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ABSTRACT 

In Part I , the common be lief that fermions lying on linear 

trajectories must have opposite-parity partners is shown to be 

false . Reggeization of a sequence of positive-parity fermion 

resonance is carried out in the Van Hove model . As a consequence 

of the absence of negative-parity states, the partial-wave ampli­

tudes must have a fixed cut in the J plane . This fixed cut, in 

conjunction with the moving Regge pole , provides a new parametriza­

tion for fermion-exchange reactions, which is in' qualitative 

agreement with the data . 

In Part II , the spin structure of three particle vertices is 

determined from the quark model . Using these SU(6)W vertices in 

the Van Hove model, we derive a Reggeized scattering amplitude . In 

addition to Regge poles there are necessarily fixed Regge cuts in 

both f e rmion and boson exchange amplitudes . These fixed cuts are 

similar to those found in Part I , and may be viewed as a consequence 

of the absence of parity doubled quarks . The magnitudes of the pole 

and cut terms in an entire class of SU(6) related reactions are 

determined. by their magnitudes in a single reaction . As an example 

we explain the observed presence or absence of wrong-signature 

nonsense dips in a class of reactions involving vector meson exchange . 
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INTRODUCTION 

The Regge trajectory language has proved to be one in which 

much of high energy phenomenology can be simply expressed . The 

simple linear form and almost universal slope, which almost all 

trajectories seem to have , account for much of the structure of the 

hadron spectrum and the high energy behavior of many scattering 

amplitudes. The simplicity of the Regge parameters, which Regge 

theory alone cannot account f or, is certainly a clue to the theor-

etical substructure of hadrons . 

One of the few exact consequences of Regge theory is that 

fermions lying on a linear trajectory must be accompanied by 

opposite parity partners . Hence it has always seemed puzzling that 

there are no opposite parity partners to the known baryons. · The 

+ -only candidates for a parity doublet are the 5/2 and 5/2 baryon 

octets, but these differ in their F/D ratios . In this thesis we 

show that a straightforward approach to the problem of fermion 

reggeization does not lead to the existence of parity doublets. We 

find that the. natural form of a Regge amplitude associated with a 

sequence of fermion resonances of definite parity is one in which 

fermion trajectories are in general accompanied by fixed cuts. As 

an alternative to fixed cuts, one may make the ad hoc assumption 

that parity doublets exist. 'lhe absence of such states is the 

strongest support for our work. We find that the existence of our 

v 
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cuts is in qualitative agreement with the data. 

We also examine the problem of boson reggeization when the 

bosons are viewed as quark-antiquark composites. Previous treatments 

of this problem required that the spin 1/2 quarks be parity doubled, 

much as the fermions in fermion reggeization. Again we show that 

parity doubling the quarks, which would quadruple the number of bosons, 

is not required in a straightforward approach. We again find that 

trajectories are accompanied by fixed cuts, this time as a consequence 

of the absence of parity doubled quarks. The data for a whole class 

of boson exchange reactions are shown to be in qualitative agreement 

with the existence of our cuts. 

Our approach to reggeization follows that of Feynman and 

Van Hove, in which a Regge amplitude is expressed as the sum of 

its pole singularities. Such an amplitude has required analyticity 

properties, and only the input particles. In other words, we 

construct a Regge amplitude with the minimum requirements as input. 

We then abstract from the model the basic characteristics of the 

amplitude. The major part of this thesis is just applying this 

approach to the two problems discussed above . Section I is 

concerned with the problem of fermion reggeization. In Section II 

we review the quark model and give a simple approach to boson 

reggeization within the quark model . In Section III we give a more 

elegant approach to the material of Section 2 and show clearly the 

connection b etween . fermion reggeization and reggeization of particles 

which are composites of fermions, i . e., bosons viewed as quark-anti-
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quark composites. Section III also gives a simple formulation of our 

results in terms of quark graphs. 



PART I 

FE&.~ION REGGEIZATION WITHOUT PARITY DOUBLING 

Gribov1 showed that every fermion Regge trajectory a+(W) 

2 must be accompanied by a MacDowell symmetric trajectory 

a-(W) = a+ (-W) of the opposite parity . If (as is indicated by 

experiment for Na and 6
0

) a trajectory is linear in u = w2
, its Mac­

Dowell twin will be degenerate with it . Hence it has always seemed 

puzzling that no parity partners of the N and 6(1238) have been 

found . Attempts to find an analytic form in which states on the Mac­

Dowell twin are systematically suppressed have not been successful . 3 

We deduce t he appropriate analytic form from a model containing only 

resonances of positive parity lying on a linear trajectory . The 

partial-wave amplitudes are found . to have a fixed Regge cut, and the 

negative-parity (NacDowell twin) trajectory lies on an unphysical 

sheet of the J plane at positive energies . The idea of a fixed Regge 

cut is not new; it is present in the solution of the Dirac equation 

with a Coulomb potential . 4 In the present problem it is , of course, 

possible to have parity doubling and no Regge cut; but lacking any 

a priori reason for parity doubling, we anticipate in general the 

presence of a fixed Regge cut in fermion-exchange amplitudes . 

We will illustrate the origin of the fixed cut in the Van Hove 

5 model . The amplitude in this model ·is t he sum of Feynman diagrams 

for the exchange -of all resonances along a given trajectory. · Clearly, 

1 
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this amplitude satisfies the us ual analyticity requirements and con-

tains only the resonances of the input trajectory . In TIN scattering, 

the Feynman diagram for the exchange of a natural-parity 

(JP= 1/2+, 3/2-, 5/2+, .•. ) fermion resonance of spin J 

and mass m( t ) in the u channe1
6

•7 is 

t + 1/2 

' (1) 

J where T is t he propagator for a spin-J fe rmion . We Reggeize by 
µ ' \/ 

summing a sequence of r esonances and transforming the sum into an 

8 integral a la Sommerfeld and Watson : 

Jn.::: l: 'Jh.(J) 
J 

i 
"' 2 f di 

2( ) 2 t ' ( ) g t p p t +l -zu 

(u - m
2

(i )) sin 7T i 
(2) 

All terms but those contributing to the leading power of the asympto-

tic expans ion of 'JU.(u,z ) as z + 00 have been dropped. u u 

If we take m
2
(i) = ( i - a )/a ' and assume for convenience that 

0 

g
2
(i) is analytic in i , 9 we can open the contour in the i plane and 

obtain a contribution from the pole at m
2
(i) = u and the cut with 

branch point at i =a (see Fig . 1), This gives 
0 

Jn.cu, z ) = 
u 

7T g2(a(u)) p2a(u) P' (-z ) a' 
a (u)+l u 

sin 7T a(u) 

