
Real-Time Bayesian Analysis of Ground Motion Envelopes

for

Earthquake Early Warning

Thesis by

Gokcan Karakus

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2016

(Defended January 21, 2016)

 ii

© 2016

Gokcan Karakus

All Rights Reserved

 iii

Acknowledgements

 I would like to thank my advisor, Prof. Thomas H. Heaton, for his extremely

helpful advice and limitless patience towards me everyday, without exception, during our

collaboration. I feel tremendous honor to be his student.

 I would like to thank Prof. James L. Beck for his very important help on the

statistical portion of my research. I could not have achieved it without you; thank you.

 Starting with Prof. Jean Paul Ampuero, I would like to thank my PhD examining

committee. It has been my honor to have him, Prof. Hiroo Kanamori and Prof. Domniki

Asimaki on my PhD examining committee.

 Starting with Dr. In Ho Cho, I would like to thank the students of Civil

Engineering option at Caltech for their company and help during my stay at Caltech.

 Starting with Dr. Arthur Lipstein, I would like to thank my friends at Caltech who

were associated with options other than Civil Engineering.

 Starting with Carolina Oseguera, I would like to thank the staff of the Civil

Engineering option at Caltech for creating a positive work environment for me.

 Starting with Dr. Yannik Daniel Behr, Dr. Men-Andrin Meier and Dr. Maren

Boese, I would like to thank my colleagues at institutions different from Caltech for their

help and support.

 Starting with the International Student Program (ISP), I would like to thank all of

the offices and staff at Caltech for doing their job so well so that I could focus on my

research instead of tedious paper work.

 iv

 Starting with Prof. Cem Yalcin, I would like to thank the civil engineering faculty

in my undergraduate institution, Bogazici University, who helped me prepare for a

journey of lifelong learning.

 I would like to especially thank Dr. Georgia B. Cua for her constant help, and for

starting an envelope based earthquake early warning method.

 And, finally, I would like to thank my family in Turkey for their emotional

support. You deserve the best of everything!	 	

 v

Abstract

 Current earthquake early warning systems usually make magnitude and location

predictions and send out a warning to the users based on those predictions. We describe

an algorithm that assesses the validity of the predictions in real-time. Our algorithm

monitors the envelopes of horizontal and vertical acceleration, velocity, and

displacement. We compare the observed envelopes with the ones predicted by Cua &

Heaton’s envelope ground motion prediction equations (Cua 2005). We define a “test

function” as the logarithm of the ratio between observed and predicted envelopes at every

second in real-time. Once the envelopes deviate beyond an acceptable threshold, we

declare a misfit. Kurtosis and skewness of a time evolving test function are used to

rapidly identify a misfit. Real-time kurtosis and skewness calculations are also inputs to

both probabilistic (Logistic Regression and Bayesian Logistic Regression) and

nonprobabilistic (Least Squares and Linear Discriminant Analysis) models that ultimately

decide if there is an unacceptable level of misfit. This algorithm is designed to work at a

wide range of amplitude scales. When tested with synthetic and actual seismic signals

from past events, it works for both small and large events.

 vi

Table of Contents

Acknowledgements .. iii	

Abstract .. v	

Chapter 1	 Introduction .. 1	

Chapter 2	 Data Processing ... 4	

2.1	 Data Processing .. 4	

2.2	 Prelude: Virtual Seismologist ... 4	

2.3	 Test Functions ... 6	

2.4	 Virtual Seismologist Assumption Regarding Misfit .. 8	

2.5	 Higher Order Statistics ... 11	

2.5.1	 Higher Order Statistics – Kurtosis ... 11	

2.5.2	 Higher Order Statistics – Skewness ... 12	

2.6	 An Example – Missed Event .. 13	

2.7	 Another Example – False Event ... 15	

2.8	 Summary of Test Function States ... 17	

Chapter 3 	 Probabilistic Classifications ... 21	

3.1	 Classifications – Probabilistic Generative Model .. 22	

3.2	 Discussion of Results for Tables 3.1 to 3.3 .. 34	

3.3	 Classification – Probabilistic Discriminative Model with Maximum Likelihood

Estimate (MLE) ... 34	

3.4	 Discussion of Results in Table 3.4 to 3.6 ... 41	

 vii

3.5	 Classification – Probabilistic Discriminative Model with Maximum A Posteriori

(MAP) Value ... 41	

3.6	 Discussion of Results in Table 3.7 to 3.9 ... 48	

3.7	 Discussion of Results in Table 3.10 to 3.12 ... 52	

3.8	 Discussion of Results in Table 3.13 to 3.15 ... 56	

3.9	 Classification – Posterior Predictive Distribution .. 56	

3.10	 Classification – Bayesian Model Class Selection (Method I) 58	

3.11	 Classification – Sparse Bayesian Learning (Method II) ... 68	

Chapter 4	 Case Studies – Okay Predictions ... 75	

4.1	 Okay-Prediction Examples ... 76	

4.1.1	 Okay-prediction example 1 ... 76	

4.1.2	 Discussion of okay-prediction example 1 ... 77	

4.1.3	 Okay-prediction example 2 ... 84	

4.1.4	 Discussion of okay-prediction example 2 ... 84	

4.1.5	 Okay-prediction example 1 with arrival time perturbations 94	

4.2	 A Supplementary Method for the Reality Check Algorithm 106	

4.2.1	 Karakus-Heaton Moment of Signal Data .. 108	

Chapter 5	 Case Studies – Over Predictions ... 118	

5.1	 Over-prediction example 1 ... 118	

5.1.1	 Discussion of over-prediction example 1 .. 126	

5.2	 Over-prediction example 1 with matching envelope arrival times 128	

5.2.1	 Discussion of over-prediction example 1 with matching envelope arrival times 128	

 viii

5.3	 Over-prediction example 2 ... 134	

5.3.1	 Discussion of over-prediction example 2 .. 147	

Chapter 6	 Case Studies – Under Predictions ... 149	

6.1	 Discussion of under-prediction example .. 156	

Chapter 7	 Concluding Remarks and Future Work 158	

Appendix A 	 Virtual Seismologist Envelope Equations 162	

Appendix B 	 Multiple Window Approach .. 164	

Appendix C 	 Non-probabilistic Classifications ... 167	

C.1	 Classifications: Least Squares .. 167	

C.2	 Discussion of Results in Tables C.1 to C.3 .. 169	

C.3	 Classifications – Linear Discriminant Analysis (LDA) ... 174	

C.4	 Discussion of Results in Tables C.4 to C.6 .. 185	

Bibliography ... 186	

 ix

List of Figures

1.1 Schematic illustration of the reality check algorithm …………………………... 3

2.1 Example of an observed and a predicted envelope ……………………………… 5

2.2 Examples of predicted envelopes generated using the Virtual Seismologist

 method …………………………………………………………………………… 7

2.3 Envelopes and their test function ………………………………………………... 9

2.4 A test function result and its histogram ………………………………………... 10

2.5 Graphical interpretation of higher order statistics ……………………………... 13

2.6 Example of a double event seismogram and its envelope ……………………... 14

2.7 Under-prediction, i.e., missed event example ………………………………….. 16

2.8 Over-prediction, i.e., false alarm example ……………………………………... 18

2.9 Three states of the test function ………………………………………………... 20

4.1 Reality Check Algorithm’s performance plot for the okay-prediction example 1

 computed using (3.68) from acceleration input using Method I ……………….. 78

4.2 Reality Check Algorithm’s performance plot for the okay-prediction example 1

 computed using (3.69) from velocity input using Method I ………………….... 79

4.3 Reality Check Algorithm’s performance plot for the okay-prediction example 1

 computed using (3.70) from displacement input using Method I …………….... 80

4.4 Reality Check Algorithm’s performance plot for the okay-prediction example 1

 computed using (3.99) from acceleration input using Method II ……………… 81

4.5 Reality Check Algorithm’s performance plot for the okay-prediction example 1

 computed using (3.100) from velocity input using Method II …………………. 82

 x

4.6 Reality Check Algorithm’s performance plot for the okay-prediction example 1

 computed using (3.101) from displacement input using Method II ……………. 83

4.7 Reality Check Algorithm’s performance plot for the okay-prediction example 2

 computed using (3.68) from acceleration input using Method I ……………….. 85

4.8 Reality Check Algorithm’s performance plot for the okay-prediction example 2

 computed using (3.69) from velocity input using Method I ………………….... 86

4.9 Reality Check Algorithm’s performance plot for the okay-prediction example 2

 computed using (3.70) from displacement input using Method I …………….... 87

4.10 Reality Check Algorithm’s performance plot for the okay-prediction example 2

 computed using (3.99) from acceleration input using Method II ……………… 88

4.11 Reality Check Algorithm’s performance plot for the okay-prediction example 2

 computed using (3.100) from velocity input using Method II …………………. 89

4.12 Reality Check Algorithm’s performance plot for the okay-prediction example 2

 computed using (3.101) from displacement input using Method II ……………. 90

4.13 Reality Check Algorithm’s performance plot for the okay-prediction example 2

 computed using (3.101) from displacement input using Method II (zoomed-in on

 the first over-prediction indication) ……………………………………………. 92

4.14 Reality Check Algorithm’s performance plot for the okay-prediction example 2

 computed using (3.101) from displacement input using Method II (zoomed-in on

 the second over-prediction indication) …………………………………………. 93

4.15 Reality Check Algorithm’s performance plot for the okay-prediction example 2

 computed using (3.68) from acceleration input using Method I ……………….. 95

 xi

4.16 Reality Check Algorithm’s performance plot for the okay-prediction example 1

 (with early predicted P-wave arrival) computed using (3.99) from acceleration

 input using Method II …………………………………………………………... 96

4.17 Reality Check Algorithm’s performance plot for the okay-prediction example 1

 (with early predicted P-wave arrival) computed using (3.100) from velocity input

 using Method II ………………………………………………………………… 98

4.18 Reality Check Algorithm’s performance plot for the okay-prediction example 1

 (with early predicted P-wave arrival) computed using (3.101) from displacement

 input using Method II …………………………………………………………... 99

4.19 Reality Check Algorithm’s performance plot for the okay-prediction example 1

 (with early predicted P-wave arrival) computed using (3.100) from velocity input

 using Method II (zoomed-in on the early predicted P-wave arrival) …………. 100

4.20 Reality Check Algorithm’s performance plot for the okay-prediction example 1

 (with late predicted P-wave arrival) computed using (3.99) from acceleration

 input using Method II …………………………………………………………. 101

4.21 Reality Check Algorithm’s performance plot for the okay-prediction example 1

 (with late predicted P-wave arrival) computed using (3.100) from velocity input

 using Method II ……………………………………………………………….. 102

4.22 Reality Check Algorithm’s performance plot for the okay-prediction example 1

 (with late predicted P-wave arrival) computed using (3.101) from displacement

 input using Method II …………………………………………………………. 103

 xii

4.23 Reality Check Algorithm’s performance plot for the okay-prediction example 1

 (with late predicted P-wave arrival) computed using (3.101) from displacement

 input using Method II (zoomed-in on the late predicted P-wave arrival) …….. 104

4.24 Static moment computation illustration in 2D ………………………………... 110

4.25 Comparison of taking logarithm with applying Karakus-Heaton Moment of Signal

 Data …………………………………………………………………………… 113

4.26 Performance of the supplementary method to RCA for the okay-prediction

 example 1 ……………………………………………………………………... 115

4.27 Performance of the supplementary method to RCA for the okay-prediction

 example 1 (with early predicted P-wave arrival) ……………………………... 116

4.28 Performance of the supplementary method to RCA for the okay-prediction

 example 1 (with late predicted P-wave arrival) ………………………………. 117

5.1 Summary of July 1st 2015 false alarms ……………………………………….. 119

5.2 Reality Check Algorithm’s performance plot for the over-prediction example 1

 (with predicted wave arriving earlier than observed calibration pulse) computed

 using (3.99) from acceleration input using Method II ………………………... 122

5.3 Reality Check Algorithm’s performance plot for the over-prediction example 1

 (with predicted wave arriving earlier than observed calibration pulse) computed

 using (3.100) from velocity input using Method II …………………………… 123

5.4 Reality Check Algorithm’s performance plot for the over-prediction example 1

 (with predicted wave arriving earlier than observed calibration pulse) computed

 using (3.101) from displacement input using Method II ……………………... 124

 xiii

5.5 Performance of the supplementary method to RCA for the over-prediction

 example 1 (with predicted wave arriving earlier than observed calibration pulse)

 125

5.6 Reality Check Algorithm’s performance plot for the over-prediction example 1

 (with predicted wave arriving earlier than observed calibration pulse) computed

 using (3.99) from acceleration input using Method II (zoomed-in at arrival times

 of observed and predicted envelopes) ………………………………………… 127

5.7 Reality Check Algorithm’s performance plot for the over-prediction example 1

 (with predicted wave arriving at the same time as observed calibration pulse)

 computed using (3.99) from acceleration input using Method II …………….. 129

5.8 Reality Check Algorithm’s performance plot for the over-prediction example 1

 (with predicted wave arriving at the same time as observed calibration pulse)

 computed using (3.100) from velocity input using Method II ………………... 130

5.9 Reality Check Algorithm’s performance plot for the over-prediction example 1

 (with predicted wave arriving at the same time as observed calibration pulse)

 computed using (3.101) from displacement input using Method II …………... 131

5.10 Performance of the supplementary method to RCA for the over-prediction

 example 1 (with predicted wave arriving at the same time as observed calibration

 pulse) ………………………………………………………………………….. 132

 xiv

5.11 Reality Check Algorithm’s performance plot for the over-prediction example 1

 (with predicted wave arriving at the same time as observed calibration pulse)

 computed using (3.99) from acceleration input using Method II (zoomed-in at

 arrival times of observed and predicted envelopes) …………………………... 135

5.12 Reality Check Algorithm’s performance plot for the over-prediction example 1

 (with predicted wave arriving at the same time as observed calibration pulse)

 computed using (3.101) from displacement input using Method II (zoomed-in at

 arrival times of observed and predicted envelopes) …………………………... 136

5.13 Seismic data for the calibration pulse that is used as an over-prediction example 1

 from the Northern California Earthquake Data Center ……………………….. 137

5.14 Seismic data for the calibration pulse that is used as an over-prediction example 1

 from the Northern California Earthquake Data Center, zoomed-in around missing

 data ……………………………………………………………………………. 138

5.15 Reality Check Algorithm’s performance plot for the over-prediction example 2

 computed using (3.99) from acceleration input using Method II …………….. 139

5.16 Reality Check Algorithm’s performance plot for the over-prediction example 2

 computed using (3.100) from velocity input using Method II ………………... 140

5.17 Reality Check Algorithm’s performance plot for the over-prediction example 2

 computed using (3.101) from displacement input using Method II …………... 141

5.18 Performance of the supplementary method to RCA for the over-prediction

 example 2 ……………………………………………………………………... 142

 xv

5.19 Reality Check Algorithm’s performance plot for the over-prediction example 2

 computed using (3.99) from acceleration input using Method II with matching

 arrival times of observed abnormal noise increase and predicted P-wave …… 143

5.20 Reality Check Algorithm’s performance plot for the over-prediction example 2

 computed using (3.100) from velocity input using Method II with matching

 arrival times of observed abnormal noise increase and predicted P-wave …… 144

5.21 Reality Check Algorithm’s performance plot for the over-prediction example 2

 computed using (3.101) from displacement input using Method II with matching

 arrival times of observed abnormal noise increase and predicted P-wave …… 145

5.22 Performance of the supplementary method to RCA for the over-prediction

 example 2 with matching arrival times of observed abnormal noise increase and

 predicted P-wave ……………………………………………………………… 146

6.1 Reality Check Algorithm’s performance plot for the under-prediction example

 computed using (3.99) from acceleration input using Method II …………….. 151

6.2 Reality Check Algorithm’s performance plot for the under-prediction example

 computed using (3.100) from velocity input using Method II ………………... 152

6.3 Reality Check Algorithm’s performance plot for the under-prediction example

 computed using (3.101) from displacement input using Method II …………... 153

6.4 Performance of the supplementary method to RCA for the under-prediction

 example ……………………………………………………………………….. 154

 xvi

6.5 Reality Check Algorithm’s performance plot for the under-prediction example

 computed using (3.99) from acceleration input using Method II (zoomed-in at

 arrival time of the small preceding event in the seismogram, and Cucapah – El

 Mayor earthquake in ground motion envelopes) ……………………………... 155

B.1 Kurtosis computation example with a single window of length 20 seconds …. 165

B.2 Multiple windows approach for a kurtosis computation with two different window

 lengths and their sum …………………………………………………………. 166

C.1 Histogram for all three classes obtained using LDA with acceleration values only

 177

C.2 Histogram for all three classes obtained using LDA with velocity values only 180

C.3 Histogram for all three classes obtained using LDA with displacement values only

 183

 xvii

List of Tables

3.1 Confusion matrix for probabilistic generative classification using acceleration

 data ……………………………………………………………………………... 29

3.2 Confusion matrix for probabilistic generative classification using velocity data

 31

3.3 Confusion matrix for probabilistic generative classification using displacement

 data ……………………………………………………………………………... 33

3.4 Confusion matrix for probabilistic discriminative classification with MLE using

 acceleration data ………………………………………………………………... 38

3.5 Confusion matrix for probabilistic discriminative classification with MLE using

 velocity data …………………………………………………………………..... 39

3.6 Confusion matrix for probabilistic discriminative classification with MLE using

 displacement data ……………………………………………………………..... 40

3.7 Confusion matrix for probabilistic discriminative classification with MAP

 (!σ =100) using acceleration data ……………………………………………... 45

3.8 Confusion matrix for probabilistic discriminative classification with MAP

 (!σ =100) using velocity data ………………………………………………….. 46

3.9 Confusion matrix for probabilistic discriminative classification with MAP

 (!σ =100) using displacement ………………………………………………..... 47

3.10 Confusion matrix for probabilistic discriminative classification with MAP

 (!σ =10) using acceleration data ……………………………………………….. 49

3.11 Confusion matrix for probabilistic discriminative classification with MAP

 (!σ =10) using velocity data …………………………………………………… 50

 xviii

3.12 Confusion matrix for probabilistic discriminative classification with MAP

 (!σ =10) using displacement data …………………………………………….... 51

3.13 Confusion matrix for probabilistic discriminative classification with MAP

 (!σ =0.05) using acceleration data ……………………………………………... 53

3.14 Confusion matrix for probabilistic discriminative classification with MAP

 (!σ =0.05) using velocity data ………………………………………………..... 54

3.15 Confusion matrix for probabilistic discriminative classification with MAP

 (!σ =0.05) using displacement data …………………………………………..... 55

3.16 List of features included in alternative models ………………………………… 64

3.17 Bayesian model class selection results for acceleration input ………………..... 65

3.18 Bayesian model class selection results for velocity input ……………………… 66

3.19 Bayesian model class selection results for displacement input ………………... 67

C.1 Confusion matrices for least squares classification using acceleration data ….. 171

C.2 Confusion matrices for least squares classification using velocity data ……… 172

C.3 Confusion matrices for least squares classification using displacement data … 173

C.4 Confusion matrix for LDA using acceleration data …………………………... 178

C.5 Confusion matrix for LDA using velocity data ………………………………. 181

C.6 Confusion matrix for LDA using displacement data …………………………. 184

 1

Chapter 1

Introduction

 Recently, the earthquake early warning (EEW) systems are being developed in

many parts of the world. These systems do not predict when an earthquake is going to

happen; rather they predict the eventual characteristics of earthquakes, such as their

magnitude and location, by using the first few seconds of the earthquakes’ ground motion

data that are being recorded by seismic stations in real-time. Unfortunately, the seismic

stations records do not only contain earthquake data, but also any activity that “shakes”

the ground, such as sonic booms, quarry blasts, and even heavy traffic noise. These types

of activities may confuse a warning system that relies on ground motion amplitudes

recorded by seismograms being larger than certain thresholds. In addition to non-

earthquake activity, temporal distribution of actual earthquakes, such as an earthquake

swarm instead of an isolated earthquake being preceded and followed by quiet ground

motion periods, may affect the accuracy of the alert messages sent to the EEW system

subscribers.

 The current EEW system being tested in California does not have a mechanism

that checks the accuracy of the messages sent to the system subscribers. However, we

desire to have a sophisticated real-time checking mechanism that will oversee and verify

the system predictions. To develop a robust alert confirmation mechanism, we examined

more than 500 synthetically created false and missed EEW alert scenarios for earthquakes

ranging from M2.5 to M6.5.

 2

 We used earthquake waveform envelope data predicted by Cua & Heaton’s

envelope ground motion prediction equations (Cua 2005) to verify the predictions made

by the EEW system. During the comparison calculations between observed and predicted

ground motions, we measured the disagreement using higher order statistics: kurtosis and

skewness. We developed a new algorithm called reality check (Figure 1) that classifies

the state of an EEW system alert based on the kurtosis and skewness measures of the

misfit between observed and predicted waveform envelope data.

 This thesis presents the step-by-step development process of the reality check

algorithm and shows how this technique helps protect the credibility of an EEW system

in an innovative manner.

 3

Figure 1.1: Schematic illustration of the reality check algorithm. The recorded ground

motion data are sent to a main computer called Decision Module. Decision Module

makes a prediction using several algorithms (Virtual Seismologist, Onsite, and Elarms)

and sends an alert to the users if necessary. The Reality check algorithm receives the sent

alert messages, and then compares them with the real-time recorded data by seismic

stations and reports the accuracy of the messages back to the decision module. We

continuously check self consistency of data and warning.

