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Abstract

This thesis presents a topology optimization methodology for the systematic design of op-
timal multifunctional silicon anode structures in lithium-ion batteries. In order to develop
next generation high performance lithium-ion batteries, key design challenges relating to the
silicon anode structure must be addressed, namely the lithiation-induced mechanical degra-
dation and the low intrinsic electrical conductivity of silicon. As such, this work considers
two design objectives of minimum compliance under design dependent volume expansion, and
maximum electrical conduction through the structure, both of which are subject to a constraint
on material volume. Density-based topology optimization methods are employed in conjunc-
tion with reqularization techniques, a continuation scheme, and mathematical programming
methods. The objectives are first considered individually, during which the iteration history,
mesh independence, and influence of prescribed volume fraction and minimum length scale are
investigated. The methodology is subsequently extended to a bi-objective formulation to si-
multaneously address both the compliance and conduction design criteria. A weighting method
is used to derive the Pareto fronts, which demonstrate a clear trade-off between the competing
design objectives. Furthermore, a systematic parameter study is undertaken to determine the
influence of the prescribed volume fraction and minimum length scale on the optimal combined
topologies. The developments presented in this work provide a foundation for the informed

design and development of silicon anode structures for high performance lithium-ion batteries.
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Chapter 1

Introduction

This chapter provides an overview of lithium-ion battery technology and summarizes the key
benefits and current limitations of improving battery performance using silicon anode structures.
Approaches to overcoming these challenges are subsequently reviewed in order to motivate
the use of topology optimization methods for the design of multifunctional high performance

silicon anode structures.

1.1 The lithium-ion battery

A battery is a collection of electrochemical cells that store electrical energy in the form of
chemical energy. There are two types of batteries: primary and secondary batteries. In
primary batteries the stored chemical energy can be converted to electricity only once, whilst
secondary batteries are rechargeable. A dominant high energy storage device is the lithium-
ion (Li-ion) battery, which is a secondary battery used to power electric cars, phones, laptops
and other portable devices. A schematic of a Li-ion cell during discharge is depicted in Figure
1.1. The Li-ion battery typically consists of a graphite anode and a lithium metal oxide
cathode, i.e., lithtum cobalt oxide (LiC00,). The electrodes have different chemical potentials,
with reactions at the anode taking place at lower electrode potentials than at the cathode. As
such, the anode and cathode are commonly referred to as the negative and positive electrodes,
respectively. The electrodes are separated by an ion-conducting electrolyte that is electrically
insulating and may be in the form of an aqueous, gel or solid solution of lithium salt in a mixed
organic solvent. Within the electrolyte is a semi-permeable membrane that separates the two

electrodes and allows ions but not electrons to pass.
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e — e —

Electrolyte \ >

Current collector
Current collector

Anode Cathode
Separator

Figure 1.1: A Li-ton cell during discharging.

Electrochemical reactions occur spontaneously when the two electrodes are connected by
an electronic load, allowing chemical energy to be converted to electrical energy by electron
transfer through the circuit from the more negative to the more positive potential. During bat-
tery discharge (Figure 1.1), lithium atoms at the anode-electrolyte interface become oxidized.
The atoms each loose an electron which travels from the anode material to the current collector
and through the external circuit where the electrons perform work, such as lighting a bulb or
powering a mobile phone, and through to the cathode. At the same time, the remaining Li
cations leave the anode, enter into the electrolyte and diffuse through the separator to the
cathode where a reduction reaction takes place. To recharge the battery, an external electri-
cal power source applies an opposite sense voltage at least as large at that measured during
discharge. The lithium atoms leave the cathode and ionize into Li-ions with the release of an
electron for each atom. These Li-ions migrate through the electrolyte and are intercalated into
the molecular structure of the anode while the electrons travel through the external circuit.
This process of intercalation is also referred to as an insertion reaction or lithiation.

A battery is typically enclosed in packaging that provides structural and chemical protec-
tion, preventing any parasitic reactions with air and moisture. Li-ion batteries are manufac-
tured in a range of shapes and sizes specific to their application. For example, coin cells are
used in small devices such as hearing aids (Oudenhoven et al.,, 2011), while microelectronics
may require a footprint area of less than several square millimetres.

Battery performance may be quantified by several characteristics. The specific capacity
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is the quantity of electricity involved in the electrochemical reaction, expressed in terms of
mass (units of Ah/kg). The specific capacity relates to the amount of lithium ions that can
be reversibly inserted and extracted during charge and discharge, and is determined by the
cell's chemistry (Ceder et al,, 2011). In practice the full capacity cannot be achieved due to
mass calculations involving non-reactive components such as binders, conducting particles,
separators, electrolytes, current collectors, substrates and packaging. Furthermore, batteries
undergo incomplete chemical reactions due to poor reactivity at the electrode/electrolyte in-
terface or active materials being unavailable to the reaction (Aifantis et al., 2010). The specific
energy density is the energy that can be derived per unit weight of the cell and is a function
of the cell’s voltage and specific capacity (units of Wh/kg). Efficient battery design requires
maximum energy density, or in other words the highest energy level for the minimum mass.
This theoretical value does not account for losses incurred in the tonic conductor, current col-
lectors or packaging, therefore practical values are typically significantly lower. For example,
the maximum theoretical specific energy density for a 4.2 V Li-ion cell with a graphite anode
ranges between 380-460 Wh/kg, while an actual specific energy density of 160 Wh/kg may be
practically achieved (Aifantis et al,, 2010). Specific power density indicates the rate at which
the energy can be delivered (units of W/kg). The cell design and kinetics determine the power
density. Capacity, energy density and power density may also be expressed in volumetric form,
which places constraints on the size rather than the weight of the battery. A trade-off exists
between achieving high energy density and high power density. For example, thicker and less
porous layers of active material in an electrode will maximize the volumetric energy density,
while thinner and more porous layers will maximize power density by allowing faster charge
transport. The cycle life is defined as the number of charge/discharge cycles the battery can
undergo before capacity falls to 80%. Current commercial Li-ion batteries can undergo over

1000 cycles and have a shelf life of 10 years (Aifantis et al., 2010).

1.2 Improving Li-ion battery performance using silicon anodes

The energy demand for portable electronic devices is ever increasing with the introduction
of multifunctional high performance devices, such as mobile phones and tablets. Graphite
is the traditional choice of anode material owing to its long cycle life, abundant material

supply and relatively low cost. However, the graphite anode also exhibits a low theoretical



4 | INTRODUCTION

specific capacity of 372 mAh/g and is prone to catching fire when operated under the wrong
conditions (Shukla & Prem Kumar, 2008). As such, investigation has been undertaken to
develop new anode materials with significantly improved performance in terms of capacity,
energy density and rate capability. An ideal material under consideration is silicon, which
can accept over four times more Li-ions than graphite during lithiation, forming Li»» Si4 at high
temperature. This behaviour corresponds to the highest known theoretical specific capacity
for Li-ion intercalation of 4200 mAh/g, over ten times higher than that of graphite (Szczech &
Jin, 2011; Teki et al., 2009). Furthermore, silicon is an abundant, inexpensive, and sustainable
material.

Clearly, the use of silicon as an anode material has huge potential to significantly improve
battery capacity. However, this excellent capacity comes at the expense of a 310% volume ex-
pansion and contraction of the silicon anode during lithium insertion and extraction, compared
to the 6-10% volume expansion observed for a graphite anode (Beaulieu et al., 2001, 2003;
Benedek & Thackeray, 2002; Kasavajjula et al., 2007; Zhang, 2011). This change in volume
results in significant detrimental effects that render the battery impractical for commercializa-
tion unless significant anode design changes are made. In terms of adverse affects, the anode
experiences extremely high compressive stresses upon lithiation due to the restrained volume
expansion, while large tensile stresses are induced due to the volume contraction upon delitha-
tion (Zhang, 2011). These stresses cause cracking and pulverization of the active particles,
leading to disconnected charge transport paths which in turn cause incomplete intercalation,
and as a result high irreversible capacity loss (Kim et al., 2005; Wachtler et al., 2002). Electro-
chemical aggregation of the active particles has also been observed due to the induced stress,
which results in an increase in diffusion length and therefore a decrease in rate capability.
This agglomeration of active particles can also trap the passivating solid-electrolyte interface
(SEI) film within the anode structure and cause a loss of electronic contact and further irre-
versible capacity loss (Li et al., 2001). Furthermore, silicon is considered a semiconductor and
as such has a low intrinsic conductivity. Therefore silicon anode structures typically exhibit
poor rate performance due to slow electron transport within the anode material (Kim et al.,
2005), which in turn reduces the energy capacity of the battery (Klankowski et al., 2013).

Therefore, in order to utilize silicon as a new anode material several important design
requirements must be met. The anode structure must adequately accommodate the volume

expansion upon lithiation, and reduce the associated induced mechanical stress. The design
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must exhibit efficient charge transport paths and small Li-ion diffusion lengths to attain good
rate capability. Experimental and numerical efforts have been undertaken by various authors
to address this anode design problem. These works are reviewed in the following two sections,

and motivate the structural optimization approach presented in this thesis.

1.3 Experimental efforts

Several methods have been adopted by experimentalists to improve the performance of Li-ion
batteries using silicon anode structures. These techniques include reducing the active particle
size to the nanometer range, and using porous structures, multiphase composites, thin film

alloys, and nanowire anodes.

1.3.1 Nanoscale structures

Nanostructured anode configurations reduce the irreversible capacity loss because the active
particles can accommodate the large stress and strain without cracking (Chan et al., 2008;
Yang et al., 1996). This is a result of size-induced ductility where decreasing the grain size to
the nanometer scale will dramatically increase the yield and fracture strengths (Meyers et al,,
2006; Yip, 1998). The nanostructures can therefore sustain considerably greater stresses before
pulverization. Furthermore, structures on the nanoscale have a significantly greater surface
area to volume ratio compared to bulk active material. This results in improved Li-ion diffusivity
due to smaller charge transport distances and therefore enhanced power capabilities (Aifantis
et al,, 2010; Scrosati & Garche, 2010). However, the enhanced surface area also increases
the risk of secondary reactions involving electrolyte decomposition, such as the formation of a

larger SEI film (Arico et al., 2005).

1.3.2 Porous structures

The large volume expansion upon lithiation may be accommodated by the voids in porous
electrode structures, as shown by Shin et al. (2005) in Figure 1.2. Porous structures can
show improved power density over microbattery structures that have thin film electrode layers.
This is because the active material is exposed to the electrolyte in all three dimensions whilst
maintaining small diffusion lengths. However, the large volume of pores will decrease the total

volumetric energy density of the cell (Zhang, 2011).
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(@) Top view (b) Side view

Figure 1.2: Porous silicon structures produced by Shin et al. (2005). Reprinted from Shin
et al. (2005), Copyright (2004), with permission from Elsevier.

1.3.3 Multiphase composites

In multiphase composites the active material is dispersed within a composite matrix, which
allows the efficient transport of both electrons and Li-ions. The host matrix buffers the large
volume change upon lithiation to maintain the structural integrity of the anode (Yang et al,
1996). Typically a thick SEI layer does not form as the matrix protects the surface of the
active material (Aifantis et al., 2010). Furthermore, the host matrix has the added effect of
reducing active particle aggregation during cycling (Yang et al, 1999). The matrix may be
electrochemically inert such as Cu, Fe or TiN, or may react with Li at a different onset potential

than the active material, such as SbSn (Zhang, 2011).

1.3.4 Thin-film anodes

Thin-film silicon anodes are of great interest for high performance Li-ion batteries. Silicon
thin films have an amorphous structure which can better accommodate Li-ions than crystalline
silicon due to the homogeneous expansion and contraction of the structure, thus achieving a
large capacity (Aifantis et al., 2010; Ohara et al., 2004). The performance of thin-film anodes
is highly dependent on the thickness of the film, deposition rate, deposition temperature,
substrate-surface roughness and post annealing treatment (Liang et al., 2014; Takamura et al,,
2006). Thinner films (< 1 pm) exhibit superior performance due to decreased lithium diffusion
length, resulting in fast charging and discharging rates, decreased electrical resistance and a
lower state of stress upon lithiation (Liang et al,, 2014; Notten et al.,, 2007). However, if the
film is extremely thin the storage capacity will be too low to be commercially viable due to

insufficient active material (Chan et al,, 2008). Thin-film silicon anodes exhibit good cycling
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performance, which may be attributed to the strong adhesion of the active material to the
conductive substrate (Liang et al,, 2014). Unfortunately a thick SEI layer may form on the
surface of thin films during initial cycling which causes irreversible capacity loss (Baggetto
et al.,, 2011).

Figure 1.3 depicts patterned thin-films produced by He et al. (2012). The gaps between
the patterns allows stress relaxation, reduces cracking, and improves cycling stability in com-

parison to a continuous thin film.

(@) Top view (b) Side view

Figure 1.3: Patterned thin films produced by He et al. (2012). Reprinted from He et al. (2012),
Copyright (2012), with permission from Elsevier.

Figure 1.4 shows novel honeycomb-structured silicon films developed by Baggetto et al.
(2011). These structures accommodate the volume change upon lithitaion by the lengthening
and subsequent buckling of the honeycomb struts. Upon delithiation, the curved structures

returned to their original shape with only slight permanent deformation.

(a) Unlithiated structure (b) Lithiated structure

Figure 1.4: Honeycomb structured films produced by Baggetto et al. (2011). Reprinted from
Baggetto et al. (2011), Copyright (2011), with permission from John Wiley and Sons.

Thin film anode structures have given promising results to date; however the deposition
process is expensive and the current methods used are not yet suitable for large scale manu-

facture.
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1.3.5 Nanowire anodes

Silicon nanowire (SINW) anodes, depicted in Figure 1.5, show excellent promise as a high
performance anode structure in a Li-ion battery. The SINW structure can accommodate the
large volume change upon lithiation without fracture or fragmentation. The large surface area
to volume ratio results in short Li-ion diffusion distances and therefore high rate capability.
The SiNWs also allow rapid charge transport through one-dimensional electronic pathways.
Furthermore, these structures can be directly connected to a current collector without the
need for binders or conducting additives, which eliminates redundant weight and allows each
nanowire to contribute to the capacity (Chan et al,, 2008; Liang et al., 2014). However, SINWs
are generally insulating and therefore require doping to make the wires conductive (Peng et al.,

2008).

(@) Top view (b) Side view

Figure 1.5: Silicon nanowires produced by Huang et al. (2009). Reprinted with permission
from Huang et al. (2009). Copyright (2009), AIP Publishing LLC.

1.3.6 Improving electrical conductivity

Improving the electrical conductivity of silicon anodes results in improved capacity retention
and cycleability of the battery. One approach to improving the electrical conductivity is to coat
the anode surface with conductive materials, such as carbon or copper, to provide an effective
electronic pathway (Kim et al., 2005; Liu et al., 2005). The carbon shell also cushions and
constrains the expansion of the silicon, minimizing pulverization and fracture. Furthermore,
the thin-film layer of carbon can suppress the decomposition of the electrolytes modifying
the SEI formation, which in turn results in a reduction of irreversible capacity (Yoshio et al,,
2002). Doping is another method commonly used to improve the electrical conductivity of the
silicon anode through the intentional introduction of impurities to vary the carrier concentration

(Szczech & Jin, 2011).
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1.4 Numerical modeling and simulation

In addition to experimental efforts, another area of investigation relating to the improvement
of silicon anode structures is the numerical modelling and simulation of electrodes and the
corresponding Li-ion battery system. These methods offer a crucial insight into battery behav-
ior and performance, such as lithiation and diffusion processes, stress analysis, degradation
phenomena, and cycling performance.

The vast majority of numerical models used to simulate electrochemical performance in Li-
ion batteries are based on the porous electrode and concentrated solution theories proposed by
Newman & Tiedemann (1975) and Doyle et al. (1993). Porous electrode models consider the
electrodes to be a combination of solid and electrolyte phases characterised by the electrolyte
volume fraction, also known as the porosity of the electrode. The model solves lithium diffusion
dynamics and charge transfer kinetics to predict the electrical response of a cell in a paired
intercalation electrode system. Porous electrode models have since been enhanced to account
for various other phenomena and configurations, for example, capacity fade (Spotnitz, 2003),
regular and random arrays of cathode particles (Wang & Sastry, 2007), and thermal effects
(Kumaresan et al., 2008).

Several studies have focussed on particle scale numerical models in order to better under-
stand the lithium insertion and extraction process within an electrode. Christensen & Newman
(20006) presented a mathematical model that calculated the volume expansion, volume contrac-
tion, concentration, and stress profiles during lithium insertion and extraction from a spherical
particle. Zhang et al. (2008) simulated intercalation induced stress and heat generation in-
side Li-ion battery cathode particles under potentiodynamic control, while Cheng & Verbrugge
(2008) examined the effects of surface mechanics on diffusion induced stresses within spherical
nanoparticles.

Lithiation processes have also been modelled for other electrode configurations. Deshpande
et al. (2010) developed a mathematical model relating surface energy with diffusion-induced
stresses in SINW electrodes. The authors found that the electrode is less prone to mechanical
degradation with decreasing nanowire radius. Bucci et al. (2014) conducted both numerical
simulations and experimental measurements to characterize the mechanical and electrochem-
ical response of thin film amorphous silicon anodes during lithiation.

Other studies have considered fracture mechanics and crack nucleation under diffusion
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induced stresses for different electrode geometries, such as a bilayer plate (Huggins & Nix,
2000), a single particle electrode (Woodford et al., 2010), a strip electrode (Bhandakkar &
Gao, 2010), and a cylindrical electrode (Bhandakkar & Gao, 2011).

Multi-scale battery cell models have been used to model the transport processes, electric
potentials, and mechanical deformations across the battery cell. The micro-scale typically
analyses a representative particle of the electrode, and homogenization methods are used to
relate the macro- and micro-scales (Salvadori et al., 2014). Kim et al. (2011) developed a multi-
scale multi-dimensional model framework to evaluate the design of stacked prismatic Li-ion
battery cells. The authors investigated the impact of different cell stack aspect ratios as well
as tab configurations and sizes. Golmon et al. (2012, 2014) presented a multi-scale numerical
model in conjunction with a mathematical optimization scheme to maximize the battery capacity
and limit electrode stress levels through the modification of the local porosities and particle

radit of the electrodes.

1.5 Topology optimization

An alternative approach to addressing the silicon anode design problem is to utilize topology
optimization methods. Topology optimization may be considered a fundamental design phase
that typically precedes both experimental techniques and numerical modelling methods. How-
ever, topology optimization is underutilized in the field of silicon anode structures, where anode
designs are typically crafted by experimentalists based on historical testing results, simulation
performance, and design intuition. As such, the anode structures are not necessarily optimal
from the outset, and there is huge potential to use this structural optimization method to pro-
duce silicon anodes with significantly enhanced performance. These optimal designs could
subsequently be used in both experimental testing and battery simulation phases.

Structural optimization methods may be classified into three broad categories, namely
sizing, shape, and topology optimization, depicted schematically in Figure 1.6. Both sizing
and shape optimization methods are used to optimize design variables of predefined structural
configurations. Sizing optimization involves optimizing specific dimensions of the structure,
such as thickness, length, or cross-sectional area, whilst the geometry (shape) and topology
of the design remain constant. The work presented by Golmon et al. (2012, 2014) in Section

1.4 is an example of sizing optimization. Shape optimization methods optimize the geometric
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(a) Sizing optimization
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b) Shape optimization
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(c) Topology optimization

Figure 1.6: The three categories of structural optimization. The initial design problems are
shown on the left, while the optimal solutions are shown on the right. Republished with per-
mission of Springer, from Bendsge & Sigmund (2003); permission conveyed through Copyright
Clearance Center, Inc.

features of the design, such as the shape of void spaces within a structure, yet the underlying
topology of the design remains unchanged.

Topology optimization is the most generalized structural optimization method. Topology
optimization is used to determine the optimal material distribution within a design domain for
a given set of loading and boundary conditions. This method determines the boundary and
connectivity of a structure, and the location and shape of voids for a given design problem.
Because the optimum design is not based on a predefined structural configuration, the solution
obtained by topology optimization is regarded as the true optimum in a design space for a
specific problem. This method is an extremely useful tool for conceptual design stages, or for
problems where there is limited physical intuition of the optimal structural design. Topology
optimization methods are implemented through the use of finite element and optimization
techniques, and typical design objectives include minimizing compliance, displacement, stress,

resonant frequencies, and eigenvalues.

1.6 Research objective and thesis outline

To summarize, the Li-ion battery is a highly successful rechargeable battery that requires sig-
nificant performance enhancement to meet the energy demands of today’s portable electronic
devices. One method to improve battery performance is to replace the traditional graphite

anode with silicon, which has the highest known theoretical specific capacity for Li-ion in-
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tercalation. However, upon lithiation the silicon anode structures undergo a 310% volume
expansion, which causes severe damage, such as pulverization of the active particles and dis-
connected charge transport paths. These detrimental effects, in addition to the low intrinsic
electric conductivity of silicon, renders these silicon anode Li-ion batteries impractical for com-
mercialization unless significant design changes are made. The design requirements are that
the silicon anode structure must adequately accommodate the volume expansion upon litihia-
tion, and reduce the associated mechanical stress. The design must also maximize electrical
conduction through the structure to compensate for the low conductivity of silicon and ensure
good rate capability of the battery.