- ~ 
-J-:f(;) 

2i ' ( ) p pi+l -zu 

(u - m
2 

( i ),) sin7Ti 

(3) 



where 

In the limit z 
u 

+ Q) 

3 

a(u) 

, 

a + a ' u 
0 

2 a (u) 
){l(u,z ) +TI g (a (u)) c(a (u)) s a ' 

u sin n a(u) 

2 R, 
dR. g (R. ) c( R. ) s 

~ (u - m
2

(R.)) sin nR. 

where rcu+2) c ( R, ) = -----,.-
4 R, (r(R-+1)) 2 

(4) 

(5) 

(6) 

The first term of (5) has the form of a Regge pole contribution while 

the second term has the form of a Regge cut. The singularity at u=O 

in the residue of the pole term is cancelled by the cut term, so that 

'Jn.is analytic in u (see Eq . (11)). 

The principal features of our solution can be seen in the par-

tial-wave amplitudes 
+ 2 

fJ±l/2 (W) , which can be read off directly from 

(1). We find that 

E::;:M'(~ ±~o) ,., r 2n 2 
01. "" p N g ( R, ) 

- 8nW R, - a
0 

- a'u ~ 
(7) 

where 2. = J - 1/2. There is a moving pole at R, = a(u) and a fixed 

the moving pole in + is the cut at R, = a . Note that fJ- 1/2 on 
0 

physical sheet of the R, plane only for w < 0 . As we move from W < 0 

to W > O, the pole at R, = a(w2) moves through the fixed cut . onto 

the second shee·t of the R, plane as shown in Fig. 2; this explains why 
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t her e are no negative- parity resonances in our model. 

The cut (t-a )-l/2 in (7) is due to the presence of odd powers 
0 

of m(t) in (1) . We can obtain a solution wi th no Regge cut only if 

we include negative-parity s t ates along with the positive-parity 

ones . This would correspond the the usual solution ; but it clearly 

involves the ad hoc assumption t hat the negative-parity states exist . 

Unless g2 (a ) = 0 , the partial-wave amplitudes (7) have infin­
o 

ities f or t ~ a , in violation of unitarity . 
0 

Of course , our model 

has zero-width resonances, so i t is clearly not unita ry . We wish to 

demonstrate that t here exists a smooth limit from the unitar ized 

t heory to the zero-width limit, and t hat this limit should be useful 

in parametrizing experimental data . The procedure fo r unitar izing 

t he model has been discussed by Sugar and Sullivan,
11 

who find that 

certain fixed poles are converted into moving poles in the process . 

12 
In our case the unitarized partial- wave amplitudes have the 

form 

+ 
f J ±l/2 = 

E±M 
87TW 

[m( t )-g
2
(t) a(u)] W -[m

2
( t )+g

2
( t )b(u)J 

(8) 

whe r e a (u) and b(u) are f unctions with t he proper right-hand cuts in 

The amplitudes + have a fixed t = a and only mov-u . f J±l/2 cut at 
0 

poles . In particular if g2 ( i ) + have ing = c , a cons t ant , f J±l / 2 

moving poles, 
13 

with traj ectories 14 given by two a l 2 , 

W ±""'1w2 -4cWa (u) -4cb(u) (9) 
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In the limit a,b + 0, a
1 

+ a (u) (the input positive-parity traj ­

ectory) and a2 + a
0 

(a fixed pole). Thus we can interpret the 

factor ( i - a )-l/2 in (7) as the coincidence of a fixed cut , 
0 

( i - a )1/2 
0 , 

-1 
and a fixed pole, (i - a ) • When the model is uni-

0 

tarized, the fixed pole becomes a moving pole just as in Ref . 11. 

Although the pole at i = a
2

(u) does contribute to the asymptotic 

scattering amplitude, as long as a and b are small the trajectory 

a2 (u) will never rise high enough to produce any physical resonances. 

Unless a(u) and b(u) are small, the unitarized trajectory will 

deviate from the linear form (4). Since experiment indicates approx-

i ma tely linear trajectories, we conclude that a and b may be neglected 

and data may be parametrized using (5). 

For small negative u, we make the approximation 

2 
g (a (u)) c(a (u)) a ' 

Then (5) becomes 

M :::: rr ( :
0 

+ G1 w) 

- 'lT [( :o + Gl ~i 

sin 'lTa(u) 

s 
a +a'u 

0 
'(\{ - W) 

a ' u Gl J a 
s (1-erf c-Ja 1 u ins)) --va ''lTi n s s 

0 
\l 

The first term is clearly a Regge pole, and the second is a fixed 

Regge cut, since 

(10) 

(11) 

erf (x) [ xJ + ~ 1 - ~ .-x2 ~ - 2~3 + •• J larg xi< 3'1T/4 • (12) 
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We can see explicitly how the singularity in the pole residue is 

canceled by the cut , The remaining part of the cut term has no ~ 

singularity because erfx is odd in x . Signature may be incorporated 

in our formulas by the modification 

With this modification, the pole term in (11) will acquire the usual 

signature factor and the cut will have a complicated varying phase. 

The strongest experimental support of our work lies in the ab-

sence of parity partners to known fermion resonances. Also our 

conclusion that the partial-wave amplitudes contain a fixed Regge cut 

does not clash with experiment. Note that by an appropriate choice 

of G
0 

and G
1

, the ratio of the cut contribution to that of the pole 

can be chosen arbitrarily for a given range of s. If the pole contri-

bution is dominant, we expect to see typical Regge shrinkage and dips 

where the trajectory passes through wrong-signature nonsense points . 

When the cut dominates, there will be no shrinkage and no wrong-

signature nonsense dips . Nucleon-exchange data support this corre­

lation . In + 
TI p backward scattering, the data show Regge shrinkage 

and a marked dip a·t u = -0 . 2 . 0 
In backward TI photoproduction, there 

is no shrinkage and no dip at u = -0 . 2 . 



