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ABSTRACT

Let M be an Abelian W*-algebra of operators on a Hilbert
space ¥. Let MO be the set of all linear, closed, denscly definecd
transformations in ¥ which commute with every unitary operator in
the commutant M’ of M. A well known result of R. Pallu de Barridre
states that if @ is a normal positive linear functional on M, then ® is
of the form T — (Tx, x) for some x in#¥, where T is in M. An elemen-
tary proof of this result is given, using only‘ those properties which
are consequences of the fact that ReM is a Dedekind complete Riesz
space with plenty of normal integrals. The techniques used lead to a
natural construction of the class MO’ and an elementary proof is
given of the fact that a positive self-adjoint transformation in MO has
a unique positive square root in MO' It is then shown that when the
algebraic operations are suitably defined, then M, becomes a com-
mutative algebra. If ReMO denotes the set of all self-adjoint elements

is Dedekind complete, universally

of M,, then it is proved that ReM

0’ 0
complete Riesz space,which contains ReM as an order dense ideal. A
generalization of the result of R. Pallu de la Barridre is obtained for
the Riesz space ReMO which characterizes the normal integrals on the
order dense ideals of ReMO. It is then shown that ReMo may be iden-
tified with the extended order dual of ReM, and that ReMO is perfect
in the extended sense.

Some secondary questions related to the Riesz space ReM afe

also studied. In particular it is shown that ReM is a perfect Riesz

space, and that every integral is normal under the assumption that



iv
every decomposition of the identity operator has non-measurable
cardinal. The presence of atoms in ReM is examined briefly, and it
is shown that ReM is finite dimensional if and only if every order

bounded linear functional on ReM is a normal integral.
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1
INTRODUCTION

This thesis will be primarily concerned with those properties
of an Abelian W*-algebra M which follow from the fact that ReM is a
Dedekind complete Riesz space. Of fundamental importance will be
the r8le played by the normal integrals on ReM or alternatively, the
ultraweakly continuous linear functionals on M. Wherever possible,
techniques from the theory of Riesz spaces will be used, although it
will be often advantageous to use techniques from the theory of
6perators.

Part I provides a short summary of background information
" from the theory of Riesz spaces, together with some results from
operator theory. In II, 'von Neumann algebras are defined and it is
shown that a W*-algebra with the Riesz decomposition property is
necessarily Abelian. In III, attention is focussed on the order dual
of ReM, where M is an Abelian W*-algebra. In particular, itis
shown that every integral on ReM is normal except in a very patho-
logical case, and that if M is not finite dimensional, then non-zero
singular functionals exist. The presence of atoms in ReM is examined
briefly.

The crucial result of R. Pallu de la Barriére is obtained in IV,
which characterizes the normal integrals on an Abelian W*-algebra.
In V, it is shown that the real part of an Abelian W¥*-algebra M is a
perfect Riesz space; this is used to derive the well known result that
"' M is a dual space as a Banach space, namely, M is the Banach dual
of the Banach space of ultraweakly continuous linear functionals on M.

In VI, the space MO of (unbounded) closed transformations
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which ""belong' to the Abelian W¥*-algebra M in a certain sense, are
defined. An elementary proof is given that each positive self-adjoint
element of M0 has a unique positive square root in MO' The algebraic
structure of MO is examined in VII. It is necessary to give a lemma
which replaces the spectral theorem for general self-adjoint trans-
formations so that some crucial results of von Neummann and Murray
are available within the framework developed.

It is shown in VIII that ReM , may be endowed with a partial

0
order in which it becomes @ Riesz space which contains ReM as an
order dense ideal. IX shows that ReMO is a Dedekind complete, uni-
versally complete Riesz space. A generalization of the result of
R. Pallu de la Barriére is obtained in X which leads to a characteri-
zation of the normal integrals on the order dense ideals of ReMO.
The extended order dual of ReM is examined in XI,and it is shown that
ReMO is perfect in the extended sense.

Finally in XII, the results obtained in VI are used to give an

elementary proof of the fact that any positive self-adjoint transforma-

tion in ¥ has a unique positive self-adjoint square root.
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I. PRELIMINARY INFORMATION

Riesz Spaces.

A partially ordered real linear vector space (L, <), with
elements f, g, . .., is called an ordered vector space if the partial
order on L is compatible with the algebraic structure of L, i.e.,

(i) f < g impliesf + h g+ h for every h€L

(ii) f =2 0 implies af 2 0 for every real a 2 0

An ordered vector space L is called a Riesz space if, for every pair

. f, g € L, supl(f, g) exists in L.

If L is an ordered vector space, the subset L+ = {feL:f> 0} is

called the positive cone of L. Elements of L+ are called positive. If
L is a Riesz space, we will write sup(f, g) = fvg, inf(f, g) = f Ag.

£f = fv0, £ = (-f)v0, |f| = fv(-f). We have f=f'~£", || = £ +£7. If
lf|/\|g| = 0, then f and g are said to be disjoint and this is denoted by

f 1g. If Dis an arbitrary subset of a Riesz space L the set

Dc1 = {feL:fyD} is called the disjoint complement of D. If p is a norm

on the Riesz space L such that p(f) < p(g) if ‘fl < |g|, then p is called
a Riesz norm on L. Note that p(f) = p(lfl) for any Riesz norm p on L.

A Riesz space L has the Riesz decomposition property: if

O<su<z, +2z

+ . +
1 20 27s %, €L ', then there existu u, € L' such that

11
u= u1+u2, and uy < z,u, < z,.

The indexed subset {fT:T € {r} } of the ordered vector space L

is called directed upwards if for any 7, T, € {r}, there exists T4€ {r}

such that f_=2f_,f_ =2f_  hold simultaneously. This is denoted by
T3 Ty T3 T,

f'r T'r' If fTTT and f = sup fTex1sts in L, we will write fTTTf.
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The linear subspace K of a Riesz space L is called a Riesz
subspace of L. whenever, for every pair f, g in K, the elements
fvg, fAg are also in K. The linear subspace A of L is called an(order)

ideal in L if A is solid, i.e., f€A, g€L, and lgl < lfl implies g€ A.

The ideal A in L is called a band whenever it follows from 0 < f'rT f,
fTEA for all T, that f€A. If D is an arbitrary subset of L, then the
intersection of all ideals (bands) containing D is again an ideal (band),
in fact the smallest such containing D, and will be called the ideal

(band) generated by D. If D consists of a single element f of L, the

ideal (band) generated by f will be called the principal ideal (band)

generated by f. Any band in the Riesz space L such that A & Ad = L

holds is called a projection band.

The Riesz space L is called Dedekind complete if every non-

empty subset of L which is bounded from above has a supremum.
Equivalently L is Dedekind complete whenever, given the upwardsdi-
rected set OSf,‘_'T,r < gin L, it follows that there exists f{€L such that

' f'r T’r fin L. If L is a Dedekind complete Riesz space then every band
is a projection band.

The order dual of a Riesz space.

The real linear functional ® on the Riesz space L is said to be

positive whenever @(f) 2 0 for all f€L+. The real linear functional ®

on L is said to be order bounded if for every uEL+, the number

sup('cp(f)’:lfl < u) is finite. The set of all order bounded linear func-
tionals is denoted by L™. Under the natural definitions of addition and
scalar multiplication, L™ is a real linear vector space, partially

ordered by setting 20, whenever ©;-0,20. With respect to this
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partial ordering L~ is a Dedekind complete Riesz space.

The order bounded linear functional ¢ on the Riesz space L is
said to be an integral whenever it follows from 0 < u i O that cp(un) -0

as n - . The collection of all integrals, L:, is a band in L. The

element € L™ will be called a singular functional if @ 1V for all V€ L:.

The set of all singular functionals L: is a band in L™ and L™= L:@ L:-

The order bounded linear functional ¢ on a Riesz space L is said to

be a normal integral if uT\LT 0 implies inf,r kp(uT)l = 0. The set of all

normal integrals on L will be denoted by L:. L: is a band in L: and
we set Lc = Lc, sn 12 Ln.

For any subset A of a Riesz space L, the Riesz annihilator A°

is defined by A® = {¢:0€L”™, o(f) = 0 for all f€A}. For any subset B in

L™, the inverse Riesz annihilator °B is defined by °B= {f:f€L, p(f) = 0

for all 9eB}. If A is an ideal in L, then A®is a band in L. If B is
an ideal in L™, then °B is an ideal in L. If (L, p) is a normed Riesz

space, denoted by Lp’ L: will denote the Banach dual of Lp' L; is an

ideal in L:' For any subset A C Lp the (Banach) annihilator At is
the set of all cpELp* satisfying ®(f) = 0 for all f€A. Similarly for

Bc L:, the inverse annihilator *B is the set of all fELp satisfying

®(f) = 0 for all 9€B. If A is an ideal in L , then At is a band of L;‘.
If Bis an ideal in L:, then !B is an ideal in L,

For any p€L”, set Ny = {teL:1o|(]£]) = 03. N, is always an
ideal and is called the null ideal of @; if & denotes the band of L™

generated by o, then Ncp = %. Define Ccp’ the carrier of , by setting

~

n)

Ccp = (Ncp)d' If L. is Dedekind complete, and if ¢, €L

the principal bands generated by @, ¥;¥ C dif and only if °¢ c °y.

let $,¥ denote
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For a more complete discussion of Riesz spaces, the reader
is referred to [9], [10], [11].

Topologies on &({¥).

Let ¥ be a complex Hilbert space with elements x,vy, z,...;
by &%) denote the algebra of all (bounded) linear operators on ¥ with
elements S, T, ... . ¥), equipped with the usual operator norm, is
a B¥-algebra. £(%¥) may be endoxx;ed with a \;a.riety of locally convex
topologies which are important in the study of operator algebras. The
coarsest locally convex topology on f(¥) for which the maps T = Tx of

%) into ¥ is called the strong operator topology. The locally convex

topology on f{¥) generated by the family of semi-norms T — (Tx, y) is

called the weak operator topology. Let X Koy ey be a sequence of

00

elements of ¥ which satisfy 1):_1__1 ” x; " 2 <. The collection of all semi-
Q0 1

norms of the form T - {15_.;1 ” Txi ”2} ¢ defines a locally convex topology

on £() called the ultrastrong topology. Similarly, the collection of all

o
semi-norms of the form T - I §=1 (Txi, Yi) l, where ‘1\_‘“:1 “xi “2 <o,

;ic:l ” ¥; ”2 <o, defines on £(¥), the ultraweak topology. The algebraic
structure of £(¥) is not in general compatible with any of these to~
pologies. However, the maps S = ST, T - TS are continuous in each
topology, while the map T — T* is continuous in the weak topology and
in the ultraweak topology. If £1 %) denotes the unit ball of £®) in the
uniform operator topology, then on £’L (), the strong operator topology
coincides with the ultrastrong topology and the weak operator topology
coincides with the ultraweak topology. For a more complete discus-

sion, see [1].
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The spectral theorem for self-adjoint operators

Let A be a self-adjoint operator of £{&). A will be called

positive, written A 2 0, if for every x€¥,(Ax,x) 2 0. To every posi-

tive self-adjoint operator A, there corresponds a unique positive

self-adjoint operator B such that B2= A. Biscalled the positive square

1

root of A, written A%, If S is any self-adjoint operator which com-
1

mutes with A, then S also commutes with A2, For any operator

S€LW), denote by N(S) the null space of S and by R(S) the closure

in of the range of S. If Ais a self-adjoint operator in £(¥), set

Py
|A' = (Az)a, A+ = %(A+|A|). For each a, -w<a<t+w, denote by Pa
the orthogonal projection on R( (aI-A)+), where I denotes the identity

operator in . The system {Pa} is called the spectral family of A,

and has the property that each Pa commutes with every self-adjoint
operator that commutes with A. If ¢ > 0, a, b are real numbers such
that al < A < (b-¢)I, letw = w(ao, e an) be a partition of [a, b] and set

s(mA)=Z -P ), t{(m;A) =X ak(Pa -P ). From

no o (P n
k=1 "k-1 a9 k=1 Kk %1

the properties of the system {Pa}, s(m;A) < A < t(wm;A). Let LY n=1,2,..
be a sequence of partitions of [a, b], each of which is a refinement of
its predecessor and such that |1rn| j,no. Then “A-s(vn;A) | -0,
“A-t(n'n;A)“ -+ 0 as n - oo. This is the spectral theorem. As a general
reference on operator theory see [12]. An elegant exposition of the
spectral theorem may be found in [9] where it is shown that if (%)
denotes the set of all self-adjoint elements of £(%), then any subset of
B(%) which is an Abelian algebra that i s closed in the weak operator

topology, and contains the identity I, is a Dedekind complete Riesz

space. The spectral theorem is then deduced as a special case of the
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Freudenthal spectral theorem, which is valid in any Riesz space
which has the property that every principal band is a projection band.

The pol'ar decomposition.

1
If TeSw), set[T|= (T#T)3. T has a unique decomposition

(the polar decomposition of T) of the form T = U|T| where U is a

partial isometry wnose initial space is R(I T!). The relations

U*T = |T|, | T*| = U|T|U*, |T| = U* |T| U are vaiid.

Notation: If Mis a linear subspace of &, [M] will denote the norm
clobsure of Min%. If M is any subalgebra of £(%), 8 any subset of %,
then EI;I will denote the projection on the closed subspace in¥
generated by all elements of the form {Tx: T€M, x€ 8}.

When necessary, the real numbers will be denoted by R, the

complex numbers by C.
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II. INTRODUCTORY REMARKS ON VON NEUMANN ALGEBRAS
Let ¥ bea complex Hilbert space; £(%) the algebra of all bounded
linear operators in #. Let S be an arbitrary subset of £(%). Let
S8'= {TE€LW): TS = ST for all SES}. §'is called the commutant of
S. Itis clear that we always have S < S'".
A subalgebra M of £(¥) will be called a & - subalgebra of £(¥)
(or a self-adjoint subalgebra of £(%) ) if SEM implies S* € M.

Definitio_rl_Z. 1: A # - subalgebra M of £(%) will be called a von Neumann

algebra (briefly a W¥*-algebra) in# if and only if M = M'.

We summarize briefly those properties of a von Neumann
algebra M which will be needed most frequently in the sequel. The
proof of these results and a complete list of the fundamental properties
of von Neumann algebras may be found in [17.

If M is a von Neumann algebra, we shall denote by Re M the set
of all self-adjoint operators in M. ReM is a real linear vector space,
partially ordered by defining A < B for A, B € Re M whenever (Ax, x)
< (Bx, x) holds for each x €¥. By (Re M)+, or simply M+ we shall de-
note {TEReM: T = 0}.

(i) If A€ReM, and if f is any real valued continuous function of
a real variable, then f(A) also belongs to ReM. The spectral family of
A belongs to Re M.

(ii) Each operator in M is a linear combination of unitary oper-
ators in M.

(iii) If M is any # - subalgebra of £(%) containing the identity
operator I then M is a von Neumann algebra if and only if M (or M

1!

the unit ball of M in the uniform operator topology) is closed in any one
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of the weak, strong, ultraweak or ultrastrong topologies.
Remarks: (a) (i) implies that if A €(Re M)’ then AT (ReM)’.

(b) It follows from (ii) that an operator A€L(¥) belongs to M
if and only if TU = UT for each unitary operator U in M'. |

(c) (iii) provides a purely topological definition of a von
Neumann algebra.

The order structure of a W*- algebra

We are primarily interested in the role played by the order
structure of a W¥- algebra. If 8 denotes the set of all self-adjoint
operators in £(%), then it has been shown by Kadison [ 6 ] that if A, B
are elements of 8, then AA B exists in 8 if and only if A 2 B or B 2 A,

On the other hand, if the W™ algebra M is Abelian, then ReM is a

Dedekind complete Riesz space. For an elementary proof of this

result see [9], Chapter 5. The proof is elementary in that it does not
depend on the spectral theorem for bounded operators, which is then
derived as a consequence of the Riesz space structure of ReM.

If the hypothesis of commutativity is deleted, then the Riesz
space structure disappears. It has been shown by Sherman [18], that
if Nis a C*-algebra (a uniformly closed self-adjoint subalgebra of
£(®%) ) such that ReN is a lattice, then N is commutative. It is possible
to obtain a relatively simple proof of this result in the special case of
a W*_algebra.

Theorem 2. 2: Let M be a W*-algebra. Assume that ReM has the

e _—

Riesz decomposition property. Then M is Abelian.

