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ABSTRACT 

A theory of electromagnetic absorption is presented to explain 

the changes in surface impedance for Pippard superconductors (s >>A.) 
. 0 

due to large static magnetic fields. The static magnetic field pene-

trating the metal near the surface induces a momentum dependent 

potential in Bogolubov' s equations. Such a potential modifies a quasi-

particle's wavefunction and excitation spectrum. These changes affect 

the behavior of the surface impedance in a way that in large m~asure 

agrees with available observations. 
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INTRODUCTION 

Over the past tw e nty years n1any experimentalists have been 

measuring the chang es in surface impedance of Pippard (or type I) 

superconductors due to a large static magne tic field near the surface. 

(See papers by Pippard(l), Spiewak( 2 ), Glosser( 3 ), Lewis( 4 ), 

Richards(S), Sharvin and Gantmakher( 6).) Although the trends in 

be havior ar e now obvious, no theory h a s ye t appeared which can ex-

plain the pat te r n s of the s e r e sult s. This thesis prese nts j ust such a 

the o r y. 

The prin cipl e f e a t ures obs e rve d in the experim ents are that 

the magnetic fi e ld increases the surfac e r e sistance a t "low t empera-

tures 11 (T ~. 5 T ) and 11 hit:;h temperatures'' (T ~. 9 T ) but can strongly 
c c 

decrease absorpt ion for "intermediate temperatures". At "low tern-

peratures 11 the surface reactance is always increased while at "inter-

mediate and high temperatures" the changes can be positive or negative 

depending on the fr eque ncy of the radiation. As usual for solid state 

problems, everything can change the sizes and proportions of these 

curves - the actual metal used, surface preparation, impurities in the 

metal, polarization and frequency of the incide nt radiation, and orien-

tation of the magnetic field with respect to the crystal axes . 

We propose that the above phenomena can be explained as 

follows: When a superconductor is placed in a magnetic field the ele-

rnentary excitation properties are strongly modified for quasi-particles 

near the Fermi surface. In particular, this field creates a momentum 
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dependent potential for the quasi-particles which can look either like 
i 

a well or a barrier. The existence of the well gives rise to new dis-

crete states whose excitation energies can be less than the super-

conducting gap energy. Such states are responsible for the increased 

surface resistance at 11 low T 11
• The potential barrier, on the other 

hand, has the effect of confining quasi-particles near the supercon-

ducting gap edge to regions of space where the magnetic field is weak 

or non-existent. This latter phenomenon accounts for the increased 

surface reactance at 11 low T 11
, the decreased surface resistance at 

11 intermediate T 11, and the complicated frequency dependence of surface 

reactance at 11intermediate and high T 11
• 

To calculate surface impedance~ for this situation is very 

complicated for the following reasons: (1) The equations of super-

conductivity (Bogolubov' s equations) are two coupled second order 

differential equations whose solutions must satisfy a self-consistency 
_, 

relation for the energy gap or order parameter function, 6 ( r ). Only 

one case has been solved - the infinite homogeneous metal which is 

not the situation here due to the static magnetic field. (2) The rela-

~ ~ 

tion between the current density, j and the electric field, E is non-

local; current at one point inside the superconductor depends on the 

electric field strength in the surrounding region, which means that to 

find the field distribution requires solving a c 'omplicated integro-

differential equation. And the kernel of this integro-differential equa-

tion must be found from (1) above. Once again this can be solved only 

approximately analytically for an infinite metal (Mattis and BardeenlJ).) 
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For general spatial variations as created by the static magnetic 

fields here, some other approximate methods must be used. Once 

the electric field distribution is known, it is trivial to calculate the 

surface irnpedance. 

The vehicle for discus sing this problem is the Bogolubov' 

canonical transformation fr om interacting electron states to non­

interacting quasi-particle states. This is discussed briefly in Chapter 

1. Using the Bogolubov transformation, it is possible to derive a 

general form of the current versus field relation for spatially-varying 

situations. This is done in Chapter 2. 

In Chapter 3, we solve the Bogolubov equations for the coeffi­

cients in the Bogolubov transformation for the situation of a super­

conductor in a large static magnetic field. 

In Chapter 4, we explain a method to calculate the surface 

impedance while maintaining self-consistency in the field distribution. 

In the .limit of no static magnetic fields, and vanishing super­

conducting energy gap, the normal metal case is obtained. We dis­

cuss the theory of the anomalous skin effect in normal metals (Chapter 

5) to under stand the physics of more complicated cases. 

In Chapter 6, we use all the previously developed machinery 

to find the predictions of the theory for HdcrfO and compare with avail­

able data. 

In Chapters 7 and 8, we discuss two left-over topics on the way 

to finding surface impedances. One is the effect of surfaces them­

selves on the absorption processes in metals at low temperatures and 
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the other is the question of whether a large static magnetic field can 

decrease the superconducting order parameter or energy gap. 

For simplicity we have restricted ourselves to radiation fields 

normally incident upon a plane superconducting surface. 
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CHAPTER l 

BOGOLUBOV'S EQUATIONS 

Bardeen, Cooper, and Schrieffer (BCS)(S) have proposed a 

theory which explains the behavior of infinite homogeneous supercon-

ductorso Bogolubov generalized and extended their theory to c.over 

situations with spatial variations o The Bogolubov method is de scribed 

by De Gennes( 9 ). We briefly· review the results and some salient 

features below. 

The electrons in the metal are d e scribed by the Hamiltonian 

r _, t _, r i r-. _, _, -12 . _, } _, 
H= ~ \ d r w (r) ~ -? - :-1 \J - e A (r) ~ + U. .t (r)-E.c '¥ (r) a...; ~a t. ~m;_ __ .:. impur1 y J. a 

( L 1) 

1 v :0 -y BCS 
o;a 1 

, _, +_, t-> -> ..... 

\ dr '¥' (r) '¥ (r) '¥ (r) '¥ (r) 
j Q I I 0. 

Q Q 

where the '¥ ' s are anti-commuting electron field operators, U .t (;) impun y 

is the impurity scatteri ng potential, Ef is the Fermi ene rgy of the 

electron ensemble, V BCS is the electron-electron interaction potential, 

a, a 1 are spin indices, A(;_:') is the vector potential of any external 

fields, and hereafter take units where :h= c = 1. 

If only the first term wer.e pres e nt in this Hamiltonian, we 

would recover the theory of electrons in a normal metal interacting 

only via the Exclusion Principle and hence obeying Fermi-Dirac 

statistic So 

It is the addition of the second term in the Hamiltonian ( 1. 1) 

which accounts for superconductivity. This term takes into consider a-
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tion an extra interaction - that between two electrons due to the ex-

change of virtual phonons. For two electrons at the Fermi surface 

whose energies differ by an amount less than the Debye energy of 

the phonon spectrum, there is a net attraction. And BCS have shown 

that this attraction leads to the formation of bound pairs of electrons 

in a metal. Since this interaction occurs over a small range of 

momenta, it must have a long spatial range. Hence BCS and Bogolubov 

approximate the interaction potential by a constant, V BCS' independent 

of range. 

Improvements can be made on these assumptions, but for most 

purposes this is adequate. 

The Hamiltonian (1. 1) is t oo difficult to handle and so is re-

placed by an approximate Hamiltonian, Heff' 

~ _,{ t- t->(1 _, 2 _, ) _,-! 
H f ~ = d r ~ 1 ':i' ( r) ~ [-i 7 - e A J + U: ( r ) - Ef ':i' ( r) j ' e I a. L a. L.m 1m µ a. 

( 1. 2) 

where 6(;), the superconducting energy gap or order parameter, is 

determined later by a self-consistency relation. 

Bogolubov diagonalized the Hamiltonian Heff by the trans­

formation 

(1. 3a) 

( 1. 3 b) 
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where the y's are anti-commuting annihilation and creation operators. 

Then 

H =E+6eyty 
eff g n,a. n no. no. ( 1. 4) 

which is just the Hamiltonian of a gas of non-interacting Fermions. 

The excitations created by y t are the quasi-particles. E is the 
a. g 

ground state energy of the system of quasi-particles. 

The Hamiltonians (1. 2) and (1. 4) are equivalent if the functions 

u, v satisfy the set of equations 

-> -l 1 . -4 2 1 -4 > 
t: u (r)= ...,,- (-1 \/ - e A) + U. -Ef j ' u (r ) +ll(~)v (;:') n n LL.m imp. n n 

( 1. Sa) 

(1. Sb) 

which are called Bogolubov's equations. 

The order parameter, 6(;!), is determined by requiring the 

free energy to be minimized when calculated with Heff· This leads to 

The u, v's must also satisfy a normalization condition 

( 1. 7) 

To develop some feel for this method of description, consider 

the application of Bogolubov's· method to a free electron gas. The 

u, v' s are just plane waves and the y +, y are identical to the a +,a 
n n p p 
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operators which create and annihilate electrons in plane wave states. 

I r t > h d f 1 l .l Ypt , p pf' acts on t e groun state o t 1e system, an e ectron is 

- -+ --. ip • r 
put above the Fermi surface in the state up(r) = e • If Ypt ' p<pf, 

acts on the ground state of the system , an electron is removed from 

the Fermi sea in t he state v (;_:')=eip• r which is equivalent to 11adding 
p 

a hole 11 in the Fermi sea. Hence, we can call the u 1 s wave functions 

of electron type quasi-particles and the v 1 s wave functions of hole 

type quasi-particles. 

Note that, if!:.= 0, then eqns. ( 1. Sa, b) are just the Schroedinger 

equations for free electrons and free holes, respectively. u(x) is 

the electron wavefunction and v(x) is the hole wavefunction. When 

u d:. 0, v = 0 and vice versa so that eqn. (l. 6) is consistent with!:.= 0. 

The new feature of Bogolubov ' s equations which explains 

superconductivity is the term with!;.. Electron and hole excitations 

are no longer independent of each other and the degree of influence 

depends on 6, constrained by eqn. ( 1. 6). 
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CHAPTER 2 

j(A) RELATION 

Any discussion of electrodynamics inside a metal requires 

knowledge of a current versus field relation. In this chapter we 

derive a particular form for the current as a function of the vector 

potential useful for surface impedance calculations. 

Quite generally, the current density operator in second-

quantized form evolving in time according to the Heisenberg picture 

is 

T (x)= zie ('V -'V ) -yt (xi ) ~ (x) - e2 A. (x) ~ t (x) ':; (x) 
a. m - • _,, ..... 1 _, a. a. m a. a. 

op x x x -x 
( 2. 1) 

where x = (;, t), vector position and time 

a. = t, l the spin index 

denotes an operator in the Heisenberg representation. 

1/ t (x) is an electron field c r ea ti on operator satisfying 

Fermion anti-commutation rules. 

See Abrikosov, Gorkov, and Dzyaloshinski (AGD) ( 
1 

O) for a derivation. 

Eqn. (2. 1) is to be evaluated up to terms first order in A. The final 

result will then yield the current density at some point in space and 

time due to an arbitrary A field distribution surrounding this point. 

Assume A (x) = A(;, t) to have been turned on adiabatically 

from some time t in the distant past, t -• -oo. Now switch over to 

the interaction representation which is the same as the Heisenberg 

picture fort .... -co . . Any operator 0 is related between these two 
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pictures by 

-1 0 = S (t) 0. · . S(t) 
Heisenberg interaction 

where S(t) is the S matrix 

·. t 

S(t) = Tt ei ~ ] (y) "A (y) d 4 y 
- co op 

where Tt is the time ordering symbol. 

Expanding S(t) to terms first order in A yields 

t 
s(t) ';! l+i ' r (y) • A(y) d 4 y j op 

-co 

And hence the following is true to first order in A(x). 

- ~t r· t · 1 '1' (x)~ '1' (x)-i Lj (y) 'l' (x )-'¥ (x)J (y) .J ·A(y) d 4 y 
a. a. op a. a. op 

-oo 

t ,...., t ~t [.... t t ..... -, -· 4 1 (x1 )= 'l' (x1 )-i j (y)'i' (x' )-'1' (x1 ) j (y) •A (y) d y 
a. a. op a. a. op ...l 

-co 

where }' (y) is just the zero order approximation 
op 

t t 
:6 'f R ( yl ) 'J! R ( y ) 
~= i !-' !-' 

(2. 2) 

( 2. 3) 

(2. 4) 

(2. 5) 

( 2. 6) 

(2. 7) 

Putting eqns. (2. 5), (2. 6), and (2. 7) into eqn . (2. 1) keeping terms 
_, 

first order in A (x) and summing over spins yields 

'::; ie
2 

( ) (' t _, ( ) 
Jop(x) = 4m2 'Y_, - 'V_, ..... _, j A(y) • 'V_,- 'V_,, ...., _, 

x x1 x1 - •x -oo y . yi yl ->y 
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e:? t _, 
- :0 '±' (x) '±' (x) A (x) 
rn a a a 

(2. 8) 

To obtain from eqn. (2. 8) a physical ~urrent, it is necessary 

-:-+ 
to average Jop over a grand canonical ensemble. 

r ( x) = < 1 ( x) > T = :0 e (0- 8 m) IT <m I r ( x) l m > 
op m · op 

(2. 9) 

where 0 is defined by 

(2. 10) 

E: is simply the excitation energy of quasi-particles in the 
m 

Bogolubov equations. That is, the diagonalized Hamiltonian of the 

system is 

t 
HM= :0 € y y + ground state energy to be ignored 

n,a n na. na 

and 

(2. l la) 

(2.llb) 

HM is the complete Hamiltonian of the sy,stem at t _, - oo when the 

radiation field is off. 

7 ie2 ( ) \ t _, ( ) 
J (x) = 4m 2 'V_, -\J _, _, _, .) A(y) • . 'V _, - 'V _,1 _,i -• 

x x 1 x 1 ->x - oo y y y ->y 

J?f3 <'i';(y' )'i'f3(y)/a(x1 )'i'a.(x)-'i':(x7 )'l'a.(x)'i';(yl )'l'f3(y)>Td4 y-~
2

A(x) 
(2. 12) 
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where N = ~ < 'i' t (x) 'f (x)>T is the density of electrons in the system. 
a a a 

N is written without its spatial dependence since for perturbations 

of interest here, N is a constant. Impurities, magnetic and electric 

fields, etc. applied to a metal only change the electron distribution 

at the Fermi surface, but this is only a very tiny fraction of the 

total nwn ber of electrons present. 

