
Advanced Monte Carlo Simulation and Machine

Learning for Frequency Domain Optical Coherence

Tomography

Thesis by

Sinan Zhao

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2016

(Defended July 10, 2015)

ii

© 2016

Sinan Zhao

All Rights Reserved

iii

To my wife Shuang, whose love made this possible.

iv

Acknowledgements

My time at Caltech has been a transforming experience, at all levels. I’m blessed

with the fortune to meet and interact with a number of great people, who I would

like to take the opportunity to acknowledge here. Caltech is such a wonderful and

resourceful place that, even if you only have a vague idea about what you want to

achieve, it is able to help you crystallize your thoughts and materialize your dreams.

First and foremost, my sincere thanks are due to my advisor Prof. Amnon Yariv,

who admitted me to Caltech, introduced me to the field of optoelectronics, and al-

lowed me to pursue freely my interests in the field of machine learning, applied math-

ematics, and computer science. Without his support and encouragement, this thesis

would not have been possible. His guidance, challenging questions, and suggestions

has greatly accelerated my development as a researcher and allowed me to flourish

both professionally and intellectually.

Not only is Prof. Yariv a gifted scientist, he is also a such versatile man that all of

us wish to emulate: he is capable of speaking seven languages and knows just about

everything of history and art (he even gave us a lecture about classical music on an

applied physics class), not to mention that he has been an expert in surfing and has

traveled all around the globe, including the Antarctic. His unique and well-rounded

experience has inspired us from the highest level and motivated us to always take a

step further.

My special thanks are due to Prof. Yaser Abu-Mostafa, who has made great

influences on me during my journey at Caltech. Meeting Yaser was an absolute

turning point of my life and career. Not only did he introduce me to the exciting field

of machine learning, but he also helped me apply it to solving real world problems.

v

His on-line course Learning From Data is so intriguing that you cannot help watching

it time and time again. The quality of the course is certainly way off the chart,

but at the same time it just feels great to hear that man talking. The half year

span where I could meet Yaser several times a week working on an industrial project

definitely ranks high among my best times at Caltech. Yaser is the ultimate guru

in solving real-world machine learning problems. His level of expertise and wisdom

makes working with him the most enjoyable and rewarding experience you could ever

ask for, and also his attention to technical details renders him the ideal boss. I will

never forget the time when I had an idea in the middle of the night for the project,

and discovered that Yaser was still at his office, ready for an immediate discussion

with me.

I thank Profs. Bruno Crosignani, P. P. Vaidyanathan, Willie Ng for being part of

my thesis committee, as well as Prof. Mark Simons who was part of my candidacy

committee. I enjoyed working with Prof. Bruno Crosignani on solving interesting

physics problems, along with the fun discussions regarding how to help me improve

my taste of wine. I thank Prof. Willie Ng for collaborating with us on the iPhod

project while he was at HRL Laboratories.

I would like to thank the Caltech departments and professors who employed me

as a Teaching Assistant. Without their help it won’t be possible for me to survive

these years. I’m especially grateful for Prof. Houman Owhadi, who has employed me

three times as his TA. I even gave a graduate-level lecture at Caltech on his behalf

while he was out of town, and I still remember my nervousness on that occasion. I

also thank the head TAs of ACM95/100, Gerardo Cruz and Adam Neumann, and

Maria Lopez at Computing & Mathematical Sciences, for constantly looking after me

in case I need a TAship each and every term.

My thanks are also due to the Yariv group members, both old and new - Xi-

ankai Sun, Naresh Satyan, Hsi-Chun Liu, Christos Santis, Arseny Vasilyev, Jacob

Sendowski, Mark Harfouche, Dongwan Kim, Marilena Dimotsantou, Paula Popescu,

Reg Lee, and George Rakuljic - for their help and friendship, for all of the mind-

blowing discussions and most importantly, for making the department a fun place

vi

to work in. I could not appreciate more about the diversity and intelligence of this

group, which has inspired me in various aspects of my life during my time at Caltech.

I sincerely wish the best of luck for everyone in their future endeavors.

I feel extremely lucky to meet lots of unbelievably bright friends at Caltech. I

sincerely thank Hongchao Zhou, Tong Chen, Liling Gu, Jinghao Huang, Daiqi Linghu,

Zhao Liu, Dongyang Kang, Xin Ning, Zhenhua Liu, Jiang Li, Maolin Ci, Dunzhu Li,

Chenguang Ji, Kuang Shen, as well as the CaltechC 2010 members, for all the fun

we had together and the memories we shared, they are so priceless and will stick in

my mind for the years to come.

I would like to thank my parents, who have always been there for me throughout

my years abroad. I will be forever grateful for their constant love and unconditional

support.

Lastly, I would like to express my deepest thanks and gratitude to my lovely

wife, Shuang (Vivian) Wu. This thesis would not have been possible without her

encouragement, sacrifice, and love. She is such a fun character and at the same time

extremely talented. There are an endless number of things that I could learn from her,

from Japanese to classical music, from singing to playing piano, not to mention that

she also manages to beat me in heads-up poker from time to time, which is completely

unconceivable. My life would never be out of joy with her company. Meeting her in

Pasadena and living with her at Caltech has been the most wonderful thing ever

happened to my life.

vii

Abstract

Optical Coherence Tomography(OCT) is a popular, rapidly growing imaging tech-

nique with an increasing number of biomedical applications due to its noninvasive

nature. However, there are three major challenges in understanding and improving

an OCT system:

• Obtaining an OCT image is not easy. It either takes a real medical experiment

or requires days of computer simulation. Without much data, it is difficult to

study the physical processes underlying OCT imaging of different objects simply

because there aren’t many imaged objects.

• Interpretation of an OCT image is also hard. This challenge is more profound

than it appears. For instance, it would require a trained expert to tell from an

OCT image of human skin whether there is a lesion or not. This is expensive

in its own right, but even the expert cannot be sure about the exact size of the

lesion or the width of the various skin layers. The take-away message is that

analyzing an OCT image even from a high level would usually require a trained

expert, and pixel-level interpretation is simply unrealistic. The reason is simple:

we have OCT images but not their underlying ground-truth structure, so there

is nothing to learn from.

• The imaging depth of OCT is very limited (millimeter or sub-millimeter on

human tissues). While OCT utilizes infrared light for illumination to stay non-

invasive, the downside of this is that photons at such long wavelengths can

only penetrate a limited depth into the tissue before getting back-scattered.

To image a particular region of a tissue, photons first need to reach that re-

viii

gion. As a result, OCT signals from deeper regions of the tissue are both weak

(since few photons reached there) and distorted (due to multiple scatterings of

the contributing photons). This fact alone makes OCT images very hard to

interpret.

This thesis addresses the above challenges by successfully developing an advanced

Monte Carlo simulation platform which is 10, 000 times faster than the state-of-the-

art simulator in the literature, bringing down the simulation time from 360 hours to a

single minute. This powerful simulation tool not only enables us to efficiently generate

as many OCT images of objects with arbitrary structure and shape as we want on

a common desktop computer, but it also provides us the underlying ground-truth of

the simulated images at the same time because we dictate them at the beginning of

the simulation. This is one of the key contributions of this thesis. What allows us

to build such a powerful simulation tool includes a thorough understanding of the

signal formation process, clever implementation of the importance sampling/photon

splitting procedure, efficient use of a voxel-based mesh system in determining photon-

mesh interception, and a parallel computation of different A-scans that consist a

full OCT image, among other programing and mathematical tricks, which will be

explained in detail later in the thesis.

Next we aim at the inverse problem: given an OCT image, predict/reconstruct

its ground-truth structure on a pixel level. By solving this problem we would be able

to interpret an OCT image completely and precisely without the help from a trained

expert. It turns out that we can do much better. For simple structures we are able

to reconstruct the ground-truth of an OCT image more than 98% correctly, and for

more complicated structures (e.g., a multi-layered brain structure) we are looking at

93%. We achieved this through extensive uses of Machine Learning. The success of

the Monte Carlo simulation already puts us in a great position by providing us with a

great deal of data (effectively unlimited), in the form of (image, truth) pairs. Through

a transformation of the high-dimensional response variable, we convert the learning

task into a multi-output multi-class classification problem and a multi-output regres-

sion problem. We then build a hierarchy architecture of machine learning models

ix

(committee of experts) and train different parts of the architecture with specifically

designed data sets. In prediction, an unseen OCT image first goes through a clas-

sification model to determine its structure (e.g., the number and the types of layers

present in the image); then the image is handed to a regression model that is trained

specifically for that particular structure to predict the length of the different layers

and by doing so reconstruct the ground-truth of the image. We also demonstrate that

ideas from Deep Learning can be useful to further improve the performance.

It is worth pointing out that solving the inverse problem automatically improves

the imaging depth, since previously the lower half of an OCT image (i.e., greater

depth) can be hardly seen but now becomes fully resolved. Interestingly, although

OCT signals consisting the lower half of the image are weak, messy, and uninter-

pretable to human eyes, they still carry enough information which when fed into a

well-trained machine learning model spits out precisely the true structure of the object

being imaged. This is just another case where Artificial Intelligence (AI) outperforms

human. To the best knowledge of the author, this thesis is not only a success but

also the first attempt to reconstruct an OCT image at a pixel level. To even give a

try on this kind of task, it would require fully annotated OCT images and a lot of

them (hundreds or even thousands). This is clearly impossible without a powerful

simulation tool like the one developed in this thesis.

x

Contents

Acknowledgements iv

Abstract vii

Glossary of Acronyms xxv

1 Overview 1

1.1 Introduction . 1

1.2 Basic OCT Principle . 1

1.3 Present Challenges in OCT . 3

1.4 Summary of Our Contributions . 6

1.5 Organization of the Thesis . 9

2 Understanding the OCT Signal 12

2.1 Chapter Overview . 12

2.2 Signal Formation in FD-OCT Systems 12

2.2.1 A Toy Example . 14

2.2.2 Another Toy Example with Two Targets 16

2.3 From Mirrors to Biological Tissues 18

2.3.1 Photon Path Length Becomes A Distribution 20

2.3.2 A-scans Are No Longer Identical 21

2.4 Reasons for the Need of Simulation 23

3 Monte Carlo Simulation of OCT 24

3.1 Chapter Overview . 24

xi

3.2 Introduction . 24

3.3 Basic Principles and the Monte Carlo Engine 26

3.3.1 Overview of the Simulation Steps 26

3.3.2 Mathematical Details of Implementation 27

3.3.3 More Complex Geometry . 29

3.3.4 OCT Transverse and Axial Signal Localization 30

3.3.5 OCT Angiography and Blood Flow Simulation 32

3.3.6 Putting It Together . 33

3.4 Class I and Class II Photons . 34

3.5 Why the Simulation is Slow . 36

3.5.1 FD-OCT vs TD-OCT . 36

3.5.2 Calculation of the Reflectance in TD-OCT 37

3.5.3 Discussion . 38

4 Speeding up the Monte Carlo 40

4.1 Chapter Overview . 40

4.2 Three Challenges . 40

4.3 Importance Sampling and Photon Splitting 41

4.3.1 Introduction . 42

4.3.2 Mathematical Details . 42

4.3.3 Additional biased scatterings 45

4.3.4 Photon Splitting . 45

4.3.5 Calculation of the reflectance 47

4.3.6 Generation of random biased angles 48

4.4 Identifying Photon-Mesh Intersection 48

4.5 Parallelization of A-Scans . 50

4.6 Simulation Results . 51

5 The Learning Problem 56

5.1 Chapter Overview . 56

5.2 Layered Biological Tissues . 57

xii

5.2.1 Single Layered Biological Tissues 58

5.2.2 Flood Illumination . 60

5.2.3 Sliding Window Prediction . 61

5.2.4 Multiple Layered Biological Tissues 63

5.3 Define the Learning Problem . 68

5.4 Discussion . 69

6 Solving the Learning Problem 71

6.1 Chapter Overview . 71

6.2 First Impression and Initial Thoughts 72

6.3 Transformation of the Output . 73

6.4 Three Data Sets . 75

6.5 Decision Trees, Random Forest, Extra Trees 77

6.5.1 Introduction to Decision Trees 77

6.5.2 Mathematical Formulation of Decision Trees 78

6.5.3 Ensemble methods . 80

6.6 Exploring and Shuffling the Data . 82

6.6.1 Initial Exploration . 82

6.6.2 Shuffling the Data . 83

6.6.3 Transfer Learning . 84

6.7 Restricted Boltzmann Machines . 85

6.8 Hierarchical Architecture . 86

6.8.1 Predicting the Length of the Segments 87

6.8.2 Interpreting the RMSE . 88

6.8.3 From Good to Bad . 88

6.8.4 Committee of Experts . 89

6.9 Prediction Results . 90

7 Conclusion and Outlooks 95

7.1 Chapter Overview . 95

7.2 More Complex Structures . 95

xiii

7.2.1 Simulating the Brain Structure 95

7.2.2 Predicting the Brain Structure 96

7.2.3 The Curved Brain Structure 98

7.3 Conclusion of the Thesis . 98

7.4 Outlook . 106

A Implementation Details of the Monte Carlo Engine 108

A.1 Overview . 108

A.2 Coding in MATLAB . 108

A.3 Coding in Standard C . 110

B Source Code in Standard C 119

B.1 Declaration of Functions . 119

B.2 Major Cycle of the Monte Carlo Engine 119

Bibliography 126

xiv

List of Figures

1.1 (A) A Michelson interferometer. (B) A Michelson interferometer with

the fixed mirror replaced by a sample. An OCT image (B-scan) of the

sample is shown below the detector. 2

1.2 An example of a nodular BCC lesion that was easily delineated laterally

with OCT is shown. The black arrow points at the lesion in the clinical

photo and at the same lesion in the OCT image. In between, the image

from the OCT probe is seen with a green line indicating where the OCT

scan was performed. White arrows indicate the adjacent normal skin in

the OCT image. 4

2.1 A FD-OCT system. The output light field is split by a diffraction grat-

ing, and component frequencies are detected by a linear detector array. 13

2.2 Time evolution of the optical frequencies of the launched and reflected

waves in a single-scatterer OCT experiment [12]. 14

2.3 A toy example illustrating the FD-OCT Principle. In this simple setup,

photons are emitted from different lateral positions of the source and

then collected by an array of detectors, representing different A-scans.

The sample only consists one mirror like, specular reflective target, lo-

cated at depth z0. 15

2.4 Image formation process for the toy example with a single target. (a)

histogram of the photon pathlength; (b) OCT signal at the detector; (c)

DTFT of the OCT signal, zoomed in to show the presence of the target;

(d) DTFT of the OCT signal, zoomed out to show the entire A-scan. . 15

xv

2.5 Image formation process for the toy example with two targets. (a) his-

togram of the photon half pathlength; (b) DTFT of the OCT signal at

the detector, which gives us A-scan, displaying the two distinct targets; 17

2.6 OCT Image formed by the toy example with two mirror like targets,

consisted of 256 A-scans, where each A-scan has 100 contributing photons. 18

2.7 OCT Image formed by the toy example with two mirror like targets,

consisted of 256 A-scans, where each A-scan has 1000 contributing photons. 19

2.8 OCT imaging in a more realistic setting. The previous two mirror-like

targets are replaced with a layers of biological tissue, located from depth

z0 to z1. 19

2.9 Image formation process for the example with one layer of biological

tissue as the target. (a) histogram of the photon half pathlength; (b)

OCT signal at the detector; (c) DTFT of the OCT signal, zoomed in to

show the presence of the target; (d) DTFT of the OCT signal, zoomed

out to show the entire A-scan. 20

2.10 OCT Image formed by stitching 512 A-scans from the example with one

layer of biological tissue as the target. (a) Top row: histograms of the

photon half pathlength; (b) middle row: A-scans at different positions;

(c) bottom row: the full OCT image formed by 512 A-scans. 22

2.11 Flow chart of the modeling process. 23

3.1 Illustration of the series of events that a photon experiences once it

enters a biological tissue. 25

3.2 The optical properties of tissues. 25

3.3 Flow chart of the MC algorithm. 34

3.4 Class I and Class II photons. 35

4.1 Schematic representation of the vectors and the angles used in the bias

procedure. 44

4.2 Schematic illustration of photon-mesh intersection. 49

xvi

4.3 State-of-the-art TD-OCT simulation results, which utilized importance

sampling and is based on a tetrahedron mesh. The object represents

a 3D arbitrary shape. The resulting OCT image consists of 512 A-

scans, where each A-scan took 43 minutes to simulating, resulting in a

simulation time of 360 hours for the entire OCT image. Simulated (a)

Class I and (b) Class II reflectance-based B-scan OCT image of the non-

layered object; (c) Spatial structure of the object; (d) Optical parameters

of the non-layered object used in the tetrahedron-based OCT simulator;

(e) A depiction of the tetrahedrons representing the non-layered object. 52

4.4 Simulated blood vessels. (a) Two blood vessels modeled at a depth of

250 µm and 200 µm. (b) Structural OCT image of two cylindrical blood

vessels (outlined in yellow) surrounded by a homogeneous sample. The

parameter µs for blood is fixed to 650 cm−1, µa , to 5 cm−1, g, to 0.9888,

and n, to 1.37. The parameter µs for the sample is set to 10 cm−1, µa,

to 1 cm−1, g, to 0.7, and n, to 1.37. Scale bars correspond to 100 µm. . 54

4.5 Same blood vessels simulated using our advanced Monte Carlo platform,

consisting of 512 A-scans. The simulation only takes one minute . (a)

Two blood vessels modeled at a depth of 250 µm and 200 µm. The red

lines represent the range covered by the A-scans. (b) Structural OCT

image of two cylindrical blood vessels surrounded by a homogeneous

sample. The simulation parameters are the same as in [1], where µs for

blood is fixed to 650 cm−1, µa , to 5 cm−1, g, to 0.9888, and n, to 1.37.

The parameter µs for the sample is set to 10 cm−1, µa, to 1 cm−1, g, to

0.7, and n, to 1.37. Scale bars correspond to 100 µm. 55

5.1 Monte Carlo simulation of a single layer biological tissue (dermis). The

OCT image consists 512 A-scans and the simulation time is one minute.

(a) Schematic drawing of the anatomical, ground-truth structure. (b)

Simulated OCT image. 57

xvii

5.2 An example A-scan from the simulated OCT image of the one-layer

biological tissue. The line in orange shows the corresponding ground-

truth structure of this A-scan. 58

5.3 The weighted half path length histogram of the example A-scan from

the simulated OCT image of the one-layer biological tissue. The photon

half path lengths are weighted by the weight Wi and the likelihood ratio

Li they carry. 59

5.4 Schematic illustration of flood Illumination. (a) The radius of the il-

lumination source equals 0.04 cm. (b) The radius of the illumination

source equals 0.08 cm. 60

5.5 Example A-scans under the condition of flood illumination combined

with the idea of sliding window prediction. (a) The resulting A-scan

when the radius of the illumination source equals 0.04 cm. The orange

line depicts the corresponding ground truth and the green window with

an arrow illustrates the idea of sliding window prediction. (b) Schematic

drawing of sliding window prediction, where the tissue type is predicted

one at a time using a sliding window going from left to right. 62

5.6 Schematic drawing of the anatomical, ground-truth structure of a multi-

layered biological tissue (three layers of dermis), where the three dermis

layers are centered at depth z = 0.02 cm, z = 0.04 cm, and z = 0.07 cm

respectively, all with a thickness of 0.01 cm. 63

5.7 Monte Carlo simulation of a multi-layered biological tissue structure

(three layers of dermis). The OCT image consists 512 A-scans and the

simulation time is 32 minutes. (a)Simulated OCT image displayed in

gray scale. (b) Simulated OCT image displayed in color scale. 64

5.8 An example A-scan from the OCT image of the three-layered tissue

structure, plotted at the dB scale. 65

5.9 Weighted half path length histogram at dB scale for the three-layered

tissue structure. 66

xviii

5.10 More example A-scans from the OCT image of the three-layered tissue

structure, plotted at the dB scale. The fact that A-scans are different

from one another even though they correspond to the same underlying

structure is another challenge for the learning algorithm. 67

5.11 The machine learning problem, where we need to go from left to right,

i.e., predicting the ground-truth structure from an unseen OCT image. 68

5.12 The machine learning problem at the A-scan level, where we need to

predict the ground-truth structure (green line) from the transformed

OCT signal, namely the A-scan (blue line). 69

6.1 Reminder of the machine learning problem at the A-scan level, where

the goal is to predict the ground-truth structure, a 1910-dimensional

vector yi(green line), from the input xi (blue line), which is also a a

1910-dimensional vector. 72

6.2 Transformation of the 1910-dimensional output variable y into two 20-

dimensional variables ytype and ylength. ytype encodes the types of the

segments of the output y into 20 class labels, and ylength describes the

length of these segments in pixels. Here the code “2” means “air” and

the code “4” means “dermis”. There is no loss of information in this

transformation as the new, lower dimensional variables ytype and ylength

are enough to fully reconstruct the original output variable y. 74

6.3 Three data sets for the layered, air-dermis structure. The first data set

consists of 100 OCT images where each image is composed of 512 A-

scans. The images may consist 1 to 5 layers of dermis, where the dermis

layer will have a random position and a random thickness. Data set

No.2 is the same as data set No.1 except for this time there are 1000

images and each image is composed of 64 A-scans. Data set No.3 is

the same as data set No.2 except that they all have a fixed, 3 layers of

dermis instead of ranging from 1 to 5. 76

xix

6.4 Decision Trees on IRIS data set [2], which consists of 150 samples and

3 class labels. Each sample has 4 features. 78

6.5 Zero-One Error for the prediction of ytype. In this case we get 4 class

labels wrong out of 20, resulting in an error probability of 0.2. 82

6.6 Schematic drawing of Restricted Boltzmann machines, where vi are

called visible nodes and hj hidden nodes. The weights wij connects

the two type of nodes. 86

6.7 Schematic drawing of the problem of predicting the length of the seg-

ments. We use the Root Mean Squared Error (RMSE) for this task. . . 87

6.8 Different test cases for the ylength prediction on Data Set No.4, where we

see some very good examples as well as very bad examples. 88

6.9 The hierarchical architecture in the form of a committee of experts,

where the job of the Classification Model on the top layer to dictates the

structure of the imaged object in terms of the number and type of the

segments, and assign a Regression Expert to solve the segment length

prediction problem corresponding to that particular structure. 89

6.10 Histogram of the RMSE on Data Set No.5, where we see that the median

RMSE is only 18.5833 compared to the average RMSE of 27.54875. This

shows that there are a few bad examples driving the RMSE up, but they

are a minority. 90

6.11 Histogram of the RMSE on newly generated Data Set No.5 without

those tricky cases that have layers close to the boundary. We see that

the average and median of RMSE are further reduced. However, there

are still outliers present but significantly less. 91

6.12 An example A-scan comparing our prediction result against the ground-

truth. This represents a typical performance of our hierarchical model. 92

6.13 An example A-scan comparing our prediction result against the ground-

truth. This represents a slightly worse-than-average performance of our

hierarchical model. 93

xx

6.14 An example A-scan comparing our prediction result against the ground-

truth. This actually corresponds to the worst performance of our model,

and in fact represents the new type of outliers present in the newly

generated data set. These outliers are the cases in which two layers of

dermis are very close to each other. Again this corresponds a minority

that drives the RMSE up. 94

7.1 Schematic drawing of the anatomical, ground-truth structure of a multi-

layered brain, which consists of an epidermis layer, a dermis layer, a skull

layer, and both white and gray matters. 96

7.2 Simulated OCT images corresponding to the multi-layered brain struc-

ture, which consists of an epidermis layer, a dermis layer, a skull layer,

and both white and gray matters. 97

7.3 An example A-scan comparing our prediction result against the ground-

truth, for the brain structure. This represents a typical performance of

our hierarchical model. 98

7.4 Part One of the story line. (a) An OCT image of the brain, this is what

you see. (b) The ground-truth anatomical structure of the brain, this is

what you would like to see. 99

7.5 Part Two of the story line. This is what you get from our machine

learning model. In our case, what you see is (almost) what you’ll get. (a)

