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ABSTRACT

As a simplified approach for estimating theoretically the
influence of local subsoils upon the ground motion during an earth-
quake, the problem of an idealized layered system subjected to
vertically incident plane body waves was studied. Both the tech-
nique of steady-state analysis andthe technique of transient analysis
have been used to analyze the problem.

In the steady-state analysis, a recursion formula has been
derived for obtaining the response of a layered system to sinusoidally
steady-state input. Several conclusions are drawn concerning the
nature of the amplification spectrum of a nonviscous layered sys-
tem having its layer stiffnesses increasing with depth. Numerical
examples are given to demonstrate the effect of layer parameters
on the amplification spectrum of a layered system.

In the transient analysis, two modified shear beam models
have been established for obtaining approximately the response of a
layered system to earthquake-like excitation. The method of con-
tinuous modal analysis was adopted for approximate analysis of the
models, with energy dissipation in the layers, if any, taken into
account. Numerical examples are given to demonstrate the ac-
_curacy of the models and the effect of a layered system in modi-
fying the input motion.

Conditions are established, under which the theory is
applicable to predict the influen'ce of local subsoils on the ground
motion during an earthquake. To demonsfrate the applicability of
the models to actual cases, three examples of actually recorded

earthquake events are examined. It is concluded that significant
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modification of the incoming seismic waves, as predicted by the
theory, is likely to occur in well defined soft subsoils during an

earthquake, provided that certain conditions concerning the nature

of the incoming seismic waves are satisfied.



TABLE OF CONTENTS

PART : TITLE : PAGE
I INTRODUCTION 1
II STEADY-STATE ANALYSIS OF A LAYERED
' SYSTEM 11
111 " EXACT TRANSIENT ANALYSIS OF A NON-
VISCOUS LAYERED SYSTEM 47
v .~ MODIFIED SHEAR BEAM MODELS FOR
APPROXIMATE TRANSIENT ANAL-
YSIS OF A LAYERED SYSTEM 60
. APPLICATIONS : 142
VI SUMMARY AND CONCLUSIONS _ 185
APPENDIX I 189
APPENDIX II 193
. APPENDIX III g 195

REFERENCES 197



I. INTRODUCTION

Damage to engineering structures during earthqﬁakes is
known to depend on the nature of the arriving seismic waves as well
as on the properties of the structures. The characteristics of
ground shaking that are of major interest to engineers for purposes
of design are the intensity, the frequency composition and the total
duration. Broadly speaking, such features are functions of the
following three factors: the source mechanism, the material prop-
erties of the earth media along the various paths through which the
seismic waves travel, and the local geological conditions of the site
under consideration. The complicated nature of the earthquake
source mechanism, the highly irregular structure of the earth's
mantle and crust, and the difficulty of making significant measure-
merlts make it difficult to elucidate the real influences on the ground
motion. For example, the focus of a potentially destructive earth-
quake is not an ideal point source, but it is a fault plane with dimen-
sions ranging from several miles to sevéral hundred miles. When
the accumulation of strain energy around the fault exceeds a certain
limit slippage will occur along the fault plane. During the slipping
process a portion of the energy is released in the form of elastic
waves emitted from the source and a portion is dissipated in gener-
ating heat. The elastic waves, after traveling various paths through
the earth, will eventually ar.rive at th€ site where observations are

made of the ground motions. The seismic waves generated at the

source are composed of both dilational waves (P-waves) and shear



waveé (S-waves). The P- and S-waves are conventionally called
body waves. In addition to the body waves there are also surface
waves whose energy is éoncentrated near the suface of the ground.
The relative contributions to the total ground motion and the cor-
responding times of arrival of each type of wave depends on the
-epicentral distance of the station, the focal depth of the earthquake
source, and the reflection and refraction of the waves along their
paths. A highly idealized scheme is presented in Fig. 1.1 to show
the relative l-ocation of the earthquake source O, the recording
station S, a typical body wave path OAS, and a typical surface wave
path OCS.

It is the primary purpose of this thesis to study the influence
of the local geology on the incoming seismic waves. By "local" we
refer to thﬁt part of the ground media having a total path of approxi-
mately one thousand feet and. a horizontal dimension of several miles,
which are essentially local when compared with the dimensions of the
- wave paths as well as the thickness of the earth’s crust. This is the
situation in the circled area around the station S in Fig. {.1. In
some past earthquakes the subsoil conditions were observed to have
a pronounced influence on the amplitude‘of the recorded ground

motion and on the total duration. (1,2,3)

.One way to investigate
this influence is to compafe the motions simultaneously recorded

during the same earthquake at two nearby stations with different

.

(2)

subsoil conditions. Some comparisons were made by Gutenberg
for very weak motion produced by small magnitude earthquakes

recorded at several nearby sites in Pasadena, California. He
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observed that, for waves having periods of 1 to 1.5 seconds, the
amplitude of the motion at these sites located on alluvium more than
500 feet deep was about five times larger than that recorded at the
Seismological Laboratory of the California Institute of Technology,
which is on an outcrop of crystalline rock. Ground shaking with a
dominant period has also been reported for .streng-metion earth-
quakes and for microtremors. For strong-~motion earthquakes, the
best examples are the ground motions recorded in Mexico City,
Mexico, which is situated bn some unusually soft alluvial deposits
approximately 100 feet deep. Zeevaert has observed a dominant
period of 2.5 seconds for the earthquake recorded on 28 July 1957(4)
and the earthquakes on 11 May and 19 May 1962.(1) Kanai also ob-
served dominant periods in the ground motions recorded during
microtremors in certain areas of Japan, which he believed to be
associated with the properties of the ground layers. (5,6) Oa the
other hand, in addition to such positive evidence, many strong ground
motions recorded in the western United States where the subsoils are
relatively stiff do not show any appreciable effect of the subsoil. It
is also known that structures built on softer ground do not necessarily
receive more severe damage than those founded on stiffer ground.
Judging the ground effect by simply observing the extent of damage

of structures can lead to a conclusion badly in error. Consequently
the following question arises: How does the local geology actually
affect the incoming seismic waves and under what conditions will it
produce effects of engineering significance? To answer this question

on a theoretical basis is not a simple matter since there are many



complexities in the incoming seismic waves as well as irregularitiés
and inhomogeneities in the geometric configurations and the material
properties of the local subsoil media. Hence, it is necessary to
start the theoretical studies with a simple, idealized model and then
- try to relate the analytical results to the cases actually encountered,
A conventional model that has widely been used by geophysicists for
the earth's crust consists of many homogeneous, spherically strati-
fied layers. As far as studies of the influence of local subsoils are
concerned, the curvature of the layer boundaries need not be taken
into account, é.hd a simpler model consisting of linear, homogéneous,
“horizontally stratified layers o_verlying a homogeneous half-space can
be analyzedé, The layer boundaries are ide»a\l plahes exténding tio -
infinity in béth horizontal directions. Also, it is known that wave
velocities in the earth usually increase with depth and, therefore,
the éaths of the waves tend té6 bend upwards like the path OAS in
Fig. 1.1, and this tendency is stronger for greater velocity gradients.
By the time the waves reach the bottom of the local subsoil strata
the waves will in most casés be incident nearly vertically, depending
on the epicentral distance and the focal depth of the earthquake. (7,8)
Therefore, as a further simplification the incoming body waves are
taicen to be vertically incident plane waves and the problem of one-
dimensional wave prdpagation is conceiva'ble.