 4

Chapter 2

Data Processing

2.1 Data Processing

 This section describes the choice of input used regarding the ground motion data.

 The seismic stations in California can record ground motion in from 80 samples

per second (broadband seismometers) to 100 samples per second (strong motion

seismometers). Our algorithm does not use these recordings directly. Instead, we use

envelopes of the waveform data. We run a 1 second long window throughout the

continuous records in real-time, and take the absolute maximum value within the window

and make it our envelope amplitude at the corresponding second in real-time (Figure 2.1).

Then, we slide the window to the next second and so on. This process gives us the

“envelope of the observed data” whether there is an event or just noise at a site.

2.2 Prelude: Virtual Seismologist

 The Virtual Seismologist (VS) (Cua 2005) is briefly explained in this section,

because it is a prerequisite for our algorithm.

 Our work uses envelopes of earthquake waveform data rather than the

seismogram recordings directly as explained in the previous section. In addition to the

observed earthquake envelopes, we make use of predicted envelopes that are created by

the ground motion prediction equations provided by the Virtual Seismologist. The Virtual

Seismologist (VS) (Cua 2005) was developed at Caltech. It is a Bayesian Inference

Framework based on waveform envelopes and prior information, e.g., foreshocks,

network topology. VS ground motion prediction equations (GMPE’s) predict P and S

 5

Figure 2.1: Example of an observed and a predicted envelope. Plot on top shows a

broadband seismogram recorded at 80 samples per second rate at a station in E-W

direction. We run a 1 second long window throughout the continuous records in real-

time, and take the absolute maximum value within the window and make it our envelope

amplitude at the corresponding second in real-time. Note that the envelope shown in blue

in the bottom plot is a combination on E-W and N-S horizontal envelopes. Note that the

bottom plot also shows the corresponding predicted envelope created using the Virtual

Seismologist method.

1 SEC

Take the
absolute

maximum
value

within this
window.

 6

waveform envelopes as a function of amplitude and distance. We need to provide the

magnitude of the event and the distance between its epicenter and a particular station to

create the estimated envelopes at that station. In addition to the P- and S-wave envelopes,

VS predicted envelopes also contain a constant noise envelope that represents the noise

level at a particular station. These three envelopes (P-wave, S-wave, and constant noise)

are combined in a square root of sum of squares fashion to produce the VS predicted

envelopes at a given station for a given earthquake. Examples of VS predicted envelopes

are shown in Figure 2.2.

 !VS!Envelope!=! P-wave!Envelope()2 + S-wave!Envelope()2 + Noise!Envelope()2 (2.1)

	
The data for this work are collected from Southern California Seismic Network (SCSN)

and Next Generation Attenuation (NGA) strong motion data. Figure 2.2 shows examples

of predicted envelopes generated using the Virtual Seismologist method. VS equations

for predicting envelopes are given in Appendix A.

2.3 Test Functions

 This section explains what we do right after we obtain both the observed and

predicted envelopes. Because the seismic stations continuously record ground motions

and we assume there will always be some noise being recorded at a station, the predicted

envelope (2.1) only consists of constant noise when the decision module is not publishing

any earthquake data. That means we have both observed and predicted envelope data at

any given time. Therefore, the following steps are performed at every second in real-time.

 Once we have both predicted and observed envelope values, we calculate the

misfit between them using the following equation:

 7

Figure 2.2: Examples of predicted envelopes generated using the Virtual Seismologist

method. Note that there is a binary classification as soil/rock at station sites. A different

set of ground motion prediction equations are provided for each site class by VS.

(Source: (Cua 2005))

 8

!!
φ nΔt() = BHP ∗log

Observed!Envelope nΔt()
Predicted!Envelope nΔt()

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 (2.2)

where

 = 1,2,…

 : envelope sampling rate (1 second)

 : convolution symbol

 : Butterworth high-pass filter, 2nd order, 600 seconds, see below for justification.

 : test function

Test functions, denoted , are second by second misfit computations between observed

and predicted envelopes. Figure 2.3 shows that a test function represents the time

evolution of the misfit between observed and predicted ground motion values.

 In some of our calculations, we noticed that the misfit in the S-wave coda is

usually different from the rest of the misfit, especially for the displacement misfit, if we

do not apply high-pass filtering to the ratio of logarithm of envelope values (Figure 2.3).

In order not to confuse our algorithm, which indirectly depends on the amplitude of the

misfit, we decided to high-pass filter the ratios between observed and predicted ground

motion values. We apply a recursive high-pass Butterworth filter to the raw misfit.

2.4 Virtual Seismologist Assumption Regarding Misfit

 The data fitting process in creating the predicted envelope GMPE’s was done by

modeling the difference between predicted and observed ground motion envelopes as a

Gaussian distribution with a mean of zero in logarithm space. This model was chosen by

the VS creators and we should check how well it does. The histogram of the test function

results from the previous example is shown in Figure 2.4.

!n

!Δt

∗

!BHP

φ

φ

 9

Figure 2.3: Envelopes and their test function. (On top) The observed and predicted

envelopes shown in Figure 2.1. (On bottom) Test function computed using (2.2) both

with and without high-pass filtering.

 10

Figure 2.4: A test function result and its histogram.

 11

Each one of the bins shown at the bottom of Figure 2.4 represents an amplitude value in

the graph above. All of the values of the test function are distributed about the mean as

shown in the histogram, and a Gaussian (!µ = −0.0104,σ =0.0718) distribution is

adequate to explain it. The VS regression analysis included more than 30,000

seismograms, so this much departure from normality in one example is within acceptable

limits (this is not based on an analysis, it is just a qualitative judgment). The assumption

is observed to be valid.

 It is relatively easy for a human to visually notice if a distribution departs from a

Gaussian one, but how can we make a computer detect any unacceptable departure

automatically in real-time? One answer is to use higher order statistics: kurtosis and

skewness.

2.5 Higher Order Statistics

 We use higher order statistics to detect departure from normality. Using higher

order statistics makes these techniques more robust than just using the mean and the

standard deviation.

2.5.1 Higher Order Statistics – Kurtosis

 Kurtosis is a normalized fourth moment of a distribution about its mean where the

normalization is done using the square of the variance (Langet, Maggi et al. 2014), so it

does not have a unit. It is mainly used to detect outliers based on a normal distribution.

Kurtosis for a normal distribution is the value three (3), so outliers in the tails of the

distribution make the kurtosis value bigger than three.

 12

 (2.3)

where

 : expected value

 : set of values in a distribution

: mean of the set of values in

2.5.2 Higher Order Statistics – Skewness

 Skewness, on the other hand, is the third moment about the mean of a distribution,

and just like kurtosis, it is normalized using the appropriate power of the variance, so

skewness too is dimensionless. Skewness is used to detect departure from symmetry. Its

sign depends on the direction of the skew as shown in Figure 2.5. A normal distribution is

perfectly symmetric about its mean and so its skewness is zero.

 (2.4)

	
Note that higher order statistics equations, i.e., (2.3) and (2.4) are for theoretical moments

and they must be replaced by sample moments when applied to data. Matlab functions

‘kurtosis’ and ‘skewness’ are used on the data, however, ‘bias correction’, as explained in

the function definition in Matlab, was not applied.

!!

Kurtosis =
E X − µ()4⎡
⎣⎢

⎤
⎦⎥

E X − µ()2⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
2

!E

!X

µ !X

!!

Skewness =
E X − µ()3⎡
⎣⎢

⎤
⎦⎥

E X − µ()2⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

3
2

 13

2.6 An Example – Missed Event

 We now take a look at an example and see the algorithm in action. The following

example aims to simulate an ‘under-prediction’ case where the system misses an event. In

order to emphasize an under-prediction case, the following figure also includes a case

where the system successfully detects an earthquake, i.e., the first one (Figure 2.6). The

top of Figure 2.6 shows a synthetic seismogram. We basically put two identical events

Figure 2.5: Graphical interpretation of higher order statistics.

KURTOSIS FOR A
NORMAL

DISTRIBUTION IS 3.
OUTLIERS IN “TAILS”
OF A DISTRIBUTION

CAUSE POSITIVE
KURTOSIS

(i.e. KURTOSIS >>3).

SKEWNESS FOR A
NORMAL

DISTRIBUTION IS 0.
“ASYMMETRY”

CAUSES NON-ZERO
SKEWNESS

(i.e. SKEWNESS ≠ 0).

Source: Wikipedia

 14

Figure 2.6: Example of a double event seismogram and its envelope. (On top)

seismogram, (on bottom) envelope. Envelopes on the bottom are two horizontal

envelopes in perpendicular directions combined in a square-root-sum-of-squares fashion.

 15

 (~M4.6) back to back in time. On the bottom of Figure 2.6, we see the envelopes created

using the technique demonstrated earlier. From now on, we will not show the

seismogram itself, and we will work with the envelopes instead.

 In this scenario (Figure 2.7), incoming data from the first event stimulated the

system to the point where an alarm is issued. The magnitude and the location of the event

related to the first alarm are used to create the VS envelopes and they are overlaid on top

of the observed ones using the origin time predicted by the decision module. However,

there happens to be a second event and the system does not catch it. We calculate our test

function in real-time as more data are recorded. Then, time derivatives of kurtosis and

skewness, which are computed using a multiple window approach (see Appendix B) on

the test function values, are computed in real-time as well.

 Everything seems fine until the second event arrives at the station. In other words,

both derivative of excess kurtosis and derivative of skewness values indicate normality;

therefore, there is agreement between the decision module alert and what is actually

observed. But, once the second event arrives, the test function shows values that are

considered as outliers and this produces significantly greater values of the derivatives.

Moreover, because the symmetry is lost, derivative of skewness values indicate positive

skew.

2.7 Another Example – False Event

 With an example of a false alarm case, we now show some justification for using

two higher order statistics functions instead of one. Kurtosis would give us a very large

number if we had a false alarm. That is, if the corresponding test function value was a

large negative number, relative to the rest of its values within a given window and

 16

Figure 2.7: Under-prediction, i.e., missed event example.

 17

computed by using equation (2.2), it would be considered as an outlier, similar to the case

of missed alarm example. In other words, as far as kurtosis is concerned, there is no

difference between the outliers on the left or on the right tail of the mean. However,

skewness would detect a negative skew in that scenario (Figure 2.8), and we would know

the “nature” of the departure from normality. That is why we use both kurtosis and

skewness in our algorithm.

 In the scenario shown in Figure 2.8, the decision module predicts an earthquake,

and issues the parameters that are needed to create the VS predicted envelopes. All is

well. After the earthquake, however, the station that recorded this seismogram

experiences some non-earthquake shaking in the form of a short lasting burst of energy,

for example, traffic noise nearby. This blip seen in the top row tricks the decision module

to issue another alarm, then our algorithm creates the corresponding VS envelope and

starts measuring the agreement between the observed and predicted envelopes. As soon

as the unacceptable mismatch is detected with the help of derivative of higher order

statistics, our algorithm indicates an over-prediction.

2.8 Summary of Test Function States

 To sum up, we declare that there are three states that a test function can be in

(Figure 2.9):

 State 1: The ideal case where the decision module reports agreement with the

observed data, i.e., okay-prediction.

 State 2: There is a second event when we thought there was only one, i.e., under-

prediction, or missed event/alarm.

 18

Figure 2.8: Over-prediction, i.e., false alarm example.

 19

 State 3: A non-earthquake vibration such as noise at a station tricks the system

into believing that there is an earthquake, i.e., false event/alarm. This one is especially

tricky because one might lose confidence in the warning system.

 We perform separate analyses for different ground motion parameters influenced

by different frequency contents; acceleration, velocity, and displacement are separately

used as inputs to our computations. We obtained our training data by synthetically

creating over- and under- prediction scenarios. The VS predicted envelopes were created

using the cataloged magnitude and location. Our training data included 1000 okay-

prediction, 250 over-prediction, and 250 under-prediction input values in both horizontal

and vertical acceleration, velocity, and displacement.

 The peak values of derivatives of kurtosis and skewness for both horizontal and

vertical acceleration, velocity, and displacement, at the moment of unacceptable

mismatch between observed and predicted envelopes as shown in the figures above, are

considered as inputs that belong to under- and over- prediction classes: under-prediction

if observed envelope value is significantly larger, and over-prediction if predicted

envelope value is significantly larger. Maximum and minimum values of the derivatives

preceding the peak values mentioned above are considered as inputs of the okay-

predictions because they represent the boundaries within which the state of the prediction

is acceptable. We use these values as inputs for various classification models explained in

the following sections. Note that the coefficient values presented in this thesis are

truncated versions although they are used, in computations, as the computer programs

produced, i.e. with higher precision. We used our judgment regarding meaningful

precision presentation.

 20

Figure 2.9: Three states of the test function.

•  STATE 1: ϕ ≈ 0 (i.e. Agreement between envelopes)
•  STATE 2: ϕ >> 0 (i.e. Under prediction)
•  STATE 3: ϕ << 0 (i.e. Over prediction)

We use Linear Discriminant and Bayesian Analyses to classify the states at every
second in real-time by minimizing the overlapped areas.

Env(obs) << Env(pred)

Kurtosis >> 3

Skewness << 0

Env(obs) >> Env(pred)

Kurtosis >> 3

Skewness >> 0

Env(obs) ≈ Env(pred)

Kurtosis ≈ 3

Skewness ≈ 0

MISSED OK FALSE

State 1 State 2 State 3

 21

Chapter 3

Probabilistic Classifications

Mathematical Notation:

 Throughout this work, unless stated otherwise, we use lowercase bold Roman

letters, such as , to denote vectors. All vectors are assumed to be column vectors.

Therefore is a -dimensional vector. We use uppercase bold Roman

letters, such as , to denote matrices.

Classifications:

 In the following sections, we present different ways of applying classification.

Two probabilistic classification methods are described in this chapter (towards the end of

it): Method I which uses Ockham’s razor on a given set of models, and Method II which

uses Sparse Bayesian Learning (SBL), i.e., models with Automatic Relevance

Determination (ARD) prior. Note that both of these methods are using Bayesian Ockham

razor by maximizing evidence (or posterior probability); with ARD prior, it is a

continuum of model classes, each defined by specifying hyperparameters (prior

variances), instead of a discrete set of model classes (personal communication with Prof.

James L Beck). Two non-probabilistic classification methods were also examined: least

squares and linear discriminant analysis. The theory and results for these non-

probabilistic methods are presented in Appendix C. Appendix C is included for two main

purposes: 1) to provide classification methods that do not require as much run time as the

!x

!!! x = x1 ,x2 ,,xD⎡⎣ ⎤⎦
T

!D

!W

 22

probabilistic methods, 2) to help some interested readers understand probabilistic

classification models if classification is a new concept to them.

 We aim to have the least amount of misclassification rate when we take an input

vector and assign it to a class among discrete classes. Unless it is specified

otherwise, we will use linear models where the decision boundaries that separate classes

are linear functions of the input. The number of classes in our work is three, i.e.,

(Figure 2.9). We will use a coding scheme (as described in Bishop, 2006) in

which the target vector is of length such that if the class for an input is , then

all elements of are zero except element , which takes the value 1 (Bishop 2006).

Our classifications will generally be done using a discriminant function. The parameters

of the discriminant functions are obtained with several different techniques in the

following sections.

3.1 Classifications – Probabilistic Generative Model

 The following theory is based on the concepts described in Chapter 4, Linear

Models for Classification in Bishop, 2006.

 In this chapter, we work with Bayesian probabilistic classifications so when a new

input is observed, we compute probability (the degree of plausibility) that it belongs to

any class.

 We start with generative models. Generative models use a probability model for

the inputs and outputs; that is, we can create synthetic input data by sampling from the

generative probabilistic model. In this section, we aim to compute posterior probabilities,

!x !K

!!K =3

!!1−of −K

!t !!K =3
!
C j

!tk !t !
t j

 23

!!
p Ck x() , with the help of Bayes’ theorem. In order to do that, we model both class-

conditional densities
!!
p x Ck() and class priors !

p Ck() .

 Our classification problem has three classes. In practice, the problems with more

than two classes, i.e., !!K >2 are considered “multiclass” classification problems. It is

common to use a softmax function in a multiclass classification problem. So, to better

understand what a softmax function represents, let us start with a two-class classification

problem set up (!!K =2) and then try to generalize our computations to a multiclass

classification problem. If we had only two classes, i.e., !!C1 and !!C2 we could write the

posterior probability for class !!C1 as

!!!
p C1 x() = p x C1()p C1()

p x C1()p C1()+ p x C2()p C2() (3.1)

We can write (3.1) as

!!!
p C1 x() =σ a() = 1

1+exp −a() (3.2)

where !a is implicitly defined as

!!!
a= ln

p x C1()p C1()
p x C2()p C2() (3.3)

and !
σ a() defined by (3.2) is called the logistic sigmoid function. For a multiclass case

(where !!K >2), we consider !a to be a linear function of the input !x . From Bayes

Theorem:

 24

!!!

p Ck x() = p x Ck()p Ck()
p x C j()p C j()j∑

=
exp ak()
exp aj()j∑

 (3.4)

Expression (3.4) is known as the softmax function (or the normalized exponential). It is

regarded as a generalization of the logistic sigmoid to a multiclass problem. In this case,

the quantities !ak are defined as

 !!!ak = ln p x Ck()p Ck()() (3.5)

 Let us now see what happens if we choose a Gaussian form for the class-

conditional densities
!!
p x Ck() . For simplicity, let us assume that all classes have the same

covariance matrix Σ but each class has a distinct mean !!mk . Then, we can write the

class-conditional density for class !Ck as

!!!
p x Ck() = 1

2π()D/2
1
Σ

1/2 exp −12 xT −mk()T Σ−1 xT −mk()⎧
⎨
⎩

⎫
⎬
⎭

 (3.6)

where !D is the dimensionality of !x . Using (3.4) and (3.5), we can write

 !!!ak x() =wTx+wk0 (3.7)

where we used the following definitions

!!!

wk = Σ−1mk

wk0 = −
1
2mk

TΣ−1mk + lnp Ck() (3.8)

Thanks to our assumption that all classes have the same covariance matrix, the quadratic

terms cancel and the !!ak x() become linear functions of !x . This results in decision

 25

boundaries being defined as linear functions of !x , as opposed to the case where we do

not make the same covariance assumption. In that case (where each class has its own

covariance matrix), the quadratic terms would not cancel and we would no longer have a

linear discriminant.

 In the next step, we will use maximum likelihood (maximum a posteriori for

uniform priors) to calculate the parameters,!!wk and!!wk0 , and the prior class probabilities,

!
p Ck() . We have chosen a Gaussian form for class-conditional densities,

!!
p x Ck() , as we

mentioned above. We will use the data set described in Chapter 2; the training data set is

given as !!! xn ,tn{ } with !! n=1,,N . We construct !X with its !nth row !!xn
T given by an

instance of

!!!

x =

d
dt

Kurtosis!of!Horizontal!Acceleration()
d
dt

Kurtosis!of!Vertical!Acceleration()
d
dt

Skewness!of!Horizontal!Acceleration()
d
dt

Skewness!of!Vertical!Acceleration()

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (3.9)

The target vector !!tn is a binary vector of length !!K =3 . It uses the !!1−of −K coding

scheme; it has components !
tnj =δ jk (Kronecker delta) if input !n is from class !Ck . We

denote the prior class probabilities as

 !
p Ck() =π k (3.10)

 26

 We chose a probability model where the predictions of the features for class !Ck

are independent, so the likelihood function is given by

!!!
p T,X π k ,mk ,Σ() = p xn Ck()π k{ }tnk

k=1

K

∏
n=1

N

∏ (3.11)

After taking the logarithm of (3.11), we get

!!!
lnp T,X π k ,mk ,Σ() = tnk lnp xn Ck()+ lnπ k{ }

k=1

K

∑
n=1

N

∑ (3.12)

To determine the prior probability for !Ck , we take the derivative of (3.12) with respect to

!π k and equate it to zero, and note that !! π kk∑ =1 . Then we obtain

!
π k =

Nk

N
 (3.13)

where !Nk represents the number of data points assigned to class !Ck .

 Let us next determine !!mk . We will take the derivative of (3.12) with respect to

!!mk and set the result to zero. Using (3.6) as the functional form of class-conditional

densities, we obtain

!!!
mk =

1
Nk

tnkxn
n=1

N

∑ (3.14)

which is simply the mean of all of the input vectors assigned to class !Ck .

 The only parameter left to determine is the shared covariance, Σ . Once again,

taking the derivative with respect to Σ and setting it to zero gives

!!!
Σ =

Nk

N
Sk

k=1

K

∑ = π kSk
k=1

K

∑ (3.15)

where

 27

!!!
Sk =

1
Nk

tnk xn −mk() xn −mk()T
n=1

N

∑ (3.16)

Expressions (3.15) and (3.16) show that we can compute Σ by weighting the covariances

of the data of each class by their prior probabilities and then averaging the result.