Considerable simplification in taking the remaining thermal 

average occurs if we transform from electron field operators to 

quasi-particle operators via the Bogolubov canonical variable 

transformation, which in the Sehr oedinger representation is 

· _, r .... t >:<-1 
!' (x) = :BI y. u.(x) + S 1 y. 1 vJ. (x) _\ 

a J ._ Ja J a Ja 

where S I a = { 
+l ifa1 = t 

a f. a
1 

(2. 13) 

'l.' t 6~) is obtained from eqn. (2. 13) by taking the Hermitian adjoint. 
a 

In the interaction representation the transformation is then 

'±' (x) = ~ [y. (t)u.(x) + S i y. ~ (t) 
a J Ja J a Ja 

(2. 14) 

-> 
where x = (x, t) 

iHMt -iI\.,i t 
y. (t) = e y. e 

JCl JCl 

Writing J (x) in terms of y 1 s yields sums over many terms each 

of which is a product of four y' s. But only some of these terms are 



non-vanishing upon taking thermal averages. Since the thermal 

average is a weighted sum of diagonal matrix-elements, only terms 

t t 
of the form yi yi yj yj (or permutations in ordering) can contribute. 

A typical term from < >T in eqn. (2. 12) is 

u .• 

t !- s ./T I 
where fT(t:i) = <yi yi >T = 1 /Le 

1 + 1 J is just the Fermi distribu-

tion function for non-interacting Fermions, and the exponential in 

t im e r e s ult s fr om 

<. . 1'j(t) >T = 

iHMt -iHMt 
<. . 0 e Yj e >T = 

-it: ·t 
e J < ... Yj > T • 

For our adiabatically turned on A field of frequency w 

i(w-io)t 
.A ( y) = .A (Y) e Y o ..... o+ (2. 15) 

which allows us in each term to trivially perform the time integration 

1 iwtx 
\ t iE;, (t -t ) i(w-io)t .,...e 
J x dt e m x y e y = .....,1=------:-0-=-

-oo Y -E .em +,.u-io 
{ 2. 16) 
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_ .... __. iwt x 
So all terms rn j (x) ...... j (x)e 

Proceeding in the above manner for all terms in eqn. 

(2. 12), doing the trivial sums over 6 functions, then puts the 

cur rent density r (~) into the following form: 

--+-> -. -Jo Ne 2 -~ _.. 
j(x) = j1 (x) - -- A(x) 

m 

where 

[ u /i;)u,,;"(;;' )um (j)u [IJ1 ) - v;Fiv t (;;1 )um lYlu ;'(Y1 ) 

e: .e,..:.e:m +rJ.)-i6 

_., .,IC: -t ;>'.:; -+ -> ..,r,. _,. -+ -t -J 

+ um(x)u~(x1 )v~(y)v_e(y 1 ) -v;:'(x)vm(xl )v~:'(y)v_e(x') J 
-(e: ,e-e:m)+w-io 

+ [1-fT(e: _e)-fT(e:m) J 
r u (~)v (;;_1 )v >:<(y)u ':'(y' ) + u (~)v (~1 )v ':'(y"")u >:< (--y' ) 
I· m £ m t ,R, m m ,R, 

1.-.- ' e +e +w-io £ m 

(2. 17) 

-+ ,... ~ -+ ~ ..,,, --+ -> -> -+ 

+ _v_m_':'_( x_.)_u_.t_,, (_x_' _)_um_(_y_) v_.t_( y_'_)_+_v_£_-. _( x_)_u_m_':'_( x_-i_)_u_m_( y_)_v_;,_( _Y_1 _) _ J } 
- (e ;,+em )+w-io 

(2. 18) 
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Eqn. (2. 18) is quite general and can be applied to numerous 

physical situations. If the u, v functions appropriate for an infinite 

pure superconductor (no static magnetic or electric fields present) 
_,_, 

are substituted in eqn. (2. 18) and the Fourier transform of j(x) 

is taken, we obtain the same expression as Abrikosov et.al. ( 13 )who 

calculated the surface impedance for superconductors. This must 

be the case, of course. We will refer quite frequently to this paper 

since as all perturbations are shut off, all results must tend to their 

case. 

We proceed now by considering the geometry in Figure 2. 1. 

A metal surface lies in the y-z plane. It is infinite in y and z, and 

semi-infinite in the +x-direction. Note that there are two sets of 

fields to consider - those from the static magnetic fields to be 

applied to the surface and those from the high frequency weak radia~ 

tion impingent upon the surface. 

FIGURE 2. 1 

GEOMETRY OF FIELDS 
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...... .... 
The vector potential, Ade' due to the Hdc defines the y-axis . The 

_, 
vector potential, A , due to the radiation is linearly polarized in ac 

the y-z plane and makes an angle 8 with respect to the y-axis. Each 

- ...... A field has associated with it a current j in the metal and these 

11 screening 11 currents are parallel to their re spec ti ve A field. It is 

-> -> 
to be noted here that we aretreating A , and Ad separately. The ac c 

-. 
present chapter considers A as a small perturbation on the system ac 

and the current versus field relations are j as a function of A 
ac ac 

Ade is not small and its effects are included in the u, v functions 

directly through Bogolubov's equations which are solved in Chapter 3 . 

Getting back to further processing of the j versus 
...... 
A relation, 

we write 

_, _,. -> -? 

A (x) = (e cos8 + e sin8) A (x) ac y z ac 
(2. 19) 

...... 
where e are unit vectors in the y or z direction and x refers to the 

y,z 

coordinate on the x-axis. (There will no longer be any reference to 

x = (~, t) as a four-vector.) Note that A (x) falls off only with x; 
, ac 

we have an infinite plane wave impinging upon the surface. 

It will be shown later that u, v must be of the form 

i(K y+K z) 
u(~) = u(x)e y z (2. 20a} 

i(K y+K z) 
v(~) = v(x)e Y z (2. 2 Ob} 

If eqns. (2. 20a, b} and (2. 19) are inserted in eqn. (2. 18), the 

differentiations A•\J performed, limits taken, integrations performed 

over the pure exponentials (giving 21T o -functions), and some simple 
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rearrangements made depending on£, m being durnmy indices, we 

can obtain the following result: 

(• 00 

j 1 (x) = J Q1 (x, x' )Aac(x' )dx' 
0 

2e2 .R, .R, 
(21T) 2 ~ (K cos8+K sin8) 2 

m2 x,, m y z 

{ [fT(e n)-fT(E: ) ] 6(K.R, - Km) 6 (Ke- Km) 
- x, m y y z z 

[ u (x)u ';'(x}+v (x)v ';'(x) 1 [ u (x1 )u ':'(xl )+v (xi )v >!'(xr ) J 
X, m 2 m - m 2 m 2 

e -e -u;ti6 
m 2 

[ [u,e(x)vm(x)-um(x)v.!(x)] [u;'(x1 )v,:(x' )-um*(x' )v;(x' ): 

em +E: 1,+w-i6 

(2. 21a) 

+ [u,;'(x)v;(x)-u; (x)v,.,;'(x)] [um(x' )v ,e(x')-u .!(xl )vm(x' )] J } 
E:m +e .R,-(J,)ti6 

(2.2lb) 

J1 (x) = ({; cose+; sin8) jl (x) 
y z 

(2. 2lc) 

The last equation says that the current flows in the same direction 

as the A field 1 s linear polarization. 

Eqn. (2. 21) for the j versus A relation is now in a form ' 

amenable to physical interpretation. Two distinct physical processes 

are represented: The A field causes thermally excited quasi-
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particles to make transitions frorn one state to another state. The 

A field causes the creation or destruction of a pair of excitations; 

this pair is made up of a quasi-particle and an anti-quasi-particle. 

(These processes are directly analogous to electron-position theory 

in quantum electrodynamics; the rest mass energy mc 2 plays a role 

very similar to the _ superconducting energy gap, 6.) 

Consider first the scattering process. Since the incident 

photon has momentum only normal to the surface and none in the 

plane of the surface, only the x-component of a quasi-particle 1 s 

momentum can change in a transition. So they and z- component 

remain the same. This is expressed through the 6-functions 

6(K J., -Km) 6(K J., -Km). If the transition is from a state of lower y y , z z 

energy to one of higher energy, there must be some non-zero prob-

ability for the lower state to contain a quasi-particle and some non-

zero probability for the upper state to have an empty slot available. 

The net current, though, is proportional to the number of upward 

transitions minus the number of downward transitions. This fact is 

expressed through the Fermi factor difference fT(e 1,)-fT(em). (Recall 

that if fT(e) is the probability for e to be occupied, then 1-fT(e) is 

the probability for e to be empty.) Now suppose the incident photon 

annihilates at xi. There is an amplitude for it to scatter a quasi-

particle from state 1, to state m. But since a state has amplitude 

u to be particle-like and amplitude v to be anti-particle-like, we 

must consider the quantum mechanical interference and add the 

amplitudes of the processes: Particle to particle um(x1 )uz(x:1 ) plus 
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anti-particle to anti- par tic le v m (x~ )v z(xi ) transitions. Similarly, 

a current found at x g e nerated by the transition from state .e, to 

state m could be due either to a particle-particle transition or an 

anti-particle anti-particle transition. ~'< 
Hence the factor u i, (x)u~ (x) + 

v .e, (x)vr::(x). The factor 1/ [E:m-8 .e,-wti6] splits into a real part 

P(l/[em-8 .e,-W]) and an imaginary part -irr6 (em-8 .e,-W) via a familiar 

id e n t ity. It will b e s een later that the im ag inary part is relat ed to 

powe r absorbe d by t he m e tal i n whic h c ase ene rgy mu st be cons e rved 

in the s cattering proce s s . T h is i s expres sed via the 6-function part. 

T he real part w h ich do e s not cons e rve ener g y thus considers only 

virtual processes and these are related to the diamagn.etic or screening 

properties of a material. We discuss this later after developing more 

formalism. 

Next consider the pair processes. Once again transverse 

momentum must be conserved. If initially there is no pair, transverse 

momentum is zero; after a pair is created, there is total y-momentum 

K .e,+K m for the excitations put in states £, m. Thus there are the 
y y 

factors 6(K.e,+Km ), 6(K.e,+Km). In order to send a pair of excitations 
y y z z 

into states .e,, m, these states must be empty or if a pair is to be 

annihilated from .e,, m, there must be a pair sitting in .e,, m. Hence 

the factor [1-fT(E: ;,)-fT(E:m) ]. This includes up minus down transi-

tions, as before. The energy denominators express conservation of 

energy for absorption processes and yield virtual processes for non-

energy conserving processes. Note that since E:m, 8 .e,• and ware 

positive, always, the term involving 6(em +e .e,+t..I)) never contributes 
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to the absorption. In fact, this term more nearly corresponds to 

the destruction of a pair creating a photon and hence depleting current 

in the material. A photon annihilating ,at xl can put a particle in m 

and an anti-particle in J, or a particle in J, and an anti-particle in m. 

The amplitude for this is um(xi) v£(x1 )- uf,(x' )vm(x1 ). And the 

explanation of the other matrix elements is obvious. 

The factor (K: c OS e + KZJ, sine) 
2 

is the coupling between the 

photon 1 s polarization and an absorbing quasi-particle's transverse 

motion. A quasi-particle has the strongest interaction when it is 

moving exactly parallel or anti-parallel to the direction of linear 

polarization. 
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CHAPTER 3 

SOLUTIONS OF BOGOLUBOV 1S EQUATIONS IN A LARGE 

STATIC MAGNETIC FIELD 

Further evaluation of the j versus A relation in Chapter 2 
ac ac 

requires explicit knowledge of the u, v functions satisfying Bogolubov's 

equations with large static magnetic fields, Hd ,..., H , the supercon­c c 

ductor 1 s critical field. Once again we consider the geometry of 

~ ~ 

Figure 2. 1. If Hdc is along the z-axis, then Ade is along the y-axis 

since H = \l x A or for our geometry Hd = ~ oAY(x) /ax. 
c z 

We are to solve Bogolubov's equations 

(3. la) 

(3. lb) 

(3. le) 

for the geometry of Figure 2. 1. 

Outside the metal (x < 0) all the fields are uniform; inside 

the fields are approximately e -x/5 or e -x//... where 6 is called the ac 

penetration depth and /... is the static field penetration depth. Although 

these penetration depths have been calculated only for weak fields it 

is an experimental fact that the penetration depth is independent of 

field intensity for field strengths right up to the critical field, H • 
c 
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Thus for x ::::>: 0 

(3. 2) 

( 3. 3) 

.... 
which in the 'V •A= 0 or "transverse gauge" is derivable from the 

vector potential 

(3. 4a) 

(3. 4b) 

using H = 'V x A . 

Since the metal is infinite in y and z, l u \, l v \, \ 6. \ must be 

constant for translational symmetry. Then we try solutions of the 

form 

- i(K y+K z) 
u(r) = u(x)e Y z (3. 5a) 

- i(K y+K z) 
v(r) = v(x)e Y z (3. 5b) 

··. 

which by eqn. (3 . le) is consistent with a gap function 6. varying only . 

with x. 

(3.5c) 

Using this converts eqns. (3 . la, b, c) to 

fle - S + l d
2 

- V(x) 1 u (x) - 6.(x)v (x) = 0 
n t 2m 2 ..J n n . dx 

(3. 6a) 

.. , . -·· 

V(x) l v (x) - 6.(x)u (x) - 0 
..J n n 

(3.6b) 

(3. 6c) 
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where 
K 2 K/ 

~t = 2~ - Zill 

V(x) eHA. -x/A. =--Ke 
m y 

K = K cos8 
y p 

K = K sin9 
z p 

Kf is the Fermi momentum. 

K is the transverse momentum. 
p 

a 
Ef = Kf /2m so that the model here seems to require a spherical 

Fermi surface and thus ignores crystal anisotropy. Actually this 

is not really right; the situation is better as far as surface impedance 

calculations are concerned. We will elaborate on this point when 

we discuss the surface impedance calculation for the anomalous 

skin effect. 

