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ABSTRACT 

The pattern of energy release during the Imperial Valley, 

California, earthquake of 1940 is studied by analysing the El Centro 

strong motion seismograph record and records from the Tinemaha 

seismograph station, 546 km from the epicenter. The earthquake was 

a multiple event sequence with at least 4 events recorded at El Centro 

in the first 25 seconds, followed by 9 events recorded in the next 5 

minutes. Clear P, S and surface waves were observed on the strong 

motion record. Although the main part of the earthquake energy was 

released during the first 15 seconds, some of the later events were as 

large as M = 5. 8 and thus are important for earthquake engineering 

studies. The momen~ calculated using Fourier analysis of surface 

waves agrees with the moment estimated from field measurements of 

fault offset after the earthquake. The earthquake engineering sig

nificance of the complex pattern of energy release is discussed. It is 

concluded that a cumulative increase in amplitudes of building vibra

tion resulting from the present sequence of shocks would be signifi

cant only for structures with relatively long natural period of vibra

tion. However, progressive weakening effects may also lead to 

greater damage for multiple event earthquakes. 

The model with surface Love waves propagating through a single 

layer as a surface wave guide is studied. It is expected that the de

rived properties for this simple model illustrate well several phe

nomena associated with strong earthquake ground motion. First, it 

is shown that a surface layer, or several layers, will cause the main 
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part of the high frequency energy. radiated from the nearby earth-

quake. to be confined to the layer as a wave guide. The existence of 

the surface layer will thus increase the rate of the energy transfer 

into the man-made structures on or near the surface of the layer. 

Secondly. the surface amplitude of the guided SH waves will decrease 

if the energy of the wave is essentially confined to the layer an'd if the 

wave propagates towards an increasing layer thickness. It is also 

shown that the constructive interference of SH waves will cause the 

zeroes and the peaks in the Fourier amplitude spectrum of the surface 
I 

ground motion to be continuously displaced towards the longer periods 

as the distance from the source of the energy release increases. 
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INTRODUCTION 

The motivation for a detailed study of strong earthquake 

ground motion and the related problems which lead to the full under-

standing of these phenomena is clearly evident. The importance of 

a knowledge of the detailed properties and characteristics of strong 

' 
earthquake ground motion at a given site is obvious to anyone con-

cerned with construction of buildings or other structures which must 

meet "earthquake resistance" requirements. Consequently many 

studies in this field have been carried out in order to analyze the 

most important aspects of the problem. 

It is convenient to consider · a partition of the studies of strong 

earthquake ground motion and related phenomena into two groups, 

according to the order in which they occur in time and equivalently 

in space. The first group of these studies is concerned with the 

mechanism of earthquake generation. Here problems related to the 

pattern of energy release at the source of the seismic energy radia-

tion, dimensions and a kind of source, multiplicity of the source, as 

well as the propagation and radiation patterns may be analyzed. In 

short one might think of these as the properties of the generalized 

forcing function, to be applied to the surrounding m~dium, together 

with the appropriate initial and boundary conditions. 

The second group of the studies would be concerned with what 

happens to the seismic waves that are emitted from the source into 

the surrounding medium. Various properties of the medium along the 

path of the wave propagation such as velocities, nonhon1ogeneities of 
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the elastic constants, nonunifo rmity of the boundaries of the medium, 

etc., would be analyzed in order to predict their effect on the seismic 

wave propagation. 
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CHAPTER I 

PATTERN OF ENERGY RELEASE DURING THE IMPERIAL VALLEY, 

CALIFORNIA, EARTHQUAKE OF 1940 

A 

A(t) 

a(t) 

c 

* F(w,t ,6t) 

f 

* f(t) ,f 6t(t) 

M 
0 

NOMENCLATURE 

- area of the fault plane over which slip occurs 

- envelope of the vibration amplitude 

- window amplitude 

- Love wave amplitude factor 

- fault length 

- phase velocity 

- moving window Fourier spectrum 

- frequency 

- instrument record trace 

- seismic moment associated with a double couple source 

i TOT 
MO-SEISM'MO-SEISM'MO-fie!d - seismic moment of a single event, 

p 

Q 

T 

T 
0 

t 

seismic moment of all events, and the total field 

moment, respectively 

- local magnitude estimated using the strong motion 

instrument 

- circular frequency of vibration of a one degree of 

freedom system 

- attenuation constant 

- period (= 2rr/w) 

- period at which moment is evaluated 

- time coordinate 
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- center time of moving Fourier window 

- time at which the vibration amplitude has decreased 

to 1/20 of the initial value 

- group velocity 

- component of the displacement field in e direction due 

to a double couple source 

- spectral density determined from the record 

- weighted average of the fault slip 

- velocity of source propagation 

- window amplitude 

- characteristic coordinate describing the vibration of 

a one degree of freedom system 

- compressional wave velocity 

- shear wave velocity 

de 
- angle between u

8 
and EW component 

- strike direction 

- source distance 

- window width 

- fraction of the critical damping 

- rigidity 

- density 

circular frequency ( = 2rr.f) 
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A. INTRODUCTION 

In this study records of the Imperial Valley, California earth-

quake of 1940 are analyzed to obtain information about the complexity 

of the source function in time and space. The results of the study 

indicate that the Imperial Valley earthquake was characterized by 

multiple events that occurred in the first 15 seconds and several 

later events (in the next 5 minutes) which could be called aftershocks, 

but which, in some cases, were comparable in magnitude to the 
I 

events in the main sequence. Thus this earthquake, which has often 

been described in earthquake engineering studies as a typical mod-

erate- sized destructive earthquake, had a complicated pattern of 

energy release. Numerous examples of a complex pattern of energy 

release for larger earthquakes may be found in the literature 

(Florensov and Solonenko, 1963; Wyss and Brune, 1967; among 

* others). 

The Imperial Valley earthquake centered along a well defined 

fault, and after the earthquake the fault offset was documented in 

detail (Buwalda, unpublished field notes; Richter, 1958). This allows 

estimation of the moment from field evidence, and thus gives an inde-

pendent check on the r ,esults obtained from the instrumental records. 

The first portion of the El Centro strong motion accelerogram used 

in this study has a special significance for earthquake engineering, 

since, considering both duration and amplitude, it is the strongest 

earthquake ground motion yet recorded. 

Documentation of the pattern of energy release is important for 
--------

*References are listed in alphabetical order at end of thesis. 
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engineering applications first because the duration and character of 

the shaking are the important facto;i:-s controlling damage in structures. 

Secondly, the distance between the source of major energy release 

and a given structure is also closely related to damage. 

B. DESCRIPTION OF THE IMPERIAL FAULT 

The Imperial fault is a northwest trending fault of the San 

Andreas fault system in southern California. It was discovered as 

a result of the earthquake of 1940 (Buwalda and Richter, 1958) al-

though the existence of a major structural break along this line is 

also indicated by geophysical evidence (Biehler et al. , 1964) as 
. ---

well as by the existence of a pronounced scarp at the northwestern 

end. 

The recent motion along the fault has been almost pure right 

lateral strike-slip. The fault trace is nearly straight (Figure 1.1 a) 

except close to the northern end where t~e fault curves and branches 

and has a small amount of dip slip. Th) amount of right lateral 

motion for the Imperial Valley earthquake has been recorded in detail 

at various points along the fault (Figure 1. 9; Buwalda, unpublished 

field notes; Richter, 1958). The maximum offset was 5. 8 meters 

and the average offset along the 65 km fault trace was 1. 25 m. 

Geodetic measurements of the rate of the decrease of displacement 

away from the fault indicate a depth of faulting of about 7 km (by 

fitting the data of Byerly and DeNoyer, 1958, with the theoretical 

curve obtained by Knopoff, 1958). A map and aerial photo of the fault 
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trace are given in Figures 1.1 a and 1. 1 b. The map is modified after 

Richter ( 1958}. The aerial photo was taken shortly after the 1940 

earthquake. 

C. EPICENTER OF THE MAIN SHOCK AND AFTERSHOCKS 

Because all close stations were on one side of the epicenter of 

the main shock, the epicenter could not be determined very accurately. 

The epicenter given in Richter (1958} is indicated in Figure 1.1a. 

Concerning the epicenter of the aftershocks, Richter (1958} may be 

quoted: 11
• • • the epicenter of the afters hock at 9: 53 p. m. on May 18 

cannot be located instrumentally with the desirable precision, nor 

can any of the immediate aftershocks. Nearly all the large aftershocks 

were later members of bursts of successive earthquakes, of which the 

first were too small to be clearly recorded, while the later ones were 

large enough to confuse the recording of the following largest shocks 

in each group." The Q.uarterly Bulletin of Local Shocks of the Seis

mological Laboratory of the California Institute of Technology lists 

48 aftershocks in the period 19 May 1940, 4:36 (GCT} to the end of 

1940. The first 29 of these recorded aftershocks, with magnitude 

ranging from 2. 0 to 5. 5, occurred in the 4 days immediately after the 

main shock. In this study the primary concern is with the sequence 

of large events occurring in the first 6 minutes after the origin time 

of the main event. 
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D. INTERPRETATION OF THE EL CENTRO 

STRONG MOTION RECORD 

In order to investigate the nature of energy release in this 

earthquake the El Centro strong motion records for the first 6 minutes 

after the instrument was triggered were studied. It is of interest to 

note that the usually reproduced "standard" accelerogram used for 

many engineering investigations {Figure 1. 2a) consists only of the 

first 30 seconds, including the first four shocks and omitting later 

also significant events. The resolution of individual events in a 

complicated pattern of energy release depends critically on the 

distance of the recording station {because of dispersion) and the fre

quency of the waves analyzed. For this reason the high frequency 

strong motion recording close to the source of the energy release is 

of great importance for this work. Clearly recorded P and S waves, 

and in most cases, surface waves, were observed for ·several events. 

These events are shown in Figure 1. 2a to Figure 1. 2k. The P wave 

arrives with large amplitudes on the vertical component and is 

followed a few seconds later by the S wave which arrives with strong 

amplitudes on the NS and EW components. Several seconds after the 

S wave a long period {- 2 cps) surface wave can clearly be seen for 

most events. The S wave amplitudes for events after the first 25 

seconds are smaller than those for the earlier events, but when a 

distance correction for amplitudes is made {distance is estimated 

from the S-P times) it is found that the magnitudes of some of these 

later events are only about O. 4 to O. 8 magnitude units less than the 



01 

d 

~· H''!_; "1 n l • ! 1 EL CENTNO ACCELErtf'IGNAM 
f:.g ·.· : i~ I I ' . , . ' I MA y I 3 • I 9 4 0 . 'It.,,, . C· ~~11 

' ~ ! I -1 ,. I 

J {' :· _. ft"j 1:'fi~~ 1 l • 1 • I ' I f . t 

'·l' ·; ·d Hi- ' . 1 1
1' ., . ~ •1,1 ~ J \ ,/ J ,! I I ' ' ·,I, i ' : ; .• " I I ' " . : " - -

~" ... :. ''. ..... · . . t1.l 1.f.,f. .. ·t ... ~I ',; : · ';1- 1 l! l ~l1~ r,,l · 1 ~~,; ~ : li~°l':~j~{)1L1., 1:!1.1 :~ "' . ''d 1
1 i" 1~ 1 11 1 111 ii: ; • ;" ' ' "' .. ' •i"''I~ ,. '·' i··;, lj l· , ' ! 1·' 1., I. ' • ' . ' ( "· . . ., 'I " . ~l ,,..~ ., r , I i I ., '1 ' I ' , ' 'I 

l •. r ... ;ii;;1z11r ,•W ;- :;.r '.: - •• :, !: 11 . I I 
q ;· , . ···i 114 , 1·" • , I . ' r • . ~ 1 J ~ l: ·--1 f I L ~ i~ \ . . ~ I ' . I I '1 I 

Ji• .1 wd. ·' . : · J ;· I d1¥ , ,J! 111 ·J J J1.. J : . _I J_u_ -I.I-" "-L·---· 

!2fll·&\ . , f;: ,· ii 1 1:1111iilclb 1r:i . h~: h~''tu~~1 ·!11:~1 1 u'f1 ~l~I" ·11 • 

lm ;'· 'i\ rr1t1!51~Uri :,~w (Nrtr111 tY'm \ 11:f1l1' n1 i i. I 1 :1rfi1 f i r t ,Nf i 
.. i , 

1 
, , 1 i::1 . , r ~ 1 . I; 1 . : . 1 t I . . , : . .. l 1, I • 1 r ,. : ! 

1 
.:. 1 

11 
. 1~ 

1
1 \ 1 

'.\,t .\ l1 :: :··: !! il'.111il 1.' I , \ I '1 :< 111!1il ii:! ill. ': li l :'1(,\1 :1 I H 11
;: 11, .

1
1.: I :!L ,·I . 1. \ I !.;' .• qi I ~ ; •• 

~
·L ,. ~. ,. r· , :.···:.!, !·, ·. \ ., .11.,! j .. ~·.ln !i ,, ~ : , ·. ' '·. :1 1:,1r·,., .. : ,, :i ' i '.' ~, 1 · 1: , .. , , , .. 1, , .. : :' ,. •• l r J ' I I i ' ' ' , '/ •1 I '' •i ' I • ' , ' I • / ' I '< ·, I ' ' , < I ' I 

.,', .. ::. ~-rr.7,:'. · ;,;:t,·,,;, . ·111·::.· :: :,1 ·1;· · i :l 1' I :: \II! ~ :: 1 \1' 1' ' 11 ! i I: I \ ; ' 1 . 
, .... . 111 I I ' . ·' ' 'l i' " I I J I I ' I I I I 1 I I I I I 

l 
i ,i . : . l ·' ~1 111 ,. : ii I ,:1.:1 '1 · II I 'I I I l ~ ~ 'I I • I . 

I l '''' I 'If I ~ I l '' I' ,,, ' ·1 I ' I 
:: : : I 1 '1 :1 :, l '1 ~ I I ! : I I I I I 

,, I J:i /' l L 1 \ :1 I 

Figure 1. 2a. El Centro strong motion accelerograph record for events 
1A, 1B, 1C and 2. The time is given in seconds. 

...... 

...... 



El CENTRO ACCELEROGRAM 

. I . VERT MAY 18 1940 . 

hA \ \ h B he 12 . 
11 '11,\U I 111 ,1 II I \ . 