In 1930, the Japanese seismologists, Sezawa and Kanai,
pointed out the possible effects of superficial soil layers on observed

(9,10,11)

ground motions, Since then, extensive research work has

been carried out both theoretically and experimentally to study this



problem. Theoretical studies have been based on the simple layered
model described before, and two different approaches, namely, the
sinusoidal steady-state analysis and the transient-state analysis,
have been used to analyze the model.

The purpose of sinusoidal steady-state analysis is to compare
the response of a given layered system subjected to excitation of
steady-state sinusoidal waves. Contributions in this area were made
by Kanai,(5’6) Matthiesen, Duke and Leeds ,(1 &) Herrera and

Rosenblueth,(i?’) (14,15)

and Haskell, where Haskell has particularly
studied the more general problem of a layered system excited by
both P- and S-plane waves that are incident obliquely rather than
vertically. Kanai has derived the steady-state solution for vertically
propagating plane waves in layered systems containing from one to
three layers. Matthiesen et al. M2 derived the solution for the case
of a’viscous N-layer system, and the results were applied to the
sites of 64 strong-motion earthquake stations in southern California.

Using the technique of graphical solution developed by Takahasi,(16)

(13)

Herrera and Rosenblueth derived the solution for a viscoelastic

N-layer system in matrix form. Layered systems with continuously
varying properties with each layer have been studied by Onda(17)
and Gupta(l's'ig) for some simple cases.,

Kanai has offered the following ge;leral conclusions from the
steady-state analysis as follows:

(i) For nonviscous layered systems, a system with one layer

only has prominent response at the resonant frequencies, but a

multi-layer system has less prominent resonant response.



(ii) During earthquakes,there is a dominant period associated
with the ground layers. This period is proportional to the thickness
of the layers.,

(iii) Due to the deformability of the half-space foundation,
there is always a portion of wave energy transmitted from the
layered system back into the foundation. Such a dissipative mecha-

"

nism is called "geometrical dissipation," and this is the reason why

there is no infinite resonant response even if the system is non-
viscous, (20)

» Sinusoidal steady-state analysis is capable of indicating pre-
cisely the frequency-selective property of a given layered system.
However, steady-state analysis is insufficient for studying the effect
of a layered system on earthquake-like excitation and, therefore,
transient analysis has to be used.

' Earthquake engineers are most interested in the velocity
spectrum of the ground acceleration, and two different methods of
analysis have been used in studying the effect of a layered system
on the output acceleration. The first method is a probabilistic
"~ approach, the purpose of which is to establish a formula by statis-
tical techniques to estimate the velocity spectrum of the output
motion of a layered system from the given velocity spectrum of the
- input motion. Theoretical studies have b'een made by Herrera and

(13)

Rosenblueth, and the derived results were applied to estimate

the velocity spectra for Mexico City with considerable success, et)
However, this approach has rather limited application to actual

earthquakes unless further refinement in the theory can be made.



The second method of analysis is a deterministic approach
which computes the response of a layered system subjected to arbi-
trarily given excitation at the base of the system. The velocity
spectrum is then computed for the-output. An exact method was

e to calculate the desired output of

derived by Baranov and Kunetz
a nonviscoqs layered system from the point of view of wave propa-
gation directly in the time-domain. This method is called the "ray-
tracing” scheme, and applies to nonviscous layered systems only.

For viscous layered systems, geophysicists use the frequency-
domain method. In this method, the Fourier spectrum of the input
motion is calculated and then multiplied by the transfer function of

the layered system to produce the Fourier spectrum of the oufput
motion. The inverse transformation of the output spectrum is then
performed to obtain the time history of the output, and it is at this
step that considerable error can be introduced. Earthquake engineers,
on the other hand, treat the layered system as a shear beam because
of the analogy between the governing differential equations for these
two systems. The shear beam is lumped into a discrete mechanical

' systém and a technique of modal analysis or direct numerical inte-
gration is applied to analyze the system, as has been done by

(23)

Whitman and Idriss and Seed. k2t 25)' In their analysis, Idriss

424

and See also considered the more general case of a layered

system of which the media are described by a bilinear hysteretic
stress-strain law. However, their method of shear beam analogy

does not take into account the deformability of the half-space founda-

tion. In this thesis, the shear beam model is modified so as to take



iﬁto account thé'energy lost into the half-space foundation due to the
deformability of the foundation.

In Chapter II, an explicit recursion formula is derived for
steady-state analysis of a linearly viscoelastic N-layer system.
This recursion formula is in a form of greater practical utility than
previously derived formulas. Several important conclusions are :
drawn concerning the characteristics of the steady-state response of
a nonviscous layered system having its layer stiffnesses increasing
with depth.

Chapter III gives a brief review of the ray-tracing technique.
This provides an exact solution for the transient response of a non-
viscbus layered systems.

Chapter IV establishes models which give approximate solu-
tions for the transient response of a viscous layered system. One
model is an exact analog of the original layered system if there is no
viscosity present. Otherwise, it is approximate. Computation with

this model is time-consuming because a system of coupled differential

/

/
equations must be solved. Another model is developed that greatly

reduces the computation time but which gives good results dnly for
response near the surface of a layered 'system that has a relatively
large difference in stiffness between the foundation and the lowest
layer. However, this model is ‘sufficientl:y accurate for most prob-
lems of engineering interest.

The last chapter discusses the applicability of the previous
theoretical results to problems involving the influence of local

geology on real earthquakes. Ground motions recorded during three
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earthquakes are presented for purposes of illustration. Finally,
conclusions are drawn about the conditions under which appreciable

resonance is likely to take place during earthquakes,
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II. STEADY-STATE ANALYSIS OF A LAYERED SYSTEM

A. Introduction

The technique of steady-state analysis has long been used by
earthquake engineers to study the effect of ground layers on verti-
cally propagating .seismic swaves. ~The merit ofthis approach is that
it clearly exhibits the frequency-selective property of a given layered
system, namely, how certain frequency components of the incident
waves are amplified while the rest are suppressed by the system.

In this chapter, there is derived an explicit recursion formula
for finding the steady-state response of an N-layer system subjected
to vertically incident, sinusoidal plane body waves. The layered
system to be analyzed is composed of linear, isotropic and homo-
geneous elastic layers the interface of which are parallel planes that
extend infinitely in both horizontal directions, and the system is
overlying a homogeneous half-space foundation.

