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ABSTRACT 

Large plane deformations of thin elastic sheets of neo-Hookean 

material are considered and a method of successive substitutions is 
' 

developed to solve problems within the two-dimensional theory of 

finite plane stress. The first approximation is determined by linear 

boundary value problems on two harmonic functions, and it is ap-

proached asymptotically at very large extensions in the plane of the 

sheet. The second and higher approximations are obtained by solving 

Poisson equations. The method requires modification when the mem-

brane has a traction-free edge. 

Several problems are treated involving infinite sheets under 

uniform biaxial stretching at infinity. First approximations are ob-

tained when a circular or elliptic inclusion is present and when the 

sheet has a circular or elliptic hole, including the limiting cases of a 

line inclusion and a straight crack or slit. Good agreement with exact 

solutions is found for circularly symmetric deformations. Other 

examples discuss the stretching of a short wide strip, the deformation 

near a boundary corner which is traction-free, and the application of 

a concentrated load to a boundary point. 
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I. INTRODUCTION 

A general theory of plane stress for large elastic deformations 

of isotropic materials has been developed by Adkins, Green and 

Nicholas [ 1] (see also [ 2, 3] }. The theory applies to a thin plane 

sheet which is stretched by forces in its plane so that it remains 

plane after deformation, the major surfaces of the sheet being free 

from traction. Under these conditions a good approximation is ob­

tained if the transverse components of stress associated with elements 

parallel to the middle plane are assumed to be zero and the variations 

of the principal extension ratios throughout the thickness of the sheet 

are neglected. The deformation and stress resultants are then deter­

mined by the deformation of the middle surface of the sheet and the 

theory is reduced to two-dimensional form. The one-dimensional 

case of circular symmetry was treated earlier by Rivlin and Thomas 

( 4] in order to obtain theoretical solutions for a plane sheet with a 

circular hole stretched uniformly at infinity. The ordinary differen­

tial equation governing the deformation was integrated numerically 

and the results were compared with experiment. Recently Yang [ 5] 

has considered approximate and exact solutions for the symmetric 

problems of a circular hole, a rigid circular inclusion and inward 

radial stretching of a sheet with a circular inner boundary. 

The two-dimensional equations of the general theory are dif­

ficult to solve exactly and a method of successive approximations, 

with solutions expressed as power series in a real parameter E, has 

been used to obtain first and second order solutions for unsymmetric 
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problems [ 1, 2, 3]. Quantities in the first order or infinitesimal solu-

tion are O(e) as E -+ 0 and they provide the asymptotic form of the 

solution for vanishingly small strains. Thus the application of the 

first and second order solutions is limited to a range of deformations 

near the undeformed state and is inadequate at large strains. In this 

work we assume that the elastic material of the plane membrane is 

incompressible and has the neo-Hookean form for the strain energy 

function and we develop a method of successive substitutions for the 

solution of problems involving large strains. The first approxima-

tion of the present theory is the asymptotic form of the solution for 

infinitely large str.ains in contrast to the method of [ 1, 2, 3], although 

the two methods are similar in character. When the extension ratios 

in the plane of the sheet are appreciably greater than unity, the trans -

verse extension ratio X. is small and the first approximation is ob-

tained by neglecting all terms involving A. in the differential equations 

and boundary conditions. The coordinates (y , y ) of the deformed 
1 2. 

state are, according to the fir st approximation, harmonic functions of 

the initial coordinates (x , x ) and they satisfy linear boundary condi-
1 2. 

tions. The second approximation is determined by a Poisson equation 

with the non.:..linear terms in the differential equations and boundary 

conditions estimated from the first approximation, and the procedure 

is repeated for the higher order approximations. In general, the 

determination of approximations beyond the first will involve consider-

able labor. 

A summary of the basic formulae and equations of the theory of 

plane elastic membranes is given in Section II. Detailed derivation of 
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these formulae and an exposition of the theory in a general system of 

coordinates can be found in [ 1, 2], but it is sufficient for our purposes 

to develop the theory in cartesian coordinates. A method of succes -

sive substitutions is outlined in Section III for the particular case of a 

neo-Hookean material. It is shown that when the principal extension 

ratios in the plane of the sheet are both of order µ for large µ, the 

first approximation determines the solution to within terms of order 

-5 
O(µ ) for large µ; the second approximation determines the solu-

-11 
tion to within terms of O(µ ). For principal extension ratios of dif-

ferent orders, the accuracy to which the first approximation deter -

mines the solution varies accordingly. 

Section IV deals with several problems involving infinite mem-

branes with circular or elliptic inclusions, and the first approxima-

tions are obtained. The examples have their analogues in two-dimen-

sional flow of a perfect fluid and two-dimensional electrostatics. The 

problem of a rigid inclusion in a membrane, for example, is related 

to flow around a cylinder and the examples on material inclusions 

correspond to problems of dielectrics in an electric field. For cir -

cularly symmetric problems the second approximation can be obtained 

without difficulty and exact solutions are available through numerical 

integration. Good agreement was found even for moderate deforma-

tions between the analytical approximate solutions and the exact 

numerical solutions in the problem of a rigid circular inclusion with 

uniform stretching at infinity. 

When the membrane has an edge which is traction free, the 

method of successive substitution developed in Section III hreaks down 
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after the first approximation because the thickness ratio A. calculated 

from the first approximation becomes infinite as the traction-free 

edge is approached. Section V provides an alternative way to calcu­

late a better first approximation to the thickness ratio which remains 

finite at the traction-free edges. Two stress functions are introduced 

in an intermediate step between the first and second approximations. 

When second and higher approximations are not required, the modified 

method is still useful in that it gives accurate values for the thinning 

of the sheet up to and including the traction-free edges. 

Several simple examples involving membranes with traction­

free edges are considered in Section VI. In the case of the radially 

symmetric deformation of an infinite membrane with a circular hole, 

comparison between approximate and exact numerical solutions is 

made. Agreement between the solutions is again good for moderate 

deformations but the agreement is not as good as in the problem of 

the rigid circular inclusion. Example 3 of Section VI treats a finite 

membrane under a deformation which is close to a homogeneous state 

of pure shear. Making use of this circumstance, we obtain a good 

estimate for the second approximation to the solution even though the 

problem is two-dimensional. The last example of the section treats 

the deformation near a boundary which has a corner which is either 

traction free or under the action of a concentrated load at the vertex 

of the corner. 

The method used here for neo-Hookean materials may be used 

with obvious modification for materials which have strain energy 

functions close to the neo-Hookean form over the range of deformation 
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involved in the problem under consideration. The modification occurs 

in the second approximation because of the additional non-linear terms 

in the differential equations and in traction boundary conditions aris -

ing from the departure from the neo-Hookean form. As for the neo­

Hookean materials, the non-linear terms could be estimated by using 

the first approximation. It is known that the use of the neo-Hookean 

form can lead to appreciable error for'rubber in deformations with 

extension ratios greater than two or three (see [ 4, 6], for example). 

The comparisons with exact solutions for symmetric problems indicate 

that the first approximations can give results accurate in the range of 

moderate deformations where the neo-Hookean form provides a fair 

approximation for rubber-like materials. For larger deformations, 

where, for example, the Mooney form may be more appropriate, the 

results based on the first approximation for the neo-Hookean material 

can still be of value in indicating the main features and characteristics 

to be expected in the actual deformation of real materials. 
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II. BASIC EQUATIONS FOR FINITE PLANE STRESS 

The theory of plane stress for finite deformations of elastic 

sheets is summarized in this section. A detailed derivation of the 

basic equations and formulae can be found in [ 1] . 

We suppose that in its initial state the body is a plane sheet of 

homogeneous elastic material bounded by the surfaces x = ± h I 2, 
j 0 

where (x , x , x } are the coordinates of a particle of the sheet refer -
l z 3 

red to a rectangular cartesian reference frame. The thickness h 
0 

may depend on x , x . The sheet undergoes a finite deformation sym-
1 z 

metric about the middle plane x = 0 and we denote by (y , y , y
3

} the 
3 l z 

coordinates after deformation of a particle which was at the point 

(x , x, x ) in the unstrained state. The middle plane in the deformed 
l z 3 

state is y = 0 and the major surfaces of the sheet after deformation 
..I 

are given by y = ± h/ 2, where h is, in general, a function of y, y. 
j l z 

We shall use indicial notation and the summation convention, with 

Latin indices taking the values 1,2,3 and Greek indices the values 

1, 2. 

In the absence of body forces, the equations of equilibrium are 

at .. 
-2.L = 0 
ay. 

1 

where t .. are the symmetric components of the stress tensor referred 
lJ 

to the rectangular cartesian reference frame. The resultant load on 

a normal section of the deformed sheet through a curve drawn in the 

middle plane can be expressed in terms of stress resultants T af3 

defined by 
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S
h/2 

T = t dy 
c.rf3 -h/ 2 c.rf3 3 

Under the assumption that the major surfaces of the membrane are 

free from traction, equilibrium requires 

The stress resultants T c.rf3 may also be considered as functions of 

the initial coordinates x of a particle at y in the def or med middle 
a a 

plane and with the identity 

_a_ (J aox'{) = 0 
ox'{ ya 

where 

the equilibrium equations become 

_a_ (J 5 T ) = o 
ax'{ ay a af3 

(2. 1 ) 

The load resultant dL on a normal section through a line element 
a 

ds of a curve drawn in the middle plane is given by 

where n is the unit normal to the curve. Since 
a 

ox 
n ds J _::!._ no d~o 

(-1. = ~ -
t"' vyf3 '{ 
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refer to the undeformed state, (2. 2} yields 

dL = J 
Ct 

T P.n°ds 0 

a.., '( 
(2. 3} 

In order to relate the stresses to the deformation of the middle 

surface we assume that the displacement gradients y. k throughout 
1, 

the thickness are determined with sufficient accuracy for our purposes 

by their middle plane values. Because of the symmetry of the deforma-

tion we assume in particular that 

and we shall write 

ay 
3 

ax = 
Ct 

0 
ay 

Ct 

ox 
3 

= 0 

where A. (x , x} is the extension ratio in the direction normal to the 
l 2 

sheet. 

