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ABST1-{ACT 

If R is a ring with identity, let N(R) denote the 

Jacobson radical of R. H is local if R/N(R) is an artinian 

simple ring and nN(R)i = o. It is known that if H is 

complete in the N(R)-adic topology then R is equal to 

(B) , the full n by n matrix ring over B where E/N(D) 
n 

is a division ring. The main results of the thesis deal 

with the structure of such rings B. In fact we have the 

following. 

If B is a complete local algebra over F where B/N(B) 

is a finite dimensional normal extension of F and N(B) 

is finitely generated as a left ideal by k elements, then 

there exist automorphisms g1 , ••• ,gk of B/N(B) over F such 

that B is a homomorphic image of B/N[[x1 , ••• ,xk;e;1 , ... ,gk]J 

the power series ring over B/N(B) in noncommuting indeter

minates xi' where xib = gi(b)xi for all b E B/N. 

Another theorem generalizes this result to complete 

local rings which hqve suitable commutative subrings. 

As a corollary of this we have the following. Let B be 

a complete local ring with B/N{B) a finite field. If 

fl(B) is finitely generated as a left ideal by k elements 

then there exist automorphisms g1 , ••• ,3k of av-ring V 

such that B is a homomorphic imase of 
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V [[ xl ' · · · 'xk; gl ' • · • 'gk]] • 

In both these results it is essential to lrnow the 

structure of N(B) as a two sided m0dule over a suitable 

subring of B. 
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S~CTION I 

INTRODTJC'l'ION 

'l'he structure theory of commutative semilocal q,nd 

local rings has been developed extensivel~ but there has 

been little success as yet in extending these results 

to n0ncommutat1ve rings. In this paper we prove some 

structure theorems for noncommutative complete semilocal 

and local rings. In Section III we obtain some information 

on the structure of complete semilocal rings whose radical 

is finitely generated as a left ideal. In commutative 

theory it is known that such rings are direct sums of 

complete local rings. As the ring of triangulqr n by n 

matrices over a field shows, this result is not true for 

noncommutative c0mplete semilocal rings but we do obtain 

the following. (Throughout we shall let N(S) denote the 

Jacobson radical of the rings.) 

Th~I.!!.._g_. If R is a complete semi local ring with finitely 

generated radical, then R = R1EB ..• EBRk where R1 is -:i.n A.lgebra 

over the rationals and for i > 1, R1 is a ring with identity 

e 1 such that for distinct primes p1 , p1 e1 
E N( R

1
). 

It is well known that the completion of a commutative 

noetherian local ring is again a noetherian local ring. 

This problem has not been settled for noncommutative local 

rings. Goldie [6] shows that this would be a strong con-
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d1tion. In any left noetherian ring of course the radical 

is finitely generated as a left ideal. In the case of 

commutative complete local rings, finite generation is 

sufficient to prove the structure theorems and to imply 

that the completion is noetherian. In the nonc(")mmutative 

case finite generation of the radical is not sufficient 

to prove that the completion is noetherian as the power 

series ring F((x,y]J in noncommuting indeterminates x and 

y over F shows. However, in the noncommutative structure 

theory, finite generation of the radical seems to play 

an important role. In Section III we prove 

Theorem 1. The completion of a semilocal ring with fin

itely generated radical is again a semilocal ring with 

finitely generated radical. 

I.S. Cohen [3] proved that any commutative complete 

local ring with finitely generated radical is a homomor

phic image of a power aeries ring with a suitable coeffi

cient ring. Some effort has been made toward extending 

these results to noncommutative complete local rings. 

Bathe [2] for exqmple has shown that if R is a complete 

noetherian local algebra over a field F such that R/N(R) 

is finite dimensional and separable over F then R is a 

homomorphic image of a quasi-cyclic algebra s. This theorem 
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1s extended in Section IV to a complete semilocal algebra 

R over a field F such that R/N(h) is finite dimensional 

and separable over F. This theorem is the basis of Section 

IV and. the structure theorems for complete local algebras. 

It is known that if R is a complete local ring then R 

is the ring of all n by n matrices over a complete local 

ring B where B/N(B) is a division ring. In Section IV 

we obtain the following information about the structure 

of B. 

Theorem 7. Let B be a complete local algebra over F where 

B/N(B) is a finite dimensional and normal division ring 

over F. If N(B) is finitely generated by t elements then 

there exists automorphisms g1 , ••. ,gt of B/N(B) fixing F 

such that Bis a homomorphic image of B/N(B) [[x
1

, •.. ,xt; 

g
1

, •.• ,gt]], the power series ring over B/N(B) in noncom

muting indeterrninates xi where x
1
b = gi(b)xi for all b E 

B/N(B). 

Note that in this theorem we do not say that the 

automorphisms are distinct. We also obtain a similar theor-

em for comulete local algebras B where B/N(B) is a finite 

dimensional separable extension of F. 

In Section V we extend the results of Section IV to 

complete local rings which have suitable commutative sub-
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rings. '.:)uppose B is a complete local rir .. ; with finitely 

generated radical and B/N(B) is a field F. Also suppose 

that the characteristic of B/N(B) is a prime p and the 

characteristic of B is not equal to p. The major results 

are these: 

Theorem 15. Let S be a commutative subring of E which 

maps onto F under the natural map ~ which takes B onto 

B/N(B). Let S be a finite module over a subring S' 

of the center of B, S' be noetherian and F be a normal 

extension of ~(S'). If N(B) is finitely generated by 

t elements, then there exists automorphisms g1 , •.• ,gt 

of a v-ring V such that B is a homomorphic image of V 

V [[x1 , ••• ,xt;g1 , ••• ,gt]] where V/N(V) is isomorphic to F. 

Theorem 16. If F = B/N(B) is a finite field and N(B) 

is finitely generated by t elements, then there exists 

automorphisms g1 , ••• ,gt of av-ring V such that Bis a 

hom0morphic image of V[[x1 , ••. ,xt;g1 , •.. ,gt]] where V/N(V) 

is isomorphic to F. 
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SECTION II 

DEFHHTIJNS AND NOTATION 

'I'his section introduces some of the terminology and 

definitions used in the structure theory of complete non-

commutative local rings. All rings will be assumed to 

have an identity. 

