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ABSTRACT 

The problem considered is that of minimizing the drag of a 

symmetric plate in infinite cavity flow under the constraints of fixed 

arclength and fixed chord. The flow is assumed to be steady, irrota­

tional, and incompressible. The effects of gravity and viscosity are 

ignored, 

Using complex variables, expressions for the drag, arclength, 

and chord, are derived in terms of two hodograph variables, r (the 

logarithm of the speed) and f3 (the flow angle), and two real param­

eters, a magnification factor and a parameter which determines how 

much of the plate is a free -streamline. 

Two methods are employed for optimization: 

(1) The parameter method. r and f3 are expanded in finite 

orthogonal series of N terms. Optimization is performed with respect 

to the N coefficients in these series and the magnification and free­

streamline parameters. This method is carried out for the case N = 1 

and minimum drag profiles and drag coefficients are found for all 

values of the ratio of arclength to chord. 

(2) The variational method. A variational calculus method for 

minimizing integral functionals of a function and its finite Hilbert 

transform is introduced, This method is applied to functionals of 

quadratic form and a necessary condition for the existence of a 

minimum solution is derived. The variational method is applied to the 

minimum drag problem and a nonlinear integral equation is derived but 

not solved. 
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I. INTRODUCTION 

Consider the irrotational, two-dimensional motion of an in-

compressible fluid past a cylinder of arbitrary shape in the absence 

of gravity. Let the flow far upstream be uniform with velocity U, 

pressure p
00

, and density p. At sufficiently high speeds, the local 

pressures in the fluid decrease to the vapor pressure and the liquid 

"boils," leaving a vapor cavity behind the body. In most cases the 

density of the cavity vapor is very small compared with that of the 

liquid so that the kinetic energy of the vapor motion has only a small 

effect on the pres sure within the cavity. Therefore, the cavity pres -

sure can be closely approximated by a constant, say p . Bernoulli's 
c 

equation then prescribes that the velocity at the cavity wall be a con-

stant, say V, where 

1 r? 1 Z 
2 pV +pc= 2 pU +poo 

This is the "free-streamline model" for cavitating flow. 

As the free stream speed increases, the length and width of 

the cavity grow indefinitely and the flow may be idealized by 

Helmholtz flow; i.e., the cavity extends to infinity downstream, the 

fluid motion is steady and irrotational, and the cavity pressure is 

constant. In this model, the free stream pressure must equal the 

cavity pressure to maintain the cavity far downstream. Hence, U = V 

in Helmholtz flow. 

It will simplify matters by considering only that portion of 

the body in contact with the fluid. The lift and drag acting on the 

body and the cavity shape are determined by only this portion of the 
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cylinder surface which we call P, We may replace the cylindrical 

body by a plate with the same shape as P without changing the flow. 

The specific problem considered here is to find the shape of a 

symmetric plate (see Fig, 1) of given arclength 2 s and given width 
0 

2y , so that the drag of this plate in infinite cavity flow is a mini­
o 

mum. (A precise definition of the class of plates under consideration 

is given in Chapter II. ) 

In 1938, M. Lavrentieff (see.le. g., [ l], p. 386) published the 

solution to the following minimum drag problem: Find the shape of a 

symmetric plate of minimum drag if the plate is confined to a rec-

tangle(see Fig. 2(a) ). The nose of the plate must start at (0, 0) and 

extend to the two corners of the rectangle, (x , y ) and (x , -y ). 
0 0 0 0 

The solution for the optimum profile consists of a straight section 

extending from (0, -h) to (0, h) and the free-streamlines which 

leave the ends of this section and go on to pass through the corners 

of the rectangle. The length h is uniquely determined by the ratio 

Lavrentieff' s method of solving this problem is completely 

different from the methods found in this paper. It is based on several 

comparison and monotonicity theorems ([ l], p. 380) which follow 

from the maximum principle for harmonic functions. The present 

paper was originally conceived as a confirmation of Lavrentieff' s 

work using the variational calculus technique introduced in Chapter 

IV; however, no satisfactory method was found to impose the con-

straint that the plate be confined to lie within the rectangle. If this 

constraint is dropped, however, one can easily construct a sequence 



-3-

of plate shapes which, in the limit, give zero drag regardless of the 

ratio y
0

/x
0

. 

Such a sequence is illustrated in Fig. 2(b). A typical plate 

consists of a rectangular cup with width h and length h and the 
l z 

free-streamlines which leave the edge of the cup and pass through 

We now shrink the width h and increase the 
l 

length h so that the free-streamlines still pass through (x , y ) and z 0 0 

As h - 0, the region inside the cup becomes essentially a 
l 

1 z 11 deadwater" region with stagnation pressure p = 2 pU , so that the 

drag D of the plate is just 

D = I_ pUzh 
2 1 

which can be made as small as we please by choosing h small 
l 

enough. 

This observation led the author to consider the minimum drag 

problem described above. It was thought that the addition of a con-

straint on the arclength of the plate would prevent the possibility of 

such_needle-nosed shapes. The constraint on the length of the plate 

was dropped for simplification. 

The minimization problem considered here is related to a 

more difficult design problem: For a fixed cavity pressure (not 

necessarily equal to the free stream pres sure), find the shape of a 

cavitating hydrofoil of given lift, chord, and angle of attack; so that 

the drag is a minimum. It is not clear if a fixed arclength constraint 

needs to be imposed in the hydrofoil problem for physically meaning-

ful solutions; however, it is hoped that the treatment of the minimum 
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drag problem found in this paper will clarify this point, 

Although we illustrate the minimization procedure with the 

Helmholtz model, cavities of finite length could be incorporated into 

the minimum drag problem by the adoption of other flow models, 

For example, the Riabouchinsky model ([ 2]. p. 335). the re-entrant 

jet model ([ 2], p. 332). or the wake model developed by Wu [ 3] 

could be used, The difficulties in using these models would be much 

greater, however, as should become apparent in the work to follow. 
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II. THE PROBLEM OF THE SYMMETRIC CAVITATING PLATE 

1. Physical Description 

Consider the infinite cavity flow of an inviscid, incompress -

ible fluid past a two-dimensional plate P. The fluid motion is 

steady and irrotational with uniform velocity U far upstream para!-

lel to the positive x-axis. The far stream pressure equals the cavity 

pressure which is assumed to be the vapor pres sure of the liquid. By 

Bernoulli's equation, the flow speed at the cavity wall is constant and 

equal to U. 

We lim.it the class of flows under consideration to the class of 

all infinite cavity flows in which the plate P has the following proper -

ties: 

(a) P starts at the origin 0 (see Fig. 1) and is 

symmetric with respect to the x-axis. 

(b) The distance between the endpoints A and B 

of the plate is 2y . 
0 

(c) P has arclength 2s . 
0 

(d) P has continuous slope except at the origin 

where the nose angle is 2a, with 0 ~a::; ir. 

(e) Let S be some point on the plate between the 

nose 0 and the endpoint A. The pressure p act-

ing on the plate segment OS satisfies p;;:: p , 
c 

while on SA, p = p . The same is true for the 
c 

other half of the plate below the axis; i.e. , 

on OS' and p :: p on S'B. 
c 

P ~ p c 
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(£) · P is coincident with the dividing streamline 

pas sing through 0. 

The condition p ~ p is an obvious statement of the fact that c 

the vapor pressure of the liquid is the minimum pressure in the flow. 

The point S is included since we expect an interval on the minimum 

drag profile with p = p . {This is motivated by observing that part 
c 

of the optimum profile for Lavrentieff 1 s problem is a free-stream-

line.) This feature is included in the class of plates over which we 

minimize since it is easier to take account of this expectation from 

the beginning than not .. Note that (e) places no undue restrictions on 

the problem, since the point S for the optimal profile is not known 

a priori, but must be found as part of the minimization process; it 

could, in fact, be the sarne as the endpoint A. 

Condition (f) is trivial on the part of the plate S 10S; however, 

on SA and S 1 B it is non-trivial since the shape of the plate from S 

to A {likewise for S 1B) may be altered without changing the flow 

pattern. For example, if the shape of the plate is changed as shown 

in Fig. 3, vapor would form to fill the cavity so produced since the 

fluid is at the vapor pres sure along the sections of the dividing stream-

line SA and S 1B. The fluid flow, however, is unaffected. In order 

to avoid an infinity of plate shapes with the same flows, we require 

that the plate be coincident with the dividing streamline. 
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2. Mathematical Formulation 

By proper choice of origin and magnification, the complex 

potential plane f = cp + llti is mapped to the upper half t, = s + iri plane 

(see Figs. 4) by 

f = ~ Al]t 2 (2.1) 

Here, cp is the velocity potential, ljJ is the stream function, and A 

is a real positive constant. 

The magnification factor A is chosen so that the section of 

the plate S 1 OS maps to the real t, axis, - 1 ~ s ~ 1. The sections of 

the plate which are free-streamlines, SA and S 1B, are mapped to 

the real axis, 1 < s ~ c and -c ~ s < -1, where c ~ 1 (equality only 

if S =A, S 1 = B). The free-streamlines AI and BI map to c< s <oo 

and -oo < s < -c, respectively. 

We now introduce the complex velocity 

df . -i8 
W = dZ = U - lV = qe (2. 2) 

and the logarithmic hodograph variable 

w = log U = log U + i8 = 'T + i8 w q 
(2. 3) 

where u is the x component of velocity, v is the y component, q 
1 

is the fluid speed (q = (uz. + vz.)2 ), and e is the flow angle with re-

spect to the positive x axis mea,sured positive in the counterclock-

wise direction. 

Bernoulli's equation can be written 

1 uz 1 2 
p - pc = 2 p - 2 pq 

On the free-streamlines (ri = 0, Is J > 1). p : p ; therefore c 

(2. 4) 
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T(s, o+) = o for Is I> i (2. 5) 

Let the boundary values of w(I;) be denoted by 

{ 
r(s ) + il3 (s ) 

w(s+iO) = T(S, 0+) + i8(s, 0+) = >! 

il3 ;< (s ) 
for Is I~ i . 

(2. 6) 
Is I> i . for 

The condition that pc is the minimum pressure in the flow 

means that the inequality 

(2. 7) 

must hold for Is I~ 1. 

Because of the symmetry of the plate, 

r(s) = r(-s) (2. 8) 

13(s) = -13(-s>. ~c: * 13 (£) = -13 ( -£) (2. 9 ) 

That is, at corresponding points on the top and bottom of the dividing 

streamline, the flow speed is the same and the flow angle on the top 

is minus the flow angle on the bottom, 

The condition that the pressure be continuous at S and S' 

requires that the speed also be continuous; hence, 

I'(± I) = 0 (2.10) 

>:~ 

Since the slope of the plate is continuous, 13 (s) and 13 (£) are con-

tinuous and satisfy 

>:< 
13 (± 1 ) = 13 (± 1 ) ( 2 • l 1 ) 

The function v.:(1;) is discontinuous at i; = 0. Since the nose of 

the plate is a stagnation point of t~1e flow, 

as Is I --. o (2.12) 
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Since the flow divides at the nose of the plate, there is a jump in the 

flow angle, 

13(0+) -13(0-) = 2a (2. 13) 

In addition, since the flow approaches that of the free stream 

at large distances from the plate, we have 

w(t;,)-+ 0 as ls l- oo 

We now show that w(t;) can be written in the form 

w (t; ) = w (t; ) + w (t; ) 
0 1 

. where w (t;) is the discontinuous part of w, 
0 

w (t; ) = 2a log ( Jr:G + i ) 
0 ~ t; 

(2.14) 

(2.15) 

(2. 16) 

and w (t;) is analytic in the upper half plane, continuous on the bound-
1 

ary, and 

w (t;) - 0 
l 

as ls l- oo 

Re{w (s+io)} = o for ls!> 1 
l 

We use Re and Im to stand for the re~l and imaginary parts. In 

(2. 16), and subsequently, we take~ to be cut along the real axis 
1 

from -1 to 1 and positive for t; = s > 1. We will use ( )2 to stand 

for the positive root of the positive quantity inside the parentheses. 

