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Abstract

This thesis explores the dynamics of scale interactions in a turbulent boundary layer through a

forcing-response type experimental study. An emphasis is placed on the analysis of triadic wavenum-

ber interactions since the governing Navier-Stokes equations for the flow necessitate a direct coupling

between triadically consist scales. Two sets of experiments were performed in which deterministic

disturbances were introduced into the flow using a spatially-impulsive dynamic wall perturbation.

Hotwire anemometry was employed to measure the downstream turbulent velocity and study the

flow response to the external forcing. In the first set of experiments, which were based on a recent

investigation of dynamic forcing effects in a turbulent boundary layer, a 2D (spanwise constant)

spatio-temporal normal mode was excited in the flow; the streamwise length and time scales of

the synthetic mode roughly correspond to the very-large-scale-motions (VLSM) found naturally in

canonical flows. Correlation studies between the large- and small-scale velocity signals reveal an al-

teration of the natural phase relations between scales by the synthetic mode. In particular, a strong

phase-locking or organizing effect is seen on directly coupled small-scales through triadic interac-

tions. Having characterized the bulk influence of a single energetic mode on the flow dynamics, a

second set of experiments aimed at isolating specific triadic interactions was performed. Two distinct

2D large-scale normal modes were excited in the flow, and the response at the corresponding sum

and difference wavenumbers was isolated from the turbulent signals. Results from this experiment

serve as an unique demonstration of direct non-linear interactions in a fully turbulent wall-bounded

flow, and allow for examination of phase relationships involving specific interacting scales. A direct

connection is also made to the Navier-Stokes resolvent operator framework developed in recent lit-

erature. Results and analysis from the present work offer insights into the dynamical structure of

wall turbulence, and have interesting implications for design of practical turbulence manipulation

or control strategies.
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Chapter 1

Background and Motivation

Turbulent fluid flow has been a subject of intense research for well over a hundred years, and is

regarded by many as the last unsolved problem of classical physics. The large range of spatio-temporal

scales (seen in most practical flow settings) and their non-linear coupling make the problem extremely

challenging. In addition to its scientific appeal, understanding and predicting the effects of flow

turbulence is of great importance to engineering design and other applications. The present thesis

investigates the nature of non-linear scale interactions in turbulent boundary layers, a ubiquitous

class of wall-bounded turbulent flows. Following a brief historical sketch of the turbulence problem,

this chapter provides the relevant background and recent developments in wall turbulence, which

naturally follow as motivation for the present work. An outline of the experimental approach is

provided in the final section (1.5) of this chapter.

1.1 A Brief Historical Sketch of Turbulence

The seemingly disorderly and complex motion of flowing wind and water has captivated many

poetic and artistic figures for centuries. da Vinci’s sketches of a water fall (c. 1508), Hokusai’s The

Great Wave Off Kanagawa (1832), and van Gogh’s The Starry Night (1889) are some of the more

commonly encountered examples of historical works inspired by visual appeal of flow turbulence.

Such inspirations were not restricted to art alone! Efforts to understand turbulent flows from a

scientific perspective can be traced back to the mid-nineteenth century. Hagen (1839) was probably

the first to formally recognize two separate states of fluid motion as laminar and turbulent; the

former characterized by orderly motion of various layers of the fluid with no lateral mixing, and

the latter state characterized by chaotic eddying motions with rapid mixing between fluid layers.

Boussinesq’s eddy viscosity formulation (1877) attributed the enhanced momentum transport in
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turbulent flows to the higher strain rates, clearly recognizing it as a property of fluids in a turbulent

state. The seminal experiments by Reynolds (1883) of pipe flows showed the competing roles of

inertial and viscous forces in promoting instability in fluid motion, which eventually drives the flow

from a laminar to a turbulent state. The ratio of those two quantities, named in his honor as the

Reynolds number, provides a dimensionless parametric criterion to help predict the nature (laminar

vs. turbulent) of a given flow. The idea of dynamic similitude advanced by Reynolds, along with

his later work on the time-averaged form of the governing Navier-Stokes equations, continue to have

a profound influence on the scientific study of turbulence and its engineering applications to date.

While progress was made in the nineteenth century on the hydrodynamic theory of fluid flow, it

was discredited by the hydraulic engineers of that time as it failed to explain the practically observed

drag on solid bodies immersed in a flow at high Reynolds numbers. Various attempts to incorporate

the effects of fluid viscosity to explain the seemingly paradoxical observations were to no avail. The

crucial breakthrough came at the beginning of the twentieth century with Prandtl’s revolutionary

idea of the boundary layer (1904). He hypothesized that even at the asymptotic high-Reynolds

number limit, the effects of viscosity remained important in a thin region next to the body’s surface,

called the boundary layer. In this region the relative fluid velocity goes from zero at the surface,

a boundary condition resulting from the fluid viscosity, to the free-stream value at the layer edge.

The flow outside this region has no mean shear stress and is treated as inviscid. Experimental

confirmation of the boundary layer theory resolved the earlier paradoxes nagging hydrodynamic

theory, and laid the basic framework for further study of wall-bounded flows, and turbulence in

general.

Following these early advances, the problem of turbulence has attracted the attention (and de-

votion!) of many famous engineers, physicists, and mathematicians through the course of the last

hundred years or so. This was partly a result of the great span of applications that require a good

understanding of turbulent flow behavior – aerodynamics, geophysical studies, weather prediction,

and astrophysics are some examples. In addition, the extremely challenging nature of the fundamen-

tal problem is in itself a big draw for many curious minds. The complexity in turbulence arises from

its strongly non-linear and irreversible nature resulting in a multi-scale behavior in space and time,

which visually manifests as irregular and chaotic motion of the fluid. The problem has seen con-

certed efforts from the scientific community through a combination of mathematical theory, insightful

physical arguments, and experimental and computational tools. Though these efforts have yielded
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some success (the degree of which might be subjective), many open questions still remain.1 Thus

turbulence continues to be a highly active and relevant area of research with many opportunities for

new learning and application.

1.2 The Turbulent Boundary Layer

Turbulent boundary layer flows are routinely encountered in a wide range of technological applica-

tions, and hence are of inherent interest for study. Together with pipe and channel flows (internal

geometries), they constitute a set of canonical wall-bounded flows with many common structural and

statistical features. Note that the canonical conditions represent the simplest flow scenario where the

fluid is incompressible, single-phase, neutrally-buoyant and non-reacting, the wall surface is smooth

(and flat for a boundary layer), and there are no external perturbations. The no-slip condition at the

wall establishes a mean shear-stress gradient and results in non-homogeneity in the perpendicular

direction (referred to as the wall-normal direction), and sets these flows apart from other classes of

turbulent flows like free-shear flows, homogeneous flows, etc. Vast amounts of literature are available

on wall-bounded turbulence in the form of classical texts and monographs (e.g. Schlichting, 1968;

Tennekes & Lumley, 1972; Townsend, 1976), and research articles (see Marusic et al., 2010b and

Smits et al., 2011 for recent reviews). Only a broad outline of the underlying concepts and recent

advances that are directly relevant are presented here to put the current work in perspective.

1.2.1 Mean Flow Description

Two sets of dynamically relevant length and time scales are of importance in wall turbulence. The

effects of viscosity are found to be dominant close to the wall, and the turbulence characteristics in

this region can be well described by a set of length (δν) and time (tν) scales known as the viscous

or inner scales. They are given by δν = ν/uτ and tν = ν/u2τ respectively, where ν is the kinematic

viscosity of the fluid and uτ is the velocity scale (called the friction velocity) defined as uτ ≡
√
τw/ρ

(τw is the mean wall-shear-stress and ρ is the fluid density). The influence of viscosity diminishes far

from the wall and the length scale of importance in this outer region is the boundary layer thickness

(δ) itself. Note that the velocity scale uτ is generally employed in the outer region too; the inner

boundary condition for the outer flow is thought to be set by uτ , and hence it is considered to be

1A collection of review articles edited by Davidson, Kaneda & Sreenivasan (2012) pertaining to various topics in
turbulence provides a fairly up-to-date account of the state-of-the-art in fundamental research.
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a global scale that is relevant in both regions. The inner part of the boundary layer is further sub-

divided into two regions based on the local turbulence characteristics. The region between the wall

and ≈ 5 δν , called the viscous sublayer, has very low levels of turbulent velocity fluctuations due to

the strong action of viscosity. The region above the sublayer extending to ≈ 100 δν , called the buffer

layer, is characterized by intense fluctuations resulting in high levels of turbulence production and

dissipation. The separation between the inner and outer regions increases with Reynolds number,

which can also be defined as the ratio of the outer and inner length scales δ/δν . With sufficient scale

separation, it is reasonable to assume that there is an intermediate overlap region where both inner

and outer scalings hold simultaneous. This line of argument leads to the famous ‘log law’ which

describes mean velocity profile as having a logarithmic variation with wall-normal distance (Millikan,

1938). Experimental data from wall turbulence at high Reynolds numbers strongly supports the

existence of an overlap logarithmic region (Marusic et al., 2013).

1.2.2 Coherent Flow Structures

The above characterization of the boundary layer, which primarily stems from its statistical behavior,

forms only a part of the complete description. A long-standing challenge has been the connection

between the observed statistical and spectral behavior of the flow field, and the physical dynamical

processes that generate the turbulent fluctuations that sustain the observed statistics. Observation

and description of flow structures with coherence in space and time, known simply as coherent

structures, have formed the basis of studies that attempt to provide a framework for making such

connections. We recollect here a pertinent remark by Roshko (1976) four decades ago – “there is little

doubt that coherent structures play a central role in the development of the several turbulent shear

flows”. While a formal definition of a coherent structure is hard to make, the working definitions

provided by Berkooz et al. (1993) as “organized spatial features that repeatedly appear and undergo

a characteristic temporal life cycle”, and by Marusic et al. (2010b) as “organized motions that

are persistent in time and space and contribute significantly to the transport of heat, mass, and

momentum” among others are noted to be useful. Coherent structures hold the tantalizing possibility

of providing a simplified low-order description of a complicated high-dimensional non-linear system,

although there are no a priori guarantees that such a description would be possible at all. Cantwell

(1981) and Robinson (1991) provide a review of the several important studies that have advanced

our understanding of the importance and behavior of coherent structures; a more recent introduction

to the topic can also be found in Sharma & McKeon (2013). It is noted here that the attached eddy
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model (Townsend, 1976; Perry & Chong, 1982) is probably the most famous example of an attempt

to bridge the gap between the statistical and structural views of wall turbulence.

Coherent structures in wall turbulence can be broadly divided into two classes based on the nature

of their scaling. Streamwise velocity streaks and quasi-streamwise vortices, which constitute the key

structural elements of the near-wall region, are found to scale in inner units. They are centered at a

distance of ≈ 15 δν from the wall, with streamwise and spanwise direction length scales (wavelength)

of ≈ 1000 δν and ≈ 100 δν respectively. The other class consists of motions with streamwise lengths

greater than the boundary layer thickness δ (or pipe radii, channel half-width), broadly referred to

as the large scales, and are found to scale in outer units. These organized outer motions are further

divided into two sub-classes. The first sub-class consists of motions, known simply as large-scale

motions (LSMs), with streamwise and spanwise length scales of 2-3 δ and 1-1.5 δ respectively and

are associated with packets of hairpin vortices (Adrian, 2007). The constituent hairpin vortices are

not localized and are found to exist over a range of wall-normal locations spanning the buffer and

log regions. The second sub-class of motions, known as very large-scale motions (VLSMs2), are

further elongated in the streamwise direction with a length scale on the order of 10 δ, and consist of

spanwise alternating coherent regions of low and high momentum with a length scale of about 1 δ

(Hutchins et al., 2011). VLSMs are found to be centered in the logarithmic region (Mathis et al.,

2009a) with a wall-normal signature that extends down to the wall. The behavior and influence of

VLSMs has been an area of active research in recent years in the wall turbulence community. The

following section elaborates on the topic, which then leads to the motivation for the current work.

1.3 Large-Scale Influences and Scale Interactions

Though the presence of organized motions at large scales in the overlap and outer regions of a

turbulent boundary layer was recognized by early studies (Favre et al., 1967; Kovasznay et al.,

1970), their dynamical significance in the flow has gained wide attention only in recent times. The

advances in this area were aided by the development of high-Reynolds number experimental facilities

and newer flow diagnostics (Smits & Marusic, 2013). The flow Reynolds number is an important

factor in understanding large-scale influences on the flow given that the VLSMs, which are shown to

account for a considerable fraction of the turbulent energy and Reynolds stress (Guala et al., 2006),

2In literature, the term ‘superstructure’ has been used to describe VLSM-class motions in a boundary layer, while
the term VLSM is reserved for use in internal geometries (pipes, channels). Though differences exist between the two
(Monty et al., 2009), they share many common features in the context of the present work. Therefore a distinction is
not made and usage of the term VLSM is generalized here.
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intensify in strength with increasing Reynolds number (Hutchins & Marusic, 2007b); their influence

on the flow clearly manifests at high Reynolds numbers which were previously unavailable. With

newer facilities, several recent studies have confirmed the existence, and characterized the behavior,

of VLSMs in external (boundary layers) and internal (pipes, channels) wall-bounded turbulent flows

(e.g. Kim & Adrian, 1999; Guala et al., 2006; Hutchins & Marusic, 2007b; Monty et al., 2007;

Hutchins et al., 2011).

1.3.1 Evidence of Large-Scale Influences

Of particular interest to us is the influence of large-scale outer region motions on the dynamics

of small-scale turbulent fluctuations, especially in the near-wall region. The failure of classical

scaling based on inner (or viscous) units of the near-wall turbulence intensity peak, among other

observations, has engendered the idea that the outer region plays a more active role than merely

driving the inner flow. The insightful study of turbulent ‘bursts’ (periods of intense small-scale

turbulent activity) in a boundary layer by Rao, Narasimha & Narayanan (1971) provided the first

clear evidence of coupling between the inner and outer regions. The ‘bursting’ frequency in the

inner region was found to scale with outer units as opposed to inner units over a range of Reynolds

numbers. A connection between the outer large-scale structure and its effects on the near-wall

small-scale activity was made by Brown & Thomas (1977) through correlations between large- and

small-scale streamwise velocity and wall-shear-stress fluctuations in a turbulent boundary layer. The

study by Chen & Blackwelder (1978) of large-scale structure in a turbulent boundary layer using

temperature as a passive contaminant also suggests a dynamical relationship between the outer and

inner regions. Following the scale-decomposition technique of Brown & Thomas (1977), the phase

relationships between large- and small-scales in a variety of turbulent shear flows were inferred

by Bandyopadhyay & Hussain (1984) through correlation measurements of streamwise fluctuating

velocity.

1.3.2 Recent Developments

In light of the recent experimental developments mentioned above, the question of scale interac-

tions has evoked a renewed interest. Hutchins & Marusic (2007a) proposed an amplitude modu-

lation mechanism to explain the large- and small-scale relationships; the amplitude of small scales

(high temporal frequencies) is understood as being modulated by the large scales (low temporal

frequencies), akin to amplitude modulation of a high-frequency carrier by a low-frequency signal in
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radio-wave communication (see Marusic et al., 2010a). This idea was extended and quantified by

Mathis et al. (2009a) through an elegant demodulation scheme. The streamwise turbulent velocity

signal u was first decomposed into large-scale (uL) and small-scale (uS) components using a suitable

filter with a fixed cut-off such that u = uL + uS . Then, a correlation coefficient, termed amplitude

modulation coefficient (R), between the large-scale velocity signal and an envelope of the small-scale

velocity signal (extracted through a Hilbert transform procedure) was taken to be a measure of am-

plitude modulation in a turbulent boundary layer. The amplitude modulation coefficient was seen

to have a very similar behavior with wall-normal distance across turbulent boundary layers, pipes,

and channels (Mathis et al., 2009b). Also, an interesting similarity in the behavior of the amplitude

modulation coefficient with the skewness statistic of the streamwise velocity fluctuations was noted

by Mathis et al. (2009a) without further investigation.