Proof: It is sufficient to show BP = PB, where P is any projection of

M, and BcReM satisfies C <B <I. Observe that if Q is any projection
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of M, and A€ (Re M)+, then A € Q implies AQ= QA. Infact A <Q
implies N(A) D N(Q), and R(A) cR(Q). Thus N(Q), R(Q) are invariant
under A so that AQ = QA. From O <B <1, follows B< P+ I-P. Thus
B= Bl + B2 with O SBl <P, Ox< B2 < I-P. Thus BlP = PBI,

BZP = PBZ hence also BP = PB.

Corollary 2. 3: Let M be a W% algebra, and assume that ReM is a

- Riesz space. Then M is Abelian.

Proof: Since ReM is a Riesz space, it has the Riesz decomposition

property. For other results of this nature, see Ogasawara [14], and
Fukamiya et. al., 4].
We shall frequently use the following result [1], Appendix II.

Let M be any W*- algebra. Let 8 CReM, and assume S is directed

upwards in ReM. Suppose further that there exists a T&€ReM such

that S < Tfor each S€ 8. Then sup S exists in ReM.

It should also be observed that if Mp denotes the collection of
all projections in a W*-algebra M, then M is the smallest uniformly
closed %- subalgebra of £(%) containing Mp. Further, Mp is a com-
plete lattice under the natural definition of A and V — namely, if
ml’ M, are subspaces in¥, let [77(1, 7]{2] and 7 N7M, denote respectively
the smallest closed subspaces of ¥ containing ?7(1, 77(2 and the inter-
section of ml’ Mos if Eml, Em2 denote the orthogonal projection on

VE, =E d E, AE,, =E :
these subspaces, then By V Ry = Erm, m,1 22 Fm Nom,™ Em am,
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III. LINEAR FUNCTIONALS ON A WX~ALGEBRA

# the set

For any von Neumann algebra M, we shall denote by M
of all complex linear functionals on M, by M* the Banach dual of M,
and by Mn the set of all ultraweakly continuous linear functionals on
M. An element ¢ € M¥ will be called positive and we shall write o = 0
if @(T) =2 0 for each T €(Re M)+. If0 <€ M#, ther: it follows imme-
diately that, for each S, TEM

(i)_o(T*) = o(T)

(i) los* T )] < o (S5*S) o(T*T) (Cauchy-Schwartz).

In particular each positive linear functional on M is uniformly bounded,

with norm o(I) where I denotes the identity operator in ¥.

 Definition 3. 1:. A positive linear functional ¢ on M will be called normal

. . + . .
if 0 < T’r TTT in (ReM) implies sup, cp('l',‘r) = op(T).

The notion of normality is related to the ultraweak topology of M via

Theorem 3.2: Let ¢ be a positive linear functional on M. ® is normal

if and only if © is ultraweakly continuous.

For the proof see [1].
If x,y €%, we shall denote by W y(M) the canonical linear

functional T = (Tx,y), for TEM. It is clear that the canonical func-
tionals wx’ x(M) are normal, where x €¥%.

We will now assume for the remainder of this chapter that the
w. algebra M is Abelian. Equipped with the usual operator norm,
ReM is a normed Riesz space which is Dedekind complete and norm
complete. We shall denote the set of all (real) linear functionals on
ReM by (ReM)*, the Banach dual of ReM by (ReM)*, the band of normal
integrals on ReM by (ReM);, and the order dual of ReM by (ReM)”

The Riesz space notation and terminology will be as in [10].
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Lemma 3.3 (ReM)™ = (ReM)*

Proof: If o € (ReM)™, then o = cpl-cpz, cpl,cp2 =2 0. By the Cauchy-
Schwartz unequality, ®,,%, are uniformly bounded, hence @ € (ReM)k,
If o € (ReM)*, then sup{|o(S)|: S€ReM, 0s5<|T|} slloll | TH;

herce ¢ is order bounded.

The following extension theorem will be found useful. We
assume that N is a linear space over the complex field and has the
following properties:

(i) There exists a map #: N — N which satisfies, for all {, g€N,

LEQ
(@) £%% =  (b) (MF=T£*  (c) (F+g)* = Pr4g*.
(ii) If (N,p ) is a normed linear space, then p(f) = p(t*) for all
f €N.
(iii) If (N,T) is a locally convex linear topological space, then
#: f - f¥*is T -continuous.

Set ReN = {fEN:f = f*}. Any f € ReN will be called self-
adjoint, If fis arbitrary in N, set f=f, +if,, £ = Hf+f4), f,= 2.51. (£-£%).
We will write N = ReN + i ReN. Denote by N#(respectively (ReN)#) the

set of all C-linear (respectively R-linear) maps &: N =+ C(respectively

©: ReN~R. If$ GN#, then for f € N define $*(f) = ${f*). It follows

#

easily that $* €N~ and that the map #: N# 5 N* satisfies the conditions

of (i) above with N replaced by N#. If 3 = 8%, then naturally § will be

called self-adjoint.

Theorem 3.4: (i) Let & in N# be self adjoint. The restriction of ¢ to

ReN is an element of (ReN)#. Conversely, if ch(ReN)‘, then ¢ may

be extended uniquely to a self adjoint element § of N#
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(ii) If (N, p) is a normed linear space, and @ €(ReN)# is

p-bounded, then its self-adjoint extension § GN# is p-bounded and

satisfies ||o]lp = |18 ]]p-

(iii) If t is a locally convex linear topology on N, and @ € (R eN)"«r

is T-continuous, then its self-adjoint extension § EN#is alsoT-continuous.

Proof: (i) Let § GN# be self-adjoint; if € ReN then
§(f) = #%(f) = §(T*) = §(D).
Hence the restriction of & to ReN is an element of (ReN)#.
Conversely let o E(ReN)#. For f €N set §(f) = o(3(f+f*%)
-1 cp(%(f—f*) ). It follows easily that & GN#, % is self-adjoint and ¥ is
an extension of . That § extends ® uniquely follows from the fact that
N = ReN + i ReN.
(i) If f€ N, then |&(f)] = 8(af) where a = exp(-i arg &(f) ).
3o (af) + BT ) = 3(8(af) + 3%(= £4) )
BEf+Tf*) ) = o(3(af + TfH) ).

Thus §(af) is real; & (af)

Observe that p(f) < 1 implies p(z(af + @ f*) ) < 1. Hence Helle< HcpHp
and since the opposite inequality is obvious we have ||§ Hp = HcpHp
(iii) follows immediately from &(f) = @(F(f+*) ) - i p(F(f-1*) )

and the fact that #: N - N is T-continuous.

We will therefore identify each G(ReN)# with its corresponding
self-adjoint extension & € N#.

Corollary 3.5: Let M be an Abelian W*-algebra: Then

(i) Re(M¥) = (ReM) (i) Re(M*) = (ReM)* = (ReM)™

~ (iid) Re(Mn) = (ReM)'; (iv) Re( (Mn)*) = ((ReM)';)*
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Integrals and normal integrals in (Re M)~

Recall that a linear functional ® € (Re M)  is called an integral,
whenever it follows from 0 < T J 0 in ReM that inf lcp(Tn)| = 0.
v €(ReM)” is called a normal integral if T, \LTO in Re M implies .
inf,rlcp(T,rH = 0. If® is a normal integral on ReM, “hen® = cp+ -0,
where cp+,cp- are positive normal linear functionals on M. We havethe
following decomposition:

(ReM)” = (ReM)T @ (ReM):, on @ (ReM)™

land

where (ReM): N (ReM)C, sn’ (ReM)’;’ c denote respectively the band of
normal integrals on ReM, the band of integrals which are singular with
respect to normality, and the band of singular functionals (cf[11] Note
XVA). Itis natural to ask whether every integral is a normal integral
and it is obvious that we may confine our attention to positive function-
als. If 0 <op€(ReM)”, then ® is a normal integral if and only if, for
each family pairwise disjoint projections of M, {Ei}ie.ﬂ' it follows that
cp(Z’. Ei) = z cp(Ei) (cf [1] p. 65). From this it follows easily that if
i€y icey
M is g-finite, i.e. if every family of mutually orthogonal projections
of M is at most countable, ther. the notions of normal integral and
integral coincide. In particular, if ¥is separable then every integral
is normal. It is the aim of this section to show that, except in a
certain pathological case, every integral is a normal integral for an
. Abelian W¥*-algebra M. This result is hardly surprising in view of the
more general result of [7]. However, the proof in the present case is
more algebraic in nature.

We first examine some relations that exist between the alge-

braic ideals of the Abelian W*-algebra M and the order ideals of the
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Riesz space ReM. As usual a subset N of M will be called an alge-
braic ideal in M if N is a linear subspace of M and SEN, TEM implies
ST € N. The notions of order ideal and band in ReM have been defined
in Chapter I.
Remark: Let N be an algebraic ideal in M, and let SEM. From the
polar decomposition of S, it follows immediately that SEN &) S*eN
&= !S[ €N. It should also be observed that the closure of N in the
weak operator topology is again an algebraic ideal in M,
. Notation: For any subset D of the Riesz space ReM we shall denote
by (D), (respectively {D}), the order ideal, (respectively band),
generated by D.

If N is any subset of M, we shall denote by N%the closure of N
in the weak operator topology.

Theorem 3.6: (i) If N is an algebraic ideal (respectively weakly closed

algebraic ideal) in M, then ReN is an order ideal (respectively band)

in ReM.

(ii) If K is an order ideal (respectively band) in ReM, then

K + iK is an algebraic ideal (respectively weakly closed algebraic

ideal) in M.

(iii) If N is an algebraic ideal in M then NV = {ReN}+i{ReN}.

(iv) If K is an order ideal of ReM, then {K]} = Re[RAR)™.

(v) If Pis any projection of M, then (P) = {P}.

Proof: (i) Let N be an alg=braic ideal of M. From the above remark
it follows immediately that ReN is a Riesz subspace of ReM. Assume
S €EReM satisfies 0 < [S‘ < T, where T€(ReN)+. By a generalization

of the polar decomposition for bounded operators ([1] p. 11), there
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1 1
2= AT?2. Thus

exists a unique element A€M which satisfies !S|
|S| = (A*A)T so that |S|€ ReN; hence 7,57, S = 51-5” all belong to
ReN, so that ReN is an order ideal in ReM. If N is weakly closed
then 0 < TTT,TT, T,€ReN, T€ReM implies T€ReN so that ReN is a
band in ReM.

(ii) If K is an order ideal in ReM, then K+iK is certainly a
linear subspace of M. Suppose that T€ K+iK, and that U is a unitary
element of M. From the uniqueness of the square root follows
|[UT|=]T|€K. From |ReUT|, |ImUT| <|UT| follows Re(UT)€K,
Im(UT)€K so that UTEK+iK so that K+1iK is an algebraic ideal of M.
If Kis also a band in ReM, let N denote KHARY. In particular N is
an algebraic ideal of M. Let 0 < TEN. From/[1], p. 45 there existsa
family 0 < T I T with 0 < T €K. Since K is a band,T €K. Thus
K+iK is weakly closed.

(iii), (iv) follow readily and the proof will be omitted.

(v) It is sufficient to prove that {P} ¢ (P). Let Te{P}. By

[9], lemma 26.5 R(!TI) < R(P). Thus |T| < L P for some constant )

so that |T| € (P), therefore T € (P). Hence (P) = {P].

Lemma 3.7: Let 0 <o (‘;(ReM):. Let Ncp = {TeReM: cp(lT') = 0}.

Then @€ (ReM) if and only if N, is a band in ReM.

Proof: Identical to [10], Note VIII, Theorem 27.5, and will be omitted.

Suppose now that P is any projection of M. A decomposition of
P is a collection of projections {PG}GGG such that P #0, PQIJ.PQZ if
a, # a, and ’V’:1 Pa = P. The cardinal of the index set G is called the
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cardinal of the decomposition. A set X is said to have a measurable
" cardinal if there exists a countably additive measure v on the collection
of all subsets of X such that vW(X) = 1, and Vv(F) = 0 for every finite sub-
set F of X. If such a measure vdoes not exist, then X is said to have
a non-measurable cardinal. We now have the following theorem:

Theorem 3.8: Let ® 2 0 be an integral on ReM and suppose that every

decomposition of I, the identity of M, has a non-measurable cardinal.

Then ¢ is a normal integral.

Proof: Let 8 denote the family of all collections {PB} of mutually
orthogonal projections PB such that cp(PB) = 0. R is inductively ordered
by inclusion so there is a maximal such collection {Pa} a€G, say. Let

P = sup, P_; then p(P) = 0. If not, then for A€ 2C

setv(A=p(sup e, Po)
and observe that ¢(P) # 0 contradicts the hypothesis that G has non-
measurable cardinal.

Let {P} denote the principal band generated by P in Re M.
By theorem 3.6 (v), {P} coincides with the principal ideal {(P) generated
by P in ReM. In view of lemma 3.6, it is now sufficient to show that
(P} = N, = {TeReM: (]| T|) = 0}. Observe that if T€{P} = (P), then
there exists an integer k such that |T| <k P. Thus cp(lTl)= 0 so that
{P} 'C-:Ncp' On the other hand, assume T€ ReM and o(| T|)= 0. By the
" spectral theorem, there exists a sequence Sn = Zi-—r'll a, an) in ReM
with a, >0, an) projections in M such that Snln' T| in ReM. o ’ T|)= 0
implies cp(an)) = 0 for each i,n. Thus an) € {P} hence S, € {P} for
each n. Since {P}is a band, |T| € {P} and so {P} = Ncp, and @ is

normal.
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Singular linear functionals on ReM

Following the discussion of the preceding section, we will
write
(ReM) = (Re M)s’ n ® (Re M)n
In this section we shall examine some of the properties of the singular
functionals (ReM)~ .
s, n

Lemma 3.9: (i) Let ch(ReM): o Ncp = {T€EReM: lp|(|T})= 01} is an

order dense ideal in Re M.

(ii) Let (ReM)® = {Te€ReM: |T| 2s_| 0=3 ||s_|| |0}

and (ReM)*"= {T€ReM: |T| 25 | 0 =y ||5|]] .03

Then (ReM)a = (Re M)an =‘L( (Re M): n) . Consequently (Re M)a is an

ideal in Re M.

Proof: The proof of the lemma is contained in [11] Theorem 50. 4

and Theorem 53. 7 (ii) of Note XVA.

Definition 3. 10: Suppose P is a non zero projection of M. P will be
called an atom if, for any projection Q of M,0 < Q < P implies either
Q=0o0r Q= P.

Lemma 3.11: Let P be an atom in M; then P€ (Re M)an.
e —————

Proof: For any SeReM, 0 <S <P implies S = AP for some real },
0 <) <1. This follows readily either from the spectral theorem or
as in [9] page 55. Now observe that )\nPln 0, 0 <) <1ifand only

if A } 0. Thus also || )‘nP” lno.

Theorem 3.12: (i) Let P€(Re M)a'n be a projection; then P = Eix_ll P

i

where the Pi are disjoint atoms.
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o
(ii) Te(ReM)?" if and only if T = T,.q M P, where the

Pi’ i=1,2,..., are disjoint atoms and !)‘il -0 asi=oo.

Proof: (i) Let P€(Re M)an be a projection. Assume that P does not
dominate a single atom. Assume that pairwise disjoint projections
k

Ql’ ..., Qx have been defined satisfying 0 # Qi < P and 521 Qi < P.

k
LetE, =P -%_, Q,. Note that 0 # E, <P. By hypothesis there

= i
exists a projection Qu .y go4igtying 0 # Q ., <Eg. It follows imme-
diately that Qk+1 is disjoint to Qi’ i < kand ?il_(—.*l'l Qi < P. Observe
that P2F_ =V Q. Wehave F_#0, P2F | 0. Since

m n2m n m m Vm

”FmH = 1 for each m, this contradicts the fact that Pe(Re M)3"™.
Therefore, it follows that there exists an atom P‘1 satisfying 0 # PlsP.

If P-P1 # 0, there exists an atom P2 satisfying 0 # PZ < P-P The

1
argument in the first section of this paragraph shows that this pro-
cedure breaks off after a finite number of steps, and the statement of
(i) follows.

