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Abstract 

 Current earthquake early warning systems usually make magnitude and location 

predictions and send out a warning to the users based on those predictions. We describe 

an algorithm that assesses the validity of the predictions in real-time. Our algorithm 

monitors the envelopes of horizontal and vertical acceleration, velocity, and 

displacement. We compare the observed envelopes with the ones predicted by Cua & 

Heaton’s envelope ground motion prediction equations (Cua 2005). We define a “test 

function” as the logarithm of the ratio between observed and predicted envelopes at every 

second in real-time. Once the envelopes deviate beyond an acceptable threshold, we 

declare a misfit. Kurtosis and skewness of a time evolving test function are used to 

rapidly identify a misfit. Real-time kurtosis and skewness calculations are also inputs to 

both probabilistic (Logistic Regression and Bayesian Logistic Regression) and 

nonprobabilistic (Least Squares and Linear Discriminant Analysis) models that ultimately 

decide if there is an unacceptable level of misfit. This algorithm is designed to work at a 

wide range of amplitude scales. When tested with synthetic and actual seismic signals 

from past events, it works for both small and large events. 
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Chapter 1           

Introduction 

 Recently, the earthquake early warning (EEW) systems are being developed in 

many parts of the world. These systems do not predict when an earthquake is going to 

happen; rather they predict the eventual characteristics of earthquakes, such as their 

magnitude and location, by using the first few seconds of the earthquakes’ ground motion 

data that are being recorded by seismic stations in real-time. Unfortunately, the seismic 

stations records do not only contain earthquake data, but also any activity that “shakes” 

the ground, such as sonic booms, quarry blasts, and even heavy traffic noise. These types 

of activities may confuse a warning system that relies on ground motion amplitudes 

recorded by seismograms being larger than certain thresholds. In addition to non-

earthquake activity, temporal distribution of actual earthquakes, such as an earthquake 

swarm instead of an isolated earthquake being preceded and followed by quiet ground 

motion periods, may affect the accuracy of the alert messages sent to the EEW system 

subscribers.  

 The current EEW system being tested in California does not have a mechanism 

that checks the accuracy of the messages sent to the system subscribers. However, we 

desire to have a sophisticated real-time checking mechanism that will oversee and verify 

the system predictions. To develop a robust alert confirmation mechanism, we examined 

more than 500 synthetically created false and missed EEW alert scenarios for earthquakes 

ranging from M2.5 to M6.5. 
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 We used earthquake waveform envelope data predicted by Cua & Heaton’s 

envelope ground motion prediction equations (Cua 2005) to verify the predictions made 

by the EEW system. During the comparison calculations between observed and predicted 

ground motions, we measured the disagreement using higher order statistics: kurtosis and 

skewness. We developed a new algorithm called reality check (Figure 1) that classifies 

the state of an EEW system alert based on the kurtosis and skewness measures of the 

misfit between observed and predicted waveform envelope data.  

 This thesis presents the step-by-step development process of the reality check 

algorithm and shows how this technique helps protect the credibility of an EEW system 

in an innovative manner. 
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Figure 1.1: Schematic illustration of the reality check algorithm. The recorded ground 

motion data are sent to a main computer called Decision Module. Decision Module 

makes a prediction using several algorithms (Virtual Seismologist, Onsite, and Elarms) 

and sends an alert to the users if necessary. The Reality check algorithm receives the sent 

alert messages, and then compares them with the real-time recorded data by seismic 

stations and reports the accuracy of the messages back to the decision module. We 

continuously check self consistency of data and warning. 
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Chapter 2             

Data Processing 

2.1 Data Processing 

 This section describes the choice of input used regarding the ground motion data. 

 The seismic stations in California can record ground motion in from 80 samples 

per second (broadband seismometers) to 100 samples per second (strong motion 

seismometers). Our algorithm does not use these recordings directly. Instead, we use 

envelopes of the waveform data. We run a 1 second long window throughout the 

continuous records in real-time, and take the absolute maximum value within the window 

and make it our envelope amplitude at the corresponding second in real-time (Figure 2.1). 

Then, we slide the window to the next second and so on. This process gives us the 

“envelope of the observed data” whether there is an event or just noise at a site.  

2.2 Prelude: Virtual Seismologist 

 The Virtual Seismologist (VS) (Cua 2005) is briefly explained in this section, 

because it is a prerequisite for our algorithm.  

 Our work uses envelopes of earthquake waveform data rather than the 

seismogram recordings directly as explained in the previous section. In addition to the 

observed earthquake envelopes, we make use of predicted envelopes that are created by 

the ground motion prediction equations provided by the Virtual Seismologist. The Virtual 

Seismologist (VS) (Cua 2005) was developed at Caltech. It is a Bayesian Inference 

Framework based on waveform envelopes and prior information, e.g., foreshocks, 

network topology. VS ground motion prediction equations (GMPE’s) predict P and S  
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Figure 2.1: Example of an observed and a predicted envelope. Plot on top shows a 

broadband seismogram recorded at 80 samples per second rate at a station in E-W 

direction. We run a 1 second long window throughout the continuous records in real-

time, and take the absolute maximum value within the window and make it our envelope 

amplitude at the corresponding second in real-time. Note that the envelope shown in blue 

in the bottom plot is a combination on E-W and N-S horizontal envelopes. Note that the 

bottom plot also shows the corresponding predicted envelope created using the Virtual 

Seismologist method.  

 

 

1 SEC 

Take the 
absolute 

maximum 
value 

within this 
window. 
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waveform envelopes as a function of amplitude and distance. We need to provide the 

magnitude of the event and the distance between its epicenter and a particular station to 

create the estimated envelopes at that station. In addition to the P- and S-wave envelopes, 

VS predicted envelopes also contain a constant noise envelope that represents the noise 

level at a particular station. These three envelopes (P-wave, S-wave, and constant noise) 

are combined in a square root of sum of squares fashion to produce the VS predicted 

envelopes at a given station for a given earthquake. Examples of VS predicted envelopes 

are shown in Figure 2.2.  

 !VS!Envelope!=! P-wave!Envelope( )2 + S-wave!Envelope( )2 + Noise!Envelope( )2  (2.1) 

	  
The data for this work are collected from Southern California Seismic Network (SCSN) 

and Next Generation Attenuation (NGA) strong motion data. Figure 2.2 shows examples 

of predicted envelopes generated using the Virtual Seismologist method. VS equations 

for predicting envelopes are given in Appendix A. 

2.3 Test Functions 

 This section explains what we do right after we obtain both the observed and 

predicted envelopes. Because the seismic stations continuously record ground motions 

and we assume there will always be some noise being recorded at a station, the predicted 

envelope (2.1) only consists of constant noise when the decision module is not publishing 

any earthquake data. That means we have both observed and predicted envelope data at 

any given time. Therefore, the following steps are performed at every second in real-time. 

 Once we have both predicted and observed envelope values, we calculate the 

misfit between them using the following equation: 
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Figure 2.2: Examples of predicted envelopes generated using the Virtual Seismologist 

method. Note that there is a binary classification as soil/rock at station sites. A different 

set of ground motion prediction equations are provided for each site class by VS. 

(Source: (Cua 2005)) 
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!!
φ nΔt( ) = BHP ∗log

Observed!Envelope nΔt( )
Predicted!Envelope nΔt( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  (2.2) 

where 

 = 1,2,… 

 : envelope sampling rate (1 second) 

 : convolution symbol 

 : Butterworth high-pass filter, 2nd order, 600 seconds, see below for justification. 

 : test function 

Test functions, denoted , are second by second misfit computations between observed 

and predicted envelopes. Figure 2.3 shows that a test function represents the time 

evolution of the misfit between observed and predicted ground motion values. 

 In some of our calculations, we noticed that the misfit in the S-wave coda is 

usually different from the rest of the misfit, especially for the displacement misfit, if we 

do not apply high-pass filtering to the ratio of logarithm of envelope values (Figure 2.3). 

In order not to confuse our algorithm, which indirectly depends on the amplitude of the 

misfit, we decided to high-pass filter the ratios between observed and predicted ground 

motion values. We apply a recursive high-pass Butterworth filter to the raw misfit. 

2.4 Virtual Seismologist Assumption Regarding Misfit 

 The data fitting process in creating the predicted envelope GMPE’s was done by 

modeling the difference between predicted and observed ground motion envelopes as a 

Gaussian distribution with a mean of zero in logarithm space. This model was chosen by 

the VS creators and we should check how well it does. The histogram of the test function 

results from the previous example is shown in Figure 2.4. 

!n

!Δt

∗

!BHP

φ

φ
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Figure 2.3: Envelopes and their test function. (On top) The observed and predicted 

envelopes shown in Figure 2.1. (On bottom) Test function computed using (2.2) both 

with and without high-pass filtering.  
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Figure 2.4: A test function result and its histogram.  
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Each one of the bins shown at the bottom of Figure 2.4 represents an amplitude value in 

the graph above. All of the values of the test function are distributed about the mean as 

shown in the histogram, and a Gaussian (!µ = −0.0104,σ =0.0718 ) distribution is 

adequate to explain it. The VS regression analysis included more than 30,000 

seismograms, so this much departure from normality in one example is within acceptable 

limits (this is not based on an analysis, it is just a qualitative judgment). The assumption 

is observed to be valid.  

 It is relatively easy for a human to visually notice if a distribution departs from a 

Gaussian one, but how can we make a computer detect any unacceptable departure 

automatically in real-time? One answer is to use higher order statistics: kurtosis and 

skewness. 

2.5 Higher Order Statistics 

 We use higher order statistics to detect departure from normality. Using higher 

order statistics makes these techniques more robust than just using the mean and the 

standard deviation. 

2.5.1 Higher Order Statistics – Kurtosis 

 Kurtosis is a normalized fourth moment of a distribution about its mean where the 

normalization is done using the square of the variance (Langet, Maggi et al. 2014), so it 

does not have a unit. It is mainly used to detect outliers based on a normal distribution. 

Kurtosis for a normal distribution is the value three (3), so outliers in the tails of the 

distribution make the kurtosis value bigger than three.  
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   (2.3) 

where 

 : expected value 

 : set of values in a distribution 

: mean of the set of values in   

2.5.2 Higher Order Statistics – Skewness 

 Skewness, on the other hand, is the third moment about the mean of a distribution, 

and just like kurtosis, it is normalized using the appropriate power of the variance, so 

skewness too is dimensionless. Skewness is used to detect departure from symmetry. Its 

sign depends on the direction of the skew as shown in Figure 2.5. A normal distribution is 

perfectly symmetric about its mean and so its skewness is zero. 

 

   (2.4) 

	  
Note that higher order statistics equations, i.e., (2.3) and (2.4) are for theoretical moments 

and they must be replaced by sample moments when applied to data. Matlab functions 

‘kurtosis’ and ‘skewness’ are used on the data, however, ‘bias correction’, as explained in 

the function definition in Matlab, was not applied.   

!!

Kurtosis =
E X − µ( )4⎡
⎣⎢

⎤
⎦⎥

E X − µ( )2⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
2

!E

!X

µ !X

!!

Skewness =
E X − µ( )3⎡
⎣⎢

⎤
⎦⎥

E X − µ( )2⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

3
2
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2.6 An Example – Missed Event 

 We now take a look at an example and see the algorithm in action. The following 

example aims to simulate an ‘under-prediction’ case where the system misses an event. In 

order to emphasize an under-prediction case, the following figure also includes a case 

where the system successfully detects an earthquake, i.e., the first one (Figure 2.6). The 

top of Figure 2.6 shows a synthetic seismogram. We basically put two identical events 

 

Figure 2.5: Graphical interpretation of higher order statistics. 

 

 

 

 

KURTOSIS FOR A 
NORMAL 

DISTRIBUTION IS 3. 
OUTLIERS IN “TAILS” 
OF A DISTRIBUTION 

CAUSE POSITIVE 
KURTOSIS  

(i.e. KURTOSIS >>3). 

SKEWNESS FOR A 
NORMAL 

DISTRIBUTION IS 0. 
“ASYMMETRY” 

CAUSES NON-ZERO 
SKEWNESS  

(i.e. SKEWNESS ≠ 0). 

Source: Wikipedia 
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Figure 2.6: Example of a double event seismogram and its envelope. (On top) 

seismogram, (on bottom) envelope. Envelopes on the bottom are two horizontal 

envelopes in perpendicular directions combined in a square-root-sum-of-squares fashion. 
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 (~M4.6) back to back in time. On the bottom of Figure 2.6, we see the envelopes created 

using the technique demonstrated earlier. From now on, we will not show the 

seismogram itself, and we will work with the envelopes instead. 

 In this scenario (Figure 2.7), incoming data from the first event stimulated the 

system to the point where an alarm is issued. The magnitude and the location of the event 

related to the first alarm are used to create the VS envelopes and they are overlaid on top 

of the observed ones using the origin time predicted by the decision module. However, 

there happens to be a second event and the system does not catch it. We calculate our test 

function in real-time as more data are recorded. Then, time derivatives of kurtosis and 

skewness, which are computed using a multiple window approach (see Appendix B) on 

the test function values, are computed in real-time as well.  

 Everything seems fine until the second event arrives at the station. In other words, 

both derivative of excess kurtosis and derivative of skewness values indicate normality; 

therefore, there is agreement between the decision module alert and what is actually 

observed. But, once the second event arrives, the test function shows values that are 

considered as outliers and this produces significantly greater values of the derivatives. 

Moreover, because the symmetry is lost, derivative of skewness values indicate positive 

skew.  

2.7 Another Example – False Event 

 With an example of a false alarm case, we now show some justification for using 

two higher order statistics functions instead of one. Kurtosis would give us a very large 

number if we had a false alarm. That is, if the corresponding test function value was a 

large negative number, relative to the rest of its values within a given window and 
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Figure 2.7: Under-prediction, i.e., missed event example. 
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computed by using equation (2.2), it would be considered as an outlier, similar to the case 

of missed alarm example. In other words, as far as kurtosis is concerned, there is no 

difference between the outliers on the left or on the right tail of the mean. However, 

skewness would detect a negative skew in that scenario (Figure 2.8), and we would know 

the “nature” of the departure from normality. That is why we use both kurtosis and 

skewness in our algorithm. 

 In the scenario shown in Figure 2.8, the decision module predicts an earthquake, 

and issues the parameters that are needed to create the VS predicted envelopes. All is 

well. After the earthquake, however, the station that recorded this seismogram 

experiences some non-earthquake shaking in the form of a short lasting burst of energy, 

for example, traffic noise nearby. This blip seen in the top row tricks the decision module 

to issue another alarm, then our algorithm creates the corresponding VS envelope and 

starts measuring the agreement between the observed and predicted envelopes. As soon 

as the unacceptable mismatch is detected with the help of derivative of higher order 

statistics, our algorithm indicates an over-prediction.  

2.8 Summary of Test Function States  

 To sum up, we declare that there are three states that a test function can be in 

(Figure 2.9): 

 State 1: The ideal case where the decision module reports agreement with the 

observed data, i.e., okay-prediction. 

 State 2: There is a second event when we thought there was only one, i.e., under-

prediction, or missed event/alarm. 
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Figure 2.8: Over-prediction, i.e., false alarm example. 
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 State 3: A non-earthquake vibration such as noise at a station tricks the system 

into believing that there is an earthquake, i.e., false event/alarm. This one is especially 

tricky because one might lose confidence in the warning system. 

 We perform separate analyses for different ground motion parameters influenced 

by different frequency contents; acceleration, velocity, and displacement are separately 

used as inputs to our computations. We obtained our training data by synthetically 

creating over- and under- prediction scenarios. The VS predicted envelopes were created 

using the cataloged magnitude and location. Our training data included 1000 okay-

prediction, 250 over-prediction, and 250 under-prediction input values in both horizontal 

and vertical acceleration, velocity, and displacement.  

 The peak values of derivatives of kurtosis and skewness for both horizontal and 

vertical acceleration, velocity, and displacement, at the moment of unacceptable 

mismatch between observed and predicted envelopes as shown in the figures above, are 

considered as inputs that belong to under- and over- prediction classes: under-prediction 

if observed envelope value is significantly larger, and over-prediction if predicted 

envelope value is significantly larger. Maximum and minimum values of the derivatives 

preceding the peak values mentioned above are considered as inputs of the okay-

predictions because they represent the boundaries within which the state of the prediction 

is acceptable. We use these values as inputs for various classification models explained in 

the following sections. Note that the coefficient values presented in this thesis are 

truncated versions although they are used, in computations, as the computer programs 

produced, i.e. with higher precision. We used our judgment regarding meaningful 

precision presentation. 
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Figure 2.9: Three states of the test function. 

 

 

 

 

 

 

•  STATE 1: ϕ  ≈  0 (i.e. Agreement between envelopes) 
•  STATE 2: ϕ >> 0 (i.e. Under prediction) 
•  STATE 3: ϕ << 0 (i.e. Over prediction) 

We use Linear Discriminant and Bayesian Analyses to classify the states at every 
second in real-time by minimizing the overlapped areas. 

Env(obs) << Env(pred) 
 

Kurtosis >> 3 
 

Skewness << 0  

Env(obs) >> Env(pred) 
 

Kurtosis >> 3 
 

Skewness >> 0  

Env(obs) ≈ Env(pred) 
 

Kurtosis ≈ 3 
 

Skewness ≈ 0  

MISSED OK FALSE 

State 1 State 2 State 3 
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Chapter 3             

Probabilistic Classifications  

Mathematical Notation: 

 Throughout this work, unless stated otherwise, we use lowercase bold Roman 

letters, such as , to denote vectors. All vectors are assumed to be column vectors. 

Therefore  is a -dimensional vector. We use uppercase bold Roman 

letters, such as , to denote matrices. 

Classifications: 

 In the following sections, we present different ways of applying classification. 

Two probabilistic classification methods are described in this chapter (towards the end of 

it): Method I which uses Ockham’s razor on a given set of models, and Method II which 

uses Sparse Bayesian Learning (SBL), i.e., models with Automatic Relevance 

Determination (ARD) prior. Note that both of these methods are using Bayesian Ockham 

razor by maximizing evidence (or posterior probability); with ARD prior, it is a 

continuum of model classes, each defined by specifying hyperparameters (prior 

variances), instead of a discrete set of model classes (personal communication with Prof. 

James L Beck). Two non-probabilistic classification methods were also examined: least 

squares and linear discriminant analysis. The theory and results for these non-

probabilistic methods are presented in Appendix C. Appendix C is included for two main 

purposes: 1) to provide classification methods that do not require as much run time as the 

!x

!!! x = x1 ,x2 ,,xD⎡⎣ ⎤⎦
T

!D

!W
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probabilistic methods, 2) to help some interested readers understand probabilistic 

classification models if classification is a new concept to them.  

 We aim to have the least amount of misclassification rate when we take an input 

vector  and assign it to a class among  discrete classes. Unless it is specified 

otherwise, we will use linear models where the decision boundaries that separate classes 

are linear functions of the input. The number of classes in our work is three, i.e.,  

(Figure 2.9).  We will use a  coding scheme (as described in Bishop, 2006) in 

which the target vector  is of length  such that if the class for an input is , then 

all elements  of  are zero except element , which takes the value 1 (Bishop 2006). 

