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ABSTRACT

PART T

Present experimental data on nucleon-antinucleon scattering
allow a study of the possibility of a phase transition in a nucleon-
antinucleon gas at high temperature. Estimates can be made of the
general behavior of the elastic phase shifts without resorting to
theoretical derivation., A phase transition which separates nucleons
from antinucleons is found at about 280 MeV in the approximation of

the second virial coefficient to the free energy of the gas.

Part IT

The parton model is used to derive scaling laws for the
hadrons observed in deep inelastic electron-nucleon scattering which
lie in the fragmentation region of the virtual photon. ’Scaling
relations are obtained in the Bjorken and Regge regions. It is
proposed that the distribution functions become independent of both
q2 and v where the Bjorken and Regge regions overlap. The quark
density functions are discussed in the limit x = 1 for the nucleon
octet and the pseudoscalar mesons. Under certain plausible assump-
tions it is found that only one or two quarks of the six types of
quarks and antiquarks have an appreciable density function in the

limit x = 1. This has implications for the quark fragmentation
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functions near the large momentum boundary of their fragmentation
region. These results are used to propose a method of measuring the
proton and neutron quark density functions for all x by making
megsurements on inclusively produced hadrons in eiectroproduction
only. Implications are also discussed for the hadrons produced in

electron-positron annihilation.
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PART T

I. INTRODUCTION

; 1. . .
Harrlson< ) has suggested that if baryon-antibaryon in-

homogeneities existed in the early universe, several problems of

galaxy formation could be solved. Harrison's suggestion and the

(2)

of a charge symmetrical boundary condition

(3)

earlier conjecture
between baryons and antibaryons has led to the proposal for
mechanisms to separate baryons and antibaryons at high temperature.
Statistical fluctuations in the baryon number density are not adequate
to explain the present baryon density in the universe. Dynamical
mechanisms are therefore required to separate baryons and antibaryons
if a symmetrical boundary condition is assumed. Apart from the
necessity of findingva separation mechanism, symmetrical models must
explain various observational data such as the present ratio of the
number of photons to baryons and the absence of any appreciable

(4)

in interstellar gas.

(3)

mixture of matter and antimatter
A model has been proposed by Omnes which gives baryon
antibaryon separation in the blackbody radiation at a temperature of
350 MeV. The system under consideration is a gas of pions, nucleons
and antinucleons at constant volume and temperature. To obtain the
equilibrium configuration, the free energy is minimized with respect
to variations in the numbers of nucleons and antinucleons. The free

energy is expanded in powers of the numbers of nucleons and anti-

nucleons. It is found in minimizing the free energy that, if the



second virial coefficient has a large enough positive value (corre-
sponding to an effective repulsion between nucleons and antinucleons)
separation is possible.

An effective repulsion between nucleons and antinucleons
arises in the Omnes model from the assumption of validity of
Levinson's theorem, and considering that the corresponding bound
states of the NN system (w,0, ...) are an independent component of
the radiation. The approximation is made that only S waves are
important with Levinson's theorem holding for scattering states with
the quantum numbers of the =, 1, p and W mesons. The Nﬁ.phase shifts
therefore fall from n to 0 as momentum goes from O to «.

To understand how a falling phase shift causes repulsion
it is sufficient to look at the modification of the number of states
in a range of momentum due to the interaction. The asymptotic wave

function in spherical coordinates is proportional to
sin [pr + 8 + £x/2].

We assume the particle is contained in a spherical volume of radius R.

The condition that the wave function vanishes at the boundary gives
PR + 8 + 4x/2 = nx.
The number of states dn in the range of momentum dp is given by

dn R
T
e

dp

Al
e ol
315



We therefore find that if dﬁ/dp is negative, the number of states in
the range dp is reduced below that in the absence of interactions.

We find a falling phase shift, for example, in a system in
which there is one bound state and Levinson's theorem holds. In this
case the phase space which is excluded from the scattering states has
gone into the formation of the bound state as pointed out by Omnes.
The presence of the bound state must ordinarily be taken info account
in the calculation of the second virial coefficient for a gas of such
particles. The second virial coefficient for a gas of particles
interacting through an attractive potential is in fact negative. This
coefficient consists of two terms, one negative due to the bound state
and the other positive depending on d5/dp. At high temperatures the
two terms approach opposite values giving zero for the second virial
coefficient.

In Omnes' model the bound states of the nucleon-antinucleon
system are assumed to be the wn, 1, o, and w mesons. The phase shifts
are taken to be monotonically decreasing from n to O in a range of
momentum of the order of the W mass. ©Since the x, 7, P, and W are
considered to be independent components of the radiation they are not
included in the calculation of the second virial coefficient B. As
a result a positive value of B is obtained corresponding to an
effective repulsion. Separation is possible if there is a large
enough number of nucleons and antinucleons interacting with momenta
of a few hundred MeV. In the blackbody radiation the density of

particles is a rapidly increasing function of temperature. Increasing



the temperature eventually produces a density of nucleons and anti-
nucleons large enough that it becomes more profitable (for lowering

the free energy) to have different mumbers of nucleons and antinucleons.
For these statements to have any relevance it is necessary, of course,
that the separation temperature occur within the range in which the
original assumptions are wvalid.

It is the purpose of this thesis to point out that the
present experimental data on low energy nucleon antinucleon scattering
areadequate to make estimates of the general behavior of the elastic
phase shifts without resorting to theoretical derivations such as the
one made by Omnes, Every known model of the nucleon-antinucleon
interaction which makes an attempt to fit the data contains an
absorptive potential(s) that causes some of the real phase shifts to
attain negative values of the order of —ﬂ/2 at 600 MeV center of mass
momentum; whereas the phase shifts that take positive values are
small. We take the simplest model of the nucleon antinucleon inter-
action which consists of a purely absorptive potential. This simple
model gives good fits to the low energy total inelastic and differ-
ential cross sections.(s) We find that the phase shifts in this model
fall fast enough that separation is again possible at 280 MeV. If we
had used any of the more sophisticated models of the nucleon anti-
nucleon interaction which include spin dependent interactions, the
answer would not be changed in any essential way. In all these models
the phase shifts fall fast enough to give a second virial coefficient

large enough to cause separation in the blackbody radiation at around



300 MeV., The analysis that leads to this conclusion, however, dis-
regards the effect of the inelastic channels. Since insufficient

dats exist on these channels we can only give a theoretical argument
which suggests that their effect is small. Our conclusion that nucleon-

antinucleon separation occurs does not, unfortunately, rely only on the

data.



IT. FORMALISM

Thermodynamic quantities are calculated for the high
temperature radiation assuming thermal equilibrium. The system con-
sidered is s gas of pions, nucleons and antinucleons at constant
volume and temperature which can exchange particles with the surround-
ings. The various particle densities and the configuration of this
system will be such as to minimize the free energy.

The contribution to the free energy coming from the inter-
action among the various particles is expanded in g power series in
the densities of nucleons and antinucleons N/V and ﬁ/V. Only terms
up to quadratic order are kept in this expansion. The term linear in
N and I is due to the pion-nucleon interaction. The term of order NN
is due to the nucleon-antinucleon interaction. Terms of order N2 and
N- are due to nucleon-nucleon interactions. If the effects of Fermi
statistics are taken in the first approximation, they provide additional
terms in the free energy proportional to N2 and ﬁe.

Bouchiat(G) has analyzed the modifications to the free
energy of the nucleonhgas due to the presence of pions. At temper-
atures around 200 MeV, the approximation is made that the nucleon-pion
interaction occurs only in the A state. The zero width limit is taken
for the A resonance, With these simplifying assumptions the baryon
gas consists of nucleons and A resonances; the A being considered as

an excited state of the nucleon. The free energy of the baryons is

found to be



eN = eN
F = -NT 1 — - NT 1
1 H Y °¢ X (IT.1)
where
N
v, MLTS/CeXP B TN G R —
A 2n P 2% T °

MN and Mﬁ are the masses of the nucleon and A resonance respectively.
V is the volume of the gas. M, c and k have been placed equal to one
in this expression and throughout this thesis. In the absence of other
interactions the equilibrium state will be that with a density of
nucleons equal to NO/V, The presence of pions permits a larger density
of nucleons at equilibrium given by the second term on the right-hand
side of Eq. (II.é).

The contribution to the free energy due to the nucleon-

antinucleon interaction is given by
F, = 2TBNN/V (I1.3)

where B is determined by the Beth-Uhlenbeck formula:

e (@)5/2

El'l
= gn exp (T——)

3/2 w IJ 2
(2T+1) (27+1) ad . }
-8 ( MNJ_T) Iz:J T fo 55~ P ( MN—P—T ) dp, (I1.4)

p is the center of mass momentum of the nucleon, En is the binding

energy of the bound state of the system and g, is its degeneracy.