Several important assertions are established concerning the
nature of the steady-state response of a nonviscous layered system
having its 13yer stiffnesses increasing with depth. For simplicity,
analysis is made o;lly for the case of incident S-waves in the analyses
that follow. The results derived for incident S-waves can readily be
converted to those for the case of incident P-waves by simply re-
placing the corresponding elastic constant and, if energy dissipation
of waves is involved, the corresponding viscosity constants.

A list of the important symbols to be used is given below, and

they are defined again when they first appear in the text.
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AMP(w)

o

c(w)

fj(w’zj) ’gj(wlzj)

Gj (w)

H.
J

i
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EXPLANATION OR DEFINITION

wave amplitudes in the jth layer

7 /{1 +x}

amplification spectrum for the surface response
S-wave velocity in a nonviscous elastic medium

complex S- wave velocity in a viscous medium

parameters defining the amplitude of response in

the jth layer of a viscoelastic layered system

\/Re.2+1r_n:jz-

J
thickness of the jth layer

¥ g

subscripts referring to the imaginary and the real

part respectively

recursive parameters in the recursive formula
layer index, as subscript
wave number
viscosity parameter
K oHL.

J=3
time

response in the jth

layer
incident plane S-wave
space coordinate for the- jth layer

impedance ratio, equal to pj-l(co)j-i/Pj(co)j in
a nonviscous layered system

impedance ratio in a viscous layered system,

equal to Piy c(w)j 2 /pjc (w)j
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SYMBOL EXPLANATION OR DEFINITION

¢N+1 (w) ;tllj () phase gngle

oft); (.r(t) shearing stress; rate of shearing stress

e(t); €ft) shearing strain; rate of shearing strain

BBy spring stiffness parameters of a standard linear
model

Fo shearing modulus of a nonviscous elastic material

p(w) complex overall shearing modulus of a viscous
material during steady-state deformation

n - viscosity constant

T retardation time of the Voigt model, equal to n/p

P density

A wave length

w,2 frequency

$ th N
© ) the n™ characteristic frequency

B. Steady-State Response of a Linearly Viscoelastic

Layered System

In most cases of practical interest the layered system is
energy-dissipative. The assumption of perfect elasticity for the
layer media is only a special idealization and, therefore, we shall
-start the analysis by considering a viscous layered system. Several
well known linear viscoelastic models are commonly used for theoret-
ical descriptions of the mechanism of .energy di'ssipation in viscous

media. The most widely used models are the Maxwell model, the

" Voigt model and the standard linear model. Each of these is
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described by a certain combination of spring and dashpot elements,
and is shown in Figs. 2.1(a), 2.1(b), and 2.1(c) respectively.

The Maxwell model consists of a spring element, Ho’ and a
dashpot, 7, in series where o is the shearing modulus and n the
viscosity constant. Letting o be the shearing stress and € the

shearing strain, the stress-strain law can then be wi‘itten
o +(n/p o = ne (2.1)

where Er and ; are, respectively, the rate of shearing stress and
the rate of shearing strain. In Eq. 2.1 the quantity n/po has the
dimension of time and is called the "relaxation time" of the Maxwell
model. This model is suitable for materialvsubjected to excitations
of very high frequency and hence has rarely been used by earthquake
engineers or geophysicists in their theoretical studies.

: The Voigt model, independently propésed by Kelvin in 1875
and Voigt in 1889, consists of a spring element Ko and a dashpot n

in parallel. The shearing stress o 1is proportional to both the strain

€ and the strain rate é, namely,
L A ne (2.2)

where the quantity n/po is commonlly cnged the "retardation time,"
T, of the Voigt model. s

The standard linear model was first proposed by Zener(26)
. 1948 and later independently by Hilller'? ") in 1949 tn a slightly
different form, 'i‘he one suggested by Hillier is adopted here, The

stress-strain law for this model, shown in Fig. 2. 1‘(c), is
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Fig. 2.1, THREE COMMONLY USED LINEAR VISCO-
ELASTIC MODELS
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(Ha+ Pb)0 R FaFp© i M, €

or
¥ g = +Te
0 t gz 0=p letTe) (2.3)
where
r=p iy
and
P T M

In Bg. 2.3 the qﬁantity T = r)/pb is the retardation time
constant of the Voigt element in this model. Observe that Eq. 2.3
includes Eq, 2.2 as a special case for r = oo and hence Eq. 2.3
can be considered as a general stress-strain law for both the Voigt

model and the standard linear model.

For steady-state deformation, assumz € = emJt and o =
p.(w)elwt, and Eq. 2.3 becomes
o - 1 tiwT :
""*‘(‘“)6“”0(1+1wA & (2.4}
where A ='I_*!i'7 . Eq. 2.4 indicates that the overall shearing modu-

lus, p(w), under steady-state deformation is a complex and fre-
quency-dependent quantity whiéh is equaltothe real shearing modulus,
Bo s if the material is nonviscous. In Eq. ,2'4’ A vanishes for a
Voigt méterial énd, furthermore, the viscosity parameter 7 is
identically zero for a nonviscous elastic material.

According to Eq. 2.4, the complex shear wave velocity will
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be, by definition ,

Vulw)/p

I

c(w)

1+co 'rA by T (2.5) -
1 tw A 1 tw 'rA

with p being the density, and c. = «/po/p being the shear wave

velocity-in a nonviscous material. Defining

1+w272
e = e S )
1tw TA
i +w2'TA
£l Do e
i+w A
(2. 6)
o fetd
. 2e
i e-d
Q= 2e
the complex wave number, k, can be written as
k=w/cs= kptik; 2.0
where
" ie}
kR_ce and kI- o (2. 8)

are, respectively, the real and the imaginary part of k.
Consider an N-layer system of which the media are assumed

to obey the general stress-strain law, i.e., Eq. 2.4, under steady-
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state deformation. The layered system is shown in Fig. 2.2 with
the top layer indexed 1 and the half-space N+1. A setof N co-
ordinates, Zj’ j=1,2,4e.: N, is also defined as shown. Under
steady-state sinusoidal excitation the response of the system is

governed by the following one-dimensional wave equations

2 -;82—u-i(z. 5t) B 2:u.-(z. )
c.(w) ’ZJ - jZJ ’ j:1329-ooaN+1 (2'9)
J 9z ot

where u‘j is the response in the jth layer. Imagine a steady-state

source at z. equal to oo, which gives rise to a vertically incident

o =5 i(wt+kN+1zN)
plane S-wave of the form y(t +ZN/CN+1) =an4© with

an+1 being a known amplitude., The solution of Eq. 2.9 can then
be expressed as the sum of an upward traveling wave and a downward

traveling one in each layer as

i(wttk.z.) i(wt-k.z.)
u.(z.,t) = a.e JJ +b.e b A (2.10)
J J J J
for zj = -H. to zj = 0, The determination of aj and bj requires
the application ofthe proper boundary conditions at each of the inter-
faces of the system., Firstly, at the free surface where zy = --H1 ’