Our classifications will generally be done using a discriminant function. The parameters 

of the discriminant functions are obtained with several different techniques in the 

following sections. 

3.1 Classifications – Probabilistic Generative Model 

 The following theory is based on the concepts described in Chapter 4, Linear 

Models for Classification in Bishop, 2006. 

 In this chapter, we work with Bayesian probabilistic classifications so when a new 

input is observed, we compute probability (the degree of plausibility) that it belongs to 

any class. 

 We start with generative models. Generative models use a probability model for 

the inputs and outputs; that is, we can create synthetic input data by sampling from the 

generative probabilistic model. In this section, we aim to compute posterior probabilities, 

!x !K

!!K =3

!!1−of −K

!t !!K =3
!
C j

!tk !t !
t j
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!!
p Ck x( ) , with the help of Bayes’ theorem. In order to do that, we model both class-

conditional densities 
!!
p x Ck( )  and class priors !

p Ck( ) . 

 Our classification problem has three classes. In practice, the problems with more 

than two classes, i.e., !!K >2  are considered “multiclass” classification problems. It is 

common to use a softmax function in a multiclass classification problem. So, to better 

understand what a softmax function represents, let us start with a two-class classification 

problem set up (!!K =2 ) and then try to generalize our computations to a multiclass 

classification problem. If we had only two classes, i.e., !!C1  and !!C2  we could write the 

posterior probability for class !!C1  as 

 

!!!
p C1 x( ) = p x C1( )p C1( )

p x C1( )p C1( )+ p x C2( )p C2( )   (3.1) 

We can write (3.1) as 

 
!!!
p C1 x( ) =σ a( ) = 1

1+exp −a( )   (3.2) 

where !a  is implicitly defined as 

 

!!!
a= ln

p x C1( )p C1( )
p x C2( )p C2( )   (3.3) 

and !
σ a( )  defined by (3.2) is called the logistic sigmoid function. For a multiclass case 

(where !!K >2 ), we consider !a  to be a linear function of the input !x . From Bayes 

Theorem: 
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!!!

p Ck x( ) = p x Ck( )p Ck( )
p x C j( )p C j( )j∑

=
exp ak( )
exp aj( )j∑

  (3.4) 

Expression (3.4) is known as the softmax function (or the normalized exponential). It is 

regarded as a generalization of the logistic sigmoid to a multiclass problem. In this case, 

the quantities !ak  are defined as 

 !!!ak = ln p x Ck( )p Ck( )( )   (3.5) 

 Let us now see what happens if we choose a Gaussian form for the class-

conditional densities 
!!
p x Ck( ) . For simplicity, let us assume that all classes have the same 

covariance matrix Σ  but each class has a distinct mean !!mk . Then, we can write the 

class-conditional density for class !Ck  as 

 

!!!
p x Ck( ) = 1

2π( )D/2
1
Σ

1/2 exp −12 xT −mk( )T Σ−1 xT −mk( )⎧
⎨
⎩

⎫
⎬
⎭

  (3.6) 

where !D  is the dimensionality of !x . Using (3.4) and (3.5), we can write 

 !!!ak x( ) =wTx+wk0   (3.7) 

where we used the following definitions 

 

!!!

wk = Σ−1mk

wk0 = −
1
2mk

TΣ−1mk + lnp Ck( )   (3.8) 

Thanks to our assumption that all classes have the same covariance matrix, the quadratic 

terms cancel and the !!ak x( )  become linear functions of !x . This results in decision 
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boundaries being defined as linear functions of !x , as opposed to the case where we do 

not make the same covariance assumption. In that case (where each class has its own 

covariance matrix), the quadratic terms would not cancel and we would no longer have a 

linear discriminant.  

 In the next step, we will use maximum likelihood (maximum a posteriori for 

uniform priors) to calculate the parameters,!!wk  and!!wk0 , and the prior class probabilities, 

!
p Ck( ) . We have chosen a Gaussian form for class-conditional densities, 

!!
p x Ck( ) , as we 

mentioned above. We will use the data set described in Chapter 2; the training data set is 

given as !!! xn ,tn{ }  with !! n=1,,N . We construct !X  with its !nth  row !!xn
T  given by an 

instance of 

 

!!!

x =

d
dt

Kurtosis!of!Horizontal!Acceleration( )
d
dt

Kurtosis!of!Vertical!Acceleration( )
d
dt

Skewness!of!Horizontal!Acceleration( )
d
dt

Skewness!of!Vertical!Acceleration( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

  (3.9) 

The target vector !!tn  is a binary vector of length !!K =3 . It uses the !!1−of −K  coding 

scheme; it has components !
tnj =δ jk  (Kronecker delta) if input !n  is from class !Ck . We 

denote the prior class probabilities as 

 !
p Ck( ) =π k   (3.10) 
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 We chose a probability model where the predictions of the features for class !Ck  

are independent, so the likelihood function is given by 

 
!!!
p T,X π k ,mk ,Σ( ) = p xn Ck( )π k{ }tnk

k=1

K

∏
n=1

N

∏   (3.11) 

After taking the logarithm of (3.11), we get 

 
!!!
lnp T,X π k ,mk ,Σ( ) = tnk lnp xn Ck( )+ lnπ k{ }

k=1

K

∑
n=1

N

∑   (3.12) 

To determine the prior probability for !Ck , we take the derivative of (3.12) with respect to 

!π k  and equate it to zero, and note that !! π kk∑ =1 . Then we obtain 

 
!
π k =

Nk

N
  (3.13) 

where !Nk  represents the number of data points assigned to class !Ck . 

 Let us next determine !!mk . We will take the derivative of (3.12) with respect to 

!!mk  and set the result to zero. Using (3.6) as the functional form of class-conditional 

densities, we obtain 

 
!!!
mk =

1
Nk

tnkxn
n=1

N

∑   (3.14) 

which is simply the mean of all of the input vectors assigned to class !Ck . 

 The only parameter left to determine is the shared covariance, Σ . Once again, 

taking the derivative with respect to Σ  and setting it to zero gives 

 
!!!
Σ =

Nk

N
Sk

k=1

K

∑ = π kSk
k=1

K

∑   (3.15) 

where  
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!!!
Sk =

1
Nk

tnk xn −mk( ) xn −mk( )T
n=1

N

∑   (3.16) 

Expressions (3.15) and (3.16) show that we can compute Σ  by weighting the covariances 

of the data of each class by their prior probabilities and then averaging the result.  

 For the following confusion matrices (where the rows are the total percentage of a 

labeled class, and hence the values in a row add up to 100, and the columns are the 

fraction of the total number of cases for that row that is classified as the indicated class 

on the top row of that column), we choose the maximum probability value for a given 

input. Although the parameter values, !!wk  and !!wk0 , are computed using the entire data 

set for training, we provide confusion matrices for cross validation results for different 

ground motion quantities. The confusion matrix is useful to assess the algorithm’s 

performance. We divided our data set into two halves: training and validation sets. We 

first trained our algorithm using one set (training set) and then calculated the result using 

the other half (validation set). Then, we swapped the sets, that is, we used the validation 

set from the previous step as the training set and the training set as the validation set. 

Then, we computed the average performance of these two validations. As a final step, we 

used the entire data set as both training and validation data sets.  

 Note that !!k =1  represents okay-prediction, !!k =2  represents over-prediction, and 

!!k =3  represents under-prediction classes in this thesis. 
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 The parameter values and the shared covariance matrix computed using the entire 

acceleration data set for training are 

 

!!!

w1acceleration
=

0.0001
0.003
0.022
'0.020

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w1acceleration0
= '0.450

  (3.17) 

 

!!!

w2acceleration
=

0.016
0.019
(0.113
(0.120

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w2acceleration0
= (8.812

  (3.18) 

 

!!!

w3acceleration
=

0.011
0.019
0.118
0.038

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w3acceleration0
= (7.936

  (3.19) 

 

!!

Σacceleration =

6926.366 5284.517 258.698 241.974

5284.517 7306.191 134.662 316.073

258.698 134.662 201.493 164.134

241.974 316.073 164.134 217.947

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  (3.20) 
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Table 3.1: Confusion matrix for probabilistic generative classification using acceleration 

data.	  

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 97.4 0.5 2.1 

Over 33.2 66.8 0 

Under 24.4 0 75.6 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 93.2 0.6 6.2 

Over 13.6 86.4 0 

Under 12.8 0 87.2 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 98.4 0.2 1.4 

Over 59.2 40.8 0 

Under 42.4 0 57.6 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 95.8 0.4 3.8 

Over 36.4 63.6 0 

Under 27.6 0 72.4 
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 The parameter values and the shared covariance matrix computed using the entire 

velocity data set for training are 

 

!!!

w1velocity
=

0.001
0.002
0.015
'0.011

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w1velocity0
= '0.437

  (3.21) 

 

!!!

w2velocity
=

0.031
0.007
(0.222
(0.030

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w2velocity0
= (7.235

  (3.22) 

 

!!!

w3velocity
=

0.015
0.015
0.122
0.048

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w3velocity0
= *8.034

  (3.23) 

 

!!

Σvelocity =

5682.072 4229.134 384.569 313.847

4229.134 5958.392 254.687 310.505

384.569 254.687 165.553 132.205

313.847 310.505 132.205 186.711

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  (3.24) 
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Table 3.2: Confusion matrix for probabilistic generative classification using velocity 

data.	  

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 96.8 0.7 2.5 

Over 37.6 62.4 0 

Under 26.8 0 73.2 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 91 1 8 

Over 18.4 81.6 0 

Under 10.4 0 89.6 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 97 0.6 2.4 

Over 71.2 28.8 0 

Under 48 0 52 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 94 0.8 5.2 

Over 44.8 55.2 0 

Under 29.2 0 70.8 
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 The parameter values and the shared covariance matrix computed using the entire 

displacement data set for training are 

 

!!!

w1displacement
=

0.0005
0.005
0.008
'0.023

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w1displacement0
= '0.431

  (3.25) 

 

!!!

w2displacement
=

0.052
0.009
'0.324
'0.045

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w2displacement0
= '5.490

  (3.26) 

 

!!!

w3displacement
=

0.019
0.007
0.169
0.066

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w3displacement0
= )7.186

  (3.27) 

 

!!

Σ
displacement

=

3188.044 2203.698 386.171 311.242

2203.698 2678.795 281.599 332.173

386.171 281.599 100.443 72.613

311.242 332.173 72.613 96.763

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  (3.28) 
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Table 3.3: Confusion matrix for probabilistic generative classification using 

displacement data.	  

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 97.4 1.4 1.2 

Over 44 56 0 

Under 38.4 0 61.6 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 95 1.4 3.6 

Over 32 68 0 

Under 17.6 0 82.4 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 97.8 1.4 0.8 

Over 67.2 32.8 0 

Under 63.2 0 36.8 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 96.4 1.4 2.2 

Over 49.6 50.4 0 

Under 40.4 0 59.6 
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3.2 Discussion of Results for Tables 3.1 to 3.3 

 The confusion matrices show a consistent decrease in prediction performances 

with decreasing frequencies (acceleration is dominated by high-frequencies, velocity by 

mid-frequencies, and displacement by low-frequencies) although this decrease is not 

significant. Cross validation using the first half of the data set for training and the rest for 

validation produces reasonable prediction performances (at least more than 65 percent 

accurate predictions). On the other hand, using the second half for training and the first 

half for validation gives not so desirable cross validation results. This trend is seen in all 

types of input: acceleration, velocity, and displacement. The simplest explanation is that 

the models could be suffering from overfitting because we did not use a prior distribution 

to provide regularization. We will propose a solution that is robust to overfitting by using 

a full Bayesian treatment in the next sections. 

3.3 Classification – Probabilistic Discriminative Model with Maximum 

Likelihood Estimate (MLE) 

 The following theory is based on the concepts described in Chapter 4, Linear 

Models for Classification in Bishop, 2006. 

 In the previous section, we determined the parameters of the class-conditional 

densities, 
!!
p x Ck( ) , along with the class priors, !

p Ck( ) . Then, we used Bayes’ theorem to 

compute the posterior class probabilities, 
!!
p Ck x( ) . The posterior class probabilities are 

given by a softmax function of a linear function of the input feature vector !x . The 

coefficients (parameters !!wk  and !!wk0 ) of the linear function of !x  are computed using the 

parameters of the class-conditional densities, i.e., !!mk  and Σ  and the class priors, !
p Ck( ) . 
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The advantage of the probabilistic generative model is that we can create (generate) 

synthetic input values, !x , by sampling from the marginal distribution !!p x( ) . However, 

the predictive performance may decrease, especially when the Gaussian form, which we 

used to model the class-conditional densities, does not give a good representation. In this 

section, we compute the parameter values in a more direct approach by maximization of 

the likelihood function or the posterior probability density function (PDF). By not 

modeling the class-conditional densities explicitly, we will have less number of 

parameters to determine, and this may lead to an increase in predictive performance. 

Directly determining the parameters is an example of a probabilistic discriminative 

approach.  

 The likelihood function we want to maximize to determine the parameters 

consists of the conditional distributions introduced earlier: 
!!
p Ck x( ) . We start with a 

relabeling of the variables first, and then we simplify as much as possible to avoid clutter 

in our mathematical expressions. In the previous section, we obtained the functional form 

of the posterior class probability, conditional on an input vector, as (3.4). Using this 

definition, let us define 

 

!!! 
yk x( ) = p Ck x , wk( ) = exp ak x wk( )( )

exp aj x w j( )( )j∑
  (3.29) 

where !ak  are called activations and are given by 

 
!! 
ak x wk( ) = wk

T x   (3.30) 

Let us now clarify the terms that involve “   ”: 
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In the expression above, !!! wk = wk0 ,wk
T( )T  and !!! x = 1,xT( )T , that is, we augment the input 

vector with a dummy input !!x0 =1 , similar to what we did in the least squares 

classification in Appendix C. In order to decrease the clutter in the mathematical 

notation, let us redefine the parameters (! w→w  and ! x→ x ) such that 

!!! wk = wk0 ,wk1 ,,wkD( )T  and !!! x = 1,x1 ,x2 ,,xD( )T . Then, we consider maximization of 

the likelihood function to determine the parameters !! wk{ }  directly.  

 Now, we need the likelihood function. As we mentioned above, it consists of the 

posterior class probabilities 
!!
p Ck x( )  if the prior on the !Ck ’s is uniform. We will follow 

the same !!1−of −K  coding scheme as we did above for the target vectors: the target 

vector !!tn  associated with the input vector !!xn , which is assigned to class !Ck , will be a 

unit vector of dimension !!K =3  with each of its elements being zero unless it is the !kth  

element, which is one. Then, we obtain the likelihood function as 

 
!!!
p T X ,W( ) = p Ck xn ,wk( )tnk = ynk

tnk

k=1

K

∏
n=1

N

∏
k=1

K

∏
n=1

N

∏   (3.31) 

where the elements !tnk  form the matrix !T  whose dimension is !N ×K  with !N  as the 

number of data points and !K  as the number of classes, and !W  is formed by !!D+1 -

dimensional vector !!wk  as its !kth  column, and !X  is formed by !!D+1 -dimensional vector 

!!xn
T  as its !nth  row. So, !W  and !X  are matrices with dimensions !! D+1( )×K  and 

!!N × D+1( )  respectively. We also have 
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!!!
ynk = yk xn( ) = p Ck xn ,wk( ) = exp wk

Txn( )
exp w j

Txn( )j∑
∈ 0,1⎡⎣ ⎤⎦   (3.32) 

 Before we start evaluating the probabilistic discriminative model from a Bayesian 

perspective, let us use the maximum likelihood method to find !!WMLE  by maximizing the 

likelihood function given by (3.31). Note that the value we will find is in fact the 

Bayesian maximum a posteriori (MAP) value but we are taking a flat (non-informative) 

prior for !W , so !MAP≡MLE . I solved this optimization problem by an algorithm 

provided by Matlab. 

 We maximized (3.31) with respect to !W  separately for acceleration, velocity, and 

displacement input and obtained the following confusion matrices by assigning an input 

vector !x  to class !Ck , where !!!p Ck x ,wk( )  is a maximum over !!k =1,2,3 . Similar to the 

previous confusion matrices, we show the predictive performance of our models by cross 

validation; we divide the data sets into two: training data set and validation data set. Then 

we swap these data sets and average the predictive performances in the form of confusion 

matrices. 

 Let us start with acceleration results. The maximum likelihood estimate (MLE) of 

the parameter matrix, 
!!
WMLEacceleration

, computed using the entire acceleration data set for 

training, is given by 
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!!!

W
MLE

acceleration

=

2.899

&0.003

0.002

&0.002

&0.008

&1.263

0.018

0.013

&0.118

&0.067

&1.606

0.003

&0.005

0.075

0.117

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (3.33) 

Table 3.4: Confusion matrix for probabilistic discriminative classification with MLE 

using acceleration data.	  

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 95.2 2 2.8 

Over 16.8 83.2 0 

Under 21.2 0 78.8 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 88.4 1.4 10.2 

Over 12 88 0 

Under 9.6 0 90.4 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 97.2 1.8 1 

Over 37.6 62.4 0 

Under 39.2 0 60.8 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 92.8 1.6 5.6 

Over 24.8 75.2 0 

Under 24.4 0 75.6 
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!!
WMLEvelocity

 computed using the entire velocity data set for training is given by 

 

!!!

W
MLE

velocity

=

2.743

'0.001

0.001

0.022

'0.024

'1.150

0.028

0.011

'0.184

'0.039

'1.563

0.003

'0.006

0.114

0.091

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (3.34) 

Table 3.5: Confusion matrix for probabilistic discriminative classification with MLE 

using velocity data.	  

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 95.3 1.9 2.8 

Over 19.2 80.8 0 

Under 22.8 0 77.2 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 87.6 1.8 10.6 

Over 14.4 85.6 0 

Under 9.6 0 90.4 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 96 1.6 2.4 

Over 46.4 53.6 0 

Under 44 0 56 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 91.8 1.7 6.5 

Over 30.4 69.6 0 

Under 26.8 0 73.2 
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!!
WMLEdisplacement

computed using the entire displacement data set for training is given by 

 

!!!

W
MLE

displacement

=

2.680

0.0002

0.0003

0.024

)0.056

)0.910

0.052

0.012

)0.294

)0.059

)1.757

)0.015

)0.020

0.264

0.130

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (3.35) 

Table 3.6: Confusion matrix for probabilistic discriminative classification with MLE 

using displacement data.	  