PART II 

REGGE AMPLITUDE ARISING FROM SU(6)W VERTICES 

1. Introduction 

The SU(3) symmetry of the quark model has been extremely use-

ful in classifying strongly interacting particles and in predicting 

the relative strengths of their couplings. Spin has been incorporated 

in the model to give a successful classification of hadron states 

15 under SU(6). The most natural way of treating spin at three particle 

16 17 
vertices yields the symmetry SU(6)W. , While this symmetry correct-

1 d 'b . 17 h h . 1 b f 1 y escri es many vertices, t ere as previous y een no success u 

1 . . . 18 l' d app ication to scattering amp itu es . 

In this thesis we determine the form of the Regge amplitude 

which results ·from assuming SU(6)W as a vertex symmetry. Knowledge of 

vertices involving a spin J resonance enables us to construct the 

Feynman amplitude for the exchange of the resonance . Then, using the 

5 Van Hove model , we can express ti.1e Regge amplitude as a formal 

sum (on J) of such resonance exchanges. Hence in this model, 

the form of the Regge amplitude is determined by the assumption of 

SU (6)W symmetric vertices. We find that Regge poles are , in general, 

accompanied by fixed Regge cuts, with branch points at the zero energy 

intercept of the trajectory. These fixed cuts are similar to ' those · 

suggested in Part I of this thesis f or fermion exchange amplitudes as a 

7 
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consequence of the absence of parity doubled fermion states . The 

fixed cuts found here for meson (quark-antiquark.) exchange amplitudes 

may be viewed as a consequence of the absence of parity doubled 

19 
quarks . 

The presence of significant fixed cut terms has important exper­

imental consequences. The shrinkage characteristic of a Regge trajec­

tory with normal slope will be absent in those amplitudes which have 

fixed cuts, and there will be no dips at wrong-signature nonsense 

points along the trajectory. Given the magnitudes of pole and cut terms 

in some reaction, we are able to predict the magnitudes of these terms 

for a whole class of SU(6) r elated reactions . Applying our approach 

to a set of vector meson exchange processes , we find that the numerical 

importance of cut terms--as indicated by the presence or absence of 

wrong- signature nonsense dips in differential cross sections-- is in 

accord with our predictions . 

An outline of Part II of this thesis is as follows . In Section 2 

we show that SU(6)W is the natural vertex synunetry arising from the 

quark model and remind the reader how to calculate SU(6)W vertices. 

Construction of a Regge amplitude from the SU(6)W vertices is carried 

out in Section 3. Some consequences of our approach are given in 

Section · 4, with particular attention to the question of wrong-signature 

nonsense dips. A discussion of our work is given in Section 5 with 

some suggestions for further research on this problem. 
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2. The Quark Model and SU(6)W 

The classification of baryons as qqq composites and mesons as 

qq composites implies that any SU(3) invariant vertex 

may be pictorially represented by quark graphs . (See Fig . 3.) These 

graphs are drawn according to the following rules: (a) Each quark or 

antiquark is r epresented by a directed line. (b) A baryon or anti-

baryon is represented by three lines running in the same direction. 

(c) A meson is represented by two lines running in opposite directions. 

Zweig20 suggested an additional rule: (d) The quark and antiquark lines 

of a single meson should not be connected. (This rule accounts for the 

absence of the decay ~ ~ p~ and the weak coupling of the ~ to 

nucleons.) Note that the rules (a) - (d) are precisely those used by 

21 22 
Harari and Rosner to construct their duality diagrams. 

We wish to incorporate spin into the quark graph picture in the 

simplest possible fashion. We choose a Lorentz frame in which the 

particle momenta are collinear along the z axis . In such a frame, we 

assume that the spins of quarks a , b, and d (in Fig. 3) are unchanged 

in the reaction. How, then, must the spins of the annihilating quarks 

c and e be related? The parity of a qq pair is -(-1)
1

, so if parity 

is to be conserved, q and q must annihilate in an odd angular 
c e 

momentum state . Then angular momentum conservation requires that L = 1 

and that the quark spins form a triplet. If, furthermore , the trans-

verse motions of the annihilating quarks may be neglected , then the 

quark momenta lie along the z axis , so L = 0 and hence z s = 0. 
z 
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Thus we see that the qq state annihilates with the quark spins 

in a triplet state, S = 1, S = O. This is exactly the result given 
z 

by the collinear synunetry SU(2)W. 16 
Taking into account the SU(3) 

quantum numbers of the quarks, we obtain SU(6)W as the natural vertex 

23 
symmetry of the quark model . Note that the derivation above is 

independent of what collinear frame we choose, since SU(2)W states are 

invariant under boosts along the z axis. 

Choosing some collinear frame , it is easy to calculate the SU(6)W 

symmetric vertex functions . Let each quark be represented by a pair 

of indices (a, a), where a specifies its SU(3) nature and~ gives its 

spin orientation along the z axis . In a collinear frame , the meson-

baryon vertex (Fig . 3) has the form 

B B(aa)(Sb)(od) M(ye ) D 
(aa)(Sb)(yc) (od) ec 

(1) 

The matrix 

D • ~ (: : ) (2) 

in (1) specifies that qc and qe annihilate in a spin state S = 1, 

s = o. z 

Let us recall the form of the SU(6) wave f unctions
24 

for the 

~baryons, B(aa)(Sb)(yc) , and the~ mesons, M(aa) ( Sb )• 
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B(aa)(Bb)(yc)m 1 = -3 

+ Da8y i (m) 
(cr C) ab i; ci (3) 

The superscript m = a+b+c gives the spin projection of the baryon. 

X is a two-component spinor 

x(+l/2) -c) 
and i;(m) is a vector-spinor, 

a 

= 

where 

x(-1/2) = (:) 

±1 1 (+1, -i, O) e: = -
2 

0 
(O, 0, 1) e: = 

The matrix C is given by 

c = i a = (_: :) y 

Bae and DaSy are the SU(3) matrices for the octe t and decuplet: 

--1_ Eo 
Y2 

+ 1 Ao 
T 

E+ p 

Ba E 1 0 1 0 

8 - .yr E + .::W:- A n 

-" =o 2 Ao --\fb 

(4) 

(5) 

(6) 

(7) 

(8) 



Dlll 6-++ 

Dll3 1 *+ =-l: -v:; 
0

123 1 *o 
=- l: 
'16 

D222 = 6 

D233 = _l_ 3 
\J3 

12 

n
112 

= v1- 6+ 

Dl22 = _l_ 60 

-13 
Dl33 = _}; 3o 

D223 = _l_ r.*-
-VJ 

. D333 = n-

The meson wave function is 

M(aa) m 
( Sb ) 

Pa C + Va (m) ( i ) 
S ab S e: i a C ab 

where 

1 0 1 0 + 
-1T + i/6 .n 1T 

Vi 
pa 1 0 1 0 

1T --1T +-n s 1/2 Y6 

K K° 

and 

1 (wo + po) + *+ 

Y2 
p K 

Va = 1 0 0 *o 
s p 

-V2 
(w - P ) K 

·*- -*o 
K K 

(9) 

(10) 

K+ 

Ko 
(11) 

2 0 
- - n 
-v-6 

. (12) 
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The superscript m specifies polarization for the vector meson nonet. 