The interpretation of the large- and small-scale correlation as amplitude modulation was met

with caution by Schlatter & Örlu (2010). They considered synthetic turbulent signals, synthesized by

matching the probability density functions (PDF) of random signals to actual turbulent signals, at

different heights inside a turbulent boundary layer. Amplitude modulation coefficient calculations,

as outlined by Mathis et al. (2009a), for the synthetic signals showed a remarkable similarity to

results obtained from actual turbulent signals in a boundary layer. From that, Schlatter & Örlu

(2010) note that the interpretation of the coefficient R is not straightforward, and suggest that it is to

a large extent another representation of the cross terms of the scale-decomposed skewness statistic.

Mathis et al. (2011) confirm the similarity between the two statistics by showing that the cross term

3uLu
2
S , obtained from the expression of skewness for a scale-decomposed signal, mimics the behavior

of the amplitude modulation coefficient across a range of Reynolds numbers in turbulent boundary

layers. However, Mathis et al. (2011) note that the synthetic signals considered by Schlatter & Örlu

(2010) are devoid of any scale information, i.e. the power spectrum is flat and does not contain

amplitude information at any scale, therefore a scale decomposition to segregate large- and small-

scales is not necessarily applicable. In a separate study, Bernardini & Pirozzoli (2011) consider

two-point velocity correlations obtained from DNS data of a compressible turbulent boundary layer

to show clear evidence of non-linear interaction between scales, and the same is interpreted as an

amplitude modulation effect.

The large- and small-scale relationship was also investigated with newly available data from

large-eddy simulations (Chung & McKeon, 2010) and atmospheric boundary layers (Guala et al.,

2011). As noted by Chung & McKeon (2010), the amplitude modulation coefficient is fundamentally
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a correlation coefficient between the large and small scales, and therefore can be interpreted as a

phase relationship between the two quantities, similar to the earlier studies of Bandyopadhyay &

Hussain (1984). All the above discussed studies consistently show the correlation between the large

scales and an envelope of the small-scale fluctuations to be positive near the wall and negative in

the outer region, thereby implying that the two correlated quantities are close to being in phase

and out of phase in those respective regions. Among the large scales, the dominating influence on

the observed large- and small-scale relationship was shown to be originating at the VLSM scale by

Jacobi & McKeon (2013) using a co-spectral technique.

It is now increasingly clear that the large- and small-scale interactions are an important aspect

of wall turbulence. A better dynamical understanding of the non-linear scale coupling driving such

interactions presents a potential opportunity at unraveling the workings of the wall turbulence

system, and narrowing the gap between the statistical and structural pictures of the flow. The

VLSMs play an overarching role in this context, particularly at high Reynolds numbers, and thereby

present the motivation for further study.

1.4 Forcing-Response Analysis

The present work aims to probe the nature of non-linear scale interactions in a turbulent boundary

layer through a study of the flow response to deterministic external large-scale forcing. This approach

parallels the ‘black box’ perspective of turbulence suggested by Clauser (1956), where the complex

non-linear system at hand is treated as an unknown entity (black box), and is probed by introducing

external perturbations and observing its response. The motivation for targeted forcing at the large

scales is twofold. Firstly, given the dynamical significance of the large scales (particularly the

VLSMs), they are a natural starting point for any attempts at understanding the complicated

network of coupled spatio-temporal scales. In addition, the large scales present a practical avenue to

experimentally effect external perturbations (or forcing) on the flow, particularly at high-Reynolds

numbers. To highlight this consideration we cite here briefly a design example discussed by Gad-el

Hak (2000) for an aircraft application. Gad-el Hak (2000) estimates that directly targeting the small-

scale near-wall cycle for any flow manipulation or control objective on a typical commercial aircraft

in cruise condition requires sensors and actuators on the surface with a density of over a 1 million

per square meter, and with the ability to respond at the order of tens of kiloHertz. Whereas we note

that a strategy that exploits the inherent scale coupling to target the small-scales indirectly though

large-scale forcing presents a much more feasible case for practice. The design of such strategies
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requires a clear fundamental understanding of the nature of scale interactions and energy pathways

in wall turbulence. The work presented here is a step towards that direction.

1.4.1 Targeted Forcing of Wall Turbulence

The use of external perturbations to elicit flow dynamics is a commonly used technique that can be

traced back to the early transition studies by Schubauer & Skramstad (1947) of exponential growth

in laminar boundary layer instabilities, where a thin vibrating ribbon along the spanwise direction

was placed very near the wall to introduce controlled oscillations in the flow. A similar technique was

later used by Hussain & Reynolds (1970, 1972) to introduce dynamic perturbations at set sinusoidal

frequencies in a turbulent channel flow and study their downstream evolution. Reynolds & Hussain

(1972) also attempted to model the experimental observations of the traveling-wave disturbances by

extending the laminar Orr-Sommerfeld equations to a turbulent flow. An eigenvalue problem was

formulated for velocity perturbations over a turbulent mean profile with various closure schemes to

model the turbulent Reynolds stress. However, such quasi-laminar approaches were not successful in

predicting the experimentally observed wavespeeds (eigenvalues) or mode shapes (eigenfunctions),

and the main conclusion of Reynolds & Hussain (1972) was to recognize the essential role of the

Reynolds stress terms in the flow dynamics.

More recently, Jacobi & McKeon (2011a,b) used a novel experimental technique to study the

effects of static and dynamic wall-roughness perturbations in a turbulent boundary layer. The non-

equilibrium effects resulting from a k-type spatially-impulsive roughness patch, which consisted of

four parallel ribs aligned along the spanwise direction, were extensively characterized. A persistent

‘stress bore’ and spectral redistribution of small-scale energy in the downstream region were identified

as key elements associated with the static roughness perturbation (Jacobi & McKeon, 2011a). In

a later study, the same patch of k-type roughness was dynamically actuated in the wall-normal

direction at a set sinusoidal frequency. In addition to the previously characterized static roughness

effects, the dynamic forcing was shown to introduce a coherent and energetic large-scale spanwise-

constant spatio-temporal mode in the flow, with well defined streamwise and temporal length scales

(Jacobi & McKeon, 2011b). The results of Jacobi & McKeon (2011b) clearly demonstrate the

effectiveness of the wall perturbation in exciting a synthetic large-scale in the flow. The same

technique of wall perturbation is used here in a modified form to effect large-scale forcing of a

turbulent boundary layer.
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1.4.2 Resolvent Operator Framework

The forcing-and-response approach used here can be viewed in the context of the resolvent oper-

ator formulation by McKeon & Sharma (2010). In this approach, the dynamics of the governing

Navier-Stokes equations is separated into linear and non-linear parts. The non-linear (convective

acceleration) term, which introduces coupling between scales, is then treated as a source of endoge-

nous forcing that drives the linear dynamics of the system. The ‘closure problem’ of turbulence

is circumvented in this approach, and requires only the mean velocity profile (obtained either by

experimental, computational or empirical data) as input for analysis. The resolvent operator of the

Navier-Stokes equations, which constitutes the linear dynamics, is found to be low-rank for a wide

range of spatial and temporal scales seen in wall turbulence. Thereby McKeon et al. (2013) note

that the linear dynamics of the system is highly selective and acts as directional amplifier. This

allows for a low-rank modeling of the system, and a rank-1 model is shown to capture to a good

degree the statistical (Moarref et al., 2013) and structural (Sharma & McKeon, 2013; Luhar et al.,

2014) features of wall turbulence. The resolvent model is well suited to handle any external forcing

imposed on the system, like in the case of the present experiments. The forcing is coherent and

deterministic, and this allows for a careful study of the system response using the resolvent model

to track the forcing effects, and possibly tailor the forcing to obtain any desired system response.

1.5 Approach

External forcing at the large scale is implemented in a turbulent boundary layer in two separate sets

of experiments. These studies focus on the nature of triadic scale interactions resulting from the

large-scale forcing. Triadic scale coupling, which refers to the coupling between three wavenumbers

where the sum/difference of any two wavenumbers equals the third, is of primary interest given

the quadratic non-linearity of the governing Navier-Stokes equations. In wavenumber space, the

quadratic non-linearity dictates the direct coupling between scales to be among triadically consistent

wavenumbers, i.e. any wavenumber kl is directly coupled to all pairs of wavenumbers kn, km that

satisfy the condition kl = kn ± km.

Chapter 2 provides details of the experimental setups. In the first set of experiments, a single

large-scale mode with well defined spatial and temporal wavenumber was excited in the flow using

the technique of Jacobi & McKeon (2011b) in a modified form. Results and analysis from this set of

experiments are presented in chapter 3. The synthetic scale is seen to modify the naturally existing
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triadic phase relationships between scales in a deterministic manner. In particular, a strong phase

locking or organization effect is seen among all the triadically consist small scales that are directly

coupled to the synthetic scale. Significant portions of this chapter have been previously published

as Duvvuri & McKeon (2014, 2015a,b).

Following the single-scale experiments, the experimental setup was modified to enable simulta-

neous forcing of two distinct spatio-temporal modes in the flow. Results and analysis from this set

of experiments are presented in chapter 4. Having characterized the effects of a single synthetic

scale in the previous experiment, the emphasis here is on understanding the nature of the two tri-

adic response modes excited by the forcing modes. Specific phase relationships associated with the

interactions of the synthetic modes are investigated, and the resolvent model is used to capture the

low-rank aspects of the forcing-response dynamics.

The thesis closes with a brief summary and discussion in chapter 5.
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Chapter 2

Experimental Setup

Two separate sets of boundary layer experiments on a flat plate were performed with a spatially-

impulsive dynamic wall-perturbation to study the influence of large-scale forcing on the flow. The

perturbation was set to a single sinusoidal frequency in the first set, and a combination of two sinu-

soidal frequencies were used in the second set. Canonical flow measurements (with no perturbation)

were also made in both cases to serve as reference for later analysis. Experimental details and

canonical flow characteristics are presented in this chapter.

2.1 Flat-Plate Boundary Layer Facility

The flat-plate boundary layer experiments were performed in the Merrill wind tunnel at GALCIT.

The facility is well characterized and has been described in detail previously by Jacobi (2012). The

Merrill wind tunnel has a closed-loop (recirculating) design and is driven by a ducted fan and 50 HP

AC induction motor assembly. Air temperature in the tunnel is controlled by an active in-loop cold-

water heat exchanger positioned upstream of the test section. The temperature was held constant

at approximately 22◦C with a maximum deviation of ±0.2◦C during the course of all experiments.

The test section is made of acrylic glass (PMMA) with dimensions 2′ × 2′ in the transverse plane

and 8′ in length, and has a deformable ceiling that allows for adjustments to the mean pressure

gradient along the streamwise direction (x). An annotated photograph of the test section is shown

in figure 2.1.

The test article consists of a smooth acrylic flat-plate at mid-height spanning the entire width

and almost the full streamwise extent. The plate has an elliptic leading edge, and a trailing-edge

flap that was set to maintain the leading-edge stagnation point on the measurement side (top).

All experiments were performed with a nominally constant free-stream velocity U∞ of 22.1 m/s;
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Flat-plate

Wall-perturbation insert Hot wire traverse and stepper motor assembly

Adjustable-height ceiling Hot wire and pitot probe holders

Figure 2.1: A photograph of the Merrill wind tunnel test section. Air flow inside the section is
from left (upstream) to right (downstream). Some of the experimental components described in the
text are identified here.

streamwise turbulence intensity (RMS) is under 0.2% of U∞ in the free-stream at this mean veloc-

ity. The incoming flow was tripped near the leading edge (19 mm downstream of the tip) by a 0.76

mm diameter piano wire glued to the plate surface resulting in a quick transition of the boundary

layer to a turbulent state. The test section height profile was preset to obtain an approximately

zero-mean-pressure-gradient flow over the entire length for the given flow condition. The stagnation

point location and zero-mean-pressure-gradient condition were confirmed by measurements of pres-

sure from taps positioned along the length of the plate using a Scanivalve pressure scanner (model

DSA3217); the variation in the pressure coefficient (∆Cp) was found to be under 1% of the mean

over the range of measurement locations.
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Trip wire near

plate leading edge

at x/δ1 ≈ −53.8

Figure 2.2: A schematic of the flat-plate setup (not to scale). The inset shows the spanwise-
constant wall perturbation rib positioned 890 mm downstream of the plate’s leading edge trip wire,
this location corresponds to x = 0. The hotwire measurement stations downstream of the pertur-
bation (x > 0) are marked. The free-stream mean velocity U∞ is 22.1 m/s and the local boundary
layer thickness δ at measurement station-1 is δ1 ≈ 16.6 mm. Note that the marked distances of the
measurement stations from the wall perturbation location are normalized by δ1.

2.2 Dynamic Wall Perturbation

A spatially-impulsive spanwise-constant dynamic wall perturbation was introduced at a downstream

location of 890 mm from the trip wire (see figure 2.2 for a schematic). Note that the flow is

fully turbulent at this location with an estimated momentum-thickness-based Reynolds number

Reθ ≈ 2750. The perturbation consists of a thin straight aluminum rib of thickness d = 1.5 mm

aligned along the spanwise direction about the plate centerline with an extent of 230 mm (≈ 13.9 δ1).

A slotted insert fitted into the plate allows for the rib to protrude into the boundary layer through

the plate from underneath (see figure 2.3 for a drawing of the insert and the rib). The insert slot is

machined with sufficient tolerance to allow rib reciprocation with minimal friction but prevent air

bleed between plate surfaces. The rib is connected to an actuation mechanism placed underneath

the test section and set to oscillatory motion in the wall-normal direction. Different actuation

mechanisms were used in the first and second sets of experiments, and are described below in detail.
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13.9 δ1

Figure 2.3: Line drawings of the plate insert and the rib. The insert slot allows for rib reciprocation,
and can be seen in figure 2.1. The armature supporting the rib and its base is connected to a driving
mechanism positioned underneath the test section (described in sections 2.2.1 and 2.2.2).

2.2.1 Single-Frequency Oscillations

In the first set of experiments the rib was driven by a crankshaft and DC motor mechanism (Dayton

4z142, see figure 2.4a) such that the motor shaft rotations translate to linear oscillations of the rib

in the vertical direction (and sinusoidal in time). The frequency of oscillations was controlled by

the motor rotation rate, and the amplitude was fixed by an offset between the connecting rod and

the shaft center. Note that at the trough of each oscillation cycle, the rib sits flush with the plate

surface. The operational frequency fp was set to a constant of 50 Hz for all experiments in this set,

and the crank shaft offset was machined to 0.3 mm. At low oscillation frequencies the offset resulted

in rib oscillations with a root-mean-square amplitude (peak-to-peak) hrms of 2 × 0.3/
√

2 = 0.42

mm. However, at the operational frequency fp = 50 Hz used here, slippage due to wear and heating

resulted in a slightly higher peak-to-peak amplitude of hrms = 0.54 ± 0.02 mm. A magnetic linear

encoder (Renishaw LM10) with a resolution of 1 µm was attached to the actuation mechanism to

obtain the time-resolved perturbation input signal to the flow, i.e. height h(t). A 200 ms sample of

h(t) is shown in the top panel of figure 2.5; the waveform can be written as (in mm)

h(t) = 0.4 + 0.4 cos (2π · 50 · t) . (2.1)

The encoder signal was recorded along with the hotwire data during the course of experiments (see

section 2.3.1). The encoder signal enables phase-locking and phase-averaging of the hotwire data

during the post-processing stage, and is described in detail in chapter 3.
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SolidWorks Educational License
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Figure 2.4: Line drawings of the two motors used in the experiments (not to scale). In both cases,
the armature supporting the rib (seen in figure 2.3) is connected to the motor shafts seen in this
figure; the corresponding rib oscillation waveforms are shown in figure 2.5. It is to be noted that
motors are positioned below the test section, and are not visible in figure 2.1.

