2.26)

N
o

r=a

L
+<ol/po>2 $(v) k_ hy

with

Ir=a

- (1)* (1)
by = [ hyT) (k x) / hv_l/z(kor)]

and

=
Il

(23" (2)
, [hv_l/z a0 / h\)_%(kor)il

Thus we see that the scattered field associated with the outgoing
source field exactly cancels the outgoing source field (Phinney

and Alexander, 1966), and we are left with

(2)
h 1/(k a)
v (v) = ik h(li(k r ) h(zi(k r) + \21; - \ h“i(k r)
o O VvV-% 0 O V=% 0 hv_b(koa) V=23 0

(2.271)
in the integral (2.23).

Following Chapman (1969), we now introduce the representation

for Legendre functions given by
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13 (cos 8) + i e—iﬂv Q§23 (cos 0)
2 ==

-

Pv_% [Cos (w—e)] = = i eiﬂv Qé

(2.28)
where asymptotically
1.9 Fi(vo-m/4)
Qé_; ) (cos 8)~ < (2.29)
2

1
(2mv sin 6)7

for e<6<m-¢, |v|]> 1, and |v] € >> 1 (Nussenzveig, 1965).
Substituting (2.28) together with the expansion

+2imvn

e : o n
[cos (vn)] 1 _ Zeilyﬂ 2: (-1) e
h=0

into the integral (2.23), we obtain

wo(v)

Y| [ evmi o fY) (cos 8) &P vay
n=0 &

5

(—l)n @O(v) Qé}i (cos ©) e—iZwvn vdv

4

I
) Te2) .. & :
From the asymptotic representation of Qé ; ) it is evident that the
-2

nth term in the first integral represents waves having traveled

around the earth n times in the +0 direction, while the corresponding,
term in the second series represents waves having made n circuits

in the -6 direction. Thus direct body waves propagating in the +0

direction are represented by the first integral with n = 0, or
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IPO(\)) =f 1@0(\)) Q\()El)/z (cos 6) vdv (2.30)

)

It now remains to be shown that this direct body wave integral
reduces to the form of a Weyl integral for a point source and
flat geometry for the case of body waves in the crust and upper
mantle. To show this we introduce the asymptotic forms for spherical

Hankel functions given by Nussenzeig (1965).

(2 .3
2 - 2 2.y -1
hé)(p)~oz(o—v) T mix(e)
where
2 2k -1
x() = (@=v)? - v cos © (v/p) - /b
v =2 +-% v < p
The corresponding asymptotic forms of the derivatives are
1) 2\ (1)
1 ; Ve 1
hy (p)~1<l~pz> b= (o)
(2:32)

2

{ 2 %
0 (o) ~ - i(l —i——) n? (o)

Thus the terms in h; and h, (2.26) become



woili

1
h(23 (k r) L
V=3 O k2 5 e L
—257——‘__— ~-1]1-—-— = 1—(—.<k2 . .
h'"/ (k 1) et o\ °
V=7 o] r=a (o]
and
1
h(li (k ) . ;
v o’ N }_<kz _ K2>/2
h(ll)(k £} ko o o
v=*%" 0 r=a
so that V becomes
pI
. 1 1
¢ (v) 1mn+—‘~§g]+¢'(v)
L Zpl
V == (2.33)
[ P11
¢ (v) imn—;p*“rz*a]—d)'(v)
L 1

where the implicit differentiation with respect to r has been
carried out, and the primes here indicate differentiation with

1
3

respect to z; m = pl/p, and n = (kg - k2) This is precisely the
form of the reflection coefficient obtained for plane waves incident
on a plane boundary when the transformed spherical boundary
conditions are used and ¢(v) is a solution to (2.11) in the lower
medium. If the natural boundary conditions for a plane boundary are
used, the term (1/2a) will be absent, and V will be the true
plane wave-plane boundary reflection coefficient (see 3.22, 3.23,
3.24). As indicated above, | %g | << |nm| for crustal and upper

mantle body waves, and the true plane wave reflection coefficient
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can be used in (2.30) with no significant loss in accuracy.

Substituting the asymptotic forms (2.31) and (2.32) into the
remaining terms in wo(v) (2.27) and using the linear approximation
to the earth-flattening transformation (2.14), we obtain
. { e—ln(z—zo) e1n(z+zo) ] }

@O(v) e e + i

= o : (2.34)
a

which is the form of the source and reflected solutions for the flat
problem (see (3.18) and (3.24)). Finally, substituting the
asymptotic form for QSZR (2.29) into the integral (2.30), we have

=g

i(ne)

: M e
o 4 l‘()O(Tj) = vdv (2.35)

T
(2mv sin 06)7*
€1

If we consider only the reflected field (the second term in (2.34)),

then

N

T )
ig ) f elko[aep+q(z+zo)] o P

>
(27a sin 0)7° €y

dp (2.36)

where the variable of integration has been changed to sine of the

2
angle of incidence, p, (k = kop), and q - n/ko = (1 - p2)~. If we
restrict our considerations to relatively small angular distances,

6, such that

ag ~ p , a sin 0 ~ p
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where p is arc distance, then

Yy ~e

r

e \

™
i = k L ik [pP+(z+z )q] L
% < L) a g e (2.37)

2mp

“1

This integral is identical with the asymptotic form of the Weyl
integral for the reflected field from a point source over a plane
boundary (see (3.28)).

Thus we can obtain approximate solutions for crustal and upper
mantle point source body wave problems in a spherically symmetric
earth by solving the analogous flat problem using 1) the velocity
modified by (2.14), and 2) the modified Weyl integral (2.36) with
angular distance replacing horizontal distance. The resulting
approximate solutions will be valid under the conditions:

1) |z/a| << 1; the source and receiver distances from the
boundary at r = a are small with respect to a.

2) |ka| << 1 and |na| >> 1; the wave length is much less than
the radius, a, and both near normal and near grazing angles of
incidence are avoided.

3) 6 2> e, where |Ka| € >> 1; near normal angles of incidence
are avoided. This is consistent with (2) above as well as the
assumption made in taking the asymptotic form of the Bessel function
for the flat case to obtain (3.28).

Note that this approximate solution can be extended to fairly
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large angular distances (provided we don't approach grazing angles
of incidence) if (2.36) is used. However, even if the tangent
distance is used in (2.37), the solution will be valid up to angular
distances of 10° for a 17 error in amplitude (i.e. for sin 6 ~ 8).
Note also that, other than the assumptions made in section 1 to

put the equations of motion in canonical form, there are no
restrictions made on the velocity variation below the boundary at

a. Thus, since the functions [(a/r)% ®(v)] in the reflection
coefficient, V, are the exact spherical eigenfunctions for r > a,
the integral (2.36) will give a valid approximation to the reflected
field for r < a with an arbitrary velocity variation for r < a.

In practice, of course, we are limited by the number of velocity
variations for which we can obtain exact solutions to (2.11) and

(2.12)
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3. Acoustic formulation.

In this section we will develop in detail asymptotic expressions
for acoustic waves from a point source reflected at a plane boundary
below which the acoustic velocity and density may either decrease
or increase continuously with depth. Having obtained the solutions
for the plane boundary, we will then apply the earth-flattening
transformation presented in the last section to obtain analogous
expressions for acoustic waves reflected from a spherical boundary.
Finally, we will compare the asymptotic analytic solutions with
those obtained by direct numerical integration of the inverse Hankel

transform.

Reflection coefficient for a point source and plane boundary.-

Consider two fluid, inviscid half-spaces joined at z = 0 in a
cylindrical coordinate system r = (p,$,z). Let the upper half-space
(z > 0) be homogeneous in density and acoustic velocity, and in the
lower half-space (z < 0) let both density and velocity vary in the

z direction only. Our goal is to determine the acoustic field

in the upper, homogeneous half-space due to a steady, isotropic
point source of acoustic energy at r = (O, zo). In this formulation
the field is symmetric about the =z axis and independent of the

angular coordinate, ¢.
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The total acoustic field in the upper half space is a
combination of direct energy from the source and energy reflected
from the lower, heterogeneous half-space. We are interested in
the latter portion of the field for the case in which both the
velocity and density of the heterogeneous half-space are greater
than in the homogeneous half-space at z = 0 and either decrease
or increase smoothly away from the boundary in the negative =z
direction. The relation between the source and receiver to the
boundary between the two half spaces is illustrated in Figure 3a.

For the problem described above, and illustrated in Figure 3a,

the acoustic pressure potential field is described by

5(p) 6(2—20)

72 2 2 o
@1 + ko ¢, B z >0
(3.1)
V20, + k%(2) ¢, = 0 z< 0
with the boundary conditions at z = 0
L 2
p; 9, = p(2)* ®,; (continuity of pressure) (3wdd
) L = 9 L (continuity of vertical
ol L 2 g - 1 A 2 s
Po 3z <po 91> p 2 (2) oz <p(z) ®2> ’ component of particle
velocity)
(3..3)

together with the appropriate radiation conditigns.

The general solution to (3.1) for z > 0 is of the form
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Figure 3
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where ¢ 1is the particular solution and @O is the homogeneous
P
solution. As was indicated in section 1, the particular solution

for a spherically symmetric point source in a homogeneous medium is
ik R
o

e
¢p ~ R (3.4)

1
2

where R = [ p2 + (z—zo)z}
To obtain the solutions for @O and ¢, we operate on the

homogeneous form of (3.1) with a Hankel transform defined by

jee]

(2 ,k,w) =.)(.JO(KD) o(z,p>w) pdp

0 (Ie5)
¢(z,p,w) =/ JO(KD) 0 (z,k,w) kdk.
0
to get
d2@o
— T+ k2-K2>q> = (3.6)
dz? - =
d?e, A
+\ k2(z) - «2 e, = 0. (3.7)
dz?
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Performing the same operation on the particular solution (3.4)

gives

>
1l

(3.8)

where n = (kg —v<2)1/2 (Ewing et al., 1957).

Here we note that ko is the magnitude of the wave number
vector, k, in the homogeneogs medium and that k and n are the
p and z components of this vector, respectively. Thus k = kO sin ©

and n = ko cos 0, where 6 is the angle of incidence. We introduce

the notation

p = sin ©

L (3.9)
cos 6§ = [1-p2]°*

Nal
1l

so that «

kop and n = koq, and we take the root of q defined

by Re(q) > 0 in the complex p-plane.

The solutions to (3.6) are familiar and can be written down

immediately. They are
b =ve "+ Ue (3.10)

where V and U are arbitrary functions of «.

Exact solutions to (3.7) can be obtained only for a few

specific functional variations of the wave number, k(z), or acoustic
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velocity c(z) = w/k(z). In general, these solutions will be rather
complicated hypergeometric functions. However, even for some of

the simplest velocity variations, the solutions will be expressed in
terms of Bessel functions whose order is some function of the
parameters defining the velocity variation. (See Bhattacharyo
(1971) for a summary of solutions to equation (3.7) for a number

of specific velocity laws.) As an example, solutions to (3.7)

for a linear velocity gradient

c(z) = co<n;l - Yz)

are of the form

Iiv(v)'

K (v)
\V

1

LSS

where Iv and Kv are modified Bessel functions and

L

V] i<€2 - l/4>2
v = e_l n_l - vz
p o i

6 = y/k0

(see Nakamura, 1964). Although the properties of these Bessel
functions, as well as some of the more general hypergeometric
functions, are well known, they are often inconvenient to work with

in carrying out the analysis required to invert the Hankel transform.
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Approximate solutions to (3.7) can be obtained by applying
the classical WKB method (see Brekhovskikh (1960) for a detailed
discussion of the WKB method applied to vertically heterogeneous
wave propagation problems). WKB approximations corresond to ray-
theoretical solutions, and they break down when the vertical wave
number, (k2 (z) - K2), approaches zero (e.g. in the vicinity of a
turning point). Furthermore, special care must be taken to insure
that the WKB solutions on either side of a turning point are
properly matched. Because the dynamic properties of waves are
often strongly influenced by velocity variations in the immediate
vicinity of a turning point, WKB solutions have limited application
in theoretical studies of wave amplitudes.