Experimentalists have endeavoured to address these design requirements by investigating
a range of silicon structures, such as nanoscale structures, porous structures, composites, thin-
films, and nanowire structures. Their methods involve manufacturing, testing, and iteratively
refining designs chosen by intuition, and therefore from the outset these structures are not
necessarily optimal. Additionally, numerical methods have been used to simulate the electro-
chemical performance of Li-ion battery systems. However, these models primarily use porous
electrode theory and focus on particle scale analysis, with little interest in novel architectures
or silicon anodes. Furthermore, numerical methods focus on analysing the performance of a
chosen battery configuration; therefore, these structures are also not necessarily optimal from
the outset.

Our research objective is to use topology optimization methods to determine optimal mul-
tifunctional silicon anode structures for Li-ion battery applications. Topology optimization is
the most general form of structural optimization, which is used to determine the optimal distri-
bution of material within a design domain for a given set of loading and boundary conditions.
The designs obtained by topology optimization methods are regarded as the true optimum in
a design space for a specific problem, and therefore unlike the experimental and numerical
efforts, this novel approach to the silicon anode design problem will produce structures that are
optimal from inception. We aim to develop optimal anode designs that address the structural
problems associated with the large volume expansion upon lithiation, and also the low intrinsic
electronic conductivity of the anode material. The design requirements are first considered
individually, then subsequently addressed simultaneously to produce multifunctional silicon
anode designs. These designs will provide a solid foundation for the informed design and

development of silicon anode structures, and may subsequently be used by experimentalists
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for testing, and may also be incorporated into numerical models of Li-ion battery systems.
This thesis is structured as follows. In Chapter 2 we present a literature review that surveys
the previous topology optimization work relevant to this thesis. Chapter 3 details the topology
optimization methodology and algorithm structure. We then present topology optimization
analysis and results for the design objective of minimum compliance under design dependent
volume expansion in Chapter 4, and subsequently for the design objective of maximum electrical
conduction in Chapter 5. In Chapter 6 we analyse a multi-objective topology optimization
problem that simultaneously addresses both compliance and conduction criteria. Finally, in

Chapter 7 we present a summary and outline avenues for future investigation.
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Chapter 2

Literature Review of Topology
Optimization Methods

This chapter provides a literature review of the current topology optimization methods and
applications that are relevant to this body of work. A brief introduction outlining the origins
and prevailing methods of topology optimization is followed by specific areas of interest,
including thermoelastic topology optimization, heat and electric conduction, material design,

multi-objective problem formulations, and work relating to fuel cell applications.

2.1 Origins and prevailing methods

Topology optimization was first introduced in the seminal work by Bendsge & Kikuchi (1988).
The authors presented a microstructure or homogenization based structural optimization method
that models porous structures, where the material in each element is composed of both solid
material and voids. Homogenization theory is then used to determine the effective macro-scale
properties of the periodic microstructure. The aim of the topology optimization problem is to
determine the microstructure layout that corresponds to the optimal macro-scale distribution of
material properties, such that an objective function is minimized or maximized. This method is
capable of providing bounds on the theoretical performance of composite structures. However,
a disadvantage of the homogenization method is that the evaluation of the optimal microstruc-
tures is cumbersome due to the large number of design variables. Furthermore, no definite
length scale is associated with the microstructures, resulting in complications for practical
applications.

Since the introduction of the homogenization method, topology optimization has been a
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very active area of research with the development of a range of robust and efficient methods.
Density-based methods are the most widely used topology optimization methodology. As with
the homogenization method, the domain is discretized into finite elements. However, with
density methods each element is assigned a design variable that is the density of material,
rather than a set of microstructure properties. The aim is to obtain an optimized structure that
consists of a macroscopic variation of a solid material and void such that the density may be
expressed by a 1-0 integer parametrization. To avoid numerical difficulties, density methods
utilize continuous design variables. The intermediate densities are then penalized through an
interpolation scheme, such as the Solid Isotropic Material with Penalization (SIMP) (Bendsge,
1989; Zhou & Rozvany, 1991), which steers the solution to the desired solid-void design. An
objective function such as compliance is minimized, in conjunction with imposed constraints
such as a limit on the volume of material in the final design.

Alternate topology optimization approaches include the Evolutionary Structural Optimiza-
tion (ESO) method and the level set approach. Originally developed by Xie & Steven (1993),
the ESO method identifies unnecessary or inefficient portions of a structure and subsequently
eliminates them from the finite element model. Querin et al. (2000) later introduced an addi-
tive algorithm named the Bi-directional Evolutionary Structural Optimization (BESO) which
is capable of both the removal and reintroduction of material in the structure. Unlike den-
sity methods, ESO and BESO do not relax the discrete density variables to a continuous
formulation. As such, these methods produce optimal structures with well-defined structural
boundaries without the need for post processing. However, the addition or removal of material
is based on heuristic criteria, which may not be based on sensitivities. Therefore there exists
no rigorous proof that this methods yields an optimal solution (Rozvany, 2009).

The level set method is a boundary variation method that was first applied to topology
optimization by Sethian & Wiegmann (2000). The level set method is based on an implicit
function that defines the structural boundaries, as opposed to an explicit parameterization of
the design domain using element densities. This method produces structures with distinct
boundaries; however, the optimal designs are highly dependent on the initial design. Fur-
thermore, reinitialization is required when the level set functions become too flat or too steep,

thereby reducing computational efficiency (Deaton & Grandhi, 2014).
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2.2 Thermoelastic topology optimization

Thermoelastic topology optimization problems involve both mechanical and thermal loading,
where the thermal load is inherently design dependent. Design dependent loading relates to
loads that are a function of element density, and as such vary with each iteration as the design
evolves towards the optimum solution. The design dependent variable for thermal loading is
the coefficient of thermal expansion. The change in temperature of the structure may be uniform
(design independent), or as an added complication the temperature change may also be design
dependent.

Early thermoelastic topology optimization work by Rodrigues & Fernandes (1995) utilized
the homogenization method to minimize the compliance of thermally loaded structures subject
to an isoperimetric constraint on volume. The authors considered a bi-clamped beam subject to
both mechanical loading and a uniform temperature change. This problem has been extensively
studied by numerous authors and is now considered a thermoelastic benchmark problem, much
like the Messerschmidt-Bolkow-Blohm (MBB) beam for minimum compliance problems under
pure mechanical loading (Olhoff et al.,, 1991).

The minimum compliance objective has frequently been adopted for thermoelastic structural
topology optimization. This objective minimizes a global measure of displacement and there-
fore generates a structure resistant to expansion, or maximizes the stiffness of the structure.
Xia & Wang (2008) performed minimum compliance topology optimization of thermoelastic
structures using a level set method. Gao & Zhang (2010) studied the effects of different ma-
terial interpolation schemes using the minimum compliance benchmark problem by Rodrigues
& Fernandes (1995). Additionally, Gao & Zhang (2010) introduced the concept of penaliz-
ing a thermal stress coefficient (TSC) to effectively interpolate the design dependent thermal
loading. Pedersen & Pedersen (2012) also investigated the influence of interpolation on ther-
moelastic topology optimization problems. Yan et al. (2008) proposed concurrent optimization
of both the macro and microstructure to minimize the structural compliance under combined
mechanical and thermal loads. The optimizations at the two scales are integrated into one
system using homogenization theory. Jog (1996) explored non-linear thermoelastic topology
optimization problems using the perimeter method and a compliance objective. Furthermore,
Li et al. (1999b) used the ESO method to minimize the displacement of several thermoelas-

tic structures, including the bi-clamped beam problem introduced by Rodrigues & Fernandes
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(1995).

Most of the above work considers combined mechanical and thermal loading. Typically,
the thermal loads are relatively low such that the mechanical loads dominate throughout
the optimization process. However, when there are no mechanical loads or if thermal loads
dominate, numerical difficulties may arise. Deaton & Grandhi (2013a) investigated stiffening
and stress reduction in thermal structures subject to restrained thermal expansion. The authors
considered multiple formulations, including minimum compliance using a thermal load and an
upper limit on volume fraction. This problem formulation failed to yield suitable results, with
the structure achieving zero density throughout the domain. In structural design, a reduction
in stress and deformation of mechanically loaded structures may be achieved by the strategic
addition of material to increase the stiffness of the structure. However, when the structure is
subjected to a positive temperature change, the addition of material will increase the thermal
loads, which may lead to greater deformation and stresses. Therefore, for problems where
thermal loads dominate, the minimum compliance objective will drive the solution to the lower
limit of material volume. If no lower limit is set, the solution becomes singular (zero density
throughout the domain). One solution is to prescribe both an upper and lower bound on
volume, or an equality constraint (Bruyneel & Duysinx, 2005).

For design independent or pure mechanical loading, the optimal design for minimum com-
pliance is the same as the optimal design for maximum strength (Kohn & Wirth, 2014; Pedersen
& Pedersen, 2012). However, for strength optimized thermoelastic problems, Pedersen & Ped-
ersen (2010a, 2012) questioned the validity of the minimum compliance formulation with only
an upper bound on material volume. This is due to the inactive volume constraint and the
competing nature of compliance and strength objectives which drive the design to opposite
material volumes. In order to ensure the upper volume constraint remains active and avoid
the need to treat the volume as a further design parameter, the authors suggest performing
strength optimization using a uniform energy density objective.

Optimizing for strength directly poses a significant challenge compared with other objec-
tives that use measures on the global level, such as compliance or uniform energy density.
The three primary difficulties are the sinqularity phenomenon, the local nature of stress con-
straints, and the highly non-linear stress behaviour (Bendsge & Sigmund, 2003). Deaton &
Grandhi (2013b) expanded on their previous work by investigating stress-based design criteria

for structures subject to thermoelastic loading. Specifically, they considered objective of mass
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minimization subject to a constraint on stress. In practical terms, this relates to finding the
lightest structure that does not fail. For the case of an anode in a battery where a particular
volume of material is specified in order to achieve the required energy density, the objective
of mass minimization with stress constraints becomes less relevant. Furthermore, for a specific
volume, compliance minimization is deemed to reflect the minimum stress objective adequately.
As such, this research focuses on objectives that are global in nature only, and the author
refers the reader to Le et al. (2010) and Lee et al. (2012) for further details on stress-based

topology optimization.

2.3 Heat conduction and electromagnetics

Topology optimization with the objective of maximizing heat conduction produces structures
that effectively dissipate or transmit heat generated by a source. This design problem has
been explored for a range of applications by various authors. Haslinger et al. (2002) used
the homogenization method to optimize isotropic bi-material conducting structures. Gersborg-
Hansen et al. (2006) compared heat conduction topology optimization results modelled by
the finite element method and the finite volume method. Dede (2009) utilized COMSOL
Multiphysics software and a method of moving asymptotes optimizer to investigate a benchmark
heat conduction problem involving internal heat generation and a heat sink, resulting in an
optimal ‘branching’ structure. The author then extended the analysis to a three-terminal
heat transfer and fluid flow device. Takezawa et al. (2014) considered topology optimization
of a mechanical structure that minimized material volume under both strength and thermal
conductivity constraints.

One particular area of interest has been that of multiple heat load cases, where a num-
ber of heat sources act on the structure at different times, locations, and with different heat
boundary conditions. Li et al. (1999) investigated shape and topology design for steady-state
heat conduction problems using the ESO method for both single and multiple heat load cases.
Zhuang et al. (2007) used a level set method to explore steady-state heat conduction prob-
lems subject to multiple heat load cases with the design objective of constructing an effective
transport path for heat dissipation under a given volume constraint.

Design dependent heat loads, or heat loads that depend on the material distribution, have

been a recent topic of investigation. Gao et al. (2008) used BESO method to explore steady-
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state heat conduction under both design independent and design dependent heat loads. Iga
et al. (2009) considered a total potential energy objective to determine optimally conducting
structures subject to design dependent boundary conditions of heat convection and internal
heat generation.

Heat conduction and electricity play a role in compliant mechanism topology optimization,
where the mechanism relies on the device’s own elastic deformation to transfer a motion or
force. Sigmund (2001a,b) used topology optimization to design thermally and electrothermally
driven micro actuators for use in microelectromechanical systems (MEMS). In these systems an
electrical current is converted to heat, which causes thermal strain, which then causes structural
deformation. The author considered the design objective of maximizing the deformation of a
workpiece subject to the electrical, thermal and elastic equilibrium equations, and constraints
on material volume, electrical current, and out of plane displacement . Yin & Ananthasuresh
(2002) presented a design parameterization scheme for topology optimization of MEMS made
of multiple materials, and also explored design dependent boundary conditions, namely heat
convection from the device surfaces. Li et al. (2004) designed thermally actuated compliant
mechanisms that consider the time-transient effect of heat transfer to produce the localized
thermal actuation.

Topology optimization has also been utilized for electromagnetic applications. de Lima
et al. (2007) and Mello et al. (2008) performed topology optimization to obtain conductiv-
ity image distributions in electrical impedance tomography (EIT), where EIT is an imaging
method that estimates the conductivity distribution within a body given measured voltages on
electrodes attached to the body. Petrova (2010) performed topology optimization of electro-
magnetic media described by the eddy current equations to determine the optimal design of
conductive devices that minimized the energy dissipation. Zhou et al. (2010b) presented a
level-set framework that optimized the structure of a dipole antenna, with the design objective
of more effectively receiving and reflecting electromagnetic signals formulated in terms of the
surface current and incident electric field. Nomura et al. (2007) investigated the optimization
of dielectric resonator antennas to achieve enhanced bandwidths using topology optimization

methods in conjunction with the finite difference time domain method.
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2.4 Material optimization

Material optimization methods such as the inverse homogenization method are used to de-
sign material structures with improved properties. Recall that homogenization methods involve
determining the effective macroscale properties of a composite porous material from the ho-
mogenized, or averaged, properties of a periodic microstructure defined within a unit cell
(Hassani & Hinton, 1998a,b,c). In contrast, the inverse homogenization method proposed by
Sigmund (1994) aims to find the microstructure of a material with desired macroscale physical
properties. The design problem is formulated as a minimization of the difference between the
homogenized material properties and the target material properties within a representative
volume element. The inverse homogenization method has been used for various applications,
including achieving tailored thermal conductivity (Patil et al.,, 2008; Zhou & Li, 2008a,b),
maximum fluid permeability (Guest & Prévost, 2007), generalized transport properties (Zhou
et al.,, 2012), phononic/photonic bandgap materials (Halkjeer et al., 2006; Sigmund & Jensen,
2003), negative Poisson’s ratios (Andreassen et al.,, 2014; Chen et al.,, 2001; Sigmund, 1994),
and functionally graded materials whose material properties vary gradually in one or more
specified directions (Paulino et al., 2009; Zhou & Li, 2008¢).

When performing material design using the inverse homogenization method, the two ma-
terial phases of the optimal structure are sometimes separated by a constant mean curvature
(CMC) surface. A CMC surface is one that has a mean curvature equal to an arbitrary con-
stant at every point (Zhou & Li, 2007). A minimal surface is a special case of the CMC surface
where the mean curvature is equal to zero, such as a soap bubble or the triply-periodic Schwarz

primitive (P) minimal surface (Schwarz, 1890) depicted in Figure 2.1.

/
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Figure 2.1: Unit cell of the triply-periodic Schwarz P minimal surface.
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A Schwarz P-type structure is commonly obtained if the volume fractions of both material
phases are equal, while a CMC surface separates phases of unequal volumes. Zhou & Li
(2008a) obtained a Schwarz P-type structure for the objective of maximizing thermal conduc-
tivity, as shown in Figure 2.2. The plotted elements depict the highly conductive material
phase, while the void space represents the poorly conductive material phase. Guest & Prévost
(2007) produced the same design for a maximum fluid permeability objective, where the solid
phase is represented by the structure depicted in Figure 2.2, and the fluid phase represented

by the internal void space.

Figure 2.2: Schwarz P-type structure showing the highly conductive material phase for the
objective of maximum thermal conductivity. Reprinted with permission from Zhou & Li (2008a).
Copyright (2008), Taylor & Francis.

There has been significant interest in using the inverse homogenization method to obtain
structures with maximum stiffness or minimum compliance. The first instance of designing 2D
periodic microstructures for minimum compliance using this method was by Sigmund (1994),
who minimized the weight of the base cell subject to a target constitutive elasticity tensor.
Neves et al. (2000) considered a maximum bulk modulus objective, and attained structures
similar to those designed by Sigmund (1994). The bulk modulus measures the elastic resis-
tance of a material to hydrostatic compression or expansion, thus maximizing the bulk modulus
effectively maximizes the stiffness of the structure. Sigmund (2000) studied two-phase ex-
tremal composites that incorporated layered sub-microstructures while Gibiansky & Sigmund
(2000) maximized the bulk modulus of isotropic elastic composites composed of three or more

constituent phases. Zhang et al. (2007) proposed an alternative strain energy method for the
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prediction of effective elastic properties of cellular periodic materials. Their results are in
agreement with those obtained by the above authors for the objective of maximum bulk mod-
ulus. Huang et al. (2011) designed 2D and 3D periodic microstructures with maximum bulk
or shear modulus under a prescribed volume constraint using the BESO method. Their 3D
results for a two-phase material consisting of solid and void for prescribed volume fractions of
30% and 50% are given in Figure 2.3. These structures also show some resemblance to CMC

surfaces.

(@) V; = 0.30 (b) V; = 0.50

Figure 2.3: Results for a maximum bulk modulus objective function subject to a constraint on
volume. Reprinted from Huang et al. (2011), Copyright (2011), with permission from Elsevier.

Sigmund & Torquato (1996, 1997, 1998) investigated the design of three phase isotropic
composites with extreme coefficients of thermal expansion using the inverse homogenization
method. The composites were comprised of two material phases and a void phase. The authors
considered objectives such as maximum directional thermal expansion for the application of
thermal actuators, zero isotropic thermal expansion, and negative isotropic thermal expansion,

subject to constraints such as elastic symmetry or volume fractions of the constituent phases.

2.5 Multiobjective topology optimization

Engineering design problems typically involve simultaneously optimizing several conflicting
and possibly non-commensurable (measured in different units) design criteria by which the per-
formance of the system is measured, such as compliance, heat conduction, electrical conduction,
displacement, or stress. This section reviews the recent multiobjective topology optimization

efforts that are relevant to this thesis.
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2.5.1 Compliance and heat conduction

The bi-objective formulation of minimizing compliance and maximizing heat conduction is of
particular relevance to this body of work. Chen et al. (2010) developed a topology optimization
algorithm for multifunctional 3D finite periodic structures, simultaneously addressing the max-
imum stiffness and maximum heat conductivity criteria using a weighted average method. This
optimization problem is further investigated in Chapter 6.2 for algorithm validation purposes.
In other works, Liang et al. (2010) presented a multi-objective topology optimization of 2D
steady-state diffusion flow problems based on finite volume analysis with specific emphasis on
heat conduction. Suresh (2010) developed an algorithm to trace the Pareto frontier of multi-
objective topology optimization problems involving a minimum compliance objective, based on
the concept of topological sensitivity.

de Kruijf et al. (2007) performed topology optimization with design objectives of maxi-
mum stiffness and minimum resistance to heat dissipation for the structural design of a two-
dimensional plate. The authors also performed two-dimensional material design using inverse
homogenization methods to tailor ill-ordered two-phase composites with effective thermal con-
ductivity and bulk modulus attaining their upper theoretical bounds.

Challis et al. (2008) utilized the level set topology optimization method to design three-
dimensional isotropic periodic multifunctional composites. The objective was to maximize a
linear combination of the effective bulk modulus and conductivity of a composite structure. The
authors considered a two-phase ill-ordered composite, where one phase is stiff and insulating
while the other is mechanically compliant and conductive, resulting in optimal structures similar
to Schwarz surfaces.

In related work, Guest & Prévost (2006) investigated the optimization problem of maxi-
mum stiffness and maximum fluid permeability. They also obtained Schwarz P-type optimal
structures. Chen et al. (2009) and Torquato & Donev (2004) claim that Schwarz-type mi-
crostructures are obtained when combining objectives of maximum stiffness and any transport

property using material optimization methods such as inverse homogenization.

2.5.2 Compliance and thermal expansion

Minimum compliance has also been combined with the objective of minimizing the expansion of

thermally loaded structures. Wang et al. (2011) performed three-phase topology optimization
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of a space camera supporting structure that is subject to a large thermal gradient. The authors
used a bi-objective formulation to determine the optimum structure for maximum stiffness under
a given mechanical load and minimum thermal expansion in a predefined direction. Deng
et al. (2013) performed concurrent topology optimization of both the macro and microstructure
of lightweight thermoelastic structures. In this work the authors considered the objectives
of minimizing structural compliance under mechanical loading, and minimizing the thermal

expansion of specific surfaces under thermal loading.