A ring is artinian if the descending chain cnndition 

for left ideals of the ring is satisfied. A ring is noeth-

erian if the ascending chain condition for left ideals 

of the ring is satisfied. The Jacobson radical of the 

ring R will be designated by N(R) or by N whenever the 

ring R is clear from context. The set of all n by n mat

rices over the ring B will be denoted by (B)n. 

A semilocal ring R is a ring such that nNi = O and 

R/N is artinian. A local ring is a semilocal ring such 

that R/N is simple. 

A topological ring is a ring which is a topological 

space such that addition and multiplication are continuous. 
n If I is a.n ideal of the ring R such that n I = O then R 

is a topological ring using lrn} as a base of neighborhoods 

of {o}. The topology is called the I-adic topolosi. 

A complete ring is a ring which is complete with respect 

to its N-adic topology. We will designate the c,.,mpletion 
,. 

of R in the N-adic topology by R. 

A v-ring as introduced by Cohen (3] is a complete 



discrete commutative valu'.3.tion rine; wh•)se m':lximal ide·:i.l 

is generated by the prime integer p where p = characteristic 

of V/N(V). That is, a v-ring is a comr)lete c,,;mmutative 

local integral domain whose maximal ideal is i::;enerated 

by the prime integer p. 

If V is any commutative ring , e;1 , ••• ,g1c: automorphisms 

of v then the Hilbert power series ring V[[x1, .•• ,xk;g1, ..• 

,gk]] is defined as the power series ring over V in non

commuting indeterminates x1 , ••• ,xk such that xiv= gi(v)xi 

for all v f V. 

An algebra R is ~·1sicyclic if 1) R C'.'ntains a sub

algebra A which is mapped is·1morphically onto H/N bv the 

natural map, ~nd 2) as a two sided A module R is equal 

to the complete direct sum A$ N
1 
$Ni$ • • • where N

1 
~ 1~/N2 • 

Let R be semisimple artinian algebra over F. Let 

the Vledderburn decomposition be ( D
1

) n ( 1 ) $ ••• EB ( D
1
::) n (l{) • 

Let Ci be the centers of the division rings Di. Such an 

algebra R is seuarable over F if each of the fields Ci 

is a separable extension of F. A separable algebra is 

normal over F if each Ci is a normal extension of F and 

each automorphism of Ci over Fis induced 1y an autom~r

phism of Di over F. 

Finally we next introduce the notion used by Hochschild 

[8] of a U-regular (V,V) module where V is a ring ~nd 

U is a subring of V. All-regular- (V,V) module M is a 

two sided V module with U c { v E V : vm = mv for all m E i!; l · 
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SECTION III 

THE C ,;.,;_ Ll!.'l'I Ol~ >F' A 3&.;ILOCi~L RH;G '.TI'H 

FINI TJ.<.;LY (}Ui;ERA'l'EI.J RADICAL 

This section gives us s-ime general 1nformati'in on 

the completion of a semilocal ring whose radical is fin-

itely generated as a left ideal. We relate semilocal 

rings with finitely generated radical and projective limits 

of artinian rings in order to obtain further inf0rmation. 

The followins lemma is easily derived from theorems 

1.3 and 2.3 of [l]. 

Lemma 1. If R is a ring with identity such that nN1 = c, 

then nN(R)i = O, while for j > O, l'-T(R)jn R = l•i(ri)J and 

R/N ( R) .1 ~ R/H ( R) j • 

We will now investigate some properties of finite 

generation of the radical 

0 
Lemma 2. If R is ,q_ complete semilocal ring with R/N"' 

artinian then for each positive integer j, Nj is a finitely 

generated left ideal. 

~roof. We will first show that N is a finitely gener~ted 

left ideal and use this to obtain the lemma. Let n E 1-~. 

~. ' .,.- . k 
le1 t R/~~ module we h8.ve n = ~ r n 

~=l i i 
a minimal generating set r~r the 
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R./0i rr.odule N/N
2

• n- Lri n 1 = m f I~ 2 but m+r~3 = L:ts+N3 

2 Lei '? ~lft1te I l k 
where t,s f N - N • Since t,s E N- N' there exists l ti lt=l 

and { s
1

} 1!1 such that t- tti n 1 E N?, s- ts1 ni E N'.) so 
L ~1 i. •\ 

2 
because n.1 s 1 E N - N and s0 is written 

Continuing this process we have 

E Nu+l. Since R is complete we have 

Now we rr:q,y reo:i.rra.nge the series and collect terms ending 

in nq• Thus we haven= u1n1+ •.• +uknk where for example 
(1) - k (j) 

ul = rl + L.Lri(l) ... i(j-1) ,1 ni(l) · · .ni(j-1) · 
j ~l. <1111

00·,iC.i"') ., 
Therefare N = [n1 , •.. ,n~]. We will now show that the set 

of all products ni(l)•••ni(j) generate Nj. 1he statement 

is true for j = 1 so by induction it is sufficient to 

show that the statement is true for q+l if it is true for 

q Let n E Nq+l Therefore n = ~ s ( u) s (u) where s (u) E 
· • LI 1 · · • q+l i 

(u) (u) q """' 
N. Since s 2 •.• sq+l EN , we have 

(u) (u) ~1.(u) 
9 2 · • • 8 q+1 =. ~ r 1 ( 2) . . • i ( q + 1 ) n i ( 2 ) · · • n i ( q + 1 ) and 

LISl,···,•'f"' 

t t ... n = ~s(u) r(u) n 
LI 1 .. 1(2) ... i(q+l) 1(2) 000 ni(q+l) 
\l.• I \.Ill, .... •"\• I) 

"'' 
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II. i:. 