An approach intermediate to obtaining exact solutions or
approximate WKB ray-theoretical solutions is described by Langer
(1949). He has shown that solutions to linear second-order

differential equations of the form

d2y

dz?

s [AZp(z) + q(z,A)]w =0 (3.11)

can be represented in terms of one-third order Hankel functions (or
Airy functions) plus terms of order lk‘ll provided that
1) p(z) is analytic in a region R with a zero at z = Z and

2) q(z,\) is analytic in =z for z DR.
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(Here p and q are not related to the definition (3.9).) This
approach has the double advantage that the resulting solutions are
valid at the turning point and that Airy functions are particularly
convenient to work in the analysis of wave propagation problems.

A concise summary of the principal results obtained by Langer for
complex values of A is given in section 10.4 of Abramowitz and
Stegun (1964).

For most cases of interest, k%(z) in (3.7) can be put in the
form kgp(z), where ko represents the magnitude of the wave number
at some reference point in the medium (at the boundary z = 0, for
example). Accordingly, (3.7) has the form of (3.11) with X (or ko)
real and positive in the case of a losless medium. Following
the outline in Abramowitz and Stegun (1964), we introduce the

transformation

E= E(a) , w= [ B2} TE () ]4 D

where ¢ is defined by

VA
27 -2 | Yipaz 5 pz) =o.
Z
(@]

This puts the original differential equation (3.11) into the form
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2
9—3-+-[A2g + f(g,x)] u = 0.
de?

Solutions to this equation are such that

AL (-xwa)[ 1+ 0<r1)J
Bi<—>\2/3£>[ 1+ O(A"l)]

uniformly on the bounded interval a < £ < b which includes the
origin (£&=0). Thus solutions to the original differential

equation (3.11) are

-5 Ai <—x2/3g>[:1 + O(A”l)}
w=|p(z)/g(z)
Bi <—>\2/3 >[ 1+ O(kl)]

where Al and Bi are Airy functions.

Using this approach, it is possible to obtain high frequency
(ko >>1) asymptotic solutions to (3.7) for velocity variations that
either increase of decrease in a monotonic, but otherwise artibrary,
way. (The monotonic requirement is imposed by the restriction that
there be a single zero of p(z) in R.) Chekin . (1964, 1965) used
asymptotic solutions of this form (but expressed in terms of one-

third order Hankel functions) in his analysis of the effects of
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small velocity gradients on reflected waves.
In the present case, we will take the following specific form
for the variation of acoustic velocity, c;, and density, P>

in the lower, heterogeneous half space:

va)
%
: yz>

where <, and o, are the velocity and density in the upper,

N

c,(z)

1}
o)
o
P
=
oN
I+

z <0 (3.12)
p,y(2)

1l
fo)
(]
SO
(=]
o N
+

homogeneous half-space, no o= CO/CI(O) is the index of refraction
at the boundary z = 0, and #y is a gradient parameter defining
increasing (4+) and decreasing (-) velocities with depth. These
functions are illustrated in Figure 3b. This particular form
for the velocity variation has the following advantages:

1) It results in exact solutions to the differential equation
(3.7), and thus allows us to put off the need to work with
asymptotic form until later stages in the analysis.

2) The exact solutions are Airy functions which are convenient
to use in wave propagation problems, and as indicated above, they
form the leading term in the high-frequency asymptotic solutions to
(3.7) for more general velocity laws.

In other words, we are interested in the effects of small

velocity gradients, and detailed differences in the exact form
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of the velocity laws for small gradients will not change things
significantly. Thus for convenience, we choose to use the velocity
law that gives the leading term in the more general asymptotic
solution as the exact solution. Finally, a third advantage is
that the above velocity law is physically well suited to half-space
problems; in particular, it does not result in negative acoustic
velocities in the negative gradient case. The density was chosen
to parallel the velocity law on the basis that this is a commonly
observed relation in geophysical materials.

Note that the gradient parameter, y, in (3.12) is essentially
an index of refraction gradient with dimensions of km™l. The

corresponding velocity gradient for 'y| << 1 4dis given by

y = v (3.12a)

where ; N has dimensions km/sec/km, or sec™l.
To obtain solutions to (3.7) for the velocity law given by

(3.12), we note that the square of the wave number, k(z), is

k? = (w/c )2 z >0
o 0

W2(2) = (3.13)

kg(ng * yz) z < 0

So that (3.7) becomes
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Transforming the independent variable by introducing

2(z) = e-2<n§ - p?x vz>; e = (y/ko>”3 (3.14)

then gives

d?s,

~

+ 70, = 0 (3.15)

dc?

This is Stokes’ differential equation, and its solutions are Airy
functions. Some of the properties of Airy functions useful for
our purposes are described in Appendix I. Although numerically
it is immaterial which independent pair of Airy functions are
taken for solutions to (3.15), we will choose the following two

sets for physical reasons

.2 . 2
13— —13—
5 T Ai,(— ce + 8 Ai\- ge ; Yy <O (3.16)

=T, Ai (-2) + 5, Bi (-0) y>0  (3.17)

LS
Il

0
N
|

In (3.16) the Airy functions associated with T and S represent
down-going and up-going traveling waves, respectively, for large

argument, while those in (3.17) represent standing waves when ¢ > 0
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and exponentially decaying and growing waves when ¢ < 0 (see
Appendix I). These asymptotic properties are obviously useful in
choosing solutions that will satisfy the radiation conditions for
the respective problems.

We now proceed with the evaluation of the arbitrary functions
of ¥ in the solutions for éo (3.10) and @2 (3.16) and (3.17) by
first applying the appropriate radiation conditions at infinity
and then the continuity conditions at the boundary z = O.

In taking the Hankel transform of @O and %o, we implicitly
made an assumption about the condition at infinity in the p
direction. That is, if the integral in (3.5) is to be convergent,
we must have

L
p” ¢(z,p,w) >0 as p >

Next, to preclude waves propagating downward from z = + « (i.e.
from above the source) we must set U = 0 in (3.10). This is an
application of the Sommerfeld radiation condition, which in
essence states that the wave at infinity from a point source in a
homogeneous medium behaves like an outgoing spherical wave (Stoker,
pg. 175,1957). The corresponding radiation condition at z = - =
in the heterogeneous medium is not so obvious. The difficulty
arises because waves propagating in a heterogeneous medium are

continually back-scattered by the local heterogeneities along the way.
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In the case of the negative gradient (y < 0 in (3.12)), the
velocity gradient dc(z)/dz > 0 as z » - «», and we will assume that
the analogous conditions applies. In particular, we assume that
in the neighborhood of z = - « the wave is downgoing, and we set
S =0 1in (3.16). This assumption is justified by two arguments
presented in Appendix II. Briefly stated, these arguments are:

1) The back-scattering due to the inhomogeneity becomes
negligibly small as z + - « for the velocity variation (3.12) with
Yy < 0, and

2) The reflaction coefficient obtained using this assumption
is the leading term in the generalized ray expansion of the reflection
coefficient for the case in which the inhomogeneous medium is bounded
below by a second homogeneous medium, which in turn, extends to -
(i.e. a case in which the radiation condition can be properly applied).

In the case of the positive gradient (y > 0 in (3.1)) all of
the waves entering the lower medium are turned around at a finite
depth. Above the turning point depth there will be a system of
down-going and upgoing traveling waves, which combine to form a standing

wave in a steady state. Below the turning point depth the waves
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behave exponentially. Thus, to insure a bounded solution as z - — «,
we assume exponentially decaying waves with depth and set S+ = 0 in
(3.17).

The loci of turning points for the negative and positive
gradients can be determined by noting that the vertical wave number
is zero at a turning point. Thus from (3.14) the loci of turning

points in the p-z plane are given by

This function is plotted in Figure 4 illustrating the effect of
negative, positive, and zero gradients on the locus of turning points
as a function of angle of incidence and depth. Also shown is the
nature of the vertical wave field with respect to the locus of
turning points and the boundary at z = 0 as defined by the radiation
conditions assumed above.

Having applied the radiation conditions, the complete solutions

are now in the form

-in(z—zo)
b, = - “EL—f—_————'+ v el z >0 (3.18)
1 Fr -



-

y <O

Figure 4
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( . 2ﬂ>
~ 8
By WL e =0 (3.19)

when these equations are substituted into the Hankel transformed
boundary conditions (3.2) and (3.3), the following systems are

obtained for y < O

inzO
1
1 - m? A.(l)(—c ) v g
i o - in
12T B inz
. A ) Y (13" ~3 3] 1
2
- = o T -
in m [Ai( go) e ( Co)e Yy e B e
(3.20)
and for y > O
inz
1 5 AL ( ) e
Bt . Qo Vs in
:,' & 2 = Y. —'2 -
| in m [Ai( CO) ZE§£~'+ Ai( CO) 7%y Ty, e
(3.21)

where m = p(O_)/pO (the density ratio at the boundary), and
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for brevity. Solving these systems for the reflection coefficients,

v,, gives for y < 0

2T
(1) ; g3 I < A LIy .
Ai (-CO) igqm + p o + e € Ai ( QO) inz_
= = o ; &
_ lgﬂ "
(1) . g8 3 (1)
Ai (—CO) igm Tng; - e £ Ai ( Co)
(3.22)
and for vy >0
_. 3 '
Ai (_CO) igm - Zn_gm - € Ai(—Co) lﬂZO
— = = . &
Vg = = 3 - il = (3.23)
. € Y o
Ai(_Co) S % 4ngm = = Ai( Eo)

where v_ and v, are the spherical wave reflection coefficients for
the negative and positive velocity and density gradients defined by

(3.12) and with a point source at r = (0,20). The corresponding
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plane wave reflection coefficients are identical to the above
inzo
but without the factor (e /in). Thus

(3.24)

where v are the plane-wave reflection coefficient for the

+
negative and positive gradients, respectively.

The modulus and phase of the plane-wave reflection coefficient
for the negative gradient case (Vp ) are plotted in Figure 5 with

/3

1
e = (Y/ko) as a parameter. Note that as e becomes very small,

the modulus and phase approach the limiting values for two
homogeneous media. This can also be seen analytically by substituting
the asymptotic forms of the Airy functions (Appendix I) into vp

The result is

mq - né - p2
v_ = = (3.25)
o
Py oy 4w
mgq + no P

which is just the plane-wave reflection coefficient for two homogeneous
media (Brekhovskikh, 1960).
The modulus of the plane-wave reflection coefficient for the
positive gradient case (v_ ) is unity. In other words, all of the
-+
energy entering the lower medium is eventually reflected into the upper,

homogeneous half space, and the reflection coefficient can be expressed

as
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A (-5

A = exp | 12 tan-l n—mr(-:c—)
13 (o]

(3.26)
Py

For p > n (i.e. angle of incidence greater than critical), (2.23)
also goes to the homogeneous reflection coefficient (3.25) when
the asymptotic forms of the Airy functions are substituted. For

p < o the analogous limiting process is complicated by the diving
wave phenomenon. We will consider this later.

The effect of the density gradient in the lower medium enters
the reflection coefficients through the second term in the brackets
multiplying Ail)(—go) and Ai(—go) in (3.22) and (3.23) respectively.
Under the assumption of small density gradients made in obtaining

(1.5), we have

Imql >> 53/4n§m

except when g ~ 0. Thus since q = cos 6, the density gradient in the
lower medium has a negligible effect on the reflected wave except
near grazing angles of incidence. We will neglect the effect of

the density gradient in most of what follows.

Integral representation for the reflected field.-An expression

describing the spectral amplitude and phase of the acoustic field
in the homogeneous medium can now be obtained by taking the inverse

Hankel transform of (3.18). Thus
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ik R
e o
R

inz
+ JO(KQ) V:(K) e kdi

¢, (o, z,0) =
0

where V;(K) is given by (3.22) or (3.23) for the negative and
positive gradient cases, respectively. As indicated earlier, the
first term on the right gives the direct field from the source,
and the second term gives the field reflected from the lower
inhomogeneous medium. We are primarily interested in the latter,
which on changing the variable of integration to p (3.9), can be

written as

in(z+z )

o = & o P
+(p, z,0) i ko Jo(kopp) Vp;(P) e ” dp

0

where we have introduced the plane wave reflection coefficients

according to (3.24). Using the identities

Jo(u) =-% [ Hél)(u) + Héz)(u) }

and

1)

Héz)(u e_iﬁ)= Héz)(—u ) = - Hé (u)

(section 9.1, Abramowitz and Stegun, 1964) together with the
faet that Vp_(—p) = vp_(p), the above integral can be rewritten
s ¥

as
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ik in(z+z )
0

0:(g z0) = 5> | uPGeep) v ) e 2dp (3.27)

q

—CO

which is the desired integral representation for the reflected field.