Using (3) and (10) in (1), we obtain the vertex functions gi-

ven in Table I . The 56-56-35 vertices are all determined to within - ...... -
a single constant factor by the SU(6)W symmetry . Similarly, the 

35-35-35 vertices may be computed from the coupling - - ....... 

Ml(aa) 
(Bb) 

M2 (Bb) 
(ye) 

M3(yd) 
(aa) 

The results are summarized in Table 2 . 

(13) 

Using the information in Tables 1 and 2, it is a straightfor-

ward matter to calculate the invariant vertex functions which, in a 

collinear frame, reduce to those given in the Tables. These invariant 

vertex functions are listed in Table 3 .
25 

Common mass factors have 

been absorbed in the constants c and d to give the entries a simple 

form. 

The extension of the couplings in Table 3 to vertices :i,nvolving 

Regge recurrences of the listed states is easily made. For example , 

the SU(6)W symmetric coupling of two pseudoscalar mesons to a V recur­

rence (quark spin 1) of spin J = L + 1 will be . 

(e denotes the polarization of the V recurrence . ) The higher spin 

indices simply couple to appropriate momentum factors . In general , 

couplings for excited states with a given quark spin assignment may be 
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constructed by decomposing the spin of t he states into quark spin 

and orbital angular momentum and coupling the quark spin according t o 

SU(6 ) W. This will give a unique result whenever two of the states 

have no orbital excitation . In other cases there will be mor e than a 

single coupling fo r each class of SU(6) - related reactions. 

Note the presence in Table 3 of factors involving the masses M
1

, 

M2 , M3 . These factors have a simple kinematic origin . Some of these , 

e . g ., (M1 + M2)
2 

- M3
2

, arise because the SU(6)W symmetry relates 

vertices involving different angular momenta . Other factors , e . g ., 

M
3 

in the P
1 

P
2 

V vertex , arise because the symmetry relates vertices 

involving vector mesons of different helicities . The polarization 

26 
vector for a vector meson of zero helicity is proportional to l/~. 

Hence , within a class of vertices related by SU(6)W' those vertices 

involving a zer o helicity vector meson will cont ain an extra fac t or of 

~ relat i ve t o those not involv ing a zero helicity vector meson . This 

is the only source of odd powers of meson mass ; the angular moment um 

2 factor s wil l always contain factor s of (meson mass) • 

3 . Construction of a Regge Amplitude 

The pr esence of extra "kinematic" factors in the vertex f unctions 

has important consequences when we construct a Regge amplitude . In 

general , we find the presence of fixed Regge cuts with branch points 

coinciding with the zero energy intercepts of the Regge trajectories . 
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This phenomenon has been discussed previously for fermion exchange 

processes ; here we find cuts for boson or fermion exchange processes 

and predict the relative strengths of the cuts in different processes. 

27 
The Van Hove model expresses a Regge amplitude as a formal sum 

of Feynman diagrams for the exchange of all resonances along a given 

28 
trajectory . Consider, for example, the reaction 

+ 0 0 
TI + TI ~ TI + W 

* mediated by p exchange (see Fig. 4). The coupling at a wp TI vertex is 

(14) 

* * for a p of spin J. The TITIP coupling is 

(15) 

* The Feynman diagram for the exchange of a p of a spin J is therefo~e 

T(J) . 
µ1 · · . µJ ; \)1 · •• \)J 

2 
t - m 



2id2(J)m(J)4J 
2 

t - m (J) 

16 

CLSyo 
e: 

..p + -
.J(p ' p ) (16) 

where T~;~/(t - m
2

(J)) is the Feynman propagator for a particle of 

spin J, 

and 
2 

t = Q • We assume that m = m to simplify the kinematics. 
1T w 

Summing over J and transforming the sum into a contour integral gives 

Jn.= E Jn(J) = 1:_ Z f dJ 
J 2 13 c 

using the abbreviation 

i (J)m(J) 
2 

t - m (J) 

1 
J 

The contour C is indicated in Fig . 5. 

linear function of J, 

J - CL 
0 

CL' 

d 
(18) 

(19) 

2 
If we assume that the m is a 

(20) 

and that d
2

(J) is analytic , then we can open the contour in the J 

plane obtaining contributions from the pole at 2 m (J) = t and the cut 

wi th branch point J = CL • 
0 

This gives 



2 
J'?t= 7T d ~a) ..ft a ' 

sin 7Ta 
1 a 
J a 

p 13 

17 

d
2

(J) ~ 1 

(t - m
2(J)) sin 7TJ J 

a 

whare a(t) = a + a 't 
0 

In the limit 

where 

+ - 2 s = (p + p ) + 00 

dJ 
d2(J)~ b(J) SJ-l 

(t - m
2

(J)) sin 7TJ 

b(J) = f(2J + 1) 

(r(J+l)) 2 

(21) 

(22) 

(23) 

(24) 

It is clear that (23) consists of a moving Regge pole term and a fixed 

Regge cut. Nonsense couplings along the trajectories are presumably 

eliminated in the usual way be zeros of d2 (J) at J=O, -1, -2, .••• 

Therefore, for negative t, we can approximate 

d2 (a(t)) b(a (t)) a ' 
sin 7Ta(t) = d 

0 
(25) 
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Then (23) becomes 

'Yw= 7T d + [ r= f (-/a't i ) a (t)-1 + 1 Sao-1] 
JU o Zl3 Pe l""'t er n s s -"'Ja'lT ins 

= 7T d 
0 [.ft 

a -1 

S
a(t)-1 + s 0 

1 
3/2 (l+d( I i 

2t ...,[; (a' in s) a t n 

(26) 

In Eq . (18) it is clear that the fixed cut arises from the pre­

sence of an odd power of m(J) and the assumption that d
2

(J) is 

even in m(J), i . e ., analytic in J. If , for example , 

i (J) = m (J) d
1 

(J) , with d
1 

(J) analytic , then the 7T7T + 'ITW ampli-

tude would have no fixed cuts . In this case , however, there would be 

fixed cuts in the amplitudes 7T7T + 7T7T and 7TW + 'ITW . Hence the pre-

sence of fixed cuts in some amplitudes is inescapable . 