the stress-free condition yields

ou

oy (-H,,t) =y 3z,

which implies

b1 = ae oo ae {2.11)
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FREE SURFAGCE
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Fig. 2.2. AN N-LAYER SYSTEM UNDER STEADY-STATE
EXCITATION
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where, for simp.lifica’cion purpose, we have put

s, = k.H, = (k.).H, + i(k).H.
s g EHe g,

= (sR)J. % ft(sI)j (2.12)

h

The boundary conditions at the interface between the j-it and

the jth layer, defined by z._

J 1:0 and Zj=-HJ. for j:2,3,ooo,N,

/

arc

(i) the continuity of the displacements
uj_i'(O,t) = uJ.(—HJ.,t)

which gives

: —isj -isj
a, ,tb., ,  =a.e +b.e 2:13
i 3e T L DRSO J ( )
and (ii) the continuity of the shearing stresses
Gj-i(o’t) = ch.(—Hj,t)
which yields
: 'iSj is;
@ w8, o= b = a.e - b.e 2,14
J'i( =1 J-i) J J . ( )

In Eq. 2.14, aj—i is the complex acoustic impedance ratio between
the media of the j-ith and the jth layer, and is equal to

p cj-l/pjcj' Using the notation defined in Eq. 2.6 we can write

j-1

b . L MR LR

=), AT P, PAR. ONG. Prb: Q) e
= la)s J_lt( J_1»JJrQJ_l‘QJ)ﬂ(QJ_lPJ PJ_IQJ)]/eJ (2.15)
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where (0£0)J._'1 = P j—l(co)j—l/p j(co)j' Define
is; . Ha. l-o.
i : j j
= -is. T == 2
l-¢. 1+o
" J J
Equations 2. 13 and 2. 14 then give, for j = 2, :» N,
- a.
5 J j-1
, = BLLTl | (2.17)
(b, £ b,
J j-1
and, for j = N+1,
a . a
N
g ok f - [Ty ; i (2. 18)
b : b '
N+1 - N :
By using repeatedly the recursive relation, Eq. 2.17, a.j and bj can

be expressed in terms of al and bl’ where b1 is related to al by

Eq.2.11. Hence, for j =2,...,N,

a. 2 1
] ~].Sl l

gbg = a,e ([S]j[T]j_l)...([SJZET]I)[SJI gls
J

For convenience in doing analysis, the last equation can be written

as

@ ;o \ (Re.+Re')+i(Im.+Im!)
J -151 i J J J
= ae [s1. A (2. 19)
b. JYRe.-Re!i(Im.-Im!)
j N ey

where it can be shown by induction that Re., Re'., Im., and Im!

are given by the following recursion formula
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..p!

cosh(s o

R‘ej:pj_1 I)j-l 51nh(sl )j-l

i :
Rej =(o s1nh(sl)j_ cosh(sl)j_1]

- 1
R)j-l[pj—l 1354
- ! +
+(O./l)j__l[qj_]cosh(sl)j_l qj_lsmh(sl)j_l] (2.20)

¥ i }
Imj—(aR)j-l[qj-lCOSh(sl)j—l qj_lslnh(sl)j_1]

e il DRSNS S, N . )
(QI)J"I[pJ"l ll’lh( I)J—l PJ_lcosh\ I)J—].]

Im!==q. cosh(s.).
e I'j

1 1

3 1
51nh(sl)j_l+qj_ =

for 3 =2,3,...N%1, in-which

pj-l:Rej- ICOS(SR)j— l-ImJ._ 1s1n(sR)j_1

! & 1 % 1 .
pj_l_Re:j_lcos(sR)j_1 Imj_ls1n(sR)j_1 (2.21)

q.

J—1= Imj_ ICOS(SR)j-1+Rej-1Sln(sR)j-1

and,’ for j.= 1, Re1 =1, He!, =-Im. = Jm' =0

Substituting Eq. 2. 19 for j = N into Eq. 2. 18 gives 2, in

terms of the known amplitude AN+l
is
1
. a e , :
gty N+1 : (2.22)

L 1 : 1
(Rey, yRey (Hillmy, +Hmiy )

Hence, Eq. 2.19 gives aj and bj in terms of ans] @S
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18

J
= e
= . —1sJ.
. + '
bj (ReN+1+ReN+1)+1(ImN+1 ImNH) e
(Re.+*Re!) +i(Im.+Im!)
: 3 B D é (2.23)
Re.- Re!l) - i(Im,~- Im!
( 3 3) ( s 3)
and the response at the surface of the layered system will be
ZaN+1 i(wt-dDNH)
ui(-H1 i e
' Z i 2
(ReN+1+ReN+1) +(ImN+1+IrnN+1)
(2. 24)
with
Im +Im!
¢, (w) = tan™? ( gt s (2. 25)
bl Re + Re!
N+1 N+

being the phase angle of uy with respect to the incident wave when
arriving at the base,

Define the following ratio
Iui(—Hl »t) I 2 'ul(—Hi st) l

Plw) = =
iR [2y(t) | |2a

2N+ I

1

* Js Y d
f(ReN+1+ReN+1) H(Imygg g tImpyy)

(2.26)

where y(t) is the wave form of the incident wave, y(t+zN CN+1)’
when it arrives at the base where zZN = 0. The plots of AMP(w)

and ¢N+1(w) as functions of the frequency w are called respectively
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the amplification spectrum and the phase spectrum for the surface

response with respect to 2y(t)e Observe that the double amplitude,

e "TTE

has been used in the definition of AMP(w) because 2a

N+’

according to Eq. 2.24, would be the amplitude of the surface motion

of the foundation if there were no superficial layers.
By defining the following parameters

1
(h,). = [Re? + Re!2+Im?> + Im'2 + 2(Re.Re! +Im.Im!)] 2
1] j J J J 3 FU53

2 2 2
h.). = [ Re. +Re!” +Im.
( 2)3 [ eJ eJ mJ

1
+Im" - 2(Re Re! +Im dm")] ?
e i e i

Im.+Im!

Rej— RejI

Im.- Im!
Rej-RejI

" -1
(wi)j = tan

-1
(Wz)j = tan

e [(W1)j+(w2)j] /2
f(w,2)) = cos 0.+ (kp) (2, + HYJ {(Dy) jeoshl (i );(z, +H,)]
+ (D,);sinh[ (k) (z,+ H)]}
g;lw.z ) = sin[ ej+(kR)j(zj+Hj)] {(Dz)j_éosh[ (kI)j(zj+Hj)]

4 (Dl)jsinh[ (kI)j(zj+Hj)]}
and

» =3
blorzg) = by [09)5- (wy))]/2 +tan™ ' (g;/1)

(2.27)
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the response in the jth layer can be written explicitly as
Reluds. 8] = 2a .. AMBll £2+p° cos (ks i) (2.28)‘
J J N+ S J

where Re[ ] stands for the real part of the quantity inside the
bracket.