For a homogeneous isotropic elastic material, the strain energy 

W per unit volume of the undeformed body is a function of three in-

dependent strain invariants 

I ~A.2+x.2+A.2, 
l l 2 3 

I , I , I which may be taken to be 
1 2 3 

I =A.2A.2+A.2A.2+A.2A.2 
2 12 23 31 

where A. , A. and A. are the three principal extension ratios. We 
l 2 3 

shall identify A. with the direction normal to the sheet so that A. = A. 
3 3 

and A. , A. are given by 
l 2 

ay 
Ct 

= 
oxf3 

ay 
Ct 

oxf3 = K (2. 4} 
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The non-zero stress components are given by 

where 

ay ay ay ay ay ay 
=(<I?+ WI) ~ ~-i'~ _:_:i ~ _!l + p6 

l ax ax ax ax ax6 ax6 af3 
'( '( '( '( 

t ={4?+wI)} .. 2 -®.. 4 +p 
3 3 l 

<I? = 2 aw 
-1- al 
I2 l 

3 

2 
1 

I2 
3 

aw 
ar 

2 

P = zi~ aw 
3 aI 

3 

The condition that the major surfaces of the sheet be free from tract-

ion is satisfied approximately by requiring t to be zero, that is 
3 3 

p = ®'. 4 - (<I? + WI )A. z 
l 

(2. 5) 

and this equation serves to determine A. in terms of A. , A. • Sub-
1 z 

stituting for p in the expressions for taf3 and integrating over the 

thickness we obtain 

The same equation applies when the material is incompressible, but 

now A. is determined instead by 

1 a (x 'x ) 

x. = :r = a(/,/"J 
l z 

(2. 6) 

The strain energy W depends on I , I only {since I = 1) and 
l z 3 
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Alternatively we may write 

aw 
"11' = 2 ar-

ay 
a 

z 

1 au 
= J ayP. 

t-' , 'I 
ox 

'{ 

(2. 7) 

where U is the strain energy per unit area of the middle surface and 

is given by 

U = h W(y P. ;X.) = U(y P.) 
o a,t-' a,t-' 

in which X. has been expresssed in terms of y P. through (2. 5) 
a, t-' 

or(2.6). The strain energy U depends on y P. through y y P. 
a,t-' '{,a '{,I-' 

only. For an isotropic material, U is a symmetric function of 

X. , X. and we can write 
1 z 

U=U(K,J) 

With (2. 7) the equilibrium equations (2. 1) become 

For the most part we shall confine our discussion to an incom-

pressible material which has the neo-Hookean form for the strain 

energy function 

W = C (I - 3) 
1 1 

where C is a material constant. The stress resultants are then 
l 

(2. 8) 
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and if T and T denote the principal stress resultants in the 
1 z 

x - and x -directions respectively, we have 
1 z 

T = 2h C ~ ( 1 - l l T = 2h C ~ 2
1 

( 1 
1 0 1 x. z x_4x_ z z 0 1 /\. 

1 z 

With (2. 8) the equilibrium equations (2. 1) reduce to 

_J_ (h ~)- J ox'{ _o _ (h x. 3) = 0 
ox o ox oy P. ox o 

'{ '{ ..., '{ 

or 

_a_(h oyB)-J _a_ (h x_3)=o ax 0 ax ay 0 
'{ '{ Cl' 

For constant initial thickness h we have 
0 

a (ay@) o>.. .,._---- - 3>.. - = 0 ox ox oy(.l. 
y '{ ..., 

or 

_l l· x_4x_Z 
z 1 

z o (3 z) '1 Y f3 - oy f3 z >.. = 0 (2. 9) 

where '\1 2 is the two-dimensional Laplace operator. Equations (2. 9) 

can also be written in the form 

'\lzy o'X. 3 ay o>..3 ayz z 
= ax ox - ox ax 1 

l z z 1 

vzy 
oy o>..3 oy a>..3 1 1 = ox ax - ox ox z 

(2. 1 0) 

l z z 1 

and 

0;@ o ( 3 zJ o '\l zy f3 - F8 2 >.. = O 
Cl' Cl' 
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where (} are arbitrary independent variables. 
a 

Substituting (2. 8) into (2. 3) we obtain 

dL = 2h C ( oy a - X. z. ~ n° )ds 0 

a 0 1 ano ay Q.' p 

If we use the results 

ax ay ax ay 
___.£_ n° ds 0 = x. _z._ ds 0 

oyl p aso af-z. n° ds 0 

p 
= -X. _1_ dso 

ano 

we can write the load components dL as 
a 

dL = 2h C ( oy1 - X.3 oyz.) ds 0 

1 0 l ono aso 

dL = 2h C ( oyz + X. J oy1 ) ds 0 

z 0 l ano aso 

(2. 11) 

where the s 0 -direction is obtained from the n° -direction by an anti­

clockwise rotation of amount rr/ 2. For the special case of a traction-

free boundary C 0 we must have 

Cly Cly 
_ 1_ = X. 1 _z_ 

Cly Cly 
z =-X.3_1 _ 

on° os 0 8n° os 0 

on the boundary C 0 for a neo-Hookean material. 
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III. SUCCESSIVE SUBSTITUTIONS 

As can be seen from (2.10) and (2.11), both the differential 

equations and the traction boundary conditions are non-linear so that 

exact solutions will not always be easy to determine. Since the non-

linearity in (2. 10) and (2. 11) comes solely from terms involving A., 

a natural first approximation when A. « 1 is obtained by neglecting 

all such terms in the equations. This is equivalent to using for the 

strain energy the form 

U(1
) = h C (K - 2) 

0 l 
(3. 1 ) 

rather than the exact form 

U = h C (K + A. z - 3 ) 
0 l 

Superscripted quantities here stand for approximate values, with (1) 

for the fir st, (2) for the second and so on. 

If A. , A. are of the order of µ for large µ throughout the 
1 z 

sheet, where µ is a parameter which measures the amount of def or -

mation, then 

and 

(1 ) 
If the first approximation provides derivatives ya, l3 which are O(µ) 

-5 
for large µ, correction terms of order O(µ ) added to these deriv-

atives will change K and therefore U(
1

) by terms of order O(µ -
4 

). 

It is therefore to be expected that, on the average, the first 
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approximation determines y (.!. to within terms which are O(µ -
5

) 
Q'' t-' 

for large µ so that we will have 

(1) -5 
ya' f3 = ya' 13 + O(µ ) 

when (3.2) 

(1) 
ya, 13 = O(µ) 

If A. = 0(1) and A. = O(µ), the approximation will be less good and 
l 2 

a similar argument leads to 

(1) -2 
ya, 13 = ya, 13 + O(µ ) 

1 

When A. = O(µ - 2 ) and A. = O(µ), so that each element of the sheet 
l 2 

is strained close to a state of simple extension, we will have 

In this case some of the derivatives y~1, )l3 can be of the same order, 
1 

O(µ - 2 ), as the correction terms. 

Once the first approximation to the solution is known, higher 

approximations can be obtained by a method of successive substitu-

tions as outlined below. We remark that the first approximation to 

y is exact for a sheet with strain energy U given by (3. 1 ). Such a 
Q' 

sheet is isotropic but is stressed in all-around tension in its refer-

ence state. 

First Approximation Setting A. =0 in(Z.10)and(2.ll)wefind 

that the first approximation satisfies 
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'\i'zy(l) 
l 

= 

'\i'zy(l) = 
z 

conditions 

ay(i) 
_r_ ds 0 

on 0 

o (1 ) 
.!.L- ds 0 

on 0 

0 '}in Ao' 

0 

l 
= 2h c 

0 l 

1 
= 2h c 

0 l 

on co 
D 

dL 
::c 

l 

>:C 
dL 

z 

on Go 
T 

(3. 3) 

Here A 0 is the middle plane of the unstrained sheet with boundary 

>:c 
C 0

, C~ is that part of C 0 where traction components dLa are 

prescribed and c~ is that part where deformed locations y: are 

given. When A 0 is infinite, conditions at infinity must also be 

imposed. For example, if the sheet extends to infinity in all direc-

tions and if it is under uniform biaxial extension at infinity with 

principal extension ratios µ and µ along the x - and x -axes 
l z l z 

respectively, the appropriate conditions are, for zero rotation at 

infinity, 

oy(l) 
z 
~ = 

1 

= µ -
l 4'ITh C r 

0 l 

>:C 

+ o(;} ' 

a (1 ) L cos f) 
z + o(;) yz 

4'ITh C r ' ~ 
0 l z 

= µ -
z 

~:c 

L sin f) 
1 

·'-

+ o(;) 

L.,. sin f) 
z + 0 (;) 4'ITh Cr 

0 l 

as 
r - oo 

(3. 4) 
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:::i: 
where L are the components of the resultant of all external forces 

a 

acting on the interior boundaries of the membrane and (r, B) are 

polar coordinates. In the case when the resultant force is zero, the 

conditions at infinity become 

3 (1) 
~ / l) ax- = µl + 0 1r 

1 

(1) ay 
z 

ax-
1 

(1 ) 
and the logarithmic terms in ya are excluded. 

as r - oo , (3. 5) 

We note also that to the first approximation, the principal 

stress resultants are given by 

T(1 )=2h C 
1 0 1 

A 
1 

~ 
T(1 )=2h C 

z. 0 1 

A 
z 
~ 

z I 

which are exact for the strain energy function U(
1

). 

Second Approximation In order to get a second approximation y(s.) 
a 

(1 ) 
for ya' we use the first approximation ya to estimate the non-

linear terms in (2. 10) and (2. 11 ). With A (i) defined by 

[ 
(1) (1) ]-1 

A (1) - 1 - o(y1 'yz ) 
- -:-rTJ - a (x ' x } 

1 z 
(3. 6) 

(z) 
the second approximation solution ya satisfies 
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[ x. (1 ) ] 3 
o (1) 

[ x. (1 ) ] J 

o (1) 

V"zy (z) o yz o yz 
= ox ax- - ox ax-l 

l z z l 

oy(1) 
[ x. (1 ) ] 3 

o (1) 
[X.(1)]3 vzy (z) l o yl o 

= ax ox - ax- ox z 
l z z l 

with the boundary conditions 

oy(z) 
__ 1_ 

ds 0 1 
= Zh C 

on 0 
0 l 

o (z) 

~ ds 0 1 = Zh C 
on 0 

0 l 

and 

d L,:c + [ X. (1 )] 3 

8 (1) 

l ds 0 

l 

>:C 
dL 

z 
[X.(1)]3 

on co 
D 

OS 0 

o (1 ) 
__:j_ ds 0 

OS 0 

on 

in A 0 

co 
T 

(3. 7) 

(3. 8) 

The process of successive substitution can be repeated, the 

approximation y(n+l) being determined as the solution to a Poisson 
a 

equation with inhomogeneous terms in the equation and boundary con­

ditions determined by y(n) and the boundary data. The solution 
a 

(n+1) 
ya , if it exists, will be unique provided C~ is non-zero. If 

y~) and its derivatives are O(µ) everywhere for µ large and the 

Jacobian J(1) is such that X.(
1
)= O(µ-z) everywhere, the difference 

(z) (i) 
ya - ya satisfies a Poisson boundary value problem with inhomo-

-s 
geneous terms which are O(µ ), in agreement with the earlier 

estimate (3. 2) on the order of error involved in the first approxima­

tion. Assuming that the solution y~) - y~) and its derivatives are 
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-S 
O(µ ), the boundary value problem for the difference y(3) - y(z) 

a a 

will involve inhomogeneous terms of 
-11. 