The predicted ground-truth structure before pooling. (b)The predicted

ground-truth structure after pooling. 100

7.6 Schematic drawing of the anatomical, ground-truth structure of a curved

brain, which consists of an epidermis layer, a dermis layer, a skull layer,

and both white and gray matters. 101

7.7 Simulated OCT images corresponding to the curved brain structure,

which consists of an epidermis layer, a dermis layer, a skull layer, and

both white and gray matters. 102

xxi

7.8 Predicted ground-truth structure (without pooling) for the curved brain

example. 103

7.9 The New Philosophy for OCT. 104

xxii

List of Tables

6.1 Prediction Results for ytype on Data Set No.1 82

6.2 Prediction Results for ytype on Data Set No.2, which has 1000 images

and 64 A-scans per image, using Extra Trees. 83

6.3 Prediction Results for ytype on Data Set No.4, which has 4000 images

and 16 A-scans per image, using Extra Trees. 84

6.4 Prediction Results for ytype on Data Set No.4, which has 4000 images and

16 A-scans per image, using two layers of RBM with 512 components,

followed by Logistic regression. 86

6.5 Prediction Results for ylength on Data Set No.4, which has 4000 images

and 16 A-scans per image, using Extra Trees Regressor. 87

xxiii

Listings

5.1 Filter the outliers among the detected photon packets with huge like-

lihood ratios. 60

6.1 MATLAB code for transforming the output variable y. The code sim-

ply locates the discontinuities and use the positions of them to figure

out ytype and ylength. 75

A.1 Create Tissue Strcture. 108

A.2 Computation of OCT signals and A-scans. 109

A.3 Initialize photon position and trajectory 110

A.4 Compute the step size the photon will take to get the first voxel crossing

in one single long step. We also check whether the photon packet is

detected by the assigned detector. 111

A.5 Spin and Split. The Spin process is to scatter photon into new trajec-

tory defined by θ and ψ. θ is specified by cos(θ), which is determined

based on the Henyey-Greenstein scattering function, and then convert

θ and ψ into cosines ux, uy, uz. Split follows exactly the procedure

described in Section 4.3, where we apply biased backward-scatterings

and biased forward-scattering, as well as unbiased scatterings. Once

the first biased backward-scattering takes place, we split the photon

packet into two if the likelihood ratio of the biased back-scattering is

less than 1. We save the information of the continuing photon and

continue to track the current photon, by applying biased and unbiased

forward-scatterings. 112

B.1 Function Declarations . 119

xxiv

B.2 Major Cycle of our Monte Carlo Engine, with the Spin and Split part

and the Launch part removed. 119

xxv

Glossary of Acronyms

OCT Optical Coherence Tomography

TD-OCT Time Domain Optical Coherence Tomography

FD-OCT Frequency Domain Optical Coherence Tomography

MC Monte Carlo

ML Machine Learning

DT Decision Trees

FFT Fast Fourier Transform

1

Chapter 1

Overview

1.1 Introduction

Optical Coherence Tomography (OCT) is rapidly becoming an important imaging

technique for numerous medical and biological applications [3, 4]. It is a sub-surface

imaging technique that uses either a low-coherence light source (time-domain sys-

tems) or a wavelength-swept laser source (frequency-domain systems). It can provide

real-time imaging and with a depth resolution of 1µm or less [5, 6], which is two or-

ders of magnitude higher resolution than ultrasound imaging. The penetration depth,

which is highly tissue-dependent, can reach up to 3 mm and is typically limited to a

few millimeters. OCT is also able to produce images inside the body when integrated

with optical fiber probes. The use of infrared and visible light is safer to most biolog-

ical samples than ionizing radiation like X-rays or gamma rays, and it also allows for

spectroscopic characterization of an object, e.g., a tumor in tissue [7]. A recent thor-

ough review of OCT technology, including frequency-domain OCT, and applications

of OCT can be found in the Handbook of Non-invasive Methods and the Skin [8].

1.2 Basic OCT Principle

OCT is an interferometric technique, relying on interference between a split and

later re-combined broadband optical field. The principle of OCT is shown in Figure

1.1. A Michelson interferometer (Figure 1.1A) can be used to measure the ability of

2

light to interfere with itself, i.e., the ability to amplify or blur itself (“constructive”

and “destructive” interference, respectively). Light is split into two paths using a

beam-splitter (half-transparent mirror). The two beams recombine at the beam-

splitter, and detected. Interference between the two reflections is possible only when

the path-lengths of the two arms are matched within the so-called coherence length

of the light source. The coherence length is determined by the spectral width of

the light—a broad optical spectrum corresponds to a short coherence length, and a

narrow optical spectrum corresponds to a long coherence length. When using a light

source with a large coherence length, interference arises for even very large differences

in path-length. When using a source with small coherence length, interference only

arises when the two path-lengths are matched within the coherence length of the

light, which may be micrometer size. It is exactly this effect that is used in OCT

for distinguishing signals from different depths of the sample. The axial resolution is

essentially the coherence length, so that a small coherence length corresponds to high

axial resolution.

Figure 1.1. (A) A Michelson interferometer. (B) A Michelson interferometer with the

fixed mirror replaced by a sample. An OCT image (B-scan) of the sample is shown

below the detector.

If one of the mirrors in the Michelson interferometer is replaced by a biological

sample as shown in Figure 1.1B, every position of the scanning mirror corresponds

3

to the collected signal from a thin slice in the sample. In other words, it becomes

possible to determine the location of reflection. The thickness δz of the slice that

contributes to the signal (Figure 1.1B) is equal to the depth resolution of the system

and is inversely proportional to the bandwidth of the light source. The mechanism

for selecting signal from a specific depth is also referred to as coherence gating. By

moving the scanning mirror, the coherence gate successively selects an interference

signal from different depths. In this way, a depth scan recording can be obtained,

also referred to as an A-scan. The depth scanning range is limited by the mirror

displacement. Transverse resolution is determined by the spot size, which is given by

the focusing optics.

Two-dimensional data are obtained by moving the beam across the sample and

acquiring data (B-scan). By translating the beam in 2 directions over a surface area,

3-dimensional data can be acquired (C-scan). Acquiring 2-and 3-dimensional data

is in general possible in real-time. The interference signal is amplified, filtered to

improve the signal-to-noise ratio, and then digitized and transferred to a computer.

From the digital signal, the reflection strength is extracted and mapped, using either

a gray scale or color palette, thereby generating an OCT image [9].

1.3 Present Challenges in OCT

In Figure 1.2 we illustrate a typical clinical trial of OCT [10], where a person with

a nodular basal cell carcinoma (BCC) lesion, a type of non-melanoma skin cancer,

is examined by an OCT imaging system. From this example we can see that even

though the OCT image does a good job in terms of qualitatively describing what is

going on under the skin, it is far from presenting us the anatomical structure (i.e.,

the ground-truth), which is the ultimate goal of any imaging. While the OCT image

indeed shows us that there is BCC lesion, we can hardly conclude anything more than

that. For example, we cannot tell exactly the size and position of the lesion, nor the

interfaces of the various skin layers (epidermis, upper dermis, etc.). What’s worse is

that the OCT image becomes increasingly darker and blurred as we go deeper into the

4

Figure 1.2. An example of a nodular BCC lesion that was easily delineated laterally

with OCT is shown. The black arrow points at the lesion in the clinical photo and

at the same lesion in the OCT image. In between, the image from the OCT probe is

seen with a green line indicating where the OCT scan was performed. White arrows

indicate the adjacent normal skin in the OCT image.

skin, where the lower half of the OCT image is completely black so there is nothing

really for us to see.

As hinted above, despite the advantages and developments of OCT in recent years,

there are three major challenges in understanding and improving an OCT system:

• Obtaining an OCT image is not easy. It either takes a real medical experiment,

like a clinical trial, or requires days of computer simulation [11]. Without much

data, it is difficult to study the physical processes underlying OCT imaging of

different objects simply because there aren’t many imaged objects. For specular

reflective objects, e.g., a mirror, the corresponding OCT signal can be derived

analytically, because the photons go through a deterministic process. However,

once you replace the mirror with a real biological tissue, it is a fundamentally

different problem as the physical process now becomes light propagation through

random media. As the name suggests, to obtain an OCT image of a biologi-

cal tissue, one has to model how light (photons) interacts with the tissue. In

other words, we have to determine how each individual photon gets reflected,

refracted, scattered, and absorbed by the tissue, as well as whether the photon

has escaped or been detected. Therefore, to obtain an OCT image of a realis-

5

tic biological tissue, we have to either conduct a real experiment or perform a

computer simulation. The gold standard for the latter endeavor is Monte Carlo

simulation.

• Interpretation of an OCT image is also hard. This challenge is more profound

than it appears. For instance, it would require a trained expert to tell from an

OCT image of human skin, like the one shown in Figure 1.2, whether there is

a lesion or not. This is expensive in its own right, since you have to bring in

that expert (a doctor for example), but even the expert cannot be sure about

the exact size of the lesion or the widths of the various skin layers. Ideally,

we would like to recover the anatomical structure of the object being imaged,

which is the goal of any imaging. We shall not blame the expert because the

task itself is beyond human capabilities. This is because the physical process

dictates that the photons contributing to the OCT image inevitably go through

multiple scattering events and therefore the image itself is distorted, except for

the surface or close to the surface region of the image. Moreover, the problem

is not only hard but also unlearnable. What I mean by this is that for most of

the OCT images we have, we do not know their corresponding anatomical or

ground-truth structure. Therefore we couldn’t even try to learn how to infer

the ground-truth from its OCT image because there are no such examples. The

take-away message is that analyzing an OCT image even from a high level

would usually require a trained expert, and pixel-level interpretation is simply

unrealistic. The reason is simple: we have OCT images but not their underlying

ground truth, so there is nothing to learn from.

• The imaging depth of OCT is very limited. While OCT utilizes infrared light for

illumination in order to stay noninvasive, the downside of this is that photons

at such long wavelengths can only penetrate a limited depth into the tissue

(millimeter or sub-millimeter on human tissues) before getting back-scattered.

This is simply a fact determined by the optical properties of the tissue as well as

the physical laws of light propagation. To image a particular region of a tissue,

6

photons first need to reach that region, and then get back-scattered from that

region. The deeper the region, the fewer photons could reach and get scattered

from that region. As a result, OCT signals from deeper regions of the tissue,

e.g., the lower half of Figure 1.2, are both weak (since few photons reached it)

and distorted (due to multiple scatterings of the contributing photons). This

fact alone makes OCT images, especially the part of deeper regions, very hard

to interpret. As a result, the usefulness of an OCT image is limited to its surface

regions unless we can interpret the much weaker signals from relatively deeper

regions.

In summary, obtaining an OCT image is not inexpensive, which would take either an

experimental trial or through expensive computer simulations. Interpreting an OCT

image is also hard, i.e., we cannot recover the anatomical structure of the imaged

object. This is due to the fact that the physics underlying the image formation

process distorts and weakens the signal, as well as the lack of fully annotated OCT

images for us to learn from. Moreover, because of the multiple scattering events that

the photons need to go through, deeper regions of a biological tissue (beyond a few

millimeters) are beyond the reach of all but a few photons, resulting in a limited

imaging depth of OCT.

1.4 Summary of Our Contributions

This thesis addresses the challenges described in the previous section by successfully

developing an advanced Monte Carlo simulation platform which is 10, 000 times faster

than the state-of-the-art, bringing down the simulation time of an OCT image from

360 hours to a single minute. This powerful simulation tool not only enables us

to efficiently generate an arbitrarily high number of OCT images of objects with

arbitrary structure and shape on a common desktop computer, but it also provides

us the underlying ground-truth of the simulated images at the same time because we

dictate them at the beginning of the simulation. This is one of the key contributions

of this thesis. And what allowed us to build such a powerful simulation tool includes

7

a thorough understanding of the signal formation process, particularly for frequency

domain OCT, a clever implementation of the importance sampling/photon splitting

procedure, efficient use of a voxel-based mesh system in determining photon-mesh

interception, and a parallel computation of different A-scans that consist a full OCT

image, among other programing and mathematical tools, which will be explained in

detail in later chapters of this thesis.

Next we aim at solving the inverse problem, which is, given an OCT image, predic-

t/reconstruct its ground-truth structure on a pixel level. By solving this problem we

would be able to interpret an OCT image completely and precisely without a trained

expert. It turns out that we can do much better. For simple structures we are able to

reconstruct the ground-truth of an OCT image more than 98% correctly, and for more

complicated structures (e.g., a multi-layered brain structure) we are looking at 93%.

In other words, we managed to beat the hypothetical expert by a large margin. We

achieved this through extensive uses of Machine Learning. The success of the Monte

Carlo simulation already puts us in a great position by providing us with a great deal

of data (effectively unlimited), in the form of (image, truth) pairs. These are the

training examples for us or a machine learning algorithm to learn from. The machine

learning problem is not easy though, since given an OCT image, say with 512× 512

pixels, we need to predict the same amount (which is 512 × 512) of pixels in order

to fully reconstruct the ground truth. In a typical computer vision problem, we are

only required to predict a single, high-level output, say a classification label given an

image. So it seems that our problem is orders of magnitude harder. The good news

is that we have effectively unlimited data to learn from, plus the data will be fully

annotated on the pixel level, and more importantly we have full control in designing

and generating the data set which we think will help to better train machine learning

models. The fast Monte Carlo simulation platform developed in this thesis makes

such a scheme possible, since previously simulating a single OCT images would take

days or even weeks.

The learning and prediction are done at the A-scan level. In our setup, each

A-scan consists of 1910 points (pixels). In other words, the machine learning model

8

would take a 1910-dimensional input, and need to produce a 1910-dimensional out-

put. The first thing that comes into mind is dimension reduction, i.e., it is necessary

to transform of the high-dimensional response variable into a smaller dimension, so

that the problem is manageable. By recognizing that each realistic biological tissue

displays a layered structure at the A-scan level, we convert the learning task into a

multi-output multi-class classification problem and a multi-output regression prob-

lem. The goal of the multi-output multi-class classification problem is to predict the

order and the types of the layers comprising the A-scan, while the goal multi-output

regression problem is simply to predict the depth of each layers. This is another

key step towards solving the inverse problem, since it reduces the dimension of the

output from 1910 to less than 40. We then build a hierarchy architecture of machine

learning models (committee of experts) and train different parts of the architecture

with specifically designed data sets. Again, we are able to do this by virtue of the

fast Monte Carlo platform we developed. In prediction, an unseen OCT image is

decomposed into A-scans, and each A-scan first goes through a classification model

to determine its structure (e.g., the number and the types of layers present in the

A-scan), and then it is handed to a regression model that is trained specifically for

that particular structure to predict the length of the different layers and by doing so

reconstruct the ground-truth of the A-scan. In the end we conduct a pooling step by

averaging the prediction of adjacent A-scans before constructing our final answer for

the ground-truth. This pooling step is based on the prior knowledge that there is a

local continuity in the structure of a natural biological tissue, and it turns out that

this gives us another boost in the prediction performance. We also demonstrate in

the end of the thesis that ideas from Deep Learning can be useful to further improve

the system.

It is worth pointing out that solving the inverse problem automatically improves

the imaging depth, since previously the lower half of an OCT image (i.e., greater

depth) can be hardly seen (as shown in Figure 1.2) but now can be fully resolved.

Interestingly, although OCT signals coming from the lower half of the image are

weak, messy, and uninterpretable to human eyes, they nevertheless carry enough

9

information which, when fed into a well-trained machine learning model, spits out

precisely the true structure of the object being imaged. This is just another case

where Artificial Intelligence (AI) outperforms humans. Clearly, with the development

of computational power as well as advances in machine learning and AI, OCT systems

will continue to improve. It is not hard to imagine that in the near future an OCT

imaging system would present us with the anatomical structure outright and possibly

beyond a few millimeters. Hopefully this thesis represents an important first step

towards this goal. To the best knowledge of the author, this thesis is not only a

success but also the first attempt to reconstruct an OCT image at a pixel level. To

even give a try on this kind of task, it would require fully annotated OCT images and

a lot of them (hundreds or even thousands), and this is clearly impossible without a

powerful simulation tool like the one developed in this thesis.

1.5 Organization of the Thesis

This thesis is organized as follows. In Chapter 2 we first explain the signal forma-

tion process of Frequency Domain OCT (FD-OCT), starting from single, mirror-like

targets. We will show how A-scans and OCT images can be constructed using the

OCT signal. Next we move on to discuss how the situation is changed when we try

to image a layered biological tissue. Chapter 2 concludes by stating the reasons why

we need simulation to construct OCT images of real biological tissues.

Chapter 3 is intended to be a review of the standard Monte Carlo simulation

procedure. By the end of the last chapter we already understand why we need a Monte

Carlo simulation in oder to generate OCT images. In this chapter we begin with a

general discussion of the principles of Monte Carlo simulation of light propagation

in biological tissues, the big picture, important concepts and building blocks, as well

as how can we use these to construct a platform to simulate OCT images. We then

dig deeper into the issues behind conventional Monte Carlo simulation to gain some

insight as to why it took days to simulate a single OCT image previously. A thorough

understanding of these issues is a prerequisite to come up with ways to speed up the

10

simulation, which will be the topic of Chapter 4.

In Chapter 4 we will show in detail how we managed to bring down the simulation

time of an OCT image from 360 hours to a single minute. We begin by identifying

three main challenges that prevent us from fast Monte Carlo simulation of OCT

images and then address them accordingly. To make this chapter less technical, most

of the source code listings are left to the appendix which the interested reader is

welcome to visit in order to fully appreciate the simulation procedure.

Starting from Chapter 5 of this thesis we will focus on the inverse problem: given

an OCT image, predict its ground-truth structure on a pixel level. Solving this

inverse problem would lead us to a completely new philosophy of medical imaging by

handing the doctor and the patient precisely the anatomical structure, i.e., what you

see is what you will get. No one has ever attempted it because there is simply not

enough annotated data in the OCT world, but our advanced Monte Carlo platform

has completely solved this issue. It is always a good idea to start by examining simple

structures in order to better appreciate harder, more complex problems. This is the

theme of Chapter 5, which is a warm-up towards solving the learning problem.

In Chapter 6 we will solve the learning problem introduced in the previous chap-

ter, using all sorts of machine learning techniques. We begin with some high-level

discussion of the challenges for the problem as well as how we may solve it. The first

step is to transform the output variable, yi, to reduce its dimension. Through this

clever transformation, we arrive at a multi-output multi-class classification problem

and a multi-output regression problem. As we explore the data further, we pick up

more and more insights as to how to do the job better. Our advanced Monte Carlo

platform also comes in handy, as it allows us to essentially generate data at will so

that we can intentionally design different data sets to train the machine learning mod-

els for better out-of-sample performance. We then build a hierarchy architecture of

machine learning models (committee of experts) based on extremely randomized trees

(extra trees), and train different parts of the architecture with specifically designed

data sets. In prediction, an unseen OCT image first goes through a classification

model to determine its structure (e.g., the number and the types of layers present in

11

the image); then the image is handed to a regression model that is trained specif-

ically for that particular structure to predict the length of the different layers and

by doing so reconstruct the ground-truth of the image. We will also demonstrate in

the next chapter that ideas from Deep Learning can be useful to further improve the

performance.

In Chapter 7 we will first repeat what we have done in Chapter 6 to see if our

hierarchical model is able to generalize to more complex, realistic problems. We will

use the brain structure as our example, which is much more complicated than the

air-dermis structure we have previously conquered. We then move on to summa-

rize this thesis and discuss the new philosophy made possible by this thesis when it

comes to OCT imaging. We conclude this thesis by taking a tour of future research

opportunities in the outlook section.

Original results of this thesis are presented in Chapters 4, 6, and 7.

12

Chapter 2

Understanding the OCT Signal

2.1 Chapter Overview

In this chapter we are trying to accomplish a number of things. First, we will ex-

plain the signal formation process of Frequency Domain OCT (FD-OCT), starting

from single, mirror-like targets. We will show how A-scans and OCT images can be

constructed using the OCT signal. Next we move on to discuss how the situation is

changed when we try to image a layered biological tissue. We conclude this chapter

by stating the reasons of why we need simulation to construct OCT images of real

biological tissues.

2.2 Signal Formation in FD-OCT Systems

The OCT principle described in Chapter 1 is essentially the time domain OCT (TD-

OCT) system, where a reference mirror is scanned to match the optical path from

reflections within the sample. We move the scanning mirror in time to image different

depth of the object, thus the name. In contrast, FD-OCT has the advantage that no

moving parts are required to obtain axial scans. The reference path length is fixed

and the detection system is replaced with a spectrometer, as shown in Figure 2.1.

The detected intensity spectrum is then Fourier transformed into the time domain

to reconstruct the depth resolved sample optical structure. The essence of FD-OCT

is to translate targets at different locations in the sample into distinct frequency

13

Figure 2.1. A FD-OCT system. The output light field is split by a diffraction grating,

and component frequencies are detected by a linear detector array.

components in the output signal, Eout.

To illustrate this, let us examine the problem of detecting the depth information

of a single-scatterer using a linearly chirped, swept frequency laser. For simplicity,

we consider a noiseless laser whose frequency changes linearly with time. A single

scatterer is illuminated with such a chirped field, and the reflected light is collected.

The normalized electric field at the source is given by:

E(t) = cos

(
φ0 + ω0t+

ξt2

2

)
, (2.1)

where ξ is the slope of the optical chirp, and φ0 and ω0 are the initial phase and

frequency, respectively. The instantaneous optical frequency is given by the time

14

derivative of the argument of the cosine in Equation 2.1:

ωsource(t) =
d

dt

(
φ0 + ω0t+

ξt2

2

)
= ω0 + ξt. (2.2)

The time evolution of the frequencies of the launched and reflected beams is shown

in Figure 2.2. Because the chirp is precisely linear, a scatterer with a round-trip time

delay τ (and a corresponding displacement cτ/2 from the source) results in constant

frequency difference ξτ between the launched and reflected waves. Therefore, detect-

ing this frequency difference would give us the depth information of the scatterer.

In other words, the job of the FD-OCT system is to translate scatterers at different

depths into different frequency components.

Figure 2.2. Time evolution of the optical frequencies of the launched and reflected

waves in a single-scatterer OCT experiment [12].

2.2.1 A Toy Example

The best way to illustrate the working principles of FD-OCT is through a toy example,

as shown in Figure 2.3. In this simple setup the sample is consisted of only one mirror

like, specular reflective target, located at depth z0. We also have an array of light

source/detector pairs, located at z = 0, to represent conducting different A-scans.

15

Figure 2.3. A toy example illustrating the FD-OCT Principle. In this simple setup,

photons are emitted from different lateral positions of the source and then collected

by an array of detectors, representing different A-scans. The sample only consists one

mirror like, specular reflective target, located at depth z0.

Figure 2.4. Image formation process for the toy example with a single target. (a)

histogram of the photon pathlength; (b) OCT signal at the detector; (c) DTFT of

the OCT signal, zoomed in to show the presence of the target; (d) DTFT of the OCT

signal, zoomed out to show the entire A-scan.