The foregoing results were derived for layered systems of
which the media are described by the Voigt or the standard linear
model., If the layer media are Maxwell solids, corresponding results

can easily be derived by following the same procedure.’

C. Steady-State Response of a Nonviscous Elastic Layered System

For a nonviscous elastic layer system, the parameters T
and A that are associated with the material damping will both vanish
from Eq. 2.4. As a consequence, all terms that carry the subscript

"I" in previously derived equations will vanish. This in turn leads to

Re‘;:Im‘;:O ’ j=1,2,.3‘,N

in Eqs. 2.20 and 2.21. Also, it can easily be shown that
c.=(c).
J ( O)J

F-j i (P‘o)j
and

a. = (o).

5= (ag),
from Eqs. 2.4, 2.5 and 2.15 respectively. The final results for a

nohviscous elastic layered system are given below.
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(i) Starting with

Re1 = borand Im1=0

the recursion formula is reduced to

Re. = Re.

j J“1('208 S._

§uq - Imj_ism S._

j-1

Im

3 aj—i(Rej—ismsj—1+ Imj_icos sj-i)

for j=2,3’o.o’N+1o

(ii) The amplification spectrum becomes

AMP (o) = .
ReZ ,, +Im?
N+1 N+1
and the phase spectrum
1 Ny

$ (w) = tan”
N+1i ReN+1

(iii) The response in the jth layer is

Re[uj(zj,t)] = Za.N+1

where it is defined that

G,(o) = f Re?+ Im?
j hh o
and
| _, Im,
$(0) = tan”"

(2.29)

(2.30)

(2.31)

(2.32)

AMP(w) Gj(w)cos[ kj(zj+Hj) +¢j] cos(wt—4>N+1) (2.33)

(2.34)
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Eq. 2.33 indicates that standing waves can exist in a nonviscous
elastic layered system under steady-state excitation.

The characteristic frequency of a nonviscous elastic N-layer

system is to be defined. Let W satisfy the following equation

ReN-H(wn) == R0 T t] S A ‘2.35
We then have
AMP(w ) = 15 1 T
N+1'"n
1

o N]ReNmn sN+ ImNcos Sle:wn

AMP(wn) is seén to approach infinity as o approaches zero. In
the limiting case that o N = 0 , the foundation is rigid and the system
will have resonant response with infinite amplitude at w_- Hence, the
roots of Eq. 2.35 are the characteristic frequencies of the layered

system, which, in the limiting case that « = 0, are conveniently

N
called the natural frequencies. Also, Eq 2. 35 indicates that the
values of the characteristic frequencies are independent of the pro-
perty of the half- épace foundation.

In mqst realistic layer problems, the foundation Would'be
more or less deformable, namely, the impedahce ratio dN is
different from zero, and the'value of AMP(w n) will‘ always be

finite. Physically, this implies that the deformability of the founda-

tion causes the loss of a certain amount of energy through trans-
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mission back into the foundation from the layered system. Such an

(5)

interpretation, first emphasized by Kanai, can be referred to as
the "geometric dissipation" of wave energy due to the deformability
of the foundation. ~

A layered system with increasing layer stiffnesses, i.e.,
0< a/j =1 for j=l.2s00eelNs 05 0f oast practical intexest, and

several important assertions concerning the nature of the amplifica-

tion spectrum of such a system can be derived as follows,

Assertion A, The quantities Rej(w) and Imj(w) never vanish
simultaneously.
The truth of assertion A is obvious by inspection for cases of

j=1 and j= 2. For the cases of j= 3, Eq, 2,30 gives

2 575 e _. 2
Rej + Imj /o:j_1 = [cos sj-—iRej—i sin sj-ilmj-l)
. 2
+
+ (sin sj-iRej—i cos sj—ihnj-i)
= Re.2 + Im2 (2.36)

j-1 j-1

Rearranging the right-hand side, Eq. 2.36 becomes

2._.2,2 2 2 2 2 g
Re. +1Im. /e. ,= (1-c. Re, T a. Re. , +thn. a.
3 1Ty /eg = oay IRe,  har (Re, Tl fpdas o)

Upon repeated application of the above recursive equation, we finally

arrive at
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2 Bl
Re. +Im. /.
j J/ J~1

j-2
N 2 2 2.2 =4 2 2 2
= Rel ((1-af )+ Ref (1-af jal ,+. . +( [] ep)(Re] +Im)
k=1
i-2 2+§1 R e
=[] = Rey (1 -ap M|[ @) j=3,4,c0.,N+1 (2.37)
k=i k=2 i=k

by using the fact that Ref +Imf = 1, The right-hand side of Eq. 2,37

is obviously greater than zero always and, therefore, assertion A

holds,

Assertion B, The value of the amplification spectrum is

always finite and is greater than or equal to 1.
To prove this assertion, add Imjz(i - i/asz__i) to both sides
of Eq. 2.36, and we have
Re.2 +Im2. = Re.2 f +Im.2
J J J= 5

2 2 2
- Im.(1-<, o
mg (e Mgy

1 1

Applying this recursive relation repeatedly gives

R I L 2 2.5 2 2 cas 2
Rej +Imj = (Re1 +Im1) —Imz(i -01)/01 - ose " Irnj(i—ozj_ 1)/ozj-_

P

j-1
=1 - Z ImZ, (1 -ef) /el (2.38)
k=1
Since we have made the assumpfion that éxi L1 fov- k=t ,2,0unilly
the total sum under the summation sign a;t the right-hand side of
Eq. 2.38 will always be positive. Also it follows from assertion A
2

that the quantity Rej + I.rnJ2 never vanishes., As a consequence, the

following inequality holds.
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0<Re2j+1rn§51

Substituting j = N +1 into the above equation, it immediately follows

from Eq. 2.31 that -
o > AMP(w) = 1 (2.39)

Hence assertion B is proved.

Assertion C., The amplification factor, AMP(wn), has an

upper bound equal to 1/(011o a

l/aN.

2 eee 'CYN) and a lower bound equal to

To obtain these bounds, use will be made of assertion AI

which, for j=N+1, gives

Re2 +Im

2 2 2
Ren+ N+ /%N + Im

= Rey N

Since . Re (wn) vanishes from Eq. 2.35, it follows that

N+1
2 SR 2 2
I 44 (wn) = aN[ ReN(con)+ImN(wn)]

Using Eq. 2.38 for j = N, the last equation becomes

. N-1
'I.rnlz\H_1 (mn) = alz\I[Vi - z Irnlzd_1 (wn)(i -ai) /a12<] (2.40)
Je=1 :

Assertion B then suggests that

2 2
IrnN+1 (mn) i

N (2.41)

or

Ty o} = o
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Oa the other hand, setting j = N+1 in Eq. 2.37 gives

N-1 N N-1
2 g 2 2 2 2
IrnNA}_1 (wn)/ozN -Z oy +Z Rek(i -ak_i)( H ai) (2.42)
: k=1 k=2 ‘ i=k
N-1
= a12<
k=1

or simply
> . . -
Ty o) | = aprayeeeay
Eq. 2.41 and the last equation together define the bounds for
AMP(wn) as

1 ' 1
.. = AMP (“’n)sa Y

N N

and assertion C is thus established.