 For the following confusion matrices (where the rows are the total percentage of a

labeled class, and hence the values in a row add up to 100, and the columns are the

fraction of the total number of cases for that row that is classified as the indicated class

on the top row of that column), we choose the maximum probability value for a given

input. Although the parameter values, !!wk and !!wk0 , are computed using the entire data

set for training, we provide confusion matrices for cross validation results for different

ground motion quantities. The confusion matrix is useful to assess the algorithm’s

performance. We divided our data set into two halves: training and validation sets. We

first trained our algorithm using one set (training set) and then calculated the result using

the other half (validation set). Then, we swapped the sets, that is, we used the validation

set from the previous step as the training set and the training set as the validation set.

Then, we computed the average performance of these two validations. As a final step, we

used the entire data set as both training and validation data sets.

 Note that !!k =1 represents okay-prediction, !!k =2 represents over-prediction, and

!!k =3 represents under-prediction classes in this thesis.

 28

 The parameter values and the shared covariance matrix computed using the entire

acceleration data set for training are

!!!

w1acceleration
=

0.0001
0.003
0.022
'0.020

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w1acceleration0
= '0.450

 (3.17)

!!!

w2acceleration
=

0.016
0.019
(0.113
(0.120

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w2acceleration0
= (8.812

 (3.18)

!!!

w3acceleration
=

0.011
0.019
0.118
0.038

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w3acceleration0
= (7.936

 (3.19)

!!

Σacceleration =

6926.366 5284.517 258.698 241.974

5284.517 7306.191 134.662 316.073

258.698 134.662 201.493 164.134

241.974 316.073 164.134 217.947

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (3.20)

	
	
	
	
	
	
	
	
	
	

 29

Table 3.1: Confusion matrix for probabilistic generative classification using acceleration

data.	

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 97.4 0.5 2.1

Over 33.2 66.8 0

Under 24.4 0 75.6

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 93.2 0.6 6.2

Over 13.6 86.4 0

Under 12.8 0 87.2

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 98.4 0.2 1.4

Over 59.2 40.8 0

Under 42.4 0 57.6

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 95.8 0.4 3.8

Over 36.4 63.6 0

Under 27.6 0 72.4

 30

 The parameter values and the shared covariance matrix computed using the entire

velocity data set for training are

!!!

w1velocity
=

0.001
0.002
0.015
'0.011

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w1velocity0
= '0.437

 (3.21)

!!!

w2velocity
=

0.031
0.007
(0.222
(0.030

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w2velocity0
= (7.235

 (3.22)

!!!

w3velocity
=

0.015
0.015
0.122
0.048

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w3velocity0
= *8.034

 (3.23)

!!

Σvelocity =

5682.072 4229.134 384.569 313.847

4229.134 5958.392 254.687 310.505

384.569 254.687 165.553 132.205

313.847 310.505 132.205 186.711

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (3.24)

 31

Table 3.2: Confusion matrix for probabilistic generative classification using velocity

data.	

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 96.8 0.7 2.5

Over 37.6 62.4 0

Under 26.8 0 73.2

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 91 1 8

Over 18.4 81.6 0

Under 10.4 0 89.6

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 97 0.6 2.4

Over 71.2 28.8 0

Under 48 0 52

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 94 0.8 5.2

Over 44.8 55.2 0

Under 29.2 0 70.8

	

 32

 The parameter values and the shared covariance matrix computed using the entire

displacement data set for training are

!!!

w1displacement
=

0.0005
0.005
0.008
'0.023

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w1displacement0
= '0.431

 (3.25)

!!!

w2displacement
=

0.052
0.009
'0.324
'0.045

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w2displacement0
= '5.490

 (3.26)

!!!

w3displacement
=

0.019
0.007
0.169
0.066

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

w3displacement0
=)7.186

 (3.27)

!!

Σ
displacement

=

3188.044 2203.698 386.171 311.242

2203.698 2678.795 281.599 332.173

386.171 281.599 100.443 72.613

311.242 332.173 72.613 96.763

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (3.28)

 33

Table 3.3: Confusion matrix for probabilistic generative classification using

displacement data.	

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 97.4 1.4 1.2

Over 44 56 0

Under 38.4 0 61.6

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 95 1.4 3.6

Over 32 68 0

Under 17.6 0 82.4

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 97.8 1.4 0.8

Over 67.2 32.8 0

Under 63.2 0 36.8

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 96.4 1.4 2.2

Over 49.6 50.4 0

Under 40.4 0 59.6

	

	

 34

3.2 Discussion of Results for Tables 3.1 to 3.3

 The confusion matrices show a consistent decrease in prediction performances

with decreasing frequencies (acceleration is dominated by high-frequencies, velocity by

mid-frequencies, and displacement by low-frequencies) although this decrease is not

significant. Cross validation using the first half of the data set for training and the rest for

validation produces reasonable prediction performances (at least more than 65 percent

accurate predictions). On the other hand, using the second half for training and the first

half for validation gives not so desirable cross validation results. This trend is seen in all

types of input: acceleration, velocity, and displacement. The simplest explanation is that

the models could be suffering from overfitting because we did not use a prior distribution

to provide regularization. We will propose a solution that is robust to overfitting by using

a full Bayesian treatment in the next sections.

3.3 Classification – Probabilistic Discriminative Model with Maximum

Likelihood Estimate (MLE)

 The following theory is based on the concepts described in Chapter 4, Linear

Models for Classification in Bishop, 2006.

 In the previous section, we determined the parameters of the class-conditional

densities,
!!
p x Ck() , along with the class priors, !

p Ck() . Then, we used Bayes’ theorem to

compute the posterior class probabilities,
!!
p Ck x() . The posterior class probabilities are

given by a softmax function of a linear function of the input feature vector !x . The

coefficients (parameters !!wk and !!wk0) of the linear function of !x are computed using the

parameters of the class-conditional densities, i.e., !!mk and Σ and the class priors, !
p Ck() .

 35

The advantage of the probabilistic generative model is that we can create (generate)

synthetic input values, !x , by sampling from the marginal distribution !!p x() . However,

the predictive performance may decrease, especially when the Gaussian form, which we

used to model the class-conditional densities, does not give a good representation. In this

section, we compute the parameter values in a more direct approach by maximization of

the likelihood function or the posterior probability density function (PDF). By not

modeling the class-conditional densities explicitly, we will have less number of

parameters to determine, and this may lead to an increase in predictive performance.

Directly determining the parameters is an example of a probabilistic discriminative

approach.

 The likelihood function we want to maximize to determine the parameters

consists of the conditional distributions introduced earlier:
!!
p Ck x() . We start with a

relabeling of the variables first, and then we simplify as much as possible to avoid clutter

in our mathematical expressions. In the previous section, we obtained the functional form

of the posterior class probability, conditional on an input vector, as (3.4). Using this

definition, let us define

!!!
yk x() = p Ck x , wk() = exp ak x wk()()

exp aj x w j()()j∑
 (3.29)

where !ak are called activations and are given by

!!
ak x wk() = wk

T x (3.30)

Let us now clarify the terms that involve “ ”:

 36

In the expression above, !!! wk = wk0 ,wk
T()T and !!! x = 1,xT()T , that is, we augment the input

vector with a dummy input !!x0 =1 , similar to what we did in the least squares

classification in Appendix C. In order to decrease the clutter in the mathematical

notation, let us redefine the parameters (! w→w and ! x→ x) such that

!!! wk = wk0 ,wk1 ,,wkD()T and !!! x = 1,x1 ,x2 ,,xD()T . Then, we consider maximization of

the likelihood function to determine the parameters !! wk{ } directly.

 Now, we need the likelihood function. As we mentioned above, it consists of the

posterior class probabilities
!!
p Ck x() if the prior on the !Ck ’s is uniform. We will follow

the same !!1−of −K coding scheme as we did above for the target vectors: the target

vector !!tn associated with the input vector !!xn , which is assigned to class !Ck , will be a

unit vector of dimension !!K =3 with each of its elements being zero unless it is the !kth

element, which is one. Then, we obtain the likelihood function as

!!!
p T X ,W() = p Ck xn ,wk()tnk = ynk

tnk

k=1

K

∏
n=1

N

∏
k=1

K

∏
n=1

N

∏ (3.31)

where the elements !tnk form the matrix !T whose dimension is !N ×K with !N as the

number of data points and !K as the number of classes, and !W is formed by !!D+1 -

dimensional vector !!wk as its !kth column, and !X is formed by !!D+1 -dimensional vector

!!xn
T as its !nth row. So, !W and !X are matrices with dimensions !! D+1()×K and

!!N × D+1() respectively. We also have

 37

!!!
ynk = yk xn() = p Ck xn ,wk() = exp wk

Txn()
exp w j

Txn()j∑
∈ 0,1⎡⎣ ⎤⎦ (3.32)

 Before we start evaluating the probabilistic discriminative model from a Bayesian

perspective, let us use the maximum likelihood method to find !!WMLE by maximizing the

likelihood function given by (3.31). Note that the value we will find is in fact the

Bayesian maximum a posteriori (MAP) value but we are taking a flat (non-informative)

prior for !W , so !MAP≡MLE . I solved this optimization problem by an algorithm

provided by Matlab.

 We maximized (3.31) with respect to !W separately for acceleration, velocity, and

displacement input and obtained the following confusion matrices by assigning an input

vector !x to class !Ck , where !!!p Ck x ,wk() is a maximum over !!k =1,2,3 . Similar to the

previous confusion matrices, we show the predictive performance of our models by cross

validation; we divide the data sets into two: training data set and validation data set. Then

we swap these data sets and average the predictive performances in the form of confusion

matrices.

 Let us start with acceleration results. The maximum likelihood estimate (MLE) of

the parameter matrix,
!!
WMLEacceleration

, computed using the entire acceleration data set for

training, is given by

 38

!!!

W
MLE

acceleration

=

2.899

&0.003

0.002

&0.002

&0.008

&1.263

0.018

0.013

&0.118

&0.067

&1.606

0.003

&0.005

0.075

0.117

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (3.33)

Table 3.4: Confusion matrix for probabilistic discriminative classification with MLE

using acceleration data.	

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 95.2 2 2.8

Over 16.8 83.2 0

Under 21.2 0 78.8

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 88.4 1.4 10.2

Over 12 88 0

Under 9.6 0 90.4

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 97.2 1.8 1

Over 37.6 62.4 0

Under 39.2 0 60.8

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 92.8 1.6 5.6

Over 24.8 75.2 0

Under 24.4 0 75.6

	

 39

!!
WMLEvelocity

 computed using the entire velocity data set for training is given by

!!!

W
MLE

velocity

=

2.743

'0.001

0.001

0.022

'0.024

'1.150

0.028

0.011

'0.184

'0.039

'1.563

0.003

'0.006

0.114

0.091

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (3.34)

Table 3.5: Confusion matrix for probabilistic discriminative classification with MLE

using velocity data.	

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 95.3 1.9 2.8

Over 19.2 80.8 0

Under 22.8 0 77.2

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 87.6 1.8 10.6

Over 14.4 85.6 0

Under 9.6 0 90.4

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 96 1.6 2.4

Over 46.4 53.6 0

Under 44 0 56

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 91.8 1.7 6.5

Over 30.4 69.6 0

Under 26.8 0 73.2

 40

!!
WMLEdisplacement

computed using the entire displacement data set for training is given by

!!!

W
MLE

displacement

=

2.680

0.0002

0.0003

0.024

)0.056

)0.910

0.052

0.012

)0.294

)0.059

)1.757

)0.015

)0.020

0.264

0.130

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (3.35)

Table 3.6: Confusion matrix for probabilistic discriminative classification with MLE

using displacement data.	

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 94.3 2.8 2.9

Over 30.8 69.2 0

Under 22.4 0 77.6

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 91.6 2.6 5.8

Over 24.8 75.2 0

Under 10.4 0.8 88.8

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 94.4 2.2 3.4

Over 50.4 49.6 0

Under 49.6 0 50.4

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 93 2.4 4.6

Over 37.6 62.4 0

Under 30 0.4 69.6

 41

3.4 Discussion of Results in Table 3.4 to 3.6

 The worst predictive performance is observed when we use only the displacement

input for training. The decrease in performance is not only clear from the overall

reduction in values of the diagonal cells, but also from the fact that some under-

prediction input vectors are assigned to over-prediction class. Although the observed

misclassification value, i.e., 0.8 % is not significant, this is so far the only model that

classified an under-prediction input as an over-prediction. Until now, the okay-prediction

acted as a “buffer” class between over- and under-prediction classes.

 On the other hand, the predictive performances observed with acceleration and

velocity show that those models can be used in the real-time applications without too

much error in the form of misclassifications.

3.5 Classification – Probabilistic Discriminative Model with Maximum A

Posteriori (MAP) Value

 The following theory is based on the concepts described in Chapter 4, Linear

Models for Classification in Bishop, 2006.

 We now choose an informative prior and carry out a full Bayesian treatment of

the probabilistic discriminative model. Because it is practically too difficult to evaluate

analytically the posterior distribution which consists of multiplication of several softmax

functions and a prior distribution, we make use of the Laplace approximation for the

problem of learning the Bayesian probabilistic model. The Laplace approximation

approximates a function by a Gaussian distribution whose center is located at a local

maximum of that function. Because we need a covariance matrix to describe a Gaussian

distribution, we will have to evaluate the Hessian matrix as well. Since we want to

 42

approximate the posterior distribution by a Gaussian form, let us choose a Gaussian prior

over the parameters. A general Gaussian prior distribution over the set of parameter is

given by

!!!

p w() =Ν w m0 ,S0()
= 1

2π()
D+1()

2

1
S0

1
2
exp −12 w−m0()T S0−1 w−m0()⎧

⎨
⎩

⎫
⎬
⎭

 (3.36)

where !!m0 and !!S0 are general, but fixed, hyperparameters.

We chose the prior of each model parameter of each class to be a Gaussian PDF with

zero mean and standard deviation !σ =100 to cover a wide range of the parameter space.

Note that in the following sections σ will not be fixed, and we will let σ adapt to the

training data. Then, the prior is

!!!

p wk() = 1

2πσ 2()
D+1()

2

exp −12wk
Twk

⎧
⎨
⎩

⎫
⎬
⎭

=Ν wk 0,σ 2I()
 (3.37)

We ask ourselves the following question:

“If we knew the values of the parameters !!wk of one class, would that affect our level of

knowledge about the rest of the parameters?”

The answer is “no”. Therefore, we can state that the prior distributions of parameters of

different classes are independent and obtain the following

!!!
p W() = p w1 ,,wK() = p wk()

k=1

K

∏ (3.38)

Using Bayes’ theorem, the posterior distribution over the parameters is given by

 43

!!!

p WT,X()∝p T X ,W()× p W()
posterior ∝ likelihood × prior

 (3.39)

where the likelihood is given by (3.31), and the prior is given by (3.38).

We can now determine !W by finding the most probable value of !W given the data,

which means we will determine !W by maximizing the posterior distribution. This

produces what is called the maximum a posteriori (MAP) value. We solved this problem

by an algorithm provided by Matlab. Substituting (3.31) and (3.38) into (3.39), our

posterior distribution over the parameters (without the normalizing factor) is given by

!!!

p WT,X()∝p T X ,W()× p W()
∝ p Ck xn ,wk()tnk

k=1

K

∏
n=1

N

∏ × p wk()
k=1

K

∏
 (3.40)

Note that in order to find the values !W that maximize (3.40), we do not need the

normalizing constant. Note also that maximizing (3.40) with respect to !W is equivalent

to minimizing the negative logarithm of (3.40) with respect to !W . Taking the logarithm

of (3.40) gives

 !!!lnp WT,X() = lnp T X ,W()+ lnp W()+ const (3.41)

where

!!!

lnp T X ,W() = tnk lnp Ck xn ,wk()
k=1

K

∑
n=1

N

∑

= tnk ln ynk
k=1

K

∑
n=1

N

∑

= tnk ln
exp wk

Txn()
exp w j

Txn()j∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟k=1

K

∑
n=1

N

∑

 (3.42)

and

 44

!!!

lnp W() = lnp w1 ,w2,wK()
= ln p wk()

k=1

K

∏⎛⎝⎜
⎞
⎠⎟

= ln p w1()p w2()p wK()()
= lnp wk()

k=1

K

∑

 (3.43)

From (3.37), we have

!!!

lnp wk() = ln 1

2πσ 2()
D+1()

2

exp − 1
2σ 2wk

Twk

⎧
⎨
⎩

⎫
⎬
⎭

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= ln 1

2πσ 2()
D+1()

2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+ ln exp − 1

2σ 2wk
Twk

⎧
⎨
⎩

⎫
⎬
⎭

⎛

⎝⎜
⎞

⎠⎟

= ln 2πσ 2()
− D+1()

2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
− 1
2σ 2wk

Twk

= −
D+1()
2 ln2π + lnσ 2()− 1

2σ 2wk
Twk

= −
D+1()
2 ln2π −

D+1()
2 lnσ 2 − 1

2σ 2 wkd
2

d=0

D

∑

 (3.44)

Substituting (3.44) into (3.43), we obtain

!!!
lnp W() = − 1

2σ 2 wkd
2

d=0

D

∑
k=1

K

∑ + const (3.45)

 We maximized (3.40) with respect to !W separately for acceleration, velocity, and

displacement input and obtained the values shown below, in addition to the following

confusion matrices:

 45

!!!

W
MAP

acceleration

=

2.898
&0.004
0.003
&0.002
&0.008

&1.264
0.017
0.014
&0.118
&0.066

&1.606
0.002
&0.004
0.074
0.118

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (3.46)

Table 3.7: Confusion matrix for probabilistic discriminative classification with MAP

(!σ =100) using acceleration data.	

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 95.2 2 2.8

Over 16.8 83.2 0

Under 21.2 0 78.8

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 88.4 1.4 10.2

Over 12 88 0

Under 9.6 0 90.4

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 97.2 1.8 1

Over 37.6 62.4 0

Under 39.2 0 60.8

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 92.8 1.6 5.6

Over 24.8 75.2 0

Under 24.4 0 75.6

 46

!!!

W
MAP

velocity

=

2.744
&0.003
0.002
0.022
&0.022

&1.150
0.026
0.012
&0.184
&0.036

&1.563
0.0002
&0.005
0.114
0.094

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (3.47)

Table 3.8: Confusion matrix for probabilistic discriminative classification with MAP

(!σ =100) using velocity data.

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 95.3 1.9 2.8

Over 19.2 80.8 0

Under 22.8 0 77.2

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 87.6 1.8 10.6

Over 14.4 85.6 0

Under 9.6 0 90.4

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 96 1.6 2.4

Over 46.4 53.6 0

Under 44 0 56

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 91.8 1.7 6.5

Over 30.4 69.6 0

Under 26.8 0 73.2

	

 47

!!!

W
MAP

displacement

=

2.680
3.381e*05
3.961e*05
0.023
*0.056

*0.909
0.052
0.012
*0.294
*0.059

*1.757
*0.015
*0.020
0.263
0.130

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (3.48)

Table 3.9: Confusion matrix for probabilistic discriminative classification with MAP

(!σ =100) using displacement.

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 94.3 2.8 2.9

Over 30.8 69.2 0

Under 22.4 0 77.6

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 91.6 2.6 5.8

Over 24.8 75.2 0

Under 10.4 0.8 88.8

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 94.4 2.2 3.4

Over 50.4 49.6 0

Under 49.6 0 50.4

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 93 2.4 4.6

Over 37.6 62.4 0

Under 30 0.4 69.6

 48

3.6 Discussion of Results in Table 3.7 to 3.9

 Notice the similarities in results between MLE and MAP values with !σ =100 in

the prior; although the parameter values are slightly different, the predictive

performances as observed in the tables given above are exactly the same! This is due to

the fact that the prior standard deviation !σ =100 makes our prior distribution “too

broad”. It is so broad that our prior acts like a flat prior and we note that the MAP result

using a flat, i.e., infinitely broad prior is the same as the MLE result. In order to make use

of the MAP method more efficiently, let us decrease the standard deviation σ . The

following values are computed by choosing !σ =10 .

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

 49

!!!

W
MAP

acceleration

=

2.894
'0.006
0.001
0.001
'0.012

'1.266
0.014
0.012
'0.115
'0.070

'1.608
4.463e'05
'0.005
0.077
0.113

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (3.49)

Table 3.10: Confusion matrix for probabilistic discriminative classification with MAP

(!σ =10) using acceleration data.

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 95.2 2 2.8

Over 16.8 83.2 0

Under 21.2 0 78.8

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 88.4 1.4 10.2

Over 12 88 0

Under 9.6 0 90.4

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 97.2 1.8 1

Over 37.6 62.4 0

Under 39.2 0 60.8

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 92.8 1.6 5.6

Over 24.8 75.2 0

Under 24.4 0 75.6

	

 50

!!!

W
MAP

velocity

=

2.737
&0.003
0.0004
0.026
&0.026

&1.156
0.025
0.010
&0.179
&0.041

&1.568
&7.034e&05
&0.007
0.119
0.089

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (3.50)

Table 3.11: Confusion matrix for probabilistic discriminative classification with MAP

(!σ =10) using velocity data.

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 95.3 1.9 2.8

Over 19.2 80.8 0

Under 22.8 0 77.2

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 87.6 1.8 10.6

Over 14.4 85.6 0

Under 9.6 0 90.4

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 96 1.6 2.4

Over 46.4 53.6 0

Under 44 0 56

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 91.8 1.7 6.5

Over 30.4 69.6 0

Under 26.8 0 73.2

	

 51

!!!