The nucleon-nucleon interaction contribution to the free

energy is

F TB'(N2 £ ﬁe)/v (II.5)

1l

where B' is again given by an expression of the form (II.4) with the
sum over J and I subject to those states allowed by the exclusion
principle,

Corrections due to Fermi statistics for the nucleons and
antinucleons can be taken intc account in first approximation by
adding an appropriate term to the virial coefficient in F_. This

5
R (7)
correction is given by

F, = TB"(N2 4 ﬁe)/v (11.6)
where

B" =

_ET)S/Q

&

(11.7)

(o) f

The part of the free energy of the gas which depends on

the density of nucleons and antinucleons is therefore given by

O O Coesd )
F = -NTlog 2%— - FTlog 9%— + 2TB %g + T(B'+B") (NO4EC) /v (II.8)

The free energy F is minimized with respect to the numbers of nucleons

and antinucleons. It is found that for a positive and greater than

exp(gig)¥b the minimum of free energy is achieved for a state with

a-b
unequal numbers of nucleons and antinucleons; where a = 2BNO/V,



b = 2(B'+ ")No/Vn For negative a, which corresponds to an effective
attraction between nucleons and antinucleons, the minimum of F is at
N = N; the same holds when a = b or when a < exp(ié%)#b. In the case
where all nucleon-nucleon interactions are neglected or cancel out,
the condition for separation becomes simply 2BNO/V > e,

The temperature dependence of NO/V is dominated by the
exponential factors in (II.2) at the temperatures under consideration.
For this reason the critical temperature for separation is not sensi-
tive to the value of B. To achieve a separation temperature of a few

hundred MeV it is only necessary for B to have a value of the order

gf 1 (fermi)s.
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III. THE OMNES MODEL

The main assumptions in the Omnes model which give sepa-
ration are: a) Nucleon-antinucleon interactions occur mainly in
£ = O states and the corresponding bound states which have the quantum
numoers of the =, 1, W and p mesons are ar independent component of
the radiation, b) Levinson's theorem holds for scattering in states
of the corresponding quantum numbers.

Assumption a) allows Omnes to drop the first term on the
right-hand side of (II.4) which is the contribution of the N-N bound
states to the second virial coefficient. Levinson's theorem states
that the phase shifts fall from w to O as p goes from O to . If the
phase shifts fall to zero in a sufficiently small range of momentum,
a sufficiently large positive value of B is obtained.

Omnes takes for the N-N phase shifts in all the £ = O states:

B, B
x(1 -»7/p,7) P<>p,
B e (111.1)

0 P>P,

The value Omnes used for p_ (NMQ/E) leads to a violation
of the Wigner bound (d6/dp > - Range of forces) provided we take the
range of the forces to be 1.4 fermi. This can be corrected by taking
a suitable value for P The smallest possible value of 2, consistent
with the Wigner bound is P, = 885 MeV corresponding to
(a5 /dp)minimum = -1.4 fermi. The results of calculations using

P, = 885 MeV give a value of the critical temperature for separation of



i

Tc = 378 MeV, Fermi statistics taken in the approximation of the
second virial coefficient raise +the critical temperature to 381 MeV;
this justifies the additional approximation made by Omnes that the

effect of Fermi statistics is small.
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IV. ABSORPTIVE MODEL FOR THE N-N INTERACTION

Phillips(5> has discussed various models of the N-N inter-
action in the region of a few hundred MeV. The simplest model which
gives reasonable fits to the data is the pure absorptive mcdel. The

interaction is due to a pure imaginary Woods-Saxon potential

4

W= -iW[l - AexpDrl . (Iv.1)

Good fits to the differential, total and inelastic cross sections are
obtained with the parameters A =1, D = B(fermi)~l and W = 3.3 GeV.

We have calculated the scattering phase shifts due to the
potential given in (IV.l); the real parts are shown in Table 1 for S,
P and D waves. The phase shifts of all partial waves, except S waves,
show the same qualitiative features. Re © is small and positive near
threshold; it becomes negative at a value of momentum which is higher
for higher partial waves. Re & for S waves is always negative. The
significant result as far as the problem of separation is concerned,
is that S and P phase shifts fall through an angle of the order of

n/2 when p varies from O to 600 MeV.
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TABLE T
L] 8 £ 8

E (1lab.) Re B, Re &) Re B,
10 MeV - TP + 2a° + 0.4
20 - BT + 0.9° + 0.7
50 ~ 49.2° - B8.0° + 1.8°
100 - G205 = 18,5° % D 08"
300 - 93,8° - 52,07 - 5.8°
500 <108.8° = 59.9° = 8,7°

Phase shifts due to the potential of equation (IV.1)

Nucleon antinucleon separation is again possible in this
purely absorptive model of N-N interactions. We get a positive value
for B of the order of 1 (fermi)E at temperatures of a few hundred MeV
due to the falling phase shifts. Numerical calculations give a value
of 280 MeV for the critical temperature for separation. Including
the effect of Fermi statistics to the approximation of the second
virial coefficient raises ‘I‘C to 283 MeV.

Although we have used the simplest theoretical model of the
nucleon-nucleon interactions, it is important to note that the feature
which gives negative phase shifts is present in other more sophisticated

models. All models discussed by Phillips(s) which make an attempt to
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fit the total and differential cross sections contain an absorptive
core. In particular, Bryan and Phillips(e) take the model of nucleon-

(9)

nucleon interactions of Bryan and Scott consisting of various one
boson exchanges, change the sign of negative G parity exchanges and
add an imaginary Woods-Saxon potential. They state that due tc the
absorptive core negative real parts are obtained for the low partial
amplitudes; all spin and isospin dependence 1s contained in the one
boson exchange terms. The absorptive potential gives the short range
interaction, while the long range interactions are mainly contributed
by the exchange terms. Another example is the model of Ball and
Chewglo) Ball and Chew take the nucleon-nucieon model of Signell and
Marshak;(ll) they adapt it to the nucleon-antinucleon system by
changing the sign of the one-pion exchange term and adding an absorp-
tive core, They give a table for their theoretical phase shifts at
140 MeV laboratory energy. The same features of the absorption only
model are again noticed: low partial waves have sizeable negative

values for the real parts of the phase shifts, high partial waves have

positive but small values for their phase shifts.
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V. FROISSART PHASE SHIFTS

It is necessary to justify our use of the real parts of the
phase shifts in the Beth-Uhlenbeck formula (II.4). To do this, we re-

examinevthe validity of the formula in the presence of inelastic

channels. According to Dashen, Ma and Bernstein,<12) the general
expression for the second virial in as S wave is
i 1 E/T 19
= - —_— T G i g N
b, 57e sl ®e < M|s™ 55 8 |WW > (V.1)

where S is now a matrix and SE- 58 gﬁ » The one channel case

gives 8 = exp(2id)

EE s

S gﬁS=4la~E—

which leads to the Beth-Uhlenbeck formuls. However, in the multi-

channel case

<n|sli>= 7 exploat ™y

< n|s|i of Tt exp(-Qiﬁln)

n, ® are real and depend on E. Putting a complete set of states

In > < nl and working out the derivatives, one finds

Sin

in|2
" &

1%
<MN|s™ gy S| > =41 2 In
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One recovers the Beth-Uhlenbeck formuls only by ignoring all inelastic

channels and setting neLaStlc = 1. We may argue, however, that the

effect of the inelastic channels is small. Define

S5 =28,

where SF is & diagonal matrix satisfying elastic unitarity in each

channel, it follows that Z is also unitary-. SF is

= exp(Pih
8y = exp(2i8)

F
where
8F =0 = 6@
- 5 (v')dv’
% = % A ;_[_I?(v'- v-ie) (v.2)

which is defined so that Im Sa = Im 8 leaving 6F purely real; & is

the phy81cal phase shift and SF are called the Froissart phase

shlf%s.( ) Now write

<h|SF[i > = exp(2i 6 ) (diagonal)
i

<lZ]i>= P exp(2ia )

and we find
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N—1n,2 dolNN -y
NN nl (XNN n (.v_.s)

+4i Z[n 5

Omnes<l4) argues that the second term on the right-hand side
of the gbove equation vanishes in some versions of the Veneziano model.
Alternatively we may argue that due to the large number of channels
involved in our problem the individual terms in the sum in (V.3) may
cancel each other leaving a term which is small compared to the
contribution of the elastic channel. This is, however, not conclusive
and only suggests that the contribution of the inelastic channels is
small., If this is the case, we can neglect the second term in

equation (V.3) and recover the Beth-Uhlenbeck formula with 8 replaced

& s
by 7
The results we have derived using 8 (physical) in (II.4)
are nevertheless not essentially changed by using SF. This is due to
the behavior of Im ® in the region of a few hundred MeV. The princi-

pal part of the integral in (V.2) gives Re 8, which in the non-

relativistic limit becomes

O]~

£ 1
E oy Im ® dB' (V.4)

Re8 = —
¢ T 0 (@)E (R

where E is the laboratory energy of the nucleon. In the absorptive

1
model Tm & is very closely equal to C E° where C is a constant. The
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result of this is that the integral in (V.4) is positive and has a
1
monotonic dependence on energy which is weaker than the factor E2

multiplying it. It follows that ©_ = Red - Re6a will show the same

F
negative derivative behavior with energy characteristic of Red. If
we can neglect the second term of (V.3) our conclusions of previous
sections on baryon-antibaryon separation are not changed.

The important question which remains unsettled is that of
the size of the contribution of the inelastic channels to the second
virial coefficient. If the contribution is positive, it will not
change our results; if it is negative, its size will determine the
degree to which our results will be modified. The inelastic contri-
butions could reduce the elastic contributions by as much as 70 per-

cent without changing our results qualitatively; but separation will

not occur if the two contributions is negative.