2 ~ . l . \ I . . ~ . Ns . . '? . . . . . '~ . . . . 2? . • • . ~s • . "~~ ~ 

~· ~~\ 
. 'I 

~~~,1~~~~~~~~~1 
IA Is le 2 

Figure 1. 2b. Replotted El Centro strong motion accelero graph record for events 
1 A, 1 B, 1 C and 2. For better readability of the record the gain is reduced 

by the factor of 2. 10. 

...... 
N 



tJ1 

d 

VERT 
------------- ----- -- --- -----

0:40 NS 0:50 1:00 

EW 

Figure 1. 2c. El Centro strong motion accelerograph record for event 3. 

1:10 

..... 
w 



01 

d 

VERT 
~ ~·~1::;::=~~~~-;::::~::::::::::::::::==::::~;;;;;;:====:::::::;:;::::::::::===::::::::::::::: 

NS 1:30 1:40 

EW 

Figure 1. 2d. El Centro strong motion accelerograph record 
for event 4. 

...... 
H:>o 



0"1 

d 

VERT 

1:40 NS 1:50 2:00 

EW 

Figure 1. 2e. El Centro strong motion accelerograph record for 
event 5. 

...... 
Ul 



01 

d 

VERT 

NS 2:10 2:20 2:30 

EW 

Figure 1. 2£. El Centro strong motion accelerograph record for event 6. 

-CJ' 



01 

d 

VERT 

NS 2:40 2:50 

EW 

Figure 1. 2g. El Centro strong motion accelerograph record for event 7. 

3:00 

.... 
-.J 



01 

d 

· VERT 

NS 3:30 3:40 3:50 ---------------------------------------------------------------

EW 

Figure 1. 2h. El Centro strong motion accelerograph record for event 8. 

-00 



l'.J1 

d 

VERT 

4:00 N"S __ -i;-J 4:10 4:20 4:30 
- - - - - - - - - - - - - - - --~~ - - - - - - - - - - - - - - - - -_-_- - - - -~---- ~- -- -_ - - - - - - - - - - - - - - - - -

. -' l"l 

Figure 1. 2i. El Centro strong motion accelerograph record for event 9. 

,_.. 

'° 



01 

d 
NS 4:50 5:00 -------------------------------------------------------

EW 

Figure 1. 2j. El Centro strong motion accelerograph record for event 10. 

N 
0 



01 

d 

VERT 

Figure 1. 2k. El Centro strong motion accelerograph record for event 11. 

N 
~ 



22 

largest event (event 2), and are thus important in earthquake engi

neering studies. 

Because of large amplitudes, high frequency oscillations, 

and trace overlap, the original El Centro strong motion record 

(Fig. 1. 2a) is confusing. To improve readability of this record all 

three traces were digitized and replotted at reduced gain in Figure 

1. 2b. Although thi s record appears complicated, when it is com

pared with aftershock events (e.g., event 9 in Fig. 1. 2i), similar 

wave forms can be recognized. Higher frequency phases on EW and 

NS components represent S waves from the more or less distinct 

events. At least four S arrivals corresponding to events designated 

1A, 1B, 1C and 2 can b 'e seen in Figure 1. 2b. Corresponding P wave 

arrivals for each of these events cannot be unequivocally identified 

because of the constant high level of the short period pulsations caused 

by all preceding events. Probable P wave arrivals for these events 

are indicated in Figure 1. 2b by an arrow. 

In order to interpret the phases recorded in Figure 1. 2a to 

Figure 1. 2k, travel time curves and dispersion curves were con

structed from a five layer model of the Imperial Valley (Westmoreland 

profile, after Biehler, 1964). The travel time curves were used to 

estimate the distance of each event. To compute the surface wave 

dispersion curves, layer thicknesses, velocities, and densities were 

assumed as follows: 
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Layer thickness (km) a (km/sec) p (km/sec) 3 
p (gr /cm ) 

1 0.18 1.70 0.98 1. 28 

2 0.55 1 •. 96 1. 13 1.36 

3 0.98 2. 71 1. 57 1.59 

4 1.19 3.76 2.17 1. 91 

5 2. 68 4.69 2. 71 2.19 

6 00 6.40 3.70 2. 71 

Poisson's constant was taken to be 1/4. Densities in the last column 

were calculated using the empirical relationship of Birch (1961) 

p = O. 770 + 0.302a 

Dispersion curves calculated for this model (Figure 1. 3) show 

the group velocities for the first four Love and Rayleigh modes. The 

flat character of the fundamental mode curves indicate that most of 

the energy in the period range O. 5 to 5.0 seconds will travel with a 

velocity of about 1 km/sec. 

The epicentral distances of each event were determined from 

the P and S wave arrival times on the El Centro strong motion seis-

mogram. These distances were checked against the surface wave 

arrival times. Using only arrival times at one station it is not pos-

sible to determine the position of each event; however, if it is 

assumed that all events occurred along the observed surface trace 

of the fault southeast of El Centro, it is then possible to locate the 

relative position of these events along this surface trace. The 
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assumption that the epicenters of all events lie alo.ng the surface 

trace of the fault to the southeast cannot be strictly justified, but 

appears to be a reasonable first approximation. Certainly the locus 

of the main energy release events must lie near the observed fault 

trace. Aftershocks of large earthquakes also usually cluster around 

the fault rupture and some recent studies of precisely located after

shocks indicate that most of the events lie very close to the fault 

trace (Parkfield, 1966; Eaton, 1967; Borrego Mountain Earthquake, 

1968; Hamilton et al., 1969). The fact that the observed fault offset 

(Figure 1. 9) increased towards the southeast and that the biggest 

displacements were recorded close to the international boundary sug

gests that most of the energy release took place SE of El Centro. 

The main energy release and fault rupture appears to be represented 

by the first 25 s e conds of the strong motion record (Figure 1. 2a). 

As mentioned earlier the identification of P wave arrivals for the 4 

events on this section of the record is rather uncertain because the P 

waves are less pulse-like than the S waves and are variable in relative 

amplitude (e.g. , compare the various events in Figure 1. 2c to 1. 2k). 

B ec ause of the complexity of this section of the record several other 

sma1le r events could have occurred and not been identified. The 

longe r period pulses on the NS and EW components arriving at about 

4 and 11 seconds are probably surface waves corresponding to events 

1 A and 1 B, respectively. The excitation of 2 cps surface waves is 

variable, in some cases a prominent surface wave pulse is observed 

and in other cas es not (Figure 1. 2b to Figure 1. 2k). This variability 
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is probably related to variations in the depth of the events. The S 

wave for event 2, probably the largest event of the series, arrived 

some 24 seconds after the first event. The P wave time and there

fore the distance of this event is somewhat uncertain but is probably 

as indicated in Figure 1. 2b, which would place the event at the south

easternmost part of the break, similar to event 6 {Figure 1. 2f) and 

event 11 {Figure 1. 2k). The El Centro strong motion record is 

interpreted to indicate that the main fault rupture occurred along a 

section of the fault from near the initial epicenter southeast to near 

Cocapah in a series of more or less discrete events which occurred 

in a time span of about 15 seconds and are represented on the first 

25 seconds of the record. 

Event 2 might be called a "stopping phase" in the sense that it 

probably represents the last event in a series of events successively 

further toward the southeast, but probably does not represent a 

stopping phase in the idealized sense for perfect interference as 

described by Savage {1965). 

Magnit udes have been assigned to the various events using the 

definition of local earthquake magnitude (Richter, 1958) and the strong 

motion re co rd {Figure 1 o 2a to Figure 1 o 2k). This is not a completely 

correct procedure for determining ML because the local magnitude · 

is defined in terms of the m ax imum a mplitude on records from 

standard Wood-Anderson torsion seismometers rather than a strong 

motion instrument. Amplitudes were estimated for 2 cps waves which 

would give the maximum deflections on the Wood-Anderson instruments 

at the se distanc e so M a gnitudes measured in this way closely approxi-
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mate the local magnitudes which would have been deterrnined on a 

Wood-Anderson type instrument at El Centro and are given in Table 1. 

Table 1 

Magnitudes for Events in the Imperial Valley Earthquake of 1940 

Event Distance (km) MS.M. 
L. ML 

1A 7-15 ? 5.7-5.9 

1B 17-23? 5.6-5.8 

1C 13-19? 5.4-5.6 

2 35-44 ? 6.2-6.4 6.3 

3 20-28 4.9-5.3 

4 13-19 4.4-4.5 

5 8-12 4.5 

6 34-43 5.4-5.5 

7 25-34 4.8-5.2 

8 24-32 4.2-4.4 

9 13-19 5.2-5.3 5.2 

10 14-29 4.7-4.8 

11 33-43 5.8-5.9 4.8 

The local magnitude of ML = 6. 3 for the main shock was determined 

by taking the grand average from EW and NS components of the Wood-

Anderson seismograph records at Tinemaha, Haiwee, Mt. Wilson, 

Pasadena and Santa Barbara and EW component at Riverside (see 

table 2) and agrees with the local magnitudes determined from the 
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strong motion instrument. Magnitudes ML = 5. 2 for event 9 and 

ML = 4. 8 for event 11 were computed from the EW and NS records 

from Mt. Wilson and the EW component from Riverside. ML for 

event 9 agrees closely with the determination from the strong motion 

instrument; however event 11 gives a magnitude almost one unit 

higher on the strong motion instrument than on the Wood-Anderson 

instrument at large distances. The spectrum of this event is obviously 

quite different than that of event 9. 

E. ANALYSIS OF DISTANT RECORDS 

Fourier Spectrum, * . F(w,t ,6t), of the Tmemaha Records 

In a simple Fourier analysis of the complete record, infor-

mation on the time dependence of the incoming wave forms, i.e., the 

time of their arrivals, duration, and dispersion properties are not 

directly displayed. Therefore, the following form of moving window 

Fourier analysis is used: 

where 

* soo -iwt * F(w,t 6t) = e f6 t(t) dt 

-oo 
0 * t ::: t 6t 

-2 

f(t)a(t); t * - ~t < t :s; t * + ~t 

0 t>t*+6t 
2 

and f(t) stands for the record trace as a function of the time. This 

formulation is equivalent to taking the Fourier amplitude spectrum of 
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the function f{t) m ultiplie d by the windo w of the form: 

0 

a{t) 

0 

so that 

* t < t 

* It is evide nt tha t F(w, t • .6t) can be used for seve r al purposes. 

* For example• if the time coordina t e t is take n as the travel time• 

* . then for a given distance, F{w,t ,.6t) yields the dispersion properties 

of the incoming waves. In addition, for complicated records, in par-

ticular. records of multiple event earthquakes• * F(w, t , .6t) can be 

used to separate different events or different phases. The choice of 

.6t, i.e.• the window width (as well as the window shape), depends on 

the particular needs of the analysis• and has to be chosen in each 

case to suit the physical character of the function f(t) to be analyzed. 

In this work only a square window• a(t) = 1. 0, is used. To 

* analyze the record f(t) • a discrete set of w., i = 1, 2, ••• ,n and t., 
1 J 

j = 1, 2, ••• , m, together with .6t are chosen. If w. are chosen, 
1 

* F(w.,t.,.6t). 
1 

. 
1 

· for n and m large enough, will 
1 J i= , ••• , n; J = , ••• , m 

* approximate a continuous function F(w, t , .6t). Equally spaced w. 's 
l 

* * and t. 's and linearly interpolated F(w,t ,.6t) between the discrete 
J 

points have been used. The records are digitized using a Benson-

Lehner data reducer and the speC:trum calculated on an IBM 7094. 
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Several .6t intervals were used during the course of the work in 

order to study the properties of F(w, t *, .6t). The final window width 

was chosen to be .6t = O. 7S min and increments in t* were taken as 

1/8 min. F(w,t* ,.6t) was plotted using a Calcomp plotter (Figure 1.4a 

* to Figure 1. Sb). Each plot represents F(w., t. , .6t). 
1 

. 
1 l J i= , ••• , n;J= , ••• , m 

for an interval of one minute and for the frequency range from 10 to 

7S rad/min (periods 3S to S sec). All plots were normalized, each 

with respect to the maximum peak value that occurred in that 1 min 

time interval, so that spectral values range from 0 to 1. 0 of that peak 

value. The interval from 0 to 1. 0 was subdivided into 20 levels. 

Levels of value greater than O. S were connected with full contour 

lines in order to clearly display the peaks in the spectrum. 

Figure 1. 4a and 1. 4b give the spectra obtained for the EW com-

ponent at Tinemaha. The spectra are not corrected for the instru-

ment response; however, such correction would not critically alter 

their appearance. Time on these figures corresponds to the time on 

Figure 1. 6 and is measured in minutes from an arbitrary point at 

which the record digitization was initiated. 

An aftershock, herein called the Brawley even (Figure 1. 7, 

19 May 1940, S:S1 GCT, M = S.S), was used as an example of a 

simple event and the spectrum was computed and plotted (Figure 

1. Sa, Figure 1. Sb) in the same manner as for the main event. As 

can be seen in Figure 1. Sa and Figure 1. Sb the spectrum corresponds 

to a slightly dispersed train of waves lasting for about 1/2 min with 

predominant periods between 7 and 20 seconds. A similar analysis 
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made for a recording from the Haiwee Wood-Anderson instrument 

showed essentially the same features. The location of Tinemaha 

(9 = 8°) and Haiwee (9 = 4°) are such that EW motion represents 

essentially pure Love waves. 

Integrated and Filtered Distant Records 

The Tinemaha EW components of the Wood-Anderson records 

of both the Brawley event (Figure 1. 7) and the main sequence (Figure 

1. 6) were corrected to give true ground acceleration as a function of 

time. The instrument constants used for the instrument correction 

were: V = 2800, T = 0.8 sec, and ~ = 1.0. The corrected ground s 

motion was then filtered to eliminate periods greater than approxi-

mately 30 sec. This was done because of possible uncertainties re-

sulting from the data processing procedures and the large instru-

mental correction necessary. 

The Wood-Anderson torsion seismograms at Tinemaha, 

Hai wee, Mt. Wilson and Riverside were also analyzed as a group 

using a simple running-mean low-pass filter to find whether there 

has been a coherent pattern to the waves in the coda at these stations. 

The corner period on the filter was about 15 seconds. Low-pass 

filter records from these four stations together with the EW record 

from a long-period torsion instrument at Pasadena are plotted in 

Figure 1. 8. 
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Interpretation of Distant Records 

Comparison of the Fourier amplitude spectra for the Brawley 

event (Figure 1.5a, Figure 1.5b) and the main sequence (Figure 1.4a 

and 1. 4b} or a comparison of the calculated ground motion on Figure 

1. 6 and Figure 1. 7 illustrates the complexity of the main earthquake. 

If all the source parameters associated with each of the multiple 

events were similar to the Brawley event and if there were sufficient 

time intervals between successive events so that interference would 

be negligible, it would be possible to identify all individual events on 

a long period ground motion record such as in Figure 1. 6 by simply 

identifying a "characteristic 11 peak (e.g., indicated by an arrow in 

Figure 1. 7). However, this is not the case for the Tinemaha record 

of the Imperial Valley Earthquake. As can be seen from the calculated 

ground motion (Figure 1. 6, Figure 1. 7) and Fourier spectra (Figure 

1. 4a and Figure 1. 4b} the predominant period of waves recorded at 

Tinemaha was about 10 seconds. The duration of the surface wave 

train for a single event, e.g., the Brawley event is about 30 seconds 

or 3 cycles of a ten second period wave. This makes it difficult to 

resolve events separated by less than 30 seconds. Arrows numbered 

1 to 9 in Figure 1. 6 are spaced to represent the relative arrival times 

predicted at Tinemaha. The arrows on the basis of the approximate 

locations indicated by numbers 1A, 1B, •••• 11(Figure1.la) have 

been time shifted as a group to give the best agreement with the first 

pulse of energy. Number 1 in Figure 1. 6 stands for the group of 

events 1 A , 1 B , and 1 C. 

Because of the close spacing of events 1 A through 2, they can-
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not be resolved by the long period (- 10 sec) surface waves recorded 

at Tinemaha. These waves thus combine to give approximately the 

effect of a source propagating to the southeast. The · shape of the 

Fourier spectra corresponding to these events (Figures 1. 4a and 

1. 4b) is consistent with this interpretation as is the Tinemaha ground 

motion record which can be explained as a superposition of several 

pulses shaped like the single pulse from the Brawley event. This 

interpretation is also supported by the difference of 0. 8 on the Richter 

magnitude scale, between the local stations (ML = 6. 30) located 

mainly NW from El Centro and teles eismic stations (MS = 7 .1) 

located E and SE, suggesting independently that during the main 

energy release the source propagated towards the SE. 

Local magnitudes M~0 M., estimated above from the strong 