The logarithm function in (2. 16) is defined to be that branch of the 

function which is real for real, positive argument with a cut along the 

negative real axis of the argument. 

If we let 
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for 

for 

ls 1~ 1 

Isl> 1 

>'< 
then r , f3 , and f3 ', must be continuous and satisfy the symmetry 

l l l 

conditions 

r (s) = r (-s) 
l l 

) 1C ) 1( 

f3 (s) = -f3 (-sL f3 '(s) = -f3 '(-s) 
l l l l 

and the continuity conditions 

(2.17) 
>'c 

f3 (±1) = f3 °(:1;1} 
l l 

Letting s ... s + iO in (2. 16) for Is I ~ 1 and comparing the 

real and imaginary parts of (2.15), we have 

where 

1 

r(s > = g.. log f 1 +o -s z )
2

) + r (s > 

Tr · \ Is I 1 

f3 (£)=Ct sgns + f3 (s) 
l 

sgns ={ 
1 

-1 

if 

if 

s > 0 

s < 0 

(2. 18) 

Because of the assumed continuity of r and f3 conditions (2. 12) 
l l 

and (2. 13) are satisfied. It is obvious that conditions (2. 8) through 

(2. 10) are also satisfied by this choice of w and w • 
0 l 

As t;, - s + iO for Is I > 1, 
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1 

(r) 2a 1 [(~7.-lf2 sgns+i]-· 2a . -1(1) 
w 0 '=> - 1T og s - l ""7r sm r 

This result, together with (2.17) and (2.18), show that (2.11) is 

satisfied. 

As for the boundary values of w (s) on the real axis, it is 
l 

easiest to deal with the inverse problem. That is, instead of specify-

ing the shape of the plate and trying to find the corresponding bound-

ary values it is better to let the shape of the plate be determined by 

giving either r (s) or f3 (s ). 
l l 

ties: 

We now suppose that r (s) 
l 

is given with the following proper-

(i) r (s) is Holder continuous (see below) on the 
l 

closed interval [ -1, 1 J. 

(ii) r (± 1) = 0 . 
l 

(iii) r (s) = r ( -s ). 
l l 

A function f(x) is Holder continuous on some interval if 

lf(x) -f(x )I~ Mix -x Iµ 
l ? l 1. 

for real positive constants M and µ with 0 < µ ~ 1, and for any x 
1 

and x in the interval. 
1. 

We have a Dirichlet problem for the determination of w (t,), 
1 

{ 
r (s) 

Re{w (s+iO)} = 1 

l 0 

for 

for 

Is I~ i 

Is I> i 

The further condition w - 0 as Is I - oo, 11 > 0, provides the unique 
l 

solution 
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r (t)dt 
1 

t - i;, (2.19) 

We now let I; -+ s + iO for [ s [ ~ 1 in this equation. Using 

Plemelj 's formula (see,., e.g. , [ 4] , § 1 7) we have an identity in the 

real parts of the left and right sides. The imaginary parts give 

1 § 1 r (t)dt 
f3 (s) = - - 1 

1 1T -1 t - s (2.20) 

where 5 denotes the Cauchy principal value. As I; -+ s + iO for 

IS [ > 1, we have 

>:< l r 1 r.(t)dt 
f3 l (s ) = - 1T J t - s 

-1 
(2. 21) 

* These forms for f3 and f3 satisfy all of the necessary continuity 
1 1 

and symmetry conditions. The continuity of f3 (s) on the closed 
l 

interval [ -1 , 1] follows from the Holder continuity of r (s) and the 
1 

fact that r (±1) = 0. (See [ 4], Chapter 4, for the behavior of the 
l 

Cauchy integral near the endpoints of integration. ) 

If, on the other hand, f3 (s) is given, we can consider (2. 20) 
l 

as an integral equation for r (s) or solve the Riemann-Hilbert prob-
1 

lem 

rm{w (s+io)} = f3 (s) 
1 1 

for Isl~ 1 

Re {w (s +iO)} = o 
1 

for Is I > i 

w (!;, ) -+- 0 
l 

as 

The necessary conditions for the existence of a solution of the 

integral equation (2. 20) such that r (± 1) =0 are that f3 (s) be Holder 
l l 

continuous on [ -1, 1] and that it satisfy the orthogonality condition 
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S 1 i\ (t}dt = 0 

-1 1 
( 1 -t2 )2 

Under these conditions (the orthogonality condition is trivially satis-

fied by the symmetry of the problem), the solution for r (s) is (see 
l 

[4]. §88) 

1 ,... 1 13 (t)dt 
r (s) = .!_ (l -sz)2 A:_ -"'-1 ---

1 iT J_l 1 
(1-t2 )2 (t-s) 

The solution of the Riemann-Hilbert problem gives the same results. 

>'c 
Equation (2. 21) can now be used to find 13 '(s). 

l 

3. The Physical Plane 

FromEqs. (2.2) and (2.3), 

~~ = U e -w(~) 

Using { 2. 1 ), 

(i. 22) 

Thus, the physical plane is found by an integration in the s -plane~ 

z (s ) = A s s e w (t;, I )s I dt;, I 

0 

(2. 23) 

The shape of the plate is given parametrically by 

z ( 5 ) = x ( s ) + i y ( s ) = A s s e w (t;, I )s I ds I . • 

0 

(2. 24) 

where -c ~ 5.:;; c. The integration from s' = 0 to s' = s can be 

taken on any path in the upper half plane because of the analyticity of 

the integrand. 
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Because of the symmetry of the plate, the plate width is given 

by 

2iy o = As c ew({, )i;. dt 
-c 

(2. 25) 

It will be convenient for subsequent analysis (Chapter V) to convert 

this expression for y to an integral over the real t axis from -1 
0 

to 1. 

Let the function w(t) by analytically continued across the real 

axis into the lower half t -plane by 

w(f) = -~ (2. 26) 

By w(I;. ), we now mean the function so defined on the entire i;. plane. 

This function is sectionally holomorphic with a line of discontinuity 

on the real axis from -1 to 1. Using (2, 6) and (2. 26), 

and 

w(~ iO) :: w (s) = ± r(s) + il3 (s) 
± 

* w + <s > = w _ <s > = il3 <s ) for 

Now consider the function 

for 

I; I > 1 

(2. 2 7) 

This function is uniquely determined on the entire i;, -plane by its jump 

in value across the line of discontinuity, - 1 ~ s ~ 1, and by its 

expansion at infinity (see [ 4] § 78 ). That is, F can be represented 

by 
l s 1 F +(t)-F _(t) 

F(t) = 2iri t - I;, 
-1 

n 

dt + \ 
l,; 
k=o 

(2. 28) 

if F is of degree n at infinity. The coefficients ak are found by 
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expanding F as j s I - oo. 

Letting j {, j - oo in the equation 

. S 1 r(t) 
w (t; ) = - :.. t _y d t 

Tl' -1 '::> 

we have 

w(S,) = ~s S 
1 . 

r(t)dt + ~ 
-1 Tr{, 

S 
l s 

t 2 r(t)dt + O(s -_ ) 
-1 

Thus 

e w(i;) ~ 1 + ~ s_: r(t)dt - 2 rr'~' ( s_: I'(t)dt r + 0((. _, 

as I~ I -oo, so that F is of first degree (n=l) at infinity,· 

F((. ) - ~ s_: I'(t)dt + (. as ls I -oo (2. 2 9) 

From (2. 27) we have 

(2. 3 0) 

Using Eqs. (2. 28) through (2. 30), 

r 1 if3 (t} . . ~ 1 
{,ew(t;) = _..!,_ \ te t i;smhr(t) dt + ~ \ r(t)dt +{, • (2.31) 

Tl'l J - 1 - Tl' J -1 

If this expression for t;ew({,) is substituted into (2. 25) and 

the integration in s is carried out we obtain 

2iy = 
0 

iA s 1 
Tl' -1 

t sinh r(t}sin 13 (t}dt 

+ iA \ l t sinh r(t) cos 13 (t }log c -t dt 
Tr j -1 c+t 

+ 2iAc s 1 r(t}dt 
Tl' -1 

A somewhat simpler expression for the first integral on the 
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righthand side of this equation is obtained by looking at Eq. (2. 31) 

as It l-+oo. The lefthand side becomes 

t + i. S 1 
r(t)dt - _i_( (' 

1 
r(t)dt)

2 

+ o(~) 
Tr -1 2~!;, \J_l t;, 2 

while the righthand side equals 

i; + !.. r(t)dt - r- t sin 13 (t)sinhI'(t)dt + 0 -·sl lsl \ll 
Tr -1 Tr~ -1 t z 

1 
Comparing the coefficients of r, we have 

s_: t sinh r(t)sin ~ (t)dt = 2~ (s_: r(t)dt) z 

Thus, y takes the form 
0 

y 0 = 4~ ( s_: r(t)dr + 2~ s_: t sinhr(t)cos ~ (t)log ~~: dt 

+ Ac s 1 r(t)dt 
Tr -1 

(2.32) 

Let d s be an element of arc length of the plate, measured 

positive from B to A. From (2. 22 ), 

{ 

Aer(s > Is Ids 
ds = I dz I 1 = 

pate Al SI 

for 

for 

The total arclength of the plate is given by 

or 

Isl~ i 

Is I > 1 
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4. The Drag 

The complex force acting on an element of the plate dz is 

given by 

dF ::; (p - p )( -i dz) 
c 

From Bernoulli 1 s equation. 

1 z 1 2 1 2. -z T 
p - pc = 2 p U - 2 pq = 2 p U (1 - e ) 

.Using this and the expression (2. 22) for dz, the total force acting on 

the plate is just 

D + iL = -i (' (p-p )dz 
jBOA c 

r 1 
= - iA· i pU2 j (1-e - zr)er+if3 g ds 

-1 

= Ap U2 s l s sinh r(s )sin f3 (s )ds 
-1 

Therefore, the lift L is zero and using (2. 32) the drag D is 

given by 

Since p and U are to be kept' constant in the optimization 

problem, it is convenient to give the drag the dimension of length by 

defining 2D>:< to be the length over which the hydrodynamic pressure 

~ · p U2 would act to produce the drag D. Thus, 

( 

1 . 2. 

n* = 2~ S_
1 

r(t)dt) 

Note that the drag coefficient of the plate based on the width 2y is 
0 
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just 

= 

5. Statement of the Minimum Drag Problem 

Using the results of the previous sections, the problem of 

minimizing the drag of a symmetric profile of given width, 2y , and 
0 

given arclength, 2s , reduces to finding two functions, 
0 

r(s) and 
1 

f3 
1 
(s ), and the constants A, c, and a, such that 

n* = :,, ( s_: r(t)dt )' 

as a minimum subject to the constraints 

y 0 = 2~ p ( s_: r(t)dt )' + s_: t sinh r(t)cos ~ (t)log ~~! dt 

+ 2c s_: r(t)dt ] 

•o = 1[ c' -1 + s_: .ri•l1 tldt J 
where 

2 .!. 
r(£ ) = 2a log (I+( I -s )2 ) + r (s ) ~ o 

TT I s l 1 

f3 (s) = Q sgn s + f3 (s) 
1 

(2.33) 

(2. 34) 

(2.35) 

(2. 36) 

(2. 3 7) 

Furthermore, r and f3 are related by either of the following sets 
l 1 

of equations (one implies the other): 
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(i) r (s) Holder continuous on [ -1, 1] 
l 

(ii) r (-s) = r (s) 
l l 

(iii) r(±l)=O 
l 

!. ~ 1 
r (t) 

(iv) f3 (s) = - +-s-dt for 
l 'Ir -1 

(i) f3 (s) Holder continuous on [ -1, l] 
l 

Isl ~ 1 

1 § 1 f3 (t) 
(iii) r (s) = !. o-s 2

)2 · 1 dt for 
l 'Ir -1 1 

(1-t2
)2 (t-s) 

Finally, ct and c are restricted to the intervals 

(2. 38) 

(2. 3 9) 

Is I ~ 1 
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III. OPTIMIZATION OVER A FINITE PARAMETER SPACE 

1. Expansion in Orthogonal Series 

In this section we investigate the method of expanding r (s) 
1 

and f3 (s) in a series of known functions with unknown parameter 
1 

multipliers and minimizing the drag (2. 33), subject to the isoperi­

metric constraints (2. 34) and (2. 35), by the proper choice of these 

parameters. This method is similar to that used in the Rayleigh-

Ritz method of minimizing integral functionals. 