The wall perturbation design and the actuation mechanism are similar to the earlier experiments

of Jacobi & McKeon (2011a,b) performed in the same facility. A k-type wall-roughness consisting

of four parallel ribs, of thickness 1.57 mm each, aligned along the spanwise direction with an inter-

rib distance of 6.35 mm and hrms = 1.16 mm was used in their study with a fp = 30 Hz. In

comparison, the perturbation here is truly spatially-impulsive in nature with a significantly reduced

streamwise extent and a smaller amplitude. This minimizes the static roughness effects observed in

the previous work. To get a sufficiently strong dynamic forcing effect on the flow from a relatively

smaller perturbation, the forcing frequency fp had to be set at a higher value; this was chosen to

be 50 Hz. The chosen value of fp also targets the large-scale region of the turbulence spectrum as

desired.

2.2.2 Double-Frequency Oscillations

The actuation mechanism used in the first set of experiments was restricted to only a single opera-

tional frequency and a preset amplitude determined by the crankshaft offset. For the second set of

experiments, the DC motor mechanism was replaced with a linear motor based design that allows

for actuation of the rib with complex waveforms; the perturbation rib was connected directly to the

shaft of a Bose LM1 linear motor (see figure 2.4b) placed underneath the test section. The linear

motor consists of an electromagnet in a flexure suspension driven by a fixed secondary electromagnet

in proximity. This assembly is housed in a cylindrical casing and has an appearance similar to that

of a conventional rotary motor. The control signal is applied to a signal conditioner unit which in
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turn is connected to an amplifier that powers the motor. A computer software supplied with the

motor allows for user-defined waveforms to be input to the signal conditioner. The non-linear nature

of the flexure suspension results in a non-flat motor transfer function (both in amplitude and phase),

and has to be accounted for in the design of inputs waveforms. An in-built optical encoder provides

a time-resolved signal of the motor shaft displacement with a resolution of 10 µm; the encoder signal

is recorded similar to the first set of experiments.

A waveform consisting of two sinusoidal frequency components was chosen for the study of forced

triadic interactions in the second set of experiments. A 35 Hz component was added to the 50 Hz

frequency component used in the first set of experiments. Along with the 50 Hz component, the 35

Hz component targets the large-scale region of the spectrum as desired. In addition, the combination

of 35 Hz and 50 Hz isolates the triadic responses (15 Hz and 85 Hz) from the fundamental harmonics

(70 Hz and 100 Hz); this aspect is elaborated in chapter 4. The motor input signal was adjusted to

get an equal amplitude response of 0.4 mm from the motor for each of the two components. The

final waveform is given by (in mm)

h(t) = 0.8 + 0.4 cos (2π · 35 · t) + 0.4 cos (2π · 50 · t) ; (2.2)

a 200 ms sample of h(t) obtained from the encoder signal is shown in the bottom panel of figure 2.5.

The same waveform was used for all experiments in this set.

2.3 Velocity Measurements

Hotwire measurements of the streamwise velocity component were made at three measurement

stations downstream of the perturbation along the plate centerline (see figure 2.2) and various wall-

normal locations (y) at each of the stations. The hotwire probe holder was fixed to a precision 1D

traverse system mounted to the plate via a circular airtight port (see figure 2.6). The streamwise

position of the wire was manually set by adjusting the probe holder extension as needed for each

experiment. The traverse leadscrew was driven by a computer-controlled stepper motor (Velmex

BiSlide) with a resolution of 2.5 µm per turn in the wall-normal direction. An external magnetic

linear absolute encoder (Renishaw LMA10) was attached to the traverse system to provide a re-

dundancy check on the probe location (distance from the wall). The closest measurement point to

the wall is at a distance of approximately 150 µm; this location is set manually, aided by calibrated

camera (Nikon D300s with a 170 mm Tamron SP-AF-180 F3.5 macro 1:1 lens and a Tamron AF
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Figure 2.5: Wall perturbation amplitude h(t) samples obtained from encoder data in the first
(top panel) and second (bottom panel) set of experiments are shown over a period of 200 ms. The
corresponding waveforms are in equations 2.1 and 2.2. Note that h = 0 corresponds to the wall
(y = 0).

2X teleconverter) images of the probe. Starting at this point, the probe was moved automatically

to subsequent preset wall-normal measurement locations. At each station time-resolved streamwise

velocity measurements were made at 43 and 50 logarithmically spaced wall-normal locations in the

first and second set of experiments respectively.

2.3.1 Hotwire Anemometry and Data Sampling Parameters

A 5 µm diameter gold-plated tungsten boundary-layer type probe (Dantec 55P05) with an active-

length l = 1.25 mm was used with a Dantec StreamLine Pro anemometer. The wire was operated at

a fixed over-heat ratio of 1.8 and calibrated in situ against Pitot tube measurements made using a

Baratron MKS 220DD pressure transducer (0-20 Torr range). Calibration runs were made across a

range of free-stream velocities immediately prior to, and after every experiment to ensure steadiness

of calibration. A fifth-order polynomial fit was used as a transfer function to obtain velocity from

anemometer voltage information. The frequency response of the system was estimated using the

standard pulse-response test and found to be between ≈ 25 kHz and ≈ 55 kHz for mean velocities

ranging from 0 m/s to 22.1 m/s, well above the spectral region of interest for these experiments. For
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Figure 2.6: 2D line drawing of the hotwire traverse setup. The hotwire and probe holder are fixed
to a plate-mounted sting as shown. The sting is traversed by a stepper motor arrangement (not seen
here, but visible in figure 2.1). The insert shown in figure 2.3 can be seen here as part of the plate.

the given setup and operating conditions, the uncertainty in velocity measurements is estimated to

be under 1% following the instrument manual provided by Dantec.

Voltage signals from the anemometer were low-pass filtered at 30 kHz using the anemometer’s

built-in third-order Butterworth filter prior to acquisition. A National Instruments A/D card (NI-

6154) was used to record digital data at a sampling frequency fs = 60 kHz satisfying the Nyquist

requirement. The motor encoder signals (sections 2.2.1 and 2.2.2) were simultaneously digitized and

recorded using a second channel on the same card. Sample record lengths were set to T = 60 s and

T = 80 s in the first set and second set of experiments respectively at all wall-normal measurement

locations and stations, corresponding to ≈ 80,000 and ≈ 107,000 outer eddy turnover periods.

2.4 Canonical Flow Statistics and Power Spectrum

Station x/δ1 δ (mm) Reθ Reτ

1 2.7 16.55 2780 940

2 3.6 16.64 2804 942

3 5.4 16.75 2892 955

Table 2.1: Canonical (smooth wall) boundary layer mean parameters at the three measurement
stations downstream of perturbation. δ1 is the layer thickness δ at station-1. Karman number (Reτ )
is estimated is using the Coles-Fernholz relation (see text).

Mean flow parameters for the canonical zero-pressure-gradient turbulent boundary layer at the

three measurement stations are summarized in table 2.1. The boundary layer thickness δ is estimated

from the mean velocity profile using the 99% criteria; a local spline curve fit is used at the boundary
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layer edge to determine δ such that U(δ) = 0.99U∞. The momentum thickness θ of the boundary

layer is also estimated directly from the mean velocity profile to obtain the momentum-thickness-

based Reynolds number Reθ (≡ U∞θ/ν). Karman number (Reτ ) estimates shown in the table 2.1

are then obtained from the local values of Reθ by using the Coles-Fernholz empirical relation

Cf ≡ 2

[
uτ

U∞

]2
= 2

[
1

κ
log(Reθ) + C

]−2
, (2.3)

where Cf is the skin-friction coefficient and uτ is defined as the friction velocity (uτ ≡
√
τw/ρ with

τw and ρ denoting the mean wall-shear-stress and fluid density respectively). The Karman constant

κ and C in the above relation are taken to be κ = 0.384, C = 4.127 following Nagib et al. (2007).

Equation 2.3 provides estimates of uτ for given values of Reθ. From thus obtained uτ , the Karman

number is written as

Reτ =
uτδ

ν
= δ+, (2.4)

where ν is the kinematic viscosity of air. Based on these estimates, the inner length scale ν/uτ is

used along with the outer scale δ for scaling appropriate quantities to serve as a reference, and the

scaled quantities are denoted using the conventional ‘+’ superscript notation. However, all velocity

and spectral power information is scaled only in outer units given the uncertainty in estimates of

friction velocity.

2.4.1 Mean Velocity and Turbulence Intensity

Time-resolved velocity signals U(y, t) from the hotwire are decomposed into mean and fluctuating

components (Reynolds decomposition):

U(y, t) = U(y) + u(y, t). (2.5)

Figure 2.7 shows the mean velocity U and turbulence intensity
√
u2 profiles at station-1. The

near-wall peak in intensity commonly seen at y+ ≈ 15 (e.g. Smits et al., 2011) occurs here at

y+ ≈ 21. From this, the combined uncertainty in y from near-wall probe positioning and the friction

velocity estimate (from equation 2.3) is inferred to be 6 ν/uτ ≈ 100 µm. Figure 2.7 also shows Laser

Doppler Velocimetry (LDV) measurements of DeGraaff & Eaton (2000) from a boundary layer flow

at comparable Reynolds number of Reθ = 2900. Note that a uniform offset of ∆y+ = 6 was applied

to the data of DeGraaff & Eaton (2000) in figure 2.7 to account for the uncertainty in y discussed
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Figure 2.7: Mean velocity (open markers) and turbulence intensity (filled markers) profiles at
station-1 for the canonical zero-pressure-gradient turbulent boundary layer. Mean velocity (solid
line) and intensity (dashed line) data from DeGraaff & Eaton (2000) are shown for comparison.

above and enable a direct comparison between the two data sets.

At the given Reynolds number the viscous-scaled wire length is l+ = 71; significant attenuation

of the near-wall peak intensity is to be expected for l+ > 20 (Hutchins et al., 2009) due to spatial

resolution limits of the wire, and the same can been seen in figure 2.7. However, with a peak

u2
+

= 4.38, the level of attenuation is lower than the predicted value of u2
+
≈ 3.8 from the data fit

of Hutchins et al. (2009). Overall, the comparisons to DeGraaff & Eaton (2000) are satisfactory and

confirm the canonical nature of the flow in the present setup. No corrections were applied to the

wall-normal locations of data or turbulence intensity as they have no direct bearing on the analysis

or conclusions presented here.

2.4.2 Velocity Power Spectrum

The power spectral density (PSD) Φu of u provides a scale-wise distribution of the power (variance).

In the frequency domain f , we have

∫ ∞
f→0

Φu(y, f) df = u2(y). (2.6)



22

y
+

λ+

x

10
2

10
3

10
4

10

100

900

2 12 > 24

y
/
δ

λx/δ
0.1 1 10 100

0.01

0.1

1
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Φcu × 106 at station-1.

‘×’ denotes the vicinity of the expected near-wall cycle (inner) peak at y+ = 15, λ+x = 1000.

Figure 2.8 shows Φcu(y, f) at station-1 calculated from u(y, t) using the standard Welch’s method,

with superscript c denoting canonical flow. Taylor’s hypothesis of ‘frozen turbulence’ (Taylor, 1938)

is applied to project temporal fluctuations onto the streamwise direction (frequency f to wavenumber

kx) using the local mean velocity, and the power levels are shown in a pre-multiplied form, both

following conventions in recent experimental wall turbulence literature.

Statistical and spectral results for the canonical flow at stations-2 and -3 are similar to station-

1 and are not shown here. This is expected given only the slight increase in Reynolds number

(table 2.1) from station-1 to -3.
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Chapter 3

Single-Mode Forcing of the
Turbulent Boundary Layer

The single-frequency wall perturbation described in chapter 2.2.1 excites a coherent spanwise-

constant velocity fluctuation in the downstream region with well defined spatial (streamwise di-

rection) and temporal scales. In this chapter the spatio-temporal mode, or traveling wave, is char-

acterized using hotwire velocity data and its influence on the flow is studied. The streamwise length

and time scales of the synthetic mode roughly correspond to the VLSM scales active in canonical

flows at higher Reynolds numbers. The study focuses on the nature of phase relationships between

the large- and small-scales of turbulence in the presence of the synthetic large-scale mode. An in-

teresting small-scale phase-locking or organization is revealed through the analysis in section 3.4 at

the end of this chapter.

3.1 Flow Statistics and Power Spectrum

The mean velocity and turbulence intensity profiles for flow with single-mode forcing at station-1

(x = 2.7 δ1) are compared with corresponding canonical flow data in figure 3.1. Station-1 is suffi-

ciently far downstream of the perturbation for the flow to recover from the severe static roughness

effects, described in detail previously by Jacobi & McKeon (2011a,b). A slight deficit in the mean

momentum relative to the canonical flow is still noticeable at this streamwise location, and is at-

tributed to the rib blockage and the resulting ‘stress bore’ (Jacobi & McKeon, 2011a). However,

the static roughness effects are expected to be minimal in comparison with the dynamic forcing,

and the present study will focus on the latter. The boundary layer thickness is found to remain

the same, and hence there is no significant change in Reθ (and Reτ ) between the two flows given
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Figure 3.1: Mean velocity (open markers) and turbulence intensity (filled markers) profiles for
flow with single mode forcing at station-1. Canonical flow mean velocity (solid line) and intensity
(dashed line) data from figure 2.7 are also shown for comparison.

the nearly overlapping mean velocity profiles. It should be noted that the Coles-Fernholz estimate

(equation 2.3) is strictly applicable only to the canonical flow. However, viscous scaling provides a

useful reference and is shown in figures throughout along with outer scaling.

The energetic hump in the turbulence intensity seen between y ≈ 0.05 δ and y ≈ 0.4 δ is mostly

a result of the dynamic forcing, and can be better understood from the power spectral density Φf1u

(superscript f1 denotes single-mode forcing) shown in figure 3.2. The presence of a synthetic scale is

clearly seen in the form of an energetic narrow-band streak in the large-scale region of the spectrum.

It is to be noted that this band corresponds to the temporal forcing frequency of 50 Hz projected

onto the streamwise direction x using the local mean velocity U∞. The difference spectra in the

figure reveals that the dominant change (in comparison with the canonical flow) brought about

by the forcing is the excitation of the synthetic scale. The temporal wavenumber of the synthetic

scale (denoted by ω̃) is ω̃ = 0.24U∞δ
−1. A clear separation in scales exists between the synthetic

scale and the natural energetic small scales in the flow. This allows for a scale decomposition to

study large- and small-scale interactions in the presence of the synthetic mode, as elaborated on in

section 3.3.
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bottom panel shows the normalized difference in power levels (Φf1u − Φcu)/Φcu between the forced
and canonical (figure 2.8) flows at station-1. In both panels, ‘×’ and ‘+’ denote the vicinity of the
expected near-wall cycle and VLSM (see section 3.2.3) peaks respectively. The critical layer location
yc = 0.072δ (section 3.2.2) and the filter cut-off λγ = 5δ (section 3.3.4) are also marked.
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The effects of the spatially-impulsive forcing decay with downstream distance, and the flow

statistics and spectrum eventually collapse onto to the canonical case. The streamwise spatial

wavelength and the decay rate for the synthetic scale are estimated in the following section using

phase-locked velocity data from stations -1 to -3.

3.2 Synthetic Mode Characterization

The time-resolved velocity fluctuations u(y, t) can be decomposed into an organized wave component

ũ corresponding to the synthetic mode, and a reminder term u′ that comprises of the turbulent

fluctuations. Following Hussain & Reynolds (1970) and Jacobi & McKeon (2011b), equation 2.5 for

the streamwise velocity at each station (fixed x and z) can be re-written as

U(y, t) = U(y) + ũ(y, t) + u′(y, t). (3.1)

The wave component ũ represents fluctuations at a specific spatio-temporal scale; with the stream-

wise, spanwise, and temporal wavenumbers denoted by real quantities k̃x, k̃z, and ω̃ respectively, ũ

can be written in a general form as

ũ (x, y, z, t) =
1

2
û (y) e i ( [k̃x+iβ]x+ k̃zz− ω̃t ) + c.c. , (3.2)

where exponent β is the decay rate of the synthetic mode. The complex amplitude û (y) contains

both magnitude and phase information of the synthetic mode with wall-normal distance.