VI. COMMENTS

From causality arguments it is possible to establish that
d5/dp > -Range of the forces. This limit on how fast the phase shifts
can fall places a lower bound on the critical temperature for separa-
tion. We assume the radiation is at a temperature where only S and P
waves are important in N-N scattering. If we let & fall linearly as
fast as possible (dd/dp = -1.4 fermi) through as many multiples of =
as we wish, we find that Tc cannot be lower than 247 MeV, The answer
Justifies the assumption that only S and P waves are important.

A resonance in the N-N system could provide an attractive
force among nucleons and among antinucleons. This attraction would
lower the critical temperature for separation in the presence of g
mechanism which separates nucleons from antinucleons. Phase shift
analyses have been performed for nucleon-nucleon scattering up to
energies of a few hundred MeV. No resonances have been observed;
this permits us to estimate a limit on the effect of a possible
resénance near the energy limits of the phase shift analyses. The
change in the critical temperature is found not tc be significant.
For definiteness, if we assume a zero width resonance in the lD2 state
at 450 MeV center of mass momentum, the critical temperature for
separation is not lowered by more than 50 MeV in either the Omnes or
the absorptive model. Resonances in higher angular momentum states
would enter with a larger statistical weight but they would be ex-

pected to occur at a higher energy which would make their effect small,
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Pion exchange affects the scattering in high partial waves.
High angular momentum phase shifts contribute with high statistical
weight to the second virial coefficient but the individusl phase
shifts are small. Numerically, it is found that the pion exchange
phase shifts are small and contribute little to B in spite of their

high statistical weights.
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PART TII
I. INTRODUCTION

The parton model was first proposed by Feynman(l’e) to
suggest regularities in multiparticle high energy collisions. It was
suggested that the invariant single partiqle differential cross section
Edc/dSp, for the reaction hadron + hadron — hadron + anything, would
become g function of the ratio pz/Pc.m, of the final hadron longi-
tudinal momentum tc the initial momentum in the center of mass at
very high energies. This prediction was later confirmed by experi-
ment.<3) It was suggested further that the distribution of hadrons
in the reaction just mentioned would be constant for small values of
pz/Pc.m.’ This prediction also seems to be confirmed by experiment.(4)

Although the parton model has been successful in making
predictions for hadronic interactions, it has been much more useful in
understanding the electromagnetic and weak interactions of hadrons.
Experiments at the Stanford Linear Accelerator Center(s)fOund scaling
in the structure functions which describe the inelastic scattering of
electrons from nucleons, as predicted by‘Bjorken.(G) It was noticed
shortly after that the parton model provided a simple explanation of
the Bjorken scaling phenomenon. Other regularities in the data could
also be explained in terms of the parton model. If it is assumed
that paitons are quarks, further results can be derived such és

relations between electromagnetic and weak structure functions. These

relations have not yet been tested experimentally.
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The "Light cone algebra" proposed by Fritzsch and Gell-Mann(7)
is a specification of the behavior of current commutators when the
currents operate on space-time points which are on each other's light
cone. This suggestion was abstracted from a parton modelvof quarks
and includes as its consequences those predictions of the quark-parton
model which are believed most likely to be true experimentally.

It is of interest to propose tests of those features of the
parton model which go beyond light cone algebra. Also of interest is
to extend the parton model further and propose tests to determine how
far we can reasonably trust the model. It is the purpose of Part IT
of this thesis to examine the experimental consequences of these
additional features of the parton model and to add assumptions to
extend its range of applicability. These additional assumptions are
suggested by pre-existing properties of the model and some experimental

facts.
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ITI. DESCRIPTION OF THE PARTON MODEL

In the parton model, the proton or any hadron is seen as
composed of various field constituents called partons. The existence
of a wave function giving the amplitudes for different numbers of
partons with various moments in a frame in which the proton has a
large momentum P is assumed. That is, there is an amplitude Yl(pl)
to find one parton of momentum 121 in the proton, an amplitude
Yg(pl,pg) to find two partons with momenta P15 Po in the proton, etc.
The wave functions for different P have the property that the prob-
ability to find a parton of longitudinal momentum xP and fixed trans-
verse momentum becomes g function of the number x only, as P — o,
This probability is unconditional in the sense that the number of
partons which carry the remaining momentum (1 - x)P is not restricted
in any waye The statement can be made slightly more general; the
probability to find g finite number of partons with longitudinal

momenta x,P, X P, oee an and fixed transverse momenta becomes a

1 2
function of the x's only as P 2w dif gll X, >0 and & X, < 1. This
scaling assumption is made for the probability, not for the amplitude.
The amplitude depends on the momenta of all the partons; the number of
paxrtons increases with P and there are always partons of finite
momentum. This prevents the amﬁlitude from satisfying a simple
scaling property.

The transverse momenta of the partons are assumed to be

limited independently of their longitudinal momenta. This assumption
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is suggested by the fact that in high energy hadron-hadron collisions
the outgoing particles have limited transverse momenta with an average
of 0.3 GeV independently of the energy of the collision. This obser-
vation is one of the main experimental inputs of the parton model;
the scaling in longitudinal momentum is believed to be related to it.
In contrast to the scaling property of the fast partons,
there is a fixed distribution of finite momentum partons which becomes
- independent of P as P - »., That is, at any large momentum P there sre
finite momentum partons whose distribution remains fixed. These are
called wee partons. This assumption is suggested by the approximate
constancy of total cross sections. In a high energy collision of
hadrons, it is assumed that there are interactions only between partons
wnose relative momentum is iess than some finite value. A constant
number of wee partons is required to have a constant cross section.
Continuity is assumed between the wee parton distribution
and the finite x scaling distribution. This can be achieved only if
the distribution is of the form dx/x for small x and de/E for wee

partons. The ragpidity variable y =

-

2n[(E+§Z)/(E—pZ)] is more
appropriate in this discussion. The distribution of partons in g
hadron of momentum P is illustrated in Figure IT.la. At & larger
momentum P' we have the same distribution of low momentum partons and
the same distribution of fast partons (fixed x). The only way to join
these distributions in a frame-independent way is to assume g flat
distribution in rapidity; as illustrated in Figure II.lb. An important

consequence of this continuity is that the average number of partons
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increases logarithmically with the momentum of the hadrons. The
rapidity variable has the property that a fixed distance from the
maximm y = 4n(2P/M) corresponds to a fixed x, and a fixed distance
from y = 0 corresponds to a fixed momentum.

A more detailed description of the parton model may be found
in Ref. 8. We have only presented those features of the model on which
we shall rely in the following sections.

An important phenomenon which can be understood in terms of
parton model ideas is the scaling of the structure functions which
describe the inelastic scattering of electrons from nucleons
¢ + N — e + anything. The differential cross section for this process
(the kinematics are given at the end of Section III.A)is described by
two structure functions Wi and W2 which in general can be functions
of the variables q2 and V. q2 is the square of the virtual photon four-
momentum qu, and v = P-q/M; PpL is the four-momentum of the nucleon
and M is its mass. The parton model predicts that the virtual photon
interacts with & parton whose longitudinal momentum is a fraction
X = —qg/ZMv of the momentum of the proton in & frame in which the
momentum of the proton is large. As s consequence of this, the
structure functions become functions of x only in the Bjorken 1imit
(-q2 and v = oo, —q2/2Mv finite). If it is assumed that charged
partons have spin 1/2 both structure functions depend on a single
function of x through the relations VW, = x f(x) and MW, = f(x); an

assumption which seems to be supported by exberiment.<5) The function
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f(x) has a simple interpretation in the parton model. f(x) is the
probability to find a parton with a fraction x of the momentum of the
nucleon, weighted by the square of its charge. It has been assumed
in the derivation that the strong interactions before and after the
virtual photon interaction can only move the parton a finite distance
off its mass shell.

If we assume that partons are quarks, the function f(x) is
given in terms of the probabilities to find the various quarks with
momentuﬁ fraction x. For example, in the case of inelastic scattering

from protons we have

£P(x) = S(u(x) + 8(x) + S(A(x)+d(x)) + 5(s(x) + 5(x)) (11.1)

where u(x)dx is the probability to find a u quark with momentum fraction
in the range x to x + dx in the proton. The other functions are defined
similarly and are denoted by the names of the quarks; u and u for up
and anti-up quarks, d and d for down and anti-down quarks; s and s

for strange and anti-strange quarks. The functions u(x), U(X) ee.,
ete., are calied the quark density functions. From isospin invariance
the neutron scaling function is obtained from (II.l) replacing u <4

and u © ds
() = 2(a(x) + A(0) + FE) + §x) + 56Gx) + 5x) . (11.2)

The quark density functions have the same meaning as above. The number

of u quarks in the neutron is the same as the number of d quarks in

the proton.
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ITI. SCALING IN INCLUSIVE ELECTROPRODUCTION

OF HADRONS

A. Kinematics

The process we wish to describe is the inclusive electro-

productionvof a hadron
e + N—=e’ + h + Anything LTTTA)

illustrated in Figure ITT.1l. The four-momenta of the incoming and out-
going electrons e and e’ arevp“ and p“‘ respectively. The four-
momentum of the nucleon N is PH and that of the hadron h is hu. The
possibility of production of any number of other hadrons beside h is
not restricted in the reaction; a state of this set is denoted by n
and its total four-momentum by (pn)Ho

In the laboratory frame in which N is at rest we have

=,

—_,
P, = (M, 0), p, = (E, D) and P, = (E', D).