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 94.3 2.8 2.9 

Over 30.8 69.2 0 

Under 22.4 0 77.6 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 91.6 2.6 5.8 

Over 24.8 75.2 0 

Under 10.4 0.8 88.8 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 94.4 2.2 3.4 

Over 50.4 49.6 0 

Under 49.6 0 50.4 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 93 2.4 4.6 

Over 37.6 62.4 0 

Under 30 0.4 69.6 
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3.4 Discussion of Results in Table 3.4 to 3.6 

 The worst predictive performance is observed when we use only the displacement 

input for training. The decrease in performance is not only clear from the overall 

reduction in values of the diagonal cells, but also from the fact that some under-

prediction input vectors are assigned to over-prediction class. Although the observed 

misclassification value, i.e., 0.8 % is not significant, this is so far the only model that 

classified an under-prediction input as an over-prediction. Until now, the okay-prediction 

acted as a “buffer” class between over- and under-prediction classes.  

 On the other hand, the predictive performances observed with acceleration and 

velocity show that those models can be used in the real-time applications without too 

much error in the form of misclassifications.  

3.5 Classification – Probabilistic Discriminative Model with Maximum A 

Posteriori (MAP) Value 

 The following theory is based on the concepts described in Chapter 4, Linear 

Models for Classification in Bishop, 2006. 

 We now choose an informative prior and carry out a full Bayesian treatment of 

the probabilistic discriminative model. Because it is practically too difficult to evaluate 

analytically the posterior distribution which consists of multiplication of several softmax 

functions and a prior distribution, we make use of the Laplace approximation for the 

problem of learning the Bayesian probabilistic model. The Laplace approximation 

approximates a function by a Gaussian distribution whose center is located at a local 

maximum of that function. Because we need a covariance matrix to describe a Gaussian 

distribution, we will have to evaluate the Hessian matrix as well. Since we want to 
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approximate the posterior distribution by a Gaussian form, let us choose a Gaussian prior 

over the parameters. A general Gaussian prior distribution over the set of parameter is 

given by 

 

!!!

p w( ) =Ν w m0 ,S0( )
= 1

2π( )
D+1( )

2

1
S0

1
2
exp −12 w−m0( )T S0−1 w−m0( )⎧

⎨
⎩

⎫
⎬
⎭

  (3.36) 

where !!m0  and !!S0  are general, but fixed, hyperparameters.  

We chose the prior of each model parameter of each class to be a Gaussian PDF with 

zero mean and standard deviation !σ =100  to cover a wide range of the parameter space. 

Note that in the following sections σ  will not be fixed, and we will let σ  adapt to the 

training data. Then, the prior is  

 

!!!

p wk( ) = 1

2πσ 2( )
D+1( )

2

exp −12wk
Twk

⎧
⎨
⎩

⎫
⎬
⎭

=Ν wk 0,σ 2I( )
  (3.37) 

We ask ourselves the following question: 

“If we knew the values of the parameters !!wk  of one class, would that affect our level of 

knowledge about the rest of the parameters?” 

The answer is “no”. Therefore, we can state that the prior distributions of parameters of 

different classes are independent and obtain the following 

 
!!! 
p W( ) = p w1 ,,wK( ) = p wk( )

k=1

K

∏   (3.38) 

Using Bayes’ theorem, the posterior distribution over the parameters is given by 
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!!!

p WT,X( )∝p T X ,W( )× p W( )
posterior ∝ likelihood × prior

  (3.39) 

where the likelihood is given by (3.31), and the prior is given by (3.38). 

We can now determine !W  by finding the most probable value of !W  given the data, 

which means we will determine !W  by maximizing the posterior distribution. This 

produces what is called the maximum a posteriori (MAP) value. We solved this problem 

by an algorithm provided by Matlab. Substituting (3.31) and (3.38) into (3.39), our 

posterior distribution over the parameters (without the normalizing factor) is given by 

 

!!!

p WT,X( )∝p T X ,W( )× p W( )
∝ p Ck xn ,wk( )tnk

k=1

K

∏
n=1

N

∏ × p wk( )
k=1

K

∏
  (3.40) 

Note that in order to find the values !W  that maximize (3.40), we do not need the 

normalizing constant. Note also that maximizing (3.40) with respect to !W  is equivalent 

to minimizing the negative logarithm of (3.40) with respect to !W . Taking the logarithm 

of (3.40) gives 

 !!!lnp WT,X( ) = lnp T X ,W( )+ lnp W( )+ const   (3.41) 

where 

 

!!!

lnp T X ,W( ) = tnk lnp Ck xn ,wk( )
k=1

K

∑
n=1

N

∑

= tnk ln ynk
k=1

K

∑
n=1

N

∑

= tnk ln
exp wk

Txn( )
exp w j

Txn( )j∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟k=1

K

∑
n=1

N

∑

  (3.42) 

and 
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!!! 

lnp W( ) = lnp w1 ,w2,wK( )
= ln p wk( )

k=1

K

∏⎛⎝⎜
⎞
⎠⎟

= ln p w1( )p w2( )p wK( )( )
= lnp wk( )

k=1

K

∑

  (3.43) 

From (3.37), we have 

 

!!!

lnp wk( ) = ln 1

2πσ 2( )
D+1( )

2

exp − 1
2σ 2wk

Twk

⎧
⎨
⎩

⎫
⎬
⎭

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= ln 1

2πσ 2( )
D+1( )

2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ ln exp − 1

2σ 2wk
Twk

⎧
⎨
⎩

⎫
⎬
⎭

⎛

⎝⎜
⎞

⎠⎟

= ln 2πσ 2( )
− D+1( )

2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
− 1
2σ 2wk

Twk

= −
D+1( )
2 ln2π + lnσ 2( )− 1

2σ 2wk
Twk

= −
D+1( )
2 ln2π −

D+1( )
2 lnσ 2 − 1

2σ 2 wkd
2

d=0

D

∑

  (3.44) 

Substituting (3.44) into (3.43), we obtain 

 
!!!
lnp W( ) = − 1

2σ 2 wkd
2

d=0

D

∑
k=1

K

∑ + const   (3.45) 

 We maximized (3.40) with respect to !W  separately for acceleration, velocity, and 

displacement input and obtained the values shown below, in addition to the following 

confusion matrices: 
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!!!

W
MAP

acceleration

=

2.898
&0.004
0.003
&0.002
&0.008

&1.264
0.017
0.014
&0.118
&0.066

&1.606
0.002
&0.004
0.074
0.118

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  (3.46) 

Table 3.7: Confusion matrix for probabilistic discriminative classification with MAP          

(!σ =100 ) using acceleration data.	  

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 95.2 2 2.8 

Over 16.8 83.2 0 

Under 21.2 0 78.8 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 88.4 1.4 10.2 

Over 12 88 0 

Under 9.6 0 90.4 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 97.2 1.8 1 

Over 37.6 62.4 0 

Under 39.2 0 60.8 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 92.8 1.6 5.6 

Over 24.8 75.2 0 

Under 24.4 0 75.6 
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!!!

W
MAP

velocity

=

2.744
&0.003
0.002
0.022
&0.022

&1.150
0.026
0.012
&0.184
&0.036

&1.563
0.0002
&0.005
0.114
0.094

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  (3.47) 

Table 3.8: Confusion matrix for probabilistic discriminative classification with MAP          

(!σ =100 ) using velocity data. 

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 95.3 1.9 2.8 

Over 19.2 80.8 0 

Under 22.8 0 77.2 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 87.6 1.8 10.6 

Over 14.4 85.6 0 

Under 9.6 0 90.4 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 96 1.6 2.4 

Over 46.4 53.6 0 

Under 44 0 56 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 91.8 1.7 6.5 

Over 30.4 69.6 0 

Under 26.8 0 73.2 
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!!!

W
MAP

displacement

=

2.680
3.381e*05
3.961e*05
0.023
*0.056

*0.909
0.052
0.012
*0.294
*0.059

*1.757
*0.015
*0.020
0.263
0.130

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  (3.48) 

Table 3.9: Confusion matrix for probabilistic discriminative classification with MAP          

(!σ =100 ) using displacement. 

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 94.3 2.8 2.9 

Over 30.8 69.2 0 

Under 22.4 0 77.6 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 91.6 2.6 5.8 

Over 24.8 75.2 0 

Under 10.4 0.8 88.8 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 94.4 2.2 3.4 

Over 50.4 49.6 0 

Under 49.6 0 50.4 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 93 2.4 4.6 

Over 37.6 62.4 0 

Under 30 0.4 69.6 
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3.6 Discussion of Results in Table 3.7 to 3.9 

           Notice the similarities in results between MLE and MAP values with !σ =100 in 

the prior; although the parameter values are slightly different, the predictive 

performances as observed in the tables given above are exactly the same! This is due to 

the fact that the prior standard deviation !σ =100  makes our prior distribution “too 

broad”. It is so broad that our prior acts like a flat prior and we note that the MAP result 

using a flat, i.e., infinitely broad prior is the same as the MLE result. In order to make use 

of the MAP method more efficiently, let us decrease the standard deviation σ . The 

following values are computed by choosing !σ =10 . 
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!!!

W
MAP

acceleration

=

2.894
'0.006
0.001
0.001
'0.012

'1.266
0.014
0.012
'0.115
'0.070

'1.608
4.463e'05
'0.005
0.077
0.113

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  (3.49) 

Table 3.10: Confusion matrix for probabilistic discriminative classification with MAP          

(!σ =10 ) using acceleration data. 

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 95.2 2 2.8 

Over 16.8 83.2 0 

Under 21.2 0 78.8 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 88.4 1.4 10.2 

Over 12 88 0 

Under 9.6 0 90.4 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 97.2 1.8 1 

Over 37.6 62.4 0 

Under 39.2 0 60.8 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 92.8 1.6 5.6 

Over 24.8 75.2 0 

Under 24.4 0 75.6 
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!!!

W
MAP

velocity

=

2.737
&0.003
0.0004
0.026
&0.026

&1.156
0.025
0.010
&0.179
&0.041

&1.568
&7.034e&05
&0.007
0.119
0.089

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  (3.50) 

Table 3.11: Confusion matrix for probabilistic discriminative classification with MAP          

(!σ =10 ) using velocity data. 

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 95.3 1.9 2.8 

Over 19.2 80.8 0 

Under 22.8 0 77.2 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 87.6 1.8 10.6 

Over 14.4 85.6 0 

Under 9.6 0 90.4 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 96 1.6 2.4 

Over 46.4 53.6 0 

Under 44 0 56 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 91.8 1.7 6.5 

Over 30.4 69.6 0 

Under 26.8 0 73.2 
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!!!

W
MAP

displacement

=

2.678
'0.0001
'5.469e'05
0.024
'0.057

'0.911
0.052
0.012
'0.293
'0.061

'1.757
'0.015
'0.020
0.264
0.129

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  (3.51) 

Table 3.12: Confusion matrix for probabilistic discriminative classification with MAP          

(!σ =10 ) using displacement data. 

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 94.3 2.8 2.9 

Over 30.8 69.2 0 

Under 22.4 0 77.6 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 91.6 2.6 5.8 

Over 24.8 75.2 0 

Under 10.4 0.8 88.8 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 94.4 2.2 3.4 

Over 50.4 49.6 0 

Under 49.6 0 50.4 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 93 2.4 4.6 

Over 37.6 62.4 0 

Under 30 0.4 69.6 
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3.7 Discussion of Results in Table 3.10 to 3.12  

 Just like the case with !σ =100 , the MAP results with !σ =10  are the same as the 

MLE results; although the parameter values are slightly different, the predictive 

performances as observed in the tables given above are exactly the same! This is due to 

the fact that the standard deviation !σ =10  (as chosen above for the prior over parameter 

values) makes our new prior distribution “too broad” again. It is so broad that our prior 

acts like a flat prior just like before. In order to make use of the MAP method more 

efficiently, we decreased the standard deviation more drastically; we chose !σ =0.5 . 

Once again, the results were not too different. Then, we decided to use !σ =0.05  and the 

predictive performances changed notably. So, the following results are obtained using 

!σ =0.05 . 
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!!!

W
MAP

acceleration

=

0.810
&0.005
0.001
0.030
&0.027

&0.410
0.003
0.003
&0.048
&0.026

&0.399
0.002
&0.005
0.018
0.054

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (3.52) 

Table 3.13: Confusion matrix for probabilistic discriminative classification with MAP          

(!σ =0.05 ) using acceleration data. 

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 89 4.2 6.8 

Over 14.4 85.6 0 

Under 12.8 0 87.2 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 70 5.6 24.4 

Over 12 88 0 

Under 3.2 0 96.8 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 83.6 7.4 9 

Over 16 81.6 2.4 

Under 24 0 76 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 76.8 6.5 16.7 

Over 14 84.8 1.2 

Under 13.6 0 86.4 
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!!!

W
MAP

velocity

=

0.805
&0.007
0.002
0.037
&0.027

&0.399
0.006
0.002
&0.073
&0.016

&0.406
0.0003
&0.004
0.036
0.043

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (3.53) 

Table 3.14: Confusion matrix for probabilistic discriminative classification with MAP          

(!σ =0.05 ) using velocity data. 

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 89.2 3.4 7.4 

Over 11.2 88.8 0 

Under 14.4 0 85.6 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 74.4 5.4 20.2 

Over 17.6 82.4 0 

Under 4 0 96 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 79 6.2 14.8 

Over 13.6 86.4 0 

Under 28.8 0 71.2 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 76.7 5.8 17.5 

Over 15.6 84.4 0 

Under 16.4 0 83.6 
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!!!

W
MAP

displacement

=

0.783
'0.010
0.006
0.038
'0.044

'0.386
0.014
0.004
'0.113
'0.021

'0.396
'0.004
'0.010
0.075
0.065

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (3.54) 

Table 3.15: Confusion matrix for probabilistic discriminative classification with MAP          

(!σ =0.05 ) using displacement data. 

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 87.4 5 7.6 

Over 22.8 77.2 0 

Under 13.6 0 86.4 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 78.6 8.8 12.6 

Over 27.2 72.8 0 

Under 8 0 92 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 79.8 5.6 14.6 

Over 20.8 79.2 0 

Under 32 0 68 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 79.2 7.2 12.6 

Over 24 76 0 

Under 20 0.4 80 
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3.8 Discussion of Results in Table 3.13 to 3.15 

 After choosing !σ =0.05 , we started to observe a significant increase in the 

prediction performance for over- and under-prediction classes. Although there is some 

reduction in predictive performance for okay-prediction class, the overall performance is 

still acceptable, i.e., at lease 70% accuracy. This showed me the effect of the prior. 

Choosing a very broad prior does not help us make efficient use of MAP technique. But 

there is still the question of how to choose the appropriate σ . One quick answer would 

be “experience”. Fortunately, we can use a method called automatic relevance 

determination prior (ARD prior) where we treat σ  as an unknown value and let it adapt 

to the data set itself! This way, we will look for “sparseness” in our model. In the 

upcoming section, we show the results of another powerful technique called Bayesian 

Model Class Selection. Then, we move to the part where we use the ARD prior. 

3.9 Classification – Posterior Predictive Distribution 

 In the previous section of our work, we computed !!WMAP  by determining the value 

of !W  which maximizes the posterior distribution, which is proportional to the product of 

the likelihood and the prior distribution. In the multiclass classification case, we obtained 

the likelihood as defined by (3.31). We chose a prior on the parameters !W , which we 

defined by (3.38). Then we obtained the functional form of the posterior distribution over 

the parameters !W . However, the posterior distribution over the parameters is a 

complicated expression, as it is a product of many softmax functions and a Gaussian in 

the form of the prior distribution. We wanted to “approximate” this posterior by a 

Gaussian function with a mean centered at !!WMAP , which is the value that maximizes the 

original functional form of the posterior. In other words, we decided to use Laplace 
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approximation to approximate our original posterior by a Gaussian function. One might 

think: “we can get !!WMAP  by maximizing our original posterior. So, why do we want to 

come up with a Gaussian approximation as well?” The reason is that we aim to be able to 

make new predictions !!!p Ck T,X ,x( )  for a new input feature vector !x , rather than to know 

the value of the parameters !W . That means we want to evaluate the posterior predictive 

distribution, which is computed by marginalizing with respect to !W  using its posterior 

distribution. Approximating our original posterior over !W  by a Gaussian makes 

evaluating the predictive distribution easier.  

 As I mentioned above, we obtain the posterior predictive distribution for class !Ck , 

for a newly observed input vector !x , when we marginalize with respect to the posterior 

distribution over !W , which we decided to approximate by a Gaussian. Therefore, the 

posterior predictive distribution is given by 

 !!!p Ck T,X ,x( ) = p Ck T,X ,x ,wk( )q WT,X( )dW∫   (3.55) 

where !!!q WT,X( )  is the approximation to the posterior distribution over !W  which is a 

Gaussian centered at !!WMAP , and the covariance matrix 

 
!!!
SN

−1 = −∇∇lnp WT,X( )
W=WMAP

  (3.56) 

is given in terms of the Hessian matrix of the log posterior, which is a 

!! D+1( )K × D+1( )K  matrix, where !!D+1  is the number of parameters in !!wk  and !K  is the 

number of classes. That is to say, this Hessian matrix is made of !! D+1( )× D+1( )  size 

blocks where the block !!j ,k  is  
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 !!!∇wk
∇w j

− lnp WT,X( )   (3.57) 

with 
!!
∇w j

 representing the gradient with respect to parameter vector !!w j  (Bishop 2006).  

 In practice, evaluating the integral in (3.55), even with only a few dimensional 

parameter space, is not easy. Fortunately, this integral can be approximated by a discrete 

weighted average of predictive PDFs for each model in a given class of models (Beck 

and Katafygiotis 1998). Therefore, using the Laplace asymptotic approximation to 

evaluate the integral in (3.55), we obtain 

 

!!!

p Ck T,X ,x( ) = p Ck T,X ,x ,wk( )q WT,X( )dW∫
≈ p Ck T,X ,x ,ŵk( )   (3.58) 

where !!! ŵk  k
th  column of MAP of !W . 

3.10 Classification – Bayesian Model Class Selection (Method I) 

 The following is a brief discussion of Bayesian model class selection, based on 

lecture notes from a course titled “Stochastic System Analysis and Bayesian Updating” 

taught by Prof. James L. Beck at Caltech. Also see (Beck and Yuen 2004) and (Beck 

2010) for more details. 

 Until now, I did not suggest many different models as far as the input feature 

vector components are concerned; all types of features, i.e., derivative of kurtosis and 

skewness – both horizontal and vertical channels were used in our models. This may lead 

to over-parameterization, as I will explain shortly. In fact, I did not propose a robust 

methodology to overcome the over-parameterization problem. I will do that in this 

section. I will propose several stochastic models and compare them to choose the best 

performing one among them; based on the data !! T,X{ } , I will compare alternative 
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stochastic system models (SSMs) for my multiclass classification system. This is known 

as Bayesian model (class) selection or comparison but I will use assessment. 