2.5.3 Heat conduction and electric conduction

Torquato et al. (2002) obtained Schwarz P-type structures when optimizing multifunctional ill-
ordered two-phase composite microstructures for simultaneous transport of heat and electricity.
Figure 2.4 shows the design produced by Torquato et al. (2002) for combined maximum heat
and maximum electricity objectives. The authors considered two material phases in equal
proportions where one phase (shown in red) is a good thermal conductor but poor electrical
conductor while the other phase (shown in green) is a poor thermal conductor but a good
electrical conductor. Torquato et al. (2003) showed the optimality of the Schwarz structures
for this bi-objective formulation using finite element calculations and rigorous cross-property

bounds.

Figure 2.4: Optimized microstructure for simultaneous transport of heat and electricity. The
red material phase is a good thermal conductor but poor electrical conductor while the green
phase is a poor thermal conductor but a good electrical conductor. Reprinted figure with
permission from Torquato et al. (2002), Copyright (2002) by the American Physical Society,
http://dx.doi.org/10.1103/PhysRevLett.89.266601.
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2.5.4 Electrical permittivity and magnetic permeability

Huang et al. (2012) utilized the BESO method to design ill-ordered two-phase periodic mi-
crostructures with extremal electrical permittivity and magnetic permeability. The effective
permittivity and permeability were homogenized within the periodic base cell, and these elec-
tromagnetic properties maximized subject to a constraint on volume fraction. The optimal
structures resemble Schwarz P surfaces similar to Figure 2.4. For this particular problem, the
red phase of Figure 2.4 would represent the low permeability, high permittivity material.
Zhou et al. (2010a) obtained similar results using the inverse homogenization procedure to
simultaneously maximize the permittivity and permeability of 3D metamaterial microstructures.
Zhou et al. (2010a) also designed anisotropic composites with high permittivity in one direction,
as shown in Figure 2.5. The optimal structures were cylindrical in shape, spanning the length
of the domain parallel to the direction of maximal permittivity. The cylindrical cross-sections
were not necessarily square-symmetric, depending on the permittivity of the other two principal

directions.

Figure 2.5: Optimal microstructure of a composite with anisotropic permittivity. The optimal
base cell (left), and 4 x 4 x 4 base cells with the high permittivity material only (right) for a
Vi = 0.5120. Reprinted with permission from Zhou et al. (2010a), Copyright (2010), IEEE.

2.6 Solid oxide fuel cells

There have been no instances of topology optimization methods being applied to the silicon
anode design problem. In fact, topology optimization methods have been completely under-
utilized for battery systems in general. Several authors have applied structural optimization
methods to solid oxide fuel cells (SOFCs), an entirely different electrochemical energy storage

system. These works focused on the shape optimization, rather than topology optimization, of
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cathodes or gas channels in SOFCs, typically performing only two-dimensional analysis.

Iwai et al. (2011) performed two-dimensional shape optimization using the level set method
to determine the optimal cathode-electrolyte interface shape in SOFCs. The authors consid-
ered the objective function of maximum current density for a given terminal voltage. This level
set method was coupled with a SOFC simulation to examine how interface modification af-
fected the cell's power density. It was found that a larger interface area improved the current
density of the cell.

Song et al. (2013) also performed shape optimization using topology optimization methods
in order to identify the optimal shape of a nano-composite cathode in a SOFC that minimized
the cathode’s resistance to current. The authors considered a periodic, two-dimensional con-
duction problem with design dependent ionic transfer boundary conditions and isoperimetric
constraints on the material volume and perimeter. Song et al. (2013) subsequently used topol-
ogy optimization methods to design the shape of an air supply channel in an SOFC in order
to maximize the current generation by the cathode.

Kim & Sun (2012) presented a two-dimensional density-based topology optimization for-
mulation for fluid flow to determine the optimum route for gas flow channels in the bipolar
plate of a fuel cell. An objective of the maximum mean reaction rate between the gas and an
oxidant flowing through the channel was considered, with constraints of a specified pressure
drop between the inlet and outlet in the design domain.

Zadin et al. (2013) utilized the level set method to design power-optimized microbattery
geometries. The optimization problem considered a LiCoO; cathode and a LiCs anode sep-
arated by a polymer electrolyte, with the objective of maximizing the uniform electrochemical

activity over the electrode surface area.
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Chapter 3

Methodology

This chapter details the methodology and techniques implemented in our custom three-dimensional
topology optimization code that was developed using the programming language MATLAB.
First, the problem formulation of minimum compliance is presented as an illustrative exam-
ple. Density methods and interpolation schemes are discussed, and a detailed review of the
algorithm structure is provided, including the initialization and finite element stages, regular-
ization and continuation schemes, mathematical programming methods, and post processing

techniques.

3.1 Problem formulation

A general inequality-constrained nonlinear programming problem may be written in the fol-

lowing form

minimize :  fy(x) (3.1
subjectto: fi(x) <0, i=1,...,m

min . max P
X < xp <X j=1....n,

where fp is the given objective function and f; are the constraint functions, all of which are
typically twice continuously differentiable, real-valued function. x = (xq,...,x,)] € R" is
the vector of design variables, and x/f"i” and x/"* are lower and upper bounds on the design
variable, respectively.

An illustrative example used throughout this chapter is the topology optimization prob-

lem of minimum compliance for an isotropic linearly elastic structure subject to a constraint
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on material volume. This problem formulation is a common choice for topology optimization
applications due to its stability and ease of implementation, and builds the foundation for all
analyses presented in future chapters. Let us consider a reference domain Q), where displace-
ments u are applied on a part of the boundary I, boundary tractions t are prescribed on I,

and body forces b are also considered, as shown in Figure 3.1.

N

r=r,url,

Figure 3.1: The reference domain with prescribed displacement, tractions, and body forces.

The minimum compliance objective may be defined as a minimization of force multiplied
by displacement, over admissible designs and displacement fields satisfying equilibrium. The

energy bilinear form is given by
a(u,v) = /()C[jkz(x)eij(u)ekl(v) dQ, (3.2)

which represents the internal virtual work of an elastic body at the equilibrium v and for an

arbitrary virtual displacement v (Bendsge & Sigmund, 2003). With linearized strains

eij(U) - i (6)(,- + aX,'

Introducing the load linear form,

l(u) = /Qbu dQ+/|_ tu ds, (3.4)
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the minimum compliance problem is given by (Bendsge, 1995; Bendsge & Sigmund, 1999)
min :  [(u) (3.5)
ueU,p

subject to:  a,(u,v) =I[(v), forallve U,

] p(x) dQ <V,
Q

p(x) € {0,1}.

The equilibrium equation is written in its weak, variational form. U denotes the space of
kinematically admissible displacement fields, x is a point within the domain Q, p(x) is the
pointwise volume fraction, and V is the material volume. Using a finite element discretization
for linear elasticity, the minimum compliance objective may be expressed as

min:  c(x) = Ux)TK(x)U(x) = FTU(x) (3.6)

X

subject to :  K(x)U(x) = F,

V(x)

<VmGX
Vo T £
0<x<1,

where x is the vector of element densities, c(x) is the compliance, U(x) is the global displace-

ment vector, K(x) is the global stiffness matrix, F is the global force vector, V(x) = ZN

e=1 XeVe

is the material volume, Vj is the design domain volume, and V/"?* is the prescribed volume
fraction. This objective minimizes a global measure of displacement and therefore generates
a structure resistant to expansion, or maximizes the stiffness of the structure (Penzler et al,,
2012). For design independent loads, the compliance is equal to the total elastic energy (twice
the elastic strain energy), which is the potential energy stored in a structure by elastic defor-
mation, and also is equal to work that must be done to produce this deformation (Bendsge &
Sigmund, 2003). Furthermore, strain energy measures the stress state of the structure, to some
extent (Zhang et al., 2014). If the structure deforms in a stress free state, the strain energy
tends to be zero. With design independent loads and a constrained volume, the optimal design
for minimum compliance is the same as that for maximum strength (Kohn & Wirth, 2014; Li

et al., 1999a; Pedersen & Pedersen, 2012).
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3.2 Density methods

Density-based methods are used to the solve optimization problems detailed in this thesis. In
this approach, each finite element is assigned a continuous design variable x,, representing the
material density where 0 < xo < 1. Here, the values 1 and 0 represent an element that consists
entirely of material phase a or b, respectively. Despite requiring a discrete valued or “a — b"
final design, discrete optimization problems are often ill-posed and often cannot be solved for
large scale problems. Therefore, in order to utilize derivative based mathematical programming
algorithms, this continuous design variable is employed, and interpolation schemes are then
used to penalize intermediate densities and steer the design to the desired discrete solution.
Material properties such as the Young's modulus and diffusivity are functions of the continuous
element density. For example, for the minimum compliance formulation the element material

stiffness E. may be interpolated as follows for the case of two material phases
Eo(xe) = E®) 4 T(x)(E — E®),  x. €[0,1], (3.7)

where E(@ and E®) are the Young's Moduli of the two material phases, and I'(x) is the

interpolation function. ["(x.) satisfies the following relations

ra)=1, (3.8)
ro) =0,
such that
E.(1) = E, (3.9)
E.(0) = E®)

In classical topology optimization problems, materials @ and b are solid and void, respectively.
This is a special case of the above formulation where the void material has zero stiffness,
but is implemented as a very small number to prevent singularities in the finite element
formulation, i.e., E®) ~ 0. Common interpolation schemes include the Solid Isotropic Material
with Penalization (SIMP), and the Rational Approximation of Material Properties (RAMP)

scheme, each of which will be detailed below.
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3.2.1 SIMP interpolation scheme

The SIMP interpolation scheme (Bendsge, 1989; Zhou & Rozvany, 1991), also called the

power-law approach, is a simple yet efficient interpolation method where
M (xe) = xE. (3.10)

p is the penalization parameter, typically set to a value of p > 3. Figure 3.2a shows the
SIMP interpolation function as a function of density for element e. For p = 1 there is a
linear relationship, while a further increase in the penalty parameter causes elements with
intermediate densities to have a disproportionally low interpolation function value relative
to the volume of material in that element. With the objective of maximizing stiffness of the
structure, it is therefore inefficient for the optimization algorithm to choose intermediate density
values.

Despite the non-physical nature of continuous formulations, Bendsge & Sigmund (1999)
have shown that this approach falls within the framework of microstructure models. The authors
introduced bounds on the penalty parameter based on the Hashin-Shtrikman bounds for two-
phase materials (solid and void), which allowed the material stiffness of an element to be
interpreted as the stiffness of a composite structure consisting of the two material phases.
Bendsge & Sigmund (1999) also claimed that a better computational scheme may be obtained
if the penalization parameter was increased beyond these allowable bounds. The authors
justified that the physical meaning of solutions from iterations prior to the final solution, which
may include intermediate densities, can be ignored providing a discrete solution is obtained.
Other authors, such as Bruns (2005), Le et al. (2010), and Yin & Ananthasuresh (2001) are in

agreement with this statement.

3.2.2 RAMP interpolation scheme

An alternate interpolation scheme is the RAMP scheme introduced by Stolpe & Svanberg
(2001a)
Xe

Mxe) = 0= o0 —xa)’ (3.11)

where p is the penalty factor, which typically takes a value of p = 1 — 8. This scheme is

depicted in Figure 3.2. Unlike the SIMP method, the RAMP interpolation scheme ensures a
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Figure 3.2: SIMP and RAMP interpolation schemes (left) and density ratios (right) for different
penalization values p.
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finite mass-to-stiffness ratio as the density vanishes (Figure 3.2d), and a non-zero first order
derivative with respect to element density at x. = 0. This non-zero sensitivity may help avoid
numerical difficulties for certain optimization problems, such as the difficultly of void elements

to regain material under the SIMP scheme under design dependent loading.

3.3 Algorithm structure

The topology optimization algorithm structure is depicted in the flowchart in Figure 3.3.

Initialization

v

Finite element analysis

v

Compute objective function and sensitivities

v

Regularization

v

Optimization

v

Update design variables

v

Converged?

* Yes

Post-processing

z

o
— — — — — —
— — — — — — — —

Figure 3.3: Topology optimization algorithm flow chart.

The first step is to initialize all parameters, prescribe boundary conditions, and design
independent loads. Within the iterative loop, finite element analysis is undertaken and the
objective function and sensitivities are computed. Reqularization techniques are subsequently
implemented, and optimization methods are used to update the design variables. Once the
solution has converged to an optimal design, the algorithm exits the loop and performs post-
processing, which includes design visualization and data output. The remainder of this chapter

explores these phases of the topology optimization algorithm in further detail.
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3.4 Initialization

In the initialization phase, the design domain is first discretized into N eight node hexahedral
finite elements. Each element is assigned a design variable x, that ranges from 0 < x, < 1,
with the corresponding vector of design variables x = [x1, x2, . . ., xn]”. The design variables are
initialized, typically to the prescribed volume fraction so there exists a uniform distribution of
material throughout the domain. Any non-designable elements are set, the material properties
and optimization parameters are initialized, and boundary conditions and design independent

loads are prescribed.

3.5 Finite element analysis

The first step within the iterative loop is to perform finite element analysis. Within this loop
the design dependent loads are applied, because the loads are a function of the material
layout which changes with each iteration. The global stiffness matrix K(x) and force vector F

are assembled from their corresponding element contributions

Ke(Xe) = / B/ Ce(xe)Be dQ, (3.12)

e

where B, is the element strain-displacement matrix and Ce(x,) is the constitutive matrix. Ceq(xe)
is a function of element density by way of the interpolated material stiffness given in Equation

3.7. The general element force vector including design dependent body loads is given by

fo =12 41! (3.13)

:/ NedeQ+/ N, t*dI,
Q. Ite

where f? and f! are the contribution from body forces and surface tractions, respectively. The

global displacement vector is evaluated using either a direct or iterative solver from the relation
K(x)U(x) = F. (3.14)

A full derivation of the finite element formulation for linear elasticity is provided in Appendix

A.
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3.6 Objective function and sensitivities

In this step the objective function and sensitivities are computed. Recall for the example
minimum compliance formulation with design independent loading that the objective function

may be expressed as

c(x) = Ux)TK(x)U(x) = FTU(x). (3.15)

Sensitivity analysis involves taking derivatives of the objective and constraint functions with
respect to the design variable of element x.. The sensitivities are required by the optimization
algorithm to determine whether the element density should be increased or decreased in order
to move closer to an optimal solution.

Taking the derivative of Equation 3.15 with respect to the density of element e,

0c() _ 7 oUW)
0xe Oxe

(3.16)

Now, recall the equilibrium equation

K(x)U(x) = F. (3.17)

Taking derivatives of both sides with respect to x, and rearranging for the displacement deriva-

tive yields

oU(x) _1 9K(x)
e K(x) “oxe U(x). (3.18)
Substituting Equation 3.18 into Equation 3.16
0ty 0K()
. F'K(x) Ix. U(x) (3.19)
0K (x)
- _ TZ™\7)
= —U(x) Ix. U(x).

The derivative is localized, meaning that it may be expressed in terms of element e only;
however, the effect from other element densities is hidden in the element displacement vector
(Bendsge & Sigmund, 2003),

dc(x) .
OXe

Ue(Xe). (3.20)
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The sensitivity of the volume constraint is given by

N
0 0
— (V(x) — V"X = — i 3.21
o (V(x) = V"™ Vo) % ( 2 XlVe) (3.21)
OXeVe
 0xe
= Ve,

where the element volume v, is the same for each element in a uniform mesh.

3.7 Regqularization

Regularization techniques such as filtering and perimeter control methods are used to prevent
numerical instabilities, ensure the existence of solutions and the manufacturability of optimal
designs. Numerical instabilities include checkerboarding and mesh dependence.
Checkerboarding refers to the formation of alternating solid-void elements, resulting in a
checkerboard-Llike pattern, depicted in Figure 3.4. This phenomenon occurs because topology
optimization problems are typically ill-posed (Kohn & Strang, 1986a,b,c). Improved structures
may be found by considering an increasingly smaller microstructure and, as such, the problem
in general has no solution. For example, the objective function for the minimum compliance
formulation will decrease with the introduction of more holes in a structure for a constant
material volume (Sigmund & Petersson, 1998). In other words, checkerboard structures have

an artificially high stiffness (Diaz & Sigmund, 1995).

Figure 3.4: The checkerboard problem for a cantilever beam subject to an end load. Repub-
lished with permission of Springer, from Bendsge & Sigmund (2003); permission conveyed
through Copyright Clearance Center, Inc.
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(a) 2,700 elements

SEIAESL,N

(b) 4,800 elements

oe

(c) 17,200 elements

Figure 3.5 MBB example showing mesh dependence. Republished with permission of
Springer, from Bendsge & Sigmund (2003); permission conveyed through Copyright Clear-
ance Center, Inc.

Mesh dependence refers to the generation of different topologies for different domain dis-
cretizations of the same design problem, illustrated in Figure 3.5. Without reqularization
methods, an increase in the number of elements will typically result in a structure with a
greater number of void spaces. Conversely, an increase in the number of elements of a mesh
independent design results in a smoother representation of the same optimal structure.

Filtering is a common regularization method, and has been implemented in our code.
This technique essentially sets the minimum length scale of the solution, thereby restricting
the design space and ensuring the existence of solutions to the original continuum problem.
The requirement of achieving a minimum length scale not only prevents the occurrence of
checkerboards and mesh dependence but can also ensure the manufacturability of a design
by controlling the minimum size of structural features. Two filtering methods are considered,
namely sensitivity filtering (Sigmund & Petersson, 1998) and density filtering (Bourdin, 2001;
Bruns & Tortorelli, 2001).
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3.7.1 Sensitivity filtering

The sensitivity filter modifies the sensitivity of an element to be a weighted average of the

sensitivities within a fixed neighbourhood. The filtered sensitivity may be expressed as follows,

ac 1 dc

— = Heixim—, (3.22)
Oxe  max(&, xe) Zie/\/e H.,; ieZ/\/ “ax;

where N, is the set of elements i for which the center-to-center distance A(e, i) from element

e to element i is smaller than the filter radius r, and H,; is a weight factor defined as
Hei = max(0, r — A(e, i)). (3.23)

Hei decays linearly with distance from element e, and is equal to zero beyond the filter
radius. The term & is a small positive number introduced to avoid division by zero. Figure
3.6 provides an illustrative two-dimensional schematic. The filter radius extends from the grey
center element e to form the dark blue ‘circle of influence’. The sensitivity of element e will be
a weighted average of all elements whose centre lies within this circle, colored light blue for
clarity. This concept is easily extended to three dimensions by instead considering a ‘sphere

of influence’.

// i \\
/ 21 N\
A(e,|i)
%
r\\\\
\L b4
N d

Figure 3.6: Schematic depicting the filter parameters
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3.7.2 Density filtering

An alternate regularization approach is the use of a density filter which transforms the original

densities x, to be the weighted average of the densities within a fixed neighbourhood,

e = _ > Heixi (3.24)

ZiENe Hel i€N,

The filtered densities %, are referred to as the physical densities. When a density filter
is applied, the sensitivities of the objective function are first calculated using the physical
densities X, rather than the design variables x.. The sensitivities with respect to the design
variables x; are then obtained by means of the chain rule,
oy oW ox. 1 oy
&ZZ =Y ——H (3.25)
ecN

S~ - ] jei..,
j 0Xe 0X, brerel Z[eNe Ho 0Xe

where the function W represents either the objective function ¢ or the material volume V.

3.8 Continuation schemes

Another common issue associated with topology optimization methods is obtaining locally
optimal solutions rather than globally optimal solutions. This is a result of the optimization
formulation being inherently nonconvex, and often having a large number of local minima.
Conversely, for convex optimization problems every locally optimal solution is globally optimal
and, as such, convex problems can be solved reliably and efficiently. A continuation method is
therefore used to gradually change the optimization problem from an artificial convex problem
to the original nonconvex design problem with each iteration (Bendsge & Sigmund, 2003;
Sigmund & Petersson, 1998). This is achieved by progressively increasing the penalization
factor p in Equations 3.10 and 3.11.

In our analyses, the following continuation scheme is applied: for the first 10 iterations

the penalty parameter is assigned a minimum value of

i 1, for SIMP interpolation,
p=p""= (3.26)

0, for RAMP interpolation.
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Then, from the eleventh iteration onwards, the value of p is increased by Ap every 5 iterations
until the maximum penalty value is attained. This jump in penalty value on the 11th 16th 21th,

etc., iterations is given by

0.5, for SIMP interpolation,
Ap = (3.27)

2, for RAMP interpolation,

while the maximum penalty value is typically

3, for SIMP interpolation,
p" = (3.28)

8, for RAMP interpolation.

Continuation methods are not quaranteed to result in discrete final designs, and the trajec-
tory followed by the global optimal solutions to the penalized problem may be discontinuous
(Stolpe & Svanberg, 2001b). However, the continuation approach combined with penalization

methods performs well in practice.

3.9 Mathematical programming methods

Performance of a topology optimization code in terms of convergence and efficiency is highly
dependent on the choice of optimization algorithm, or mathematical programming method. The
optimality criteria (OC), method of moving asymptotes (MMA), and the globally convergent
method of moving asymptotes (GCMMA) are used in this project. The applicability of each
method is highly dependent on the optimization problem and, as such, the methods’ charac-

teristics and formulations are detailed below.