The Bjorken limit of the deep inelastic region is defined by

2 2
¢ =(p' -p)" 0~

Ne?

My = Peq »o (111.2

X = -q°/Mv  fixed

This defines one of the limits of the virtual photon varisbles with
which we shall be concerned. Another region of interest is the Regge

region in which q2 is fixed and v — o,
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The variables used to describe the outgoing hadron h are not
uniform in the literature. We shall present the kinematics in terms
of a set of varigbles commonly used(g) and later define variables more
natural to the model we shall use. Since we take the spin average
and azimuthal average with respect to the direction of the virtual

photon, only two variables are needed to describe h; a convenient

pair is:
€ = heP
(II1.3)
kK = heq
In the Bjorken limit, the target fragmentation region is
defined by
KR —> ©
€ fixed (I11.4)

u = K/MV fixed

In a frame in which the nucleon N has a large momentum (e.g. the
center of mass) this corresponds to a hadron with a longitudinal
momentum given by & fraction u/(l - x) of the momentum of N.
In the Regge 1imit, the target fragmentation region is again
defined by (ITII.4). The longitudinal momentum of h is given by a
fraction u of the momentum of N in g frame ih which N is fast-moving-.
The current fragmentation region is defined in the Bjorken

limit by
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£ =
K — o
(ITI.5)
u = K/MV fixed
e/Mv  fixed
The longitudinal momentum of h is a fraction z = -u/x of the momentum

of the virtual photon in the laboratory frame.

In the Regge region, the current fragmentation limit is no
longer given by conditions (III.5). We want h to have a longitudinal
momentum given by a fraction z of the momentum of the virtual photon

in the center of mass frame. This condition is given by

(I11.8)
K fixed .
The fraction z is again given by -u/x; u and x go to zero gt the same
rate.

The differentisgl cross section for the inclusive electro-~

production process illiustrated in Figure IIT.1l is given by

S

3
_ 2 1 3 an
d“=={-z:|M!;} TR

= = (TIT.7)
av. n (2n)”  {(2x)

This can be written in terms of the leptonic tensor

- ¥ '-'_.76
By = BB, + BB, =B,
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and the tensor ﬁw which summarizes the unknown structure of the
coupling of the virtual photon to the hadrons in question. Equa-

tion (III.7) becomes:

2
___Ecg’____ =2, 'v‘iw (%‘O‘) 2ng (III.8)
dvdg dedk q ‘
where
- 2 2
- 5 " 5(h.P -€)d(heq -
Wy [a*ne(n )8 (n® - n2)8(h.P -e)8(heq - &) %
(111.9)

X %<1\T]ju(0)ln,h > < n,h[jv(O)ll\T > 2@4@ -p' +P ~-h -pn) "

Since we are taking the spin and azimuthal average there are only two

structure functions, denoted by ’T/V\Tl and 'VTT which in general are functions

2

of qg, v, k and e« W is given in terms of ﬁi and ﬁg by:

Yoo L . £eq _ B9 W (a2
W= 2(P 2 qu)(Pv q_2 qv) N2(q,v, K, €) +

w2 Ve
qaq
2 "
o (Suv - —liél)wl(q ; Py By B) . (ITI.10)
q

In terms of the structure functions the differential cross section for

reaction III.1 is given by

2 ﬂ ~o ~e
_.@%__, - 4“‘;‘ % {cos2 -g- W, + 2 gin® g 1} (IT1.11)
dvdq dedk o]
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where @ is the angle between p and p' in the laboratory. The variables
z = -u/x and the transverse momentum h,J1 of the hadron h are more
appropriate to the parton model in the current fragmentation region.

In terms of these the differentisl cross section is:

2
E’ ~ ) ~
gf’ — = 4“% o g_ {cos2 % W+ 2 gin® -g; 1} (11T.12)
dvdg dzdhm a

We present briefly, for reference purposes, the kinematics
of the inelastic process e + N = e' + Anything where no hadrons are
observed in the final state. We use the same notation as above for
the momenta of the incoming and outgoing electrons, the vixrtual photon

and the nucleon N, We define the hadronic tensor

2 oo 4 igex . .
WW( a=, v) = = [dx e < N'JH(X) JV(O)ll\T > 8 (I1T.15)

By relativity and gauge invariance this tensor can be written as

(average over spins is taken)

2 1 Peq P.q 2
W (Q;V)=—(P-—'—Q>(P-—'—Q) Wy(a5,v) +
ShY M2 v q2 v v q2 1% 2
qq
v 2
- (6w- ”2 ) Wl(q »V) " (I1I.14)
q

The differential cross section is given in terms of the structure

functions Wi and W2 as
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| b

Y 20 2 .20 2
5 {cos = Wz(q 2 V) + 2 gin 5 Wl(q ;V)}
dvdg q

(I1L:15)

B, The Bjorken Limit

It is convenient, when we analyze process {(ITI.1l) in terms
of the parton model, to look at the resction in the Breit frame (see
Figure III.2). In this frame the virtual photon four-momentum has a
space component only. The four-moments of the virtual photon and

nucleon are g,

q“ = (O: 0, O, '2PX)

PH = ('JP2+ M2, 0, 0, P)
with invariants

q2 - —4P2 - 2

(11I.186)

Figure IIT.2a illustrates the parton distribution in the nucleon and
the virtual photon before the reaction. The photon interacts with a
parton of momentum xP and reverses its motion, producing the parton
distribution illustrated in Figure ITI.Zb. This parton distribution
after the reaction has the property that if we let x be fixed and
take P - o (Bjorken limit), the momentum distribution of the partons

scales with P. That is, the probability to find a parton with a
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fixed ratio of its longitudinal momentum to the momentum P remains
constant as P = «. In particular, moving to the left in Figure III.Zb
there is only one parton whose momentum scales with P, the scale factor
given by -Xa.

We now bring in an assumption used in predicting scaling in

(2)

hadronic interacticns. This assumption states that the final
hadrons resulting from a parton distribution which scales in longi-
tudinal momentum will also scale. Applying this assumption to our

case above, we conclude that if we ask for a right moving outgoing
hadron with longitudinal momentum which is a fixed fraction of the
momentum (1 - x)P or for a left moving hadron with longitudinal
momentum which is a fixed fraction of the momentum -xP, the probability
of finding such a hadron goes to a constant as P - «. These hadrons
are in the fragmentation region of the target and current respectively,
We shall be concerned only with the current fragmentation region here.

A consequence of the assumption above is that the structure functions

defined previously satisfy the scaling relations

By 5 (0%, v, 2, B = x £ (x, 7, 0G) )
(IIT.17)

(%%)ZM ﬁ}{ (QE; Vs 2, hé) = fh(X) Z, h;i) b)

in the Bjorken limit. The fact that we have the same function f on
the right-hand side of equations (III.17) is a consequence of the

assumption that all charged partons have spin 1/2, an assumption we
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make throughout this thesis. The variable z defined in Section IIIA
on kinematics is the ratio of the longitudinal momentum of the hadron
h to the momentum -xP of the left moving hadron. The scaling relations
(ITI.17) state that the structure functions vgﬁé and vﬁi depend on qg
and v only through their ratio. The transverse momentum distribution
of the hadron h will very likely be limited the same way it is in
hadron-hadron reactions; this is in fact important for the longi-
tudinal scaling to be valid.

The scaling assumption made in deriving relations (III.17)
has as a consequence the concept of limiting fragmentation of a parton.
It is suggested that if we have a single parton moving with large
momentum, the hadrons resulting from the fragmentation of such parton
will show longitudinal scaling. That is, if we ask for the probability
to find a hadron with fixed transverse momentum and fixed fraction of
its longitudinal momentum to the momentum p of the parton, that
probability goes to a constant as p >, This idea was used by Drell

(10) (11) in deriving scaling

and Yan, and Berman, Bjorken and Kogut
relations similar to (III.17). If we have a finite number of different
types of partons (Labeled by a), for every hadron h there will be a
distribution function qg (z, ks) which gives the probability for the
fragmentation of a parton of type O into a hadron h with longitudinal
momentum fraction z and transverse momentum kT, and any other hadrons.
The function f in (III.17) will be a superposition over the index «

of the probability that the virtual photon hits a parton of type O

times the distribution Qg « The transverse momentum hT of the out-
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going hadron will, however, not be given by the transverse momentum
distribution in Dg (=, ké) because the parton & has some initial dis-
tribution in transverse momentum. What we have is a convolution of
the initial transverse momentum distribution of the partons with the
distribution in transverse momentum of the parton fragmentation. We
have s superposition of factorized terms for the scaling function
fh(x, Z, hé) only whep we integrate over h;; we denote the integrated

function by f(x, z):

fh(x,z) = Z Qs ax) Q? (z) (I11.18)
o /

In this expression a(x) is the density of partons of type & at that

value of x integrated over transverse momentum: Q;(z) is the function
h 2y . 2 ;

Qa(z, kT ) integrated over kT o Qa is the charge of the parton of

type O, measured in units of the electron charge.