motion record at El Centro suggest that events 3, 6, 7, 9 and 11 

might have been large enough to generate significant long-period 

energy. The prolonged train of surface waves on the EW component 

of ground motion at the Tinemaha station (Figure 1. 6) show long

period (- 10 sec) wave arrivals which might be associated with these 

events. However, filtered records from other local stations (Hai wee, 

Mt. Wilson,· Pasadena, Riverside) show no coherent pattern associ -

ated with these events. This suggests that the prolonged train of 

surface waves consists of scattered reflections from crustal inhomo-

geneities that have been generated by the main events (first 15 seconds) 

but travelled indirect reflected paths to the seismograph station. 

Figure 1. 8 gives low-pass filtered records (corner period approxi

mately 15 sec) from these stations, time shifted according to distance 
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so that a surface wave traveling with a velocity of 3. 5 km/sec arrives 

at the same time on all records. Although there is no coherent pat

tern, it is obvious that the "coda" of surface waves is longer and 

more complex than that following the Brawley (single-event) earthquake. 

This may have, in part, resulted from the greater relative excitation 

of long-period surface waves by the main events s ince the "coda" con

sists of primarily longer period waves. It is quite possible that the 

largest of these events (e.g., nos. 6, 9, and 11) generated surface 

waves that could have been clearly observed if it had not been for the 

large amplitudes of the scattered surface waves from the first part of 

the rupture. The magnitudes of these events were unusually large for 

ordinary aftershocks. According to Bath's law (Richter, 1958) the 

magnitude of the largest aftershock is usually about 1. 2 less than the 

main event. Thus, although the main energy release during this 

earthquake probably occurred in the first 15 seconds, significant 

energy release occurred as late as event 11 some 5 minutes later. 

It is also possible that significant long-period energy continued to be 

radiated after the first 15 seconds in some complex manner not simply 

related to the inferred magnitudes of events 2 to 11. That there may 

be considerable variation in the ratio of long-period to short-period 

excitation is indicated by an inspection of the various aftershocks, in 

particular, events 9 and 11. 

The relatively great excitation of high frequencies for event 9, 

suggests that it may have been deeper than events 6 and 11, assuming 

that deeper shocks occur under higher stress and thus generate higher 

frequencies. If this interpretation is correct, it would explain the 
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5.8- 5.9 and ML= 4.8 for event 11. 

F. FIELD OBSERVATIONS OF FAULT OFFSET 

Figure 1. 9 shows the amount of right -lateral offset along the 

Imperial fault as it was observed in the field shortly after the May 19, 

1940 earthquake (Buwalda, unpublished field notes). The pattern of 

these offsets indicates that the main part of the displacement took 

place along a surface fracture some 20 to 25 km long extending 

approximately from the instrumentally determined epicenter of the 

main shock SE some 5 km past Cocopah (Figure 1. 1 a). Tentative 

location of the main sequence of the events 1A, 1B, 1C and 2 (Figure 

1. 1 a), or an "equivalent 11 propagating rupture towards SE along the 

same section of the fault, are in agreement with the observed surface 

displacement (Figure 1. 9). In addition, the distribution of the set of 

nine aftershocks (Figure 1. 1a) also supports the conclusion that the 

main energy release took place 'along the same 20 to 25 km section of 

the fault. The observed fault offset (Figure 1. 9) NW of the instru-

mentally determined epicenter (Figure 1. 1a} is probably associated 

with the Brawley event, as suggested by Richter (1958). Repeated 

surveying of the Imperial fault since 1940 indicates (Brune and Allen, 

1967) that there has been c~_eep along the northwestern part of the 

fault trace. On March 4, 1966 there was a low-magnitude earthquake 

(M = 3. 6) with surface faulting along 10 km of the fault trace, centered 

about the point nearest to El Centro, the same northwestern part of 

the Imperial fault which was fractured during the 1940 sequence 
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(Brune and Allen, 1967). The Borrego mountain, California, earth-

quake of 9 April 1968 (M = 6. 5) triggered creep episodes on several . 
fault systems including the Imperial fault. Theodolite resurveys 

(Allen, et al. , 1968) indicate 1. 2 cm cumulative right lateral dis-

placement at the point where highway 80 crosses the Imperial fault 

(Figure 1. 1a), 1.1 cm 6 km northwest, and 1. 3 cm 11 km northwest 

from the same locality. These new triggered breaks along the 

Imperial fault extended for more than 20 km in the same region as 

the small earthquake of 1966 (Brune and Allen, 1967). Allen,- Brune 

and Lomnitz (personal communication) did not find any evidence of 

recent fault slippage at either the locality of the All American Canal 

(Figure 1. 1a) or in the vicinity of Cocopah as of January 1969. The 

recent activity along the northwestern part of the Imperial fault sug-

gests that it is behaving at present differently than the section south-

east of the epicenter of the 1940 earthquake. This difference could 

perhaps be related to the fact that the NW part of the fault did not 

slip as much as the SE section during the May 19, 1940 earthquake, 

but was rather fractured by the later aftershock activity, fault creep 

or both, and remained in a higher state of strain. 

G. COMPUTATION OF SOURCE MOM.ENT USING SEISMI C WAVES 

Se ismic mome nt was c a lculated using r elations from Ben-

M e nahem and Harkrider (1964) for a vertical strike-slip surface 

fault and including a correction for directivity function, i.e., 
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M 
0 

• ../2rrD.Cw • 

where 

x = ~~ (~ - cos e) 
0 

To take into account the attenuation of the waves due to scattering 

and anelasticity {together with other sources of the energy loss), 

and to correct for the angle 5 of the EW component relative to 

de the ue direction ., the following expression can be written: 

'1Tl:l 
OUT 

0 1 ---cos 0 = ue 

where u is the spectral density determined from the record. 

In the case of a multiple event earthquake where the individual 

events are sufficiently separated in time, the moment may be calcu-

lated as the sum of the moments associated with each event. If each 

1 
such moment is denoted by MO-SEJSM' 

The sequence of 4 events that occurred in the first 25 seconds of the 

onset of the strong motion record were too closely spaced for this 

condition to apply to waves of about 10 seconds period recorded at 

Tinemaha. For these waves, the multiple events behave more like 

a propagating source. 

To correct for directivity it is necessary to know the rupture 
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length and the propagation velocity. From the plot of displacements 

(Figure 1. 9) and the distribution of aftershocks shown in Figure 1.1a, 

the main rupture appears to have extended from the epicenter to 

Cocopah, a distance of about 20-25 km. The rupture velocity is 

approximately given by the fault length divided by the time difference 

between the triggering of the strong motion instrument and the origin 

time of the last event, about 15 seconds. This gives an effective 

rupture velocity of about 2 km/sec. Estimates of the source param-

eters (b = 20 - 25 km, v::::: 2 km/sec, C::::: 3.4 km/sec at T = 11 sec, 
0 

and cos 9 = - O. 99) give an approximate value for x to be 4. S to 

5. 0 and Is~ X I -O. 20 which is in approximate agreement with the 

shape of the spectrum given in Figure 1. 4a as indicated by spectral 

gaps at periods of about 9 and 1 S seconds. With the a:bove assump-

tions one obtains 

26 
at Tinemaha: MO-SEISM::::: 1.1 * 10 dyne-cm 

at Haiwee: 
26 

MO-SEISM::::: 1.3*10 dyne-cm 

In these calculations the following values were used: Q::::: 200; 

-1a I AL = O. 91 * 10 cm dyne; T 
0 

= 11 sec; RT = ground amplitude 
0 

in microns/trace amplitude in millimeters = 60; C = 3. 7 km/sec; 

6 = 546 km for Tinemaha; 6 = 440 km for Haiwee; oHAIWEE = 31°; 

0 
OTINEM. = 27 • These two determinations are regarded to be in 

good agreement considering the difficulty in the interpretation and 

the accuracy of the necessary assumptions. 
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H. COMPUTATION OF MOMENT FROM FIELD OBSERVATIONS 

The computation of the moment from field observations was 

performed using the well known relation (Maruyama. 1963; Aki. 

1966; Brune and Allen. 1967): 

MO-field = u µA 

From the field evidence the average displacement along the 

complete fault length measured on the surface of the ground was 1. 25 

m. The fault length was about 65 km (Richter, 1958). The depth of 

the faulting was estimated to be about 7 km by fitting the geodetic 

data given by Byerly and DeNoyer (1958) with the theoretical curve 

for a strike-slip fault taken from Knopoff (1958). With µ = 3. 3 X 10
11 

dyne/ cm 2 , one obtains £or the whole fault plane 

3 25 26 
MO-field= 4 X 1. 25 X 3.3 XO. 7 X 6.5 X 10 = 1.4 X 10 dyne-cm 

However, if the northwestern section of the fault did not slip 

during the main event. but later during the Brawley event as suggested 

above, then the field moment for the main event should be calculated 

from the southern section only. 

Taking the length of the fault section corresponding to the 

main propagating rupture to be about 25 km fault depth of 7 km and 

the average displacement of 2. 7 meters corresponding to the fault 

section between the All American Canal and Cocopah. one obtains 

essentially the same moment: 

3 25 26 
MO-field= 4 X 2. 7 X 3.3 XO. 7 X 2. 5 X 10 = 1. 2 X 10 dyne-cm 
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The moment estimated from the field evidence would be 

expected to be somewhat larger than that estimated from the seismic 

results because the field observations include fault slippage occurring 

during later aftershocks as well as creep. Considering the uncer-

tainties involved in both the field data and the seismic analysis, the 

agreement is remarkable. 

I. MAGNITUDE AND MOMENT 

The published magnitude for the Imperial Valley 

earthquake of 1940 is 6. 7 (Richter, 1958). However, 

a strictly objective determination of magnitude using Wood-

Anderson torsion seismometer records gives a value of 6. 3. The 

magnitude indicated from the strong motion instrument is also 6. 3. 

It was originally felt that more weight should be given to distant 

stations in the assignment of 6. 7 as the magnitude. The magnitude 

* ML= 6. 3 is obtained from the average of magnitudes determined 

using maximum deflections on EW and NS Wood-Anderson components 

at stations Tinemaha, Hai wee, M;:. Wilson, Pasadena, Santa Barbara, 

and Riverside as shown in Table 2. The period of these deflections is 

about 1 sec. 

* By definition, ML = log A - log A 0 where A is the amplitude in mm 
of the trace recorded by a standard Wood-Anderson torsion seis 
mometer (V = 2800, T = 0.8 sec, s = 0.8) at a distance of 100 km 
from the epicenter, and A 0 is the amplitude with which the same 
instrument would record an earthquake of magnitude zero, at this 
distance. The magnitude defined in this way is a measure of the 
largest amplitude of ground motion at a given distance. Determina
tion of magnitude in this manner is not considered reliable at dis 
tances greater than about 600 km. 



TABLE 2 

Data Used in Determining the Local Magnitude ML 

For the Imperial Valley Earthquake of 1940 

Station Direction Distance Distance Station maxA log A M 
(km_) Correction Correction (mm) -

- EW 50.5 1. 70 6.3 
Tinemaha 546 4.8 -0.2 

NS 79 1.90 6.5 

EW -110 2.04 6. 6 
Hai wee 440 4.6 o. 

NS -125 2.1 6.7 ~ 

'° EW 103 2.02 5.9 
Riverside 

NS 224 3.7 +o. 2 

EW <143 2.16 6.2 
Mt. Wilson 290 4.0 

NS <149 2.17 6.2 

EW 90.5 1.96 6.2 
Pasadena 294 4.0 +0.2 

NS ?> 79.5 1. 90 6.1 

EW > 85 1.92 6.3 
Santa Barbara 435 4.6 -0.2 

NS 91 1.96 6.4 
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Subsequently, Gutenberg increased the magnitude to 7 .1 on 

the basis of determinations of 20 second surface wave magnitudes 

for stations La Plata. Uppsala, DeBilt, Stuttgart, and Helwan 

(Richter. personal communication) and on the basis of the field 

evidence of extensive faulting. 

In the case of multiple event earthquakes u obviously the mag

nitude versus moment relationship need not be single valued since 

an increase in 'the number of events will increase the total moment 

but not necessarily the maximum amplitude. The magnitude calcu

lated from the moment (long-period waves) will tend to be larger 

than the magnitude determined from the record of the short-period 

waves. The magnitude directly determined from the record of the 

short-period waves will correspond more closely to the moment for 

the single event which generated the biggest short-period waves. 

Stated otherwise, a series of events propagating in space will con

structively interfere for wave lengths large compared to the source 

dimensions, but not constructively interfere for shorter wave lengths 

(Brune and King, 1967). 

J. DESTRUCTIVENESS OF MULTIPLE EVENT SOURCES 

As can be seen in Figure 1. 2a to Figure 1. 2k at least 13 

events occurred in the period of approximately 6 minutes, one large 

event every 5 to 10 seconds during the first 25 seconds and about one 

clearly recorded event every 25 to 30 seconds during the next 5 

minutes. The shortest resolved time interval between two distinct 
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events was close to 4 seconds and the longest 50 seconds. However, 

other events not resolved could have occurred at shorter intervals. 

The interval between relatively large events during the latter 5 

minutes was of the order of 1 minute. 

The effect of a given ground motion on typical engineering 

structures is commonly investigated by calculating the response 

spectrum. This has been done in the engineering literature for the 

first 30 seconds of the Imperial Valley, 1940 earthquake, including 

the first four events (Alford, et al., 1951). It is now of interest 

to investigate the additional effects on structures that might be 

associated with the later events. 

If the building is represented by a one degree of freedom 

simple oscillator with a natural frecpency of vibration p and a 

fraction of critical damping i;, transient response to a given initial 

velocity and displacement is 

where c
1 

and c
2 

depend on the initial velocity and displacement. 

This is an oscillatory motion with ·an amplitude given by 

A(t) = e-pt;t 

Many buildings have a small equivalent viscous damping, not 

exceeding 2% if vibration is in the elastic range or perhaps 5% to 8% 

if the vibration level is in the plastic range. The natural period of 

the vibration of most buildings would fall in the range from T = o. 05 

sec, for small stiff structures to T = 4. 0 sec or greater for tall and 
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flexible structures. 

If it is supposed that the excitation of the building vibration 

is small between the successively arriving events, the vibration will 

die out during the "quiet" interval of time as e-pt;t. When pt;t 

becomes close to 3. 0 the amplitude of the oscillatory motion will be 

20 times smaller than at the beginning of the quiet interval (t = 0) 

i.e., at the moment when the excitation caused by the m-th event 

has just ceased to be significant. This qualitative argument gives 

or 

Taking T = 1. 0 sec and i; = O. 02, t 1 ; 20 = 24 sec. Thus £or mo st 

buildings excited by a sequence of events similar to the Imperial 

Valley earthquake, the vibration will nearly die out between most of 

the individual events. Buildings with relatively short natural periods 

of vibration (say 1 sec or smaller) will respond to a sequence of 

events such as the Imperial Valley earthquake as if there were 13 

or more different earthquakes each with duration of 3 to 30 sec. For 

such buildings the time build up of the amplitude of the vibration will 

depend on the duration pf each single event and the occurrence of a 

new event every 30 sec or so will not be important for response ampli-

tude, although it might be important if progressive weakening is in-

valved. 

For buildings whose natural period of vibration is longer, 

amplitudes may be cumulatively increased by the sequence of events. 

The actual rate at which building vibrations grow will depend on the 
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effects of the interference of the waves coming from the successive 

events, on the number and duration of events, on the distance be

tween the structure and each event, and on the elapsed t _ime between 

events. It is clear that for a sequence of events with similar long

period wave amplitudes, the response amplitude could increase 

with the total number of events in the multiple sequence. In this 

case, there might well be a good correlation between destructive

ness and seismic moment (or, equivalently to the amplitudes of · 