= L ( L9 (~);,i(b) ... i(q+l) )ni(2) · · .ni(q+l) Eut 
~ti.1.).1·· • .,'4rftt\ "'- : I ., ~ 

L:s(~) ~i(b) ... i(q+l) f N and hence is equal to .... , 
" ""r n Therefore £..J i(l) ••• i(q+l) i(l). 

i..l1\Z' l 

I< 

n = L ri(l) •.• i(q+l) ni(l) • · .ni(q+l) 
it1i,. . .,,,,.,, 

and the lemma is proven. 

Note that in proving this lemma we showed that any 

minimal generating set of N/N? as an R/N module can be 

raised to a minimal generating set of N as an ideal and 

vice versa • Hence from the properties of finitely gener

ated modules over semisirnple artinian rings we know that 

every minimal generating set of N has the same length. 

Theorem 1. The completion of a semilocal ring with fin

itely generated radical is again a semilocal ring with 

finitely generated radical. 

Proof. Since N is a finitely generated left ideal it 

follows that N/N2 is a finitely generated left R/N module. 

Since R/N is artinian by assumption it follows that R/N2 

is artinian. " " 2 2 By lemma 1, R/N(R) is isomorphic to R/N{R) 

and is therefore artinian. Lemma 2 then proves the coral-

lary. 
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i~r0posi tion 1. If R is g complete sernilocal ring with 

R/N2 artinian then for each positive integer i, H/Ni is 

artinian. 

Proof. k By lemma 2 for any k >O, N is a finitely generated 

ideal. Hence Nk/Nk+l is a finitely generated left R/N 

module. 'rhus a finite composition series can be obtained 

from the series R/N, N/N2 , ••. ,Ni-l/Ni. This implies that 

R/Ni is artinian. 

Some information about the structure of complete 

semilocal rings can now be gained from our knowledge of 

artinian rings ty using the projective limit. Suppose 

that { Ri}, (i ~ 1) is a sequence of rings and { cJ>i}, (i ~ 1) 

is a sequence of homomorphisms such that cJ>1_1 (R1 )= Ri-l" 

The projective limit of {R1} is defined to be the subring 

of the complete direct sum of {Ri}' consisting of those 

elements {ri} which satisfy cJ>i_ 1 (ri} = ri-l" The projective 

limit of IRil will be denoted by PL(Ri). The following 

is a well known and easily proven fact. 

Proposition 2. If R is any ring complete in the N-adic 
i topology where n N = 0 then R is the projective limit 

l i I ,I. I i i-1 of R/N I under the natural map "'i-l : R N - R/N • 

Proof. The map r E R - (r+N, r+N2 , ••• ) is a horrwmorphism 

from R into PL(R/N1 ). It is 1-1 since r _. 0 implies 
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r f Ni for each i which in turn means r f n Ni = o. Sup

pose (r
1
+N, r

2
+N2 , .•. ) f PL(R/Ni). Letting r = o we have 

k 0 

rli. = ~(ri-ri-l) is a Cauchy seq~ence so that r = 

~(ri-ri_01 ) exists. But r-r = ~(r -r ) E Nu so that 
~ u j ...... , j j-1 

2 ) (r+N, r+N'-, ••• ) = (r1+N, r 2+N ·, •••• 

Theorem 2. Let R be a complete semilocal ring with finitely 

generated radical. Then R = !\EB· •• e:Ri{ where R is an 

algebra over the rationals and for i > 1, R1 is a rin13 with 

1dent1 ty e1 such that for distinct primes pi, pi ei E N (R
1

). 

Proof. ~e will make use of the fact that R = PL(R/Nj). 

R/N is artinian and hence is equal to R11e ••• eRkl where 

R11 is an algebra over the rationals and for i > l, Ril 

has characteristic pi for distinct prime integers pi. 

Since 1 E R ?..no R/NJ is artinian ( Pr·;posi ti on 1) there 

exist by [5, page 283] rings Rij , 1 s is k, 1 s j such that 

R/Nj = I\jf'.B ••• ef~Ij where I\.1 is an algebra over the rati-::;n

als and for i > 1, Rij has characteristic a power of pi. 

Because of the distinctness of the characteristics of the 

c-:>rnponents of the decomposition of R/Nj, it is easy to see 

that this decomposition is unique. From this fact we can 

I j +l '/ 1 deduce that the natural map </>j : R N --+ R N· induces a 

map <1>1 j : Ri,j+l-+Rij" From the decomposition of R/!·~j+l 

we have N/Nj+l = N(Rlj+l)E& ..• E&N'(2kj+l) 'lnd 1)/Nj+l= 

N(Rlj+l)je ••• eN(Rkj+l)j. Thus ~j is actually the natural 



map of Rij+l nntn 

that the diagra.;r, 
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R1.1+1/N(Rij+l)j Frnm this it is evident 

h/N.1 .!.L : /NJ + l 

l ulj l uij+l 
<Pij 

Rlj - ?li.i+l 

commutes where uij is the projection map of R/N,1 onto 

Rij. We now claim that R = PL(R/Nj) = PLP'l.l )EB •.• EBPL(Ekj). 

The commutivity of the diagram guarantees that u: {ri+Ni} 

--.{ r 1i, .•• ,r1{1 j is a well defined map. It is easily 

checked that u is an isomorphism into. Suppose that 

l r 1 .i} E PL(Rlj). 'ro show that u is onto we must have a 

sequence jri+Nil f PL(R/Ni) which maps rmto lr1,,,o, ... ,oj 
under u. The seq_uence lr1 .1+Njl of course does this. 

We now need to show that R1 = PL(R1J) contains a copy of 

the rationals and that N(Ri) = N(PL(Rij)) c(":ntains p1ei• 

To show the first note that if R11 is zerr:· then R1 .1 is 

zero for every j s.nd of course PL(R1 j) is zero. Thus 

R1 is trivially an algebra over the rationals. Otherwise 

R1J contains a unique copy of the rationals generated by 

e1 .1 the identity of Rlj• <Plj-l maps this copy onto the 

unique copv in R1 ~-l so that PL(R1j) is an algebra over 

the r~tionals. The assertion that N(~i) = N(PL(Rij) con

tains piei is clear since piei is contained in :N(Rij) and 

<Pij-1 maps pieij onto pieij-l• The theorem is thus proven. 
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Corollary 1. :i?or i > 1, either Ri ht:ts chg,r:1cteristic a 

power of a prime or Ri contains a copy of the valuation 

ring Ip(i) determined by the prime pi in the integers. 