Now, if we turn on the light source/detector pairs (e.g., a fiber), one at a time,

16

the photons will hit the target, get back-reflected and detected by the collecting

fiber. All the photons that reach the detector would have a path length of exactly

s = 2z0, because the reflection is specular. During their round trip, these photons

traveled straight lines and therefore their path lengths exactly matches twice the

distance between the target and the source. Such photons are called ballistic or Class

I photons in the literature. These Class I photons will have a contribution to the

OCT signal of the form:

Ei =
√
Wi cos (2z0 × k) , (2.3)

where Ei represents the contribution of the i-th photon, Wi is the weight (or strength)

of the i-th photon, and k = 2π/λ is the wavenumber of the laser source. In FD-OCT,

the contributions of all the photons add up coherently. Now let’s consider the situation

that the wavenumber (frequency) of the laser source changes linearly with time, from

kstart to kstop. In other words, the wavenumber of the source would look like, in

discrete time:

ksource = [kstart, kstart + ∆k, kstart + 2∆k, ..., kstop −∆k, kstop] . (2.4)

By plugging in the vector ksource into Equation 2.3, we would recover a truncated,

discrete cosine wave, if we treat 2z0 as its frequency and k as its time variable.

Next, since we are doing imaging, our goal is to recover the target position, namely

z0, from this truncated, discrete cosine wave. To do this, we rely on standard digital

signal processing (DSP) by applying a Hamming Window, followed by a Fast Fourier

Transform of the zero-padded signal. This procedure is demonstrated in Figure 2.4,

where we successfully constructed an A-scan from the photon path distribution and

it corresponds nicely to the position of the target.

2.2.2 Another Toy Example with Two Targets

We could repeat the same process with the presence of two mirror like targets, as

shown in Figure 2.5, where we again start with the path length distributions and end

17

Figure 2.5. Image formation process for the toy example with two targets. (a)

histogram of the photon half pathlength; (b) DTFT of the OCT signal at the detector,

which gives us A-scan, displaying the two distinct targets;

up with A-scans. The result is exactly the same except that there are two peaks shown

in the A-scan, as there should be. We can go a step further by stitching multiple A-

scans and construct an OCT image, as shown in Figure 2.6. We could also dictate

the number of contributing photons in each A-scan, and more contributing photons

would generally produce better contrast of the resulting OCT image, as demonstrated

18

x [cm]

z
[c

m
]

of A−Scan: 256; Photons/detector:100

−0.02 −0.01 0 0.01 0.02

0

0.05

0.1

0.15

0.2

0.25 −70

−60

−50

−40

−30

−20

−10

0

10

20

30

Figure 2.6. OCT Image formed by the toy example with two mirror like targets,

consisted of 256 A-scans, where each A-scan has 100 contributing photons.

in Figure 2.7.

It is worth pointing out that in generating OCT images with the toy examples

with two mirror-like targets, there has been very little simulation involved. We simply

dictate the photon path lengths, which only has two possibilities, and then compute

Fourier Transforms. There is no randomness in the process, except for maybe we flip

a coin to determine the number of photons coming off each target. In other words,

if we are only dealing with mirror-like targets in OCT, there is not much need for

simulation since almost everything is deterministic.

2.3 From Mirrors to Biological Tissues

Life would be much easier if biological tissues, which we care about, behave like

mirrors. If that is the case, the OCT imaging problem is completely solved, since

19

x [cm]

z
[c

m
]

of A−Scan: 256; Photons/detector:1000

−0.02 −0.01 0 0.01 0.02

0

0.05

0.1

0.15

0.2

0.25
−40

−30

−20

−10

0

10

20

30

40

Figure 2.7. OCT Image formed by the toy example with two mirror like targets,

consisted of 256 A-scans, where each A-scan has 1000 contributing photons.

Figure 2.8. OCT imaging in a more realistic setting. The previous two mirror-like

targets are replaced with a layers of biological tissue, located from depth z0 to z1.

the ground-truth, anatomical structure and the OCT image would be a deterministic

one-to-one mapping, except for a smallish resolution issue. Unfortunately they don’t,

and not even close.

20

2.3.1 Photon Path Length Becomes A Distribution

So things become interesting when we replace the two mirror-like targets with a layer

of biological tissue, as shown in Figure 2.8, as this time the photons detected would

have a distribution of path lengths, ranging from 2z0 to 2z1, approximately. It is only

an approximation because due to multiple scattering, the photon path length my

exceed 2z1. When imaging a biological tissue, like the layered one in Figure 2.8, the

photons will no longer go through a deterministic process as in the previous cases.

Figure 2.9. Image formation process for the example with one layer of biological tissue

as the target. (a) histogram of the photon half pathlength; (b) OCT signal at the

detector; (c) DTFT of the OCT signal, zoomed in to show the presence of the target;

(d) DTFT of the OCT signal, zoomed out to show the entire A-scan.

The first notable difference is that the imaging photons can reach and get back-

scattered anywhere within the tissue, and thus the path length of the photon is no

longer a deterministic variable. As a photon enters the biological tissue, what happens

is that the photon may travel an “interaction-free” path, which itself is a random

21

variable, and then interact with the tissue in the form of absorption and scattering.

The photon has a certain probability of being absorbed by the tissue, and thus no

longer contribute to the OCT signal, each time it interact with the tissue. Also, the

tissue can and will alter the direction of propagation of the photon via scattering.

Depending on the property of the biological tissue, the photon might be more likely

to be scattered to one direction or the other, each time it experiences a scattering

event. In other words, as the photon enters the tissue, it would go through a sequence

of random events, after which the photon may leave the tissue or get absorbed by the

tissue, becoming no longer relevant to the OCT signal, or it may be back-scattered

and enters the detector, thus contributing to the OCT signal.

For those photons that survive the process and make it back to the detector,

their path length would form a distribution, ranging approximately from 2z0 to 2z1,

as explained earlier. It is instrumental to see what would the OCT signal and the

corresponding A-scan look like when they are formed by a distribution of photon path

lengths. This is demonstrated in Figure 2.9, where we choose a uniform distribution

for the photon path lengths. This choice is obviously incorrect since the imaging

photons are more likely to come from the surface region of the tissue (near z0) than

from the end of the tissue (near z1). Nevertheless, this shows us what happens when

you have effectively a continuum of targets.

2.3.2 A-scans Are No Longer Identical

The other consequence is that when there is a continuum of targets, the shape of the

resulting A-scans are no longer identical, as shown in Figure 2.10. Here will see that

even though the photon path distributions (in this case histograms) are similar, their

corresponding A-scans are drastically different. They have different number of peaks

(speckles), whose location and magnitude are also different.

This phenomenon is a natural result of coherent interference, where the spacing

of the frequency components are narrower than the resolution of the OCT system,

determined by the span of the frequency chirp. In practice, it means that A-scans

22

Figure 2.10. OCT Image formed by stitching 512 A-scans from the example with one

layer of biological tissue as the target. (a) Top row: histograms of the photon half

pathlength; (b) middle row: A-scans at different positions; (c) bottom row: the full

OCT image formed by 512 A-scans.

corresponding to the same ground-truth, the same layered tissue in this case, will

appear very much differently. This is one of the reasons why interpreting an OCT

image is difficult, as the same anatomical structure can generate different-looking

A-scans.

23

2.4 Reasons for the Need of Simulation

Hopefully be now you have a good qualitative understanding of the formation process

of OCT signals. From the previous sections, it is easy to conclude that in order to

generate an OCT image, all we need to do is construct the A-scans; and in order

to construct an A-scan, all we need to know is the path length distribution of the

contributing photons. But this is where we get stuck because there is no way we

could know it without conducting an experiment or a computer simulation.

Figure 2.11. Flow chart of the modeling process.

In order to get a realistic distribution we need to model how the photons interact

with the biological tissue, namely, how the photons get scattered, absorbed, reflected,

refracted, and detected. In other words, we shoot the photons one by one and track

its trajectory. Record its path length if the photon ends up getting detected. We

repeat this process until we have enough detected photons. We then construct an

OCT image bottom-up, as shown in Figure 2.11. Of course, this process of modeling

is called Monte Carlo, which is the topic of next chapter.

24

Chapter 3

Monte Carlo Simulation of OCT

3.1 Chapter Overview

This chapter is intended to be a review of the standard Monte Carlo simulation

procedure. By the end of the last chapter we already understand why we need a Monte

Carlo simulation in oder to generate OCT images. In this chapter we begin with a

general discussion of the principles of Monte Carlo simulation of light propagation

in biological tissues, the big picture, important concepts and building blocks, as well

as how can we use these to construct a platform to simulate OCT images. We then

dig deeper into the issues behind conventional Monte Carlo simulation to gain some

insight as to why it takes days to simulate a single OCT image previously. A thorough

understanding of these issues is absolutely a prerequisite to come up with ways to

speed up the simulation, which will be the topic of Chapter 4.

3.2 Introduction

As discussed in the previous chapter, the goal of simulation is to model the series of

events that a photon experiences once it enters a biological tissue. This process,

namely light propagation in random media, is illustrated in Figure 3.1 [13]. To

describe this process, it is necessary to introduce the optical properties of tissues

that governs the laws of light propagation inside the tissue.

The optical properties of a tissue are described in terms of the absorption coeffi-

25

Figure 3.1. Illustration of the series of events that a photon experiences once it enters

a biological tissue.

Figure 3.2. The optical properties of tissues.

cient, µa (cm−1), the scattering coefficient µs (cm−1), the scattering function p(θ, ψ)

(sr−1) where θ is the deflection angle of scatter and ψ is the azimuthal angle of scatter,

and the real refractive index of the tissue, n′. An introduction to these properties is

26

presented elsewhere [14–16].

The p(θ, ψ) is appropriate when discussing only a single or few scattering events,

such as during transmission microscopy of thin tissue sections or during confocal re-

flectance microscopy, which includes optical coherence tomography. In thicker tissues

where multiple scattering occurs and the orientations of scattering structures in the

tissue are randomly oriented, the ψ dependence of scattering is averaged and hence

ignored, and the multiple scattering averages the θ such that an average parameter,

g = 〈cos θ〉, called the anisotropy of scatter, characterizes tissue scattering in terms of

the relative forward versus backward direction of scatter. Figure 3.2 summarizes these

properties and their inter-relationships. For a thorough review of these properties,

readers are encouraged to read the review article by Steven Jacques [17].

3.3 Basic Principles and the Monte Carlo Engine

Principles of stochastic Monte Carlo (MC) method for numerical calculation of radia-

tion intensity scattered within a randomly inhomogeneous turbid medium are widely

described in the literature [18–27]. MC is based on the consequent simulation of a

random photon trajectory within the medium between the point where the photon

enters the medium, and the point where it leaves the medium. Simulation of the

photon trajectories consists of the following key stages: injection of the photon in

the medium, generation of the photon path-length, generation of a scattering event,

definition of reflection/refraction at the medium boundaries, definition of detection

and accounting for the absorption.

3.3.1 Overview of the Simulation Steps

Photon packets begin with an initial weight, W , equal to 1. Once a photon packet is

launched, the step length is selected randomly from an exponential distribution, the

scale of which is defined by the optical properties of the tissue. The photon packet

is then advanced along this direction orthogonal to the first surface until it either

hits a boundary between regions, or it reaches the step length. If the photon packet

27

reaches the step length, its weight is decreased by the ratio of the medium absorp-

tion to total interaction coefficient. The remaining photon packet is then scattered

with a deflection angle, θ , and an azimuthal angle, ψ, which are statistically sam-

pled from the Henyey-Greenstein scattering phase function and between 0 and 2π,

respectively. If the photon packet intersects a region boundary along its advance-

ment before reaching the step length, the packet is moved to the boundary. Here

it is internally reflected or transmitted according a random number generator with

probabilities matched to the Fresnels equation (including regimes for total internal

reflection). After a transmission or an internal reflection, the photon packet completes

the remaining dimensionless step distance divided by the new region absorption and

scattering coefficients (if transmitted). A photon packet is discarded if it crosses an

outside boundary or by a Russian Roulette random process once weight values fall

below a predefined threshold limit. In the method of [28], regions are defined by

z-axis locations and it is trivial to identify boundary transections.

3.3.2 Mathematical Details of Implementation

For a good starting point to understand the details of this entire business I would

recommend the Monte Carlo modeling of light transport in multi-layered tissues

(MCML) with a C-language software package that is available for download from

the web site of the Oregon Medical Laser Center [28]. MCML allows the simulation

of an ensemble of photon packets launched in a steady-state pencil beam, normal to

the surface of the topmost layer. Each photon packet produces a random walk whose

step size is determined by an exponentially distributed random variable defined by

the interaction coefficient µi, which is equal to the sum of the absorption µa and the

scattering µs coefficients.

In other words, the photon free path s between the two successive elastic scattering

events is determined by the Poisson probability density function [29]:

f(s) = µi exp(−µis), (3.1)

28

where µi is the interaction coefficient. Note that the parameters̄ = 1/µi which is

the average scattering length depends on the size distribution of scatters, their con-

centration and relative refractive index in respect to the surrounding medium. The

probability that the photon free path exceeds s is defined as:

ξ =

∫ ∞
s

f(s′)ds′. (3.2)

Given the probability density function in Equation 3.1 it is easy to express the random

magnitude s via the probability ξ:

s = − ln ξ

µi
. (3.3)

This is the key element of MC technique, which is obtaining photon free path-length

that consists of the computer generation of a random number ξ uniformly distributed

in the interval [0, 1].

The scattering events, which take place at the end of the random steps, are pro-

duced by two random angles that determine the future direction of the photon packet

scattering in three-dimensional space. To account for the photon packet scattering

with arbitrary anisotropy factor, g, we use the same Henyey-Greenstein probability

density function used in the MCML software package, which is the most widely used

model phase function for biotissues describes non-isotropic scattering depending on

the anisotropy parameter g = cos θ [30]. The Henyey-Greenstein scattering phase

function, is defined as

fHG(cos θs) =
1− g2

2 (1 + g2 − 2g cos θs)
(3.4)

where θs is the angle between the photon packet propagation direction û prior to

the scattering and the new scattering direction û′. After rotating away from the

previous propagation direction û by an angle θs, so that cos θs = û · û′, the scattering

direction û′ is rotated around the previous propagation direction û by an angle φ that

is randomly picked from a uniform probability density function from 0 to 2π. At each

29

scattering event, where the light-matter interaction is modeled, the weight W of the

photon packet is decreased by an amount determined by the absorption coefficient µa

at the scattering location. The weight W , which is initialized at 1, is an estimate of

the residual number of photons left in the packet. When the packet weight reaches

Wth = 10−4, the photon packet is either eliminated with probability 1/m or is left

to continue propagating with probability 1 − 1/m and weight equal to mW . In this

work we use m = 10. This elimination process, called a Russian roulette technique,

is an unbiased way to remove from the simulation the photon packets that have a

negligible contribution to the scattering and absorption in the tissue, so that a new

photon packet can be simulated.

Described steps are repeated till the photon is detected arriving at the detector

with the given area and acceptance angle, or leaves the scattering medium, or its total

path exceeds the maximum allowed path. The details of the reflection and refraction

at the medium boundary and at the interface between layers are given in [31]. For

an example of applying Monte Carlo method for simulation of 2D optical coherence

tomography (OCT) images of skin-like model, where layer boundaries in skin model

feature curved shape which agrees with physiological structure of human skin, please

refer to the article by Mikhail Kirillin [32].

3.3.3 More Complex Geometry

To support a more complex geometry, the sample is subdivided into cuboidal voxels.

We note that because these cuboidal voxels have boundaries that are always aligned

to x/y axes, this method would not accurately estimate the specular (i.e., Fresnel)

reflection from a tilted surface. In this approach, each voxel is assigned a specific

tissue type with corresponding optical properties. The resolution of the geometry is

defined by the voxel size, and can be reduced arbitrarily (at a computational cost)

to simulate samples with higher resolution. For example, in microvascular networks,

the smallest vessels of which are on the order of 4-9 µm, the recommended approach

is to adopt a voxel sizes of 3 µm (27 µm3), as shown in [1].

30

A boundary intersection algorithm needs to be implemented to first identify the

voxel boundaries that are intersected by an advancing photon packet. If there are

no cube boundary intersections or if there are intersections but each intersection oc-

curs between voxels associated with the same region (and therefore identical optical

properties), the photon packet is transported the full step length. If there are cube

boundary intersections within the photon packet path and one of these intersections

occurs between two voxels of different regions, the photon packet is transported to

the first intersection between differing voxels where it is internally reflected or trans-

mitted. Analogously to the multilayered approach, after a transmission or an internal

reflection, the photon packet continues to travel as described above the step distance

adjusted by the new region total interaction coefficient.

3.3.4 OCT Transverse and Axial Signal Localization

The aforementioned methods allow MC-based calculation of light transport in arbi-

trary three-dimensional structures. To extend this model to simulate OCT imaging, it

is necessary to include methods for providing both transverse and axial signal localiza-

tion (e.g., the imaging component of OCT). Transverse resolution can be incorporated

as has been done in prior models [23, 33]. Briefly, photon packets are launched with

a location defined by a uniform circular distribution. The angular position of photon

packets is sampled uniformly between 0 and 2π while the radial position is sampled

between 0 and a 10-µm beam radius with a square root distribution. On collection,

exiting photon packets are included only if they meet the spatial and angular con-

straints of a detection aperture. In our model, a spatial filter with a 10-µm radius

(uniform intensity) and an angular filter limited to a ±5◦ detection angle [23] was

adopted. The location of the launch and collection apertures is translated across the

imaging surface to simulate beam scanning.

For FD-OCT, we can model directly the generation of wavelength-dependent fringe

signals, and then use Fourier analysis to convert these fringes to depth-resolved A-

lines [1]. The simulation tool records the square root of the diffuse reflectance (weight)

31

and the total path length of each photon packet that passes the detection aperture.

At the conclusion of the MC simulation for a given beam location (e.g, the modeling

of one A-line), we obtain a set of detected photons packets, each with a diffuse

reflectance amplitude and a path length. We then construct the received sample

signal (amplitude and phase) as a function of wavelength according to

S(k) =
√
G(k)

N∑
n=1

√
Wn exp(ikln) (3.5)

whereWn and ln respectively represent the weight and path length of the n-th detected

photon packet. k corresponds to the wavenumber and G(k), to the Gaussian light

source spectrum defined as

G(k) ∝ exp

[
−
(
k − k0
dk

)2
]

(3.6)

where k0 represents the center wavenumber of the light source and dk the spectral

bandwidth. An important note is that for swept-source OCT, where the imaging

light source is a swept-frequency laser, we can simply treat G(k) = 1 and ignore

it. The same diffuse reflectance, Rn, and path length, ln, arrays are used for each

k. We calculate S across a discrete k array between kstart (λ = 1220nm) and kstop

(λ = 1380nm) with equal spacing in k.

The reference field is calculated as

R(k) =
√
αG(k) (3.7)

where α is a parameter chosen to scale the total sample arm power (|S(k)2|) between

0.001− 0.01% of the reference arm power (|R(k)|2). The value of the parameter α is

constant across a simulation for all A-lines.

We interfere the sample and reference arm fields in a balanced detection configu-

32

ration to generate a fringe signal given by

ID(k) = |S(k) +R(k)|2 − |S(k)−R(k)|2. (3.8)

We then follow conventional Fourier-domain processing by applying a window (Ham-

ming) and Fourier transform to give the OCT signal as a function of depth, as illus-

trated in the previous chapter.

3.3.5 OCT Angiography and Blood Flow Simulation

It is also possible to simulate moving part within the tissue using OCT, for example,

a blood flow. This is named OCT angiography and is based on the acquisition of

repeated measurements from the same location and the analysis of these measure-

ments to identify time-varying signals that result from flowing blood. To simulate

angiographic OCT images, it is therefore necessary to derive time-series measure-

ments that are constant or modulated according to their degree of interaction with

intravascular scatterers. In is reasonable to assume that the intravascular scatterers

have translated by more than the larger of the axial or transverse resolutions. As a

result there is no correlation between the OCT signals scattered from vessels across

two time points. This accurately describes many of the angiographic OCT approaches

that employ large time separations between measurements to achieve sensitivity for

slower flowing vessels.

To model temporal decorrelation of intravascular scatterers, the following ap-

proach can be used [1]. First, during MC light transport, we flag each photon packet

(using the vessel flag variable, Fn) that scatters within a voxel associated with the

region defining the intravascular space. Then, during calculation of the OCT signal,

we include in each photon packet that is flagged a random phase, φ1n, between 0 and

2π within the exponential. To simulate a second measurement, at the same location,

the same MC solution is used but a new set of random phases,φ2n, are applied. In

this way, the OCT signals derived from photon packets that have not interacted with

intravascular scatterers are constant in time, but those signals that are derived, at

33

least in part, from photon packets scattered from intravascular scatterers are propor-

tionally modulated.

3.3.6 Putting It Together

Now we understand how to run a Monte Carlo simulation to generate OCT images.

The algorithmic view of this is illustrated in Figure 3.3 [1]. We call this the standard

Monte Carlo routine since it represents the minimum one would need in order to

simulate an OCT image correctly.

We could list the algorithmic steps involved as follows:

• Launch a photon packet;

• Set a step size;

• Try move the photon;

• Check cube boundaries;

• Move the photon to the boundary;

• Check photon detected/escaped;

• Complete the step size;

• Absorb (reduce weight);

• Scatter (change propagation direction);

• Check photon dead;

• Record photon.

Depending on the details of implementation, some of the steps might be slow or fast

relative to others. And it is also possible that one step or two are significantly slower

than the rest of them. Therefore identifying and improving such bottle-neck steps

are of key importance in order to speed up the simulation.

34

Figure 3.3. Flow chart of the MC algorithm.

3.4 Class I and Class II Photons

We introduce another fundamental concept before we move on to more advanced

simulation techniques. OCT imaging considers the ballistic and quasi-ballistic pho-

tons reflected from a target layer inside the tissue, which we denote Class I diffuse

reflectance, as the OCT signal that produces the image [23]. However multiple scat-

tered photons reflected from the tissue, which we denote Class II diffuse reflectance,

35

do not carry useful information about the target layer and are considered a source

of noise in OCT [34]. It has been demonstrated that Class II diffuse reflectance is

the fundamental limitation in increasing the imaging depth of OCT in tissue [35]. As

shown in Figure 3.4, the path length of the Class I photons matches the depth target

layer, i.e., the maximum depth that the photon reached, zmax is close to half of the

photon path length ln/2. On the other hand, for Class II photons, there is a mismatch

between the depth of the target layer and the photon path lengths. In other words,

the Class II photons appear to image depth ln/2, but it never reached there since

zmax < ln/2. Understanding the physical process governing both Class I and Class II

diffusive reflectance is an important prerequisite to any effort to increase penetration

depth and to enhance the quality of the images obtained with OCT. As this physical

process is complicated, Monte Carlo simulation of light transport in tissue [28,36–38]

has been used to obtain the TD-OCT signal [23], as well as the FD-OCT signal [1].

Figure 3.4. Class I and Class II photons.

36

3.5 Why the Simulation is Slow

It is not hard to conceive why simulating an OCT image using the standard Monte

Carlo routine can take very long. Among the many reasons, the most prominent and

simplest one is that detecting a photon is an extremely rare event. In order to record

a single detected photon, you may need to launch 1000 to 10, 000 photons depending

on the detection setup.