Assertion D, AMP(wn) will assume the minimum value given

by assertion C if @ satisfies

cos sN(wn) = gin sj(wn) 20 =1, -1 (2.43)
and the maximum value if

éos sl(wn)=51n sj(wn)=0 §EZsaina N (2.44)

For single-layer systems (N =1), AMP(wn) has a constant
value of l/af1 which is both the maximum and the minimum itself,

For N= 2, Eq. 2. 35 gives

Rey () = Re(w )eos s (o) - Im(o )sins (o )=0 (2.45)
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The root, @ in general does not make AMP(wn) a maximum or a
minimum unless some particular conditions are met by the layer
parameters.,
(i) According to Eq. 2.40,
Bt N-1

Ty o) | = ap L1~ Z Ity (o )(1-00) /ey ]
k=1

a4
z

(2.46)

From assertion C, a minimum of AMP(wn) equal to 1/01N will take

place only if @ satisfies the following condition

Ty o) | = @

The last condition implies that, from Eq. 2.46, the following con-
dition
Imglw)) =0 for j=2,3,...,N (2.47)

should be fulfilled, which in turn implies that

Sin Sj(wn) = 0 for j = 1,2,. e ’N"j.‘ (2.48)
In addition, letting j= N in Eq. 2.47 and substituting into Eq. 2.45,
we have :

cos sN(wn) =0

: because,_ bsr assertion A, ReN(wn). can not vanish, The last equa-
tion, together with Eq. 2.48, yields Eq. 2.43—the condition under

which the minimum value of AMP(wn) occurs.

{(ii) From Eq. 2.42,
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= 1
2

N-1 > 2 2 N-1 5
[t yy @) | = el ] o +2Re§(wn)(1-aj_1)(ﬂ )] (2.49)

j=1 j=2 i=]

From assertion C, the maximum of AMP(wn) will occur if ©

satisfies
IImN+1(wn)! = ai‘az..o. .QN
The last condition can be satisfied only if, in Eq. 2.49,

Rej(wn)ZO ‘ j=2,3’ooo)N (2.50)

which in turn implies that, from the recursion formula for Rej'

cos si(wn)zo, and sin sj(con)=0 for  §= 2:3,sss "1
{2551

Substituting Eq. 2,50 into Eq. 2.45 for j = N gives the additional
condition
sin sN(wn) =0

The last condition together with Eq. 2.48 constitute the condition,
Eq. 2.44, under which the maximum value of AMP (wn) will occur.

Assertion E, A layer is said to be transparent with respect

to a particular frequency § if the thickness of the said layer is equal
to an integer multiple of the half-wave length.

First of all, by transparent layer we mean that at a particular
frequency 1 the amplification spectrum, AMP(Q2), is completely
independent of the parameters of the said layer., In other words,

AMP(2) can be computed as if this layer is absent.
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Let us consider the jth layer, Suppose its thickness to be

equal to an integer multiple of the half-wave length at §, namely,
Hj=£-;—kj(9) m=1,2,3,... (2.52)

where )\j is the wave length equal to Zw/kj(Q). Since Eq. 2.52

iIIlI)].ieS tllat
8. Q % k. Q H s mn

we have

sin sj(Q) =0 and cos sj(ﬂ) = (=1

Substituting the last equation into the recursion formula for Rej +

gives

(€2)

Rej (—l)mRej(Q)

[Re 1(Q)c:os S. (Q) (Q)sm 55 (Q)]
Similarly we can obtain

Im 1(Q) = (- l)lrn—':'--——‘]--—![ReJ 1sinsj_1+hnj__lcos Sj-l]

Pi+1541 w=

Both RejH(Q) and Iij(Q) are obviously independent of the param-
eters of the jth layer, which in turn implies that Renrtg (2) and
IrnN_*_1 () can be computed as if the jth ‘layer is absent, Hence,
assertion E 1is established.

As already mentioned in the first chapter, from steady-state

analysis Kanai has drawn the conclusion that a single-layer system
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has prominent resonance at its natural frequencies while, on the
other hand, the resonant response of a multi-layer system is less
prominent or even indistinguishable., He attributed this behavior
of the multi-layer systems to the Lcomplicated interference of the
waves during reflection and transmission across the layer interfaces,
Jntuitively, since.both.of.these Jayered systems-are physically simi-
lar and differ from each other only in the layer parameters, both
would be expected to have resonant responses of comparable promi-
nénce. Hence, Kanai's conclusion seems inconsistent. In the follow-
ing, an interpretation is given to explain the apparent incon'sistency.
Theoretically, assertion C indicates that a single-layer system

(N = 1) has a constant amplification equal to 1/, at w_ - The value

1

of @, apparently depends on the parameters of the system given and,
therefore, needs not be small. Hence, the amplifications at wn

of a single-layer system need not be prominent. On the other hand,
let us consider a multi-layer system that has layer stiffnesses
increasing with depth, Assertion C then indicates that, at wn , the
amplifications are bounded from above by 1/(011-012° soo °a’N) and from
below by 1/011. The range defined by these bounds is a measure of
the possible variations of AMP (wn). In general, some resonant
amplifications may be pro;ﬁinent while the others are suppressed or
even indistinguishable. Yet, in spite of these possible variations,

all the amplifications, AMP(wn), will be prominent if o is suf-
ficiently small. A ‘

In short, it can be seen that Kanai's conclusion is not true in
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genéral and is v‘alid only for those layered systems he analyzed., For
illﬁstration, a single-layer system and a triple-layer system, arbi-
trarily chosen, are shown in Figs. 2.3(a) and 2.3(b) respectively,
For each system amplification spectra have been computed for fhree
différent values of N obtained by varying the wave velocity of the
foundation. The results are shown in Fig. 2.4(a) for the single-layer
system and in Fig. 2.4(b) for the triple-layer system. An inspection
of the calculated spectra indicates that N has the effect of deter-~
mining the prominence of the resonant peaks around & . The
resonant amplifications for both systems are all promingnt i 00, is
small, bgt are greatly suppressed if N is large,. Therefore, the
impedance ratio, RN is a measure of the wave energy lost into the
foundation due to the deformability of the foundation. Also, it is obe
sexrved that there is a point between every two consecutive natural
frequencies where the value of the arnplification spectrum is inde-

pendent of @ Theoretically, such points are located at the "valleys"