2 
We have ignored the Ade term since eAdc <<Ky for all 

-4 
K ;;::, 10 Kf and the K of interest in all subsequent work is Ky=Kf.· 

y y 

The quantity designated by V(x) is so labelled because it acts 

like a potential barrier or well depending on the polarity of K • Since 
y 

A. is pure real for static fields, V(x) is always pure real. 

It would now be very helpful if we somehow knew in advance 

the spatial dependence of the gap function, 6(x). For an infinite 

superconductor considered by BCS, 6(x) was a constant making 

solution of Bogolubov 1s equations trivial. But in the presence of a 

large static magnetic field we can no longer be so sure that 6(x) 
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is still constant. 

Bogolubov 1 s equations are sufficiently complicated that we 

cannot solve for u and v while simultaneously satisfying the self-

consistency relation on 6, in the presence of large static magnetic 

fields. Therefore, we shall make a guess at what the final self-

consistent 6 might be, solve Bogolubov 1 s equations for the u, v 

functions, and check through the self-consistency relation just how 

good was our guess. (This latter point will be considered in Chapter 

8 . ) We shall say that 6 is independent of Hdc and spatially constant. 

Even with the assumption of a constant gap, Bogolubov1 s 

equations are still unmanageable. The trouble lies with V(x). Any 

step function approximation to the exponential in V(x) will lead to a 

· nd 
set of coupled 2- order differential equations with constant coefficients 

and that can be handled reasonably. We shall content ourselves, first, 

with a single step and thus make the replacement 

v 
V(x) - V (x) = { e 

e 0 

x;,;; A.e 

x > A.e 
(3. 7). 

V , the strength of the effective potential, and A. , the extent 
e e 

of the effective potential, are the only parameters in this theory. We 

shall pick A. = 2A., 0 :s: V :s: 6, V ,..., HK ; this is not unique but seems 
e e e y 

reasonable to us. If the results are suspect, a many- step approxima- ·. 

tion to the exponential can be tried; it will not be so sensitive to para-

meter choices. 

In order to solve ordinary constant coefficient differential 
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equations, we must form solutions in each region and match values 

and appropriate derivatives across the boundaries, at the x = 0 

surface, and at the x = L > > > A. surface. Take fir st the problem at 

the x = 0 surface. 

At the surface of the metal, the current normal to the surface 

mu s t vanish. But j ,...., uou/ ox + vov/ox so either u and v both vanish 
x 

at x = 0, or au/ox and av/ox vanish there, or both do. To pick the 

proper set, consider the electron density at the surface, N. 
2 

+ Iv I . Since the electrons are principally confined to 

within an angstrom or so of the surface, we imagine our system 

confined by a large potential barrier at x = 0, whence N ... 0 ::::;:> u, v-+O 

at x = O. We thus consider the boundary conditions n, v= 0 while 

ou/ox, av/ax i o. 

It is to be noted that imposing these boundary conditions 

corresponds to a situation known as specular reflection. We discuss 

the physical significance of this in Chapter 7. 

Before solving the differential eqns. (3. 6) it is most con-

venient to renormalize the variables to dimensionless form as follows: 

8 ... 
8
/ -+ 8 
6 

St; ... st/fl ... ~ 

v ... v;6 _, v 

Note that the dimensionless variables are denoted by the 

same letter as before. 
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Then eqns. (3. 6) read in this normalized form 

[ E: - E; + Ef ~ - Ve(x) 1 u(x) - v(x) = 0 
· t 6 dx2 ,... 

V (x)l v(x) - u(x) = 0 
e _! 

where we have also dropped the subscript labelling the states 

tern porarily. 

(3. 8a) 

(3.8b) 

Denote the solutions of eqns. (3. 8a, b) in the surface region 

where the effective potential is non-zero generally by the subscript 

l and the solutions in the metal's interior by the subscript 2.. Solutions 

in each region are of the form eiqx. Then straightforward substitu-

tion in eqns. (3. 8a, b) yields the following general solutions: 

( ) A (eir+x_ e-irt .. x) C ( ir_x -ir_x) u1 x = 1 + 1 e -e (3. 9a) 

ir· x -ir· x ' ir x ir x v.1 {x) = A 1 (e-s -V) (e + -e +) + C1 (i::+s -V) (e - -e- - ) 

where 

'r e r e 

r = ± { ~[-C: ±~ 
E 't '::>r 

f 
1 

P ± = {~ [ - st .± sP J }z-

(3. 9b) 

(3. 9c} 

(3. 9d} 

(3. 10) 

(3. 11) 
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1 

[ 

2 12 
Sr = ( e - Ve ) - 1 j (3. 12) 

(3. 13) 

A1 , C 1 , A 2 , B 2 , C 2 , and D 2 are constants to be fixed later by 

imposing boundary conditions on u, v and normalization 

~L>>>)...r 2 2 l l u(x) l + \ v(x) j dx = 1 
0 I- ...l 

(3. 14) 

We have picked the solutions so that the boundary co_ndition at 

x = 0 is automatically satisfied. 

Matching the u, v solutions and their derivatives at x = A. 
e 

yields four constraints on the coefficients A1 , C1 , Az, B 2 , C 2 , D 2 • 

ip+A. -ip+)... ip )... -i p A.e e e - e -Aze +B2 e +C2 e +D2 e (3. 15a) 

(3.15b) 

(3. 15c) 
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ip+\ -ip, A ip Ae e T e -
A 2 (e:-s )p+e -B2 (e:-s )p+e +C2 (e:+s )p e 

p . p p -

-ip A 
- e -D2 (e:+~ )e 

p 
(3. 15d) 

Using the states given by {3. 9) in the normalization equation 

(3. 14) yields the following: 

Thus ~Ae[!u1 (x)j 2 
+jvi(x)j

2

]dx+ .. ~ 00 

o A e 
a 

l = I Ai l [ 1 + { e: - s -v ) ( e: - s >:< - v ) J · r e r e 

2 

+lei I c1+(e:+s -v) (e:+s':<_v >J r e r e 

i(r _ -r ~:<)Ae -i(r _ -r ~:');\e . {-e _____ -_e ____ _ 
r -r >:< 

i(r -r >:<)\ -i(r -r ':' )A + _ e + _ e 

{ 
e -e 

r -r ':' + -

2 2 
[Ju2(x)j +jv2 (x)j ]dx= 1 

i(r +r >:<))._ -i(r +r >:<))._ 
- - e - - e _e ___ -e ____ } 

r +r >:< 

i(r + +r ~:<)A.e -i(r + +r ~:<)A.e 
e -e } 

r +r >:< 
+ -
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{ 

i ( r _;'.' - r - P1.e - i ( r ,;, - r ) A. 
e -e + - e 

;i:i; 

. 2 

r -r 
+ -

+I Az I [ 1 + ( e - s ) ( 8 _ ~ ':') J p ·p 

+A2B':'[1-l-( ;:: ) ,, 2 I e - ':> ( 8 _ s '•') J 
p p 

+B C >:'[ 2 2 1+(e-s ) (e+s '~) J 
p p 

i(p -p':'}L "( + + l p -p':'}A. 
e -e + + e 

P+ -p_;'.' 

i(p++p~')L i(p +p':')A. 
e -e + + e 

P+ +p:' 

i(p ':') ' + -p _ L i(p -p "')).. 
e -e + - e 

,., 
p -p I + ,... 

i(p++p~:')L i{p +p':')A. 
e -e + - e 

p + +p ~:< 

e -i{p + +p ~')L -i{p + +p+':')~ 
-e 

:i~' 
-p -p + + 

,., 
p~"-p+ 

e -i(p+ +p ~:')L -i(p '+p >:')) ... 
-e + - e 

.. , 
-p -p ... 

+ -



+B D * [ 2 2 l+(e-s ) (e+ s *) J p p 

+c . >:, 
2 A::i [ l+(e+s ) (e-s >:') J 

p p 

2 

+! C2 l [l+(e+s ) (e+s >:') J 
p p 

+D . >!< 
2 C2 [ l+(e+s ) (e+s ) J p p 
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.. , 
p '• -p 
- + 

i(p -p,:')L '( >!< - + l p -p )A. 
e -e - + e 

p >:< _-P+ 

i(p_+p~')L i(p +p>:')' 
e -e - + 11.e 

p + >:< 
- P+ 

i(p -p >!<)L '( >!< 
- - l p -p )A. 

e -e - - e 

P 
>!< 

-p - -
i(p _ +p ~')L i(p + >!')' 

e - P 11.e 
-e -

p + >:< 
- P_ 

e -i(p - +p ;)L -i(p +p ':')A. 
-e - + e 

P 
>~<: 

- -p - + 

e -i(p - +p ~:')L -i(p +p ':')A. 
-e - - e 

P 
>!< 

- _-P_ 

i(p,:'-p )L "( >!< 
- - l p -p )A. 

e · -e - - e 

~l<: P _ -p _ 
(3. 16) 
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In general, not all of the constants Az, B 2 , C 2 , D 2 can be 

simultaneously non-zero. This ar i ses upon considering the u, v 

solutions (3. 9) for x-+ co. If p + and/ or p _ has a non-zero imaginary 

part, the coefficient of the appropriate term must be set to zero 

for the u, v solutions to be bounded as x-+ oo. 

Regarding e (the excitation energy), st (a measure of 

transverse momentum), and V (the effective potential strength) 
e 

as the independent state naming variables, we consider the conse-

quences of the following possibilities for 

( l) 

1 ..!.. 

p±={~f [-~t±(e2-l)2J}2 

0 ~ e < 1, any st and E: :?:: 1, 
l 

- s + (e 2 
- 1)2 < 0 t 

For this case both p + and p _ have imaginary parts so that 

B 2 = D 2 = 0 necessarily. But then eqns. (3. 15) are inconsistent 

unless the determinant of the coefficient vanishes. If st and Ve 

are fixed, there exist solutions only for certain discrete values of e . 

given by the vanishing of the determinant here. 

Since p± are complex, these states are localized near the 
ip±x 

surface as determined by e in u, v. Generally the distances 

0 
here are ,..., SOOOA into the sample. BCS used infinite metals, so, of 

course, they could not obtain any solutions where p + or p _ had 

any imaginary part. Furthermore, these surface states exist for 

excitation energies less than the gap width, 6, a fact which will 

have important consequences for absorption at 1'low temperatures" 

(kT < < 6). 
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Eqns. (3. 15) are sufficiently complicated that results can 

only be obtained numerically. We have examined, therefore, many 

cases numerically using a computer and find a few general features 

to be described below. 

Firstly, surface states exist only for V < 0 and only for 
e 

; i.e., V must appear to be a potential well and e 

the possible states lie above the bottom of the well. The preceding 

is true irrespective of how V and /,. are chosen. 
e e 

Secondly, surface states exist only for -20 ~st .s;; 1 which 

depends on "-e· The small values of St indicate a particular 

direction of quasi-particle travel to be discussed later. 

The spectrum used in further calculations is shown in Figures 

3. 1 below. 
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e/6. 

FIGURE 3. 1 

Typical Surface State Spectrum 

0 
A. = 2A.= lOOOA e 

v = -. 26. e 

v = -. 56 e 

v = - /::, e 

On each contour line p± vary continuously with St• 
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It might be thought that these surface states depend critically 

on the surface at x = 0 being perfectly flat and smooth. However, 

as long as the surface irregularities are small compared to a pene-

tration depth of the Hdc' this is not so. For then one could make 

wave packets of sinusoids which would match the boundary conditions, 

out of sinusoids whose momenta were all peaked sharply about the 

correct value for a flat surface. In such a case, all the surface 

state energies would still be nearly the same as before. Thus 

0 
small scale (~ lOA) irregularities are no problem. 

(2) -st± (s 2 
- i) > o, e ::::: i 

In this realm both P+ and p are pure real and all the constants 

A.z, B 2 , C 2 , D 2 can be non-zero, which leaves a dilemma. There 

are more unknown constants than constraining equations. Two 

approaches are possible to resolve the problem. We can put the 

system in a large box of length L and requ:l~e u, v to vanish at 
x 

x = L just as we imposed for u, v at x = 0 surface. This yields x 

a situation like the prior case - solutions exist only if the determinant 

of the coefficients vanishes. However, since L is very large these . x . 

states are very closely spaced in energy and for L .... oo form a con­
x 

tinuum. All this is well defined but extremely difficult to handle 

numerically. Clearly the results should be essentially independent 

of the size of the box for L >>>A. and yet in solving for the u, v x 

functions and the locations of the states in energy slight changes in 

L radically affect the numbers involved through fast oscillating terms 
x 

ip±Lx 
"' e 
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Fortunately a nother approach is possible that is more. easily 

implemented. We irnagine a scattering process. 
ipx 

If e represents 

a quasi-particle incident upon the x = 0 surface from deep inside 

the metal in the state with x-component momentum p, then e -ipx 

is the reflected quasi-particle; the transverse momentum is conserved 

and the momenttllD normal to the surface reverses sign upon collision. 

Thus it is natural to consider two cases shown below in Figures 

3. Za, b . 

P+ P+ 

~ / 
4_ p 

I 
0 •t.. ~ x 

ol 
!A. ~x 

~ e 

' P+ 

I e ' p ~ I 
I I 

FIGURE 3. 2 a, b 

SCHEMATIC OF SCATTERING STATES 

A quasi-particle can be incident upon the surface in either state P+ or 

p _. By a change of variables to spherical momentum coordinates it 

can be shown that P+ states lie above the Fermi momentum while p_ 

states lie below the Fermi momentum. For each case, there is some 

amplitude for the quasi-particle to be reflected in its original state 

with only the direction altered and some amplitude to find the quasi-

particle in the other momentum state also with altered direction. 

This is a new feature of a superconductor when Hdc f. O. In BCS theory 
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where Hdc = 0 a quasi-particle is always reflected in the same state 

as it wa~ incident; no mixing of p + and p states occurs. Regarding 

st' 8, and v e as the independent variables of a state, there are two 

degenerate solutions which we will refer to as "P+ incident" and 

"p _ incident" continuum states. In the former D2 = 0 and in the latter 

The above picture does not depend upon the type of particle 

being scattered. They can be either electron-like or hole-like 

excitations; indeed, our argument applies equally well to both u(x) 

and v(x) solutions. Holes or anti-particle quasi-particles exist both 

above and below the Fermi momentum and electrons or particle 

quasi-particle do so too. This latter fact holds in superconductors 
±ip x 

whether Hdc ·is zero or not. For normal metals, though, u- e -

which says that electron excitations exist only above the Fermi 

momentum while hole excitations exist only below the Fermi momentum. 