(ii) Assume first that T = Zi

A, P., where the P.,i=1,2,...
=1 "1 71i i

are pairwise disjoint atoms and |)\ -0 ast=ow. If SEReM satisiies

i
0 . _ :

0<S<|T|, thenS =57 s P, with0<s<|\][], and |[5]|= sup,s;. It

follows readily that TE(ReM)a'n = (ReM)a. Conversely, assume

0<TE¢€ (ReM)an. By the spectral theorem and (i) it follows that

T = Zi:l A; P, where 0 <}, < ITl], and P. is an atom: i=1, 2, --. Assume

Pi #0i=1,2,... To show A; *0asi~—owassume Iimi A, > 0; by

choosing a subsequence if necessary we may assume that, for some

§>0, \.=286>0fori=1,2, -~. SetQ=Zi°° P.. Let N denote the inte-
i =] T4

gers, BN the Stone-Cech compactification of Nand choose a €N-N
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(see for example [5] ). For each S € ReM denote by fS the element
of zw(N) defined by (fS)n = (S X xn) n=1, 2, ... where X €% has been
chosen to satisfy Pn X =X, ”an = 1. Denote by fS the extension
of fS to a continuous function on BN. Define ¢ G(ReM)'v‘(Y by setting
o(T) = fs(o,) for each S€ ReM. Observe that ¢ is linear and that
l(tg), | < |IS||. Then also |o(S)| < [|S|| so that pc(ReM)* = (ReM)™".
It is also clear that ¢ 2 0, and that ®(T) 2 6 > 0. Since TG(ReM)a =
(ReM)an, it is sufficient to show that cpe(ReM);: n* Observe that
©(Q) = 1 = p(I) so that p(I-Q) = 0. Write =0 +o where 0 < P €
(ReM);n, 0<gp_ €(R 3M):. Since the P, are atoms and by the defini-
tion of @, 0 = cp(P1 + ...+ Pk) = (:ps(Pl-i-...-l'Pk )+cpn(P1+...+Pk)
= cpn(P1+. ..+Pp ) for k=1,2,.... Thus cpn(Q) = 0; also 0 = 9(I-Q)
=cps(I-Q) + cpn(I-Q). Hence cpn(I-Q) = 0 so that Cpn(I) = 0. By Cauchy

Schwartz = 0. Hence @€ (ReM)_ _ and the proof is complete.
®n s,n

Remark: The proof of (ii) of theorem 3. 12 shows that if the dimension
of M is not finite, then there exist non zero elements of (ReM):’ 0’ In
fact, let {Pi} i=1,2,,,. be a system of pairwise disjoint non zero pro-
jections of M. Let ® € (ReM)  be defined via the Pi as in the proof of
(ii) above. Let Fm = Vann Pn' Observe that cp(Fm) = 1 for each m.
Since Fm J/m 0, it follows that cpZ(ReM):, so that the singular part of
¢ is non zero.

Let @ denote the set of atoms in ReM. In general the ideal
generated by the atoms of ReM is not equal to (ReM)®. However if
{@} denotes the band generated by the atoms in ReM, and {(ReM)?}

denotes the band generated by (ReM)a, then we have the following



22

Corollary 3.13: {@}= {ReM)?™}

Proof: {a} c {(ReM)a'n} trivially. On the other hand dd c (ReMa)d by
a)dd

the above theorem. Therefore {7} = ddd 2 ((ReM) = {(ReM)?}

We may write ReM = {al & {d}d where @ denotes the Riesz
space direct sum. {@} will be called the atomic part of ReM, {d}d
the non-atomic part. It seems appropriate to call M purely atomic if
{@} = ReM, and purely non-atomic if {¢} = {0}. Following ([9]), an
ideal N in ReM will be called a maximal ideal if N # ReM and if there
is no ideal in ReM properly contained between N and ReM. In addition
if N is a band, then N will be called a maximal bard.

Theorem 3.14: (i) If Nis a band in ReM, then N is a maximal band

if and only if there exists an atom P in ReM such that N = {P}d.

(ii) If {@} denotes the atomic part of ReM, then {d}d =N (N:N is

a maximal band).

(iii) {@}= ReM if and only if ReM | = ((ReM)?)".

Proof: (i), (ii) follow exactly as in ([9] p. 57).
(iii) If (ReM);’V n = (ReM?)?t, let PE{d}d, P a projection and
assume P # 0. Choose x€% such that Px = x and consider the canonical

normal functional W, o From w, xédf @, XE {d}"‘. In particular w, XE

3 »

(ReM®)*. Hence W = 0. It follows that {d}d = {0}, hence {g}=ReM.
Conversely, assume {7} = ReM = {ReM?}. Observe that we
always have (ReM)Sﬂ:n c (ReMa)"'. Assume (;OE(Rel\/IN)Jr satisfies
®(T) = 0 for all T€ReM?. Write ¢ = ®, + @, Where 0 s E(ReM);: .
0 < cpnG(ReM):. Since @ vanishes on (ReM)a' so also does @ - By
normality and the assumption that ReM = {ReMa}, it follows that

P, = 0. Thus o= P and the proof is complete.
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We conclude this section with some remarks on the case when
M is finite dimensional

Theorem 3.15: The following conditions on an Abelian W*-algebra M

are equivalent:

(i) ReM = (ReM)2™.

(ii) M is finite-dimensional.

(iii) M is a reflexive Banach space.

(iv) (ReM) = (ReM):.

Proof: (i) =) (iv) : Assume M satisfies (i). From ReM = (ReM)a
= (ReM)a'n it follows immediately that every positive linear functional
on ReM is a normal integral.

(iv) =3 (i): Since the only singular order bounded functional on
ReM is the zero functional, ReM = ((ReM~)S’ n)"‘ = (ReM)an.

(iv)= (ii): It has been observed in the proof of Theorem 3. 12,
that if the dimension of M is not finite, then there exist non zero ele-
ments of (ReM):’ 0’

(ii) = (iii) is obvious.

(viii)% (iv): Assume M is reflexive as a Banach space. Recall
thatMnC; M#*, and that M is norm-closed in M* ([1] p. 38). Assume
that M # M*. Let 0# @ €EM* satisfy cpéMn. By the Hahn-Banach theorem

there exists u € (M*)* such that u(p) # 0 but that u((,oX y = 0 for each

“,y

Ll

€ Mn' Since M is reflexive, there exists T €ReM such that
W, ) = (Tx,y) for all x,y €¥; ulw, )= 0for all x,y €¥ implies
T = 0. Thus u(p)=9(T)= 0. This is a contradiction. Thus Mn = M*,

consequently (ReM):= ReM .
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IV. NORMAL INTEGRALS ON AN ABELIAN W*-ALGEBRA

If @ is a positive linear functional on an arbitrary W*-algebra
M, then it is well known that ¢ is normal if and only if = Z‘.li_ol Wx;, X3
where the system {xi} 34 sa.tisfiesi__Z:!.o1 I xi"?' < oo {cf [1], p. 54 Theorem 1).
On an Abelian W*.algebra, however, the result of R. Pallu de la
Barriere [15] states that every normal positive linear functional ¢ is
of the form @(T) = wx, x(T) for some x€%. The original proof of this
result depends rather heavily upon representation theory and it is
desirable to obtain a proof which uses the order structure of the
Abelian W*-algebra more fully. Dye [3] has essentially treated this
problem in a more general context and we shall give a short discussion
of his results later, [see p. 29]. In the Abelian case, the situation is
especially simple and in this section we shall present an elementary
proof of the R. Pallu de la Barriére result which will be fundamental
in later sections.

The support of a positive normal linear functional

In the following, it will be assumed that M is a general
W#*_algebra.

Lemma 4.1: (cf [1], p. 61) Let® be a normal positive linear function-

al on M. There exists a unique projection E(.30 in M with the following

properties:

(i) If E is a projection in M such that ®(E) = 0, then EsI-ECP

(ii) For each TeEM, o(T) = cp(TEcp) = cp(ECpT) = Cp(EcpTEcp)'

(iii) For each projection Fin M such that EchEcp;é 0, thenw(F)#0.

(iv) If M is Abelian, let I-P be the component of the identity in

the band Nw of ReM where Ncp = {TeReM:p(|T|)=0}. Then P= Ecp.
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Proof: Let@Q-= {EEM: E is a projection: ®(E) = 0}. Let {Ei}iEJ be a
maximal set of pairwise disjoint projections of G. Set I_EcpzziEJEi'
By the normality of o, I-EcpEG,. Suppose that E is any member of G
and that E # I-Ecp' Set E' = EV(I_EQp) - (I-Ecp)' Observe that EV(I"Ecp)
is the projection on R(E+I-Ew). From cp(E+I-Ecp) = 0 and the spectral
theorem for positive self adjoint operators it follows that EV(I—E(O)G G.
Further E' # 0, E'€éG and E' s I-Ecp. This contradicts the maximality
of {Ei}iEI and so we have (i). For any TEéM we have T=TE

P
By Cauchy-Schwartz cp(T(I-Ecp) ) = 0. The rest of (ii) follows similarly.

+T(I-Ecp).

Uniqueness is immediate from (i). If F is any projection of M, then

@(F) = 0 implies F < I-E  so that F(I-Ecp) = F. Thus F Ecp = 0 and also

¢
E FE =0.
® ®
Finally, if M is Abelian, let I-P denote the component of the
identity in the band M = {T€ReM: cp(' T|) = 0}. Observe that both

I-Ecp’ and I-P belong to M. Thus P = Ecp'

Definition 4.2: If ¢ is a normal positive linear functional on M, the

projection Ecp of the above lemma will be called the support of ¥, and

will be denoted by supp(®) or simply, Ecp'

t
Remark Ifop= W, x(M) for some x€%, then Ecp = Eiw . In fact, if

E is a projection of M such that Wy x(E) = 0, then Ex = 0. Thus

[ ] 1]
EM'x = 0 so that E E}I(VI = 0 5o that (I-E) < 1.1::)1:’I . On the other
] ! 1
hand ((I-EM')x,x) = 0 so that -EM < I-E . ThusE = EM',
x x () ® ~x

Definition 4.3: Let®, ¥ € M: We will say that ¥ is absolutely con-

tinuous with respect to ¢, and write y <o if E,Z < Ecp'

4
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A Remark In the special case that y<®, it is clear that { <¢. If the
W¥k-algebra is Abelian, then ¥ <@ if and only if ¥ is in the band gén—
erated by ®. (cf Chapter I and lemma 4.1, (iv))

Definition 4. 4: A projection E of M will be called o-finite, if, for each

family of mutually disjoint projections {E.J, cgWith E, SE for all i, it
follows that Ei # O for an at most countable set of indices.

Lemma 4.5: Let ® be a positive normal linear functional on M, Ec.')

.the support of . Then Ego is o-finite.

Proof: Let {Ei}iGJ be any family of mutually disjoint projections of

M with Ei < Ecp for each i€d. If Fis any finite subset of & then
cP(EiE:;Ei) < cp(Ecp) <+

Consequently the number of indices i€Jdfor which CP(Ei) 2 -II;is at most

finite. Thus for all except a countable set of indices i, qo(E.l) = 0. By

lemma 4.1, it follows that Ei = 0 except for an at most countable set

of indices.

Lemma 4.6: Let M be an Abelian W*-algebra, ®a positive normal

linear functional on M, E_ the support of ¢ There exists x€¥ such

P

that EM =g .
x @

Proof: This follows from the fact that Ecp is o-finite and [1] p. 20.

It is immediate from lemma 4. 6 that if @ is a positive normal
linear functional on an Abelian W*-algebra M, then there exists an
x€¥ such that © <w

X, X
We now prove the following special case of a more general

theorem of S. Sakai [16].
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Lemma 4.7: Letq YV be positive normal linear functionals on an

Abelian W*-algebra M which satisfy ¥ < There exists H€ M with

0 <H <] such that {(T) = 9(TH) for all T €M.

Proof: Let Ecp denote the support of ®. The Abelian W*-algebra MEcp

becomes a Hilbert algebra if we set (A, B)cp = p(B*A) for A, B EMEcp

([1], p. 66). For A, BE ME_, set (A, B)W= V(B*A). From V <@

¥

follows
1 1
| B, = | WB*A)| < (V(B*B))? ({A*A))?

1
2

1
< (@ (B*B))*(p(a*a))® = |B] [ al,
Thus (A, B)‘y defines on the Hilbert algebra MEcp a bounded, positive,
sesquilinear Hermitian form. There exists a positive self-adjoint

operator, (], defined on the completion of MEcp with respect to (, )cp’

such that (A, B), = (1A, B) . For any C in ME_, let R_. denote the
17 ® @ C

(right) multiplication operator on ME_ = defined by Rc (A) = AC for

®
A EMEcp' To show that (is given by multiplication on the left by some
element H of MEcp' it is sufficient to show that RCQ = QRC for each

ceM ([1], p. 69, Theorem 1, and p. 57, Prop. 1). Let A, B be
arbitrary in MEco' Then

ES *
(RC QA, B)cp_ (QA, RC B)cp = ((A, RC* B)cp = (QA, BC)

®
= W (BCH*A) = v(CB*A) = yB*AC)
= (QAC,B) = (QR. A, B) .
( )cp QR )cp
Thus RCQ = QRC holds for all C in MEcp and the proof is complete.

Lemma 4.8: Let M be an Abelian W*-algebra and let x € ¥. Then

’
(P - 00)
Es -VEz'wz,z-wx,x(M) )

Proof: For each z € ¥ such that w, = W x(M), ET = Ex . Thus

/ ’ 7/
EMS EM = EM so that V {EM: w =W M)}<E . On the other
z x z X, X

b/ Z, Z

"
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hand, let F be any projection of M’ which satisfies F 2 EI\Z’I for each
z €% such that wz’ . wx’ x(M). Observe that “’US: U'x = wx’ x(M) for

each unitary operator U’ €M’. Thus U'x € R(F) for each unitary
7

operator U'€ M’. Thus R(F) 2 (M’x] Hence F ZEJIZI and the lemma

follows.

We are now in a position to proceed directly to the result of
R. Pallu de la Barriére [15], which is the principal goal of this
section.

Theorem 4. 9: Let ® be a normal positive linear functional on an

Abelian W#*-algebra M. There exists y € ¥ such that ¢ = le.

14
Proof: Let Ecp be the support of . Choose x € ¥ such that E}I{VI = Ecp'

It follows that @ belongs to the band generated by Wy o Hence

o= Vn(cp An wx, x). Observe that \l/n =@ An wx’ x has the properties

that (i) \ynTn (i) ¥, Snow . (ili) for each 0 ST €M YT) = lim ¥ (T).

By lemma 4.7, there exists a sequence {Hn} of positive operators of

7
M which satisfy H_(I-EM ) = 0 such that y (T) = (TH_x, H x) for each
n x n n n

T € M. Let z € ¥ satisfy wz, 7 wx, < Then also \l/n(T) = (Tan, an)

M M

for each n and for each T € M. Since %’T‘ it follows that H E° 2H E
n n z m z

4 ’
forn 2m. From lemma 4.8 H EX2>H_EM forn>m. Thus H 1.
n x m- x n'n
From Y{I) = lim " H_x " 2, it follows that the sequence of real numbers
n-ow

“an I 2 is a Cauchy sequence. We now show that the sequence {an}

is a Cauchy sequence in¥. In fact, for n 2m,

2 2
||an-me|| ||an|| + nmeHZ-(an, H_x)-(H_x H_x)

A

2 2
e =l "+l x| “-@m x H_x)-(H_x, H_x)
LY I
n m

—> 0asn m —oc.
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There exists y €% such that y = lim o Hp% Hence, for each T €M

-—

v(T) = limn_. oc(T an, an) = (Ty, y)

wY» Y(T)
and the proof is complete.
In later sections we will show that if M is Abelian and the

normal positive linear functional ¢ satisfies ¢ < wx, < then ¢ = wa’ Tx
where the ""Radon-Nikodym derivative' T is a closed densely defined
transformation which commutes with each unitary cperator in M’. In
(3], Dye has shown that if M is any W¥*-algebra, and if the cyclic
projection EXMI, x €% is finite then any normal positive linear func-
tional ® which satisfies @ < wx, < is of the form o = wa, Tx where T

is a closed densely defined transformation which commutes with each
unitary operator of M’. Dye shows that the finiteness of all cyclic
projections is a necessary and sufficient condition for the universal
validity of a Radon-Nikodym theorem of the above type, that is, as

long as one insists on having closed transformations as '"Radon-
"Nikodym derivatives.'" However, a partial Radon-Nikodym theorem
holds for the class of W*-algebras which have no purely infinite pro-
jections. In fact if M is a W*-algebra which contains no purely in-
finite projections, and if the normal positive linear functional ¢ satisfies

o<W, for some x in ¥, then there exists a vector y in [M;c]ﬂ[Mx]

h that o = @ see [ 3]).
suc ® v,y ( [(3D)
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V. THE PERFECTNESS OF AN ABELIAN W*-ALGEBRA
Throughout this section, M will always denote an Abelian

W*_algebra. If T€(ReM)®, then T defines an element w(T) of
(ReM)r: : In fact for each ch(ReM): set V(T)(p) = ©(T) and observe
that 0 < o_ 1o in (ReM): implies V(T)(p)=o(T)=sup, ®_(T)=sup V(T )y, ).
To each TEReM, cpE(ReM): set V(T)(p) = ©(T). It .s clear that
v: ReM - (ReM):,: is linear and preserves partial order. Further
v is 1-1, since v(T) = 0 implies V(T)(wx, x) = 0 = (Tx, x) holds for
each xin¥%, thus T = 0.