Proof. R1 = l)L(R1 /N(Ri)j) and each R1/N(Hi)J contalns 

Iei/N(Ri)jwhere I is the inte3ers and e1 the identity c,f R
1

. 

If there is some integer n such that piei f N(Ri)j for 

n each j then piei = 0 and R h~s characteristic dividing 

p~. If this is not the case then the localization and 

completion of the subring PL(Iei/N(Ri)j) of R1 ~bout the 

ideal generated by piei is aeain a subring of Ri and is 

in fact a copy of Ip(i). 

Corollary 2. Let Ri/H(Ri) = (D1 )n(l/l1 •.• E1'(Dt)n(t) be the 

\;edderburn d ecomposi ti on of the semi simple ring Ri/H (Ri) 

where ej - ej is the map nf ortho5onal idempotents of 

R1 onto orthogonal idemp0tents of Ri/l,l (R1 ). Let Muj = 

euRiej. If we mqke the convention thqt a characteristic 

which is equal to zero is written as equal to infinity 

then the characteristic of Muj divides min {characterisLic 

of eu, characteristic of ejl. 

Proof. Muj is an (eufiieu, ejRiej) module. Hence the 

characteristic of Muj divides the characteristic of eu 

and the chara,~teristic of ej. 
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SECTI~)N IV 

Crn1PL.b.:T.b.: LOCAL ASD 31·1-iILOCAL AL3EBHAf3 

This section deals with the structure of certain 

complete semilocal and local alzebras with finitely gen

erated radical. The techniques used are an extension of 

some ideas of Hochschild [7 ,9]. ·1·re prove that if R is 

a complete local algebra over F with finitely generated 

radical such that R/N is finite dimensional and normal 

over F then R is a complete matrix r1n5 over the homomor

phic image of a Hilbert power series ring. A new type 

of complete local ring is then defined and we investigate 

the structure of complete local and separable algebras 

in relation to this ring. 

The following theorem was proven by Curtis (4, page 

80]. 

Theorem 3. Let R be an algebra over a field F where 

n Ni = O and R is complete in the N-adic topology. If 

R/N is finite dimersional and separ~ble over F then R 

contains a subalgebra A. such that R = A+ N and An N = O. 

The next lemma and theorem are found. in Hochschild 

[7, pages 371 and 372]. 

Lemma 3. If A is a separable algebra over F then every 

two sided A module M is semisimnle, in the sense that 

every two sided submodule of M has a cornple~ent. 



15 

Theorem 4. Let R be an algebra over F with R/N finite 

dimensional and separable over F. If Nk = O for some 

k then R is a homomorphic image of (R/N)e:t-\e ••• eN~-l where 
? 

Ni ~ N/N·-. 

We now extend these results to complete semilocal 

algebras. Batho [2] proved the following theorem but we 

include a proof here using different ter:ninnlogy and con

cepts. 

Theorem 5. Let R be a complete semilocal algebra over 

F. If R/N is finite dimensional and separable over F 

then R is a homomorphic image of a quasicyclic algebra 

R/N EB N 1 e Nie • • • • 

Proof. Proposition 2 gives R = PL(R/N1 ). By theorem 3 

there is a subalgebra A such that R = A EB N as two sided 

A modules. Since A is a separable algebra lemma 3 guaran-
2 2 tees that N has a complement N1 1n N. That is N = N1 EB N 

as two sided A modules. Using this N1and A, theorem 4 
i then implies that R/N is a homomorphic image of Ci = 

- - -2 -i-1 -A EBN1 e N1 EB ••• EBN1 where A and N1 are the appropriate 

images of A and N1 in R/N1 • Let cri be the homomorphism 

of Ci onto R/N1 • Let <P 1 be the natural map from R/Ni+l onto 

R/Ni and ~i the natural map from Ci+l to Ci. Note that 

the diagram 
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I/Ji 
Ci+l - Ci 

1 cri+l </>. 1 cri 
R/Ni+l __l R/Ni 

commutes. 

Let (c1 ,c2 , .•• ) E PL{Ci). Define 'Y(c1 ,c2 , •.• ) = (u1 (c1 ), 

u2 (c2 ), ••• ) • The commutivity of the diagram implies that 
i this is a map of PL( Ci) onto PL(R/N ) = R. It is clear 

that 'Y is a h -momorphism. Note that PL(Ci) 

as a two sided A module complete direct sum. 

In order to gain additional information about complete 

local algebras, we need to know the structure of N/N2 as 

a two sided R/N module. The following theorem of Hoch

schild [8, page 451] gives us this structure for certain 

rings R/N. We restate it for our special case. 

Theorem 6. Let D be a finite dimensional normal division 

ring over the field F. Then every K-regular (D,D) space 

is a sum of simple K-regular spaces. Every simple K-regular 

(D,D) space has the form Dn where nd = g(d)n, d E D, and 

g is a fixed automorphism of D over F. 

If Risa-complete local ring then R = (B)n where 

B is a complete local ring with B/N{B) a division ring. 

Hence the structure of R is determined by the structure 

of B. 



17 

Theorem 7. Let B be a comnlete local algebra. over F where 

B/N is a finite dimensional and normal division ring over 

F. If N is finitely generated then there exist automor

phisms g1 , ••• ,gk of B/N such that Bis a homomorphic image 

of B/N [[x1 , ••• ,xk;g1 , ••• ,gk]], where l{ is the dimension 

of N/N2 as a left B/N sp~ce. 