very long-period waves, e.g., mantle wave magnitude, Brune and 

Engen, 1968). 

Presently, there are increasing numbers of tall buildings 

and other structures with long natural periods of vibration which 

may be subject to vibration with cumulatively increasfog amplitudes 

if excited by a sequence of events similar in character to the 

Imperial Valley earthquake of 1940. In order to accumulate neces

sary data for analysis of such structures calculation of the relative 

velocity spectra should be extended to longer natural periods of 

vibration, say up to 10 sec. In addition, much longer portions of the 

available strong motion accelerogram records should be used as an 

input. 

K. CONCLUSIONS 

1. Analysis of the P, S and short-period surface waves 

recorded on the El Centro strong motion accelerometer indicates 

that the Imperial Valley earthquake of May 19, 1940, consisted of a 
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series of at least 13 distinct events occurring during the period of 

about 6 minutes and distributed over a distance of about 25 km. SE 

along the fault from the initial epicenter. Most of the energy and 

seismic moment was produced in the main sequence of about 4 events 

which occurred in the first 15 seconds and were distributed over the 

same section of the fault. Events recorded in the 5 minutes after the 

main sequence were important for engineering studies of strong 

earthquake ground motion, since their magnitudes ranged as high as 

5.8, only 0.5 magnitude units smaller than the largest event in the 

main sequence. The rupture of the NW section of the fault may have 

taken place during an aftershock herein called the Brawley event, 

in agreement with an earlier suggestion by Richter (1958). The 

Tinemaha record of surface waves generated by the Brawley event, 

one hour and 17 minutes after the first event, illustrates the differ-

ence between surface waves from a simple event and those from the 

complicated main event. 

2. The seismic moment calculated for the main sequence of 

events, about 10 26 dyne-cm, agrees well with the moment inferred 

from field observations of the fault offset. 

3. Two lines of evidence indicate that the seismic energy 

released in the first 15 seconds was generated by a series of events 

propagating SE from the vicinity of the initial epicenter along a 

section of the fault 25 km. long: 

a. The Richter magnitude, ML = 6. 3 , determined from 

stations NW of the epicenter was 0.8 magnitude lfnits less 
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than the surface wave magnitude, M = 7 .1, determined s . 

from surfa~e waves recorded SE and E of the epicenter. 

This suggests a focusing of energy toward the SE such as 

would be the expected for a rupture propagating in that 

direction. 

b. The distortion of the seismogram and moving window 

Fourier spectrum of surface waves at Tinemaha is con-

sistent with a rupture propagating toward the SE. 

4. For the Imperial Valley earthquake, buildings .with a 

relatively short fundamental period of oscillation (say, 1 sec and 

shorter) would respond as if the individual aftershock events were 

completely separate in time whereas buildings with a relatively long 

fundamental period of oscillation (say, 2 sec or longer) might vibrate 

with gradually increasing amplitude and thus the amount of damage 

could be closely related to the duration of the energy release in the 

whole sequence. 
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CHAPTER II 

RELATIVE AMPLITUDES AND SPECTRAL PROPERTIES OF 

STRONG EARTHQUAKE GROUND MOTION ASSOCIATED 

WITH HORIZONTALLY PROPAGATING SEISMIC WAVES 

A 

A(x) 

a 

a(~) 

b 

C, C(x) 

.c(~) 

D 

F 

f 

f(a) 

Ho 

H, H(x) 

J. 

M 

NOMENCLATURE 

bound on 9 and 1], also used as A~ in Appendix I 

constants representing initial conditions for the 
T(t) function 

amplitude of X(x) function 

left limiting point of the x interval 

function defined and used in Appendix I (evaluated 
at H or £) 

right limiting point of the x interval 

function defined and used in Appendix I (evaluated 
at H or f) 

phase velocity, also used as a constant in Z(x,z) 
solution 

function defined and used in Appendix I (evaluated 
at H or f) 

constant in Z(x,z) solution 

constant in Z(x,z) solution 

frequency of vibration (cps) 

numerical function 

constant layer thickness 

variable layer thickness along x direction 

wave length (£ = cT) along the boundary plane 

constant 



N, N(w) 

n 

P 1 , P 2 

p(x) 

r 

r(t) 
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constant 

integer, number 

frequency parameter in the modal function Z(x,z) 

function (p(x) = 1/C
2

(x)) 

rate of the energy flux, also used as a numerical 
constant 

ratio of the energy flux (r = R 2/R 1) in the infinite 
medium and the surface layer 

function defined by p(x) and its derivatives 

SF /TJ(T) ,SF /O(T) Fourier amplitude spectrum at distance 11 and 
11 =. 0 respectively 

SH 

s 

T 

T(t) 

t 

u 

u 

w 

x 

y 

a(x) 

horizontally polarized S (shear) waves 

coordinate along the normal to the boundary 
surface 

period of vibration (T = 2rr/w), used also as a 
limit of the interval for the variable t 

function defining the time dependence of v(x,z ,t) 

time coordinate 

group velocity 

component of motion in x direction 

displacement in y direction in the layer (1) and 
in infinite medium (2) respectively 

component of motion in z direction 

coordinate axis 

coordinate axis 

numerical constant 

dimensionless function defining the boundary 
between the surface layer and the infinite 
medium 
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E' €(x) 

T)(t ,w) 

a 

a c 

lT 

p(f) 

'T 
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shear wave velocity, (1) in the layer and (2) in 
the infinite medium 

group velocity ratio ( o = (3 1 /U) 

function defined and used in Appendix I (evaluated 
at H or f) 

phase velocity ratio (E(x) = (3 1/C(x)) 

function defined and used in Appendix I (evaluated 
at Hor £) 

normalized X(x) function 

angle of the layer surface inclination along x, also 
used as the dimensionless distance along x 
direction (TJ = x/H0 ) 

incidence angle (in Appendix II interchangeable with 
q>), inclination of the boundary between the layer 
and the infinite medium, also used as the diver
gence of the vector field u 

critical incidence angle 

dimensionless constant ( K = p 2 /p) 

dimensionless constant (X. = wH /(3) used in 
Apper,.dix I, also used for the°Lam~ constant 

Lam~ constants in the layer and in the infinite 
medium respectively 

dimensionless ratio (£ = µ 2/µ 1), also used as a 
variable of integration 

numerical constant (ir = 3.14159) 

densities of the layer and infinite medium 
respectively 

function used in Appendix I 

variable of integration 

function used in the period equation 

phase shift, also used as an incidence angle in 
Appendix I 



x 
ljJ(x) 
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dimensionless constant (x = 13 2/13 1) 

dimensionless function defining the surface of the 
layer 

mathematical frequency of vibration (w = 2nf) 

Other symbols not defined here are given in the text with an 

appropriate explanation. 

A. MODEL WITH HORIZONTALLY PROPAGATING ENERGY 

Most of the past theoretical work to determine the effects of 

the ground on the amplitudes of earthquake strong motion was mainly 

concerned with the effects of a uniformly stratified layer, or a set 

of layers, on a vertically propagating plane front of shear waves. 

Studies were made on the amplification of the wave amplitudes be-

cause of successive reflections and refractions through one or 

several layers. The results were used to determine the natural 

periods of layer vibrations, their distribution in the frequency space 

and consequently their effect on response spectra. The justification 

for applying such a model was that waves at distant stations essen-

tially propagate vertically because of the decreasing velocity of the 

wave propagation towards the surface of the ground. One major 

objection to such an as SUillption is that strong motion, significant to 

earthquake engineering studies, occurs very close to the source of 

the earthquake energy release, in fact so close that it is difficult to 

imagine that the most ~>ignificant part of the wave energy would be 

represented by only one vertically incoming ray. It seems more 
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natural to think of the motion caused by the superposition of many 

rays, generated by th~ reflections and refractions as well as 

scattering through the ground and also emitted from the different 

locations along the fault surface, with each ray having in general a 

different incidence angle. O:.Z course, an exception to this would be 

the case when the source is beneath the surface point at which the 

motion is recorded. 

It seems therefore that the model with vertically incoming 

waves towards the stratified surface of the ground could be appro

priate for studying the influence of the surface layers on the ampli

tudes of P and S waves from distant earthquakes and teleseisms. 

Such a model could probably also be used for the near but sufficiently 

deep-focus earth quakes, but not always for the analysis of the close 

fields of the ground motion caused by shallow and surface faulting. 

Classical observational treatme nts of elastic waves, generated 

by the ene rgy released from earthquakes, distinguish four principal 

wave groups: P, S, Land R. Symbols P and S stand for the 

comp ressional and shear waves while L and R stand for Love and 

Rayleigh surface waves respectively. P and S are also often 

called body waves, and in fact are the two basic types of motion that 

can e x ist in the homogeneous elastic and infinite medium. Bound

aries of the elastic solid, together with discontinuities of the 

m at e rial prope rties, caus e tran sformation of orig inal P and S 

motions into the t wo basic s u rfa ce wave groups, here called L and 

R. The energies belongin g to e a ch of the four groups propagate 
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with different velocities, the velocity of P being the biggest. The 

resulting motion at great distances may be recorded as clear and 

distinct pulses (P and S) or a train of dispersed waves (L and R). 

Recent observations have shown that there are many other phases 

and wave forms but mo ::it of them may be included in one of the four 

generalized P, S, L or R groups of motion. 

The motion close to the source of the energy release can not 

be described by the above simple wave groups. It is composed of 

essentially the same four basic types of waves but often not clearly 

separated because of the source proximity. In addition the high 

frequency terms whose amplitudes decay rapidly with distance and 

so can not be observed on most of the teleseismic records, are now 

present together with other effects some of which are caused by the 

source mechanism. Also - source size relative to the distance to 

the station, the spatial and temporal distribution of the pattern of the 

energy release, the radiation pattern and properties of the medium 

along the wave propagation path between the source and the recording 

station, are important. 

In order to study strong earthquake ground motion close to the 

source of the energy release, it is proposed here to consider a model 

in which seismic energy is propagated along the .surface of the 

ground or a "model with horizontally propagating energy." From 

mathematical considerations it may be seen that for the existence of 

surface Love waves , the velocity of the SH wave propagation must 

increase as a function of the depth, or in the simplest case there 
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must exist at least one layer. This, however, does not seem to be 

a serious restriction for the existence of surface waves along the 

plane boundary, because actual ground is so non-uniform that in all 

practical cases it can be represented by a model with a variable 

velocity. Rayleigh surface waves may exist also in the absence of 

a surface layer, i.e., along the surface of the infinite uniform half 

space, and in that case there is no dispersion of the wave form. 

To give some immediate motivation for the model with hori-

zontally propagating energy, one may consider a simple idealized 

case consisting of one layer on top of an infinite and uniform half 

space. To simplify the discussion further, it may be supposed that 

the source consists of a line s (Fig. 2. 1 and Fig. 2. 2) which extends 

to infinity in y .direction. Further it may be assumed that this line 

represents a source which emits seismic energy radially and uni-

formly in all directions 0 < a < 2ir and at a constant rate. Because 

of the elastic properties of the layer and the infinite medium welded 

together at z = 0, all of the energy transmitted in directions such 

that I a' I :S: ~ (Fig. 2. 1), when the source is in the layer, will be 

conserved in the layer for all subsequent times. On the assumption 

that the line source is generating SH waves, a simple application 

of Snell's law gives. 

-1(131) @ = ir- 2 sin -
132 

(1) 

when the source is in the layer, and 

1T • -1 ( 132 ) 
@ = 2 - s m \ ~ sin e c = 0 (2) 
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when the source is in the infinite medium; (3
1 

and (3
2 

are the 

velocities of the SH · waves in the layer and in the infinite medium 

respectively. Waves in the directions @/2 :S I a I I :S TT/2 for the 

source in the layer (Fig. 2.1) and 0 :S 9' < TT/2 for the source in 

the underlying infinite medium (Fig. 2. 2) will initially bounce in the 

layer but will loose a certain fraction of their amplitude at each 

point of the reflection and refraction along the boundary z = O. 

Their contribution to the total amplitude of the ground motion at the 

surface will tend to zero as the distance from the source increases 

indefinitely. The above representation is of course symmetric in 

the negative x direct~on from the source s. 

Many destructive strong earthquake ground motions are 

gene rated near fault systems often extending to the surface of the 

ground. In such cases energy is not radiated from a single and 

infinitely long line, but from portions of the two surfaces along which 

the ground slips. From the analogy with the preceding qualitative 

discussion of the line source it is clear that if the fracture extends 

to the surface and is not much deeper than the thickness of the layer, 

most of the seisflliC energy will be preserved in the layer provided 

that the velocity contrast between the layer and the infinite medium 

is great enough. That portion. of the energy which is conserved in 

the layer will represent a superposition of the successively bouncing 

P, SH and SV waves which travel along the x direction (Fig. 2. 1 

and Fig. 2. 2). Constructive Lnterference of these waves leads to 

the Love and Rayleigh surface waves. The analysis presented in 

the following sections is concerned with Love waves only. In 
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principle, a similar analysis may be carried out for Rayleigh sur

face waves as well. 

Attempts to decipher the record of strong earthquake ground 

motion close .to the causative fault in terms of simple wave groups 

can often be only tentative. This is because most of the observed 

bursts of energy on the records are the result of superposition of 

many various waves generated by reflections and scattering through 

the non-homogeneous medium, and do not necessarily display the 

separation into the four basic groups P, S, L and R characteristic 

of distant seismological records. 

The record of strong earthquake ground motion is almost 

always in the form of an accelerogram. The nature of this recording 

is such that higher frequency motions of the ground are recorded 

with greater emphasis than the lower frequencies. Seismological 

records on the other hand, because of the variety of instrument 

characteristics, may be accelerometers, displacement-meters, or 

something in between depending on the natural period of the instru

ment as compared to the period of the measured wave motion. 

Typical strong motion accelerometers usually give information on 

the waves of periods ranging .from less than O. 1 seconds to the order 

of 10 seconds. Most seismological instruments cover longer periods 

of ground motion. Since they are usually located far from the energy 

release, they do not record high frequency vibrations in detail be

cause those have been much attenuated and filtered out along the 
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propagation path. Since higher frequency seismic waves are more 

sensitive to various inhomogeneities and discontinuities of the 

ground properties, they can hopefully yield more information on 

the local geology and the details of energy release. Such high fre

quency waves will of course need to be recorded sufficiently close 

to the source to avoid significant attenuation. 

P waves on the strong motion record can be recognized by 

distinct high frequency pulses on the vertical component of the instru