Theorem 5.1: The image of ReM under the canonical map v is a

Riesz subspace of (ReM)” 7. If 0 < T TT T in ReM, then v(TT)TT\)(T)

in (ReM): ’;

Proof: Asin [10], Note VII.

Let 0 <u"€(ReM)_ . Recall that u" may be considered as a
linear functional on Mn and that any canonical linear functional

wx, y EMn, x, YE€E¥ has a decomposition of the form

- 1 :
.y ~ 2f{((""x+y, xty - %%-y, x-y) + 1(""’x+iy, x+iy %k-iy, x-iy)}-
‘. Observe the following properties of u"(Mn.):
3 1" L
(1) ulw, )= utlay ),

(1) u'lwy, )= Aale, ),

(iii) u“(wx_l_y’ 2) = u"(wx, gt u"(wy’ 2
. 2
(iv) [ulw, 7 =< fule, O Tuey I,
~ where )\ is any complex number, x,y, z denote elements of ¥.

(i) follows by noting that wx-y, x-y = wy-x, —
wx+iy, x+iy = C"y-ix, y-ix, wx-iy, x-iy = wy+ix, y+ix® (ii) and (iii) are
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similar and (iv) follows in the usual fashion of the Cauchy-Schwartz

inequality from the relation u”(wx+)\y x+)\y) 2 0 for each complex ).

Theorem 5.2: (i) v(ReM) is an ideal in (ReM): : In particular if

0 <u" <wT), u"G(ReM): ~ thenu"= V(ST),0<S <I, S, TEReM.

(ii) The smallest normal Riesz subspace of (ReM): : con-

taining v(ReM) is (ReM)'; :

(iii) v(ReM) = (ReM); :, i.e. ReM is a perfect Riesz space.

(iv) v(ReM) and (ReM): ;" are isometric as Banach spaces.

Proof: (i) Letu"€(ReM) _ satisfy 0 <u' <V(T) for some TeReM?'
Then for each X €Y, u”(wx x) < (Tx,x). By (iv)of the previous page,
lu"(wx’ y)' < (T? x){Ty, y) for all x, y €%,

1
" It follows that [T?

X, TEy] = u"(wx y) defines on the linear subspace
-1- £ ]

T% a single valued, sesquilinear bounded positiVe'Hermitian form.
In view of (i) - (iv) listed above, we need check only the single

1 L
valuedness. If T?x = T2x',then

1 [ 2 - 11
oty ) - ulag, M7= lotley g )

< (T(x-x"), (x-x') (Ty,y) = 0.

'Z

Therefore, there exists a positive self-adjoint operator S defined
L EY i
on the closure of T?¥ such that u'(ew, Y) = (T%x, ST?y) for each
’ 1
x, yE¥. We set Sx = 0 if x€¥ belongs to the null space of T?, Let

A be any element of M'. Then

i i i 1
(T%x, A S T3y) (T? A*x,ST?y) = u'(wp y)
1 I
' - 2. 3
u '(lwx’ Ay) 1-— (T%x, ST%Ay)
(T?x, SAT3?y),
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1
Hence AS = SA on the closure of T?%. Since the projection on the

null space of T% also belongs to M, AS = SA in%. Thus S€ReM,
and it is clear that 0 <S <.

(ii) follows immediately from [10], Theorem 28.2 (ii) of
Note VIII, since the Dedekind complete Riesz space ReM has plenty
of normal integrals, i.e.,

°( (ReM)~) = {T€ReM: wfT) = 0 for all we€(ReM)_} = {0}

(iii) In view of (i) and (ii), it is now sufficient to show that
v(ReM) is a normal subspace of (ReM):,;. Let 0 < \)(TT)TT u',
u" E(Rel\/l):’:. For x€¥%, \)(TT)(wx’ x) = (TTx, x) < u”(wx’ X). By the
Banach-Steinhaus theorem, supT “TT “ <+ w. Thus, for some
constant K, 0 < TTTT < KI. By the Dedekind completeness of ReM,
there exists T€ ReM such that 0 < TTTT T in ReM. By Theorem
5.1, \)(T"_)T'r v(T) in(ReM)';,:. Thus u'' = v{T), and so v(ReM) is a
band in(ReM):’:; and by (ii), v(ReM) =(RerI);, ';1'

(iv) follows by observing, for T €M,

[y

sup([(Tx, y)l:[[x]| =1, [lyls D)
sup ([V(THw, i o, =D
sup (|V(T)®): peReM, flofl < 1)
sup (lo(T)]: folls 1) < | T

;)

A

A

By an abuse of notation we shall write ReM = (ReM);: :
The Riesz space (ReM): is itself norm complete ([ 1], p. 38).

It is easy to show that the norm of the Banach space (ReM): is a

Riesz norm which is additive on the positive cone of (ReMg. In

fact let 0 <o), @, E(ReM): satisfy 0, <o, From cpl(I)g cpZ(I)
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follows immediately that “cplﬂ < “ %, “ . If p is any element of(ReM):
write ¢ = cp+- o, |o|= cp++cp'. Note that cp+Acp".= 0 impliesEcp+ .!.Eq;.
1t is clear that o] s“q:+" + Jo”]|. SetE= Ecp+ - Ecp- . Then
Joll 20(®) = o' (EH) + o7 (B =)= Jo' | + o7, Hence
lol = No'l + ol =0™ @+ (= ol =1 lo| |. Finally i
| ® =@, +, with 0 <o ,¢, E(ReMJ, then [o| = o(l)= o (I+o,(I)
= fo, 1+ e,

From these remarks it follows that (ReM):,* = (ReM):’N
([10] Note VII and Note VIII, Theorem 26.4), and that the Banach
space (ReM)’:’1 is an abstract L-space. Itis well known that every
bounded linear functional on an abstract L.-space is a normal inte-
gral. Consequently (ReM):’* = (ReM)r::= ReM. We summarize
the above in terms of the Abelian W*-algebra M.

Theorem 5.3: The Banach spaces M, M: are isometrically

isomorphic.
. Proof: If TEM, chMn, define g(T)(®) = ©(T). The map o is clearly
an algebraic isomorphism of M into M* That g is onto follows
from Re(M_*) = (ReM)7, * = ReM. It is clear that [ o(T)| <] T].
On the other hand
To(Tl = sup {1o(THaw, ) :1x]st, fIyllsLx, yex]
= sup {[(Tx,y) 1 ]| <1, Iyl =1, %,y ex}

I

Thus "o(T)“ = "T“ so that g is an isometry.

The result of Theorem 5.3 is a well-known property of any

W*-algebra (cf[1] p. 40) and S. Sakai [17] has shown that this
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property may be used to give a non-spatial definition of W#®*-algebra.
More precisely, in [17] a B®*-algebra M is called a W*-algebra if
there exists a Banach space F such that M = F*, If F is canonically
embedded as a norm - closed subspace of M* then it may be shown
that F is generated by the totality of normal positive linear functionals
on M. Since normality is determined by the order properties of M

only, it follows that if F FZ are two Banach spaces with the property

1°
Fl*= Fz*z M, then F1 coincides with FZ when they are canonically
embedded into M*. Further it may be shown that if M is a W#*.algebra
in the above sense then M may be represented faithfully as a weakly
closed #*-subalgebra of £(¥) for some Hilbert space ¥ and that under

such a representation the o(M, F) topology is equivalent to the weak

operator topology on bounded spheres.
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VI. THE SPACE ReM
Let M be an Abelian W*-algebra.

Definition 6. 1: By M, we shall denote the set of all linear densely

0
defined closed transformations T which satisfy TU D UT for each
unitary operator U in M! ReM0 will denote the set of self-adjoint
transformations in MO' If TEMO, we shall denote the domain of
definition of T by S, and the range of T by Y- If TGReMO, then

T will be called positive, written T 20, if (Tz, z) 2 0 for each z€ ..
We will write T€(ReM,)"

In this section we shall show that Theorem 4.7 leads to a
natural construction of ReMo, and we give an elementary proof of
the fact that each positive element of (ReMO)+ has a unique square
root in (ReM0)+. Tre proof is elementary in that it uses only those
properties which are consequences of the Riesz space structure of
ReM. In later sections it will be shown, that if the algebraic’opera-
tions are suitably defined, then ReM0 is itself a Dedekind complete
Riesz space, which is, at the same time, a universal completion of
the Dedekind complete Riesz space ReM.

We shall frequently use the following useful result:

Lemma 6.2: (cf[13], p. 226) Evei'y linear closed Hermitian trans-

formation TGMO is maximal Hermitian and self-adjoint.

Proof: Let V. denote the Cayley transform of T ([12], p. 74).
Since T is closed, sVT = %THI’ %VT = %T-il are closed subspaces
‘of . Since T commutes with every unitary operator in M', it

follows that VT may be extended to a partial isometry in M., Since
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. . _ * _ .
M is Abelian V. V5. = V.V, so that %THI—WT _i;r To show that T is
self adjoint, it is sufficient to show that WTHI:?/'T_iI:N. Assume z€X

satisfies ((T+il)x, z) = 0, ((T-iI)x, z) = 0 for all x€ ST. Thus also

(x, z) = 0 for all x€ BT, which is dense in ¥ Thus z = 0.

We now obtain a more precise version of Theorem 4.9, which
will lead to the construction of the class ReMO.

Theorem 6. 3: Let ® be a normal positive linear functional on the

Abelian W*-algebra M which satisfies @ < W« for some x€& There

exists a positive self-adjoint transformation H € (ReM0)+ which satis-

L4 0

. M _ _
fies H(I-EX ) =0, and ®(M) = wa_, Hx(M)'

Proof: From the proof of Theorem 4.9, there exists a sequence of
positive self-adjoint operators in (ReM)+ which have the following
properties:

(i) 0sH_ 1
(i) Hn(I-E)IZI )= 0

(iii) For each T in M, ®(T) = 11mn Qo(Tan, an).

Note that if T/ is any element of M’, then
e r el < B e sl < e ]
sl T’ flom.
In particular, if z is any element of {M'x}, there exists a real constant
K(z), independent of n, such that
" an " < K(z)
Now suppose z € [M'x] satisfies " an“ <K(z), where K is a

real constant, independent of n; then the sequence {an} is actually



37

convergent. In fact, from (i) {| H z |3 is a Cauchy sequence of real
numbers. Further for m =2 n

" Hmz-an “ 2=(an, an)+(Hmz, Hmz)-(Hmz, an)-(an, Hmz)

slH 2zl - [8,2]% = 0asm, n~o

We define the linear transformation H as follows:

LetM= {ze[M’x]: " H =z “ < K(z) for all n}. For z €¥, set
Hz = Hmn-'ooan' For z€x © [M'x], setHz=0. From {M'x}cmcMXx],
it follows that H is densely defined. By (iii) ¢ = wa, Hx(M). We now

show that H is a positive self-adjoint transformation in MO'
(a) For z € sH (Hz, z) 2 0 follows immediately from (an, z)=0,

(b) His Hermitian and closed: If z € QH’ then

1° %2

(Hzl, ZZ) = 1imn_’°°(an1, ZZ) = limn_.w(zl, anz) = (zl, sz). Thus

z, € Biia and H% z, = sz so that Hc H* and H is Hermitian. In
particular H* is densely defined so that H** is defined. Suppose now
that z €8y, 2,72 and H z Y- From Hzn - y follows that for
some constant K, “Hz "s K for all n. Thus "H z " < " Hz " < K

n m n n
holds for all m,n. Fix m and let n = o to obtain “ Hmz“ < K for all
m. Thus z € By Now H ¢ H** H** is closed and we have z s
z € Bypp, 2, 2z and H** z_=y; hence H#**z = y, so that Hz = y since

z € ‘BH' Thus H is closed.

(c) Let U € M’ be unitary; if z € § then Uz € 9, since

H’
"Hn uz" = Ju an" = “an“.

Further, UHz = U(lim H z)=1lim
o 'n n

= w0 Uan = hmn—'oo Hn(Uz)

-

=HU?=z
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Thus UHc HU for each unitary UEM'. That H is self-adjoint now

follows immediately from lemma 6. 2.

Rerhark: Notice that the transformation H of Theorem 6. 3 has the
1
special property that H [I-EXM ] = 0. We shall assume for the present
H
that M' has a cyclic vector x€¥, i.e., for some x€¥, Ei’l =1 We

shall find it convenient to make the following definition:

L
Definition 6. 4: Assume Ei’l = I. We shall denote by Mo(x) the set of

all elements H in MO which satisfy the following conditions:

(i) x€ Byye

(ii) There exists a sequence {Hn}, n=1,2.. of elements of M+

such that H 1 . and 2€8y if and only if |H z| <K(z), and then

Hz = hmn_'oo an.

From (ii) follows immediately that if HEMO(x), then (Hz, z)2 0
for all ZESH, so that H 2 0.

Theorem 6.5: Let HGMO(x). There exists a unique element G in
P ———

M y(x) which satisfies G% = H.

Proof: (i) Existence: Let {H } be a sequence of elements

n’n=1,62,.. .,
of M+ associated with H as in Definition 6. 4. Consider the sequence
1 1 1
Fl F FPSYal
{Hnl}n=l, 2, Observe that Hn Tn, Hn EM . For each z€ SH’
"Hr—fzﬂz = (an,z) < “an“ "z“ < “Hz“ “z" We define a linear
transformation G as follows:
1
8 = {zew: "anz“S K(z) for n=1,2,...} where K(z) is a con-

i
stant independent of n. For z€8;, we set Gz = limn_’wH: z. Note

that SG‘_'_Q B and that G is a linear, densely defined, self adjoint
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element of M0 by precisely the same as the proof of Theorem 6. 3,
and satisfies (Gz,z) 2 0 for each z € sG. In particular then,
GE€ Mo(x). G has the following properties:
(i) QH ot QGZ In fact, if z¢€ QH, there exists K(z) such that

1Hz1% < |u2 HEz |? < |H_z|° SK(z)forallmZn ....... (a)

Noting that z € §; and that (a) 1mp11es = ° *y z|| < K(z) for all m, n
fix m and let n = o to obtain “H 2Gz “ < K(z) for all m. Thus
G.stG so that zEﬂG.

(ii) stcﬂH: For z€ QG, and each n,
R el bl
a - . - N - -
H Gz = H2 lim _mle z -1 11mrn o Hn Hm z=lim
Thus H : zE S and GH 2z = H Gz. Thus if z¢ sGZ, then for each

i
22,
-

i
H’H
m=w m n
3.3 3 $
Fl
m, n, ||H H? z| < |G H? z] = |H? Gz| sK(z) .
In particular by setting m = n, we obtain that zesH.
(iii) G = H. From (i) and (ii) scz 8 Let zle st
zzeﬂG, then .
2 = - z,
(G z, zz) = (GZI’GZZ) = lim (H

n-'oo 2y

1
2
Hn ZZ)
= 1imn_.°°(anl, zz) = (Hz1: ZZ)

as QG is dense, we obtain Gzz1 = Hzl.

Before turning to the question of the uniqueness of G, we
state two preparatory lemmas

Lemma 6.6: (cf [127, p. 61) Let T be a linear, densely defined

closed transformation in . Then (I+T"'T)-1 exists and is equal to

a bounded positive self adjoint operator B, J]B“ < 1. The trans-

formation C = TB is also bounded, JlC “ < 1. If T' denotes the
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restriction of T to sT*T’ then T is the smallest closed linear exten-

sion of T'. Consequently Spwp is dense in S, thus in ¥.

Lemma 6.7: Let T€ M0 be self adjoint, and (T 2z, z) = 0 for all zEST.

B=(+T%) Ly 8.2; then TB is also positive and self adjoint.

Further B, TBEM.

Proof: That T2 is also positive and self adjoint follows as in [12],
p. 108. For each z,,2, 34

2 2
(TBz = (Tle, (I+T )BZZ) = (Tle, BzZ) + (Tle, T BZZ)

10 %2)

2 _ 2
(le, TBZZ) + (T le, TBzZ) = ( (I+T )le, TBzZ)

(z 1’ TBzZ)
Hence TB is self adjoint since it is bounded.