Proof. By theorem 5, B is a homomorpnic image of 

A$ N1 $ N~ $ . . . , N1 = N/N2 • Theorem 6 tells us that 

N1 = (B/N)n1 $ ••• $ (B/N)nk where nib = g1 (b)ni for b E B/N 

and automorphisms e;1 of B/N. Hence B is a homomorphic 

image of B/N[[x1 , •.• ,xk;g1 , ••. ,gk]]. Note that k is the 

dimension of N/N2 as a B/N module and hence by the proof 

of lemma 2 n1 , •.• ,nk is a generating set of N. 

This set is of course minimal. 

We now consider the case where B/N is a field and 

is a finite dimensional separable extension of F. As 

in theorem 7 we need to gain some information "'n the 
2 structure 0f N/N as a two sided B/N module. Since B/N is 

a separable extension of B we have B/N = F(e) where e is 

a r')ot of a separ9.ble and irreducible polynomial f (x) 

contained in F (x]. We now collect the following inform

ation from Jacobson [lo]. 

Theorem 8. Let f (x) be a separable irreducible polynomial 

in F(x]. Let e be a root of f(x) and let K = F(e). If 
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M is an F-regular (K,~) module which has finite di~ension 

as a left K space then M = M1 $ ••• EB Mt as simple birnodules. 

With each Mi is associated an irreducible factor 

m(i)-1 m(i) [ 
-a0i-alix- •. ·-Bm(i)-l,ix +x of f(x) in K x] such 

that Mi= Kx1 iEB ••• EBK~(i)i as left K spaces. In Mi 

multiplication on the right by e is identical with the 

linear transformation induced on Mi as a left K space by 

the companion matrix 

0 1 0 ••• 0 
0 0 1 •.• 0 . 
0 • 1 

8.oi ali 8m(i)-l,i 

m(i)-1 m(i) 
of -ao1-alix- •• ·-3m(i)-l,i x +x • 

;;:roof. Multiplication on the right of M by e induces a 

K linear transformation T on the left K space H. Since 

e satisfies f(x) € F[x] we have f (T) = o. Hence the minimal 

polynomial for T in K[x] divides f(x) and is thus separable. 

The rational canonical form for linear transformations 

now guarantees that M = !'~l 9 ••• EB Mt where Mi is invariant 

and cyclic under T. Thus each Mi is a simple (K,K) module. 

There is a basis for Mi such that the transformation Ti 

induced on Mi by T takes the form of the companion matrix 

for some irreducible factor of f(x) in K[x]. 

We are now in a position to prove the final theorem 

of the section. First we shall define a class of co~plete 
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local algebras. Let K = F(8) be a finite dimensional 

separable extension of F. Let f(x) be the irreducible 

manic polynomial of e over F(x]. Let T be the companion 

matrix of an irreducible monic factor of f{x) in K[x]. 

We may suppose that this factor has degree n(i) so that 

Ti is an n(i) by n{i) matrix. Let us note here that the 

Ti are not necessarily distinct and do not neaessarily 

include all the companion matrices of the irreducible 

fact•rs of f(x). The ring K([x1 , .•• ,~;T1 , ••• ,Tt]J is 

defined to be the power series ring with coefficients 

from Kin n{l) + ••• +n(k) noncommuting indeterminates x1 j 

where Xi_ = ! xil' ••• ,xin(i)} , xij f = fxij for all f f F 

and xije = T1x1j where Ti is considered as a linear trans

formation on the space Kxil $ ••• $Kxin(i). 

Theorem 9. If B is a complete local algebra over F whose 

radical is finitely generated, and if B/N = K is a. finite 

dimensional separable extension field of F then there ex

ists matrices Ti such that B is a homomorphic image of 

K [(x1 , ••• ,Xt;T1 , .•• ,Tt]] where n(l) + •.• + n(t) = k, the 

dimension of N/N2 as a left B/N space. 

Proof. Since K is finite dimensional and separable e:-'.:ten-

sion of F we have K = F( e). By theorem 5 B is a homomorphic 

, the complete direct sum. By 

theorem 8 we have N = M1 $ ••• $Mt where ?~ 1 = Knil $ ••• 

e Knin(i) and n 1je = T1n 1 j for the appropriate companion 
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matrix Ti. Hence Bis a hom0morphic image of 

K [[x1 , ••• ,Xt;T1 , .•• ,Tt]] under the map induced by xij---+nij. 

We may note here that theorem 7 is a direct result 

of this theorem when B/N is a field but does not follow 

if B/N is a division ring. 

Corollary 3. If B is a complete local ring whose radical 

is generated by k elements, k minimal, and if B/N = K is 

a finite dimensional separable extension field of the 

rationals then there exist matrices Ti such that B is a 

homomorphic image of K [[x1 , ••• , ~; T1 , ••• , Tt]] where 

n ( 1) + ••• + n ( t) = k. 

Proof. Since the characteristic of B/N is zero, B is 

an algebra over the rationals. Hence the hypothesis of 

theorem 9 are satisfied. 
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SECTION V 

COMPLE'rE LOCAL RINGS WITH SUITABLE C·J:'i:MUTATIVE SUDRINGS 

This section deals with complete local rings B whose 

radical is finitely generated as a left ideal and which 

have suitable commutative subrings. We will see that 

these rings include those complete local rings B with 

finitely generated radical such that B/N is a field F 

which is a finite dimensional normal extension of its 

prime subfield. 

If the characteristic of B is equal to the character-

1 stic of B/N then the results of this section reduce to 

the results of section IV. Therefore in the following we 

will assume that the characteristic of B/N is a prime p 

and the characteristic of B is not equal to p. 

The structure of certain U-regular (V,V) modules 

will be essential in the theorems of this chapter. We 

use some elementary techniques to obtain the required 

information in the next series of lemmas. In these lemmas 

we will assume that B and U are v-rings and V is a finite 

module over U. 

'l'he following lemma is an easy variation of a result 

of Cohen [3, page 68]. In the version as stated below, 

we do not need the hypothesis that R is noetherian. 