3.9.1 Optimality criteria method

The OC method is a classical approach commonly used for minimum compliance problems with
one constraint, typically a limit on volume or mass. The foundations of the OC method were
introduced by Michell (1904). The OC method is an indirect method of optimization, where it
does not optimize the objective function directly but attempts to satisfy a set of criteria related
to the behaviour of the structure (Hassani & Hinton, 1998a). The method is formulated using a

Lagrange function composed of objective and constraint functions according to the Kuhn-Tucker
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condition,
dc(x) aV(x)
A
OXe + OXe

=0, (3.29)

where c¢(x) is the compliance objective and A is the Lagrange multiplier associated with a
constraint on volume V/(x). Bendsge (1995) constructed a heuristic updating scheme for the

design variables

max(0, xe — m), if x.Bl < max(0, xe — m),
X" =1 min(1, xe + m), if xeBa > min(1, xe — m), (3.30)
xe B, otherwise,

where m is a positive move-limit, n is a numerical damping coefficient, and B, is found from

the optimality condition
ac [, av )"
Be = ——— | A— , (3.31)

where A, the only unknown, is found by a bi-sectioning algorithm. The design variables are
updated on each iteration until the optimal design is obtained. The OC method exhibits
superior computational efficiency in comparison to the MMA and GCMMA, and typically
converges in tens rather than hundreds of iterations. However, it has limited applicability due

to the single constraint condition.

3.9.2 Method of moving asymptotes

The MMA is an efficient and robust method for general non-linear programming problems.
It was introduced by Svanberg (1987) as a further generalization of the convex linearization
method (CONLIN) presented by Fleury & Braibant (1986) . Unlike the OC method, there
is no explicit updating scheme for the design variables. The MMA generates and solves an
approximate subproblem in each iteration. The subproblem is computed using the function
value and gradient information at the current iteration point, and so called moving asymptotes
which are automatically updated on each iteration based on the information from previous
iteration points. These subproblems are strictly convex and separable. Convexity allows
the subproblems to be solved using dual or primal-dual methods, while separability means the
necessary optimality conditions of the subproblem do not couple the design variables, resulting

in solving n one-dimensional problems rather than one n-dimensional problem, which greatly
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improves computational efficiency. The solution of the subproblem becomes the next iteration
point, and the process continues until convergence is achieved.

The general formulation of nonlinear optimization problems given by Equation 3.1 is now
expressed in the extended form, which includes “artificial” optimization variables

1

d;y? 3.32
5 y7) (3.32)

m
minimize :  fo(x) + aoz + Z(Ciyi +
i=1

subjectto: fi(x) —aiz—y; <0, i=1,....,m

xeX, y>0, z>0,

where
o X = ()(1,...,)(,,)T € R”" is the vector of design variables, the “natural” optimization
variables,
® y=(y1,...,ym)" €R™ and z € R are the “artificial” optimization variables,
e X = {x e R" xjf"i” <x; < x/f"‘”, j= ‘I,...,n}, where xjf"i” and xjf”"" are given real

numbers which satisfy xjf"i” <XV

e fo, f1,...,fy are given, continuously differentiable, real-valued functions on X. fy is the

objective function, while f, ..., f, are the constraint functions,

® agp,a;, ¢, and d; are given real numbers which satisfy ag > 0,a; > 0,¢; > 0,d; > 0,

and ¢; +d; >0V i, and also a;¢; > ag V i with a; > 0.

Typically in any optimal solution (X, §) of Equation 3.32, §j = 0 and the corresponding X is an
optimal solution of Equation 3.1, providing the constants c; are chosen to be very large. It is
advantageous to work with Equation 3.32 as opposed to Equation 3.1 because there always
exists feasible solutions and at least one optimal solution of Equation 3.32, and each optimal
solution will always satisfy the Karush-Kuhn-Tucker conditions.

Recalling the problem formulation of Equation 3.32, and given the current iteration point
(x¥), ytk), zK)), the approximate subproblem is generated, where the functions f;(x) are re-

placed by convex functions ;‘i(x). The subproblem is solved to obtain the next iteration point
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(x(k+1) ylk+ ) k1)),

1

d;y? .
5 y7) (3.33)

m
minimize : ?(gk)(x) + apz + Z(Ciyi +
i=1

subject to : ~i(k)(x)—a[z—y[§0, i=1,...,m
a}k)gx/SB(k), j=1,...,n
y; >0, i=1,....m

z>0.

The approximating functions ?l-(k)(x) are chosen as

n (k) (k)
( Py 9y m. (3.34)
u

W T
)

For one design variable, either ps.;() or qi-f) must equal zero, and therefore the MMA approx-
imation is monotonous. The author refers the reader to Svanberg (1987) for further details.

The bounds al(-k) and B}k) are chosen as

k min k k k k max min
aj(. ) = max {Xj ) lﬁ- '+ 0-1(X,(- ) lj‘ ))' X,( - O'S(X/‘ X )} ! (3.39)
B = min {xe, ul —0.1(u = ), )+ 0500 ) (3.36)

The lower asymptotes l}k) and upper asymptotes u}k) are given by the following rules. For the

first two iterations, k = 1 and k = 2,

(k) _ (k) '
7 =x;" = 0.5(x"" — x""), (3.37)
(k) _ (k) '
upt = x4 0.5 —x"). (3.38)
For subsequent iterations (k > 3),
k k k), (k=1 k—1
(19 = X0 — 0 kD, (3.39)
(k) _ (k) (k) (k=1) _  (k=1)
upt=xp ty; (uj — X ),
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where
0.7 if (xRN ) <o,
k — _ _
=12 i ) k2 s g (3-40)
1.0 i (0 =N ) = o,

Taking [; = 0 and u; = 400 reduces the MMA to the CONLIN approach.

The moving asymptotes adjust the degree of convexity of the approximation, thereby af-
fecting the speed of convergence. It can be seen from Equations 3.39 and 3.40 that if the
signs of the last three iterations oscillate, then the two asymptotes are moved closer to the

current iteration point x/(k) to yield a more conservative approximation of the original problem.

Alternately, if the signs are equal, then the two asymptotes are moved further away from X/(k)

to relax the process and improve the rate of convergence.

3.9.3 Globally convergent method of moving asymptotes

A disadvantage of the MMA is that it may not converge to a solution for certain problems.
Svanberg (2002) therefore proposed the GCMMA, which relies on strictly convex conservative
approximations to solve problems in the form of Equation 3.32 . This method is globally
convergent in the sense that from any starting point, the sequence of generated iteration
points converges to a stationary point, or in other words to the set of Karush-Kuhn-Tucker
points. However, there is no guarantee that the stationary point will be the global optimum of
the problem, therefore continuation schemes as detailed in section 3.8 must be implemented.

The GCMMA consists of “outer' and “inner" iterations. The outer iteration starts from the
current iterate x) and results in a new iterate x!**1). Gradients of the original functions f; are
calculated only once in each outer iteration, thus computational efficiency is acceptable yet
slower than the MMA. A convex subproblem is generated and solved in each inner iteration.
This solution may be accepted as the new iterate x**!) or it may be rejected, in which
case another inner iteration takes place with a modified subproblem. Solution acceptance
requires the approximating functions to be conservative, that is the approximating objective
and constraint functions become greater than or equal to the original functions at the optimal
solution of the subproblem. This implies that the optimal solution of the subproblem is a
feasible solution of the original problem with a lower objective value than the previous iterate.

The formulation is very similar to that for the MMA; however, in the case of the GCMMA the
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k) (k)

coefficients pij or q;;' in Equation 3.34 are simultaneously non-zero which leads to a non-

monotonous approximation of the initial problem. The bounds a}k) and Bj(-k) and the asymptotes
l;k) and uﬁ-k) are updated between each outer iteration as in the original MMA.

An important difference between the MMA and GCMMA is that the former uses monotonous
approximation methods, while the latter uses non-monotonous approximation methods. The
choice of best optimization algorithm is therefore highly dependent on the nature of the opti-
mization problem, where the convexity and conservativeness must be accurately represented.
The rate of convergence is typically high when using the MMA for a monotonous structural
response function, or when using the GCMMA for a non-monotonous function. If the MMA
is used for a non-monotonous function, or likewise the GCMMA for a monotonous function,
convergence is slow or the method may fail to produce an optimal solution (Zuo et al., 2007).

In problems where both methods converge, the MMA typically converges in fewer iterations

than the GCMMA. This is due to the conservative nature of the GCMMA approximations.

3.10 Post-processing

Post-processing occurs once the solution has converged to an optimal design and the algorithm
has quit the iterative loop. This stage includes design visualization and data output. Image
processing techniques, such as thresholding, are typically applied to the optimal design to
ensure a discrete solution with no intermediate densities. As is customary in topology opti-
mization methods, the final design is subsequently represented using a smoothed iso-density
surface rather than the original mesh discretization. This iso-density surface is generated
using the MATLAB function isosurface and the optimal volumetric densities obtained from the

analysis. Furthermore, output data such as the iteration history may also be plotted.

3.11 Hardware and computational time

This topology optimization code was run using a desktop computer with Microsoft Windows 7,
an Intel Core i7-3770 @ 3.4 GHz processor, 16 GB memory, and MATLAB R2015b. In terms
of computational time, the code was deemed to be efficient. For example, the computational
time was calculated for the most complex analysis presented in this thesis: the multi-objective

problem detailed in Section 6.3. For the particular instance of a domain discretization of 30 x
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30 x 30 elements, a structural Pareto weight of ws = 0.5, a volume fraction of V; = 0.30, and
a filter radius of r = 1 pym, the computational time for the pre-optimization loop calculations
was 5.3 seconds, while a single optimization loop iteration, computed as an average over
ten iterations, was calculated to be 4.4 seconds. Convergence to an optimal solution by 80

iterations was on the order of 6 minutes.
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Chapter 4

Minimum Compliance with Design
Dependent Volume Expansion

This chapter explores a minimum compliance problem formulation with design dependent vol-
ume expansion to simulate lithiation of the anode structure. The problem formulation, including
both the objective function and sensitivity analysis, is first presented. The key numerical dif-
ficulties associated with design dependent topology optimization problems are subsequently
discussed. A benchmark thermoelastic problem is then investigated, followed by the detailed

optimization and analysis of the silicon anode structure.

4.1 Problem formulation

The design objective is to determine a silicon anode structure that can better withstand the
large volume expansion upon lithiation, and reduce the lithiation-induced stress. We formulate
the problem in terms of linear elasticity, and assume uniform lithiation of the structure. We
consider an extension of the classical problem formulation of minimum compliance presented
in Chapter 3.1, where the problem formulation is modified to include design dependent volume
expansion. The volume expansion of the structure due to lithiation is conveniently modelled
using the equations for volume expansion due to thermal loading. While thermal loading does
not physically occur within the battery, the application of a volumetric strain equivalent to the
lithiation-induced strain is an efficient approach to modelling lithiation behaviour. The design
dependent nature of the problem relates to the fact that the volume expansion is applied only
to the silicon anode, and not the electrolyte.

The compliance may be defined as the virtual work of the loads on the displacements they
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generate Prager (1968). Therefore, this design objective minimizes the product of resulting
displacements and their corresponding total loads (Pedersen & Pedersen, 2010a), and effec-
tively minimizes a global measure of deformation and an average measure of stress. Unlike
the design independent loading case, the compliance is not equal to the total elastic energy
for thermoelastic structures or structures with design dependent loads (Pedersen & Pedersen,
2012). For a detailed comparison between compliance and elastic strain energy for mechanical
and thermal loads, the author refers the reader to Zhang et al. (2014).

The general variational problem formulation for a minimum compliance objective with design
dependent volume expansion is given by

min : /bu dQ+/C[,~k1(x)eil~(u)e,’§l(x) dQ—i—/ tu ds
uelU,p Q Q It

subject to : / Cijri(x)eij(u)ex(v) dQ =
Q

/ bv dQ + / Cijrlx) e (V)€ (x) dQ +/ tvds, forallve U,
Q Q I

/p(x) dQ <V,
Q

p(x) € {0,1}.
Here, b denotes the body forces, u the equilibrium displacement, C(x) the constitutive matrix, x
a point within the domain Q, e(u) the linearized strains, €*(x) the design dependent volumetric
strain, t the surface tractions, and U the space of kinematically admissible displacement fields.
The minimum compliance objective is subject to the equilibrium equation and a constraint on

material volume, where p(x) is the pointwise volume fraction and V the total volume of material.

€*(x) typically represents the strain due to thermal loading,
exi(x) = an(x)AT, (4.1)

where a(x) is the coefficient of thermal expansion, and AT is the change in temperature. This

problem formulation assumes the constitutive law for linear thermoelasticity,
aij(u) = Cijrr(x)exi(u) — Cyjir(x) € (x). (4.2)

In our research, €*(x) is used to model the volumetric expansion of the silicon anode due to
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lithiation.
Using a finite element discretization, the discrete formulation of this minimum compliance

problem is given by

min:  c(X) = F(x)"UK%) (4.3)
subject to: K(X)U(X) = F(X) = F" + F'(%),
V(i) max
T() S Vf ’
0<x<1

The use of a density filter is assumed from the outset, and therefore the problem formulation
is expressed in terms of physical densities X. Here, c(x) is the compliance, F(X) is the global
force vector, U(X) is the global displacement vector, and K(X) is the global stiffness matrix.
Neglecting body forces, F(X) is composed of two terms: the design independent mechanical
load vector F", and the design dependent volume expansion load vector F¥(x). Furthermore,
V(X) = ZeN=1 Xeve is the material volume, Vg is the design domain volume, and V{"%* is the
maximum allowable volume fraction.

The global stiffness matrix is assembled from the element contributions,
ke(%e) = / B/ C.(%:)B. dQ, (4.4)
Qe

where B, is the element strain-displacement matrix and C.(x.) is the constitutive matrix, which
is a function of element density. The element stiffness matrix may be equivalently expressed

as the product of the design dependent and design independent terms,

ke (Xe) = Ee(ie.)/O B/ C.B.dQ, (4.5)

= Eo(Xe)ke, (4.6)

where E.(%) is the design dependent Young's Modulus, C, is the constitutive matrix for a unit
Young's Modulus given in Appendix A, and k. is the design independent integral term that
may be computed just once outside the iterative loop of the topology optimization algorithm.

The global force vector is assembled from the element contributions of the mechanical load
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vector and the volume expansion load vector,

fg"=/ N, tdr, (4.7)
[te

where N, is the element shape function matrix, and

k) = [ BIC.(Rei ()0 (48)

e

Assuming isotropic expansion, Equation 4.8 may be expressed as
k) = [ BIC.()e (o)gTd0, (49)
Qe

where

¢=[1 11000 (4.10)

for three-dimensional analysis. Shifting the design dependent terms outside of the integral

yields

R = Ealiele(5) [ BIC.gTdn, (4.11)
Qe
= y(Xe) ﬂ./,

where y(X.) is termed the volume expansion load coefficient, which is equivalent to the TSC
introduced by Gao and Zhang Gao & Zhang (2010) for the case of thermal loading. y(%.) allows
for just one material interpolation for the volume expansion load vector, ensuring compatibility
with the linear design dependence of the stiffness matrix. For a uniform mesh, the integral
term f! is the same for each element and independent of density, and therefore f! is computed

just once outside the optimization loop.

4.1.1 Sensitivity analysis.

Some changes must be made to the sensitivities presented in Section 3.6, as the force vector
is now dependent on density. Furthermore, the sensitivities presented in this section are
expressed in terms of physical densities. As such they require subsequent modification using

Equation 3.25 to transform the sensitivities to a derivative with respect to the design variables.



Problem formulation | 53

Recall the compliance may be expressed as
c(%) = F(X)TU(x). (4.12)

Taking the derivative with respect to physical density of element e using the chain rule,

ac(x)  (oF(R)\ 1 0U(&)
. ( %, U(x) + F(x) o (4.13)
Now, recall the equilibrium equation
Kx)U(x) = F(x) = F" + F"(x). (4.14)
Taking derivatives of both sides with respect to X,
oK(x), . . ouU(x)  odF(x)
K = 4.1
x, DX T RETG T = (4.15)
and rearranging for the displacement derivative,
ourx) .4 [0dF(x) JK(x) .
. K(x) ( %, %, Ux) | . (4.16)
Substitution of Equation 4.16 into Equation 4.13 yields
dc(X) oF(x) r Tt [OF(X)  OK(X), .
= F(x)'K — . 417
5 ( | VR FRTKE G - R UR) (417)

Using the relation F(X)"K(X)~' = U(X)" and rearranging the above expression yields the final

compliance sensitivity expression in terms of the physical element density

c(X) OF (%) 7 OK (%)

= 2U"(x — U(x % ,
% =2U" (x) %, U(x) %, U(x) (4.18)
ofe(Xe . \7Oke(Xe) .
= 2UZ()~(e) 6)(?); ) - ue(Xe)T a;fj ) e(Xe).

The RAMP interpolation presented in Chapter 3.2.2 is used to interpolate the Young's modulus
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E.(xe) and the design dependent force term y(X.). For example,

¢\ — ylb) Xe (@) _ ,(b)
v(Xe) = v +1+p(1_)~(e)(v V)
_flo)gxb) ¢ Xe  (r(a)gxa) _ (D) gx(b)y.
T3 p(1— 5] ’

Therefore, the derivative of force in Equation 4.18 is given by

ofe(Xe) 0 B
= f7 4 fY
e % e tlelke)
_ aV(;(e) v
ok, €
_ 1+p (a) (b)y Fv
BN AT
while the derivative of the element stiffness matrix is
Oke(Xe) _ 6E(>’(e)|_(
OXe 0%
1 _
TP (E) _ b)) k..

T (T4 p(1 = %))

(4.19)

(4.20)

(4.21)

The sensitivity of the volume constraint is the same as for the design independent loading

case (Equation 3.21), only now it is written in terms of the physical densities,

0
5 (VR =V v) = v.

4.2 Difficulties of design dependent loading

There are some difficulties associated with design dependent loading problems that must

be resolved in order for topology optimization methods to yield successful results. These

problems include the fact that the objective function may oscillate and fail to converge to an

optimum, the optimal solution may have an inactive volume constraint, or the optimal solution

may be singular (the entire domain has zero density) when an upper inequality bound on

volume is imposed (Gao et al,, 2008; Turteltaub & Washabaugh, 1999). This behaviour may be

attributed to the non-monotonous nature of the objective function and the formulation of the

volume constraint. Furthermore, design dependent loads may cause an undesirable parasitic

effect for low density regions, manifesting as light grey elements in regions that should be
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void (Bruyneel & Duysinx, 2005). This issue may be remedied by careful selection of the
interpolation scheme.

Due to the addition of design dependent loading, Equation 4.18 shows that the derivative
of the objective function gains an extra term, which may result in a non-monotonous objective
function with respect to some design variables. This has the effect of possibly increasing the
compliance with the addition of material, unlike the case of pure mechanical loading where
additional material always decreases the value of the compliance. Recall from Chapter 3.9 that
the MMA is best suited to monotonous functions such as design independent loading problems.
If this method were to be used for a design dependent loading case, one can expect the value
of the objective to oscillate and that it may fail to converge, or that the volume constraint may
become inactive (Bruyneel & Duysinx, 2005). Therefore, to avoid convergence difficulties for
design dependent problems, the non-monotonous nature of the objective function necessitates
the use of the GCMMA optimization algorithm.

Singular behaviour and parasitic effects may be attributed to an inactive volume constraint
at the optimal topology. This unconstrained nature is characteristic of problems with design
dependent loads. Classical minimum compliance topology optimization problems prescribe an
inequality volume constraint, which is an upper limit on the allowable design material. One
method to help prevent these undesirable effects is to impose both an upper and a lower bound
on volume fraction (Bruyneel & Duysinx, 2005; Gao et al.,, 2008). This theoretically prevents
the optimizer from attaining zero density throughout the domain. However, it must be noted
that this method must be used in conjunction with the appropriate optimizer for a successful

outcome. The updated problem formulation may be expressed as

min: (%) = UX)TK(X)U(X) (4.22)

X
; V(X
subject to: V""" < # < v
0

Another cause of parasitic effects for design dependent loading problems is the SIMP
interpolation scheme, which exhibits zero sensitivity at zero density. This causes the compli-

ance to be insensitive to element density near values of zero density and makes it difficult
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for elements that become void to regain material. Gao & Zhang (2010) has shown that an
effective solution to stabilize convergence and produce discrete optimal structures is to utilize
the RAMP interpolation model instead of the SIMP model for problems with design dependent
loading.

4.3 Thermoelastic test case

This section explores a benchmark thermoelastic problem first studied by Rodrigues & Fernan-
des (1995) using a homogenization method, then subsequently by other authors such as Gao
& Zhang (2010), Pedersen & Pedersen (2010b) and Deaton & Grandhi (2013b). The problem
determines the material distribution of a 2D linear-elastic solid for a bi-clamped beam that
minimizes compliance subject to a uniform temperature difference in terms of a design depen-
dent load, in addition to a design independent mechanical load and a constraint on volume.
A schematic of the problem setup and a selection of results as implemented by Rodrigues &

Fernandes (1995) are shown in Figure 4.1.