A natural expansion for r (s) is afforded by the choice 
1 

n=l 

a sin(2n-l )<p 
n 

where s = cos<p, cp running from 0 to 'TT. From (2. 38(iv) ), 

is given by 

N 

f3
1 
(s) = - l. ancos(2n-l )cp 

n=l 

where the well-known formula 

§'TT sin me sine 
dB· = -'TT cos mcp 

cos e-cos cp 
0 

(3. 1) 

(3. 2) 

has been used. Notice that this. choice of r and f3 satisfy all con-
1 1 

tinuity and symmetry conditions. We now limit the class of plates to 

those with blunt noses; that is, we set a = ~ • This choice of a not 

only simplifies the calculations, but it is also motivated by the results 

of Chapter V, where it is shown that if a solution to the variational 

problem exists then this is the only possible value for a. Setting 
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a = ; in Eq. ( 2. 1 6), 

so that from Eq. (2. 24), 

S -c s -c w {~) 
z { - c) = x - i y = A e w (t;. )i;, d{, = A e 1 ~ + i )~ 

0 0 
o o· 

(3. 3) 

This integration is most easily done by a change of variable. 

Let 

(3. 4) 

where v =CJ + i'T, The t;. -plane, Imt;. ~ 0 is mapped into the half 

circle. I vi ~ 1, Im v =? 0 (see Figs. 4(b) and 5). The inverse trans-

form 

v = (3. 5) 

is chosen so that the point at infinity in the t;. -plane maps to v = 0, 

The endpoints of the plate, t, =± c, maps to v = + K, where 

or 
1 

K = c - ( c 2
- l )2 

(3. 6) 

It is readily verified that w as a function of v is given by 
l 

N 

w
1 
(v) = i l 

n=l 

2n-l 
a v :: if2( v) 

n (3. 7) 

On the section of the plate S 10S, corresponding to t, running from 



-zz;_ 

-1 to l on the real axis, v runs from 1 to -1 on the circle Iv I = 1. 

That is, 

i{'!T-cp) -icp 
v = e = -e 

where <p goes from 'IT to 0. Therefore, from Eq. {3. 7), 

N 

wl = - i l 
n=l 

-i{Zn-1 )rn a e · ..,, 
n 

N N 

= - I ansin{;2n-1 )cp-~ l 
n=l n=l 

a cos{Zn-1 )cp 
n 

which agrees with {3. 1) and {3. 2). Furthermore, on the free stream-

lines, T = 0, lo- l .:$ .1, w is purely imaginary and w - 0 as I vi - 0, 
l l 

With the use of Eqs. {3.4) and {3. 7), Eq. {3.3) becomes 

A s K H"'2{ v) ( + Z. 2 Zi + l ) x - iy = - - e v l - - - - - dv 
0 0 4. v z 3 

l v v 
{3. 8) 

In Appendix A, x
0 

and y 
0 

are evaluated by taking the path .of integra-

tion along L, 
E 

defined by the imaginary axis from v = i to v = ie , 

the circle ] v I = E from v = ie to v = E, and the real axis from 

v = e to v = K. In the limit E - 0, the expression for y 
0 

is found to 

be 

Y 
0 

~ ~ A[~ tK sin O(t) {2t - (2 
-O,' (t) f }dt 

+ tK cos O(t){2 + ~'?)} dt + ~ (2-a
1 
l' 

{
2 rl'{K)) + - - -- cosrl(K) 
K ZK 

1 
sinO(K)] 

J 
(3. 9) 

where 



N 

O(t) =I 
n=l 

Setting 

2n-l 
a t 

n 
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O'(t) = ~~ 

in Eq. ( 2 . 3 6 ) , 

1 

r(£) = Iog(1+(1-szf2)+ re£> 
I£ I 1 

Thus, (2. 35) becomes 

etc. 

Finally, making the change of variable t = cos 'I' and using Eqs. ~3. l) 

and (3. 6), s is given by 
0 

5o = ~ [ ~ !K+ ~ )2 

- I 

+ t" exp {- ~1ansin(2n-J)•p} (!+sin., )sin., dq>] 

(3. 1 0) 

The drag is given by 

D>:• = :; (S 1 r(t)dt) z = :; [S 1 log (1 +(l -tz )~ ) dt + s 1 r1 (t)dt] z 
-1 -1 It! -1 

The first term in this expression is easily evaluated by integrat-

ing by parts. Since the set {sin(2n-l )<P} is orthogonal the second term 

depends only on a 
1 

~:< 

The final expression for D is given by 



>:C 
D 

-24-

= Arr (2-a )2. 
8 l 

(3.11) 

>'.c 
The minimization problem reduces to minimizing D given by 

(3.1) subject to the constraints (3. 9) and (3.10) over the (N+2) -

dimensional parameter space 

2. The Case N = 1 

For N = 1, 

(A, K, a , a , ... , aN). 
l 2. 

Thus, a measures the flow angle from the vertical at the point S on 
l 

the plate (positive in the clockwise direction). The plate section S'OS 

is convex or concave when seen from the flow as a is positive or 
1 

negative (see Figs. 6 ). 

The integrals in Eqs. (3. 9) and (3.10) are easily calculated in 

terms of special functions. With N = 1, 

Therefore, (3. 9) becomes 

n(t) = a t 
l 

f2'(t) =a 
l 

n11 (t) = 0 

Yo " ~ A[i so K sin( a, t){zt - (2 "ta/ }dt 

+ 2 SK cos(a t)dt + ~ (2-a )2 

0 l l 
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Y0 = ~ i:, + a: 1 ) . -- s1naK 
2 1 

K 
1 

a 
1 

K 
2K) - - cos a K 
a i 

1 

where Si is the sine integral, Si(x} = s x 
0 

sin t 
t 

From (3. 10}, the arclength is given by 

dt. 

= A J _!_(K z + _l ) _ .!_ + ( l 
214 K z 2 

- -2_) 
da 

1 
S iT -a sin <P } 

0 

e 1 sin<Pd<P 

From the integral tables [ 6], 

S
iT -a sin<P . siT/2 -a sin<P 

e 1 sin <P d<P = 2 e 1 sin <P d<P 
0 0 

= 2 + iT [ L (a }-I (a ) ] 
1 1 1 1 

(3. 12} 

where L is the modified Struve function (see e.g. , [ 7], p. 498} and 
1 

I is the modified Bessel function. Using the expressions for the 
1 

derivatives, 

and 
L' (x) = L (x) - ~ L (x) 

v v-l x v 

I' (x) = I 
1 

(x} - ..!:'.. I (x) 
v v- x v 
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the final form for s
0 

is given by 

s
0 

= AB {K 2 + -
1
- + 6 + 4rr ( 1 + -

1
-) ( L (a )-I (a)] 

z a 1 1 i 1 
K 1 

- 4rr[L {a ) - I (a)]} 
0 1 0 1 

(3. 13) 

The apparent singularity at a = 0 in the expressions for y 
1 0 

and s given by (3. 12) and (3. 13) is removable. For small a the 
0 1 

following expansions are valid: 

Setting 

y 0 = ~ { ( 2rr + 4K + : I + ( ; K 3 - ~ - 4K - 2n)a I 

+(?Jc - jK' +;)a,'+ O(a:)} 

• 0 = ~{ ( 2" + K' +:, + 6) -1 1; + 2,,ja
1 
+(% + ~ Ja:+ 0(.?

1
)} 

a = 0 and K = 1 in these equations gives 
1 

A 
y = s = -8 (2rr + 8) 

0 0 

which checks with the fa ct that a = 0, K = 1 corresponds to a flat 
1 

plate with no free-streamlines. 

The condition that the pressure be greater than the vapor pres-

sure of the liquid imposes an upper limit on the value of a. The con-
1 

dition p ;;:::: p imples !"{£) ?O for all £e [ -1, 1]. That is, 
c 

1 

r(s) =log {i+( 1-s2
)
2

) + r(s) 

ls l 1 

1 ( 1 +sin cp ) . 
= 2 log 1-sincp - a1s1n cp 

(1 ) . + 1 . 3 1 . 5 = -a 
1 

sin cp "3 sin cp + S sin cp + . .. ~o 
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Therefore; a -.::$ 1. If this constraint is not imposed, we see from 
l 

(3. 11) that plates with zero drag would be possible by choosing a = Z. 
l 

In general, on plates for which a > 1, ·there is a region near the ends 
1 

of the segment S 'OS where p < p . 
c 

In addition, a cannot become too negatively large if the flow 
l 

is to remain single sheeted. For large negative values of a , the 
l 

plate curls around on intersects itself near the points S and S 1
• An 

Tr arbitrary lower limit a
1 

= - 2 seems reasonable. 

Some examples of actual plate shapes for various values of a 
1 

and K are shown in Figs. 6. The shape of the section OS is found 

by numerically integrating the differential relations 

r(s) . l 
dx = - l. el sinf3 (s)[l+(l-5 2

)
2 ]ds 

l y 

r (£) i 

dy = 
1 

e 1 cosf3 (s) [ l+{l-s 2
)
2 ]ds 

1 y 

1 

from 5 = o to 5 = 1, with r(s) = - a {l-sf2 and 13 (s) = - a 5. The 
1 1 1 1 

shape of the free-streamline section of the plate SA is given para-

metrically by the equations 

x(t) = -1-{(2-a l'-y(a ,t) + e-\(2 + 6 + 5 - a
1 

) 
8y l 1 az a 

1 
l 

4 a 
!t) sin at+(_]__ z a~)cosa;} +(t -.+ - - -

1 i tz az. 
1 

1 { ( z 4 y(t) =-=- - + a -
8y a 2 

i 
1 

' . 
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where t runs from 1 to K and 

{ 

Ci(a t) + E (a ) 
1 1 1 

)'(a ,t) = logt 
1 

Ci(-a t) - Ei(-a) 
1 1 

for 

for 

for 

a >O 
1 

a = 0 
1 

a < 0 
1 

Here, Ci is the cosine integral and E and Ei are exponential 
1 

integrals. This expression for x is found by carrying out the integra-

tion in the expression for x given in Appendix A for the case N = 1. 
0 

The normalization factor 

y =~{(a:'+ a: K~l sina1K +V- Ka, - ~) cosa1K 

+(2-a,)'[~ -Si(a
1
K)J} 

that appears in these equations simply gives all of the plates the same 

width, y(K) = 1. 