W
MAP

displacement

=

2.678
'0.0001
'5.469e'05
0.024
'0.057

'0.911
0.052
0.012
'0.293
'0.061

'1.757
'0.015
'0.020
0.264
0.129

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (3.51)

Table 3.12: Confusion matrix for probabilistic discriminative classification with MAP

(!σ =10) using displacement data.

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 94.3 2.8 2.9

Over 30.8 69.2 0

Under 22.4 0 77.6

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 91.6 2.6 5.8

Over 24.8 75.2 0

Under 10.4 0.8 88.8

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 94.4 2.2 3.4

Over 50.4 49.6 0

Under 49.6 0 50.4

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 93 2.4 4.6

Over 37.6 62.4 0

Under 30 0.4 69.6

	

 52

3.7 Discussion of Results in Table 3.10 to 3.12

 Just like the case with !σ =100 , the MAP results with !σ =10 are the same as the

MLE results; although the parameter values are slightly different, the predictive

performances as observed in the tables given above are exactly the same! This is due to

the fact that the standard deviation !σ =10 (as chosen above for the prior over parameter

values) makes our new prior distribution “too broad” again. It is so broad that our prior

acts like a flat prior just like before. In order to make use of the MAP method more

efficiently, we decreased the standard deviation more drastically; we chose !σ =0.5 .

Once again, the results were not too different. Then, we decided to use !σ =0.05 and the

predictive performances changed notably. So, the following results are obtained using

!σ =0.05 .

 53

!!!

W
MAP

acceleration

=

0.810
&0.005
0.001
0.030
&0.027

&0.410
0.003
0.003
&0.048
&0.026

&0.399
0.002
&0.005
0.018
0.054

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (3.52)

Table 3.13: Confusion matrix for probabilistic discriminative classification with MAP

(!σ =0.05) using acceleration data.

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 89 4.2 6.8

Over 14.4 85.6 0

Under 12.8 0 87.2

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 70 5.6 24.4

Over 12 88 0

Under 3.2 0 96.8

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 83.6 7.4 9

Over 16 81.6 2.4

Under 24 0 76

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 76.8 6.5 16.7

Over 14 84.8 1.2

Under 13.6 0 86.4

	

 54

!!!

W
MAP

velocity

=

0.805
&0.007
0.002
0.037
&0.027

&0.399
0.006
0.002
&0.073
&0.016

&0.406
0.0003
&0.004
0.036
0.043

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (3.53)

Table 3.14: Confusion matrix for probabilistic discriminative classification with MAP

(!σ =0.05) using velocity data.

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 89.2 3.4 7.4

Over 11.2 88.8 0

Under 14.4 0 85.6

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 74.4 5.4 20.2

Over 17.6 82.4 0

Under 4 0 96

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 79 6.2 14.8

Over 13.6 86.4 0

Under 28.8 0 71.2

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 76.7 5.8 17.5

Over 15.6 84.4 0

Under 16.4 0 83.6

	

 55

!!!

W
MAP

displacement

=

0.783
'0.010
0.006
0.038
'0.044

'0.386
0.014
0.004
'0.113
'0.021

'0.396
'0.004
'0.010
0.075
0.065

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (3.54)

Table 3.15: Confusion matrix for probabilistic discriminative classification with MAP

(!σ =0.05) using displacement data.

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 87.4 5 7.6

Over 22.8 77.2 0

Under 13.6 0 86.4

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 78.6 8.8 12.6

Over 27.2 72.8 0

Under 8 0 92

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 79.8 5.6 14.6

Over 20.8 79.2 0

Under 32 0 68

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 79.2 7.2 12.6

Over 24 76 0

Under 20 0.4 80

 56

3.8 Discussion of Results in Table 3.13 to 3.15

 After choosing !σ =0.05 , we started to observe a significant increase in the

prediction performance for over- and under-prediction classes. Although there is some

reduction in predictive performance for okay-prediction class, the overall performance is

still acceptable, i.e., at lease 70% accuracy. This showed me the effect of the prior.

Choosing a very broad prior does not help us make efficient use of MAP technique. But

there is still the question of how to choose the appropriate σ . One quick answer would

be “experience”. Fortunately, we can use a method called automatic relevance

determination prior (ARD prior) where we treat σ as an unknown value and let it adapt

to the data set itself! This way, we will look for “sparseness” in our model. In the

upcoming section, we show the results of another powerful technique called Bayesian

Model Class Selection. Then, we move to the part where we use the ARD prior.

3.9 Classification – Posterior Predictive Distribution

 In the previous section of our work, we computed !!WMAP by determining the value

of !W which maximizes the posterior distribution, which is proportional to the product of

the likelihood and the prior distribution. In the multiclass classification case, we obtained

the likelihood as defined by (3.31). We chose a prior on the parameters !W , which we

defined by (3.38). Then we obtained the functional form of the posterior distribution over

the parameters !W . However, the posterior distribution over the parameters is a

complicated expression, as it is a product of many softmax functions and a Gaussian in

the form of the prior distribution. We wanted to “approximate” this posterior by a

Gaussian function with a mean centered at !!WMAP , which is the value that maximizes the

original functional form of the posterior. In other words, we decided to use Laplace

 57

approximation to approximate our original posterior by a Gaussian function. One might

think: “we can get !!WMAP by maximizing our original posterior. So, why do we want to

come up with a Gaussian approximation as well?” The reason is that we aim to be able to

make new predictions !!!p Ck T,X ,x() for a new input feature vector !x , rather than to know

the value of the parameters !W . That means we want to evaluate the posterior predictive

distribution, which is computed by marginalizing with respect to !W using its posterior

distribution. Approximating our original posterior over !W by a Gaussian makes

evaluating the predictive distribution easier.

 As I mentioned above, we obtain the posterior predictive distribution for class !Ck ,

for a newly observed input vector !x , when we marginalize with respect to the posterior

distribution over !W , which we decided to approximate by a Gaussian. Therefore, the

posterior predictive distribution is given by

 !!!p Ck T,X ,x() = p Ck T,X ,x ,wk()q WT,X()dW∫ (3.55)

where !!!q WT,X() is the approximation to the posterior distribution over !W which is a

Gaussian centered at !!WMAP , and the covariance matrix

!!!
SN

−1 = −∇∇lnp WT,X()
W=WMAP

 (3.56)

is given in terms of the Hessian matrix of the log posterior, which is a

!! D+1()K × D+1()K matrix, where !!D+1 is the number of parameters in !!wk and !K is the

number of classes. That is to say, this Hessian matrix is made of !! D+1()× D+1() size

blocks where the block !!j ,k is

 58

 !!!∇wk
∇w j

− lnp WT,X() (3.57)

with
!!
∇w j

 representing the gradient with respect to parameter vector !!w j (Bishop 2006).

 In practice, evaluating the integral in (3.55), even with only a few dimensional

parameter space, is not easy. Fortunately, this integral can be approximated by a discrete

weighted average of predictive PDFs for each model in a given class of models (Beck

and Katafygiotis 1998). Therefore, using the Laplace asymptotic approximation to

evaluate the integral in (3.55), we obtain

!!!

p Ck T,X ,x() = p Ck T,X ,x ,wk()q WT,X()dW∫
≈ p Ck T,X ,x ,ŵk() (3.58)

where !!! ŵk k
th column of MAP of !W .

3.10 Classification – Bayesian Model Class Selection (Method I)

 The following is a brief discussion of Bayesian model class selection, based on

lecture notes from a course titled “Stochastic System Analysis and Bayesian Updating”

taught by Prof. James L. Beck at Caltech. Also see (Beck and Yuen 2004) and (Beck

2010) for more details.

 Until now, I did not suggest many different models as far as the input feature

vector components are concerned; all types of features, i.e., derivative of kurtosis and

skewness – both horizontal and vertical channels were used in our models. This may lead

to over-parameterization, as I will explain shortly. In fact, I did not propose a robust

methodology to overcome the over-parameterization problem. I will do that in this

section. I will propose several stochastic models and compare them to choose the best

performing one among them; based on the data !! T,X{ } , I will compare alternative

 59

stochastic system models (SSMs) for my multiclass classification system. This is known

as Bayesian model (class) selection or comparison but I will use assessment.

Posterior Probability of Alternative Stochastic System Models

 Let us assume we have a set of !J candidate system models !! M1 ,,MJ{ } for a

system specified by proposition !M . !M also specifies a prior distribution over this set,

!!! P Mj M()∀j =1,, J . The posterior probability of each SSM is given by Bayes’ theorem:

!!!
P Mj T,X() = p T X ,Mj()P Mj M()

p T,X M() (3.59)

where the evidence (or marginal likelihood) for !
M j given by !! T,X{ } is !!!p T X ,Mj() :

 !!!p T X ,Mj() = p T X ,Wj ,Mj()p Wj M j()dWj∫ (3.60)

To indicate different !
M j might have different numbers of parameters, we use !!Wj there.

Looking at (3.59), we notice that the only data-dependent term is the evidence. The

posterior probability of each model class !!!p Mj T,X() is controlled by it.

Evaluation of evidence for !M

 We can use Laplace’s method to approximate the integral in (3.60) if !M is

globally identifiable and the number of data points is sufficiently large. If !!WMAP is the

MAP value for !W under !! T,X{ } , then

!!!

p T X ,M()≈ p T X ,WMAP ,M()p WMAP M() 2π()D2
HN WMAP()

1
2

 (3.61)

 60

where

 !!! HN W() −∇∇lnp T X ,W ,M()−∇∇lnp W M() (3.62)

Parsimonious Models and Ockham’s Razor

 Using a quantitative form of William of Ockham’s (Occam’s) razor will help us

avoid “over-parameterization” or “over-fitting” of the data when identifying model from

data. It quantifies Ockham’s philosophy that can be paraphrased as “Don’t multiply

entities unnecessarily.” It is obvious that we cannot solely use the fit of the model to the

data to implement Ockham’s razor because a more complex model (with addition of

more parameters) will always have an improved fit.

Principle of Model Parsimony

 We can rank the plausibility of a set of !J candidate models !! Mj{ }j=1
J for a

system based on data by their posterior probability using Bayes’ Theorem and this will

automatically penalize the fit to the data of each !
M j by a measure of the “complexity” of

the model.

Proof

Let us first introduce the following notation:

!!!

Evidence,!!!!!!!!!!!!!!!EV Mj T,X() p T X ,Mj()
Likelihood,!!!!!!!!!!!!L Wj T,X ,Mj() p T X ,Wj ,Mj()
Ockham!factor,!!!!OF Wj T,X ,Mj() ĤN Wj() −12 2π()

Dj
2 p Wj M j()

 (3.63)

where

 !!! ĤN Wj()HN Wj() −∇Wj
∇Wj

lnL Wj T,X ,Mj()−∇Wj
∇Wj

lnp Wj M() (3.64)

 61

 From Bayes’ Theorem:

!!!

lnP Mj T,X ,M() = lnEV Mj T,X()
O N()

+ lnP Mj M()

O 1()

+normalizing!constant (3.65)

Explanation using Laplace’s asymptotic approximation

 Let us assume each !
M j is globally identifiable under !! T,X{ } and !N is

sufficiently large. If we use !!Ŵ as an optimal parameter value for !
M j , e.g., !!WMAP

j() :

!!!

lnEV Mj T,X()≈ lnL Ŵj T,X()+ lnOF Ŵj T,X()
= lnL Ŵj T,X()− 12Dj lnN + 1

2Dj ln 2π()− 12ln
1
N
ĤN Ŵj() + lnp Ŵj M j()⎡

⎣
⎢

⎤

⎦
⎥

 (3.66)

The first term on the right hand side of (3.66) is !
O N() , the second term is !!O lnN() and

the last three terms are !!O 1() . Also note that !!!ĤN Ŵj() =O N() and:

!!!
ĤN Ŵj() = NIDj() 1

N
ĤN Ŵj()⎛

⎝⎜
⎞
⎠⎟
=NDj 1

N
ĤN Ŵj() (3.67)

The first term on the right hand side of (3.66), the log likelihood term of !
O N()

(!!!lnL Ŵj T,X()), gives a measure of the data fit for the model !
M j , which is specified by

!!!Ŵj . The second term
!!
−12Dj lnN , which is !!O lnN() , gives a bias against over-

parameterization; the number of parameters !
Dj can be considered a simple way of

measuring the complexity of !
M j .

 Recall that in Chapter 2 we indicated that we need at least one skewness measure

to be able to distinguish between over- and under-prediction cases. Keeping in mind that

 62

we should include at least one measure of skewness in all of the proposed models, we

obtained Table 3.16. Note that we assume each alternative model is equally plausible a

priori, so they have the same prior probability. Therefore, we can choose the optimum

model among the list of proposed ones by maximizing only the value of their evidence.

 Bayesian model class selection results with acceleration input are given in Table

3.17. Table 3.17 shows that the model 10 has the highest evidence value. The following

parameter values are computed for model 10 with acceleration input:

!!!

W
MAP

acceleration

=

0.814
0.023
)0.016
)0.004

)0.405
)0.055
)0.016
0.005

)0.409
0.031
0.032
)0.001

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (3.68)

Note that the structure of the matrix above is slightly different from the one used so far:

The columns still represent coefficients for different classes, i.e., first column is for okay-

prediction class, second column and third column are for over- and under-prediction

classes respectively and the first row is for the dummy input, i.e., !!x0 =1 . However, the

second row is the coefficient for derivative of horizontal skewness, the third row is for

derivative of vertical skewness, and the fourth row is for derivative of horizontal kurtosis.

 Bayesian model class selection results with velocity input are given in Table 3.18.

Table 3.18 shows that the model 10 has the highest evidence value. The following

parameter values are computed for model 10 with velocity input:

!!!

W
MAP

velocity

=

0.809
0.031
(0.017
(0.005

(0.398
(0.077
(0.008
0.008

(0.411
0.046
0.025
(0.002

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (3.69)

The structure of the matrix above is the same as for (3.68).

 63

 Bayesian model class selection results with displacement input are given in Table

3.19. Table 3.19 shows that the model 12 has the highest evidence value (with model 10

giving a fairly close second highest value). This model happens to be the one we have

been using for the displacement input since the beginning of our classification. One might

expect to see the same parameter values as (3.54) because these models are the same.

However, the optimization algorithm I used is a stochastic one and we may get different

parameter values even though the difference is not significant. The following parameter

values are computed for model 12 with displacement input:

!!!

W
MAP

displacement

=

0.783
0.038
'0.044
'0.010
0.006

'0.386
'0.113
'0.021
0.014
0.004

'0.396
0.075
0.065
'0.004
'0.010

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (3.70)

 64

Table 3.16: List of features included in alternative models.

Model

!!
d

dt
Horizontal!Skewness()

!!
d

dt
Vertical!Skewness()

!!
d

dt
Horizontal!Kurtosis()

!!
d

dt
Vertical!Kurtosis()

1 YES NO NO NO

2 NO YES NO NO

3 YES NO YES NO

4 YES NO NO YES

5 NO YES YES NO

6 NO YES NO YES

7 YES YES NO NO

8 YES NO YES YES

9 NO YES YES YES

10 YES YES YES NO

11 YES YES NO YES

12 YES YES YES YES

 65

Table 3.17: Bayesian model class selection results for acceleration input.

Model !!lnL !!lnOF !!lnEV

1 -‐796.6905878 -‐192.7533557 -‐989.4439435

2 -‐823.9070973 -‐188.880831 -‐1012.787928

3 -‐753.3949416 -‐218.6867016 -‐972.0816432

4 -‐750.6115197 -‐221.6867784 -‐972.2982981

5 -‐768.6552803 -‐222.1422717 -‐990.797552

6 -‐779.6578831 -‐213.1267318 -‐992.7846149

7 -‐775.8544848 -‐198.9565556 -‐974.8110404

8 -‐742.3141105 -‐232.81717 -‐975.1312805

9 -‐758.881568 -‐230.6736099 -‐989.5551779

10 -‐732.2044958 -‐224.7531183 -‐956.9576141

11 -‐739.7176866 -‐220.9872754 -‐960.704962

12 -‐728.4732518 -‐231.9182509 -‐960.3915028

 66

Table 3.18: Bayesian model class selection results for velocity input.

Model !!lnL !!lnOF !!lnEV

1 -‐804.1471411 -‐191.4777145 -‐995.6248557

2 -‐891.3299278 -‐174.8778011 -‐1066.207729

3 -‐756.8400798 -‐216.7472545 -‐973.5873343

4 -‐770.7451819 -‐214.740959 -‐985.4861409

5 -‐819.9112367 -‐213.4734752 -‐1033.384712

6 -‐856.6070691 -‐196.2207625 -‐1052.827832

7 -‐790.3019239 -‐197.4815243 -‐987.7834483

8 -‐751.2525198 -‐228.3901151 -‐979.6426349

9 -‐815.0599131 -‐220.5028865 -‐1035.5628

10 -‐743.1684811 -‐222.7195605 -‐965.8880416

11 -‐762.8911059 -‐216.1464477 -‐979.0375535

12 -‐741.937857 -‐229.4082319 -‐971.3460889

 67

Table 3.19: Bayesian model class selection results for displacement input.

Model !!lnL !!lnOF !!lnEV

1 -‐869.3012837 -‐180.4653091 -‐1049.766593

2 -‐989.0176498 -‐156.287171 -‐1145.304821

3 -‐803.7357577 -‐209.6282134 -‐1013.363971

4 -‐837.2586776 -‐202.5986302 -‐1039.857308

5 -‐905.2722922 -‐198.4699835 -‐1103.742276

6 -‐949.0037145 -‐175.5844723 -‐1124.588187

7 -‐855.8888103 -‐187.0384564 -‐1042.927267

8 -‐801.9021195 -‐219.0314594 -‐1020.933579

9 -‐887.0434732 -‐203.7117187 -‐1090.755192

10 -‐792.8375594 -‐215.1139263 -‐1007.951486

11 -‐820.2266283 -‐204.006558 -‐1024.233186

12 -‐788.3007944 -‐219.1738527 -‐1007.474647

	

 68

3.11 Classification – Sparse Bayesian Learning (Method II)

 In this section, we describe Sparse Bayesian Learning (SBL) (Tipping 2001), as

used in the relevance vector machine (RVM) for sparse kernel regression and

classification (Bishop 2006) and which we use in the reality check algorithm (RCA) for

the actual earthquake early warning system, i.e., CISN ShakeAlert. We again use the

linear probabilistic model where we computed maximum posterior (MAP) values for the

parameters. However, there is an important distinction: we use a prior where the

precision (inverse variance) for each parameter is also a variable, i.e., it is not fixed and it

will be estimated as a function of the training data. This separate variable is called a

hyperparameter.

 Let us start with introducing the ARD (Automatic Relevance Determination)

prior:

!!!
p W A() = p wk ak()

k=1

K

∏ (3.71)

where

!!!
p wk ak() = p wkd αkd()

d=0

D

∏ (3.72)

where

 !!p wkd αkd() =Ν wkd 0,αkd
−1() (3.73)

Then, we obtain

!!!

p W A() = p wkd αkd()
d=0

D

∏
k=1

K

∏

=
αkd

2π
exp −

αkd

2 wkd
2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪d=0

D

∏
k=1

K

∏
 (3.74)

where

 69

!!!

A =

α10 α20 αK0

α11

α1D α2D αKD

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (3.75)

Taking the logarithm of (3.74), we obtain

!!!

lnp W A() = ln αkd

2π

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
−
αkd

2 wkd
2

d=0

D

∑
k=1

K

∑

= ln
d=0

D

∑
k=1

K

∑ αkd()− ln 2π()−αkd

2 wkd
2

= 1
2lnd=0

D

∑
k=1

K

∑ αkd()− 12ln 2π()−αkd

2 wkd
2

 (3.76)

 We shall see that when we maximize the evidence with respect to these

hyperparameters, a significant portion of them go to infinity, and the corresponding

weight parameters then have posterior distributions with zero mean and variance so they

are concentrated at zero, causing their corresponding basis functions to have coefficients

equal to zero. Thus, the basis functions associated with these parameters play no role in

the predictions made by the model, that is, they are effectively pruned out, resulting in a

sparse model (Bishop 2006).

 We want to maximize the posterior over !A :

 !!!p A T,X()∝p T A ,X()× p A() (3.77)

Let us define the hyperprior over !A . We choose Gamma distributions as suitable priors

(Bishop and Tipping 2003):

!!!
p A() = p ak()

k=1

K

∏ (3.78)

where

!!!
p ak() = Gamma αkd a,b()

d=0

D

∏ (3.79)

where

 70

 !!Gamma α a,b() = Γ a()−1baα a−1e−bα (3.80)

then, we obtain

!!!
p A() = Gamma αkd a,b()

d=0

D

∏
k=1

K

∏ (3.81)

At the end of this process, we will obtain equations to re-estimate the hyperparameters.

 Next, we obtain !!!p T X ,A() by first deriving the posterior over all unknowns,

given the data (Bishop and Tipping 2003):

 !!!p W ,A T,X() = p W A ,T,X()p A T,X() (3.82)

!!!
p W A ,T,X() = p TW ,A ,X()p W A()

p T A ,X() (3.83)

!!!
p T A ,X() = p TW ,A ,X()p W A()

p W A ,T,X() (3.84)

Maximizing (3.77) is equivalent to minimizing its negative logarithm:

!!!