C. The Regge Limit

We now let q2 be fixed but large enough for the parton model
to be applicable. We again have a distribution of partons beforeland
after the interaction with the virtual photon as illustrated in
Figure I1I.2, in the Breit frame. When q2 is fixed, the momentum of
the left moving parton after the interaction is also fixed. As v =
(P - ») the distribution of right moving partons scales as indicated
in Section II. The fast partons (those with fixed x) scale in longi-
tudinal momentum with P. The partons of finite momentum have a fixed

distribution independent of P as P - o, This fixed distribution
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property of the slow partons allows us to derive a scaling relation
for the production of hadrons in the current fragmentation limit. We
have 2 fixed momentum left moving parton and s fixed distribution of
low momentum vartons of the original nucleon. The distribution of
partons out to any fixed range irn rapidity in the Breit frame remains
fixed as P 2 »; this i1s illustrated in Figure III.3. ¥rom the
assumption that interactions between partons occur only within s

&
finite range in rapidity we conclude that, for a given qé, the dis-
tribution of hadrons of low momentum in the Breit frame approaches a
constant as v = ». As a consequence of this the structure functions

for inclusive electroproduction of hadrons satisfy the scaling rela-

tions

2y

Mvy ~h , 2 , B h, 2
('2_2') ng (qc:' V, Z, ﬂT ) = g (q s 2y bT / a)
(I11.19)
h, 2

(&) 2 (0% v, 2 1) < 25 =) b)

in the Regge limit and in the fragmentation region of the current.
The derivation of the scaling relations (III.19) does not involve the
assumption of limiting fragmentation of the parton.

The scaling relations in the Bjorken limit (III.17) and in
the Regge limit (ITI.19) must agree where their ranges of applicability
overlap. This occurs when x is small in (III.17) and when -q2 is large
in (III.19). The two pairs of formulas can only agree if the shape of

the distribution becomes independent of both -q2 and v:
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(g) VT;\J; (q.2) Vs, 2, th) = gh(z) hTE) a)

(IIT.20)

(%‘Z‘) EMﬁ]rf ((12} Vs Zy th= %‘gh(z,’ hTE) b)

We conclude that in the Bjorken limit, for small x, the distribution
of hadrons produced in the current fragmentation region approaches a
fixed shape.

These last scaling relations (III.20), if integrated over
transverse momentum, can also be derived from (ITI.18) and the assumed
behavior of the parton density functions c/(x) for small x. For small
Ky a(x) = 7@ /k where 7a is a constant, as réquired by the continuity
between the fast parton distribution and the low momentum parton dis-

tribution. Substituting this into (III.18) we find

1

' (x,2) = T T q 7, D (2) (II1.21)

(04

for small x. The conclusion again is that the distribution of hadrons
in the current fragmentation region approaches a fixed shape (as a
function of z) for small x in the Bjorken limit. We see that the
property which is responsible for the continuity between slow and
fast momentum parton distributions is also responsible for the conti-
nuity between the inclusively produced hadron distributions in the
Bjorken and Regge limits.

It is worth noting that none of the scaling relations

derived in this section depend on the nature of the partons, such as
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assuming quarks or any other type of constituents. The spin 1/2

assumption is, however, necessary to obtain the relation
Vﬁé/EMﬁi = X,

A light cone analysis has been made by Ellis,(le) Stack,(ls)
and Fritzsch and Minkowski(l4) of the reaction e + N - e + h + Anything.
They propose that the structure funections scale in the Bjorken limit in
the target fragmentation limit. The current fragmentation region we

have discussed is, however, not accessible to the light cone analysis

since it cannot be shown that the light cone dominates.



40

IV. THE QUARK DENSITY FUNCTIONS

IN THE LIMIT x — 1

In this section we shall give an argument for a plausible
behavior of the quark density funchtions for x near 1. To motivate
our assumptions we present an argument given by Feynman<8) for the
behavior of the deep inelastic structure function f(x) for x near 1.
Let us ask for the probability that a proton of large momentum P has
one parton carrying all the momentum P except for a finite amount
(e.g. 1 GeV). This probability will be shown tc fall with an inverse
power of P. There are only a finite number of low momentum psrtons;
all the partons of finite x, except for x =1 - 1 GeV/P, are excluded
in the éonfiguration we require., In particular, all the partons in
the dx/x region of the distribution are excluded. Since the presence
of the dx/x partons is essentially independent of the other partons,
the probability that they are not present is proportional to e—c;l
where ¢ is a constant and n is the average number of excluded partons.

This independence is due to the finite range of interaction in the

rapidity variable. The average number n is given by

n=af dx/x=alinx - In %) (1v.1)

ilL

where a is a constant and xq is a fixed upper limit. It follows that

the probability that the proton has one parton carrying almost all of
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its momentum falls as an inverse power of P, e—cﬁoC?l/'P7 where y is
a constant.
The configuration discussed above is important in that the
proton must be in such a configuration to scatter elastically from a
virtual photon in the Breit frame, as illustrated in Figure IV.l. If
the virtual bhoton interacts with a parton of x ¥ i, the intermediate
state has a mass of order P2 and high energy interactions between
partons are required for any sppreciable amplitude that the final
proton is in such a state. This leads to the conclusion that both the
electric and magnetic form factors of the proton must fall with the
same inverse power of (-qgf%for large (—qef%,the power is given by
the constant ¥ mentioned above.
The probability that the proton has a parton at
x =1 - (1 GeV)/P is also proportional to
A
f f(x)dx
1-1/p
which we argued must behave like l/Py. f(x) must therefore have the

form
7-1
f(x)o= (1 - x) for x = 1. (Tv.2)

From elastic form factor measurements y is near 4 sc y-1 is near 3,
a conclusion which is consistent with measurements on the deep in-
elastic structure functions. This relation between the power fall-off

of the elastic form factors and the behavior of the inelastic structure
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functions near x = 1 was first derived by Drell and Yan.(ls)

We now turn to the special case of the quark parton model.

The structure function fP(X) for the proton is given by
4 - 1 = i =2
£2(x) = 5(u(x) + 8(x))+ 5(a(x)+3(x))+ F(s(x)+5(x)) (1v.3)

where u(x), 1(x), ..., etc., are the quark density functions defined
in Section II. In terms of the same density functions, the neutron

structure function £ (x) is given by
(x) = (a(x)+(x)) + u(x)Hi(x) + 2(s(x)+5(x)). (IV.4)

We shall discuss the behavior of the quark density functions
when x = 1. We ask for the the probability that there is any one type
of quark carrying all the momentum of the proton except for a finite
amount. This configuration excludes any other type of quark in the
dx/x region. From this it is possible to conclude, the Seme way as
was done for f(x), that each of the quark density functions must

behave as a power of (1 - x) for x near 1:

u(x)os (1 - x)? W2 i(x)oc (1 - ) (W2
ax)oc (1 - x)7(D-1 i(x)oc (1 - x)? (@1 (1v.5)
s(x)oc (1 - x)? (&)L Steyec (1 < wy? B |

The powers y(u), 7(d), +.., €tc., may in principle be all different;
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in fact, it is possible to argue guided by experiment that y(u) is
the smallest power for the proton.

In the configuration we are studying, aside from a specific
linear combination of guarks of momentum rearly equal tc the momenbtum
of the proton, there is also s low momentum "core" of q;arks. The
overall quantum numbers of the core depend on the quantum numbers of
the large momentum quark. ©Since it is very likely that the probagbility
for the presence of g low momentum core will depend on its gquantum
numbers, we make the following non-degeneracy assumption: The value
of the power fall-off with momentum of the probability that one quark,
or linear combination of quarks, carries almost all the momentum of
the proton will be different for different values of the quantum
numbers of the core. A consequence of this assumption is that the
ratio £ (x)/f2(x) of the neutron and proton structure functions can
only take a discrete set of values depending on the quantum numbers
of the core as x = 1, We first eliminate the possibility that a
strange quark or anit-quark dominates near x = 1. The likelihood
that a strange or negative baryon number cuark dominates near x = 1
in a non-strange and positive baryon number object is considered to
be very low. We only consider either u or d quarks,or a linear
combination, to have the lowest power y. There are only two possi-
bilities for the nucleon, the core may have isospin O or L; we call
the corresponding powers 70 and 71. In the case of isospin O core

the u quark only dominates near x = 1 in the proton and the d quark

in the neutron. For isospin 1 core there is a linear combination of
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u and d which gives the correct quantum numbers of the proton and
neutron. If 71 < 72 that is, isospin 1 core dominates then
£(x)/£P(x) - 3/2 when x > 1, a value which is almost certainly
excluded by experiment. Experimentally,(l6) the ratio £ (x)/£®(x)
falls approximately linearly from 0.79 = ,06 at x = 0.2 to 0.38 %= .06
at x = 0.8, If y <y, then (x)/fP(x) »1/4 as x > 1, a value which
is consistent with the data. We therefore conclude that it is the u
quark which dominates near x = 1 in the proton and the d quark in the
neutron. The value 1/4 is the minimum the ratio f (x)/fP(x) can take
for any value of x consistent with the quark model. From equations
(Iv.3) and (IV.4) and the positivity of the quark density functions
it follows that 1/4 < £ (x)/fF(x) < 4.