4. Experimental Consequences 

The presence of fixed Regge cuts has three important experi-

mental consequences . (1) Asymptotic behavior . At sufficiently high 

energies, the Reg~e cut term gives an energy falloff independent of 

29 
t . (2) Polarization . When signature is incorporated in the model 

by the replacemen t 

(2 7) 
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Regge pole t erms will acquire the usual Regge phase , but cut terms 

will have some complicated varying phase . Thus there can be inter-

fcrence between the pole and cut terms, and exchange of a single 

Regge trajectory will be able to give non- zero polarization. (3) 

Wrong- signature nonsense dips . The contribution from a single Regge 

pole term vanishes when the trajectory passes through a nonsense 

value of the wrong-signature. The cut term does not vanish, however, 

so an amplitude with a significant cut term will show no dip at 

i 
. 30 

wrong-s gnature nonsense points. 

A qualitative discussion of the third point is easy to make. 

We will restrict our attention to processes involving vector meson 

exchange . In Section I we gave a simple criterion for determining 

t he presence of odd powers of ~ in vector meson vertices. The 

argument required examining the vertex in a collinear f rame . No te 

that the t-channe l center-of-mass frame is collinear for both ver-

tices, so we can apply the argument of Section 2 directly to t-chan-

nel helicity amplitudes . The factors of m(J) which will appear 

* * in t-channel helicity amplitudes involving various p or w 

vertices are given in Table 4. Ass uming the absence of a cut term 

in some particular helicity amplitude, this Table allows us to 

predict the presence or absence of cut terms in other helicity amp-

litudes . In general , a reaction will have no cuts in some ampli-

tudes and cuts in others . We must pay attention to the relative 
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magnitudes of the different amplitudes in order to assess the 

importance of cut terms in any given process. 

In Table 5 we tabulate the magnitudes of the helicity ampli-

tudes and the factors of m(J) which lead to Regge cuts for a 

number of reactions
31 

involving the vertices of Table 4. The 

* relative magnitudes of the contribution of a spin J V exchange to 

the various t-channel helicity amplitudes are given by 

f Ct 2 (J) ) = v (>.) v ( µ) (>.) 
>.µ =m , s 1 2 el 

* 
• e2 (µ) G(J) • (32) 

v
1 

(>.) and 

and 2 , and 

v (µ) 
2 
e (µ) 

2 

are the SU(6)W vertex coefficients from Tables 1 

specify the orientation of t he quark spin of 

* the V at vertices 1 and 2 respectively in the t -channel center- of-

mass . Equation (32) is obvious for J = 1 and is valid for arbit-

rary J because the higher spin indices always couple to additional 

momentum factors at each vertex . In the limit s + ~ , 

In Table 5, then, we tabulate simply 

jv
1 

( >.) ~2 (µ) c(J) d(J)/(-0) l>-1 + jµl I 

For convenience , we have defined 

(J) = c(J) d(J) 
g 36 m(J) 
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Genuine kinematic factors (kinematics of TIN + TIN are assumed 

for all reactions listed) are tabulated as -ft or t. The factors 

of m(J) induced by SU(6)W are determined from Table 4 and tab-

ulated in the appropriate helicity amplitudes . 

The qualitative features of the data for the reaction 

0 
TI p + TI n indicate that the reaction is dominated by a Regge pole 

in the t-channel helicity 1 amplitude . Therefore , the function 

g(J) ~n Table 5 must be approximately even in m(J) , i.e., analy-

tic in J, so that the helicity 1 amplitude is purely a Regge pole 

term while the helicity 0 amplitude contains a Regge cut as well. 

This cut arises from the presence in the amplitude of a factor 

m(J) and is referred to in Table 5 as a weak cut. As can be seen 

in (26), the contribution to the scattering amplitude of a weak cut 

(m(J) g(J)) at t = 0 is suppressed by a factor 

(TI a ' i ns )-l/Z relative to a pole term (g(J)). A cut arising 

from the presence of a factor l/m(J) is referred to as a strong 

cut . The magnitude of a strong cut (g(J)/m(J)) is larger than 

that of a weak cut by a factor of 2 a ' i n s . 

Now in Table 5 we see that the helicity 1 amplitude in 

TI p + wn contains a strong cut with a numerical coefficient larger 

than that for the pole term in the helicity 0 amplitude. Therefore , 

in this reaction, the cut effects should be appreciable and we 

expect no wrong-signature nonsense dip. Proceeding in this manner , 
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we may make the other predictions given in the last column of Table 

5. These predictions agree with exper iment for all the reactions 

1 . d 32 iste • 

5 . Discussion 

The qualitative discussion above should be largely unaffected 

by the manner in which the SU(6) symmetry of our theory is broken. 

Symmetry breaking will alter the SU(3) factors and numerical coef-

ficients in Table 3, but will not affect the mass factors, which 

arise solely from kinematic considerations . In Table 5 it is 

apparent that the question of dip or no dip depends primarily on 

these mass factors . In a quantitative fit of differential cross sec-

tions and polarization phenomena, symmetry breaking effects will be 

important and a more detailed theory will be necessary . 

Aside from symmetry breaking, an important question concerns 

the relation of our work to duality . Since both schemes are based 

on identical quark graphs , it seems likely that they may be fused 

in a unified approach . 



PART III 

COVARIANT CONSTRUCTION OF QUARK GRAPH AMPLITUDES 

In Part II we described mesons as quark-antiquark composites 

and baryons as three quark composites by using non-relativistic SU(6) 

wave functions for quarks, and writing the hadron wave function as an 

outer product of the SU(6) wave function of the constituent quarks. 

Vertex amplitudes for a collinear frame were then calculated with 

these wave functions, and the corresponding relativistic form of 

each amplitude was guessed. "Guessing" involved writing all possible 

invariant vertex couplings, evaluating them in a collinear frame, and 

solving algebraically for the combination which produced the collinear 

amplitude. A much simpler approach is to start with covariant wave 

functions and use them to directly calculate the invariant vertex 

amplitudes. In this section we shall construct such covariant wave 

functions. We shall also demonstrate that our results of Section II 

on the existence of cuts in meson exchange amplitudes can be understood 

simply from the form of the covariant wave functions. 