Lemma 4. Let R and S be commutative local rings with 

RCS and R complete. If S·N{R) = N(S) and S/N(S) is 
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a finite al6ebraic extension of R/N(R) then S is complete 

and S = Ra1 + ••• + Rak where a1 , .•• , ak is any lifting of 

a basis a1 , ..• ,ak of S/N(S) over R/N(R). 

In the remainder of this section we will denote V/N(V) 

by F and U/N(U) by F1 • We will denote the field of quot

ients 0f V by Q and the field of quotients of U by Q1 • 

Lemma. 5. If a1 , ••• ,ak is a basis for F over F1 and. 

a.1, •.• 'ak if a set of elements of v mapping onto al' ••• , al{ 

under the natural ~ap then a.1 , ••. ,ak is both a basis for 

V over U and Q. over Q1 • 

Proof. Lemma 4 guarantees V = Ua1 + •.• + Uak. \·/e must 

now show independence over u. Suppose a1 , .•• ,ak are de

pendent over U. Without loss of generality we may assume 

T = [ u # O : u E U, 0 = ua1 + ••• + ukak} is not empty. 

Let S = { a : a is a non-negative integer such that for 

a I I a+ 1 II some u E T we have u = p u where u E U and u -;/: p u 

for any u" E U}. Since 'r is not em9ty then under the na t

ural map we have 0 = ual + ..• + vuak which implies u 0 

and u = pu' so that S is not empty. Pick a minimal a E S. 

Therefore there exists u1 , ..• ,uk such that 0 = u1a1 + •.. +ukak 
a a+l 

and u1 is divisible by p but not by p • In F we have 

0 = u1 a.1 + ••• + ukak so that u1 = 0 for each i. Therefore 

ui E N(U) which implies u1 = pu:i_ for each 1. Theretore 

0 =p (u:l. a 1 + ..• + u1~alc) and since V is an integral domain 
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, a-1 , d a We have u1 = p u an. u{'f Pu" 

for any u" € u. Since a is minimal, we have a= O, which 

contradicts the fact that u1 is divisible by p. Hence 

each ui = 0 and a1 , ••• ,ak are linearly independent over U. 

Since Q = [v/pa : v E V, a is a non negative integer} 

we have v/pa = (u1/pa)a1 + ••• + (~/pa)8it so that 

Q = ~ a1 + ••• + ~ ak. A linear dependency of the ai in Q 

over ~ would imply a linear dependency in V over U. 

Therefore [a1 , .•• ,ak} is indeed a basis for Q over Q1 • 

Lemma 6. If F is a normal extension of F1 then there is 

an isomorphism between the group of automorphisms of V 

fixing U and the group of automorphisms of F fixing F1 • 

If g is an automorphism of V then an isomorphism is given 

by g--+g where g(v) = g\V). 

Proof. Since F is normal over F1 , F is the splitting field 

of a separable irreducible polynomial r(x) E F1[x]. Sup-

pose r(x) = (x-a1 ) ••• (x-ak) in F(x]. We may suppose that 

[ a1, ••• , ak} forms a normal basis for F over F1 • Choose 

f (x) € u[x] which maps onto f(x). B,r 
•' 

Hensel's lt-,,mma 

[a1 , .•• ,ak} can be raised to [a1 , ..• ,ak) contained in V 

such that f(x) splits in v[x] to f(x) = (x-a1 ) ••• (x-ak). 

By lemma 5, [a1 , ••• ,ak} is a basis for V over U and Q 

over Q1 • This implies that Q. = Q1 a1 + ••• + Q1 ak is the 

splitting field of the irreducible polynomial f (x) in 
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~[x], which proves that Q is a normal extension of~· 

If g ls an automorphism of Q over ~ then g(ai) = an(i) 

where n ls a permutation of l, ••• ,k. Hence g(V) = V and 

any automorphism of Q over ~ restricts to an automorphism 

of V over u. Note that the map g~g where g(v) = gfVT 

ls a homomorphism of the Galois group of V over U into 

the Galois group of F over F1 • Since g induces a permut

ation of ~, •.• ,81.r, g will induce the same permutation 

on a.1 , ••• ,ak. Hence g J: 1 implies g J 1 and g~g is an 

isomorphism. To see that the isomorphism is onto we note 

that the Galois group G of V over U has order k as does 

the Galois group of F over F1 • 

We are now in a position to investigate certain U

regular (V,V) modules. We will require that F is normal 

over F1 , and under this assumption we have 

Theorem 10. Let M be a U-regular (V,V) module. Let 

g1 , ••• ,gk be the automorphisms of V over U. Then Mis 

equal to M1 e •.• e Mk as (V, V) submodules where mv = gi (v)m 

for all m E Mi. 

Proof. Since F is normal over F1 , there is as in the 

proof of lemma 6 an irreducible polynomial f (x) E u[x] 

which splits in V[x] and which has a 1 as a root where 

V = U(a1 ). Suppose f(x) = (x-a1 ) ••. (x-ak) in V[x]. 
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Define fi{x) = ll.(x-aj). Since Vis 

N(V) for ii j we have fi(ai) t N(V). 

exists in V and we have the identity 1 

local and ai-aj f 

Therefore (f1 (ai))-l 

= I:(fi(ai))-lfi(x) 

in V [x]. vie may now note that mul tiplicat1on on the right 

of M by a1 is a V linear transformation T on M as a left 

V apace. Since f (a1 ) = O we also have f {T) = o. Because 

of the identity in V(x] we have I = I: ( f i ( ai ) ) -1 f i ( T) 

so that M = I: -1 ( f i ( ai ) ) f i ( T ) M = Ml+ • • • +Mk where 

Mi 
-1 = ( f i ( a1 ) ) f i ( T) M. To show that this sum is direct 

suppose for example that m e: M1 n (M2 + ••• + Mk) • Since 

m e: M1 we have (T-a1 I)m = O, and since m e: M2 + •.• +Mk 

we have (T-a2I) .•• (T-akI)m = 0. This implies that m 

Im = I:(fi (ai) )-lfi (T)m = 0 and the sum is direct. Now 

for every m e: Mi we have since f(T) = O, (T-ai I)m = o. 