The above arguments given by Feymman for the behavior of
the structure functions as x — 1 motivate the assumptions made in the
rest of this sectilon.

As an extension of these ideas, we discuss what the behavior
of the electromagnetic deep inelastic structure function would be near
x = 1 for the other particles in the nucleon octet if these were
available experimentally. The reason for making this discussion is
that it will bear on the behavior of the fragmentation of a quark into
these particles, a quantity which is measurable. After having
excluded the possibility that an antiquark or a strange quark domi-
nates near x = 1 in the nucleon, we were left with two alternatives.
The core could have either isospin O or 1. This is precisely what

we would get if we viewed a large momentum nucleon near x = 1 as
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built of a core which is in a 3 representation of SU(3) and a quark
which is a member of a 3; or as built of s core which is in a 6
representation of SU(3) and a quark, respectively. We shall extend
this tc all the baryons in the nucleon octet by assuming that near
x = 1 they are built either as (3 quark ® 3 core) or (3 quarks @ 6 core),
These decompositions are shown in Tables IV.1l and IV.2. In both tables
the core is represented by @(I, To5 S), where the labels are the total
isospin, third component of isospin and strangeness respectively.
SU(3) multiplets other than 3 or 6 for the core can give an octet when
combined with a quark, but these are not accessible from a combination
of two quarks. At least one quark-antiquark pair would be required in
addition to two quarks in the core, Tt is more difficult to put a
larger number of quarks in a packet of low momentum, so we consider
only the 3 and 6 case. This also excludes s strange quark or anti-
quark from dominating near x = 1 in the nucleon.

We have argued from non-degeneracy and the experimental data
on £(x)/fP(x) that ¢g(0, 0, 0) dominates over ¢6(l, I 0) in the
cagse of the nucleon; that is, the amplitude that the proton looks like

u¢3(0, 0, 0) falls with a lower inverse power of the momentum P when

Xx= ok =k GeV/P than the amplitude for it to look like
1l 6 2 6
«/%u;é (L &, §) -J% ag(1, 1, 0).

We shall carry over the non-degeneracy assumption to the other baryons
and add the following: Larger units of strangeness in the core imply

a larger inverse power fall-off of the amplitude. That is, we assume
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that a core like ¢§(I, I,* |S]) dominates over ¢g(I', I, £ (|s|+1))
and similarly for a ¢6 core. This assumption is suggested by the
observation that, in all SU(3) multiplets of particles, larger units
of strangeness always involve higher mass, In our case we require s
core of quarks of low relative momentum andé we assume it is harder to
have a core with higher strangeness. We do not make this comparison
between members of the different core multiplets (¢§ and ¢6), but we
have deduced that ¢g(o, 0, 0) dominates over ¢6(1, Ts 0) from the
nucleon data. From this and our strangeness ordering assumption we
conclude that ¢§(O, 0, 0) dominates over any ¢6 member irrespective
of its strangeness.

Before we continue discussing the nucleon octet we wish to
make a general assumption regarding the dependence of the inverse
power fall-off y of the amplitude for x = 1 - 1 GeV/P on the quantum
numbers of the fast quark. Since the amplitude must depend on the
difficulty of having the core quarks in a low momentum packet we have
argued that ¥y must depend on the quantum numbers of the core, As the
momentum P of the hadron gets large, so does the relative momentum of
the core and the fast quark. It is possible that in this limit any
interactions between the core and the fast quark become independent
of the quantum numbers of the quark. This is intended to apply only
in the following situation: Let us suppose we have two hadromns, hl
and h2, of the same SU(3) multiplet and let cy and 5 be the cores

which dominate as x -1 and P »>«,. If it so happens that ¢y and c,

have the same quantum numbers (except possibly for IS) and are
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members of the same multiplet, we assume that 7y = regardless of

g
the quantum numbers of the fast quark. This is a statement of a
limi%t in which we believe SU(3) will be exact. It is only in this
limit that we make an SU(3) invariance assumption for the structure
functions.

Returning to the nucleon octet, we now consider the A. We
notice from Table IV.1 that in the 3 quark ® 3 core decomposition the
A has a component of the form s ,05%(0, 0, 0). We have concluded that

= T

_2—} =32 -l)

¢§(O, 0, 0) dominates over any ¢6, it alsc dominates over ¢§(
because of our strangeness ordering assumption. We cconclude that it

is the s quark which dominates near x = 1 in the A particle. The core
happens to be identical to that which occurs in the nucleon; we there-
fore conclude further that the power 7A is the same as 7N for proton
and neutron.

For the Z triplet we cannot say which type of core dominates
since we agre not sure how to compare ¢g(%3 IS’ -1) of Table IV.l with
¢6(l, T 0) of Table IV.2. We can conclude, however, that Vs 18
necessarily larger than 7N since we either must have a core of the
form ¢6(l, IS’ 0) or have a unit of strangeness in the core.

We have the same type of difficulty with the = as we had
for the XL since we do not know how to compare ¢g(%3 13, -1) with
¢6(%? IS’ -1). We can conclude, however, that 7— 1s larger than or
equal to V5o

Summarizing our results for the nucleon octet we have found

that the electromagnetic deep inelastic structure function behaves
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like f(x)o<= (1 - x)y-l as x 1, The probagbility that a hadron of
large momentum P has a quark carrying all the momentum P except for
a finite amount i1s proportional to Pny. The powers y for the nucleons,

A, £ gnd = are ordered as follows: 7N = ¥y L 72 < ¥_ . The u quark

I1]

dominates near x = 1 for the proton, the d for the neutron and the s
for the A,

We next analyze the pseudoscalar mesons. Here there are no
data, as is available for the nucleons, %o suggest which quarks dominate
near x = 1. We have, however, some clues. As we have noted, there is
evidence for the belief that the u quark dominates near x = 1 in the
proton and the d quark in the neutron. These are precisely the quarks
which occur as constituents of the nucleons in the low energy three-
quark model of the baryons. Using this as a guide we shall assume
that it is the quark and (or) antiquark which occur in the low energy
quark model description of each meson that carry almost all the momen-
tum of the meson as x - 1. This means that we have two possibilities:
At largé momentum nesr x = 1 the mesons have the form (3 quark @ 3 core)
or (3 antiquark ® 3 core). Another reason for making this choice is
that if we allow the possibility for a quark which does not occur in
the low energy quark model to dominate near x = l; then the average
number of quarks and antiquarks in the core must be at least three;
whereas with the choice above it could be as low as one making it
easier for the core quarks to be in a low momentum packet.

We shall discuss only the structure functions of the pions

and kaons since these will be the only mesons of practical interest



when we turn to quark fragmentation in the next section.

function of the n+
+

O o
with similar expressions for n , m and the kaons.

5 = gﬁ(u L) + @

k1

1 s
5(s +(x) + 8

L)+ =(a
b1 3
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+(x) +d +(x)) &
o 7t

R

The structure

is given in terms of its quark density functions as

(Iv.6)

From charge conjugation and isospin invariance, relations

are found between the quark density functions of the mesons

varisble x has been omitted):

U = @
+ -
7t T
d i =u _
Tt 1
s =8
+ -
It T
u = d
o o
T 7
LR
K K
de=8y
K K
s =8
xt  x°
u = d
5 I
d _ = u.__1O
K K
s =8

1l

3)

(IV.7)
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These relations hold for all x and in particular as x = 1. Each quark
density function will behave like (l-x)y-l as x » 1. According to
our assumption, the quarks which will have the lowest powers for their

density functions as x — 1 will be:

u, d for ﬂ+
= - o]
w, Uy 8, d, for =
u, d for w
u, s for KT
- o)
d, s for K
u, s for K~
o =0
d, s for K &

Relations (IV.7) a), d), e) and j) allow only three of these powers to

be independent. u (x), d +(x), u O(x), u
7t Tt

S, a (x), & (),
T 7 T

Tt
- 71'1
d (x), u (x), have the power behavior (1 - x) as x = 1;
Tt Tt
- - 72-1
u (x), da (x), d (x), u (x), have the power behavior (1 - x)
K" K° K° K

as x =21 and s (x), s (x), s (x), s (x) have the power behavior
+ o —0 -
, 1 K K K K

(1 - x) 5 as x - 1.

Tn the KT it can be either the u of the § which dominate
near Xx = 1. When the u dominates there must be one strangeness unit
in the core as opposed to zero when the s dominates. From this we
conclude that 72 is larger than 73. Furthermore, when the s dominates

in the K the core is identical to that in the ﬂ+ when the d dominates,
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from which we conclude that 71 = 75; we use the notation 7M = 71 = 73.