− lnp A T,X() = − lnp T A ,X()− lnp A()+ const
= − lnp T W * ,A ,X()− lnp W * A()+ lnp W * A ,T,X()− lnp A()+ const (3.85)

Define !!W* as the MAP value for the posterior over !W for a fixed value of !A .

Therefore, !!W* is calculated by minimizing

 !!!E W() = − lnp WT,X ,A() = − lnp T X ,W ,A()− lnp W A()+ const (3.86)

where
!!
p W A() is given by (3.71).

The third term on the right hand side of (3.85) can be approximated by Laplace’s

asymptotic approximation as

!!!
lnp W A ,T,X()≈ ln Ν WW* ,H W*()−1⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 (3.87)

 71

Substituting for !W by its MAP value !!W* :

!!!
lnp W* A ,T,X() = 12ln H W*() + const (3.88)

where !!!H W*() is the Hessian matrix evaluated at !!W* and given by:

 !!H W() =∇∇E W() (3.89)

Therefore, we can write (3.85) using !!E W() and (3.88) as

!!!
− lnp A T,X() = E W*()+ 12ln H W*() − lnp A()+ const (3.90)

In order to find the equation that will update the hyperparameters !A , we take the

derivative of (3.90) with respect to individual hyperparameters !αkd . We see that!!!E W*()

is a function of !αkd in two ways: a direct way through the terms involving the prior on

!W and indirectly by the MAP value !!W* , which depends on the value of !αkd . However,

taking advantage of the fact that !!W* is the MAP value so that the second part has

derivative zero (Zhang and Malik 2005):

!!!

∂E W*()
∂αkd

=
∂E W*()
∂αkd fixed!W*

+
∂E W*()
∂W*

fixed!α
0

∂W*

∂αkd

=
∂E W*()
∂αkd fixed!W*

+0∂W
*

∂αkd

= 12 W*
kd −

1
αkd

⎛

⎝⎜
⎞

⎠⎟

 (3.91)

We next make use of the expression provided in Bishop, 2006, C.22:

!!!

∂ln A
∂x

=Tr A−1 ∂A
∂x

⎛
⎝⎜

⎞
⎠⎟

 (3.92)

to get the derivative of the second term in (3.90):

 72

!!!

1
2

∂
∂αkd

ln H W*() = 12Tr H W*()−1 ∂H W*()
∂αkd

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= 12 H W*()−1⎡
⎣⎢

⎤
⎦⎥kd

= 12Σkd

 (3.93)

where !Σkd is the !
k×d()th diagonal element of !!!H W*()−1 .

Finally, let us take a look at derivative of the third term in (3.90) with respect to !αkd

(Zhang and Malik 2005). From (3.81), we have

!!!

∂ − lnp A()()
∂αkd

= b− a
αkd

 (3.94)

We set the final form of the derivatives to zero, and then we obtain:

!!!
αkd

NEW =
1−αkdΣkd +2a
W*

kd +2b
 (3.95)

We use Jeffrey hyperpriors:

 !!a= b=0⇒ p αkd()∝αkd
−1 (3.96)

Therefore,

!!!
αkd

NEW =
1−αkdΣkd

W*
kd

 (3.97)

An iterative procedure is used to find the MAP values. We first assign initial values to !A ,

and then evaluate !!W* for those values by minimizing !!!E W*() . Then, we re-estimate !A

using (3.97). After that, we re-estimate !!W* , and so on until a convergence criterion is

satisfied. We can stop the iterations when the change in the norm of !!W* (converted into a

column vector form) is less than 5% compared to the previous iteration. Each column of

!W represents the parameter values for different classes: the first column is for the okay-

prediction, the second column is for the over-prediction, and the third column is for the

under-prediction class. The input feature vector is chosen as:

 73

!!!

x =

1
d
dt

Horizontal!Skewness()
d
dt

Vertical!Skewness()
d
dt

Horizontal!Kurtosis()
d
dt

Vertical!Kurtosis()

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (3.98)

	
Therefore, when a parameter is pruned out from the model, the corresponding input

vector element (of the corresponding) class will not be used in the predictions.

 Using the above convergence criterion, we obtain the following results for

acceleration input:

!!!

W
MAP

acceleration

=

4.176
'1.182e'08
3.291e'06
'0.004
3.413e'07

0.005
'0.117
'0.057
0.016
0.011

'0.159
0.082
0.096
3.459e'09
'0.002

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (3.99)

	
From (3.99) we can prune out !!!WMAPacceleration

2,1() ,!!!WMAPacceleration
3,1() , !!!WMAPacceleration

5,1() , and

!!!WMAPacceleration
4,3() from the model by setting them to zero.

 Using the convergence criterion, we obtain the following results for velocity

input:

!!!

W
MAP

velocity

=

3.916
'3.212e'05
0.0002
'0.001
3.673e'09

0.009
'0.212
'0.006
0.028
0.009

'0.248
0.102
0.091
8.984e'08
'0.003

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (3.100)

 74

Similar to the acceleration input case, we can prune out the following parameters:

!!!WMAPvelocity
2,1() , !!!WMAPvelocity

3,1() , !!!WMAPvelocity
5,1() , and !!!WMAPvelocity

4,3() . Note that

!!!WMAPvelocity
3,1() is not as small as the corresponding value in the acceleration case given in

(3.99), but it is relatively small compared to the rest of the parameter values in the first

column in (3.100).

 Using the convergence criterion, we obtain the following results for

displacement input:

!!!

W
MAP

displacement

=

3.597
'1.623e'06
'0.001
8.383e'05
'2.521e'09

0.026
'0.316
'0.003
0.0530
0.010

'0.701
0.227
0.168
'0.013
'0.017

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (3.101)

We can therefore prune out the following parameters: !!!WMAPdisplacement
2,1() , !!!WMAPdisplacement

4,1()

and !!!WMAPdisplacement
5,1() .

 In the next few chapters, we analyze the performances produced by the models
given above.

 75

Chapter 4

Case Studies – Okay Predictions

 In this chapter, we demonstrate the performance of the Reality Check Algorithm

(RCA) via several example case studies. We start with two trivial examples of okay-

predictions, and then we explain the performance on one of the examples with small

perturbations in arrival times of the predicted envelopes. We compute the class

probabilities by using the Sparse Bayesian Learning (SBL) technique (Method II). In

order to show the superiority of Sparse Bayesian Learning (the models with the ARD

prior) over the classification model chosen by applying Ockham’s razor on a given set of

models (Method I), comparison of their performances are displayed in several figures

below.

 The following is a general figure description, which is used in the following

figures where necessary.

General figure description:

Left panel: first row shows the seismogram recorded by the seismic station whose

identification information is given above (seismogram in blue and its envelope in red);

note that although only the vertical channel is shown in the plot for demonstration

purposes, both vertical and horizontal channels were used in RCA computations; the

second row shows both the predicted and observed envelopes; the third row shows the

test function after high-pass filtering by the values given in Chapter 2. Right panel shows

the probability values for each class with a different color and marker.

 76

4.1 Okay-Prediction Examples

 Before we start demonstrating RCA’s performance, we clarify the definition of

okay-prediction used in this thesis. According to the Decision Module Review Tool

adopted by the scientists working on the California earthquake early warning project, a

prediction made by the Decision Module (DM) is considered accurate if the origin time

error is less than or equal to 30 seconds, and the location error is less than or equal to 100

kilometers, relative to the Advanced National Seismic System (ANSS) composite

catalogue (this is the default match criteria in the DM Review Tool Web Page

Description for the CISN ShakeAlert project). Because our algorithm is sensitive enough

to classify predictions with these amounts of error as inaccurate and RCA has the

potential to be a stand-alone algorithm, we use the ANSS catalogue values as the location

and magnitude when creating the predicted envelopes. We also match the P-wave arrival

times of the predicted envelopes with that of observed ones for seismic stations of

interest. By doing this, we aim to decrease the margin of error associated with RCA’s

performance. We indicate when we do not follow this pattern. For quantitative definition

of the okay-predictions, please see Chapter 2.

4.1.1 Okay-prediction example 1

 Let us start with an event for which the ANSS catalogue indicates the following

information gathered from the Southern California Earthquake Data Center:

Event ID: 37314320

Magnitude: 4.89

Latitude: 31.5237

Longitude: -115.6743

 77

We show the performance of RCA for the seismic station with the following information:

Network: CI

Station: JEM

Type: Strong Motion Seismometer

4.1.2 Discussion of okay-prediction example 1

 Figures 4.1 to 4.6 show results of Method I and Method II on the okay-prediction

example 1. Observe the noisy nature of the results for the models chosen using Method I.

These models have significant fluctuations within each class compared to the results we

computed using the models from Method II. This observation can be made regardless of

the frequency content of the ground motion; that is, acceleration, velocity, and

displacement all show significant fluctuations within each class probability values that

are computed using Method I, while Method II probability values are close to each other

for a given class in comparison. In addition to the noisy looking values, this particular

technique resulted in a smaller gap between class probabilities compared with the ARD

prior models, which show greater separation between the accurate class and the other

two.

 Furthermore, it is observed that the displacement based results are the least

accurate among all three, i.e., acceleration, velocity, and displacement. The decrease in

performance is more significant in Figure 4.3 where the computations are done using

Method I. In fact, as far as Method II is concerned, the RCA performance with

displacement input is relatively acceptable, as clearly seen in Figure 4.6 where the

computations are performed using a model with the ARD prior. However, the

discrepancy associated with displacement indicates that sampling the envelopes of

 78

Figure 4.1: Reality Check Algorithm’s performance plot for the okay-prediction

example 1 computed using (3.68) from acceleration input using Method I. For description

of the figure, see “General figure description” given above.

 79

Figure 4.2: Reality Check Algorithm’s performance plot for the okay-prediction

example 1 computed using (3.69) from velocity input using Method I. For description of

the figure, see “General figure description” given above.

 80

Figure 4.3: Reality Check Algorithm’s performance plot for the okay-prediction

example 1 computed using (3.70) from displacement input using Method I. For

description of the figure, see “General figure description” given above.

 81

Figure 4.4: Reality Check Algorithm’s performance plot for the okay-prediction

example 1 computed using (3.99) from acceleration input using Method II. For

description of the figure, see “General figure description” given above.

 82

Figure 4.5: Reality Check Algorithm’s performance plot for the okay-prediction

example 1 computed using (3.100) from velocity input using Method II. For description

of the figure, see “General figure description” given above.

 83

Figure 4.6: Reality Check Algorithm’s performance plot for the okay-prediction

example 1 computed using (3.101) from displacement input using Method II. For

description of the figure, see “General figure description” given above.

 84

ground motions at one-second intervals (see Chapter 2) may not be suitable for low-

frequency content, i.e., displacement ground motions. One may want to increase the

number of seconds at which the displacement envelopes are created. Moreover, we may

need another measure of misfit, which would somehow guarantee an acceptable

prediction class when combined with RCA results. We introduce such a new method

below.

4.1.3 Okay-prediction example 2

 We continue the RCA demonstration with another event.

 Recall that the predicted P-wave arrival time is matched with that of the observed

one.

Event ID: 37301704

Magnitude: 4.25

Latitude: 34.6173

Longitude: -118.6302

I will show the performance of RCA for the seismic station with the following

information:

Network: CI

Station: SLM

Type: Strong Motion Seismometer

4.1.4 Discussion of okay-prediction example 2

 The same pattern of ‘noisy results’ versus ‘less noisy results’ can be observed in

Figures 4.7 to 4.12 as in Figures 4.1 to 4.6. This observation shows us that the Method II

is superior to Method I.

 85

Figure 4.7: Reality Check Algorithm’s performance plot for the okay-prediction

example 2 computed using (3.68) from acceleration input using Method I. For description

of the figure, see “General figure description” given above.

 86

Figure 4.8: Reality Check Algorithm’s performance plot for the okay-prediction

example 2 computed using (3.69) from velocity input using Method I. For description of

the figure, see “General figure description” given above.

 87

Figure 4.9: Reality Check Algorithm’s performance plot for the okay-prediction

example 2 computed using (3.70) from displacement input using Method I. For

description of the figure, see “General figure description” given above.

 88

Figure 4.10: Reality Check Algorithm’s performance plot for the okay-prediction

example 2 computed using (3.99) from acceleration input using Method II. For

description of the figure, see “General figure description” given above.

 89

Figure 4.11: Reality Check Algorithm’s performance plot for the okay-prediction

example 2 computed using (3.100) from velocity input using Method II. For description

of the figure, see “General figure description” given above.

 90

Figure 4.12: Reality Check Algorithm’s performance plot for the okay-prediction

example 2 computed using (3.101) from displacement input using Method II. For

description of the figure, see “General figure description” given above.

 91

 Similar to the first okay-prediction example, displacement results are the most

problematic ones, regardless of the method we used. Unlike the first okay-prediction

example, however, unacceptable performance of displacement is observed before the

earthquake waves reach the seismic station; in other words, the errors for the

displacement results are in the part of the record where there is only supposed to be noise.

Although the over-prediction probability values observed in the displacement results of

the second method (see Figure 4.12) are comparable to the corresponding okay-prediction

values, i.e., over-prediction probability at seconds 247 and 369 are approximately 0.545

and 0.548 respectively, while the corresponding okay-prediction values are

approximately 0.454 and 0.451, these results alone might be misleading if acceleration

and velocity results are not taken into consideration. On the positive side, this situation

proves that the algorithm is very sensitive to the changes between observed and predicted

values, as shown in the zoomed-in versions of Figure 4.12 (see Figures 4.13 and 4.14),

that is to say, even when the noise levels at a station change more than enough to classify

departure from normality, RCA is able to detect that!

 The discrepancies observed in the displacement results are not the only ones as far

as the second okay-prediction example is concerned. Figure 4.7, which is based on

acceleration input, shows an under-prediction at 455th second of the record. The under-

prediction probability does not exceed that of the okay- and over- predictions in either

velocity or displacement results for both Method I and Method II. In fact, the acceleration

results for Method II (see Figure 4.10) indicate accurate prediction. This under-prediction

signal is due to a slight increase in the observed noise level as can be seen in the zoomed-

in version of Figure 4.7 (see Figure 4.15). If the acceleration result of the first method

 92

Figure 4.13: Reality Check Algorithm’s performance plot for the okay-prediction

example 2 computed using (3.101) from displacement input using Method II (zoomed-in

on the first over-prediction indication). For description of the figure, see “General figure

description” given above.

 93

Figure 4.14: Reality Check Algorithm’s performance plot for the okay-prediction

example 2 computed using (3.101) from displacement input using Method II (zoomed-in

on the second over-prediction indication). For description of the figure, see “General

figure description” given above.

 94

were the only measure we had, we would make a misclassification. Fortunately, we have

velocity and displacement results of the first method contradicting that of acceleration. In

addition to that, even the acceleration results of the second method (Figure 4.10) provide

accurate classification as we mentioned above. The change in the noise levels could be so

high that all measures may indicate an under-prediction (or over-prediction). For that

reason, we suggest another measure of misfit, which will guarantee better performance

for the predictions of RCA, in the upcoming sections of this chapter.

4.1.5 Okay-prediction example 1 with arrival time perturbations

 Next, we investigate what happens to the RCA performance if the arrival times of

P-waves are slightly miscalculated. This form of miscalculation could be due to location

and/or origin time errors. First, we consider the case where the predicted P-wave arrives

one second earlier than the observed one. Then, we look at the case where the predicted

P-wave is one second late. Besides the perturbations mentioned above, the examples of

this section are identical to the ones presented for okay-prediction example 1.

 The purpose of these arrival time perturbations is to point out the need for another

measure of misfit. This measure, however, will not be enough to make accurate

classifications by itself; but the new and the already presented RCA will ‘complement’

each other’s weaknesses.

 From this point on, we only show the figures for Method II, i.e., the results we

computed using the models with the SBL technique.

 95

 Figure 4.15: Reality Check Algorithm’s performance plot for the okay-prediction

example 2 computed using (3.68) from acceleration input using Method I. For description

of the figure, see “General figure description” given above.

 96

 Let us start with the case where the predicted P-wave arrives one second earlier.

As it can be seen in Figures 4.16 to 4.18 (in addition to Figure 4.19 which is the zoomed-

in and highlighted version of Figure 4.17), RCA indicates an over-prediction. This is due

to the fact that at the time of over-prediction indication, the observed ground motion

envelope value is just the noise level at the station, whereas the predicted envelope

counterpart is the P-wave value, which is significantly larger than the observed value.

This perturbation alone can make RCA indicate an over-prediction as if an entire

earthquake is assumed to exist but the assumption was wrong, that is, RCA, in this

scenario, indicates an over-prediction as it would in the case of a false alarm. This is not

acceptable because looking at the ‘overall’ fit tells us that the event is quite accurately

predicted except for the arrival time. Therefore, we need a measure of the ‘overall’ fit in

addition to RCA. The keyword is ‘overall’!

 Note that these figures also show that displacement alone does not indicate an

over-prediction even though the probability of over-prediction increases significantly.

 Next, we make the predicted P-wave arrive one second later than the observed

one. In this scenario, while the observed envelope value at the time of P-wave arrival is

significantly larger than the noise level, the corresponding predicted envelope value is

still the noise! It is an example of under-prediction where the observed value is much

higher than the predicted value. Figures 4.20 to 4.23 show that displacement is the only

ground motion that indicates under-prediction for Method II. In fact, even though the

corresponding acceleration and velocity under-prediction probabilities increase

noticeably, the governing class of okay-, over-, and under-prediction is still the okay-

prediction one.

 97

Figure 4.16: Reality Check Algorithm’s performance plot for the okay-prediction

example 1 (with early predicted P-wave arrival) computed using (3.99) from acceleration

input using Method II. For description of the figure, see “General figure description”

given above.

 98

Figure 4.17: Reality Check Algorithm’s performance plot for the okay-prediction

example 1 (with early predicted P-wave arrival) computed using (3.100) from velocity

input using Method II. For description of the figure, see “General figure description”

given above.

 99

Figure 4.18: Reality Check Algorithm’s performance plot for the okay-prediction

example 1 (with early predicted P-wave arrival) computed using (3.101) from

displacement input using Method II. For description of the figure, see “General figure

description” given above.

 100

Figure 4.19: Reality Check Algorithm’s performance plot for the okay-prediction

example 1 (with early predicted P-wave arrival) computed using (3.100) from velocity

input using Method II (zoomed-in on the early predicted P-wave arrival). For description

of the figure, see “General figure description” given above.

 101

Figure 4.20: Reality Check Algorithm’s performance plot for the okay-prediction

example 1 (with late predicted P-wave arrival) computed using (3.99) from acceleration

input using Method II. For description of the figure, see “General figure description”

given above.

 102

Figure 4.21: Reality Check Algorithm’s performance plot for the okay-prediction

example 1 (with late predicted P-wave arrival) computed using (3.100) from velocity

input using Method II. For description of the figure, see “General figure description”

given above.

 103

Figure 4.22: Reality Check Algorithm’s performance plot for the okay-prediction

example 1 (with late predicted P-wave arrival) computed using (3.101) from

displacement input using Method II. For description of the figure, see “General figure

description” given above.

 104

Figure 4.23: Reality Check Algorithm’s performance plot for the okay-prediction

example 1 (with late predicted P-wave arrival) computed using (3.101) from

displacement input using Method II (zoomed-in on the late predicted P-wave arrival). For

description of the figure, see “General figure description” given above.

 105

 There is an interesting lesson we can draw from these perturbation examples:

while displacement is very sensitive to under-prediction cases and not so sensitive to

over-prediction cases, the situation is reversed for acceleration and velocity, that is,

acceleration and velocity are more sensitive to over-prediction cases than they are to

under-prediction cases! Nevertheless, it is observed that a slight perturbation in the

predicted P-wave arrival may cause an under-prediction classification by even Method II

(in the case of displacement), as if the system completely missed an earthquake. Notice

that, similar to the scenario in which the predicted P-wave arrives earlier, the ‘overall’ fit

between the observed and predicted envelopes is somewhat acceptable. In light of these

results for perturbations, it is even more clear that we should use a measure of ‘overall’

misfit, in addition to the current RCA computations.

 Before we explain the new method, we would like to draw attention to an

interesting difference between over- and under-prediction cases: when we made the

predicted envelope arrive earlier (later), we did not just make the P-wave arrive earlier

(later), we actually made the entire predicted envelopes, i.e., P- and S-wave envelopes

combined with the noise envelope arrive earlier (later). Therefore, not only the P-wave

arrival times between observed and predicted envelopes are different, but also the S-wave

arrival times are different from each other. S-wave arrival time mismatch in the late

arrival case can be observed in Figures 4.20 to 4.23 as the impulse-like pattern seen at the

expected arrival time of the S-waves. However, the mismatch between the S-waves of

observed and predicted envelopes in the case of early arriving predicted envelopes is not

observed in Figures 4.16 to 4.19! The explanation is simple: the amplitude of the

observed S-wave is larger than that of the predicted one. In the case of the early arrival,

 106

the two values that are used to compute the test function, i.e., observed P-wave coda

amplitude and predicted S-wave amplitude are not too different from each other. But in

the case of late arrival, the two values that are used to compute the test function, i.e.,

observed S-wave amplitude and predicted P-wave coda amplitude are significantly

different. This is the reason that we can observe the second impulse-like signal in the late

arrival case.

4.2 A Supplementary Method for the Reality Check Algorithm

 In the previous section, we showed the need for a measure of misfit that would

supplement the RCA results. The new method will be used as a guaranteeing agent for

the RCA messages generated for earthquake early warning systems.