Therefore Tm =aim. But Tm= ma1 • Since ai is a root 

of f(x), as is a1 , there is an automorphism gi of V over 

U which maps a1 onto ai. Therefore ma1 = gi(a1 )m and 

mv = m( ~ujai) = t:ujmai = ~ujgf (a1 )m = gi ( ~ujai)m 
= gi (v)m, and the theorem is proven. 

Lemma 7. Let S be a subring of a field F. If 

F = Sa1 + ••• + Sak then S is a subfield of F. 

Proof. Let Q be the field of quotients of s. Since F = 

Qa1 + ••• + Q.ak there is a linearly independent subset 

b1 , •.. ,bm over Q with b1 = 1 and (b2 , •.. ,bm} c (a1 , .•• ,ak} 



26 

such that F = Qb1 + ••• + Q.bm. Hence a.1 = ~ qlj b j where 

qlj E Q,. Pick s E S such that sqij E S for every i = 
1, .•• ,k ,j = 1, ••• ,m. f E F implies f = r:siai = .. 
~ si ( t: qij bj). Therefore sf = t: si ( f sqi.i bJ) = ~ s.1bj 

where sj E s. This implies F = sF c Sb1 + ••• + Sbm. For 
-1 1 t ES we have t = s1 + s 2b2 + •• -tsmbm' and since t- E Q 

-1 we have t = s1 which implies that S is a field. 

This lemma tells us tha.t if </> is a homomorphism of 

R onto a field F and R = R'a1 + ••• + R'ak where R' is a 

subring of R then </>(R') is a subfield of </>{R). 

In proving the main theorems of this section we will 

need to know the existence of homomorphic images of v-rings 

within our noncommutative local rings. The existence of 

thee·e v-rings is determined by using the following theorem 

of Cohen [3, page 79]. 

Theorem 11. Let R be a commutat1.ve complete noetherian 

local ring with residue field R/N of characteristic p. 

Let ~ be the natural map from R onto R/N. Then R contains 

a subring S which is a homomorphic image of a v-ring V 

where if 6 is that homomorphism, ~(o(V)) = R/N. 

We will now investigate the structure of a local 

ring B of characteristic not eQual to p where E/N is a 
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field F of characteristic p. Let C denote the center of 

B, <P the natural map of B onto F' and suppose that S is a 

commutative subring of B which maps onto F under </J. 

Theorem 12. Let S be a local ring and let S' be a complete 

noetherian local ring contained in C ns. If s is a finite 

module over S' and F is a normal extension of </J( S') = F1 

then there exist automorphisms, g1 , .•. ,gk, of av-ring V 

such that B is a homomorphic image of Ve N as rings where 

N = N(B). N = N1 e ••• eNk as (V,V) submodules where 

niv = gi(v)ni for all n1 E Ni. 

In proving this theorem we need the existence of 

v-rings V ~ U and a homomorphism 6 which maps V into S 

such that o(U) cs', </J(o(V)) = F and </J(o(U)) = F1 • This 

will enable us to determine the structure of N(B) as a 

U-regular (V,V) module. We first need the following lemma 

found in Curtis (4, theorem 2]. 

Lemma 8. Let R' be a finite extension of a noetherian 

semilocal ring R. Then R' is a noetherian semilocal ring. 

If R is complete in the N(R)-a.dic topology then R' is 

complete in the N(R')-adic topology. 

Lemma 9. With hypothesis as in theorem 12, there exist 

v-rings V ~ U and a homomorphism 6 : V ~s such that 
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o ( U) c S ' , <b ( d ( V) ) = F and <b ( cS ( U) ) = F1 • 

Proof. By applying theorem 11 to the complete noetherian 

local. ring s• we obtain a v-ring U and a homomorphism 

o: U--+S 1 such that <b(o(U)) = F1 • Since F is finite 

dimensional and normal over F1 we have F = F1 (e) where e 

is a root of an irreducible polynomial f(x) E F1 [x]. 

Let f(x) E o(U)[x] be a polynomial which maps onto f(x) 

under the map induced on o(U)[x] by <b. Since Sis a com

plete noetherian local ring Hensel's lemma guarantees that 

there is a root e € s such that f(e) = 0 and <b(e) = e. 
The ring o(U)(e) maps onto F. Let g(x) E u[x] map onto 

f (x) under the map induced by o. 6 extends naturally 

to the homomorphism Y which takes U[x]/(g(x)) = V onto 

o(U)(8). Since g(x) is irreducible, Vis an integral 

domain. The fact that V is finitely generated over U 

then implies by lemma 8 that V is a complete local ring. 

Since V /pV = F we have N (V) = p V. Therefore V :::> U are 

the appropriate v-rings. 

Proof of Theorem 12. Define B1 = VeN(B) where vnw = 

Y(v)nY(w) for v, w E V, n E N(B) ~nd Y is the homomorphism 

from V into s. Since Y(U) c C we have (v E V : vn = nv 

for all n E B'} :::> u. Therefore N(B) is a U-regular (V,V) 

module and B' is a ring which is mapped. onto B by the 

homomorphism y' (v + n) = y(v) + n for v E V and n E N(B). 
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By theorem 10 there exist automorphisms g1 , .•. ,gk of V 

over U such that N(B) = N1 + ••• + Nk as U-regular (V, V) 

submodules where nv = gi(v)n for all,n E Ni. This completes 

the proof of theorem 12. 

Note that in theorem 12, the ring B had certain com-

plete subrings but B itself was not required to be complete 

nor was its radical required to be finitely generated. 

If these additional assumptions on B are made we have 

the following 

Theorem 13. Let B be a complete local ring whose radical 

is finitely generated by t elements. If B satisfies the 

hypothesis of theorem 12 then there exist automorphisms 

g1 , •.• ,gt of av-ring V such that Bis a homomorphic image 

of V[[x1 , ••. ,xt;g1 , ••• ,gt]] where V/N(V) is isomorphic 

to B/N(B) = F. 