O(µ ) for large µ, and 

so on. Thus a related approach would be to assume that, for large 

enough µ, the functions y Iµ can be expanded in an absolutely 
a 

. -6 convergent power series in µ , with coefficients which are twice 

differentiable functions of (x, x ). 
l z 

When X. = 0(1} and A. = O(µ) for large µ, the correspond-
1 z 

ing estimates for y~)-y(l) and y(3)_ y(Z} are O(µ-Z} and 0(µ-
5

) 
a a a a ' 

respectively. For a smooth enough first approximation y(
1

) and a 
a 

smooth enough region A 0
, it is to be expected, in this case and in 

the previous case, that the process will converge when µ is large 

enough. However the convergence of the method is not so apparent 

when a large region of the sheet is in a state close to simple exten­

(1 } 
sion so that the first approximation ya involves principal extension 

ratios 

for large µ. In thia case we will have A. (i} = O(µ -~) and the terms 

in (3. 7 ), (3. 8} involving y(
1

} are O(µ -~ }. Since the difference 
a 

(2.} (1 } _.1 
ya - ya will then be O(µ 2 

} , the error in y(
1

} can be of the same 
a 

order and therefore y(
1

) may not determine the non-linear terms in 
a 

1 

(3. 7 ), (3. 8) correct to O(µ -2 }. 

A difficulty arises with the method described in this section 

when a portion of the boundary is traction free. The first approxima­

tion then has a Jacobian J(
1

} which goes to zero as the unloaded 

boundary is approached. The terms involving y~1 } in the equations 
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(3. 7), (3.8) for y(z) are then singular on the unloaded part of C 0 

a 

and in fact the singularity is non-integrable in that the solution y~) 

cannot remain finite. A modification of the method which avoids this 

difficulty is given later in Section V. 

For illustration, several simple problems involving infinite 

plane sheets are considered in the next section. At infinity the mem-

brane is in a state of uniform biaxial extension with principal exten-

sion ratios µ
1 

and µ, 
z 

and the membrane contains an inclusion or 

has an internal boundary which is held fixed. With the method of 

this section, the first approximations can be readily obtained, either 

directly or after a conformal transformation. In principle the pro-

cess can be repeated for the second and higher approximations, but 

the computations become increasingly involved so that in most cases 

only the first approximation is derived. For axisymmetric deforma-

tions, the symmetry of the problem aJlows the second approximation 

to be determined with little difficulty; in fact exact solutions can be 

determined in this case by numerical integration of an ordinary di£-

ferential equation. In the axisymmetric deformation of an infinite 

sheet with a clamped circular hole, first and second approximations 

are compared with exact numerical solutions. Good agreement is 

obtained even for moderate extensions and the results support the 

earlier discussion regarding the error estimates and convergence of 

the approximate solutions. 



-20-

IV. SOME INCLUSION PROBLEMS 

Several basic inclusion problems are considered in this sec -

tion. For simplicity the inclusion shape is taken to be a circle or an 

ellipse, but other geometries can be treated in a similar manner 

when the appropriate conformal mapping is known. 

Example 1 Infinite membrane with clamped circular hole under bi-

axial extension at infinity. 

The infinite rnembrane contains a circular hole of radius a. 

The edge of the hole is bonded to a rigid inclusion (or otherwise held 

fixed) and at infinity the sheet is in a state of biaxial extension with 

principal extension ratios µ and µ along the x - and x -axes 
l z. l z. 

respectively, the origin being at the center of the hole. 

If we use polar coordinates (r, ()) to describe initial locations, 

the equilibrium equations (2. 10) become 

.!.. ~(r Elyl ) + 
r or or r' 

1 
cfy 
__ l = 
ae2. 

(4. 1) 

.!_ ~(r ay,) + 
r or or r' 

1 

Applying the approach of Section III, we find that the harmonic 

functions y(J) of the first approximation are determined by the bound­
a 

ary conditions 

o (l} 

~ = µ + 0 (.!..) ' ox i r 
l (1) oy o: = o( ! ) 

l 

oy(1) 

_1 = 0 (.!..) ox r 
z. (l ) oy 

2. =µ +o(rl) a;;-- 2. 
z. 

as r -+ oo 

(4. 2) 
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in the case when there is no resultant force on the inclusion, and 

{1 ) 
=a cos e 

.'} 
y 

l 

at r = a. 
(1 ) = a sin 8 y'Z. 

We have therefore 

y (! ) = µ r ( 1 - k~ ) sin e 
z. 'Z. rz. 

where 

'Z. ( 1 ) 'Z. ka = 1 - µa a 

and the extension ratio normal to the sheet is given by 

(1) yl ,yz. [
a ( (1) (1) ) ]-' 

>.. = r o(r,B) 

Because y(
1

) are harmonic functions, it follows that 
Q' 

(4. 3) 

. (4. 4) 

jY'y~) J z. and hence K(
1 >, U(i) are subharmonic. If we exclude the 

case of constant strain energy U(
1

), the sum of the squares of the 

principal extension ratios A , A obtained from the fir st approxima-
1 2. 

tion must then attain its maximum and minimum at an internal 

boundary or at infinity. 

At the edge of the hole r = a, we have 
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and 

tancr = [(2µ -1}(2µ -1)-l]sinB cose 
l z. 

[ (2µ -1 )(2µ -1 )-1] sine cos e 
l z. 

= 

where c; denotes the angle between the first principal direction and 

the positive x -axis. We note that at e = 0, 
1 

A = 2µ - 1 
l 1 

and at e = rr/2, 

A = 2µ - 1 
l l. 

A = 1 
2. 

A = 1 
z. 

Thus, for large µ
1

, µ z. principal extension ratios which are close to 

twice the values at infinity occur near the inclusion. 

The first approximation y(
1

) is meaningful only if the 
a 

Jacobian J(i) =A A is positive everywhere. From (4. 4) this con-
1 l. 

dition is seen to require µ and µ to be greater than one-half. 
l z 

However for a neo-Hookean material the principal force resultants 

are tensile only if A ft and Az. A are greater than unity. From 
l z. l z. 

the values of A , A at the inclusion we see that the first approxima-
1 z 

tion requires µ and µ to be both greater than unity in order to 
1 z 

avoid compressive stresses near the inclusion, an indication that 
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wrinkling or folding of the sheet would occur if either of µ , µ 
l z 

were less than unity. 

If the inclusion is acted upon by a force L through the 

origin at an angle o to the x -axis, the terms 
l 

>:::: 
L cos o r 
4TI"h C log a 

0 l 

"' L
0 

sin o r 
4TI"h C log a 

0 l 

must be added to the expressions for y(
1

) and y(
1
), respectively. 

l z 

The extension ratio normal to the sheet at r = a. is given by 

-1 

A (t) = [(2µ
1 

-1 )cos2 6 + (2µ
2 

- I )sin2 6 - 4-.h~~1 a cos(B-6)] 

For given µ
1

, µ
2

, 

positive is 

a sufficient condition that the Jacobian J(
1

) be 

,.. 
4TI"hL~ a <min [ (2µ1 - 1) 

0 l 

(2µ - 1 )] 
z 

It is apparent from the nature of the inhomogeneous terms in 

the differential equations and boundary conditions for y~z) that the 

solution for y(z) will not be elementary. Considerable simplifica­
cc 

tion results when the deformation has axial symmetry, that is when 

µ = µ = µ and the sheet is subjected to an all-around tension at 
l z 

infinity. In this case, y~1 ) and A. (l) are given by 

where 
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then p (z.) (r) satisfies the differential equation 

~(~ (Z.) + ~) = 
dr dr P r [ l I + :: l ( I - :: r r 

and the boundary conditions 

as r - oo 

The solution p (z.) (r) is found to be 

b 
p (z.) (r) = a r + - 1- + I(r) 

i r 

where 

I(r) = 

a =µ(1--
1

) 
1 zµ6 

b = a[ (l -a )a - I(a)] 
l l 

(4. 6) 

Comparing (4. 5) and (4. 6), we note that, as expected when 

/
1

) are O(µ), p(1 )(r) determines p(z.)(r) to terms of 0(µ-
5

) and 
a 

hence for large µ the first approximation describes the deformation 

closely. 

In order to obtain the exact solution for the case µ = µ = µ, 
l z. 
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we substitute the expressions 

yl = p(r}cos e yz = p(r)sin8 (4. 7) 

into the exact equilibrium equations. We then require, for r >a, 

~+~~-..£... 
r dr 

= _3_r_[p ~ - r(~}z- rp ~] 
3 (~)" dr dr drz 

P dr 

(4. 8} 

With the boundary conditions 

p =a at r =a 

~ -µ dr - as r - oo 

equation (4. 8} can be integrated numerically to yield an exact solution. 

The integration is straightforward if a value is chosen for the slope 

dp/dr at r =a, and corresponding to each initial value of dp/dr 

there is a limiting value for the extension ratio µ at infinity. The 

integration is terminated when the values of the extension ratios be-

come constant to within some pre-imposed error. For a case of 

moderate deformation, µ = 1. 24, it was found that the first and second 

approximate solutions given by (4. 5} and (4. 6} gave values for p/r 

which were within 0. 3% of the values obtained from numerical integra-

tion of the exact equation (4. 8}. The choice of the extension ratio at 

infinity µ was influenced by the numerical work of Rivlin and Thomas 

[ 4] on the stretching of a sheet with a circular hole, a problem which 

will be discussed later. 
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When the circular inclusion is rotated counterclockwise 

through an angle f3 about its center, the sheet being uniformly strain­

ed at infinity as before, the fir st approximation y (l) can easily be 
Q' 

obtained. It is found that as f3 is increased the Jacobian J(
1

) remains 

positive only until ·the value f3 
0 

is reached, where 

For a neo-Hookean material the first approximation indicates that the 

stresses in the sheet at points near the inclusion will cease to be 

tensile at a value of f3 somewhat smaller than f3 . For values of f3 
0 

greater than this critical value, folding of the sheet will occur and as 

f3 increases the sheet will wrap around the inclusion (assuming it is 

thicker than the sheet). 

For future reference, we write (4. 3) in the complex form 

where 

Y(l) = µ Re[z - k~ ] , 
l l z 

(i) [ kz ] 
y =µ Imz+-L, 

z z z 

Z=X 
l 

+ix 
z 

iB 
=re 

(4. 9) 

Example 2 Infinite membrane with an elliptic rigid inclusion under 

biaxial extension at infinity and limiting case of a line inclusion or 

splinter. 