For these plane wave like scattering states, the normalization 

condition (3. 16) is particularly simple; in the limit of L - oo only 
x 

diagonal terms in region 2 contribute substantially. Thus for P+ 

incident states 

(3.17a) 

and for p incident states 

. a 

l~l (3. 17b) 
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The sum over states is also simple 

L 

:B- 2: :B +, -
~ro dp± 

-oo 
(3. 18) 

which will later be transformed to a more useful independent variable. 

1 1 

(3) i:::o::1, -st-(i:: 2 -1> 2 <o, -st+(i:: 2 -1)2 >o 

±ip+x 
In this realm P+ is pure real so e are perfectly accept­

-ip x 
able solutions while p is complex and hence e - must be dis-

carded, so D 2 = O. BCS also could not have considered this case 

since it depends on a surface being present and a non-zero V . 
e 

This case is very similar to the P+ scattering state previously 

considered except that for p + incident, the p reflected solution is 

very strongly localized near the surface. So all can be applied 

except that the normalization condition simplifies even more than 

before to 

2 2 

+ I B:a I ) [ 1 + ( E: - s p) (3. 19) 

We can summarize graphically the above results as to which 

states exist where in Figure 3. 4 below. 
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e/6 . 

A 

P+r al 

p _c 1mplex 

p± 

both real 

FIGURE 3. 4 

V <O e 

surface 
states 

TYPES OF STATES FOR VARIOUS St AND E 
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CHAPTER 4 

FORMULAS FOR SURFACE IMPEDANCE 

In order to calculate surface impedances, it is necessary to 

solve Maxwe 11' s equations for the field distributions and then find the 

complex power dissipated inside the metal. Using the transverse 

..... 
gauge, 'V • A = 0, Maxwell's equations read 

'V2 
... 02 .A ..... ..... 
A - -- = 4'ITj (A) 

at 2 
( 4. 1) 

..... _,. 
B = 'V xA ( 4. 2) 

..... 

E 
oA 

= - at ( 4. 3) 

in the vector potential formalism. These equations apply both to 

the metal and vacuum. Since all fields vary sinusoidally, A,.., eiwt, 

eqn. ( 4. 1) can be tr an sf armed to 

\J2 A + (.l A = - 4'ITJ (A) (4. 4) 

andeqn. (4 .3 )to 

..... ..... 
E = iwA ( 4. 5) 

..... ..... 
Solutions of eqn. (4. 4) require the j versus A relation. In 

vacuum, 
-:> 
J = -· 0 everywhere and the A field is just a plane traveling 

wave, 
iKx ..... .... 

-e In real metals at room temperature, j = CJ E; 

Ohm's law holds and eqn. (4.4) is easily solved. But we are concerned 

.......... 
with temperatures near absolute zero in metals and here the j (A) 

relation is very non-local; the field in a large region determines the 
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current at some point with this region. We found in Chapter Z that 

which means that eqn. (4. 4) is an integro differential equation 

which is difficult to solve generally. One case can be solved in 
_, _, 

closed form and it is an important result. If the kernel Q (r, r 1
) 

-+ _, 

is a function only of the difference (r - r 1
), then eqn. (4. 4) is soluble 

in closed form. This case corresponds very nearly to the anomalous 

skin effect in normal metals and superconductors if no magnetic 

fields are present. We shall consider this in greater detail below. 

One further simplification should be mentioned here. The 

displacement current is negligible in a metal for frequencies of 

interest since w2A < < \/ 2 A so that eqns~ (4. 4) and (4. 6) can be 

combined to read 

(4. 7~} 

or for our planar geometry 

4"1!' ~
00 

Q(x, x 1
} A{x 1

) dx 1 

0 

(4. ?b) 

Given that .solutions of eqn. (4. 7) are available, the surface 

impedance, . Z , can then be found from 

z = 41T 

..... 
E (0) 
\ _, _, 
.) j dr 

The 4ir is conventional. 

A (0) 

~~I -
(Jx 

0 

= -i 4irw ( 4. 8) 

I 
0 

means evaluated at x = o+, just inside 

I I 
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the surface. 

Although this approach is correct, it is not feasible to calcu-

late the kernel Q (x, x') for our problem. So we develop some 

other relations useful here. 

:l,c 41i (.t) 

z = i I oA I a 
ax o 

~1 ox 
0 

= R -iX 

follows trivially from eqn. (4. 8). 

An integration by parts yields 

which by eqn . (4. 7b} is also related to Q. 

~
oo >'.c aaA 

A -- dx = 
0 axa 

Thus 

>::; 
Q(x, x') A(x') A (x) dxdx' 

>'C 
Z'= '{ \ 00 >'< \IX) I 'OA 12 

41T J Q A ' A d x d x' - J 0 x 
0 0 

dx } 

( 4. 9) 

(4. 10) 

(4. 11) 

(4. 12) 

a form which allows the spatial integrations to be done immediately 

and Z to be found directly once we know A(x}. 

We shall now take the following new point of view toward 

calculating surface impedances. We approximate the A(x) field 

distribution by an exponential -x/o e one parameter, o, just as for 

the static field distribution. o, the ac penetration depth is a 

·1. · . 

.... 
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function of Hdc and w. From this assumed form we would 

change eqn. (4. 12} to read 

z>'.c = i 4irw l 6 la { 41T ~ 00 
e -x/0 >!< e -x' / 0 Qdx dx 1 - ~co e -x/0 >!<e -x/0 dx} 

0 0 

( 4. 13) 

which can now reasonably be done numerically using a computer. 

But this z':< must be consistent with the z>!< calculated from eqn. 

>'< 
z · = -i4irw6 (4. 14) 

Thus it is possible to find the self-consistent 6 whence we trivially 

know the surface impedance. 

From eqn. (4. 14} we note that surface reactance measurements 

are in fact a measure of penetration depths 

x = 4irw Re(o) (4.15} 

and from eqn. (4. 9c} we see that surface resistance measurements 

determine the amount of power dissipated by the metal. 

R = 4rr(.ulm (6) (4. 16) 

For superconductors with T <::;; • 9 T and w < 2 6 ,R < < X 
c 

so that Im(6) < < Re(6). As a consequence it is really necessary to 

be concerned with self-consistency only for the surface reactance 

or penetration depth. Once the correct self-consistent value of Re(6) 

is known we can calculate directly the surface resistance from eqn. 

(4. 13} using for 6 the Re(6}. Actually the case for our problem is 
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even better as far as surface resistance is concerned. The changes 

in surface resistance due to static magnetic fields are so large 

(RH 10/RH = 0 > 1) and the changes in surface reactance 
de de 

sufficiently small (-lO?h ) that using Re(6) for Hdc= 0 is adequate to 

obtain answers within 2096 and of the right sign. This will become 

more obvious after further formal developments. 

The only point here is to say that maintaining self-consistency 

is less of a problem than might be expected initially. 

We now continue to evaluate eqn. ( 4. 13 ). In Chapter 2, we 

split Q into a paramagnetic term, Q., and a diamagnetic term, 

-Ne 2
; 
Im• For the latter, the integrations are immediately done and 

one finds that 

-i4irw -if ) ( 4. 1 7) 

Hence, the diamagnetic term contributes only to the surface reactance. 

(The two last terms are both important.) 

The paramagnetic contribution is proportional to 

~
00 

dxdx 1 

0 

-x/6 >:< -x!/6 Q · ( ') e e 1 x, x • Referring to eqn. (2. 2lb) we see 

that this integral is composed of the sum of two quantum mechanical 

matrix elements magnitude squared. 
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M 1.m = J 

0 

Mb= 
1.m 
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(4. 18a) 

dx (4. 18 b) 

b b 
Note that Mm.£, = -M ,e,m Mn a is the matrix element for processes 

XJI'D 

scattering a quasi-particle from one state, ,e,, to another state, m. 

M n b is the matrix element for destruction of a quasi-particle and its )(;m . 
b>:< 

anti-quasi-particle from states .t and m. Mf;m is the same as 

before except referring to creation of a pair. 

00 * 
Below we calculate M1 : = ~ [u1 (x)u2 >!<(x)+v1 (x)v;;/!<(x)]e-x/o 'dx 

0 

, for the most general u, v's. 

:>'< . 

+ C 21 A,..,-, 
0

[l+(E:1 +i:- ) (E: 2 -s *)] I2 (p p ) 
r;7;J '=' P1 P:a -1 ' +:a 
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.,,, . 
+ B2l. B 22 • [ 1 + ( 8 l - S ) ( 8 2 - S >!<) ] 12 (-P+1 ' -P+) P1 P2 

,,, 

+ D21 n22 ···c1+(c:1 +s · ) (82+s · ':')J 12(-p , -p 2) 
Pi P2 -1 -

,., 
+ B21 n22 ·· [1+(81- s · ) (E:2+s · ':')J 12 (-p+l, -p_2) 

P1 P2 

;::(, 

>!<) J 12 + D21 Bza [l+(e1 +s ) (82-s (-p-1' -P+2) P1 P2 

. ;:!< 

+ A21 B~ [ l + ( t: l - S ) ( E: 2 - S >!<)] 12 
Pi P2 (P+1 ' -P+4) 

,., 
+ AZJ. D22. [1+(81 -S ) (82+S ':')] 12 (P+1 ' -p ) 

Pi P2 -2 

':' 
+ B21 A z;z [ 1+(81 - s ) (82 - s 

Pi P2 
>!< ) J 12 (-p+i, P+2) 

, ,, ,,. 
+ B21 C22 [ l + ( 8 l - S Pi ) ( 8 2 + S Pz >!<) J 12 (-p +1, p -2) 

,., 
+ C21 B 22 ' [ l + ( E: 1 + S ) ( e 2 - s ':') ] 12 (p _1 -p +z) 

P1 P2 

~-

+ C21 n22 ···c1+(s1 + s ) (c:2+s ':')J 12 (p_l , -p-2) 
P1 P2 

* . 
+ Dzi Azz . [ 1 + ( 8 l + S ) ( e 2 - S ':') ] 12 (-P-1, P+2) Pi P2 

(4.19) 

where 

(4. 20a) 
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i(n_ -P2 >:'+ ~J\ 
12 ( P1, P2) = i _e ______ _ (4. 20b) 

for the most general u, v's. 

+ cl ~ c [ ( 8 + s ) - ( 8 ~ + s ) J 13 ( r - n, r -m) 
"' 1m . m rm ;v . r J, ;v 

+ A n C [ ( E: + E; ) - { € n - ~ ) ] 13 ( r ..1.., n , r _ m ) 1 ;v 1m m · rm ;v r J, ;v 

+ A:aJ,Czm[(e:m+i;P) - (e: ;,-sp )] 14 (P+;,' P_m) 
}; J, 

+ C ..,nA [(e: -S ) - (e: n+S )] I4 (p n, P+· ) 
"""' 2rn m pm "' P;, -;v m 

+ D. ~D~ [(e +s ) - (e n+S )] I4 (-p n,-p ) 
2;v ~u, m pm ;v p}; - ;v -m 

+ B~nD [(e +s ) - (e n-S )] I4 (-p+ n• -p ) 
"'"' zm rn pm "' p}; "' -m 
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+ D nB [(e -S ) - (e n+S )] l4 (-p_ n, -p+m) 
2,, 2m m. pm ,, p J, ,, 

+ A . n D [ ( e n - S ) - ( e + S ) ] l4 ( P+ n , - P ) 
2,, 2m ,, pf, m pm ,, -m 

+ B 2 £A2rn[(e ,e-SP,e) - (em-spm)] 14 (-P+.e' P+m} 

+ B2 .e,C2m[(e .e,-SPJ,) - (em +s·Pm)] 14 (-P+t• P_m) 

+ C n B [ ( e n +SP ) - ( 8 - S ) J I4 ( P n, - P+ ) 
2,, zm ,, .e m pm - ,, m 

+ D . n A [ ( e n + S ) - ( e - S } ] I4 ( - P n, P+ ) 
2,, 2m ,, pf. m pm -,, m 

+ D2 n C [ ( 8 n + S ) - ( e + S ) ] I4 { - P n, P ) ,, :zm ,, p m p - )'J -m 
J, m 

I4 {Pi , P2 } = i 

·: 

{4. 21.) 

(4.22b} 

(4. 22a) 
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>'< 
In terms of these matrix elements Z' is just 

z >:< = i321T2 w I o I 2 '8 ( K J, cos 8 + K J, sin 8 ) 
2 

f,,-m y z 

a 

IM£~ l 

i I b 
1

2
[ i i J }. · '· +- [ 1-f (e )-f (e )] M + . 

2 - T t T m J,m e +e +w-io e +e -f.1..i'ho 
m ,Q, m £ 

4 

-i 41TW l 0 I 
o + o,:c 

4e 2 K 3 

( 
. f 
31Tm 

(4.23} 

The u, v amplitudes are invariant under the change K ..... -K z z 

contained in ~ causes the field-particle coupling 
,Q, 

cross term K £ K J,cos8sin8 contribution to vanish in eqn. (4. 23). 
y z 

This just expresses an obvious symmetry - the surface impedance 

is the same for field linear polarization of ± e about the direction 

of Ade. Because of this 

. ;, .e, a ;,2 ;,a 2 
(k cos 8 +K sin8) _. (K ) cos2 8 + (K ) sin 8 

y z y z 

and we can derive the complete angular dependence of the· surface 

impedance by calculating Z for just two angles, 0 and 1T/2 ; i.e., 
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Z(8) = Z(8 = 0) cos2 8 + Z (8 = 1T/z) sin2 8 (4. 24) 

It should be noted that this relation is independent of the long series 

of approximations made above. 

The sum over states, 

We could have derived this long ago. 

~ , in eqn. (4. 23) is actually more 
£,m 

than a double sum; this is so since a surface state requires three 

num.bers to fix it - st' Ve' and the particular branch number, while 

a continuum state requires four numbers - st, v e' e:, p± incident. 