The problem of finding the optimum profile among the class of 

plates for which w ( v) = ia v 
1 l 

1T 
and a = 2 reduces to the problem of 

minimizing D):' given by (3. 11) subject to the constraints (3. 12) and 

(3. 13). This corresponds to extremizing 

):c 
I = D (A, a ) - >.. s (A ,K , a ) - >.. y (A, K, a ) 

1 10 1 zo 1 

where >..
1 

and >..
2 

are unknown constant Lagrange multipliers. For a 

minimum I, we solve the equations 
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a1 an):c as Oyo 0 >.. = 0 a.A = ax- - >.. ax- - z ax-1 

~:c as ay 
a1 an - >.. 0 - >.. 0 0 ( 3. 14) aa = aa aa- z aa = 

1 1 1 1 

* as ay 
a1 an - >.. 0 - >.. 0 = 0 'lfK = air 1IK z me-1 

These three equations, together with (3. 12) and (3. 13) determine the 

five unknowns A, K , a, >.. , and >.. • 
1 1 z 

A necessary condition for the solution of the three equations 

(3. 14) in two unknowns, >.. and >.. , is that the determinant 
z 

:l,c as Oyo an 0 

~ ]A aA 
)., as ay 

A= 
an" 0 0 

aa aa- a-a 
1 1 1 

an* OS Oyo 0 

8iC ac- ~ 

vanish. Evaluation of these partial derivatives gives 

'TT ) z - (2-a 
8 1 

':: 
an 
~ =0 

cs 
0 

BA = ~ fK z + _l + 6 + 4'TT { 1 + _l ) ( L (a) - I (a)] l Kz a 1 1 1 1 

- 4'1T( L (a ) - I {a ) ]} 

1 

0 1 0 1 
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aa- = AB { 4rr ( 1 + -1 
) ( L (a ) - I (a ) ) 

a o 1 o 1 

that 

where 

and 

1 1 

- 41T ( 1 + -1 + ~i [ L (a ) - I (a ) ] - 8} a z i i 1 i 
i a 

1 

ay 
0 

aa 
1 

ayo A ( 
a,c=4 1-

By factoring various rows and columns of A, it can be shown 

A - 1T ( ~} z (2-a
1

) ( 1 1) ~ - 4 - A 
K z 

t t t 
1 1 1 z 1 3 

....., 
(3.15) A = t t t 

z 1 zz Z3 

t t t 
3 1 3 z 3 3 



t = 2. - a 1 
1 1 

t = - 2. 
2 1 

t = 0 
3 1 
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t =K2+_1_ 
1 z. 2 

+ 6 + 4rr ( 1 + - 1 
) [L (a) - I (a ) ] 

a . 1 1 1 1 

t 
22 

t 
3 z. 

t 
13 

t 
Z.3 

K 1 

- 4rr [ L {a ) - I (a ) ] 
0 1 0 1 

= 4'Tl" ( 1 + -1 
) [ L {a ) - I (a ) ] 

a o i o i 
1 

-4'Tl"(l+a
1

1 

+2)[L(a)-I(a)]-8 
az. 1 I l I_ 

1 

1 = K + -K 

=(a2z. 
4 

-
1-)sina K + a Kz. 1 

1 
1 

(
2K 2K ll = 2 - + - - - cos a K z. a K 1 
a 1 . · 

1 

2 
a 

1 

+(: -

a 2K) . 1 
'K - - cos a K 

a l 
1 

Therefore, ~ = 0 for the following cases: 

(i) A= 0 

(ii) a = 2 
1 

(iii) K = l 

"" (iv) ..6. = 0 

(3. 16) 
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We can rule out {i) since for A = 0 the plate reduces to a point in the 

z-plane. The case a = 2 violates the pressure condition p ;;;:.p . 
1 c 

The case K = 1 is discussed below. It corresponds to maximum drag 

profiles if a < 0 and plates of stationary drag {neither maximum nor 
1 

minimum)if a > 0. 
1 

....... 
The fourth possibility, A= 0, provides a relation between 

a and K • If we are interested only in the drag coefficient, 
1 

and the ratio of arclength to chord, k = s /y ' 
0 0 

this relation is all that 

is needed to complete the solution, since the factor A drops out of 

these quantities. 

Let a = f(K) be the curve on which A(a ,K) = 0. In Appendix 
l 1 

B, this curve is found for K near 1 by a Taylor series expansion. 

It is shown 

f(x) 
8 24TT 

= 3TT + 16 {1-K ) Z - {l-K)
3 + O(x -1)4 

{3TT +16) 2 

The general solution is found by fixing K at various values between 0 
....., 

and 1 and numerically solving A (a ·K) = 0 for a . This curve is 
1 1 

plotted in in Fig. 7. As K -o {ratio of arclength to chord goes to 

infinity), it can be shown that a is the root of the transcendental 
1 

equation 

(2+a )a [L {a )-I {a )]-(a 2 +2a +4)[L (a )-I (a)] 
11 01 01 1 1 11 11 

which is found to be 

In Fig. 8, 

a "'0. 1020 
1 

versus k = s /y 
0 0 

1 
(3-2a )a z 

= - 1 1 
11 (2-a ) 

-1 

is plotted for the 
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' cases for which A= 0: 

(i) 

(ii) 

a = f(K) 
1 

K = 1 

1 ~K > 0 

1T 
- --:Sa -:Sl 2 1 

Case (i) are minimum drag profiles, while case (ii) are maximum 

profiles if a < 0 and neither maximum nor minimum if a > 0. 
1 1 

Minimum drag profiles for various values of k are drawn in 

Fig. 9. 

profiles 

These profiles are found to be quite similar to Lavrentieff 

(a = O); however, from the expansions 
1 

y
0

(a
1
,K) = ~{ (8+2w) +[ 4(1-K)' - (zw+ 

1~) aJ 

+ 4(1-K)
3 

+[4(1-K)4 +(j + ~)a 1zJ 

+ 0(1-i< )
5

} 

s 
0

(a
1

, K) = ~ {(8+2rr) + [ 4( 1-« )2 
- (zw + 

1~ J a J 
t 4(1-K)

3 
+[5(1-K)

4 
+( ~ + ~1T) aJ 

+ 0(1-K)'} 

which are valid on a = f(Jc) for K ""1, 
1 

1 

it is easily shown that 

cD=CD [1- Ll6(k-1)2 +o(k-l)] 
0 

for the minimum drag profiles; while 

1 

CD :.c: CD [l - l.06(k-1)2 + O(k-1)] 
0 

for Lavrentieff profiles. He re, CD is the flat plate drag coefficient 
0 
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These results are not contradictory, since the two families of pro-

files were found by minimizing the drag under different isoperimetric 

constraints; however, it is surprising the plate shapes are as close as 

they are. This indicates the desirability of using a fixed arclength 

constraint rather than the constraint that the plate be confined to a 

rectangle, the latter constraint being, in general (for N > 1), more 

difficult to apply than the former. 
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IV. THE METHOD OF CALCULUS OF VARIATIONS 

1 . Introduction 

In this chapter, calculus of variations is used to minimize an 

integral functional of a Holder continuous function f(x) and its finite 

Hilbert transform, 

1 ~ 1 
f(t) g(x) = - - - dt 

TT t-x -1 
(4. 1) 

Although previously unpublished, this method was developed by 

Professor Theodore Y. Wu of California Institute of Technology. 

By way of introduction, we first consider the case in which the 

functional to be minimized is an integral of a quadratic in f and g. 

Consider the problem of minimizing 

J[ f(x), g(x), x] = S 1 
{a(x)f2 (x) + 2b(x)f(x)g(x) 

-1 
+ c(x)g2 (x) + 2d(x)f(x) + 2e(x)g(x)}dx 

subject to n constraints of similar form 

J.[f(x), g(x),x] = S 1 
{a.(x)f2 (x) + 2b.(x)f(x)g(x) 

l -1 1 l 

+ c.(x)g2 (x) + 2d.(x)f(x) + 2e.(x)g(x)} dx 
l l l 

= l. 
l 

i=l,2, ... ,n 

(4. 2) 

(4. 3) 

In the spirit of "classical" calculus of variations (i. e,, when 

the functional involves a function and its derivative), we minimize the 

new functional 



n 

I( f(x), g(x), x] = J - l X..J. 
1 1 
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where the {>... .} are undetermined Lagrange multipliers. Therefore, 
1 

we need only consider the problem of minimizing 

I[ f(x), g(x), x] = S 1 
{A(x)fz (x) + 2B(x)f(x)g(x) 

-1 

+ C (x)g2 (x) + 2D(x)f(x) + 2E(x)g(x)}dx 

(4. 4) 

with the understanding that the coefficients A(x), B(x), ... , E(x) may 

contain Lagrange multipliers; i. e,, 

n 

A(x) = a(x) - l >... .a.(x) 
1 1 

etc. 

Now suppose f(x) and g(x) extremize I and consider the 

variation of I due to variations of(x) and og(x) away from the extrem-

um solution. The fir st variation of I, which must vanish if I is 

extremum, is given by 

ol = 2 s l [ {A(x)f(x) + B(x)g(x)+D(x)}of(x) 
-1 

+ {B(x)f(x) +C(x)g(x) + E(x)}5g(x)]dx = 0 

(4. 5) 

The variations of(x) and og(x) are not independent but are related by 

og(x) = - .!.. r 1 of(t) dt 
1T J _ 1 t-x 

which follows from (4. 1 ). 

(4. 6) 

We now wish to substitute (4. 6) into (4. 5) and change the order 
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of integration over t and x. This is permissible if 6f(x) and the 

function 

G(x) = B(x)f(x) + C (x)g(x) + E(x) 

satisfy the integrability condition 

where of(x)e L and G(x)e L (see [ 5], §4. 2). We assume (4. 7) is 
p1 pz 

satisfied with the understanding that this condition should be checked 

once f(x) and g(x) have been determined. Substituting (4. 6) into (4. 5), 

changing the order of integration of t and x, and finally, replacing 

t by x and x by t gives 

o I = 2 S 1 
{A(x)f(x) + B(x)g(x) + D(x) 

-1 

+ .!.. t 1 
B(t)f(t) + C(t)g(t) + E(t) dt}of(x)dx = 0 

1TJ t-x -1 

Sihce of(x) is ai:bitrary, the singular integral equation 

A(x)f(x) + B(x)g(x) + D(x) 

+ .!_ C l B(t)f(t) + C(t)g(t) + E(t) dt = O 
1TS'_ 1 t-x 

must hold for I xi~ 1. 

(4. 8) 

If B(x), C(x), and f(x) are Holder continuous, Eq. (4. 8) can 

be reduced to a Fredholm integral equation with a regular, symmetric 

kernel. In some cases, however, it is easier to solve Eqs. (4. 1) and 

(4. 8) as a system of singular integral equations (see Ex. 2 below). If 

the notation for the finite Hilbert transform 
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H[ f] ; .!_ C l f(t)dt 
TT 3' t-X -1 

is introduced, Eq. (4. 8) becomes 

A(x)f(x) - B(x)H[ f] + H[ Bf] - H[ CH[ f] ] = - D - H[ E] (4. 9) 

The second and thfrd terms on the lefthand side combine to give 

H[ Bf] - B{x)H[ f] = .!_ s l ( B(t)-B(x)) f{t)dt 
TT t - X -1 

The Poincare-Bertrand formula ([ 4], § 23) can be used to rewrite last 

term of the lefthand side of (4. 9) as follows: 

-H[ CH[ f] ] = __ l _C l C(t)dt .C l f{u)du 
z 5' 1 t-x ~ 1 u -t 

TT - -

= C(x)f(x) + _l s 1 f(t)dt s l (-1- -_l_) C(u)du 
TTZ -1 t - X - l u-t U -X 

Thus , Eq . ( 4. 9 ) reduces to 

{A(x)+C(x)}f(x) + s l K(t,x)f(t)dt = -D(x) - H[ E] 
-1 

where 

(4.10) 

K(t, x) = TTl (B(!)=~(x)) + l s l (_J_t - -
1
-) C(u)du. (4. 11) 

TTZ(t-x) -1 U- U-X 

In the next section, it is shown that a necessary condition for 

the existence of a minimizing solution is that A{x) + C{x) > 0 for 

I x I < 1 . If we let 
~ 1 

f (x) = {A(x) + C(x)}:'ff(x) (4.12) 

Eq. (4. 10) becomes 



where 

f (x) + S 1 
K(t, x)f (t)dt = 

-1 

-
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D(x) + H[ E) 
1 

{A(x)+C(x)}2 

K(t,x) =K(x,t) 

1 1 

= {A(x)+C(x)}~ {A(t)+C(t)}-2K(t, x) 

and K is given by (4. 11 ). 

(4.13) 

(4.14) 

Equation (4. 13) is now subject to the well-developed theory of 

Fredholm integral equations. The kernel and righthand side of (4. 13) 

may contain unknown Lagrange multipliers. Ideally, the integral equa-

tion would be solved for arbitrary values of A. , A. , ••• , A. n· 
1 2. 