(a) Initial design (b) AT =0°C () AT =1°C (d) AT = 4°C

Figure 4.1: The bi-clamped beam thermoelastic problem. Reprinted from Rodrigues & Fer-
nandes (1995), Copyright (1995), with permission from John Wiley and Sons.

This problem is explored in detail for several reasons. Firstly, it is directly relevant to
the design dependent problem of minimizing the volume expansion of a Li-ion battery upon
lithiation, which will be discussed later in this chapter. Secondly, this test case provides
an opportunity to explore of the difficulties associated with design dependent loading cases
and experiment with potential solutions to overcome these issues whilst working on a known

problem.
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4.3.1 Implementation

The thermoelastic test case is implemented in our topology optimization code with every
attempt made to replicate the problem accurately. Notable differences include a three dimen-
sional implementation rather than the 2D implementation in the various literature, the choice
of optimizer, and the use of both a lower and upper bound on volume fraction. Where no
parameter values were given, the author chose the most suitable values based on experience

and experimentation.

0.72 m, 60 elements

N
v
\\\\\

Depth=0.012 m,
1 element

0.48 m,
40 elements

v
TleokN

Figure 4.2: Thermoelastic benchmark problem schematic

AN

_

N

Figure 4.2 depicts a schematic of the optimization problem. The size of the domain is
0.72 mx 0.48 m x 0.012 m, and is discretized into 60 x 40 x 1 elements such that each ele-
ment is cubic in shape. The left and right faces are rigidly constrained while all other faces
are free. As in Rodrigues & Fernandes (1995), one column of non-design elements is placed
at both the left and right ends of the beam. Additionally a non-design region consisting of 8
elements is located at the site of the applied mechanical load to prevent a stress singularity
(Deaton & Grandhi, 2013b). The domain is initialized with a homogeneous distribution of
material, i.e., each element is initially assigned a density equal to the upper volume fraction

bound. The material properties and important parameters are listed below

e Elastic modulus, E = 210 GPa,
e Poisson’s ratio, v = 0.3,
e Mechanical load, F" = 10 kN applied along the center of the bottom face,

e Coefficient of thermal expansion, a = 1.1 x 1073/°C,

Uniform change in temperature, AT =1°C or AT = 3°C
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e Volume fraction, Vy = 0.25 — 0.30,
e RAMP interpolation scheme, p = 8 for Eo(%X.), p = 0 for B(%e),
e Density filter, r = 0.024 m (= 2 element lengths).

4.3.2 Results

Figure 4.3 shows results for the case of mechanical loading only (AT = 0°C), using both
MMA and GCMMA optimizers. The MMA algorithm converges quickly to the solution shown
in Figure 4.3a, which is consistent with the results given in Pedersen & Pedersen (2010b). The
volume fraction is very slightly greater than the upper bound of 0.3, which is acceptable for this
method. Figure 4.3c shows that the GCMMA has difficulty obtaining a physical solution, with
the two struts not reaching the side supports. This is despite the iteration history indicating
convergence to an optimal solution, as shown in Figure 4.3d. This behaviour is due to the
objective function being monotonous for the pure mechanical loading case. Thus, as previously
mentioned in Section 3.9, the MMA is best suited to a problem with design independent loads
rather than the GCMMA method which is better suited for design dependent loading. As
a side note, the jumps in values on the plots at 10, 15, 20, 25, and 30 iterations are due
to the continuation scheme progressively increasing the RAMP penalization in the hopes of
converging to a global rather than local optimum. For further details see Section 3.8.

A temperature change is now applied, in addition to the mechanical loading. Firstly,
we explore the effect of choosing the MMA method. Results are shown in Figure 4.4 for
a temperature change of AT = 1°C. The volume constraint is severely violated, reaching
almost 90%, leading to an unsuitable solution. This is likely due to the MMA monotonous
approximations being incompatible with the non-monotonous behavior of design dependent
problems. This result once again confirms the importance of selecting an appropriate optimizer
based on the behavior of the problem to be optimized.

Figure 4.5 shows results using the GCMMA for two temperature cases. The optimal
solutions appear in agreement with the literature, such as the results shown in Figure 4.1
by Rodrigues & Fernandes (1995). Both results of Figure 4.5 exhibit good convergence, and
the volume fractions remain within allowable bounds. One interesting difference between the
results shown in Figure 4.1 and Figure 4.5, is that our results feature gaps between the side
walls and the internal structure. These slits result in less coupling and potentially improved

thermoelastic performance in comparison to the designs presented by Rodrigues. Possible
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Figure 4.3: Optimized designs and iteration history plots for applied mechanical loading
using a volume fraction of V; = 0.25—0.30, a temperature of AT = 0°C, and two optimization
algorithms: (a) and (b) utilize the MMA optimizer, while (c) and (d) show results for the
GCMMA optimizer.
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Figure 4.4: Optimized designs and iteration history plots for combined thermal and mechanical
loading utilizing the MMA algorithm, AT = 1°C, and V¢ = 0.25 — 0.30.
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Figure 4.5: Optimized designs and iteration history plots for combined thermal and mechan-
ical loading, using the GCMMA algorithm, a volume fraction of V; = 0.25 — 0.30, and two
temperature cases: (a) and (b) consider AT = 1°C, while (c) and (d) consider a temperature
change of AT = 3°C.

reasons for other discrepancies in the results could be due to 3D rather than 2D analysis, the
choice of filter, filter radius, and internal parameters. We also note that Deaton & Grandhi
(2013b) and Bruyneel & Duysinx (2005) reported success using the MMA for this thermoelastic

problem by employing robust move limits.
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4.4 Topology optimization of the anode structure

We now apply this minimum compliance formulation to the design problem of a lithiated silicon
anode in a Li-ion battery. The loading, boundary conditions and problem parameters are first
presented, followed by the results of the optimization problem. The iteration history, mesh
independence, influence of volume fraction, and minimum length scale are all investigated. The
average von Mises stress values are compared for different designs, and as a final validation

the problem is also solved using a minimum elastic strain energy formulation.

4.4.1 Loading and boundary conditions

The volume expansion of the structure due to lithiation is modelled in the same way as volume
expansion due to thermal loading. Therefore, the volumetric strain variable €*(%.) is assigned
values to represent a 300% change in volume in the anode due to lithiation, while no volume

change is applied to the electrolyte,

(k) = 1 when %, =1 (anode), (4.23)
0  when X, = 0 (electrolyte).
The above equation clearly illustrates the design dependent nature of this problem. The volume
expansion will therefore be a function of element density, which is interpolated between the
values for the anode and the electrolyte.

The design domain representing the anode structure is depicted in Figure 4.6a. The bottom
face of the anode is rigidly fixed to the substrate, while the sides are constrained by battery
packaging and reinforcement. This is a common choice of boundary conditions when modelling
electrodes and is typically called the “manufacturing condition” as it represents the entire
battery system being constrained by the outer casing (Aifantis et al., 2010).

We consider a 5 pym x 5 ym x 5 pm cubic base cell which is periodic in the x-z plane and
discretized into finite elements (Figure 4.6b). The base cell size was chosen such that it was
consistent with dimensions used by experimentalists who work with silicon anode structures
(Baggetto et al,, 2011, 2008; He et al., 2012). With respect to the base cell, the boundary
conditions are a fixed bottom face, sliding conditions on the side faces, and a free top face.
Symmetry is a characteristic feature of the solution, therefore sliding boundary conditions are

deemed to be an acceptable alternative to implementing periodic boundary conditions.
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Cubic base cell \ / Anode design domain

\ Ir's

Mechanically
restrained on sides

Anode rigidly fixed to substrate

(@) Anode design domain

Top face free

Sliding conditions
‘/ on side faces

5um Si \~ 300% expansion

Bottom face fixed

(b) Periodic base cell

Figure 4.6: Schematic of design domain and boundary conditions.

4.4.2 Problem parameters

In these analyses we consider two material phases: the anode and the electrolyte. For the
anode, the material properties of a-Li15Sis are used. The Young's modulus and Poisson'’s
ratios are set to values of Egno9e = 35 GPa and v = 0.23, respectively (Shenoy et al,
2010). During the first discharge of Li-Si at room temperature, crystalline silicon becomes
amorphous Li,Si (Lt & Dahn, 2007; Obrovac & Christensen, 2004). As lithiation progresses,
various amorphous phases of increasing lithium concentration are formed until the anode is fully
lithiated. The material properties, such as Young's modulus and Poisson’s ratio are therefore
functions of lithium concentration. If the electrode is exposed to voltages less than 50 mV the
crystalline Lij5Si4 phase forms upon full lithiation, while if the cycling is limited to above 50
mV the structure will remain amorphous (Li & Dahn, 2007; Obrovac & Christensen, 2004). The

greatest change in volume is associated with the final phase transition (Kang et al., 2009),
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and therefore in our analyses we use the material properties of a-Li15Si4. The other phase
representing the electrolyte is modelled as void, which is a common practice in many topology
optimization problems. As such, the Young's modulus of the electrolyte is set to a very small
number not equal to zero in order to prevent singularities, i.e., Ecjectrolyte = 1x1 03 GPa.

The desired volume fraction of the silicon anode material is Vy = 0.3, or 30% of the
total design domain volume. This volume fraction was chosen to ensure there was adequate
porosity of the structure, whilst also maintaining sufficient active material to achieve the
required electrochemical performance of the battery. The desired volume fraction is set to be
the lower bound on volume, while the upper bound is set to be 0.1 or 10% greater than the
lower bound. This is because the minimum compliance objective will drive the solution to the
lowest allowable volume. The initial density distribution is therefore set to the upper bound
in each element.

The RAMP interpolation is used for both the Young's modulus E(%.) and the volume expan-
sion coefficient y(X.), with maximum penalty values of p = 8. To prevent numerical difficulties
such as mesh dependence, and to impose a minimum length scale, density filtering is employed
with a filter radius of r = 2 pym. We utilize the GCMMA method to determine the updated

densities on each iteration.

4.4.3 Results

Figure 4.7 depicts the optimized anode structure. The structure may be considered a periodic
array of base cells, and resembles a series of solid cubes that have been hollowed out by
spherical shapes. Two different base cells are depicted in Figures 4.7b and 4.7c which result
in the same final structure. It is interesting to note that the optimal structure shows some
resemblance to the Schwarz P surface, which has been reported as an optimal solution for
other topology optimization problems as detailed in Chapters 2.4 and 2.5, such as maximum
conductivity, permeability, and bulk modulus objectives.

The iteration history for the compliance and volume fraction are shown in Figure 4.8.
It can be seen that the volume fraction quickly drops to the lower bound of 30%, while the
compliance steps down with increasing interpolation penalty and converges to the final solution
of ¢ = 4.8726 x 107% Nm within 60 iterations.

Mesh independence was tested to ensure that the design remained consistent for different

numbers of elements. Figure 4.9 shows the element density distribution for different domain
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(@) 2 x 2 base cells

(b) Red base cell (c) Blue base cell

Figure 4.7: Optimized anode structure for Vy = 0.3.
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Figure 4.8: Compliance and volume fraction as a function of iterations.
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(@) 15 x 15 x 15 elements (b) 25 x 25 x 25 elements (c) 35 x 35 x 35 elements

Figure 4.9: Optimized structure for varying numbers of elements.

discretizations. The optimized structure is consistent for each discretization, and therefore
the results are considered mesh independent. As such, unless otherwise stated, the results
presented in this chapter are for a design domain discretized into 30 x 30 x 30 elements. This
was deemed to be a fair compromise between design detail and computational efficiency.
Figure 4.10 depicts the deformed structure for a volume fraction of Vy = 0.3, where the blue
horizontal line represents the top of the undeformed base cell. Recall the boundary conditions
of Figure 4.6, where the periodic base cell is rigidly fixed to the substrate, restrained on the
sides with sliding conditions, and has free expansion on the top face. Therefore, the struts

swell to fill the central void while the entire structure expands in the vertical direction.

Figure 4.10: Deformed structure, blue horizontal line represents the top of the undeformed
base cell.
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A selection of volume fractions were tested to ensure the solution remained well behaved,
and to assess the effect of changing the limit of allowable material. Figure 4.11 shows that
increasing the volume fraction simply results in the thickening of the struts, thereby reducing
the size of the center spherical hollow. A plot of the associated compliance values depicted
in Figure 4.12 shows that the compliance decreases with decreasing volume fraction. This is
because less material in the structure means more voids to accommodate the volume expansion
of the silicon and therefore results in lower stresses and hence a lower compliance. However,
a trade-off is required as the anode must have sufficient active material to achieve the desired

electrochemical performance, and therefore a volume fraction of vy = 0.3 is recommended.

(@) V; = 0.15 (b) V; = 0.30 () V; = 0.45 (d) V; = 0.60

Figure 4.11: Optimized base cell structures for varying volume fractions. The top row depicts
the original base cell, while the bottom row shows the shifted base cells.

4.4.3.1 Influence of minimum length scale

During the parameter investigation stage, the effect of reducing the minimum length scale was
also considered. The minimum length scale of the design is dependent on the comparative
values of the filter radius, domain size, and the number of elements. Keeping the domain
size and number of elements constant, the filter radius r becomes the dominant length scale
parameter. As detailed in Chapter 3.7.2, the density filter modifies each element’s density to

be a weighted average of the neighboring elements’ densities within r. Up to this point, results
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Figure 4.12: Compliance as a function of prescribed volume fraction.

L0 e
s 2

a) r=2pm

b) r="1um c) r = 0.5um

Figure 4.13: Optimized base cells for different filter radii, (a) r =2 pm, (b) r =1 pm, (¢) r =
0.5 pm. The top row depicts the original base cell, while the bottom row shows the shifted
base cells.
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are shown for a radius of r = 2 pym. The designs forr = 2 pm, r =1 pm and r = 0.5 pm are
depicted in Figure 4.13. Both the original base cells (top row), and the displaced base cells
(bottom row) are shown for clarity.

When comparing the r = 1 pm structure to the original r = 2 pm design, the major
changes include four small corner holes on each face rather than one large central hole, which
results in the vertical struts spanning the entire face of the base cells, and the appearance
of an internal floating structure that resembles a wire-frame cube. In terms of the objective
function we calculate a small 1.2% reduction in compliance relative to the r = 2 pym design
which indicates a slightly better performance, possibly due to the internal structure being
free to expand in all directions within the central void space, thereby reducing the average
stress. However the free-floating nature of the internal structure introduces manufacturability
challenges, particularly when considering a liquid electrolyte. A further reduction of the filter
radius to r = 0.5 pm results in a very fragmented structure. The side faces have now become
disconnected vertical plates, and the internal structure has become a series of floating plates
and rods. This design has severe manufacturing limitations, and also exhibits a compliance
value 2.9% greater than the r = 2 pm structure which is likely due to the fragmented nature
of the design. The design requirement of a connected structure necessitates the choice of the

r = 2 pym design to be the best solution for this application.

4.4.3.2 Comparison of average von Mises stress values

We now investigate whether the minimum compliance objective does indeed minimize an aver-
age measure of stress by computing the average von Mises stress in the structure. The stress

vector for a solid element e may be expressed as

O = [Uxx, Oyy, Ozz, Txy, Tyz, sz] (4.24)
=C, e"
= Ce(e — €)

~ ~ T
= EanodeCeBede — EcrnodeCee)’< ¢ ,

where €", €", and € are the mechanical, thermal, and total strains, respectively. Egpoge iS
the Young's modulus of the anode material, C. is the constitutive matrix for a unit Young's

modulus, B, is the element strain-displacement matrix, d, is the element displacement vector,
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a the coefficient of thermal expansion of the silicon anode, and AT the temperature change
applied to the anode. The element stress is calculated as the average of the values at the
quadrature points. The von Mises failure criterion combines the principal stresses into an

equivalent applied stress, and may be computed from the element stress vector

1
UeVM = \/2[(‘7)0( - Uyy)z + (0yy — 072)? + (022 — Uxx)z] + 3(T3y + Tsz + Tzzx)~ (4.25)

The von Mises stress distribution is plotted in Figure 4.14. As expected, there is high stress
in the thinnest section of the struts in the constrained directions, and stress concentrations
may be observed at the edges of the holes. These stress concentrations could be reduced with

localized mesh refinement and a further shape optimization step (Pedersen & Pedersen, 2008).
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Figure 4.14: The von Mises stress distribution plotted on the undeformed base cell, V¢ = 0.30.

If we compare the values to a yield stress in nano silicon of 11.06 GPa (Yang et al,
2009), it is clear that the plotted values are reasonably high and that some of the structure
has undergone plastic deformation, which has been observed experimentally with other silicon
anode structures (Liang et al., 2014; Sethuraman et al,, 2010). The large stress values are
to be expected as our analysis assumed linear elasticity, and therefore in reality any stress
above the yield stress would be significantly lower than is reported here. Furthermore, we are
applying a large thermal strain simulating full lithiation of the anode. Reaching a fully lithiated

state is highly dependent on battery operating conditions, such as the voltage range within
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which the batteries are cycled. Reducing the voltage range prevents full lithiation/delithiation
but will greatly improve cycling stability (Zhang, 2011). As such, full lithiation may not take
place for practical electrochemical cells, resulting in lower stress values.

Despite the small-strain and full lithiation assumptions and the resulting large stress
values, this analysis can adequately capture the lithiation behaviour and produce optimal
designs. For example, when analyzing the average von Mises stress of the optimal structures
for different volume fractions, depicted in Figure 4.11, it has been observed that a larger volume
fraction results in a larger average von Mises stress. When compared to the V; = 0.30 design,
there is a 6.4% and a 16.2% increase in average von Mises stress for a prescribed volume
fraction of V; = 0.45 and V; = 0.60, respectively. Figure 4.12 shows that the compliance
increases for the larger volume fractions, and therefore it may be inferred that the design
objective of minimizing the compliance will result in a structure that minimizes the average
stress. This is further illustrated by computing the average von Mises stress for a 5 pm x 5 ym
x 1.5 pm base cell composed of homogeneous material, where the material volume is equal
to 30% of the original design domain. It was found that the average von Mises stress in the
block of material upon lithiation was 42.7% greater than the average von Mises stress for the

optimized design with a V¢ = 0.30.

4.4.3.3 Comparison to minimum elastic strain energy formulation

For design independent loads and a constraint on volume, minimum compliance and maxi-
mum strength objectives lead to the same optimal design (Kohn & Wirth, 2014; Pedersen &
Pedersen, 2012). However, Pedersen & Pedersen (2010a, 2012) questioned validity of us-
ing the minimum compliance formulation to obtain a strength optimized design when using
thermoelastic loading, and recommended performing strength optimization using a minimum
elastic strain energy or uniform energy density objective. As an extra validation of our results,
and to confirm that minimizing the compliance leads to maximum strength for the particular
loading and boundary conditions of this problem, the minimum elastic strain energy objective

was implemented and results are compared to those presented above.

Problem Formulation. The elastic strain energy ® may be defined as the potential mechan-

ical energy stored in an elastic body as work is performed to distort the structure’s volume or
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shape (Zhang et al,, 2014). Recall the constitutive law for linear thermoelasticity

aij(u) = Cyjrr(x)(exi(u) — € (x)), (4.26)
= Cijk[(X)(ek[(u) — akl(X)AT).

In indicial notation, the elastic strain energy is given by

1
5 [ Cottestu) = e ) = ) 0

or equivalently,

¢ = ;/Q(e — €)' Cle — €*) dQ (4.27)

1 1
— / e Ce dQ — / e Ce* dQ + = /(e*)Tce* dQ
2 Jq Q 2 Jq

:1/eTCe do—/eTce* dQ + &,
2 Ja Q

where €, and €* represent the total and volumetric strains, respectively. The third term ¢*
represents the energy generated by the initial thermal or volumetric strain. Equation 4.27

may be expressed in a discrete form

(%) = =UE) TKE)UK) — UR)TFY () + &*(X) (4.28)

= 2 cl®) — UR)F ) + "),

where ¢(X) is the compliance from Equation 4.3, and F" is the global volumetric load vector is

assembled from the element contributions given by Equation 4.11, while ®*(xX) is given by

d>*(>”():%(o(()”(e )2 [ ¢ Col%e) ¢ dQ (4.29)
- %Eem)(am)) J) | 4o ao
1 (Y()?e))2 .
TG Jo 20
. 2
_ (V(Xe)) o
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where

‘*_1 2 T
P = 2/09¢ce¢ dQ. (4.30)

The optimization problem formulation with a minimum strain energy objective is

min: ®(%) = %c(f() —UR)FY(X) + d*() (4.31)

X

. V(X
subject to: V""" < # < v,
0

Sensitivity Analysis. For the particular case of the anode structure, there is zero mechanical

loading thus the equilibrium equation may be expressed as
K(x)U(x) = FY(x), (4.32)
leading to a simplified expression for ®(X)
~ 1 ~ k[~
b(x) = —ic(x) + d*(X).

