List of Figures and Schemes

Chapter 2

Figure 2.1 Illustrations of the different categories of solar fuels generators	8
Scheme 2.1 A taxonomy for the classification of solar fuels generators	10
Figure 2.2 Illustrations of photovoltaic cells in the dark after equilibration	12
Figure 2.3 Illustrations of photoelectrochemical cells	15
Figure 2.4 Illustrations of photoelectrochemical cells in the dark after equilibration	18
Figure 2.5 Illustrations of photovoltaic-biased photoelectrochemical cells in the dark	
after equilibration	23
Figure 2.6 Illustration of a photocatalytic particle in the dark after	
equilibration	24
Figure 2.7 A next-generation photocathode that employs advanced structuring to	
improve performance	28
Chapter 3	
Figure 3.1 Examples demonstrating the effect of the chosen comparison dark electroc	de
on the power saved figure of merit in three-electrode J-E measurements	58
Figure 3.2 An equivalent circuit for a full two-terminal electrochemical system that	
allows for the inputs of electrical power as well as solar power	60
Figure 3.3 The calculation of the intrinsic regenerative cell efficiency	62
Figure 3.4 Graphical circuit analysis for a photoanode performing photo-assisted wat	ter
electrolysis	66
Figure 3.5 Graphical circuit analysis for a Z-scheme architecture composed of a	
hypothetical photoanode and photocathode pair	68
Figure 3.6 Schematic graphical circuit analysis showing five separate photoanodes an	nd
a single photocathode	71
Figure 3.7 Circuit diagram for a tandem photovoltaic system and associated graphica	1
circuit analysis	76

Chapter 4

Figure 4.1 J-E behavior of n-Si/Gr and n-Si-H electrodes in CH_3CN -Fc ^{0/+} before	and
after exposure to aqueous electrolyte	97
Figure 4.2 Comparison of J-t behavior of n-Si-H and n-Si/Gr electrodes in aqueor	us
electrolyte	99
Figure 4.3 J-E behavior of n-Si/Gr in nonaqueous electrolyte	101
Figure 4A.1 Representative Raman spectrum of starting material graphene	114
Figure 4A.2 Equivalent circuit used to analyze impedance data	115
Figure 4A.3-I Mott-Schottky behavior of n-Si-H and n-Si/Gr electrodes	117
Figure 4A.3-II Bode plot of n-Si-H and n-Si/Gr electrodes	118
Figure 4A.4 Representative high resolution XP spectrum of freshly etched	
Si 2p region	125
Figure 4A.5 Representative high resolution XP spectrum of the Si 2p region of a	silicon
surface covered by graphene	126
Figure 4A.6 Representative high resolution XP spectrum of the copper region of	a
silicon wafer covered by graphene	127
Figure 4A.7 J-E behavior of n-Si/Gr, n-Si-Me/Gr, and n-Si-H electrodes in aqueo	us
electrolyte	128
Figure 4A.8 J-t behavior of an n-Si/Gr and an n-Si-Me electrode in	
aqueous electrolyte	129
Figure 4A.9 J-E behavior of an n-Si electrode after graphene-free PMMA transfe	r and
removal	130
Figure 4A.10 J-t behavior of an n-Si/Gr and n-Si-H electrode in aqueous electroly	yte
under 1 sun illumination	131

Chapter 5

Figure 5.1 J-E and J-t behavior of n-Si/F-Gr and np ⁺ Si/F-Gr electrodes in aqueous	
electrolyte	139
Figure 5.2 XP spectra of n-Si-Me and n-Si-Me/F-Gr electrodes	140
Figure 5.3 J-E behavior of n-Si/F-Gr and n-Si-H electrodes with and without Pt	
deposition in Br ₂ /HBr (pH=0) aqueous electrolyte	142
Figure 5A.1 Stability data, not normalized, and electrochemical behavior of F-Gr	
protected Si electrodes	154
Figure 5A.2 J-t behavior of two different CVD graphene growths both fluorinated at	nd
unfluorinated	155
Figure 5A.3 XP spectra of lightly fluorinated graphene before and after annealing	157
Figure 5A.4 SEM images of Gr and F-Gr	158
Figure 5A.5 Stability tests of F-Gr in acid, base, and neutral aqueous conditions	159
Figure 5A.6 UV/Vis spectra of Gr and F-Gr	161
Figure 5A.7 The Pt 4f XP spectra on both F-Gr covered and uncovered Si-Me	
Surfaces	163
Figure 5A.8 J-E behavior of an n-Si/F-Gr/Pt electrodes in Br ₂ /HBr (pH=0) aqueous	
electrolyte	165
Chapter 6	
Figure 6.1a J-t behavior of monolayer graphene-covered n-Si electrode in aqueous	
electrolyte	170
Figure 6.1b J-t behavior of bilayer graphene-covered n-Si electrode in aqueous	
electrolyte	170
Figure 6.1c J-t behavior of trilayer graphene-covered n-Si electrode in aqueous	
electrolyte	171
Figure 6.2 J-E behavior of a trilayer graphene-covered np ⁺ Si photoelectrode in aque	ous
electrolyte	171
Figure 6.3 Depth profiling spectra of Pt/Si and Pt/Gr/Si interfaces fabricated by Pt	
evaporation	174
Figure 6.4 Representative Pt 4f spectra of Pt/Si and Pt/Gr/Si interfaces fabricated by	r Pt
evaporation during depth profiling	175

Figure 6.5 XP spectra of the Pt 4f region of Pt/Si-H and Pt/Gr/Si interfaces 1	77	
Figure 6.6 XP spectra of the Pt 4f regions of SiO _x /Pt and Pt/Gr/Si interfaces 1	78	
Figure 6.7 XP spectra of the Pt 4f region of Pt/Si-Me and Pt/Gr/Si-Me interfaces 1	79	
Figure 6.8 Image of home-built graphene CVD system1	80	
Figure 6.9 Optical image of graphene grown using a low CH ₄ flow rate recipe 1	82	
Figure 6.10a Optical image of graphene grown using the modified low/high CH ₄ flow	I	
rate recipe 1	82	
Figure 6.10b Raman spectrum of graphene grown using the modified low/high CH ₄		
flow rate recipe 1	83	
Figure 6.11 XP survey spectra of Gr/Si interfaces after the 'standard' transfer 1	85	
Figure 6.12 Optical microscopy image of graphene transferred to 300 nm SiO ₂ /Si using		
the 'standard' transfer method 1	86	
Figure 6.13 XP survey spectra of Gr/Si interfaces after the APS transfer1	87	
Figure 6.14 Optical microscopy image of graphene transferred to 300 nm SiO ₂ /Si using		
the APS transfer 1	87	
Scheme 6.1 'Modified FeCl3' transfer procedure1	88	
Figure 6.15 XP survey spectra of Gr/Si interfaces after the 'modified FeCl ₃ ' transfer189		
Figure 6.16 Optical microscopy image of graphene transferred to 300 nm SiO_2/Si usir	ng	
the 'modified FeCl ₃ ' transfer method 1	90	
Figure 6.17 XP spectrum of the Ti 2p region of a Gr/Cu foil after exposure to ALD		
conditions 1	93	
Figure 6.18 J-E behavior of ALD TiO ₂ modified-graphene covering n-Si electrode 1	94	
Figure 6.19 J-t behavior of ALD TiO ₂ modified-graphene covering n-Si electrode 1	94	