Equation (4. l) then gives g{x) and the n constraints (4. 3) determine 

the {A. . } • 
l 

We now consider two examples: 

Example 1: Minimize 

("\ 1 
J = j [ f2.(x) + 2iTx3f(x)g(x)] dx 

-1 

subject to the constraint 

In this case, 

J = S 1 
f (x )dx = 1 

1 -1 

A{x) = l 

B(x) = iTX3 

1 
D(x) = .., z A.

1 

C(x) = E(x} = 0 

f(x) = f (x) 

(4.15) 

(4.16) 
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The integral Eq. (4. 13} becomes 

S 1 - 1 
f(x) + K (t, x)f(t)dt = 2 A. 

-1 l 

where 

;r -;rx z. z. - ~ t3 3) K(t,x) =K(t,x) = iT t _ x = t + xt + x 

The solution is easily found to be 

A.
1 

is determined from Eq. (4.16). 

Thus, 

S 
1 

f (x)dx = 
-1 0 

.!2_ A. (5 - 2) 
89 l 

= 45 A. = 1 
89 l 

From Eq. (4. 1), 

g (x) = - H[f] = - -
1 {(~ - 3x2 )log(!2..)- 6x} o o 3;r 2 1 +x 

Using these forms for f and g in Eq. (4. 15), the minimum 

value of J is 

J 
0 

. 9888 .... 

In some instances f and g may be required to be Holder con-

tinuous on [ -1, 1] . This means, in particular, that f(± 1) = 0. Only 

in exceptional cases will the solution to the variational problem have 

this property. In case f and g art· required to be Holder continuous, 

a natural approach is to expand f and g in orthogonal series 



M 

f(M) = l ak sin kcp 

k=1 
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where x = cos cp, and then minimize J with respect to 

Note that the above equations satisfy (4. 1) for all {~}. 

a , a , ... , aN. 
l z. 

In this particular example we can set the coefficients of the even 

sine and cosine terms to zero; i.e. , let 

N 

f(N) = l aksin(2k-l )<p 

k=1 

N 

g (N) = l akcos {2k-l )cp 

k=l 

(4.17) 

Equation (4. 16) requires that a = ~ for all N. Let J(N) be 
l 'IT 

the minimum value of J found by subs ti tu ting ( 4. l 7) into ( 4. 15) and 

minimizing with respect to 

ing results: 

N 

1 

2 

3 

4 

5 

6 

a , a , 
z. 3 

1.040376 

0.992061 

0.989884 

0.989380 

0.989185 

0.989088 

We obtain the follow-
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N J(N) 

7 0.989033 

8 0.988998 

9 0.988974 

10 0.988957 

The particular advantage of the result of the variational technique 

is th.at it makes it possible to. determine just how well the Holder con-

- tinuous functions f(N) and g (N) minimize J. 

Example 2: Minimize . 

subject to 

J = s l f(x)dx = I 
l -1 . 

Here k is a constant greater than -1 and 

A(x) = I 

C(x) =.k 

D(x) = - .!_ X. 
2 l 

B(x) = E(x) = 0 

(4.18) 

In this case it is best to solve the singular integral Eqs. (4. 1) and (4. 8) 

directly rather than the Fredholm integral equation. 

Equations (4. 8) and (4. 1) can be written 

f (x) + kH[ g] = ~ X. 
1 

(4.19) 
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g(x) + H:[f] = 0 (4. 20) 

respectively. 

Case I: k > 0. Multiplying (4. 2.0) by ±Jk and adding it to 

(4. 19) gives the separated equations 

= _!__ A. 
2 1 

F _(x) - jk H:[ F _(t )] 

where 

F ± {x) = ·f(x) ± Jk g{x) 

These singular integral equations are easily solved by the method 

of Muskhelishvili ([ 4], Chap. 14) giving 

F (x)= A.1 [l+x)±y 
± 2jl+k l-x. 

where 

= .!._ tan -l fiZ" . '( 'lT JK 

Therefore, 

f (x) = A. 1 {(l+x )'{ +f 1-x )'{} 
o 4 }l+k 1-x \ l+x 

A. i {( 1 +x )y ( 1 -x }'{} g (x) = - - -
o 4Jk(l +k) 1-x l +x 

(4.21) 

Equations (4.19) and (4. 20) are easily checked by the identity 

. fi( l+t) ±'{] ( l+ )±'( }:I~ l -t = ± CSC 'lT'( .f. COt'!T'{ l-~ 

where 
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cot 1T'( 
1 

= -:Jk 

Using the equation 

the Lagrange multiplier is found from the constraint equation. 

Thus, 

S 1 "- pj+k · i r 
f (x )dx = 1 

• 4 -- tan - v k = 1 . 
-1 ° 4)l+k k 

A. 
l 

Jk = ---==-
tan-1/k 

(4.22) 

(4. 23) 

The minimum value of J is found by substituting (4. 21) into (4. 18) and 

using (4. 22) and (4. 23). 

A. 2 

Jo= 16(l~k) 

A. z 
l = 8(l+k) 

= 
2tan -1[k 

Case II: k = 0. In this case it is easily shown that 

f 
0 

(x) = constant = ~ 
1 

Jo= 2 

which agrees with Case I as k-+ 0, 
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Case III: -1 < k < 0. Using methods similar to those employed in 

Case I, it is easily shown that 

f {x) = 
0 

h. 
1 

2 }l+k 

)... 

cos {y log i ~~) 

go(x) = l 

2j-k{l+k) 

. { 1 · 1 +x ) 
sin "Y og l -x 

where 

)... 2 J-k = log( l+ [:k) l 

1-J-k 
1 log( 1+/:k) '{ = 21T 1-r-k 

The minimum value of J is found to be 

J-k 
= 

log( l+hl 
1-J-k 

To compare the variational method with the Fourier series 

1 
method, we choose k = - 4 , 

J 
0 

in which case, 

1 
= 210g 3 ....... 455119 

The Fourier series method g:i.ve::: the following results: 

N 

1 0.472832 

2 0.458504 

3 0.456182 

4 0.455540 
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N J(N) 

5 0.455311 

6 0.455216 

7 0.455173 

8 0.455152 

9 0.455142 

10 0.455136 

Again, J(N) seems to converge to J , even though the Fourier 
0 

expansions. f(N) and g(N). are poor representations of f
0 

and g
0

, 

particularly near the ends where the extremum solutions oscillate 

infinitely fast. It should be noted that the higher order coefficients ak 

do not seem to converge, but oscillate wildly as N increases. 

2. A Necessary Condition for a Minimum Solution 

Consider the problem of. minimizing a functional of the form 

I =S 1 
F(f(x), g(x), x)dx 

. -1 

where f and g are related by 

g(x) = - l_ ,C 1 f(t) dt 
'Tl" J_ 1 t-x 

The first variation of I, which must vanish for arbitrary 

(4. 24) 

variations, of(x) and og(x), about the extremal solutions, f(x) and 

g(x), is given by 

61=S 1
[Ff(f,g,x)of(x)+F (f,g,x)og(x)]dx = O 

-1. g 
(4.25) 
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The variations of(x) and og(x) are not independent, but are 

related by 

6 g(x) = - .!_ ~ 1 of(t) dt 
'IT J t-x -1 

(4.26) 

which follows from (4. 24). Now suppose F (f(x), g(x), x)e L and 
g Pt 

of(x)E LPz with 

+ 

With this assumption, it is permissible to substitute (4. 26) into 

(4. 25) and reverse the order of integration over the t and x variables. 

This gives 

S 1 [ l £ 1 F (£, g, t) l 
ol= -l Ff(f,g,x)+'ITJ_l gt-x dtjof(x)dx=O 

Since of(x) is arbitrary, the following nonlinear singular integral 

equation must hold for lxl ~· l: 

l ~ 1 F (f(t), g(t), t) 
Ff(f(x),g(x),x) +'IT J g t _ x dt = 0 

-1 
(4.27) 

We now suppose that Eqs. (4. 27) and (4. 24) can be solved for the 

extremal arcs f(x) and g(x). Under what condition does this solution 

actually provide a minimum of I? 

To study this question, we look at 

~I = S 1 
F(f+Of, g+og, x)dx - S 1 

F(f, g, x)dx 
-1 -1 

which should be positive for arbitrary of and 6 g. Suppose that ~I 

can be closely approximated by the first two variations of I, 



where 

+ F (f,g,x){6g(x)}~dx 
gg 

-48-

(4.28) 

Since 61 = 0, the condition that I be a minimum requires 

for all variations 6f(x)and 6g(x) consistent with Eq. (4. 26). 

Consider the case in which Fff(f(x), g(x), x), Ffg(f(x), g(x),x), 

F (f(x), g(x), x), and 6f(x) are all Holder continuous on [ -1, 1]. The 
gg 

second term on the righthand side of (4. 28) can be rewritten 

2 S 
1 

F fg(f, g, x)6f(x)6g(x)dx 
-1 

= - 2 S 1 
Ff (f,g,x)6f(x)H[6f(t)]dx 

-1 g 

= 2 s l H[ Ff (f, g, t)6f(t)] 6f(x)dx 
-1 g 

=-
ls ls l(Ffg(f(t),g(t),t)-Ffg(f(x),g(x),x)) 

- 6 f(t )6 f(x )dt dx 
'IT -1 -1 t - x 

The second line follows by the substitution of Eq. (4. 26) and the 

third line is a result of reversing the order of integration. The last 

line is just the mean of the two previous lines. 

By similar operations and the use of the Poincare-Bertrand 

formula, the third term on the righthand side of (4. 28) can be written 
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S 
1 

F (f,g,x){og(x)}ldx =S 1 
F (f,g,x)H[of] H[of]dx 

-1 gg -1 gg 

= -s l H[ F H[ of] ] Of(x)dx 
-1 gg 

= S 1 
F (f, g, x ){of(x))ldx 

-1 gg 

Combining these results, Eq. (4. 28) becomes 

ozr = S1 
[ Fff(f(x), g(x), x) + F (f(x), g(x), x)] {of(x)}zdx 

-1 gg 

where 

+ .!._ s 1 s 1( x (t)=x (x)) of(x)of(t)dt dx 
1T -1 -1 t x 

1 C 1 F (f(u), g(u), u) 
x(x) =Ff (f(x), g(x),x) - - ~ gg du g ir..,_

1 
u-x 

(4. 29) 

Since Ffg and F gg are assumed to be Holder continuous on [ -1, l], 

x (x) is also Holder continuous except possibly at the endpoints where 

F (f(x), g(x), x) t 0. 
gg 

Now consider a special choice of of(x): Let 

( 
x-x ) 

of(x) = Mfl E 
0 

where Tl is H~lder continuous and 

0 < TJ(u)<. 1 for lul <. 1 

fl(U):: 0 lul ~ l (4. 30) 
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M is either positive or negative and is chosen so small that 631, 6 4 1, 

etc. , can be neglected in comparison with 6?I. x is any fixed point 
0 

in the open interval (-1, 1) and, for the time being, e is chosen so 

that I x ± e I < 1 . 
0 

With the choice of of, the limits of integration in the expres -

sion for 6?1 given by Eq. (4. 29) can be taken from 

Since x (x) and the function 

®(x) = Fff(f(x),g(x),x) + Fgg(f(x),g(x),x) 

are Holder continuous on this interval we have 

µ 
I x(t) - x(x)I ~A It - x)I 1 

1 

X -E 
0 

to X + E • 
0 

(4. 31) 

with O < µ ~ 1 and 0 < µ ~ 1, for any x and t in the interval 
1 ? 