The wave component ũ at all measurement locations is obtained from experimental data by the

following procedure. The temporal velocity signal u(t) is first filtered through a narrow bandpass

Fourier filter (10 Hz bandwidth) centered around the forcing frequency (50 Hz), and then phase-

averaged over 2700 cycles with reference to the input forcing signal h(t). The filtering process

mitigates de-correlating effects caused by frequency content naturally present in the flow, but is

not a necessary step prior to averaging of phase. Note that 〈ũ〉, where 〈 · 〉 represents the mean

operator, is zero by definition. Using the signal h(t) as a phase reference, the synthetic mode

oscillation cycle with wall-normal distance can be constructed in a coherent manner. Phasemaps in

figure 3.3 generated following the above procedure show the variation in amplitude and phase of ũ

with wall-normal and streamwise distances.
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Stations (∆x) λ̃x/δ1 β δ1

1-2 (0.9δ1) 15.4 0.28

2-3 (1.8δ1) 16.1 0.21

Table 3.1: Streamwise wavelength λ̃x and decay rate β for the synthetic mode estimated using
data between stations -1 and -2 (top row), and stations -2 and -3 (bottom row).

3.2.1 Normal Mode Wavenumbers

The streamwise wavelength λ̃x (= 2π/ k̃x) of the synthetic scale is estimated by tracking the change

in phase φ of ũ with streamwise distance between stations -1 and -3. At each of the three measure-

ments stations, the value of phase the local phase φ(y) is taken at the wall-normal location where the

mode amplitude (RMS of ũ) is highest to minimize any de-correlation errors in phase arising from

the phase-averaging procedure. A visual inspection of the phasemaps in figure 3.3 reveals a fairly

good degree of phase coherence with wall-normal distance of the synthetic mode between stations

-1 and -3, thereby justifying the above method. With that, we write λ̃x = 2π (∆x/∆φ); estimates

of λ̃x are shown in table 3.1. The exponential decay rate β is also estimated in a similar manner by

choosing the peak amplitude of ũ at each station and tracking its change with streamwise distance;

values for β are shown in the same table.

With the above information, the synthetic scale is now considered as a normal spatio-temporal

mode of wavenumber k̃ =
(

0.41 δ−1, 0, 0.24U∞δ
−1 ), where k̃ is the wavenumber triplet (k̃x, k̃z, ω̃).

Here k̃x is calculated using the value of λ̃x = 15.4 δ1 between stations -1 and -2 as it is prone to a

lesser estimation error in comparison to the value of λ̃x = 16.1 δ1 obtained between stations -2 and

-3, where the synthetic mode undergoes further decay. The spanwise-constant perturbation excites

a mode with k̃z nominally being zero. However, the finite spanwise extent of the perturbation rib

and the end effects caused by lateral walls of the wind tunnel test section probably induce a weak 3D

nature to the synthetic scale in practice. Bearing this in mind, k̃z is identically set to zero. It is to be

noted that the ‘locally parallel’ approximation for the boundary layer is implicitly invoked here by

modeling the streamwise spatial fluctuations as a Fourier mode. Given the only minor variation in δ

and Reτ over the streamwise range of measurements, it is justified to be a reasonable approximation.

The amplitude and phase behavior of the synthetic mode are broadly similar to the earlier work

of Jacobi & McKeon (2011b), where λ̃x was reported to be 18.7 δ. It is interesting to note that a

substantial reduction in the streamwise extent and amplitude of the wall perturbation in comparison
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Figure 3.3: Phasemaps of ũ(y, t) over one temporal period of oscillation. Top, center, and bottom
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lines indicate the local critical layer location yc on all panels.



29

to Jacobi & McKeon (2011b) resulted in only a marginal decrease in λ̃x. This suggests that the

dynamics of the periodic separation and reattachment bubble around the perturbation rib, which

sets the streamwise length scale, is most receptive to λ̃x on the scale of O(10 δ−20 δ). Conversely, the

flow response can also be understood in terms of the wavespeed (c̃ = ω̃/k̃x) of the synthetic mode.

The wavespeed c̃ = 0.59U∞ found in the present experiment is close to c̃ = 0.47U∞ reported by

Jacobi & McKeon (2011b), both are around c̃ ∼ 0.5U∞; the flow response seems to be selective to a

wavespeed in that range. Data from the second set of experiments presented in the following chapter

also supports this hypothesis (see section 4.2.2). A more detailed study covering the rib amplitude,

frequency, and flow Reynolds number parameter space is required to gain a better understanding of

the spatial length scale or wavespeed set by the dynamic wall perturbation. Such a study is beyond

the scope of this work; instead the focus here is on exploiting the large-scale forcing effects of the

wall perturbation to investigate the nature of non-linear scale coupling in the flow.

3.2.2 Critical Layer

For a traveling wave in a shear flow, the critical layer is defined as the location where the wavespeed

matches the local mean velocity. In the high-Reynolds number inviscid limit, the governing Navier-

Stokes equations pose a singular point at the critical layer. For a wall-bounded flow, viscosity must

be considered in the region around the critical layer, along with the near-wall region, to regularize

the solution. The traveling wave mechanics are strongly influenced by the critical layer (e.g. see

Maslowe, 1986; Schmid & Henningson, 2001), and critical layer effects are relevant in the present

study. For the synthetic mode, using the wavespeed c̃ = 0.59U∞ calculated above, the critical layer

yc is estimated from the mean velocity profile, such that U(yc) = c̃, to be 0.072 δ (y+c ≈ 68) at

station-1. The critical layer location is indicated throughout in all relevant figures by a dashed line.

The peak amplitude of the synthetic mode is expected to occur in the vicinity of its critical

layer (McKeon & Sharma, 2010). Judging by the proximity of yc to the wall-normal peak in ũ (see

figures 3.3 and 3.8), the estimate of yc = 0.072 δ can be considered as fairly good. However, it

is important to note its sensitivity to k̃x due to the sharp mean velocity gradient in the region of

interest. A slight uncertainty in the estimation of k̃x (and hence c̃), possibly due to the finite number

of phase-averaging cycles, can result in a significant change to yc. The variation in λ̃x of 0.7 δ1 seen

in table 3.1 is used to arrive at an estimate on the uncertainty in yc. By taking ±0.7 δ1 to be the

error in the estimate of λ̃x in section 3.2.1, the true critical layer is worked out to lie somewhere in

the region 0.056 δ < y < 0.093 δ, with a corresponding wavespeed range of 0.56U∞ < c̃ < 0.61U∞.
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3.2.3 Synthetic Mode as a VLSM Proxy

Very-large-scale motions show a distinct peak in the velocity power spectrum at higher Reynolds

numbers (Reτ & 4000), and have been previously observed to have streamwise lengths of 15 δ to 20 δ

(Hutchins & Marusic, 2007b). Single-point measurements underestimate the streamwise length scale

of these motions due to their meandering nature; the VLSM spectral signature from single-point

measurements scales is found to scale in outer units as λx ≈ 6 δ (Hutchins & Marusic, 2007a). Mathis

et al. (2009a) observed the wall-normal spectral peak of the VLSM motions at y+ ≈ 3.9Re
1/2
τ , and

associated it with the center of the log-region. The exact location, strength, and wavelength of the

VLSM-class motions at very high Reynolds numbers is still an open issue (Vallikivi et al., 2015),

but for the purposes of the present discussion we take the streamwise wavelength of the VLSM peak

to be of O(10 δ) and centered at y+ ≈ 3.9Re
1/2
τ following Mathis et al. (2009a); this location is

indicated in figure 3.2 for reference. It is to be noted that a distinct VLSM spectral signature, or a

peak, cannot be seen in the present data as the Reynolds number is not sufficiently high. Following

Hutchins et al. (2011) the convection velocity (or wavespeed) of these motions is taken as the local

mean velocity at the indicated wall-normal location, and is found to be 0.65U∞ for the present flow.

The streamwise length scale and wavespeed of the synthetic mode from sections 3.2.1 and 3.2.1 are

seen to have a close correspondence to the above estimates of the natural VLSM. Therefore, the

synthetic mode can be viewed as a deterministic spanwise-constant VLSM in the flow. The analysis

presented in the rest of this chapter attempts to generalize large-scale influences on small-scale

turbulence utilizing the synthetic VLSM, referred to as the synthetic large scale.

Before proceeding to the next section, the following remark is important. Along with the large-

scale mode, multiple spatial and temporal small scales are excited by the static roughness effect of

the wall perturbation in the immediate downstream region. The artifacts of this effect can be seen

in the data of Jacobi & McKeon (2011b) where non-linear growth in the phase of the synthetic mode

was observed in the region x < 1 δ downstream of the perturbation. For x > 1 δ, the synthetic scale

showed a normal mode behavior with a linear change in phase with streamwise distance. Given the

relatively weaker roughness strength of the perturbation in the present experiment, any small-scale

activity directly excited by the rib is expected to decay rapidly; evidence for the same can be seen in

the difference spectra of figure 3.2. Thus, the flow is thought to be dominated by the synthetic large

scale in the region of measurements (x ≥ 2.7 δ); any remnants of the direct influence from the wall

perturbation on the small scales are considered insignificant. Note that this justified assumption is

implicit in the phase-averaging scheme (section 3.2.1) that gives k̃x for the synthetic scale.
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3.3 Modified Large- and Small-Scale Phase Relations

We now examine the nature of large- and small-scale phase relations in the flow through the skewness

and amplitude modulation co-efficient (Mathis et al., 2009a) statistics of the turbulent velocity

fluctuations. Firstly, by considering a general statistical signal, both quantities are shown to be

measures of phase in triadic wavenumber interactions. The experimental results are then interpreted

accordingly to understand the synthetic large-scale influence on the phase relations in the forced

turbulent boundary layer.

3.3.1 Skewness

We begin our analysis by considering a general statistically homogeneous (or statistically stationary

when considered in temporal domain) real velocity signal u(x) in the streamwise direction x (note

that the notation u used earlier in the context of experimental data is retained here in a more general

setting). As this analysis is later applied to data from single-point measurements, u is taken as a

single-variable function (x in this case) for simplicity. Performing a multi-scale decomposition on

the signal using a Fourier basis, with wavenumbers ki and corresponding amplitudes and phases αi

and φi respectively, we write

u(x) = α1 cos(k1x+ φ1) + α2 cos(k2x+ φ2) . . . + αi cos(kix+ φi) + . . .

with 0 < k1 < k2 < . . . < ki < . . . < k∞,

(3.3)

where k1 and k∞ denote the largest and smallest length scales in u respectively (figure 3.4). With

σ denoting the standard deviation of u, skewness S of the signal forms the following triple sum

σ3S = 〈u3〉 = 〈
∞∑
l=1

∞∑
m=1

∞∑
n=1

αlαmαn cos(klx+ φl) cos(kmx+ φm) cos(knx+ φn) 〉

=

∞∑
l=1

∞∑
m=1

∞∑
n=1

αlαmαn〈 cos(klx+ φl) cos(kmx+ φm) cos(knx+ φn) 〉.
(3.4)

Using the orthogonal property of the Fourier basis, it is straightforward to show that only triadic

combinations of wavenumbers kl, km, kn with kl = kn− km and wavenumber pairs kl, kn with kn =

2kl make a non-zero contribution to S (see appendix A.1). Note that here we assume kl < km < kn
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Figure 3.4: A schematic of the wavenumber line showing the large- and small-scale regions. kγ
indicates the filter cut-off location.

without a loss of generality. S can then be reduced to the following form:

S =
6

4σ3

∑
∀ l,m,n |

kl<km<kn
kl+km=kn

αlαmαn cos(φl + φm − φn) +
3

4σ3

∞∑
l=1 |
kn=2kl

α2
l αn cos(2φl − φn). (3.5)

From the above equation it is seen that skewness is nothing but a weighted (by mode amplitudes)

and normalized (by σ3) sum of the quantity cos(φl+φm−φn) over all sets of triads and wavenumber

pairs. By considering amplitude modulation coefficient next, it will be readily seen that the quantity

cos(φl + φm − φn) is a measure of the phase difference between the large-scale (lower wavenumber)

mode cos(klx+φl) and the envelope of the small-scale (higher wavenumbers) modes cos(kmx+φm)

and cos(knx+ φn).

3.3.2 Amplitude Modulation Coefficient

The procedure to calculate R as outlined by Mathis et al. (2009a) is followed here, but with a slight

departure in the enveloping technique which is explained below. Firstly, the velocity signal u is split

into large- and small-scale components using a spatial Fourier filter at a set wavenumber, arbitrarily

chosen as kγ (see figure 3.4). We then have the large- and small-scale velocity signals uL and uS as

uL = α1 cos(k1x+ φ1) . . .+ αl cos(klx+ φl) . . .+ αγ−1 cos(kγ−1x+ φγ−1),

uS = αγ cos(kγx+ φγ) . . .+ αm cos(kmx+ φm) . . .+ αn cos(knx+ φn) + . . . .

(3.6)

Here again we assume without a loss of generality that kl < kγ < km < kn. Next, an envelope

function E(x) for the small-scale velocity signal is obtained using the Hilbert transform. Mathis
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Figure 3.5: Example shows phase relations between large- and small-scale velocity components for
a signal containing a set of three triadically consistent wavenumbers, taken to be k1 = 1, k2 = 8,
k3 = 9 for illustration. Wavenumber k1 constitutes the large-scale component (red curve) written
as ul = cos(k1x + φ1), and wavenumbers k2, k3 constitute the small-scale component (blue curve)
written as us = cos(k2x+φ2) + cos(k3x+φ3); dashed curve denotes the envelope of the small-scale
signal E (see section 3.3.2). Three different values of 0, π/2, and π are chosen for ∆φ = φ1+φ2−φ3 in
the top, center, and bottom panel examples respectively. The corresponding values of the amplitude
modulation coefficient R = cos(φl + φm − φn) are 1, 0, and -1 for the three cases.

et al. (2009a) use the analytic signal modulus A, given by A(x) =
√
u2S(x) +H2(x) where H(x) is

the Hilbert transform of uS(x), as an envelope of the small-scale activity. Here we take A2 to be

our envelope function, i.e. E(x) = A2(x). This allows for a more direct interpretation of the final

result in terms of phase in triadic interactions. For the purposes of forming a correlation coefficient,

as done in the calculation of R, A2(x) is a valid proxy for A(x). As R is a normalized measure, no

significant differences are expected in its value between the cases of A(x) and A2(x) being used as the

envelope function, and this was easily verified with experimental data (see figure A.1 in appendix).

The envelope E is subject to a large-scale-pass filter with the same cut-off wavenumber kγ used in

equation 3.6, and the filtered envelope function is denoted by EL. Finally, a correlation coefficient is

formed between the large-scale velocity signal (uL) and the large-scale component of the small-scale

envelope (EL), written as
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R =
〈uLEL(uS)〉√〈
u2L

〉√〈
EL(uS)

2
〉 . (3.7)

Starting with equation 3.6, the above described procedure is followed with further simplifications

(see appendix A.1) to reduce the expression for the amplitude modulation coefficient to the following

form

R =
1

Ω

∑
∀ l,m,n |

kn−km=kl
0<kl<kγ
km,kn>kγ

αlαmαn cos(φl + φm − φn), (3.8)

where Ω =
√
〈u2L〉〈E2L〉 is the normalization factor for the covariance 〈uLEL〉. As in the case of S

(equation 3.5), only triadic interactions between wavenumbers make a non-zero contribution to R.