Since the quarks are fermions, the covariant wave function for a 

hadron will be an ou~er product of Dirac spinors, one for each quark 

or antiquark composing the hadron. The Dirac spinors involve momentum 

and we must therefore decide what momentum is to appear in each Dirac 

spinor. Recall that the essential assumption made in the non­

relativistic calculation was that the transverse momenta of the quarks 

could be neglected. Our covariant wave functions must therefore be an 
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invariant formulation of this assumption, which we make as follows: 

"The momentum in the Dirac spinor for each quark is parallel to the 

momentum of the composite hadron." The magnitude of this momentum 

is fixed, provided we normalize our Dirac spinors to u u = 1. That's 

all there is to it. To construct hadron wave functions, we just sum 

over the different quark spin projections needed to form a state of 

definite total spin. It turns out that the resulting expressions 

can be written quite simply, much as the expression ) u u may 
!! a a 

be written simply 1+M 
2M In what follows we shall be mainly 

interested in constructing the spin part of the hadron wave function 

and in so doing we shall neglect the SU(3) quantum numbers of the 

quarks. We will then form complete wave functions from the outer 

product of the spin and SU(3) wave functions. 

The first thing we shall do is list the Dirac spinors used in 

describing quarks or antiquarks belonging to a hadron of momentum P 

and mass M. They are 

u -
(T/ + M) (~) u "" 

('/ + M) ~) + hM (E + M) - hM (E + M) 

0 

( ~l) (T/ - M) . 0 ('/ - M) 
\I a \I = + hM (E + M) 

0 hM (E + M) 
1 

We shall now construct the meson wave functions , which are of 

the form u(P) V(P) · 
al . a2 , where we sum over the values of a 1 and 

a 2 needed to give the desired spin of the meson . For example, 
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u (P) + v (P) _ u (P) v (P) + 
represents a quark-antiquark in a spin-

zero state, and is therefore the wave function f or a pseudoscalar 

meson . We simplify this expression as follows: 

u(P)+ v(P)_ - u(P) \i (P) + 

cm 
(0 0 l 0) 

• ('/ + M) 

-
/2 2M (E + H) 

(1 + M) (~ ~ ; Ov 
0 0 0 0 

2 12 M (E + M) O O O O 
(1 - M) 

1 (1 + M)(l + y
0

) y 5 (1 - M) - -
12 4M (E + M) 

((1 + M) y
5

) 
mJm2 

a ~~~~~-

2 /2 M 

This is the covariant spin part of the pseudoscalar meson wave 

function. The value of a matrix element for a specific value of the 

indices m1 , m2 , is simply the amplitude for the Dirac spinors of the 

quark and antiquark to have their indices equal to m
1 

and m
2 

respec­

tively. 

In a similar fashion, and with only slightly more work , we 

will now construct the spin part of the vector meson wave function. 
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The wave functions for the three vector meson spin states are 

1 

12 
(u(P)+ v(P)_ + u(P)_ v(P)+) 

~(P) v(P) s - -1 2 

If we're clever, we may write these in the form 

Here we have used cr
1 , the 2 x 2 Pauli matrices, the matrix C =(-~ ~) , 

and eA (M), the spin polarization vectors for a meson at rest. The 

values of eA (M) are 

e_1 "" 1 (O 1 -i O) . 
12 

1 
e (M) = (0001), e+1 (M) = ~ (O -1 -i O) 

0 12 
In trying such a form, we are guessing that 

a simple form for the vector meson wave f unction can be written using 

the polarization vectors. This means that we really want the polar-

ization vectors for a meson of momentum P, rather than one at rest. 

Before we change, we write our expression in terms of y matrices, 

as before. 

(1 + M) y (1 - y ) (1 - M) 
µ 0 

4M (E + M) /2 
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= - e µ (M) 
A. 

(M + 'i yo) y µ (M + yo 'f) (! - 1) 

4M (E + M) .fi 

Now we switch to the physical spin polarization vectors, e~ (P), using 

the relation A: e~ (M) = e~ (P) , where A: is the Lorentz trans­

formation which takes a meson at rest to momentum P. At the same 

time, we use the transformation law for Dirac matrices, 

(M + 'i y ) y (H + y "/ ) 
0 µ 0 so that we may finally write 

2M (E + M) 

the wave function in the simple form 

We now have the spin part of the meson wave functions and we need only 

to specify the SU(3) quantum numbers of the quarks. To do this we 

use the 3 x 3 SU(3) matrices The rows and columns of these 

matrices, respectively, tell which quark and antiquark compose the 

meson. We therefore have 

( (1 + M) y
5

) 
mlm2 

-------
2 /2 M 

(O'+ M)i) 
mlm2 -----

2 /2 M 

for pseudoscalar mesons 

for vector mesons. 

lbe adjoint wave , which corresponds to u + u, v + v, is gotten 

+ * by substituting P + -P, M + M , and eA + eA . 

We will now consider the baryon wave functions, which are of the 

form u (P) u (P) u (P) . Here mi indexes the four 
0 1 ml a 2 m2 a 3 m3 
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components of the Dirac spinor. Again we will find that summing over 

the values of cr
1

, cr 2
, cr

3 
corresponding to a state of definite spin 

results in an expression which can be written quite simply. For 
(u+ u - u u+)ucr

3 example, is the wave function for a baryon with 

spin 1/2 and s
2 

= cr
3 

This is s o because the first two quarks are 

in a spin zero state so the total spin is that of the third quark. lhe 

expression for two quarks in a spin zero state can be simplified in 

the same manner used for a quark and an antiquark in a spin zero state . 