 The first thing that comes to mind is to use the RCA results on the test function

computations after a prediction is made! Because a test function after a prediction is

made can be considered as a measure of ‘whatever the earth gives us minus whatever the

system predicts’ which is supposed to be zero in the ideal case, any value that is too

nonzero should be an indication of something wrong. Also, because we have a

classification scheme for such a measure, i.e., test function, we could try using the same

classification on it. However, RCA did not perform well on the test functions after a

prediction is made. This is due to the fact that oscillations among test function values

after a prediction is made are so large that RCA is not able to detect outliers. For that

reason, we need a different measure of misfit.

 We have showed above that small perturbations in wave arrival times may cause

RCA to indicate wrong predictions even though the ‘overall’ form of the event is

accurately predicted. Therefore, we need a measure that checks the ‘overall’ fit between

 107

observed and predicted envelopes. Thus, if there is any isolated impulse-like test function

values, as there would be in case of small arrival time perturbations, the new measure

should ignore them. This can be achieved by considering the current time test function

value in relation to the previous test function values. Although we somehow already do

that with the help of kurtosis and skewness, we also need make sure that an impulse-like

test function value does not have too much impact on the results. As a result of the

previous considerations for the new measure, we propose to use a running mean of the

test function instead of the test function values directly. Because a running mean can be

considered as a low-pass filter, by doing this, we make sure that the effects of an isolated

impulse-like test function value are diminished. Of course, like with any running mean,

we need to decide the length of the window that will slide across the continuous

computations. For the time being, let us call this window length “running-mean-window-

length”. A specific value will be given later.

!!
Test!Function!With!Running!Mean N() !=!

Test!Function
n=N−M+1

N

∑ n()
M

 (4.1)

	
where !M is the running-mean-window-length. Remembering that φ denotes the test

function defined in Chapter 2, let !φr denote the test function with the running mean.

Then, (4.1) can be written as

!!
φr NΔt() =

φ nΔt()
n=N−M+1

N

∑
M

 (4.2)

	
 So far, we have a way to make the current test function value be related to the

previous test function values without using kurtosis and/or skewness. The next step is to

 108

make the new measure detect irregularities, and more importantly, ignore the irregularity

if it is due to a small wave-arrival-time perturbation. Since having a running mean

through the test function after making a prediction smoothens the test function, traditional

kurtosis and/or skewness computations did not perform well. As a result, a new method

of computing moments of signal data is proposed based on classical mechanics, or to be

more accurate, statics that are used in Civil Engineering. This new method of computing

moments of time series data is the backbone of our supplementary technique to the RCA,

and it is explained below. We call our method “Karakus-Heaton Moment of Signal

Data”.

4.2.1 Karakus-Heaton Moment of Signal Data

 Let us start with defining our concept of moment. In statics, moment is defined as

a quantity with a rotational direction, and a magnitude at a location. The direction of the

moment depends on the convention one chooses; we choose the clockwise direction as

positive and counter-clockwise direction as negative. The magnitude of a moment (in 2-

D) at a location is the load amplitude times the perpendicular distance, i.e., moment arm

between the application point of the load and the location at which the moment is

computed (see Figure 4.24).

!!
Moment!at!the!dashed!line!=! P1L1 +P2L2 −P3L3 −P4L44 (4.3)

	
Notice in (4.3) how we use the convention of clockwise and counterclockwise rotation:

loads to the right of the dashed line in the figure tend to rotate the beam in the clockwise

direction, so they have the positive sign, whereas the loads on the left side of the dashed

line tend to rotate the beam in the counterclockwise direction, and therefore have the

negative sign. We can think of a set of test function values for a given length of a window

 109

as point loads on a beam that is supported right at the middle. In that case, the middle of

the beam would correspond to the mid-location of the window. Amplitudes of the test

function values would be the point load amplitudes, and the difference between the mid-

location of the window, where the support is assumed to be, and the test function value

location in time would be the moment arm. So, computing the moment at the mid-

location would be nothing but multiplying the test function values by their moment arms,

and then doing a summation using the convention given above.

 Our original idea of computing the moments of signals was to find an alternative

to kurtosis computations. For this reason, we make the Karakus-Heaton Moment of

Signal Data computations resemble that of higher order statistics; in the following section

we introduce the concepts of ‘order of the moment’ and ‘normalizing factor’.

 We define our ‘order of the moment’ as the power to which we raise the

individual moments due to point loads (test function values), that is, while equation (4.3)

is considered a first order moment calculation, an sth order moment computation would

be computed by the following:

!!
sth !moment!at!the!dashed!line!=!

P1L1()s + P2L2()s + −P3L3()s + −P4L4()s
4 (4.4)

	
 In order to generalize the result of (4.4), let us think of computing the sth order

Karakus-Heaton Moment of Signal Data for a set of !N test function values with running

mean. Let !Ln denote the location of test function value
!
φrn within !N values such that

!! L1 =1,L2 =2,,LN =N . The sth order Karakus-Heaton Moment of Signal Data is denoted

!KHMs , and is defined by:

 110

Figure 4.24: Static moment computation illustration in 2D. The purpose of this figure is

only to clarify how the Karakus-Heaton Moment of Signal Data is computed and to

present a physical representation of our concept of moment. Karakus-Heaton Moment of

Signal Data is computed at the vertical section indicated by the dashed line using the

formula in (4.3).

	

 111

!!

KHMs =

φrn Ln −
N
2

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

s

n=1

N

∑
N

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

KHM2()
s
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (4.5)

	
Notice that !!KHM2 is used in the denominator raised to the appropriate power so that both

the numerator and the denominator have the same units. This process is done to simulate

the higher order statistic computations where the fourth and third moments of data about

the mean value are divided by the variance of the data raised to such a power that

resulting value is dimensionless (DeCarlo 1997). Therefore, we do not directly compute

the sth moment of the data, but we also normalize the computations by using an

appropriate power of the 2nd moment of the same data. The expression in the denominator

of (4.5) is called the ‘normalizing factor’.

 The higher order Karakus-Heaton Moment of Signal Data, !KHMs , is devised to

make exceptional (out of the ordinary) values in test function computations stand out.

This idea can be best explained by looking at Figure 4.25. By using the logarithm,

differences among such values are visually suppressed. In contrast, we aim to visually

amplify the differences among test function values, when there are exceptional values

after taking the mean. In this case, they will stand out in the !KHMs computations,

provided they are not isolated. By isolated, we mean an impulse-like test function value

due to small perturbations in arrival time. If we miss an entire event, there will be several

 112

exceptional values, which will not go away after taking the mean. Then, the !KHMs

computations will make these values easily detectable.

 The following steps describe our new method:

1. First, we get rid of an isolated impulse-like value in the test function

results with the help of a running mean.

2. Then, we apply a high-pass filter with the same parameters as used in

Chapter 2. (Remember that we used that filter to get rid of long period

trends because of coda mismatch between predicted and observed

envelopes).

3. Then, we apply the !KHMs computation on the results of step 2.

4. Finally, we take the time derivative of the results of step 3 (similar to

taking the time derivative of kurtosis and skewness results in Chapter 2).

 Although one can argue that the optimum values of window lengths for the

running mean, order, and window length of the !KHMs computation can benefit from

Bayesian regression analysis, experience with several examples, including those

presented in this chapter, suggests the following specific values for relatively good

results:

!

Window!length!of!running!mean!=!40sec
Order!of!KHM!=!10

Window!length!of!KHM!=!80sec
 (4.6)

 113

Figure 4.25: Comparison of taking logarithm with applying Karakus-Heaton Moment

of Signal Data. Horizontal axis in the black squares shown above can be considered as

time; then, the importance of using Karakus-Heaton Moment of Signal Data for real-time

applications becomes more pronounced because an out-of-place value will stand out as

soon as it is detected.

	

 114

 The !KHMs results, which can be seen in the second row on the right column of

Figures 4.26 to 4.28, are virtually the same for all cases, i.e., okay-prediction and okay-

prediction with perturbations. Because a running mean can also be considered as a low-

pass filter, the test function looks free of isolated impulses (Figures 4.27 and 4.28) and

much smoother than before, as it can be seen in the figures in the second row on the left.

Because there are no further significant mismatches between observed and predicted

values, !KHMs does not produce values that are significantly different from each other,

that is, the ‘overall’ fit between observed and predicted envelopes is confirmed.

Therefore, the new method we propose gives the ability to distinguish a small

perturbation from a total missed event and a total false alarm.

 When we visit the examples of over- and under-prediction in the next chapters,

the differences among the !KHMs values will be much larger than those seen in Figures

4.26 – 4.28.

 115

Figure 4.26: Performance of the supplementary method to RCA for the okay-prediction

example 1. Left panel: first row shows the test function after high-pass filtering by the

values given in Chapter 2; second row shows the test function values after applying a

running mean and a high-pass filter by the values given in Chapter 2. Right panel: first

row shows the probability values computed using (3.99) from acceleration input using

Method II for each class with different color and marker; second row shows the results of

the supplementary technique.

 116

Figure 4.27: Performance of the supplementary method to RCA for the okay-prediction

example 1 (with early predicted P-wave arrival). Left panel: first row shows the test

function after high-pass filtering by the values given in Chapter 2; second row shows the

test function values after applying a running mean and a high-pass filter by the values

given in Chapter 2. Right panel: first row shows the probability values computed using

(3.99) from acceleration input using Method II for each class with different color and

marker; second row shows the results of the supplementary technique.

 117

Figure 4.28: Performance of the supplementary method to RCA for the okay-prediction

example 1 (with late predicted P-wave arrival). Left panel: first row shows the test

function after high-pass filtering by the values given in Chapter 2; second row shows the

test function values after applying a running mean and a high-pass filter by the values

given in Chapter 2. Right panel: first row shows the probability values computed using

(3.99) from acceleration input using Method II for each class with different color and

marker; second row shows the results of the supplementary technique.

 118

Chapter 5

Case Studies – Over Predictions

 In this chapter, we will demonstrate the performances of both the Reality Check

Algorithm (RCA) and the Karakus-Heaton Moment of Signal Data (KHM) using two

over-prediction cases the Decision Module (DM) experienced in the past. Unlike the

previous chapter, we only compute the class probabilities by using Method II (the

Automatic Relevance Determination (ARD) Prior technique in Chapter 3) to demonstrate

the RCA algorithm. Then, we use the technique introduced in Chapter 4, i.e., KHM

(Karakus-Heaton Moment of Signal Data) to mitigate problems associated with the

examples.

5.1 Over-prediction example 1

 Our first example is an event that was experienced on July 1st, 2015 due to a

calibration pulse. DM sent out an alert indicating there was a magnitude 8.2 event at

latitude 34.753 and longitude -122.402, with an origin time of 2015/07/01, 00:55:06 UTC

(see Figure 5.1). The particular stations that caused DM to send such an alert were

experiencing calibration pulses at the same time. We demonstrate our system’s

performance for one of those stations:

Network: PG

Station: ARD

Type: Strong Motion Seismometer

 119

Figure 5.1: Summary of July 1st 2015 false alarms (Source: Prof. Richard Allen)

Postmortem(of(July(1,(2015(False(Alarms(Issued(by(ShakeAlert(
Richard(Allen-(rallen@berkeley.edu(
(
(
The(ShakeAlert(system(sent(out(two(false(alarms(within(24s(of(each(other(on(July(1,(
2015.(They(were(large(magnitude:(M8.2(and(M6.3.((Both(false(alerts(were(generated(
by(the(ElarmS(algorithm.(The(cause(of(these(events(was(four(concurrent(square(
waves--presumably(calibration(pulses--observed(from(the(PG&E(Diablo(canyon(
stations.((
(
As(a(result(of(the(alerts(all(BART(trains(were(brought(to(a(stop(and(held(until(BART(
operators(were(able(to(confirm(that(there(was(no(hazard.(
(
ShakeAlert(had(similar(problems(before(with(calibration(pulses(causing(false(alerts.(
This(had(not(previously(been(a(problem(for(ElarmS,(which(requires(4(stations(to(
trigger.((The(PG&E(station(data(streams(were(only(recently(added(to(the(
demonstration(system,(and(near-simultaneous(calibration(was(the(cause(of(the(false(
alert.(((
(
The(PG&E(stations(are(no(longer(feeding(data(to(the(demonstration(system.(
(
False(events:(
(
 ID Alert UTC Time Origin UTC Time Mag TpMag PdMag Lat Lon
 447393 2015/07/01 00:55:39 2015/07/01 00:55:06 8.2 7.8 8.2 34.753 -122.402
 447394 2015/07/01 00:55:43 2015/07/01 00:55:30 6.3 7.7 6.3 35.517 -121.023
(
Channel(triggers(for(the(M8.2(event:(
(

 sta net chn time tpmag pdmag
1 ARD PG HNZ 00:55:31.005 7.844 8.271
2 CSD PG HNZ 00:55:31.010 7.842 8.282
3 LSD PG HNZ 00:55:32.025 7.840 8.158
4 WRD PG HNZ 00:55:33.025 7.549 7.928

(
Channel(triggers(for(the(M6.3(event:(
(

 sta net chn time tpmag pdmag
1 ARD PG HNZ 00:55:32.005 7.844 6.445
2 CSD PG HNZ 00:55:32.010 7.842 6.725
3 WRD PG HNZ 00:55:34.025 7.549 6.485
4 PBD PG HNZ 00:55:37.020 10.476 5.611

(
(
(
(
(
(

 120

 First, we clarify a point about the Virtual Seismologist (VS); it was designed to

work for a maximum event magnitude of 6.5, and a maximum distance of 200 km (Cua

2005). We should start considering the finiteness of the fault if the event has a magnitude

larger than 6.5. However, for the purpose of demonstrating performance of our methods,

we use VS envelopes created using M6.5 (instead of M8.2, which is what DM predicted),

and distance of 151.8315 km, which is the distance between the assumed epicenter and

the location of the seismic station given above. Because the duration of the calibration

pulse is so short, the choice of the site condition, which determines whether soil or rock

coefficients are used to create the VS envelopes, does not make much difference;

therefore, we choose ‘soil’ for simplicity. We show that even M6.5 prediction will result

in an over-prediction classification, ultimately resulting in an indication of a false alarm;

that is, even if DM predicted M6.5, it would have been classified as an over-prediction by

our methods.

 The trigger time of the calibration pulse at the station ARD in network PG is

given as 00:55:31.005 UTC. We start by computing the arrival time of predicted waves at

that particular seismic station by assuming a mean P-wave velocity of 6.5 km/sec and

taking a distance between the DM epicenter and the stations of 151.8315 km; the result is

approximately 24 seconds. Adding this result to the UTC origin time published by DM,

which is 00:55:06, we get approximately 00:55:30. That means, according to DM, our

predicted P-wave should have arrived at the particular station at 00:55:30 UTC, which is

one second before the reported time of the trigger due to the calibration pulse. However,

the choice of mean P-wave velocity of 6.5 km is somehow arbitrary, and in the next

sections we make arrival times of observed and predicted envelopes match. Figures 5.2 to

 121

5.4 show the performance of RCA, and Figure 5.5 shows the result of the supplementary

technique introduced in Chapter 4. Recall that the supplementary technique aims to

‘support’ the indication by RCA.

 Similar to Chapter 4, we provide two general descriptions for figures of this

chapter.

General figure description - I:

Left panel: first row shows the seismogram recorded by the seismic station whose

identification information is given above (seismogram in blue and its envelope in red);

note that although only the vertical channel is shown in the plot for demonstration

purposes, both vertical and horizontal channels were used in RCA computations; the

second row shows both the predicted and observed envelopes; the third row shows the

test function after high-pass filtering by the values given in Chapter 2. Right panel shows

the probability values for each class with a different color and marker.

General figure description - II:

Left panel: first row shows the test function after high-pass filtering by the values given

in Chapter 2; second row shows the test function values after applying a running mean

and a high-pass filter by the values given in Chapter 2. Right panel: first row shows the

probability values computed using (3.99) from acceleration input using Method II for

each class with different color and marker; second row shows the results of the

supplementary technique.

 122

Figure 5.2: Reality Check Algorithm’s performance plot for the over-prediction

example 1 (with predicted wave arriving earlier than observed calibration pulse)

computed using (3.99) from acceleration input using Method II. For description of the

figure, see “General figure description - I” given above.

 123

Figure 5.3: Reality Check Algorithm’s performance plot for the over-prediction

example 1 (with predicted wave arriving earlier than observed calibration pulse)

computed using (3.100) from velocity input using Method II. For description of the

figure, see “General figure description - I” given above.

 124

Figure 5.4: Reality Check Algorithm’s performance plot for the over-prediction

example 1 (with predicted wave arriving earlier than observed calibration pulse)

computed using (3.101) from displacement input using Method II. For description of the

figure, see “General figure description - I” given above.

 125

Figure 5.5: Performance of the supplementary method to RCA for the over-prediction

example 1 (with predicted wave arriving earlier than observed calibration pulse). For

description of the figure, see “General figure description - II” given above.

 126

5.1.1 Discussion of over-prediction example 1

 All of the Figures 5.2 to 5.4 indicate an over-prediction classification without

exception. Over-prediction class indication is due to the fact that the observed envelope

value, by the time the predicted envelope arrives, consists of only noise (see Figure 5.6).

Recalling that same type of indication could be due to small arrival time perturbations, it

is natural to ask if this is in fact an over-prediction case. The answer to that question is

provided by the supplementary technique KHM, which is introduced in the previous

chapter. Figure 5.5 shows a giant spike at the time of over-prediction, and this is a

support that RCA over-prediction is accurate. Although quantification of the

supplementary technique is not done yet, comparing the values of the new technique from

the previous chapter (Figures 4.26, 4.27, and 4.28) with the values seen in Figure 5.5

indicates that when RCA not-okay-prediction flag is up, KHM values will be

significantly different from those in case of RCA okay-prediction cases.

 However, considering that envelope verification methods could evolve into a

stand-alone earthquake early warning algorithm in which one probably would match the

arrival times of observed and predicted envelopes, we should look at the performance of

RCA and the KHM technique in the case of the arrival time of the calibration pulse of

this example matching that of the predicted P-wave. The following section investigates

that case.

 127

Figure 5.6: Reality Check Algorithm’s performance plot for the over-prediction

example 1 (with predicted wave arriving earlier than observed calibration pulse)

computed using (3.99) from acceleration input using Method II (zoomed-in at arrival

times of observed and predicted envelopes). For description of the figure, see “General

figure description - I” given above.

 128

5.2 Over-prediction example 1 with matching envelope arrival times

 It is only natural for the RCA to assume the arrival times of predicted envelopes

to be the same as the arrival times of observed ones. In fact, if our method is installed, it

will look for solutions of origin time and epicenter location that result in predicted wave

arrival times that match those of observed ones. So, in order to see what would happen if

the arrival times of predicted envelopes match those of the observed calibration pulse,

Figures 5.7 to 5.10 are presented and discussed next.

5.2.1 Discussion of over-prediction example 1 with matching envelope arrival

times

 The example at hand is clearly an over-prediction case. However, Figures 5.7 to

5.10, with the exception of velocity results, i.e., Figure 5.8, indicate under-prediction!

The calibration pulse confused DM to send a M8.2 alarm, so an under-prediction is not

acceptable. We can pinpoint the problem, however, by using the KHM.

 The cause for the under-prediction classification by most of the inputs is the

abnormal rise time of the calibration pulse, which had an amplitude that is equivalent to

that of a significantly large earthquake, and the time it took the station to experience that

amplitude right after an ambient noise level is too short compared to a real event. That

means, by the time RCA compares the calibration pulse amplitude to the corresponding

amplitude of the predicted waves, there is a significant difference with the predicted

values being much smaller (Figure 5.11). There is an exception though: Figure 5.12

shows that computing displacement from acceleration by integrating twice causes the

calibration pulse to appear 1 second later than acceleration in real-time; that is,

displacement results still have the predicted waves arrive earlier than the observed

 129

Figure 5.7: Reality Check Algorithm’s performance plot for the over-prediction

example 1 (with predicted wave arriving at the same time as observed calibration pulse)

computed using (3.99) from acceleration input using Method II. For description of the

figure, see “General figure description - I” given above.

 130

Figure 5.8: Reality Check Algorithm’s performance plot for the over-prediction

example 1 (with predicted wave arriving at the same time as observed calibration pulse)

computed using (3.100) from velocity input using Method II. For description of the

figure, see “General figure description - I” given above.

 131

Figure 5.9: Reality Check Algorithm’s performance plot for the over-prediction

example 1 (with predicted wave arriving at the same time as observed calibration pulse)

computed using (3.101) from displacement input using Method II. For description of the

figure, see “General figure description - I” given above.

 132

Figure 5.10: Performance of the supplementary method to RCA for the over-prediction

example 1 (with predicted wave arriving at the same time as observed calibration pulse).

For description of the figure, see “General figure description - II” given above.

	

 133

calibration pulse, just like the previous case. However, even in a situation like that,

displacement results still indicate an under-prediction. This is because, by the time

predicted P-wave arrives at the station, the corresponding observed envelopes’ value is

comparable in amplitude to that of the predicted envelope.

 Of course, a case where the observed values are significantly larger than predicted

values might be considered as under-predictions, but not in this particular context. What

do we do? The answer is that we look at the KHM results in Figure 5.10 to make sure we

actually have an under-classification as RCA indicates. The abnormally large impulse-

like trend in the bottom right plot of Figure 5.10 tells us that there is something wrong.