As noted by Chung & McKeon (2010), the amplitude modulation coefficient, which is essentially

a normalized dot product between two quantities, can be interpreted as a measure of the phase

difference between them. That is, if ~a and ~b are two vectors in general with an included angle ϕ,

then ~a ·~b = | ~a | | ~b | cos(ϕ). The sense of the phase relationship (the sign of ϕ) is lacking here due

to the symmetry of the cosine function. As the value of R varies from 1 to -1, it implies the relative

phase between large- and small-scale signals varies from 0 to π respectively, with the value of R

= 0 corresponding to a phase difference of π/2. Following this, it is easily seen from equation 3.8

that the quantity φl + φm − φn = ∆φ is the phase difference between the large-scale kl and the

envelope of the triadic small-scales km, kn. Thus R can be interpreted as an amplitude-weighted

(and normalized) phase measure cos(∆φ) of all triadic interactions where the large-scale and the two

triadic small-scales fall on either side of the filter cut-off. Figure 3.5 illustrates this by considering

an example of a signal consisting of three triadically consistent wavenumbers components.

Notice that skewness (equation 3.5) is also a measure of the same phase quantity, but over all

triadic interactions without any filter restrictions. The similarity between S and R was first pointed

out by Sharma & McKeon (2013) for a single triad, i.e. a single set of three triadically consistent

wavenumbers. Although S and R exhibit similar trends with wall-normal height in a turbulent

boundary layer (Mathis et al., 2009a; Schlatter & Örlu, 2010), it is easy to see from equations 3.5

and 3.8 that differences exist between the two. This is discussed in the following subsection, and an

exact relationship is established between the two phase measures.
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3.3.3 Connection between Skewness and Amplitude Modulation

Coefficient Statistics

There are significant differences between measured values of S and R in the near-wall and the outer

wake regions of a turbulent boundary layer (see for instance Mathis et al., 2011, figure 1). These

differences can be understood by a direct comparison of equations 3.5 and 3.8; S accounts for triadic

and wavenumber pairs interactions over the entire wavenumber range, whereas R accounts for only

those triadic interactions that occur across the filter cut-off location kγ . Also, the weights and

normalization factors for triadic interactions in S and R are different. The triadic and wavenumber

pair interactions captured by S but not by R can be accounted for by considering the three quantities

〈u3S〉, 〈u3L〉, 〈u2LuS〉, as explained below with reference to the schematic shown in figure 3.4.

• 〈u3
S〉: uS only contains velocity scales with wavenumbers greater than kγ , hence 〈u3S〉 captures

all triadic and wavenumber pair interactions to the right of the filter. This is similar to 〈u3〉,

but 〈u3〉 captures those interactions across the entire wavenumber line whereas 〈u3S〉 is band-

limited, and likely to be most active close to the wall.

• 〈u3
L〉: uL only contains velocity scales with wavenumbers smaller than kγ , hence 〈u3L〉 captures

triadic interactions to the left of the filter where the two smaller wavenumbers are less than

kγ/2, and wavenumber pair interactions for all wavenumbers kl, kn such that kn = 2kl and

k1 < kl < kγ/2. Larger scale activity is most prevalent in the wake region.

• 〈u2
LuS〉: with workings similar to S and R in equations 3.5 and 3.8 respectively, it can be

shown that 〈u2LuS〉 reduces to the following form

〈u2LuS〉 =
1

2

∑
∀ l,m,n |

kl<km<kγ<kn
kγ/2<km
kl+km=kn

αlαmαn cos(φl + φm − φn) +
1

4

γ∑
l=γ/2
kn=2kl

α2
l αn cos(2φl − φn).

(3.9)

The first term on the RHS captures triadic interactions where the intermediate wavenum-

ber necessarily lies in between kγ/2 and kγ , and the second term captures wavenumber pair

interactions for all wavenumbers kl, kn such that kn = 2kl and kγ/2 < kl < kγ .

From the above descriptions of 〈u3S〉, 〈u3L〉, 〈u2LuS〉, it is seen that the three quantities exactly cap-

ture the triadic and wavenumber interactions accounted for by S and missed by R. An analytical

relationship can now be established between S and R; balancing the weights between S, R, 〈u3S〉,

〈u3L〉, 〈u2LuS〉 gives
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σ3S = 1.5 ΩR+ 〈u3S〉+ 〈u3L〉+ 3〈u2LuS〉. (3.10)

The RHS terms have a clear resemblance to scale-decomposed skewness factor, but with a scaled

version of R replacing the term 3〈uLu2S〉. This confirms the suggestion of Mathis et al. (2011) that

the cross-term 3〈uLu2S〉 can be used as an alternative or complementary diagnostic tool to R.

It is worth noting that the analysis presented thus far makes no assumptions regarding the un-

derlying dynamics of the system that generates the signal u. Hence equation 3.10 is applicable

to any statistically homogeneous (or stationary) signal in general. This helps in understanding the

results of the amplitude modulation coefficient presented by Mathis et al. (2009a) and Schlatter

& Örlu (2010) for synthetic turbulence signals. Mathis et al. (2009a) show that R(y) is nearly

zero when phase information is randomly scrambled in velocity signals obtained from a turbulent

boundary layer. By assigning random phases to different scales, we expect on average the number

of large scales with the corresponding envelopes of two triadically interacting small-scales in phase

(∆φ = 0) and out of phase (∆φ = π) to be equal, and hence R(y) ≈ 0. Schlatter & Örlu (2010)

consider synthetic signals with matched PDFs to real turbulent signals but with no scale (amplitude)

information contained in them. However, by matching the PDF (and hence skewness), they retain

the phase information contained in the real signal. Although all amplitude information is removed

from the signal, as R is a normalized measure, it is not surprising to see that there is a good match

between R(y) calculated from their real and synthetic signals.

From the above analysis it is seen that the amplitude modulation effect in wall turbulence can

be naturally interpreted in terms of phase relations between tradically consistent scales. This in-

terpretation also extends to the observations of small-scale frequency modulation in the near-wall

region of a turbulent boundary layer (Ganapathisubramani et al., 2012). For flows in a statistically

stationary state, the amplitude associated with each scale is invariant in space and time (equa-

tion 3.3). In essence, the so called amplitude and frequency modulation effects are simply measures

of the relative placement (or arrangement) of various scales in the flow. Modulation in a strict sense

implies a dynamical connection between scales, and requires a more advanced framework (based on

the governing equations) for a full description.
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profiles for flow with single mode forcing at station-1. Canonical flow skewness (dash-dot line) and
amplitude modulation coefficient (solid line) data are also shown for comparison. Inset plot shows
the difference between the forced and canonical flows for both the statistics (∆S, ∆R) in the region
0.02 < y/δ < 0.4.

3.3.4 Synthetic Large-Scale Effects on Small Scales

The skewness and amplitude modulation coefficient statistics are now used to infer the effects of the

synthetic large scale (characterized earlier in section 3.2) on the natural phase relations in the flow.

For the purposes of calculating R, a Fourier filter with cut-off at λγ = 5 δ was chosen to separate

the large- and small-scale components. A clear separation between the energetic small scales and

the synthetic large scale is seen at all y for this choice of the filter cut-off (figure 3.2). While the

choice of λγ = 5 δ is somewhat subjective, it is easily demonstrated from experimental data that

the correlation coefficient R is insensitive to the exact value of the filter cut-off (see figure A.2 in

appendix).

Skewness and amplitude modulation coefficient profiles are shown in figure 3.6 for canonical and

forced flows at station-1. For the canonical flow, the behavior of S and R with wall-normal distance

y implies that large- and small-scales are close to being in phase (S,R > 0) near the wall, and

gradually move towards being out of phase (S,R < 0) approaching the boundary layer edge; this

trend is consistent with observations in previous literature.
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The forced flow contains the synthetic large scale at wavenumber k̃ (= ω̃/c̃) in addition to the

other turbulence scales. That is, ũ = α̃ cos(k̃x+ φ̃) is added to u(x) in equation 3.3. In the presence

of the synthetic scale, the values of S and R are altered significantly, particular in the wall-normal

region where the synthetic scale is active. There is a marked increase in the values of S and R in

the region 0.02δ < y < 0.1δ and decrease in the region 0.1δ < y < 0.4δ in presence of the synthetic

large-scale. The cross-over location y/δ ≈ 0.1 corresponds well to the synthetic mode peak location

(see figure 3.8), and is close to the estimated critical layer location yc. The results in figure 3.6

suggest that the synthetic large-scale drives the envelope of all small-scales towards being in and

out of phase with it below and above its critical layer location respectively, thereby altering the

natural large- and small-scale phase relationships in the flow. This can interpreted in the context of

strengthening of the natural VLSMs, and its small-scale modulation effect, with increasing Reynolds

number (Mathis et al., 2009a); the synthetic large scale generalizes this effect in the present scenario.

It is to be noted that quantities S and R reveal the action of the synthetic scale, in conjunction

with the large-scale activity naturally present in the flow, on the small scales i.e. the large-scale

signal uL includes the synthetic scale ũ and other natural large scales present in the flow. While a

noticeable effect of the synthetic scale is seen on the envelope of all small scales (as quantified by

S and R), a stronger influence is expected on the small scales that directly couple to the synthetic

scale through non-linear triadic interactions. This is examined in the following section by suitably

defining a small-scale envelope and studying a modified correlation coefficient similar to R.

3.4 Organization of Directly-Coupled Small Scales

Any two small-scale wavenumbers kn, km (> kγ) that are triadically consistent with k̃ (= ω̃/c̃) have

a direct dynamical coupling with the synthetic scale. Thus the influence of external forcing at

wavenumber k̃ can be expected to have a prominent manifestation among wavenumber pairs kn, km

that satisfy the triadic condition kn − km = k̃. Consider a velocity signal written as umn(x) =

αm cos(kmx + φm) + αn cos(knx + φn) for a specific set of specific small-scale triadic wavenumbers

km, kn. Following section 3.3.2, an envelope function Amn(x) for umn can be formulated as the

square of the analytic function modulus, i.e. Amn(x) = u2mn(x) + H2
mn(x), where Hmn is the
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Hilbert transform of umn. After removing the mean term, Amn reduces to the following form (see

appendix A.2):

Amn(x) = 2αmαn cos [(kn − km)x+ φn − φm]

= 2αmαn cos
[
k̃x+ φn − φm

]
.

(3.11)

We now consider the entire small-scale velocity signal uS , consisting of scales from wavenumbers kγ

to k∞, and perform the following procedure to extract an average envelope function over all kn, km

components in uS that satisfy the triadic condition with the synthetic scale k̃. uS is squared and

phase-averaged with respect to the forcing signal (following the phase-averaging procedure described

in section 3.2) to obtain the function (see appendix A.2), denoted by ũ2S (x) = Ẽ (x),

Ẽ =
∑
∀m,n |

kn−km=k̃
km,kn>kγ

αmαn cos( k̃x+ φn − φm ). (3.12)

The phase averaging procedure picks out the k̃ component from u2S . A straightforward comparison

between equations 3.11 and 3.12 reveals that, in essence, Ẽ captures the amplitude-weighted average

phase of the triadic envelope across all sets of small-scale wavenumbers that couple directly with the

synthetic scale.

The triadic envelope Ẽ calculated using experimental data, with the same filter as earlier with

cut-off at λγ = 5 δ, is shown along with the synthetic large scale ũ in figure 3.7. A certain correlation

between ũ and Ẽ can be seen by just a visual comparison. The two quantities are in phase close to

the wall, and out of phase away from it following an abrupt jump of π radians in the phase of Ẽ close

to the critical layer location. The phase relationship can be analyzed in a quantitative manner by

defining a correlation coefficient Ψ between ũ and Ẽ , akin to the amplitude modulation coefficient,

Ψ =

〈
ũ Ẽ

〉
〈
ũ2
〉1/2〈

Ẽ2
〉1/2 . (3.13)

It is to be noted that R gives the average phase difference between all large- and small-scales in the

flow (including the synthetic scale when present), whereas Ψ is a measure of the phase between the

synthetic scale and the average triadic envelope of small-scales that are in direct coupling. Thus Ψ

represents the coupling due to one wavenumber within the broader uL. Ψ(y) at station-1 is shown in

figure 3.8 along with the normalized energy of the synthetic large-scale. The wall-normal locations

where the synthetic large-scale energy drops to 15% of its peak value are shown by dash-dot lines
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for reference; the region between these lines is where effects of the synthetic large-scale are expected

to dominate. As the energy in the synthetic mode drops close to zero, the correlation coefficient Ψ

becomes noisy (outside the 15%-energy reference lines). A clear phase-locking, or organization effect

in phase of directly coupled small-scales by the synthetic large-scale is seen in the region where the

synthetic scale is active. The triadic small-scales are exactly in phase with the synthetic large-scale

(Ψ = 1) near the wall and exactly out of phase (Ψ = −1) away from the wall; a sharp phase jump of π

radians occurs at y = 0.04δ, close to the estimated critical layer location. The phase behavior of the

directly coupled small-scales is consistent with the altered large and small-scale phase relationship

suggested by skewness and amplitude modulation coefficient.

It is interesting to note that the results presented here are connected in a broad manner to earlier

work in the area of Homogeneous Isotropic Turbulence (HIT). Brasseur & Wei (1994) categorize

triadic scale interactions in a HIT setting into two classes: (1) local-to-non-local interactions with a

separation between scales of a decade or less; (2) distant interactions between disparate scales with

a separation larger than a decade at the least. The distant class of scale interactions are found to

have negligible transfer of energy directly from large- to small-scales, but have a significant influence

on the small-scale structure. Distant, or long-range, scale interactions were studied by Yeung &

Brasseur (1991) and Yeung et al. (1995) through numerical experiments where coherent narrow-

band anisotropic forcing was imposed at the large scales. The triadic small scales were found to

have a direct response in terms of anisotropic energy redistribution, and phase correlations with the

large-scale forcing. Although the non-homogeneous nature of the flow in the present case introduces

additional dynamics into play and requires further considerations, it is not entirely surprising to see

broadly similar interactions between large- and small-scales as the key non-linear element governing

scale coupling in both flow scenarios comes from the same governing equation.
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Chapter 4

Double-Mode Forcing of the
Turbulent Boundary Layer

The nature of bulk interactions between large- and small-scales was investigated in the previous

chapter using data from the first set of experiments, where a single large-scale mode was artificially

excited in the flow. The focus in the present chapter shifts towards exploring the direct triadic

wavenumber responses resulting from the interaction of two synthetic modes. The double-frequency

wall perturbation used in the second set of experiments (described in section 2.2.2) excites two co-

herent large-scale spanwise-constant velocity fluctuations in the downstream region with well defined

spatial and temporal scales. The two spatio-temporal modes and their corresponding triadic response

modes are characterized here. Triadic consistency between modes is experimentally demonstrated

in both streamwise and temporal wavenumbers. The ideas related to phase relations developed

previously in sections 3.3 and 3.4 are used here to understand the phase coupling between specific

triads. A connection to the resolvent operator framework is made towards the end in section 4.4.

4.1 Flow Statistics and Power Spectrum

The mean velocity and turbulence intensity profiles for flow with double-mode forcing at station-

1 (x = 2.7 δ1) are compared with corresponding canonical and single-mode forcing flow data in

figure 4.1. As expected, the relative increase in wall-normal amplitude of the perturbation from the

previous experiment (see figure 2.5 for a comparison) produces a slightly higher mean momentum

deficit, visible around y = 0.1 δ. However, the relatively stronger perturbation does not affect

the boundary layer thickness and no significant change in Reθ (and Reτ ) was noticed. As noted

previously, the estimate of Reτ is strictly applicable only to a canonical flow; the use of viscous

scaling in y is continued in figures of this chapter as it provides a useful reference.
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The energetic hump in the turbulence intensity seen between y ≈ 0.03 δ and y ≈ 0.4 δ can

be understood from the power spectral density Φf2u (superscript f2 denotes double-mode forcing)

shown in figure 4.2. The presence of two energetic synthetic scales can be clearly seen in the form

of narrow-band streaks in the large-scale region of the spectrum. The two bands correspond to

the forcing frequencies of 50 Hz and 35 Hz projected onto the streamwise direction x using the

local mean velocity U∞. The corresponding temporal wavenumbers of the two scales are given by

ω̃1 = 0.24U∞δ
−1 and ω̃2 = 0.17U∞δ

−1 respectively. The difference spectra in the figure reveal that

the dominant change brought in the flow by the forcing is the excitation of the synthetic scales.