Posterior Probability of Alternative Stochastic System Models 

 Let us assume we have a set of !J  candidate system models !! M1 ,,MJ{ }  for a 

system specified by proposition !M . !M  also specifies a prior distribution over this set, 

!!! P Mj M( )∀j =1,, J . The posterior probability of each SSM is given by  Bayes’ theorem:  

 

!!!
P Mj T,X( ) = p T X ,Mj( )P Mj M( )

p T,X M( )   (3.59) 

where the evidence (or marginal likelihood) for !
M j  given by !! T,X{ }  is !!!p T X ,Mj( ) : 

 !!!p T X ,Mj( ) = p T X ,Wj ,Mj( )p Wj M j( )dWj∫   (3.60) 

To indicate different !
M j  might have different numbers of parameters, we use !!Wj  there. 

Looking at (3.59), we notice that the only data-dependent term is the evidence. The 

posterior probability of each model class !!!p Mj T,X( )  is controlled by it. 

Evaluation of evidence for !M   

 We can use Laplace’s method to approximate the integral in (3.60) if !M  is 

globally identifiable and the number of data points is sufficiently large. If !!WMAP  is the 

MAP value for !W  under !! T,X{ } , then 

 

 

!!!

p T X ,M( )≈ p T X ,WMAP ,M( )p WMAP M( ) 2π( )D2
HN WMAP( )

1
2

  (3.61) 
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where 

 !!! HN W( ) −∇∇lnp T X ,W ,M( )−∇∇lnp W M( )   (3.62) 

Parsimonious Models and Ockham’s Razor 

 Using a quantitative form of William of Ockham’s (Occam’s) razor will help us 

avoid “over-parameterization” or “over-fitting” of the data when identifying model from 

data. It quantifies Ockham’s philosophy that can be paraphrased as “Don’t multiply 

entities unnecessarily.” It is obvious that we cannot solely use the fit of the model to the 

data to implement Ockham’s razor because a more complex model (with addition of 

more parameters) will always have an improved fit. 

Principle of Model Parsimony 

 We can rank the plausibility of a set of !J  candidate models !! Mj{ }j=1
J  for a 

system based on data by their posterior probability using Bayes’ Theorem and this will 

automatically penalize the fit to the data of each !
M j  by a measure of the “complexity” of 

the model. 

Proof 

Let us first introduce the following notation: 

 

!!! 

Evidence,!!!!!!!!!!!!!!!EV Mj T,X( ) p T X ,Mj( )
Likelihood,!!!!!!!!!!!!L Wj T,X ,Mj( ) p T X ,Wj ,Mj( )
Ockham!factor,!!!!OF Wj T,X ,Mj( ) ĤN Wj( ) −12 2π( )

Dj
2 p Wj M j( )

  (3.63) 

where 

 !!! ĤN Wj( )HN Wj( ) −∇Wj
∇Wj

lnL Wj T,X ,Mj( )−∇Wj
∇Wj

lnp Wj M( )   (3.64) 
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 From Bayes’ Theorem: 

 

!!! 

lnP Mj T,X ,M( ) = lnEV Mj T,X( )
O N( )

  
+ lnP Mj M( )

O 1( )
  

+normalizing!constant   (3.65) 

Explanation using Laplace’s asymptotic approximation 

 Let us assume each !
M j  is globally identifiable under !! T,X{ }  and !N  is 

sufficiently large. If we use !!Ŵ  as an optimal parameter value for !
M j , e.g., !!WMAP

j( ) : 

 

!!!

lnEV Mj T,X( )≈ lnL Ŵj T,X( )+ lnOF Ŵj T,X( )
= lnL Ŵj T,X( )− 12Dj lnN + 1

2Dj ln 2π( )− 12ln
1
N
ĤN Ŵj( ) + lnp Ŵj M j( )⎡

⎣
⎢

⎤

⎦
⎥

 (3.66) 

The first term on the right hand side of (3.66) is !
O N( ) , the second term is !!O lnN( )  and 

the last three terms are !!O 1( ) . Also note that !!!ĤN Ŵj( ) =O N( )  and: 

 
!!!
ĤN Ŵj( ) = NIDj( ) 1

N
ĤN Ŵj( )⎛

⎝⎜
⎞
⎠⎟
=NDj 1

N
ĤN Ŵj( )   (3.67) 

The first term on the right hand side of (3.66), the log likelihood term of !
O N( )                  

(!!!lnL Ŵj T,X( ) ), gives a measure of the data fit for the model !
M j , which is specified by 

!!!Ŵj . The second term 
!!
−12Dj lnN , which is !!O lnN( ) , gives a bias against over-

parameterization; the number of parameters !
Dj  can be considered a simple way of 

measuring the complexity of !
M j . 

 Recall that in Chapter 2 we indicated that we need at least one skewness measure 

to be able to distinguish between over- and under-prediction cases. Keeping in mind that 



 62 

we should include at least one measure of skewness in all of the proposed models, we 

obtained Table 3.16. Note that we assume each alternative model is equally plausible a 

priori, so they have the same prior probability. Therefore, we can choose the optimum 

model among the list of proposed ones by maximizing only the value of their evidence. 

 Bayesian model class selection results with acceleration input are given in Table 

3.17. Table 3.17 shows that the model 10 has the highest evidence value. The following 

parameter values are computed for model 10 with acceleration input: 

 

!!!

W
MAP

acceleration

=

0.814
0.023
)0.016
)0.004

)0.405
)0.055
)0.016
0.005

)0.409
0.031
0.032
)0.001

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  (3.68) 

Note that the structure of the matrix above is slightly different from the one used so far: 

The columns still represent coefficients for different classes, i.e., first column is for okay-

prediction class, second column and third column are for over- and under-prediction 

classes respectively and the first row is for the dummy input, i.e., !!x0 =1 . However, the 

second row is the coefficient for derivative of horizontal skewness, the third row is for 

derivative of vertical skewness, and the fourth row is for derivative of horizontal kurtosis. 

 Bayesian model class selection results with velocity input are given in Table 3.18. 

Table 3.18 shows that the model 10 has the highest evidence value. The following 

parameter values are computed for model 10 with velocity input: 

 

!!!

W
MAP

velocity

=

0.809
0.031
(0.017
(0.005

(0.398
(0.077
(0.008
0.008

(0.411
0.046
0.025
(0.002

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  (3.69) 

The structure of the matrix above is the same as for (3.68).  
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 Bayesian model class selection results with displacement input are given in Table 

3.19. Table 3.19 shows that the model 12 has the highest evidence value (with model 10 

giving a fairly close second highest value). This model happens to be the one we have 

been using for the displacement input since the beginning of our classification. One might 

expect to see the same parameter values as (3.54) because these models are the same. 

However, the optimization algorithm I used is a stochastic one and we may get different 

parameter values even though the difference is not significant. The following parameter 

values are computed for model 12 with displacement input: 

 

!!!

W
MAP

displacement

=

0.783
0.038
'0.044
'0.010
0.006

'0.386
'0.113
'0.021
0.014
0.004

'0.396
0.075
0.065
'0.004
'0.010

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (3.70)
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Table 3.16: List of features included in alternative models. 

Model 

!!
d

dt
Horizontal!Skewness( )  

!!
d

dt
Vertical!Skewness( )  

!!
d

dt
Horizontal!Kurtosis( )   

!!
d

dt
Vertical!Kurtosis( )   

1 YES NO NO NO 

2 NO YES NO NO 

3 YES NO YES NO 

4 YES NO NO YES 

5 NO YES YES NO 

6 NO YES NO YES 

7 YES YES NO NO 

8 YES NO YES YES 

9 NO YES YES YES 

10 YES YES YES NO 

11 YES YES NO YES 

12 YES YES YES YES 
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Table 3.17: Bayesian model class selection results for acceleration input. 

Model !!lnL  !!lnOF  !!lnEV  

1 -‐796.6905878 -‐192.7533557 -‐989.4439435 

2 -‐823.9070973 -‐188.880831 -‐1012.787928 

3 -‐753.3949416 -‐218.6867016 -‐972.0816432 

4 -‐750.6115197 -‐221.6867784 -‐972.2982981 

5 -‐768.6552803 -‐222.1422717 -‐990.797552 

6 -‐779.6578831 -‐213.1267318 -‐992.7846149 

7 -‐775.8544848 -‐198.9565556 -‐974.8110404 

8 -‐742.3141105 -‐232.81717 -‐975.1312805 

9 -‐758.881568 -‐230.6736099 -‐989.5551779 

10 -‐732.2044958 -‐224.7531183 -‐956.9576141 

11 -‐739.7176866 -‐220.9872754 -‐960.704962 

12 -‐728.4732518 -‐231.9182509 -‐960.3915028 
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Table 3.18: Bayesian model class selection results for velocity input. 

Model !!lnL  !!lnOF  !!lnEV  

1 -‐804.1471411 -‐191.4777145 -‐995.6248557 

2 -‐891.3299278 -‐174.8778011 -‐1066.207729 

3 -‐756.8400798 -‐216.7472545 -‐973.5873343 

4 -‐770.7451819 -‐214.740959 -‐985.4861409 

5 -‐819.9112367 -‐213.4734752 -‐1033.384712 

6 -‐856.6070691 -‐196.2207625 -‐1052.827832 

7 -‐790.3019239 -‐197.4815243 -‐987.7834483 

8 -‐751.2525198 -‐228.3901151 -‐979.6426349 

9 -‐815.0599131 -‐220.5028865 -‐1035.5628 

10 -‐743.1684811 -‐222.7195605 -‐965.8880416 

11 -‐762.8911059 -‐216.1464477 -‐979.0375535 

12 -‐741.937857 -‐229.4082319 -‐971.3460889 
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Table 3.19: Bayesian model class selection results for displacement input. 

Model !!lnL  !!lnOF  !!lnEV  

1 -‐869.3012837 -‐180.4653091 -‐1049.766593 

2 -‐989.0176498 -‐156.287171 -‐1145.304821 

3 -‐803.7357577 -‐209.6282134 -‐1013.363971 

4 -‐837.2586776 -‐202.5986302 -‐1039.857308 

5 -‐905.2722922 -‐198.4699835 -‐1103.742276 

6 -‐949.0037145 -‐175.5844723 -‐1124.588187 

7 -‐855.8888103 -‐187.0384564 -‐1042.927267 

8 -‐801.9021195 -‐219.0314594 -‐1020.933579 

9 -‐887.0434732 -‐203.7117187 -‐1090.755192 

10 -‐792.8375594 -‐215.1139263 -‐1007.951486 

11 -‐820.2266283 -‐204.006558 -‐1024.233186 

12 -‐788.3007944 -‐219.1738527 -‐1007.474647 
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3.11 Classification – Sparse Bayesian Learning (Method II) 

 In this section, we describe Sparse Bayesian Learning (SBL) (Tipping 2001), as 

used in the relevance vector machine (RVM) for sparse kernel regression and 

classification (Bishop 2006) and which we use in the reality check algorithm (RCA) for 

the actual earthquake early warning system, i.e., CISN ShakeAlert. We again use the 

linear probabilistic model where we computed maximum posterior (MAP) values for the 

parameters. However, there is an important distinction: we use a prior where the 

precision (inverse variance) for each parameter is also a variable, i.e., it is not fixed and it 

will be estimated as a function of the training data. This separate variable is called a 

hyperparameter. 

 Let us start with introducing the ARD (Automatic Relevance Determination) 

prior: 

 
!!!
p W A( ) = p wk ak( )

k=1

K

∏   (3.71) 

where 

 
!!!
p wk ak( ) = p wkd αkd( )

d=0

D

∏   (3.72) 

where 

 !!p wkd αkd( ) =Ν wkd 0,αkd
−1( )   (3.73) 

Then, we obtain 

 

!!!

p W A( ) = p wkd αkd( )
d=0

D

∏
k=1

K

∏

=
αkd

2π
exp −

αkd

2 wkd
2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪d=0

D

∏
k=1

K

∏
  (3.74) 

where 
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!!! 

A =

α10 α20  αK0

α11   

   
α1D α2D  αKD

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  (3.75) 

Taking the logarithm of (3.74), we obtain  

 

!!!

lnp W A( ) = ln αkd

2π

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
−
αkd

2 wkd
2

d=0

D

∑
k=1

K

∑

= ln
d=0

D

∑
k=1

K

∑ αkd( )− ln 2π( )−αkd

2 wkd
2

= 1
2lnd=0

D

∑
k=1

K

∑ αkd( )− 12ln 2π( )−αkd

2 wkd
2

  (3.76) 

 We shall see that when we maximize the evidence with respect to these 

hyperparameters, a significant portion of them go to infinity, and the corresponding 

weight parameters then have posterior distributions with zero mean and variance so they 

are concentrated at zero, causing their corresponding basis functions to have coefficients 

equal to zero. Thus, the basis functions associated with these parameters play no role in 

the predictions made by the model, that is, they are effectively pruned out, resulting in a 

sparse model (Bishop 2006). 

 We want to maximize the posterior over !A : 

 !!!p A T,X( )∝p T A ,X( )× p A( )   (3.77) 

Let us define the hyperprior over !A . We choose Gamma distributions as suitable priors 

(Bishop and Tipping 2003): 

 
!!!
p A( ) = p ak( )

k=1

K

∏   (3.78) 

where 

 
!!!
p ak( ) = Gamma αkd a,b( )

d=0

D

∏   (3.79) 

where 
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 !!Gamma α a,b( ) = Γ a( )−1baα a−1e−bα   (3.80) 

then, we obtain 

 
!!!
p A( ) = Gamma αkd a,b( )

d=0

D

∏
k=1

K

∏   (3.81) 

At the end of this process, we will obtain equations to re-estimate the hyperparameters. 

 Next, we obtain !!!p T X ,A( )  by first deriving the posterior over all unknowns, 

given the data (Bishop and Tipping 2003): 

 !!!p W ,A T,X( ) = p W A ,T,X( )p A T,X( )   (3.82) 

 

!!!
p W A ,T,X( ) = p TW ,A ,X( )p W A( )

p T A ,X( )   (3.83) 

 

!!!
p T A ,X( ) = p TW ,A ,X( )p W A( )

p W A ,T,X( )   (3.84) 

Maximizing (3.77) is equivalent to minimizing its negative logarithm:  

 

 
!!!

− lnp A T,X( ) = − lnp T A ,X( )− lnp A( )+ const
= − lnp T W * ,A ,X( )− lnp W * A( )+ lnp W * A ,T,X( )− lnp A( )+ const   (3.85) 

 

Define !!W*  as the MAP value for the posterior over !W  for a fixed value of !A . 

Therefore, !!W*  is calculated by minimizing 

 !!!E W( ) = − lnp WT,X ,A( ) = − lnp T X ,W ,A( )− lnp W A( )+ const   (3.86) 

where 
!!
p W A( )  is given by (3.71).  

The third term on the right hand side of (3.85) can be approximated by Laplace’s 

asymptotic approximation as 

 
!!!
lnp W A ,T,X( )≈ ln Ν WW* ,H W*( )−1⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

  (3.87) 
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Substituting for !W  by its MAP value !!W* : 

 
!!!
lnp W* A ,T,X( ) = 12ln H W*( ) + const   (3.88) 

where !!!H W*( )  is the Hessian matrix evaluated at !!W*  and given by: 

 !!H W( ) =∇∇E W( )   (3.89) 

Therefore, we can write (3.85) using !!E W( )  and (3.88) as 

 
!!!
− lnp A T,X( ) = E W*( )+ 12ln H W*( ) − lnp A( )+ const   (3.90) 

In order to find the equation that will update the hyperparameters !A , we take the 

derivative of (3.90) with respect to individual hyperparameters !αkd . We see that!!!E W*( )  

is a function of !αkd  in two ways: a direct way through the terms involving the prior on 

!W  and indirectly by the MAP value !!W* , which depends on the value of !αkd . However, 

taking advantage of the fact that !!W*  is the MAP value so that the second part has 

derivative zero (Zhang and Malik 2005): 

 

 

!!! 

∂E W*( )
∂αkd

=
∂E W*( )
∂αkd fixed!W*

+
∂E W*( )
∂W*

fixed!α
0

  

∂W*

∂αkd

=
∂E W*( )
∂αkd fixed!W*

+0∂W
*

∂αkd

= 12 W*
kd −

1
αkd

⎛

⎝⎜
⎞

⎠⎟

  (3.91) 

We next make use of the expression provided in Bishop, 2006, C.22: 

 
!!!

∂ln A
∂x

=Tr A−1 ∂A
∂x

⎛
⎝⎜

⎞
⎠⎟

  (3.92) 

to get the derivative of the second term in (3.90): 
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!!!

1
2

∂
∂αkd

ln H W*( ) = 12Tr H W*( )−1 ∂H W*( )
∂αkd

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= 12 H W*( )−1⎡
⎣⎢

⎤
⎦⎥kd

= 12Σkd

  (3.93) 

where !Σkd  is the !
k×d( )th  diagonal element of !!!H W*( )−1 . 

Finally, let us take a look at derivative of the third term in (3.90) with respect to !αkd  

(Zhang and Malik 2005). From (3.81), we have 

 
!!!

∂ − lnp A( )( )
∂αkd

= b− a
αkd

  (3.94) 

We set the final form of the derivatives to zero, and then we obtain: 

 
!!!
αkd

NEW =
1−αkdΣkd +2a
W*

kd +2b
  (3.95) 

We use Jeffrey hyperpriors: 

 !!a= b=0⇒ p αkd( )∝αkd
−1   (3.96) 

Therefore, 

 
!!!
αkd

NEW =
1−αkdΣkd

W*
kd

  (3.97) 

An iterative procedure is used to find the MAP values. We first assign initial values to !A , 

and then evaluate !!W*  for those values by minimizing !!!E W*( ) . Then, we re-estimate !A  

using (3.97). After that, we re-estimate !!W* , and so on until a convergence criterion is 

satisfied. We can stop the iterations when the change in the norm of !!W*  (converted into a 

column vector form) is less than 5% compared to the previous iteration. Each column of 

!W  represents the parameter values for different classes: the first column is for the okay-

prediction, the second column is for the over-prediction, and the third column is for the 

under-prediction class. The input feature vector is chosen as: 
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1
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dt
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  (3.98) 

	  
Therefore, when a parameter is pruned out from the model, the corresponding input 

vector element (of the corresponding) class will not be used in the predictions. 

 Using the above convergence criterion, we obtain the following results for 

acceleration input: 

 

!!!

W
MAP

acceleration

=

4.176
'1.182e'08
3.291e'06
'0.004
3.413e'07

0.005
'0.117
'0.057
0.016
0.011

'0.159
0.082
0.096
3.459e'09
'0.002

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (3.99) 

	  
From (3.99) we can prune out !!!WMAPacceleration

2,1( ) ,!!!WMAPacceleration
3,1( ) , !!!WMAPacceleration

5,1( ) , and 

!!!WMAPacceleration
4,3( )  from the model by setting them to zero.    

 Using the convergence criterion, we obtain the following results for velocity 

input: 

 

!!!