ment record. S waves will show predominantly on the two horizontal 

components, also in the form of high frequency pulses, but usually 

with somewhat longer periods ()f vibration than the P group. 

Depending on the distance from the source, the S waves will be 

near the beginning of a dispersed group or train of waves which con

tinuously merges into the L and R waves of longer periods. The 

duration of P and S groups on the strong motion accelerogram, 

close to the source, will be of the order of several seconds each, 

depending on the source m e chanism. The following surface wave 

motion will last much longer, up to ten seconds and more, depending 

on distance. Because of the emphasis of the higher frequencies on 

the accelerogram record, surface waves may not appear with big 

acceleration amplitudes although their wave displacement amplitudes 

may be quite significant. On distant seismological records on the 

other hand most of the biggest recorded amplitudes of vibration, 

and also the long lasting trains of waves, will be surface Love and 

Rayleigh waves for the majority of surfac~ or shallow shocks. P 

and S phases, w ell separated in time and arriving m u ch earlier 
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than the train of surface waves, will be usually represented by a few 

pulses of small amplitude. This short outline of the difference 

between strong motion and the distant seismological records is only 

an illustration of some qualitative features and depends very much 

on the characteristics of the instruments that are used. 

The mechanism of seismic wave generation is not yet com

pletely understood. It is closely related to the mechanics of faulting, 

the amount of the released potential energy which was stored before 

the fracturing, and the manner in which the fracture takes place. 

Since the greatest part of the present knowledge of the earthquake 

mechanism is derived from a study of radiated elastic waves, 

attempts have been made to define equivalent source forces or 

systems of forces which would produce the same elastic waves as 

those which are observed after the earthquake. 

A simplified source representation by a model with forces 

acting essentially at a point is useful and sufficiently accurate when 

the observing station is far from the source and when the recorded 

waves are sufficiently long compared to the source dimensions. 

Strong earthquake ground motion, as already mentioned, occurs 

close to the locus of the energy release, which is often a surface 

fault. Since the wave lengths which are of interest to earthquake 

engineering are relatively short, corresponding roughly to the 

periods of 0.1 to 10 sec, and since distances from the locus of 

energy release are small compared to the source dimensions, the 

source can not be represented by a simple model with forces acting 

only at one point. An alternative representation could consist of 



69 

many small sources distributed in time and space and scaled appro

priately to account for the total integral effect. If motion occurs 

along a well defined vertical strike slip fault, a model based on the 

horizontally guided SH waves may be a fair representation of the 

predominant motions in directions paralle_l and perpendicular to the 

orientation of the fa ult plane. 

Some observations of earthquake ground motion are difficult 

to explain by the simple theory of a vertically incident infinite train 

of S waves upon the set of the uniform horizontal layers, or even 

contradict some of the qualitative conclusions based on that theory. 

A few of such observations will be pointed out here. For example 

(see Gutenberg, 1957, p. 238, Fig. 16) for nearby earthquakes there 

is an increase of the intensity of shaking at locations where seismic 

waves emerge from the rock into the alluvium, but then as waves 

proceed into the deeper alluvium amplitudes decay. Similarly, for 

earthquakes originating north of the Imperial Valley, it was observed 

that the intensity of shaking rapidly decays southwards in the valley 

(Richter, 1958). A simplified case illustrating such a situation is 

presented in the qualitative manner in Fig. 2. 3. Most of the wave 

energy generated by a nearby fault enters the valley along its 

boundary AB and less along BC. A typical wave is refracted into 

the layer at ex. and reflected once from the surface at 13. By the 

time the wave approaches y, the orientation of the lower interface 

has sufficiently changed so that most of the energy originally con

tained in that ray is reflected back into the layer. From that point 
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on the wave bounces in the layer generating a surface wave. If the 

boundaries are sufficiently smooth so that the predominant part of 

the motion of the SH type can be explained by the theory of Love 

waves, and if the thickness of the alluvium gradually increases, 

simplified theory indeed predicts that wave amplitudes will decrease 

as the wave energy progresses into the deeper alluvium. Although 

the boundaries here are very complicated it may be pointed out that 

the intensity bf shaking increases between A and B' in the manner 

probably similar to that predicted by the model with vertically in

coming shear waves although the process is quite different. On the 

other hand from C 1 to the right, the functional behavior of the 

intensity of shaking is predominantly related to the properties of the 

surface waves. 

A consideration of the one layer problem and vertically and 

steadily propagating shear waves predicts that the interference may 

lead to amplitude build up at the surface of the ground. The one

dimensional nature of this model implies that for the given layer 

thickness H
0 

and shear wave velocity 13
1

, and for the same excita

tion, periods T of the layer vibration for which the amplitudes are 

a maximum are fixed for all points of the surface and are the same 

for all x. Instrumental studies to analyze x-distributions of ground 

motion are almost entirely lacking. There is an indication, however, 

based on the observed ground motion, that for different locations 
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along the x direction spectrum peaks may occur at different periods 

{Housner and Trifunac, 1967 ). 

It should be pointed out here that neither model with vertically 

propagating shear waves nor the model with horizontally propagating 

energy can be used alone and in all circumstances. The reason for 

this is that both models are based on idealizations which are very 

restrictive and almost never satisfied in full. The assumptions that 

the materials of the layer and the underlying infinite medium are 

homogeneous, isotropic and elastic are probably not the most sen

sitive. The most serious violations in any comparisons with the real 

alluvium valleys are the boundary conditions. Both models are based 

on a layer that is uniform in the y direction (Fig. 2.4) and is either 

of uniform thickness H
0 

or of variable thickness H(x) along the x 

direction. Thus when applying some of the conclusions based on the 

theoretical model analysis to real cases, special attention has to be 

given to the consequences of the violated boundary conditions. 

Furthermore both models are based on stationary and continuous 

input of wave energy with a few exceptional treatments (e.g., 

Whitman, 1968; Tsai, 1969 among others). Since strong earthquake 

ground motion is of a transient character this is another serious 

simplification. 

It may be noted here that the d~fference between the stationary 

and transient wave motion is particularly significant when considered 
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from the point of view of the rate at which the energy propagates as 

a function of time. Transient wave motion is characterized by the 

fact that before the energy generation at the source is initiated 

there is no motion throughout the medium and that subsequently the 

velocities of the propagation are finite. These two statements are 

equivalent to saying that there is no motion beyond a certain distance 

6 = v (t-t
0

) from a point source in an infinite homogeneous elastic 
max 

medium. Here 6 is the radial . distance measured away from the 

source, v is the biggest velocity that can exist in the medium, 
max 

t is the time and t = t
0 

is the time at which the source was initiated. 

If the pattern of the energy release at the source is nonstationary 

in time, the rate of energy flux at any point of observation will 

also be nonstationary and in addition further complicated by the 

filtering effects of the ground. Simple models that assume station-

ary and constant rate of energy input, as is done in many treatments 

on the vertically incoming shear waves as well as the present ana-

lysis of horizontally propagating energy, are therefore violating 

the transient nature of earthquake motions. The stationary assump-

tion often allows a simple treatment of certain properties of stationary 

trains of waves which are similar for transient waves. The reason 

for the simplicity of the stationary wave problem is the fact that the 

initial conditions do not have to be considered. 

When the geology of the site in question is simple and close 

to the case of one or several layers of sediments, so that both models 

could be used, the question arises as to which is most appropriate. 
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The answer is that both should be considered. This is because both 

body and surface waves are to be expected. A statistical study of the 

seismicity of the region and the existing active faults may suggest 

the most probable direction and the distance of the origin of a future 

earthquake. Knowing the distances and the geology of the area will 

hopefully allow an estimation of the character of the shaking resulted 

by P, S and surface waves. 

Because P and S waves sl:ow practically no di9persion it 

suffices to associate with them fixed velocity of propagation. Surface 

waves are all dispersed and propagate with the velocities which are 

in the interval between the maximum C and the minimum C . 
max min 

phase velocities. Therefore, if the source is at the distance .6 

from the recording station surface wave motion will last for 

.6 (-1 - 1 ) c . c 
min max 

time units, while the body wave motion will be almost instantaneous. 

Of course, in real nature their duration will be even more extended 

because of reflection and scattering effects caused by irregularities 

of the medium through which the waves propagate. Since the dura-

tio n of shaking plays an important role in structural response to 

strong earthquake ground motion, the importance of studying surface 

waves involving horizontally guided energy seems obvious. 

The analysis which is presented in the following sections 

treats only some of the simple and immediate consequences of the 

concept of horizontally propagating energy under stationary conditions. 
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Other results based on the same model but subject to different boun

dary conditions can be derived also. 

B. ON THE SIGNIFICANCE OF THE EXISTENCE OF 

THE LOW VELOCITY SURF ACE LA YER ON THE 

INTENSITY OF SHAKING 

Numerous investigations of the problem of the influence of 

the ground on the intensity of shaking have been carried out, both 

theoretically and experimentally. The experimental approach is 

often based on the correlations of known ground properties of the 

ground response to both major destructive earthquakes and explo

sions, as well as to smaller disturbances such as teleseisms, 

microseisms, microtremors, etc. The theoretical approach appears 

to be more difficult and solutions to only a few simple models are 

known and understood. This is because practically all theoretical 

models are founded on very restrictive and often unrealistic assump

tions to facilitate the mathematical treatment. 

An important problem is how the intensity of shaking of the 

ground depends on the properties of the underlying soil. In particular 

does the existence of a "soft surface layer, or of several layers 11 

necessarily imply that the intensity of shaking will be increased, and 

how could surface shaking depend on the material and the elastic pro

perties of the layer and the underlying medium. 

To answer qualitatively this question it may be useful to think 

in terms of the steady energy flux of waves along the x direction 

(Fig. 2. 6). First the case of a layer with a constant thickness H0 , 
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and in which this energy travels in the x direction in the layer and 

in the underlying infinite medium will be considered. To begin with, 

some of the results given by J. A. Hudson (1961) on the internal 

reflection of SH waves will be reproduced. 

Taking H 0 to be 

~1 
H 0 = e (a + n tr) , n = 0 , 1 , 2 , 0 •• w cos 

where 13
1 

is the velocity of the propagation of SH waves in the 

layer I (U the circular frequer,cy I e the angle Of incidence and 

(1) 

0 ~ a ~ tr/2, a real variable, n being associated with fundamental, 

first and higher modes, the stress-free surface can be defined by 

(2) 

The motion of the layer v
1 

and the underlying medium v 2 respec

tively can be written as 

where 

v 1 = 2• cos [c.;(t - x ~in a ) +a ]cos (zw~os e +a) 
1 1 

[ ( xsin0 )+ "']• e-wcrz v 2 =2•cosa•cos wt- ~ .... 
1 

er -
. 2a sin 

132 
1 

1 
- ~2 

2 

and wcr > 0 

(3a) 

(3b) 

(4) 

The motion described by v 1 and v 2 represents Love waves 

whose character i,s oscillatory in the layer and exponentially decaying 

in the infinite medium. The number of zeros in the modeshape is 

given by n, period of the vibration 2tr /w, and the velocity of the 
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propagation in x direction C = ~ 1 /sin a (Fig. 2. 6). The necessary 

condition for the existence of the Love waves is that wcr > 0 which 

is satisfied provided 13 1 < P2 and rr/2 >a> ac' and where the criti

cal angle a is given by 
c 

sin a 
c 

'31 
=~ 

2 

The physical significance of the imposed limiting values of 

at rr/2 and a will be indicated later. c 

One can consider the rate of the mechanical work R or 

power which may be taken as the rate at which work is done by one 

- + side of the plane x = const. on the other plane x = const. Rates 

in the layer R
1 

and in the underlying infinite medium R
2 

are 

given by 

=So (-•• av1 ) 
R1 -H r-1 ax 

0 

(5) 

(6a) 

(6b) 

where µ
1 

and µ
2 

stand for the rigidities of the layer and the infinite 

medium respectively. 

Using the expressions (3a) and (3b) for the displacements v 1 

and v
2 

in the equations (6a) and (6b) one obtains, 

R
1 

= µ
1
wtana[2(a+mr) +sin2a] sin

2 1
w(t- xsp:a )+a J (7a) 

4 
nµ 2 2 . 2 I lt· x sin a ) + -, 

R 2 = ~cos a• sm Lw~ - ~ 1 a J (7b) 
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where 

211{31 
i. = w sin e (8) 

is the wave length of the displacement along the free surface z = -H
0

• 

Defining r to be the ratio of the rate R 1 in the layer and the rate 

R 2 in the underlying medium, and using the period equation for the 

Love waves, r becomes 

where 

f(a) = tan a [ 2(a + mr) ; sin 2a J 
2•cos a 

and a is given by ( 1) as 

H0w 
a = -

13
- cos e - nTT 
1 

(9) 

(10) 

This concludes the short outline of some results on the internal re-

fraction of SH waves as givenbyJ. A. Hudson(1961). Since 

sine= ~ 1 /c (see section c-n6)) one can write 

a = :ow l -~ ~ -nir ; 

1 c 
n=0,1, ••• ( 11) 

From the behavior of the phase velocity as a function of a 

(See Appendix I) if {3 1 < {3 2 it follows that 13 1 < C < {3
2 

and also 

when a - TT/2, the phase velocity C approaches 13 1 and w - oo. 

Also when a - 0, C - (3 2 and w - O. In other words when a - 0, 
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the resulting Love waves represent vibrations of long periods and 

"penetrate" deeply into the underlying infinite medium. At that point 

the effect of the surface layer on the behavior of waves propagating 

with velocity C almost equal to (3 
2 

along the x direction becomes 

negligible. This also means that the amplitude of the mode shape is 

very slowly decaying as z - oo, w:hich in turn implies that most of 

the energy of the wave vibration is contained in the underlying 

infinite medium. Thus it might be expected, from this argument, 

that the ratio r as it is given by equation (9), would be very large 

and in fact tend to infinity. Examination of the expression (9) shows 

that this is the case, because when a - 0, f(a) - 0 and so r - oo. 

In the other extreme case, when a - rr/2 and Love wave lengths £ 

become very short, corresponding to the high frequencies of vibra-

tion f(a) - oo and r - o. Fig. 2. 5 shows the behavior of the nor

malized ratio r /£ 2 as a function of a and for the first six mode 

shapes (defining s = µ 2/µ 1). 

As may be seen in Fig. 2. 5, the normalized ratio r /£ 2 
is 

essentially zero for all values of a greater than say 1. O. This 

means that when 

(11 ') 

all energy which is associated with the frequencies that satisfy the 

inequality (11 ') is being "transported 11 through the surface layer only. 

The ratio r depends on the material and elastic constants 

p
1