From results presented in the previous chapter, the energetic large-scale activity excited by the

perturbation is expected to have a strong influence on the small-scale turbulence. In addition to

those effects, it is important to note that the increased wall perturbation strength also plays a role

in the present case. The ‘stress bore’ generated by the static roughness effects can have a direct

influence on the small scales as demonstrated by Jacobi & McKeon (2011a). These effects are not

treated explicitly as the focus here is on understanding the dynamic forcing effects, in particular the

direct triadic responses ensuing from the non-linear interaction of the two synthetic scales.
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4.1.1 Triadic Responses in Frequency Space

A close inspection of figure 4.2 reveals narrow-band activity in regions to the left and right of the

two forcing frequencies at 50 Hz and 35 Hz. These bands are triadic responses corresponding to the

sum and difference wavenumbers of the two forcing frequencies, and can be better understood by

considering the power spectral density directly in frequency space, shown in figure 4.3. Firstly, as

expected, the two forcing frequencies can be clearly seen as energetic vertical bands. In addition,

clear narrow-band activity can be seen at 85 Hz, corresponding to the sum of the forcing frequencies

with a temporal wavenumber of ω̃3 = ω̃1 + ω̃2 = 0.41U∞δ
−1. This suggests that the direct non-

linear coupling between the forcing modes is effective in transfer of energy to the response mode

at 85 Hz. This is consistent with the observations of Yeung & Brasseur (1991) and Brasseur &

Wei (1994) in HIT where local wavenumbers interactions were found to be mostly responsible for

inter-scale energy transfer. Note that the frequencies under consideration here are of the same order,
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and can thereby be classified as local following Brasseur & Wei (1994).

A faint energy signature centered around y ≈ 0.2 δ can also be seen at 15 Hz, the temporal

wavenumber of ω̃4 = ω̃1− ω̃2 = 0.07U∞δ
−1 corresponding to the difference frequency of the forcing

modes. The relative amplitude of this lower frequency band is masked due to the pre-multiplied

power level contours in figure 4.3. The raw line spectrum at this height is shown in figure 4.4 to

highlight a peak in the power level at the difference frequency.

It is interesting to note that harmonics at 100 Hz and 70 Hz corresponding to the two forcing

frequencies can also be identified in the above discussed spectral figures. The harmonic response

represents a special case where a mode is coupled to its harmonic wavenumber through self triadic

interactions. Signatures of the harmonic response can also be seen in the single-mode experiments

discussed previously (see figure 3.2), and in the experimental data of Jacobi & McKeon (2011b).

The harmonic modes are not subject to explicit treatment here; the focus instead will be on isolating

and characterizing the triadic responses to interactions between the two distinct forcing modes. The

forcing and response mode shapes are isolated from the phase-locked hotwire data in the following

section, and the spatial wavelengths thus obtained show similar triadic consistency in streamwise

wavenumber (kx) space along with frequency (f) space.



47

4.2 Synthetic Modes Characterization

The three-component decomposition of equation 3.1 is extended in the present case to isolate the

two forcing and the two triadic response modes. The total time resolved velocity U is written as

U(y, t) = U(y) + u(y, t)

= U(y) + ũ1(y, t) + ũ2(y, t) + ũ3(y, t) + ũ4(y, t) + u′(y, t).

(4.1)

Here ũ1 and ũ2 are organized wave components corresponding to forcing mode wavenumbers ω̃1

and ω̃2, and ũ3 and ũ4 are organized wave components corresponding to triadic response mode

wavenumbers ω̃3 and ω̃4. The turbulent fluctuations over the mean and four wave components are

denoted by u′. Similar to equation 3.2, the wave components are written in the following general

form:

ũ1 (x, y, z, t) =
1

2
û1 (y) e i ( [k̃x1+iβ1]x+ k̃z1z− ω̃1t ) + c.c.

ũ2 (x, y, z, t) =
1

2
û2 (y) e i ( [k̃x2+iβ2]x+ k̃z2z− ω̃2t ) + c.c.

ũ3 (x, y, z, t) =
1

2
û3 (y) e i ( [k̃x3+iβ3]x+ k̃z3z− ω̃3t ) + c.c.

ũ4 (x, y, z, t) =
1

2
û4 (y) e i ( [k̃x4+iβ4]x+ k̃z4z− ω̃4t ) + c.c.

(4.2)

The spatial wavenumbers k̃x, k̃z, temporal wavenumbers ω̃, and decay rates β in the above equations

are all real quantities. Complex amplitudes û (y) contain magnitude and phase information of the

synthetic modes with wall-normal distance.

The phase-averaging procedure outlined in section 3.2 was followed here to individually extract

the above four wave components from the velocity signal u(y, t). At each measurement location, the

time-resolved signal u(t) is first filtered through a narrow band-pass Fourier filter (10 Hz bandwidth)

centered around the frequency of interest, and then phase-averaged over multiple multiple cycles;

cycle counts of 1100, 2700, 3900, and 6700 were used for frequency components of 15 Hz, 35 Hz, 50 Hz,

and 85 Hz respectively. It is to be noted that higher frequencies afford a greater number of oscillation

cycles for a data record with fixed number of samples. The two frequency components of the

encoder signal h(t) (section 2.2.2) provide reference phases to coherently construct the mode shapes

ũ1(y, t), ũ2(y, t) corresponding to the two forcing frequencies, and the square of the encoder signal

h2(t) is used to obtain reference phases to coherently construct the mode shapes ũ3(y, t), ũ4(y, t)
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corresponding to the two response frequencies. Following the discussion in section 3.2.1, the two

forcing modes (and the resulting response modes) excited by the spanwise-constant perturbation

can be nominally treated as two dimensional. This allows us to estimate the wall-normal velocity

component ṽ for the modes using experimentally measured ũ and the continuity equation, written

for each of the modes as

∂ũ

∂x
+

∂ṽ

∂y
= 0 ,

=⇒ ṽ =

∫ y

0

(
−∂ũ
∂x

)
dy .

(4.3)

Estimates of ṽ allows for the complete calculation of the non-linear forcing exerted by the two forcing

modes, this aspect will be dealt with in detail later in section 4.4.

Phasemaps of ũ and ṽ constructed using the above described procedures at station-1 (x = 2.7 δ1)

are shown in figure 4.5 for the two forcing modes, and in figure 4.6 for the two response modes.

The two forcing modes in figure 4.5 are found to be very similar in their amplitude and phase

behavior. This is not entirely surprising given that the two modes were forced with equal amplitude

perturbations and their frequencies are close, hence the flow response to the wall perturbation can be

expected to be similar for both components. The two triadic response modes in figure 4.6 however

show significantly different behavior in streamwise velocity mode shapes ũ. Starting at the wall, ũ3

has a backward tilt in time t (forward in streamwise direction x) followed by an abrupt phase jump

of π radians at y ≈ 0.4 δ. The direction of tilt is then found to be reversed above the phase jump

location. In contrast, ũ4 is vertically aligned for the entire height and exhibits a π radians phase

jump at the edge of the boundary layer.

The contrasting behavior between the two triadic response modes can be attributed to a combi-

nation of two factors. Firstly, as will be seen in the following section, the two modes have disparate

streamwise length scales. The difference response mode ũ4 is found to be extremely long with a

streamwise wavelength of ≈ 50 δ; confinement effects of the wind tunnel test section become sig-

nificant at these length scales in determining the mode behavior. In addition to this experimental

limitation, it is important to note that the non-linear forcing from the two forcing modes which

drives the sum and difference wavenumber response modes is different (see section 4.4), and hence

differences in the response behaviors are also to be expected.

The spatial wavelengths and wavespeeds are estimated in the following section to complete the

characterization of the synthetic scales and model them as normal spatio-temporal modes.
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Figure 4.5: Phasemaps of ũ(y, t) (left panel) and ṽ(y, t) (right panel) over one temporal period
of oscillation for the two forcing modes at station-1. Top and bottom panels show data for forcing
modes 1 and 2 respectively, in raw velocity units (m/s). Solid curves are contour levels at ũ, ṽ
= 0, and dashed horizontal lines indicate the critical layer locations yc for the respective modes
on all panels. It is to be noted that constant phase shifts were applied at wall-normal locations
to ũ1 and ũ2 for better visual presentation such that the mode variation in y appears continuous.
Corresponding phase shifts were also applied to ṽ1 and ṽ2 to preserve the phase relationship between
ũ and ṽ dictated by the continuity equation.
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Figure 4.6: Phasemaps of ũ(y, t) (left panel) and ṽ(y, t) (right panel) over one temporal period of
oscillation for the two triadic response modes at station-1. Top and bottom panels show data for
response modes 3 and 4 respectively, in raw velocity units (m/s). Solid curves are contour levels at
ũ, ṽ = 0, and dashed horizontal lines indicate the critical layer locations yc for the respective modes
on all panels. It is to be noted that constant phase shifts were applied at wall-normal locations
to ũ3 and ũ4 for better visual presentation such that the mode variation in y appears continuous.
Corresponding phase shifts were also applied to ṽ3 and ṽ4 to preserve the phase relationship between
ũ and ṽ dictated by the continuity equation.
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4.2.1 Normal Mode Wavenumbers and Triadic Responses in

Wavenumber Space

Mode 1 (50 Hz forcing mode)

Stations λ̃x1/δ1 β1 δ1

1-2 14.6 0.17

2-3 15.8 0.18

Mode 2 (35 Hz forcing mode)

Stations λ̃x2/δ1 β2 δ1

1-2 19.8 0.19

2-3 19.5 0.17

Mode 3 (85 Hz response mode)

Stations λ̃x3/δ1 β3 δ1

1-2 8.5 0.15

2-3 9.6 0.17

Mode 4 (15 Hz response mode)

Stations λ̃x4/δ1 β4 δ1

1-2 54.2 0.18

2-3 59.2 0.19

Table 4.1: Streamwise wavelengths λ̃x and decay rates β for the synthetic forcing modes (1 and 2)
and triadic response modes (3 and 4) estimated using data between stations-1 and -2 (∆x = 0.9 δ1),
and stations-2 and -3 (∆x = 1.8 δ1).

The procedure followed in section 3.2.1 is repeated here separately for each of the two forcing

and two response modes to estimate their streamwise wavelengths and decay rates, and the results

are shown in table 4.1. With this information, the synthetic scales can now be modeled as spatio-

temporal modes, with the wavenumber triplet k̃ = (k̃x, k̃z, ω̃) for each mode written as:
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• Forcing modes:

k̃1 =
(

0.43 δ−1, 0, 0.24U∞δ
−1 ) ; k̃2 =

(
0.32 δ−1, 0, 0.17U∞δ

−1 ) .
• Response modes:

k̃3 =
(

0.74 δ−1, 0, 0.41U∞δ
−1 ) ; k̃4 =

(
0.12 δ−1, 0, 0.07U∞δ

−1 ) .
It is worth noting again at this point that k̃z is nominally set to zero for the above modes since the

wall perturbation is constant along the spanwise direction. However, the finite spanwise extent of the

perturbation rib and the end effects caused by lateral walls of the wind tunnel test section probably

induce a weak 3D nature in practice. Also, the ‘locally parallel’ approximation for the boundary

layer may not hold well for the difference response mode ũ4 given its extremely long streamwise

wavelength.

With the above experimental limitations notwithstanding, it is interesting to see that triadic

consistency between the forcing and response modes also holds in streamwise wavenumbers along

with temporal wavenumbers. That is, k̃x3 = 0.74 δ−1 ≈ k̃x1 + k̃x2
(
= 0.75 δ−1

)
and k̃x4 =

0.12 δ−1 ≈ k̃x1 − k̃x2
(
= 0.11 δ−1

)
; the slight differences are within the experimental uncertainty

involved in estimation of the spatial wavelengths (see table 4.1). Given the quadratic non-linearity

in the governing Navier-Stokes equations, the non-linear wavenumber responses resulting from two

interacting modes k̃1, k̃2 are expected to be of the form k̃3 = k̃1 + k̃2 and k̃4 = k̃1 − k̃2 . The

present experimental results serve as a unique demonstration of such interactions in a fully turbulent

wall-bounded flow.

4.2.2 Wavespeeds and Critical Layers

c̃1 c̃2 c̃3 c̃4

0.56U∞ 0.53U∞ 0.55U∞ 0.58U∞(
+0.04U∞/− 0.05U∞

) (
+0.02U∞/− 0.01U∞

) (
+0.08U∞/− 0.07U∞

) (
+0.06U∞/− 0.04U∞

)
Table 4.2: Wavespeed estimates (and uncertainty margins) for the synthetic modes.

Wavespeeds (c̃ = ω̃/k̃x) of the synthetic modes calculated from the above spatio-temporal

wavenumbers are shown in table 4.2. It is observed that the two forcing modes excited by the wall

perturbation propagate downstream at nearly the same rate, i.e. c̃1 ≈ c̃2. The two spatio-temporal

modes can thereby be interpreted as being part of a single physical coherent structure generated by
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the perturbation, and this structure propagates downstream at a wavespeed ≈ 0.55U∞. The two

triadic response modes, by implication, also propagate downstream at nearly the same wavespeeds;

this is observed in table 4.2 where c̃3 ≈ c̃4. The flow therefore consists of two dominant forcing modes

and two resulting triadic response modes, and this four-mode structure possesses a good degree of

coherence in space and time as it propagates downstream of the perturbation. It is to be noted that

the wavespeed c̃ = 0.59U∞ of the single-mode structure in the previous experiment (section 3.2.1)

also matches the above observations within measurement uncertainties. Observations from these two

experiments, and also the earlier work of Jacobi & McKeon (2011b), suggest that the boundary layer

flow is receptive to a structure with c̃ ∼ 0.5U∞ when subject to dynamic forcing from the wall.

As noted earlier, a more detailed study covering a wider parameter space in terms of rib amplitude,

frequency, and flow Reynolds number is required to understand the complete dynamics of the flow

response to wall perturbations and verify the above hypothesis.

yc1 yc2 yc3 yc4

0.067 δ 0.050 δ 0.055 δ 0.082 δ

(+0.034 δ/− 0.025 δ) (+0.011 δ/− 0.004 δ) (+0.077 δ/− 0.021 δ) (+0.062 δ/− 0.027 δ)

Table 4.3: Critical layer estimates (and uncertainty margins) for the synthetic modes.

Using the above wavespeed information, the estimated critical layer locations for each of the

four modes are shown in table 4.3. The variation in λ̃x between stations 1-2 and 2-3 seen from

table 4.1 were used to arrive at the uncertainty margins in tables 4.2 and 4.3. As noted previously,

slight uncertainty in the estimation of c̃ result in a significant change to yc. The above critical layer

locations are indicated in all relevant plots by dashed lines throughout this chapter.

4.3 Phase Relations in Scale Interactions

Having completed the characterization of the synthetic modes, we now examine the phase relations

between various scales in the flow. We begin by briefly considering the bulk large- and small-

scale phase relationship using the statistical measures of skewness (S) and amplitude modulation

coefficient (R), discussed in detail in the previous chapter (see section 3.3). This is followed by

detailed considerations of specific phase relations in interactions of isolated scales of interest.
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Figure 4.7: Skewness S (round markers) and amplitude modulation coefficient R (square markers)
profiles for flow with double-mode forcing at station-1. Canonical flow skewness (dash-dot grey line)
and amplitude modulation coefficient (solid grey line) data, and single-mode forced flow skewness
(dash-dot black line) and amplitude modulation coefficient (solid black line) data from figure 3.6 are
also shown for comparison.