The form of (3.27) is identical to equation (19.6) in
Brekhovskikh (1960) for the field from a point source reflected at
a plane boundary except that here the variable of integration is
p = sin 0 instead of the angle of incidence, 6. This is a form
of the Weyl integral representation, and as such, can be interpreted
as a means of summing up plane waves to generate a spherical wave
front (see Chapter 6 in Grant and West (1965)). Formally, the
integral can be considered as an operator on the plane wave
reflection coefficients, Vp(p), for an arbitrary layered inhomogeneous
half space to yield the reflected field in the overlying homogeneous
half space containing a point source.

We are mainly interested in the reflected field from incident
waves near the critical angle and beyond. These are the waves that
are ‘'critically' refracted and give rise to the head wave. For
most geophysical applications the product (kopp) will be large
for critical waves, and we can rewrite the Weyl integral (3.27) in
an approximate form using the asymptotic form for large argument

of H(l)(u), where
© )

i(u -
H(El)(u)rv V %{1— e : lul 5% 1

e



e

Thus

i s 7 ik + q(z+ 3y
d_(p z,w) e14 EQ—- ’ e1 O[ o e Zo)] v (p) Ej— d
TR %5 27p P: 8 q b

or, since from Figure 1, (z+zo) = quo and p = RlPO

. = Jo
e " 14 E elkoRl(qqo o ppo) v () P dp (3.28)
T p, Z, e v 27rp p:— P q

where By T sin 80, Go is then an angle of incidence for a wave

reflected at the boundary and recorded at r = (p,z), and q, = l—pO .
The integral is now in a form that can be evaluated by saddle point
methods for (koRl) large and real. We will consider the asymptotic

evaluation of the integral (3.28) for the negative and positive

velocity gradients separately.
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Asymptotic evaluation of Weyl integral-negative gradient.-We

consider the approximate integral (3.28) with the plane wave
reflection coefficient Vp— given by (3.22) and (3.24). The integrand
has branch points at p = * 1 associated with q = \[l—pz and at p = 0

1
%
associated with p*. We choose the branch cuts such that

L < T
7 < arg(q) = 5

1
<€ B
) =5

- = < arg(p
2
on the upper Reimann sheet. The location of the branch cuts in
the p-plane and the sign of the real and imaginary parts of the
radical q on the upper sheet are shown in Figure (6a) together with
the integration path. Note that the Airy functions in Vp_(p) are

entire functions in the finite complex p-plane.

The integral we are considering (3.28) is of the form

1 =f PEPIp ey dp (3.29)

- 0O

~
h b =%kRy, f = i + d F = 2. Th
where oR1s (p) l(qqO ppo), and F(p) Vp_(p) g e

saddle point for the integrand is determined by

afp) _ o _ P _
dp Py q

QK
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In other words, the saddle point is on the real p axis and is equal
to the sine of the angle of incidence, 80

To determine the steepest descents path across the saddle point
we put

£(p) = £(p_) - s*

where s 1is real and varies between -« and . This insures that
f(p) remains real and that the exponential term decreases rapidly
along the integration path on either side of the saddle point. The

appropriate path, I'y is found to be given by

Re { qqO + pp0 } =1

As shown in Figure (6b), T approaches the saddle point along a path
from the second quadrant in the p plane (asymptotic to a line at
an angle of (m - tan 60) from the origin as s » - «) and crosses
the saddle point at an angle of 37n/4. Beyond p = l/po, we can let
the deformed path, T', coincide with the original path just below
the cut along the positive real p axis since here Im(£(p)) > O
and exp [kbR é(p)] is decreasing exponentially.

According to the theory of the saddle point method, the only
significant contributionsto the integral come from the immediate
vicinity of the saddle point plus any singularities passed over
in deforming the integration path. As indicated in Figure (6b),

the deformed contour, I', does not cross any of the branch cuts in
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Figure 6b
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the p-plane, but as will be shown below, it does cross a line of
poles associated with the reflection coefficient Vp_(p) when

Py > n (i.e. when the angle of incidence, 60, is greater than the
critical angle 60). It will turn out that these poles give rise to
the head wave while the saddle point gives rise to the wave reflected
at the boundary z = 0. We will represent these '"separate"

contributions from the integral for the total reflected field, ¢ _,

using the following notation

- (3.30)

where @r_ is the saddle-point contribution giving the reflected

wave and @n_ is the contribution from the poles giving the head

wave. For near-critical angles of incidence (poaV no) the phase

difference between these ''separate" contributions is small, and

it is no longer meaningful to make a distinction between the two.
Having deformed the original integration path into the steepest

descents path, (3.29) becomes

I, = / T ®) 5 ) ap

r

plus the sum of residues of any poles crossed. Methods for
approximately evaluating the above integral over the steepest descents

path are well known (see Brekhovskikh (1960) or Ewing et al. (1957)).
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The result as given in Brekhovskikh (1960) is

5 bf(p) 1 L i
- \/—b[w(0)+4bw(o)+m] (3.31)
where
b(0) = [— —ﬁ—] ¥
1y 1 ity 2 i
o) = pof - Bl E 3 (7 I

GOSN COE

Substituting the appropriate variables into the above formula and
multiplying by the leading factor in (3.28) thus gives

1k0R1

e

@r_(n,z,w) = —_ET_— vp_(po) (3.32)

to first order. This expression is the geometrical ray theory

approximation to the field reflected from the boundary at z = 0

for waves at an angle of incidence 60. It is valid as long as the

source and receiver are not too close to the reflecting boundary,

or as long as the angle of incidence is not near grazing. For these

cases additional terms must be retained in (3.31). Equation (3.32)

also breaks down near the critical angle, ec; here the saddle point

and "head wave' poles interfere and require a more elaborate analysis.
We now turn to the problem of determining the singularities in

the reflection coefficient, Vp (p), and evaluating their contribution
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to the integral expression for the reflected field. In what follows

it will be convenient to introduce the notation

% (p) = N(p)/D(p)

where N(p) and D(p) are the numerator and denominator of the plane
wave reflection coefficient (vp i

As remarked above, the Air; functions 1in the reflection
coefficient have no singularities in the p plane, and the branch
cuts associated with q = (l—pz)l/2 have already been accounted for.
Thus any singularities of vp (v) must be due to zeros of D(p). On
purely physical grounds we w;uld expect to find one or more zeros
of D(p) in the vicinity of p = nos where n is the index of refraction
(co/c(o)) at the boundary and is equal to the sine of the critical
angle, BC. In other words, we expect the head wave to have a
horizontal phase velocity close to cr = w/(kO sin 0‘). Thus we
begin by considering the properties of D(p) for small arguments
of its Airy functions. For convenience in what follows we will

refer to the region ]p—no| << L ag K ,

Expanding gb(p) about p = n gives

z,(p) = =2 (ng—pz) =eg=2 { - 2n_(p-n_) + 0 [(p—no)z] g .
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so that the arguments of the Airy functions are approximately given

by

, 21 . 2
i i i
- C, e = - 2nO € (no—p) e = -1

for lno—pl << 1, It is known that both Ai(-1) and Ai'(-t) have zeros
on the positive real 1 axis only (Abramowitz and Stegun, p. 450,

1964). Thus since

2 .
—_— B4 elﬂ/3

ot om (3.33)
)

both Ai(-t) and Ai'(-t1) will have their zeros along a line extending
from p = n at an angle of n/3 with the positive p axis in R.

Now from (3.22), we see that in R ,D(p) has the form

D(p) = Ai(-1) O<‘}l—n§> - Ai'(-1) 0C(e).

Thus under the condition that

>>

Ai'(-t) 0(e)
max max

Ai(-1) o( 1-n?
Q

the zeros of D(p) will be given by the zeros of Ai(-7) plus a small
correction. The above condition will be maintained as long as

1 - n?
o

2
2

(3.34)

An approximate analytic expression for the zeros of D(p) in
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R can be obtained using the Newton-Raphson root-finding algorithm.
Let aj be the jth zero of Ai(-t). Then the jth zero of D(r), where

T = 1(p), will approximately be given by

J

or, after performing the indicated differentiation,

i(2n/3)
T, %a, bEee—— o (3.35)
J 3J 3
where L
& ]/,
g, = 1 = H2 = €2a.el(2ﬂ/3) ” (l_nZ) 3
j o) J o

Putting (3.35) into (3.33), the location of the zeros of D(p) is

approximately given by

€2
em A3

d
e
i o 2nO

Thus the poles of Vp (p) lie approximately along a line extending
from p = n into the_first quadrant of the p-plane at an angle of
m/3 (see Figure 6a and 6b).

It now remains to evaluate the residues of the integrand for

the poles of D(p) crossed over in deforming the path of integration

to the steepest descents path when the saddle point, Pos is beyond
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no (see Figure 6b). By the residue theorem

. 27k N
6 = i el(“/[*)\/ —=2 3 Res
10 P -:1

J

where N is the number of poles crossed, p(1) is given by (3.33)

B () = Ai(—T)[jﬁm'(T) - Teei<2”/3)] —-Ai'(—T)[iﬂq(T) -

and
5
Res [F(Tj)] = ﬁ*‘N(T)
dt
1 et
D' (1) dp
2 10/ 3)
q('r) = J l_ni == ”—e____
2 4/1-n?
o
2n e—i<ﬂ/3)
art _ o
dp 2
Expanding Ai(-t) about 1 = aj, we have

I

Ai(-1)

I

Ai(-1) Ai'(—aj)

ik
i ORl(qqo

B, ) = AL'{a,) (ra,) + =»s
J J |

L1 @n/3)

(3+36)

(3 37)

3

4n’m
o)

]
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which together with the above gives

1
2

p* N(1) . -i €3
q ' él 2
D' (1) ar — " n_g.m
J
for Ezaj << |m2q2!. Putting (3.33) and (3.37) into the exponential

term in (3.36) we have

€2T eiﬂ/3
+ =
k Ri(pp  +qq) = kRifp (n + n_
g2t eiﬂ/3
+ q, Jl—n2 - + 0(e")

=k Ry cos (6 -6 )
o c o

et eiﬂ/3
+k R ———— = sin © - tan 6 cos ©
o 2n o c 0

(o}

or using the geometric relations shown in Figure (1),

kOL e? i%
koRl(ppo + qqo) = ko(Ls + Lr) + kL | + ~§;;—— Te (3.38)

where LS and Lr are the source-refractor and refractor-receiver
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'ray' path lengths, L is the path length along the refractor, and

k; is the wave number just below the boundary in the lower medium
(ky = noko). Here we recognize the first term on the right as being
the ray-theoretical phase of the head wave, ¢o’ and the second

term as a complex correction factor due to the velocity gradient.

Substituting for the remaining terms in (3.36) we obtain

3 13
Res [F(T,) ] 2= ~—Ijji————— exp | i ¢O + kOLCZT_ e 3/(2r10)
J mn° (1-n2) J
o o
Thus
2rk el(¢o + w/4)
@n_(r,z,w) = 4 - 3
o m(1l-n")
© (3.39)
g AL
N k LEZTi,e 3
o
X Z exp | i o™
j=1 o

which is an expression for the head wave spectral amplitude and
phase for the model shown in Figure (1).
This expression can be recast into a simpler and more useful

form for two limiting cases. We define the parameter, o , to be



.

2
A 2/3 koLe in/3
LT E on_ © (3.40)

o

and consider the cases for which |o|<<l and [O_|>>l.