, µ 1 , ~ 1 and p
2

, µ 2 , (3 2 and of course on the dimensionless 
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Figure 2. 5. The normalized ratio R 2/R 1 £ 2 
of the rate at 

which the Love wave energy travels in the infinite 
medium to the rate at which it travels in the layer, 
for the first six modes. 
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parameter wH0 /(3 • It may be immediately seen that the greater the 

ratio £ = µ 2/µ 1 the greater will be r. Dependence of r on the 

other constants enters through the dependence of r on a. Since 

and 

it is obvious that when w or H0 increases, and other parameters 

and constants are held fixed, r decreases. Also when (3 1 decreases 

a increases and then r again decreases. From such a behavior of 

the ratio r one can conclude that the part of the t otal energy of the 

strong earthquake ground motion which comes from high frequency 

SH waves will be almost completely contained in the layer if the 

layer thickness is big, and the velocity in the surface layer, and 

the ratio s = µ
2
/µ 1 are relatively small. 

The above analysis of the behavior of the ratio r and its 

dependence on the material and elastic constants of the media in 

question as well as the frequency of vibration, offers a basis for 

the qualitative answer to questions posed at the beginning of this 

section. Thinking only about that part of the earthquake energy that 

is transmitted into the surrounding medium in the form of seismic 

SH waves one can conclude that in the case of a homogeneous iso-

tropic infinite elastic medium in the form of the half space, without 

any surface layer, energy would be transmitted away from the 
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source in a "uniform 11 way in all directions. This is of course true 

if the source of the energy release generates the same amount of 

energy in all directions in the xz plane. 

In the other extreme case when there exists a layer of con

siderable thickness H 0 and with low velocity of SH waves 13
1 

and 

in additior'1 if source of the energy release is in the layer itself or 

predominantly in the layer, a big part of the total radiated energy 

will be confined to the layer. In this case the surface layer will act 

as a "wave guide" or a 'wave canal. 11 This second extreme case is 

of special interest to earthquake engineering in particular to the 

studies of strong earthquake ground motion. The existence of a sur

face layer with r close to zero for sufficiently high frequencies 

indicates that the amount of the energy which is traveling through 

the layer is big. A part of that energy is directly fed into buildings 

and other structures that are on the surface of the layer and it is 

apparent that the presence of the layer increases the intensity of 

ground motion for the same energy generated by the earthquake. 

Equivalently, the presence of the surface layer leads to the high con

centration of the high frequency energy flux through the layer and in 

this way causes more ene!'gy to be fed into buildings. If there were 

no surface layer all of thi,.s energy would be more uniformly distri

buted over the whole half space and the intensity of the energy flux 

per unit volume at the ground surface would be smaller, for the 

same total energy released. In this work only SH waves are studied 

in some detail. Similar quaLtative conclusions probably hold for 

other guided waves as well. 
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C. LOVE WAVES IN A SINGLE SURFACE LAYER 

Some consequences of surface wave transmission through a 

perfectly elastic medium will be investigated. The medium to be 

analyzed consists of a surface layer, in general of a variable thick-

ness along the x coordinate direction, but with a constant thickness 

and uniform properties in the y direction, for -oo < y < oo (Fig. 

2.4). The thickness of the surface layer will be given by H(x) = 
H

0
(ljJ(x) - a(x)) where H0 is a constant. H0a(x) defines a lower 

layer boundary, and H 0ljJ(x) defines another cylindrical surface 

which represents the free surface of the layer. The coordinate 

system w.ill consist of the three mutually perpendicular axes x, y 

and z with positive z pointing downward and measured from the 

· horizontal plane defined by H0a(x) = O. 

The most general form of the infinitesimal wave motion in a 

three-dimensional medium is described by the set of three differ-

ential equations (see Ewing, Jardetsky, Press, 1957) 

a 2u a 2 a0 ~ 
p- = pX + -[ (X. + 2µ)0] + µ\7 u - µ - - 2 0 

at
2 ax ax ax 

+ 2 El!: au +El!: (au + av)+~( aw+ au) 
ax ax ay ay ax az ax az 

a2 a 2 a0 ~ p v = r y + - [ ( x. + 2µ) 0] + µ \7 v - µ - - 2 0 
~ ay ay ay 

(1) 

+ ~ (au + av) + 2 ~ av + ~ (av + aw) 
ay ay ax ay ay az az ay 

a 2w a 2 a0 2~ a p- = pZ + az [ (X. + 2µ)0] + µ\7 w - µ az -
at2 az 

+ ~ (aw + au) + ~ (av + aw)+ 2 ~ aw 
ax ax az ay :az ay z az 
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where u, v and w are the components of motion in the x, y and 

z. directions, density p and rigidity µ depend on the space co-

ordinates and X, Y and Z are the components of the body force 

in the x, y and z directions. a is given by 

a= au +av +aw 
ax ay az (2) 

In this work only a special kind of motion that is associated 

with propagation of SH waves, rather than the most general solution 

of the equation {1), will be considered. The symbol SH stands for 

horizontally polarized shear waves. For this special case, the com-

ponents u and w are identically equal to zero. The only nonzero 

component of the ground motion is v in the y direction which is 

parallel to the displacement vector of the SH waves. The ampli-

tudes of the waves to be analyzed will depend only on the x and z 

coordinates. Taking u = 0 and w = 0 into the equation (1) and 

assuming that the body forces are zero it reduces to 

(3) 

This is the most general form of the Love wave equation for 

µ = µ(x,z) and p = p(x,z). In the special case where µ = µ(z) and 

p = p(z), with µ and p varying only in z direction, the solution 

to the above equation may be sought in the form 

v{x,z ,t) = Z{z)X(x)T(t) (4) 

where X(x) and T(t) are harmonic functions of their arguments. 

Substitution of this trial solution into the differential equation (3) 
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shows that the functions T(t), X(x) and Z(z) have to satisfy the 

following ordinary differential equations 

and 

T(t) + w2
T(t) = 0 

2 
X (x) + w

2 
X(x) = 0 

xx c 

(Sa) 

(Sb) 

µ (z) 
Z (z) +~ Z (z) + w2 ( 

2
1 -1z)· Z (z) = 0 (Sc) 

ZZ µ\Z/ Z 1'3 (z) C 

where w is real and positive constant representing the frequency of 

vibration (w = 2trf), C is the phase velocity which is the eigenvalue 

of this problem and 13(z) = ../µ(z)/p(z) is the velocity of propagation 

of SH waves in the medium with the gradually increasing fS(z) along 

the increasing z or in the mediu::n defined by the H 0lji(x) and 

H0a(x) as above. 

The requirements that the surface of the layer z = H0lji(z) is 

free of any stress, that the layer and the underlying medium are 

welded together along the surface H0a(x), and hence that the dis-

placements and stresses clong that surface must be continuous, and 

that the amplitudes of the wave motion de.cay monotonically approach-

ing zero as z tends to + oo, provide sufficient conditions to deter-

mine Z(z) for given w and C belonging to that w. The last 

requirement to be imposed, i. e., that Z(z) - 0 as z - +oo de-

mands that the motion be con.fined to the proximity of the surface 

layer and the layer itself which is a necessary condition that such 

motion be a ''surface wave. " If one calls v 1 and v 
2 

solutions of 
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equation (3) for media 1 (in the layer) and 2 (underlying medium) 

respectively, the boundary conditions described above can be sum-

marized as follows: 

1. 
avi 

0 at z = H 0 4'(x) (6a) as = 

2. vi = v2 at z = H0a(x) (6b) 

3. 
av1 av2 

at z = H 0a(x) (6c) fJ-1 as= fJ-2 as 

4. v - 0 2 
when z - + 00 (6d) 

where a /as denotes a dreivative along the normal to the cylindrical 

surface z = H0 (x) or z = H04'(x) at a given value of x. In the 

simple case when 4'(x) = -1 and a(x) = 0 for all x, a/as becomes 

a/az. 

Writing v. = XZ.T, i = 1, 2, applying condition (6d) and then 
l l 

substituting v. into the first three conditions (6a), (6b) and (6c) 
l 

leads to a transcendental equation which gives a denumerable set of 

C's corresponding to each chosen value of w and where C is an 

eigenvalue of the ordinary differential equation (Sc) defining Z(z). 

This transcendental equation is frequently called the period equation 

for Love waves because for a given C it produces an infinite dis-

crete set of frequencies c..: and therefore also periods of vibration 

T = 2Tr/w (for the detailed; treatment of the derivation of the period 

equation see Appendix I). 

In the case of a surface layer of uniform thickness H0 , 

(a(x) = 0, 4'(x) = -1) the solution of the partial differential equation (3) 
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reduces to the solution of three uncoupled ordinary differential 

equations. Given the appropriate initial conditions for Xk and Tk 

and normalizing all Zk(z.) such that Zk(-H0 ) = 1, v(x, z ,t) cor

responding to a given frequency w is determined for the whole half 

space z > - H 0 and for all x, belonging to the phase velocities Ck, 

k = 1, 2, ••• , N, where N = N(w). The most general SH type of 

motion in the y direction can be written then as a superposition of 

all vk(x,z ,t) for all Ck, k = 1, 2, ••• , N(w) and over all frequencies 

w. 

In the present we>rk the layer thickness is changing in some 

prescribed way, along the x direction. In particular, the behavior 

of the wave amplitudes along the surface of the layer as a function of 

the layer thickness is studied. The general solution to the layer 

problem when H = H(x) has not yet been found. An attempt will be 

made to app~oximate that solution by "reasonable" trial functions 

that suggest themselves by the simple limiting case when H(x) = 

Ho = const. It might be expected that when H(x) is "nearly" constant 

over a given interval in x, that the solution will be "closely" approxi-
" 

mated by some solution which is of the same form as the solution for 

the case H(x) = H0 , but with some parameters possibly slightly per

turbed in accordance with the perturbation of H(x) away from H0 • 

Specifically, one could try thf. : solution of the form 

v(x,z,t) = X(x)Z(x,z)T(t) (7) 

such that 

2 
X (x) + ~2 X(x) = 0 

xx C (x) 
(Ba) 
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2 ( 1 
2 

Z (x, z) + w - 2 -~2 ) Z (x, z) = 0, i = 1 , 2 
zz (3. C (x) 

l 

(Sb) 

and 

T(t) + w2T(t) = 0 (Sc) 

for the case when µ.. and ~., i = 1, 2, are constants in the layer and 
l l 

the underlying infinite medium respectively. The more general case 

in which µ = µ(z) and ~ = (3(z) will not be analyzed here. The 

approach to the solution of the problem is in general the same, but 

the solution cannot be expressed in closed form for arbitrary vari-

ations of µ and 13 with z. In principle, such a problem can be 

solved only by numerical integration of the differential equation. 

At this stage one can only hope that a set of differential equa

tions (Sa), (Sb) and (Sc) will generate X, Z and T whose product will 

satisfy the partial differential equation (3). At worst, one might hope 

that if (3) is not satisfied identically by the product XZT then the 

errors represented by the difference of the correct solution v and 

the appropriate solution v A = XZT will be small. 

Consider now solutions T(t), X(x) and Z(x,z) to the set of 

equations (Sa), (Sb) and (Sc).. Differential equation (Sc) 

T(t) + w2T(t) = 0 (Sc) 

for w real and positive does not give any difficulties and can be im-

mediately solved by 

T(t) = A 1 sin wt + A
2

cos wt (9) 
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where A 1 and A
2 

are to be determined from the given initial con-

ditions. 

Differential equation (8a) for X(x) is not quite so simple and 

the fact that the phase velocity C = C(x) depends on x does not 

permit a simple solution in closed form. One can however examine 

this equation for a special case when w is "large" using a standard 

technique (Courant and Hilbert, 1931). Let 1/C2(x)=p(x) so that 

2 X (x) + w p(x)X(x) = 0 xx 

Now, a new independent variable t can be introduced such that 

(8a') 

(1 O) 

where p(£)> 0 for all x, £, E[ a,b] and where [ a,b] is a finite 

interval on x. Then let 

1/4 1')(t,w) = [ p(x)] X(x,w) (11) 

where w indicates dependence of the solution on the parameter w. 

Transforming (8a') one obtains 

d
2

11 2 - + [ w - r(t)] T') = 0 
dt

2 (12) 

on 

(10 ') 

and where 

(13) 
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For the initial conditions 11(0 ,w) = 1 and ~~ (O ,w) = 0 solution to (12) 

is given by the integral equation 

1st TJ(t) = cos wt + - sin w(t-'T)r('T)11(7') d'T 
w 0 

(14) 

0~1.e may use successive approximations to solve equation (14). 

D . t b th . th . . d h . enotlng T}. o e e i approximation, an c oos1ng 
l 

110 = cos wt 

the ith iterate becomes 

1st TJ.(t) = cos wt +- sin w(t-'T)r('T)T}. 1 ('T) d'T 
l w 0 l-

(15) 

In particular for i = 1 

1st 11
1 

(t) = cos wt + ; 
0 

sin w(t-'T)r('T) cos w'T d'T 

= cos wt + sin wt S\os 2w'Tr('T) d'T 
w 0 

cos wt 1t . 
- --- sm W'T cos WT r(T) d'T 

w 0 
(15') 

It is not difficult to show, by repeating iteration (15), that the 

difference between the true solution T}(t) and rin(t) tends to zero 

when n - oo and for w large. That is 

RT 
l11<t) - 11 Ct) I < e n Il+1 

w 
(16) 

where R > I r(t) I is a constant for 0 < t::::::: T. Therefore when w 

is large one can write 
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t . 
sin wt s 2 11(t) :::: cos wt + cos WT r(T) dT 

w 0 

cos wt st . 2 - sm w'T cos WT r(T) d'T + 0(1/w ) 
w - 0 

In order to obtain the amplitude of the oscillatory X(x) function 

first note that 

X(x):::: c 112(x) { cos wt+ sin wtst cos 2 wT r('T) dT 
w 0 

,-,t 
cos wt J . 2 } - sm WT COS WT r(T) dT + 0(1/w ) 

w 0 

(1 7) 

(18) 

which is immediately obtained from (17) and (11). It is also easy to 

observe that 

I X(x) I "" A(x) "' c 1
/

2
(x) 1 + ~ [ <s: cos 

2 
W7 r(7) d7) 

2 

+ (S\in wT cos wT r(T) dT) 
2

] 
1

/
2 
+ 0 ( 1z) 

0 w 
(19) 

Here, A(x) as defined by (19) is the· amplitude of X(x) on x E [a, b]. 

Thus . if w is large the solution X(x) of the differential equation (8a) 

will be well approximated by the first few term s in the asym2totic 

expansion for X(x), given by (18). 

Consider now the differential equation (8b) which defines 

Z(x, z). 

2( 1 1 . Z (x,z) + w - 2 - -
2

- )z(x,z) = 0 
zz . {3 C (x) 

(Sb) 

When - - -- 2:: 0 one has w - - -- > 0. For the fixed ( 1 1 ) . 2(1 1 ) . 
{3 2 C 2 (x) {3 2 C 2 (x). 
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value of x and for H0 a(x) > z > H 04J(x), and 13 = 131, the solution 

of (Sb) is oscillatory in character with "frequency" 

For the case of the single surface layer over the infinite underlying 

medium it can be shown (see Appendix I) that f3 1 <C<13
2 

if f3
1

<13 2• 

For any value of C(x) in this interval define 

and 

1 1 
c2(x) - (32 

2 

(20) 

(21) 

Thus, whenever H0a(x) ~ z > H0 4'(x) solution Z(x,z) will be 

oscillatory with "frequency" p 1 • Now when z > H0a(x) and 13 = f3 2 , 

becomes ± ip
2 

and the solution of (Sb) either exponentially decreases 

or exponentially increases, depending on which of the two independent 

solutions is taken associated with positive or negative p
2

• Recalling 

the fourth boundary condition given by (6d), i.e., that the motion is 

confined to the neighborhood of the layer, the choice of the sign of 

p 2 has to be such that the solution exponentially decays when z - oo. 
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Z(x,z) = 
-p z 

Fe 2 
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in the layer 

(22) 

p 2 > 0, in the infinite medium 

Two "constants" from the three C, D and F will be determined for 

fixed x from the first three boundary conditions (6a), (6b) and (6c). 

The function Z(x,z) describes the variation of the amplitude of the 
. 

particle motion in y direction due to the SH waves which con-

. struct~vely interfere to form Love waves. It is also called the modal 

function. 

After the form of the solution to equation (3) is established, it 

is useful to consider some requirements that are necessary for the 

existence of Love waves in the surface layer. Figure 2. 6 shows SH 

wave propagation according to ray theory representation. The nor-

mal to the plane front of the SH waves 1, 2, 3, 4 indicates a path of 

one portion of the long planar wave front bouncing in the layer. The 

first obvious requirement for the existence of surface waves is that 

the energy associated with the wave motion be confined to the layer. 

An equivalent requirement is that the incidence angles a for each 

ray be such that there is no refracted energy into the infinite 

medium below. Snell's law states that 

= (24) 

The condition that there is no refraction at points 1, 3, ••• , 

etc., is the same as the requirement that a
2 

is imaginary or that 