But we still do not know if it is an under-prediction or over-prediction. Because KHM

with order 10 would make all components add up to each other since it is an even

numbered order, we experience the same discrepancy we experienced with kurtosis in

Chapter 2: as far as the even ordered KHM results are concerned, there is not a ‘sign’

difference between under- and over-predictions. However, an odd numbered moment

would preserve the sign of the moment we aim to compute, and therefore could be used

to distinguish over-predictions from under-predictions. This fact will become much

clearer in the next chapter when we investigate the performance of KHM on an under-

prediction case, and compare over-prediction KHM results to that of under-prediction

cases.

 A point to note is that seismic data acquired from Northern California Earthquake

Data Center for the calibration pulse example included a missing data portion indicated

by red asterisk in Figures 5.13 and 5.14. Although our methods assume continuous data

flow, having some missing data some time later than the cause of the messages for this

 134

particular example, which is the calibration pulse, does not affect the results. However,

missing data in the continuous data stream in real-time is a serious issue, and so far we

have no solutions to this problem.

5.3 Over-prediction example 2

 On May 4th, 2011, Decision Module (DM) experienced a false alarm of M8.0 (an

email about this false alarm was sent to several scientists working on the project). The

alert was due to a signal from seismic station PLM in network CI. By using information

from the emails exchanged about this particular false alarm among scientists, we

demonstrate performances of both the RCA and the KHM below. We did not use the log

files of DM that included this false alarm, but we used pick time information from the

emails as the assumed arrival time of the predicted P-wave. Upon further investigating

the continuous strong motion records from seismic station PLM in network CI, we

noticed that the indicated pick time did not have a visible abnormality. However, that

station experienced an abnormal increase in the noise amplitude several seconds prior to

the pick time indicated in the emails. Just to be sure, we provide the performance of RCA

and KHM for two cases: case one is where we take the arrival time of the predicted P-

waves as it is indicated in the emails, and case two is where we take the arrival time of

the predicted P-waves as the arrival time of abnormally large non-earthquake noise.

 As mentioned before, we did not use a documented origin time and location for

this alarm. Considering we have a station, a pick time, and a magnitude, we decided to

use predicted envelopes created using a magnitude of 6.5 and a distance of 200 km.

Figures 5.15 to 5.22 show that even if the RCA and KHM use predicted waves created

using the information above, the case is still classified as over-prediction.

 135

Figure 5.11: Reality Check Algorithm’s performance plot for the over-prediction

example 1 (with predicted wave arriving at the same time as observed calibration pulse)

computed using (3.99) from acceleration input using Method II (zoomed-in at arrival

times of observed and predicted envelopes). For description of the figure, see “General

figure description - I” given above.

 136

Figure 5.12: Reality Check Algorithm’s performance plot for the over-prediction

example 1 (with predicted wave arriving at the same time as observed calibration pulse)

computed using (3.101) from displacement input using Method II (zoomed-in at arrival

times of observed and predicted envelopes). For description of the figure, see “General

figure description - I” given above.

 137

Figure 5.13: Seismic data for the calibration pulse that is used as an over-prediction

example 1 from the Northern California Earthquake Data Center. A couple of seconds

after the arrival of the calibration pulse, the continuous data stream has some missing

data, which are indicated by the red asterisk.

 138

Figure 5.14: Seismic data for the calibration pulse that is used as an over-prediction

example 1 from the Northern California Earthquake Data Center, zoomed-in around

missing data.

	

 139

Figure 5.15: Reality Check Algorithm’s performance plot for the over-prediction

example 2 computed using (3.99) from acceleration input using Method II. For

description of the figure, see “General figure description - I” given above.

 140

Figure 5.16: Reality Check Algorithm’s performance plot for the over-prediction

example 2 computed using (3.100) from velocity input using Method II. For description

of the figure, see “General figure description - I” given above.

 141

Figure 5.17: Reality Check Algorithm’s performance plot for the over-prediction

example 2 computed using (3.101) from displacement input using Method II. For

description of the figure, see “General figure description - I” given above.

 142

Figure 5.18: Performance of the supplementary method to RCA for the over-prediction

example 2. For description of the figure, see “General figure description - II” given

above.

 143

Figure 5.19: Reality Check Algorithm’s performance plot for the over-prediction

example 2 computed using (3.99) from acceleration input using Method II with matching

arrival times of observed abnormal noise increase and predicted P-wave. For description

of the figure, see “General figure description - I” given above.

 144

Figure 5.20: Reality Check Algorithm’s performance plot for the over-prediction

example 2 computed using (3.100) from velocity input using Method II with matching

arrival times of observed abnormal noise increase and predicted P-wave. For description

of the figure, see “General figure description - I” given above.

 145

Figure 5.21: Reality Check Algorithm’s performance plot for the over-prediction

example 2 computed using (3.101) from displacement input using Method II with

matching arrival times of observed abnormal noise increase and predicted P-wave. For

description of the figure, see “General figure description - I” given above.

 146

Figure 5.22: Performance of the supplementary method to RCA for the over-prediction

example 2 with matching arrival times of observed abnormal noise increase and predicted

P-wave. For description of the figure, see “General figure description - II” given above.

 147

5.3.1 Discussion of over-prediction example 2

 Let us start with Figures 5.15 to 5.18; all results, i.e., acceleration, velocity and

displacement indicate over-prediction. This is not surprising because the observed value

consists of only noise, which is somehow a consistent amplitude except for the temporary

increase in earlier portions of the record. Then, all of a sudden, a P-wave predicted

envelope enters the computation, and this leads to over-prediction indication by RCA.

Moreover, the KHM result, which is seen in Figure 5.18, supports RCA in that the

predicted ground motion is not in accord with what is being observed. But that is as far as

the KHM results go for the time being, that is, we need to evaluate KHM results in a

consistent framework so that we can classify ‘something is wrong’ message by KHM into

either ‘over-prediction’ or ‘under-prediction’ case. An abnormal noise value in the early

portion of the observed ground motion causes the under-prediction probability for

acceleration and velocity results to increase a little. However, this increase does not

confuse RCA, and it accurately classifies the case as okay-prediction. Looking at area of

the abnormality in Figure 5.18 provides another reason why KHM needs quantification;

the abnormal increase in the observed ground motion noise level creates a sudden

increase in KHM values, but this increase is not as much as the one caused by the

predicted P-wave that arrives sometime later. Therefore, quantification of KHM should

help us determine what values indicate okay-prediction cases even though they are

significantly different from the rest of the okay-prediction cases.

 When we move on to Figures 5.19 to 5.22, we see that even if DM was tricked

into believing there was an earthquake due to the abnormal increase in the observed

ground motion noise level, RCA and KHM would correctly classify this case as over-

 148

prediction. Similar to the previous figures of over-prediction example 2, over-prediction

classification can be observed in all of the results for Method II.

 149

Chapter 6

Case Studies – Under Predictions

 In this chapter, we demonstrate the performance of RCA and KHM on the M7.2

event of Cucapah-El Mayor on April 4th, 2010 as an under-prediction case example.

Although the Decision Module (DM) was not producing alerts and log files at the time,

we use the location and magnitude estimate provided by the research group at Caltech

who has been testing DM’s off-line performance on significant earthquakes of the past.

According to the log files, one of the algorithms in DM first predicted the magnitude as

5.434 and a location with latitude 31.905 and longitude -115.196. The particular seismic

station, on which we demonstrate the performance of our algorithms, is GLA in network

CI. Method II is first applied and the KHM technique, introduced in Chapter 4, is used to

mitigate problems associated with the examples. The results are presented in Figures 6.1

to 6.5.

 First, we would like to clarify a particular point: we use 10 minutes of continuous

record before the catalogued origin time of this event as well as 10 minutes of continuous

record starting from the catalogued origin time. In this particular case, there happens to

be a smaller event in the pre-event continuous data, and because the corresponding

predicted envelope consists only of noise at the time of the smaller event, RCA

accurately predicts it as an under-prediction, or in other words, a missed event. So, the

first under-prediction indication in the following figures, with the exception of those for

displacement, around time 254th second is due to that small event which was not

considered to be there for these particular simulations.

 150

 Similar to Chapter 4, we provide two general descriptions for figures of this

chapter.

General figure description - I:

Left panel: first row shows the seismogram recorded by the seismic station whose

identification information is given above (seismogram in blue and its envelope in red);

note that although only the vertical channel is shown in the plot for demonstration

purposes, both vertical and horizontal channels were used in RCA computations; the

second row shows both the predicted and observed envelopes; the third row shows the

test function after high-pass filtering by the values given in Chapter 2. Right panel shows

the probability values for each class with a different color and marker.

General figure description - II:

Left panel: first row shows the test function after high-pass filtering by the values given

in Chapter 2; second row shows the test function values after applying a running mean

and a high-pass filter by the values given in Chapter 2. Right panel: first row shows the

probability values computed using (3.99) from acceleration input using Method II for

each class with different color and marker; second row shows the results of the

supplementary technique.

 151

Figure 6.1: Reality Check Algorithm’s performance plot for the under-prediction

example computed using (3.99) from acceleration input using Method II. For description

of the figure, see “General figure description - I” given above.

 152

Figure 6.2: Reality Check Algorithm’s performance plot for the under-prediction

example computed using (3.100) from velocity input using Method II. For description of

the figure, see “General figure description - I” given above.

 153

Figure 6.3: Reality Check Algorithm’s performance plot for the under-prediction

example computed using (3.101) from displacement input using Method II. For

description of the figure, see “General figure description - I” given above.

 154

Figure 6.4: Performance of the supplementary method to RCA for the under-

prediction example. For description of the figure, see “General figure description - II”

given above.

 155

Figure 6.5: Reality Check Algorithm’s performance plot for the under-prediction

example computed using (3.99) from acceleration input using Method II (zoomed-in at

arrival time of the small preceding event in the seismogram, and Cucapah – El Mayor

earthquake in ground motion envelopes). For description of the figure, see “General

figure description - I” given above.

RCA classifies this
case as ‘okay’, but it

is not! For better
results, see KHM

values in Figure 6.4.

 156

6.1 Discussion of under-prediction example

 Let us start with the small event preceding M7.2 earthquake of Cucapah-El Mayor

in 2010. According to the catalogue, this event, whose magnitude is 3.35, has the origin

time of 2010, April 4 at 22:34:50.160 UTC, which is approximately 6 (six) minutes

before the M7.2 event. It is located at latitude 32.2297 and longitude -115.2952. Figure

6.5 shows a zoomed-in version of Figure 6.1 with the data associated with that small

event highlighted. Note that seismograms, which are shown in the panel in the upper left,

have 10 seconds of more data, i.e., envelopes and RCA computations have 10 seconds

less data to get rid of transitional effects of filtering. That is why the arrival time of the

small event is at the 264th second in the seismogram (Figure 6.5) while the under-

prediction indication on the right is at the 254th second. Except for displacement, all of

the results managed to accurately classify it as an under-prediction, i.e., missed alarm.

 When RCA makes computations about the time of M7.2 event, there is no

indication of under-prediction. This is due to the fact that P-wave of M5.434, which was

predicted by one of the algorithms in DM, is comparable in amplitude to that of a M7.2

event. In this case, one would expect RCA to indicate under-prediction when the S-wave

of the M7.2 comes into the calculations. That does not happen! Since, by the time the S-

wave of M7.2 earthquake arrives, the average misfit between predicted and observed

values is so different from that of when there is only noise envelopes, RCA is unable to

detect the misfit to be an under-prediction case, it still thinks predictions are okay. They

are obviously not, because the energy of an M5.434 earthquake (predicted envelopes) is

significantly less than that of an M7.2 event. However, the KHM method from Chapter 4

 157

indicated that there is something wrong about the prediction (Figure 6.4) by looking at

the ‘overall’ fit between observed and predicted values.

 One cannot help but notice the amplitude difference between the KHM values for

the small and the big event. Although the small event has a significantly smaller

magnitude than the big one, the KHM value associated with it is much bigger than that

associated with the Cucapah - El Mayor earthquake. This difference is because the small

event is completely missed, i.e., the assumed corresponding predicted envelope consists

only of noise whereas the big event is not totally missed, it is only under-predicted. This

shows another reason why we need rigorous interpretations of KHM quantities (i.e. what

is the degree of under- or over- prediction associated with KHM values?).

 158

Chapter 7

Concluding Remarks and Future Work

 This work primarily examines the reliability the predictions made by an

earthquake early warning system. Although a fully functioning earthquake early warning

system is highly desirable in seismic regions, the presence of false and missed alarms

may negatively affect the public’s perception of such a system. The proposed Reality

Check Algorithm aims to minimize the mistakes an earthquake early warning system

might make by continuously monitoring what the system predicts and what the spatially

distributed ground motion actually is. The focal point of this work has been using the

ground motion envelopes created by the Virtual Seismologist (VS) (Cua 2005). Although

Cua provides distribution of envelope parameters, we use the ‘mean’ values. Also, note

that implementing the VS GMPE’s, which Cua created, in real-time was not an easy task.

So, we accomplish that task via the Reality Check Algorithm, which is described in this

thesis.

 The possible prediction scenarios that may be made by an earthquake early

warning system are categorized into three discrete classes: okay-, over-, and, under-

prediction classes. Okay-prediction is the ideal case where the alert sent by the system is

acceptably accurate about the earthquake being experienced. Over-prediction occurs

when the alert is an overestimation caused by higher amplitude levels at seismic stations;

for example, a relatively short burst of unusually high level of noise being mistaken for a

large magnitude earthquake. Under-prediction occurs when the system does not infer how

big the earthquake actually is.

 159

 Earthquake early warning system’s predictions are used to create VS predicted

envelopes and the result is assigned to one of the previous three classes. The first

classification method examined used a straightforward linear discriminant analysis (see

Appendix C), but it does not produce probabilities on each class individually, except for

assigning 100% probability for one class and zero for others. Moreover, we cannot easily

aggregate its results with those of other potential probabilistic algorithms. Therefore, a

Bayesian probabilistic classification was investigated next (see Chapter 3) where a

probability (degree of plausibility) is computed for each class. The Bayesian approach

also allows one to sequentially update the uncertainties associated with the system

predictions. The probabilities that are calculated for a system can be systematically and

rigorously combined in real-time. Although the results presented in this work are based

on a single seismic station’s computations, the Bayesian methodology’s sequential

updating capability allows uncertainty calculations from multiple stations to be readily

combined; giving ‘feedback’ to the earthquake early warning system to inform it about its

prediction.

 After completing the classification analyses, we moved on to test the results on

several examples. Although RCA performed impressively in terms of okay-predictions, it

produced some discrepancies for over- and under-prediction cases; as far as RCA was

concerned, an early arriving predicted P-wave of an otherwise accurately estimated

earthquake could show the same probability values as a false alarm. Moreover, late

arriving predicted envelopes might be considered the same as a missed earthquake. To

overcome these problems an overall misfit measure was introduced that we call the

Karakus-Heaton Moment for Signal Data (KHM), which checks the overall fit between

 160

observed and predicted earthquake envelopes while being insensitive to the timing of

them. Therefore, while RCA makes sure the timing of the envelopes are in agreement,

which translates to origin time and location predictions, KHM assesses the degree of

magnitude match between the predictions and observations. The KHM method shows

good promise. In future work, the next step would be to analyze the optimal selection of

the values of the KHM parameter.

 We strongly believe that the current system in California could benefit greatly

from an envelope-based early warning algorithm such as the one presented in this thesis.

In future work, we plan to use the VS location and magnitude estimations along with a

Bayesian grid search to propose a better stand-alone algorithm for earthquake early

warning systems. We described RCA as a process that uses the prediction made by the

Decision Module to create predicted waveform envelopes. Then, these predicted

envelopes are compared with the observed ones and the classification of the prediction,

i.e., okay-, over, or under-prediction, is obtained. In this way RCA works as a

supplementary unit for an early warning system; it does not make assessments

independently from other algorithms that are already in the system. In fact, RCA depends

on other algorithms that are making predictions. In future work, however, RCA could

evolve into a “stand-alone” earthquake early warning algorithm that is able make

predictions of source parameters such as location, origin time, and magnitude of

earthquakes independently. The Decision Module would continue to aggregate all the

independently made predictions (by several algorithms) into one probability (degree of

plausibility). The extended RCA would involve a Ground Motion Envelope Predictor

Algorithm (GMEP) that uses a grid search method. Due to the nature of the problem, the

 161

grid would be in a hyper-dimensional space with axes latitude, longitude, magnitude, and

origin time. The spatial section of the grid would be stretched over the entire surface of

California as increments of latitude and longitude coordinates. Time limitations and

available computational power would impose constraints regarding the grid fineness. On

the other hand, we could make use of the fact that seismic stations do not get triggered at

the same time due to vibrations as a guide to give varying weights to grid solutions that

favor the first triggered stations. Moreover, a statistical study of past earthquake locations

could be used as “prior” knowledge in GMEP. Note that the original RCA uses a

Bayesian classification scheme in which any type of prior knowledge can be aggregated

easily. Note also that any GMEP calculation made in the past can be used as a prior for

the current ones; this sequential updating capability is an important aspect of Bayesian

inference.

 Before the work presented in this thesis, there had not been any algorithm

designed to check the accuracy of the California early warning system predictions in real-

time. This fact may be true for other earthquake early warning systems in the world. In

addition to that, we proposed a new paradigm in which our earthquake early warning

algorithm depends on finding envelope fits. This is a substantial contribution to

earthquake early warning systems compared with the old paradigm in which the

algorithms depend on pick times and amplitudes.

 162

Appendix A

Virtual Seismologist Envelope Equations

 The following is a portion from Georgia B Cua’s PhD Thesis.(Cua 2005)

The Virtual Seismologist models the observed ground motion envelope as a combination

of P-wave, S-wave, and ambient noise envelopes. These envelopes are combined using

the following formula:

 !!Eobserved t() !=! EP2 t()+ES2 t()+Eambient2 + ε (A.1)

where

!!

Eobserved t() = envelope!of!observed!ground!motion
EP t() = envelope!of!P3wave
ES t() = envelope!of!S3wave!and!later3arriving!phases
Eambient = ambient!noise!at!the!site

ε = difference!between!predicted!and!observed!envelopes

	
Ambient noise at a site is modeled as a constant. The P- and S-wave envelopes are

described by five parameters for each: a rise time (!!triseP ,triseS), an amplitude (!!AP ,AS), a

duration (!!ΔtP ,ΔtS), and two decay (!!γ P ,γ S), (!!τ P ,τ S) parameters. Therefore, an observed

ground motion can be described by eleven envelope parameters.

 163

!!

Ei , j t() =

0,t <Ti
Ai , j
trisei , j

t −Ti() ,Ti ≤ t <Ti +trisei , j
Ai , j ,Ti +trisei , j ≤ t <Ti +trisei , j +Δti , j

Ai , j
1

t −Ti −trisei , j − Δti , j +τ i , j()γ i , j
,t ≥ t <Ti +trisei , j +Δti , j

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

 (A.2)

	
where

!!

i =P#,S#wave
Ti =P#,S#wave!arrival!times
j = horizontal!and!vertical!ground!motions

	
For further details, see (Cua 2005).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

 164

Appendix B

Multiple Window Approach

 Kurtosis is usually calculated by starting from the most current value of the

distribution (test function in our case). We then go back a predetermined window length

of samples in time and calculate the excess kurtosis (which is kurtosis minus 3) and slide

the window as more data arrive in real-time. We used a novel idea: instead of one

window length, we use multiple different window lengths (ranging from 10 seconds to

100 seconds with 10-second increments, i.e., 10 different sliding windows) for kurtosis

computation and linearly add the results up.

 Notice in Figure B.1 that if you have only one window, you cannot tell if the

outlier is at the current end or in the past because you will see a spike in kurtosis

calculation for each location. A multiple windows approach guarantees that the outlier

will be detected at the same time in real-time by all of the windows, and kurtosis and

skewness values will add up at that location whereas any indication of the outlier in the

past relative to different window lengths will be at different locations and therefore

suppressed by summation of the results (Figure B.2).

 165

Figure B.1: Kurtosis computation example with a single window of length 20 seconds.

In order to compute the kurtosis value highlighted with a circle on the bottom plot, we go

to the corresponding value of the test function shown on the top of the figure. Starting

from that value, we go back 20 seconds in time and use equation (2.3) on the values

within this 20 seconds long window. Notice there are two spikes on the bottom of the

figure indicating another outlier for kurtosis computations.

 166

Figure B.2: Multiple windows approach for a kurtosis computation with two different

window lengths and their sum. A sample test function (top), kurtosis for the test function

using a 20 seconds long window (second row), kurtosis for the same test function using a

30 seconds long window (third row), and linear sum of second and third row (bottom).

The same procedure, namely summation of the running windows of differing lengths

starting from the most current time and going back, is used for skewness calculation in

real-time as well.

 167

Appendix C

Non-probabilistic Classifications

C.1 Classifications: Least Squares

 The following theory is based on the concepts described in Chapter 4, Linear

Models for Classification in Bishop, 2006.

 We start with least squares, which has a fairly straightforward implementation

phase. Training runs are not computationally highly demanding and parameters can be

computed using a closed form solution as shown below.

 As mentioned above, we have three classes (!!K =3), and we describe each class

by its own linear model

 !!!yk x() =wk
Tx+wk0 (C.1)

where !! k =1,,K .