To summarize, the quark density functions with the lowest

power of (1 - x) as x = 1 for the pions and kaons are 4 (x)s s (%)
7 K

and those relsted by charge conjugation and isospin invariance, these

are:
s 7M'l
u (x)=a (x)=4d (x)=10_(x)°=(1x) a)
i i x T
_ = 7M'l
2o, a (=3 () =i e B (w.e)
n Tt 7 7
o - 5 7M_l
8 +(x) = s O(x) = s O(x) =5 (x)o< (1-x) . c)
K K K K

It follows immediately from the Drell-Yasn relation and our
conclusions above that the form factors (both electric and magnetic)
of the proton, neutron and A fgll with the same inverse power of
VC;E?, and the power is given by‘yN. In the case of the pseudoscalar
mesons, the Drell-Yan relation must be modified as pointed out by
Ravndalo(l7) This is because the meson must interact with the
longitudinal virtual photon to scatter elastically, whereas its
constituent charged partons have spin 1/2 and prefer to scatter (with
a factor of -q2 higher) from the transverse virtual photon. For this
reason the pion form factor falls off like (1./N[;?57M+1 rather than
with the power 7M as would be the case for spin 1/2 particles. From
(Iv.8) we have that the form factors of both pion and kaon must fall

with the same power of N 412 .
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V. THE QUARK FRAGMENTATION FUNCTIONS

IN THE LIMIT z — 1

In Section III, Qg(z, kTg)dzdkT2 was defined as the
probability for the fragmentation of & parton of type & into a hadron
h (and any other hadrons) with longitudinal momentum fraction z and
transverse momentum kT in a range dzdkT2. We shall not say anything
about the transverse momentum distribution except that it will have
a small and fixed average (~0.3 GeV) typical of hadron-hadron colli-
sions. We shall henceforth only consider the integrsted function
q;(z).

We are interested in the behavior of the function qg(z) in
the limit z - 1 in the special case of the quark parton model. As we
shall argue later (see Section VI), the fragmentation function Dg(z)dz
behaves like dz/z for small z and cuts off to dpz/E for low momentum.
This implies that the multiplicity of hadrons resulting from the
fragmentation of a2 quark increases logarithmically with the momentum
of the quark. From this, in an entirely analogouslway to the analysis
of the deep inelastic structure functions, it can be shown that
Qg(z) behaves like (1 - 2)7—1 for z — 1 and that the probability for
the fragmentation of a quark O of momentum P into a hadron h which
carries all the momentum of ¢ except for a finite amount has the
momentum dependence P-y.

When a quark of momentum P fragments into a hadron h of

momentum P-8 (Bsmall) it must project into that part of the amplitude
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for the hadron to have a quark of the same type carrying almost all
its momentum. We therefore conclude that the power y which appears

in the quark density function of type & for the hadron h
ah(x)oCZ(l—x)y-l as x = 1 is the same as the power y which appears in
the fragmentation function of quark & into the hadron h
Q;(z)<K:(l—z)7_l as z = 1., All our previous results as to which
quarks dominate near x = 1 in the nucleon octet and the pseudoscalar
mesons can now be translated into statements as to which of these
particles are produced more copiously from the fragmentation of quarks

near z = l. For the proton, neutron and A, we have the following

results:
-1
BB(2) o= (1-2) )
| y. -1 |
Dy (z) o= (1-2) N b) (v.1)
A
Dg(z)oCZ(l-z) B c) .

We do not know which quarks dominate in the case of the I and =, but
we have concluded that regardless of which quarks dominate, their
POWErs ¥s and %E must be greater than 7N and 72 S %E » All quark
fragmentation functions other than those in (V.1l) for the production
of p, n, and A behave like powers of (1 - z) as z = 1 which are larger
than 7N -1l. From this we conclude that the ratio of protons to any
other particle in the nucleon octet produced from the fragmentation of
a u quark diverges as an inverse power of (1- z) as z - 1. The same

statement can be made regarding neutrons produced from d quarks and
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A's produced from s quarks.

The quark fragmentation functions for the pseudoscalar
mesons are subject to relations similar to (IV.7) from charge conju-
gation and isospin invariance. This and our results ags to which quarks
dominate near x = 1 in the quark density functions can be translated
into statements on the limit asz — 1 of the quark fragmentation

functions; those with the lowest power of (1 - z) as z = 1 ares

x 7 4 3 7N-l
D, (z) = Dy (z) = Df {z) = Df (z)oc (1-2z) a)

) ) d 1

1to no (e} ﬂo 7M-l
D) (z) =D} (2) = D (z) = D" (z)o= (1-z) ~ o) (V.2)

d u

-~ KO EO K™ 7M—l
o* (z) = D (z) = D (2) = D, (2)o< (1-2) e) .

s s

The power 7M is the same as that appearing in (IV.8)° All other quark
fragmentation functions into pions or kaons not appearing in (V.2)
behave like (L - 2z}’ as z » 1 with y > Ty *

An interesting application of the above results lies in the
possibility of measuring the quark density functions of the proton and
neutron for all x from inclusive electroproduction experiments in the

Bjorken limit. As discussed in Section IITI, the function

£(x,2) = 5 u(x)D(z) + 5 L(x)D2(2) + 5 A(x)Dy(2) +
u

+ gam%@)+gaﬂ@@)+gaﬂﬁ@) (v.3)
S
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is measurable. The subindex p on fg(x,z) indicates that the target

is the proton. When the target is the neutron

h 4 n 4 = h i h
= e— \ - - — 4
fn(x,z) = d(X)Du(z, = d(X>DE(Z) g u(x)Dd(z) :
1 - h i h i = n p
+ zu(x)p (z) + 35 S(X)Ds(z) + = s(x)D_(z) (V.4)

We have defined the quark density functions u(x), d(x), ..., ehc.,
without subindices when they refer to the proton. By isospin in-
variance, the density of u quarks in the neutron is'equal to the
density of d quarks in the proton. The first term on the right-hand

4 h
side of (V.4) is therefore d(x)Du(z); it is the product of the

9
probability that a u quark in the neutron interacts with a virtual
photon (-;L- d(x)) and the probability of fragmentation of the u quark
into the hadron h. As we go to the limit z — 1 there are only one
or two terms contributing to (V.3) or (V.4) for certain hadrons h;
this permits us to extract the quark density functions.

Possibly the easiest way to obtain the nucleon quark density

functions using this method is to measure only charged pions and kaons.

Using the proton as a target and going to the 1limit z — 1, we have:
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2 o) - futopn) M+ Lapan) ™ a)
& o) - E e W Lt b
ff (x,2) = ég(x)ﬁ(l-sz_l c) "
£ (x,2) = LsGaoaon) W )

Only v and & contribute to n+, Uand d ko m , 8 to X" and s to K .

B and & are unknown constants. We know the shape of qg(z) as z > 1
but not the absolute normalization; there are relations; however, from
charge conjugation and isospin invariance which reduce the number of
constants. The functions on the left-hand side of (V.5) all behave
7M_l, the z dependence can therefore be factored out.

1,K "t
fp’ (x,2)/(1-2) we have the simpler relations

like (1-z)

Defining f;’K(x)

-+
2 (x) = 5B ulx) + 58 A )
() = £BEG) + 55 al®) b)
(V.6)
+
£5 (x) = 50 5(x) )
f‘;'(x) - L5 ax) ) .

We see that we can determine the functions §(x) up to a multiplicative

constant from making measurements of K& and K on & proton target only.
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To measure the other quark density functions a neutron target must

5, K 7,K "t
be used, Defining analogous quantities f ’ (x) = g (x,2)/(1-2)
for the neutron, we have the relations
+
7 4 R
£, () = 5B a(x) +35B0(x) )
T 4 , = 1
= — \
£ (x) 5 B d(x) + s u(x) b)
. . (V.17)
£ (x) = 8 5(x) e)
& 1
(x) = =8 s(x) a)

Equations (V.5) a), b) and (V.7) a), b) can easily be solved to obtain

u(x), ul(x), d(x) and d(x):

+ -
u(x) = 25 [ £ (x) - 7 £ (%) ] )
a(x)=—5-[f"—(x)-£f“+(x)] b)
128 i) 4 n
_ 5 x 1 e
a(x) = 58 [ £ (x) - T fp (x) 1 c)
i) = 122 [ £ (x) - & F (x) ] 2)
X_l—EE nx -pr

Hence, these quark density functions can be measured up to the same
multiplicative constant. A way to obtain the absolute normalization

is to substitute into the scaling function of the proton
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£(x) = 5 (u(x) + @(x) + 5 (a(x) + ) + & (s(x) + 5(x))

which has been measured.,

Another way to obtain the nucleon quark density functions

is to measure p, n, A and their sntiparticles near z =

This is

impractical experimentally and is only mentioned briefly; much higher

energles are required than in the case of the mesons.