Again, for each z&¥

(TBz, z) = (TBz, (I+T%)Bz) = (TBz,, Bz) + (TBz, T®Bz)

1,
(TBz, Bz) + (T°Bz, TBz) = 0.

Now note that (I+T°)B = I= I*D> BMI+T%)* > B(I+T?).
If UEM' is unitary, then U = U (I+T%)B < (I+T) UB so that
BU c B(I+T°)UB c UB
As B is bounded BU = UB so that BEM. We have also that
(TB)U = TUB 2 U(TB)
As TB is bounded we have also that (TB)U = U(TB), thus TBEM.

We now complete the proof of Theorem 6. 5.

(i) Uniqueness of G: Assume G'€M satisfies Glz = G%. Thus
G Tx= G*Tx for each TEM'. Set B= (+GZ)™! = (vG?) L.

]
Then (GlB)Z Tx = (GB)*Tx holds for each TEM'. Since Ei‘" = I and

(G,B)%, (GB)” belong to M, follows (G,B)® = (GB)®. Since G,B,GB



41
are positive, self adjoint elements of M, the uniqueness of square

roots in the bounded case implies that G, B = GB. In particular then

Cr1 = G on %B. Observe 9/' - 39 2 = EbZ If GI', G’ denote the restric-
tions of G,, G to 8,2 = 8,2, then G1 G’. Lemma 6.6 now implies

1
that G = G

1
We turn now to a related uniqueness problem which will be of
use in what follows. If H is any element of (ReMQ)+ such that x € 8,

4

and HO-EY') = 0, then Hx€[M'x] so that [MHx]< M'x]. Thus

L‘]‘.—Ix, Hx< W, o by Theorern 6. 3, there exists 0 SHO GMo(x) such that

(THOx, Hox) = (THx, Hx ) holds for each TEM. We showthatin fact H=H0.

!
Lemma 6. 8: Let HE (ReMO)Jr satisfy xEq_I and H(I-E}I:/I ) = 0. Assume

that (T Hx, Hx) = (T Hox, H,.x) holds for each T € M where H0 € Mo(x).

0

Then H = HO.

Proof: Let y €¥ satisfy wy v =W Observe that the restrictions of

H, H0 to ['My] are again positive self-adjoint transformations, with
domains £, N [My] By N [{My] respectively. Note that if yE¥ satisfies
0

wy y =wx x(M), then y = Ux where U is a partial isometry in M', which
2 i M M

satisfies U*U = E <’ Uu* = Ey' Consequently (T Hy, Hy) = (THoy, Hoy)

holds for all T €M. Alternatively (Hzl, = (H z,) for all

0?1 Ho?y
2y, 2, in {My} Note that HE-?:I is the smallest closed extension of the

restriction of Hto {My). Let z€§8 Let {zn} in My} satisfy z =z

-
Hzn - Hz. It follows that {Hozn} is convergent and thus =z E&H and

Hyz - Hyz. By symmetry 8, NMy] = sHoﬂ[My]; further

(Hz,, Hz,) = (H,z,, Hjz,) holds for all z|, z, GSHD[My]. It follows
that HZEM = HO2 Ei\r/[ In fact assume z € BHZ n EMy];for all ZIESHﬂ[My]
=g NIMy)  (Hyz,, H2) = (Hz), Hz) = (2, Ho2) .

0
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2 2 M 2 M
Thus z E&HZ N My] and Hoz = H z. By symmetry, Ho y = H Ey .
It follows 1mmed1ate1y that (I+H ) 34 = (I+H ) -1 3’1 By
lemmas 6.6 and 4. 8, (I+HO) = (I+H )~ ; consequently HO2 = HZ. Set

G = H(1+H2)’1, GO=HO(I+H02)'1, and note that 0 <G, GO € M. We have

(Gz,, Gz,) = (G, 2z, Gyz,) holds for all z), z, €§, NMyl. Thus
GZE?’/I = Gg“ Ei’l so that by lemma 4. 8, G2 = GCZ). Hence G = Gy In

- particular it follows that if H', HO' denote the restrictions of H, HO to

14
0 .

We now summarize some of the preceding lemmas in

%{2 = & 2 then H’ That H = H0 follows from lemma 6. 6.

14

Theorem 6. 9: Assume the Abelian W*-algebra M satisfies EXM =1,

for some x in¥. Let H 20 be an element of ReM, with x€8.,. Then

0 H
there exists a sequence {Hn}n=1 2 of elements of ReM' with the
properties
@ o0sH_ 1

(ii) =z G&H if and only if ” an" <K(z), where K(z) is a constant

independent of n, and Hz = hmn-vc H z. We write 0 anTn H.

Further there exists a unique element 0 <G EReMO, which
. 2 s
satisfies G” = H. We have 0 < H2 Tn G.
MI
We shall now proceed to remove the restriction that E . =1

for some x in¥. We have the following result:

Theorem 6.10: Let M be an Abelian W¥*-algebra. Let 0 < H€ ReM

0"
There exists a sequence {Hn}n= 1,2, ... of elements of (ReM)+ with the

properties that

@ 0<sHT
(i1) 2z €8, if and onmly if ||an|| < K(z), where K(z) is a constant

independent of n and Hz = lim H =z
n-—c "'n
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We shall write 0 < H 1 H.
n'n

There exists a unique element p < GGReMO, which satisfies

s
G®= H. We have 0 sH? | G. We shall write G = H3.

Proof: Let 0 <HEReM,. Choose a maximal family {x. }1€J of

4
elements of & with the property that x, € By and EXM ifi#j. Then
M’ M’ j
ZiEJ Exi = 1. In fact set E = ziEJE X
xéﬂH such that ((I-E)x, x) # 0. The linear functional WI-E)x (I—E)x(M)

J
and if E # I, there exists

is non zero, and its support is majorized by I-E contradicting the

maximality of the family {xi}ie.ﬂ'

Let Hi denote the part of H in [M'xi] 1.e., the restriction of

H to [M'xi]. Observe that 0 < H, € ReM From [12], p. 70, it

0
follows that H =Tr 2% H . By theorem 6.9 above, for each i, there

exists 0 s H{! €ReM with H (g M ")= 0, and 0 = ) 4 H. set
1
Hn = 1€"axH(l). It is clear that H EM, 0<H T . For each ze¥

' put z, = E}I:I z. We have zeaQHlfand only if z, E)S\H for all i and
2
J“Hz || <+o. If 2€H

(1)
rew 1H 215 5|
Observe that for each i, ﬂH.z. - H(l)z.“ l 0. Infactletn 2m, then
11 n 1 n

2 2
lzd” = 3, |Hz; = |1z

((Hx(li) + Hr(ril))zi, (HS)-HIS))zi) < 2‘(Hizi, (HS) - Hg))zi)
hence ((HS)Z-Hrg)Z)zi, z) s 2(Hz, AR Hrf]l))zi)
||H(1)zi|]2 - “Hr(;)zi“'z < 2(Hgz,, (Hr(ll) - Hr(r:))zi)
1e 2 12+ 52,02 e, 1Pz - @Y 2 B2
< “Hr(ri;)zi "2 + “ Hi.zi “ 2 (Hizi’ H‘ril)zi) - (Hr(ril)zi, Hizi)

: i 2 i 2
ie. "Hizi-H(I:)zi" < “Hizi— Hr(r:)zi“ . Now
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2 i 2
Mo-m 2% = 5, Iz, - uz |
Znﬁl “ H, z, “2 since in the first sum only

m m °’

countably many terms are different from zero. Given €> 0, choose

m, such that & "H1 z, --I-l(:;m)z.1 “Z < €/2. Then choose n,(€)
0 m

m

m>m

- (im), |2
such that T "H z, -H m z; “ < €/2 for alln = nO(E). It follows
n=1 'm 'm m

that 11m H nZ = Hz.

Letm= {zex: “ ann < K(z) for all n}. We have shown that
8y S Mand if z € 91—1 then Hz = Hmn-'oo an. We define a transformation
B by setting 85 = M and for z€M, set Bz = 11mn_.°° an. That B is a
linear densely defined, closed, Hermitian transformation which
commutes with all the unitary operation of M’ follows exactly as in
Theorem 6.3. It is clear that BODH. Thus B = H by lernma 6. 2.
Finally the existence and uniqueness of 0 < G€ ReM0 satisfying G2 = H
is proved exactly as in Theorem 6.5, by setting

8= {zew: "H ?‘z“ <K'(z), K'(z) 1ndependent of n} and if z¢ 8. set

Gz = lim Hrf . Itis clear thatH T G.



45

VII. THE ALGEBRAIC STRUCTURE OF MO

If A,B are linear closed densely defined transformations in
% it is not true in general that A+B, AB are even densely defined, -
if A+B, AB denote sum and product in the usual sense of general
transformations. In fact there are closed linear densely defined
transformations T which satisfy T < T* for which QTZ = {0}. M
is an Abelian W*-algzbra, then this pathology does not occur in MO‘
"~ This follows from some results of von Neumann and Murray which
state essentially that if M is Abelian, and if A, B€ MO’ then A+B, AB
have unique extensions in MO’ and these extensions satisfy the proper
algebraic relations. The key to the von Neumann~Murray result is
based on the concept of essentially dense subspaces; in particular if
AEMO then sA is essentially dense. The proof of this latter state-
ment as gi’ven in [13] depends on the spectral representation of
general self-adjoint transformations, so it is desirable to obtain a
proof which lies within the existing framework developed so far. The
relevant definitions and lemma follow. The result will act as a
bridge between what has been obtained in the previous sections and
the results of von Neumann and Murray on the algebraic properties
of MO'

Definition 7.1 (cf [13], p. 222). Let? be an arbitrary linear mani-

fold in%. (g is not necessarily closed, nor invariant under M’). If
a sequence ml,mz, ... of linear closed subspaces exists which has the
following properties:

(i) E, €M (E,,’zl denotes the projection on 7I[i) for all i.

’7‘1
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(i) ;S me..cm.
(iii) [?)zl,mz, Lo ]=% (i.e. Vi Eml = I)
then/ is said to be essentially dense.

Lemma 7.2: If is essentially dense, then is also dense.

Proof: %= [M,M,,...]c Ml cw, thus [M]=%.

The next lemma is a substitute for the spectral theorem for
"the unbounded self-adjoint transformations of MO'
Lemma 7.3: Let H be a positive self-adjoint transformation of MO'

There exists a sequence {Fn} of projections in M with the following

properties:
(i) F¥CS B

(ii) The restriction of H to Fnif is bounded and belongs to M.

(iii) Forn2m ,F_2F _; V F_=1
n m’ n' n

~Corollary 7.4: 8 is essentially dense.

Proof of the Corollary: Immediate.

Proof of the lemma: Let H be a positive self-adjoint transformation

of M, and let {H_} €M satisfy 0 < H 1 _Has in Theorem 6.10. For

each n denote by {E;\n)} the spectral family of H . We may assume

(n)

that 0 £ A < +oo for each n. Note the following properties of the E)\

(a) for each n,E{n) T)\I in ReM.
(b) for n = m,E)(\n) < Egkm); this follows immediately from the
fact that for n 2 m, Hn 2 Hm’ and that E§\n) is the projection on the

closure of the range of ()\I-Hn)+. Thus for each fixed )\, there exists

a projection . 2 0, F)\ € M such that Eg\n) lnFX' It is clear that F

A A
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is the projection on [ﬂn Range (E;‘n))]. We claim that Fk TX 1.

That FX T)\ is obvious. Suppose z€%/, F, z = 0 for all \. Thus for

A
each )\,Eg\n)z -+ 0 as n - . By the definitions and various properties
of E® (see for example [9], p. 131 ff.)

A
(H_z,H _2) > (Hn(I-Eg\n))z, Hn(I-E{n))z) =22 (1.1=:>(\“))z[|2

. Fix A, then choose n such that
(n) 2 1 2

la-e{Mz]? = & 212
Thus for each )\, there exists n(\) such that “ Hn()\)z “22 )\2. _;_“zllz
Thus z ¢ Syp Thus V)\F)\ # I contradicts the fact that QHis dense.
Hence F)\T)\I. In the above we have made use of the fact that

JC N
Hn(I E)\ )2\ (I E)\ ) implies
2 (n) (n) 2 (n)

Hn (I-E)\ )= A Hn(I-E)\ Y= A (I-E)\ ).
It follows that, for each A

Range F, & {z € 8y;: (Hz, z) <)(z,2)}
for if zERange F,, then z € N Range E)fn), so that for all n

2 .

(an,z) < X(z, z) and also (an, an) € A7(z, z). Thus indeed szﬂH,
and (Hz, z) < A(2, z). From the closed graph theorem, it follows
that the restriction of Hto F, ¥ i.e. H¥_, is bounded. The statement

A A

of the lemma follows by taking a suitable sequence {)‘n}'

Lemma 7.5: (cf [15], p. 222 Lemma 16.2.2). Let Nysees My be a

n

i=1 Mp 1S also

finite set of essentially dense subspaces of ¥, then N

essentially dense.

Proof: Itis clearly sufficient to consider the case n= 2. Thus

suppose that Ny, M, are essentially dense linear manifolds of & and

let {ml n}’ {9’)12 n} be the associated linear subspaces of the definition.
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By Ei L Ve denote the projection (in M) whose range is the subspace

>

mi n’ i=1,2. We have Ei, nTnI' Set mn =M 1,n n mZ,n’ let En be

’

the projection (in M) with range mn‘ Observe En Tn’ and that

)

-”mngml ﬂmz. We have that I-E n

1 nAEp = (-E; DV(I-E,

3

so that for each z ¥,
oc( (I—El, n AEZ, n)z, z) = ( (I-El, n)V(I—E29 n)z, z)
s((I-El’ n)z, z)+((I-EZ, n)z, z)0asn~w
Thus (I- Vn(El, nAEZ, n)z, z)= 0 holds for each z ¥
so that Vn(El 0 /\E2 n) =1 and observe that the range of projection
E1 2N EZ, n is just 7){1, n n 7722’ n = Mn Thus the sequence { W(D}

2

satisfies the requirernents of definition 7.1 for the linear manifold

'ﬂl n 1’12-

Via theorem 6. 10, we have available the following polar
decomposition for any element T EMO. We only state the result,
the details of the proof are precisely as in [12], p. 108.

Lemma 7.6: Every closed linear densely defined transformation

T in M0 can be represented in one and only one way in the form

T = VH where H is a positive self-adjoint transformation in M0 and

V is a partial isometry in M. We have H= +/T*T = |T|, and

' V = projection [Range HJ.

Lemma 7. 8J:_ Let% be an essentially dense linear manifold in ¥,

and T an arbitrary element of M Then 7)(' = {z:z€ ST’ TzEm} is

o
essentially dense (cf [13], p. 223).
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Proof: From lemma 7.6, let T = VH be the polar decomposition of
T. By lemma 7.3, let Fn be a sequence of projections of M which
satisfy F_ T I, HF €M. Let M satistym T cm E

1L, E_eM.

Set m(n) = {z:z € FnM, VHFn z emn} Note that m(n) is Zt‘::losedwil;near
subspace since VHFi € M for all i, and further observe that m(n)g');\'
for all n. Since z€ F ¥ implies z €F & we have ™ o) gor
each n. It is clear from the definition the Em(n), the projection on
m(n), belong to M for all n. Let Pn denote the projection on

{z: (I-Eq JVHF z = 0}. We have

m™ = F w0 {a: VHF =z €m } = F ¥ {z:(I-E, )VHF z = 0}

(3

Thus E,(n)=F AP . Observe also that
m n n
m, = {z: (I-Emn)z =0} c {z: (I-Emn)VHFnz =0}
i.e. I-E 2 I-Pn. We have

My

0<1-Eym)=I-(F AP )= (I-F )VI-P )
< (I-F_V (I-Emn)
< (IsF_) + (I-E,, )

1
It follows that I - Em(n) l 0,thus Em(n) TnI andm' is essentiallydense.

Remark 7.9: If A, B € MO’ then from lemma 3.8, 3.5 it follows

that Spp DA+B are essentially dense in ¥.

We now have available the following results of von Neumann

and Murray concerning the algebraic properties of M,, without re-

OJ

course to the general form of the spectral theorem.

Theorem 7.10: (cf [13], p. 227 £f.).

(1) Let A,B ¢ MO' If A2 Bthen A= B, i.e. proper exten-

sions do not exist in MO'
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(2) If A, BE MO’ then A+B, AB have unique extensions to

elements of M. Denote these extensions by fA+B], [AB] respec-

tively.
(3) With addition and multiplication as in (2), the following

properties are valid: A, B, C €M0, a, b are complete numbers.