Intuitively this is very easy to understand: once you let loose of a launched photon

(packet), it randomly changes propagation direction according to the scattering prop-

erties of the media each time it experiences a scattering event. Moreover, photons

traveling in biological tissues exhibit much more forward scattering than backward

scattering, i.e., the anisotropic factor g is close to 1, which further reduces the chances

that the photon gets detected. Also, the mean free path length of photons is very

short (on the order of 10µm-100µm), which means that each photon will go through

many scattering events, which means that the simulation of each photon packet would

require looping through the flow chart shown in Figure 3.3 over and over again. It

is worth pointing out that using photon packets (with initial weight W = 1) in-

stead of discrete photons has the effect of simulating many photons at the same time,

effectively reducing the variance and the simulation time.

3.5.1 FD-OCT vs TD-OCT

It turns out that when it comes to simulate an OCT image, there is an inherent

advantage of using FD-OCT as opposed to TD-OCT. To understand this subtle ad-

vantage, we need to understand how the reflectance is calculated in both FD-and

TD-OCT. The former is already introduced in the previous section, and we take a

look at the latter in what follows.

37

3.5.2 Calculation of the Reflectance in TD-OCT

In TD-OCT, to compute the reflectance at depth z, i.e., a particular point of an

A-scan, we simply combine the Class I and the Class II reflectances.

The Class I and the Class II reflectances at depth z are obtained by calculating

the mean value of the indicator functions I1 and I2 of the spatial and temporal filter

of the Class I reflectance and the Class II reflectance, respectively, for all the photon

packets (samples) in the ensemble. The indicator function I1 and I2 of the spatial

and temporal filter for the i-th photon packet is defined as

I1(z, i) =

1, lc > |si − 2zmax|, ri < dmax, θz,i < θmax, |si − 2z| < lc

0, otherwise

(3.9)

and

I2(z, i) =

1, lc < |si − 2zmax|, ri < dmax, θz,i < θmax, |si − 2z| < lc

0, otherwise

, (3.10)

where z is the depth imaged, lc is the coherence length of the source, ri is the distance

of the i-th reflected photon packet to the origin (where the detector/source pair is

located) along the plane z = 0, where the collecting optical system is located, dmax

and θmax are the maximum collecting diameter and angle, respectively, θz,i is the angle

with the z-axis, which is the axis normal to the tissue interface, si is the optical path,

zmax is the maximum depth reached by the photon packet. A detected photon packet

is considered a Class II photon packet if it does not reach a depth that is consistent

with its optical path, so that it interferes constructively with corresponding detected

Class I photons packets without bringing any information from the depth in which

those Class I photons packets were reflected.

The estimated values of the Class I and Class II reflectances and their respective

38

variances are given by the following expressions

R1,2(z) =
1

N

N∑
i=1

I1,2(z, i)W (i) (3.11)

and

σ2
1,2(z) =

1

N(N − 1)

N∑
i=1

[I1,2(z, i)W (i)−R1,2(z)]2 , (3.12)

where W (i) is the weight of the i-th photon packet in MCML, which is a quantity

affected by the absorption coefficient at the scattering points.

3.5.3 Discussion

For TD-OCT, as shown in Equations 3.11 and 3.12, in order to generate an A-scan,

we need to collect enough photon packets for each and every depth z to reach a certain

degree of convergence. We are talking about 1011 launched photons per A-scan [39].

The implication is that despite the structure of the object being imaged, you need

to look for photons reflected at each depth position z and make sure you have enough

photons to guarantee the R(z) has converged. For deeper positions, i.e., bigger z, you

have fewer photons to begin with (since fewer photons reached there), and therefore

it is much harder (in fact exponentially harder) for the reflectance at deeper positions

to converge. To maintain a uniform convergence level, all you can do is to increase

the overall launched photons, which is a huge overhead since most of the photons

collected does not help the convergence at deeper regions.

On the other hand, FD-OCT make use of the collected photons in a way that is

proportional to the complexity of the imaged object. For example, to image a single,

mirror-like target, we could collect just a few photons and still construct the correct

OCT image. In other words, FD-OCT has a global view of the object structure, and

thus is able to efficiently determine a minimum number of collected photons that are

needed to construct an A-scan, while TD-OCT only has access to local information

by looking at each depth z. More specifically, in FD-OCT a single collected photon

could give you the entire R(z) at all values of z, but in FD-OCT you may need many

39

collected photons to obtain R(z) at a single z. This particular advantage of FD-OCT

allows the programmer to decide how many photons need to be collected for the

problem at hand, which will make a big difference as we will see in the next chapter.

40

Chapter 4

Speeding up the Monte Carlo

4.1 Chapter Overview

In this chapter we will show in detail how we managed to bring down the simulation

time of an OCT image from 360 hours to a single minute. We begin by identifying

three main challenges that prevent us from fast Monte Carlo simulation of OCT

images and then address them accordingly. To make this chapter less technical, most

of the source code listings are left in the appendix and interested readers are welcome

to visit in order to fully appreciate the simulation procedure.

4.2 Three Challenges

In this section we identify the three challenges. In the previous chapter we have

already seen that one major challenge is the fact that detecting a photon is an ex-

tremely rare event. The other two are more technical and dig into the details of

implementation.

• Detecting a photon packet is an extremely rare event, which only happens 1 out

of 1000-10, 000 times when you launch a photon packet. This means that most

of your Monte Carlo simulation is completely useless since more than 99.9% of

the photon packets simulated does not contribute to your OCT signal.

• During the lifetime of a simulated photon packet, the fact that its mean free path

41

length is short (on the order of 10µm - 100µm), means that each photon will loop

through the standard Monte Carlo routine (as shown in Figure 3.3) over and

over again. A photon packet will travel a distance equal to the mean free path

after which it undergoes absorption and scattering. The photon packet rates of

absorption and scattering depend on the absorption and scattering coefficients

of the regions where this packet is traveling, respectively. If a traveling photon

packet enters a region with a different refractive index, then it will undergo

both specular reflection and refraction at the boundary between the two regions.

Therefore, at each step, we have to check if the packet path and the enclosing

mesh intersect. This process of identifying photon-mesh intersection is the most

computationally demanding task in tracing a photon path through complicated

heterogeneous structures [13].

• An OCT image is consisted of multiple (e.g. 512) A-scans, where each A-scan

launches and collects photon packets at a different lateral position. Before you

can start simulating an A-scan, there is a lot of preprocessing that needs to

be done. For example, you need to load the mesh profile, set up the variables,

allocate the memories, and so on. That’s a lot of computational overhead.

Repeating these preprocessing for all the 512 A-scans is a complete waste and

ideally you’d like to do it only once.

As advertised earlier, addressing these three challenges will be the theme of this

chapter.

4.3 Importance Sampling and Photon Splitting

We will use Monte-Carlo simulation with importance sampling to calculate the OCT

signal because the probability that a photon propagating in typical biological tissue

will undergo single-scattered back-reflection is very low. This very low probability of

events of interest would require an unacceptably large computational time if standard

Monte Carlo simulation were used.

42

4.3.1 Introduction

Importance Sampling is an advanced statistical method [40] that consists of biasing

random events in such a way that the events of interest, which are often rare, appear

more often in Monte Carlo simulations [41–47]. To produce the correct statistical

result in Monte Carlo simulation with importance sampling, each biased sample is

weighted by the likelihood in which this sample would have been observed in the

unbiased simulation. This procedure, which has to be tailored to each particular

application, can reduce the computational time of Monte Carlo simulations by several

orders of magnitude.

Importance sampling, tailored to each particular application, has been applied in

optical communications [41–44], confocal microscopy [45], atmospheric optics [46] dif-

fuse optical tomography (DOT) [38] and TD-OCT [23]. In the applications involving

Monte Carlo simulation of light transport in three-dimensional space, one limitation

that can be addressed is the statistical bias that increases with depth as the photons

are preferentially scattered in the backward direction by importance sampling based

implementations.

4.3.2 Mathematical Details

A photon packet in turbid tissue will scatter according to the Henyey–Greenstein

probability density function that is defined as

fHG(cos θs) =
1− g2

2 (1 + g2 − 2g cos θs)
(4.1)

where θs is the angle between the photon packet propagation direction û = (ux, uy, uz)

prior to the scattering and the new scattering direction û′. After rotating away from

the previous propagation direction û by an angle θs, so that cos θs = û · û′, the

scattering directionû′ is rotated around the previous propagation direction û by an

angle φ that is randomly picked from a uniform probability density function from 0

to 2π.

43

Since most biological tissues are generally highly forward scattering, the value of

their anisotropy factor is close to 1. Thus there is a very small probability that a

simulated photon packet at a given depth undergoes backscattering towards the tip

of the collecting fiber. This already small probability of collecting photons decreases

rapidly with the depth from which the photon is backscattered.

To speed up the simulation of collected photons, we developed a novel importance

sampling method for Monte Carlo simulations that bias the scattered photon packet

direction û′ preferentially towards the actual position of the center tip of the collecting

optical system v̂, once the photon packet is traveling away from the probe (uz > 0),

to increase the probability of its detection.

Following an approach similar to the one described in Lima et al [39], we use

a biased probability density function for the first biased scattering that produces

random scattering with an angle no lesser than 90 degrees away from the direction to

the actual position of the collecting optics. This biased probability density function,

which was based on the Henyey-Greenstein probability density function in Equation

4.1, is given by

fB(cos θB) =


(

1− 1−a√
a2+1

)−1
a(1−a)

(1+a2−2a cos θB)3/2
, cos θB ∈ [0, 1]

0, otherwise

(4.2)

where a is a bias coefficient in the range (0, 1). After randomly picking a biased angle

θB away from the direction of the actual position of the collecting optics, the biased

direction v̂, so that cos θB = v̂ · û′, the resultant biased scattering direction û′ is

rotated around v̂ by an angle φ that is randomly picked from a uniform probability

density function from 0 to 2π. This last procedure is equivalent to the one used in

the MCML software package to enable a full three-dimensional scattering. Then, the

scattered photon packet is associated with a quantity that is defined as the likelihood

ratio [41,43,44], which ensure converge of the statistical result towards the expected

value. The likelihood ratio of the photon packet using the biased probability density

44

function in Equation 4.2 is given by

L(cos θB) =
fHG(cos θS)

fB(cos θB)
=

1− g2

2a(1− a)

(
1− 1− a√

a2 + 1

)(
1 + a2 − 2a cos θB
1 + g2 − 2g cos θS

)3/2

(4.3)

where cos θS = û·û′ is a function of cos θB, which is statistically drawn from the prob-

ability density function in Equation 4.2 that is used to define the new propagation

direction û′ of the photon packet at the first biased scattering. A schematic repre-

sentation of the angles and vectors used in the biased and in the unbiased scatterings

is shown in Figure 4.1 [48].

Figure 4.1. Schematic representation of the vectors and the angles used in the bias

procedure.

Other probability density functions can also effectively speed up the calculation

using this method, provided that they significantly increase the probability that the

photon packet is scattered towards the apparent position of the collecting optics.

45

4.3.3 Additional biased scatterings

After the first biased scattering, the photon packet can undergo additional biased

scatterings towards the actual direction of the collecting fiber v̂ with probability

0 ≤ p ≤ 1, as opposed to p = 1 proposed in a previous method [48]. If a biased

scattering is not applied at a given point in the tissue, the photon packet will undergo

an unbiased scattering at that location according to the probability density function

in Equation 4.1. The likelihood ratio of this scattering, whether the biased or the

unbiased probability density function is randomly selected, is calculated according to

the expression

L(cos θB) =
fHG(cos θS)

pfB(cos θB) + (1− p)fHG(cos θS)
(4.4)

If the biased function fB(cos θB) is selected to draw a random value of cos θB, which is

an event with probability p, cos θS = û · û′ is a function of cos θB that is statistically

drawn from the probability density function in Equation 4.2. Otherwise, which is

a complementary event with probability 1 − p, the unbiased function fHG(cos θS) is

selected to draw a random value of is selected to draw a random value of cos θS and

cos θB = v̂ · û′ is a function of cos θS. Because each random scattering is independent

from the other scatterings, the likelihood ratio of each photon packet is equal to the

product of all the likelihood ratios of all the biased scatterings of that photon packet.

4.3.4 Photon Splitting

One limitation that results from the use of previously existing bias methods is the

underestimation of the diffuse reflectance beyond the start of the target depth range

in which the diffusive scattering is biased. The application of the first bias in the

backward direction implies that there is a smaller probability that the photon packets

will be forward scattered beyond the early part of the target depth range. This causes

a systematic statistical bias that also affects the performance of the angle biasing

procedure used in [23] and also the bias procedure used in [37,38], which limits their

application to a thin target layer. For these reasons, these bias procedures are limited

to model systems in which only forward bias scattering is applied.

46

We ensure the correct statistics in the importance sampling method by splitting

the photon packet that is biased towards the actual position of the collecting optics in

two photon packets prior to the first biased scattering [19]. One of these two photon

packets is the one biased towards the collecting optical system, which is associated

with the likelihood ratio specified in Equation 4.3, as described earlier in this section,

and we apply the successive biased scatterings until the photon packet is terminated.

Then the other photon packet continues a forward propagation starting at the location

of the biased backward scattering point, having the initial direction û and scattered

by the save procedure that is described in previous sections. We ensure that there is

no systematic statistical bias in the statistical result of the forward propagating split

photon packet by assigning to this second photon the likelihood ratio L′(i) , which is

the complement of the likelihood ratio of the biased backward scattered photon packet

L(i) , so that L′(i) = 1 − L(i) . This second photon packet, which is only created

if L(i) < 1, is also allowed to undergo one biased backscattering, which may lead

to another photon packet split, and successive additional biased scatterings towards

the tip of the collecting optical system until the photon packet propagates beyond

the simulation domain. In the cases that we studied, this procedure increased the

computational time of each sample by a factor of 5 when compared with a sample

computed using the standard Monte Carlo. The increase of computational time of

importance sampling compared with the standard method depends on the average

value of the mean free path and on the width of the target depth range. Once a photon

packet exceeds the region within the depth target layer, it will no longer be biased

and will likely be terminated after exceeding the boundary of the last layer while

propagating in the forward direction. Then a new photon packet will be created at

the origin as in the standard MCML method, and a new Monte Carlo sample will be

simulated. Despite the higher computational cost per photon packet, the computation

of the diffuse reflectance in the case that we studied using Monte Carlo simulations

with importance sampling required as little as one-thousandth of the computational

time required to achieve the same accuracy in the diffuse reflectance calculation using

the standard Monte Carlo method.

47

4.3.5 Calculation of the reflectance

For TD-OCT, the estimated values of the Class I and Class II reflectances and their

respective variances, taking into account for the likelihood ratios associated with

importance sampling, are given by the following expressions

R1,2(z) =
1

N

N∑
i=1

I1(z, i)L(i)W (i) (4.5)

and

σ2
1,2(z) =

1

N(N − 1)

N∑
i=1

[I1(z, i)L(i)W (i)−R1,2(z)]2 , (4.6)

where W (i) is the weight of the i-th photon packet in MCML, which is a quantity

affected by the absorption coefficient at the scattering points, and L(i) is the product

of the likelihood ratios of all the biased scatterings that affected the i-th photon

packet. Using the Monte Carlo method with the importance sampling implementation

described in this section, the calculation of the reflectances in Equation 4.5 converge

two to three orders of magnitude faster with the number of samples N than the

standard Monte Carlo method used in MCML. It is important to point out that each

split photon packet is not counted as an additional photon packet when determining

the value of N in Equations 4.5 and 4.6, since the use of the likelihood ratio associated

to each photon packet in these equations will produce the correct statistical result.

For FD-OCT, we then construct the received sample signal (amplitude and phase)

as a function of wavelength according to

S(k) =
√
G(k)

N∑
n=1

√
WnLn exp(ikln) (4.7)

where Wn, ln, and Ln respectively represent the weight, path length and the likelihood

ratio of the n-th detected photon packet.

48

4.3.6 Generation of random biased angles

To generate random angles according to the biased probability density function in

Equation 4.2 we use the pseudo-random number generator of the Gnu Scientific Li-

brary [49]. That random number generator produces pseudo-random numbers uni-

formly distributed from 0 to 1, which we convert to the probability density function

in Equation 4.2 according to the following conversion formula

cos θB,i =
1

2a

{
a2 + 1−

[
ui

(
1

1− a
− 1√

a2 + 1

)
+

1√
a2 + 1

]−2}
(4.8)

where ui is sampled from the random number generator of the Gnu Scientific Library.

Equation 4.8 was derived based on the probability theory in [50].

4.4 Identifying Photon-Mesh Intersection

The most demanding task in tracing a photon path through complicated heteroge-

neous structures is to identify photon-mesh intersection. In order to perform this task

more efficiently, we decided to use a voxel-based mesh as opposed to, for example, a

tetrahedron-based mesh [11,13].

As illustrated in Figure 4.2, once we decide that the current step size s = |PN+1−

PN | of the photon will drive the photon out of the current voxel, i.e., PN and PN+1

are not in the same voxel, we then need to figure out the intersection points, C1 and

C2 in this case, so that we could move the photon there. We introduce below a clever

mathematical trick to accomplish this.

Assume the photon is currently located at PN = (x1, y1, z1), and propagates along

(ux, uy, uz). In order to compute the distance to the nearest boundary, first we locate

49

Figure 4.2. Schematic illustration of photon-mesh intersection.

the voxel faces ahead the photon’s propagation direction:

ix1 = bx1/dxc (4.9)

iy1 = by1/dyc (4.10)

iz1 = bz1/dzc (4.11)

where ix1, iy1, iz1 are the indices of the voxel where the photon is currently in. And

50

we then use

ix2 =

ix1 + 1, ux >= 0

ix1, otherwise

(4.12)

iy2 =

iy1 + 1, uy >= 0

iy1, otherwise

(4.13)

iz2 =

iz1 + 1, uz >= 0

iz1, otherwise

(4.14)

where ix2, iy2, iz2 are the indices of the voxel faces lying ahead of the photon’s

propagation path. Next we compute the distances from these voxel faces to the

current position of the photon, utilizing its propagation directions:

xs = (ix2 × dx− x1)/ux (4.15)

ys = (ix2 × dy − y1)/uy (4.16)

zs = (ix2 × dz − z1)/uz. (4.17)

And the desired distance of the photon to its closest voxel face is thus given by:

s = min(xs, ys, zs). (4.18)

4.5 Parallelization of A-Scans

We have learned that an OCT image consists of multiple (e.g. 512) A-scans, where

each A-scan launches and collects photon packets at a different lateral position, and

that is the only difference among A-scans. However, all the A-scans share the same

preprocessing steps prior to their simulation. For example, you need to load the

mesh profile, set up the variables, allocate the memories, and so on. That’s a lot of

computational overhead. Certainly you do not want repeat these preprocessing for

51

all the different A-scans, which is a complete waste. Ideally you’d like to perform the

preprocessing only once and here is one way to do it.

• Use a line source instead of a point source. What I mean by a line source is

that we now have an array of source/detector pairs, e.g., 512 of them.

• Each time a new photon packet is launched, we randomly pick one source/de-

tector pair. Each pair has an equal chance of getting selected.

• Specify the initial state (starting position, propagation direction, etc.) of the

launched photon packet according to the selected source.

• Apply the importance sampling & photon splitting techniques to the launched

photon packet, and always bias towards the selected detector.

• If the photon packet is detected by a different detector other than the selected

one, discard this photon packet.

It is worth pointing out that each time a photon splitting takes place (i.e., when a

biased back-scattering happens), we save the information of the continuing photon

packet (we call it the continuing photon, photoncontinue), and keep simulating the

back-scattered photon packet (we call it the current photon, photoncurrent). The

current photon will then undergoes biased forward-scatterings (with probability p)

as well as unbiased forward-scatterings (with probability 1 − p) until it is detected.

Note that biased forward-scattering does not generate a photon split; only the biased

backward-scatterings does (if the likelihood ratio is less than 1). Once the simulation

of the current photon terminates, we load the saved continuing photon and it becomes

the current photon. Therefore, at every moment you are only dealing with one photon

packet, the current photon. And there could be at most one continuing photon saved.

4.6 Simulation Results

In this section we compare our simulation results (which is FD-OCT) against the

start-of-the-art, of both TD-OCT and FD-OCT imaging.

52

Figure 4.3. State-of-the-art TD-OCT simulation results, which utilized importance

sampling and is based on a tetrahedron mesh. The object represents a 3D arbitrary

shape. The resulting OCT image consists of 512 A-scans, where each A-scan took 43

minutes to simulating, resulting in a simulation time of 360 hours for the entire OCT

image. Simulated (a) Class I and (b) Class II reflectance-based B-scan OCT image of

the non-layered object; (c) Spatial structure of the object; (d) Optical parameters of

the non-layered object used in the tetrahedron-based OCT simulator; (e) A depiction

of the tetrahedrons representing the non-layered object.

Figure 4.3 depicts the best TD-OCT results in the literature so far [11], which

utilized importance sampling and is based on a tetrahedron mesh. The simulated

53

object represents a 3D arbitrary shape, while previous efforts have been focused on

layered objects only. The resulting OCT image consists of 512 A-scans, where each

A-scan took 43 minutes to simulating, resulting in a total simulation time of 360

hours for the entire OCT image.

There hasn’t been much attention in the literature towards simulating FD-OCT

images, and the only one available in the literature is illustrated in Figure 4.4, where

the author simulated two cylindrical blood vessels surrounded by a homogeneous

sample [1]. This simulation did not utilize importance sampling and its estimated

simulation time is 36 seconds per A-scan, resulting in a total of 5 hours if their image

consists of 512 A-scans. Despite the apparent faster simulation time compared to

the TD-OCT result shown in Figure 4.3, it looks like this FD-OCT simulation hasn’t

converged yet, since the two blood vessels are hardly visible and the author needed

to use yellow circles to let the reader know where they are. We can conclude that the

existing FD-OCT simulation is far from satisfactory.

In our simulation, we attempt the same problem of simulating two cylindrical

blood vessels as in [1]. We have used all the techniques described in the previous

sections and the simulation result is shown in Figure 4.5. Our simulation only takes

one minute. Clearly, the quality of our simulation result is much more satisfactory

than those in [1], since the two blood vessels are perfectly visible and well defined in

our case. The resulting OCT image has all the correct features, namely, the speckles

due to coherent interference, as well as the typical shadowing effect. The structure two

blood vessel is essentially the same as the sphere structure in the TD-OCT simulation

as shown in Figure 4.3, in the regard that they both represent an arbitrary, circular

shaped 3D structure. The quality of our simulated imaging is also similar to the TD-

OCT result, but our simulation time is more than 10, 000 times faster. Lots of factors

contribute to this drastic speed improvement, for example, the usage of voxel-based

mesh combined with the mathematical trick of identifying photon-mesh intersections,

the fact that we are implementing FD-OCT as opposed to TD-OCT in order to set

a minimum number of collected photons, parallelization of A-scans, and so on. We

will show the most notable implementation details in the section below and list the

54

Figure 4.4. Simulated blood vessels. (a) Two blood vessels modeled at a depth of 250

µm and 200 µm. (b) Structural OCT image of two cylindrical blood vessels (outlined

in yellow) surrounded by a homogeneous sample. The parameter µs for blood is fixed

to 650 cm−1, µa , to 5 cm−1, g, to 0.9888, and n, to 1.37. The parameter µs for

the sample is set to 10 cm−1, µa, to 1 cm−1, g, to 0.7, and n, to 1.37. Scale bars

correspond to 100 µm.

more standard procedures in the Appendix.

55

Figure 4.5. Same blood vessels simulated using our advanced Monte Carlo platform,

consisting of 512 A-scans. The simulation only takes one minute . (a) Two blood

vessels modeled at a depth of 250 µm and 200 µm. The red lines represent the range

covered by the A-scans. (b) Structural OCT image of two cylindrical blood vessels

surrounded by a homogeneous sample. The simulation parameters are the same as

in [1], where µs for blood is fixed to 650 cm−1, µa , to 5 cm−1, g, to 0.9888, and n,

to 1.37. The parameter µs for the sample is set to 10 cm−1, µa, to 1 cm−1, g, to 0.7,

and n, to 1.37. Scale bars correspond to 100 µm.