In the first case (lo |<<l) we attempt to sum the series in

(3.30). Thus consider

N :
o= 3 @ Y (3.41)

To first order, the zeros of Ai(-1), and thus the approximate zeros

of D(t), are given by

2/3
aj:[%m—l)]

(Abramowitz and Stegun, p. 450, 1964). Accordingly, we let
Tj = (45 - 1)2/3 in (3.41) where the factor (371/8)2/3 has been
included in the definition of o . Using the Euler-Maclaurin

summation formula (Abramowitz and Stegun, p. 16, 1964),(3.41) can

be rewritten as

N+1
“O_T(X)
SN = e dx -

0

[f(O) + f(N)] +%[f'(N) + f'(O)] i v

N =

(3.42)
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where j has been replaced by the continuous variable, x, in the
—o_r(x)
integral and f(x) = e . To evaluate the integral in SN we

consider the limit as N - «, in other words

1 Bl —O_T(x) “ —O_T(X)
o 20 e dst = e dx (3.43)
N->o0

0 0

Note that by (3.34), we must have

lim L- ng
2
pix sl (3.44)
Ll T T
2

In other words, €“ must approach zero more rapidly than 1, approaches

N

infinity as N - «,

Changing the variable of integration in (3.43) to

(sx - 1)2/3

fa=
Il

gives

The integral is now in a form of the integral representation of an

incomplete Gamma function (Abramowitz and Stegun, 6.5.10,
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p. 262, 1964). Thus

=252 12,0 = 26732 ray [1 - 21 Y*(3/2a0_):|

where T(3/2) = % m° and
—-O_ -
% = > = (e
s LV § : r(3/2 + 1 + n) o | <
n=0
Recalling that f(x) = e_qT(X) and 1(x) = (4x - 1)2/3, we have
=i : -0 lim _ lim _

flo) = e s £¥e) = 1 8/3 & 4 Noseo f(N) =0, Noo f'(N) = 0, etc.,

and (3.42) becomes

T
3/2 * %

Lim S _ -2 no "
N- “N mk 3/2
o L Y

o n
x 1 - 03/2 e—q E _ - g:l<
n:
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where

_ 2 Yo &e i) eiﬂ/4
&8~ Tk L L

2

Thus, in the limit as €“ » 0, we can rewrite (3.39) in the form

(S
R

(34459

b

7 . 1
N recrid + e s o
7 t% °- )

gy O 5
o K SR ZT(H/2+n)_g~<

n=0

Note that the leading term in the brackets is just the head wave
potential for the case in which the lower medium is homogeneous (see
Brekhoviskikh, 1960). This expression is valid in the limit of small e,
but at large distances from the critical point, many terms in the
series must be included. At relatively small distance from the
critical point, such that |o‘ << 1, we have
At
Zino e ¢O

0] ] 1 -

O3/2

(3.46)
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In the immediate vicinity of the critical point itself, (3.45)
and (3.46) are invalid because of the interaction of the saddle
point and head wave poles. However, because L <<1 and Io_| becomes
negligibly small as the critical point is approached, we expect
that the theory previously worked out for waves reflected and
refracted from a homogeneous medium in the vicinity of the critical
point by Cerveny (1965) will be a good approximation to the
inhomogeneous case as well.

To obtain an expreésion for (3.39) in the case ]o_’ 2> L
it is convenient to separate the argument of the exponential terms

under the summation sign into real and imaginary parts, where

by (3.33) and (3.40)

3m =L i%E
arg [ exp] = - — o} a, + i —“ e
8 ~= N mq

and where the first few aj (zeros of Ai(-t)) are given on pg. 478
of Abramowitz and Stegun (1964) to be aj; = 2.338, a, = 4.008,

ds = 5.521, ete. Thus

Re o

arg [exp] = (3.47)

2
In I S SR
41’10 j 4 m/l._ng
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Now because the real part of the exponential term is negative, the
pole nearest the real p-axis (or the first term in the series
in (3.39)) gives the largest contribution, and for [O_] >> 1, the

contributions from the remaining poles will be negligible. Hence,

m
i(e + ) .
21k 5% = 4 k L ale elﬂ/3
> = - = exp 3 2 B
" P m(l - ng) o
(3.48)

for [o_| >> I, o

@n_ 2 = = exXp | = 7 T, ai mased

P m(l - ng) o /3m V1-q%

(3.49)
where 6_ = Im [arg (exp)] in (3.47)

From the last expression, we see that at large distances from
the critical point (L >> 1), the head wave spectral amplitude decays
exponentially as (gzL). We also see that because of §_, there is
an additional phase shift; furthermore, since §_ is a function of
the wave number ko, the head wave is slightly dispersed by the
negative velocity gradient. In particular, at large distance, the

horizontal phase velocity of the head wave is approximately given by



—93—

c = CO/ [sin(no + 6_)] :

Asymptotic evaluation of Weyl integral-positive gradient.-We now

turn to the evaluation of (3.28) with the plane wave reflection

coefficient for the positive gradient, v given by (3.23) and

p+’
(3.24). The branch cuts for q and pl/2 will be taken as defined
for the negative gradient case (see Figure 6a). Evaluation of the
saddle point and steepest descents contour for the reflected wave
remains the same as in the negative gradient case. However, as we
will see, poles of the reflection coefficient now lie just above
the real p-axis in the interval 0 < p < n (see Figure 7). This
simple change in the position of the poles results in a marked
difference in both analyses and the nature of the reflected field.
For angles of incidence greater than critical (po > no) we can make
a distinction between 'separate' contributions to the total

reflected field similar to (3.30) in the negative gradient case.

That is

where, as before, ¢ is the saddle point contribution giving the

r+

reflected wave and o is the contribution from the poles giving the

+
"refracted" waves. By the same argument leading to (3.31), the

first-order saddle-point contribution yields the geometrical ray

theory approximation for waves reflected at the boundary z = 0
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Figure 7

ReP
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q) o il L R, .
r+ R, vp+(po) > Py o)

For angles of incidence less that critical (pO < no) the saddle

point lies near the line of poles. To handle this case, we will
modify our approach by expanding the reflection coefficient. 1In
doing so, we will find that a similar separation of contributions

can be made, i.e.

where ®r+ is again the saddle-point contribution giving the reflected
wave, but where ®d is now a series of saddle points giving the diving

wave contributions.

To determine the position of the poles of vp+(p), we proceed

as before and define

By the same argument used in the negative gradient case, we expect
the zeros of D+(p) to be near the zeros of Ai(—co) for |p2 - ng < 1,
Hence in this region, the zeros of D+(p) will be given by

By, © H —[D(co)/D'(co)]

C0=aj



.

where

D'(CO) = Ai(—CO) [iq'm + ego] + Ai'(—go) [iqm +

Accordingly, we find that

o) 7 g
eAi’ ( Co_)
N|

B ] a8
-Ai(-z_ )| iqm +

0. 2

N 4nom

or

Expanding p about ¢ = 0, we get

(3.5L)

(332)

(3+53)
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where, as before q. = \/1 = ni.

(In the negative gradient case
only the first two terms in the expansions for p and q were kept,
however in this case, it is necessary to carry the next term in the
expansions to insure the convergence when we attempt to sum the

residues of the poles.) Putting (3.50) into (3.51), gives for the

location of the poles in the p-plane as

g2 € e'a,
p. = n—ga, + i = l+—-‘l
J E o) J qm 8n2

Thus, as indicated above, the poles lie just above the real p axis
for p < n. Furthermore, they move gradually away from the real
axis (in a positive imaginary direction) as aj gets larger and p - O.
This is just the behavior required for convergence indicated above.
It turns out that for |p2 = né] > 1, the position of the poles is

dominated by the Ai'(—;o) term in D+(co), and the poles move up the
positive imaginary axis.

The contribution to the integral by the poles crossed in
deforming the original contour along the real p axis into the

steepest descents path is given by

E- 2ﬂko N
®n+ =1ie > E Res F(Co,) (3.54)
3=0 ;
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where
Y N, (z )
Res| F(¢z ) = Fo g ew
0. q (3.55)
h| dg
\
D+(co) dp _
Co Qo_
i)
and

v = 1k0R1(ppo + qq)

Note that when the angle of incidence is greater than critical so
that the saddle point, P> is greater than n s all of the poles
in the interval 0 < p < ng will have been crossed as shown in

Figure 7. Expanding Ai(—co) about go and using relations (3.50)

]
through (3.53) gives
5
o N+(§o) ied
q R > — (3.56)
' _ 9 r gm
D+(QO) o V o'o
Co=£o,
J
for ¢ << q and ng - p2| << lq2m2|. Substituting (3.52) and (3.53)

into the expression for Y gives
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k Le3 k €2 : 3 9
b - 1o Low atl ¥ s o FL (3.57)
© e o n’q m J on2 J
o0 o
where
= + = L + L + kL
¢o koRl(qoqc pono) ko( s r) 1
(the ray-theoretical head~wave phase)
p
g o= L+ =
3
dc
and
DC = critical distance.
(See the geometric relations illustrated in Figure 4.) Thus (3.54)
becomes K Le3
ip - mo—
o 2n q.m
. fokara
1 = 21k 3
s & o @ 4 o) ee
n+ on

(3.58)
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This expression is comparable with (3.39) for the negative gradient
case. It can be regarded as a sum over normal modes leaking into

' formed

the overlying homogeneous half space from the "wave guide'
by the first order discontinuity in velocity at z = 0 above and the
continuous increase in velocity below.

To identify a head wave-like contribution, from the poles,

we want to sum the series (3.58) as was done for (3.39) in the

negative — gradient case. Thus consider

N
. p 2
SN = E exp - 1w, (1 - ing) aj + Azaj (3.59)
=1

where we define
k L 2
0

+ 2n
o

(3.60)
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R

2/3
Recall that for j >> 1; aj [ %E-(4j—l)] , where aj is the jth

zero of Ai(-a). To allow for this approximate expression for aj,

we rewrite (3.59) as

N
SN = E exp - i 0+ [(1—1A1) Tj + Asz] + AM (3.61)

5=1

where

o
1l

3m 23
[-g— (43-1) for all j and

M
_2; > . 2
Am = exp i O+_[(l ihy) aj + Azaj

j=1

M
2
- ex - io (1-ihq) 1. + Aot
E P +[ DTy 2J]

3=1

For j = 3, aj and Tj differ by only 0.2%, thus in practice M = 3
is probably sufficient for computing the correction term, AM. As

before, we apply the Euler-Maclaurin summation formula to the

first term in SN (3.61)
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N+1 )
-io, g(x
S =~/~ e dx - %-[f(O) + f(N)] +'%E'[f'(N) - f'(O)] s &b

0
(3.62)
where
g(x) = (1 - ihy)) 1(x) + A2T2(X)
3 m 2/3
(%) = [-g— (4x - l)]
-io, g(x)
filx) = e ¥

and consider the limit of SN and N > «», The remainder terms in

SN (3.62) have the form
—iO+(K1 + Ajp)
f(0) = e

80+
f'(0)=i—3‘-‘ >\1+2>\2Je

-io g(N)
f(N) = e *

—10+(X1 + Xz)

/3

-io, g(N)
+ 2%, (4N - 1)1/3](3 ¥

£r(N) = - io+~§- \:Al(AN N lel
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where

13

g(N) = {: AN - D23 4, e - 1)1/3]

=2
i
|

= b(l - iAy), Ay = b2A,
- (3m\ 2/3
b—@>
Because g(N) has a negative imaginary part, the exponential terms in

f(N) and £'(N) result in

Lim £(N)
N0 £'(N)

Now consider the integral in (3.62), which has the form

N+1
—-io+ [(l—iAl) T(x) + AZTZ(Xi]

I = e dx
0
Let u = (4x - 1)2/3, du = %‘(4X - l)_l/3 dx , so that we can consider,
vy -1]2/3 ?
o= A (3.63)

where ); and A, are defined above. Note that

i
A= g e

§ = tan ! (—d€3 )
n2q m
0-C =

\
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The integral in (3.63) has a form similar to that of the integral
representation of a parabolic cylinder function of three-halves

order ((3), 8.3, Erdelyi, et al., wol. 2, 1953).