In any case, it's always possible to pull out from the sum 

r, 
dK x, 

y 
2rr 

dK ,e, 
z 

and express these integrals · 

in terms of St and cp (Ve = V 
0 

cosCO) which are useful in subsequent 

work. This is trivially done using the definitions of St and cp in 

Chapter 3 and the result is 

~ ... 
J,, m 

where ~ on the right hand side now and hereafter refers to the 
J,, m 

remaining variables necessary to specify the state considered. If 

mly surface states are considered, ~1T dcp ... ~/; dcp 
0 2 

since there 

>l< 
are no surface states for V = 0. Putting all ·this together we find Z 

e 
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1 

-i47TW 
4e 2 K 3 

( 5.1m f - (4~25) 

For processes involving surface states, it is most useful to 

switch from the integration variable c.p to the variable V • The 
e 

substitution made is 

v 2 
1 \

0 
dV {cos2 9 e + sini38 (V 2 -V 2

) ±} 
V a J_ y e (V a -V a )"2 o e 

(4. 26) 

o o o e 

Finally, for continuum states, the sum over states is just 

\00 dp± . 
~ j 21T assuming unit volume. 

+, - -oo 
~ means the sum over P+ 

+, -

and p _ incident states. However, the more useful variable is € • 

Thus 

~ (4. 27) 
+,-
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can be used in eqn. (4. 25) whenever considering continuum states. 

Assembling all these bits and pieces, we can now write the 

surface impedance contributions for the various processes in a 

form that can be directly evaluated numerically on a computer. Let 

z
5 

be the surface impedance of the superconductor and ZN denote 

surface impedances of normal metals. Write the total z5 as 

ZS1 + ZSa + ... All variables are renormalized to dimensionless 

form and ti's and c 's are reinserted so that Z may be found in ohms. 

= 5.62 10-S ohms/(.A~ eV)2 1 

7.i.3c3 

The familiar identity ~+1 s: - P ( _!.) -iiro(x) is used in the reduction, 
x lv X 

where P denotes principle part of the integration. 

We merely state the formulas, here, and discuss the conse-

quences later. 

(1) Transitions between surface states 

{ cos2 e 

(4.28a) 
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We shall need later (~ _ W1) 
6 /;;, 

so that 

V a 

{ ~ e (-T--) 
cos 

a a a -c:o J [ ( i-) -( :e) Jz 

(4.28b) 

which is further discussed in Chapter 6. 

We calculate the matrix element M f,; , for integrals (4. 28) 

as follows: Solve the set of simultaneous equations (3. 15) with 

A 1m, C1m, Azrn, C 2m where f, and m refer to two surface states 

with the same st and Ve but different energies, e ;,• em. These 

coefficients A 1 , C1 , etc. must satisfy the normalization condition 

(3. 16). M;,; is then trivially found from formula (4. 19) with 

B n = D ~ = O. :a"", m 2;v, m 

; · . 
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(2) Transitions between surface states and continuum states 

Zs>:< = i ~ ~a l ~ E6 Ef:a 
2 TI uC i12c3 u f 

branches 
m 

v 2 

{cos~e (~ 
2 2 a -

(:o) [(:o~ -(:e) ]
2 

y2 y2.!. 

. a r( 0) ( e) 1 2 
} +sin el T - 6 j ( 4. 2 9) 

Since the energy of continuum states is always higher than the 

energy of surface states, the o - function term contributing to the 

resistive part contains only the Lj 
branches 

j, 

I) 
+, -
m 

~- • • terms. The 

reactance, though, picks up contributions from both continuum and 

surface states as final states in the interaction and keeps all sums. 

We determined M.t:::i for integrals (4. 'Z9) as follows: If 

.t is a surface state, then solve eqns. (3. 15) with B2 = D 2 = 0 for 

A
1

J,,, C
1

J,,, C
2

J,, normalized according to eqn. (3. 16). The continuum 

states, m, are found by solving eqns. (3. 15) first with D2 = 0 (for 
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P+ incident scattering states ) and then with B2 = 0 {for p _ incident 

scattering states) normalized now according to eqns. (3. 17). This 

determines either the non-zero set A
1
m, C

1
m, ~· B

2
m, C:zm or 

A
1
m, C A ' C · D. respectively and hence M nma is again 

im' 2m' zrn' :zm ~ 

fixed by expression (4. 19). 

(3) Transitions between continuum states 

>;c 8 
Zc:: .= i 
~ '11"2 

;, 
o(p±/Kf) 

a(·;,; t:. ) 

a 
10 l 

~ood(:~ ~ 
l . +, -

f;, m 

( 1+ i st,t ) (cos2 8cos2 cp + sin a 8sin~cp ) 
f 

[fT ("6t) - fT(";') J JM t! J "[P(em ~ i W )- irr6 ("~ - :i -~ ) J 
T-6-7:: 

(4. 30) 

a 
M ;,~,in eqn. (4. 30) is calculated from continuum scattering 

states solutions to eqns. (3. 15), normalized according to eqns. (3. 17) 

·as described earlier. However, not all the non-zero terms are kept 
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in the M a expression ( 4. 19); we ignore all terms which vary ..em 

like 

~'< 

i(p n+P ')A. ;;:, m e 
e 
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CHAPTER 5 

THEORY OF ANOMALOUS SKIN EFFECT 

In order to understand the modifications that will be produced 

by applying a static magnetic field to a superconductor, it is necessary 

to know what happens when Hdc = O. The theory of surface impedances 

in such superconductors is, in turn, based upon the theory of surface 

impedances in normal metals at low temperatures which can be found 

masquerading under the name anomalous skin effect. (The under-

standing of these phenomena also re pre sen ts the direction of historical 

progress in discussing the more complicated situations.) All this 

can be accommodated in the previously developed formalism. By 

shutting off Hdc' we obtain the surface impedance of ordinary super­

conductors and by letting the gap, 6, vanish, we can find the normal 

metal absorptior:i properties. Since all this work is thoroughly 

described in the literature, we merely review the basic features 

necessary for our problem. 

Begin by considering a normal metal at room temperature. 

0 
·The mean free path of conduction electrons (~lOA) is much less 

0 
than the penetration depth of the electromagnetic field (-5000A ). For 

such situations, the fields felt by an electron over its free motion 

between collisions can be approximated as a constant. · Then the net 

-+ ... 
current density, j (r ), generated by a collection of electrons is pro-

portional to the field strength at that point, which just expresses Ohm's 

familiar law, 
..... _. -.-. 
j (r) =crE (r) • <J is called the conductivity and depends 
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on the frequency of electron scatterings of the given temperature. 

This simple point relation means that Maxwell's equations inside 

the me~al have a trivial solution, A -x/o ,..,.. e 

:Now let's see what happens as the temperature is lowered to 

cryogenic levels. The electron mean free path is generally much 

0 
larger than typical field penetration depths (""' 1 OOOA ) so that an 

electron between collisions will usually see a field which is anything 

but constant. It makes no sense to talk about the Olunic conductivity, - --cr, relating j and E, A at a point. A non-local relation holds, 

-+ _. \ 00 -+ -Jo -. -+ _. 
j (r) =.) .. Q(r, r 1) A(r 1) dr', and solution of Maxwell's equations is 

0 
more difficult than before but still possible. The solution to this 

proble:n'}· has been carried out by Reuter and Sondheimer( l l), · 

Charnbers(lZ)• Mattis and Bardeen( 7), and Abrikosov, Gorkov, and 

Khalatnikov AGK(l 3 ) The AGK paper is most closely related to 

concepts used here. All the solutions, however, for the surface 

impedance were made for an infinite, homogeneous, isotropic metal. 

In view ,of the long mean free paths, this makes such results very 

suspect. We have investigated the question 'and resolved the matter 

in Chapter 7. Using an infinite metal is acceptable and we continue 

the discussion here on that basis. --For an infinite medium Q(r, r ') is a function only of the 

d1fference coordinates r;_;, I; AGK( 13 ) have calculated the Fourier 

transform of the kernel and find that for penetration depths much 

less than the mean free path {extreme anomalous limit) 
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Q (k)= l 

I kl 
( 5. 1) 

One can then use the Fourier transformed Maxwell's equations to 

-+ 
solve for the A field distribution and obtain the surface impedance 

of a normal metal ZN= RN + iXN • The AGK(l 3} result is 

.a 
RN 

4ir 
( e~f) s = ~ 

32 
.... , .. , 

XN 
41T Uk} = --r-

To find RN in ohms, use 

with w m radians/ sec. 
b 

d K . A-1 an f in 

(5. 2a} 

(5. 2b) 

(5. 2c} 

The formulas for surface impedance, here, are provided 

mainly for reference. Our main considerati'on is the physical 

mechanism by which absorption takes place. In the anomalous 

skin effect realm, a new feature enters - - only electrons traveling 

very nearly parallel to the surface of the metal play an active role 

in 'interacting with the electromagnetic field. Electrons that collide 

with the surface at a large angle with respect to the surface run in 

and out of the field too quickly to absorb any sizeable amount of 
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energy. We are, of course, only considering electrons at the 

Fermi surface, as usual. Let us refer our discussion to the 

usual geometry in this work. The surface is in the y - z plane 

.... 
and the A field is polarized along the y-axis . The electron has 

x-component of momentum p and transverse momentum K • 
p 

K = K coscp, K = K sincp. So the effective electrons here have 
y p z p :f". · 

very small p compared'to Kf and the maximum angle for non-

parallelism with th~ y - z plane is of the order P/Kf < < < 1 . 

This gets smaller as Kf increases which in turn means that the 

effective number of electrons interacting with the field is decreased. 

Almost everything said about the normal metal at low 

temperatures applies directly to the superconductor with no static 

magnetic fields present. This first became apparent about twenty 

years ago when Pippard slightly modified Chambers' results on 

normal metals to explain the magnetic properties of superconductors. 

By this we do not mean that the physics of both situations 

is the same; rather that the formalism adapted for anomalous skin 

effect is applicable also to superconductors . Whereas a normal 

metal allows a static magnetic field to penetrate completely, a 
0 

superconductor confines a static magnetic field to within about lOOOA 

of the metal 1 s surface. However, both normal and superconducting 

metals use only the electrons in a thin slice of Fermi surface to 

screen the ac fields from the interior region. (Superconductors 

do this also for de fields.) 
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Thus in superconductors one can calculate surface impedances 

using infinite medium kernels, Q, just for the same reasons as 

in normal metals. 

It turns out that the kernel, Q, for superconductors has 

for its Fourier transformed behavior the same dependence of k, 

So in this way one can see the relation of 

normal and superconducting metals through the kernel, Q, after 

having separated out the common spatial behavior. In the normal 

metal, Im Q is different from zero and Re Q is zero. Also 

Im Q vanishes for w = 0 which means that static fields permeate 

the metal. In a normal metal Q is temperature independent for 

the range of anomalous skin effect. For a superconductor Q has 

a much more complicated behavior . Most results are only available 

numerically. When T = 0, w < 26, Re Qi- 0, Im Q = O. It is 

Re Q f; 0 which gives rise to the Meissner effect - the expulsion 

of static fields from the bulk interior of a superconductor. Let's 

point out an important difference between normal and superconducting 

metals here. Suppose T = 0 and W"'"' !:::., a 'frequency which generally 

falls somewhere in the microwave region. Then the field in both 

cases is confined to the surface region since IQ I in both cases is 

about the same order of magnitude. But in the normal metal it 

is . Im Q ~ 0, Re Q = 0 while in the superconductor Re Q 'f 0, Im Q = O. 

So whereas both metal surfaces are highly reflecting the mechanism 

for each is quite different. It has been pointed out earlier that 

Im Q 'I 0 corresponds to power absorption while Re Q 'f 0 is related 
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to reactive or non-dissipative processes. Thus the normal metal 

expels the field by just being a very good absorber while the 

superconductor expels its ac field without any power absorption -at all. 

This can all be understood in terms of the excitation spectrum 

for quasi-particles in normal and superconducting metals:.. In 

normal metals an arbitrarily small amount of energy can create 

excitations absorbing power out of an electromagnetic field. For 

superconductors, though, there is a gap in the excitation spectrum 

of magnitude !::,. The minimum energy necessary for creating a 

quasi-particle is 6.. And at absolute zero where no thermal excita-

tions are possible, the only way to absorb energy is through the 

creation of a quasi-particle anti-quasi-particle pair which costs 

an amount of energy at least 2/::,. Since we are considering w,...., 6, 

therefore, no power can be absorbed. However, virtual pair creation 

processes do occur and it is these which give Re Q -:f. 0. As London 

has suggested, the superconductor wavefunction has a certain rigidity 

which is not destroyed by these perturbations. 

( 14) . . l l Feynman says that there is a geriera ru e about the 

reflectivity of materials. Whenever a material gets to be a very 

good absorber at some frequency, it also becomes highly reflecting. 

Our exa.tnple above for a normal metal in the anomalous skin effect 

is a perfect case. The larger Im Q, the higher the reflectivity. 

But, the rule is inappropriate for superconductors. There is no 

absorption at all and yet the surface is very highly reflecting! 
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The most extreme difference between normal and super-

conducting metals occurs at T = O. As T is raised the super-

conductor tends to behave progressively more like a normal metal 

until at some critical temperature, T , the superconductor c 

turns in!to a normal metal. This happens for two reasons: higher 

temperatures thermally excite more quasi-particles aero ss the 

gap into the continuum of ~tates and higher temperatures cause 

the gap function to decrease. The thermally ex.cited quasi-particles 

behave much like the quasi-particles in the normal metal. It is 

for this reason that a superconducti ve state used to be considered 

a mixture of "normal and superconducting fluids". We should 

mention that the gap function actually changes very little except 

in the region T ;;:i .95T. In terms of the kernel, Q, the trans­c 

formation from superconducting to normal state occurs as fallows: 

Re Q ... O as T rises while Im Q, which was zero for a superconductor, 

tends toward Im Q for a normal metal as T runs from zero to T • c 

Since the gap holds constant until T """'. 95 T , Re Q also stays c 

strong until this point, too, dropping rapidly to zero only for 

T fil • 95 T . Which is to say that virtual pair processes are the 
c 

dominant mode of flux expulsion throughout the widest range of 

tern pe rature. 