56

Chapter 5

The Learning Problem

5.1 Chapter Overview

The advanced Monte Carlo platform that we have developed opens up tremendous

research opportunities: machine learning, compressed sensing, flood illumination,

learning in the compressed domain, etc., just to name a few. In the rest of this thesis

we will focus on the inverse problem: given an OCT image, predict its ground-truth

structure on a pixel level. Solving this inverse problem would lead us to a completely

new philosophy of medical imaging by handing the doctor and the patient precisely

the anatomical structure, i.e., what you see is what you will get. No one has ever

attempted at it because there is simply not enough annotated data in the OCT world,

but our advanced Monte Carlo platform has completely solved this issue.

The fact that we can simulate OCT images in a minute or so, basically means that

we could design and generate data sets at will for learning from them, and we put

ourselves in a great position to solve the inverse problem using machine learning. It

is always a good idea to start from examining simple structures in order to appreciate

harder, more complex problems, which we will do next. This chapter is a warm-up

towards solving the learning problem.

57

5.2 Layered Biological Tissues

We will begin by looking at OCT images of some simple structures to gain insight

for the problem. And going back to visit the problem of imaging a layered biological

tissue again is good start.

Figure 5.1. Monte Carlo simulation of a single layer biological tissue (dermis). The

OCT image consists 512 A-scans and the simulation time is one minute. (a) Schematic

drawing of the anatomical, ground-truth structure. (b) Simulated OCT image.

58

5.2.1 Single Layered Biological Tissues

As shown in Figure 5.1, the simulated image gives us what we expected to see: the

speckle pattern, the decay of the signal strength from the surface of the layered tissue,

and the differences from A-scan to A-scan. We can zoom in on the A-scan to see the

decay of the signal strength, as shown in Figure 5.2. We also show the ground-truth

structure indicated by the orange line. It can be seen that even though the bulk of

the signal aligns well with the ground-truth, there is a small tail at the end of the

signal, from 0.06 cm to 0.065 cm.

Figure 5.2. An example A-scan from the simulated OCT image of the one-layer

biological tissue. The line in orange shows the corresponding ground-truth structure

of this A-scan.

A look at the distribution of the photon path lengths reveals the why we see

such a tail, as shown in Figure 5.3. It is worth pointing out that it has to be a

weighted histogram since each photon carries a weight and a likelihood ratio and the

59

Figure 5.3. The weighted half path length histogram of the example A-scan from the

simulated OCT image of the one-layer biological tissue. The photon half path lengths

are weighted by the weight Wi and the likelihood ratio Li they carry.

path lengths are weighted accordingly. Due to the importance sampling procedure,

there is also filtering process associated with it to remove the outliers in likelihood

ratio. Even though detecting a photon packet is an extremely rare event, we do get

lucky sometimes if we launch 100, 000 photons. However, these “lucky” photons are

not good for convergence since they will have a huge likelihood ratio associated with

them compared to others, which would appear as outliers in the histogram and noisy

spikes at the A-scan. A simple quantile function in MATLAB does the job as shown

in Listing 5.1. This simple trick pays great dividends in that it allows us to further

reduce the amount of collected photons to reach convergence.

60

1 %remove the outliers using .9 quantile of L

2 L_threshold = quantile(DetL ,0.9);

3 ix = find(DetL <L_threshold);

4 DetL = DetL(ix);

5 DetS = DetS(ix);

6 DetW = DetW(ix);

7 DetID = DetID(ix);

8 DetZ = DetZ(ix);

9 Ncount = length(DetID);

10 % end of removing outliers

Listing 5.1: Filter the outliers among the detected photon packets with huge

likelihood ratios.

From a prediction prospective, the small tail shown in Figure 5.2 should worry

us because the machine learning model needs to figure out the tail is misleading and

does not correspond to real tissues. The origin of this tail is due to the existence

of Class II photons that experienced non-ballistic, multiple scattering, as can be see

from the weighted histogram of the photon path lengths shown in Figure 5.3. This

matter gets worse if we add more tissue layers or allow flood illumination.

5.2.2 Flood Illumination

Figure 5.4. Schematic illustration of flood Illumination. (a) The radius of the illumi-

nation source equals 0.04 cm. (b) The radius of the illumination source equals 0.08

cm.

61

Flood illumination is always an interesting topic in OCT as it gives us the possi-

bility of acquiring the entire OCT image at one shot as opposed to stitching it with

A-scans, which is a slow process and requires moving parts. The idea of flood illumi-

nation is simply that, instead of using a point source, we use a disk source that could

illuminate a larger region of the tissue. It is easy to imagine that the resulting image

would be even harder to interpret, since the photons collected at a particular detec-

tor, as indicated by the blacks dots in Figure 5.4, may come from parts of the source

other that the location of the detector. As a result, the path length of the imaging

photons are further away from the truth depth of the region imaged, leading to even

longer tails in the resulting the A-scans. Examples of A-scans under the condition of

flood illumination can be found in Figure 5.5 in the next section, where we see the

tails are much longer compared with A-scans under point illumination.

5.2.3 Sliding Window Prediction

In order to solve the inverse problem, essentially we need to give a label, i.e., the tissue

type for each pixel in the OCT image. The standard approach in image processing

and computer vision when it comes to labeling an image is sliding window prediction.

The idea of sliding window prediction is using the neighboring pixels to predict the

label of the centered pixel. As shown in Figure 5.5(a), in trying to predict the label

around 0.05 cm pointed by the arrow, we can use all the pixels covered by the green

window. This sliding window idea is nice because it converts the inverse problem

into a standard classification problem in machine learning, where the input xi is

vector, whose dimension equals the window length, and the output yi is an integer

corresponding to the class label. We could label the “dermis” as class 1 and “air”

as class 0 and we have our standard two-class classification problem. When there

are more possible tissue types, it generalize to a multi-class classification problem by

introducing more type labels.

However, this sliding window approach would fail badly because it couldn’t handle

the tails. From their physical origin, we know that the tails appears at the end of

62

Figure 5.5. Example A-scans under the condition of flood illumination combined with

the idea of sliding window prediction. (a) The resulting A-scan when the radius of

the illumination source equals 0.04 cm. The orange line depicts the corresponding

ground truth and the green window with an arrow illustrates the idea of sliding

window prediction. (b) Schematic drawing of sliding window prediction, where the

tissue type is predicted one at a time using a sliding window going from left to right.

a tissue layer since the presence of the tissue layer causes the photon paths to be

prolonged and distorted, making them essentially the Class II photons. In order to

63

predict correctly in the tails region, the sliding window must know the existence of

tissue layers prior to them which requires non-local information. In other words, the

success of the sliding window approach depends on the fact that the problem is local.

One might argue that the non-locality of the problem can be eased by increasing the

length of the window, however, as will be shown in the next section, for multi-layered

structures this non-locality extends to the entire A-scan.

5.2.4 Multiple Layered Biological Tissues

Figure 5.6. Schematic drawing of the anatomical, ground-truth structure of a multi-

layered biological tissue (three layers of dermis), where the three dermis layers are

centered at depth z = 0.02 cm, z = 0.04 cm, and z = 0.07 cm respectively, all with a

thickness of 0.01 cm.

It would be interesting to extend from imaging single layered tissue to multiple

layered tissues, which helps us to further understand the non-locality of the problem

64

Figure 5.7. Monte Carlo simulation of a multi-layered biological tissue structure

(three layers of dermis). The OCT image consists 512 A-scans and the simulation

time is 32 minutes. (a)Simulated OCT image displayed in gray scale. (b) Simulated

OCT image displayed in color scale.

in terms of how the presence of layers at the top affects the imaging of layers at the

bottom.

In Figure 5.6 a three-layer tissue structure is depicted, where we see three layers of

65

dermis are centered at depth z = 0.02 cm, z = 0.04 cm, and z = 0.07 cm respectively,

all with a thickness of 0.01 cm. It turns out that simulating such a structure takes 32

minutes, much longer than its single-layer counterpart. This is because the presence

of the top layers slows down the imaging of the bottom (third) layer, as they prevents

the photons from penetrating them to image the third layer. As a result, we need

more photons per A-scans for the third layer in the OCT image to show up.

Figure 5.8. An example A-scan from the OCT image of the three-layered tissue

structure, plotted at the dB scale.

In Figure 5.8 we show an example of an A-scan from the OCT image of the three-

layered tissue structure. Clearly we see that even though we have three layers of

dermis with identical thickness, the three corresponding peaks in the A-scan have

wildly different widths. While the width of the first peak is close to the true width of

the dermis layer, which is 0.01 cm, the widths of the other two peaks are distinctly

greater than 0.01 cm. This is precisely the reason why OCT images are hard to

interpret, as the apparent structure displayed in the image is a distorted version of

the ground-truth.

Up till this point you can probably guess the answer of why the peaks in the OCT

image are wider. As shown in Figure 5.9, the path length distribution of the collected

photons spans an increasingly wider range as we go from the first peak, located at

66

Figure 5.9. Weighted half path length histogram at dB scale for the three-layered

tissue structure.

0.02 cm, to the third peak located at 0.07 cm. This increasingly wider range is a

manifestation of the fact that the collected photons imaging the later layers have to

penetrate and thus are scattered within the earlier layers, resulting in a wider range

of path lengths. The deeper inside the tissue, the wider the path length range, which

leads to more distortion.

Another challenge we can conclude is that, if you look at the magnitudes of the

three peaks shown in Figure 5.9 and note that the scale is dB, the signals from the

deeper regions in the tissue are much weaker. This is not necessarily a problem for

machine learning algorithms, since you can always rescale the signal, but may cause

significant trouble for the real-world detectors to sense them.

One last problem is the fact that, as shown in Figure 5.10, A-scans corresponding

to the same underlying structure can and will be wildly different from one another.

This posts another challenge to the learning algorithm as the algorithm needs to learn

67

Figure 5.10. More example A-scans from the OCT image of the three-layered tissue

structure, plotted at the dB scale. The fact that A-scans are different from one

another even though they correspond to the same underlying structure is another

challenge for the learning algorithm.

to be insensitive to this variance. We need to take this into account when designing

the data set for training. For example, if the learning algorithm is experiencing a

hard time trying to adapt to the variances among A-scans, we may want to include

more A-scans for each OCT image.

68

5.3 Define the Learning Problem

Now it is time to formally introduce the learning problem, i.e., define the inverse

problem from a machine learning point of view. While in Monte Carlo simulation

the question being asked is “given the ground-truth structure, how will the OCT

image look like”, the question in machine learning is exactly the reverse, which is

to reconstruct the ground-truth structure from an unseen OCT image. “Unseen” is

the important word in the previous sentence since the machine can simply try to

memorize all the previously seen data, in the form of (image, truth) pairs, but this

does us no good as it fails to generalize to new, unseen samples, which is the goal of

machine learning.

Figure 5.11. The machine learning problem, where we need to go from left to right,

i.e., predicting the ground-truth structure from an unseen OCT image.

Figure 5.11 presents us the idea of learning. As the figure shows, we would like

to predict the ground-truth structure (right) from an unseen OCT image (left). It

is worth pointing out that from now on we set the maximum width of this kind of

layered structures of dermis to be 0.005 cm, in order to generate the OCT images more

quickly using our advanced Monte Carlo platform. The computer time for simulating

the structure in Figure 5.11 is 4 minutes.

We decide to perform the prediction at the A-scan level first because the A-scans

are the most natural way of decomposing an OCT image, as each A-scan is the signal

collected at each detector. Figure 5.12 shows what the learning problem looks like on

69

Figure 5.12. The machine learning problem at the A-scan level, where we need to

predict the ground-truth structure (green line) from the transformed OCT signal,

namely the A-scan (blue line).

the A-scan level, where the task is to predict the ground-truth structure (the green

line) from the A-scan (the blue line).

5.4 Discussion

There are two other more fundamental reasons of choosing to predict at the A-scan

level, as explained below:

• The problem is global. As we explained earlier when deciding against the sliding

window approach, the problem is non-local. The three-layer Figure 5.12 is a

perfect example to show that this problem is genuinely global. As shown in the

plot, the reason why the second peak is wider than the ground-truth is due to the

presence of the first peak, while the reason why the third peak is wider than its

ground-truth is due to the presence of the first two peaks. Moreover, the width

of the second peak is positively dependent on the width of the first peak, and

similarly for the third peak. This is because as the photons penetrate thicker

70

tissues, their path lengths get distorted more, resulting in a wider range of

path length distribution which corresponds to a wider peak in the A-scan. This

means that you cannot solve the problem by predicting at a smaller scale, e.g.,

using something like half an A-scan as your input, since in that case you won’t

have enough information to perform the prediction correctly. Therefore A-scan

is the smallest scale at which you can possibly solve the problem. You may elect

to solve the prediction problem at a larger scale, for example, we can combine

multiple A-scans and use them as the input to predict the output, which might

be the ground-truth of the A-scan in the middle. This is a legitimate suggestion

as we expect neighboring A-scans are informational. As we show in the next

chapter, we can achieve the same effect, without the penalty of blowing up the

input dimension, by performing a pooling step after prediction at the A-scan

level is done.

• The solution extends well to flood illumination. We pointed earlier that flood-

illumination is always an interest, therefore we would like to solve the non-

flood-illumination version of the problem in a way that can generalize to flood

illumination. Predicting at the A-scan level does just that. Under the condition

of flood-illumination, the form of the problem is exactly the same except for

longer tails at the end of each peaks.

In summary, we want to solve the machine learning problem at the A-scan level,

which is not an arbitrary choice as there are good reasons behind this. In the machine

learning language, this means that each sample is in the form (xi, yi) where xi is a

vector corresponding to an A-scan, and yi is also vector corresponding the ground-

truth and has the same dimension as xi.

71

Chapter 6

Solving the Learning Problem

6.1 Chapter Overview

In this chapter we will solve the learning problem introduced in the previous chapter,

using all sorts of machine learning techniques. We begin with some high-level discus-

sion of the challenges for the problem as well as how we may solve it. The first step

is to transform the output variable, yi to reduce its dimension. Through this clever

transformation, we arrive at a multi-output multi-class classification problem and a

multi-output regression problem.

As we explore the data further, we pick up more and more insights as to how to do

the job better. Our advanced Monte Carlo platform also comes in handy as it allows

us to essentially generate data at will, so that we can intentionally design different

data sets to train the machine learning models for better out-of-sample performance.

We then build a hierarchy architecture of machine learning models (committee of

experts) based on extremely randomized trees (extra trees), and train different parts

of the architecture with specifically designed data sets.

In prediction, an unseen OCT image first goes through a classification model to

determine its structure (e.g., the number and the types of layers present in the image);

then the image is handed to a regression model that is trained specifically for that

particular structure to predict the length of the different layers and by doing so recon-

struct the ground-truth of the image. We will also demonstrate in the next chapter

that ideas from Deep Learning can be useful to further improve the performance.

72

6.2 First Impression and Initial Thoughts

Figure 6.1. Reminder of the machine learning problem at the A-scan level, where

the goal is to predict the ground-truth structure, a 1910-dimensional vector yi(green

line), from the input xi (blue line), which is also a a 1910-dimensional vector.

We start by reminding the reader what the learning problem is. As shown in

Figure 6.1, we need to use the input vector xi, which is 1910 dimensional in our

case, to predict the output yi, which is also 1910 dimensional. As a machine learning

practitioner or someone with a basic understanding of machine learning, you may

start wondering in your mind the following questions.

• The first challenge that comes to mind is the fact that the dimension of yi is

too high, and predicting such a high dimensional output is simply a disaster in

machine learning. However, if you think about it, the problem is not intrinsically

high dimensional, especially in terms of representing yi. You ask yourself, “do I

really need as many as 1910 numbers to describe a layered structure”, of course

not. And pondering over this simple question leads to a clever transformation

of the output variable yi described in the next section.

• The next big question is, apparently, how do you prepare your data set. Even

73

though you have a powerful Monte Carlo code which is perhaps capable of

generating OCT images of any object in a very efficient way, you still have to

decide what data to generate. Of course, we can imagine that you would like

to start with simple problems (i.e., simple structures and a small number of

layers), that can be easily extended to more complex, harder problems. And

more technically in OCT term, you also wonder how many images should I

generate and how many A-scan should each OCT image have?

• Assume you have prepared some data sets and you could somehow magically

transform the output yi to a lower dimensional space, you still would have

a multi-output problem. Then the next question is which machine learning

models/paradigms would you use? Will you use the raw input xi or transform

it using some dimension reduction techniques in unsupervised learning? How

would you deal with the multi-task nature of the problem? Do you prefer simple,

linear models like ridge regression, or black-box models like random forests or

neural networks? Perhaps you even would like to flirt with deep learning by

trying ideas like unsupervised pre-training + supervised fine-tunning.

What I said above is by no means a comprehensive list but should cover most

of the territory. This should give you a flavor of the type of questions to keep in

mind as you start exploring a machine learning problem. We will address these

questions/challenges in the next sections and we will reveal more insights as we dive

deeper.

6.3 Transformation of the Output

As hinted in the previous section, the intrinsic dimension of the output variable yi is

not as high as 1910, and in fact far from it when considering realistic structures like

human skins or brains. You ask yourself, “do I really need as many as 1910 numbers

to describe a layered structure”, of course not. How would you describe a layered

biological tissue structure then? Probably you would answer by stating the type and

74

Figure 6.2. Transformation of the 1910-dimensional output variable y into two 20-

dimensional variables ytype and ylength. ytype encodes the types of the segments of the

output y into 20 class labels, and ylength describes the length of these segments in

pixels. Here the code “2” means “air” and the code “4” means “dermis”. There is

no loss of information in this transformation as the new, lower dimensional variables

ytype and ylength are enough to fully reconstruct the original output variable y.

length of the first layer, the second layer, and so on. You would have a short answer

as there aren’t many layers present in a natural, realistic tissue structure.

Based on exactly this simple idea, we transform the 1910-dimensional output

variable y into two 20-dimensional variables ytype and ylength, as shown in Figure 6.2.

As their names suggest, ytype encodes the types of the segments of the output y into

20 class labels, and ylength describes the length of these segments in pixels. The code

“2” refers to the type “air” and the code “4” means the type “dermis”.

The reader should be capable of writing a program to perform such a transfor-

mation, and the Listing 6.1 gives you an idea of how to do it. What you need to do

is simply finding the locations of the discontinuities and then use them to figure out

ytype and ylength respectively.

75

1 Y_Len = zeros(size(OCTY_all ,1),N);

2 Y_Type = zeros(size(OCTY_all ,1),N);

3 for ID = 1:size(OCTY_all ,1)

4 y = OCTY_all(ID ,:);

5 b = diff(y);

6 c = find(b);

7 d = diff([0,c,length(y)]);

8 Y_Len(ID ,1: length(d)) = d;

9 Y_Type(ID ,1: length(d)) = y(cumsum(d));

10 end

Listing 6.1: MATLAB code for transforming the output variable y. The code

simply locates the discontinuities and use the positions of them to figure out ytype

and ylength.

There is no loss of information in this transformation as the new, lower dimensional

variables ytype and ylength have enough information to fully reconstruct the original

output variable y. We choose the number 20 somewhat arbitrarily but you wouldn’t

expect a natural biological tissue to have more than 20 alterations of tissue types.

The output variable yi would be truly 1910-dimensional if you allow the types of the

pixels to alter randomly from pixel to pixel, but this never happens in reality.

This transformation shares the same spirit of the fact that natural images are

never random but lie in a lower dimensional manifold, much lower than the number

of pixels present in an image.

6.4 Three Data Sets

A general principle for problem solving is to start with simple cases and work you

way up to harder, more complex problems. We follow this advice and have prepared

three data sets for the layered, air-dermis structure, as shown in Figure 6.3.

The first data set consists of 100 OCT images where each image is composed of

512 A-scans. The images may consist 1 to 5 layers of dermis, where the dermis layer

will have a random position and a random thickness. We limit the thickness to less

than 0.005 cm so that we could perform the Monte Carlo simulation within a few

76

Figure 6.3. Three data sets for the layered, air-dermis structure. The first data set

consists of 100 OCT images where each image is composed of 512 A-scans. The

images may consist 1 to 5 layers of dermis, where the dermis layer will have a random

position and a random thickness. Data set No.2 is the same as data set No.1 except

for this time there are 1000 images and each image is composed of 64 A-scans. Data

set No.3 is the same as data set No.2 except that they all have a fixed, 3 layers of

dermis instead of ranging from 1 to 5.

minutes. Data set No.2 is the same as data set No.1 except for this time there are

1000 images and each image is composed of 64 A-scans. Data set No.3 is the same as

data set No.2 except that they all have a fixed, 3 layers of dermis instead of ranging

from 1 to 5.

It is worth pointing out that even though this air-dermis structure does not sound

like a realistic structure and thus does not make much biological sense, it makes the

most sense from a machine learning point of view. It is the easiest problem for us

to solve plus we have gained lots of insight for this type of structure in the previous

chapters.

77

6.5 Decision Trees, Random Forest, Extra Trees

Now that we have our machine learning problem well defined, thanks to the clever

transformation of the y variable, and also we have data for the problem. The natural

question s to ask what kind of machine learning model(s) should we use to solve the

problem at hand. In the minimum, the model should:

• be able to handle multi-output problems for both classification and regression;

• be able to handle high-dimensional input and not over-fit;

• be powerful enough to model arbitrary input-output dependence;

• be fast enough at prediction since once the models are trained they will be used

in practice.

Given the above criteria, decision tree based models immediately come into mind [51].

We give below an introduction to them as they will become the main work-horse for

the remaining of this chapter. If you aim to become a machine learning practitioner,

tree models are a must-have in your arsenal.

6.5.1 Introduction to Decision Trees

Decision Trees (DTs) are a non-parametric supervised learning method used for clas-

sification and regression. The goal is to create a model that predicts the value of a

target variable by learning simple decision rules inferred from the data features.

Decision Trees are widely described in the literature [52–54], but the best way to

introduce it is trough an example shown in Figure 6.4. As we can see from the plot,

at each node of the decision tree, the model is trying to pick a feature and a threshold

to split the data that arrives at this node so that the impurity of the data decreases

in some sense after the split. The model repeats that process until the data at each

node are pure, and we call those nodes leave nodes.

78

Figure 6.4. Decision Trees on IRIS data set [2], which consists of 150 samples and 3

class labels. Each sample has 4 features.

6.5.2 Mathematical Formulation of Decision Trees

Given training vectors xi ∈ Rn, i = 1, ..., I and a label vector y ∈ Rl, a decision

tree recursively partitions the space such that the samples with the same labels are

grouped together.

Let the data at node m be represented by Q. For each candidate split θ = (j, tm)

consisting of a feature j and threshold tm, partition the data intoQleft(θ) andQright(θ)

subsets:

Qleft(θ) = {(x, y)|xj <= tm} (6.1)

Qright(θ) = Q \Qleft(θ) (6.2)

The impurity at m is computed using an impurity function H(), the choice of which

depends on the task being solved (classification or regression):

G(Q, θ) =
nleft
Nm

H(Qleft(θ)) +
nright
Nm

H(Qright(θ)). (6.3)

79

Next we select the parameters that minimizes the impurity:

θ∗ = argminθG(Q, θ). (6.4)

Recurse for subsets Qleft(θ
∗) and Qright(θ

∗) until the maximum allowable depth is

reached, Nm < minsamples or Nm = 1.