In this example the rigid inclusion occupies the interior of the 
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xz xz 
_I +-z =l 
az bz 

(a> b) 

We introduce a new complex variable w = R eicp by means of the con-

formal transformation 

z = c cosh~ 

1 1 

w = 2 [ z +(zz -cz)2] 

If we write 

t = s + i11 or x = c cosh s cos.11 
l 

x = c s inh s sin 11 
z 

the transformation is equivalent to 

c i; 
w=-e 

2 

s, 11 being the usual elliptic coordinates. The exterior of the ellipse 

in the z-plane is mapped onto the exterior of the circle of radius 

(a + b )/ 2 in the w-plane and the mapping is such that there is no dis -

tortion or rotation at infinity. The functions y(
1

) are harmonic in the 
a 

w-plane and the transformed boundary condition on the internal bound-

ary is 

(1 ) 
y

1 
= a cos</> 

y (l ) = b sin 4> 
z 

' } at R = (a+b)/2 

If the extension ratios at infinity in the deformed sheet are again µ
1

, 

µ along the axes, by comparison with (4. 9) we see that 
z 
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(1) = µ Retw-(1- 2a ) (a+b)z] 
YI 1 (a+b )µ 4w 

I 

(I ) [ ( 2 b ) (a+ b )
2 

] 
yz = µzim w + 1 - (a+b)µz. 4w ' 

in the case when there is no resultant force on the inclusion. Alter-

natively we may write 

Y(1) = cµ1 r r 
- Re[e':> -Ke-'='] 

1 2 1 

where K and K are defined to be 
1 z 

and we find that 

The inclusion boundary is 

with 

1 a+b 
S = So = -2 log -a-b 

c coshs = a 
0 

c sinhs = b 
0 

(4. 10) 

At the ends of the major and minor axes of the ellipse the 

extension ratios for directions normal to the inclusion have the values 

(a+b) 
µl -b-

a 
b 
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respectively. As in the case of a circular inclusion, and µ 
z 

must be greater than unity if the force resultants of the first approxi-

mation are to be tensile (for a neo-Hookean material). 

In the limit b-+ 0 (a-+ c, s -+ 0), the inclusion degenerates 
0 

into a line inclusion or splinter of length 2c along the x -axis and 
I 

(4. 10) simplifies to 

c[ (µ -1 )sinhs + coshs] cos 11 
I 

= cµ sinhs sin11 = µ x 
z. z. z 

and the transverse extension ratio is given by 

A. (1) = sinhzg + sinz11 

µ [ (µ -1 )cosh£ sinh£ + sinhz.scosz.11 +coshz.ssinz.11] 
z. 1 

On the splinter s = 0 and along its length A. (I) has the constant value 

1 /µ , independent of the extension ratio µ at infinity parallel to the 
z 1 

splinter. The end points (£ = 0, 11 = 0, ;r) are singular points and the 

limiting value of A. (I) at the ends varies between 0 and 1 /µ accord­
z. 

ing to the manner of approach. The principal extension ratios at the 

splinter are given by 

and the maximum extension ratio A varies from µ in the middle of 
l z 

the splinter to infinity at the end points. If O' again denotes the angle 

between the first principal direction and the positive x -axis, then at 
1 

the inclusion 
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il.. 2. -µ2. 
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i\.z -1-(µ -1 )zcotzri 
= -~1-.,..--~l~---~ 

µ (µ -1 }cot ri 
z l 

On the line x :2:, c, x = 0, the principal extension ratio in the 
l 2. 

x -direction is µ while the principal extension ratio in the x -direct-
2. 2. . 1 

ion is 

( µ -1) 
l 

x 
l + 1 

and this tends to oo as the end of the splinter is approached. 

We now suppose that the major axis of the ellipse was initially 

inclined at an angle a to the positive x -axis 
l 

(la l < Ti/ 2) and that the 

inclusion is allowed to rotate when the sheet is strained. In the de -

formed state, the angle of inclination of the major axis is 13, and 

a, 13 are measured positive in the counterclockwise direction. Noting 

that the transformation 

1 z. z. z. ia i ] 
w = 2 [ z + ( z - c e )2 

maps the exterior of an ellipse rotated about its center through an 

angle a onto the exterior of the circle R = (a+b )/ 2, without dis tor -

tion or rotation at infinity, we can once again reduce the problem to 

that of Example 1. The condition at the interior boundary is now 

(1 ) 
a cos(~ -a )cos 13 -b sin(;/> -a )sin 13 

'} 
y = 

l 

at R = (a+b )/ 2 
(l) 

a cos(</> -a )sin 13 + b sin(¢ -a }cos f3 y2. = 

The solution can be written as 
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(l ) 
cµ 

R [ s+ia ( . ) -(~+ia)] 1 
yl = -z- e e - s -1s e 

l 2. 

cµ 
[(es -s e -£ )cos(ri ta)+s e -£ sin(ri ta)] = 1 -z-

l z 
cµ 

(1 ) Im[e {.+ia +(s +is )e-(~+ia)] 2. 
yz = -z-

3 4 

where 

s a+b [l - 2(acos~ cosa+bsin~ sina) J = a-b (a+b }µ l 
l 

2 
(a cos 13 sin a - b sin 13 cos a) s = (a-b )µ z. 

l 

s = a+b [l _ 2 (a s in 13 s in a + b co s 13 cos a) J 
j a-b (a+b )µ z 

s -
2

; (asinl3 cos a - bcosl3 sina) 
4 - (a-b )µ 

z. 

and 

ia 
z = ce co sh s 

Thus s, 11 are the usual elliptic coordinates associated with the 

elliptic inclusion in its initial position. As in the case of the rotated 

circular inclusion, the range of 13 for given a,µ,µ is limited by the 
l z 

requirement of tensile force resultants in the sheet. 

The components of the resultant force acting on the elliptic 

inclusion are, from (3. 3), 



( 1) 
L 

2 

= - 2h c s 2 'IT 
0 l 

0 
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and we can easily verify that they are zero. The torque exerted by 

the sheet on the inclusion is found to be 

If the elliptic inc+usion is free to move with the membrane when the 

latter is strained, we must have 

and therefor.e 

s = s 
4t 2 

or 

aµ +bµ 
tan f3 = aµz +bµ 1 tan a 

1 2 

(4.11) 

This equation determines the position of the inclusion in the deformed 

sheet in terms of its initial position and the principal extension ratios 

at infinity. 

Proceeding to the limiting case of a splinter (b = 0), we have 

y(
1

) = c[µ sinhs cos(11 +a)+cos f3 e -£cos 11] 
1 1 '}(4.12) 

y ( 1) = c [ µ s inh S sin ( 11 +a)+ sin f3 e - 'Sc o s 11 ] 
2. 2. 
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Along the splinter where 5 = 0 we have 

A.(1) = sin11 
[ µ sin(11 +a }cos f3 -µ cos (1J +a )sin f3] 

z l 

(4.13) 

while 
1 

as before 1 the value of A. (i) at the ends depends upon the 

direction of approach. Setting b = 0 in (4. 11 ), the condition of zero 

torque exerted by the sheet on the splinter requires 

(4. 14) 

In the pure strain which the sheet suffers at infinity 1 a line element 

initially at an angle a to the x -axis becomes inclined at an angle f3 
l 

to x -axis with f3 given by (4. 14 ). Thus the splinter and the line 
l 

elements at infinity which were initially parallel remain parallel during 

the deformation, according to the _first approximation. 

If we use (4. 14) in the expression for A. (i) we get, on the 

splinter 1 

A. (l ) = 

so A. {l) is constant on the splinter (excluding the end points). We note 

that unless f3 is given by (4.14), the denominator in the expression 

(4.13) for A. (i) assumes negative values at points on the splinter. The 

solution is therefore inadmissible except for the value of f3 in the 

particular attitude the splinter assumes under zero torque. In con-

sequence 1 it is to be expected that a small torque applied to the splinter 

will produce wrinkling of the sheet in the neighborhood of the ends of 

the line inclusion. 
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Example 3 Circular material inclusion in an infinite membrane under 

biaxial extension at infinity. 

We suppose that the portion r .;; a of an infinite sheet is 

composed of a different neo-Hookean material with material constant 

C and initial constant thickness h . We use a bar to indicate 
l 0 

quantities associated with the inclusion. The functions =<y 
1

) y(1
) of 

a ' a 

the first approximation are harmonic in the regions r < a, r > a 

respectively, and they must satisfy the conditions 

h c 
0 l 

= h c 
0 l 

at 

in order to ensure continuity of traction and displacement at the inter -

face r = a. At infinity the functions y;
1

) again satisfy (4. 2). It is 

found that 

Y~1) =µ1r[1 + (1-m)az ]cose· 
(l+m)rz 

, y(1) = µ r[l + (l-m)az ]sinO ,(4.15) 
z z (1 +m)rz 

2µ 
l (4.16) 

where m is the product of the ratios of material constants and initial 

thicknesses, 
h c 

0 l 
m = h C 

0 l 

We note the following properties of the solution: 

(i) The form of the first approximation y ~1 ) is independent of the 

size of the inclusion. 

(ii) The inclusion material is in a state of homogeneous deformation 
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with principal ext ens ion ratios 

?i.. = 
2µ 

l 

l+m 
(4.17) 

along the x - and x -axes respectively. The principal extension ratios 
1 z 

in the material exterior to the inclusion are (m.L\. , A) and (A , m.L\ ) 
l z l z 

at the points where the x -and x -axes meet the interface respectively. 
l z 

(iii) The limiting case m = 0 corresponds to a sheet with a circular 

hole under biaxial tension at infinity. Setting m = 0 in (4. 15) we 

obtain 

(4. 18) 

The extension ratio in the direction normal to the sheet is given by 

A. (1 ) ~ _l_ l l - ~i -1 
µ µ r4 

l z 

and as the boundary r = a is approached, A. (l) becomes infinite. 

This singular behavior of the fir st approximation in the presence of 

traction-free boundaries was discussed in Section 3. We return to this 

problem in Section VI after developing an alternative approach in the 

next section for the determination of A. ( l). 

(iv) The limiting case m - oo would, for ne.o-Hookean materials, cor -

respond to a sheet with a rigid circular inclusion. However as m - oo, 

expressions (4. 15) do not approach the values (4. 3) of the solution 

given previously for a rigid circular inclusion. The discrepancy arises 
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from the circumstance that for m very large the stresses in the 

inclusion will be small, and the material with strain energy U {l) 

is unstressed only when A ,A are zero. Thus as m - oo, an in-
1 z 

clusion composed of material with strain energy U {l) would shrink to 

the origin. In order for the solution (4. 15 ), (4. 16) to be a reasonable 

approximation for neo-Hookean materials the transverse extension 

ratios 'A:" (I) and A. (l) in the inclusion and the exterior material must 

be small compared with unity. From (4.15), (4.16), this implies 

µ µ large and 
l z 

m « 2 -fiTiI -1 
I Z 

and the limiting case m ._ oo lies outside the range of validity of the 

first approximation. 