(i) [A+B] = [B+A]

(ii) [ [A+BJ+C] = [A+[B+C]]

(iii) [a[A+B]] = [a[A]+b[B]]

(iv) [(a+b)A] = [aA+bB]

(v) [[AB]C] = [A[BC]]
(vi) [[aAa]B] = [alAB]]
(vii) [a[bA]] = [(ab)A]

(viii) [ [A+B]C] = [[AC]+ [BC]]

1

(ix) [A[B+C]]= [[AB]+ [AC]]

(x) [aA]* = [a A*]
(xi) [A+B]* = [A*+B¥*]
(xii) [AB]* = [B*A¥]

It should be noted that (2) is proved essentially by showing that
s(A+B)*’ Q(AB)* are dense in ¥. (A+B)** (AB)** then provide the
unique extensions [A+B], [AB] in MO(TIZ], p. 60). In particular,
with addition and multiplication defined as in (2), part (3) states that

MO is an algebra. We now show that M0 is a commutative algebra in

the sense of the following

Theorem 7.11: If A, BEM, then (AB] = [BA].
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Proof: Let0 <A, B €ReM satisfy A _Tlal, BnT | B], in the

sense of Theorem 6.10. Observe that 0 < A B T , and for each
nn In

z in 8 5 || g|» Which is dense in¥, we have la B _=]<[lallB]z]
for all n,m. It follows that there exists C €M, with A B Tn C, and
ﬁc 2 ﬂlAI |B' , and by symmetry EC =) QIB”Al. Letze ﬁlA"Bl,ye QIAl,
then(lBl z, lAly): Hggoo(Aanz,y) = (Cz,y). Since S‘A' is dense,
lA”BIz = Cz. Thus 'AHB’ <€ C, and by symmetry |B”A|’g C,
hence by lemma 6.2 [|A]|B]]=[|B]|]|A|]=C.

Now write A = VAIAl, B= VBlBl, where VA’ VB are partial
isometries in M. Observe that

v,VelallBl e v, |alvglB| = AB
and v, Vy|Blla] cvy|Blv, |a| = BA.
Consequently [AB] = [V, Vg|Al|B]]= [V, V,[]|A][B]]]

= [VAVBEIB”A| ] ]=[VAVB!BHAI ]

= [BA] .
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VIII. THE RIESZ SPACE STRUCTURE OF Re M0

We shall denote the set of self-adjoint transformations of

Mo by ReMO. In ‘this section it will be shown that the natural order-

ing in ReM may be extended to a partial ordering of ReM0 so that
ReM0 will then be a (Dedekind complete) Riesz space when the opera-
tions V, A are appropriately defined. It will turn out that ReM is an
order dense ideal in ReMO, which has the property that the band

generated by the identity is just ReM In other words,l is a weak

o.
unit in ReMO.

We make the natural definition:

Definition 8.1: If A EReMO, we shall say that A is positive and

write A 2 0 if and only if (Az, z) = 0 for all z€ QA.

That this definition gives a bona<fide partial order on ReMO
we have:
Lemma 8.2: (cone properties)

(i) A, BEReM,, A20, B=0, then [A+B] 2 0.

(ii) A€ReM,, a€R” then aA 2 0.

(iii) AGReMO, A=20, -A=20 then A= 0.

Proof: (i) If =z ¢ sA+B then

(LA+B]z,z) = ((A+B)z,z) = (Az,z) + (Bz,z) 20

If now z € ﬂ[A+B]’ there exists {zn}, z € 'DA+B’ such that
z_ =z and (A+B)zn -+ [A+B]J]z. Thus

({A+B]z, z) = lim ((A+B)zn, zn) = 0.

00

(ii) is obvious.

(iii) A =20, -A 2 0 implies (Az,z) = 0 for all z € Bp- Thus
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A%z = 0 for all z € ﬂA,thus Az = 0 for all z GQA, thus A = 0.
Definition 8.3: If A, B€ReM,, set A > B if and only if [A-B] = 0.

From lemma 8.2 it is clear that (ReMO, <) is an ordered
linear vector space.

Theorem 8.4: Let 0 <A €ReM), 0 < BEReM,. Let0<A 1 a4,
E

OJ
0<B 1 B, A, B_€ReM,n=1,2,... as in theorem 6. 10, then
n'n n n

(i) [AB] =20,

(ii) A = B implies A% = B,

(iii) A = B if and only if QA c and (Az, z) 2 (Bz, z) for each

Sp

zESB,

(iv) A= BimpliesA VB 1 A, A AB T B,

(v) A > B implies A” = B3 .
Proof: (i) As in the proof ;)f Theorem 7.11, 0 < AanT [AB)]. Thus
[AB] = 0.

(ii) From (i),[A[A-B]] = [A%-[AB]] = 0,

[[A-B]B] = [ [AB]-B%] = 0.

Hence 0 < [[A%-[AB]] + [[AB]-B%]]= [A%-B%].

(iii) Let z € QAZ n SBZ. From (ii), for all n,

(an, an) < (Bz, Bz) < (Az, Az).

» It follows that, for all n, (an, an) S(A'z, A’z) holds now for all
z € sA" where A’ denotes the smallest closed extensioﬁ of the re-~
striction of A to 8,2 N 8x2. By lemma 6.2, A’ = A so that 8, S SB
That (Az, z) =2 (Bz,z) for z € SA is trivial. Conversely if &A c ‘913’
and (Az, z) = (Bz, z) holds for z € 8, then [A-B] = 0 follows from the

fact that the graph of A-B in ¥x¥ is dense in the graph of [A-B].
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(iv) “’AnZ‘ﬂ <|| (A VB )z =l A z I+l annfor all z implies that
(a) A_V BnTn C where C€ReM, (b) 8,=8,N8,< 8- S8, so that
QC =8, and (c) A £ C. To show C= A it is sufficient to show C <A.
Let QmeI be projections in M such that Range Qm c sA for m=1,
2,..., by lemma 7.3. Observe that AQm, BQm’ CQm are elements
.of M for m=1,2,.... By the uniqueness of the square root in ReM,
la -B_|Q_=|AQ -BQ |. Hence
' =L I :
(AnVBn) Qm- 2 (Aan+Ban+ l An- Bn l Qm)- 3(Aan+Ban+ ' Aan- Bn%n')
= AanV Ban :
For eachz €¥(AQ z,2)2 (B Q z,z), (AQ z,z)=2(A Q z,z). Thuas
m n m m n m
AQ =2BQ VA Q =(B VA )Q . Letm-w, then for each z€§,,
m n m n m n n' m
we have (Az,z) 2 ((AnVBn)z, z) for n=1,2,.... Thus (Az, z)2(Cz, z)
» and A>2C. Thus A= C. To show An/\BnT B, it is sufficient to show
that for each z € 8, that [A_ AB z - B z[|-0asn—~w. This fol-
' n n n
lows immediately from the fact that "A AB z-B z“ = “A z-A VB z“
n' " n n n n n
= 0asn - o.
(v) From (iv) we may assume An Tn A, BnT B satisfy an An

1 1

1 1
2 2 L i 2 2
for all n. Hence also Bn < An' Hence sAa c SB" and B¢ < A“-,

The next few paragraphs follow fairly closely the correspond-

ing results for ReM [9], chapter 5. As usual, for A €ReM

[A] =+ Jasa = +JaZ . Set AT = 1[a+|al].
A <|A|, -A < |A|. Equivalently AT > 0,

0

Lemma 8.5: I A€ ReMo,

AT > A,
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Proof: Let A= V|A| be the polar decomposition of A. Let

A_€(ReM)' satisty A T |A| in the sense of Theorem 6. 10.
’For allz€g, = ‘QIAI’_I_ i
(VA z,z2)| <|V] [a2z2]% <1 (A z,2)

since V is a partial isometry. Letn - o and we obtain
[(V]A]z,2)] < (|A]z, 2),

ive.  (V|Alz,2z) < (|A]z,2), (-V]|Alz,2) <(]A]z,2),

i.e. A< ]A|, -A s |A|]. The equivalent statement follows

immediately from the definition.

Theorem 8.6: Let A, B€ ReM_ satisfy B2 A, B2 0. Then B 2 A+.

0
Equivalently C2 A, C 2 -A, C€ReM

o imply C 2 lal.

Proof: Let B2 A, B =20. Set C= [2B-A], then

[C-A]=[[2B-A]-A] = [2B + [-2A]]
= [2B-2A] =0,
and [C+A] = [[2B-A]+A]
= 2B=20.

Thus, if we show that C 2 |Al it will follow that [2B-A] = lAl
i. e. 2B2[A+ |A|] which is the desired result.
By Theorem 8.4,[ [G-A][C+A]] =20, i.e.,
[[C%- [aq)] + [[cal-A%1] = 0.
Using the fact that [AC] = [CA] we obtain [CZ-Az] 20, FromC=20
and Theorem 8. 4(v), it follows that C =2 + ,/ 52 = |A| .

It follows immediately from Theorem 8.6 that (ReM_, <) is a

0’
Riesz space, and that A+ = sup(A, 0) in ReMO, |A| = sup(A, -A) for

each A€ ReM_. If i denotes the inclusion map of ReM into ReM

0 0



56

then it is clear that i(A+) = (i(A) )+ for each A in ReM, and thati is
one to one. Thus i is a Riesz isomorphism, and in the sequel we
make no distinction between ReM and i(ReM).
Lemma 8.7: ReM is an order dense ideal in ReM ...

0
Proof: Suppose 0 < |S‘ < T where T € ReM, |S|, SeReM

0 We have

by Theorem 8. 4 since [T- IS‘] 2 0 that ¥ = 9.1. c 9|s|' Thus
85 = SIS| = & so that S € ReM by the closed graph theorem. Hence

ReM is an ideal in RéMO. It is clear from the construction of ReM0

that ReM is order dense in ReMo.

Lemma 8.8: Let 0 <S5€ReM, and suppose that {Sn}TS in the sense

of Theorem 6.10. ThenS T S in ReM,.
n'n 0

Proof: Clearly 0 < SnTn < S. Suppose that T¢€ ReMo satisfies

T 2 Sn for all n. Hence if z € QT then
(Tz, Tz) 2 (S_z,S_z) for all n,
. n n .
Thus Q‘T c ’95 and for z € sT»

(Tz,z) 2 limn oo(Snz, z) = (Sz, z).

-t

Thus T 2 S and we have S_ T_S in ReM,..
n'n 0

Theorem 8.9: Let 0 <S¢ ReMO. Then S = Vn(nIAS). In other words

R-eMo is just the band generated by I.

Proof: Since 0 <nIAS <nl, nIAS &ReM). Clearly nInst <.
By the usual procedure, Vn(nI/\S) certainly exists in ReMo and
satisfies Vn(nI/\S) < S.

On the other hand, lemma 7.3 gives the existence of a sequence of

projections Pn€ M such that PnT I such that SPn €M for eachn. We
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have SP 1‘ < S and again V_ SP_ exists in ReM Observe that
n'n n n

0.
2 and if z€ § we have P z =z, SP z = (V SP )z.
sVnSPn sS VnSPn n n n n
However as S is closed, it follows that z € SS and SPnz -+ Sz, thus
SP T S. Now SP_€ ReM and SP_ < S implies SP_ < (m_IAS) for
n n n n n
some integer m . Hence

S=v SP_ <V (nIAS).
n n n

Thus S = Vn(nI AS).

Remark: In the terminology of Riesz spaces, I is a weak order

unit in ReMo.
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IX. THE DEDEKIND COMPLETENESS OF ReM0

Definition 9. 1: If TE(ReMO)+, put
1 -
3 2 .
IT3x]° it xe 83

+ o0 otherwise

(Tx,x) = {

)+

Theorem 9.2: Let 0 < A'r’ S G(ReM0 satisfy A’r ,T\T < S.

(i) A= VTAT exists in ReMO

(ii) For every € > 0 and every x€8,, there exists Te x such

3

that |Ax - A_ x| <e¢forall A 2 ATe .

0.
(iv) 0 < A’r TT A in ReM0 if and only if A < A'r and (A,‘_x, x)TT(Ax,x).

(iii) A% TT A? in ReM

for all x€¥.
Proof: (i) By hypothesis, B S SA for every 1. From 0O sAZT < S2
- - T T'T
follows “A,rx" S"SXII for each x€8g2. Put M= {xEN:supT "ATx“ < Kx’
. for some finite constant Kx}. Note that ;QSZ. M, so thatM is dense in
" %. M is clearly a linear manifold in¥. If ATZ A'r’ x €M, then
2_ 2 2
" A'r ,x-ATx “ = "AT X " + ﬂ ATX " -(AT X, ATx.)-(ATx, A'T 1X)
2 2
< “AT/X“ -"ATX" *
For each fixed x€7, the upwards directed set of real numbers “ ATx“
has a finite supremum. It follows that for every ¢ > 0, there exists

T such that “A 1x-A x| <eforallA ,A , 2A . In particular,
€,X T T TT Te x
forn=1,2,..., there exists T such that |A_x-A x“ < lfor all
n,x T Tn x n
A =z A and we may assume that A ZAT for all n. In
T Tn,x n+l, x n, x
particular note that “ATn x" Tn Sup_ f Aq_xlf. Thus

"A'r x-AT ’“ <% for allm=2=n
m, x n, x

2

so that the sequence {A'r x} converges to an element of &% which we
n, x
shall denote by Ax. Ax is uniquely determined in the sense that if
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{A_+ } is another increasing sequence such that ”ATX-AT' x“<%

Tn, x n, x
for all A_ =2 A , , then
T T, x
2
"A ¢ x-A x“s"A ¢+ x-A x“+"Ax-A “<-
Tn, x Tn, x Th, x T 4 Tn, x n
for A_= .ATI VA . It follows easily that A is linear; let
4 n, x Tn,x
x,y,2 € QA=7R, z = x+y. Then, forn=1,2,...
lax - A_x] <& for allA_=>A o (i)
T n T T
2 n, x .
lay - Ayl <= forallA_=zA .. (ii)
TP T n T T :
n,y
laz - A_z| <% forallA =4
T n T Nz
For all A'r =2 A \Y% A'r \ A'r , these inequalities hold simul-
Tn,x n,y n, z
. =Ax+A i
taneously ATz Tx Ty» gives
laz - ax - ay] <

which implies Az = Ax + Ay.

Let U be unitary in M'; if x¢€ QA’ then

Ja u || = Jua x|l = JA x|l <K_for allrT.
T X T T x
It follows that Ux € SA and that if A x »Ax then AT Ux - AUx.
Tn, X n, x
~Hence
UAx = lim UA x = lim A Ux = AUx.
n=-* oo T n-o T
n, x n, x
Hence AUDUA. If x,y € §,, there exist ATn X?n, A,rn yTn, such
that A'r x = Ax, AT y = Ay. The inequalities (i), (ii), above show
n, x n,y
that there exists a sequence AT 'T such that A'r x - Ax, A'r y = Ay,
n n n
so that (A'r x,y) = (x, AT y) converges to (Ax, y) as well as (x, Ay)
n n

i.e., for all x,y €8, (Ax, y) = (%, Ay). Thus y¢€ B4 and A¥y = Ay,

Thus A C A*, and A is Hermitian. In particular A** exists. To

conclude that A is even self-adjoint, it suffices to show that A is

closed in view of lemma 6.2. Suppose that X € SA, x =X, Axn - y.
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There exists a constant K such that "Axn " < K for all n, so that
la x | sKforall ,n. Let Aim) T, A, Where 0 < A‘Tm) € ReM.
For eachm, T, n, we have "Ag_m)xnl < K hence "A,T(_m)x“ < K holds
for each m, 7. This implies that x€ §, for all T and that |A x| =K.
In turn this gives x € 8,. Since A g A** and A** .5 closed
Ax = A"""‘xn - A*%*x = Ax. Thus A is closed, hence self-adjoint.
That Ai < A2 for each T is immediate from the definition of A. Hence

ATS A. Further, for each x € sA’ (AT X, X) Tn(Ax, x). This follows

n, x
from
2
| (ax ) - (A x, ] < Ix] - A x| < Z]x]
for all A’r 2 A'r . Thus (Ax, x) = supT(ATx, x) holds for each x € sA.

n, x
It follows that A = VT AT; if B2 A'r for all T, then also B2 = Af_ for all

T. By the definition of A, QB c sA; if y€ sB’ then (By, y) 2 supT(ATy, y)
= (Ay,y). Thus Bz A.

(iii) Observe that 0 < A2 T < Az By part (i) C= V_ A%
exists in ReM so that C SAa C= A for all T 1mphes C 2 A
for all T, so that C2 =2 Aand C 2 A3. Therefore C = Aa and (iii) is
proved.