W
MAP

velocity

=

3.916
'3.212e'05
0.0002
'0.001
3.673e'09

0.009
'0.212
'0.006
0.028
0.009

'0.248
0.102
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⎡
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⎢
⎢
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⎢
⎢

⎤
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⎥
⎥
⎥

  (3.100) 
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Similar to the acceleration input case, we can prune out the following parameters: 

!!!WMAPvelocity
2,1( ) , !!!WMAPvelocity

3,1( ) , !!!WMAPvelocity
5,1( ) , and !!!WMAPvelocity

4,3( ) . Note that 

!!!WMAPvelocity
3,1( )  is not as small as the corresponding value in the acceleration case given in 

(3.99), but it is relatively small compared to the rest of the parameter values in the first 

column in (3.100). 

    Using the convergence criterion, we obtain the following results for 

displacement input: 

 

!!!

W
MAP

displacement

=

3.597
'1.623e'06
'0.001
8.383e'05
'2.521e'09

0.026
'0.316
'0.003
0.0530
0.010

'0.701
0.227
0.168
'0.013
'0.017

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (3.101) 

We can therefore prune out the following parameters: !!!WMAPdisplacement
2,1( ) , !!!WMAPdisplacement

4,1( )  

and !!!WMAPdisplacement
5,1( ) .   

 In the next few chapters, we analyze the performances produced by the models 
given above.
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Chapter 4                   

Case Studies – Okay Predictions 

 In this chapter, we demonstrate the performance of the Reality Check Algorithm 

(RCA) via several example case studies. We start with two trivial examples of okay-

predictions, and then we explain the performance on one of the examples with small 

perturbations in arrival times of the predicted envelopes. We compute the class 

probabilities by using the Sparse Bayesian Learning (SBL) technique (Method II). In 

order to show the superiority of Sparse Bayesian Learning (the models with the ARD 

prior) over the classification model chosen by applying Ockham’s razor on a given set of 

models (Method I), comparison of their performances are displayed in several figures 

below.  

 The following is a general figure description, which is used in the following 

figures where necessary. 

General figure description: 

Left panel: first row shows the seismogram recorded by the seismic station whose 

identification information is given above (seismogram in blue and its envelope in red); 

note that although only the vertical channel is shown in the plot for demonstration 

purposes, both vertical and horizontal channels were used in RCA computations; the 

second row shows both the predicted and observed envelopes; the third row shows the 

test function after high-pass filtering by the values given in Chapter 2. Right panel shows 

the probability values for each class with a different color and marker. 
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4.1 Okay-Prediction Examples 

 Before we start demonstrating RCA’s performance, we clarify the definition of 

okay-prediction used in this thesis. According to the Decision Module Review Tool 

adopted by the scientists working on the California earthquake early warning project, a 

prediction made by the Decision Module (DM) is considered accurate if the origin time 

error is less than or equal to 30 seconds, and the location error is less than or equal to 100 

kilometers, relative to the Advanced National Seismic System (ANSS) composite 

catalogue (this is the default match criteria in the DM Review Tool Web Page 

Description for the CISN ShakeAlert project). Because our algorithm is sensitive enough 

to classify predictions with these amounts of error as inaccurate and RCA has the 

potential to be a stand-alone algorithm, we use the ANSS catalogue values as the location 

and magnitude when creating the predicted envelopes. We also match the P-wave arrival 

times of the predicted envelopes with that of observed ones for seismic stations of 

interest. By doing this, we aim to decrease the margin of error associated with RCA’s 

performance. We indicate when we do not follow this pattern. For quantitative definition 

of the okay-predictions, please see Chapter 2. 

4.1.1 Okay-prediction example 1 

 Let us start with an event for which the ANSS catalogue indicates the following 

information gathered from the Southern California Earthquake Data Center: 

Event ID: 37314320 

Magnitude: 4.89 

Latitude: 31.5237 

Longitude: -115.6743 
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We show the performance of RCA for the seismic station with the following information: 

Network: CI 

Station: JEM 

Type: Strong Motion Seismometer 

4.1.2 Discussion of okay-prediction example 1  

 Figures 4.1 to 4.6 show results of Method I and Method II on the okay-prediction 

example 1. Observe the noisy nature of the results for the models chosen using Method I. 

These models have significant fluctuations within each class compared to the results we 

computed using the models from Method II. This observation can be made regardless of 

the frequency content of the ground motion; that is, acceleration, velocity, and 

displacement all show significant fluctuations within each class probability values that 

are computed using Method I, while Method II probability values are close to each other 

for a given class in comparison. In addition to the noisy looking values, this particular 

technique resulted in a smaller gap between class probabilities compared with the ARD 

prior models, which show greater separation between the accurate class and the other 

two.  

 Furthermore, it is observed that the displacement based results are the least 

accurate among all three, i.e., acceleration, velocity, and displacement. The decrease in 

performance is more significant in Figure 4.3 where the computations are done using 

Method I. In fact, as far as Method II is concerned, the RCA performance with 

displacement input is relatively acceptable, as clearly seen in Figure 4.6 where the 

computations are performed using a model with the ARD prior. However, the 

discrepancy associated with displacement indicates that sampling the envelopes of 



 78 

 

Figure 4.1: Reality Check Algorithm’s performance plot for the okay-prediction 

example 1 computed using (3.68) from acceleration input using Method I. For description 

of the figure, see “General figure description” given above. 
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Figure 4.2: Reality Check Algorithm’s performance plot for the okay-prediction 

example 1 computed using (3.69) from velocity input using Method I. For description of 

the figure, see “General figure description” given above. 
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Figure 4.3: Reality Check Algorithm’s performance plot for the okay-prediction 

example 1 computed using (3.70) from displacement input using Method I. For 

description of the figure, see “General figure description” given above. 
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Figure 4.4: Reality Check Algorithm’s performance plot for the okay-prediction 

example 1 computed using (3.99) from acceleration input using Method II. For 

description of the figure, see “General figure description” given above. 
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Figure 4.5: Reality Check Algorithm’s performance plot for the okay-prediction 

example 1 computed using (3.100) from velocity input using Method II. For description 

of the figure, see “General figure description” given above. 
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Figure 4.6: Reality Check Algorithm’s performance plot for the okay-prediction 

example 1 computed using (3.101) from displacement input using Method II. For 

description of the figure, see “General figure description” given above. 
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ground motions at one-second intervals (see Chapter 2) may not be suitable for low-

frequency content, i.e., displacement ground motions. One may want to increase the 

number of seconds at which the displacement envelopes are created. Moreover, we may 

need another measure of misfit, which would somehow guarantee an acceptable 

prediction class when combined with RCA results. We introduce such a new method 

below. 

4.1.3 Okay-prediction example 2 

 We continue the RCA demonstration with another event.  

 Recall that the predicted P-wave arrival time is matched with that of the observed 

one. 

Event ID: 37301704 

Magnitude: 4.25 

Latitude: 34.6173 

Longitude: -118.6302 

I will show the performance of RCA for the seismic station with the following 

information: 

Network: CI 

Station: SLM 

Type: Strong Motion Seismometer 

4.1.4 Discussion of okay-prediction example 2  

 The same pattern of ‘noisy results’ versus ‘less noisy results’ can be observed in 

Figures 4.7 to 4.12 as in Figures 4.1 to 4.6. This observation shows us that the Method II 

is superior to Method I. 
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Figure 4.7: Reality Check Algorithm’s performance plot for the okay-prediction 

example 2 computed using (3.68) from acceleration input using Method I. For description 

of the figure, see “General figure description” given above. 
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Figure 4.8: Reality Check Algorithm’s performance plot for the okay-prediction 

example 2 computed using (3.69) from velocity input using Method I. For description of 

the figure, see “General figure description” given above. 
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Figure 4.9: Reality Check Algorithm’s performance plot for the okay-prediction 

example 2 computed using (3.70) from displacement input using Method I. For 

description of the figure, see “General figure description” given above. 
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Figure 4.10: Reality Check Algorithm’s performance plot for the okay-prediction 

example 2 computed using (3.99) from acceleration input using Method II. For 

description of the figure, see “General figure description” given above. 
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Figure 4.11: Reality Check Algorithm’s performance plot for the okay-prediction 

example 2 computed using (3.100) from velocity input using Method II. For description 

of the figure, see “General figure description” given above. 
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Figure 4.12: Reality Check Algorithm’s performance plot for the okay-prediction 

example 2 computed using (3.101) from displacement input using Method II. For 

description of the figure, see “General figure description” given above.  
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 Similar to the first okay-prediction example, displacement results are the most 

problematic ones, regardless of the method we used. Unlike the first okay-prediction 

example, however, unacceptable performance of displacement is observed before the 

earthquake waves reach the seismic station; in other words, the errors for the 

displacement results are in the part of the record where there is only supposed to be noise. 

Although the over-prediction probability values observed in the displacement results of 

the second method (see Figure 4.12) are comparable to the corresponding okay-prediction 

values, i.e., over-prediction probability at seconds 247 and 369 are approximately 0.545 

and 0.548 respectively, while the corresponding okay-prediction values are 

approximately 0.454 and 0.451, these results alone might be misleading if acceleration 

and velocity results are not taken into consideration. On the positive side, this situation 

proves that the algorithm is very sensitive to the changes between observed and predicted 

values, as shown in the zoomed-in versions of Figure 4.12 (see Figures 4.13 and 4.14), 

that is to say, even when the noise levels at a station change more than enough to classify 

departure from normality, RCA is able to detect that! 

 The discrepancies observed in the displacement results are not the only ones as far 

as the second okay-prediction example is concerned. Figure 4.7, which is based on 

acceleration input, shows an under-prediction at 455th second of the record. The under-

prediction probability does not exceed that of the okay- and over- predictions in either 

velocity or displacement results for both Method I and Method II. In fact, the acceleration 

results for Method II (see Figure 4.10) indicate accurate prediction. This under-prediction 

signal is due to a slight increase in the observed noise level as can be seen in the zoomed-

in version of Figure 4.7 (see Figure 4.15). If the acceleration result of the first method 
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Figure 4.13: Reality Check Algorithm’s performance plot for the okay-prediction 

example 2 computed using (3.101) from displacement input using Method II (zoomed-in 

on the first over-prediction indication). For description of the figure, see “General figure 

description” given above.  
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Figure 4.14: Reality Check Algorithm’s performance plot for the okay-prediction 

example 2 computed using (3.101) from displacement input using Method II (zoomed-in 

on the second over-prediction indication). For description of the figure, see “General 

figure description” given above.  
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were the only measure we had, we would make a misclassification. Fortunately, we have 

velocity and displacement results of the first method contradicting that of acceleration. In 

addition to that, even the acceleration results of the second method (Figure 4.10) provide 

accurate classification as we mentioned above. The change in the noise levels could be so 

high that all measures may indicate an under-prediction (or over-prediction). For that 

reason, we suggest another measure of misfit, which will guarantee better performance 

for the predictions of RCA, in the upcoming sections of this chapter. 

4.1.5 Okay-prediction example 1 with arrival time perturbations 

 Next, we investigate what happens to the RCA performance if the arrival times of 

P-waves are slightly miscalculated. This form of miscalculation could be due to location 

and/or origin time errors. First, we consider the case where the predicted P-wave arrives 

one second earlier than the observed one. Then, we look at the case where the predicted 

P-wave is one second late. Besides the perturbations mentioned above, the examples of 

this section are identical to the ones presented for okay-prediction example 1. 

 The purpose of these arrival time perturbations is to point out the need for another 

measure of misfit. This measure, however, will not be enough to make accurate 

classifications by itself; but the new and the already presented RCA will ‘complement’ 

each other’s weaknesses. 

 From this point on, we only show the figures for Method II, i.e., the results we 

computed using the models with the SBL technique. 
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 Figure 4.15: Reality Check Algorithm’s performance plot for the okay-prediction 

example 2 computed using (3.68) from acceleration input using Method I. For description 

of the figure, see “General figure description” given above. 
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 Let us start with the case where the predicted P-wave arrives one second earlier. 

As it can be seen in Figures 4.16 to 4.18 (in addition to Figure 4.19 which is the zoomed-

in and highlighted version of Figure 4.17), RCA indicates an over-prediction. This is due 

to the fact that at the time of over-prediction indication, the observed ground motion 

envelope value is just the noise level at the station, whereas the predicted envelope 

counterpart is the P-wave value, which is significantly larger than the observed value. 

This perturbation alone can make RCA indicate an over-prediction as if an entire 

earthquake is assumed to exist but the assumption was wrong, that is, RCA, in this 

scenario, indicates an over-prediction as it would in the case of a false alarm. This is not 

acceptable because looking at the ‘overall’ fit tells us that the event is quite accurately 

predicted except for the arrival time. Therefore, we need a measure of the ‘overall’ fit in 

addition to RCA. The keyword is ‘overall’!  

 Note that these figures also show that displacement alone does not indicate an 

over-prediction even though the probability of over-prediction increases significantly. 

 Next, we make the predicted P-wave arrive one second later than the observed 

one. In this scenario, while the observed envelope value at the time of P-wave arrival is 

significantly larger than the noise level, the corresponding predicted envelope value is 

still the noise! It is an example of under-prediction where the observed value is much 

higher than the predicted value. Figures 4.20 to 4.23 show that displacement is the only 

ground motion that indicates under-prediction for Method II. In fact, even though the 

corresponding acceleration and velocity under-prediction probabilities increase 

noticeably, the governing class of okay-, over-, and under-prediction is still the okay-

prediction one. 
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Figure 4.16: Reality Check Algorithm’s performance plot for the okay-prediction 

example 1 (with early predicted P-wave arrival) computed using (3.99) from acceleration 

input using Method II. For description of the figure, see “General figure description” 

given above. 
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Figure 4.17: Reality Check Algorithm’s performance plot for the okay-prediction 

example 1 (with early predicted P-wave arrival) computed using (3.100) from velocity 

input using Method II. For description of the figure, see “General figure description” 

given above. 
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Figure 4.18: Reality Check Algorithm’s performance plot for the okay-prediction 

example 1 (with early predicted P-wave arrival) computed using (3.101) from 

displacement input using Method II. For description of the figure, see “General figure 

description” given above. 
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Figure 4.19: Reality Check Algorithm’s performance plot for the okay-prediction 

example 1 (with early predicted P-wave arrival) computed using (3.100) from velocity 

input using Method II (zoomed-in on the early predicted P-wave arrival). For description 

of the figure, see “General figure description” given above. 
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Figure 4.20: Reality Check Algorithm’s performance plot for the okay-prediction 

example 1 (with late predicted P-wave arrival) computed using (3.99) from acceleration 

input using Method II. For description of the figure, see “General figure description” 

given above. 
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Figure 4.21: Reality Check Algorithm’s performance plot for the okay-prediction 

example 1 (with late predicted P-wave arrival) computed using (3.100) from velocity 

input using Method II. For description of the figure, see “General figure description” 

given above. 

 

 

 

 

 

 



 103 

 

Figure 4.22: Reality Check Algorithm’s performance plot for the okay-prediction 

example 1 (with late predicted P-wave arrival) computed using (3.101) from 

displacement input using Method II. For description of the figure, see “General figure 

description” given above. 
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Figure 4.23: Reality Check Algorithm’s performance plot for the okay-prediction 

example 1 (with late predicted P-wave arrival) computed using (3.101) from 

displacement input using Method II (zoomed-in on the late predicted P-wave arrival). For 

description of the figure, see “General figure description” given above. 
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 There is an interesting lesson we can draw from these perturbation examples: 

while displacement is very sensitive to under-prediction cases and not so sensitive to 

over-prediction cases, the situation is reversed for acceleration and velocity, that is, 

acceleration and velocity are more sensitive to over-prediction cases than they are to 

under-prediction cases! Nevertheless, it is observed that a slight perturbation in the 

predicted P-wave arrival may cause an under-prediction classification by even Method II 

(in the case of displacement), as if the system completely missed an earthquake. Notice 

that, similar to the scenario in which the predicted P-wave arrives earlier, the ‘overall’ fit 

between the observed and predicted envelopes is somewhat acceptable. In light of these 

results for perturbations, it is even more clear that we should use a measure of ‘overall’ 

misfit, in addition to the current RCA computations. 

 Before we explain the new method, we would like to draw attention to an 

interesting difference between over- and under-prediction cases: when we made the 

predicted envelope arrive earlier (later), we did not just make the P-wave arrive earlier 

(later), we actually made the entire predicted envelopes, i.e., P- and S-wave envelopes 

combined with the noise envelope arrive earlier (later). Therefore, not only the P-wave 

arrival times between observed and predicted envelopes are different, but also the S-wave 

arrival times are different from each other. S-wave arrival time mismatch in the late 

arrival case can be observed in Figures 4.20 to 4.23 as the impulse-like pattern seen at the 

expected arrival time of the S-waves. However, the mismatch between the S-waves of 

observed and predicted envelopes in the case of early arriving predicted envelopes is not 

observed in Figures 4.16 to 4.19! The explanation is simple: the amplitude of the 

observed S-wave is larger than that of the predicted one. In the case of the early arrival, 
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the two values that are used to compute the test function, i.e., observed P-wave coda 

amplitude and predicted S-wave amplitude are not too different from each other. But in 

the case of late arrival, the two values that are used to compute the test function, i.e., 

observed S-wave amplitude and predicted P-wave coda amplitude are significantly 

different. This is the reason that we can observe the second impulse-like signal in the late 

arrival case. 

4.2 A Supplementary Method for the Reality Check Algorithm 

 In the previous section, we showed the need for a measure of misfit that would 

supplement the RCA results. The new method will be used as a guaranteeing agent for 

the RCA messages generated for earthquake early warning systems.  

 The first thing that comes to mind is to use the RCA results on the test function 

computations after a prediction is made! Because a test function after a prediction is 

made can be considered as a measure of ‘whatever the earth gives us minus whatever the 

system predicts’ which is supposed to be zero in the ideal case, any value that is too 

nonzero should be an indication of something wrong. Also, because we have a 

classification scheme for such a measure, i.e., test function, we could try using the same 

classification on it. However, RCA did not perform well on the test functions after a 

prediction is made. This is due to the fact that oscillations among test function values 

after a prediction is made are so large that RCA is not able to detect outliers. For that 

reason, we need a different measure of misfit. 

 We have showed above that small perturbations in wave arrival times may cause 

RCA to indicate wrong predictions even though the ‘overall’ form of the event is 

accurately predicted. Therefore, we need a measure that checks the ‘overall’ fit between 
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observed and predicted envelopes. Thus, if there is any isolated impulse-like test function 

values, as there would be in case of small arrival time perturbations, the new measure 

should ignore them. This can be achieved by considering the current time test function 

value in relation to the previous test function values. Although we somehow already do 

that with the help of kurtosis and skewness, we also need make sure that an impulse-like 

test function value does not have too much impact on the results. As a result of the 

previous considerations for the new measure, we propose to use a running mean of the 

test function instead of the test function values directly. Because a running mean can be 

considered as a low-pass filter, by doing this, we make sure that the effects of an isolated 

impulse-like test function value are diminished. Of course, like with any running mean, 

we need to decide the length of the window that will slide across the continuous 

computations. For the time being, let us call this window length “running-mean-window-

length”. A specific value will be given later. 