Example 4 Elliptic material inclusion in an infinite membrane under 

biaxial extension at infinity. 

In this example the inclusion material is again taken to be 

neo-Hookean with material constant C and initial thickness h but 
l 0 

now the inclusion occupies the interior of the ellipse 

(a> b} (4.19) 

The first approximations y{l) -( 1
) 

a ' ya are harmonic in the regions 

exterior and interior to the ellipse, respectively, and they satisfy the 

same boundary and continuity conditions of the previous example except 

that the interface is now the ellipse (4. 19). 

·The region bounded by an ellipse may, like every region 
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bounded by a simple contour, be mapped conformally onto a circle. 

The corresponding transformation, however, is complicated and more-

over it is more convenient to use a single mapping for the regions 

interior and exterior to the ellipse. If the plane is cut along the seg-

ment connecting the foci of the ellipse, the cut, which we denote by 

AB, may be considered as an ellipse which is confocal with the 

original one and whose minor axis is zero, Thus the cut plane con-

sists of regions lying between confocal ellipses and the transforma-

tion of Example 2 can be used to map them onto regions between con-

centric circles, with no distortion or rotation at infinity. Hence if we 

write 

z = c cosh{, {, = ~ + i11 

1 

where c = (a2 -b2
)
2 , the exterior of the ellipse in the z-plane is map-

ped onto the exterior of the circle R = (a+b)/2 in thew-plane while 

the interior with cut AB is mapped onto the annulus between the two 

circles R = (a+b)/2 and R = c/2. 

We note that since the origin of the w-plane is excluded, the 

expansion of the harmonic functions y (1) as series in Rn sin rub and 
a 

n 
R cos nib will, in general, include negative powers of R. Further, 

because the points ~ eic/J and ~ e -iIJ> in the w-plane correspond to 

one and the same points of the segment AB in the z-plane, in order 

to avoid introducing singularities on AB we must have on R = cl 2 

-(1) 
Oya 
"BR (c/J) = 

fJY. (1 ) 
a 

- a1l ( -4» ) 

If these conditions are satisfied, the functions ~} will be harmonic 
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in the uncut ellipse. 

After some calculation, the solutions are found to be 

(1} cµ 
Re[e i; + s e -I;] 

cµ 
(eg + s e -g }cos l') 1 1 y = -2- = -2-

1 1 

cµ cµ 
z z (1} Im [ e i; - s e -t;] 

yz = -2- = -2-
z 

cµ s r 
-(l) = - 1- 3 Re(e i;+ e-'='] = µ s:x 
yl 2 131 

- ( l} cµ 2. s 4 i; i; 
yz = - 2- Im[e +e- ] = µ s x 

z 4 2. 

where 

1 

(eg + s e -g }sin l') 
z 

(l+b/a)(l-mb/a) 
s 1 = (l-b/a)(l+mb/a) 

(a/b+l )(1-ma/b) 
sz = (a/b-l )(l+ma/b) 

s = 
3 

(1 +b/ a) 
(1 +mb/ a) s = 

4 

(l+a/b) 
(l+ma/b) 

} 
' 

' 

(4.20} 

It can be seen that the first approximation y ~1 ) depends on the 

dimensions of the inclusion only through the ratio a/b. As for the 

circle, the inclusion material is uniformly strained, the principal 

extension ratios being µ s and µ s . Comments similar to those 
1 3 z 4 

made in connection with the circular inclusion apply to the two limiting 

cases m = 0 and rn _. oo. 

When the major axis of the ellipse is initially inclined at an 

angle a to the positive x -axis (la I < rr/ 2 }, it is easy to show by 
l 

superposition that the first approximation inside the ellipse is 
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-(l) = µ [ (s cos2a + s sinza)x + (s -s )sin a cos ax] 
YI 1 3 4 1 3 4 z 

(4.21) 

y (I ) = µ [ ( s - s ) sin a cos a x + ( s sin z a + s cos z a )x ] 
z z 34 1 3 4 z 

and the deformation of the inclusion material remains homogeneous. 

In the limit b -+ 0, one has the special case of a line inclusion of 

length 2c. As b -+ 0 the effect of the inclusion diminishes and the 

locations y tend everywhere to the uniform state y = µ, x , y =µ x . 
Q' l ll Z Zl. 
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V. SUCCESSIVE SUBSTITUTIONS FOR TRACTION-FREE 

BOUNDARIES 

When the membrane has an edge which is traction free it was 

found in Section III that the proposed method of successive approxima­

tions breaks down. As the edge is approached J(
1

} - 0 and the 

partial differential equations for y(z} have a non-integrable singular -
Q' 

ity when A. (I) is taken as the inverse of J(
1

}. We note that the 

material at a traction-free boundary is under simple tension so that on 

the boundary 

(5. 1) 

where A. and A. denote the principal extension ratios in directions 
s n 

tangential and normal to the edge respectively. The force resultant 

T parallel to the boundary is given by 
s 

T = 2h C A.~ ( 1 - -
1 l 

s 0 l s x_3 
= 2h c A. 

3 
(-

1 
- ll 

0 l A. 6 
s 

for a neo-Hookean material. 

In this section we describe an alternative method for the deter­

mination of a first approximation A. {I) to A. which remains valid in 

the neighborhood of a traction-free boundary. In order to develop the 

method we introduce two stress functions cp and ljJ and we show that 

the locations y can be found straightforwardly when cp and ljJ are 
Q' 

known. Although the functions cp and ljJ can be obtained, in principle, 

by successive approximation, and problems solved in this manner, the 

main use of the stress functions here is to provide intermediate steps 
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leading to the alternative procedure for determining a first approxima­

tion X. (l). When X. (i) is known it can be used with the first approxi-

mation y (l}, 
a 

as before, in the equations for y( Z} and the method of 
a 

Section III can then proceed as described. If the second and higher 

approximations are not required, the first approximation y(
1

} being 
a 

considered sufficiently accurate to describe the deformed geometry, 

the method here leads to values for X. (l) which accurately describe 

the thinning of the sheet, including both the interior and regions near 

traction-free edges. 

We begin by writing the equilibrium equations (2. 1 O} in the 

form 

a ( ay1 ay ) a ( ay ay ) -X,3 Z + l +X.3_Z_ =0 
ox ox ax ax ax ox 

l l z z z l 

( 
ay ay ) ( ay ay ) _o_ ._z_ + x_3 _-_1_ + _a ___ z __ x. 3 _1_ = 0 ox ox ox ox ox ox 

l l z z z l 

These equations imply the existence of stress functions <p and lfi such 

that 

o<p 
OX 

l 

o<p 
ox 

z 

oy oy = l x_3_Z_ 
- ox - ox 

z l 

ay ay 
= l - x.3 z ox ox 

l z 

and we then have, assuming that X. ~ 1, 

ay oy 
z + x_3 __ l 

ox ax 
z l 

(5. 2} 

oy ay 
= z +x.3 l 

ox ox 
l z 
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~ = _1_ (h.3 o<p + aLJ; ) 
ox 1 '\ 6 ox ox 

1 - I\. 1 z 
(5. 3) 

ay z = _1 - (-~ + h. 3 o<p ) 
ox 1 '\6 ax ax z -1\. 1 z 

If we substitute these expressions in the identity 

-1 

( 
ay ay ay ay ) 

h. - --1... __ z - --1... __i - ox ax ax ax ' 
l z z l 

we obtain an equation for h. in terms of <p and LjJ, thus 

(5. 4) 

where 

J
. = ~ ~- FJ<p ~ 

ox ax ax ox 
1 z z l 

Furthermore, compatibility of equations (5. 3) requires 

_a [-1 (h.3 .EL+~)] +-a [-1 (~ _ h.3 2.:£_)] = 0, 
ax 1 '\ 6 ax ox ox 1 '\ 6 ax ax z -1\. 1 z 1 -1\. 1 z 

or 
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vz"' = .£.t_ ax.3 - ~ ax.3 
ax ax ax ax 

l z z l 

_ 6X.
5 

[ ~ (2!£_ _ x.3 .£.t_) +ax. (x.3 ~ + 2!£_) J 
1 

'\ 6 ax ax ax ax ax ax , 
-f'I. z z l l z 1 

(5. 5) 
vz.1. - a>..3 2!L. - ax.3 2.L 

't' - ax ax ax ax 
1 z z l 

_ 6>..
5 

[ ax. (x.3 2!L + ~1 + ax. ( .£.t.. _ >..3 2.!P._) J . 
1- '\ 6 ax ax ax ax ax ax 

f'I. z 1 z l l z 

Equations (5. 5) constitute the governing differential equations for the 

functions <p and ljJ. 

The components of the total load resultant associated with a 

curve C drawn in the middle plane which was initially a curve C
0 

between two points P
0 

and Q 
0 

are, from (2. 11), 

L = 2h c SQOO ( ay ~ - x_3 ay ! ] 
1 0 1 p an as 

0 

ds 

L = 2h c SQ 0 ( ayz + x_3 ay1 ) 
z 0 1 p 0 an 0 as 0 

0 

ds 

0 

where the path of integration is along C • From (5. 2), it is easy to 

show that the load resultants La are given by 

0 

L = 2h c s0 

l 0 l po 
2!e__ 0 

ds 
as 0 S

QO 

L = 2h C ~ ds 
0 

z 0 1 po as 

or 



-44-

L 
• 0 

<p(P ) - <p(Q ) = 2h c 
0 l 

0 

on C 

0 0 
L 

~{P ) - ~{Q ) = z 
2h c 

0 l 

In particular, for a closed contour Il
0 

which is free from traction, 

we have 

<p = const. = a 
l 

~ = const. = b on Il
0 

If IT 
0 

is the only traction-free contour we may set a , b equal to 
l l 

zero without loss in generality. When there are N traction-free 

0 

contours IT {n = 1, 2, ••• , N) say, then 
n 

4i = b n 

II 

on IT 
n 

{n = 1, 2, ••• , N) , 

where a , b are constants. Only one of the constant pairs {a , b ) n n n n 

can, in general, be set equal to zero, the others being determined by 

the condition that the integrals y of equations {5. 3) be single-valued. a 

Although traction boundary conditions are simplified by the 

use of the stress functions, boundary conditions of place are rendered 

more complex. From (5. 3) we see that 

ay 
-i: 

" as 
1 (-~ + }1,3 ~1 ' (5. 6) 

1-}l.6 an as 

and ay /as. will be known on a boundary c· where y are a a 
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prescribed~ 

If the sheet extends to infinity in all directions and if the sheet 

is in uniform biaxial tension at infinity with extension ratios µ , µ 
1 z 

along the axes, then we have, from (5. 2) and (3. 4), as r ~ oo 

8 1 * L cos a 1 
[ 

>:c ] 

~ = 4Trh C r L1 sin a+ / )3 + o ( r) , 
1 0 1 µ µ 

1 z 

µ 1 [ L * s in a * ] ( 1 ) ocp = µ - _ _,z..___ + 4Trh C r z - L cos a + o r 
ox z l {µ µ ) 3 0 1 (µ µ ) 3 1 

1 z 1 z 

~ _ µ + l [ * . L *cos SJ ( l) ox - - µ z 4-Tr-h_..,C,,,_.r- L sin a - + o r , 
l {µ µ )3 0 1 z (µ µ ) 3 

1 z l z 

olJl = ox 
z 

1 [ * L * sin a] · ( 1 ) 
...,4,_.Tr...,.h-C=--r L c OS a + + 0 -

o 1 z (µ µ )3 r 
l z 

(5. 7) 

where L: are the components of the resultant of all external forces 

acting on the internal boundaries of the sheet. 