 Let us write these linear models in a more compact form

 !! y x() = WT x (C.2)
	

where ! W is the matrix of dimension !! D+1()×K . Column vector !!! wk = wk0 ,wk
T⎡⎣ ⎤⎦

T

comprises the columns of ! W , and the augmented input vector is defined as !!! x = 1,xT⎡⎣ ⎤⎦
T

.

Note that we augment the input vector with a dummy input !!x0 =1 for later convenience.

Classification is made by choosing the maximum !yk for a given new input !x , and

assigning it to !Ck , that is,
!!!
x∈C j ⇔ j = argmax

k
wk
x .

 168

 In the least squares approach, we determine the unknown matrix of parameters,

! W , by minimizing a sum-of-squares error function. Our training set consists of the input-

output pairs !!! xn ,tn{ }where !! n=1,2,,N . We can write our input and output values in a

more compact form as ! X and !T , where the row vectors !! xn
T and !!tn

T are the !nth rows for

! X and !T , respectively. Note that for the purpose of having less clutter in the

mathematical expressions, we can redefine our parameters as ones without a “tilde”, i.e.,

 symbol without loss of generality. That is to say, from now on, unless specified

otherwise, ! W→W , ! X→X , and ! x→ x . Then, we can write the sum-of-squares error

function as

!!!
ED W() = 12Tr XW−T()T XW−T(){ } (C.3)

	
We set the derivative of !!ED W() , with respect to !W , to zero, and then we obtain the

following closed form solution for !W

 !!!W = XTX()−1XTT (C.4)

Then, our compact discriminant function becomes

 !!y x() =WTx (C.5)
	
	
	
	
	
	
	
	
	
	
	
	

 169

 An input feature vector with acceleration values is in the form

!!!

x =

1
d
dt

Kurtosis!of!Horizontal!Acceleration()
d
dt

Kurtosis!of!Vertical!Acceleration()
d
dt

Skewness!of!Horizontal!Acceleration()
d
dt

Skewness!of!Vertical!Acceleration()

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (C.6)

	
An input feature vector in velocity or displacement would be similar to (C.6) with

acceleration replaced by velocity or displacement respectively.

 We set up our least squares solution such that !!k =1 represents okay-prediction,

!!k =2 represents over-prediction, and !!k =3 represents under-prediction classes, similar to

probabilistic classifications. At the end of our computations, we obtained the following

parameter values, i.e., (C.7), (C.8) and (C.9), and the confusion matrices, i.e., Table C.1

to Table C.3; Table C.1 is constructed using (C.7), Table C.2 is constructed using (C.8),

and Table C.3 is constructed using (C.9).

C.2 Discussion of Results in Tables C.1 to C.3

 In general, actual and predicted classes for okay-prediction class agree well (more

than 94 percent) in all of the different ground motion parameters influenced by different

frequency contents: acceleration, velocity, and displacement. The least squares approach

shows relatively better performance when we use the first half of the data set for training,

and the second half for validation. However, when we swap these data sets, that is, when

we use the second half as training and the first half as validation sets, the performance

decreases significantly. This fact suggests that we might want to use a more rigorous

 170

validation scheme such as the leave-one-out method. However, we do not resort to that

technique because when we apply a full Bayesian treatment in the upcoming sections, our

approach will use only the training data and so it will not need a separate data set for

validation. This is particularly useful because reserving part of the data set for validation

causes a waste of valuable training data. In addition to that, cross-validation inherently

means multiple training runs as opposed to a single training run that is required in a full

Bayesian treatment. Moreover, the error function (C.3) is not robust to outliers and so a

better alternative is desirable in order to achieve better performance.

 171

!!!

Wacceleration =

0.897 0.057 0.045
)0.001 0.001 0.001
)0.002 0.001 0.001
0.001)0.006 0.005
0.002)0.005 0.003

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (C.7)

	
Table C.1: Confusion matrices for least squares classification using acceleration data.

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 97.7 0 2.3

Over 38 62 0

Under 30.8 0 69.2

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 95.6 0 4.4

Over 18.4 81.6 0

Under 15.2 0 84.8

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 98.2 0 1.8

Over 63.2 36.8 0

Under 47.2 0 52.8

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 96.9 0 3.1

Over 40.8 59.2 0

Under 31.2 0 68.8

 172

!!!

Wvelocity =

0.875 0.079 0.046
*0.003 0.002 0.001
*0.001 0.0003 0.001
0.007 *0.013 0.005
*0.002 *0.001 0.003

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (C.8)

	
Table C.2: Confusion matrices for least squares classification using velocity data.	

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 97.9 0.1 2

Over 42 58 0

Under 35.6 0 64.4

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 94.8 0.2 5

Over 24.8 75.2 0

Under 12.8 0 87.2

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 98.4 0 1.6

Over 77.6 22.4 0

Under 57.6 0 42.4

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 96.6 0.1 3.3

Over 51.2 48.8 0

Under 35.2 0 64.8

	

	
	

 173

!!!

Wdisplacement =

0.835 0.092 0.073
*0.005 0.004 0.001
*0.0004 0.0003 0.0001
0.014 *0.023 0.008
*0.004 *0.001 0.005

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (C.9)

	
Table C.3: Confusion matrices for least squares classification using displacement data.	

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 98.4 0.6 1

Over 54.4 45.6 0

Under 45.6 0 54.4

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 97 1 2

Over 48 52 0

Under 23.2 0 76.8

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 98.8 0.6 0.6

Over 72.8 27.2 0

Under 68 0 32

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 97.9 0.8 1.3

Over 60.4 39.6 0

Under 45.6 0 54.4

	

 174

C.3 Classifications – Linear Discriminant Analysis (LDA)

 The following theory is based on the concepts described in Chapter 4 of Georgia

Cua’s PhD thesis (2004): Creating the Virtual Seismologist: Developments in Ground

Motion Characterization and Seismic Early Warning.

 In linear discriminant analysis, we define a number of groups or classes, and then

find a linear combination of some input vectors (similar to the least squares input) that

will maximize the separation between these groups. Unlike the least squares

classification, the parameter vector is not augmented, so we do not need to augment the

input feature vector either. Therefore, we determine a 4-dimensional parameter vector,

!w . This goal is achieved by maximizing the among-class to within-class variance ratio.

That means that the parameter vector is able to discriminate the data belonging to

different classes as much as possible while reducing the deviation within a specific class.

 Similar to the least squares classification, we have !!K =3 classes with !Nk

observations in each class, i.e., total number of observations,
!!
N = Nk

k=1

3

∑ . Then, we define

the class means as

!!!
mk =

1
Nk

xn
n∈k

N

∑ (C.10)

which is simply the mean of all of the observations in a class. Using (C.10), we can

define the within-class covariance matrix as

!!!
S k() = 1

Nk −1
xn −mk() xn −mk()T

n∈k

N

∑ (C.11)

We need a sum of the within-class covariance matrices for all classes, which is defined as

 175

!!!
Sp =

1
N −K

Nk −1()S k()
k=1

K

∑ (C.12)

 Next, we define the among-class covariance matrix as

!!!
Sa =

1
K −1 Nk mk −m() mk −m()T

k=1

K

∑ (C.13)

where we implicitly define a general mean, !m , for the input values of all classes as

!!!
m = 1

N
xn

n=1

N

∑ = 1
N

Nkmk
k=1

K

∑ (C.14)

 As we mentioned above, we are looking for the vector !w such that the linear

combination !!wTx will assign !x to one of the classes by reducing the variability of the

data within a class and increasing separation of the data from one class to another. We

can find such !w by maximizing the among-class to within-class variance ratio:

!!
λ =

wTSaw
wTSpw

 (C.15)

Now we take the derivative of (C.15) with respect to !w and equate it to zero, i.e.,

!!
∂λ
∂w

=0 . Then, we obtain

 !!!λw
TSp −w

TSa =0 (C.16)

Noting the symmetry of !!Sa and !!Sp , let us take the transpose of (C.16)

!!!

λSpw−Saw =0
⇒λSpw = Saw

 (C.17)

We assume !!Sp is invertible, then we obtain

 !!!λw = Sp
−1Saw (C.18)

 176

Note that (C.18) is an eigenvalue problem. The parameter vector !w we are seeking is an

eigenvector of !!!Sp
−1Sa ; the separating measure is therefore the largest eigenvalue of

!!!Sp
−1Sa .

 Using the same class and data definitions as the least squares classification

section, we followed the procedure described in this section. The following eigenvalues

and eigenvectors are computed using the entire data set for training. However, additional

confusion matrices are provided for cases where the data set is divided into two: a

training data set and a validation data set, as done in the least squares classification

section. The eigenvalues of !!!Sp
−1Sa for acceleration input are given below

!

λ1 =1726.463
λ2 =853.553
λ3 = +4.475e+13
λ4 =7.326e+13

 (C.19)

Since !λ1 is the largest value, the eigenvector associated with it, !!wacceleration , gives the

desired linear combination values for classification.

!!!

wacceleration =

0.027
0.015
(0.822
(0.568

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (C.20)

Figure C.1 shows the histograms obtained using !!wacceleration as the discriminant function

combination values. The decision boundaries are located at the middle of the mean of two

adjacent class histograms. Therefore, the decision boundary between okay- and over-

prediction classes is located at 27.6195 and the decision boundary between okay- and

under-prediction classes is located at -20.5939.

 177

Figure C.1: Histogram for all three classes obtained using LDA with acceleration

values only.

 178

Table C.4: Confusion matrix for LDA using acceleration data.	

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 91.6 2.7 5.7

Over 22 78 0

Under 14.4 0 85.6

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 90.8 2 7.2

Over 17.6 82.4 0

Under 12 0 88

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 82.4 4.4 13.2

Over 28.8 71.2 0

Under 16.8 0 83.2

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Acceleration Okay Over Under

Okay 86.6 3.2 10.2

Over 23.2 76.8 0

Under 14.4 0 85.6

	

 179

The eigenvalues of !!!Sp
−1Sa for velocity input are given below

!

λ1 =1591.126
λ2 =744.510
λ3 = ,2.089e,13
λ4 = 4.057e,13

 (C.21)

Similar to acceleration results, the largest value is !λ1 . The eigenvector associated with it,

!!wvelocity , gives the best linear combination.

!!!

wvelocity =

0.0413
'0.024
'0.973
'0.226

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (C.22)

 Figure C.2 shows the histograms obtained using !!wvelocity as the discriminant

function combination values. The decision boundaries are located at the middle of the

mean of two adjacent class histograms. Therefore, the decision boundary between okay-

and over-prediction classes is located at 15.9058 and the decision boundary between

okay- and under-prediction classes is located at -20.4801.

 The eigenvalues of !!!Sp
−1Sa for displacement input are given below

!

λ1 =1380.411
λ2 = 485.286
λ3 = +1.115e+13
λ4 =7.361e+13

 (C.23)

 180

Figure C.2: Histogram for all three classes obtained using LDA with velocity values

only.

 181

Table C.5: Confusion matrix for LDA using velocity data.	

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 90.6 3.1 6.3

Over 22.4 77.6 0

Under 16 0 84

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 89.6 1.6 8.8

Over 18.4 81.6 0

Under 12 0 88

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 75 14.2 10.8

Over 20 80 0

Under 24.8 0 75.2

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Velocity Okay Over Under

Okay 82.3 7.9 9.8

Over 19.2 80.8 0

Under 18.4 0 81.6

	

	

 182

The largest value is !λ1 , and the eigenvector associated with it, !!wdisplacement , gives the best

linear combination.

!!!

wdisplacement =

"0.046
"0.003
0.967
0.252

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (C.24)

 Figure C.3 shows the histograms obtained using !!wdisplacement as the discriminant

function combination values. The decision boundaries are located at the middle of the

mean of two adjacent class histograms. Therefore, the decision boundary between okay-

and over-prediction classes is located at -8.4600 and the decision boundary between

okay- and under-prediction classes is located at -14.4728.

 183

Figure C.3: Histogram for all three classes obtained using LDA with displacement

values only.

 184

Table C.6: Confusion matrix for LDA using displacement data.	

ALL DATA PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 88.8 8 3.2

Over 25.2 74.8 0

Under 20.4 0 79.6

FIRST HALF PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 89 4 7

Over 25.6 74.4 0

Under 16 0 84

SECOND HALF PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 55.8 34.8 9.4

Over 24.8 75.2 0

Under 34.4 0 65.6

AVERAGE

OF CROSS

VALIDATIONS

PREDICTED CLASSES

ACTUAL CLASSES Displacement Okay Over Under

Okay 72.4 19.4 8.2

Over 25.2 74.8 0

Under 25.2 0 74.8

	
	
	
	
	
	
	

 185

C.4 Discussion of Results in Tables C.4 to C.6

 Starting with a four-dimensional input feature vector !x and projecting it onto a

scalar value, i.e., one-dimension, as this section, results in loss of information. In fact,

this reduction in dimensionality may cause significant overlap among classes (Bishop

2006). In the linear discriminant analysis, we computed such a parameter vector !w ,

which led to a projection that better separates classes. This enhancement in the

performance is seen in the confusion matrices provided for LDA. Compared to the

performance of least squares classification, all channels of ground motion input showed

consistent improvement.

 When we look at the individual ground motion parameters, the best performance

is provided by acceleration even though the difference from the performance provided by

velocity is not significantly improved. The worst performance is observed when we used

the second half of the displacement data for training and tested the results using the first

half for validation. Although the algorithm for this particular case performs well as far as

the actual over- and under-prediction classes are concerned, more than 30 percent of

okay-prediction classes are classified as over-prediction.

 186

Bibliography

"The facilities of IRIS Data Services, and specifically the IRIS Data Management Center,
were used for access to waveforms, related metadata, and/or derived products used in this
study. IRIS Data Services are funded through the Seismological Facilities for the
Advancement of Geoscience and EarthScope (SAGE) Proposal of the National Science
Foundation under Cooperative Agreement EAR-1261681."

"http://www.mathworks.com/matlabcentral/fileexchange/28803-‐read-‐and-‐write-‐
multiplexed-‐miniseed-‐file/content/rdmseed.m."

"NCEDC (2014), Northern California Earthquake Data Center. UC Berkeley
Seismological Laboratory. Dataset. doi:10.7932/NCEDC.".

"rdmseed.m."

"readsac.m."

"SCEDC (2013): Southern California Earthquake Center.
Caltech.Dataset. doi:10.7909/C3WD3xH1."

Allen, R. M. and H. Kanamori (2003). "The potential for earthquake early warning in
southern California." Science 300(5620): 786-789.

Beck, J. L. (2010). "Bayesian system identification based on probability logic." Structural
Control and Health Monitoring 17(7): 825-847.

Beck, J. L. and L. S. Katafygiotis (1998). "Updating models and their uncertainties. I:
Bayesian statistical framework." Journal of Engineering Mechanics 124(4): 455-461.

Beck, J. L. and K.-V. Yuen (2004). "Model selection using response measurements:
Bayesian probabilistic approach." Journal of Engineering Mechanics 130(2): 192-203.

Behr, Y., et al. (2013). "Evaluation of Real-Time and Off-Line Performance of the
Virtual Seismologist Earthquake Early Warning Algorithm in Switzerland." EGU
General Assembly.

Behr, Y., et al. (2015). "Anatomy of an Earthquake Early Warning (EEW) Alert:
Predicting Time Delays for an End‐to‐End EEW System." Seismological Research
Letters.

Bishop, C. M. (2006). Pattern recognition and machine learning, springer.

Bishop, C. M. and M. E. Tipping (2003). "Bayesian regression and classification." Nato
Science Series sub Series III Computer And Systems Sciences 190: 267-288.

 187

Böse, M., et al. (2014). CISN ShakeAlert: An earthquake early warning demonstration
system for California. Early Warning for Geological Disasters, Springer: 49-69.

Böse, M., et al. (2009). "Real‐time testing of the on‐site warning algorithm in
southern California and its performance during the July 29 2008 Mw5. 4 Chino Hills
earthquake." Geophysical Research Letters 36(5).

Böse, M., et al. (2009). "A new trigger criterion for improved real-time performance of
onsite earthquake early warning in Southern California." Bulletin of the Seismological
Society of America 99(2A): 897-905.

Böse, M., et al. (2012). "Rapid Estimation of Earthquake Source and Ground‐Motion
Parameters for Earthquake Early Warning Using Data from a Single Three‐Component
Broadband or Strong‐Motion Sensor." Bulletin of the Seismological Society of America
102(2): 738-750.

Böse, M. and T. H. Heaton (2010). "Probabilistic prediction of rupture length, slip and
seismic ground motions for an ongoing rupture: implications for early warning for large
earthquakes." Geophysical Journal International 183(2): 1014-1030.

Böse, M., et al. (2012). "Real-time finite fault rupture detector (FinDer) for large
earthquakes." Geophysical Journal International 191(2): 803-812.

Clayton, R. W., et al. (2012). "Community seismic network." Annals of Geophysics
54(6).

Clinton, J. F. and T. H. Heaton (2002). "Potential advantages of a strong-motion velocity
meter over a strong-motion accelerometer." Seismological Research Letters 73(3): 332-
342.

Cua, G. and T. Heaton (2008). "Characterizing average properties of southern California
ground motion amplitudes and envelopes." Bull. seism. Soc. Am.

Cua, G. B. (2005). Creating the Virtual Seismologist: developments in ground motion
characterization and seismic early warning, California Institute of Technology.

DeCarlo, L. T. (1997). "On the meaning and use of kurtosis." Psychological methods
2(3): 292.

Eguchi, R. T., et al. (1994). "Real-time earthquake hazard assessment in California; the
early post-earthquake damage assessment tool and the Caltech-USGS broadcast of
earthquakes."

 188

Ellsworth, W. L. and T. H. Heaton (1994). "Real-time analysis of earthquakes: Early-
warning systems and rapid damage assessment." Sensors-the Journal of Applied Sensing
Technology 11(4): 27-33.

Given, D. D., et al. (2014). Technical implementation plan for the ShakeAlert production
system: an Earthquake Early Warning system for the West Coast of the United States, US
Geological Survey.

Hartzell, S. H. and T. H. Heaton (1985). "Teleseismic time functions for large, shallow
subduction zone earthquakes." Bulletin of the Seismological Society of America 75(4):
965-1004.

Heaton, T. H. (1990). "Evidence for and implications of self-healing pulses of slip in
earthquake rupture." Physics of the Earth and Planetary Interiors 64(1): 1-20.

Heaton, T. H. (2007). "Will performance-based earthquake engineering break the power
law?" Seismological Research Letters 78(2): 183-185.

Hoshiba, M. and S. Aoki (2015). "Numerical Shake Prediction for Earthquake Early
Warning: Data Assimilation, Real‐Time Shake Mapping, and Simulation of Wave
Propagation." Bulletin of the Seismological Society of America.

Hoshiba, M. and T. Ozaki (2014). Earthquake Early Warning and Tsunami Warning of
the Japan Meteorological Agency, and Their Performance in the 2011 off the Pacific
Coast of Tohoku Earthquake ({M} _ {{\ mathrm {w}}} 9.0). Early Warning for
Geological Disasters, Springer: 1-28.

Housner, G. W. and T. Vreeland Jr (1965). "The analysis of stress and deformation."

Kanamori, H., et al. (1997). "Real-time seismology and earthquake hazard mitigation."
Nature 390(6659): 461-464.

Kuyuk, H., et al. (2015). "Automatic earthquake confirmation for early warning system."
Geophysical Research Letters 42(13): 5266-5273.

Langet, N., et al. (2014). "Continuous Kurtosis‐Based Migration for Seismic Event
Detection and Location, with Application to Piton de la Fournaise Volcano, La Réunion."
Bulletin of the Seismological Society of America 104(1): 229-246.

Lawson, C. L. and R. J. Hanson (1974). Solving least squares problems, SIAM.

Minson, S. E., et al. (2015). "Crowdsourced earthquake early warning." Science
Advances 1(3): e1500036.

 189

Oh, C. K., et al. (2008). "Bayesian learning using automatic relevance determination
prior with an application to earthquake early warning." Journal of Engineering
Mechanics.

Richter, C. F. (1958). "Elementary seismology."

Shearer, P. M. (2009). Introduction to seismology, Cambridge University Press.

Tipping, M. E. (2001). "Sparse Bayesian learning and the relevance vector machine." The
journal of machine learning research 1: 211-244.

Vincenty, T. (1975). "Direct and inverse solutions of geodesics on the ellipsoid with
application of nested equations." Survey review 23(176): 88-93.

Wald, D. J., et al. (1999). "TriNet “ShakeMaps”: Rapid generation of peak ground
motion and intensity maps for earthquakes in southern California." Earthquake Spectra
15(3): 537-555.

Yamada, M. (2007). Early warning for earthquakes with large rupture dimension,
California Institute of Technology.

Yamada, M. and T. Heaton (2008). "Real-time estimation of fault rupture extent using
envelopes of acceleration." Bulletin of the Seismological Society of America 98(2): 607-
619.

Yamada, M., et al. (2007). "Real-time estimation of fault rupture extent using near-source
versus far-source classification." Bulletin of the Seismological Society of America 97(6):
1890-1910.

Zhang, H. and J. Malik (2005). "Selecting shape features using multi-class relevance
vector machine." EECS Department, University of California, Berkeley UCB/EECS-
2005-6.