(iv) From partls (iii) and (i), for each XGEA%, I A%xuzsupJAT%x";
if xg SA% then sup_ " ATE.x“ = +w. Thus (Ax, x) = supT(ATx, x) holds
for all x €. On the other hand, assume that 0 SAT, AEReMo satisfy
A= A'r for all 7, and (ATx,x)TT (Ax, x) for every x€¥. By (i)ATTTBSA
so that ;S)A [ ;QB. For each xEﬂA, (Bx, x) = (Ax, x). Since the graph
of [A-B] in &% is just the closure in ¥ x¥ of the graph of A-B, it

follows that [A-B] = 0. By this the theorem is completely proved.
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Theorem 9.3: Let {AG}, {BT} € (ReM)" satisfy 0 < AC’?O A,

0<B_ TT B. Then [A_B ] TO, L[AB],

Proof: Without loss of generality, assume AG’ B'r belong to (ReM)+.
Thus AGBT T'r G = FTAB], so by Theorem 9.2 (i), there exists CE(ReM0)+
such that A_B_ TO,T C < [AB]. In particular Q[AB] S If

x Es[AB]’ there exists X EQAB, x = xand ABx_ - [AB]x. It fol-
lows that Aan -+ Cx. In fact, {Aan} converges and so is a Cauchy
sequence. Givene >0, forn, m =2 no(e), “AB(xn-xm) " < e. Hence,
for everyn, m 2 no(e), sup; “ AOB(xn-xm) l=supc " BAo(xn-xm) “ <e

- and so sup " BTAc(xn-xm)" <e. Letx = xanditfollows, since

o, T
each BTAO is continuous, that

supo’,r " BTAG(xn—x)n <e foralln2 no(e).
Now, since XG&C, there exist g(e), T(e) such that

- 2

| cx AOBTx“ <eforall A B 2A B,
Let y be arbitrary in QAB' From ByGSA, it follows that there exists
o, such that |ABy - AGBy" <eforall A = Ace ; Also since
AOBy = BAcy, there exists Te, ysuch that " BAoy-BTAcy"

= |A By- A B y| <eforall B_2B . Thus, for all A 2A ,
g g T T T (o) )

€,y €,y
B'r 2 B,r
€,y
- 2
laBy -A_B_y| = 2e
Hence, given € > 0, for each X there exist Ac B'r such that
€, X, €,X%
n n
lcx - A B_ x| <e, |aBx_ - A B, x| <e
€, x €, X €, X €,x
n n n n

hold simultaneously. Choose n_ (€) such that i I AOBT(xn-x)“ <e

for alln 2 no(e). Forn = n,



Cx-ABx <{ICx-B A x|+l B A X =X
€, X €, X €, X €,X
n n n n
+ |AaBx - A B_ x || <3¢
€, X% €,x
n n

Thus ABx - Cx. Thus Cx = [AB]x and so [AB] ¢ C. Therefore

[AB] = C.

Corollary 9.4: If 0 < {AT}TT A, 0< {BT} T'r B are indexed by the
same index set {7}, then [ATBT] TT [(AB].

Proof: [ATBT] T’r follows immediately from the equidirectedness. It
remains to be shown that the systems [ATBT]’ [ATBTI] have the same
set of upper bounds. It is obvious that any upper bound of the system

[ATBT:] is an upper bound for the system [ATB,r J. Let {ATlBTz]
be given choose T, suchthat A 2A ,A ;B 2B ,B_, then
3 ™ T T2 T3 Ty T
[A_ B ]=2[A_B_]. Thus any upper bound of the system [A_B_]
T3 Ty T T, TOT
is also an upper bound of the system [ATBT/].

Theorem 9.5: Let {Ei}i € be a system of pairwise disjoint projec-

tions of M which satisfies ZiE.a Ei = I. For any element TE€ ReMO,

set Ti = TEi and let ¥ denote a finite subfamily of the index set .

Then

. +
(i) If Te(ReM,) , T = TTie.a" T, =VT, = VE('ITiG}xTi)

)+, then [ST] = vi[siTi]'

0
(ii) If SE(ReMO)+, T €(ReM,,

Proof: (i) T =TTiEJx T, follows from [12], p. 70. Note that EiEj=O
implies T; A T;= 0. If not, there exists 0 # A€(ReM)" such that A<T,,
A <T, sothat A= AE, = (AE)E, = 0. Hence T.VT.= [T.® T.] if

J 1 J 1 1 J 1 J
i # j. Consequently, for each finite subfamily F of J, ViéZ}Tiz TTiengi.

. !
By the Dedekind completeness of ReM, Trieg X T; Tg T’ < T. Thus
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3( IEET) VG‘OTi. T < T implies T EiSTEi..Ti,
On the other hand T’ > T. implies T'E:l 2Ti. Thus T'Ei = Ti and

=TT T'E; = TieyxT; =
(ii) In view of (i), it is sufficient to show that ]:ST]Ei = rSiTi]'

T'=v

Note that SiTi = SEi' TE, ¢ [ST]Ei, so that [siTi] c [ST]Ei. Hence

[SiTi] = [ST]i , by lemma 6. 2.

Let A be any element of ReM R(A) will denote the closure

0
of the range of A, N(A) will denote the null space of A.
Lemma 9.6: If A, B € ReM, then

(i) A1B&ED [AB]= 0 & AB= 0 R(A) 1 R(B).

(ii) If A, B, C € ReM

0 then A 1 B implies AC . BC.

Proof: (i)Assume firstthat A2 0, B2 0 and set C= AAB20. Let

0<A Tn A, 0<B_ T B, where A , B € ReM. Note that An/\ B =0
so that Aan = 0. Since [Aan] Tn[AB], AB = 0. In the general
case, it is clear that [AB] = 0 if and only if AB = 0. By the uniqueness
of the square root in ReM I[AB]I [‘AHB] ]. Hence [AB] = 0if
and only if |A}|B| = 0, i.e., if and only if A 1 B.

If R(A) L R(B) then (Ax, By) = 0 holds for all xEﬁA,YGSB,sothat
(x, ABy) = 0 for all x€8,, y €8, Since 8, is dense, AB= 0= [AB].
Conversely, if AB = 0, thenf=1{y% &B:BVIGAQA} is essentially dense in ¥
by lemma 7.8. Hence if x = Ax’, x’ GQA and y = By’ where y'esB,
B y € sA’ then (x,y) = (Ax’, By') = (x',ABy') = 0. To conclude that
R(A) 1+ R(B), it is sufficient to observe that the closure of the graph in
% x % of the restriction of B to M is just B.

(ii) If A, B,CeReM,, and A, B, then AB= 0. Thus

0’
0= [[AB]C%]= [[AC][BC]], so that AC 1 BC.
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Theorem 9.7: Let 0 < {Ti}iEJI be any system of mutually disjoint

elements of ReMo. Then S = viTi exists in ReMO and satisfies

SEi = Ti’ where Ei denotes the projection on R(Ti). Consequently

ReM, is a universally complete Riesz space.

0
Proof: By lemma 9.6, T . Tj for i #j implies Ei L Ej where Ei
1

E.
J

td

respectively denote the projection on R(Ti), R(Tj). Set S = -I—EEJ X Ti'

It is clear that S=0onl - £, E., and from Thecrem 9.5,S=V.,.  T..
i€f i icd i

Clearly SEi =2 Ti so that SEi = Ti'
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X. A GENERALIZATION OF THE THEOREM OF

R. PALLU DE LA BARRIERE

Definition 10.1: A map y: (ReMy)'= [0, +o0] will be called a trace
+
)

on ReM0 if for each Tl’ T2 € (ReM0 , A\ 20, real, we have

¥ will be called a semi-finite trace, if for each T € (ReMO)+, T #0,
)+

there exists 0 # S €(ReM

be called a normal trace if 0 < T'r T’r T in (ReMO)+ implies

such that 0 <S < T and §(S) < +o0. ¢ will

Y(T) = sup,. \V(TT). Finally ¥ will be called faithful if §(T) = 0,

T € (ReM,)", implies T = 0.

o
Definition 10.2: Let ®(M) = w_ (M) for some x€¥. For Te(ReMO)+,

 put .
5 2 . 1
_ "sz" if x € B3,
Qx,x(T) - {+oo otherwise, St
Note that if x € &1, then O _(T) = (Tx, ), and if Te(ReM)" then
Q,x, T = W, {T)

Lemma 10.3: For each x €%, Qx % is a normal semi-finite trace on

2

+ . . . e oM _
(ReMO) . Qx < 18 faithful if and only if Ex = I

)Y

£

) (i) i +
Proof: Let T, T, €(ReM, Let 0 <H 'f T, H €(ReM),
i=1,2;n=1,2,.... Itfollows that
oy g (1) (2)
(i) H *'+H 1‘1n [T, +T,] 1
) [H D w2921 (1 41,17
2)\. 12 2) 2
For eachye¥, “ (Hrsl) + Hrg ))Y“ = "H!r: )yu2+ "H(n )y I +2(Hx£1)H512)Y’ y).
: (1) 5 (2)

Since (Hn Hn y,y) 20,

1
i (M2 a5 < ulyau By <puDy ey,
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P Y i .Y
iv) J@E D euBhay 2. quiag? 4 a2y

(iii) implies y Es[T1+TZ] if and only if y GsTlﬂ STZ.
.y s . 1. . Y
(iv) implies y € 9[T1+T2]3 if and only if y€ sle n sTZ%.

It follows that Qx’ x([T1+T2]) = +o0 if and only if Qx’ T =+w and/or
Qx, x(TZ) = +w. Thus Qx, x([T1+T2]) < +w if and only if Qx, x(T1)<+oo
and Q (T,) <+ow. In this case
x,x' 2 L .
_ 3. 42_.: (1), .. (2)\3. 42
Q, ([T +T,)]= (T +T,)%] "= 1im__, (61" "+H ') %x |

. 1: ez, 2): 42
= hmn-'oo “Hr(1 )3x“ + hmn__.w"Hé )3x"

Qx, x(Tl) * Qx, x(TZ)'

That Qx % is normal follows from theorem 9.2, and the semi-~

finiteness of QX < follows immediately from the fact that ReM is order

3

dense in ReMo, and that Qx X(T) < +ow for each T €(ReM )+. If
MI ’ MI
X ) =

4
E i"l #1, then 0 (I-E W (I-E.") = 0. On the other hand,

’ ..
if Ei\d = Ithen Q_ _ is faithful; for if 0 #T €(ReM,)", then choose
’ ’

+ M. _
0 #S €(ReM) with S < T. Then Ex I implies that Qx, x(S)—wx,x(S) # 0.

The next lemma is somewhat in the converse direction.

Lemma 10.4: Let § be a normal trace on (ReM0)+ such that YI)<+ oo,

then ¥ = for some x €¥.
X, X

Proof: Since ReM is the ideal generated by I, ¢(T) <+ for each

TE(ReM)+. The restriction of ¥ to (ReM)+ defines a positive normal
linear functional on ReM. There exists x€ & such that |(T)= Qx x(T)

holds for each T € (ReM)+. By normality and lemma 8. 7, w(T):Qx ,éT)

holds for each T E(ReMO)+.
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Lemma 10.5: If {wi}iEJ is a family of normal traces on (ReM0)+,

then the map T =~ Zie.ﬂ \yi(T): (ReMO);F - [0,+»] is also a normal

trace on (ReM 0)+.

Proof: Set §(T) = Zie.ﬂ \[fi(T), T GReMg. ¢ is clearly linear.
Suppose 0 < T, 1 T € ReMg. By {F} denote the family of all finite

‘ subsets of the index set J.

sup, Z; ¢ p ¥y (T,) = sup_ supg T; o ¥;(T,)

supPg sup, Z; eV, (T,)
= suPg L eq 5(T) = ;e ¥ (T)-

Thus ¥ is a normal trace.

Theorem 10.6: There exists a semi-finite, faithful, normal trace

on (ReMO)+.

Proof: Let W, (M) be a maximal family of positive normal linear

i’ 71 )
functionals on M with the property that their supports E}l:d = Ei

i
€d Ei = 1. Let Qxi’ <. denote
the extension of W, to a normal trace on (ReM0)+. Then
i’ i

\1,0 = ZiEJ Qxi’ x, has the desired properties. Vo is certainly a normal

trace by lemma 10.5. Suppose that for some T E(ReM0)+, \yo(T) = 0.

are pairwise disjoint. As usual, Zi

+ Bl —-—
Let 0 < TnTnT, T_€(ReM)’. From y,(T )= 0 follows w"i’ xi(Tn) = 0,

thus TnEi = 0, hence T = 0 since Zi Ei = I. Thus T=0, and Vo is

€d
faithful. If TEReM], T # O then TE, # 0 for at least one index i.

Choose 0 # S < TE,. ThenQ _(5)=0ifi # j. Thus
3
\{/O(S) = Qxi, xi(S) = wxi’ Xi(S) < + 00, so that \|/0 is semi-finite.
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In the converse direction we have:

Theorem 10.7: If ¢ is any normal, faithful semi-finite trace on

(ReM )+ then there exjists a family {x,} x. €¥ such that
0 i i

ics
[M'xi].L[M'xj]ifi;éj,Z M =Iland y=73,_,0

i€g Tx; €4 xp, .

Proof: An outline of the proof is given, the details follow exactly

as in theorem 10.10, Choose a maximal family of pairwise disjoint
projections Ei €M such that \y(Ei) < +0w. From the semi-finiteness

- of § follows that Zi = I. The restriction of ¥ to (ReM)+Ei

E.
€Jd 1
defines a positive faithful normal linear functional on MEi’ whence
’

the existence of X, € ¥ such that Eixi =xi;Ei\fI = Ei follows from the
i

faithfulness of . Thus \y(TEi) =W, (TEi) holds for each T ECReMSF

1’7
so that \y(TEi) = Qx x (TEi) holds for each T G(ReM)+ by normality.
i’ 7

Finally if {%} denotes the family of all finite subsets of the index set
., then for each TECl?.eMO)+,
¥(T) = sup3 \y?”.iegx TEi)= SUPg ziE:}‘HTEi): supEZiGEQxi, xi(TEi)

= supg z 0 x.(T) =3 (T) |
i

. . Q
icd xi; iced xi: xi

Lemma 10.8: IfS €(ReM)+, T G(ReMO)*’then

LS §
= T3s2,

o)H

(i) [TS] = TS, (ii (TS)

Proof: (i) It is sufficient to notice that S€ReM, T closed imply TS

is closed.

L
2

i 1 L 1 1 R Y
2527 = [TS] = TS. .. (TS)®=[T?s?]=T35°,

11
(ii) Observe [T3S2T

Lemma 10.9: Let \yo be a normal faithful semi-finite trace on(ReMo)*',

Let E be any projection of M such that \yO(E) < + oo.

. M
Define P = Vx {Ex : W, x(M) = \]/O(ME)}. Then P= E.
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- Proof: Since \Vo (E) < +oo, the restriction of ¥, to ME is a positive
normal linear functional on M; by lemma 10. 4, there exists (at least
one) x € ¥ such that \IIO(ME) = () (M). By the faithfulness of \yo,

X, X
14
E}I\:I = E. The lemma now follows exactly as in lemma 4. 8.

The following theorem is the central result of this section and
generalizes the weak Radon-Nikodym theorem of lemma 4.7 and the
theorem of R. Pallu de la Barriére.

Theorem 10.10: Let §, be a semi-finite faithful normal trace on

+
ReM,) . Let ¢ be an arbitrary semi-finite normal trace on(ReM )+
0 \y O .