When X. << 1 a procedure similar to that of Section III can be 

used to find successive approximations to the stress functions cp and 

ljJ. The first approximations cp(i}, ljJ(i) are taken to be solutions to 

(5. 5) with X. set equal to zero. Like y(l) , they are harmonic 
a 

functions in the domain in question. At a boundary C~ where the 

traction is prescribed, the tangential derivatives of cp(i), ljJ(i) are 

prescribed through 



a)1) o 
~as 

0 

as 

''C dL., 

= 2h c 
0 1 
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a.i.{1) • 
..::..:t....._ ds 
as· 

* dL 
= 2 Zh C 

0 1 

on 

In contrast to the functions y~), the functions <p(i), ljJ(i) satisfy the 

exact conditions on <p and ljJ at a boundary where the traction is 

0 

given. At a boundary CD where yo: are prescribed to be the 

functions y *, we can approximate to the boundary conditions on <p .~ 
QI 

by taking >.. to be zero in (5. 6) and requiring 

a (1) a * ~= a * 
~ -~ >'.c 

!l.J!..:...:.. = - 0 on CD 
an 

0 

as 
0 

an. as 
0 

With these boundary conditions on the harmonic functions <p(i), ljJ{
1
), 

they will be harmonic conjugates of y{i), y{i), respectively, when 
l z 

(1) 0 (1) * • 
y satisfy (3. 3) on CT and y = y on CD. This is in agreement 

0. 0: 0: 

with setting >.. = 0 in (5. 2) which gives 

a (1) 
a<p(l) 

a {I) 
aljJ{l) _.:i_ 

= l = ax ax- ax ax-
1 z l z 

{5. 8) 
a (1) 

- a<p(l) 
(1) . 

-~-l ay 
= 

__ z_ 
= ax ax ax ax 

z 1 z 1 

but it should be noted that {cp(l) ,y{1
)) and (lj}l) ,y(1

)) are conjugate 
l z 

functions only if the approximations made to obtain boundary con-

ditions on <p(l) ,ljJ(l) and on y~) are consistent. 

A first approximation >.. (i) to the transverse extension ratio 

>..is determined by using cp{
1
),ljJ{

1
) for <p, ljJ in {5.4), that is, by 
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the appropriate root of the algebraic equation 

where 

.(1) = a,/1) ~ _ a'P(i) atJ;(i) 
J ax ax ax ax 

l 2 2 l 

If <p(l), y.,<1
) and y~1 ) are related through (5. 8}, we can write the 

equation as 

where 

a (1) a (1} a (1) 
l_ll 
ax ax ax 

2 2 l 

and >.. {l} can now be determined directly from the first approximation 

y(l} • When >.. << 1 and J(l} is not small, terms of >..4 arid higher 
Q' 

in equation (5.10} can be neglected for our purposes and we have 

or ' (1} - 1 
I\. . - J(l) • 

which is the value given for >..(i) in (3.6} of Section III. Near a 

traction-free edge of the membrane, however, J(l) becomes small 

and vanishes on the edge and the term in >..4 must be retained in the 

equation even though A. is still much smaller than unity. Thus the 

equation 
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(5.11) 

will determine >.. {i) with sufficient accuracy both on the boundary and 

inside the sheet. When J(i} is positive equation (5. 11) has only one 

positive root. On the traction-free edge >.. (1) is determined by 

Since the normal derivatives of y~1 ) vanish at the edge, we see that 

on the edge 

in agreement with (5. 1). It is because <p{l) and 4;(
1

} satisfy exact 

boundary conditions where traction is prescribed that equation {5.11) 

for >.. {l) yields reliable results up to. and including a traction free 

boundary. We remark that the approximation (5.11) to equation {5.10) 

will not apply near a point in the sheet which is unstress~d. At such 

a point >.. = 1 and the derivatives of <p, l/J vanish, equation (5. 10) 

being satisfied. Such stress-free points .occur at projecting corners 

in a traction-free portion of the boundary. 

When the sheet extends to infinity and <p (i), l/J {l) are harmonic 

conjugates of y(l), y(l), respectively, the conditions at infinity cor-
1 z 

responding to conditions (3.4) on y~} are 



~-ax -
l 

* . 
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a (1 > 
J_ = µ ax 1 

z 

~-ax -
L sine 

-1-\ + 4-lTh-~C-r + 0 { i) ' 
0 1 z 

>le 
L cos 9 

41Th C r 
0 l 

* 

+ 0 (;) 

L cos 9 ( l) 
z + 0 -

41Th C r r 
0 1 

as r - oo 

(5. 12) 

For moderate values of µ , µ the difference between the conditions 
1 z 

(5.12) and the exact conditions (5. 7) is appreciable, and this leads 

to appreciable error in the values of >.. determined by (5. 11) at 

large distances. A better procedure in these cases is to determine 

the harmonic functions cp(l), IJi(i) so as to satisfy the exact conditions 

at infinity rather than to take cp(i), IJi(I) conjugate to y(i). A first 
Q' 

approximation >.. (l) which will tend to the exact value as r - oo is 

then determined by using cp(I), IJi(I) in equation (5. 9). For our pur­

poses it is sufficient to determine >..(I) as the positive root of 

(5.13) 

It may be noted that the stress functions cp, 1Ji introduced in 

this section are directly related to the Airy stress function used for 

two-dimensional stress fields.· It is easy to show that, save for a 

multiplicative factor, 

~= -T ay lZ 
l 

~=-T ay zz 
1 

~=T ay u 
z 

~= T = T ay Zl IZ 
z 



and 
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tjJ=-~ ay 
1 

where X is the usual Airy stress function. 
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VI. SOME PROBLEMS WITH TRACTION-FREE BOUNDARIES 

In this section several simple examples involving membranes 

with traction-free edges are considered, and the application of the 

modified method is illustrated. In the first two examples, the mem-

brane is under biaxial extension at infinity and has a traction-free 

interior boundary which is either a circle or an ellipse. Example 3 

concerns a finite membrane with mixed boundary conditions, and the 

last example treats a boundary with a corner which is either traction 

free or acted upon by a concentrated load at the vertex. 

Example 1 Circular hole in an infinite membrane under biaxial 

extension at infinity. 

The deformation of an infinite membrane with a circular hole 

of radius a subjected to uniform biaxial extension at infinity was 

considered in Section IV as a special case of Example 3. The first 

approximation shows that after deformation the hole becomes an 

ellipse with major and minor axes of lengths 2µ a and 2µ a, 
1 2 

respectively, µ being the larger of the two extension ratios. 
1 

The harmonic stress functions cp(l), ljJ(l) which satisfy exact 

boundary conditions at r = a and at infinity are found to be 

where 

cp(l) =y 1 rsina(1-:~) , 

µ 
2 

(µ µ )::; 
l 2 

µ 
'Y = µ - _ _..,__ 

2 2 (µ µ )3 
1 2 
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From equation (5 .13), the transverse extension ratio X. (l) is the 

positive real root of the equation 

and at the edge of the hole where r = a, we find 

( { -t X. l) = 2 ['\./+y2 -cos20(y2 -y2 )]} 
1 2 1 z 

(6. 1) 

1 
-2 

which has a maximum value (2y ) at (8 = 0, lT) and a minimum 
1 z 

value (Zy )-
2 

at (8 = lT/2, 3lT/2). 
1 

When the material is under simple tension at infinity, the 

extension ratios µ , µ are related by 
1 2 

µZ 1 1 
= = 

z µl µ 

We then have, from (4.18) 

(1) 
yl = µr( 1 + :~ ) cos a 

• 

y!') = }µ + + :: ) sin a . 

(6. 2) 

In agreement with the discussion in Section III, y{l) is of the same 
1 z 

order, 0(µ- 2 ), as the neglected terms in (2.10), (2.11) and therefore 

may not be a good approximation to y • 
z 

difference y(z) - y(l) is 0(µ- 2 ) and so, 
1 1 

On the other hand, the 

for large µ, y(l) is a good 
1 

approximation to y • From (6. 2) the maximum principal extension 
l 

ratio at the edge of the hole is given by 



-Z 
correct to O( \A. ) • 
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1 

A = [2(2 - cos 29)] 2 f 

Another special case of interest is the axi-symmetric defor-

mation of an infinite sheet containing a circular hole. In this case 

!"' = re- = u. and equations (4. 18), (6. 1) assume the simple forms 
1 Z I 

(6. 4) 

where 

Because of the symmetry of the deformation, the exact formulation 

itself can be greatly simplified. As in Example 1, if we assume yet 

to be given by (4. 7), then p(r) satisfies the ordinary differential 

equation (4. 8). The condition on dp/dr at infinity remains unchanged 

but at r = a, the traction-free condition requires 

or 

since 

i£ - X,3 ..e. 
dr - r 

z 
(iE) ..e.= 1 
dr r ' 

(6. 5) 
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in this case. 

Equations equivalent to (4. 7), (4. 8) were obtained by Rivlin 

and Thomas [ 4] and, by successive application of Taylor series 

expansions starting from the edge of the hole, they were able to find 

numerical solutions for given values of the circumferential extension 

ratio p/r at the edge of the hole r = a. A more direct method is 

to integrate equation (4. 8) numerically, as in Example 1. A value for 

p/r at r = a is chosen, and the slope dp/dr at the same point is 

then obtained from (6. 5). With these initial values, the integration is 

straightforward. Corresponding to each initial value of p /r there is 

a limiting value for the extension ratio at infinity µ. Figure 1 com­

pares the exact solution p/r thus obtained and the approximate 

solution calculated from (6. 3) for all-round extension to moderate 

amount µ = 1. 62 at infinity, the corresponding circumferential exten-

sion ratio at the hole being 3. O. A discrepancy of 10% occurs at the 

edge of the hole but the difference diminishes rapidly as r increases 

and at a distance four times the radius of the hole, the difference is 

slight. The transverse extension ratio >.. is plotted in Figure 2 

against the radius, the approximate values determined from (6. 4) 

being shown as circled points near the curve for the exact values. 