(o0

31

- 27/4 1

D ()—L—/e_}t_—z—tt%dt (3.64)
=312 ¥ T T A :

To identify (3.68) with (3.64), we define

iﬂ/4

so that
iﬂ/4 _,ﬂ/4

e e
gE——0%t 4 da =

V2O+X2 V20+X2

Thus (3.63) can be written as

e
I_ = DN T e t ot - IO (3.65)

3/4
(20+X2) /
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where

1 —j_g+()\1u * )\zuz) 1L
e u%du (3.66)
0

The first integral on the right is now identical to that of (3.64)
except that the integration path is along a line inclined at w/4
instead of along the real t axis. In Appendix III we show that in

this case the two paths are equivalent, and we can write

s T
-1 2t M
< - T i | 2 _
L. =% 374 F(z) eF M0y = 1
QO+X2)

The asymptotic form of D_3/2(z) for |z] >> ] can be written as

_,-3/2 -32/4 (3/4) (5/4
D—3/2(}‘) = }. e s 1+ n n
H n!(—-'l % n
2

+ O|;? ]_

where the notation (x)n is defined as

(x)n =x(x+1) «+++ (x+n-1)

(Erdelyi, et al., 1953). Substituting this asymptotic form into

the above expression for L, together with the definitions of A; and

Ao gives
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.31/ 4
-1

2% e N o@are) /6
n n

de3
L =42 2 R ey | -
o ﬂ 3/2 _3/2 3 2 9 0
k L € n"q m L 5
1wl - —~}- n

where

koL . dg? iﬂ/4
}_= " - i e
2dnO n qm

e

When |0| << 1, we can obtain an approximate expression for IO
(3.66) by expanding the exponential and integrating term by term.

Thus

1

1
LT = %/ []_ = iO+()\1U. o} )\2112) - 92— ()\1‘\12 g 2>\l)‘2U3 s )\2UL+) + ,,]uz E
0

or
4/3 k Le?
A P B o 4
L =5 15(8> n_ + 0(e") (3.67)

Combining the above results and substituting into (3.58) gives
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on

" 2n q m (3/4) _ (5/4)
gl ° ¢ 2 B 4 0(e0?)

n=1 n!(— %—;ﬂ‘l

(3.68)

where the leading term in the brackets is the head-wave potential for

a zero gradient in the lower medium and

k L /b
14 T I3l > |
2dn§

3m 243
o+(X1 + Ay) ~ o, (g—-) '

This expression is analogous to (3.45) in the negative-gradient case.

It expresses the result that for |o| << 1 and |}”| >> 1, the
"critically refracted" field from a medium with a positive velocity
gradient looks like the head-wave potential from a homogeneous medium

plus a connection series. Keeping only the
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first term in (3.68), we have

i¢
Zino e O

b = T 1+ e0,8 (3.69)

i km(l—ni) 0? L3/2

where
io (3ﬂ>2/3
L T+l s

) mk L 3 _iﬂ/4 1, 8 1

& = 2n € 2" ¢ q.m
o) c

This expression is analogous to (3.46) for negative gradients. As
the distance, L, increases for a given gradient and frequency, the
magnitude of o, increases, and it is necessary to include terms of
increasing order in o, in (3.68). At sufficiently large distances
(L) this becomes impractical, and another approach is required.

As indicated earlier the approach we take is to expand the

plane-~wave reflection coefficient, v We will do so using the

pt’
asymptotic forms for the Airy functions given in Appendix I. The
result will be an expression for the refracted field at large L
in terms of diving waves, which at sufficiently high frequencies
represent rays turned around by the increasing gradient. Some

aspects of geometrical ray theory for the positive-gradient case

are summarized in Appendix IV.
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Substitution of the asymptotic form for Ai(—go) and Ai'(—co)

into Vp+ ((3.23) and (3.24)) gives

igm sin B + né - p2 cos B

v = (3.70)

pt+
iqm sin B - \/né - p2 cos B

for [QO[ >> 1 and where
B=w_ + n/b
o

~ 2 =3 g3 _ 92 3[2
W 3 € (no p=) .

Using the exponential representation for circular functions, (3.70)

can be rewritten as

o (g N (- (T
(4 - V7 2 - (am v 225D

or

e o i (3.71)
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where

< _\,—7_—;
N e

This expression for e is the same as (3.25); it is the plane wave
reflection coefficient for the case in which both the upper and
lower half-spaces are homogeneous. For p < n_, |vo] < 1, and we

expand (3.71) to obtain
i2R i28 2 148 m  i2mR
e ° o 'v e

which can be rewitten as

i48

+ v(l - Vg) e R vn(l - vg) elz(n+l)B +

Putting this into the asymptotic form of the Weyl integral (3.28), gives

ﬁ/dp

- . ik (xrp + qz + z_))
[ Z V g) elZ(rH—l)B] o © o

o (3.72)

a B
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Equation (3.71) is a valid approximation to v

£ s .
ok or 0< p <« n

Thus the above integral will only give a valid approximation to
that part of the reflected field arising from contributions to the
original integral (3.28) along the interval 0< p < n_ .

The above integral has branch points at p = * n associated

/2

with the radical(ni - p2)3 in B (see equation 3.70) in addition

to those already discussed. We choose this branch cut such that
L

Re [(né - p2)2] < 0 (see Figure 8). This insures that

Im [(n§ = p2)3/2] > 0 along the original integration path for

|p| > 1. It also insures that we stay slightly below the real p

axis over the interval n > p > 1, along which our expansion of

(3.71) might not converge.

We rewrite (3.72) in the following form

o =0 + ¢ (3.73)

where

k 1ko(rp + qlz + zo)

. /p
®r+ e B e L a dp (3.74)

—w
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Im(P) A

Figure 8a
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Figure 8b
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and
m o
.o : +
i ko I 1k0(rp + q(z zo))
P, ~ - e et L0 LN
d 27p q

(e o]

E: (L g2y DB g
(0] o

n=0

(3..75)

X

Thus we identify the 'separate' contributions to the total reflected
field for angles of incidence less than critical (p < no) as indicated
at the beginning of this section.

The saddle-point evaluation of ®r+ (3.74) goes exactly as
before, and we obtain the geometrical ray-theory result for waves
reflected at the boundary z = 0 for angles of incidence less than
critical, i.e.

ik Ry

~ e .
¢r+ = R, vo(po) s P <n (3.76)

Turning to the evaluation of @d (3.75), we interchange the
order of integration and summation and consider the saddle point

approximation to the nth term

s 22 . (n+D)7

i== fK k f (p) +i—F———
Q(n)z_e 4"L/ G 2 (1 - v2) —Eydp
d Zﬂp (¢} (0] q

(3+77)
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where

3/2

. 4(n+l) 2 _ .2
E® =1 ep+ (z+2z2)q+3—" - (n? - p?) (3.78)
The saddle point is given by
4Re
dp
or
4 (n+1l >
O—*‘E“—‘(Z+ZO)—_(nTlp(n§-p2)2 = (3.79)
l—p2

From the geometrical ray relationships outlined in Appendix IV we
have the following expression for the horizontal distance covered
by a diving wave entering the lower medium at an angle of incidence,
@n, and reflecting n times at the boundary z = 0 before arriving
at the point r = (% Z)

B 4(n+l)
p = ——— gz + zo) +-——j?——— P

. L
(nz . p2)2
n (o] T

(see Figure A4-1). Comparing this with (3.79), we see that

=R, = 85 On (3.80)
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is the saddle point for the nth term in the series. The steepest
descents path for this integrand approaches the saddle point at an
angle of 3n/4 as illustrated in Figure 8b. No singularities are
crossed in deforming the contour, so that the entire contribution
for each term in the series comes from the immediate vicinity of
the respective saddle points. Note that P < n for all n, and
the integral (3.45) thus will give a valid approximation to the
field in the upper medium from the waves reflected by the positive
gradient in the lower medium (the so-called diving waves).

Using the formulae presented earlier for the saddle point method

(3.31), and noting that

(e + zo) 4(n+l) (ng B 2p§)
EnPy) = -1 2372 " Y 2 _ 2%
(1 - pn) (no - Pn)
we obtain to first order
5 (n+1)
(n) 2 Y
@d 2= e 0
3/2 . o 2+
p_(1-p_) (n2-p2) k £ (p_)
” n n o *n vn(l—vg) Jonn

1
4(n+l) qg(ng—Zpg) + y(ng—przl)2 (z+zo)

(3.81)
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where fn(pn) is given by (3.78) and vo(pn) is given by (3.25). This
result expresses the geometrical ray-theory phase and amplitude for
the diving wave reflected n times at the boundary z = 0 (although
it does include a -m/2 phase shift acquired by a wave each time it
passes through a turning point, which is not predicted by geometrical
ray theory ), In particular, we note the following aspects of the
above result:

1) The argument of the exponent, fn(pn), is the phase of the
nth diving wave derived using Snell's law in Appendix IV.

2) The factor (1 - vg(pn)) is the product of the homogeneous,
plane-wave transmission coefficients for energy entering and leaving
the lower half space at an incident angle of On (i.e. m_l(l + vo(pn))
and m(1 - vo(pn)), respectively.

3) The factor VZ (pn) is the product of n reflection
coefficients for the n reflections at the boundary z = 0. The
reflection coefficient for waves reflecting at z = 0 from below,
vy, is the negative of v, Thus the strict representation for this
product of reflection coefficients is (- vo(pn))n. In (3.81) this
sign is carried in the leading exponential.

4) The leading exponential, - exp [ i(n+l) w/2], contains the
-m/2 phase shift acquired by the wave when passing through each
of the (n+l) turning points, as well as the (=15 sign required

n g
for the factor VO mentioned above.
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5) The remaining radical gives the spreading factor for a

tube of rays leaving the point source (0, zo) and arriving at (p, z).



=119~

The range of validity of the diving wave result (3.81) is
limited by two approximations. The first is the assumption that
‘Co‘ >> 1 made in obtaining the asymptotic form of the reflection

coefficient (3.70). TFor most purposes, it will be adequate to take

9
o Y o
This restriction can be translated into limitations on the minimum
depth of penetration by the diving wave below the boundary, z = 0,
and the minimum horizontal distance traveled by the diving wave in
the lower medium using the geometrical ray theory results presented

in Appendix IV. The maximum depth of penetration in the lower medium

for a ray incident on the boundary at an angle en is

by (A4-5), where P, and sin Gn. Thus by the above restriction
the diving wave result will be valid for waves that bottom at depths

greater than z ., where
min

5 . w By B2 M3 (3.82)
min (&

By (A4-9), the corresponding horizontal distance covered by the ray

bottoming at z is
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and the diving wave result will be valid for waves at distances

greater than

p
o . _ n (Z + z ) + M ( Yz . o n2 >
= o min

1/3 o
()
o

The second approximation comes from retaining only the first

(3.83)

term in the steepest descents evaluation of the integral (3.77);
this is the geometrical ray-theory approximation. To obtain a
frequency-dependent connection to the geometrical ray-theory
approximation, it is necessary to include the next term in the
steepest-descent result. Referring to (3.31), we see that if the
second term is included, the diving wave expression will be of the
form

gV o gl g g G_

do d1 4k0

where @éT) is given by (3.77),
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and fn is given by (3.78). (Here the primes indicate differentiation
with respect to p.) Obviously, the form of the correction term

is cumbersome, and in practice, it will be expedient to proceed
directly with an "exact" numerical saddle point integration of

(3.77) rather than to work with this analytic form. Here we only

need note that G = 0(y) so that

(n) _ . (n) ¥
@dz @dl [1+O<ko>}

We can summarize our results for the effect of a positive
gradient on refracted waves as follows:

1) At relatively short distances beyond the critical distance,
such that ]0+| >> 1 or

2n
o)

1/3
()

(see (3.60)), the head wave can be represented by (3.68) or (3.69)

1L <€

as a sum of '"mormal modes' propagating between the discontinuous
boundary and the underlying positive gradient and leaking into the
overlying half space.

2) At sufficiently large distances beyond the critical

distance, such that
4y3 P,

>
d 5 \1/3 ?
(%)

the refracted field can be described as a sum of diving waves
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n=0

(n)

where ®d is given by (3.81) in the ray-theoretical limit

(ly/ko[ << 1); and L, is the horizontal distance covered by the

d
direct diving wave (see (3.83) or (A4-9)). By (3.82), the expression

for any given diving wave, , will be valid as long as the wave

/3

@én)
bottoms at a depth greater than at least z ~ (Az/y)l beneath
the boundary =z = 0.