Given the derivative of compliance in Equation 4.18 and the expression for the initial strain

energy (Equation 4.29), the derivative of the strain energy with respect to element density is

IP(%) _ 10c(X) N 0™ (%)
0xe 2 0% OXe

(4.33)

o [ ()Y

L OFY(x) 1 7 OK(X) .
+— | == | ¢~
OXe Eo(%e)

—_ T e
= U R T 32VR 5

U(%)

Relation to Stress. Substituting the stress-strain relation ¢ = C(e — €*) into Equation 4.27,

the strain energy may be expressed in terms of stress,

1
O ==

5 [ (e - €)' Cle — €*) dQ (4.34)

' Co dQ.

S5
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It is clear that minimizing the strain energy will effectively minimize a measure of stress in the

structure and therefore produce a strength optimized design.

Results. The results are almost identical to that obtained by minimum compliance. The op-
timized structure for a volume fraction of V; = 0.3 is given in Figure 4.15, while Table 4.1
compares the compliance and strain energy values for both objectives. As expected, the min-
imum compliance objective provides the lowest compliance value, while the minimum strain
energy objective provides the lowest value of strain energy, but ultimately the difference is
almost negligible. It may be concluded that for this problem a minimum compliance objective

successfully minimizes both a global measure of deformation and stress.

Figure 4.15: Optimal solution for a minimum strain energy objective.

Table 4.1: Table comparing compliance and strain energy values

Min compliance Min strain % Difference
objective energy objective
Compliance 4.873 x 107 Nm 4.836 x 107 Nm -0.76 %
Strain energy 1.278 x 107° Nm 1.248 x 107° Nm 23 %

4.5 Summary

This chapter aimed to produce a topology optimized silicon anode structure that would bet-
ter withstand the detrimental effects of lithiation processes. The anode design problem was

formulated using a minimum compliance objective function, with design dependent volume ex-
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pansion due to lithiation. The volume expansion was modelled using the same equations as
expansion due to thermal loading. The problem formulation was first presented, followed by
a discussion of the key numerical difficulties associated with design dependent topology op-
timization problems, namely convergence failure, sinqular behaviour, and an inactive volume
constraint. Remedies to overcome these issues were introduced and further illustrated using
a benchmark thermoelastic problem involving a bi-clamped beam subject to both mechanical
and thermal loading. The detailed optimization and analysis of the silicon anode structure
was subsequently presented. The optimal silicon anode structure featured a cube of anode
material with a hollowed sphere-like core representing the electrolyte. This structure resem-
bled the Schwarz P-type structures that have also been obtained for topology optimization
problems in other fields. The iteration history, mesh independence, influence of volume frac-
tion and minimum length scale were all investigated. It was found that smaller length scales
introduced manufacturing difficulties due to the optimal designs lacking connectivity. The von
Mises stress distribution was presented, and average values compared for different anode de-
signs. These results indicated a significantly improved mechanical performance for the optimal
design relative to a homogeneous anode structure of equivalent volume. Finally, equivalence of
results was shown for the minimum compliance and minimum elastic strain energy formulations

for this particular design problem.
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Chapter 5

Maximizing Electrical Conduction

In this chapter we explore the design objective of maximizing the electrical conduction of
the silicon anode. It is crucial to optimize the anode structure for this objective in order
for the design to exhibit efficient electronic pathways, particularly when considering the low
electrical conductivity of silicon. An anode structure that maximizes electrical conduction will
generate improved battery capacity and rate capability. The governing equations for heat and
electric conduction are analogous, and therefore the problem formulation for maximizing heat
conduction and a benchmark test case involving a heat sink are first presented. Subsequently,

the anode structure is optimized for maximum electrical conduction.

5.1 Problem Formulation

First, let us consider the problem of steady-state heat conduction with no convective heat
transfer. Figure 5.1 depicts a body defined by the volume Q and outer surface I', which is
subjected to a prescribed temperature distribution T* on part of the boundary I'7, and the

normal heat flux g* is prescribed on the boundary Iy,

T=T" only, (5.1)

*

qg-n=gq on . (5.2)
The governing partial differential equation for steady-state heat conduction is

v (DVT)+S=0, (5.3)
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g-n=g*onfl, T=T*onl;

Fr=ryurl,

Figure 5.1: The reference domain with a prescribed temperature and heat flux on the boundary,
and an internal heat source.

or equivalently in its variational form
/VW-(DVT) dQ+/ Wq*dr—/ wsdQ =0, (5.4)
o) M Q

where D is the conductivity tensor, S is the internal heat generation, and W is a weight
function. Further details, including the derivation of the strong form, weak form, and the finite
element approximation may be found in Appendix B. This governing equation, also known as
Poisson’s equation, may be used to describe various physics problems by making appropriate
parameter substitutions, as shown in Table 5.1 (Donoso & Sigmund, 2004; Huebner et al.,

2001; Kohn & Strang, 1986b).

Table 5.1: Physical interpretation of equation parameters

Problem T D S q
Heat Temperature Thermal Internal heat Boundary
conduction conductivity generation heat flux
Electric Voltage Electric Internal Boundary
conduction conductivity current source current
Diffusion Hydraulic Permeability Internal Boundary
flow head source flow flow
Electro- Electrostatic Permittivity Internal Electric
statics potential charge density field
Magneto- Magnetic Medium'’s Internal Magnetic

statics vector response current density field
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The objective of maximizing heat conduction or electricity may be considered the scalar version
of the minimum compliance problem formulation (Kohn & Wirth, 2014). As such, the objective
function is often referred to as the thermal or electrical compliance. This objective may be

expressed in variational form as

Tn;'lll"r?p :UT) (5.5)
subject to: a(T,W)=[(W), forall WeT, (5.6)
[ o aa< v,
Q
p(x) € {0,1},
where
a(T,W)= / VW .(DVT)dQ, (5.7)
Q
(W) :/ WSdQ—/ Wgq*drl, (5.8)
Q My

and T denotes the space of kinematically admissible temperature fields, x is a point within
the domain Q, p(x) is the pointwise volume fraction, and V; is the upper bound on material
volume fraction. Using a finite element discretization, the maximum heat conduction objective
may be expressed as

min:  c(X) = T(X)TKX)T(X) (5.9)

X

subject to: K(X)T(X) =F = F; +Fs,

V(%)

<VmGX
Vo T F
0<x<1,

where ¢(X) is the thermal compliance, which may be considered as an average measure of
temperature within the design domain. Minimizing this objective corresponds to maximizing
the heat conduction. T(X) is the global temperature vector, K(X) is the global conductance
matrix, F is the design independent global thermal load vector comprised of both flux and

source terms, V/(X) = ZN

e—1 XeVe is the material volume, Vg is the design domain volume, and

Vi is the prescribed volume fraction. The conductance matrix and thermal load vector are
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assembled from their element contributions as follows:
elie) = [ BIDM(3)B. d0) (5.10)
Q.

where B, contains the shape function derivatives and D¢ (%.) is the element conductivity matrix
comprised of the thermal conductivity values as a function of material density. For an isotropic

material, this is given by
De(Xe) = de(Xe)l, (5.11)

where d.(%.) is the element’s conductivity as a function of element density, and | is a 3x3

identity matrix. Therefore, the element conductance matrix may be written as

Ke(%e) = de()”(e)/o B/IB. dQ (5.12)

where k. is the element conductance for a unit thermal conductivity. The element thermal load

vector is given by

fo=1l+f (5.13)

:_/q NeTq*dI’-i—/ N.”SdQ.
e Qe

5.1.1 Sensitivity Analysis.

The sensitivity of the conduction objective is analogous to that provided in Equation 3.20 for
the design independent linear elastic problem. The derivative of the thermal compliance with
respect to physical element densities X, is

ac(X)
0Xe

7 0ke(Xe)
0Xe

= _te(;(e)

te(Xe). (5.14)

This sensitivity implies that adding conductive material to the design by increasing the ele-
ment density will decrease the compliance and therefore improve heat conduction through the
structure. This is why an upper limit on volume must be prescribed, and this constraint will

remain active throughout the optimization process. As with the previous problem formulations,
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the chain rule is used to convert the above derivative with respect to physical element density

to a derivative with respect to the element design variable xe.

5.2 Heat conduction test case

This section explores a classical heat conduction problem studied by numerous authors includ-
ing Dede (2009), Chen et al. (2010), and Bendsge & Sigmund (2003) . The problem involves
determining the optimal material distribution of a 3D structure consisting of a highly conduc-
tive material and an insulator, such that heat conduction is maximized. The design domain
undergoes internal heat generation, with a heat sink at the base of the domain, adiabatic
boundaries, and a constraint on the maximum allowable volume of the conductive material. A

schematic of the problem setup is depicted in Figure 5.2.

<~ Adiabatic boundaries
<] on remaining faces

AY
I'h E
Internal heat z >
]

generation

P

Figure 5.2: Boundary conditions for the heat conduction test case.

Results obtained by both Dede (2009) and Chen et al. (2010) are shown in Figure 5.3.
The optimal topology exhibits a 'branched’ structure which fans out towards the boundaries of

the domain so that heat is drawn from the domain down to the heat sink.

5.2.1 Implementation

This 3D heat conduction test case is implemented in our topology optimization code using
design options and parameter values that would best replicate the problem setup used by pre-
vious authors. A cubic design domain with side lengths of 0.2 m is discretized into 50 x 50 x 50
cubic elements. We only analyze one quarter of the domain due to the double symmetry of
the structure. The desired volume fraction is set to V; = 0.30, and an initial homogeneous
distribution of material is prescribed where the element density is set to the given volume

fraction. Internal heat generation is applied to all nodes throughout the domain, using an
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Figure 5.3: Optimal structure obtained by (a) Dede (2009), and (b) Chen et al. (2010).
Reprinted from Chen et al. (2010), Copyright (2010), with permission from Elsevier.

element thermal load vector of f§ = 0.01*[1,1,1,1,1,1,1,1]T W. There is a heat sink in a
rectangular patch on the bottom face of the domain where the temperature is set to 7 = 0°C.
For this problem we consider two materials, both of which exhibit isotropic thermal conduc-
tivity. The highly conductive material has a thermal conductivity of k = 1 Wm~1°C~", while
the less conductive material has a thermal conductivity of kK = 0.001 Wm~'°C~". A SIMP
interpolation scheme is used in conjunction with a continuation scheme. The maximum penalty
factor is set to p = 3. The algorithm uses a density filter with a filter radius of r = 0.01 m or
2.5 element lengths. The MMA is the chosen optimizer for this problem, because the loading
is design independent and therefore the sensitivity is unconditionally negative. The GCMMA
method will yield virtually identical results for this particular application, albeit with a greater

computational time.

5.2.2 Results

Figure 5.4 shows the optimized structure obtained using our topology optimization code. It
appears that these results are in good agreement with those presented in Figure 5.3. Iteration
history of both the thermal compliance and volume fraction are shown in Figure 5.5. The
compliance converges by approximately 50 iterations while the upper volume fraction limit of
vf = 0.30 is attained. Possible reasons for slight discrepancies between the three optimized

structures include use of different material properties values, thermal load, filter, filter radius,
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plotting threshold, continuation scheme, solver, and optimization algorithm.

Figure 5.4: Optimal structure obtained using our topology optimization code.
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Figure 5.5: Plot showing thermal compliance and volume fraction vs iterations.

5.3 Topology optimization of the anode structure

Let us modify the heat conduction problem formulation for the objective of finding the material
distribution in a silicon anode structure that maximizes electrical conduction during cycling,
and therefore generates optimal charge transport pathways through the anode. As previously

stated, the strong form may be expressed using Equation 5.3 and appropriate variable substi-
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Figure 5.6: Schematic of boundary conditions applied to the periodic base cell.

tutions given in Table 5.1. As such, the governing Poisson’s equation for electric conduction
is given by

v (DV®)+ S =0, (5.15)

where D is the electrical conductivity tensor, typically assigned the variable o but in this case

we wish to avoid any confusion with stress. @ is the voltage and S is a current source.

5.3.1 Loading and boundary conditions

We study a 5 pym x 5 pym x 5 pm cubic base cell which is periodic in the x-z plane and dis-
cretized into finite elements, depicted in Figures 4.6a and 5.6. We model an anode undergoing
galvanostatic charging, where the current remains at a constant value. This is implemented
as a prescribed voltage of ® = 0.0 V on the top surface of the domain, and a current into the
electrode from the bottom surface of the domain. We consider a maximum battery capacity of
4200 mAh/g, and a charging or C rate of C/5, which indicates that for the given current it
will take 5 hours to fully lithiate or delithiate under ideal conditions (Quiroga-Gonzalez et al.,
2013). Assuming 30% of the domain is occupied by active silicon material with a density of
2328 kg m~—3, we obtain a current of 7.33 x 10~ A. For this problem we assume no internal

current source, and no flux on the remaining boundary faces. The discrete problem formulation
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is given by

min:  c(X) = (%) KX D(X) (5.16)

X

subject to: K(X)®(x) = F,

V(x)

<\/mGX
Vo T o
0<x<1,

where ¢(X) may be considered as the electrical compliance, ®(x) is the global voltage vector,
K(X) is the global electrical conductance matrix, and F is the design independent global

electrical load vector, which has non-zero terms due to the boundary current.

5.3.2 Problem parameters

As in Chapter 4.4, we consider two material phases: the anode and the electrolyte. The silicon
anode is a semiconductor and is assigned an isotropic conductivity of dypoqe = 0.067 Sm~!
(Ryu et al., 2004). The electrolyte is an electrical insulator, and is prescribed a very small

conductivity to avoid singularities, dejectrolyte = 1 x 107> Sm~—.

Unless otherwise stated,
the required volume fraction is Vy = 0.3 and is set to be the upper bound on anode material
volume. The initial element density is set to V; = 0.25, or 0.05 below the material limit. The
SIMP interpolation is used for the electrical conductivity d(%.) with a maximum penalty value
of p = 3. To prevent numerical difficulties such as mesh dependence, and to impose a minimum

length scale, density filtering is employed with a filter radius of r = 2um. We utilize the MMA

method to determine the updated densities on each iteration.

5.3.3 Results

Figure 5.7 depicts the optimized anode structure using the above material parameters. In order
to maximize electrical conduction, it appears that the structure must have direct electronic
pathways through the thickness of the electrode. These structures show some resemblance to

the silicon nanowires discussed in Section 1.3.5.
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(b)

Figure 5.7: Anode structure optimized for maximum electrical conduction with a volume fraction
of Vy =0.3: (a) 1 base cell, (b) 2 x 2 base cells.

The iteration history for electrical compliance and volume fraction are shown in Figure 5.8.
The compliance converges to an optimum value of 3.9318 x 10~/ A-V by 160 iterations. The

volume fraction attains the upper bound of 30% material for the conductive silicon phase.
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Figure 5.8: Electrical compliance and volume fraction as a function of iterations.
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Figure 5.9 depicts the optimal structures for various numbers of elements. The design is

consistent for the different discretizations, confirming mesh independence.

ass

(@) 15 x 15 x 15 elements (b) 25 x 25 x 25 elements (c) 35 x 35 x 35 elements

Figure 5.9: Optimized structure for varying numbers of elements.

As with the minimum compliance objective, a selection of volume fractions were tested to
determine how changing the limit on the allowable material influenced the final design. Figure
5.10 shows that increasing the volume fraction results in a larger radius of the cylindrical
structure. For larger volume fractions the structure becomes increasingly tapered, allowing
more current to be transported through the silicon structure from the base of the cell. Figure
5.11 depicts the electrical compliance vs volume fraction. For this problem the electrical
compliance decreases with increasing volume fraction. Therefore, a structure with a greater

material volume will be a better conductor of electricity.

1088

a) V, =0.15 (b) V; = 0.30 oV, =045 (d) V; = 0.60

Figure 5.10: Optimized base cell structures for varying volume fractions.
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Figure 5.11: Compliance as a function of prescribed volume fraction.

5.3.3.1 Influence of minimum length scale and aspect ratio

The length scale associated with the solution of this optimization problem is dependent on
the comparative values of the filter radius, domain size, and the number of elements. The
remainder of this chapter explores the effect of changing these values on the topology of the
structure.

The filtering radius directly impacts the minimum length scale of the solution, as an el-
ement’s density is taken to be a weighted average of the neighbouring elements within this
radius. This conduction problem was originally run with a filter radius of r = 2 ym, the same
size used to obtain the optimal anode structures presented in Chapter 4. For this design the
material is lumped together in a single cylindrical structure, as shown in Figure 5.7. The
simulation was subsequently run with various filter radii to determine whether this length
scale will have an impact on the topolgogy of the optimized structure. The following radii
were tested: r =1 pm, r = 0.5 pm, r = 0.25 pm, and r = 0.17 pm. The optimized structures
are shown in Figure 5.12. The top depicts the base cell produced as output from the analysis,

while an offset base cell is depicted in the bottom row for additional clarity.
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Figure 5.12: Optimized base cell for various filter radii, a 5 ypm x 5 pm x 5 pm domain and
a volume fraction of Vy = 0.3. The top row depicts the base cell designs directly from the
simulation, while the bottom row shows the designs shifted by half a base cell in the x and
z-directions.

The most noticeable change between the r = 2 pym design and the structures shown in
Figure 5.12 is that the material has accumulated in the corners rather than the center of
the base cell. However, plotting the shifted base cell shows that we still obtain similar
cylindrical structures to the r = 2 pym design. This change in material location is related to
the magnitude of the filter radius. For this problem formulation, the filter radius will cause
material to progressively accumulate together throughout the iterations, where the degree of
accumulation is dependent on the size of the filter radius. A larger filter radius means a greater
number of neighboring elements’ densities are used to determine the weighted average density
of each element. If the filter radius is large enough, such as r = 2 ym, the material will typically
accumulate in the center of the cell, while smaller radii allow the material to accumulate in
the four corners. This is because the influence of the small radii does not exceed the width of
the void area between the quarter cylinders, and as such material is free to accumulate in the
corners.

Another observation is that a larger filter radius will typically produce structures with
greater surface curvature and therefore lower silicon/electrolyte interface area. Furthermore,

decreasing the filter radius results in a more tapered base of the cylindrical structure, where
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the current enters the domain from the current collector. This change in base shape increases
the amount of current flowing through the structure. This is because a set value of current is
prescribed at each node on the bottom face of the domain. As such, the greater the bottom face
area covered by the silicon, the greater the current flowing through the anode structure. The
structure for r = 0.25 pym resembles the base of a tree trunk, where the ‘roots’ fan out to draw
in the current from the base of the cell. When the filter radius is reduced even further to r =
0.17 pm, which is equivalent to one element length, non-physical checkerboarding behaviour
can be observed.

A plot of electrical compliance vs filter radius presented in Figure 5.13 shows that the
compliance decreases with decreasing filter radius. As might be expected, the smallest filter
radius of r = 0.17 pm shows an artificially low electrical compliance value due to the checker-
boarding behaviour. Further details on this matter may be found in Chapter 3.7. Therefore, a
trade-off exists between obtaining the optimum structure and a structure that is non-physical.
As such, caution must be exercised when choosing an appropriate length scale to ensure the

design is well-posed and manufacturable.
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Figure 5.13: Electrical compliance as a function of prescribed volume fraction.
We now investigate the effect of changing the base cell aspect ratio. Until this point, we

have considered a base cell with equal side lengths of 5 ym. A modified base cell with the

same footprint area as the original base cell but a height three times greater is analysed. The
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Figure 5.14: Optimized base cell for various filter radii, 5 pm x 5 pm x 15 pym domain and a
volume fraction of Vy = 0.3

overall dimensions are 5 ym x 5 pym x 15 pym with an element discretization of 20 x 20 x 60
elements. A volume fraction of 0.3 is prescribed, and filter radii of r=2 ym, r =1 pm, r = 0.5
pm, r = 0.25 pm, and r = 0.17 pm are considered. Figure 5.14 depicts the optimal structures.
When a filter radius of 2 pym is used, we obtain a structure very similar to that presented in
Figure 5.14a, only elongated in the vertical direction. Decreasing the filter radius has a very
similar effect to the results shown above, where the base of the cylinder becomes increasingly
tapered and a reduction in the value of compliance is observed. Furthermore, the cross-section
appears to transition from a circular shape to a square. For this aspect ratio, we observe
checkerboarding starting at a larger radius of r = 0.25 pm. The results for r = 0.17 pym appear
almost identical to Figure 5.14d and are therefore not shown. These results further illustrate

the importance of using reqularization methods to ensure well-posed solutions.