NI
of the spectrum, corresponding to those frequencies, w_ that satisfy

the following condition

ImNH(wv) =40

such that

1

AMP
s N+ (@) ]

v)= |Re
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C,* 1000 fps
p'=|00 pcf _

,pz=l25 pcf (1).cp=® :oc'=0
(2) €= 4000fps: &, =0.2

(31¢,= 1000 fps Zal =0.8

Fig. 2.3(a) THE SINGLE - LAYER SYSTEM (N=l)

s e 200 ft
P ° 100 pcf
c.=1500 fps
2
92=IIO pcf s
4= 2500 Tps
Py= 125 pcf 100t
potdopct (e Tas0
(2)¢, =3750fps : &,70.595

(3)C4=2500fps + ¢,=0.893
Fig. 2.3(b) THE TRIPLE-LAYER SYSTEM (N=3)



38

(0) THE SINGLE - LAYER SYSTEM (N=1)

(0, = 31418 RAD/SEC)

33

(b) THE TRIPLE- LAYER SYSTEM (N=3)

(w.- 3.480 RAD/SEC)

AMPLIFICATION SPECTRA FOR DIFFERENT

VALUES OF e

Fig. 2.4.
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B. NUMERICAL EXAMPLES

Four idealized layered systems were chosen to study the
influence of layer parameters, such as the number of layers, layer
stiffnesses, viscosities, etc., on the amplification spectrum. The
first two systems are double-layered (N = 2). The third system is
triple-layered (N = 3), and the fourth quadruple-layered (N = 4). The
necessary data for these systems are given in Table 2.1, and were
chosen in such a way that the properties of the top layer and those of
the foundation are the same for all of the systems. Also, the total
thickness of the intermediate layers between the top layer and the
foundation is 550 feet for all systems. The effect on the amplification
spectrum of a multi-layer system will be studied by varying the num-
ber and the properties of the .ntermediate layers.

As will be shown in Chapter III, the quantity A1 given in
column (8) of Table 2.1 is the amplitude of the surface motion associ-
ated with the wave signal that first arrives at the surface due to the
incidence of a unit-amplitude impulse at the base. The significance
of A, is that it measures the amplification of transient input signals
after one-way transmission through the layered system., It is inter-
esting to see that the values of A1 given in Table 2,1 fall into a
narrow range from 4.5 to 5.4. Calculations not shown here indicated
that, so long as the properties of the top lr‘ayer and the foundation are
fixed, A.i will essentially be around 5.5 to 5.6 even if the number
of intermediate layers is mo re than three. In other words » increasing

the number of intermediate layers would only change A1 by a



(1)

TABLE 2,1, DATA FOR THE IDEALIZED LAYER SYSTEMS

(2)

(3)

(4)

(5)

(6)

(7)

System Layer Layer Density S-Wave Retardation
: No., Thickness Velocity Time
j Hj (ft) pj (pef) Cj (ft/sec) 'TJ. (sec) rj ozj A1
1 200 110 1000 0,005 1 0.382
1 2 550 120 2400 0,102 5 0,240 4,67
BASE 150 8000 0, 100
1 200 110 1000 0,005 1 0,181
2 2 550 135 4500 0,001 20 0,506 4,50
BASE 150 8000 04 100
1 200 110 1000 * 0,005 0,382
3 2 200 120 2400 0,002 5 0,474 5. 21
3 350 135 4500 0,001 20 0.506
BASE 150 8000 0. 100
1 200 110 1000 0.005 1 0.385
% 150 120 2400 0,002 5 0,658
4 3 175 125 3500 0.0015 10 0720 . 5,39
4 225 135 4500 0.001 20 0,506
BASE 150 8000 0. 100

(04
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negligible amount.

In order to investigate the effect of material damping, in each
system the an.npliﬁcation spectra for three different cases were cal-
culated. The;cse three cases were obtained by considering the layer
med‘ia as .

{1) nonviscous elastic solids,

(2) standard linear solids described by the parameters 'rj and

rj which were defined in Eq. 2.3 and are given in column
(5) and_(6) af Table 241
(3) Voigt solids described by the same parameters 'rj used in
the second case.
The a:npliﬁcation spectra calculated for each layered system are pre-
sented in Figsot 2.5(a) to 2.5(d) respectively, Several observations
were made of the calcﬁlated spectra,

(2) Except for the_ first system, the first characteristic fre-
qﬁeﬁc:y, Wy of each system is approximately equal to 6.5 rad/sec.

(b) The spectra for case (2) always lie between the spectra for
case (1) and thoée for.case' {3)

(c) The spectra for the viscous systems are less sensitive than
those for the nonviscous systems to the variation of the parameters
of the intermediate layers, and they appear very similar to each other,
~In addition, the spectra for the viscous systems tend to decay with
increasing frequency. This is in agreement with theories which show
" that linear viscoelastic materials always attenuate wave amplitude
according to a ceﬁain power of wave frequency.

The observations made above lead to the following conclusion.
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For viscous multi-layer systems having layer stiffnesses increasing
with depth, if the properties of the top layer and the foundation are
fixed, varying the number and the properties of the intermediate
layers will not signiﬁcantly change the general characteristics of

the amplification spectra so long as the total thickness of the inter-
~rnediate layere remains-unchanged, -This-conclusion may not be
valid for nonviscous layered systems because they are more sensitive

to the variation of the layer parameters,
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IIT. EXACT TRANSIENT ANALYSIS OF
A NONVISCOUS LAYERED SYSTEM

A. Introduction

In this chapter a brief review is given of the techniques
for digital computation of the exact response of a nonviscous elastic
layered system subjected to transient S-waves normally incident at
the base. There are two methods commonly used, namely, the meth-
od of Fourier transform and the method of time-domain.

Referring to Fig. 2.2, a transient incident wave,
y(t+z /c ), will give rise to an excitation y(t) when arriving

N N+1
at the base wh:re zZg = 0. Hereafter, y(t) will be called the input
function for a given layered system. Let hj(t) be the transfer func-
tion of the system for the response uj(zj,t). Then, uj(zj,t) is given

theoretically by the following convolutional integral
t

uj(zj,t), = S Zy(s)hj(t-s)ds {3.1)
0

Observe that Eq. 3.1 is useful only if hj(t) is available in an ex-
plicit form. For a nonviscous layered system, hj(t) can be obtained
explicitly by the method of time-domain. However, for viscous
layered systems, hj(t) is in general not available in explicit form,
and the method of Fourier transform has to be used to compute the
response in the frequency-domain. Therefore, the method of
Fourier transform is applicable to both viscous and nonviscous sys-
tems, and will be reviewed first. :