All the above and several other interesting cases can be 

found discussed by AGK(l 3 ). 
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CHAPTER 6 

SURFACE IMPEDANCE THEORY FOR SUPERCONDUCTORS WITH 

Hdc -f 0 AND COMPARISON TO EXPERIMENTAL DATA 

We now have developed enough formalism to discuss the 

implications of this surface impedance theory for Hdc -f O. Since 

everything must be calculated numerically on a computer ranging 

from single to quadruple integrals, our results are only for a few 

cases. These are done in realms where the individual processes 

are separated as clearly as possible from one another. The 

experimental data are also rather spotty so a complete comparison 

. of theory and experiment is impossible at this time. 

Wherever numerical results of calculations are quoted, the 

following data have been assumed for the model which corresponds 

roughly to tin and tantalum; 

0 -1 
1 A 

·'· Ef = 5 e V 

tiEf= lo- 4 ~t::.~150gc 
0 

o(T = 0) = SOOA 
0 

A.e = lOOOA 

Some important experiments have been performed by 

(1) Pippard(l) in tin at 9. 4gc 

(2) Spiewak{Z) in tin at 1 gc 
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(3) Richards(S) in tin at 3 gc 

(4) Lewis( 4 ) in tin at 24 gc 

(5) 91osser(3) in tantalum at 9 gc 

(6) Sharvin and Gantmakher(6 ) in tin at 2 me. 

The number measured by the experimentalist is usually the 
..... 

·surface impedance for some size of Hdc' z5 (H) == R
5

(H) + iX5 (H), 

divided by the normal state surface resistance, RN. RN is 

temperature independent and for the effects considered here also 

independent of Hdc" (RN varies with Hdc only when in the many 

kilogauss range.) As we shall soon see, normalizing the super-

conductor surface resistance changes to RN can be quite misleading 

in many instances since large changes divided by an even larger 

number make the effects appear small. (It is necessary to 

measure this _surface resistance ratio because the power losses in 

the cavity walls usually·-far exceed the sample's power losses of 

interest. ) 

In Chapter 5 'it was pointed out that the effective quasi-

particles had to be traveling very nearly parallel to the surface of 

the metal. That angle was said to be about P/Kf° In actually per-

forming the integrations for surface impedances, p was not found 

to be a convenient independent variable. A better measure of the 
2 ::i 

angle for our purposes is St== Kp/lm - Kfjzm, the ·transverse 

momentum. In terms of St' then, the angle between quasi-particle 

·-(-suEf )t. trajectories and the surface is about /J We shall refer 

''' 
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occasionally to this angle. 

The reader should have some feeling for the sizes of the 

effects involved here. Surface reactances are to be interpreted 
0 

in terms of penetration depths which are about 1 OOOA. Surface 

resistances are related to power dissipation in am etal and hence 

to reflecti'vity of the metal surfaces. We are concerned with 

-4 surface resistances ,..,,, 10 ohms or less. These are extremely 

"shiny" surfaces reflecting 99. 99+% of the incident radiation. So 

while we shall be talking about '''big and small" changes in the surface 

resistance, the actual changes in reflectivity are very very tiny, 

indeed! 

We shall begin by considering the superconducting surface 

resistance at "low temperatures", 0 < T ~.ST , and for electro­c 
Rs;. 

magnetic radiation frequencies, r,JJ.v. It,. If Hdc = 0, Rs (and /RN) 

is negligible. _ This is well understood since for such tempera-

tures there are negligibly few quasi-particles in the continuum to 

absorb power. If Hd ~ H ,..,.500 guass (H is the critical magnetic 
c c c 

field where the superconductor reverts to a normal metal}, however, 

there is a sizeable power absorption, 

depends on every conceivable factor . involved he_re. Thus Hdc has 

changed the surface resistance by several orders of magnitude. 

w ·hat could be the reason? Within our model, there is only one 

possible candidate for an explanation - -the surface states. As 

described in Chapter 3, the Hdc field sets up a potential well within 

which there are discrete energy levels that range from e: """'0 toe: ~/;,. 
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They exist only for I st I < 206 which according to earlier formulas 

indicate quasi-particle trajectories even more parallel to the 

surface than the effective electrons in the anomalous skin effect. 

0 lOb. corresponds to an angle ,..., 2 . 

Since there exist states whose excitation energies are much 

less than the gap, even "low temperatures" yield sufficient the rm al 

populations so that a photon can kick a quasi-particle from a lower 

branch into another higher energy branch conserving transverse 

momentum (initial and final states both have same st and v ). . e 

Using the surface state spectrum described in Chapter 3, we 

have calculated the surface resistance at Hlow temperatures" for 

various T, t.JJ, Hdc' and 8. (Recall that e is the orientation of the 

radiation field polarization with the y-axis.) By confining ourselves 

to T <.ST and w ~. ZD., we can be sure that the surface resistance c 

is totally dominated by transitions between surface states. 

We must do this calculation numerically, which according 

to eqn. (4. 28a) amounts to just a single integral over either v e or st 

as one chooses. However, doing the integral over the o(em -E: J,- w) 

introduces either i/l a (em -e ;)/ave I or i/l a(em -e .t)/ast I according 

to which variable is used for integration. And both of these factors 

are singular for a typical energy spectrum. Although the integrals 

are well-behaved, it is too difficult to handle such a situation num-

erically on a computer. A more reasonable approach is to integrate 

eqn. (4. 28a) over a narrow frequency range from ((J1 to w2 , where 
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t.Ll 2 -lt.l1 < < < 6, and obtain the surface resistance per unit frequency 

range from a double integral over Ve and St° We assume that the 

surface resistance varies continuously and smoothly with frequency 

so that for (JJ.i - w1 ""'. 016, we are really calculating the surface 

resistance at each point in frequency, except for Wva ~minimum 

energy separation of the nearest pair of surface states ~. 016. 

(Obviously, there is no absorption when (tJ is less than the minimum 

energy separation of two surface states, so for some w there is a 

discontinuous change in the surface resistance to aero.) The formula 

then used for calculating the surface resistance is given by eqn. (4. 28b). 

Although there is much extra work in doing _a double integral, one 

is rewarded by obtaining the surface resistance over a wide frequency 

range, not just at one frequency, in doing the double integral once! 

Some results of this calculation are summarized graphically in 

Figures 6. la, b, c below. 



-68-

1. 

1. 

0.5 

0 • 2 • 4 

0.5 

T = . 1 T c 

w = • 1 !::, 

Figure 6. la 

Hdc/Hc 

T = • 4 T 
c 

w = . 1 ti 

Figure 6. lb 
_ ___..____.._...,. _____ __, Hd /H 

c c 
0 .2 .4 .6 .8 1.0 

1.5 

1. 0 

0 

8=0° 
T = . 5 T c 

w = 0 3 ti 

Figure 6. le 
_....____....__--11. _ __.__._~ H /H 

. 2 • 4 . 6 • 8 1. 0 de c 

SURFACE RESISTANCE DUE TO SURFACE 

STATES AT "LOW T" 



-69-

:It should be mentioned first that the requirement of self-

. • - consistency on 6, the penetration depth, is least stringent for this 

case. The Im 6 <<<Re 6 here. Re 6 changes by about 10% as Hdc 

varies over its range while Rs/RN runs from zero to about BL 

So we can use, to very high accuracy, 6 = Re 6 only . And using 6 

~ 

for Hdc = 0 merely makes an overall consistent error in Rs/RN of 

about 20%. The results in Figures 6. 1 use 6 at Hdc = 0 and T = O. 

(It is well known that penetration depths are essentially independent 

of T up to T "'•ST • ) Such approximations are adequate for the c 

qualitative behavior desired. 

Figure 6. la displays results which can be mo st closely 

related' to experimental data available. Glos ser( 3 ) has measured 

I 0 0 
RS RN at 8 = 0 and 90 as a function of Hdc for T ;;;:.:: • 2 Tc' 

w :::::. 076. His results are consistent with ours in that Rs/RN 

I a - 0 
increases monotonically with Hdc' Rs RN is larger for = 0 than 

for 90°, and Rs/RN is ab<;>ut a maximum of 1. S?,h. 

Glosser 1s work( 3 ) has the only data taken on the angular (8) 

dependence and then .only for Hd ::::! • 9 H , near the critical field. In c c 

Figure 6. 1 b we have obtained some very interesting results regarding 

the 8 dependence · on Rs/RN for (.I):;::; • 16, T ~ • 4 Tc as a function of 

Hdc for which there is no experimental check, as yet. For Hdc ~He 

Rs/RN is larger for 9 = 0° than for 8 = 90°. But for Hdc ·=:::: • SHc• 

the surface resistance is larger for 8= 90° than for 8 = 0°! And 

we believe this conclusion to be generally true if surface states 

exist with the only proviso being that the superconductor show 
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little or no anisotropy in the gap, 6, for Hdc = 0 cases - a basic 

assumption of this model. This effect mostly depends on the 

delicate interplay of occupation probability, density of states in 

K • K space and the coupling of field to quasi-particle motion 
y z 

but not critically upon matrix elements, or spectrum shape! It 

is governed principally by the terms 

2 

. l 

a 2 -} + sin2 9 {V - V ) z 
o e 

o Ve :3 ~ a ± 1 o 
The "8 = 0 piece" is · /V {V - V ) and the "8· ,= 90 piece "is 

o e o . 
l 

2 2 -
(V - V ) 2. which are plotted in Figure 6. 2. 

o · e 

FIGURE 6. 2 

Although the "9 = 0 piece" has a singularity at V
0

, there is no problem 

since the area for finite width V is finite. We can interpret the 
e 

curves. If the field is polarized along the y-axis ( e = o0
), the 
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quasi-particles traveling most nearly parallel to the y-axis absorb 

the mo st energy; those traveling along the z-axis absorb none and 

conversely for polarization along the z-axis (9 = 90°). Suppose 

V
0

""' /:':,.. The states for e ,.... 0 have a strong occupation probability 
' 

and couple strongly to the e = o0 case but weakly to the e = 90° 

case, since IV I ,.... /:':,. means K ,..,, Kf and K ,...,; O. The. states higher e y z 

in energy have such low occupation probability that their effects 

barely modify the results, 8 = o0 
polarization dominates e = 90° 

Now probability 

occupation is low but all transitions have about the same value so in 

each case (0°, 90°) we must consider the whole range of I Ve I· 
But in general there are more states coupling to the 9 = 90° case 

(small I Ve I 's) than to the e = o0 
case (large I Ve 1 • s ). Hence 

e = 90° dominates over e = o0 polarization. 

Next we consider the superconducting surface resistance 

at "intermediate T", • 5 T ~ T ~ • 8 T , and frequencies w .:;;; • l /:':,.. . c c 

All the investigators have observed that Hd ,...., H causes the surface c c 

resistance to decrease anomalously. Pippard ( 
1

) first noticed this 

in 1949 and it has remained a mystery since that time. This 

R 5 (Hdc = 0) ]/RN ~ - 1%. It was pointed out earlier that normalizing 

surface impedance to RN c,ould be misleading and the particular case 

is the worst. At "intermediate T", R 5 (Hdc = 0) ~ • l RN so that 

the surface impedance variations are more substantial than one might 

expect from looking at the data. It would be more useful if 
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experiment~lists plotted [R5 (HdcfO)...R. 8 (Hdc = O)]/R8 (Hdc = 0). 

Typically this latter quantity would be 50% to 1000%. a rather large 

change in behavior. 

At "intermediate T 11 and w ~. 16, there seem to be three 

mechanisms at work to consider, but two are unimportant. First, 

there are transitions between surface states which increase the 

surface resistance, but RS1/RN is only about 1%. Then there are 

transitions from surface states to continuum states, but once again 

for sma.ll frequencies, w < < 61 RSa /RN.-.-+ 1%. This contribution 

is progressively smaller as w is lesser. Finally there are transitions 

of thermally excited quasi-particles between states in the continuum. 

(We have had to estimate the sizes of these three different mechanisms 

since the Fermi factor is su,fficiently .large for T f:l • 6 Tc to guarantee 

occupancy of all types of states.) This latter case would exist if 

Hdc = 0 1 whereas the previous two cases depend upon Hdc f. O. It 

is the onset of continuum occupancy by thermaliy excited quasi-

particles at T =. 6 Tc which starts the process whereby a super­

conductor gradually turns into a normal metal at T = Tc· And our 

calculations indicate that Hd '¢ 0 has such a marked effect as to . c 

account for the suppressed surface resistance solely through 

modifications of the continuum transitions mechanism. RS3 /RN > > 

Rs~/RN so that we may ignore the other two processes involving 

surface states. (Throughout this Chapter we are picking w, T, etc. 

so as to isolate the various processes from one another.) So let us 

RS./R 
.consider the expression for 3 N; we do the integral over e 2 
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to drop the o -function in eqn. (4. 30) and are left with a non-trivial 

triple integral that must be evaluated numerically. There are a 

number of features to be considered here. Once again there is 

the question of which o to use for the self-consistency relation. 

R~ o ;;:> i'o Imo and Re o changes by about 10% due to Hdc" However, 

RS changes by about 100% so that we are once again justified in 

using Re o for Hdc = 0 to deduce the proper qualitative behavior. 

The reader is reminded that this triple integral is no more 

than the anomalous skin effect in superconductors, and normal 

metals if 6 = O. As mentioned in Chapter 5, only quasi-particles 

traveling nearly parallel to the surface are effective in absorption. 

Hence only "small St II are important which for OUr Ca Se turns OUt 
1 

to be -103 6~~ ~26. 
, 2 -

(st ~. 26 since for st ::<:: 0 the minimum € = (6+st } z ';:>t , 
-

and e: ;;:, 36 can be ignored due to the Fermi factors.) That only 

"small st" are involved is guaranteed by the convergence of our 

integral being very rapid outside this range. 

For continuum states, there are many terms in the matrix 

element, Mn a; each term has an exponential factor which either varies as 
JC/ID , 

The former class oscillate rapidly as 

st runs over its range while the latter class have slowly varying 

phases. Therefore we keep only these terms and drop the other 

which make little contribution. (It was not necessary to do this for 

surface state problems since' the range of st integration is two 

orders of magnitude less.) 
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; The triple integral is so expensive to do that only a few 

important cases were done; viz. w = O. 16, T = . 6 Tc' . 7 Tc' 

• 8 Tc' Hdc = He~. The result is in excellent agreement with the 

data of Glosser( 3) in that the surface resistance falls monotonically 

with T over this range and is within 30% of the measured values. 