4.3.1 Large- and Small-Scale Interactions

Calculation of R requires a filter cut-off selection to separate velocity fluctuations into large- and

small-scales. From the power spectral data in figure 4.2, it can be seen that a clear separation

between scales is harder to achieve in the present case in comparison with the previous single-mode

experiment. The narrow-band corresponding to the synthetic response mode at ω̃3 = 0.41U∞δ
−1

grazes the edge of the energetic small-scale near-wall region. To ensure classification of the synthetic

modes as part of large-scale activity, the filter cut-off λγ in the present case was set at 3 δ. Scale-

mixing to some degree is unavoidable with the choice of λγ = 3 δ, but this has no significant

bearing on the broad conclusions drawn from the following analysis. As previously demonstrated

(section 3.3.4 and figure A.2), the correlation coefficient R is fairly insensitive to the choice of filter

cut-off λγ ; more detailed investigations of the robustness of the correlation coefficient to the exact

cut-off choice can be found in Mathis et al. (2009a), Chung & McKeon (2010), and Jacobi & McKeon

(2013).
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Figure 4.7 shows data for S and R from the present double-mode forcing experiment, along with

previous data from canonical and single-mode forcing flows for comparison. With overall increase in

the strength of synthetic large-scale activity in the present case relative to the single-mode forcing

flow, a stronger ‘modulation’ effect is to be expected. This is seen in the form of relative increase

in values of S, R near the wall, and relative decrease in values of S, R away from the wall in the

wall-normal region where the synthetic modes are active.

4.3.2 Isolated-Scale Interactions

The following analysis is aimed at understanding interactions of a specific scale with all other scales

of turbulence that are in direct triadic coupling. To begin with, we reconsider the analysis of

section 3.4 where the nature of direct coupling between the single synthetic scale ũ, at wavenumber

k̃, and all pairs of small-scale triadic wavenumbers km, kn such that kn − km = k̃ was investigated.

The correlation coefficient Ψ between the single scale ũ and the function Ẽ = ũ2S , which was shown

to represent a physical envelope of all triadic small scales, was used to infer the phase relationship

in the interaction between the two quantities. Note that the ability to isolate the organized wave

component associated with the synthetic scale from the turbulent signal allows for the study of a

specific set of interactions associated with that scale, viz. the coupling between ũ and Ẽ in that case.

A straightforward extension of this idea can be used to understand the phase relations between

an isolated scale and all the associated triadic interactions at that scale. In the context of the single-

mode forcing experiment, consider the function ũ2 (denoted by R̃), which represents the square of

the velocity fluctuations u phase-averaged with respect to the input forcing signal. In comparison

to Ẽ , a broader class of triadic interactions over all wavenumbers km, kn such that kn ± km = k̃ is

captured by the quantity R̃. Note that no scale restrictions are imposed on the choice of km, kn

in the calculation of R̃, i.e. in comparison with Ẽ the small-scale filter on u is removed before the

squaring and phase-averaging procedure. A correlation coefficient Φ, similar to Ψ (equation 3.13),

can then be defined to quantify the phase relationship between ũ and R̃; Φ is written as

Φ =

〈
ũ R̃

〉
〈
ũ2
〉1/2〈

R̃2
〉1/2 . (4.4)

Φ (y) calculated for flow with single-mode forcing is shown in figure 4.8, along with Ψ (y) (shown

previously in figure 3.8) for comparison. It is seen that the profile of Φ (y) closely matches that

of Ψ (y) in the wall-normal region where the synthetic mode is energetically active. This suggests
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Figure 4.8: Correlation coefficient Φ (y) (square markers) and normalized synthetic mode energy
〈(ũ)2〉 (y) / 〈(ũ)2〉max, denoted by |ũ| (solid line), at station-1 for flow with single-mode forcing. The
dash-dot lines indicate the wall-normal locations where the synthetic mode energy drops to 15%
of its maximum value; the markers for Φ are highlighted in blue in the region between the 15%-
energy reference lines. Ψ (y) (round markers) from figure 3.8 are also shown in the background for
comparison.

that the phase relationship between the isolated scale and the triadic wavenumber pairs is mostly

dominated by interactions across the large- and small-scale filter. It is to be noted that R̃ is

related to a more traditionally studied quantity – the Reynolds stress; R̃ represent the oscillatory

normal streamwise component of the generalized fluctuating velocity stress tensor Tij = ui uj . In

comparison, Ẽ represents the oscillatory stress component arising from a scale-restricted velocity

signal.

Correlation coefficients Ψ and Φ discussed above are presented in the following section for each

of the two forcing modes and two response modes characterized earlier, along with additional phase

measures specific to interactions between the synthetic modes.

4.3.3 Phase Relations at Various Levels in the Interaction Hierarchy

Data from the present double-mode forcing experiment allows us for a further extension of the

above ideas to quantify specific phase relationships between the four synthetic modes. A block

diagram shown in figure 4.9 summarizes the various interactions considered here and serves as a
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Figure 4.9: A block diagram summarizing the correlation coefficients formed between the four
synthetic modes, each represented by a circle (or block). Arrows connecting the various blocks
represent scale interactions, and they are labeled by the corresponding correlation coefficient used
to quantify the interaction phase relations. All arrows are color-matched with markers in figures 4.10
and 4.11 that show the corresponding correlation coefficient data.

helpful reference. We first consider the two response modes ũ3 and ũ4, which are primarily forced by

the synthetic modes ũ1 and ũ2. Akin to the function R̃ defined above, we define the following two

quantities: R̃12-3 = ˜̃u1ũ2, which represents the product of ũ1, ũ2 phase-averaged with respect to the

reference signal for ũ3; R̃12-4 = ˜̃u1ũ2, which represents the product of ũ1, ũ2 phase-averaged with

respect to the reference signal for ũ4. It is to be noted that the product ũ1ũ2 consists of two scales

corresponding to the sum and difference wavenumbers (k̃3 = k̃1+ k̃2) and (k̃4 = k̃1− k̃2) respectively;

R̃12-3 picks out the scale at wavenumber k̃3 and R̃12-4 picks out the scale at wavenumber k̃4.

The phase relationships between ũ3 and R̃12-3, and ũ4 and R̃12-4 can then be quantified by

defining the following two correlation coefficients:

ξ12-3 =

〈
ũ3 R̃12-3

〉
〈
ũ23

〉1/2〈
R̃2

12-3

〉1/2 ;

ξ12-4 =

〈
ũ4 R̃12-4

〉
〈
ũ24

〉1/2〈
R̃2

12-4

〉1/2 .

(4.5)

In comparison with Φ (equation 4.4), which is measure of the phase between a single scale and all

the triadically consistent wavenumber pairs, ξ12-3 and ξ12-4 provide a measure of the phase between
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ũ
3
|

10
−2

10
−1

10
0

−1

−0.5

0

0.5

1

y/δ

Ψ
,
Φ
,
ξ

10
1

10
2

10
3

0

0.25

0.5

0.75

1

y+

|
ũ
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Figure 4.10: Correlation coefficients Φ3 (square markers), Ψ3 (round markers), and ξ12-3 (diamond
markers) for mode ũ3 in the top plot, and correlation coefficients Φ4 (square markers), Ψ4 (round
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indicated by dash-dot lines for reference. Data markers in this region where the synthetic mode is
energetically active are highlighted in color.
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ũ
2
|

yc2

Mode 2

yc1

Mode 1

Figure 4.11: Correlation coefficients Φ1 (square markers), Ψ1 (round markers), ξ23-1 (diamond
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the response modes and just the two forcing modes. From the general form of the synthetic mode

velocities in equation 4.2, the above correlation coefficients can easily be reduced to the form

ξ12-3 = cos(∠û1 + ∠û2 − ∠û3),

ξ12-4 = cos(∠û1 − ∠û2 − ∠û4),

(4.6)

where ∠û denotes the phase of the complex mode amplitude û. Figure 4.10 shows the correlation

coefficients ξ12-3, Ψ3, Φ3 for mode 3, and ξ12-4, Ψ4, Φ4 for mode 4. It is to be noted the procedures

described earlier to calculate Ψ, Φ for the single-mode forcing experiment is implemented here for

modes 3 and 4 separately to obtain Ψ3, Φ3, and Ψ4, Φ4 respectively.

Similar correlation coefficients are also written for each of the two forcing modes as

ξ23-1 =

〈
ũ1 R̃23-1

〉
〈
ũ21

〉1/2〈
R̃2

23-1

〉1/2 , ξ24-1 =

〈
ũ1 R̃24-1

〉
〈
ũ21

〉1/2〈
R̃2

24-1

〉1/2 , (4.7)

ξ13-2 =

〈
ũ2 R̃13-2

〉
〈
ũ22

〉1/2〈
R̃2

13-2

〉1/2 , ξ14-2 =

〈
ũ2 R̃14-2

〉
〈
ũ22

〉1/2〈
R̃2

14-2

〉1/2 . (4.8)

Here ξ23-1 and ξ24-1 quantify the phase interactions of scale ũ1 with triadic combinations of ũ2ũ3

and ũ2ũ4 respectively. Similarly, ξ13-2 and ξ14-2 quantify the phase interactions of scale ũ2 with

triadic combinations of ũ1ũ3 and ũ1ũ4 respectively. In terms of the complex mode amplitude phase,

the above coefficients can be reduced to the form

ξ23-1 = cos(∠û3 − ∠û2 − ∠û1), ξ24-1 = cos(∠û2 + ∠û4 − ∠û1),

ξ13-2 = cos(∠û3 − ∠û1 − ∠û2), ξ14-2 = cos(∠û1 − ∠û4 − ∠û2).

(4.9)

Straightforward comparisons of equations 4.6 and 4.9 lead to the following simple relationships

between the various phase measures

ξ12-3 = ξ23-1 = ξ13-2 ,

ξ12-4 = ξ24-1 = ξ14-2 .

(4.10)

For a given set of three triadically consistent modes, {ũ1, ũ2, ũ3} or {ũ1, ũ2, ũ4}, the (unsigned)

phase difference between the oscillatory Reynolds stress arising from any two of the three modes in
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the triad and the velocity response (the third mode) is the same. Figure 4.11 shows the correlation

coefficients Ψ1, Φ1 for mode 1, and Ψ2, Φ2 for mode 2. As noted above, the procedure to calculate

Ψ, Φ is implemented for modes 1 and 2 separately to obtain Ψ1, Φ1, and Ψ2, Φ2 respectively. Data

for ξ12-3 and ξ12-4 (from figure 4.10) are shown again in both plots (labeled as ξ23-1, ξ24-1 in the top

plot, and ξ13-2, ξ14-2 in the bottom plot) for completeness.

Figure 4.12: A block diagram summarizing the correlation coefficients formed at various levels
in the scale interaction hierarchy. The outer blue circle, or block, represents the entire system
containing all the scales of turbulent fluctuations, and the inner red block is a subset that represents
the small scales. The four isolated scales (synthetic modes), shown earlier in figure 4.9, are also
a subset of entire the system. Arrows connecting the various blocks represent scale interactions,
and they are labeled by the corresponding correlation coefficient used to quantify the interaction
phase relations. All arrows are color-matched with markers in figures 4.10 and 4.11 that show the
corresponding correlation coefficient data.
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The block diagram in figure 4.12 summarizes all the correlation coefficients used in this section

to quantify the phase relations involved in the interactions of isolated scales. These interactions can

be classified into a three-level nested hierarchy. At the outer level are the interactions of an isolated

scale with all the other scales (Φ). At the intermediate level are the interactions with the small

scales (Ψ). And finally, at the inner level are basic first-order interactions involving the isolated

scale and two other triadically consistent scales (ξ).

It is observed from data in figure 4.10 that the overall phase in the interactions of the two response

modes are dominated by the influence of the two forcing modes. An interesting contrast in the phase

of small-scale interactions between modes 3 and 4 is also noted, and the same is broadly attributed

to the differences in behavior of the two response modes discussed earlier. It is also interesting to

note that all the correlation coefficients ξ12-3, ξ12-4 shown in figure 4.10 (and figure 4.11) have a

value of -1, or close to -1, in the wall-normal regions of interest. This implies that the ‘Reynolds

stress’ from any two interacting scales on the third scale in a triad has a phase shift of π radians.

While this is noted here at an observational level, further analysis is needed to understand the full

significance of such consistent phase behavior between the four interacting scales.

4.4 Rank-1 Resolvent Operator Model

As a final exercise, we now examine the role of low-rank dynamics in the interactions of the four

synthetic modes. The rank-1 resolvent operator model of McKeon & Sharma (2010), briefly intro-

duced earlier in section 1.4.2, will be considered here for a forcing-response type analysis. In this

model, the governing Navier-Stokes equations for a wall-bounded turbulent flow are Fourier trans-

formed along the homogeneous directions of x, z, t with corresponding wavenumbers kx, kz, ω. This

transformation reduces the governing equations for the three-dimensional velocity field u(x, y, z, t)

to the following form at each scale k = (kx, kz, ω):

ûk = Hk f̂k. (4.11)

Here û is the velocity, H is the linear Navier-Stokes resolvent operator, and f̂ is the net contribution

at scale k from the non-linear term −(u · ∇)u in the original equations. For a given k, the term

f̂k arises from non-linear interactions of all other pairs of triadically consistent scales ka, kb such

that ka ± kb = k. Thereby f̂ can be considered as a form of endogenous forcing that drives the

dynamics associated with the linear operator H (McKeon et al., 2013). It is to be noted that the
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terms û, H, f̂ are functions of the non-homogeneous direction y. Detailed formulation of H can be

found in McKeon & Sharma (2010); Luhar et al. (2014) for a turbulent pipe, and in Moarref et al.

(2013) for a turbulent channel.

Schmidt decomposition (or singular value decomposition) was used by McKeon & Sharma (2010)

to seek a structure for the dominant forcing-response behavior dictated by the operator H. The

decomposition results in an orthogonal set of forcing and response functions (denoted by φj and ψj

respectively), referred to as singular modes, and associated singular values (denoted by σj). The

velocity response û is then represented using the first N singular modes as

ûk =

N∑
j=1

χkj σkj ψkj , (4.12)

where ψkj and σkj are the singular response modes and singular values respectively of Hk, and the

weights χkj represent the projections of f̂k onto the singular forcing modes. f̂k is written as

f̂k =

N∑
j=1

χkj φkj , where χkj =

∫
φ∗kj f̂k dy. (4.13)

McKeon & Sharma (2010) demonstrated the operator H is low-rank for a wide range of active spatio-

temporal scales k found in wall turbulence. The first singular value σk1 was found to be significantly

higher than the rest, that is σk1 � σkj for j ≥ 2, for scales k of interest. A rank-1 model, where

the velocity response is approximated as ûk ≈ σk1 ψk1 , was found to capture the key statistical

(Moarref et al., 2013) and structural (Sharma & McKeon, 2013; Luhar et al., 2014) features of wall

turbulence.

The above resolvent model is used to understand the role of low-rank dynamics in the experi-

mentally observed triadic responses that result from the interaction between the two forcing modes.

Rank-1 forcing modes φ1 = (φx, φy, φz) and response modes ψ1 = (ψx, ψy, ψz) for the experimen-

tal wavenumbers k̃3 and k̃4, along with the corresponding singular values σ1, were obtained from

the readily available turbulent channel resolvent computational code of Moarref et al. (2013), and

are shown in figures 4.13 and 4.14. The experimentally obtained u and v velocity components for

the two forcing modes (data shown in figure 4.5) are used to estimate the forcing f̂k3 and f̂k4
(at

wavenumbers k̃3 and k̃4 respectively) that arises from the interaction of modes 1 and 2 (wavenum-

bers k̃1 and k̃2); details of this calculation are provided in appendix B.1. Amplitude and phase of

the resulting estimates for f̂k3
= (fx, fy, 0)k3

and f̂k4
= (fx, fy, 0)k4

, along with the experimental

velocity responses ũ3 = (ũ3, ṽ3, 0) and ũ4 = (ũ4, ṽ4, 0) (from figure 4.6), are also shown in the
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figures with the resolvent data. It is to be noted that the resolvent modes obtained from the operator

H are normalized to contain unit energy. Therefore the experimental and resolvent data magnitudes

in figures are normalized by their respective maxima to enable a direct comparison of variation with

wall-normal distance.