At this point we can infer some simple time-~domain properties
of waves refracted by a positive gradient from the phase and spectral
variations obtained above. The ray-theoretical expression for
diving wave travel times (A4-17) shows that at sufficiently large
distances the direct diving wave will arrive first and will be
followed at successively later times by waves reflecting an
increasing number of times beneath the boundary z = 0. The last
group of waves to arrive will be those that are very close to
critical incidence and propagate just below the boundary making a
great many reflections; their travel time will essentially be that
of the true head wave in the case of a zero gradient. However,
because these waves are confined to a thin zone just below the
boundary, the ray-theoretical expression for their amplitudes (3.81)

will not be valid except at very high frequencies by (3.82).
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We can obtain an expression for the combined effect of these
boundary-layer waves by referring to the normal mode equation (3.58).
For iO+| >> 1, the phases of the modes are well separated (i.e. the
poles are spread out in the p-plane), and the phase of the first
mode (j = 1) is nearest to that of a head wave for zero gradient.
Thus we can expect that this first mode represents the combined
effects of the boundary-layer diving waves and corresponds most
closely to what might be considered a true head wave at large
distances in the presence of a positive gradient. From (3.58),

the expression for this boundary-layer wave (or head wave) is

,

5, 1 = 27k 3 3 kT,

P = - e * °© £ exp ! i(¢ -6,) - £ B g

pno 2m o + " m 2 no
de ode
(3.84)
kOL€2

where io+| = o= >> 1, and 6+ = (0+al s

o

This expression is similar to that for the head wave at large
distances, |0_’ >> 1, in the negative~gradient case (3.49). The
primary difference is that in the positive-gradient case, the
exponential decay of the amplitude goes as g3 compared with £2 in
the negative gradient case. In other words, the high-frequency
components of the 'head wave' die off less rapidly with distance
for a positive gradient than for a negative gradient when the

magnitudes of the gradients are comparable. A second difference
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is that the factor 6+ is subtracted from the homogeneous head

wave phase, ¢O, so that the head wave for the positive gradient is
also slightly dispersed, but in the opposite sense from the negative
gradient case. The horizontal phase velocity for the positive

gradient 'head wave' is given by

C 41 ® co/[ sin (no - 6+)] "

Thus, in view of the above remarks, we can expect that a
seismogram of the refracted waves in the case of a positive gradient
would be spread in time between the first arrival of the direct
diving wave and the last arrival of the boundary layer, or 'head
wave'. This spread in time will increase with increasing distance.
At short distances everything will arrive at nearly the same time,
and the combined effect will give an arrival very much like the
classical head wave in character as indicated by (3.69). In the
time domain, this arrival will look like the time integral of the
direct arrival. At larger distances the character of the refracted
wave group will be dominated by the large amplitudes of the first
few diving waves (P, PP, etc.), and, in practice, the true head
wave would probably be difficult to identify. In the time domain,
the individual diving waves will have the same wave form as the

direct wave.
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Results for a spherical boundary-We now wish to extend the

above results for a plane boundary to obtain expressions for waves
reflected from a spherical boundary. Taking advantage of the earth-

flattening transformation with a point source presented in Section 2,

we assume that both source and receivers are such that z/a| gz 1
and that ]koa| >> 1. Furthermore, we are primarily concerned with
waves near critical angles of incidence, which for most crustal
and upper mantle problems are neither near-normal nor near-grazing
angles. Thus, according to the results in Section 2, all that is
necessary is to put the plane~wave reflection coefficient for the
velocity distribution modified according to the earth-flattening
transformation (2.13) or (2.14) into the Weyl integral (2.36) or
(2:.37)

To introduce the approximate linear velocity earth-flattening
transformation (2.37) into the form of the velocity variation (3.1),
we expand (3.1) and match coefficients of like powers of z. The

result gives the following correspondence between the flat velocity

gradient, vy, and the curvature mapping gradient (1/a).

.
a 21,12
(o]

for |l/a| << 1 and IYI << 1. Thus the appropriate earth-flattening

velocity transformation is
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2n? ~1749
- 2 o .
c = c n- + (-—— & Y) z . (3.85)

Yy = oy (3.86)

where the first term on the right is the modified curvature-mapping
gradient and the second term is the velocity gradient in (3.1)
describing the physical velocity variation, so that (3.85) becomes

~1/2
2

¢, = Co n + Y 2 (3:87)

This is the same form as (3.1) and the solution to (3.9) will still
be the Airy functions given by (3.19) but with T in place of vy.

The form of the integrand of the Weyl integral remains unchanged
by the earth-flattening transformation under our approximations
(the changes introduced in the exponential term inside the integral

(2.36) by replacing 'p' by 'ab' are of order (z/a) and can be
neglected), and the rest of the analysis proceeds as before.

Thus the asymptotic expressions for waves reflected from a spherical
boundary are obtained simply by replacing y by Yo in the flat
expression, and for distances greater than about 10 degrees replacing
p—l/2 by (a sin 6)_%.

An obvious consequence of the velocity transformation (3.87)

and the definition of Ys is that an effective null gradient corresponds
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to a physical gradient y = - Zné/a, and thus that the negative and
positive asymptotic solutions for the flat case correspond to
physical velocity gradients more negative and less negative than
(—2ni/a), respectively, in the case of a spherical boundary. This
is the most significant effect of curvature, and we will return to
it shortly.

However, at this point a few comments on the radiation conditions

used in obtaining the plane wave reflection coefficients vpi and
their relation to the spherical problem are in order. Obviously,
inside the spherical boundary r = a, there will be a system of
'upgoing' and 'downgoing' traveling waves because of internal

reflections at r = a. In the case of a homogeneous sphere, for

example, the appropriate solution for (2.20) is

U1 =B i (kir) 5 r<a

where kj is the wave number in the sphere. The spherical Bessel
function jz(klr) represents a system of standing waves and is finite

at r = 0. By (2.24) it can be represented as a combination of

h(l) and h(z)

ingoing and outgoing traveling waves, ) 0

, both of which,
however, are infinite at r = 0.

Through the device of the rainbow expansion (Bremmer, 1949)

the complete response involving jl(klr), say, can be split into an
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infinite number of terms, each of which represents a generalized

ray reflecting a given number of times at the boundary r = a.

Some of the individual terms may become infinite at r = 0. In the
case we are considering of a single boundary, the first term in

the expansion represents the generalized ray reflected externally

at the boundary r = a, the second term represents a generalized ray
penetrating the boundary and emerging again with no internal
reflections (P in upper mantle seismology), the third represents

PP, and so on. See Richards (1970) or Chapman (1969) for a detailed
discussion of the rainbow expansion.

The reflection coefficient in the first term of the rainbow
expansion can be obtained by applying the usual continuity conditions
at r = a and assuming only downgoing waves for r < a. Thus the
radiation condition applied in the flat case with a negative velocity
gradient corresponds to keeping only the first term in the rainbow
expansion on transformation to the spherical case. For the positive
velocity gradient in the flat case, both upgoing and downgoing
waves were retained. This corresponds to obtaining the complete
response, and the decomposition into diving waves (3.72) corresponds
to the complete rainbow expansion on transformation to the spherical
case.

The effects of curvature can be summarized by noting that

through the earth-flattening transformation (3.86) the effective



=129~

null gradient case actually corresponds to a critical negative
velocity gradient, y = - 2n§/a, as noted above. In geometrical

ray theory, this critical gradient corresponds to the case in which
the curvature of a ray at its turning point matches the curvature

of the earth (see sec. 7.2.3 in Bullen (1963)). Here the ray is
trapped and continues around the earth at a constant radius. In
this particular case, the transformed reflection coefficient reduces
to the plane wave reflection coefficient for two homogeneous media
(3.25), and evaluation of the Weyl integral follows standard methods
for obtaining the classical head wave result (see Cerveny (1965)

or Brekhovskikh (1960))

2in i¢
e o 6 ©
h L
k mq p2L3/2
o}
where ¢o is the head wave phase (see 3.38). Thus when curvature
is included, the results for negative and positive velocity gradients
obtained for the flat case apply to physical velocity gradients more
negative and less negative than (- 2n§/a), respectively. It follows,
of course, that there will be an effective positive gradient equal
to (2n§/a) when v = 0 and the medium below the boundary r = a is
homogeneous.

It should be emphasized that this effect of curvature on

critically or near-critically refracted waves is independent of
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distance, and in principal, should be included even in studies of
head wave amplitudes from crustal layers. At the same time, the
effect of curvature on waves reflected at the boundary r = a is

small and can be neglected under our assumptions. (This follows from
the develcpment leading to (3.32) or (3.76) where it was demonstrated
that small velocity gradients have a negligible effect on waves
reflected from a plane boundary.)

All of the remarks regarding the effects of negative and positive
velocity gradients for the plane boundary carry over to the spherical
boundary with vy replaced by Ygr For example, we can use the diving
wave results in the case of a positive gradient to assess the
validity of ray theory for a homogeneous crust and upper mantle
(here s = 2n§/a). Assuming a 30 km thick crust with a P-wave
velocity of 6.4 km/sec over a homogeneous upper mantle with a
velocity of 8.0 km/sec (and also assumming that the basic properties
of acoustic waves apply to elastic P-waves), we find by (3.82) that
for a valid ray-theoretical description, the direct P-wave must
bottom at depths greater than 50 km beneath the M-discontinuity
for 1-~Hz waves. For 5-Hz waves the minimum depth is 20 km. By
(3.83), the corresponding minimum distances for an adequate ray-
theoretical description of the direct P-wave are 1600 km and 800 km
for 1 Hz and 5 Hz waves, respectively.

Finally, there is one further restriction on the results for
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a spherical boundary in addition to those summarized at the end

of Section 2. Because we have used the linear form of the earth-
flattening velocity transformation instead of the exact, exponential
form (2.13), there will be a depth (z < 0) below which our trans-
formation becomes increasingly inaccurate. For a 1% error, this

depth will be approximately given by

4 ~ 2 x 102 a.
max

Accordingly, our results for the spherical boundary are limited in
the case of an effective positive gradient to diving waves that
bottom at depths less than Z ax? and in all cases to wave lengths
that are less than Z ax' For example, in the case of the Mohorovicic’
discontinuity and a homogeneous upper mantle, this maximum depth is
approximately 150 km and the maximum wave period is about 20 sec.

In practice, the limiting depth and period will usually be imposed by
theknown velocity structure in the mantle at shallower depths than

Z (e.g. the top of the low-velocity zone).

ma

4. Elastic fomulation

In this section we apply the methods developed for acoustic
waves to the analogous elastic case. Thus we consider two isotropic
elastic half spaces welded together at the boundary z = 0. We take

the upper half-space to be homogeneous with compressional and shear
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velocities o and 80, density Pys and Lamé constants AO and o3
and we let the lower half space be vertically heterogeneous. As in
the acoustic case, our goal is to determine the elastic field
generated by a point source in the homogeneous medium and reflected
by the boundary and the underlying heterogencus medium. The basic
geometric relations for the elastic problem are the same as in the
acoustic case (Figure 3a).

Following the arguments presented in the acoustic case, we
will take the specific functional forms for the compressional and

shear velocities in the heterogeneous medium to be

-3
al(z) =0, (n§ iyaz> 2 ¥ oz <0 C4+1)
Bl(z) = Bo<n§iygz>—;§ Y z<0 (4.2)

where o, and n8 are the compressional and shear indices of refraction
across the boundary z = 0, and Ty and Yg are the corresponding
gradient parameters. Again, for empirical reasons, we will let the

density variation parallel the velocity variation

pl(z) o (ns & ypz:)“;5 : z <0 (4.3)

which in turn suggests that the Lamé constants may vary as

uy(2) U -3/2
1 @ <n2 £y z> (b b)
Ay (2) A ¥

]
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However, as in the acoustic case, it will turn out that for small
gradients the variations in density or in the elastic parameters
are not important except near grazing angles of incidence, and all
we really require is that their functional forms be consistent with

]b

s
(4.1) and (4.2) through o = [(A + 2u)/pl? and § = [u/p]z. The

variation of elastic velocities as a function of depth is illustrated
in Figure 9.