[x -e,x +e]. 
0 0 

By adding and subtracting a term, Eq. (4. 29) can be written 

where 

[ ®(x) - (8Xx )] {of(x)F dx 
0 

x +e s 0 

( x\t)_-~(x) )of (x)of(t)dtdx 
x -t 

0 

(4.32) 
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Using the inequalities (4. 30) and (4. 31), it follows that 

l +µ s l s l µ -1 
+ A M 2 E 

1 ju - v I 1 ri (u)ri (v)du dv 
1 -1 -1 

z.+µ 
<(2A M2

) i+µ (2 1 A M2
) i+µ ....,;: Z. Z. + 1 E l 

1 +µ E µ (1 +µ ) 
2. 1 l 

We now shrink the interval over which Of is nonzero by let-

ting E go to zero. As E _. 0, the first term on the righthand side of 

Eq. (4. 32) dominates, so that a necessary condition that 62.I > 0 is 

that 

G::(x) = Fff(f(x ).g(x ),x) + F {f(x ).g(x ),x) > 0 (4.33) 
0 0 0 0 gg 0 0 0 

for every x E(-1,1). 
0 

If F is quadratic in f and g, as in the previous section, 

condition (4. 33) is independent of the extremum solution; i.e., oz.I> 0 

.requires 

A(x ) + C(x ) > 0 
0 0 

for Ix I < i. 
0 

This condition is satisfied in the two examples considered in the last 

section. 
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V. APPLICATION OF THE VARIATIONAL TECHNIQUE 

TO THE MINIMUM DRAG PROBLEM 

1. Introduction - The Singular Integral Equation 

In this chapter we apply some of the theory developed in the 

last chapter to the minimum drag problem, a concise statement of 

which appears in Ch. II, § 5. 

The problem of minimizing the drag (2. 33) under. the constraints 

of fixed chord, y 
0

, and fixed arclength, s 
0

, is seen to be equivalent 

to finding the extremal arcs r (s) and l3 (s) and constants A, c, and 
l l 

a, which satisfy the isoperimetric constraints, (2. 34) and (2. 35), and 

either of the functional relations, (2, 38) or (2. 39), and extremizes the 

functional 

where 

>'< 
I( r (s ),13 (£), £) = D' - A. s - A. y 

l 1 l 0 2. 0 

S 
1 . 

= F(r(£J,.l3(£),£;A,c,>.. ,>.. )ds 
-1 l 2 

~ ). z [~~ (s _: r( t)dt l r(i; ) + 2~ !; sinh r(i; )cos ~ (S)log ~~~ 
+ ~c r(i;)] 

and r (s) and f3 (s) have the form 

(5. 1) 
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1 

2a (l+(l tZ.)2) r (s ) = - log -s + r (s ) 
Tr Isl 1 

13 (s) = Cl.' sgn s + 13 {s) 
l 

>.. 
1 and >.. are undetermined La.grange multipliers. 

2. 

and 

The fir st variation of I is given by 

8I 8I 
oI = oA oA + oc oc 

+As_:{! s_: r(t)dt - l\ ~ .r<S>1 SI 

- ). 
2

( 2~ s_: r(t)dt + 2~ s cosH cos~ log ~~i + ~ l }or(SJ<lS 

+A SJ ).
2 2~ S sinhr sin~ log ~~~) 6~ (S)dS 

8I 8I 
= 8A oA + oc oc 

S i { i s 1 z1 er (s) I(: I + A ·.-l :; -l I'(t)dt - >.. 1 '=' 

- A,( 2~ s_: r(t)dt + 2~ S cosH.,os~ log ~:\ + ~ 

. - 2~ H[ t sinh r(t)sin ~ (t) log ~~~ JJ}or(S )dS 

This last step is possible if 

1 

or(£)= 2oa lo (1+(1-s')2) +or(£) 
Tr g Isl 1 · 
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F 
13 

= A 2 t; g sinh r(s )sin 13 (g )log ~~i 

satisfy the integrability condition 

where or(s)E L and FAE L . 
PI t-' pz. 

This condition can be checked only when r and 13 have been 

determined; however, if we assume or (g) and r (g) are bounded, 
l 1 

c5 r(s} is finite except at the origin where 

2 2 or(g)-oa - log 
lT I g l 

Therefore, p
1 

can be chosen as large as we please. In addition, F l3 

is bounded since as I g I -+ 0, 

F ......, -
13 

2A A 
z 

lT 

r(o). (' sl )2(1- ~) 
e 1 s1na -

2
-

where 0:::; a::;; tr. Hence, p can also be chosen arbitrarily large. 
2. 

We now choose A 
1 

and A 
2 

so that partial derivatives I A and 

I vanish; i.e. , 
c 

ar 
oA = 

ar 
ac = 

··-an 
,,. 

- A oA I 

··-
8D 

'•' 

- X. ac-

as ay 
0 - A 0 

0 BA oA = z 

OS ay 
0 - X. 0 

0 ac Fe = 
2. 

Since or(s) is arbitrary, the following nonlinear 

integral equation must hold for Isl < 1: 

(5. 2) 

(5. 3) 

singular 
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...... l 
.!... \ r(t)dt - x. ~ er(s)is I 
1T j -1 1 

- A. (-
1 s l I'(t)dt + -2

1 s cosh r(s )cos 13 (s )log ~ 
z 21T -1 1T c+s 

c 
+ 1T i1T H[t sinhI'(t)sinl3 (t)log ~~!J) = 0 (5. 4) 

>!< 
Since D,s

0
, and y

0
, dependlinearlyon A, theequation 

* D -A.s -A.y =0 
1 0 2 0 

(5. 5) 

follows from Eq. (5. 2 ). 

From Eqs. (2. 33 ), (2. 35 ), and (2. 25), it is easily shown that 

,., 
an'_ 

0 ac -

as 
0 ac- =Ac 

ay 
0 >:i:: ac- =Ac sin 13 (c) 

:>:C 
Here, 13 (c) is the flow angle at the endpoint A of the plate (see Fig. 

1 ). Therefore, Eq. (5. 3) gives 

. * A. +A. sm13 (c)=O 
I l. 

(5. 6) 

Solving Eqs. (5. 5) and (5. 6) for A. and A. , it is possible to 
1 z 

identify the Lagrange multipliers with several par<'lmeters of the 

problem. 

A. = 
1 

>:i:: 
s s in 13 ( c ) -y 

0 0 

= ':::: 
k sin 13 ( c ) - l 

(5. 7) 
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2. 
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* D 
>'< 

s sin f3 '(c)-y 
0 0 

= >:< 
k sin f3 ( c ) - 1 

• (5. 8) 

2. Reduction of Eq. (5. 4) to an Integral Equation with Regular Kernel 

By taking account of the functional relation 

§1 
f3 (s > = - .!.. W dt 

'IT t-c; -1 

it is possible to reduce the singular integral equation (5. 4) to an 

integral equation with a regular kernel. 

If we let s ._ s :I: iO for I s I < I, in Eq. (2. 31 ), we have by 

Plemelj' s formula 

+ S 1 teif3(t>sinhr(t> dt}+ !..S 1 
_ 1 t _ ; 'IT _ 1 r (t }dt + s 

Adding these equations and dividing by two gives 

s coshr(s)eif3 (s) = ~ r 1 tei!3 (t)s;nhI'(t) dt + ~ ~ .. l I'(t}dt + .s 
'll'l J -1 t - 'IT .... -1 

The real part of this equation reads 

s cosh r(s )cosf3 (£) = H[ t sinh r(t)sin 13 (t)] + s (5. 9) 

The substitution of Eq. (5. 9) into the integral equation (5. 4) 

gives 
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1 s 1 A - I'(t)dt - - 1 

'IT -1 2 
er(£)1£l -i.., ( 2~ ( r (t)dt 

+ s log c-s £ + s 1 tsinhI'(t)sin!3 (t)K(t,£;c)dt) = 0 ,(5.10) 2'!T c+s + 
'IT -1 

where 
c+t c+£ 

1 log c -t - log c=;-
K (t, £ ;c) = - t-s 

2 'ITZ. 

(5. 11} 

is a regular kernel 

(
K(£,£;c)=.-l c ) 
. . 'ITZ. CZ.-£ 2. 

From Eq. (5. 10 }, we see that er(s} I g I possesses the follow-

ing series expansion about £ = 0: 

where 

etc. 

er(S)ISI = ;
1

{;(1 - ~·)j_'. r(t)dt - i..,(25,, log 

+ ~ + s_: t sinh r(t)sin ~ (t)K(t, g ;c)dt)} 

= c + c £2 +. 
0 l 

A ) l --t S r(t)dt 
-1 

- A ( ~ + -
1
- s l sinh r (t}sin j3 (t}log c+t 

z. :rr 2'!Tz. -1 c-t 

1 S 1 
sinhr sin j3 ( L~ log ~~~ -

2'!T2 -1 -i;-

On the hand, from Eq. (2. 36), 



or 

1 2a --
- Isl 'IT 

2a 

(2) 'IT 

r (o) 
e l as 

These two results are consistent only if 

1 - 2a = 0 
'IT 

. a 'IT 
= 2 

Isl - o 

This means that the plate shape which solves the variational problem 

must have a blunt nose. (Note: We can rule out the case C = 0, 
0 

since if C = 0, the two expansions for e rl s I are consistent only if 
0 

1 
_ 2a 

'IT 
= 2, or a = - ; ; however, this violates 0 ~a~ ; • ) 

3. Factorization of the Integral Equation 

From Eqs. (5. 7) and (5. 8), we see that the Lagrange multipliers, 

A. and A. have the multiplier 
l z. 

in common. Thus, the integral equation (5. 10) is satisfied if 

t: r(S)dS = o 

i.e., if the plate was zero drag. This case, however, violates the 

pressure condition p ~ p . We rule out this case by dividing Eq. 
1 c 

(5. 10) by the term s r (s )ds. This gives 
-1 
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. 1 

+ }rr log ~~~ + ~ + S_
1 

t sinhr(t)sinl3 (t)K(t, £;c)dt) = 0 , {5.12) 

where 

......, ...... 
i.e., A. and A. satisfy the equations 

1 z. 

1:'1 {~ (c' -1)+ ~ s_: ~r(Sl[S[<lS} 
+ ~. { 4~ (s_: r (S lc!S )' - 2~ s_: S sinhr cos ~ l,og ~~j <lS 

+ ~ s_: r(S )d+ 2~ s_: r(S )dS (5. 13 l 

""""""" ...._ ~:< 
A. + A. sin l3 ( c ) = 0 

1 z 
{5.14) 

. These last equations follow from Eqs. (5. 5) and {5. 6). 

The above factorization is equivalent to factoring out the solu-

tion a = 2 in the parameter problem of Ch. III, §2. 
1 

Equations (5. 12) through {5. 14), in which 

1 

r (s > = log ( 1+(1 -s z )2 ) + r {s) 
Is I 1 

and the equations 

(5. 15) 

(5. 16) 
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f3 (s) 
1 ~ I r

1 
(t) 

= - - ~dt 
1 1T t-

-1 
(5.17) 

,., 
-1 ( 1 } ~sl r (t) 

f3 , (c) sin c - 1 dt = 
1T -1 t-c (5. 18) 

(5. 19) 

(5. 20) 

complete the system of equations for the variational problem. In Eqs. 

( 5 . 1 9 ) and ( 5 . 2 0 ), 

(2. 35). 

so' Yo' 
>:C 

and D are given by Eqs. (2. 33) through 

Ideally, the integral equations (5. 12) and (5. 17) would be solved 
,..., ,..., 

for arbitrary values of· X. , X. , and c, the result of this calculation 
l z 

giving solutions, r (s; >: ' >: ' c) and 
l l 1. 

f3 ( s ; \ , \ , c ) . Subs ti tu ting 
1 l 1. 

these forms for r and f3 into Eqs. (5.13) and {5.14) gives two rela-
1 1 ,..., 

tions among the three unknowns, x.,x., 
l 1. 

and c. A third relation is 

given by (5. 19 ), once k has been given a specific value; however, it 

seems best to leave one parameter free and let it determine k. 

The results of the parametric problem for N = 1 (Chapter 

III, § 2) would indicate that this free parameter should be c, the 

parameter which determines how much of the plate is a free-stream-

line. As k - l+, we expect the plate shape to approach that of a flat 

plate with no free-streamline (c=l ). As k - oo, a plate which is 

mostly free-streamline (c - co) would seem to be the one of minimum 

drag. 