The experimental forcing estimates f̂k3 and f̂k4 are projected on to the respective resolvent forcing

modes φk31 and φk41 to obtain the weights χk31 and χk41:

χk31 =

∫ δ

0

φ∗k31 f̂k3
dy ; χk41 =

∫ δ

0

φ∗k41 f̂k4
dy. (4.14)

The experimental velocity response ũ3 and ũ4 are also projected on to the respective resolvent

response modes ψk31 and ψk41 to obtain weights, denoted by αk31 and αk41, which serve as indicators

for the strength of rank-1 behavior in the actual measured response. αk31 and αk41 are written as

αk31 =

∫ δ

0

ψ∗k31 û
3

dy ; αk41 =

∫ δ

0

ψ∗k41 û4 dy. (4.15)

From equations 4.12 and 4.13, we expect the above forcing and response weights to be related

through their respective singular values

αk31 = σk31 χk31 and αk41 = σk41 χk41. (4.16)

Using the data presented in figures 4.13 and 4.14, the amplitude and phase values of the LHS and

RHS terms in the above equations are found to be

• |αk31| = 33.4 , ∠αk31 = 20.5◦ and |σk31 χk31| = 15.3 , ∠(σk31 χk31) = 11.5◦,

• |αk41| = 27.4 , ∠αk41 = −131.3◦ and |σk41 χk41| = 43.5 , ∠(σk41 χk41) = −128.2◦.

While the amplitudes compare poorly, a reasonably good agreement is seen among phase values in

the above results.

It is worth noting the limitations of this analysis at this point. Firstly, the use of channel resolvent

modes for analysis of boundary layer data introduces inaccuracies, particularly in the outer region.

In addition, the forcing estimates are prone to experimental noise, as evidenced by the spurious

small-scale fluctuations in the amplitude and phase phase profiles of figures 4.13 and 4.14. This

in turn introduces projection errors in equations 4.14 and 4.15 used to estimate weights. Apart

from these practical limitations, it is also important to note that the forcing in the experiments is

externally imposed, and changing the relative phase between the two forcing modes can alter the
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Figure 4.13: Comparison of the experimental forcing and response data (red) with rank-1 resolvent
data (blue) for mode 3. Normalized magnitude (solid lines) and phase (dashed lines) variation with
wall-normal distances is shown for x and y components of forcing (top panels) and velocity response
(bottom panel). All the mode amplitudes shown here are in normalized forms.
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Figure 4.14: Comparison of the experimental forcing and response data (red) with rank-1 resolvent
data (blue) for mode 4. Normalized magnitude (solid lines) and phase (dashed lines) variation with
wall-normal distances is shown for x and y components of forcing (top panels) and velocity response
(bottom panel). All the mode amplitudes shown here are in normalized forms.



67

structure of the forcing vector f̂ . If the structure of the imposed forcing is such that a significant

portion of its energy lies orthogonal to the rank-1 mode, then a higher rank model is essential to

capture the entire forcing-response dynamics. The above exercise nonetheless serves as a useful

‘first-order’ analysis of the problem.
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Chapter 5

Concluding Remarks

The present work demonstrates the effectiveness of a forcing-response type approach towards un-

derstanding the dynamical structure of wall turbulence. Deterministic external inputs to the flow

provide the ability to highlight specific scales, and then carefully study the nature of their non-linear

coupling with other scales of turbulence. Recent advances in the study of large- and small-scale in-

teractions, and the increasingly clear significance of large-scale activity in the overall flow dynamics

served as motivation for application of forcing at the large scales.

The large- and small-scale correlation coefficient, popularly termed amplitude modulation co-

efficient, was formulated as a measure of phase among sets of scales in triadic coupling. A direct

relationship was also established with the skewness statistic of fluctuations, thereby providing a

simple explanation for the somewhat puzzling similarity noted between the two quantities in recent

literature. The natural large- and small-scale phase relations in the flow were then experimentally

altered in a deterministic manner by introducing a synthetic large-scale mode in the flow. A clear

manifestation of the synthetic mode effect was seen on small-scale wavenumber pairs in direct tri-

adic coupling. These experimental observations strongly suggest that a critical layer mechanism is

at play in determining the relative placement of scales in the flow; modeling this phenomena directly

from the governing equations is a subject of ongoing work (McKeon, Chung, Duvvuri & Jacobi).

In continuation of the single synthetic mode experiments, simultaneous forcing of two large-scale

modes in the flow offered a clear, and unique, demonstration of triadic response to direct non-linear

interactions. The study of phase relations was extended to consider specific relationships between

the synthetic forcing and response modes. A constant phase-offset behavior was noted between com-

binations of any two synthetic modes and the third mode of triadic consistency. A preliminary study

of direct triadic interactions between the synthetic modes using a rank-1 model of the Navier-Stokes

resolvent operator offered encouraging results.
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Though the natural structure of wall turbulence is predominantly three-dimensional (3D) in

space, spanwise-constant perturbations were chosen in the present work for ease in experimentation.

The next step would be to investigate the behavior of 3D synthetic modes in the flow. In addition, the

wall perturbation was used simply as a tool to excite large-scale modes in the flow, and the dynamics

associated with the perturbation itself were not explicitly investigated in the present work. It would

be worthwhile to perform a detailed study aimed at understanding the mechanism that sets the

dominant streamwise length scale in flow downstream of the perturbation. With regard to the study

of direct non-linear interactions between two synthetic modes, changing the structure of forcing that

results from such interactions by altering the relative phase between the two forcing modes could

possibly lead to interesting results, and provide further insight into the forcing-response dynamics

of the system.

The long-term scientific goal of this line of investigation is to complement modeling efforts, and

build a closed picture of the network of interacting scales in wall turbulence. At that point, the

open question from an engineer’s perspective would be the following: is it possible to design and

implement smart external inputs to robustly alter the state of turbulence in desirable ways?
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Appendix A

A.1 Skewness and Amplitude Modulation Coefficient

Skewness Triple Sum

With the use of the following trigonometric identity

cos(a) cos(b) cos(c) =
1

4
{cos(−a+ b+ c) + cos(a+ b− c) + cos(a− b+ c)− cos(a+ b+ c)}, (A.1)

equation 3.4 is written as

σ3S =

∞∑
l=1

∞∑
m=1

∞∑
n=1

αlαmαn
4

×

{ 〈 cos[ (−kl + km + kn)x+ (−φl + φm + φn) ] 〉 + 〈 cos[ (kl + km − kn)x+ (φl + φm − φn) ] 〉

+ 〈 cos[ (kl − km + kn)x+ (φl − φm + φn) ] 〉 − 〈 cos[ (kl + km + kn)x+ (φl + φm + φn) ] 〉 }.

(A.2)

Noting that 〈cos(kx + φ)〉 = 0 if k 6= 0, it is easy to see that the non-zero contributions from the

above triple sum come from combinations of kl, km, kn only if they are triadically consistent. A

distinction is made between the two types of triadic interactions:

• kl < km < kn with kl + km = kn, i.e. sets of triads {kl, km, kn} with kl 6= km 6= kn;

• kl = km = kn/2, i.e. pairs of wavenumbers {kl, kn} with kn = 2kl.

For a given set of triadic wavenumbers {kl, km, kn}, we get six non-zero contributions of the form

cos(φl + φm − φn) from the triple sum, and only three non-zero contributions when wavenumbers

pairs {kl, kn} with kn = 2kl are considered. This gives the multiplicative factors of 6 and 3 for the

first and second set of RHS terms respectively in equation 3.5.
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Figure A.1: A comparison of the amplitude modulation coefficient R calculated using two different
envelope functions for the same experimental data set (with a single synthetic large-scale mode at
x = 2.7 δ1). Dashed curve was obtained using

√
E(x) as the envelope function following Mathis

et al. (2009a), and the solid curve was obtained using E(x) per the present description.

10
−2

10
−1

10
0

−1

−0.75

−0.5

−0.25

0

0.25

0.5

y/δ

R
(y
)

10
1

10
2

10
3

y+

Figure A.2: A comparison of the amplitude modulation coefficient R calculated using five different
large and small scale filter cut-offs (λγ) for the same experimental data set (with a single synthetic
large-scale mode at x = 2.7 δ1). The figure demonstrates the robustness of R to the exact choice of
the filter cut-off. Plot legend: blue curve, λγ = 4 δ; cyan curve, λγ = 4.5 δ; black curve, λγ = 5 δ;
yellow curve, λγ = 5.5 δ; red curve, λγ = 6 δ.
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Envelope Function E and Covariance 〈 ELuL 〉

Noting thatH [cos(x)] = sin(x), whereH (·) denotes the Hilbert transform, we have from equation 3.6

H [uS(x)] = αγ sin(kγx+ φγ) . . .+ αm sin(kmx+ φm) . . .+ αn sin(knx+ φn) + . . . . (A.3)

The envelope function E for the small-scale signal uS is then given by

E(x) = u2s(x) +H2(x)

=

∞∑
m=γ

α2
m +

∑
∀m,n |

kγ<km<kn

2αmαn{sin(kmx+ φm) sin(knx+ φn) + cos(kmx+ φm) cos(knx+ φn)}.

(A.4)

Removing the mean term from the above expression and using the trigonometric identity sin(a) sin(b)+

cos(a) cos(b) = cos(b− a), E is re-written as

E(x) =
∑
∀m,n |

kγ<km<kn

2αmαn cos[(kn − km)x+ (φn − φm)]. (A.5)

Prior to correlating E(x) with uL(x), we large-scale-pass E(x) through the spatial filter with cut-off

at kγ . This implies that filtered E(x), denoted by EL(x), and uL(x) have spectral content in the

same wavenumber range, i.e. 0 to kγ . EL(x) is then written as

EL(x) =
∑
∀m,n |

0<kn−km<kγ

2αmαn cos[(kn − km)x+ (φn − φm)]. (A.6)

We now correlate EL(x) and uL(x); their covariance is given by

〈 ELuL 〉 = 〈 {
∑
∀m,n |

0<kn−km<kγ

2αmαn cos[(kn − km)x+ (φn − φm)] } {
γ−1∑
l=1

αl cos(klx+ φl) } 〉. (A.7)

Using the trigonometric identity 2 cos(a) cos(b) = cos(a− b) + cos(a+ b), we have
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〈 ELuL 〉 =∑
∀ l,m,n |
0<kl<kγ

0<kn−km<kγ

〈 αlαmαn{ cos[(kl + km − kn)x+ (φl + φm − φn)] + cos[(kl − km + kn)x+ (φl − φm + φn)] } 〉.

(A.8)

Noting again that 〈sin(kx + φ)〉 = 0 if k 6= 0, and that kl − km + kn is always positive, it is easily

seen that the non-zero contributions to the covariance come from combinations of kl, km, kn only if

they are triadically consistent, i.e. kn − km = kl. Hence, the covariance is written as a triple sum

among all triadic sets of kl, km, kn with the condition that 0 < kl < kγ and km, kn > kγ

〈 ELuL 〉 =
∑
∀ l,m,n |

kn−km=kl
0<kl<kγ
km,kn>kγ

αlαmαn cos(φl + φm − φn). (A.9)

Equation 3.8 then follows from the above expression for the covariance.

A comparison of the amplitude modulation coefficient R calculated using two slightly different

techniques discussed in section 3.3.2 is presented in figure A.1. As expected, differences in the values

of R are minimal. The robustness of R to the exact choice of the filter cut-off (λγ), mentioned in

section 3.3.4, is demonstrated in figure A.2 using experimental data.

A.2 Triadic Small-Scale Envelope

For a specific set of small-scale triadic wavenumbers km, kn with a velocity signal umn = αm cos(kmx+

φm) + αn cos(kmx+ φm), an envelope function is written as

Amn (x) = u2mn(x) +H2(x)

= α2
m + α2

n + 2αmαn{cos(kmx+ φm) cos(knx+ φn) + sin(kmx+ φm) sin(knx+ φn)}.

(A.10)

Removing the mean terms and using the triadic condition, the above expression gives equation 3.11

Amn (x) = 2αmαn cos[(kn − km)x+ φn − φm]

= 2αmαn cos[ k̃x+ φn − φm ].
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Now considering the quantity ũ2S = Ẽ (square of the small-scale signal uS phase-averaged with

respect to the input forcing that generates the synthetic scale). Recollecting uS from equation 3.6

as

uS = αγ cos(kγx+ φγ) + . . .+ αm cos(kmx+ φm) . . .+ αn cos(knx+ φn) . . . ,

we have

u2S =
∑
∀m,n |

kγ<km, kn

αmαn cos(kmx+ φm) cos(knx+ φn)

=
∑
∀m,n |

kγ<km,<kn

αmαn { cos [(kn − km)x+ (φn − φm)] + cos [(kn + km)x+ (φn + φm)] }.
(A.11)

And finally, the phase-averaging procedure picks out from u2S the k̃ components that arise when the

triadic condition k̃ = kn − km is satisfied. This gives equation 3.12

Ẽ =
∑
∀m,n |

kn−km=k̃
km,kn>kγ

αmαn cos( k̃x+ φn − φm ).
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Appendix B

B.1 Forcing from Two-Mode Interactions

Consider the three-dimensional velocity field u12 = (u12, v12, w12) consisting of only two scales –

the 2D forcing modes at wavenumbers k̃1 and k̃2. We write

u12 = ũ1 + ũ2 =
1

2
û1 (y) e i ( k̃x1x− ω̃1t ) +

1

2
û2 (y) e i ( k̃x2x− ω̃2t ) + c.c.,

v12 = ṽ1 + ṽ2 =
1

2
v̂1 (y) e i ( k̃x1x− ω̃1t ) +

1

2
v̂2 (y) e i ( k̃x2x− ω̃2t ) + c.c.,

w12 = 0. (B.1)

The interaction between the two modes (scales) results in forcing f = −(u12 · ∇)u12 which consists

of two triadic components at wavenumbers k̃3 = k̃1 + k̃2 and k̃4 = k̃1 − k̃2 ,

f = −
( {

u12
∂u12
∂x

+ v12
∂u12
∂y

}
,

{
u12

∂v12
∂x

+ v12
∂v12
∂y

}
, 0

)
= f̃k3

+ f̃k4
.

The two components f̃k3
and f̃k4

of f above follow from equation B.1 as

− f̃k3
=

1

4

( {
i û1 û2 (k̃x1 + k̃x2) + (û′2 v̂1 + û′1 v̂2)

}
,
{

i (k̃x2 û1 v̂2 + k̃x1 û2 v̂1) + (v̂1 v̂2)′
}
, 0

)
e i ( k̃x3x− ω̃3t ) + c.c.

− f̃k4
=

1

4

( {
i û1 û

∗
2 (k̃x1 − k̃x2) + (v̂1 û

∗′
2 + û′1 v̂

∗
2)
}
,
{

i (k̃x1 û
∗
2 v̂1 − k̃x2 û1 v̂∗2) + (v̂1 v̂

∗
2)′
}
, 0

)
e i ( k̃x4x− ω̃4t ) + c.c.
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Note that (·)′ and (·)∗ in the above expressions denote d(·)/dy and complex conjugate respectively.

f̃k3
and f̃k4

calculated using experimental data for ũ1, ṽ1, ũ2, ṽ2 are shown in figures 4.13 and 4.14.
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