We will not repeat the formal arguments leading to the integral
representation in terms of the Weyl integral (3.27) for the elastic
case. Instead, we will apply the Weyl integral directly to the
elastic plane wave reflection coefficients taking advantage of the
properties of the Weyl integral as an operator on plane wave solutions
to yield the spherical wave field from a point source. We will treat

the SH and P-SV cases separately.

SH motion.-The appropriate potential representation for SH,

or torsional, waves is given by (1.12) to be

-
u = curl,[0,0, [u(z)] T(pzz)] (4.5)
where the potential, T, satisfies
P
== §(z~z_) &(r) z» 0
u o
V2T + k2T = (4.6)
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Figure 9



=135~

in a cylindrical coordinate system (see 1.12).

To determine the plane-wave reflection coefficient, we will
transform to Cartesian coordinates and consider a plane wave
propagating in the x-z plane and incident on the boundary at an

angle 6. In this case, the SH-wave displacement will be given by

u=e; u (z) T (4.7)

where e, is the unit vector in the vy~ coordinate, and the

displacement potential will satisfy

V2T + k2(z) T =0 (4.8)
where by (4.2)
kg z >0
K (Y = (4.9)
2 s 2 2
kl(z) = ko (nB + vyz) z <0

The elastic boundary conditions for a welded interface require
continuity of displacement and stress. For SH-motion these conditions

become

u(0 ) = u(0 )
AT e (4.10)

t,(0) = T, (0)

respectively (also see Section 2).

We assume a standard variable-separable solution to (4.8) of
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the form

Txzx) = X(x) T(2) (4.11)
and obtain
2
47X +k2X =0 (4.12)
dx?
25 A
a°T ['k2(2> - KzJ =0 (4.13)
dz?

where the separation constant, k, is identified as the horizontal
shear wave number. Equations (4.12) and (4.13) have the same form

as (3.6) and (3.7) in the acoustic case, and their solutions are

X.(x) = A, elKX + B, e_lKX
in g —ian
T (z) =C, e B+ Dj ¢
0] N (4.14)
. 2713 _i2ﬂ/3
Tl(z) Ej&l { =€ et F1Ai<~(;_ e
= +
T,(2) BpAf(-C,) FoBi(-c,)

where the subscript, j, refers to a negative gradient when equal

to 1 and a positive gradient when equal to 2, and where
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L =) 1/3
= 2—-22 = 2—2+ =
g (ko KB) > Ty € (n p* £ v}, €g (YB/kO) ;
p = sin 0.
Taking the incident plane wave to have unit amplitude and
assuming radiation conditions at z = - « analogous to those in the

acoustic case for negative and positive gradients, the solution

(4.11) becomes

i(kx - nBz) i(kx + nBz) z > 1
Toj(x,z) = g + VSH ;e
(4.15)
i21T/3
Tl(x,z) USHl Ai <—C_ e '
_ ik, x
e
T5(x:2) USHZ Ai(—C+). 7 < 1
(4.16)

Substituting these solutions into the boundary conditions

(4.10) we obtain

e BTO. 5 9T,
Ho 9x M (0) 9xX
z=0 z=0

and



or
1
1n8

where

Hy

Hy
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H,
J
' d
ih e
2 My + dz
i27r/3

Al (—c+)

3

in

g = (uo/ul(O)),

and the primes indicate differentiation with respect to z.

for the plane-wave reflection coefficients we obtain

and

VSH, =

s EB 4 2
Al(—CO) iqs - <'ﬁg ) - &g Ai (—CO)
= = 5y
[ S EB 2 2
Al(-go) ] igs: + Z <§ > k + 88 Ai (—CO)
( g 3 7] .2m/3
) , s{°B i E i
Ai(-z )| igs + . <”g > + e €q Ai'( co)
] & 23 ] 21/3
. 7 - B _ .1 2 s
Al(-go) iqs - 7 <n8 ) | e €g Ai'( co)

B

>0

; J=ly2
B
Solving
(4.17)
T % O

(4.18)
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Referring back to the acoustic case, we see that the SH plane-
wave reflection coefficients have the same form as the
acoustic plane-wave reflections coefficients (3.22) and (3.23).

The only difference is that the shear modulus ratio, s, enters the
SH reflection coefficients in place of the density ratio, m, in the
acoustic case.

It follows that upon substitution of these SH reflection
coefficients into the Weyl integral (3.27), the asymptotic evaluation
of the integral will proceed exactly as in the acoustic case. Thus,
we can take the results for acoustic waves obtained in the previous
section for both negative and positive gradients and simply replace
m by s to obtain the corresponding expressions for the SH displacement
potential for the flat boundary. For completeness, these results
are summarized below.

For a negative gradient (y, < 0) the refracted part of the

B
field is given by
( i¢
[ r-at®] e for] << 1
O
21k 3
T~ < . O —£7  exp | i(¢_+ 8, + n/4) (4.19)
hl o) 2 o)
s(1l-n%)
8
Ekng
- Y2 o B al_——g———- ; ‘0|>>l
4 nB 1

2.5
/?s(l—ng)



where

ai

For a

classical,

For a

]
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<3 >2/3 kOL EB iTr/3
-t 8 2n €
B
k L 62
o B
7 a; , and
B

2.338 (the first zero of Ai(-a)).

2i n
= g -
) 172 372 (the homogeneous head-wave modulus)
k (1-n)) o L
s 8
= kO(Ls + Lr) + kL (the homogeneous head-wave phase)

null gradient (y = 0) the refracted field becomes the

homogeneous head wave

T =T e (4.20)
positive gradient (y > 0) the refracted field becomes

i¢o
Th 1+ 8662 g | e |02| ge L
o

= (4.21)

E Tc(ln) lop] > 1
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where

aQ
1l
P S
=5
ISD ~
-
NS
Ny
e
=
e
~
/-\
N | =
+
[
|
e
a
N
P
o |w
i SO
N
~
w
S
|
2
—
=

(n)

and where the nth diving wave, Td

, 1s given by

/2 1/2

(nt+1l)m

3
p (1~p. )
T(n) o el 5 , Y8 n n
d ol

1,
4(nt+l) q3(n?2-2p ) + v _(n? - p2)* (z+z )
n B n B o n o]

B3
(nB pn)

£ (p )

n n ' n

.V D
g Tl @ (4.22)
with
I
L R v (the homogeneous plane-wave reflection
& 9dys 7Py coefficient).

2
fn(pn) =1 [ pp + (z+zo) q + ﬁé?iil (né_pi)B/ }

The field reflected directly at the boundary is given by
T 8 ———y (4.23)

for all of the above cases.
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To modify these expressions for flat geometry to those
appropriate for a spherical boundary at radius r = a, all that is

required is to substitute the modified gradient parameter

for YB and the modified distance factor

p = a sin A

(where p is the angular distance in radians) for p.

P-SV motion.-To determine the plane-wave reflection coefficient
for P-SV motion, we consider a plane P-wave propagating in the x-z
plane at an angle of incidence, 6, with respect to the boundary
at z = 0 in a Cartesian coordinate system, as shown in Figure (10).

By (1.13) the appropriate potential representation is

u = £l grad (f¢) + curl curl (0,0,fy) (4.24)
where
P S
¢ = Y = (4.25)
2 2
p P

and the potential P and S satisfy separate Helmholtz equations

V2P 4+ h2(z) P =

2
o

(4.26)

V25 4+ k2(z) S =

2
o

(4= 27)
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Figure 10
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at high frequencies as discussed in Section 1. Again, by (4.2),

the P and SV wave numbers for z < 0 are given by

h
i} = { o (4.28)
1
2 3
ho(na + Yaz)
k
k(z) = { & , s (4.29)
2
ko(n8 + de)
respectively, where n, = ao/al(O) and n, = (80/81(0))'

Using standard vector notation and the properties of the vector

operator, V, we can rewrite (4.24) as

1 |
u = Vo +~%— ¢+-gz-§— x Vx (0,0,9) +V xV x (0,0,9)

Now by (1.7a), the ratio (f'/f) must have the following form for
high-frequency P-SV decoupling

|

A+2u]| p' il
A+ U

' =
£r/E o A+ 2u

where primes indicate differentiation with respect to z. From the

form of 5 and ;; for z < 0 in (4.3) and (4.4), we see that the terms
involving the ratio (f'/f) are or order (y) and (Yko) in ¢ and Y,

respectively, while the term v¢ and v x v x y are of order (ho)

and kg) respectively. Thus for high frequencies and small gradients
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(e.g. |Y/kol << 1) the terms involving the ratio (£'/f) can be

neglected, and (4.24) becomes

u = grad ¢ + curl curl (0,0,y)

or in component form

u = é—- 82 U]
b4 90X 0X9d2z
_ 3 32
uz T oz ¥ - 2 v
90X

with u = eju_ + ésu_.
== X z

(4.30)

(4.31)

The appropriate boundary conditions for a plane, welded inter-

face for P-SV motion are
w () =u (0) , ul(0)= u/(0)
for continuity of displacement and
sz(o+) - sz(o—) 2 Tzz(0+) - Tzz(o—)

for continuity of stress, where

auz aux
o = — 4
rxz I‘l<ax 02z

8uX auZ auZ
—= 4 +
A(ax 3z > M oz

—
I

zZ

(4.32)

(4.33)
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Again, we assume standard variable-separable solutions to

(4.26) and (4.27)

p(x,2z) = XP(X) P(z)

il

s(x, z) X (x) $(z)

so that we obtain

N

a%x
S 4+ k2% =0
dx2 -
24 .
> . [ K2(z) - K2] §=0
dz2

for SV motion. Here the separation constants h and « are identified
as the horizontal components of the P and SV wave numbers, respectively.
These equations and their solutions have the same form as in the

acoustic and SH cases, and we can write the complete solutions
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immediately as

i(hx = n z) i(hx + n 2)
P .(x,2z) = e L e ¢ s §=1,2 5z > 0
o] PP.
J
(4.34)
P ALY 5
1(x,2) Uppl Aj ( COL—) ihlx
= e s z< 0
B, (x,2) Upp Al(—€u+)
2
i(kx + n,z)
_ B .
S .(x,2) =V e I ; z > 1
0] Ps.
J
(4.35)
@
S1(x,2) U Az )(-é )
PS1 =
= 5 Z % l
So(x,2) Up82 AL(-E))
where
2_ p2ye 2y%
Ty ® (no— ) © = ho(l - p4)* = hoq
1
= g .. 252 _ 2 PNE _
np (ko K<) ho(2 Pe) hov
r = e 2(% p2 ; vy z) e = (y /n )l/3
o a o ¥ ’ a a' o
£ = e %(a? - p? 5 v,2) e, = (v, /n)/3
- % ' ¥ Ty s b b’ %o

= QZYB , P = sin ©
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and j = 1,2 refers to a negative or positive gradient respectively.

We are also using the convention

for brevity. In writing the above solutions, we have made the
following assumptions:

(1) The dincident plane P wave has unit amplitude.

(2) Both P and SV waves may be reflected into the upper homoge-
neous half space and transmitted into the lower heterogeneous half space.

(3) The radiation conditions for both P and SV waves in the
heterogeneous half-space are analogous to those assumed in the
acoustic case for negative and positive gradients as z » — «.