If a target is a classification outcome taking on values 0, 1, ..., K − 1, for node m,

representing a region Rm with Nm observations, let

pmk = 1/Nm

∑
xi∈Rm

I(yi = k) (6.5)

be the proportion of class k observations in node m.

Common measures of impurity are Gini

H(Xm) =
∑
k

pmk(1− pmk) (6.6)

Cross-Entropy

H(Xm) =
∑
k

pmk log(pmk) (6.7)

and Misclassification

H(Xm) = 1−max(pmk). (6.8)

If the target is a continuous value, then for node m, representing a region Rm with

Nm observations, a common criterion to minimize is the Mean Squared Error

cm =
1

Nm

∑
i∈Nm

yi, (6.9)

H(Xm) =
1

Nm

∑
i∈Nm

(yi − cm)2. (6.10)

80

6.5.3 Ensemble methods

Random Forests and Extremely Randomized Trees (Extra Trees) are both examples

of Ensemble Methods that support multi-output problems. The goal of ensemble

methods is to combine the predictions of several base estimators built with a given

learning algorithm in order to improve generalizability/robustness over a single esti-

mator [54–57].

Two families of ensemble methods are usually distinguished:

• In averaging methods, the driving principle is to build several estimators in-

dependently and then to average their predictions. On average, the combined

estimator is usually better than any of the single base estimator because its

variance is reduced. Examples of this type are Bagging methods, Forests of

randomized trees, etc.

• By contrast, in boosting methods, base estimators are built sequentially and

one tries to reduce the bias of the combined estimator. The motivation is to

combine several weak models to produce a powerful ensemble. Examples of this

type are AdaBoost, Gradient Tree Boosting, etc.

The Random Forest algorithm and the Extra-Trees method are two averaging algo-

rithms based on randomized decision trees. Both algorithms are perturb-and-combine

techniques specifically designed for trees. This means a diverse set of classifiers is cre-

ated by introducing randomness in the classifier construction. The prediction of the

ensemble is given as the averaged prediction of the individual classifiers.

In random forests, each tree in the ensemble is built from a sample drawn with

replacement (i.e., a bootstrap sample) from the training set. In addition, when split-

ting a node during the construction of the tree, the split that is chosen is no longer

the best split among all features. Instead, the split that is picked is the best split

among a random subset of the features. As a result of this randomness, the bias of

the forest usually slightly increases (with respect to the bias of a single non-random

tree) but, due to averaging, its variance also decreases, usually more than compen-

sating for the increase in bias, hence yielding an overall better model. In contrast

81

to the original publication [55], the implementation we will use combines classifiers

by averaging their probabilistic prediction, instead of letting each classifier vote for a

single class.

In extremely randomized trees, randomness goes one step further in the way splits

are computed. As in random forests, a random subset of candidate features is used,

but instead of looking for the most discriminative thresholds, thresholds are drawn at

random for each candidate feature and the best of these randomly-generated thresh-

olds is picked as the splitting rule. This usually allows to reduce the variance of the

model a bit more, at the expense of a slightly greater increase in bias.

The main parameters to adjust when using these methods is n_estimators and

max_features. The former is the number of trees in the forest. The larger the better,

but also the longer it will take to compute. In addition, note that results will stop

getting significantly better beyond a critical number of trees. The latter is the size

of the random subsets of features to consider when splitting a node. The lower the

greater the reduction of variance, but also the greater the increase in bias. Empiri-

cal good default values are max_features=n_features for regression problems, and

max_features=sqrt(n_features) for classification tasks (where n_features is the

number of features in the data). Good results are often achieved when fully devel-

oping the trees. Bear in mind though that these values are usually not optimal, and

might result in models that consume a lot of ram. The best parameter values should

always be cross-validated.

Finally, both models also feature the parallel construction of the trees and the

parallel computation of the predictions. The computations can be partitioned into k

jobs, and run on k cores of the machine. Note that because of inter-process communi-

cation overhead, the speedup might not be linear (i.e., using k jobs will unfortunately

not be k times as fast). Significant speedup can still be achieved though when build-

ing a large number of trees, or when building a single tree requires a fair amount of

time (e.g., on large datasets).

82

6.6 Exploring and Shuffling the Data

With all the necessary tools in hand, we start our exploration by predicting ytype.

We use the the zero-one error measure for this multi-output, multi-class classification

problem. As shown in Figure 6.5, the zero-one error measure simply counts the

number of class labels that are predicted incorrectly. In the example shown, there are

4 out of 20 class labels are predicted wrong, resulting in an error probability of 0.2.

Figure 6.5. Zero-One Error for the prediction of ytype. In this case we get 4 class

labels wrong out of 20, resulting in an error probability of 0.2.

6.6.1 Initial Exploration

Next we take a shot at data set No.1 where we have 100 images with 512 A-scans

for each image, and each image is possible consisted of 1 to 5 layers of dermis. We

randomly select 60 images as training set and the remaining 40 images as the test set.

We fix the number of estimators to be 1000 and vary the parameter max_features.

Data Set No.1
Random Forest Extra Trees

max_features Error Rate Average Error Error Rate Average Error
sqrt(n_features) 0.0965 1.9305 0.0857 1.7146

16 0.0867 1.7345 0.0745 1.4894
8 0.0775 1.5506 0.0669 1.3394
4 0.0732 1.4644 0.0646 1.2927

Table 6.1: Prediction Results for ytype on Data Set No.1

As shown in Table 6.1, even the best model still get 1.2927 errors per sample

(Average Error), which is far from satisfactory. We then tried to smooth the data

using an exponential moving average, the prediction result improves to 1.2605 errors

per sample, but still not good.

83

6.6.2 Shuffling the Data

It is worth pointing out that each image has to fully belong to either the training set

or the test set, as we did in the previous section. We cannot assign, for example, half

of the image (or 256 A-scans) to the training set and the other half to the test set,

for obvious reasons.

However, we decide to cheat a little bit by breaking this rule and see what happens.

More specifically, we shuffle all the A-scans before splitting the them into 60% training

set and 40% test set, just like our previous trial. Surprisingly, we achieved zero error

and 100% accuracy in prediction!

Data Set No.2
Extra Trees

Validation Set Test Set
max_features Error Rate Average Error Error Rate Average Error

1 0.032492 0.6498437
2 0.030156 0.60312
4 0.02903 0.580781
8 0.02914062 0.582812
16 0.0281562 0.563125 0.028062 0.56125
32 0.028664062 0.5732812

Table 6.2: Prediction Results for ytype on Data Set No.2, which has 1000 images and
64 A-scans per image, using Extra Trees.

This tells us that the variance across different A-scans are easier to learn than

variance across different images/structures. And obviously, the next step is to change

the design of the data set as follows:

• Reduce the number of A-scans: 512→ 64;

• Increase the number of images: 100→ 1000.

In other words, we should try Data Set No.2. We reduce the number of A-scans for

each image in order to keep the total size of the data set roughly the same. This only

because the size of the data is close to the limit that we can handle on our hardware.

This time we will do it more carefully by splitting the data set into 60% training,

20% validation, and 20% test. The validation set is used to choose the best hyper

84

parameter max_feature. From now on we will only consider the Extra Trees model

as it consistently out-performs the Random Forest model.

Data Set No.4
Extra Trees

Validation Set Test Set
max_features Error Rate Average Error Error Rate Average Error

16 0.01906 0.20969
32 0.01757 0.19328 0.01149 0.12641
64 0.01764 0.19406

Table 6.3: Prediction Results for ytype on Data Set No.4, which has 4000 images and
16 A-scans per image, using Extra Trees.

As we see from Table 6.2, we get a huge improvement and reached about 0.5 in

terms of Average Error. The obvious direction is simply to keep reducing the number

of A-scans per image, and increasing the number of images. The power of the fast

Monte Carlo Simulation pays dividends here as it allows us to design at generate

OCT images at will. Thus we generated a new set, Data Set No.4, which has 4000

images and 16 A-scans per image.

As shown in Table 6.3, we get another improvement and we are looking at 0.12

errors per sample. We also checked the percentage of the test samples for which we

predict them completely correctly, and we get a “Wrong Sample Rate” of 0.06313,

in other words, we get more than 93% of the samples completely write. We can also

reduce the output dimension by directly predicting the number of layers, which is an

integer. And we achieved a “Wrong Sample Rate” of 0.06859, slightly worse than the

multi-output prediction. One explanation is the fact that we are doing multi-task

learning effectively increased the size of the data set.

6.6.3 Transfer Learning

It is also important to point out that the models we trained on one particular data set

(eg., Data Set No.4) can generalize to other, unseen data sets (e.g., Data Set No.2),

as indicated by the preservation of the (> 93%) prediction accuracy. This is called

transfer learning. It tells us that images formed by different number of A-scans are

85

of the same nature and allows us more flexibility in the design of OCT systems.

6.7 Restricted Boltzmann Machines

It turns out that we can borrow ideas from deep learning to further improve the ytype

prediction performance. Deep Learning is a new area of Machine Learning research,

which has been introduced with the objective of moving Machine Learning closer

to one of its original goals: Artificial Intelligence. Deep Learning is about learning

multiple levels of representation and abstraction that help to make sense of data such

as images, sound, and text. Lots of deep learning models could be helpful for our

case, namely:

• Multilayer perceptron;

• Deep Convolutional Network;

• Auto Encoders and Denoising Autoencoders;

• Restricted Boltzmann Machines.

We will utilize stacked Restricted Boltzmann machines to as a proof of concept that

deep learning can indeed help. Restricted Boltzmann machines (RBM) are unsu-

pervised nonlinear feature learners based on a probabilistic model. The features

extracted by an RBM or a hierarchy of RBMs often give good results when fed into a

linear classifier such as a linear SVM or a perceptron. The method gained popularity

for initializing deep neural networks with the weights of independent RBMs. This

method is known as unsupervised pre-training [58,59].

We build a classification model that is composed of two layers of RBM with 512

components, followed by Logistic regression on top. This represents some flavor od

deep learning as the first two layers are used to extract useful features from the raw,

1910-dimensional input. We apply this to Data Set No.4 and it turns out that we

further improved the prediction accuracy to 97%, as shown in Table 6.4.

86

Figure 6.6. Schematic drawing of Restricted Boltzmann machines, where vi are called

visible nodes and hj hidden nodes. The weights wij connects the two type of nodes.

Data Set No.4
Logistic regression using RBM features

number of layers precision recall f1-score support
3 0.99 1.00 0.99 305
5 0.98 0.97 0.97 311
7 0.94 0.96 0.95 351
9 0.95 0.94 0.95 313

avg/total 0.97 0.97 0.97 1280

Table 6.4: Prediction Results for ytype on Data Set No.4, which has 4000 images and
16 A-scans per image, using two layers of RBM with 512 components, followed by
Logistic regression.

6.8 Hierarchical Architecture

We can continue to work on the ytype-prediction problem by fine-tuning the model

parameters, trying more models, attempting different architecture of the models, as

well as designing more data sets to further improve the prediction accuracy. It then

becomes more of an engineering type pf problem and we believe the performance can

be made very close to 100% accuracy. However, this only solves half of the problem

as we still need to know the length of each segments besides their types. Therefore,

it would be wise to switch gears and look at the other problem.

87

6.8.1 Predicting the Length of the Segments

Figure 6.7. Schematic drawing of the problem of predicting the length of the segments.

We use the Root Mean Squared Error (RMSE) for this task.

Data Set No.4
Extra Trees Regressor

max_features Average Validation RMSE Average Test RMSE
128 63.83896
256 63.62173 53.34265
512 64.11825

Table 6.5: Prediction Results for ylength on Data Set No.4, which has 4000 images
and 16 A-scans per image, using Extra Trees Regressor.

The ylength prediction problem is illustrated in Figure 6.7, where we use a Root

Mean Squared Error (RMSE) as it is a multi-output regression problem. We will work

with Data Set No.4 as it has given us the most success previously. As a reminder,

Data Set No.4 has 4000 images and 16 A-scans per image, where each image may be

composed of 1 to 4 layers of dermis. We split the data into 60/20/20 train/valid/test

like before and use the Extra Trees Regressor as our model. We fix the number of

estimators to be 400 and use the validation set to select the max_features. Once

88

we find the best value for max_features, we re-train the model on the combined

train/valid set before we evaluate our final model using the test set.

6.8.2 Interpreting the RMSE

The prediction result is shown in Table 6.5, where we get an average RMSE of

53.34265. Here is one way to think of the RMSE. If our model is perfect and gets the

length of every segment correctly, of course we should get an RMSE of zero. However,

if we get every segment off by 1 pixel, note that it can either be +1 or −1, and since

the total length of the segments are conserved (the conservation can be reinforced by

re-normalization of the predictions), we should get roughly half +1’s and half −1’s.

Moreover, if we get a +1 and a −1 next to each other, one pixel is wrong for the two

segments. Similarly, if we get two +1’s next to two −1’s, we get two pixels wrong

for the four segments. Following this line of thought, the expected number of wrong

pixels of the reconstructed OCT image can be estimated as RMSE×n
2

, where n is the

number of segments.

6.8.3 From Good to Bad

Figure 6.8. Different test cases for the ylength prediction on Data Set No.4, where we

see some very good examples as well as very bad examples.

A look at the different test cases for the ylength prediction on Data Set No.4 reveals

lots of insight. As shown in Figure 6.8, there are good examples where we predicted

the segment lengths close to perfect, as well as bad examples where we completely

89

missed it. Figuring out why there is such high variance in our prediction performance

is vital for further improvement.

6.8.4 Committee of Experts

The reason why we saw high variance in the prediction is that the model was trying

to do it all. It has to simultaneously handle the 1-layer, 2-layer, 3-layer and 4-layer

cases and this would be a disaster since the underlying physics of these cases are

fundamentally different. The reason is that in the presence of different number of

layers, the photon path length distributions are perturbed in a totally different way.

As a result, once the model detects a peak, for example, near end of the A-scan, it

would have a hard time assigning the truth width of the corresponding layer since for

different structures (in terms of the number of layers), the answer would be drastically

different. More specifically, if it is a 1-layer structure, the true width of the layer would

be close to the apparent width of the detected peak; on the other hand, had it been

a 4-layer structure, the width of the layer would be much smaller than the apparent

width of the detected peak, due to photon path length distortion.

Figure 6.9. The hierarchical architecture in the form of a committee of experts, where

the job of the Classification Model on the top layer to dictates the structure of the

imaged object in terms of the number and type of the segments, and assign a Re-

gression Expert to solve the segment length prediction problem corresponding to that

particular structure.

The observation clearly calls for specialization of the prediction models and a

hierarchy architecture in the form of a committee of experts. As shown in Figure 6.9,

90

the task for the Classification Model on the top layer is to dictates the structure of the

object from its OCT image. Once that is done, we assign one Regression Expert from

the bottom layer that is specialized in segment length prediction for that particular

structure.

6.9 Prediction Results

Figure 6.10. Histogram of the RMSE on Data Set No.5, where we see that the median

RMSE is only 18.5833 compared to the average RMSE of 27.54875. This shows that

there are a few bad examples driving the RMSE up, but they are a minority.

Of course, we need to train the different parts of the architecture using specifically

designed data sets, we are able to do that thanks to our advanced Monte Carlo

simulation platform. As an example, we can train the Regression Expert for the 3-

layer dermis structure using data set No.3, which has 1000 images with each image

91

having 64 A-scans, and all the images have 3 layers of dermis. Once we do that the

RMSE is reduced to 34.486 pixels. We can go ahead and design a Data Set No.5

which which has 4000 images with each image having 16 A-scans, and all the images

have 3 layers of dermis. This would give us an average of RMSE at 27.54875 pixels.

Figure 6.11. Histogram of the RMSE on newly generated Data Set No.5 without

those tricky cases that have layers close to the boundary. We see that the average

and median of RMSE are further reduced. However, there are still outliers present

but significantly less.

If we look at the histogram of the RMSE, as shown in Figure 6.10, it tells us

that the median RMSE is only 18.5833 compared to the average RMSE of 27.54875.

This implies that there are a few bad, tricky examples driving the RMSE up, but

they are a minority. It turns out that these tricky examples are those in which the

dermis layers happen to be very close to the boundary, and these cases are rare in the

population and that’s why the learning algorithm, the regression expert was having

92

a hard time predicting them. This is expected since the performance of the learning

algorithm highly depends of the distribution of the training data. For the cases that

have a larger population in the training data, the learning algorithm would perform

better out-of-sample, and vice versa for the less populated cases.

Once we removed those tricky cases that have layers close to the boundary, the

average RMSE is further improved to 20.42273 pixels, and the median RMSE is done

to 13.62 pixels, as shown in Figure 6.11. We can apply a pooling step after the

prediction since we know the true structure is layered, this would give us another

improvement of 5 pixels in the average RMSE. To more general structures, we could

apply a local pooling since their exists a local continuity in natural biological tissues.

Figure 6.12. An example A-scan comparing our prediction result against the ground-

truth. This represents a typical performance of our hierarchical model.

We conclude this chapter by showing three example A-scans comparing our pre-

diction result against the ground-truth. The first two examples, as shown in Figure

6.12 and 6.13, represent a typical performance and a slightly worse-than-average per-

formance of our hierarchical model. From the look of the two plots, we can safely

claim that our model does the job close to perfect.

We also show in Figure 6.14 a third example that actually corresponds to the worst

93

Figure 6.13. An example A-scan comparing our prediction result against the ground-

truth. This represents a slightly worse-than-average performance of our hierarchical

model.

performance of our model, and in fact represents the new type of outliers present in

the newly generated data set. These outliers are the cases in which two layers of

dermis are very close to each other. Again this corresponds a minority that drives the

RMSE up. Of course we could either remove these outliers or intentionally generate

more such outliers to further improve the performance of our hierarchical model. On

the other hand, we can also see how our current model reacts to this tricky cases. It

seems that our model was having a hard time trying to find the third layer, since it

viewed the last two peaks as one (because in this data set most likely there is at most

one peak near the right end of the A-scan), it has no choice but to make a guess and

put the third layer in the middle, which is again the most likely case in this data set.

94

Figure 6.14. An example A-scan comparing our prediction result against the ground-

truth. This actually corresponds to the worst performance of our model, and in fact

represents the new type of outliers present in the newly generated data set. These

outliers are the cases in which two layers of dermis are very close to each other. Again

this corresponds a minority that drives the RMSE up.

95

Chapter 7

Conclusion and Outlooks

7.1 Chapter Overview

In this chapter we will first repeat what we have done in Chapter 6 to see if our

hierarchical model is able to generalize to more complex, realistic problems. We will

use the brain structure as our example, which is way more complicated than the

air-dermis structure we have previously conquered. We then move on to summarize

this thesis and discuss about the new philosophy that is made possible by this thesis

when it comes to OCT imaging. We conclude this thesis by taking a tour of future

research opportunities in the outlook section.

7.2 More Complex Structures

Conquering the air-dermis structure may not sound as convincing if the techniques

could not generalize to more complex, real-world structures. In this section we address

this concern by simulating and predicting the brain structure.

7.2.1 Simulating the Brain Structure

We start by drawing and simulating the brain structure with our advanced Monte

Carlo platform, as shown in Figures 7.1 and 7.2, respectively. This simulation takes

8 minutes, which is understandably longer than the 1-minute simulation time of the

96

Figure 7.1. Schematic drawing of the anatomical, ground-truth structure of a multi-

layered brain, which consists of an epidermis layer, a dermis layer, a skull layer, and

both white and gray matters.

air-dermis structures. It demonstrates that complicated, real-world structures can be

successfully simulated just like before.

7.2.2 Predicting the Brain Structure

We repeat the process discussed in Chapter 6 by training the regression expert on

simulated Brain structures. We prepared a data set for training the same way as the

Data Set No.5 in the previous chapter, which has 4000 images and 16 A-scans per

image. We train our model (the regression expert) on this entire data set, and then

we predict on newly generated images that have 512 A-scans. The prediction at the

A-scan level is shown in Figure 7.3.

We then go ahead and stitch the A-scan level predictions to form a full, predicted

97

Figure 7.2. Simulated OCT images corresponding to the multi-layered brain struc-

ture, which consists of an epidermis layer, a dermis layer, a skull layer, and both

white and gray matters.

ground-truth structure. And here is the story line: you get a conventional OCT image

(Figure 7.4(a)), which is what you see. However, what you would like to see is the

ground-truth structure (Figure 7.4(b)). Apparently there is a huge gap between the

two since you could not tell whether the image is about brain or skin, as they are

both layered structures. We then come to help and hand you Figure 7.5, which is

what you get from our machine learning model. In our case, what you see is (almost)

what you’ll get.

98

Figure 7.3. An example A-scan comparing our prediction result against the ground-

truth, for the brain structure. This represents a typical performance of our hierarchi-

cal model.

7.2.3 The Curved Brain Structure

We also simulated a curved brain structure and performed the same prediction. The

prediction performance is similar to the previous multi-layered case with an average

RMSE of around 40 pixels.

7.3 Conclusion of the Thesis

Optical Coherence Tomography(OCT) is a popular, rapidly growing imaging tech-

nique due to its noninvasive nature, but not without its own challenges and limi-

tations. In summary, obtaining an OCT image is not cheap, which takes either an

experimental trial or expensive computer simulation. Interpreting an OCT image is

also hard, i.e., we cannot recover the anatomical structure of the imaged object. This

is due to the fact that the physics underlying the image formation process distorts

and weakens the signal, as well as the lack of fully annotated OCT images for us

to learn from. Moreover, because of the multiple scattering events that the photons

99

Figure 7.4. Part One of the story line. (a) An OCT image of the brain, this is what

you see. (b) The ground-truth anatomical structure of the brain, this is what you

would like to see.

need to go through, deeper regions of a biological tissue (beyond a few millimeters)

are hard for the photons to reach, resulting in a limited imaging depth of OCT.

This thesis addresses the challenges described in the previous section by the suc-

cessful development of an advanced Monte Carlo simulation platform, which is 10, 000

times faster than the state-of-the-art simulator in the literature, bringing down the

100

Figure 7.5. Part Two of the story line. This is what you get from our machine learning

model. In our case, what you see is (almost) what you’ll get. (a) The predicted

ground-truth structure before pooling. (b)The predicted ground-truth structure after

pooling.

simulation time of an OCT image from 360 hours to a single minute. This is one of

the key contributions of this thesis, as this powerful simulation tool not only enables

us to efficiently generate as many OCT images as we want, but it also provides us

the underlying ground-truth of the simulated images at the same time because we

101

Figure 7.6. Schematic drawing of the anatomical, ground-truth structure of a curved

brain, which consists of an epidermis layer, a dermis layer, a skull layer, and both

white and gray matters.

dictate them at the beginning of the simulation.

What allowed us to build such a powerful simulation tool includes a thorough

understanding of the signal formation process, of both time-and frequency-domain

OCT, the correct implementation of the importance sampling/photon splitting pro-

cedure to FD-OCT systems, a clever and efficient use of the voxel-based mesh system

in determining photon-mesh interception, and a parallel computation of different A-

scans that consist a full OCT image, as well as knowing whether we have collected

enough photons to stop the simulation.

Next we aimed at solving the inverse problem, which is given an OCT image,

predict/reconstruct its ground-truth structure on a pixel level. By solving this prob-

lem we would be able to interpret an OCT image completely and precisely without

102

Figure 7.7. Simulated OCT images corresponding to the curved brain structure,

which consists of an epidermis layer, a dermis layer, a skull layer, and both white and

gray matters.

the help of a trained expert. It turns out that we can do much better. For simple

structures we are able to reconstruct the ground-truth of an OCT image more than

98% correctly, and for more complicated structures (e.g., a multi-layered brain) we

are looking at 93%. In other words, we managed to beat the hypothetical expert by

a large margin. We achieved this through extensive uses of Machine Learning. The

success of the Monte Carlo simulation already puts us in a great position by providing

us lots of data (effectively unlimited), in the form of (image, truth) pairs. These are

the training examples for us or an machine learning algorithm to learn from.