 
!!
Test!Function!With!Running!Mean N( ) !=!

Test!Function
n=N−M+1

N

∑ n( )
M

  (4.1) 

	  
where !M  is the running-mean-window-length. Remembering that φ  denotes the test 

function defined in Chapter 2, let !φr  denote the test function with the running mean. 

Then, (4.1) can be written as 

 
!!
φr NΔt( ) =

φ nΔt( )
n=N−M+1

N

∑
M

  (4.2) 

	  
 So far, we have a way to make the current test function value be related to the 

previous test function values without using kurtosis and/or skewness. The next step is to 
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make the new measure detect irregularities, and more importantly, ignore the irregularity 

if it is due to a small wave-arrival-time perturbation. Since having a running mean 

through the test function after making a prediction smoothens the test function, traditional 

kurtosis and/or skewness computations did not perform well. As a result, a new method 

of computing moments of signal data is proposed based on classical mechanics, or to be 

more accurate, statics that are used in Civil Engineering. This new method of computing 

moments of time series data is the backbone of our supplementary technique to the RCA, 

and it is explained below. We call our method “Karakus-Heaton Moment of Signal 

Data”.  

4.2.1 Karakus-Heaton Moment of Signal Data 

 Let us start with defining our concept of moment. In statics, moment is defined as 

a quantity with a rotational direction, and a magnitude at a location. The direction of the 

moment depends on the convention one chooses; we choose the clockwise direction as 

positive and counter-clockwise direction as negative. The magnitude of a moment (in 2-

D) at a location is the load amplitude times the perpendicular distance, i.e., moment arm  

between the application point of the load and the location at which the moment is 

computed (see Figure 4.24).  

 
!!
Moment!at!the!dashed!line!=! P1L1 +P2L2 −P3L3 −P4L44   (4.3) 

	  
Notice in (4.3) how we use the convention of clockwise and counterclockwise rotation: 

loads to the right of the dashed line in the figure tend to rotate the beam in the clockwise 

direction, so they have the positive sign, whereas the loads on the left side of the dashed 

line tend to rotate the beam in the counterclockwise direction, and therefore have the 

negative sign. We can think of a set of test function values for a given length of a window 
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as point loads on a beam that is supported right at the middle. In that case, the middle of 

the beam would correspond to the mid-location of the window. Amplitudes of the test 

function values would be the point load amplitudes, and the difference between the mid-

location of the window, where the support is assumed to be, and the test function value 

location in time would be the moment arm. So, computing the moment at the mid-

location would be nothing but multiplying the test function values by their moment arms, 

and then doing a summation using the convention given above. 

 Our original idea of computing the moments of signals was to find an alternative 

to kurtosis computations. For this reason, we make the Karakus-Heaton Moment of 

Signal Data computations resemble that of higher order statistics; in the following section 

we introduce the concepts of ‘order of the moment’ and ‘normalizing factor’. 

 We define our ‘order of the moment’ as the power to which we raise the 

individual moments due to point loads (test function values), that is, while equation (4.3) 

is considered a first order moment calculation, an sth order moment computation would 

be computed by the following:  

 
!!
sth !moment!at!the!dashed!line!=!

P1L1( )s + P2L2( )s + −P3L3( )s + −P4L4( )s
4   (4.4) 

	  
 In order to generalize the result of (4.4), let us think of computing the sth order 

Karakus-Heaton Moment of Signal Data for a set of !N  test function values with running 

mean. Let !Ln  denote the location of test function value 
!
φrn  within !N  values such that 

!! L1 =1,L2 =2,,LN =N . The sth order Karakus-Heaton Moment of Signal Data is denoted 

!KHMs , and is defined by: 
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Figure 4.24: Static moment computation illustration in 2D. The purpose of this figure is 

only to clarify how the Karakus-Heaton Moment of Signal Data is computed and to 

present a physical representation of our concept of moment. Karakus-Heaton Moment of 

Signal Data is computed at the vertical section indicated by the dashed line using the 

formula in (4.3).  
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!!

KHMs =
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N
2

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

s

n=1

N

∑
N

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

KHM2( )
s
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (4.5) 

	  
Notice that !!KHM2  is used in the denominator raised to the appropriate power so that both 

the numerator and the denominator have the same units. This process is done to simulate 

the higher order statistic computations where the fourth and third moments of data about 

the mean value are divided by the variance of the data raised to such a power that 

resulting value is dimensionless (DeCarlo 1997). Therefore, we do not directly compute 

the sth moment of the data, but we also normalize the computations by using an 

appropriate power of the 2nd moment of the same data. The expression in the denominator 

of (4.5) is called the ‘normalizing factor’. 

 The higher order Karakus-Heaton Moment of Signal Data, !KHMs , is devised to 

make exceptional (out of the ordinary) values in test function computations stand out. 

This idea can be best explained by looking at Figure 4.25. By using the logarithm, 

differences among such values are visually suppressed. In contrast, we aim to visually 

amplify the differences among test function values, when there are exceptional values 

after taking the mean. In this case, they will stand out in the !KHMs  computations, 

provided they are not isolated. By isolated, we mean an impulse-like test function value 

due to small perturbations in arrival time. If we miss an entire event, there will be several 
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exceptional values, which will not go away after taking the mean. Then, the !KHMs  

computations will make these values easily detectable. 

 The following steps describe our new method: 

1. First, we get rid of an isolated impulse-like value in the test function 

results with the help of a running mean. 

2. Then, we apply a high-pass filter with the same parameters as used in 

Chapter 2. (Remember that we used that filter to get rid of long period 

trends because of coda mismatch between predicted and observed 

envelopes). 

3. Then, we apply the !KHMs  computation on the results of step 2. 

4. Finally, we take the time derivative of the results of step 3 (similar to 

taking the time derivative of kurtosis and skewness results in Chapter 2). 

 Although one can argue that the optimum values of window lengths for the 

running mean, order, and window length of the !KHMs  computation can benefit from 

Bayesian regression analysis, experience with several examples, including those 

presented in this chapter, suggests the following specific values for relatively good 

results: 

 

!

Window!length!of!running!mean!=!40sec
Order!of!KHM!=!10

Window!length!of!KHM!=!80sec
  (4.6) 
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Figure 4.25: Comparison of taking logarithm with applying Karakus-Heaton Moment 

of Signal Data. Horizontal axis in the black squares shown above can be considered as 

time; then, the importance of using Karakus-Heaton Moment of Signal Data for real-time 

applications becomes more pronounced because an out-of-place value will stand out as 

soon as it is detected. 
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 The !KHMs  results, which can be seen in the second row on the right column of 

Figures 4.26 to 4.28, are virtually the same for all cases, i.e., okay-prediction and okay-

prediction with perturbations. Because a running mean can also be considered as a low-

pass filter, the test function looks free of isolated impulses (Figures 4.27 and 4.28) and 

much smoother than before, as it can be seen in the figures in the second row on the left. 

Because there are no further significant mismatches between observed and predicted 

values, !KHMs  does not produce values that are significantly different from each other, 

that is, the ‘overall’ fit between observed and predicted envelopes is confirmed. 

Therefore, the new method we propose gives the ability to distinguish a small 

perturbation from a total missed event and a total false alarm.  

 When we visit the examples of over- and under-prediction in the next chapters, 

the differences among the !KHMs  values will be much larger than those seen in Figures 

4.26 – 4.28. 
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Figure 4.26: Performance of the supplementary method to RCA for the okay-prediction 

example 1. Left panel: first row shows the test function after high-pass filtering by the 

values given in Chapter 2; second row shows the test function values after applying a 

running mean and a high-pass filter by the values given in Chapter 2. Right panel: first 

row shows the probability values computed using (3.99) from acceleration input using 

Method II for each class with different color and marker; second row shows the results of 

the supplementary technique. 
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Figure 4.27: Performance of the supplementary method to RCA for the okay-prediction 

example 1 (with early predicted P-wave arrival). Left panel: first row shows the test 

function after high-pass filtering by the values given in Chapter 2; second row shows the 

test function values after applying a running mean and a high-pass filter by the values 

given in Chapter 2. Right panel: first row shows the probability values computed using 

(3.99) from acceleration input using Method II for each class with different color and 

marker; second row shows the results of the supplementary technique. 
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Figure 4.28: Performance of the supplementary method to RCA for the okay-prediction 

example 1 (with late predicted P-wave arrival). Left panel: first row shows the test 

function after high-pass filtering by the values given in Chapter 2; second row shows the 

test function values after applying a running mean and a high-pass filter by the values 

given in Chapter 2. Right panel: first row shows the probability values computed using 

(3.99) from acceleration input using Method II for each class with different color and 

marker; second row shows the results of the supplementary technique. 
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Chapter 5                   

Case Studies – Over Predictions 

 In this chapter, we will demonstrate the performances of both the Reality Check 

Algorithm (RCA) and the Karakus-Heaton Moment of Signal Data (KHM) using two 

over-prediction cases the Decision Module (DM) experienced in the past. Unlike the 

previous chapter, we only compute the class probabilities by using Method II (the 

Automatic Relevance Determination (ARD) Prior technique in Chapter 3) to demonstrate 

the RCA algorithm. Then, we use the technique introduced in Chapter 4, i.e., KHM 

(Karakus-Heaton Moment of Signal Data) to mitigate problems associated with the 

examples.  

5.1 Over-prediction example 1 

 Our first example is an event that was experienced on July 1st, 2015 due to a 

calibration pulse. DM sent out an alert indicating there was a magnitude 8.2 event at 

latitude 34.753 and longitude -122.402, with an origin time of 2015/07/01, 00:55:06 UTC 

(see Figure 5.1). The particular stations that caused DM to send such an alert were 

experiencing calibration pulses at the same time. We demonstrate our system’s 

performance for one of those stations: 

Network: PG 

Station: ARD 

Type: Strong Motion Seismometer   
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Figure 5.1: Summary of July 1st 2015 false alarms (Source: Prof. Richard Allen) 

 

 

 

 

 

 

 

 

 

 

 

Postmortem(of(July(1,(2015(False(Alarms(Issued(by(ShakeAlert(
Richard(Allen-(rallen@berkeley.edu(
(
(
The(ShakeAlert(system(sent(out(two(false(alarms(within(24s(of(each(other(on(July(1,(
2015.(They(were(large(magnitude:(M8.2(and(M6.3.((Both(false(alerts(were(generated(
by(the(ElarmS(algorithm.(The(cause(of(these(events(was(four(concurrent(square(
waves--presumably(calibration(pulses--observed(from(the(PG&E(Diablo(canyon(
stations.((
(
As(a(result(of(the(alerts(all(BART(trains(were(brought(to(a(stop(and(held(until(BART(
operators(were(able(to(confirm(that(there(was(no(hazard.(
(
ShakeAlert(had(similar(problems(before(with(calibration(pulses(causing(false(alerts.(
This(had(not(previously(been(a(problem(for(ElarmS,(which(requires(4(stations(to(
trigger.((The(PG&E(station(data(streams(were(only(recently(added(to(the(
demonstration(system,(and(near-simultaneous(calibration(was(the(cause(of(the(false(
alert.(((
(
The(PG&E(stations(are(no(longer(feeding(data(to(the(demonstration(system.(
(
False(events:(
(
   ID      Alert UTC Time      Origin UTC Time  Mag TpMag PdMag     Lat      Lon 
    447393 2015/07/01 00:55:39  2015/07/01 00:55:06  8.2   7.8   8.2  34.753 -122.402 
    447394 2015/07/01 00:55:43  2015/07/01 00:55:30  6.3   7.7   6.3  35.517 -121.023 
(
Channel(triggers(for(the(M8.2(event:(
(

    sta  net chn         time   tpmag   pdmag 
1   ARD   PG HNZ 00:55:31.005   7.844   8.271 
2   CSD   PG HNZ 00:55:31.010   7.842   8.282 
3   LSD   PG HNZ 00:55:32.025   7.840   8.158 
4   WRD   PG HNZ 00:55:33.025   7.549   7.928 

(
Channel(triggers(for(the(M6.3(event:(
(

    sta  net chn         time   tpmag   pdmag 
1   ARD   PG HNZ 00:55:32.005   7.844   6.445 
2   CSD   PG HNZ 00:55:32.010   7.842   6.725 
3   WRD   PG HNZ 00:55:34.025   7.549   6.485 
4   PBD   PG HNZ 00:55:37.020  10.476   5.611 

(
(
(
(
(
(
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 First, we clarify a point about the Virtual Seismologist (VS); it was designed to 

work for a maximum event magnitude of 6.5, and a maximum distance of 200 km (Cua 

2005). We should start considering the finiteness of the fault if the event has a magnitude 

larger than 6.5. However, for the purpose of demonstrating performance of our methods, 

we use VS envelopes created using M6.5 (instead of M8.2, which is what DM predicted), 

and distance of 151.8315 km, which is the distance between the assumed epicenter and 

the location of the seismic station given above. Because the duration of the calibration 

pulse is so short, the choice of the site condition, which determines whether soil or rock 

coefficients are used to create the VS envelopes, does not make much difference; 

therefore, we choose ‘soil’ for simplicity. We show that even M6.5 prediction will result 

in an over-prediction classification, ultimately resulting in an indication of a false alarm; 

that is, even if DM predicted M6.5, it would have been classified as an over-prediction by 

our methods.  

 The trigger time of the calibration pulse at the station ARD in network PG is 

given as 00:55:31.005 UTC. We start by computing the arrival time of predicted waves at 

that particular seismic station by assuming a mean P-wave velocity of 6.5 km/sec and 

taking a distance between the DM epicenter and the stations of 151.8315 km; the result is 

approximately 24 seconds. Adding this result to the UTC origin time published by DM, 

which is 00:55:06, we get approximately 00:55:30. That means, according to DM, our 

predicted P-wave should have arrived at the particular station at 00:55:30 UTC, which is 

one second before the reported time of the trigger due to the calibration pulse. However, 

the choice of mean P-wave velocity of 6.5 km is somehow arbitrary, and in the next 

sections we make arrival times of observed and predicted envelopes match. Figures 5.2 to 
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5.4 show the performance of RCA, and Figure 5.5 shows the result of the supplementary 

technique introduced in Chapter 4. Recall that the supplementary technique aims to 

‘support’ the indication by RCA.  

 Similar to Chapter 4, we provide two general descriptions for figures of this 

chapter.  

General figure description - I: 

Left panel: first row shows the seismogram recorded by the seismic station whose 

identification information is given above (seismogram in blue and its envelope in red); 

note that although only the vertical channel is shown in the plot for demonstration 

purposes, both vertical and horizontal channels were used in RCA computations; the 

second row shows both the predicted and observed envelopes; the third row shows the 

test function after high-pass filtering by the values given in Chapter 2. Right panel shows 

the probability values for each class with a different color and marker. 

General figure description - II: 

Left panel: first row shows the test function after high-pass filtering by the values given 

in Chapter 2; second row shows the test function values after applying a running mean 

and a high-pass filter by the values given in Chapter 2. Right panel: first row shows the 

probability values computed using (3.99) from acceleration input using Method II for 

each class with different color and marker; second row shows the results of the 

supplementary technique. 
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Figure 5.2: Reality Check Algorithm’s performance plot for the over-prediction 

example 1 (with predicted wave arriving earlier than observed calibration pulse) 

computed using (3.99) from acceleration input using Method II. For description of the 

figure, see “General figure description - I” given above. 
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Figure 5.3: Reality Check Algorithm’s performance plot for the over-prediction 

example 1 (with predicted wave arriving earlier than observed calibration pulse) 

computed using (3.100) from velocity input using Method II. For description of the 

figure, see “General figure description - I” given above. 
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Figure 5.4: Reality Check Algorithm’s performance plot for the over-prediction 

example 1 (with predicted wave arriving earlier than observed calibration pulse) 

computed using (3.101) from displacement input using Method II. For description of the 

figure, see “General figure description - I” given above. 
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Figure 5.5: Performance of the supplementary method to RCA for the over-prediction 

example 1 (with predicted wave arriving earlier than observed calibration pulse). For 

description of the figure, see “General figure description - II” given above. 
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5.1.1 Discussion of over-prediction example 1 

 All of the Figures 5.2 to 5.4 indicate an over-prediction classification without 

exception. Over-prediction class indication is due to the fact that the observed envelope 

value, by the time the predicted envelope arrives, consists of only noise (see Figure 5.6). 

Recalling that same type of indication could be due to small arrival time perturbations, it 

is natural to ask if this is in fact an over-prediction case. The answer to that question is 

provided by the supplementary technique KHM, which is introduced in the previous 

chapter. Figure 5.5 shows a giant spike at the time of over-prediction, and this is a 

support that RCA over-prediction is accurate. Although quantification of the 

supplementary technique is not done yet, comparing the values of the new technique from 

the previous chapter (Figures 4.26, 4.27, and 4.28) with the values seen in Figure 5.5 

indicates that when RCA not-okay-prediction flag is up, KHM values will be 

significantly different from those in case of RCA okay-prediction cases.  

 However, considering that envelope verification methods could evolve into a 

stand-alone earthquake early warning algorithm in which one probably would match the 

arrival times of observed and predicted envelopes, we should look at the performance of 

RCA and the KHM technique in the case of the arrival time of the calibration pulse of 

this example matching that of the predicted P-wave. The following section investigates 

that case. 
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Figure 5.6: Reality Check Algorithm’s performance plot for the over-prediction 

example 1 (with predicted wave arriving earlier than observed calibration pulse) 

computed using (3.99) from acceleration input using Method II (zoomed-in at arrival 

times of observed and predicted envelopes). For description of the figure, see “General 

figure description - I” given above. 
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5.2 Over-prediction example 1 with matching envelope arrival times 

 It is only natural for the RCA to assume the arrival times of predicted envelopes 

to be the same as the arrival times of observed ones. In fact, if our method is installed, it 

will look for solutions of origin time and epicenter location that result in predicted wave 

arrival times that match those of observed ones. So, in order to see what would happen if 

the arrival times of predicted envelopes match those of the observed calibration pulse, 

Figures 5.7 to 5.10 are presented and discussed next. 

5.2.1 Discussion of over-prediction example 1 with matching envelope arrival 

times 

 The example at hand is clearly an over-prediction case. However, Figures 5.7 to 

5.10, with the exception of velocity results, i.e., Figure 5.8, indicate under-prediction! 

The calibration pulse confused DM to send a M8.2 alarm, so an under-prediction is not 

acceptable. We can pinpoint the problem, however, by using the KHM.  