Furthermore, for Hdc _, 0, our results are within 10~ of the Glosser 

data. This serves as a check on the method. 

The results are displayed below for comparison with Glosser's 

(3 ) data. 

T/T 

• 6 

• 7 

• 8 

c 

theo. 

2. 9 

6. 9 

9. 8 

exp. 

3 

7 

10 

[R5(Hdc = He_) -RS(Hdc= O)]/RN 

% 

theo. 

1. 2-.45 =. 75 

.8-.75 = .05 

• 3 - 3. 8= - 3. 5 

exp • 

1 

0 

-4 

In the fourth column we have written our result as the sum of two 

numbers to emphasize that the two effects of surface state transitions 

and continuum state transitions compete. The first number is 

surface state data. 

The experimental data originally provided the clue to 

understanding the negative shifts in surface resistance. R 5 (Hdc = 0) 

does not start to rise substantially from zero until T 2::. 6 T • This c 

is, however, also the same point where R 5 (Hdc f. 0) - R 5 (Hdc = 0), 
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which is fairly flat with T up to this point, begins to develop a 

negative slope. Hence, it is likely that Hdc is modifying that 

mechanism responsible for absorption when T;::.,. 6 Tc; viz., 

continuµrn. transitions. 

But what is the reason for this negative shift in surface 

resistance? When Hdc = 0, there is uniform pr,obability to find 

a quasi-particle anywhere in the metal. If Hdc -::/- 0, though, the 

situation is vastly different. The probability to find quasi-particles, 

then, varies with space and even the spatial behavior varies with 

e, st and cp in a complicated way. Hdc sets up the effective potential 

Ve = V 
0 

coscp described in Chapter 3. (V 
0 

_. Hdc) The principle 

effect of V is to repel quasi-particles from the surface region ""'A 
e e 

for certain important values of the parameters. If l st! ~ 206, Ve> 0, 

and € ~ 6 +Ve• r ± are complex so that the probability to find quasi­

particles falls exponentially in the surface region. But it is the 

quasi-particles in the surface region tor I st I ~ 2ot:. which are the 

most important absorbers of energy; a significant fraction of quasi-

particles no longer plays a role in interacting with the electromagnetic 

field. For l st I ;;;; 206, r ±-+ p ± which are usually pure real. But 

this does not mean that the u, v amplitudes are spatially invariant. 

Even here there is a smaller probability to find quasi-particles in 

the sur:face region, but only fractionally less - not by orders of 

magnitude as when r± are complex. · This phenomenon is related to 

the induced static currents created by Hdc and could probably be 
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obtained if the u, v functions were calculated for an infinite medium 

carrying a uniform current along the y-axis. That is, it is due to 

transforming the infinite medium excitation spectrum from the coor-

dinate system at rest with respect to the screening current to the 

lab frame in which the superconductor is mounted. 

In any case, the net effect of Hdc is to make most of the 

matrix elements, M f,~' smaller as Hdc increases. The re are 

no resonance effects where by M f,~ increases substantially. 

That this occurs is very important for it will allow us to 

explain several important features of the reactance behavior 

without resort to further calculations. 

Finally, there .is the superconducting surface resistance 

at "high T", T P. 8 T 1 and low frequencies w ~. 16. Here, the 
c 

experimental data show · that surface resistance starts to increase 

again with Hd so that at T ...... 95 T , Hd once more causes c . c c 

R 5 (Hdc f O) > R 5 (Hdc = O). Finally for T ~. 95 Tc, R 5 (Hdc (= O) -+ 

R
5

(Hdc = 0)-> RN. This last realm is the easiest to understand 

since !:, -+ 0 rapidly and the superconductor is turning into a normal· 

metal. But why does the shift in RS change sign and become positive 

for sufficiently high T? First there is the obvious fact that Hdc or 

V have decreasing maximum values as T increases. [ H (T) ==: 
0 . . c 

H (T=O) (1 - T 2 /T 2 
)] Thus the potential V weakens for higher T 

c c e . 

and is less effective in keeping quasi-particles away from the surface 

region. Also quasi-particles of larger energy are more important 
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at higher T and these feel the effect of V much less than those e 

of small e. Hence the suppression effect doesn 1t work as well 

at "high T' 1
• Thus the suppression effect can no longer overwhelm 

the positive effect of transitions from surface states to continuum 

states. In fact the latter mechanism dominates once again. We 

have only estimated the size of this effect but it is sufficient 

(Rs
3 

/RN,...,, 2%) to give a net positive shift in RS for large Hdc ,...,, He. 

Only one property of this mechanism is important to discuss here 

related to the experimental data. The data of the experimentalists 

clearly show that the maximum positive shift in RS at "high T" 

shifts to lower T as w increases. Lewis(4 ) summarizes all the 

cases and finds a nice monotonic behavior. For any w, only 

surface states within w of the lower edge of the continuum can 

contribute. As w grows then more surface states absorb giving 

a larger surface resistance. But further, higher w's use surface 

states from deeper in the gap and these have higher population/ 

differences at any given T which also makes RS grow. Thus the 

higher · w 's begin to make a certain size R5
2 

at lower T than the 

smaller w's. When added to RS· the net result is as observed. 
3 

Since the above depends on two competing processes cancelling 

in a proper manner, a more direct way of observing the surface 

state to continuum state transition is desirable. We propose the 

following experiment be performed which, if successful, will be 

another verification to the existence of surface states. 

and /::; ~ w ~ 26 in tin, tantalum, indium, or aluminum. 

Let T > > T · 
c 

If Hdc = 0, 
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R 5 = 0 since w < 21::. means there is insufficient energy for pair 

creation. Now raise Hdc from zero . If RS suddenly becomes non­

zero for some Hdc <He, we are observing pair creation with one 

excitation going to the c6ntinuum edge and the other excitation going 

to the lowest lying ~mrface state energy. Furthermore, w :;;:, !::. 
....,, ,.,., 

should require Hd < H and w ~ 21::. should require Hd > 0 to c c c 

observe the discontinuity in Rso This is so since stronger Hdc 

· pushes the lowest branch of the surface state spectrum to lower 

energy. Higher T's will smear the RS discontinuity so every 

attempt should be made to keep T -> O. 

Our next order of business is the surface reactance behavior 

of superconductors when Hdc ¥ O. While surface resistance processes 

are susceptible to a simple physical interpretation, surface reactanc e 

phenomena are more elusive. Surface resistance is just another name 

for power absorption; a photon annihilates, kicking a quasi-particle 

from one state to another, conserving energy in the process. Surface 

reactance was shown to be a measure of field penetration and depends 

primarily on processes that always violate energy conservation, 

although staying within the bounds of the Heisenberg Uncertainty 

Principle. Nevertheless we have devised a picture that simplifies 

understanding surface r eactance and is consistent with the predictions 

of the formalism heretofore developed. 

Consider only virtual processes . Suppose that the initial 

configuration of quasi-particles changes to another arrangement in 

the presence of some A field at a particular frequency w. If the 
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total energy of the final state is greater than the energy of the 

initial state plus the energy, ·nw • then the effect of such processes 

is to reduce the penetration depth of the A field. And conversely, 

if the final state has less energy than the initial plus 'h.r.u, the 

penetration depth increases. Crudely speaking, we can imagine 

that if there is insufficient energy to make the transition from one 

state to another, the extra energy is extracted from the A field 

so that the penetration depth is decreased; whereas if there is more 

than enough energy. the surplus energy is returned to the A field 

increasing the penetration depth. 

Let us view this in terms of the two particular processes -­

scattering and pair creation. 

For scattering the relevant terms in the j(A) relation are 

[fT(e:a) - fT(e: 1 )]/(e2 -e:1 -w ). If e: 2 > e:1 • the thermal factors favor 

a net transition of quasi-particles upward from e: 1 to e:a. When 

e: 2 > e: 1 + w. the generated current causes a field which is in such 

a direction as to oppose the original A field. For e2 < e:1 + w (e: 2 > e1 ). 

the opposite holds and the original A field is enhanced. If e: 2 < 8 1 

(e: 2 always less than e:1 + w. of course). the current opposes the 

field· Although this transition is energetically favorable, it is statis­

tically undesirable since the final state has higher population prob­

ability than the initial state. Thus, for e 2 < 8 1 • one might say that 

it is an anti-particle type quasi-particle which is making the transition 

and such a particle causes a current that is opposite of particle type 

quasi-particle currents. 
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Note that in the limit of w _, 0, all the currents always 

oppose the field so that penetration depth is decreased for any 

transition. 

For pair processes, we are concerned with the terms 

-[ 1-fT(e .e) - fT(E!m)] f 1/(e .e+em +w) + l/(e ,e+E:m -w) } in the j(A) 

relation. The energies e .e' em here refer to the energies of a 

particle and anti-particle type quasi-particle either before or 

after interaction with the A field. When e .e+em > w, the only case 

of interest presently, virtual creation of particle and anti-particle 

type quasi-particle into states of energy e .e' em always tend to 

make currents which further reduce the A field. Virtual annihilation 

of the two quasi-particles from states e .e' em . would yield current 

tending to increase the A field if it were possible to have greater 

population probability in e ,e' e:m than in the "vacuum state 11 
- but 

this cannot be. Thus creation and annihilation always tend to screen 

the field from the interior when w < e: .e + e:m. 

In discussing surface resistance we carefully checked the 

necessity of maintaining self-consistency on o and concluded that 

this was not too important. That, however, is not true when 

considering surface reactance changes; we must be very careful 

here. Suppose using eqn. (4. 30) we found that XS ""o 2 (l+Hdc); 

it would not imply that XS shifts positive with Hdc because XS,...,. o 

from eqn (4. 14) and o,...., l/(l+Hdc) which means XS-.. l/(l+Hdc). 

XS shifts negative with Hdc!! This type of situation generally pre-
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vails for superconductors. 

The discussion of surface resistance fdr w < 6 above 

required con~ideration only of the terms involving scattering of a 

single quasi-particle from one state to another; the pair terms 

could make no effects. However, for surface reactance or pene-

tration depth problems, it is the pair terms which are the most 

important. 

Consider the "low temperatures", T E:; • 5 T • All the 
c 

Fermi factors, fT(e), are much less than one for continuum states, 

e ;;:, !:::.. Hence only the pair terms contribute substantially. And if 

w < 26, only the reactive part of this remains. But that is sufficient 

to explain the Meissner Effect -- the expulsion of the A field from 

the superconductor's interior. The penetration depth of a field 

due to the pair mechanism has a weak frequency dependence. In 

fact AGK have shown that at T = 0, o varies by about 7~ for 

0::; w< 26. For wt:;;;. I!:::., e: J, +em>> w, so that w= 0 results are 

perfectly adequate in this "low temperature'' realm . All this, so 

far, applies irrespective of Hdc" A static 'magnetic field affects 

only the matrix-elements, M.Q,~ the effect, tho', is identical to 

what happened to continuum states at "intermediate T" when 

surface resistance was discussed -- Hdc reduces the size of most 

matrix elements. Thus the current of virtual pair processes tending 

to expel the A field is reduced and so the surface reactance or 

penetration depth increase as Hdc rises. Another way to say this 

is that Hdc creates an effective potential, Ve, which shoves quasi-
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particles into the metal 1 s interior. Hence the A field must penetrate 

. further to interact with them. And this is what every experimenter 

has seen. The data at 700kc, 2mc, 1 gc, 3gc, 8. 8gc, 24. 5gc in 

various metals show a positive shift of surface reactance for 

"low T" with no evident frequency behavior. 

When T ~ • 5 T . the surface reactance shifts with Hd c· · c 

are much more complicated. At 700kc and 2mc, the shift is positive. 

At lgc and 3gc, the shift is negative. At 8. 8gc and 24. 5gc, the 

shift is again positive. This pattern, too, has an explanation based 

strictly upon the reduction of matrix elements through Hdc" 

The pair term works as at "low T" causing frequency 

independent positive reactance shifts so this can be regarded as a 

constant· background. But in addition T 1". 5 T makes the Fermi c 

factors large enough so that reactance effects caused by scattering 

quasi-particles from one level to another are important. This was 

discussed qualitatively above. It was noted that for w = 0 the virtual 

transitions lead only to further flux expulsion; so if the matrix 

element is squashed by Hdc' then A penetrates further. The 

mechanism is modified for w-:/ O. Transitions from 8 1 to 8 2 where 

e1 < 8 2 < 8 1 + w lead to "screening" currents that suck the A field 

further ,into the metal as shown earlier. That contribution becomes 

more important as w increases. If Hdc suppresses the matrix 

element, then the penetration depth or surface reactance shifts nega-

ti ve wh~ch is what the experiments at 1 and 3 gc show. When w is 
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further .increased, though, the processes tend to cancel; there 

are as many transitions above resonance as below. Which in turn 

means that the pair processes again dominate and the surface 

reactance shifts positive. This corroborates the data at 8. 8gc 

and 24. 5gc . 

Throughout the reactance analysis we have consistently 

ignored the effects of surface states . Their total contributions 

are much too small to make any difference . 

All the reactance changes can be explained by reference only 

to the modification of continuum states wavefunctions. 
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CHAPTER 7 

SURFACE EFFECTS 

Early in the research questions arose about the effect of a 

surface on absorption in metals at low temperatures. We discuss 

the matter in this chapter. 

Consider a normal metal at room temperature. The mean 

free path of the electrons is several angstroms long. So the current 

at some point inside the metal is determined by the electric 

field distribution only in a region of several angstroms radius about 

this point. And as long as these points are more than a few angstroms 

from the surface of the metal, there can be no surface effects, hence 

it makes no difference whether we use an infinite metal or one which 

makes explicit mention of a boundary. A typical electric field in 

this case penetrates the surface to about 5000 angstroms depth. 

Thus, the vast amount of absorption occurs in the interior away 

from any surfaces. Negligible error is made in computing surface 

impedances using infinite extent models. 