In summary, the following procedure for solving the variational 

\ 
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"" "" problem is proposed: For arbitrary values of A. and A. and for a 
l z 

given fixed value of c, solve Eqs. (5. 12) and (5. 19) for 

r (s; ~. ~ • c) and r3 (s; ~ • ~ ' c ). 
I I Z I I Z 

"" -Next, >... and A. 
z 

are deter -

mined from Eqs. (5. 13) and (5. 14 ). Finally, k and CD are given 

by Eqs. (5. 19) and (5. 20). Changing the value of c should give dif-

ferent values for k. As c -+ 1, we expect k-+ l; as c -+ oo, k-+ ao. 

4. Numerical Methods 

An analytic solution of the system of equations in the previous 

section seems out of the question because of their extreme nonlinearity, 

our only recourse being a numerical solution. As of now, however, 

even these attempts have failed. 

We rnention, briefly, one of the methods which have been tried, 

an iteration scheme. First, Eq. (5.12) is solved for r (£), giving 
l 

2 [l 1 s 1 
r

1
(;> = log 

1 
'IT - ~? ( 2 '1T r (t)dt 

>... ( 1 +(I -; z )2 ) -1 
l 

+ z" .. log c-i + ~ + s_: t sinhr(t)sin~(tk(t,f;;c)dtJJ} (5. 21 ) 

The integrals in Eqs. (5. 21 ), (5. 13), (5. 14), and (5.18), are 

approximated by Gaussian quadratures which involve only the values of 

r and (3 at the Gaussian abscissas. The Hilbert transform in Eq. 
I 

(5. 17) is accomplished by finding the finite Fourier expansion of r 
1 , 

M 

r (£) = S' a sin(2n-l )cp 
1 L n 

(S = COS<f>) 

n=l 

and using the for n1ula 
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a cos(2n-l }qi 
n 

c is given a fixed value greater than unity. An initial guess of 

r is made and 13 is found from Eq. (5. 17). Using these values of 
l l 

r and 13 , 
I I 

Eqs. (5. 13) and (5. 14) are solved for ~ 
l 

-and A. • New 
z. 

values of r ontheGaussianabscissasarefoundfromEq. (5.2l)by 
l - -substituting the old r ' 13 ' A. ' 

1 l l 
and A. , on the righthand side. 

z. 
The 

process is then repeated. 

This method does not converge. Among its more noticeable 

defects are (i) the argument of the logarithm in Eq. (5. 21) becomes 

negative, and (ii) the value of r as the endpoints are not zero, hence 
1 

13 
1 

becomes large as s - ± 1 and the integration of terms involving 

cos 13 and sin 13 by quadrature fails. Corrective steps such as in-

creasing the order of the Gaussian quadrature and forcing r to zero 
I 

at the endpoints have not helped. 

5. Linearized Formulation 

In the parametric problem for the case N = 1, Ir (s )I and 
l 

I 13 (s )I were found never to exceed 0. l 02 regardless of the value of 
l 

k. If this result bears any relation to the solutions of the variation 

problem, linearization of the system of equations in Section 3 of this 

chapter seems warranted; i.e., we neglect r 2
, r 13 , 13 z., etc., and 

l l I l 

integrals of these terms. 

Equations (5.12), (5. 13), (5.14), and (5.18), are linearized, 

keeping only linear terms in r (s) and 13 (s) and their integrals. The 
1 l 

following approximations are used: 
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1 

-{1+(1-sz.)2 }(1+r·(s)) 
l 

1 

s sinhr(s) = sgns{sinhr (s) + (1-sZ.)2 coshr (£)} 
l l 

1 

- sgn s{ (1-S z. )2 +r (s )} 
l 

sinl3(s) = sgn s cos13 (s)-sgns • cosl3(s)-- sgnsl3 (s) 
l l 

•:c 1 ( 1 s 1 rl(t} ) (cz.-1 )i ( 1 r 1 r (t) ) 
sinl3 (c) = c cos 'IT -l t-c dt - c sin;- j_

1 
t:c dt 

In the last equation the symmetry property r (-s) = r (s) has been used. 
l l 

With these approximations, Eq. (5. 13) can be written as 

S 
l 1 

~ [~ (cz.-1) + ~ {l+(l-tz.)2 }(l+r(t) )dt] 
l -1 1 . 

+~ [-4
1

('ITz.+2'ITS
1
r(t}dt)+ -2

1 S 1 
13 (t}(l-t~}ilog c+t dt 

z. 'IT -1 1 'IT -1 1 c -t 

+ ~ (rr + s_: r. (t)dt l} 2lrr ( rr + s_: r. (t)dt ) 

We now substitute 13 (s) = - H[ r] into this equation, change the order 
l l 

of integration, and use the formula 

where 

· -1 ( 1 +s c ) -1 ( 1 -s c } n (s;c) = sin c+s +sin ~ • . (5.22) 

J 
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This results in 

[ 
"'l 1 ] ~1 ~ (cz.-1) + ~ + i ~-l {1+(1-tz.)2 }~(t)dt 

+ ~ lc +~J!:_t(cz.-l)t)S 1 r(t)dt 
Z.L 4 '\2 1T _ 1 l 

SI· i ] sl + 2~ _
1 

r
1
(t)(l-t2

)
2 n(t;c)dt = ~ + 2~ _

1 
r

1
(t)dt • (5.23) 

. Using the above mentioned approximations, Eq. (5. 14) becomes 

....., ....., [ l (CZ. - l )t (' 1 r ( t) ] 
A. + A. - - \ - 1

-- d_t = 0 
1 z. C_ 1T j -1 t 2 - CZ. 

(5.24) 

....... -
Solving Eqs. (5. 23) and (5. 24) for A. and A. gives the follow- · 

l 2 

ing results, good up to linear order: 

~ = ~(~ + _l_s 1 r (t)dt + c(ci-1 )t ("' I r1 (t) dt) 
1 D 2 2ir -1 1 . 2ir j -1 CZ. -tz. 

(5. 25) 

(5.26) 

where 

I -
D = l._ (1-cz.) + ir (1-c) + ~ (1-c) s r (t)dt 

2 4 2 -1 l 

+ ~ s_: r, (t)(l -t'+ -~ n (t;c )} dt 

c(cz.-1 )t s 1 r (t)dt + c~c;-1 )t ( cz.+l + ~is 1 rl (t) dt 
1T -1 l 

2 -1 CZ.-~ 

(5. 27) 

The integral equation (5. 12) can be written 
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I A. 1 . 

'IT' - + {1+(1-s 2
)
2 }(1+r

1
(s)) 

.- >:", [ 2~ ( .. + s_: r;_ (t)dt) + 2; .. log c~i; + ~ 

+ s_: [ r
1 
(t) + (1-t')~]K (t, f, ;c)dt] = 0 

Using expression (5. 11) for the kernel, 

. ~1 1 ~l 1 

{ {l-tz.)2K(t,s;c)dt = _1_ (l-t')2log[ (c+t)/c-t)] dt 
J 2. t - g . -1 2rr -1 

1 

1 c+s ~ l (1 -t2)2 
- - log c-£ J t _ g dt 

2'IT2. -1 

t c-t rc-(c2 -l)t} (13 2 )t 
= - _'=> log. :-.-t- - tc + '=> n (s ·c) 

2 'IT c +s 'IT 2 'IT ' 

where !J is given by (5. 22). 

- -We now substitute the expressions for X. and X. given by (5. 25) 
l 2. 

and (5. 26) into the above equation and multiply through by D as given by 

Eq. (5. 27). Again, keeping only l~near terms, this finally gives 

1 /"' 1 
{1 + (1-£ 2 )2 }r (s) - \ K(t, s )r (t}dt 

l J -1 l 

= ~ (c2 -l)~{c-(c'-lh + (!-;')~[~ rl(f,;c)-1] (5.28) 

with 
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K(t,£)=2cK(t,£) 

Equation (5. 28) was solved numerically for various value of c . 

These results are plotted in Fig. 1 O. Since r (:1: 1 ) ¢ 0, f3 (£) is 
l l 

logarithmically singular as ~ - :1: 1 so that linearization is dubious at 

least near the endpoints. This situation is partially remedied by ap-

proximating r by a function which does vanish at the endpoints (for 
. l 

instance, by taking the fir st few Fourier sine components of I'); how-
. l 

ever, this gives values of CD which, for a given value of k, are 

consistently greater than those given by the minimum drag profiles of 

Ch. Ill, § 2. We conclude from ·this that the linearizci.tion of the non-

linear equations of the variational problem is not justified. 
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VI. DISCUSSION AND CONCLUSION 

>',< 
We have studied the problem of minimizing the drag D of a 

symmetric plate in infinite cavity flow, under the constraints of fixed 

arclength s and fixed chord y , by two methods - - the parameter 
0 0 

method and the variational technique. 

•'c 
Botrapproachesdependonthefactthat D-·, s

0
, and y

0
, can 

be expressed as integral functionals involving two functions, r(s) 

(essentially the logarithm of the velocity) and f3 (s) (the flow angle), and 
1 

two parameters, A (a magnification factor) and c (or K=c-(cz.-1)2 

(a free-streamline parameter). It was shown that r and f3 have 

the form 

n;) = 2a 
1 

lo (1+(1-gz)2)+r('") 
'TT g Is I 1 s 

f3(s) = asgns + f3 (s) 
l 

where 2a is the nose angle of the plate and 

·'-

1 ,f l r (t) 

f3 l (S) = - 'TT J -tr- dt 
-1 

In the variational problem, we minimize the functional 

I = D-,- - A. s - A. y where A. and A. are unknown Lagrange 
l 0 l. 0' l z. 

multipliers. This corresponds to solving 8I/8A = 0, oI/oc = 0, and a 

nonlinear, singular integral equation (5. 4 ). This system of equations 

is subsequently factored and the integral equation is reduced to a non-

singular integral equation (5. 12) the solution of which requires that 

Q' = 'TT/2. 



-68-

Since no solution of this integral equation has been found we can 

only speculate as to the outcome of the variational method. To sound a 

pessimistic note, it may turn out that the solution fails to have direct 

physical application; it might, for instance, fail to satisfy the pres -

sure condition r{g) ~ 0 or it could be that r (±1) 'f 0 in which case 13 
l l 

would become logarithmically infinite as g - ± 1 and the flow would be 

many sheeted. 

Nonetheless, such a solution (if it actually does minimize I) 

would provide an absolute lower bound for the drag which could then be 

used as a basis for comparison with other minimum drag profiles which 

are physically relevant (such as those found by the parameter method}. 

Final judgment of the usefulness of the variational technique as a design 

tool should await a more thorough investigation (most likely numerical) 

of the equations of Ch. V, § 3. 

>'c 
In the parameter method, expressions for D

0

, s
0

, and y
0

, 

were found in terms of {N+2) parameters - - A, K, a , a , 
l z 

- - by setting a = ; and expanding r
1 

and 13 
1 

in finite Fourier series 

with N terms. For a minimum I, we solve the (N+2) equations oI/ oA = 0, 

oI/aK = 0, and 81/oan = 0, n = 1, 2, ... , N. These equations plus the equation 

s /y = k (k, a given number greater than unity) are all that are need­
o 0 

ed to solve for the {N+3) unknowns - - A. , A. , K, a , •.. , a N- - since 
1 2. l 

A drops out of these equations. Finally, the drag coefficient is given 

>'c 
·by CD= D' /y 

0
• 

This procedure was carried out for the case N = 1 and found 

to give reasonable results, although it is difficult to tell just how good 

they are. To do this, one should solve the variational problem (which 
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essentially corresponds to N = oo) or do the parameter method for 

N = 2,3, etc., as was done in the two examples considered in Ch. IV, 

§ 1. 

The parameter problem for N > l would most likely require 

use of the computer, although it may be possible to find analytic solu­

tions by series expansion for K near unity. 