The machine learning problem is not easy though, since given an OCT image, say

with 512 × 512 pixels, we need to predict the same amount (which is 512 × 512) of

103

Figure 7.8. Predicted ground-truth structure (without pooling) for the curved brain

example.

pixels in order to fully reconstruct the ground truth. In a typical computer vision

problem, we are only required to predict a single output, say a classification label

given an image. So it seems that our problem at hand is orders of magnitude harder.

The good news is that we have effectively unlimited data to learn from, plus the

data will be fully annotated on the pixel level, and more importantly, we have full

control in terms of designing and generating the data set which we think will help to

train machine learning models better. Clearly, it is the fast Monte Carlo simulation

platform developed in this thesis that made such a scheme possible, since prior to us,

simulating a single OCT images would take days or even weeks.

The prediction is done at the A-scan level. In our setup, each A-scan consists

of 1910 points (pixels). In other words, the machine learning model would take a

104

Figure 7.9. The New Philosophy for OCT.

1910-dimensional input, and need to produce a 1910-dimensional output. The first

thing that comes into mind is dimension reduction, i.e., it is necessary to transform of

the high-dimensional response variable into a smaller dimension, so that the problem

is manageable. By recognizing that each realistic biological tissue displays a lay-

ered structure at the A-scan level, we convert the learning task into a multi-output

multi-class classification problem and a multi-output regression problem through a

clever transformation of the output variable. The goal of the multi-output multi-class

classification problem is to predict the order and the types of the layers that the A-

scan consists, while the goal multi-output regression problem is simply to predict the

length of each layers. This is another key step towards solving the inverse problem,

105

since it reduces the dimension of the output from 1910 to less than 40. We then build

a hierarchy architecture of machine learning models (a committee of experts) and

train different parts of the architecture with specifically designed data sets. Again,

we are able to do this by virtue of the fast Monte Carlo platform we developed. In

prediction, an unseen OCT image is decomposed into A-scans, and each A-scan first

goes through a classification model to determine its structure (e.g., the number and

the types of layers present in the A-scan), and then it is handed to a regression model

that is trained specifically for that particular structure to predict the length of the

different layers and by doing so reconstruct the ground-truth of the A-scan. In the

end we conduct a pooling step by averaging the prediction of adjacent A-scans before

constructing our final answer for the ground-truth. This pooling step is based on the

prior knowledge that there is a local continuity in the structure of a natural biological

tissue, and it turns out that this gives us another boost in the prediction performance.

We also demonstrate in the end of the thesis that ideas from Deep Learning can be

useful to further improve the system.

It is worth pointing out that solving the inverse problem automatically improves

the imaging depth, since previously the lower half of an OCT image (i.e., greater

depth) can be hardly seen (as shown in Figure 1.2) but now can be fully resolved.

Interestingly, although OCT signals coming from the lower half of the image are

weak, messy, and uninterpretable to human eyes, they nevertheless carry enough

information which, when fed into a well-trained machine learning model spits out

precisely the true structure of the object being imaged. This is just another case

where Artificial Intelligence (AI) outperforms humans. Clearly, with the development

of computational power as well as advances in machine learning and AI, OCT systems

will continue to become better. It is not hard to imagine that in the near future an

OCT imaging system would present us the anatomical structure outright and possibly

beyond a few millimeters. Hopefully this thesis represents an important first step

towards this goal. To the best knowledge of the author, this thesis is not only a

success but also the first attempt to reconstruct an OCT image at a pixel level. To

even give a try on this kind of tasks, it would require fully annotated OCT images and

106

a lot of them (hundreds or even thousands), and this is clearly impossible without a

powerful simulation tool like the one developed in this thesis.

This thesis has introduced a new philosophy when it comes to OCT imaging, as

shown in Figure 7.9. First we target a particular imaging problem, e.g., to image

human brains. We then go out and gain as much as knowledge about the anatomic

structure (e.g., from a Physician, as well as the scientists that measures the opti-

cal properties of the relevant tissue types). Next we design and generate lots of

(image, truth) data for training, using own gained knowledge and our advanced Monte

Carlo simulation platform, trying to cover as much feasible profiles as possible. We

then train our machine learning models with the generated data and we are done.

Then, once a new patient comes in with the target problem, we could give the pa-

tient directly the ground-truth, anatomical structure instead of a hard-to-interpret

conventional OCT image.

7.4 Outlook

There is a lot of things we can do to further improve the learning models. For example,

as suggested near the end of Chapter 6, there is a great chance that ideas from deep

learning are likely to help. We already know that the output variable yi lies in a much

lower dimensional manifold, and it would be exciting to find out whether the input

xi, the A-scans, follow suit. Learning a sensible, lower dimensional representation of

the A-scans would fundamentally improve our understanding of OCT signals.

We could also extend our Monte Carlo simulation and machine learning prediction

to the flood-illumination case, which is a straightforward generalization within our

framework. Flood illumination is always an interest in practice, since it would allow

us to obtain an OCT image in one shot.

Also, since we have lots of data, performing all sorts of dictionary learning algo-

rithms on the OCT signal prior to the FFT could possibly lead to the discovery of

more efficient, data-driven sparse coding dictionaries that can be used for compressed

sensing. Once the compressed sensing works, we could go a step further to conduct

107

machine learning in the compressed domain.

In short, the problems explored in thesis stand right at the intersections of the

fields of Monte Carlo simulation, OCT Imaging, Machine Learning, Big Data, Com-

puter Vision, Compressed Sensing, and Deep Learning. A breakthrough in one or a

few of the above fields inevitably would lead to a breakthrough in others. And we

are just getting started.

108

Appendix A

Implementation Details of the
Monte Carlo Engine

A.1 Overview

Here we present some of the notable code listings that leads to the one-minute simula-

tion. The object geometry is defined and the mesh files are prepared using MATLAB,

while the core Monte Carlo engine is written in standard C. Once the Monte Carlo

simulation is finished, the path lengths, weights, likelihood ratios, detector ID, and

the maximum depth reached of the collected photon packets are saved. This saved

data are then processed (i.e., compute the OCT signal and generate the A-scans via

Fast Fourier Transform) to generate the OCT image.

A.2 Coding in MATLAB

In the two code listings below we show how to create the mesh for the tissue structure

as well as how to process the collected photons to generate A-scans.

1 % CREATE TISSUE STRUCTURE T(y,x,z)

2 % Create T(y,x,z) by specifying a tissue type (an integer)

3 % for each voxel in T.

4 % Note: one need not use every tissue type in the tissue list.

5 % The tissue list is a library of possible tissue types.

6 T = double(zeros(Ny ,Nx,Nz));

109

7 T = T + 2; % fill background

8

9 zb1 = 250e-4; % position of blood vessel 2

10 zb2 = 200e-4; % position of blood vessel 2

11 rb1 = 150e-4;

12 rb2 = 100e-4;

13 xb1 = -150e-4;

14 xb2 = 150e-4;

15 for iz=1:Nz % for every depth z(iz)

16 % blood vessel @ xc, zc, radius , oriented along y axis

17 xc = xb1; % [cm], center of blood vessel

18 zc = zb1; % [cm], center of blood vessel

19 vesselradius = rb1; % blood vessel radius [cm]

20 for ix=1:Nx

21 xd = x(ix) - xc; % vessel , x distance from vessel center

22 zd = z(iz) - zc; % vessel , z distance from vessel center

23 r = sqrt(xd^2 + zd^2); % r from vessel center

24 if (r≤vesselradius) % if r is within vessel

25 T(:,ix,iz) = 1; % blood

26 end

27 end %ix

28 % blood vessel @ xc, zc, radius , oriented along y axis

29 xc = xb2; % [cm], center of blood vessel

30 zc = zb2; % [cm], center of blood vessel

31 vesselradius = rb2; % blood vessel radius [cm]

32 for ix=1:Nx

33 xd = x(ix) - xc; % vessel , x distance from vessel center

34 zd = z(iz) - zc; % vessel , z distance from vessel center

35 r = sqrt(xd^2 + zd^2); % r from vessel center

36 if (r≤vesselradius) % if r is within vessel

37 T(:,ix,iz) = 1; % blood

38 end

39 end %ix

40 end % iz

Listing A.1: Create Tissue Strcture.

In Listing A.1, we create the same two blood vessels are in [1], and then it is feed to

the Monte Carlo engine written in standard C for simulation.

1 %% Load the saved photons

2 S = DetS(ix) '; % row vectors

3 W = DetW(ix) ';

110

4 L = DetL(ix) ';

5 %% Construct the signal

6 s = exp(1j*k*S)*sqrt(W.*L) ';

7 s = s/length(ix);

8 I = (abs(0.01*s+1)).^2 - (abs(0.01*s-1)).^2;

9 y = I;

10 %% Apply the window

11 y = y.*hamming(M);

12 %% Zero padding and FFT

13 M10 = length(y)*10;

14 Y10 = fft(y,M10);

15 z10 = (0:(M10 -1))*Fs/M10;

16 z10 = z10 /2;

17 z10 = z10 (1: floor(length(z10)/2));

18 Y10 = Y10 (1: floor(length(Y10)/2));

19 out = db(Y10);

20 %% Save the A-scan

21 OCT(:,ID) = out;

Listing A.2: Computation of OCT signals and A-scans.

In Listing A.2, we process the saved photons and generate A-scans for each de-

tector. The code starts by loading the saved photon path lengths, weights, likelihood

ratio and then computes the OCT signal according to Equation 4.7. The A-scans are

obtained by

A.3 Coding in Standard C

In this section we list the most important as well as the tricky parts of the Monte

Carlo code written in standard C. It covers lots of subtleties not covered previously.

1 // Initialize photon position and trajectory.

2 i_photon += 1; /* increment photon count */

3 W = 1.0; /* set photon weight to one */

4 photon_status = ALIVE; /* Launch an ALIVE photon */

5 det_num = -1; /* photon not detected yet*/

6 first_bias_done = 0; /* photon not biased back -scattered yet */

7 cont_exist = 0; /* no split generated yet */

8 L_current = 1; /* photon 's initial likelihood */

9 s_total = 0; /* photon 's initial path length */

111

10 z_max = 0; /* photon 's initial depth reached */

11 /* pick the fiber that the current photon packet is biased towards to: [1, ...

Ndetectors] */

12 while ((rnd = RandomGen (1,0,NULL)) ≥ 1.0); // avoids rnd = 1

13 Pick_det = floor(rnd * Ndetectors) + 1;

14 /* Set trajectory to mimic A-scan */

15 if(Ndetectors ==1){

16 detx = 0;

17 }else{

18 detx = 2* radius *(Pick_det - 1)/(Ndetectors - 1) - radius;

19 }

20 x = xs + detx;

21 y = ys;

22 z = zs;

23 // set trajectory toward focus

24 ux = 0;

25 uy = 0;

26 uz = 1;

Listing A.3: Initialize photon position and trajectory

In Listing A.3, we initialize the position and trajectory of the launched photon packet,

as well as set up the variables and flags for the standard Monte Carlo routine and

importance sampling & photo splitting.

1 double FindVoxelFace2(double x1,double y1 ,double z1, int *det_num , int ...

Pick_det , double detx , double det_radius , double det_z , double ...

cos_accept , int Ndetectors , double dx ,double dy,double dz , double ux , ...

double uy, double uz) {

2 int ix1 = floor(x1/dx);

3 int iy1 = floor(y1/dy);

4 int iz1 = floor(z1/dz);

5 int izd = floor(det_z/dz);

6

7 int ix2 ,iy2 ,iz2;

8 if (ux≥0)

9 ix2=ix1 +1;

10 else

11 ix2 = ix1;

12

13 if (uy≥0)

14 iy2=iy1 +1;

15 else

112

16 iy2 = iy1;

17

18 if (uz≥0)

19 iz2=iz1 +1;

20 else

21 iz2 = iz1;

22

23 double xs = fabs((ix2*dx - x1)/ux);

24 double ys = fabs((iy2*dy - y1)/uy);

25 double zs = fabs((iz2*dz - z1)/uz);

26

27 double s = min3(xs ,ys,zs);

28 //check detection

29 if(-uz ≥ cos_accept && izd == iz1 && s == zs && fabs(y1+s*uy) ≤ det_radius){

30 if(fabs(x1 + s*ux - detx)≤det_radius) *det_num = Pick_det;

31 }

32 return (s);

33 }

Listing A.4: Compute the step size the photon will take to get the first voxel

crossing in one single long step. We also check whether the photon packet is

detected by the assigned detector.

In Listing A.4, we show the function that performs the task of identifying the photon-

mesh intersections. Calling this function automatically means that the step size would

make the photon leave the current voxel, therefore we also need to check whether the

photon gets detected by the collecting fiber.

1 /**** SPIN and SPLIT *****/

2 if(photon_status == ALIVE){

3 /* check whether the first biased back -scattering has been applied: 0 = not ...

applied , 1 = applied */

4 if(first_bias_done == 0) { /* apply the first biased scattering */

5 /* Sample for costheta_B */

6 rnd = RandomNum;

7 double temp = 1/sqrt(1 + a*a) + rnd * (1/(1-a) - 1/sqrt(1 + a*a));

8 costheta_B = 0.5/a * (a*a + 1 - 1/(temp*temp));

9 sintheta_B = sqrt (1.0 - costheta_B*costheta_B);

10 /* Sample psi. */

11 psi = 2.0*PI*RandomNum;

12 cospsi = cos(psi);

113

13 if (psi < PI)

14 sinpsi = sqrt (1.0 - cospsi*cospsi); /* sqrt() is faster than sin(). */

15 else

16 sinpsi = -sqrt (1.0 - cospsi*cospsi);

17 /* Compute the unit vector v towards the actual position of the detector , ...

where detx is chosen uniformly along the centers of the collecting fiber ...

array. */

18 if(Ndetectors ==1){

19 detx = 0;

20 }else{

21 detx = 2* radius *(Pick_det - 1)/(Ndetectors - 1) - radius;

22 }

23 dety = 0;

24 detz = det_z;

25 temp = sqrt((x - detx)*(x - detx) + (y - dety)*(y - dety) + (z - ...

detz)*(z - detz));

26 vx = -(x - detx)/temp;

27 vy = -(y - dety)/temp;

28 vz = -(z - detz)/temp;

29 /* New trajectory u' = (upx , upy , upz) */

30 if (1 - fabs(vz) ≤ ONE_MINUS_COSZERO) { /* close to perpendicular. */

31 upx = sintheta_B * cospsi;

32 upy = sintheta_B * sinpsi;

33 upz = costheta_B * SIGN(vz); /* SIGN() is faster than division. */

34 }

35 else { /* usually use this option */

36 temp = sqrt (1.0 - vz * vz);

37 upx = sintheta_B * (vx * vz * cospsi - vy * sinpsi) / temp + vx * ...

costheta_B;

38 upy = sintheta_B * (vy * vz * cospsi + vx * sinpsi) / temp + vy * ...

costheta_B;

39 upz = -sintheta_B * cospsi * temp + vz * costheta_B;

40 }

41 /* Compute the likelihood ratio for this particular biased ...

back -scattering */

42 costheta_S = upx*ux + upy*uy + upz*uz;

43 temp = (1 + a*a - 2*a*costheta_B)/(1 + g*g - 2*g*costheta_S);

44 double L_temp = (1 - g*g)/(2*a*(1-a)) * (1 - (1-a)/sqrt (1+a*a)) * ...

sqrt(temp * temp * temp);

45

46 /* Check do we have a continuing photon packet or not? */

47 if (L_temp < (1-ls)){ // yes , do the unbiased spin and save the ...

trajectory for the continuing photon packet

48 L_cont = L_current * (1 - L_temp);

49 i_cont = i;

114

50 { /* the unbiased spin*/

51

52 /* Sample for costheta */

53 rnd = RandomNum;

54 if (g == 0.0)

55 costheta = 2.0* rnd - 1.0;

56 else {

57 double temp = (1.0 - g*g)/(1.0 - g + 2*g*rnd);

58 costheta = (1.0 + g*g - temp*temp)/(2.0*g);

59 }

60 sintheta = sqrt (1.0 - costheta*costheta); /* sqrt() is faster than ...

sin(). */

61

62 /* Sample psi. */

63 psi = 2.0*PI*RandomNum;

64 cospsi = cos(psi);

65 if (psi < PI)

66 sinpsi = sqrt (1.0 - cospsi*cospsi); /* sqrt() is faster than ...

sin(). */

67 else

68 sinpsi = -sqrt (1.0 - cospsi*cospsi);

69

70 /* New trajectory. */

71 if (1 - fabs(uz) ≤ ONE_MINUS_COSZERO) { /* close to ...

perpendicular. */

72 uxx = sintheta * cospsi;

73 uyy = sintheta * sinpsi;

74 uzz = costheta * SIGN(uz); /* SIGN() is faster than division. */

75 }

76 else { /* usually use this option */

77 temp = sqrt (1.0 - uz * uz);

78 uxx = sintheta * (ux * uz * cospsi - uy * sinpsi) / temp + ux * ...

costheta;

79 uyy = sintheta * (uy * uz * cospsi + ux * sinpsi) / temp + uy * ...

costheta;

80 uzz = -sintheta * cospsi * temp + uz * costheta;

81 }

82 }

83 ux_cont = uxx;

84 uy_cont = uyy;

85 uz_cont = uzz;

86 x_cont = x;

87 y_cont = y;

88 z_cont = z;

89 W_cont = W;

115

90 s_total_cont = s_total;

91 z_max_cont = z_max;

92 L_current *= L_temp;

93 cont_exist = 1;

94 }

95 else { // no continuing photon packet

96 L_current *= L_temp;

97 cont_exist = 0;

98 }

99 /* Update trajectory */

100 ux = upx;

101 uy = upy;

102 uz = upz;

103 first_bias_done = 1;

104 }

105 else {/* first biased back -scattering already done , apply additional biased ...

forward -scattering */

106 if(RandomNum ≤ p){ // apply biased forward -scattering

107 /* Sample for costheta_B */

108 rnd = RandomNum;

109 double temp = 1/sqrt(1 + a*a) + rnd * (1/(1-a) - 1/sqrt(1 + a*a));

110 costheta_B = 0.5/a * (a*a + 1 - 1/(temp*temp));

111 sintheta_B = sqrt (1.0 - costheta_B*costheta_B);

112 /* Sample psi. */

113 psi = 2.0*PI*RandomNum;

114 cospsi = cos(psi);

115 if (psi < PI)

116 sinpsi = sqrt (1.0 - cospsi*cospsi); /* sqrt() is faster than sin(). */

117 else

118 sinpsi = -sqrt (1.0 - cospsi*cospsi);

119

120 /* Compute the unit vector v towards the actual position of the ...

detector , where detx is chosen uniformly along the centers of the ...

collecting fiber array. */

121 if(Ndetectors ==1){

122 detx = 0;

123 }else{

124 detx = 2* radius *(Pick_det - 1)/(Ndetectors - 1) - radius;

125 }

126 dety = 0;

127 detz = det_z;

128 temp = sqrt((x - detx)*(x - detx) + (y - dety)*(y - dety) + (z - ...

detz)*(z - detz));

129 vx = -(x - detx)/temp;

130 vy = -(y - dety)/temp;

116

131 vz = -(z - detz)/temp;

132 /* New trajectory u' = (upx , upy , upz) */

133 if (1 - fabs(vz) ≤ ONE_MINUS_COSZERO) { /* close to perpendicular. */

134 upx = sintheta_B * cospsi;

135 upy = sintheta_B * sinpsi;

136 upz = costheta_B * SIGN(vz); /* SIGN() is faster than division. */

137 }

138 else { /* usually use this option */

139 temp = sqrt (1.0 - vz * vz);

140 upx = sintheta_B * (vx * vz * cospsi - vy * sinpsi) / temp + vx * ...

costheta_B;

141 upy = sintheta_B * (vy * vz * cospsi + vx * sinpsi) / temp + vy * ...

costheta_B;

142 upz = -sintheta_B * cospsi * temp + vz * costheta_B;

143 }

144 /* Compute the likelihood ratio for this particular biased ...

forward -scattering */

145 costheta_S = upx*ux + upy*uy + upz*uz;

146 temp = 1 + g*g - 2*g*costheta_S;

147 f_HG = (1 - g*g) * 0.5 / sqrt(temp*temp*temp);

148 temp = 1 + a*a - 2*a*costheta_B;

149 f_B = a*(1-a)/((sqrt(temp*temp*temp))*(1 - (1-a)/sqrt (1+a*a)));

150 double L_temp = f_HG/(p*f_B + (1-p)*f_HG);

151 L_current *= L_temp;

152 /* Update trajectory */

153 ux = upx;

154 uy = upy;

155 uz = upz;

156 } else {// apply unbiased scattering

157 /* Sample for costheta */

158 rnd = RandomNum;

159 if (g == 0.0)

160 costheta = 2.0* rnd - 1.0;

161 else {

162 double temp = (1.0 - g*g)/(1.0 - g + 2*g*rnd);

163 costheta = (1.0 + g*g - temp*temp)/(2.0*g);

164 }

165 sintheta = sqrt (1.0 - costheta*costheta); /* sqrt() is faster than ...

sin(). */

166 /* Sample psi. */

167 psi = 2.0*PI*RandomNum;

168 cospsi = cos(psi);

169 if (psi < PI)

170 sinpsi = sqrt (1.0 - cospsi*cospsi); /* sqrt() is faster than sin(). */

171 else

117

172 sinpsi = -sqrt (1.0 - cospsi*cospsi);

173 /* New trajectory. */

174 if (1 - fabs(uz) ≤ ONE_MINUS_COSZERO) { /* close to perpendicular. */

175 uxx = sintheta * cospsi;

176 uyy = sintheta * sinpsi;

177 uzz = costheta * SIGN(uz); /* SIGN() is faster than division. */

178 }

179 else { /* usually use this option */

180 temp = sqrt (1.0 - uz * uz);

181 uxx = sintheta * (ux * uz * cospsi - uy * sinpsi) / temp + ux * costheta;

182 uyy = sintheta * (uy * uz * cospsi + ux * sinpsi) / temp + uy * costheta;

183 uzz = -sintheta * cospsi * temp + uz * costheta;

184 }

185 /* Compute the unit vector v towards the actual position of the ...

detector , where detx is chosen uniformly along the centers of the ...

collecting fiber array. */

186 if(Ndetectors ==1){

187 detx = 0;

188 }else{

189 detx = 2* radius *(Pick_det - 1)/(Ndetectors - 1) - radius;

190 }

191 dety = 0;

192 detz = det_z;

193 temp = sqrt((x - detx)*(x - detx) + (y - dety)*(y - dety) + (z - ...

detz)*(z - detz));

194 vx = -(x - detx)/temp;

195 vy = -(y - dety)/temp;

196 vz = -(z - detz)/temp;

197 /* Compute the likelihood ratio for this particular biased ...

forward -scattering */

198 costheta_S = costheta;

199 costheta_B = uxx*vx + uyy*vy + uzz*vz;

200 temp = 1 + g*g - 2*g*costheta_S;

201 f_HG = (1 - g*g) * 0.5 / sqrt(temp*temp*temp);

202 temp = 1 + a*a - 2*a*costheta_B;

203 f_B = a*(1-a)/((sqrt(temp*temp*temp))*(1 - (1-a)/sqrt (1+a*a)));

204 double L_temp = f_HG/(p*f_B + (1-p)*f_HG);

205 L_current *= L_temp;

206 /* Update trajectory */

207 ux = uxx;

208 uy = uyy;

209 uz = uzz;

210 }

211 }

212 }

118

Listing A.5: Spin and Split. The Spin process is to scatter photon into new

trajectory defined by θ and ψ. θ is specified by cos(θ), which is determined based

on the Henyey-Greenstein scattering function, and then convert θ and ψ into

cosines ux, uy, uz. Split follows exactly the procedure described in Section 4.3,

where we apply biased backward-scatterings and biased forward-scattering, as well

as unbiased scatterings. Once the first biased backward-scattering takes place, we

split the photon packet into two if the likelihood ratio of the biased back-scattering

is less than 1. We save the information of the continuing photon and continue to

track the current photon, by applying biased and unbiased forward-scatterings.