There exists T €ReM|*such that ¥(S) = ¥,([TS]) for all S ReM)*,

Conversely if T €(Re M0)+, the map ¥(S) = \yo([TS]), SE(ReMO)"'is a

normal semi-finite trace on (ReMO)+, The restriction of § to ReM

defines a positive normal linear functional on M if and only if

¥o(T) < +co. Finally y,([TS]) < yo([ T'S]) holds for all secReMO)*if

and only if T < T

Proof: Consider a maximal family of projections in M, {Ei}ie.ﬂ’

pairwise disjoint with the property that \y(Ei) < 4+, and VO(Ei)< + o0

for each ied. Put E = Vi Ei’ F=I-E;if 0#P <F, Pa projection

in M, then y(P) = +oo; for there exists 0 # P’ < P such that \VO(P <+
by the semi-finiteness of \yo. The maximality of the family {E1}

then implies \V(P-"-) = +o, thus {(P) <+ contradicting the semi-
finiteness of y. Thus F = 0 and V.E, = I. For SG(ReMOY" put

\yé(S) = Yo(SE,), ¥'(S) = ¥(SE,). By lemma 104y, y' define positive

~normal linear functionals. Vo faithful implies (support \yg)(M) = Ei'
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Thus (support \|/1)(M) < (support \yol)(M). Hence there exists TiG(ReM(f
such that, for all S¢(ReM)’, ¥'(S) = y(SE,) = Vo ([ST, 1. If we set
S, = SE,, then y(S,) = ([ T,5,]) holds for each S€ReM|'; hence by
normality for each Se(ReI\/IJ+. Put T ;”;'LEJ X Ti’ and observe that
' TGfReMO)T Let {%} denote the family of finite subsets of the index
set 4, and let S be any element of(ReMo}t Note tha.t_ﬂ_sxsi TG S and
'ng x T, 14 T and_ng [s,T,11, [ST]
V¥(S)

supg V(ik X 5;)

= supy (5, ¥(5;))

= sup, (Zg ¥ollS;T; D)

= supg \VO (‘TEX [SiTi])

= \yo([ST]) using the normality of y, ¥,.
Conversely, if T G(ReMO)t define y(S) = \yo([ST]), SG(ReMOV. ¥ is.
clearly linear on(ReMO'n By lemma 0 < s’r T'r S, ST,S E(ReMJ'
implies 0 < [STT] TT [ST] so that ¢ is normal. To check the semi-
finiteness of §, choose {Pn} n=1, 2,... projections in M such that
P Tn Iand TP €ReM. LetS G(ReMorbe given. Choose n such that
s P ] # 0 and S’€ ReM such that 0 # S’ <[SP_] <5 and satisfying
\yO(S') < +w. Observe S'Pn = S’. Since TPn € (ReM)+ there exists
a constant K such that T Pn <KI. We have

¥(S) = ¥o([8'TT) = yo([8'P T1) = y,([S'TP 1)
<K y,(8") < +oo. Thus { is semi-finite.

That { defines a positive normal linear functional on ReM if and only
if 2 (T) < 0 is an immediate consequence of lemma 10.4 and the

fact that \]/O(T) < o if and only if Yo(I) < 0.
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It is clear that, if T, T’ e(ReMO)+ satisfy T < T’ then
q;o([ST]) < \yo([ST']) holds for each S G(ReMO)": Thus assume that
¥o([ST1) = ¥,([ST']) holds for each S in(ReMO)’.' Choose a maximal

family of pairwise disjoint projections {Ei}i of M with the property

€d
that \yo(Ei) < 400, WL‘[EiT']) < +w. In particular \yo([EiT]) < o for each

i€d. As usual Ei Ei = I and for eachi there exists (at least one)
s
M= B and yo(SE)) = Q_ _ (S,) holds for

s

1 1 1
each S ianeMd’f From \yo([EiT']) < + o it follows that

€S

X, € ¥ such that Eixi = %, Ex

- +
Qxi’xi ([SiTi]) < Qxi,xi([SiTi ]) <+ holds for all S€(ReM). By lemma
» - . - L .1-
10.4 and the definition of Oxi’ xi" it follows lthat X, € sTia , QTi,z :
and for each S E(ReMi", we have
11

11 1
: 2g? 2q2 = 2
(i) (Ti Si Xy, Ti Si xi) = (Si T:

§ Y 1 1
2 r2 13
X5 Ti xi) S(Si Ti X:s Ti x.)

i i’®

Suppose first that T, T’ actually belong toReM/'. From (i) follows

(T, x, x) < (Ti"x, x) for all x €M xi) ,and hence by continuity

M M
for all x€ [Mxi]. Thus Ti Exi xi. ’
’ - M, - ’
E; = vxi {}:cxi : ¥o(ME, )= w"i' xi(M)}. Thus T,E, < T, E, or T, < T.
In the general case, choose projections {Pn}’{Pn'} in M such

<T/E By lemma 10.9,

that P }_ I P’} I, suchthat T P_ e(ReM, TP  €(ReMt,
n n n n n n
For eachi, T, P_ cReM, T/ P/ €[ReM|’, and observe that

1 1
- ' ’ z 'z
Q =P AP/1 I and T,Q, T/Q_, TZQ_, T/?’Q_¢[ReM'. I
relation (i) replace S by SQ, . For each SG(ReM)+

1 1
2 2 - ’
(S Qn Ti X, Ti xi) = (S TiQn X, xi) < (STi Qn X xi).

Thus T.Q <T/ Q, sothat T. < T!. Hence T <T’.
1in 1 n 1 1
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Corollary 10.11: Let §, ® be two normal semi-finite traces on(ReM()"'

which satisfy ¢(T) < ¢(T) for each T GCReMO)t There exists S G(ReMj'-

with 0 <§ < 1 such that Y(T) = ¢([ST]) for all T €(ReMy!

Before proving Corollary 10.11 we give the following slight

generalization of [1], p. 11, lemma 2.

l,
S G(Rel\/ﬂ+ with 0 £ S <1 such that T1 = T2 S.

Lemma 10.12: Let T,, T, €(ReM J'satisfy T < T,. There exists
p—————— —— —— ——— -] .

Proof: From T1 < T2 we have QTZIQ QTI. If xe QTZ then

“ TI%X “2 < " TZ%x “2 The map TZEx~T'1%x may be extended uniquely
to a continuous linear map B: [Range TZ%] ~%. Set B=0onk®
[Range TZ%]. It follows easily that Be€ M, 0 < B*¥B< 1 and that
T?= [B TZ%]' Thus T '

= i = *
1 TZS’ with S = B¥*B.

Proof of Corollary 10.11: Let Vo be a normal faithful semi-finite

trace on(ReMo)t By theorem 10.10,there exist T, T, E(ReM0)+ such
that $(T) = yo([T T;1) < yo([T T,]) = @(T) holds for each T in(ReM*

Thus T, < T, and by lemma 10. 12 there exists 0 <5 <1, S gReM)

with TZS =T Thus

-
®([STI) = @(TS) = yo([T S T,1) = yo([TT,1) = WT).
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XI1. THE EXTENDED ORDER DUAL OF ReM0
In this section we shall show that the family of semi-finite
traces introduced in X may be endowed with a Riesz space structure.
This leads immediately to a representation of the elements of ReMO
as normal integrals defined on an order dense ideal of ReM. The
notation and terminology is essentially the same as in [8].
By J we shall denote the family of all order dense ideals of

ReM,. Then<is a filter basis. Letd= U{I::I €3} Hopedwe

0
shall denote by I its domain of definition. Thus I € S and cpE(Icp):
for all ped.

We may define the following relation ond: ®y E&' P, whenever

- {TEReM; ) (T)=5,(T)]
contains an order dense ideal of ReMO. SinceJ is a filter basis,
the relation 53 is an equivalence relation. The set of classes of
equivalent elements will be denotgd by I‘(ReMo) and its elements
denoted by[p]. I'(ReM) is defined similarly,

| F(ReMO)is given a Riesz space structure as follows. For all
real a, and all [@]€ M(ReM,), set ale] = [av]; [cp1]+[cp2] = [cp3]
whenever there exist cpl'G[cplj, sz'é[cpz] and Cp;é[cp_,’] such that
{T:cpl'(T) + cpz'(T) = cp3'(T)} contains an order dense ideal of ReMO.
That the linear operatioas are well defined follow from the fact that
-} is a filter basis.

We set [®] = 0 whenever there exists cp'G[cp] such that
{TEReMO:cp'(T) 20} € 3 The se; of non-negative elements forms a

coneinl(ReM, ); if we set [p,] < [9,] whenever [cpz-cpl]= [cplj-[cpz]zo,
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the order structure defined on T (ReMO) is compatible with its
linear structure. For every [o] €T(ReM ) we have [o] < [cp+], and
if [y] 2 0 is such that [¢] = [o] then [p' J< [y). Thus [o] exists
and equals [cp+]. Hence I‘(ReMo) is a Riesz space.

For 0 <@ €d, setw(T) = sup{®p(S): 0 <S < T, SGICP} for K(ReMdT
Theorem 1.1 of [8] asserts that if 0 <¢, ¥ €$, then lo]=(y] if
and only if = ¥ on(ReMo)t ® has the following properties

(1) 5([T1+T2])=$(T1)+5(T2), a(a'rl)=a$(Tl) for each real a=0,
‘Tl, T, e(aeMO)'f

(ii) 0 s T, =T, inReM, then 5('1‘1) sa(TZ).

1

(iii) ® is semi-finite in the sense of section X.

(iv)] 0<T_ TT T in ReM, then ®(T) = sup_ &(T_).

0’
Thus @ is the minimal monotone additive exténsion of @ to(ReMJ"
with values in [0,00]. It is clear that ¢ is a normal semi-finite
trace on(ReMO)T and that the restriction of ¢ to(Rer" is a normal
semi-finite trace on ReM in the usual sense ([1] p- 79) .

For each €, we shall write § = {SeReM:|3|(|S])<+w].

sCP
Then Scp =2 Icp’ and ﬂcp"’ts an order dense ideal, in fact the largest on
which such that |cp| can be extended finitely.

Let y, be a faithful normal semi-finite trace on(ReMJ’,’ and
’ ; let 0 <®é€d, © the extension of ® to(ReM(y. By theorem 10.7 there
exists T€ReM ) such that $(S) = y,([TS]) holds for each SEReM
Conversely an element T G(ReM3+defines an element of T (ReMo)+

. as follows: set Ip= {SEReMO:\yO([ |S|T])<+ o}. Then I €d and if

S, 8;, S,€1L, S= sl-szwithsl,szé 0, thenp 9=y, ([, TN~y [S, T1)
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defines uniquely @ as an element of (IT):' By normality
ET(S) = \yo([ST]) holds for each SG(ReMo)T By theorem 10.7 $T=Tp,r'
implies T = T’ for T, T'e(ReMo)’r Hence if T, T’ e(ReMO)‘“then
[pr] = [pp.]if and only if T = T'.

We may now define a map m:(ReM(f-' I‘(ReMo)+ by setting
)+

m(T) = [cpT] for Te(ReM The preceding remarks show that m

0
is onto and 1-1. It is obvious that 0 < T1 < TZ imply that m(Tl)sm(TZ).
Further m is linear on CReMO)T In fact let Tl’ TZG(ReMO)T then for all
selReM ),
Br 4r (5) = Vo([S(T +T,)1) = y([ST 1) + ¥, ([ST, 1)
1" 72
= @op (S) + @ (S)
T T,

, = {SEReMO:cpT1+TZ(|S|)< +w»}, then IT1 +T, €d,

nT and for all S€l
T2 T1+T2

CPT1+T2(S) = CPTI(S) + CPTZ(S)

Hence [¢ 1=lop +op 1= [ogp 1+ [0 ]
T,+T, T, T, T, T,
so that m is linear. We will show that m may be extended to a Riesz

isomorphism of ReMO onto T (ReMO) .

Theorem 11.1: The Riesz spaces ReMO, I‘(ReMO),I‘(ReM) are iso-

morphic. |

Proof: Let m:CReMO)+—' I"(ReMO)+ be defined as above. For T=[T1-T2]
T,, T,€ReM )} set m(T) = m(T,)-m(T,). That m:ReM ~T(ReM,)

is well defined, linear and 1-1 follows immediately from the linearity

and 1-l-ness of m on(ReMO)'f' Let [cp]EI‘(ReMO), [o]= L'cpl]—[cpz:l with

[cpl] 20, [cpz] 2 0. There exist T, Tze(ReM0)+with m(T,) = [ 1,
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m(T,) = [,] so that m([T;-T,]) = m(T;)-m(T,) = [o,1-[0,I=[o].
Thus m is onto.

To show that m is a Riesz isomorphism of ReM ontoI‘(ReMO)

0
it is sufficient to show that m(T+) = m(T)+ or alternatively
+
[pptl=lop 1. 520, SE8 , then
+

97 (5) = sup{pp(5’): 0 =5’ )

. +
In particular cpT(S) scpT+(S).
For each A€ReM+, define \{/T+(A) = 1imn_m cpS(A/\n T+).

It follows immediately that 2 8., that \yT+ <@g on ® and

Yo+t T % ¥s
that 0 < $T+ < c_p's . Since the restrictions of ‘\17,1.+ , ®g to ReM are
normal semi-finite traces on ReM, by Cofollary 10.11 there
exists 0 < S+ < 1, ST+ € ReM such that WT+ = %ST_*_. Note that

— — + —
0<S ST+ < S and that \yT+(T) = cpSST+(T) = cpT(SST+) = cpS(T )—coT+(S).
Hence cp-,;,(S) = cpT+(S) and so [CQ;.] = [cpT+] and m is a Riesz isomor-
phism. That T(ReM), I"(ReMO) are isomorphic Riesz spaces follows

immediately from the fact that ReM is an order dense ideal in ReMO

and [8], Theorem 2.6.

A Riesz space L is said to be perfect in the extended sense
if it satisfies L = I'(T(L)). From [8],p.491, if L is any Archimedean
Riesz space, thenI'(L) is perfect in the extended sense. Combining
this remark with Theorem 11.1, we have as a generalization of
Theorem 5. 2:

Theorem 11.2: The Riesz space ReM is perfect in the extended

0

N

sense.
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XII. THE SQUARE ROOT OF AN ARBITRARY
POSITIVE SELF-ADJOINT TRANSFORMATION
In preceding sections, it has been shown that an Abelian
W#*-algebra M may be extended to a class M, of closed densely defined
linear transformations which commute with every unitary operator in
M’ The following question arises naturally. If T is a given self-
adjoint transformation on the Hilbert space #, does there exist an

Abelian W*-algebra M such that T € M,? If T is bounded, then

0

{1,T} " trivially satisfies the requirements.
Let T be a self-adjoint transformation on the Hilbert space %
Note in particular that T is densely defined, linear and closed.

Lemma 12.1: Let M, = {S eLWw): ST TS} M, is a Wk-algebra.

1
is a linear space. Suppose that Sl’ S2 € Ml’

Proof: It is clear that Ml

then S, S TES1 TS <;TSIS2 so that M

172 2 1

% %
then S*T < (TS) =TS . Thus M1 is a %- subalgebra of L%). It is now

’
sufficient to show that M1 - Ml' To this end observe that the bounded

self-adjoint operators (I+T2)-l, T(I+T2)-1 belong to M, ﬂM;. In fact,

is an algebra. IfS € Ml’

from

ra+T?) ! =ty Y o qer?) T

"1 1+7%)7! belong to M

S EMI’ from ST < TS it follows that ST2 [oud TZS and

it follows that both T(I+T2) 1f further,

N
s(T%1) =sT%s c T%5+s = (T*+1)s

implies (+T2)"'s = sa+T?)"]

and T(1+T2)'ls = TS(1+T2)'1 > ST(1+TZ)‘1

so that equality holds since T(I+T2)—IS, ST(I+T2)-1 are bounded.
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Now suppose that S € le, . In particular

sa+T%) "}

]

a+1t4) s

1

and  sST@+T) ! = ta+T?)ls = Tsa+TY)"

Hence, if x GﬂTZ = %(I+T2)_1’ then Sx GQT and TSx =S Tx. Let x€ DT.

Since the graph of the restriction of T to STZ is dense in the graph of

T (in¥ x %), there exist x € §,..2 such that x - x, Tx — Tx. Thus
n T n n
Sx €8, Sx_=Sxand TSx_ =S Tx_=ST_ . Thus Sx € 8., and
n T n n n x T

T(Sx) = STx since T is closed. Thus STC TS and S € M1.~ Hence

M, =M,

1 1 and the lemma is proved.

Lemma 12. 2: Ml'

Proof: We show that Ml's_'.'_ M1 = (Ml')'. It is sufficient to note that

is an Abelian W*-algebra.

(I+T2)-1, T(I+T2')-1 belong to Ml' IfS € MI' ST < follows exactly as
in lemma 12. 1.

Theorem 12.3: Let T be a self-adjoint linear transformation on a

Hilbert space ¥. There exists a unique, positive self-adjoint linear

transformation S such that S2 =T.

Proof: By lemmas 12.1, 12.2, there exists an Abelian W*-algebra M
such that T commutes with every unitary operator in M’. The state-

ment of the theorem now follows from Theorem 6.10.
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