The four constants, V. , V., U | and U , can be evaluated by

PP ps PP ps

putting (4.34) and (4.35) into the four boundary condition equations

(4.32) and (4.33). Making these substitutions, we obtain the four

equations
(30 . a2y || [ 30, a%pﬂ
o] s o] S T S —— (4.36a)
90X 0Xdz Ix 0Xdz
L d 0 L 40
+ -
B EELE
o] _ o] e | —d o ——d (4.36Db)
Laz 2 Jdo L ¥2 8x2 -0
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(4.36c¢)

329, 320, 320, 33y,
1 2 2 M1 2 2
9X 2z 0 9z 9X%dz O_

326 33y . a3y . 920, a3y, 9%y,
g [2 of . __9j N - 1, [2 S50 I R 1] ]
o 0 0
+ —_

Ix3z°  3x°

(4.364d)

where

g ihlx

¢, = U z) A, e
] PP Py (2) oj

L 1(xx - n_2z)
V.=V p e 5
0] ps. o

J
o ik x
— .=2

by = U e a) Ag, e ,1=1,

and we define
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Aoy Ai(l)(—c_)
Aaz Ai(—c+) z=0
A8, ar e )
AB Ad (~E,)
’ + z=0

Completing the indicated differentiation, we obtain the following

fourth order matrix equation.
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sd

dd

sd

(LE*Y)

2=k 3
E z
' 6<N\IQ lm NWQHJ..HNI
1 1
£
0H
C
.5<N d mm.mal
1= P %
C
OYT-

(oo
N\ﬂs nug

© 01 (e} o)
el IO A A LA

dc
w Ut-
4
WwT-—
% ]
o_.9 0.0
e M(zu-2Y) T 0 noug
o_¢g o o .0 O
n CNQHNI N\ﬁ.E A 1Nn_u KVNC]T &N.C =
Eac
NEN~\ e e
EmC . Eﬂ
& %

-
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where

L. g2 1
Ea,(z ) = h?xqha, = (A + 2 2 =—— | p 2o,
i CO 1 j 1 u1) 3] 122 Py i
L g2 L
E = 2 + . < 2}
Bj(co) inq [h /\Bj h " <plAPj>]

Here the derivatives of the terms (QI5AB) and (p;ﬁAa) with respect

to z are given by

(1
- s f AP
d - po Ea ©
— = h
da . Aop © 4n3/2 Ai(—co)
(4.38)
.27/ 3 :
e” P o)
.7 0
+ pl2 ea
— LY~ )
o
NB, -4 3 -Ai(l)(—€ )
d -1 h 6 b ©
LR -
dz 1 o 3/2 3 7
A, 4np Al(—go)
(4.39)
.2ﬂ/3 1
et Ai(l) (=& )
1
poE
+ 1 Eb



oN

-1.53-

iél ?)p_l/zaL+
-5 3 o «a (1)
pP17C e + 772 Ai (—CO)
8n
p
o
" 30028a
3 .
p CO = 7/2 Al(_g )
8n
P
.2m/3 ;
et AP )
Ai (—co)
(4.40)
e p-l/zeL+
1
=5 o b o )
8n
p
-L oy
F 3p e
-4 o b .
1 " 7/2 AL(-€ )
8n
p
2n/3
o Ll
e Ai ¢ go)
AL (~E )

(4.41)
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where we have taken YO = Ya = YB.

It now remains to solve this fourth order system for the plane-
wave reflection coefficients Vpp and Vps’ operate on these reflection
coefficients with the Weyl integral (3.28), and evaluate the integral.
In principle, we can solve for the reflection coefficients analytically
and evaluate the Weyl integral asymptotically as was done for the
simpler acoustic and SH wave cases. In fact, we will do this for
the case of negative velocity gradients to indicate how the elastic
P-SV result for reflected P-waves compares with the result for
reflected acoustic waves. However, the result is cumbersome, and
in practice it will be more expedient to formally invert the fourth
order matrix equation (4.37) and proceed directly with a numerical
integration of the Weyl integral.

In carrying out the analytical evaluation of the reflected P
wave field for the case of a negative gradient, we will assume
uo= AO and uy o= Xl. Substitution of the upper terms in equations

(4.38) through (4.41) into the matrix equation (4.37) gives
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.5 & R AN g ,
im h vm —-iAi (-¢ ) ih G(& )
o o o o
1. 1 (1)
. 2 2.2 - 2p -
-iqm hop m G(CO) hop Ai ( go)
9 5 2 5
-(1+2q )uom —21hop vuom UIH(CO) 2h0P2”1G(50)
1 1
2 ; 2_02 2 . .
2qu_m ih(2p =29 m 211G (¢ ) ipgh H(E )
L |
\ =i
PPy
\ = 1g
PS; ) ml/z
U 1-2q2
ppl ( 4 )IJO
Upsl 2qp0
(4.42)
where
mbea Al
(1 = '
G(r) = —% i V() - cae * artV (-z,) (4.43)
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5 B3 ;21
1
6@ = —z AP ey - e T aW ) (4. 44
4n
p
b L
.4m/3 e m?
. 2 1 3 "u o Ldd o
H(c ) =] p +3z—:a(c e +8n7/2> £ -k )
p
(4.45)
"
€m . 27/3 s
r3ame m e
T
o
€‘+m1/2
4m/3 3 7b (1)
H(E ) = | -p2 + &2 (g et T8I > AL (=€)
o b o n
P
(4.46)
ewt 9n/e
b i . (D)
+ 2n3/2 e Al ('go)
p

and as before, p = sin 6, q = cos 6, with 6 as the angle of incidence.
We are interested in comparing the form of the solution for

the reflected P-waves with the form of the solution for reflected

acoustic waves. Thus we solve (4.42) for Vpp using Cramer's rule.

By expanding the determinants forming the numerator and denominator

of Vpp about their third columns, we can express the P-P reflection

coefficient in a form analogous to the acoustic reflection coefficient

(3,22), that is
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.2m/3 i
2t e 3 5 - 5 & A<y oy
Vo= = - ° (4.47)

PP () 203 gy ,
Ai (—Qo) E - eae Ai (—CO) Ey

v’

where the terms multiplying Ai(l)(—go) and Ai (—CO) have the

following form

1 .21/ 3 . 1

" = Ai(l)(-E ) o oo Ai(l) (- ) %3

o) . b 1

D; Gy Q,
(4.48)

and

2 2

E 0] 21/3 , 9)

3

= a1 W g + e At e

o 9 b e} 7

E; Qs o,
(4.49)

The Qi are rather complicated algebraic functions of p involving
the elastic constants, density, and gradients. The details of this
expansion and expressions for the Qg are given in Appendix V.

As before, the integral expression for the reflected field
from a point source is obtained by putting the plane-wave reflection
coefficient, Vpp’ into the Weyl integral. Thus the reflected P-wave

field is given by
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[

TT [oe]
i h ik R(qq + pp ) 5
Bowog ? \/ ——O/ e © 0 ° ° vy dp (4.50)
21p PP; 9

The integrand has branch points at p = * 1 and p = 0 associated with
! 1
the radicals q = (1 - pz)/2 and p° as in the acoustic case. In addition,

there are branch points at p = * £ associated with the radical

I,
v = (22 - p2)2, Recall that %

Il

(ko/ho) = (aO/BO), thus 2| > 1.
We will choose the branch cuts in the same way as in the acoustic

case; in particular

-m/2 < arg(q) < w/2

-1/2 < arg(v) < w/2

The position of the branch cuts in the complex P-plane and
are shown in Figure (4.4) for the P-SV case.

Furthermore, the integrand now has two lines of poles defined
by the zeros of the denominator of Vpp instead of the single line
associated with the reflection coefficients for the acoustic and
elastic SH waves. These lines of poles are approximately located
where Ai(l)(—co) = 0 and Ai(l)(—go) = 0, respectively; both
extend into the first quadrant of the complex p-plane at an

angle of /3 with respect to the real p axis. The poles associated
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with the zeros of Ai(l)(—co) extend from the point p = n an the
real p axis, while those associated with the zeros of Ai(l)(—go)
extend from the point p = o, where n = aO/Bl(O)(see Figure 4.4)).
In most geophysical applications, a ? Bl(O), so that o> 1, and
the second line of poles will not be crossed in deforming the
original contour into the steepest descent path as is indicated

in Figure (11 ). However, in the case that o < B7(0), the second
line of poles will move to the left of p = 1, and we get a double
head wave contribution; one of the form PP P and the other of the
form PSqP.

In this development, we will restrict the compressional velocity
in the upper medium to be greater than the shear velocity in the
lower medium (nb > 1) and concentrate on the contribution from
the poles extending from the compressional-wave index of refraction,

n . The exponential term in the integrand, and thus the saddle

point and steepest-descents contour are the same as in the acoustic

case. Hence, by analogy, we can write the saddle-point contribution

to the integral as

5 @B 5 (4.51)

which expresses the ray-theoretical P-wave field reflected directly

from the boundary, z = O.
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Figure 11
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When the angle of incidence, 60, is greater than the critical
angle for P waves (i.e. P > na), some of the poles associated with
the zeros of Ai(l)(—go) will be crossed in deforming the original
contour into the steepest-descents path. The contribution of these
poles to the integral represent the PPlP head wave. To evaluate
the contribution from these poles, we begin as in the acoustic

case by expanding the arguments of the Airy functions about p = n .

o
In particular, we write the argument of Ai(l)(—co) as
i27r/3
-z e = -1
o
which gives
€T iﬂ/3
o) :na+?r;— e (4.52)

for |p - na|<< 1 (see the development leading to (3.33)). The

argument of Ai(l)(—go) expressed in terms of T becomes

2r 2n
3 _  =@.8 B 3 -4/3
EO e == gy (nb na) e % e
Under the condition that
g B 043
(nb - na)i
‘T|<< 82 s
b
we can let
=25 2 2
~ o 4.53
go Eb (nb na) ( 4
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It is evident that as long as n -n | is not too small (which will

B

be the case in most geophysical situations) and G, <<1, the arguments

b

(1), NE LU . .
of Ai ¢ &o) and Ai (—&O) will be large, and their asymptotic
forms (Al-5) and (Al-6) can be used in evaluating contributions to
the integral in the vicinity of p = n .

Let the numerator and denominator of the reflection coefficient

be represented as

v =N /D .
PP PP PP

Then the contribution of the N poles crossed in deforming the

integration contour into its steepest-descents path when P, > n,

is given by

iﬂ/4 2th N
P ~1ie 0 z Res [F ] (4.54)
n p PP
J=l
where
ih R, (qq_ +pp )
e ] - o, B L
PP g =t
J
and

d dt
G =N = —
PP pp/ dt pp dp

The approximate locations of the zeros, Tj’ of Dpp in the vicinity

of p = n, are

(4.56)
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where aj is the jth zero of Ai(-x). The derivative term occurring

in both (4.55) and (4.56) is
2n/3
d . . i
Dppl = Al(—r)[dT E + e T ElJ

drt
.21/ 3
LT e i d_
Al(T)[E+€ae dTEl} 3

and from (4.52)

dt =2 =i
— = 2n € e
dp o

Substuting the expressions for the D's and E's (4.48) and (4.49)
(1) (!

with the Airy functions Ai (—&O) and Ai (—go) replaced by

their asymptotic forms into the above expressions, we obtain

i2ﬂ/3
T, *a, —eJe (4.57)
J J o
where
2 2 ok 2
QZ - i(nb na) Qq
4 &= 2 2\% .2 252
Q) - i(nb - na) (R3 = 2°0,)
and
1 L
e’ J[Q - i(nf - n2)2]
. a 1 o
[G ]= = - 10 1 R (4.58)
P Jr=14 « [10]+ @f - 0" @5-2a))]
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Expressions for Qi are given in Appendix V.
The expansion of the argument of the exponential term in (4.55)
parallels the acoustic case (see equation (3.38)); in the present

case it becomes

5 iﬂ/3 5 iTr/3
€T, e € T, €
h Ry(qq + pp ) * h R p [n + S X U S q l—n2 SR B (E——
o} fo) o) o) ol a 2na o) o
7 1ot
o
hOLei .m/3
2 -+
¢o 2na Tj = (4.59)

where ¢O is the classical PP,P head-wave phase for two homogeneous

media and is given by

¢, = ho[ L, + L, ] + h;L

Thus the residue (4.55) becomes

2
(o}

I
where qa = (1-n“)"? and

(J(Qi ~ i(nﬁ = né)%ﬁ

[ iQf * (a2 - ni)l/2 (Q§22Q§)]

K:




-165-

The contribution from the first N poles (4.54) describing the
PP‘P head-wave potential then becomes

L 5 i(¢o + m/4)

N
0 o St
~ K '
Fn pn q Z . 2n ©

Je=d

(4.60)

This expression has the same form as the analogous results for

the acoustic case (3.39). The only difference is that the simple
density ratio, m, in the acoustic case is replaced by the
complicated ratio of elastic constants, K, multiplying the sum and
by the ratio J in Tj. From the expressions for Qg in Appendix V
and the definition (4.57), we see that J is of the form

2 2
uob1 + uoulbz + u1b3

2 2
uobh + uoulb5 + ulb6

where the b's are complicated algebraic funct<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>