It can be seen that (6. 4) provides good estimates for >.. over the 

whole range of r. In contrast, values for >.. determined from y{1
) 

a 

through (5.11) are much less accurate and they are shown as crosses 

in the figure. 

Comparisons between the exact (numerical) solution and the 

first approximation were also made for the case µ = 3.03. Since 
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figures for µ = 3. 03 corresponding to Figures l and 2 for µ = 1. 62 

would show no difference between the exact and approximate solutions 

for either p/r or X., the results are not shown here (the variation 

of p/r with r for µ=3.03isgivenin [4]). 

Example 2 Elliptic hole in an infinite membrane under biaxial 

extension at infinity. 

As noted earlier, the deformation of an infinite membrane 

with a traction-free elliptic hole of semi-axes a and b subjected 

to biaxial extension at infinity parallel to the axes of the ellipse can 

be obtained by setting m equal to zero in (4. 20) which then becomes 

(1) cµ 

yl = a::i; (a cosh s - b sinh s) cos 11 . } (6. 6) 

(1) 
cµ 

y = -i;Ca cosh s - b sinh s) sin 11 
2 a-

According to (6. 6), the hole is again an ellipse in the deformed state 

with semi-axes of lengths (a +b)µ and (a +b)µ • When µ = µ = µ, 
1 2 1 2 

the hole is always deformed into a circle of radius (a +b)µ. 

Stress functions <p(l), ljJ(l) which satisfy exact boundary con-

ditions at infinity and on the ellipse are readily determined and 

equation (5.13) assumes the form 

2 
+ :\.y ""{ (a sinh S - b COSh S}(a COsh S - b sinh S) - (a-b) 2 (sinh S + sin2 T]) = 0, 

1 2 
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where the constants y , y are as defined for Example I. At the edge 
1 z. 

of the hole where s = S and 
0 

ccoshs =a, csinhs =b, 
0 0 

the equation for ;\. (l) reduces 

It can be shown that the first approximation ;\. (i) to the transverse 

extension ratio ;\. attains its extremum values 

at the ends of the major and minor axes of the ellipse. When aµ = bµ, 
l. l 

the hole is deformed into an ellipse of similar shape and since ay 
z. 

and by are nearly equal the edge of the deformed hole has nearly 
1 

constant thickness. 

If ay > by , the hoop stress resultant is greatest at the two 
z. 1 

ends of the minor axis and, for µ large, has the approximate value 
1 

( -b) i-µt-T = 2h C 1 + 
s o 1 a l 

_.J.. 
z. 

which is correct to terms of O(µ ) • When ay < by , the maximum 
1 z. 1 

is attained at the two ends of the major axis instead and T has the 
s 

approximate value 

i-
Ts = 2h0 C

1 
l 1 + ~) µ ~ 



for large µ • 
z 
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In the limit as b goes to zero, the hole degenerates into a 

crack or slit of length 2c along the x -axis. Setting b = 0 in (6. 6) 
1 

we have 

y(l) = µ c cosh £ cos 11=µx , 

l 
1 1 1 1 

(6. 7) 
( 1) 

=µ c cosh £ sin t") , yz z 

and we see that the crack £ = 0 becomes an ellipse with semi-axes 

µ c and µ c in the deformed state. It may be noted also that the 
1 z 

transverse extension ratio "'- (i) has the unique limit zero as the tip 

of the crack is approached. Equations (6. 7) can be written as 

µ 1 1 

(1) y(l) = .J_ {cZ - r +r + [(CZ - r - xZ)z+4xz) Z}Z • 
y 1 = µ1x1' z -f2 1 z 1 z z (6. 8) 

Figure 3 indicates the deformation (6. 8) for the sheet with a crack 

when µ = µ = 2. 0. Because of symmetry, only the first quadrant of 
1 z 

the plane is shown. The solid lines initially formed a square grid of 

lines distant 0. 2 units apart. Initially the crack extended from -1. 0 

to 1. 0 unit on the x -axis, and it is deformed into a circle of radius 
1 

2. 0 units. Vertical grid lines remain vertical and the deformation 

is most severe at the tip of the crack, as expected. 

When the principal axes of strain at infinity are inclined to 

the x - x -axes, we require 
l z 

as r - oo, (6. 9) 
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where ca(3 are known constants. 

za through 

If we define the harmonic functions 

z = cb {acosh s -bsinhs)cos 11, 
l a-

z = cb{acoshs-bsinhs)sin11, z a-

z 
a 

we see that za = xa at infinity and the normal derivatives of 

vanish on the ellipse {4.19). The first approximation y(l) 
a to y 

Q' 

for the sheet with an elliptic hole and the deformation (6. 9) at infinity 

is then 

Y(l)= c z 
a a(3 (3 • 

Under the deformation in which a particle at the point xa goes to za, 

the elliptic hole with semi-axes a, b becomes a circle of radius 

(a +b). The transformation in which za goes to y~) subjects the 

whole plane to the deformation at infinity. Thus according to the 

first approximation, under all orientations the elliptic hole becomes 

an ellipse with semi-axes of lengths {a +b)µ , {a +b)µ parallel to the 
l z 

principal directions of strain at infinity, where µ
1 

and µ
2 

principal extension ratios at infinity. 

are the 

For a sheet with N holes bounded by contours 
0 

II , we intro­
n 

duce harmonic functions z which have zero normal derivatives on 
a 

0 

IIn and which are such that za = xa at infinity. The first approxi-

mation to the deformation when (6. 9) holds at infinity will then be 

I o 
If the contours II obtained from II by the transfor-

n n 

mation in which xa goes to. za are drawn on the undeformed sheet 

at infinity, the holes in the stretched sheet will assume the same 
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shape, orientation and relative position as the contours II' drawn 
n 

on the sheet at infinity. 

Example 3 Stretching of a short wide strip between clamps (pure 

shear.). 

In order to produce a state of pure shear experimentally [ 6, 7] , 

a short wide strip of rubber is stretched between clamps applied to 

the long edges of the sheet. The extension ratio in the direction of the 

width of the sheet is then almost unity in the deformation produced by 

moving the clamps apart, and the sheet is in a state of pure shear if 

the volume remains unchanged. When the width to height ratio is 

large the small amount of non-uniformity in strain due to the traction-

free edges does not affect the force-extension relation significantly. 

If the strip has width a and height b and the origin is taken 

at the center of the sheet with the x -axis along the width of the sheet, 
1 

the harmonic functions y~) must satisfy the boundary conditions 

and 

a (1) 
Ya 

ax- = 0 
1 

(1) 
=x yl 1 

(1) 
y = µ.x 

z z 

on x 
1 

= ±~ 
2 

" } on x 
z 

b 
=±2 

where µ.b is the height of the deformed strip. We therefore obtain 



( 1) 
y 1 = 

(1) 
y =µx 

z z 

where 

F(x ,x ) 
1 z 
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2n+l cosh--TTX 
a z 

2n+l 
coshz-irb . a 

00 

. 2n+l 
sin -- irx = x - F (x , x ) , 

a 1 z 

- 4~ l 
1T 

(-1 )n 

(Zn +l)Z 

. h 2n+l 
sin -b- nx Zn +l 

Zn +l COS ~ TrX
2 cosh ~ira 

n=O 

(6.10) 

According to (6.10), lines of the sheet initially horizontal remain so 

after deformation and the location y(i) is independent of µ. The 
1 

shortening S of the line midway between the clamped edges is given 

by 

b S=0.742-XlOOo/o, (6.11) 
a 

which decreases with b/a but is independent of µ. For b/a small, 

the extension ratio X. 
1 

in the direction parallel to the clamped edges 

of the sheet is substantially unity, and in the limit 

' 1 ' ' -- 1 /\. = ' /\. = µ, /\. 
1 2 µ 

a state of pure shear. 

Since the material at the free edges is in simple extension 

with extension ratio µ approximately, a better first approximation 

for y is the harmonic function which satisfies the boundary con-
1 

ditions 



Hence we have 

y(l) = x 
l l 

a (1) 
~ 
ax 

l 

(l) 
yl 

= 

=x 
l 

-61 -

b on x =±2 , 
z 

1 a 

vfL 
on x =±2· 

1 

- ( 1 - -
1 

) F(x ,x ) ..fµ 1 z 

and the shortening S of the middle line is now given by 

( 6. 1 2) 

s = 0 • 7 4 2 ~ ( 1 - ~µ ) x 1 0 0 % • ( 6. 1 3) 

If we write the second approximation y~) to y
1 

as 

in which y~1 ) is given by (6. 12), then w satisfies the Poisson equa­

tion 

z 
'Vw= -2irp , 

with 

The boundary conditions on w are 

w=O 

aw = 0 
axl 

b on x
2 

= ± 2 , 

a 
on x

1 
= ± 2 , 



-62-

and we see that w will be zero on x = o. 
1 

Now as x goes from 0 to a/2, il) decreases from µ 
1 

to .fµ so that aJ{1)/ax is negative for x > o. Because J{l) is 
1 1 

even in x , we see then that p is odd in x and negative for x > O. 
1 1 1 

In the terminology of electrostatics, for x > 0 the function w is 
1 

the potential of a distribtuion of (negative) charge with density p in 

a rectangular sheet which has zero potential at three sides and zero 

charge line-density at the fourth. Consequently, the potential inside 

the sheet must be non-positive, w < 0 for x > O. The shortening 
1 

S predicted by y{z) will then be greater than that calculated from 
1 

y{
1

} • Since (6. 11) overestimates the shortening of the middle line 
1 

the actual value must lie between the two values { 6. 11) , { 6. 13). 