Aside from investigation of the variational equations and exten­

sion of the parameter method to N > 1, several areas for further 

study include the following: (1) An extension of the variational calculus 

method of Ch. IV to handle inequality constraints and constraints on the 

values of f (or g) at the endpoints, the case f(±l) = 0 being particular­

ly important; (2) Application of the methods of this paper to the mini­

mum drag problem and the hydrofoil problem with the possible use of 

more complicated finite cavity flow models, and; (3) Application of 

the variational technique of Ch. IV to other fields. The linearity of the 

integral equations for the case of functionals of quadratic form makes 

this method particularly well suited for application to problems involv­

ing energy constraints. 
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Fig. ·2(a) - Lavrentieff 1 s Solution 
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APPENDIX A 

CALCULATION OF PLATE LENGTH AND CHORD 

From Eq. (3. 8), 

2i 1 ) 
vz + 7 dv 

4
l A (I + 2iI - 2I 

1 z 3 
2iI + I ) 

4 5 
(A. 1) 

N 

where O(v) = l 2n-l 
a v 

n 
This expression is evaluated by taking the 

n=l 

path of integration along Le defined as follows: The imaginary axis, 

from v = i to v = ie; the arc l v l = e, from v = ie to v = E; and 

the real axis, from v = e to v =K (see Fig. 5). We then let the 

radius of the circular arc go to zero. Integrals I and I are 
4 5 

integrated by parts before integrating along LE. 

The following notation for n ( v} on v = i 7 is used: 

N 

-iO(i7}:: l\;(7) = l (-l}n+ian7zn- l 

n=l 

Integrals I and I can be evaluated directly ori L (i.e. , 
1 ? 0 

E = O}. 

(A. 2} 

• (S
0 

1
• --v<r>tdt + s: co• n(t)tdt) + i S

0

1( sinl"l(t)tdt 
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I = \Kein(v)dv = ro e-lj;(T\dT+ SK ei11(a)d0" 
z Ji j 1 0 

SK ( r• K s 1 ) = cos n(t)dt + i j sin n(t)dt - e -lj;{t)dt 
0 0 0 

I is evaluated on L : 
3 E 

I = ~ K ein( v) ~ = s e e -4; (T) d T + 
3 Ji V l T 

SK i11(a) da 
+ e -

O" 
E 

In the limit E -o, 

S
o . .....,( HJ). 

el·H• ee ide 
1T 

2 

{A. 3) 

{A. 4) 

The asterisks on the integral signs mean that the singular parts of the 

integrands should be combined; i.e. , 

>!pK dt ):Iol e-4;{t) dtt - SOK{ cos n(tt)-e -lj;{t) }dt j cos n(t) .t 
0 

on L . 
E 

S 
1 -lj;(t) dt + e -

K t 

The integral I is first integrated by parts and then evaluated 
4 



l K ein(v) dV 
I = v 4 

l 

e 
-in(v) 

- - v 
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K 

i 

+ SK ein(l'~n•(v) dv 

. l 

In the limit E - 0, 

I 
COS ~2(K) 

+ 
4 

= ( - K al. ; - t K "'(t)sin "(t) d" ) 

+ i ( -
sin ~2(K) 

K 
-ljJ(l) 

- e >l 1 e -ljJ(t)ljJ.(t) dtt 

0 

+'\ ~2 1 (t)cos~~t) dtt * K ) 

.;o 

The int.egral I must first be integrated by parts twice: 
5 

I = SK eH~v) dv = - _!_ ei~l(v) I K +_!_SK ei~l(v) H2 •(v) dv 
" . 3 2 2. • 2 . 2 
" l v v l l v . 

=(_!_ eHl(v) + 1 i~l(v)· H2·1(v) )/ k: + I +I 
2 v 2 2 e v i 51 sz 

where 

I = _!_SK eiU(v) Li~l •(v) J2. dv -
51 2 . v 

l 

I _!_SK e Hl(v)Hl 11 (v) dv 
= -

52. 2 . v 
l 

Now, 

(A. 5) 
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-~ s K eH1(J)[n'(o-)]2 ~ 
€ 

Letting E - 0, gives 

. s K dt + i !. a 2 - ~ [n 1 (t)]2 sinO(t) -
4 l 2 . t 

0 

I can be evaluated directly on L
0 

since the integrand is 
52. 

regular at v = 0, 

= - s 1 e -l}J(t)lf;"(t) dtt - s K O"(t)sinO(t) dtt 
0 0 

+ i s K 0 11 (t)cos O(t) dtt 
0 

Combining. these results gives 
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I = - .!.. e-lj;{l) - - 1- cosn(K) + .!..~ 1 (l)e...p(i) 
s 2 2Kz. 2 

:I.I K s 1 - .!.. [n 1 (t)] z.cos qt) ~ - .!.. e -W (t)~ 11 (t) ~ 
2 t 2 t 

0 0 

- ..!_ r K n 11 (t}sinn(t) ~ + i (- -
1
_- sinn (K) 

2 j 0 t 2l'- . 

(A. 6) 

1 . (' K . dt ) 
+ 2 j 

0 

n 11 (t)cos n (t) T 

Finally, substituting Eqs. (A. 2) - (A. 6) in (A. 1) and separating 

real and imaginary parts; we have 

>!< K [ ] + ~ S
0 

cosn(t) ( 2 -n~(t) )
2 

- 2t dt 
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Y = l Ail \ K sinn (t) [2t - (2 -n '(t) )
2
]dt 

0 4 2.; t 0 . 

( 
2 Q 

1 
(K ) ) 1 . } + - - 2 cos Q (K) - -- s1nQ (K) 

K K 2K?. 
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APPENDIX B 

THE SOLUTION OF l;:(a, K) = 0 . FOR K - 1 
1 

-Let a = f(K) be the curve on which A(a ,K) = 0, where A is 
l l 

given by (3.15) and (3. 16); that is, 

:t;'. (i(K),K) = 0 

Differentiating this expression with respect to K gives 

where the subscripts denote partial differentiation. Thus, 

df(K) 
C1K = 

b_K (f(K ), K) 

'1a (£ (K ) , K ) 
1 

(B. 1) 

We now propose to solve this differential equation for K near 

1 by using the Taylor series expansion 

i(K) = f(l) + (K-l) :(l) + ~ (K-l )2 d
2
£(l) 

dK2 

+ } (K-1) 3 d3£(1) + O(K-l )4 

dK3 

We first show that £(1) = 0; i.e., ~(O, 1) = O. From (3.16), the 

-elements of the determinant A are given by 

t = 2 - a 
ll 1 

t = -2 
Zl 

t = 0 
31 

\z =(K.z. + :z + 6 + 2'TT )-( 1; + 2'TT) al+(~ + ~'TT) alz + O(a12) 

(B. 2) 

(B. 3) 
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\z = - l l; + 21T ) + ( 1: + 3; ) a 1 - ( i; + 3: ) a 1 z + 0 (a 1 3 ) 

1 
t = K + K 32. 

( 
4 ) ( 2K

3 

t = 21T + 4K + - + --
13 K 3 

{ 
2K

3 
1T ) + 2K - -

3
- + - a z + O(a 3 ) 

2 l l 

\3 =(2~3 - ~ ·_ 4K - 21T) +(4K - 4~3 +1T)al 

t =2 -(1 -K2)a -KZa. 2 +O(a 3 ) 
3 3 l 1 1 

Thus, 

2 

a(O,l)= -2 -( 136 ) (16 ) + 21T - 3 + 21T 

0 2 2 

= 0 

Using the well-known rule for the differentiation of determinants, 

at at at 
__.u__ t t t l 2 t t t 13 
aa 12 1 3 1 1 aa- l 3 11 12. aa 

1 1 1 

at at at ,._ 2.1 t t + t zz 23 l:;,. = a-a- aa t + t t aa-a 2. 2. 23 2.1 2. 3 Z.l 22 
l l l 1 

at _at 
0 t t 0 32 t 0 t 33 

3Z. 3 3 a-a 33 3 z. a-a 
1 1 

These partial derivatives can be read directly from Eqs. (B. 3). Set-

ting a = 0, K = 1, we have 
l 
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'Xa(0,1)= 0 
l 

0 
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8 + 21T 8 + 21T 

-{1; +z'TT) -(1; +z'TT} 

2 2 

2 -{ 1; +z'TT) s+2-rr 2 8 + 21T ( 
1 6 . } - 3 + 21T 

+ -2 1; + 21T -(1; +.21T} + -2 -(136 + 2ir) ~+'TT 

0 0 2 0 2 0 

21T + 32 
= 3 

...... 
The evaluation of AK is done similarly: 

at at 
I 1 t t t I Z 

d/C l z. I 3 l l 8K 
at at ...... 

~ 
2. I t t + t z z 

= 8i{ &K z. z. z. 3 Zl 

at 
0 t t 0 3Z 

3 z 3 3 ~ 

at 
t t 13 

l l 1 z 1fK 
at 

+ t t Z.3 

z. l zz ~ 

at 
0 t 3 3 

32 ~ 

Using (B. 3), it is easily shown that at a 
l 

at .. 
lJ 0 
~ = 

for all i and j. Therefore, 

and from (B. 1), 

t 
1 3 

t 
Z.3 

t 
33 

=0,K;::l, 

(B. 4) 

(B. 5) 



df(l) 
dK= 
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....., 
!:::,. ( 0' 1) 

K 

'l.a(O,l} 
1 

= 0 

The second derivative of f is found from (B. 1 ): 
....., 

. ....., 21:::,. 
dz.f !:::,.KK Ka 

= --- -....., ....., 
dKZ. !:::,. !:::,. 

a a 
l l 

Since f' (K) vanishes at K = 1, 

l f 1 (K) -

'A (0,1) 
KK 

....., 
!:::,. (0' l) a 

l 

....., 
!:::,. 

aa 
l I (f' (K) )2 

(X )z. 
a, 

1 

(B. 6} 

(B. 7) 

From Eqs. (B.4) and (B. 5), we see that the only terms contributing to 

AKK(O, 1) are those that involve the second derivatives of tij with 

with respect to K; i.e., 
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az.t 
__ 11_ 

t t 
oKz. lZ. l3 

az.t ......, 
.6.KK(O, 1) = 

__ z.1_ 
t t 

oKz. z.z. Z.3 

0 t t 
3Z. 33 

o2 t az.t 
t 

__ l_Z 
t t t 

__ n _ 
11 oKz. 13 11 12 oKz. 

azt azt.· 
+ t ___£ t + t t ~ 

2.1 oKl. 2.3 z.r Z.l. oKl. 

azt az.t 
0 32. t 0 t 3-l 

oKz. 33 32. oKz. 

0 8 + 2'IT 8 + 2'IT 

= 0 -l l; + 2'IT) -l 1; + 2'IT) 

0 2 2 

2 8 8 + 21T 2 8 + 21T 8 

+ -2 0 -(1: + 21T) + -2 -( i; + 21T) 0 
32 - - 3 

0 2 2 0 2 0 

Therefore, from (B. 7), 

dz.£( 1 ) ( - 3;) 16 
(B. 8) = = 16+31T dKZ. 32 

21T + 3 

Similar calculations for the third derivative of f give 

"" ......, 3.6. ( 0' 1) 
d3 f (1) .6.KKK(O, l) aK 

1 f 11 ( 1 ) = 
dK3. 

....., ,..,.. . 

.6. (0,1) ~ (0, 1) a a 
1 1 



Thus, 

~ (0 1) = - 32 
KKK ' 

...... 32 
l:l. (O,l)=-

3 aK 
l 

d3 f(l) 144ir = 
dK3 

( l 6+3ir l 
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(B. 9) 

Finally, substituting (B. 6), (B. 8), and (B. 9), into (B. 2), we 

have 

8 
f (K) = 16+3ir (1-K)i - (l-K)3 + 0(1-K)4 

which is 'in good agreement with the numerical solution of ~(a , K) = 0 
l 

for 0.7<K<l. 