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sin 0 2 > 1. The limiting case of 01 denoted here 0c is then given 

by 

• 131 
sin 0 = 7.r" or 

c t-'2 

. -1 '31 
0 = sin 7.r" 

c l-'2 
(25) 

Thus in order that the energy be preserved in the layer, 0 

has to be greater than 0 and of course less than TT/2. To see how 
c 

this requirement is fulfilled in the expressions governing the Love 

wave motion in the layer, one can first observe the relationship 

between the phase velocity C and SH wave velocity '3 1 .in the 

layer and (3
2 

in the medium. Three points can be observed in Fig. 

2.6, namely A, B and F. Point A represents the intersection of 

the plane wave front traveling along the ray path 3-4 • and the free 

surface. By definition the velocity with which that point propagates 

in the positive x direction is given by C. The point F which lies 

on the same plane wave front moves along the ray path 3-4 towards 

B with the velocity (3 1 • From the geometry in Fig. 2. 6 it follows 

then that 

'31 
sin 0 = c (26) 

Also from the geometry it may be seen that when 0 - TT/2. sin 0 - 1 

and so (3 1 /C - 1 • i.e. • C - 13 1 • Thus the smallest value that C 

could attain in principle is (3 1 • On the other hand when 0 - 0c, 

from ( 25) it follows that 
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or C - (3 2 as 9 - ec. Thus from the simple geometry of the ray 

paths it can be concluded that if any successive reflection in the 

layer is to be realized, which will in turn lead to a conservation of 

energy in the layer the phase velocity C must lie in the interval 

f31 < c < !32 which is equivalent to the statement e c < e < 1T' /2. 

Simple geometry considerations also suggest that when 0 = TT/2 it 

becomes impossible to set up a steady bouncing of the ray path 

1, 2, 3, 4 ••• in the layer (Fig. 2. 6). In the other extreme case 

when a = 9 c, as it will next be seen, p
2 

(see (21)) becomes equal to 

zero and the wave amplitude does not decrease towards zero when 

z increases to infinity (see (22)). Thus there exists a wave in the 

infinite medium which is not confined to the proximity of the layer 

and the fourth boundary condition (6d) is violated. Therefore C has 

to be in the open interval <t31,l32> and e in the open interval (ec,1T'/2). 

In the solution of Z(x,z) a requirement was given that p 2 >0 

(see (22)). Since from (21) 

Pz" ') ~2 - :~ 
and from (26) c = !31/sin a it follows 

P2 = w 
. 29 sin 

132 
1 

1 
- 132 

2 

Because w is positive and real, condition that p
2 

> 0 and real 

becon1.es 

sin e 1 
~>~ 
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which implies sin 9 > (3 1 /13 2 • As it may be seen, this statement 

is equivalent to (25) which defines the critical angle 9 • It is thus 
c 

demonstrated that the geometric or ray approach and the analytic 

formulation both lead to the same conditions for the existence of 

surface Love waves. 

The requirement that the ray bounding in t he layer along 

1, 2, 3 ,4 ••• etc., constructively interferes can be related to the 

distance along the ray path from say G to K (Fig. 2. 6), and the 

phase shifts that are experienced at the points 1 and 2. This leads 

to the period equation for Love waves (e.g., see Ewing, Jardetsky 

and Press, 1957) in the surface layer with a constant thickness H
0

, 

which is given by (see Appendix I) 

f32 
~ - 1 
c2 

(27) 

and is the same as the equation obtained by introducing a solution in 

the form v = X(x)Z(z)T(t) into the four boundary conditions given by 

(6a), (6b), (6c) and (6d). Defining £ = µ 2 /µ 1 and x = 13 2/f\ and 

also E = (3 1 /C equation (27) becomes 

( wHoj 2 £~21 tan "f.r-" 1 - E ) = - X E -
2 P1 X 1 - € 

(27') 

It can be further shown (see Appendix I) that this equation approxi-

mately gives characteristic values C also in the case of the layer 

with a variable thickness H(x) along the x axis. This can be done 
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provided that 9 and 11 (see Fig. 2. 4) are uniformly "small" on x 

in [ a,b], by simply changing H0 in (27') to H0 (a(x) - ljJ(x)). For 

a chosen value of (wH0 /{3 1)(a(x) -ljJ(x)) the solution of equation (27 1
) 

gives a denumerable set of the characteristic values C or equiva-

lently E belonging to the mode shapes n = 0, 1, ••• , N(w). 

Since the ph ase velocity plays an important role in the vari-

ation of the amplitude of Love waves along the x direction (see (19)), 

diagrams showing the phase velocity dependence on the material 

properties expressed through the ratios £ and x, and the 

parameter (wH0 /13
1

) ( a(x) - ljJ (x)) , for the fundamental mode shape, 

have been plotted in Fig. 2. 7 to Fig. 2.10. In addition, for com-

pletenes s, group wave velocities were also calculated from {see 

Ewing, Jardetsky and Press, 1957) 

U= 
c (28) 

where U is the group wave velocity. Introducing the ratio o = 13 1 /U 

one· can write 

o = E ( 1 - ~ dC) 
C dw 

(29) 

The dimensionless parameters E and o are given in Fig. 2. 7 to 

Fig. 2. 10 plotted versus the dimensionless factor wH/13
1 

and for 

various values of x = f3 2/f3 1 and x. = P2/P 1• 
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Figure 2. 8. Phase- (13 1 /C} and group-velocity (13
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Figure 2. 9. Phase- {13 1 /C) and group-velocity {(3
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/U) curves corresponding 

to the fundamental mode of Love waves in the single surface layer 
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to the fundamental mode of Love waves in the. single surface layer 
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D. VARIATIONS OF LOVE WAVE AMPLITUDES CAUSED BY 

CHANGING THICKNESS OF THE LAYER 

One of the principal objectives of this work is to understand 

at least qualitatively the relationship between surface wave ampli

tudes and the thickness of the layer. The significance of the existence 

of the surface layer has already been considered and it has been 

shown that it leads to an increase of the energy flux in the vicinity of 

the surface. Considering the wave energy as "flowing" through the 

surface layer as a wave guide, the next question that can be asked is 

how the amplitudes of the wave motion change as a function of the 

layer thickness H(x). It will be assumed in what follows, that the 

dissipation of wave energy caused by anelasticity, geometric scatter

ing, and nonuniformity introduced by the variable boundary conditions 

are negligible. 

It is assumed that the Love wave type motions in the layer 

with the variable thickness can be described by the function v(x,z ,t) 

such that v(x,z,t) = X(x)Z(x,z)T(t). It should be pointed out here 

that in the precise sense Love waves are defined only for a layer of 

constant thickness. In this approach, the same name is assigned to 

the similar type of motion in the layer with the variable thickness. 

Since T(t) is always bounded by 1 and since the maximum amplitude 

Z(x, z) occurs on the surface when {3 1 < ~2 , the amplitude of v(x,z ,t) 

at z = H 0 4;(x) is the same as X(x), if Z(x,z), at z = H
0

4;(x), is 

normalized to unity. Therefore, if v(x, z, t) is acceptable as a first 

approximation to the solution, the surface wave amplitude will be well 
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approximated by A(x) as given by (19) in the section C, when w is 

large. 

By substitution of the trial solution v(x,z ,t) = X(x)Z(x,z)T(t) 

where X(x), Z{x,z) and T(t) are given by (18), (2.2) and (9) inthe 

section C, it can be shown (see Appendix II) that the differential 

equation (3) can not be satisfied identically along the layer thickness 

H(x) = H 0 ( a(x) - lJ;(x)) but only within an error of the order 

2 2 0 ( w :2 (x) A) 
1 

(see Appendix II) where A= max [ 0(x), 11(x)] • A detailed consideration 
xE[a,b] 

(see Appendix II) shows that this error is bounded above by 

and then decreases exponentially to zero when z - +en. The charac-
2 2 . 

ter of the error shows that for w r (x) A small, the approximation 
1 ' 

to the solution of (3) of the section C is probably "reasonably good." 

However, it shows that a compromise must be made in restricting 

a(x) and lJ;(x) to be smooth so that 0(x) and 11(x) (see Fig. 2. 4) 

together with their derivatives (see Appendix II) are sufficiently 

small. Then, when w is large, which is required by the asymptotic 

solution for X(x), and when w~~x) is greater than 2-3, the factor 

will still be small enough, provided A is sufficiently small. 
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The requirement that wri(x) be greater than 2-3 is the result 

of the approximations made in the period equation (see Appendix I) 

by assuming that the phase velocity C(x) at a given fixed x is 

approximately the same as the phase velocity for t he layer of uniform 

thickness equal to the thickness H(x). It is intuitively clear that 

v(x,z ,t) = X(x)Z(x,z)T(t) might be a "reasonable" approximation 

when variations of H(x) away from H
0 

are small, which will be 

the case if A is small. 

If all requirements stated above are satisfied, one has from 

(19) of the section C that 

(1) 

If two points on the surface of the layer defined by x = x
1 

and x = x
2 

are considered, the ratio of the maximum amplitudes of the ground 

motion at the two locations will be for high frequency waves 

(2) 

Since it is convenient to calculate ratios E = (3 1 /C(x) as functions of 

the rigidity ratio s = µ 2 /µ. 1 and the velocity ratio x = '3 2 /13
1 

together 

with the dimensionless parameter wr(x) , where H(x) = H
0 

( a(x)-ljJ(x)) , 
1 

one obtains 

(3) 

where by definition 
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( 
wH(x.) . 

x. = x., x ,x, ~ 1 ) 
-1 1 

and 

Examination of Figs. 2. 7 to 2.10 shows that for all x. and x values 

considered, €(~) increases towards 1 asymptotically as wr:x) -+oo. 

Thus if H(x
2

) is greater than H(x
1
), with all other parameters held 

fixed, €(~2) will be greater than €(~ 1 ) and so A(x
2

) / A(x
1

) < 1. 

This means that when the thickness of the layer increases, the ampli-

tude of the Love waves decreases. It can also be seen that for 

w~(x) > 2!.3, the change in E (~) for an appreciable 
1 

produces in general only a minor variation in E(~) 

increase in wr(x) 
1 

and so 

A(x
2

)/A(x
1

) is less than one but is also very close to 1. The range 

w~(x) > 2~3 perhaps covers almost all frequencies {corresponding to 
1 

the fundamental mode shape) in which one is primarily interested in 

strong motion spectrum analysis. Most of the surface wave energy 

probably is contained in the fundamental mode of vibration and so it 

may be tentatively concluded that even in the case when all modes 

are considered the total resulting change in the spectrum amplitudes, 

even for considerable changes in the layer thickness, will be of the 

order of 1. The general trend will be that when the energy "flows" 

toward an increasing thickness of the layer, the amplitudes of the 

waves will decrease and conversely. This is in agreement with what 

one might expect for the case when essentially all energy is contained 

in the layer, because when wr(x) is large and tends to + 00 at the 
1 
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same time a - rr/2. It has already been shown {see Section B, and 

Fig. 2. 5) that for a close to rr/2 practically all high frequency 

energy is contained in the layer. 

The restrictions imposed by the error estimates for approxi-

mations involved in the differential equation and the period equation, 

can be summarized as 

2 2 
Aw H (x) << 1 

132 
1 

(4) 

and 

(5) 

Although these restrictions appear to be severe ones, particularly 

restriction (4) on A, there will be many cases in which the approxi-

mations described, may be used. This is because strong motion 

response spectrum analysis mostly involves high frequencies so that 

(5) will usually be satisfied. Furthermore, gradients along the free 

surface and lower boundaries of the layer are often smoothly and 

slowly changing functions for many actual geologic conditions. 

To this point, the treatment of the variation of wave ampli-

tudes has been formal and derived as a consequence of the properties 

of the period equation and the amplitude of the solution X(x) satisfying 

2 
X (x) + ~2 X(x) = 0 

xx C (x) 
(6) 

for large w. Remembering that (see Fig. 2. 6) 
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~i 
C(x) = . a( ) sin x (7) 

and considering the layer represented in Fig. 2. ii, it will be seen 

from a purely geometrical argument that when H (x) increases along 

the x coordinate, C(x) decreases and conversely. This is true if 

the layer thickness is a continuous and smoothly changing function of 

x, and if the slopes of the boundary surfaces of the layer are uni-

formly small, continuous and slowly changing along x. As was 

already pointed out, one of the necessary conditions for the existence 

of the surface wave is that 9 < 9(x) < 1T /2. Thus as seen in Fig. c 

2. i 1, if energy is propagated from left to right, towards the increas-

ing layer thickness, S(x) will be slowly increasing and C(x) will 

decrease. Consequently w
2 
/C

2
(x) will increase and as already 

mentioned, the amplitude of the solution X(x) as given by (i) will 

decrease. Thus it becomes clear that when the ray propagates 

toward a gradually deeper alluvium' if e(x) was initially in the inter

val e < 0(x) < 1T/2, it will remain there. This also means that all of 
c 

the energy belonging to that ray will be preserved in the layer. This 

is, however, not the case for all rays with 0 c < 0(x) < rr/2 which 

propagate in the opposite direction, i.e., from the deep into the 

shallower alluvium or from right to the left in Fig. ii. Sine e 0(x) 

is decreasing from x
2 

towards xi, all rays with angles 

e < e<x> < e + I e 2
i <x> I wu1 reach the shallow alluvium with c c 

e<x> :::: e c, where I e~<x> I is the amount of the decrease of e<x> 

between xi and x 2 • Therefore, for all angles with 0 < 0(x) < 
c 

ec + I e~<x> I some fraction of the energy will be dissipated into the 
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underlying infinite medium in the form of refracted waves. Because 

of this behavior, the analysis and all conclusions will be applicable 

for a + I a2
1 (x) I < S(x) < -rr/2 rather than for a < S(x) < -rr/2 when c c 

the energy propagates from deep to shallow alluvium. 

There have been several attempts in the past to solve the prob-

lem of surface Love waves propagating through a surface layer of 

variable thickness. Homma (1952) analyzed a surface layer with 

linearly changing thickness using a polar coordinate system. He con-

sidered SH type of motion, and found that "in a surface layer of 

gradually and linearly varying thickness, a Love wave can be trans-

mitted in an approximate sense • • • the velocity and wave form are 

the same as those in the case of a uniform thickness which is equal 

to the general mean thickness in the region where the Love wave can 

be propagated without much deformation." He found further that the 

x dependence of the solution is described by cylindrical functions of 

the third kind whose arguments are wx/13 1• Although Homma does not 

point that out explicitly, it is easily seen that for wx/13 1 large, the 

asymptotic expansions that he derives for these functions contain the 

factor 

(~) 
-1/2 

where x is oriented towards the increasing thickness of the layer, 

and this indicates that the amplitudes of waves decrease with the in-

crease in the layer thickness. 

DeNoyer (1961) investigated the effect of a sinusoidal variation 

of layer thickness on the propagation of Love waves. He used an 
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approximate period equation and postulated conservation of energy in 

the layer to obtain the variation of the wave amplitudes along the x 

direction. His findings appear to be in qualitative agreement with the 

present work, indicating that the increase in layer thickness leads to a 

decrease of the Love wave amplitudes and conversely. 

Shelton ( 1963) used a mechanical model to study the effect of 

linearly increasing layer thickness on the propagation of Rayleigh 

waves. These waves are not analyzed in the present work, but it may 

be of interest to mention some of the qualitative results obtained by 

Shelton. The depth of his layer was 0.25 inch from 0 to 20 inches along 

the x axis, with a linear increase from 20 to 28 inches and of constant 

thickness 1 inch from 28 to 48inches. Among other observations, he 

finds for the short period waves that "the usual inference of a greater 

average thickness where the phase velocity is lower seems valid.11 With 

respect to variations of wave amplitudes, he states that "the apparent 

attenuation for propagation downslope is less than for propagation up

slope, especially for the intermediate period range. 11 Although these 

are findings based on only one model study, so that no generalizations 

can be made, it is interesting to observe that the qualitative behavior 

of the Rayleigh wave propagation in the model appears to be in many 

respects similar to the general behavior of Love waves described above. 

E. ON THE SHIFTING OF SPECTRUM PEAKS AS A 

CONSEQUENCE OF A MODEL WITH HORIZONTALLY 