But it is simpler to use the relation u (P) m \) (P) c cr m. cr mj m.m. 
1 J 1 

where C = - i yY y 0 We can then use the results for combining u . 
and v spinors, which we got above, to write 

- u 

Therefore (_u_+_u_~-2-u-u_+_f° 3 

= 
- ((f + M) y S C) 

2 /2 M 

This is the wave fun.ction for 3 quarks in a spin 1/2 state, where we 

have chosen to put the first two in a spin zero state. As in the 

case of meson wave f unctions, the value of the wave f unction for a 

particular choice of a1 , a 2 , and a
3 

is simply the amplitude f or the 

three quarks to have the indices of their Dirac spinors equal to 

a1 , a2 , and a 3 respectively. One can remember this wave function by 
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noting that the wave function of quarks one and two, 

-1 ((1 + M) y
5 

C) , is an invariant and carries no 
mlm2 2 /2 M 

inf ormation about the spin of the baryon. The wave f unction of the 

third quark carries the information about the spin of the baryon; 

this is clear because u (P) is the Dirac spinor which one commonly 
cr 3 . 

uses to represent a spin 1/2 baryon with s 2 = cr 3 . 

The procedure we just used was to single out two quarks, put 

them in a definite spin state, use our meson results for the wave 

function of the two quarks, and then include the wave function of 

the third quark. In a similar manner, we will now construct the 

wave f unction for a baryon with quark spin 3/2. First, we put 2 

quarks in a symmetric or spin one state. Using u (P) = 
cr mi 

v (P) C , and our results for vector mesons, we can write 
cr mj mjmi 

the wave function for this state as 

Here A is the spin of the 2 quarks along the Z axis. We may combine 

this with the wave function of the third quark to give 

- (t , (f - M) C) u (P) 
I\ ml m2 ° 3 m3 

M 

which is the product of a spin one wave function and a spin 1/2 

wave function. The spin 3/2 part of this combination may be obtained 

with the aid of the Clebsch-Gordan coefficient ~ 1/ 2 3/~~cr 3 
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for combining spin one, s 2 = >. , with spin 1/2, s2 a
3 

, to give 

spin 3/2, s 2 = a . We then have 

1 (t,_ (T/ - M) C) u (P) ~ 1/2 3/2] ~a 3 
2 nM m

1 
m2 a m3 . 

as the wave function for a quark-spin 3/2 particle with s 2 "" a = >.+a 3 • 

A simpler form is 

\) 

where 

is a Rarita-Schwinger vector-spinor, and we shall use this form in 

what follows. We now have the quark spin 1/2 and quark spin 3/2 

baryon wave f unctions, and we can combine them with the SU(3) quantum 

numbers of the quarks to give SU(6) wave functions. These are 

1 
((1 + M) ys C) u _______ m

1 
m

2 
a 

- --
212. M 

quark spin 1/2, and · 

1 
(y\I (1 - M) C) u

0 ml m2 

quark spin 3/2. 
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(qi) is a 3 dimensional column vector whose first, second, and third 

elements are the amplitudes for the ith quark to be a proton, neutron 

or lambda-like quark, respectively. Each quark can be in any of six 

states, so there are 6x6x6 = 216 states possible for three quarks. 

It is useful to group these according to the overall symmetry of the 

wave function under interchange of two quarks. That is, there are 56 

totally symmetric states, 20 totally antisymmetric states, and 2 

groups with mixed symmetry, and 70 states each. This grouping is 

convenient because an SU(6) rotation, i.e., a rotation of the six 

dimensional space in which the quarks live, rotates the states of 

each group among themselves, leaving the overall symmetry of the wave 

function unchanged. We will now list the wave functions of the 

various SU(6) multiplets. In the following, B denotes the 3x3 

baryon matrix whose elements were given in Part 2, while D is 
ala2a3 

the SU(3) decimet wave function also given in Part 2. 

We begin with the wave functions of the 56, which contain an 

octet of quark spin 1/2, and a decimet of quark spin 3/2. 

56, octet, quark spin 1/2: 

(y 
5 

(M - 1) C) u (P) e: B 
q 

. mlm2 a m3 ala2q a3 

1 
(y 5(M-1) C)m m (P) B 

q u e: 
6 /i M 1 3 a m2 ala3q a2 

(M - 1) C) u (P) e: 
B 

q 
m2m3 a ml a2a3q 

al 
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56, decimet, quark spin 3/2: 

1 
( y (M - 'i ) C ) m m 

s 1 2 2 fiM 

There are two 70's. In order to see their symmetry, let us 

pretend that there is 
r -

. d . h h . th k a vector v. associate wit t e 1 quar . 
1 

Then 

the vector n = 
2 rl 

is antisymmetric under interchange of quarks 
r 1 + r 2 - 2r3 one and two, while the vector ~ : 11' is symmetric 

under interchange of one and two. Under interchange of one and three, 

or two and three, they mix. We may construct our 70's so that under 

interchange of any two quarks, they transform just like n and ~. 

Essentially this means we construct states which are either symmetric 

(n) or antisymmetric (~) in quarks one and two, but orthogonal to 

states with total symmetry or total antisymmetry. Each 70 consists 

of an octet of quark spin 3/2, an octet of quark spin 1/2, a decimet 

of quark spin 1/2, and a singlet of quark spin 1/2. We list the 70 

wave functions below. 

70, decimet, quark spin 1/2: 

"n" type 

1 

3 fi M 
+ 1/2 (y 5 (M - 1) C) 

mlm3 

- 1/2 (y 5 (M - f) C)m m 
2 3 
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II E; II type 

(y 5 (M - 1) C) u 
mlm3 m2 

1 
D 

2 /6 M 
(y 5 (M - 1) C) u 

ala2a3 

m2m3 ml 

70, octet, quark spin 3/2 

lln" type 

1 
(yµ (M - 1) C) u , 

µ 
(£ B q 

+ 6M mlm3 m2 ala2q a3 

+ 1/2 £ B q - 1/2 £ B q) 
ala3q a2 Cl2Cl3q al 

II f; II type 

1 
(yµ (M -1) C)m m um ' µ (£ N N q BN q + £N N q BN q) 

1 3 2 ~1~3 ~2 ~2~3 ~l 4 /3M 

70, octet or singlet, quark spin 1/2 

11n" type 

(y 5 (M - "/) C) . u B 
q 

£ 
. mlm3 m2 a 2 ala3q 

-1 

2 /6 M 
- (y (M - "'/) C) u B 

q 
£ 

5 m2m3 ml al a2a3q 
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"F;" type 

2 (y 5 (M - f) C) u B 
q e: 

mlm2 m3 CL3 CL1CL2q 

1 
- (y 5 (M - 1:6) C) u B 

q 
e: 

6 /2 H mlm3 m2 CL2 CL1CL3q 

- (y S (M - "i) C) u B 
q 

m2m3 ml CLl 

We also have 20 antisymmetric states , consisting of a singlet 
. 

of quark spin 3/2, and an octet of quark spin 1/2. We list their 

wave functions . 