A list of the important symbols to be used in this chapter
is given below, and they are defined agaih when they first appear in

the text. Whenever possible, the symbols defined in Chapter II are

used.
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SYMBOL EXPLANATION OR DEFINITION
5 .th ! x
Aj amplitude of the j  arrival of a wave signal at the sur-
face
ACU prescribed accuracy for truncating the ray-tracing
scheme '
-
<, S-wave velocity in £ sublayer
6(t) Dirac delta function
hj(t) transfer function for uJ,(zJ., t) in time-domain
Hj(w) transfer function for'uj(zj, t) in frequency-domain
. th
hl thickness of £ sublayer
£ layer index for the subdivided layered system
L total number of sublayers
M a positive integer number
Rd' Ru coefficient of downward reflection and coefficient of
upwarc reflection respectively
gt : .th 4
tj arriving time of the j ~ wave signal at the surface
Td’ Tu coefficient of downward transmission and coefficient
of vpward transmission respectively
At hl/cl’ equal to a constant for £ =1,2,°°*, L
AT . time interval for the digitized input function y(t)
; : .th
uj(zj,t) transient response in the j layer

Uj(w) the Fourier transform of uj(zj,t)
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SYMBOL EXPLANATION OR DEFINITION
z, . local coordinate for Zth and £+ lth sublayers
y(t) input function

‘Y(w) the Fourier transform of y(t)

3

B. The Method of Fourier Transform

By definition, the Fourier transform of the output uj(zj, t)
is given by
0
U () = guj(zj,t)ei“tdt (3.2)

-00

From the well known formula for the Fourier transform of a convolu-

tion integral, Eq. 3.1 is transformed into

Uj(w) =2Hj(‘°)Y(°J) (3.3)
in which =
H(e) = S.hj(t)eiwtdt ‘ (3. 4)
- 00
and
o0
Y(w) = fy(t.)e“"tdt (3.5)
- - 00

are, respectively, the Fourier transform of hj(t) and y(t). Unless
y(t) is a special mathematical function, the Fourier transform of
y(t) usually cannot be obtained analytically and a digital computer

_must be used.
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According to the definition of Hj(w)’ Eqg. 2.33 provides

-id (w)
H (0) = AMP()G (@) i _ (3. 6)

where AMP(w), Gj(w) and ¢ (w) were defined in Eqs. 2.31, 2.34

N+1
and 2.32 respectively. Setting j =1 in Eq. 3.6 gives

. -id ()
N+1

H (o) = AMP(o)e ] (3.7)
With the transfer function Hj(w) at hand, Uj(w) can be calcula-

ted according to Eq. 3.3. The inverse Fourier transform is then per-

formed on Uj(w) to obtain uj as

o0

wlzb) = 'z'l}? g Uj(w)e'i‘*’tdw (3. 8)

- 00

The inverse transformation usually has to be done by digital computer.
However, the digital inversion has a basic difficulty in that severe
aliasing errors may be introdu.ced. Briefly speaking, the aliasing
errors arise in the following manner. Theoretically, ‘the transfer
function hj(t) has an infinite duration due to multiple reflections of

the wave signals inside the layered system. For purpose of practi-
cability, we are usually interested in only that part of the transfer
function up to a certain effective time, say, teff' Note that the
transfer function Hj(w) at hand is the Fourier transform of the entire
£ Suppose
that it is desired to invert Hj(w) numerically at an equal frequency

(28)

history of hj(t), not that partvof hj(t) occurring prior to te

interval Aw, and let AT = 2r/Aw. Trorey has found that a poor

inversion would be obtained unless AT is sufficiently small so that
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AT is greater than te Hence, to avoid appreciable inversion errors

ff’
we must know the value of teff beforehand in order that a suitable
choice of Aw can be made. But, tcff itself is actually a part of the
answer we are seeking and is generally not available in advance.
Consequently, there is no way of telling the reliability of the in-
version unless, by trial and error, we obtain a value of Aw that is
small enough to-cause negligible .change in the final.answer. Such a
procedure is cumbersome, and this is the reason why the method of

Fourier transform is little used for finding the exact transient re-

sponse of a nonviscous layered system.

C. The Method of Time-Domain (The Ray-Tracing Technique)

The method of time-domain enables one to compute explicitly
the transfer function hj(t) for a nonviscous layered system by digital
computer. The ray-tracing scheme proposed by Baranov and

(22)

Kunetz is by far the most efficient method for digital computa-
tion of hj(t); It has the advantage over the method of Fourier trans-
form in that it requires less computing time and the question of
aliasing errors does not arise. In addition, the ray-tracing techni-
que can compute hj(t) of any desired duration.

The principle of the ray-tracing scheme is the subdivision
of the original N-layer system into an L-layer system, each sub-
layer of which has a constant '"tirne thickness' such that the one-way
traveling time of a signal through any sublayer is a constant equal
to, say At. Unless the original N-layer sy:stem already satisfies
the principle stated above and hence L is equal to N, in general the

given system has to be subdivided and L is greater than N. Figure

3.1 shows the subdivided system with
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Atzhl/clzconstant, £=1, 2, +», L (3.9)

where hl and ¢, are respectively the thickness and the S-wave

£
velocity of the !th sublayer.

Now, let the input function at the base be a unit-impulse,
i.e., y(t) = 6(t). If the transfer function, hl(t), for the surface re-
sponse is desired, then, by definition h'l(t) can be found by computing
the response at the surface of the system to the input function &(t).
The numerical computations are to be carried out in the z-t plane

at the intersecting joints between the following two families of

straight lines:

(1) the straight lines that are parallel to the z-axis
and equally spaced at the time interval At, and

(2) the interfaces between any two adjacent sublayers.

Consider a typical intersecting joint, M(z ), at a depth

e ¢
M’ M
ZM and time tM in the z-t plane. In general, there are two wave

signals incident from the neighboring intersections and meeting at

M. Referring to Fig. 3.2, let the incident wave signals be bE and

a_., where b_ propagates downward from the upper intersection

F
E(z

F(z

E

-t) and a_, propagates upward from the lower intersection

i
E'M

st 5
F''M
from M due to reflection and transmission of the incident signals

F
t). As a consequence, two signals, 2y and bM are emitted

th th
across the interface between the £  and £+1  sublayers where, ac-

cording to Fig. 3.2, z, = 0. Since the governing differential equations

£
for a nonviscous layerec system are the one-dimensional wave

equations
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2
2 azuz(zl,t) 0 ul(zz,t)
C = x [ ey SR (3.10)
y 2 %
azl ot

each of the propagating signals will assume the form of a delta func-
tion with a certain amplitude if §(t) is the input function. Hence, we

can write

by, = Dlé(t-tM-zl/ci)
2L = Dzﬁ(t—tM+z£/cl+l)
{3:11)
= - - -
ap = Dyd(t-t, z,/c,)
: : th th .
so that the responses in the £  and £+1  sublayers will be,re-
spectively,
. uz(zl,t) = bE + 2y
and E
o iBeh) = ey b,
Continuity of the displacements across the interface where z, = 0
requires that
D1+D3=D2+D4 £3.12)
In addition, continuity of the shearing stresses gives
al(—D1+D3) =D2 -D4 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>