Now, however, suppose that the temperature is lowered to 

near absolute zero. The mean free path of the electrons can be very 

long,...., 100, 000 angstroms. Then, the current at a point is determined 

by the field distribution in a huge region surrounding that point. For 

typical fields penetrating about l 000 angstroms, most of the electrons 

arriving at some point will have had an interaction with the surface. 

The surface effects seem to be playing a large role in determining 



-85-

absorption processes. This phenomenon, the anomalous skin effect, 

yet, has been treated in the past entirely by considering only 

infinite medium models! (See work of Reuters and Sondheimer ( 11 ), 

Chambers(IZ>, Mattis and Bardeen{ 7!} An exactly analogous 

situation prevails for superconductors and there, toq infinite medium. 

results have been applied. {See Mattis and Bardeen{7 ), Pippard{l), 

AGK{l 3 ).) These calculations agree very well with the data so 

what is the paradox.? We consider here only the case of the normal 

metal; the superconductor is handled similarly. 

Bogolubov's equations adequately describe a normal metal 

under present circumstances if the gap, 6, is set to zero. This is 

then just a free electron gas; the elementary excitations are just 

electrons and holes. We consider the same geometry as always 

with the surface of the metal in the y-z plane and extending infinitely 

in the +x direction. only. For such a case the u, v functions are 

simply 

1 sin px, s > 0 (7. la) u= z 

= 0 s < 0 {7. lb) 

1 sin px, s <0 (7. le) v= z 

= 0 , s > 0 {7. ld) 

K 2 K 2 
pa __ Y_ - z 

where S = Zm + 2m Zm - Ef 

The u, v here satisfy all the boundary conditions imposed earlier 

in Chapter 2 and 3. 
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Using these u, v functions, the electromagnetic kernel 

Q(x, x 1
), defined by j(x) = Soo Q(x, x 1

) A(x') dx 1, as in Chapter 2 can 
0 

be grouped into three terms 

Q(x, x 1) = Q (x-x') + Q (x+x') + Q
5

(x, x') 
00 00 

(7. 2) 

Those terms that depend only on the difference (x-x') have a 

functional behavior called Q ; those depending on the sum (x+x') 
00 

also behave according to Q ; while the remaining terms are 
00 

lumped into Q
5

• It is not important presently to display any of 

those Q's more explicitly. The subscripts on the Q's refer to 

their physical significance which will become obvious later. Q 
00 

is the infinite medium kernel while Q
5 

is the correction kernel for 

surface effects. 

Suppose for the moment that Q5 can be ignored. Then the 

current at x, j(x), produced by the field distribution, A(x}, is given by 

j(x) = \
00 

[Q (x-x 1) + Q (x+x')] A(x 1) dx' 
.) 00 00 ' 

' 0 . 

(7. 3) 

Now suppose we define A(x) for x < 0 to be A{-x) = A(x); i.e., A(x) is 

symme.trical about the plane at x = O. Then a simple change of 

variables in the second tern of eqn. (7. 3) yields after some rearrange-

ment 
' 00 

j(x) = S Q
00

(x,x 1
) A(x') dx' 

-oo 
(7. 4) 

This transformation and final result is of large significance and in 
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part res,olves the paradox of surface effects mentioned above 

because :Q (x-x') turns out to be identical to the total electro­
oo 

magnetic kernel calculated in an infinite medium! If we had 

calculated the kernel Q(x, x') using infinite medium u, v functions 

u= e ipx 

u= 0 

v= e ipx 

v= 0 

, 

, 

, 

, 

s > 0 

s < 0 

s < 0 

s > 0 

(7. 5a) 

(7.5b) 

(7. 5c). 

(7. 5d) 

we would have found a Q (f{:, x 1) that depends only on the difference 

(x-x 1) and which is the same function as Q determined with u, v 1 s 
00 

in a semi-infinite metal. And that is why we labelled Q with the 
00 " 

subscript OO• 

Eqn. (7. 3) and its mathematical equivalent eqn. (7. 4) can 

be neatly interpreted with the aid of some simple physical pictures. 

Refer to Figures 7. la, b belowo 

· Y 

FIGURE 7. la FIGURE 7. lb 
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Figure 7. la is a diagram of eqn. (7. 3) and Figure 7. lb is a diagram 

of eqn. (7. 4). Consider the former. A photon annihilates at x. 1 

creating an excitation which produces a current at x. This excita-

tion could arrive at x via two different journeys - - it could go 

directly from x' to x, a distance (x-x'), or it could get to x afte·r 

a collision with the surface of the metal, a distance (x+x'). But 

the same effect is achieved if the photon annihilates at x' and 

goes directly to x in an infinite medium through a symmetrized 

A(x) field. In other words, an obse.rver at x cannot distinguish 

whether the received excitation at x was generated at x 1 in the semi-

infinite metal or at -x' in the infinite metal. Yet still another way --

an excitation going from x' to x via the indirect path feels the same 

forces as one traveling from -x' to x directly. 

The processes just described are referred to as specular 

reflection and depends on the surface being perfectly flat. An 

opposite extreme is the perfectly rough surface so that an incident 

excitation comes off in any random direction thus making no net 

contribution to the current. For such a case, Q (x+x') is ignored 
00 

in eqn. (7. 3) and the current is 

00 

j(x) = ~ QOC>(x-x 1
) A(x1)dx 1 (7. 6) 

0 

a situation referred to as diffuse reflection. Reuter and Sondheimer 

have calculated the . surface impedance for specular and diffuse 

reflection in normal metals. The amazing result is that they differ 

only by about 101h for those two extreme cases. 
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Thus, it is plausible that infinite medium kernels are 

capable of yielding sensible surface impedance results g_ the 

terms lumped into Q5 (x, x') are somehow small compared to those 

in Q • That question, though, has not been dealt with heretofore. 
00 

QS is far too difficult to calculate and even if available, the integro-

-+ 
differential equation for A would be hard to solve. We therefore 

use an iterative approach. Using the surface impedance determined 

from Q , we find a 6 to use in A,..., e -x/o as explained in Chapter . co 

4. Then with this A distribution, we calculate a new surface 

impedance but include in the matrix element Mn a the surface terms 
. ..11m 

which appear in Q5 • (M ;,!= 0 in a normal metal) The complete matrix 

a 
element ¥;,m looks like 

M 
a (' OCl • • -x/f/:<d 

~m "'Jo sin p J,x sin pmx e x 

1 1 1 
,..., P.e-Pm+i/6~< P;,-Pm-i/o>!<+ P.e,+Pm-i/o~< -

1 
p +p +i/[)>l< 

J, m 

The first two terms are just those that would appear for an infinite 

medium while the last two depend strictly u,pon the existence of a 

surface at x = O. 

Further evaluation of the above requires the sizes of typical 

variables. 
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and the important range of integrations is 

O~e~ ~2 
.1:1,m 

so over most of the range of integration 

Thus usually 

So the first two terms in M f,:i are each about 6*,,..., 10
3

; while the 

2 l. 
last two terms are about l/p.e,+Pm"'"' 10 /(-st)z and subtract from 

each other. The conclusion is that the surface terms make a negligible 

contribution to the surface impedance! 

The only possible way to see a surface effect is for penetration 
0 

depths 6 E:; SOA. Then the range of St integration is much smaller 

since the quasi-particles must make extremely small angles of non-

parallelism with the surface to be effective. But no such metal is 

known where 6 is so small. 

Although the above treatment concerned normal metals, the 
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reasoning and conclusions are identical for pure superconductors 

with no static magnetic fields present. 

When a superconductor with a static magnetic field is involved, . 

none of the above conclusions are relevant. In fact, as has been 

seen, it .is the spatial inhomogeneity which gives use to the many 

interesting features. 
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CHAPTER 8 

GAP SELF-CONSISTENCY 

A critical requirement for this theory is that the gap 

function, ti(x), be independent of Hdc and spatially constant. 

This can be checked by seeing if the u, v wavefunctions for a 

step potential and constant gap are self-consistent. Of course, 

within a few angstroms of the surface the gap rapidly falls to 

zero, since u, v do, but this isn't important. We are concerned 

with the changes over 1000 A distances. 

The self-consistency relation was last encountered in 

Chapter 3 andi we found that 

V BCS• the electron-electron interaction, is independent of Hdc 

and T and so can be ignored here. 

(8. 1) 

Whereas the expressions for surface impedance involved 

only excitations traveling nearly parallel to the surface, the gap 

relation eqn. (8. 1) is strongly sensitive to excitations traveling 

in every direction. Hence surface states make very little effect, 

here; only continuum states are important and we make little error 

in considering continuum states in the approximation -10
3 6~St 6;106 

where r ::::: r ~ p :::= p , all pure real. The St range is wide since 
+ - + -

we are no longer trying to couple to a radiation field; the electron-

electron interaction is mediated by an isotropic phonon exchange 
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mechanism • 

. With these simplifications in mind it is useful to consider 

the product v=i<(x) u(x) for various regions and types of scattering 

states. 

( 1) x ::::: A., p+ incident scattering states 

v*(x)u(x) = A2 Aa =i< ( e - S ) + B2 B2 =i< ( e - S ) + Ca Ca >:< ( e + S ) p p p 

-iZp +x . , i(p _ -p +)x 
+ B2 A 2 *(e-sP)e + C 2 A:z"<(e-sp}e 

(8. 2) 

Integration over the fast oscillating terms will give a negligible 

contribution so eqn. (8. 2) is simplified to 

v*(x)u(x) = A;aA2 *(e-s ) + B 2 B2>:<(e-s ) +C2C2 *(e+s ) p . p p 

i(p_-P+)x , i(p+-P_)x 
+ C2 A 2 ':<(e-sP}e + A;aC2 "<(11:+sP)e (8. 3) 

Around x,..., /.., the last two terms are very slowly varying. But 

deep inside the metal, x > > > A., even the last two terms are fast 

varying; thus they can be neglected implying that the equilibrium 

gap is spatially constant c;s expected and determined in part by 

the terms 

(8. 4) 
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(2) x ~ A., p _ incident scattering states 

Using the same approximations as before for x >>>A. 

(8. 5) 

(3) x ~ >.., p± incident 

Using continumn states for the surface region and disregarding 

fast oscillating terms, which requires staying several angstroms 

away from the surface, gives 

i(r -r +)x i(r + -r )x 
+C1 A1 •!< ( € - S - V ) [ e - +e - J 

r e 

(8. 6) 

In the surface region for the range of integration concerned, the 

exponentials can sometimes be expanded and only the lowest order 

terms retained; hence 

' ' 

v*(x}u(x) ~ 2 ([A1 A1 >:< + C1 A1 •!<] (e-s -V) r e 

(8. 7) 

which is spatially constant. Let us consider this last transformation 

carefully. 

Whereas 

0 Q 

most superconductors have penetration depths, \,,...... SOOA-1 OOOA, the 
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parameter 6/Ef has a range of a couple orders of magnitude. 

Typically o/Ef,...,, 10-4 for tin, 6/Ef ....... 10- 5 for aluminum. Consider 

the exponentials in eqn. (8. 6). The phase varies most rapidly at 

x,.,., 'A and least rapidly as x-+ 0. At x""' A., the phase varies in 

tin from about 1 radian to O. 1 radians as i;t runs its full range; and 

Ai Ci*, Ci Ai* are large st when the phase is large st (near small 

st}. So the neglect of spatial variation in eqn. (8. 7} is somewhat 

questionable. That was for tin; but in aluminum the phase varies 

from about 1/3 radians to O. 03 radians and it is a good approxima­

tion to neglect spatial behavior. The smaller 6/Ef and the smaller 

A., the less is the maximum range of the phase; but furthermore, 

for smaller 6/Ef and A., the smaller is the range of st over which 

Ai Ci>:<, Ci Ai>:< are non-zero so the spatial variation terms can be 

forgotten irrespective of the behavior. Conversely, superconductors 

with large 6/Ef and 'A have large phase variations and large ranges 

of St where A1 Ci >:c, Ci Ai>:< are non-zero. Thus it is likely that the 

gap is really constant, independent of Hdc for superconductors with 

6/Ef ~ 10- 5, A._. 10 3.A. And that the gap has strong spatial variations 

due to Hdc if 6/Ef ;o 10-
3

?. 'A 1310 3 .. t 
From the above discussion, one might suspect that 6/E[ is 

of some fundamental significance in the theory of superconductors. 

The original BCS theory of infinite homogeneous superconductors 

contained a quantity, s , called the 'coherence length" which was 
0 

identified as the average distance between two paired electrons in 

... ... 
the momentum-spin states kt, - k i. Just as the electron is the 
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basic entity in the normal metal, the 11 pair 11 of size s ...., Ki"/m 6 is 
0 

the analogous particle in a superconductor. Thus our l:"'fEf .....,l/K/;
0

; 

typically s .....,, 3•10 3 A in tin and S rv 2• 104 A in aluminum. When 
- 0 0 

the trend in gap variation for various 6/Ef values quoted above is 

translated into the coherence length language, the behavior is 

immediately comprehensible. 6 varies little if i; > > A and 6 
0 . 

varies strongly if S < < A· In the former case the A(x) field is strong 
0 

only in a region much smaller than the size of a pair so the pairing 

is almost totally unaffected and 6 remains unchanged from its 

unperturbed value. In the latter case' A(x) is uniform across a pair 

so pairing is modified in proportion to the strength of A(x) and 

hence 6 has strong spatial variations where A(x) has strong spatial 

variations. This result is not new. Caroli(lS) has shown using 

the Landau-Gingburg equations that 6 does indeed have this 

behavior with Hdc' i;
0

, and A· However, the L-G equations only 

apply to situations where ~ < < A which is the same as requiring 

local electrodynamics to be true. Our surface impedance theory 

is primarily concerned with the opposite limit, s >>A, non-local 
0 

electrodynamics. Hence Caroli 1 s results are only useful for s <<A· 
0 

The self-consistent method used in this thesis does not suffer from 

any restrictions on the relative sizes of s and A, and so provides 
0 

an independent test of how various perturbations affect the gap, 6. 

That the L-G equations yield the correct qualitative behavior 

here is still quite a mystery. 
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In conclusion, we simply say that for the metals considered 

in this the sis, tin, indium, aluminum, tantalum, s /> ... is 
0 

sufficiently large that we expect the qualitative results of our 

surface impedance theory to always be valid. 
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