20 , singlet, quark spin 3/2 

1 

4 /3 M 

20,- octet, quark spin 1/2 

1 

This completes our list of SU(6) wave functions for three 

quarks composing a baryon. To calculate vertex amplitudes we refer 

to Figure 3. With each line connecting an incoming quark and an 
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outgoing quark, we associate the scalar product of the SU(6) wave 

functions of the two quarks. Similarly, with the line corresponding 

to quark-antiquark annihilation, we associate the scalar product of 

the SU(6) wave functions of the quark and antiquark. This leads to 

the express ion ;;,abd M c ,,, 
'+' d '+'abc for meson-baryon vertices. is 

the SU(6) wave function for the three quarks in the incoming baryon, 

Md c is the SU(6) wave function for the quark and antiquark in the 

meson, and -abd 
1jJ is the adjoint wave function of the baryon which 

is going out . For mesons, we must add the amplitudes associated 

with the graphs in Figures 6 and 7. We get M+bM aM c 
1 c 2b 3a 

for 

the graph in Figure 6, and for the graph in 

Figure 7. These rules lead to the vertex in Table 3. 

Up to now we have only considered quark graphs for vertices. 

However, we can also write down quark graphs for scattering ampli-

tudes, and it is natural to ask what we can say about them. For 

example, in Figure 8 we give a Feynman diagram for meson-meson 

scattering via meson exchange. In Figure 9 we give a quark graph 

which might also represent such a process . We would like to 

find simple rules for using the graph in Figure 9 to get the ampli-

tude for the process. The amplitude for the process is 

+ symmetrization in 1 & 2 and 3 & 4. 
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The M's are our SU(6) wave functions . In the limit of SU(6) 

symmetry, M. is the same for all 36 qq states. We therefore may 
l. 

sum over all orientations of the quarks in spin and SU(3) space. 

We have, since M. is of the form u ~ , 
i a a 

( 
"/ + M ) y 

2M a 

1 

t - M 
2 

i 

( 
"/ - M 

2M 

Thus we see that the first term in the 

meson exchange corresponds to putting "/ + M 
2M 

1 

SU(6)W amplitude for 

and "/ - M th 
2M on e 

exchanged quark and antiquark lines, respectively, and meson wave 

functions on external qq lines associated with a meson. We then 

take the scalar product. We see that SU(6)W leads in to a simple 

f orm for quark graphs associate~ with meson exchange. 

.. 

Next, we will examine the Regge behavior of this amplitude. At 

very high s, _L 
2M ·is a flip term, while 1 is nonflip, that is, 

"I flips one unit of quark spin. Therefore, terms with odd powers 

of Mare flip-nonflip, or nonflip-flip, while terms with even powers 

of Mare nonflip-nonflip or flip-flip . Reggeization will result 

in there being cuts in either nonflip-nonflip and flip-flip, or in 



37 

nonflip-flip and flip-nonflip. This is just the behavior we found 

in Part II. Thus we see from the quark graph picture how the cuts 

arise and in which amplitudes . 
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TABLE 1 

Baryon-Baryon-Meson Vertices 

Vertex 

BBP 

BBV 

DBP 

DBV 

DDP 

DDV 

S . t pins 

1/2, 1/2, 0 

1/2, -1/2, 1 

1/2, 1/2, 0 

1/2' 1/2' 0 

3/2, 1/2, 1 

1/2, 1/2, 0 

1/2, -1/2, 1 

3/2, 3/2, 0 

1/2, 1/2, 0 

3/2 , 3/2, 0 

3/2, 1/2, 1 

1/2, 1/2, 0 

1/2 , -1/2 , 1 

1/2, 3/~, -1 

* Value 

1
1
8 ~ (BP~ + (nB~ 

k ~ <Bv~ + ( i3By) - <i3~(v~ 
~ ~BV~ - (~B~ + (B~ (v8 

1 @ - D 
3 af3y 

1 
2 

-Vz 

1 
-{b 

t 
Particle 1 is outgoing; particles 2 and 3, incoming. 

* -BPB denotes 
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TABLE 2 

Meson-Meson-~1eson Vertices 

Vertex SE ins Value 

P1P2V 0, 0 , 0 ; [<'P1P2v> - (P1VP2)] 

v1v2P 1, 1, 0 ; [<v1v2P) + <v1Pv~ 

v1v2v3 o, 0, 0 f [<v1v2vj- <v3v2v18 

1, 1, 0 I 8v1v2v3) - (v3v2v1~ 

1, o, 1 f 8v1v2v{- (v3v2v1~ 

0, 1, -1 ~ 8v1v2v{ - (v3v2vj 
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TABLE 4 

Odd powers of m(J) in vector meson vertices . 

* Vertex v Helicity m(J) Factors 

* NNp ±1 c(J) 

0 m(J) c(J) 

* t.•~P ±1 (a) c(J) 

* NNw ±1 c(J) 

0 m(J) c(J) 

* mrp 0 (b) m(J) d(J) 

* 1rpW ±1 (b) d(J) 

* 1l'Wp ±1 (b) d(J) 

* nPP ±1 (b) d(J) 

(a)Only helicities allowed by SU(6)W. 

(b) Only helicities allowed by parity and angular momentum. 
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TABLZ 5 (cont.) 

a) 
do + + + do - - do - 0 

dt 
( 1T p-+p p) ( 1T p-+p p) - - ( 1T p-+p . n) dt dt 

b) 
do 0 

dt 
( yp-+1T p) 

c) 
d Ci 

( yp-+np) 
dt 

d) 
do + do 
dt 

( yp-+1T n) - dt ( yn-+1T p) 
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FIGURE CAPTIONS 

Figure 1 Dashed line - initial contour; solid line - opened 

contour. 

Figure 2 + Pole trajectory for f . Dashed lines show path on sec-

ond sheet; solid lines refer to the principal sheet. 

Figure 3 Quark graph for meson-baryon vertex 

Figure 4 Kinematics for TITI ~ nw • 

Figure 5 Dashed line - initial contour; solid line - opened con-

tour. 

Figures 6 
and 7: Quark graphs for meson vertices. 

Figure 8 : Feynman diagram for meson scattering via exchange of 

intermediate meson. 

Figure 9 Quark graph corresponding to Feynman diagram of Figure 

8 . . 
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