5.4 Summary

This chapter aimed to determine silicon anode designs that maximized the electrical conduc-
tion through the structure. Due to the analogous nature of heat and electric conduction, the
problem formulation for heat conduction and a benchmark heat conduction problem involving a
heat sink and internal heat generation were first presented. The anode structure was subse-
quently optimized for maximum electrical conduction, producing rod-like designs that provided
an efficient conduction pathway through the thickness of the anode structure. The iteration

history, mesh independence, and influence of volume fraction were studied, and subsequently
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a parameter investigation involving the minimum length scale and base cell aspect ratio was
conducted. It was found that a reduction in length scale progressively decreased the value
of electrical compliance; however, checkerboarding behaviour was observed once the length
scale became very small. Increasing the base cell aspect ratio resulted in elongated silicon
structures, with similar observed trends as the original aspect ratio for a reduction in length

scale.
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Chapter 6

Combining Objectives

In this chapter we perform multi-objective topology optimization to produce anode structures
that simultaneously address the structural and conduction design requirements. First, the
concepts of Pareto optimal solutions and the weighted sum method are presented. A verification
problem originally analysed by Chen et al. (2010) is subsequently explored. Multi-objective
topology optimization is then applied to the silicon anode problem, and a parameter study
is conducted to determine the influence of the minimum length scale and prescribed volume

fraction on the optimal solutions.

6.1 Problem formulation

Multi-objective optimization methods aim to determine a solution that best satisfies a number
of objectives which are typically conflicting and non-commensurable. Following the convention

of Koski & Silvennoinen (1987), the multi-objective optimization problem may be defined as

min:  [f(x), F2(3), ... Fi(X), . (X)) (6.1)

xeQ

subject to: g(x) <0,

where f; are the different objective functions fori = 1,2, ..., m, to be minimized simultaneously
subject to inequality and equality constraints. The vector of design variables is given by
X =[x1,x2,... ,xn]T, and Q is the feasible set in the design space R". Due to the competing

nature of the objective functions, there usually exists no single global solution that would
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simultaneously give an optimum for all m objectives. As such a trade-off is required, and the
concept of Pareto optimality (Pareto, 1906) is used to determine the series of solutions that
make up the optimum. The Pareto optimum is defined by Koski & Silvennoinen (1987) as
follows:

Definition: A vector x* € Q is Pareto optimal for the optimization problem given by
Equation 6.1 if and only if there exists no x € Q such that fi(x) < fi(x*) for i =1,2,...,m
with f;(x) < f;(x*) for at least one j.

In other words, x* is Pareto-optimal if there exists no feasible solution x that would decrease
at least one objective function without causing a simultaneous increase in at least one other
objective The set of Pareto-optimal points forms a Pareto front, also called a Pareto curve for
a two-objective problem. A schematic of a Pareto curve and Pareto-optimal points is depicted

in Figure 6.1.

Pareto front

/ Non-Pareto-optimal point
X
/ Pareto-optimal point

rf2

Figure 6.1: Pareto front for two objective functions, f; and f,.

One method to obtain Pareto optimal solutions is the weighted sum, or weighting method
(Zadeh, 1963). The multi-objective problem is reformulated as a single objective problem using
weight factors, where the summation of the weights is unity, and the objectives are normalized.

Using the weighting method, the following problem is solved:
. fi
min: F=) w (6.2)

fik f; e fT,
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where F is the multi-objective function, and w; is the ith objective weighting function with
the requirements of 0 < w; < 1 and ) ", w; = 1. The ith objective function is given by f;
while /" is the maximum objective function value, which is used for normalization. This method
involves a priori articulation of preferences, where the user indicates the relative importance
of the objective functions by assigning values to the weights before running the optimization
algorithm (Marler & Arora, 2004). Equation 6.2 determines one particular optimal solution
on the Pareto front. The weights may be continuously altered to form the complete set of

Pareto-optimal designs.

6.2 Multi-objective topology optimization test case

A validation step was first undertaken by reproducing the results presented by Chen et al.
(2010). Chen et al. (2010) developed a topology optimization algorithm for multifunctional
3D finite periodic structures, simultaneously addressing the maximum stiffness and maximum
heat conductivity criteria using a weighted average method. This test case was used to verify
that our underlying computational methodology and implementation of the multiple objective

topology optimization problem formulation was correct.

6.2.1 Problem formulation and implementation

The problem formulation presented by Chen et al. (2010) may be written as:

m);m io(X) = ws Go(X) + weCe(X) (6.3)
. U(xFKg;i)U(X) ) WCT‘*)T'ZCCF)T(*’ 64
subject to : \g() = Ve,
0
0<x<1,

where C,(X) and C.(X) are the stiffness and conduction objective functions, respectively. The
weighting factors for the mechanical and thermal compliance objectives are ws and w,, respec-
tively. U(x) is the displacement field due to both the mechanical and thermal loadings, K(X)
is the global stiffness matrix, T(X) is the temperature field, and K¢(X) is the global conductivity

matrix. The individual objectives are normalized by their maximum values, C¥ and C}.
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Figure 6.2: Loading and boundary conditions for the multi-objective test case.

Figure 6.2 depicts the loading and boundary conditions for the problem. Vertical displace-
ment is restrained at the bottom four corners of the domain, while a unit force is applied in an
upwards direction on the center of the top surface. This design problem is commonly referred
to as the ‘stool’ problem, and has been explored by other authors such as Borrvall & Petersson
(2001) and Suresh (2013). The heat conduction problem is the same as presented in Chapter
5.2. The design domain is heated evenly at all nodes and a heat sink is located in a square
section at the center of the bottom surface, where the temperature is kept to be zero degrees.

Like Chapter 5.2, a cubic design domain with side lengths of 0.2 m is discretized into 50 x
50 x 50 cubic elements. The desired volume fraction is set to V¢ = 0.25 — 0.30, and an initial
homogeneous distribution of material is prescribed where the element density is set to the
lower bound on volume fraction. We consider two materials, a solid and void. The solid phase
is stiff and conductive with a Young's modulus of £ =1 GPa, a Poisson’s ratio of v = 0.3, and
an isotropic thermal conductivity of d =1 Wm~'°C='. The void phase is assigned very small
material parameter values to prevent singular behaviour. We consider a SIMP interpolation
scheme for the Young's modulus and thermal conductivity with a maximum penalty parameter
of p = 3, while a RAMP interpolation scheme is used for the thermal load, with a maximum
value of p = 8. A density filter is implemented with a filter radius of r = 0.01 m or 2.5 element

lengths.
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6.2.2 Results

The results of Chen et al. (2010) are provided in Figure 6.3, while the structural topologies
obtained using our code are shown in Figure 6.4. The Pareto front shows how the competing
design objectives influence the resulting topologies as the weights are varied from the full
stiffness design, ws = 1, to the full conduction design, ws = 0. When the stiffness objective
dominates we obtain a structure with struts, or legs of the stool, connecting the corners to the
location of applied loading. The four legs of the stool are connected by thin bars at the base of
domain. When the conduction objective dominates, the optimal design is a doubly-symmetric
tree-like configuration with numerous fine twigs to draw heat from the domain down to the
heat sink. Intermediate weights show a progression of structures that have both strut and
twig-like features. The Pareto front clearly illustrates the design trade-off, where a reduction
in the value of one objective will be accompanied by an increase in the value of the competing
objective.

It is clear that the two sets of results depict a similar progression of structures. Slight
discrepancies may be attributed to the use of a different filter, filter radius, plotting threshold,
continuation scheme, and solver, none of which were specified in the paper. Overall, our
results appear in agreement with those presented in Chen et al. (2010), thereby verifying our

computational methodology and implementation.
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(c) Pareto front and corresponding structural topologies

Figure 6.3: Topology optimization results produced by Chen et al. (2010). Reprinted from
Chen et al. (2010), Copyright (2010), with permission from Elsevier.



Multi-objective topology optimization of the anode structure | 97

(b) ws = 1

o
©
T

o
(o]
T

o
\l
T

°
(e}
T

ws =0.800 w, =0.980 w, =0.999 |

b
(&)
T

L13Y 1

(" N

Normalized stiffness objective

o
~
T

o
w
T

0.2 0.4 0.6 0.8 1
Normalized conduction objective

1

o
N
o

(c) Pareto front and corresponding structural topologies

Figure 6.4: Topology optimization results produced using our algorithm.

6.3 Multi-objective topology optimization of the anode structure

Multi-objective topology optimization is now applied to the silicon anode structure undergoing
lithiation. The design objectives of minimum compliance for design-dependent volume expan-
sion presented in Chapter 4, and maximum electrical conduction presented in Chapter 5, are
combined into a single objective function using the weighted sum method. The Pareto curves
and optimal designs for different combinations of filter radius and prescribed volume fraction

are presented and discussed.
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6.3.1 Problem formulation and implementation

The multi-objective problem formulation is the weighted sum of the individual minimum com-

pliance and maximum conduction objectives.

m);m Doo(X) = ws C: + we Cr (6.5)
; V/(x
subject to: V""" X < Ve
Vo
Ks(®)U(%) = Fs(%) = F&' + FS(X)

For clarity, the same subscripts of s and ¢ from Equation 6.4 are used to represent the structural
and conduction objectives, respectively. U(X) is the displacement field due to the design
dependent thermoelastic loading, Ks(X) is the global stiffness matrix, ®(X) is the global voltage
vector, and K¢(X) is the global electrical conductance matrix. The objectives are normalized
by their maximum values C} and C}, which are calculated by running the algorithm for zero
weights, i.e, ws = 0 and w, = 0, respectively. We prescribe both an upper and lower bound
on the volume fraction. The structural objective will push the solution to the lower bound on
volume fraction, while the conduction objective will push the solution towards the upper bound.
As such, the design domain is initialized with densities equal to the median value between

these two bounds. All other parameters remain the same as presented in Chapters 4 and 5.

6.3.2 Results

Figure 6.5 depicts the Pareto curve for a volume fraction Vs = 0.30 and a filter radius r =
2 pm. The Pareto weight of the structural objective is varied between ws = 0 and ws = 1.
When the weight is ws = 1, only the structural objective is considered and the resulting optimal
structure is the same as that presented in Chapter 4.4.3. The value of the normalized structural
objective is at a minimum, while the normalized conduction objective takes its maximum value
of 1. As the Pareto weight decreases, the conduction objective begins to have an effect on
the optimized structure. The circular hollows on the vertical faces become elliptical in shape,

allowing for more material to be aligned in the direction of current flow. By ws = 0.68 the
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connection between the vertical struts at the top of the structure is severed. Repeating this
periodic structure in the x-z plane results in columnar structures with square cross-sections.
A further reduction in Pareto weight causes the structure to collapse down to half the base
cell height, with material lining the vertical face and a cylindrical hollow in the center of the
domain. The material then accumulates in the center of the domain before it finally stretches
out to form the cylindrical structures for the full conduction objective at the Pareto weight of
ws = 0.

It is interesting to note that the optimized structures for wg = 0 and ws = 0.68 bear a
close resemblance, only with differing cross-sections and tapering at the base of the structures.
We would therefore expect both structures to have similar conduction objective values. The
difference between these objective values may be attributed to the effect of the large filter radius
of r = 2 ym and the influence of the conduction objective. As discussed in Section 5.3.3.1,
when conduction dominates and the filter radius is set to r = 2 ym, material will accumulate in
the center of the domain producing structures with a circular cross-section. However, when the
structural objective dominates, material tends to accumulate near the edges of the domain. The
circular cross-section structures of ws = 0 will have a lower silicon/electrolyte interface area
than the square cross-section structures of wg = 0.68. This low interface area is implicitly
favored for the conduction objective and therefore results in a lower conduction objective value.
The transition structures between ws = 0.00 — 0.68 may also be attributed to the conduction
objective favoring low interface area structures.

Further evidence that conduction is the dominant objective for this range of Pareto weights
is given in Figure 6.6, where the final volume fraction is plotted as a function of the Pareto
weight. It is known that the conduction objective will drive the solution towards the upper
volume fraction bound of V; = 0.30, while the structural objective will drive the solution to-
wards the lower volume fraction bound of V; = 0.25. Therefore, this figure clearly shows which
objective is dominant for each Pareto weight. There is a distinct transition from conduction
to structural objective dominance just below ws = 0.7, which corresponds well with the ob-
servation that the low interface area transitional structures are related to the influence of the

conduction objective.
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Figure 6.5: Pareto front and corresponding optimal topologies for V; = 0.30 and a filter radius
of r =2 pym.
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Figure 6.6: Volume fraction as a function of Pareto weight for V; = 0.30 and a filter radius of
r=2 um.

6.3.2.1 Influence of minimum length scale

For the previous Pareto curve shown in Figure 6.5, a large filter radius of r = 2 ym was chosen
to ensure manufacturability of the full structural objective design. In this section, smaller filter
radit of r =1 pym and r = 0.5 pm are used to determine their influence on the multi-objective
solutions. The same normalization values are used as for r = 2 pym so that the Pareto curves
may be easily compared. It is expected that not all solutions are manufacturable, particularly
when the structural objective dominates.

Figure 6.7 depicts the Pareto curve and associated optimal solutions for a volume fraction
of Vi = 0.30 and a filter radius of r = 1 ym, and also the previous Pareto curve for r = 2 pym is
shown in grey. Comparing these curves confirms some observations made in previous chapters.
Firstly, for a full structural objective the value of the normalized structural compliance is
slightly lower for the smaller filter radius (see Chapter 4.4.3.1). Similarly for the full conduction
objective, the value of the normalized electrical compliance is significantly less for the r = 1
pm filter radius (see Chapter 5.3.3.1). Interestingly, the r = 1 pym curve almost overlaps with

the majority of the r = 2 ym Pareto curve. This indicates that data points on these curves that
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Figure 6.7: Pareto front and optimal topologies for V; = 0.30 and a filter radius of r = 1 ym:
(a) base cell (left) and shifted base cell (right) for the full conduction objective, ws = 0, (b)
base cell (left) and shifted base cell (right) for the full structural objective, ws = 1, (c) Pareto
front for both r = 1 pym (black) and r = 2 pm (grey), and the corresponding optimal structures
forr =1 pym.
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coincide with each other will have almost the same values and proportions of the objective
functions, and therefore would be expected to exhibit similar performance.

The optimal structures show a clear progression from the full structural objective, ws =1,
to the full conduction objective, ws = 0. The full structural objective, depicted in Figure 6.7b,
may be considered as a hollow cube with an internal floating structure and holes on the faces
near the corners. As the structural Pareto weight decreases, the increasing influence of the
conduction objective causes the top and bottom faces to loose material, the side faces to gain
material, and the internal floating structure to disappear. This results in a intermediate rigid
frame structure that exhibits direct conduction pathways. When conduction begins to dominate,
material begins to accumulate at the corners of the structure, while the central sections of the
side faces loose material until the full conduction structure is obtained (Figure 6.7a).

A further reduction in filter radius to r = 0.5 pm results in subtle changes, as shown in
Figure 6.8. As in Chapter 4.4.3.1, for ws = 1 a small increase in the value of the structural
objective is observed relative to the value for r = 2 ym. For the full conduction objective,
the value of the normalized electrical compliance is lower than the two larger filter radii,
which is in agreement with the observations detailed in Chapter 5.3.3.1. The progression of
optimal structures is very similar to that depicted in Figure 6.7. From the full stiffness solution
shown in Figure 6.8b, the vertical sides gain material promoting conduction pathways while
the top and bottom faces become open. The floating internal structures decrease in size as the
Pareto weight decreases, until they disappear altogether. The intermediate frame structure is
produced which is almost identical to the structure shown in Figure 6.7c, except with a smaller
radius of curvature in the corners due to the smaller filter radius. As conduction prevails,
the walls of the intermediate structure recede, while the corners gain material to become the
cylindrical structures of the full conduction objection (Figure 6.8a).

The intermediate frame structure is the stable solution for the central section of both the
r="1pm and r = 0.5 ym Pareto curves. This structure offers a clear compromise between
the structural and conduction objectives. The base cell, shifted base cell, and 2 x 2 base cell
representations of this frame structure are depicted in Figure 6.9. This design provides the
structural rigidity required by the minimum structural compliance objective. Furthermore, by
virtue of the volume fraction, there are distinct spaces for the anode structure to expand into
during lithiation. The electrical conduction objective is achieved by using direct conduction

pathways from the top to the bottom of the anode structure. For a volume fraction of V; = 0.30,
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Figure 6.8: Pareto front and optimal topologies for V; = 0.30 and a filter radius of r = 0.5 ym:
(a) base cell (left) and shifted base cell (right) for the full conduction objective, ws = 0, (b)
base cell (left) and shifted base cell (right) for the full structural objective, ws = 1, (c) Pareto
fronts for r = 2 pm, r = 1 pm and r = 0.5 pym, and the corresponding optimal structures for r
= 0.5 pm for various Pareto weights.
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e W

) One base cell (b) One shifted base cell
(c) 2 x 2 base cells (d) 2 x 2 shifted base cells

Figure 6.9: The intermediate frame structure that provides the best design compromise in terms
of the combined minimum structural compliance and maximum electrical conduction objectives
for V; = 0.30.

this frame structure is recommended as the best silicon anode design in terms of combined

minimum structural compliance and maximum electrical conduction.

6.3.2.2 Influence of volume fraction

The final stage of the parameter investigation was to perform the multi-objective analysis
with different prescribed volume fractions in order to assess the effect of this parameter on
the Pareto curve and its associated solutions. Two additional volume fraction windows are
considered, namely V¢ = 0.40 — 0.45 and V; = 0.55 — 0.60. Following previous convention,
both volume fractions will be subsequently referred to by their upper limit of Vy = 0.45 and
Vi = 0.60, respectively. A filter radius of r = 1 pm was used for these analyses.

The Pareto fronts for volume fractions V¢ = 0.45 and V¢ = 0.60 are given in Figures 6.10
and 6.11. In addition to the original base cell (denoted A.), the shifted base cell (denoted
B.) is provided for the higher Pareto weights to assist with visualization. The progression of

structures along the Pareto fronts appear very similar for both volume fractions, and present
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some resemblance to the structures associated with the Pareto curve for a Vy = 0.30. Starting
at the full structural objective, ws = 1, a cubic structure with holes on the side faces is
observed. For the Vy = 0.45 the internal structure is floating, while for Vy = 0.60 the internal
structure is connected to the side walls. A slight decrease in the Pareto weight results in the
conduction objective beginning to influence the solution and create a more vertically-oriented
structure. The holes on the side faces close, while holes on the top face appear. These
holes are smaller for the larger volume fraction. The internal structure becomes a connected
conduction pathway between the top and bottom faces. A further reduction in Pareto weight
causes the internal structure to begin to disappear, as shown by base cell B., and material
begins to accumulate near the sides of the domain. In the center section of the Pareto curve,
an intermediate structure is produced which is similar to the frame structure obtained for a
Vi = 0.30. However, a notable difference is that this intermediate structure does not line the
side faces of the base cell. For clarity, Figure 6.12 shows 2 x 2 base cells and 2 x 2 shifted
base cells of this intermediate structure for a volume fraction of V; = 0.60. This structure
exhibits direct conduction pathways, and also has the interesting feature of the material within
the original base cell being able to expand in both inward and outward directions. A small
amount of expansion would result in the structure resembling a high volume fraction frame-Llike
structure, similar to that depicted in Figure 6.9. As the weight is further decreased and the
conduction objective begins to dominate, the sides of the intermediate structure recede and
material gathers at the corners to eventually produce the tapered cylindrical structures for
ws = 0.

Figure 6.13 shows the Pareto curves for the volume fractions Vy = 0.30, V; = 0.45
and V¢ = 0.60 and a filter radius of r = 1 ym on the same plot. These individual Pareto
curves appear to be constituents of the full Pareto front. This Pareto front clearly depicts the
competing nature of the objective function, and illustrates the range of attainable objective
function values for the different volume fractions. As expected, the lowest structural objective
value is obtained at the lowest volume fraction, while the lowest conduction objective value is
obtained by the highest volume fraction. Therefore, in order to best resolve the primary design
concern of lithiation-induced mechanical degradation, it is recommended that the silicon anode
structures be designed using the rigid frame structure with the lowest practicable volume

fraction.
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Figure 6.10: Pareto front and corresponding optimal topologies for V; = 0.45 and a filter
radius of r = 1 ym.
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Figure 6.11: Pareto front and corresponding optimal topologies for Vy = 0.60 and a filter
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Figure 6.12: The intermediate structure which provides the best design compromise in terms
of the combined minimum structural compliance and maximum electrical conduction objectives
for Vi =060 and r =1 pm.
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Figure 6.13: Pareto curves for r = 1 ym and V; = 0.30, V; = 0.45 and V; = 0.60.

6.4 Summary

This chapter considered a bi-objective problem formulation that simultaneously optimized both
the structural and conduction design criteria that were presented individually in previous
chapters. The weighted sum method was used to determine the set of Pareto-optimal points
that form the Pareto front. First, a multi-objective test case was implemented in order to verify
the underlying computational methodology and implementation. Following this, a selection
of anode configurations of varying minimum length scale and volume fraction were optimized
using the bi-objective formulation. For a volume fraction of V; = 0.30, it was found that
a smaller length scale resulted in a more stable progression of structures, with a distinct
intermediate phase that resembled a frame-like structure. This frame structure provided the
structural rigidity and direct conduction pathways required by the design objectives. However,
due to the smaller length scale not every transition structure was manufacturable, particularly
for designs dominated by the structural objective. Larger volume fractions of Vy = 0.45 and
Vi = 0.60 were subsequently optimized, which produced a similar transition of structures as
for Vi = 0.30. The three tested volume fractions formed an overall Pareto front, which provided

a further insight into the competing nature of the structural and conduction design criteria.
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Chapter 7

Concluding Remarks and Future Work

7.1 Summary

This thesis presented a topology optimization methodology for the systematic design of opti-
mal multifunctional silicon anode structures in lithium-ion batteries. The methodology utilized
density methods, regularization techniques, continuation schemes, and mathematical program-
ming methods such as the globally convergent method of moving asymptotes.