Proof. By theorem 12 B is a homomorphic image of B' = 
VE& N (B), where N (B) = N1 EB ••• E9 Nk. Label elements in 

N(B)/N(B) 2 with a bar. Hence N(B) = N1 EB •.. e Nk. N(B) 

is a vector space over F so we may pick a basis [n1j} 

such that [n11, ... ,nij(i)} spans Ni. Let n1 j be elements 

of Ni which map onto nij" Hence nijv = gl(v)nij" Renum

bering the n1 j as n1 , ••• ,nr and the gl as g1 , •.• ,gr (these 

in general will not be distinct) we have ni v = e;1 (v)n1 • 

From the proof of lemma 2 [n1 , .•• ,nr} is a minimal gener-
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ating set f0r N(B). Therefore B' is a homomorphic image 

of V((x1 , ••• ,xr;gl' ••• ,gr]]. This in turn implies that 

Bis a homomorphic image of V((x1 , ••• ,xr;g1 , ••. ,gr]]. 

We of course have that r ~ t and so B is also a homomor-

phic image of v[[x1,···,xt;g1,···,gt]] where gr+l' ••• ,gt 

may be any homomorphisms of V over U. 

The condition that B has a complete commutative local 

subring S mapping onto F with 8 1 a complete noetherian 

local subring in the center such that S is a finite mod

ule over S' appears to be very restrictive. Theorem 14 

will show that if B is complete we can omit the hypothesis 

that S and S' are complete and local. 

Theorem 14. : Let B be a complete local ring. Let S be 

a commutative subring of B such that ¢(S) is the field 

B/1': where q, is the natural map. If s1 is a noetherian 

ring contained in the center C and S is a finite module 

over s1 then there exists a commutative local subring S' 

of B which is a. finite module over a complete com~utative 

local ring S:l contained in C and where t/>(S') = F 

¢(3]_) l/>(S1 ). 

Proof. Lemma 7 and the fact that S = s1 a1 + •.• + s1 ak 

means that ¢(s1 ) is a field. Since ~11 elements 0f E 

outside N(B) are invertible we can localize in s1 about 
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the ideal N(B)ns1 • We may now complete in the radical 

topology (which is identical to the topology induced by 

the powers of N(B)) to obtain a ring Si· Note that S{ 

is contained in the center C since multiplication is con-

tinuous in the N(B)-adic topology. Define 3 1 to be the 

~ 1 s• s' ~· mo ..... u e 1 a 1 + ••• + l l':lk over ~1 • Note that S' is ~ctu~lly 

a ring since aiaj is contained in s•. By lemma 8 S' is 

a com~;:lete noetherian semilocal ring. Since the only 

idempotents in B are O and 1 this means that s' is in 

fact local. 

Combining theorem 13 and 14 we obtain 

Theorem 15. Let E satisfy the hypothesis of theorem 14. 

If Fis finite dimensional and normal over c/>(S1 ), and if 

N(B) is finitely generated by t elements, then B is a homo

morphic image of V[[x1 , ••• ,xt;g1 , ••. ,3t]] where Vis a 

v-ring mapping onto F and gi are automorphisms of v. 
If B/N is a finite field we can drop the assumptions 

about the existence of s. 

Theorem 16. Let B be a complete local ring with B/N a 

finite field F. If N(B) is generated by t elements then 

there exist automorphisms g1 , ••. ,gt of av-ring V such 

that Bis a homomorphic image of V[[x1 , ••• ,xt;s1 , .•• ,gt]] 

where V /N ( V) = F. 
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Proof. The identity of B generates a subring s in C the 

center of B. Since F is finite F = ZP(e) where ZP is the 

integers mod p. Let B be a representative of ~ in B. 

The subring s[e] is commutative and noetherian. 

localize and complete about s[e] n N ( L) to obtain 

In 3(0) 

S' is of course a c ·mplete local commutative ring which 

maps onto F. Ly theorem 11 there is a v-ring V and a 

homomorphism o such that o(V) c s' anc1 cf>(o(V)) = F. Since 

o(V) contains the identity it also contains 3 and the 

localization and completion 3 11 of S about N(B). S" is 

of course inc and N(S 11
) = pS". Since H(o(V)) = po(V) = 

pS" c5 (V) the c "ndi ti on s of lemma 4 are sq tis f ied. Eence 

o(V) is a finite module over S'' and the c-inditions of 

theorem 13 are fulfilled implying that B is a homomorphic 



1. 

2. 

3. 

4. 

.J.:.:.H. 

~.H. 

I. s. 

33 

REFERENCI:S 

Datho, Noncommutative Semi-local and Local Hin~s, 
Duke Kath. J. 24(1957) 163-172 

Batho, A Note on a Theorem of I.S. Cohen, Portu
galiae x~th. 18(1959) 187-192 

Cohen, On the Structure ~nd Ideal Theory of Com
plete Local Rine:;s, Trans. Amer. ~~a th. 
Soc. 59 ( 19%) 5L~-l06 

C.W. Curtis, The Structure of Nonsemisimnle Alg~br§!:E!_, 
Duke 1'13. th. tT. 21 ( 195h )-79-85 

5. L. Fuchs, Abellan Groups, Budapest, 1958 

6. 

7. 

,.., 
o. 

9. 

A.W. Goldie, Localization in Nonc~mmutative Noetherian 
Rin5s, J. Algebra 5(1967) 89-105 

G. Hochschild, On the Structure of Algebras with Non
zero Radical, Dull. A111er. '.'<ath. Soc. 53 
Tl947) 369-377 

G. Hochschild, Double Vector Spaces over Di_"l{_i_s1_C2_n_ 
Rings, .t.\rner. J. ?.~ath. 71(1949) 443-460 

G. Hochschild, Note on the Maximal Algebra, Proc. 
Amer. Math. Soc. 1(1950) 11-1!+ 

10. N. Jacobs,·m, An .Sxten~lon_of G~J.ois 'l'l}_£.2£Y_~o i\Ton
norma.l and Non-separable Fields, A.mer. 
,J. Math. 6i'':(i94h) 1.:29 ---