Since protons

near z = 1 are produced only from u quarks, neutrons from d quarks,

A's from s quarks and their antiparticles from the corresponding

antiquarks, we have only one term on the right-hand side of (v.3)

as z 1. Using only the proton as a target we have

2 (x,2) = %u(x)g(l-z)ym—l
£(x,2) = £ aba aon) T
Ax,2) = 5 aGnaen) T
Bx,2) - E s T
B2 = S aan ™
Ax2) = L 5Gna-n) Y

The quark density functions can be obtained up to the two unknown
constants ¢ and n. These constants are, as before, determined by

substituting into the scaling function of the proton.

a)

b)

(v.9)
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VI. ELECTRON-POSITRON INCLUSIVE PRODUCTION OF HADRONS
We wish to describe the process
- + '
e +e —h + Anything (VI.1)

in which one final hadron is observed in the collision of an electron
and a positron where an unrestricted number of other hadrons may be
produced. To lowest order in the electromagnetic coupling constant

the process is described by one photon exchange as illustrated in

Figure VI.1l. We define

= 2 1 4 igex
ww(q ,v)=§;[*fd x e %< o[Ju(x)lh,n > < h,nlJv(O)IO > (VI.2)

There are two structure functions as indeep inelastic scattering:

aq
— 2 _ _ v\ = 2
wpv(q ,V) = - (6MV —55—) Wi(q s8] &
4 heq h.q =, 2
+ S (h - ot q“ (hv - g qv) W2(q ,v) (VI.3)
M Hoog qQ

the four-momentum of the hadron h is hu, qu is the four-momentum of

the virtual photon. The invariants used are q2 and v where Mv = heq,

M is the mass of h.

The differential cross section is given by



1
%o _ o My (l q” ) S
dEdcos® = [, 2y2 , 2\3 B
° (a9)" (a)* v
= , 2
2y v (a%,v)
- 2My q g #TO .2]
x i:QWl(q sV +q2 (l-—v—g) e GINTG (VI.4)

E is the energy of h in the center of mass and © is the angle of the
momentum of h with respect to the direction of the incident particles
in the same frame.

We define the Bjorken limit, in analogy tc the case in
electroproduction, as the limit in which q2 —> o, Vv > o ywith their
ratio fixed. The'invariant 2Mv/q2 is the ratio of the energy of h
to the energy of the incident electron in the center of mass; this
ratio is also the ratio of the momenta of h and e in the center of
mass in the Bjorken limit.

Drell, Levy and Yan,(lg) using a parton model they pro-
posed,(lg) in which the elementary fields are pions, nucleons snd
antinucleons with a transverse momentum cut-off, showed that in the
Bjorken limit the structure functions Wi and vﬁé become a function

of the ratio EMV/q2 only. Light cone analyses have been made with

(14,20, 20) In our view of the parton model, this

similar results.
scaling relation is a result of the assumption of limiting parton
fragmentation. The time-like virtual photon produces a parton and an

antiparton moving in opposite directions in the center of mass. These

partons fragment into hadrons producing two jets of particles of low
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(~0.3 GeV) transverse momentum.relative to ﬁhe direction of motion of
the partons. The probability of the production of s hadron with a
fixed ratio of its longitudinal momeﬁtum to the momentum of the parton
or antiparton goes to a constant as q2 — o, If charged partons have
spin 1/2 and we have limiting fragmentation, the following relations
for the structure functions can be derived in the Bjorken limits
oM (g2 _¢z)
L (a5v) = = a)
(VI.5)

R (@20 = - e b)

where z = 2Mv/q2, The function Gh(z) is given in terms of the parton
fragmentation functions Dg(z), defined in Section III, by

¢*(z) = § @ 0F (2) . | (V1.6)

The sum runs over Ppartons and antipartons of all types; Qa is the
charge of the parton of type O measured in units of the electron charge,
More than scaling of the structure functions is implied by
the fragmentation model. If electron-positron annihilation experiments
fail to see hadron jets at sufficiently high energy, the model would
be invalidated. |
The fragmentation functions qg(z) are the same as those
which appear in (III.3) for the inclusive structure function in

electroproduction. In the quark parton model the Dg(z) could in
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principle be measured in neutrino and antineutrino deep inelastic
inclusive electroproduction of hadrons. These could be used to
predict the outcome of other experiments (as Gh(z) above), but the
low weak coupling constant makes this impractical.

We may obtaln various interesting results applying what we
have concluded in Section V about.the behavior of the quark frag-
mentatipn functions in the limit z - 1. Relations (V.2) imply that
the ratio of the number of = 's to the mumber of xtrs produced at
any given angle in reaction (VI.l) goes to a constant independent of

z as z =1, that is

Tt
Ef:LEl — constant 2z —>1 . (VI.7)

g (z)
This ratio could in principle be a function of z everywhere. From
(V.2) the same relation holds for any type of pion or kaon with
possibly different constants. If the numbers B and ® in (V.5) were
known from inclusive electroproduction these constants could be
obtained in terms of the charges of the quarks. From (V.l) and (VI.6)
we conclude that the ratio of protons to neutrons and the ratio of
protons to A's produced in reaction (VI.l) go to a constant as z — 1.
From isospin invariance DE(Z) = Dg(z); this implies that +the constant

in the ratio of protons to neutrons is 4 near z = 1:

jY
G~ (z) -~ 4 as z = 1. (VI.8)
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Protons are produced only from u quarks and neutrons from d quarks
near z = 1, since u U pairs are produced four times as often as d 4
pairs from time-like photons we have the relation above. We cannot
obtain the constant for the ratio of protons to A's since we do not
know the relative normalizations in (V.2) a) and (V.2) c).

As a last point we shall discuss the behavior of the quark
fragmentation functions Qg(z) when z is small. We shall rely on an
argument given by Feynman(l) in suggesting that the hadrons produced
in a hadron-hadron interaction have a distribution dpz/E for small
values of pZ/P; P, and E are the z component of momentum and energy
of the inclusively produced outgoing hadron, and P is the incident
momentum in the center of mass. The incident particles are moving
along the z axis. The cross section for exclusive reactions in which
a quantum number coupled to hadrons must be exchanged are known to
fall as an inverse power of the center of mass energy. An example of
such a reaction is m + p —ano + n, in which the third component of
isospin changes rapidly from —3/2 units moving in the direction of
the n~ to + 1/2 unit moving in the direction of the n~ (when the s°
goes in the forward direction). It is argued that the cross section
for this reaction must fall with energy because as energy increases
the probgbility of changing the isospin current without radiating
other hadrons decreases. Becuase of the rapid change in the isospin
currents, the radiated hadrons have a sharp distribution in coordinate

space in the z direction. By Fourier transform, the energy is uniform

in P, if the energy is distributed in fixed ratios among the different



types of particles then each kind of particle will have a distribution
dpz/E it pZ/P is small. An entirely analogous argument can be made in
the case of electron-positron annihilation intc hadrons. In the quark
parton model the virtual photon crestes a quark-antiquark pair which
fragments into hadrons. When g u u or & d pair is creagted, the isospin
current changes from zero tc one unit: when sn s s vair is created, it
is the strangeness current that changes. We shall assume that this
rapicd change in currents which are coupled to hadrons produces a dis-
tribution of the form de/E argued for above. This implies a distri-
bution dz/z for the qusrk fragmentation function Qg(z)dz for small z
This argument applies also tc any parton model in which the partons

carry quantum nunbers coupled to hadrons.
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FIGURES

Figure IT.1 a) The distribution of partons in rapidity
for a hadron of momentum P. b) The same distribution for momentum
P! greater than P. The point y = O corresponds to g parton at rest

in the frame of the observer,
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Any hadrons

Figure IIT.1  The process e + N —»e' + h + Anything

via one photon exchange.
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|

i B -2xP a)
pw
———— >
i
-xP i b)
——e

Figure III.2 Parton distributions: a) before interaction

with virtual photon; b) after interaction.
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A/FTN\a ,
A AV A

Figure III.3 Parton distributions in the rapidity variable
y after the collision of a fixed q2 virtual photon with v higher in
b) than in a). The parton distribution in the neighborhood of y = O

remgins fixed as v — «.
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-2P

- i

Figure IV.l  Elastic scattering of a proton from s virtual
photon., In the parton model the proton must be in a configuration
where one parton is carrying almost all its momentum P with a low

momentum core, before and after the reaction.
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Any hadrons

Figure VI.1l  One photon exchange diagram for the process

e’ + e” > h + Anything.
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TABLES

u ¢§<o, 0, 0)

el
Il

d ¢g(o, 0, 0)

p={Er B, 3 00 56, 3 01 (25 0, o, 0)

.
]

+ 5
L = u¢(%:%z "l)
: 3 3
22 L [u @, 4, 1) +a d5@, 4, -1)]

= 3
rZ = d ¢ (%: ""%» “'l)

]

(o] -3— 1 1
8 ¢ (3, 3, -1)

- Il
i

= = 1
5 ¢ (%: -5 -1)

Il
I

Table IV.l. Decomposition of the nucleon octet at large

3,-
momentum and x — 1 as a quark and a core ¢ (1, IB’ S) which is a

member of a 3 representation of SU(3).
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p=4Eu a0, 0 -V2a s 1, 0)

1. 6 2 6
n:_ﬁd¢(1, 0, o)+\/’;u¢(1,-1,o)

)

(N -

A=A e G, 3, 1) - V3 ad’G, % 1)

2o {Lu g3, 4, ) - V25 85, 1, o)

- (Ela g, 3 D) +a %G, 5 1 26 80, 0, 0)
2= {tade, 4, )+ (25 800, 1, 0)

2 - fZu g0, 0, &) -{%a #56, 3, )

= = 22 ¢%0, o, -2) +1s G, 3, -1)

Table IV.2. Decomposition of the nucleon octet at large

momentum and x = 1 as a quark and a core ¢6(I, IS’ S) which is a

member of a 6 representation of SU(3).