The first stage of this research aimed to address the mechanical degradation of silicon
anode structures due to the lithiation-induced expansion. The design objective of minimum
compliance was considered, subject to a constraint on volume and design dependent volume
expansion that simulated lithiation of the anode structure. The optimal design resembled the
triply-periodic Schwarz P minimal surface, which has also been obtained for other design ob-
jectives as detailed in the Chapter 2. The results were studied through the investigation of the
iteration history, mesh independence, influence of volume fraction, and minimum length scale.
A smaller volume fraction was found to yield an improved performance as a result of less vol-
ume expansion due to less material, and also larger void spaces that better accommodated the
expansion. On the other hand, decreasing the minimum length scale below r = 2 ym produced
structures unsuitable for manufacture due to their finer features and an internal floating struc-
ture that lacked connectivity. Stress analysis indicated that the optimized structures would
exhibit significantly improved mechanical performance in comparison to a solid structure of
equivalent volume. Furthermore, the results were found to be almost identical for minimum
compliance and minimum elastic strain energy formulations and, as such, it may be concluded

that these design objectives were equally effective for this particular optimization problem.
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The second phase aimed to determine topology optimized anode designs that maximized
electrical conduction through the silicon structure. The analysis produced rod-like structures
that provided efficient conduction pathways through the thickness of the anode structure,
similar to the silicon nanowire structures used by experimentalists. As with the mechanical
compliance problem, the iteration history, mesh independence, and influence of volume fraction
were studied. A greater volume fraction, by means of a larger cross-sectional area of the rod
structure, was found to yield a lower value of electrical compliance and therefore improved
conduction performance. A parameter investigation involving the minimum length scale and
base cell aspect ratio was also conducted. A reduction in length scale was found to be
advantageous by way of a significant decrease in the value of electrical compliance. The
smaller length scales of r = 0.25 — 1.0 pym resulted in an increased tapering out from the
base of the structure, allowing more current to enter the anode. Furthermore, a decrease
in length scale resulted in a smaller radius of curvature of the structural features, thereby
increasing the electrode-electrolyte interface area. However, once the length scale became
very small, checkerboarding behaviour was observed. As such there was a clear trade-off
between obtaining the minimum compliance structure, and a structure that was non-physical.
Furthermore, increasing the base cell aspect ratio resulted in elongated silicon structures, with
similar observed trends as the original aspect ratio for a reduction in length scale.

The final stage of this thesis was to simultaneously address the structural and conduction
design criteria using a bi-objective topology optimization formulation. The weighted sum
method was used to derive the Pareto fronts for a selection of silicon anode configurations of
varying minimum length scales and volume fractions. For a volume fraction of V; = 0.30, it was
found to be beneficial to perform the analysis using smaller minimum length scales of r = 0.5—
1.0 um. This was due to a considerably more stable progression of structures along the Pareto
curve, yet almost coincident Pareto fronts. Furthermore, the smaller length scales produced a
consistent frame-like structure for a broad range of intermediate Pareto weights. This frame
structure was deemed to be an excellent compromise between the competing design criteria,
as it provided both the structural rigidity and direct conduction pathways required by these
design objectives. A similar transition of structures was observed for larger volume fractions
of V¢ =0.45 and Vy = 0.60. Interestingly, for these larger volume fractions the intermediate
frame structure had slanted sides, allowing expansion in both internal and external directions.

Finally, the Pareto fronts of the three volume fractions were combined to form an overall Pareto
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front, which provided a key insight into the competing nature of the objective functions, and
also the attainable range of objective function values for the different volume fractions. As
the mechanical degradation associated with the lithiation-induced expansion was the primary
design concern for this thesis, the recommended multifunctional silicon anode design was the
rigid frame structure using the lowest practicable volume fraction whilst ensuring sufficient
active material to yield the required electrochemical performance of the battery.

The developments and results presented in this thesis provide a solid foundation for the
informed design and development of optimal multifunctional silicon anode structures for use in

lithium-ion batteries.

7.2 Future work

There are many potential avenues of future work in terms of the computational methodology,
the silicon anode design problem, and also application to other design problems. Firstly, the
structures presented in this work could be manufactured and tested by experimentalists, or
could be incorporated into numerical models of battery systems to simulate the electrochemical
performance of the battery as a whole.

With regard to the computational methodology, future developments include incorporating
non-linear elasticity to better model the lithiation behaviour of the anode structure. There
are some challenges associated with non-linear elasticity topology optimization due to the
numerical instabilities that occur as a result of the low density elements in the incremental and
iterative non-linear finite element analysis. Despite these difficulties, it may prove fruitful to
consider non-linear elasticity for the anode design problem due to the large volume expansion
of the silicon structure.

Furthermore, periodic boundary conditions could be implemented as opposed to the sliding
boundary conditions used in this work. The periodicity of the structure impacts the solution
through the calculation of the sensitivity values, therefore, improved structures may be found by
considering periodic boundary conditions, or by maintaining the symmetric boundary conditions
and incorporating periodicity into the sensitivity calculations.

Rather than optimizing for stress on a global level using the minimum compliance design
objective, another possible area of future work would be to perform stress-based topology

optimization. Applying stress-based topology optimization to the silicon anode problem could
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produce structures that minimize the local stresses, and would therefore reduce the peak
stresses in the structure. Stress-based topology optimization is is an additional challenge
due to three key problems, namely the singularity phenomenon, the local nature of stress
constraints, and the highly non-linear stress behaviour (Bendsge & Sigmund, 2003). As such,
in recent years there has been significant interest by the topology optimization community
in developing techniques to overcome these problems; however, most methods are still in a
developmental phase.

In terms of the anode design problem an additional objective function could be implemented,
such as considering buckling or maximizing the diffusion of lithium-ions into the anode struc-
ture. Diffusion processes greatly influence the performance metrics of the battery, such as the
charge and discharge rate and cycling stability. Therefore this design objective would be an
excellent addition to the analysis. A large surface area is likely to be characteristic of a maxi-
mum diffusion anode structure, which is somewhat at odds with the structures presented in this
thesis. It would therefore be interesting to incorporate this objective into the multi-objective
analysis to determine its influence on the multifunctional anode structure.

Finally, the methodology developed in this thesis could be directly applied to other design
problems with only minor changes to the problem set-up. Possible applications include thermal
insulators, which are required to be stiff, lightweight, and inhibit heat transfer through the
structure, or exhaust washed structures in aerospace applications which must be mechanically

robust and provide efficient conduction pathways to reduce thermal expansion.
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Appendix A

Finite Element Formulation for Linear
Elasticity

This appendix details the finite element formulation for linear elasticity in order to solve for
the nodal displacements throughout the design domain. The strong and weak formulations
are given, in addition to the finite element approximation using the Galerkin method, and
accompanying computational implementation details. The author recommends standard finite
element texts for complete derivations and further reading, for example, Fish & Belytschko
(2007); Gosz (2006); Huebner et al. (2001); Kattan (2007); Khennane (2013); Logan (2012);
Ross (1998); Zienkiewicz et al. (2013).

A.1  Strong form of the linear elasticity equations

Let us consider a body defined by the volume Q) and outer surface I', as shown in Figure A.1.
The body is subjected to prescribed displacements u* applied on a part of the boundary ',
prescribed boundary tractions t* on the boundary "¢, and body forces b such as self-weight

are also considered,

u=u" on [y, (A1)

on=t* on . (A2)

The equilibrium equation for (quasistatic) linear elasticity may be expressed in matrix Voigt
form as

Ve +b=0, (A.3)
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on=t*onl, u=u*onl,

r=r,ur,
Figure A.1: The reference domain

where V is the symmetric gradient operator
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o is the vector of stress components and b is the vector of body forces. The equilibrium

equation may be expressed in long form as:

UXX
0,

0 0 ) 9y

200 2 2, b, 0

002 0 2 2 ofy “r+ibr=10 (A5)
Oxy

d Jd 0

00 £ o0 2 2 b, 0
Uyz
UXZ

A.2 Weak form of the linear elasticity equations

The governing differential equation may be recast into an integral weak form, from which we
may obtain accurate approximate solutions. In order to construct the weak form, the equilibrium

equation (Equation A.3) is multiplied by an appropriate weight function W = [W,, W, W,]".
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This weight function must be admissible, meaning W and its derivatives must vanish wherever
conditions are imposed on u(x) or its derivatives. This product is then integrated over the
domain Q,

/WT(VTa+b) dQ = 0. (A6)
Q

Integration by parts is used to reduce the order of derivatives to a minimum, yielding the weak

form of the equilibrium equations for linear elasticity,

[(VW)TadQ — / W'bdQ — | Wt*dlr =0. (A7)
Q Q I

Or equivalently in irreducible form, written completely in terms of displacements using the
stress-strain relation ¢ = Ce, and the strain-displacement relation € = Vu, where C is the

constitutive matrix

/(VW)TCVu dQ — / WbdQ — | WTt*dlr = 0. (A.8)
Q Q I

A.3 Finite element approximation by the Galerkin method

The design domain is discretized into isoparametric hexahedral or eight-node brick elements,

chosen for their good accuracy and ease of mesh creation (Figure A.2).

o

Figure A.2: Eight-node brick element
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The associated shape functions are

Ni(&,mop) =178(1 = &)(1 = n)(1 — p), (A.9)
No(&np) = 17801+ §)(1 —n)(1 — n),
N3(& nop) =1/8(1+ )1+ n)(1 —u),
Na(&,nop) =1/8(1 = &)(1 + n)(1 — p),
Ns(&,np) =1/8(1 = &)(1 = n)(1 + n),
Ne(&, np) =1/8(1+ &)(1 = n)(1 + n),
N7(&onop) =178(1+ &)(1 + n)(1 + p),

Ng(&, n, 1) =1/8(1 = &(1 + n)(1 + p).

These shape functions, often called tri-linear shape functions as they vary linearly in the &,
n, and p directions, are used to map the tri-unit cube in the parent domain into an arbitrary
hexahedron in the physical domain. The resulting hexahedron has straight edges but its faces
are in general not planar surfaces.

Approximate solutions may be obtained from Equation A.8 by replacing the integrals with
a sum of integrals over each element, and inserting appropriate trial solutions and weights

based on interpolation functions,

> (/ (VWe)TCeVuedQ—/ W, bdQ — WeTt*dF) =0. (A.10)
Q. Qe Ite

e

The element displacement vector u, is given by interpolated nodal values

ue = Nede, (A11)
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Uy Ny 0 0 N O O --- Ng 0 O
uyr=(0 N 0O 0O N O --- 0 Ng 0]~
u, 0 0 N O 0 N -+ 0 0 Ng

dZZ

d8x
dgy
d82

“

J

, (A12)

where N, is the element shape function matrix, and d. is the vector of nodal displacements

for element e. And similarly for the weights we have

W. = N.we.

(A13)

The approximate strain field within an element e, may be expressed in terms of nodal

displacements using the strain-displacement matrix B,, often referred to as the B-matrix,

- N

Ux,x

Uy,y
uzz
€ = 3 - = Vu, = B.de.
Ux,y + Uy x

Uyz+ Uzy

| Ux,z + Uzx J

The B-matrix is a 6 x 24 matrix and can be expressed as

Be=[B1 Bz B3 B4 B5 BG B7 Bg]y

(A14)

(A15)
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where

B = “I. (A.16)

0 Ni,z Ni,y
Ni,z 0 Ni,x_

Because the shape functions are defined in terms of the natural coordinates, &, n, and p,
derivatives of the shape functions with respect to physical coordinates in the B-matrix require

the chain rule,

ON: _ ON;ox _ON;dy 0N, oz

= —, A7
9 ~ ox 9 "oy oc " a7 ac (A.17)
ON; JdN;ox ON;dy ON,;oz
— o -4 - A.18
on ~ ox an oy an T 9z an (A-18)
ON; ON;ox ON;dy ON,; o0z
= — = -, A19
au ox 6p+ dy 6u+ 0z Oy ( )
which can be expressed in matrix form
Ni,{ Nl X
Nip ¢ =19 Niy (A.20)
Ni,/,/ Nl z
or in terms of derivatives with respect to physical coordinates
NlX Ni,{
_ -
Niy =1 Nin ¢ (A.21)
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where ] is the Jacobian matrix defined by

ox 9y 9z
da(x.y,2) Oc 08 0%
J=—t 27 | ox 9y oz (A.22)

o(&, n, y) on dn - on
ox dy oz
oy Oy du

X1 Y1

X2 Y2 22
=|Ni, Nay Ns,,
N1u NZ.u N8u

| X8 Ys 78 |

with x;, y;, and z; being the coordinates of the ith node. Equation A.10 becomes

> (/ WeTBeTCeBededQ—/ W.'N."bdQ — WeTNeTt*dF) =0. (A23)
e Qe Qe rr,e

Upon assembly of each element’s contribution, the weak form may be expressed as
W (KU - F) =0, (A.24)

where K is the global stiffness matrix, U is the global nodal displacement vector and F is the
global force vector, which may be assembled from the associated elemental expressions, ke, de

and f,, respectively. Due to the arbitrary nature of W, the governing equation reduces to
KU =F. (A.25)

A.3.1 The constitutive matrix

The three-dimensional constitutive matrix for an isotropic element e is

Ce(¥%e) = Eo(%e)Ce, (A.26)
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where E,(X.) is the element’s Young's modulus which is a function of element density, and C.

is the constitutive matrix for a unit Young's modulus, given by

(1 v v v 0 0 0 |
v T—v v 0 0 0
_ 1 v v 1—v 0 0 0 A7
T +vi=2v) | ¢ 0 0o =2 0 (A27)
0 0 0 o = 9
|0 0 0 0 0o =]
A.3.2 The element stiffness matrix
The element stiffness matrix is given by
lie) = | BIC.(5)B.d0 (A.28)
Qe

1 41 41
[ ] BlCdsB. i dsdndn
-1 J-1 J
I A
= Ee(f(e)/1 /1 1 B/C.B. |)|d&dndy
= Ee(;(e)l_(er
where k. is the element stiffness matrix for a unit Young's modulus. Moving the density
dependent variable outside the integral allows for a single element stiffness calculation that is
valid for all elements due to the reqularity of the mesh. This integration, typically performed
using numerical Gauss quadrature, was carried out using symbolic manipulation software.
A.3.3 The element nodal force vector

The element force vector is comprised of two terms relating to the contributions from body

forces and surface tractions

fo =12 41! (A.29)

=/ NedeQ+/ N/t drl.
Qe rt,e
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Appendix B

Finite Element Formulation for Steady
State Heat Conduction

This appendix details the finite element formulation for steady state heat conduction with
no convective heat transfer. The author recommends the following texts for further reading
on the heat conduction formulation: Fish & Belytschko (2007); Gosz (2006); Huebner et al.
(2001); Lewis et al. (2008); Ross (1998). By using appropriate variable substitutions, this
finite element formulation is also valid for steady state electric conduction. More details on
the governing equations for electric conduction may be found in texts such as Huebner et al.

(2001); Ida (2007); Jin (2002); van Rienen (2012).

B.1 Strong form of the steady-state electric conduction equation

Let us consider a body defined by the volume Q) and outer surface I, as shown in Figure B.1.
The body is subjected to a prescribed temperature distribution 7* on part of the boundary 't

and the normal heat flux g* is prescribed on the boundary Iy,

T=T" onlr, (B.1)

q-n=g" on 4. (B.2)

In order to derive the strong form of the steady state heat equation we apply the principle

of conservation of energy, which requires the heat flux q flowing through the boundaries of a
control volume must be equal to the heat generated within the boundary S. Both heat flux

and internal heat generation have units of energy per unit area and time. The energy balance
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g-n=g*onfl, T=T*onl;

F=ryufly
Figure B.1: The reference domain

statement may be written as

V.q-S=0. (B.3)

Fourier's law relates the flux and temperature gradient vectors and is given by
q=-DVT, (B.4)

where D is the is the conductivity tensor. The negative sign reflects the fact that heat flows
in the opposite direction to the gradient. Substituting Fourier’s law into the energy balance

statement yields the governing partial differential equation for steady-state heat conduction,

v (DVT)+S=0. (B.5)

B.2 Weak form of the steady-state heat equation

The governing differential equation may be recast into an integral weak form, from which we
may obtain accurate approximate solutions. In order to construct the weak form, the balance
equation (Equation B.3) is multiplied by an appropriate scalar-valued test function W(x, y, z).
This weight function must be admissible, meaning W(x, y, z) and its derivatives must vanish
wherever conditions are imposed on T or its derivatives. This product is then integrated over
the domain Q,

/o W((V.q—S5)da=0. (B.6)



Finite element approximation by the Galerkin method | 125

Integration by parts is used on the flux term of Equation B.6

/QWV-qu:/QV~(Wq) dQ—/QVW-qu. (B.7)

Applying the divergence theorem to the first term of the right hand side of Equation B.7, and

subsequently splitting this integral into the prescribed temperature and flux boundaries yields

/V-(Wq) dQ:/Wq-ndF (B.8)
Q I

=[ Waq*dl' + Wq-ndl.
M rr
Substituting Equations B.7 and B.8 into Equation B.6 yields

Wq-ndr—[ WSdQ = 0. (B.9)
Q

—/VW~qu+/ Waq*dl +
Q Mg Ir

The test functions are set to zero on the prescribed temperature boundaries, causing the

integral on ' to vanish. The weak form is therefore given by

—/VW~qu+/ Wq*dr—/ WSdQ =0, (B.10)
Q Ny Q

or equivalently, the weak form may be written in terms of temperature using Fourier’s law
(Equation B.4)
/VW~(DVT) dQ—I—/ Wq*dF—/WSdQ:O. (B.11)
o) My Q

B.3 Finite element approximation by the Galerkin method

As for the finite element formulation for linear elasticity detailed in Appendix A, the design
domain is discretized using eight-node brick finite elements with shape functions given in
Equation A.9. Approximate solutions may be obtained from Equation B.11 by replacing the
integrals with a sum of integrals over each element, and inserting appropriate trial solutions
and weights based on interpolation functions,

Weq*dr—/ W.SdQ | =o. (B.12)
Q.

> (/Oevwe (D.VT,) dQ +

Mg.e
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The element temperature T, is given by interpolated nodal values
Te = Nete, (B13)

where N, is the shape function matrix. For this problem N, is a vector as we only have one

degree of freedom for each node in the element,

Ne=[Ni N Ns Ny N5 No Mo N, (B14)

and the nodal temperature vector is given by
.
te = [1‘1 th t3 t4 t5 tg ty tg] . (B.15)
And similarly for the weights we have
We = Newe. (B.16)

The gradient of the element temperature is given by

- aTe N
ox
aTl.
dy
aTl.

L 57 .

L = B.t,. (B.17)

For this problem, the B-matrix is a 3 x 8 matrix

[ONE QNS INE
B, _ | OV NS ONg (18)
dy dy dy
ONS  ONS ONg
| 0z 0z = 0z |

The derivatives of the shape functions with respect to the physical coordinates are found using

Equation A.27 of Appendix A. Similarly, the gradient of the weight function is given by

VW, = Bewe. (B.19)
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The above relations are substituted into Equation B.12

e Fge Qe

> (/ weTBeTDeBetedQ+/ Neweq*dr—[ NeweSdQ) =0. (B.20)
Qe

Upon assembly of each element’s contribution, the weak form may be expressed as
W (KT —F) =0, (B.21)

where K is the global conductance matrix, T is the global nodal temperature vector and F is the
global thermal load vector, which may be assembled from the associated elemental expressions,
ke, te, and f,, respectively. Due to the arbitrary nature of W, the governing equation reduces
to

KT =F. (B.22)

B.3.1 Element conductivity matrix

The three-dimensional conductivity matrix for an isotropic element e is

de(%e) 0
De(%e) = 0 de(%e) O (B.23)
0 0 de(ke)
100
=de(Xe) |0 1 0
00 1
= de(%e)l,

where de(%e) is the element’s conductivity as a function of element density, and | is the identity

matrix.
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B.3.2 Element conductance matrix

The element conductance matrix is given by

olic) = | BID.(5)B. d0 (B.24)

Q.
+1 41 1
= 1_/1 /} B/D.(%e)B. |)| d&dndu
+1 1
=de()”<e)/ / / B/IB.|)|d&€dndy
-1 J=1 J
= de(Xe)ke

where k. is the element conductance for a unit thermal conductivity. Moving the density
dependant variable from the integral allows for a single element conductance calculation that
is valid for all elements due to the reqularity of the mesh. This integration, typically performed

using numerical Gauss quadrature, was carried out using symbolic manipulation software.

B.3.3 Element nodal thermal load vector

The element nodal thermal load vector is given by two terms, the element boundary flux vector

and the element source flux vector

fo=f04+£5 (B.25)
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