 The cause for the under-prediction classification by most of the inputs is the 

abnormal rise time of the calibration pulse, which had an amplitude that is equivalent to 

that of a significantly large earthquake, and the time it took the station to experience that 

amplitude right after an ambient noise level is too short compared to a real event. That 

means, by the time RCA compares the calibration pulse amplitude to the corresponding 

amplitude of the predicted waves, there is a significant difference with the predicted 

values being much smaller (Figure 5.11). There is an exception though: Figure 5.12 

shows that computing displacement from acceleration by integrating twice causes the 

calibration pulse to appear 1 second later than acceleration in real-time; that is, 

displacement results still have the predicted waves arrive earlier than the observed 
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Figure 5.7: Reality Check Algorithm’s performance plot for the over-prediction 

example 1 (with predicted wave arriving at the same time as observed calibration pulse) 

computed using (3.99) from acceleration input using Method II. For description of the 

figure, see “General figure description - I” given above. 
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Figure 5.8: Reality Check Algorithm’s performance plot for the over-prediction 

example 1 (with predicted wave arriving at the same time as observed calibration pulse) 

computed using (3.100) from velocity input using Method II. For description of the 

figure, see “General figure description - I” given above. 
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Figure 5.9: Reality Check Algorithm’s performance plot for the over-prediction 

example 1 (with predicted wave arriving at the same time as observed calibration pulse) 

computed using (3.101) from displacement input using Method II. For description of the 

figure, see “General figure description - I” given above. 
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Figure 5.10: Performance of the supplementary method to RCA for the over-prediction 

example 1 (with predicted wave arriving at the same time as observed calibration pulse). 

For description of the figure, see “General figure description - II” given above. 

 

 

 

 

 

 

 

	  



 133 

calibration pulse, just like the previous case. However, even in a situation like that, 

displacement results still indicate an under-prediction. This is because, by the time 

predicted P-wave arrives at the station, the corresponding observed envelopes’ value is 

comparable in amplitude to that of the predicted envelope.  

 Of course, a case where the observed values are significantly larger than predicted 

values might be considered as under-predictions, but not in this particular context. What 

do we do? The answer is that we look at the KHM results in Figure 5.10 to make sure we 

actually have an under-classification as RCA indicates. The abnormally large impulse-

like trend in the bottom right plot of Figure 5.10 tells us that there is something wrong. 

But we still do not know if it is an under-prediction or over-prediction. Because KHM 

with order 10 would make all components add up to each other since it is an even 

numbered order, we experience the same discrepancy we experienced with kurtosis in 

Chapter 2: as far as the even ordered KHM results are concerned, there is not a ‘sign’ 

difference between under- and over-predictions. However, an odd numbered moment 

would preserve the sign of the moment we aim to compute, and therefore could be used 

to distinguish over-predictions from under-predictions. This fact will become much 

clearer in the next chapter when we investigate the performance of KHM on an under-

prediction case, and compare over-prediction KHM results to that of under-prediction 

cases. 

 A point to note is that seismic data acquired from Northern California Earthquake 

Data Center for the calibration pulse example included a missing data portion indicated 

by red asterisk in Figures 5.13 and 5.14. Although our methods assume continuous data 

flow, having some missing data some time later than the cause of the messages for this 
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particular example, which is the calibration pulse, does not affect the results. However, 

missing data in the continuous data stream in real-time is a serious issue, and so far we 

have no solutions to this problem.  

5.3 Over-prediction example 2 

 On May 4th, 2011, Decision Module (DM) experienced a false alarm of M8.0 (an 

email about this false alarm was sent to several scientists working on the project). The 

alert was due to a signal from seismic station PLM in network CI. By using information 

from the emails exchanged about this particular false alarm among scientists, we 

demonstrate performances of both the RCA and the KHM below. We did not use the log 

files of DM that included this false alarm, but we used pick time information from the 

emails as the assumed arrival time of the predicted P-wave. Upon further investigating 

the continuous strong motion records from seismic station PLM in network CI, we 

noticed that the indicated pick time did not have a visible abnormality. However, that 

station experienced an abnormal increase in the noise amplitude several seconds prior to 

the pick time indicated in the emails. Just to be sure, we provide the performance of RCA 

and KHM for two cases: case one is where we take the arrival time of the predicted P-

waves as it is indicated in the emails, and case two is where we take the arrival time of 

the predicted P-waves as the arrival time of abnormally large non-earthquake noise.  

 As mentioned before, we did not use a documented origin time and location for 

this alarm. Considering we have a station, a pick time, and a magnitude, we decided to 

use predicted envelopes created using a magnitude of 6.5 and a distance of 200 km. 

Figures 5.15 to 5.22 show that even if the RCA and KHM use predicted waves created 

using the information above, the case is still classified as over-prediction. 



 135 

 

Figure 5.11: Reality Check Algorithm’s performance plot for the over-prediction 

example 1 (with predicted wave arriving at the same time as observed calibration pulse) 

computed using (3.99) from acceleration input using Method II (zoomed-in at arrival 

times of observed and predicted envelopes). For description of the figure, see “General 

figure description - I” given above. 
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Figure 5.12: Reality Check Algorithm’s performance plot for the over-prediction 

example 1 (with predicted wave arriving at the same time as observed calibration pulse) 

computed using (3.101) from displacement input using Method II (zoomed-in at arrival 

times of observed and predicted envelopes). For description of the figure, see “General 

figure description - I” given above. 
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Figure 5.13: Seismic data for the calibration pulse that is used as an over-prediction 

example 1 from the Northern California Earthquake Data Center. A couple of seconds 

after the arrival of the calibration pulse, the continuous data stream has some missing 

data, which are indicated by the red asterisk.  
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Figure 5.14: Seismic data for the calibration pulse that is used as an over-prediction 

example 1 from the Northern California Earthquake Data Center, zoomed-in around 

missing data.  
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Figure 5.15: Reality Check Algorithm’s performance plot for the over-prediction 

example 2 computed using (3.99) from acceleration input using Method II. For 

description of the figure, see “General figure description - I” given above. 
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Figure 5.16: Reality Check Algorithm’s performance plot for the over-prediction 

example 2 computed using (3.100) from velocity input using Method II. For description 

of the figure, see “General figure description - I” given above. 
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Figure 5.17: Reality Check Algorithm’s performance plot for the over-prediction 

example 2 computed using (3.101) from displacement input using Method II. For 

description of the figure, see “General figure description - I” given above. 
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Figure 5.18: Performance of the supplementary method to RCA for the over-prediction 

example 2. For description of the figure, see “General figure description - II” given 

above. 
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Figure 5.19: Reality Check Algorithm’s performance plot for the over-prediction 

example 2 computed using (3.99) from acceleration input using Method II with matching 

arrival times of observed abnormal noise increase and predicted P-wave. For description 

of the figure, see “General figure description - I” given above. 

 

 

 

 

 

 

 



 144 

 

Figure 5.20: Reality Check Algorithm’s performance plot for the over-prediction 

example 2 computed using (3.100) from velocity input using Method II with matching 

arrival times of observed abnormal noise increase and predicted P-wave. For description 

of the figure, see “General figure description - I” given above. 
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Figure 5.21: Reality Check Algorithm’s performance plot for the over-prediction 

example 2 computed using (3.101) from displacement input using Method II with 

matching arrival times of observed abnormal noise increase and predicted P-wave. For 

description of the figure, see “General figure description - I” given above. 
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Figure 5.22: Performance of the supplementary method to RCA for the over-prediction 

example 2 with matching arrival times of observed abnormal noise increase and predicted 

P-wave. For description of the figure, see “General figure description - II” given above. 
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5.3.1 Discussion of over-prediction example 2 

 Let us start with Figures 5.15 to 5.18; all results, i.e., acceleration, velocity and 

displacement indicate over-prediction. This is not surprising because the observed value 

consists of only noise, which is somehow a consistent amplitude except for the temporary 

increase in earlier portions of the record. Then, all of a sudden, a P-wave predicted 

envelope enters the computation, and this leads to over-prediction indication by RCA. 

Moreover, the KHM result, which is seen in Figure 5.18, supports RCA in that the 

predicted ground motion is not in accord with what is being observed. But that is as far as 

the KHM results go for the time being, that is, we need to evaluate KHM results in a 

consistent framework so that we can classify ‘something is wrong’ message by KHM into 

either ‘over-prediction’ or ‘under-prediction’ case. An abnormal noise value in the early 

portion of the observed ground motion causes the under-prediction probability for 

acceleration and velocity results to increase a little. However, this increase does not 

confuse RCA, and it accurately classifies the case as okay-prediction. Looking at area of 

the abnormality in Figure 5.18 provides another reason why KHM needs quantification; 

the abnormal increase in the observed ground motion noise level creates a sudden 

increase in KHM values, but this increase is not as much as the one caused by the 

predicted P-wave that arrives sometime later. Therefore, quantification of KHM should 

help us determine what values indicate okay-prediction cases even though they are 

significantly different from the rest of the okay-prediction cases. 

 When we move on to Figures 5.19 to 5.22, we see that even if DM was tricked 

into believing there was an earthquake due to the abnormal increase in the observed 

ground motion noise level, RCA and KHM would correctly classify this case as over-
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prediction. Similar to the previous figures of over-prediction example 2, over-prediction 

classification can be observed in all of the results for Method II. 
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Chapter 6                   

Case Studies – Under Predictions  

 In this chapter, we demonstrate the performance of RCA and KHM on the M7.2 

event of Cucapah-El Mayor on April 4th, 2010 as an under-prediction case example. 

Although the Decision Module (DM) was not producing alerts and log files at the time, 

we use the location and magnitude estimate provided by the research group at Caltech 

who has been testing DM’s off-line performance on significant earthquakes of the past. 

According to the log files, one of the algorithms in DM first predicted the magnitude as 

5.434 and a location with latitude 31.905 and longitude -115.196. The particular seismic 

station, on which we demonstrate the performance of our algorithms, is GLA in network 

CI. Method II is first applied and the KHM technique, introduced in Chapter 4, is used to 

mitigate problems associated with the examples. The results are presented in Figures 6.1 

to 6.5. 

 First, we would like to clarify a particular point: we use 10 minutes of continuous 

record before the catalogued origin time of this event as well as 10 minutes of continuous 

record starting from the catalogued origin time. In this particular case, there happens to 

be a smaller event in the pre-event continuous data, and because the corresponding 

predicted envelope consists only of noise at the time of the smaller event, RCA 

accurately predicts it as an under-prediction, or in other words, a missed event. So, the 

first under-prediction indication in the following figures, with the exception of those for 

displacement, around time 254th second is due to that small event which was not 

considered to be there for these particular simulations. 
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 Similar to Chapter 4, we provide two general descriptions for figures of this 

chapter.  

General figure description - I: 

Left panel: first row shows the seismogram recorded by the seismic station whose 

identification information is given above (seismogram in blue and its envelope in red); 

note that although only the vertical channel is shown in the plot for demonstration 

purposes, both vertical and horizontal channels were used in RCA computations; the 

second row shows both the predicted and observed envelopes; the third row shows the 

test function after high-pass filtering by the values given in Chapter 2. Right panel shows 

the probability values for each class with a different color and marker. 

General figure description - II: 

Left panel: first row shows the test function after high-pass filtering by the values given 

in Chapter 2; second row shows the test function values after applying a running mean 

and a high-pass filter by the values given in Chapter 2. Right panel: first row shows the 

probability values computed using (3.99) from acceleration input using Method II for 

each class with different color and marker; second row shows the results of the 

supplementary technique. 
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Figure 6.1: Reality Check Algorithm’s performance plot for the under-prediction 

example computed using (3.99) from acceleration input using Method II. For description 

of the figure, see “General figure description - I” given above. 
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Figure 6.2: Reality Check Algorithm’s performance plot for the under-prediction 

example computed using (3.100) from velocity input using Method II. For description of 

the figure, see “General figure description - I” given above. 
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Figure 6.3: Reality Check Algorithm’s performance plot for the under-prediction 

example computed using (3.101) from displacement input using Method II. For 

description of the figure, see “General figure description - I” given above. 
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Figure 6.4: Performance of the supplementary method to RCA for the under-

prediction example. For description of the figure, see “General figure description - II” 

given above. 
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Figure 6.5: Reality Check Algorithm’s performance plot for the under-prediction 

example computed using (3.99) from acceleration input using Method II (zoomed-in at 

arrival time of the small preceding event in the seismogram, and Cucapah – El Mayor 

earthquake in ground motion envelopes). For description of the figure, see “General 

figure description - I” given above. 

 

 

 

 

 

 

RCA classifies this 
case as ‘okay’, but it 

is not! For better 
results, see KHM 

values in Figure 6.4. 
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6.1 Discussion of under-prediction example 

 Let us start with the small event preceding M7.2 earthquake of Cucapah-El Mayor 

in 2010. According to the catalogue, this event, whose magnitude is 3.35, has the origin 

time of 2010, April 4 at 22:34:50.160 UTC, which is approximately 6 (six) minutes 

before the M7.2 event. It is located at latitude 32.2297 and longitude -115.2952. Figure 

6.5 shows a zoomed-in version of Figure 6.1 with the data associated with that small 

event highlighted. Note that seismograms, which are shown in the panel in the upper left, 

have 10 seconds of more data, i.e., envelopes and RCA computations have 10 seconds 

less data to get rid of transitional effects of filtering. That is why the arrival time of the 

small event is at the 264th second in the seismogram (Figure 6.5) while the under-

prediction indication on the right is at the 254th second. Except for displacement, all of 

the results managed to accurately classify it as an under-prediction, i.e., missed alarm.   

 When RCA makes computations about the time of M7.2 event, there is no 

indication of under-prediction. This is due to the fact that P-wave of M5.434, which was 

predicted by one of the algorithms in DM, is comparable in amplitude to that of a M7.2 

event. In this case, one would expect RCA to indicate under-prediction when the S-wave 

of the M7.2 comes into the calculations. That does not happen! Since, by the time the S-

wave of M7.2 earthquake arrives, the average misfit between predicted and observed 

values is so different from that of when there is only noise envelopes, RCA is unable to 

detect the misfit to be an under-prediction case, it still thinks predictions are okay. They 

are obviously not, because the energy of an M5.434 earthquake (predicted envelopes) is 

significantly less than that of an M7.2 event. However, the KHM method from Chapter 4 
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indicated that there is something wrong about the prediction (Figure 6.4) by looking at 

the ‘overall’ fit between observed and predicted values. 

 One cannot help but notice the amplitude difference between the KHM values for 

the small and the big event. Although the small event has a significantly smaller 

magnitude than the big one, the KHM value associated with it is much bigger than that 

associated with the Cucapah - El Mayor earthquake. This difference is because the small 

event is completely missed, i.e., the assumed corresponding predicted envelope consists 

only of noise whereas the big event is not totally missed, it is only under-predicted. This 

shows another reason why we need rigorous interpretations of KHM quantities (i.e. what 

is the degree of under- or over- prediction associated with KHM values?).  
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Chapter 7             

Concluding Remarks and Future Work  

 This work primarily examines the reliability the predictions made by an 

earthquake early warning system. Although a fully functioning earthquake early warning 

system is highly desirable in seismic regions, the presence of false and missed alarms 

may negatively affect the public’s perception of such a system. The proposed Reality 

Check Algorithm aims to minimize the mistakes an earthquake early warning system 

might make by continuously monitoring what the system predicts and what the spatially 

distributed ground motion actually is. The focal point of this work has been using the 

ground motion envelopes created by the Virtual Seismologist (VS) (Cua 2005). Although 

Cua provides distribution of envelope parameters, we use the ‘mean’ values. Also, note 

that implementing the VS GMPE’s, which Cua created, in real-time was not an easy task. 

So, we accomplish that task via the Reality Check Algorithm, which is described in this 

thesis. 

 The possible prediction scenarios that may be made by an earthquake early 

warning system are categorized into three discrete classes: okay-, over-, and, under-

prediction classes. Okay-prediction is the ideal case where the alert sent by the system is 

acceptably accurate about the earthquake being experienced. Over-prediction occurs 

when the alert is an overestimation caused by higher amplitude levels at seismic stations; 

for example, a relatively short burst of unusually high level of noise being mistaken for a 

large magnitude earthquake. Under-prediction occurs when the system does not infer how 

big the earthquake actually is. 
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 Earthquake early warning system’s predictions are used to create VS predicted 

envelopes and the result is assigned to one of the previous three classes. The first 

classification method examined used a straightforward linear discriminant analysis (see 

Appendix C), but it does not produce probabilities on each class individually, except for 

assigning 100% probability for one class and zero for others. Moreover, we cannot easily 

aggregate its results with those of other potential probabilistic algorithms. Therefore, a 

Bayesian probabilistic classification was investigated next (see Chapter 3) where a 

probability (degree of plausibility) is computed for each class. The Bayesian approach 

also allows one to sequentially update the uncertainties associated with the system 

predictions. The probabilities that are calculated for a system can be systematically and 

rigorously combined in real-time. Although the results presented in this work are based 

on a single seismic station’s computations, the Bayesian methodology’s sequential 

updating capability allows uncertainty calculations from multiple stations to be readily 

combined; giving ‘feedback’ to the earthquake early warning system to inform it about its 

prediction.  

 After completing the classification analyses, we moved on to test the results on 

several examples. Although RCA performed impressively in terms of okay-predictions, it 

produced some discrepancies for over- and under-prediction cases; as far as RCA was 

concerned, an early arriving predicted P-wave of an otherwise accurately estimated 

earthquake could show the same probability values as a false alarm. Moreover, late 

arriving predicted envelopes might be considered the same as a missed earthquake. To 

overcome these problems an overall misfit measure was introduced that we call the 

Karakus-Heaton Moment for Signal Data (KHM), which checks the overall fit between 
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observed and predicted earthquake envelopes while being insensitive to the timing of 

them. Therefore, while RCA makes sure the timing of the envelopes are in agreement, 

which translates to origin time and location predictions, KHM assesses the degree of 

magnitude match between the predictions and observations. The KHM method shows 

good promise. In future work, the next step would be to analyze the optimal selection of 

the values of the KHM parameter.  

 We strongly believe that the current system in California could benefit greatly 

from an envelope-based early warning algorithm such as the one presented in this thesis. 

In future work, we plan to use the VS location and magnitude estimations along with a 

Bayesian grid search to propose a better stand-alone algorithm for earthquake early 

warning systems. We described RCA as a process that uses the prediction made by the 

Decision Module to create predicted waveform envelopes. Then, these predicted 

envelopes are compared with the observed ones and the classification of the prediction, 

i.e., okay-, over, or under-prediction, is obtained. In this way RCA works as a 

supplementary unit for an early warning system; it does not make assessments 

independently from other algorithms that are already in the system. In fact, RCA depends 

on other algorithms that are making predictions. In future work, however, RCA could 

evolve into a “stand-alone” earthquake early warning algorithm that is able make 

predictions of source parameters such as location, origin time, and magnitude of 

earthquakes independently. The Decision Module would continue to aggregate all the 

independently made predictions (by several algorithms) into one probability (degree of 

plausibility). The extended RCA would involve a Ground Motion Envelope Predictor 

Algorithm (GMEP) that uses a grid search method. Due to the nature of the problem, the 
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grid would be in a hyper-dimensional space with axes latitude, longitude, magnitude, and 

origin time. The spatial section of the grid would be stretched over the entire surface of 

California as increments of latitude and longitude coordinates. Time limitations and 

available computational power would impose constraints regarding the grid fineness. On 

the other hand, we could make use of the fact that seismic stations do not get triggered at 

the same time due to vibrations as a guide to give varying weights to grid solutions that 

favor the first triggered stations. Moreover, a statistical study of past earthquake locations 

could be used as “prior” knowledge in GMEP. Note that the original RCA uses a 

Bayesian classification scheme in which any type of prior knowledge can be aggregated 

easily. Note also that any GMEP calculation made in the past can be used as a prior for 

the current ones; this sequential updating capability is an important aspect of Bayesian 

inference.      