The Listing A.5 is the bread and butter of the advanced Monte Carlo engine. The

Spin process comes from the standard Monte Carlo routine to scatter photon into

new trajectory based on the Henyey-Greenstein scattering function, and then update

the directional cosines ux, uy, uz of the photon packet. The Split part is the actual

implementation of importance sampling & photon splitting and follows exactly the

procedure described in Section 4.3, which is about when and how to apply biased

backward- and forward-scatterings, as well as unbiased scatterings. Once a photon

packet is about to experience a scattering event, we first determine whether the first

biased backward scattering has been done. Once the first biased backward-scattering

takes place, we split the photon packet into two if the likelihood ratio of the biased

back-scattering is less than 1. We save the information of the continuing photon

and continue to track the current photon, by applying biased and unbiased forward-

scatterings.

119

Appendix B

Source Code in Standard C

B.1 Declaration of Functions

1 double RandomGen(char Type , long Seed , long *Status);

2 Boolean SameVoxel(double x1 ,double y1,double z1, double x2, double y2, double ...

z2, double dx,double dy ,double dz);

3 double max2(double a, double b);

4 double min2(double a, double b);

5 double min3(double a, double b, double c);

6 double FindVoxelFace2(double x1,double y1 ,double z1, int *det_num , int ...

Pick_det , double detx , double det_radius , double det_z , double ...

cos_accept , int Ndetectors , double dx ,double dy,double dz , double ux , ...

double uy, double uz);

7 /* How much step size will the photon take to get the first voxel crossing in ...

one single long step? */

8 double RFresnel(double n1, double n2, double ca1 , double *ca2_Ptr);

Listing B.1: Function Declarations

B.2 Major Cycle of the Monte Carlo Engine

1 * ========================= MAJOR CYCLE =====================*/

2 start_time = clock ();

3 now = time(NULL);

4 printf("%s\n", ctime(&now));

5

120

6 /**** INITIALIZATIONS *****/

7 RandomGen(0, -(int)time(NULL)%(1<<15), NULL); /* initiate with seed = 1, or ...

any long integer. */

8

9 /**** RUN

10 Launch N photons , initializing each one before progation.

11 *****/

12 printf("------------- Begin Monte Carlo -------------\n");

13 printf("%s\n",myname);

14 printf("requesting %0.1f min\n",time_min);

15 Nphotons = 200; // will be updated to achieve desired run time , time_min.

16 i_photon = 0;

17 c_photon = 0;

18 //CNT = 0;

19 do {

20

21 /* Get tissue voxel properties of launchpoint.

22 * If photon beyond outer edge of defined voxels ,

23 * the tissue equals properties of outermost voxels.

24 * Therefore , set outermost voxels to infinite background value.

25 */

26 ix = (int)(Nx/2 + x/dx);

27 iy = (int)(Ny/2 + y/dy);

28 iz = (int)(z/dz);

29 if (ix≥Nx) ix=Nx -1;

30 if (iy≥Ny) iy=Ny -1;

31 if (iz≥Nz) iz=Nz -1;

32 if (ix <0) ix=0;

33 if (iy <0) iy=0;

34 if (iz <0) iz=0;

35 /* Get the tissue type of located voxel */

36 i = (long)(iz*Ny*Nx + ix*Ny + iy);

37 type = v[i];

38 mua = muav[type];

39 mus = musv[type];

40 g = gv[type];

41

42 bflag = 1; // initialize as 1 = inside volume , but later check as photon ...

propagates.

43

44 /* HOP_DROP_SPIN_CHECK

45 Propagate one photon until it dies as determined by ROULETTE.

46 At the beginning , check whether to load the continuing photon.

47 ****** */

48 do { // while photon_status == ALIVE

121

49

50 if(photon_status == DEAD){ //load the continuing photon and update the flags

51

52 x = x_cont;

53 y = y_cont;

54 z = z_cont;

55 ux = ux_cont;

56 uy = uy_cont;

57 uz = uz_cont;

58 i = i_cont;

59 s_total = s_total_cont;

60 z_max = z_max_cont;

61 type = v[i];

62 mua = muav[type];

63 mus = musv[type];

64 g = gv[type];

65 W = W_cont;

66 L_current = L_cont;

67 cont_exist = 0;

68 photon_status = ALIVE;

69 first_bias_done = 0;

70 det_num = -1;

71 }

72 /**** HOP and DETECTION

73 Take step to new position

74 s = dimensionless stepsize

75 ux, uy , uz are cosines of current photon trajectory.

76 **** Detection Check:

77 During the hop , photon may go out of simulation domain or be detected , thus ...

changing the photon_status = DEAD

78 *****/

79 while ((rnd = RandomNum) ≤ 0.0); /* yields 0 < rnd ≤ 1 */

80 sleft = -log(rnd); /* dimensionless step */

81 //CNT += 1;

82

83 do{ // while sleft >0

84 s = sleft/mus; /* Step size [cm].*/

85 tempx = x + s*ux; /* Update positions. [cm] */

86 tempy = y + s*uy;

87 tempz = z + s*uz;

88

89 sv = SameVoxel(x,y,z, tempx , tempy , tempz , dx ,dy,dz);

90 if (sv) /* photon in same voxel */

91 {

92 x=tempx; /* Update positions. */

122

93 y=tempy;

94 z=tempz;

95

96 /**** DROP

97 Drop photon weight (W) into local bin.

98 *****/

99 absorb = W*(1 - exp(-mua*s)); /* photon weight absorbed at this step */

100 W -= absorb; /* decrement WEIGHT by amount absorbed */

101

102 /* Update sleft */

103 sleft = 0; /* dimensionless step remaining */

104

105

106 /* Update total path length */

107 s_total += s;

108

109 /* Update maximum depth reached */

110 if(z > z_max) {z_max = z;}

111 }

112 else /* photon has crossed voxel boundary */

113 {

114

115 /*** collecting fiber array ranges:

116 along x: [-Ndetectors * det_radius , Ndetectors * det_radius]

117 along y: [-det_radius , det_radius]

118 along z: [det_z , det_z+dz]

119 ***/

120

121 /* step to voxel face + "littlest step" so just inside new voxel. */

122 s = ls + FindVoxelFace2(x,y,z, ...

&det_num ,Pick_det ,detx ,det_radius ,det_z ,cos_accept ,Ndetectors , dx,dy,dz, ...

ux,uy,uz);

123

124 /**** DROP

125 Drop photon weight (W) into local bin.

126 *****/

127 absorb = W*(1-exp(-mua*s)); /* photon weight absorbed at this step */

128 W -= absorb; /* decrement WEIGHT by amount absorbed */

129

130 if (det_num != -1){ /* check if the photon is detected. */

131

132 /* Update total path length */

133 s_total += s;

134

135 /* Save properties of interest */

123

136 if(L_current > 0 && det_num == Pick_det){ // avoid NAN and zero ...

likelihood , and avoid cross -detection

137 DetID[c_photon] = det_num;

138 DetW[c_photon] = W;

139 DetL[c_photon] = L_current;

140 DetS[c_photon] = s_total;

141 DetZ[c_photon] = z_max;

142 /* increment collected photon count */

143 c_photon += 1;

144 }

145 //if(c_photon ==1) {printf ("OK at 590;\n");}

146

147 photon_status = DEAD;

148 sleft = 0;

149

150

151 }

152 else{ // not detected

153

154 /* Update sleft */

155 sleft -= s*mus; /* dimensionless step remaining */

156 if (sleft≤ls) sleft = 0;

157

158 /* Update positions. */

159 x += s*ux;

160 y += s*uy;

161 z += s*uz;

162

163 /* Update total path length */

164 s_total += s;

165

166 /* Update maximum depth reached */

167 if (z>z_max) z_max = z;

168

169 // pointers to voxel containing optical properties

170 ix = (int)(Nx/2 + x/dx);

171 iy = (int)(Ny/2 + y/dy);

172 iz = (int)(z/dz);

173

174 bflag = 1; // Boundary flag. Initialize as 1 = inside volume , then ...

check.

175 if (boundaryflag ==0) { // Infinite medium.

176 // Check if photon has wandered outside volume.

177 // If so , set tissue type to boundary value , but let photon wander.

178 // Set bflag to zero , so DROP does not deposit energy.

124

179 if (iz≥Nz) {iz=Nz -1; bflag = 0;}

180 if (ix≥Nx) {ix=Nx -1; bflag = 0;}

181 if (iy≥Ny) {iy=Ny -1; bflag = 0;}

182 if (iz <0) {iz=0; bflag = 0;}

183 if (ix <0) {ix=0; bflag = 0;}

184 if (iy <0) {iy=0; bflag = 0;}

185 }

186 else if (boundaryflag ==1) { // Escape at boundaries

187 if (iz≥Nz) {iz=Nz -1; photon_status = DEAD; sleft =0;}

188 if (ix≥Nx) {ix=Nx -1; photon_status = DEAD; sleft =0;}

189 if (iy≥Ny) {iy=Ny -1; photon_status = DEAD; sleft =0;}

190 if (iz <0) {iz=0; photon_status = DEAD; sleft =0;}

191 if (ix <0) {ix=0; photon_status = DEAD; sleft =0;}

192 if (iy <0) {iy=0; photon_status = DEAD; sleft =0;}

193 }

194 else if (boundaryflag ==2) { // Escape at top surface , no x,y, ...

bottom z boundaries

195 if (iz≥Nz) {iz=Nz -1; bflag = 0;}

196 if (ix≥Nx) {ix=Nx -1; bflag = 0;}

197 if (iy≥Ny) {iy=Ny -1; bflag = 0;}

198 if (iz <0) {iz=0; photon_status = DEAD; sleft =0;}

199 if (ix <0) {ix=0; bflag = 0;}

200 if (iy <0) {iy=0; bflag = 0;}

201 }

202 // update pointer to tissue type

203 i = (long)(iz*Ny*Nx + ix*Ny + iy);

204 type = v[i];

205 mua = muav[type];

206 mus = musv[type];

207 g = gv[type];

208 }

209 } //(sv) /* same voxel */

210 } while(sleft >0); //do... while

211

212

213 /**** CHECK ROULETTE

214 If photon weight below THRESHOLD , then terminate photon using Roulette ...

technique.

215 Photon has CHANCE probability of having its weight increased by factor of ...

1/CHANCE ,

216 and 1-CHANCE probability of terminating.

217 *****/

218 if(photon_status == ALIVE){

219 if (W < THRESHOLD) {

220 if (RandomNum ≤ CHANCE)

125

221 W /= CHANCE;

222 else photon_status = DEAD;

223 }

224 }

225 } while (photon_status == ALIVE || cont_exist == 1); /* end ...

STEP_CHECK_HOP_SPIN */

226 /* if ALIVE , continue propagating the current photon */

227 /* If current photon DEAD , then load the continuing photon. */

228 } while (i_photon < Nphotons); /* end RUN */

Listing B.2: Major Cycle of our Monte Carlo Engine, with the Spin and Split part

and the Launch part removed.

126

Bibliography

[1] A. E. Hartinger, A. S. Nam, I. Chico-Calero, and B. J. Vakoc, “Monte carlo mod-

eling of angiographic optical coherence tomography,” Biomedical optics express,

vol. 5, no. 12, pp. 4338–4349, 2014.

[2] J. Phillips, K. W. Bowyer, and P. J. Flynn, “Comments on the casia version 1.0

iris data set,” Pattern Analysis and Machine Intelligence, IEEE Transactions

on, vol. 29, no. 10, pp. 1869–1870, 2007.

[3] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence

tomography-principles and applications,” Reports on progress in physics, vol. 66,

no. 2, p. 239, 2003.

[4] P. H. Tomlins and R. Wang, “Theory, developments and applications of optical

coherence tomography,” Journal of Physics D: Applied Physics, vol. 38, no. 15,

p. 2519, 2005.

[5] K. Bizheva, B. Považay, B. Hermann, H. Sattmann, W. Drexler, M. Mei,

R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, “Compact,

broad-bandwidth fiber laser for sub-2-µm axial resolution optical coherence to-

mography in the 1300-nm wavelength region,” Optics letters, vol. 28, no. 9,

pp. 707–709, 2003.

[6] J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo

imaging,” Nature biotechnology, vol. 21, no. 11, pp. 1361–1367, 2003.

127

[7] C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spec-

troscopic spectral-domain optical coherence microscopy,” Optics letters, vol. 31,

no. 8, pp. 1079–1081, 2006.

[8] J. Serup, G. B. Jemec, and G. L. Grove, Handbook of non-invasive methods and

the skin. CRC press, 2006.

[9] J. B. Thomsen, B. Sander, M. Mogensen, L. Thrane, T. M. Jørgensen, G. B.

Jemec, and P. E. Andersen, “Optical coherence tomography: Technique and ap-

plications,” in Advanced Imaging in Biology and medicine, pp. 103–129, Springer,

2009.

[10] M. Mogensen, L. Thrane, T. M. Jørgensen, P. E. Andersen, and G. Jemec, “Op-

tical coherence tomography for imaging of skin and skin diseases,” in Seminars

in cutaneous medicine and surgery, vol. 28, pp. 196–202, WB Saunders, 2009.

[11] S. Malektaji, I. T. Lima, and S. S. Sherif, “Monte carlo simulation of optical

coherence tomography for turbid media with arbitrary spatial distributions,”

Journal of biomedical optics, vol. 19, no. 4, pp. 046001–046001, 2014.

[12] A. Vasilyev, The optoelectronic swept-frequency laser and its applications in rang-

ing, three-dimensional imaging, and coherent beam combining of chirped-seed

amplifiers. PhD thesis, Citeseer, 2013.

[13] H. Shen and G. Wang, “A tetrahedron-based inhomogeneous monte carlo optical

simulator,” Physics in medicine and biology, vol. 55, no. 4, p. 947, 2010.

[14] A. J. Welch and M. J. Van Gemert, Optical-thermal response of laser-irradiated

tissue, vol. 1. Springer, 1995.

[15] S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” Journal of

Biomedical Optics, vol. 13, no. 4, pp. 041302–041302, 2008.

128

[16] A. J. Welch and M. J. van Gemert, “Overview of optical and thermal laser-tissue

interaction and nomenclature,” in Optical-Thermal Response of Laser-Irradiated

Tissue, pp. 3–11, Springer, 2011.

[17] S. L. Jacques, “Optical properties of biological tissues: a review,” Physics in

medicine and biology, vol. 58, no. 11, p. R37, 2013.

[18] I. Meglinski, “Modeling the reflectance spectra of the optical radiation for ran-

dom inhomogeneous multi-layered highly scattering and absorbing media by the

monte carlo technique,” Quantum Electron, vol. 31, no. 12, pp. 1101–1107, 2001.

[19] M. Y. Kirillin, A. V. Priezzhev, and R. A. Myllylä, “Role of multiple scattering in

formation of oct skin images,” Quantum Electronics, vol. 38, no. 6, pp. 570–575,

2008.

[20] R. Meier, J.-S. Lee, and D. Anderson, “Atmospheric scattering of middle uv

radiation from an internal source,” Applied optics, vol. 17, no. 20, pp. 3216–

3225, 1978.

[21] E. Berrocal, D. L. Sedarsky, M. E. Paciaroni, I. V. Meglinski, and M. A. Linne,

“Laser light scattering in turbid media part i: Experimental and simulated results

for the spatial intensity distribution,” Optics express, vol. 15, no. 17, pp. 10649–

10665, 2007.

[22] E. Berrocal, I. Meglinski, D. Greenhalgh, and M. Linne, “Image transfer through

the complex scattering turbid media,” Laser Physics Letters, vol. 3, no. 9,

pp. 464–467, 2006.

[23] G. Yao and L. V. Wang, “Monte carlo simulation of an optical coherence tomog-

raphy signal in homogeneous turbid media,” Physics in medicine and biology,

vol. 44, no. 9, p. 2307, 1999.

[24] M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and

E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide

129

nanoparticles for optical coherence tomography imaging of skin: Monte carlo

simulations and in vivo study,” Journal of biomedical optics, vol. 14, no. 2,

pp. 021017–021017, 2009.

[25] B. Karamata, P. Lambelet, M. Laubscher, M. Leutenegger, S. Bourquin, and

T. Lasser, “Multiple scattering in optical coherence tomography. i. investigation

and modeling,” JOSA A, vol. 22, no. 7, pp. 1369–1379, 2005.

[26] M. Y. Kirillin, I. Meglinskii, and A. V. Priezzhev, “Effect of photons of different

scattering orders on the formation of a signal in optical low-coherence tomog-

raphy of highly scattering media,” Quantum Electronics, vol. 36, no. 3, p. 247,

2006.

[27] V. Kuzmin and I. Meglinski, “Multiple scattering and intensity fluctuations in

optical coherent tomography of randomly inhomogeneous media,” Journal of

Experimental and Theoretical Physics, vol. 105, no. 2, pp. 285–291, 2007.

[28] L. Wang, S. L. Jacques, and L. Zheng, “Mcmlmonte carlo modeling of light trans-

port in multi-layered tissues,” Computer methods and programs in biomedicine,

vol. 47, no. 2, pp. 131–146, 1995.

[29] I. M. Sobol, A primer for the Monte Carlo method. CRC press, 1994.

[30] A. Ishimaru, Wave propagation and scattering in random media, vol. 2. Academic

press New York, 1978.

[31] D. Churmakov, I. Meglinski, and D. Greenhalgh, “Influence of refractive index

matching on the photon diffuse reflectance,” Physics in medicine and biology,

vol. 47, no. 23, p. 4271, 2002.

[32] M. Kirillin, I. Meglinski, V. Kuzmin, E. Sergeeva, and R. Myllylä, “Simulation

of optical coherence tomography images by monte carlo modeling based on po-

larization vector approach,” Optics express, vol. 18, no. 21, pp. 21714–21724,

2010.

130

[33] M. Y. Kirillin, G. Farhat, E. A. Sergeeva, M. C. Kolios, and A. Vitkin, “Speckle

statistics in oct images: Monte carlo simulations and experimental studies,”

Optics letters, vol. 39, no. 12, pp. 3472–3475, 2014.

[34] S. S. Sherif, C. C. Rosa, C. Flueraru, S. Chang, Y. Mao, and A. G. Podoleanu,

“Statistics of the depth-scan photocurrent in time-domain optical coherence to-

mography,” JOSA A, vol. 25, no. 1, pp. 16–20, 2008.

[35] M. Yadlowsky, J. Schmitt, and R. Bonner, “Multiple scattering in optical coher-

ence microscopy,” Applied optics, vol. 34, no. 25, pp. 5699–5707, 1995.

[36] B. Wilson and G. Adam, “A monte carlo model for the absorption and flux

distributions of light in tissue,” Medical physics, vol. 10, no. 6, pp. 824–830,

1983.

[37] N. G. Chen and J. Bai, “Estimation of quasi-straightforward propagating light

in tissues,” Physics in medicine and biology, vol. 44, no. 7, p. 1669, 1999.

[38] N. Chen, “Controlled monte carlo method for light propagation in tissue of semi-

infinite geometry,” Applied optics, vol. 46, no. 10, pp. 1597–1603, 2007.

[39] I. T. Lima, A. Kalra, H. E. Hernández-Figueroa, and S. S. Sherif, “Fast calcula-

tion of multipath diffusive reflectance in optical coherence tomography,” Biomed-

ical optics express, vol. 3, no. 4, pp. 692–700, 2012.

[40] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo method,

vol. 707. John Wiley & Sons, 2011.

[41] G. Biondini, W. L. Kath, and C. R. Menyuk, “Importance sampling for

polarization-mode dispersion,” Photonics Technology Letters, IEEE, vol. 14,

no. 3, pp. 310–312, 2002.

[42] S. L. Fogal, G. Biondini, and W. L. Kath, “Multiple importance sampling for

first-and second-order polarization-mode dispersion,” Photonics Technology Let-

ters, IEEE, vol. 14, no. 9, pp. 1273–1275, 2002.

131

[43] I. T. Lima Jr, A. O. Lima, J. Zweck, and C. R. Menyuk, “Efficient computation of

outage probabilities due to polarization effects in a wdm system using a reduced

stokes model and importance sampling,” Photonics Technology Letters, IEEE,

vol. 15, no. 1, pp. 45–47, 2003.

[44] I. T. Lima, A. O. Lima, G. Biondini, C. R. Menyuk, and W. L. Kath, “A

comparative study of single-section polarization-mode dispersion compensators,”

Journal of lightwave technology, vol. 22, no. 4, p. 1023, 2004.

[45] J. Schmitt and K. Ben-Letaief, “Efficient monte carlo simulation of confocal

microscopy in biological tissue,” JOSA A, vol. 13, no. 5, pp. 952–961, 1996.

[46] H. Iwabuchi, “Efficient monte carlo methods for radiative transfer modeling,”

Journal of the atmospheric sciences, vol. 63, no. 9, pp. 2324–2339, 2006.

[47] I. Lima Jr, “Advanced monte carlo methods applied to optical coherence tomog-

raphy,” invited), presented at the, 2009.

[48] I. T. Lima, A. Kalra, and S. S. Sherif, “Improved importance sampling for monte

carlo simulation of time-domain optical coherence tomography,” Biomedical op-

tics express, vol. 2, no. 5, pp. 1069–1081, 2011.

[49] G. Contributors, “Gsl-gnu scientific library-gnu project-free software foundation

(fsf),” 2010.

[50] A. Papoulis and S. U. Pillai, Probability, random variables, and stochastic pro-

cesses. Tata McGraw-Hill Education, 2002.

[51] M. Dumont, R. Marée, L. Wehenkel, and P. Geurts, “Fast multi-class image

annotation with random subwindows and multiple output randomized trees,” in

International Conference on Computer Vision Theory and Applications (VIS-

APP), vol. 2, 2009.

[52] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and

regression trees. wadsworth,” Belmont, CA, 1984.

132

[53] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.

[54] T. J. Hastie, R. J. Tibshirani, and J. H. Friedman, The elements of statistical

learning: data mining, inference, and prediction. Springer, 2009.

[55] J. H. Friedman, “Greedy function approximation: a gradient boosting machine,”

Annals of statistics, pp. 1189–1232, 2001.

[56] J. H. Friedman, “Stochastic gradient boosting,” Computational Statistics & Data

Analysis, vol. 38, no. 4, pp. 367–378, 2002.

[57] G. Ridgeway, “Generalized boosted models: A guide to the gbm package,” Up-

date, vol. 1, no. 1, p. 2007, 2007.

[58] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep

belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[59] T. Tieleman, “Training restricted boltzmann machines using approximations to

the likelihood gradient,” in Proceedings of the 25th international conference on

Machine learning, pp. 1064–1071, ACM, 2008.