The total "charge" in the right half of the strip is 

~b/2 sa/2 b [ (1) 3] a/2 b ( -r) 
Q = j\ p dx dx = - 2 {J f = - -- 1-µ • 

-b/2 0 1 2 1T 0 2lT.fµ 

For b/a small, the change in J{i) from µ at x = 0 to .fµ at 
1 

x =-
1 

a/2 occurs mostly in a narrow band near the traction-free edge 

x = a/2. 
1 

. * For a good estimate w of w, therefore, we can assume 

that all of the charge is concentrated along the line x = a/2 with 
1 

charge density 

Q 
b = 

per unit length. Thus * w is the harmonic function which satisfies the 

boundary conditions 
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* 0 b w = on x =±- x = 0 
z z , 

1 

ow * -+ 
ox = -* l 1 - µ ) 

1 

It follows that 

* w = 
-rt-

- _.!_ ( 1 - µ ) F{x ,x ) 
.../"µ l z 

and with this value for w we have 

{z) 
yl = x 

1 
F{x ,x ) 

1 z 
(6.14) 

The second approximation y~z) to yz 

-3 

differs from y{l) by terms 
• z 

which are O{ µ ) • 

The same expression {6.14) for y{z) can be obtained by means 
1 

of the stress functions <p and lj.i. The first approximations <p{i), l);(l) 

are harmonic conjugates to y~) in {6.10) and it is easy to see that 

they are 

{ 1) 
<p = 

where 

G{x ,x) 
1 z 

G{x ,x ) , 
1 z 

{-1) n 

{Zn +l )Z 

l);{l) = - µ.x 
1 

. Zn+l 
s inh -a- i1"X Zn +l 
---=--,-=--Z COS -- i1"X 

h Zn+l b a l 
COS -ra TT 

The extension ratio A. {l) can be obtained from equation {5 .13) in 

terms of <p {l) and l);{l). In view of the fact that a large part of the 

sheet is under pure shear, we can, for a good estimate of the second 
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approximation <p(z) to <p, choose A.(l) to be l/µ throughout the 

sheet. <p(z) is then the harmonic function which satisfies the 

boundary conditions 

and 

Thus we have 

a (z) 
5!!L_ - 1 ax -

z 

<p(z) = 0 

1 
z 

J.L 

on 
b 

x = ±-2. 2 , 

a 
on x

1 
= ± 2 • 

<p(z) =11 --1 ) G(x ,x ) 
\ µZ 1 2. 

If we now use the inversion relations 

a (z) 

~= ax 
1 

we obtain the solution given in (6. 14). 

a (z) 

~= ax 
2. 

a (z) 
- _<p_ 

ax 
l 

According to (6.14), the shortening S of the middle line is 

given by 

s = o.142E f 1 -.l...l x loo%. 
a \ J.Lz 

(6.15) 

When a/b = 15, S is 4. 8% when µ is 6. 2. In an experiment with a 

strip of rubber having dimensions such that a/b = 15, Treloar [ 6] 

observed for µ = 6. 2 a shortening of the middle line of 12%, which 

is more than twice the theoretical value S = 4. 8% for a neo-Hookean 

material. Rivlin and Saunders [ 7] conducted a similar experiment 

and they report a shortening of 3% for the extension ratio µ = 2. 2. 
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The ratio a/b for the specimen employed in their experiment is not 

given in [ 7] but a figure suggests that the ratio a/b = 20 was used. 

With a/b = 20 and µ = 2. 2, formula (6. 15) predicts a shortening of 

2. 9%. 

The discrepancy between theory and experiment for the large 

extension ratio µ = 6. 2 is due to the fact that the neo-Hookean form 

is not a good representation for the strain energy function of the 

rubber for extension ratios greater than 2 or 3. A better strain 

energy function for rubber is the Mooney form 

u = h c [)I}-+ AZ +-
1
- + r (_l__ + _!._ +AZ AZ)] I 

0 1 1 z x.z x.z AZ x.Z 1 z 
1 z 1 z 

where r = c /c and c I c are the material constants. For a 
z 1 z 1 

state of pure shear with A. = l, A. = µ the stress resultant across 
1 z 

the width of the strip is 

Zh C [ ( 
T, = .,_

0 1 
I - :• l + r(p.' -!) ] 

Even a small value for I' increases T s.ignificantly at large values 
1 

of µ. A greater curvature is then required at the traction-free edges 

in order to provide the resultant T in the middle of the strip, and 
1 

the shortening of the strip is increased. With the expression (6 .14) 

for y for a neo-Hookean material, numerical results for the case 
1 

a/b = 15 and µ = 6. 2 show that straight lines initially vertical on 

the sheet remain quite straight except in regions very close to the 

traction-free edges, within a distance of the order of a/25. This is 
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in contrast to the experiment of Treloar [ 6] in which appreciable 

curvature was observed of vertical lines initially distant a /5 from 

the traction-free edges. 

In order to superpose pure shear on simple extension, the 

strip is stretched in simple extension in the x -direction with exten­
z 

sion ratio 1 /'A. 2 before the clamps are applied [ 7]. The clamps are 
z 

then moved apart so that the extension ratio in the x -direction be­
z 

comes f.l while that in the x -direction is substantially X. through-
1 z 

out the sheet. In order to ensure tensile stresses everywhere f.l 

must be greater than 1/ X.2 • If the initial width and height are again 
z 

a and b, the boundary conditions are 

yl = X. x , 
z l b on x =±2 , 

z } 
.y : f.lX , 

z z 

and 

oy 3 oy 
--1.. = X. __ z 
ox ox 

l . z a on x = ± 2 • 
l 

oy oy 
_i = - x.3 --1... ox ox 

l z 

As in the case \ = 1, the first approximation for y
2 

is 

which is correct to 

is found to be 

= f.lX z 

O( ,-z,.- 3 ), h"l d · · f I\. , w 1 e a secon approximation or y 
z 1 
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The shortening S of the middle line is then 

S = O. 742 ~ ( 1 - A;µ') X 100 % • 
2. 

Example 4 Boundary with a corner. Concentrated load at a boundary. 

We suppose that the undeformed sheet has a sharp corner with 

straight edges on one of its boundaries. The origin of the coordinate 

system is taken at the vertex of the corner and the x -axis is taken 
1 

along the bisector of the corner angle. For r ::: a, say, the boundaries 

at the corner will be the lines 9 = ± a, where 2a is the angle of the 

corner. 

If the sides of the corner are traction free, the harmonic 

functions y(I) of the first approximation have zero normal derivatives 
'I 

on 9 =±a. For r::: a, the locations y~) will then have the repre-

sentations 

(6.16) 
2n+l 

za-11" ] 
+d (.!) sin Zn+l 11"9 

n a 2a • 

where the constants a , b , c , d will be determined by the defor­n n n n 
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mation elsewhere in the sheet. For example if y
1 

= µ x ' 
1 1 

y = µ x 
z z z 

on r = a we have 

b = c = 0 ' } n n 
n=0,1,2, ••• 

z 

l] d = 2aµz(-l)ncosa/ [(
2
;:

1 7T) - ' n 

For a > rr/2 the corner is re-entrant and the derivatives 

oy~)/ax 
0 

in (6. 16) become infinite at the vertex. The corner is 

deformed into a smooth arc with a continuously turning tangent at 

• 

the boundary point which was initially at the vertex. The radius of 

curvature of the deformed boundary at this point is 

z z t-
(b +d ) 

0 0 

2jd a -b c I , 
0 1 0 1 

where it is supposed that b and d do not both vanish. An example 
0 0 

involving re-entrant corners (with a = rr) has been met in Example 2 

of this section where the infinite sheet with a slit was treated. Under 

deformation the boundary of the crack became a smooth curve. 

For a < rr/2 the corner projects and the derivatives oy~1 ) /ox
0 

vanish at the vertex. For the material with strain energy U(i) this 

implies that the stress resultants vanish at the corner. A neo-Hookean 

material would have small strains in the neighborhood of the corner 

(1) 
so that the first approximation Yy is not a good approximation near 
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the corner. 

* If a concentrated load L acts at the vertex of the corner in 

a direction at an angle p counterclockwise from the negative x -
1 

I 
-1 

direction, the derivatives ay"Y ox0 will be O(r ) as r - 0, and we 

require 

* S
a ay 

lim -a:jr d9 = 
r-0 -a 

L cos f3 
2h c lim 

r-o s_: 
0 1 

For r :S a the first approximation will be 

( 1) 
yl 

(1) 
Yz 

* = L cos f3 1 g r + u(r • 9) 
h ca 0 a 

0 1 

* = L sinf3 log!: +v(r,9) 
h C a a 

0 1 

a * !..J. d 9 = L sin p 
ar r 2h c 

0 1 

where the harmonic functions u, v are finite at r = 0 and have 

representations of the form (6.16). The angle 13 must be such that 

the force L * is directed away from the sheet. I f31 < rr-a. but f3 

may have to be restricted further, depending on conditions elsewhere 

in the sheet, in order to ensure tensile stresses everywhere. 

* If the load L acts in the negative x -direction. the first 
1 

approximation will be 

(6. 1 7) 
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when the edge r = a of the membrane is held fixed. This solution 

is valid for all values of a less than ir other than ir/2. For r 

small, we have 

{l) = 
yl 

1 r 
h c Q' log a 

0 1 + 0(1) • i 
as r - 0 • 

Hence we see that the principal extension ratio in the x -direction on 
2. 

the line a = 0 has the limit zero as r approaches zero if a < ir/2, 

but for a > ir/2, the limit is infinite. 

When a= ir/2, we have the case of a concentrated load acting 

normal to the straight edge of a semi-circular membrane of radius a 

whose curved boundary is held fixed. Expression {6.17) can then be 

written as 

where 

y(i) = A log.!. + u{r, 8) 
l a 

{l) 
y 2. =x 

2. 

oo 2n 
* 2L 

A= h C 
0 l 1T 

, u = ~a + 2a l { -1) n +l ( ~) cos 

n=l 

2. 
2n8/ {4n -1) 

{6.18) 

so that u = 0(1) as r - O. Along the traction-free edge and at a 

distance A from the load, the square of the principal extension 

ratio in the direction tangential to the edge is 2. According to {6.18), 
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for small r straight lines 9 = constant of the undeformed sheet be-

come logarithmic curves while the circular lines r -· constant become 

straight vertical lines in the deformed membrane. 

We note that since the outer edges 9 = ± rr/2 of the membrane 

are free of traction, the material there is in a state of simple exten-

sion and for r small the extension ratio is found to be 

l 
z z z 

>.. = (1 + A /r ) - A/r • s 

Hence on the boundary near the load, 

l z 
>..,... (r/A) 

On the line a = 0 and for r small, J,... A/r and >..,... r/A. Since 

the principal extension ratio in the x -direction is unity in this case, 
z 

we see that the central line a = 0 is in pure shear in a plane perpen-

dicular to the (r, 9) plane. Thus, for a neo-Hookean material, the 

curvature of the boundary is sufficient to build up enough tensile 

transverse stress so that the material in the center of the band is in 

pure shear even though the membrane in the neighborhood of the load 

is stretched out into a narrow band. 
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EXACT 

G APPROX. 

1.0..._ __ ...._ __ ...__ __ ...__ __ ...__ __ ...___----' 
1.0 2.0 4.0 

r/a 

Fig. 1. Variation of p/r with r for sheet with circular hole under 

extension ratio µ = 1. 62 at infinity; exact and first approxi­

mation values. 
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l EXACT 

t E> APPROX.,EQU.(6•4) 

X APPROX., EQU.U5•10) 

0.5 

0.4 

x 
x x )( 

QJ'":""': ________ ...1.--________ ....a.. ________ _. 

1.0 2.0 3.0 4.0 
r/a 

Fig. 2. Variation of thickness ratio A. for p. = 1. 62; exact and 

first approximation values. 
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Fig. 3. Deformation of square grid near a crack; 
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