 Before the work presented in this thesis, there had not been any algorithm 

designed to check the accuracy of the California early warning system predictions in real-

time. This fact may be true for other earthquake early warning systems in the world. In 

addition to that, we proposed a new paradigm in which our earthquake early warning 

algorithm depends on finding envelope fits. This is a substantial contribution to 

earthquake early warning systems compared with the old paradigm in which the 

algorithms depend on pick times and amplitudes. 
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Appendix A         

Virtual Seismologist Envelope Equations 

 The following is a portion from Georgia B Cua’s PhD Thesis.(Cua 2005) 

The Virtual Seismologist models the observed ground motion envelope as a combination 

of P-wave, S-wave, and ambient noise envelopes. These envelopes are combined using 

the following formula:  

 !!Eobserved t( ) !=! EP2 t( )+ES2 t( )+Eambient2 + ε   (A.1) 

where 

 

!!

Eobserved t( ) = envelope!of!observed!ground!motion
EP t( ) = envelope!of!P3wave
ES t( ) = envelope!of!S3wave!and!later3arriving!phases
Eambient = ambient!noise!at!the!site

ε = difference!between!predicted!and!observed!envelopes

  

	  
Ambient noise at a site is modeled as a constant. The P- and S-wave envelopes are 

described by five parameters for each: a rise time (!!triseP ,triseS ), an amplitude (!!AP ,AS ), a 

duration (!!ΔtP ,ΔtS ), and two decay (!!γ P ,γ S ), (!!τ P ,τ S ) parameters. Therefore, an observed 

ground motion can be described by eleven envelope parameters.   
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!!

Ei , j t( ) =

0,t <Ti
Ai , j
trisei , j

t −Ti( ) ,Ti ≤ t <Ti +trisei , j
Ai , j ,Ti +trisei , j ≤ t <Ti +trisei , j +Δti , j

Ai , j
1

t −Ti −trisei , j − Δti , j +τ i , j( )γ i , j
,t ≥ t <Ti +trisei , j +Δti , j

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

  (A.2) 

	  
where 

 

!!

i =P#,S#wave
Ti =P#,S#wave!arrival!times
j = horizontal!and!vertical!ground!motions

  

	  
For further details, see (Cua 2005). 
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Appendix B                  

Multiple Window Approach 

 Kurtosis is usually calculated by starting from the most current value of the 

distribution (test function in our case). We then go back a predetermined window length 

of samples in time and calculate the excess kurtosis (which is kurtosis minus 3) and slide 

the window as more data arrive in real-time. We used a novel idea: instead of one 

window length, we use multiple different window lengths (ranging from 10 seconds to 

100 seconds with 10-second increments, i.e., 10 different sliding windows) for kurtosis 

computation and linearly add the results up.  

 Notice in Figure B.1 that if you have only one window, you cannot tell if the 

outlier is at the current end or in the past because you will see a spike in kurtosis 

calculation for each location. A multiple windows approach guarantees that the outlier 

will be detected at the same time in real-time by all of the windows, and kurtosis and 

skewness values will add up at that location whereas any indication of the outlier in the 

past relative to different window lengths will be at different locations and therefore 

suppressed by summation of the results (Figure B.2). 
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Figure B.1: Kurtosis computation example with a single window of length 20 seconds. 

In order to compute the kurtosis value highlighted with a circle on the bottom plot, we go 

to the corresponding value of the test function shown on the top of the figure. Starting 

from that value, we go back 20 seconds in time and use equation (2.3) on the values 

within this 20 seconds long window. Notice there are two spikes on the bottom of the 

figure indicating another outlier for kurtosis computations.  
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Figure B.2: Multiple windows approach for a kurtosis computation with two different 

window lengths and their sum. A sample test function (top), kurtosis for the test function 

using a 20 seconds long window (second row), kurtosis for the same test function using a 

30 seconds long window (third row), and linear sum of second and third row (bottom). 

The same procedure, namely summation of the running windows of differing lengths 

starting from the most current time and going back, is used for skewness calculation in 

real-time as well. 
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Appendix C             

Non-probabilistic Classifications 

C.1 Classifications: Least Squares 

 The following theory is based on the concepts described in Chapter 4, Linear 

Models for Classification in Bishop, 2006. 

 We start with least squares, which has a fairly straightforward implementation 

phase. Training runs are not computationally highly demanding and parameters can be 

computed using a closed form solution as shown below. 

 As mentioned above, we have three classes (!!K =3 ), and we describe each class 

by its own linear model 

 !!!yk x( ) =wk
Tx+wk0   (C.1) 

where !! k =1,,K .  

 Let us write these linear models in a more compact form 

 !! y x( ) = WT x   (C.2) 
	  

where ! W is the matrix of dimension !! D+1( )×K . Column vector !!! wk = wk0 ,wk
T⎡⎣ ⎤⎦

T
 

comprises the columns of ! W , and the augmented input vector is defined as !!! x = 1,xT⎡⎣ ⎤⎦
T

. 

Note that we augment the input vector with a dummy input !!x0 =1  for later convenience. 

Classification is made by choosing the maximum !yk  for a given new input !x , and 

assigning it to !Ck , that is, 
!!! 
x∈C j ⇔ j = argmax

k
wk
x . 
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 In the least squares approach, we determine the unknown matrix of parameters, 

! W , by minimizing a sum-of-squares error function. Our training set consists of the input-

output pairs !!! xn ,tn{ }where !! n=1,2,,N . We can write our input and output values in a 

more compact form as ! X  and !T , where the row vectors !! xn
T  and !!tn

T  are the !nth  rows for 

! X  and !T , respectively. Note that for the purpose of having less clutter in the 

mathematical expressions, we can redefine our parameters as ones without a “tilde”, i.e., 

   symbol without loss of generality. That is to say, from now on, unless specified 

otherwise, ! W→W , ! X→X , and ! x→ x . Then, we can write the sum-of-squares error 

function as 

 
!!!
ED W( ) = 12Tr XW−T( )T XW−T( ){ }   (C.3) 

	  
We set the derivative of !!ED W( ) , with respect to !W , to zero, and then we obtain the 

following closed form solution for !W  

 !!!W = XTX( )−1XTT   (C.4) 

  
Then, our compact discriminant function becomes 

 !!y x( ) =WTx   (C.5) 
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 An input feature vector with acceleration values is in the form  

 

!!!

x =

1
d
dt

Kurtosis!of!Horizontal!Acceleration( )
d
dt

Kurtosis!of!Vertical!Acceleration( )
d
dt

Skewness!of!Horizontal!Acceleration( )
d
dt

Skewness!of!Vertical!Acceleration( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

  (C.6) 

	  
An input feature vector in velocity or displacement would be similar to (C.6) with 

acceleration replaced by velocity or displacement respectively. 

 We set up our least squares solution such that !!k =1  represents okay-prediction, 

!!k =2  represents over-prediction, and !!k =3  represents under-prediction classes, similar to 

probabilistic classifications. At the end of our computations, we obtained the following 

parameter values, i.e., (C.7), (C.8) and (C.9), and the confusion matrices, i.e., Table C.1 

to Table C.3; Table C.1 is constructed using (C.7), Table C.2 is constructed using (C.8), 

and Table C.3 is constructed using (C.9). 

C.2 Discussion of Results in Tables C.1 to C.3 

 In general, actual and predicted classes for okay-prediction class agree well (more 

than 94 percent) in all of the different ground motion parameters influenced by different 

frequency contents: acceleration, velocity, and displacement. The least squares approach 

shows relatively better performance when we use the first half of the data set for training, 

and the second half for validation. However, when we swap these data sets, that is, when 

we use the second half as training and the first half as validation sets, the performance 

decreases significantly. This fact suggests that we might want to use a more rigorous 
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validation scheme such as the leave-one-out method. However, we do not resort to that 

technique because when we apply a full Bayesian treatment in the upcoming sections, our 

approach will use only the training data and so it will not need a separate data set for 

validation. This is particularly useful because reserving part of the data set for validation 

causes a waste of valuable training data. In addition to that, cross-validation inherently 

means multiple training runs as opposed to a single training run that is required in a full 

Bayesian treatment. Moreover, the error function (C.3) is not robust to outliers and so a 

better alternative is desirable in order to achieve better performance. 
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!!!

Wacceleration =

0.897 0.057 0.045
)0.001 0.001 0.001
)0.002 0.001 0.001
0.001 )0.006 0.005
0.002 )0.005 0.003

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (C.7) 

	  
Table C.1: Confusion matrices for least squares classification using acceleration data. 

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 97.7 0 2.3 

Over 38 62 0 

Under 30.8 0 69.2 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 95.6 0 4.4 

Over 18.4 81.6 0 

Under 15.2 0 84.8 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 98.2 0 1.8 

Over 63.2 36.8 0 

Under 47.2 0 52.8 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 96.9 0 3.1 

Over 40.8 59.2 0 

Under 31.2 0 68.8 
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!!!

Wvelocity =

0.875 0.079 0.046
*0.003 0.002 0.001
*0.001 0.0003 0.001
0.007 *0.013 0.005
*0.002 *0.001 0.003

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (C.8) 

	  
Table C.2: Confusion matrices for least squares classification using velocity data.	  

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 97.9 0.1 2 

Over 42 58 0 

Under 35.6 0 64.4 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 94.8 0.2 5 

Over 24.8 75.2 0 

Under 12.8 0 87.2 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 98.4 0 1.6 

Over 77.6 22.4 0 

Under 57.6 0 42.4 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 96.6 0.1 3.3 

Over 51.2 48.8 0 

Under 35.2 0 64.8 
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!!!

Wdisplacement =

0.835 0.092 0.073
*0.005 0.004 0.001
*0.0004 0.0003 0.0001
0.014 *0.023 0.008
*0.004 *0.001 0.005

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (C.9) 

	  
Table C.3: Confusion matrices for least squares classification using displacement data.	  

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 98.4 0.6 1 

Over 54.4 45.6 0 

Under 45.6 0 54.4 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 97 1 2 

Over 48 52 0 

Under 23.2 0 76.8 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 98.8 0.6 0.6 

Over 72.8 27.2 0 

Under 68 0 32 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 97.9 0.8 1.3 

Over 60.4 39.6 0 

Under 45.6 0 54.4 
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C.3 Classifications – Linear Discriminant Analysis (LDA) 

 The following theory is based on the concepts described in Chapter 4 of Georgia 

Cua’s PhD thesis (2004): Creating the Virtual Seismologist: Developments in Ground 

Motion Characterization and Seismic Early Warning. 

 In linear discriminant analysis, we define a number of groups or classes, and then 

find a linear combination of some input vectors (similar to the least squares input) that 

will maximize the separation between these groups. Unlike the least squares 

classification, the parameter vector is not augmented, so we do not need to augment the 

input feature vector either. Therefore, we determine a 4-dimensional parameter vector, 

!w . This goal is achieved by maximizing the among-class to within-class variance ratio. 

That means that the parameter vector is able to discriminate the data belonging to 

different classes as much as possible while reducing the deviation within a specific class.  

 Similar to the least squares classification, we have !!K =3  classes with !Nk  

observations in each class, i.e., total number of observations, 
!!
N = Nk

k=1

3

∑ . Then, we define 

the class means as 

 
!!!
mk =

1
Nk

xn
n∈k

N

∑   (C.10) 

which is simply the mean of all of the observations in a class. Using (C.10), we can 

define the within-class covariance matrix as 

 
!!!
S k( ) = 1

Nk −1
xn −mk( ) xn −mk( )T

n∈k

N

∑   (C.11) 

We need a sum of the within-class covariance matrices for all classes, which is defined as  



 175 

 
!!!
Sp =

1
N −K

Nk −1( )S k( )
k=1

K

∑   (C.12) 

 Next, we define the among-class covariance matrix as 

 
!!!
Sa =

1
K −1 Nk mk −m( ) mk −m( )T

k=1

K

∑   (C.13) 

where we implicitly define a general mean, !m , for the input values of all classes as 

 
!!!
m = 1

N
xn

n=1

N

∑ = 1
N

Nkmk
k=1

K

∑   (C.14) 

 As we mentioned above, we are looking for the vector !w  such that the linear 

combination !!wTx  will assign !x  to one of the classes by reducing the variability of the 

data within a class and increasing separation of the data from one class to another. We 

can find such !w  by maximizing the among-class to within-class variance ratio:  

 
!!
λ =

wTSaw
wTSpw

  (C.15) 

Now we take the derivative of (C.15) with respect to !w  and equate it to zero, i.e., 

!!
∂λ
∂w

=0 . Then, we obtain 

 !!!λw
TSp −w

TSa =0   (C.16) 

Noting the symmetry of !!Sa  and !!Sp , let us take the transpose of (C.16)  

 
!!!

λSpw−Saw =0
⇒λSpw = Saw

  (C.17) 

We assume !!Sp  is invertible, then we obtain 

 !!!λw = Sp
−1Saw   (C.18) 
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Note that (C.18) is an eigenvalue problem. The parameter vector !w  we are seeking is an 

eigenvector of !!!Sp
−1Sa ; the separating measure is therefore the largest eigenvalue of 

!!!Sp
−1Sa . 

 Using the same class and data definitions as the least squares classification 

section, we followed the procedure described in this section. The following eigenvalues 

and eigenvectors are computed using the entire data set for training. However, additional 

confusion matrices are provided for cases where the data set is divided into two: a 

training data set and a validation data set, as done in the least squares classification 

section. The eigenvalues of !!!Sp
−1Sa  for acceleration input are given below 

 

!

λ1 =1726.463
λ2 =853.553
λ3 = +4.475e+13
λ4 =7.326e+13

  (C.19) 

Since !λ1  is the largest value, the eigenvector associated with it, !!wacceleration , gives the 

desired linear combination values for classification.  

 

!!!

wacceleration =

0.027
0.015
(0.822
(0.568

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  (C.20) 

Figure C.1 shows the histograms obtained using !!wacceleration  as the discriminant function 

combination values. The decision boundaries are located at the middle of the mean of two 

adjacent class histograms. Therefore, the decision boundary between okay- and over-

prediction classes is located at 27.6195 and the decision boundary between okay- and 

under-prediction classes is located at -20.5939. 
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Figure C.1: Histogram for all three classes obtained using LDA with acceleration 

values only. 
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Table C.4: Confusion matrix for LDA using acceleration data.	  

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 91.6 2.7 5.7 

Over 22 78 0 

Under 14.4 0 85.6 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 90.8 2 7.2 

Over 17.6 82.4 0 

Under 12 0 88 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 82.4 4.4 13.2 

Over 28.8 71.2 0 

Under 16.8 0 83.2 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Acceleration Okay Over Under 

Okay 86.6 3.2 10.2 

Over 23.2 76.8 0 

Under 14.4 0 85.6 
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The eigenvalues of !!!Sp
−1Sa  for velocity input are given below 

 

!

λ1 =1591.126
λ2 =744.510
λ3 = ,2.089e,13
λ4 = 4.057e,13

  (C.21) 

Similar to acceleration results, the largest value is !λ1 . The eigenvector associated with it, 

!!wvelocity , gives the best linear combination. 

 

!!!

wvelocity =

0.0413
'0.024
'0.973
'0.226

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  (C.22) 

 Figure C.2 shows the histograms obtained using !!wvelocity  as the discriminant 

function combination values. The decision boundaries are located at the middle of the 

mean of two adjacent class histograms. Therefore, the decision boundary between okay- 

and over-prediction classes is located at 15.9058 and the decision boundary between 

okay- and under-prediction classes is located at -20.4801. 

 The eigenvalues of !!!Sp
−1Sa  for displacement input are given below 

 

!

λ1 =1380.411
λ2 = 485.286
λ3 = +1.115e+13
λ4 =7.361e+13

  (C.23) 
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Figure C.2: Histogram for all three classes obtained using LDA with velocity values 

only. 
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Table C.5: Confusion matrix for LDA using velocity data.	  

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 90.6 3.1 6.3 

Over 22.4 77.6 0 

Under 16 0 84 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 89.6 1.6 8.8 

Over 18.4 81.6 0 

Under 12 0 88 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 75 14.2 10.8 

Over 20 80 0 

Under 24.8 0 75.2 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Velocity Okay Over Under 

Okay 82.3 7.9 9.8 

Over 19.2 80.8 0 

Under 18.4 0 81.6 
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The largest value is !λ1 , and the eigenvector associated with it, !!wdisplacement , gives the best 

linear combination. 

 

!!!

wdisplacement =

"0.046
"0.003
0.967
0.252

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  (C.24) 

 Figure C.3 shows the histograms obtained using !!wdisplacement  as the discriminant 

function combination values. The decision boundaries are located at the middle of the 

mean of two adjacent class histograms. Therefore, the decision boundary between okay- 

and over-prediction classes is located at -8.4600 and the decision boundary between 

okay- and under-prediction classes is located at -14.4728. 
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Figure C.3: Histogram for all three classes obtained using LDA with displacement 

values only. 
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Table C.6: Confusion matrix for LDA using displacement data.	  

ALL DATA PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 88.8 8 3.2 

Over 25.2 74.8 0 

Under 20.4 0 79.6 

FIRST HALF PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 89 4 7 

Over 25.6 74.4 0 

Under 16 0 84 

SECOND HALF PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 55.8 34.8 9.4 

Over 24.8 75.2 0 

Under 34.4 0 65.6 

AVERAGE 

OF CROSS 

VALIDATIONS 

PREDICTED CLASSES 

ACTUAL CLASSES Displacement Okay Over Under 

Okay 72.4 19.4 8.2 

Over 25.2 74.8 0 

Under 25.2 0 74.8 
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C.4 Discussion of Results in Tables C.4 to C.6 

 Starting with a four-dimensional input feature vector !x  and projecting it onto a 

scalar value, i.e., one-dimension, as this section, results in loss of information. In fact, 

this reduction in dimensionality may cause significant overlap among classes (Bishop 

2006). In the linear discriminant analysis, we computed such a parameter vector !w , 

which led to a projection that better separates classes. This enhancement in the 

performance is seen in the confusion matrices provided for LDA. Compared to the 

performance of least squares classification, all channels of ground motion input showed 

consistent improvement.  

 When we look at the individual ground motion parameters, the best performance 

is provided by acceleration even though the difference from the performance provided by 

velocity is not significantly improved. The worst performance is observed when we used 

the second half of the displacement data for training and tested the results using the first 

half for validation. Although the algorithm for this particular case performs well as far as 

the actual over- and under-prediction classes are concerned, more than 30 percent of 

okay-prediction classes are classified as over-prediction.  
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