PROPAGATING ENERGY 

It has been observed that the relative velocity response spectra 

calculated for the same strong motion station but for different" 
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earthquakes often do not resemble each other. Also, for the same 

earthquake but when several stations were distributed along approxi

mately a straight line some 3 to 5 miles apart (G. W. Housner and 

M. D. Trifunac, 1967) spectrum peaks were displaced from station to 

station although geological conditions were similar. Several reasons 

for such a behavior could be sought. For example, a variable thick

ness of the layers underlying the stations, treated from the point of 

view of a model with vertically incoming shear waves might be con

sidered. Here another plausible explanation will be explored, involving 

the concept of horizontally propagating energy in the form of Love 

waves. Complete explanations will no doubt involve a combination of 

mechanisms. It must be kept in mind, of course, that the present 

analysis always assumes an infinite train of waves, whereas the actual 

earthquake problem is transient. Howe'ver, since surface waves are a 

relatively long train of waves, there is reason to hope that the steady 

state solutions may be reasonable approximations in many cases. 

It has been shown above that the ground motion resulting from 

the constructive interference of SH waves in a layer of constant thick

ness can be described by the product of three functions X(x), T(t} 

and Z(x) each of which depends on only one variable. Since T (t} is 

found to be sinusoidal, one can think of X(x)Z(z) as an amplitude 

function of the wave motion describing the behavior of the wave 

envelope in the xz plane when waves are propagating in the x 

direction. Furthermore, since Z(z), which is also called the mode 

shape function, is determined within a constant multiple for all x, 
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if one normalizes the maximum amplitude to be unity, at the surface 

of the layer, for a monotonically increasing SH wave velocity with 

depth, then the wave amplitude along the surface of the layer be-

comes X(x). The behavior of this function along the x direction 

will be examined now for a layer of the constant thickness H
0

• The 

differential equation whose solution is X(x) was given as 

2 
X (x) + wz X(x) = 0 

xx c (1) 

First one can change the variable x to x = H
0

11, so that 11 will be 

dimensionless measure of distance along x in terms of the layer 

thickness H0 • Equation (1) then becomes 

2H2 
w 0 

X (11) + - 2- X(11) = 0 
1111 c (1 ') 

Choosing now arbitrarily the initial conditions to be X(11=0) = 1, and 

X (11=0) = 0 for all w E[ 0 ,oo) one can write the solution 
11 

wH
0 

X(11) = cos -C 11 

This solution represents an oscillatory function with zeros at 

c (1 . 
TJ = -2!... - + n) wH0 2 

or in terms of the period of vibration T 

n=0,1, ••• 

where CT = 1 is the wave length along the x axis. 

(2) 

(3) 

(4) 
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Because the amplitude of the final surface motion is obtained 

by multiplying X(x) by T(t) and since T(t) is also a sinusoidal 

function with amplitude equal to unity, in the spectrum computation 

amplitude variations along the x direction are observed as a vari-

ation of the absolute value of the X(x) function. 

The relative velocity response spectrum, by definition, 

represents the maximum amplitude of the velocity response of a 

viscously damped one degree of freedom system during the time of 

the earthquake excitation. It can be shown that there is a close simi-

larity in the shape of the zero-damped relative velocity response 

spectrum and the Fourier amplitude spectrum of the excitation func-

tion (D. E. Hudson, 1962) and that one can be used as an approxi-

mate representation of the other. For this reason both of these terms 

are used in this work sometimes interchangeably. Here, X(x) as 

the amplitude function is the same as the amplitude of the Fourier 

spe ctrum for the same frequency w and for the same fixed value of 

x. It is customa ry to plot the relative response spectrum versus the 

natural period of vibration of a one degree of freedom syste·m. 

If one writes X(TJ) function in terms of the period T = 2rr/w 

it follows that 

if X(71=0) = 1 

X(TJ) 
2rrH

0 = cos CT iJ 

and X (x=O) = 0 for all T. 
71 

(5) 

This is of course in 

general not a realistic a s sum pt ion, as it would be expected that at the 

source of the energy radia tion of SH waves, each X(71) function would 

involve different initial conditions depending on the period T. This 
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assumption however permits a simple qualitative insight into the 

problem of the shifting of the peaks along the different T) locations 

without altering the basic phenomenon. 

If one were to calculate the response spectrum always at the 

same strong motion station, generated by waves coming from the 

same fault system but each time with a different generating mechanism, 

it would be precisely this X(T)=O) and X (T)=O) that would determine the 
T) 

location of the peaks in the spectrum. There is no reason to expect 

that all earthquakes will generate the same numerical values of X(T)=O) 

and X (T) =O), within a constant multiple, depending on the source para
T) 

meters. Therefore there is no reason that peaks in the response 

spectrum at the same station should be similar, at the same periods, 

for earthquakes occurring on the same fault system . . 

On the other hand, when considering a steady state excitation 

and analyzing the behavior of the response spectra for several stations 

distributed along the T) direction., initial conditions for X(T)) are the 

same for all stations, the distance from the source of the energy re-

lease and the ground prop.erties along the propagati~n path being the 

only variables. For the case of a single layer with a constant thickness 

H
0 

and for a given and fixed period T>:\ the dimensionless parameter · 

2;rH
0

/cT>:< is the same for all stations. Depending on the value of T) 

it is seen from (5) that the Fourier amplitude spectrum at some 

stations can have a local max imum while it can be zero at some other 

station for the same period T>:<. If the layer thickness changes very 
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slowly so that the slope and the curvature of free surface and the 

contact surface are small, the analysis of the preceding section 

shows that for waves with w~(x) ; 2, the amplitudes of the oscil-
1 

latory function X(11) will not vary considerably along 11 and 

practically the same type of the behavior of the spectrum peaks, as 

for the constant layer case will probably take place. 

If it is assumed now, for the sake of a qualitative analysis 

only, that the Fourier amplitude spectrum at 11 = 0 is given by 

SF /O (T) and that 

(6) 

i.e. , that 

. -11CT (dSF/11(T)) I 1 (6') 
cp = sm 2TrHO d11 11=0 SF /O(T) 

One can conclude from the above discussion that SF ;
11

(T), i.e., the 

Fourier amplitude spectrum at location 11 will be given by 

(7) 

The locus of the zero spectrum amplitudes will occur, as shown above, 

at 

n = 0,1,2, ••• (8) 

and for 11€[ 0, oo) and TE[ 0, oo). The locus of the peak amplitudes 
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will occur at 

2rrH
0 

. CT ('l"\Hp) = mr; n=0,1,2, ••. . (9) 

The phase shift cp can be calculated in principle from (6') if X('l"\=0) and 

X'll('l"\=0) are known. 

In order to illustrate the above described effect on the shifting 
2;rH

0 of the spectrum peaks, the function I cos CT (ri+cp ) I, with cp = O for all 

T, is plotted in Fig. 2.12 for the set of dimensionless distances ri, 

'11 = O., 2., ... , 8., 10. . Each of the six functions is plotted versus the 

d . . 1 . d CT imens1on ess per10 ZrrHO 

It may be seen from the previous discussion and from the 

conditions necessary for the successful application of the model with 

horizontally propagating energy, that the shifting of the peaks governed 

by the behavior of the X(x) function will not be an appropriate explana-

tion in every case. This is because the explanation is based on Love 

waves only, which may be an important part of the strong motion in 

some directions, but not necessarily in all directions. In the case, 

for example, of a simple vertical strike slip fault the above interpre-

tation will probably describe reasonably well the predominant behavior 

of surface waves along the direction of the fault plane and in the per-

pendicular direction. 

To show how a particular Fourier amplitude spectrum might 

change according to (7), for various values of ri, an arbitrarily chosen 

model with a constant layer thickness was analyzed. The velocity of 

SH waves in the layer was taken to be 13 1 =1.25 km/sec and the layer 

thickness H
0

=0 . 30 km. Ratios of the SH wave velocities and material 
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densities in the infinite medium and the layer were taken as 13
2 
II\ =2.24 

and p2 /p1 =l.64 respecti..:,ely. An assumption was further made that all 

wave energy in this example is to be associated with the fundame~tal 

mode only. Using the above parameters one can construct the phase 

velocity C dependence for all periods T to be considered. If SF I 
0 

is 

assumed as given in Fig. 2.13 when n=O.O, . then using (7) SF/n spectra 

for n=2.0, '11=4.0, and '11=6.0 can be easily constructed and are given in 

Fig. 2.13. The SF/O assumed in Fig. 2.13 at '11=0.0 has the general 

appearance of an earthquake spectrum, although in this example it is of 

course the spectrum associated with an infinite train of waves. As may 

be seen, zeros and peaks in the spectra SF/n are continuously dis

placed toward the greater periods as '11 increases. It is also seen that 
2rrH0 

the character of I cos CT n I function generates a large number of . 

high frequency peaks in the low period region as '11 increases. 

From the character of the spectra (Fig. 2.13) it may be found 

that peaks can occur at practically all periods if '11 variation is consi-

derable. It can therefore be concluded that whenever a simplified 

interpretation in terms of horizontally propagating energy in the form 

of Love waves is acceptable, it may be quite erroneous to think in 

terms of "predominant periods of vibration 11 which are some intrinsic 

property of a local site. 

It may be noted that the above considered solution of differential 

equation (3) (Section C) in the form v(x, z, t) = Z(z)X(x)T(t) represents a 

standing wave. It can be shown that the general plane wave motion may 

be regarded as the result of superposing standing waves and that the 
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general result of such superposition is not itself a standing wave. This 

is because the sum of the terms like v(x, z, t) = Z(z)X(x)T(t) is not in · 

general expressible as a product of functions containing x and t alone. 

F. CONCLUSIONS. 

The model with horizontally propagating seismic energy in the 

form of SH waves through a single layer as a wave guide has been 

analyzed. Although the model and the theory which was applied to it 

were much simplified, many of the derived properties can be expected 

to illustrate well a number of the phenomena associated with strong 

earthquake ground motion. Some of these findings which are impor

tant from the point of view of earthquake engineering are: 

1. If there exists a surface layer, or several layers, of con

siderable thickness, with low velocities of SH waves, and if in addition 

a near source of earthquake energy release occurs in or predominantly 

in the layer, then the main part of the high frequency radiate.cl energy 

will be confined to the layer as a wave guide. A fraction of this energy 

will be fed into the buildings and other man-made structures on or near 

the surface of the layer . . The presence of the surface wave guide will 

thus increase the amount of energy transferred into surface structures, 

for the same total amount of the energy released by the earthquake. 

2. The surface amplitude of the guided SH waves will decrease 

if the energy of the wave is essentially confined to the layer and if the 

wave propagates toward an increasing layer thickness. Conversely, 
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when the wave propagates towards a decreasing layer thickness, the 

amplitude will increase. The model with horizontally propagating 

energy thus results in an opposite conclusion as to the relationship be

tween layer thickness and surface wave amplitudes as inferred from 

the model with vertically propagating shear waves. 

3. The constructive interference of SH waves bouncing in the 

surface layer will introduce the foHowing features into the Fourier 

amplitude spectrum for the motion at the surface of the layer. The 

zeroes and the peaks in the Fourier amplitude spectrum for an infinite 

train of standing waves will be continuously displaced towards the 

longer periods as the distance between the recording station and the 

source of the energy release increases. Also, a larger .number of the 

short period peaks will be generated as this distance increases. For 

this model the concept of predominant spectrum peaks at a fixed fre

quency depending on layer thickness and properties is not appropriate. 
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APPENDIX I 

PERIOD EQUATION 

The derivation of the period equation will be considered here, in 

detail, for the general case of a layer with a variable thickness H(x) 

(Fig. 2. 4). As was shown, z-dependence of the solution represented by 

the function Z(x, z) can be written as: 

i 
C sin pl z + D cos pl z 

Z(x, z) = 
-p z 

Fe 
2 

in the 

in the layer (la) 

infinite medium ( 1 b) 

where C, D and F are at this point assumed to be constants, indepen-

dent of x and 

(2a) 

(2b) 

where C = C(x) is the phase velocity associated with a given frequency w 

and mode shape and which varies in general with x. In the simple case 

of a layer of constant thickness H(x) = H 0 , C is a constant (i.e., does not 

d e p en d on x .) an d Z ( x , z ) b e c o m e s Z ( z ) a fun c ti o n o f z 

only. One could proceed here by assuming that the solution correspond-

ing to a given mode shape could be expressed as v(x, z, t) = X(x)Z(x, z)T(t) 

and later show that this is approximately true close to the limiting case 

when ~(x) .... -1 and a.(x)-tO (Fig.2. 4). This will be done in Appendix II. 
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The displacement solutions can be written as: 

v .(x, z, t) = X(x)Z .(x, z)T(t) (3) 
J J 

with j= 1 in the layer and j=2 in the infinite medium. The boundary con-

ditions to be satisfied are (omitting arguments in the function v . ) 
J 

1. vl = v2 at z = f= a(x)H 0 

2. 
avl 
as= o at z = H= 11r(x)H0 

3. at z = f 

(4a) 

(4b) 

(4c) 

where a/ as indicates the rate of change of the corresponding function 

along the normal to the surface of the layer or along the normal to the 

welded contact between the layer and the infinite medium. Now, since 

(see Fig. 2.4) 

avj _ ~ dx 5 dz_ avj . ( 9) 5 ( 9) 
-a- - a -d + a -d - -a sin + a cos s x s y s x T) z T) 

(5) 

and introducing a simplifying notation so that e.g. 

and so on, boundary conditions 1, 2, ·and 3 give 

( ) f -p2f f 
1. \ C sin p 1 f + D cos p 1 f X l = Fe x 2 (6a) 

2. [ xrx ( C sinp1 H+ Dcos pl H) + xr zrx}inT\ + 

+ x~[cp 1 cosp 1H- D~)l sinp1H]cosT] = 0 (6b) 
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3. µ 1 l ~x (c sin p1f+ D cos p1£) + X~ Z~xJ sin 9 + x~[ Cpl cos Pt f -

-Dp1 sin p 1£] cos e} o µ{ ( x~x F;Pi + x~ z~J sine+ 

+ xq-FPz•-pzf cos e~ (6c) 

Introduce now, by definition, the following notation 

x~ z~ = ( Ce(H) + D&(H))x~ (7a) 
x 

xi z; - ( c e:(f) + n&(f) )x; (7b) 
x 

(7 c) 

Then the above given boundary conditions (6a), (6b), and (6c) can be 

represented as a system of homogeneous equations with the three 

unknowns C, D and F. The condition that these three unknowns possess 

a nontrivial solution is that the determinant of the coefficent matrix be 

zero. This gives 



f . f 
xlsmpl 

X H . H. 
1 

smp1 sin T) + 
x 

XH (T") . + 
1 

e: .i .i s in T) + 

H +X 1 p 1 cosp 1Hcosn 

µ 1 (xi sinp1f sin8 + 
x 

+xi e:(f) sine + 

+ xip 1 cos p 1£ cos a), 

xi cosplf 

X~ cosp 1Hsin11 + 
x 

+ X~ o (H) sin T1 + 

-X~p 1 sinp1HcosT) 

µ 1 (x~ cosp 1fsin6+ 
x 

+xi O(f) sin 6 -

- xip1 sinplf cos e) 

00 

- xf -pzf 
2e 

0 

-µ2 (x~ 
-p f z . e e sin + 

x 

+ x~ p(f) sine -

-p2f f 
-p

2
e x 2 cose) 

= 0 
I.A 

N 
-.J 
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Now define 

( 9) 

( lOa); ( lOb) 

and since x~ = x~ it follows that 

(lOc) 

assuming for the moment that xi, X~ and X~ do not vanish at the point 

under consideration. Also define 

a(~)~ x.Hsinp 1 (~)+ €(~) 
f 

b(~) ~ X.H cos Pi(~)+ o(~) 
f 

Pzf 
c(f) = -x.f - sp(f)e. 

( lla) 

( 11 b) 

( llc) 

Now using the above definitions one can rewrite the determinant (8) in a 

simplified form 

1 

a(H) tan T) +Pi cos Pi H 0 = 0 

a(f) tan 9 + J>i cos pl f b(f) tan e - Pi sin Pi f c(f) tan 9 - sp
2 

(12) 
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Expanding determinant ( 12) one obtains 

+ p 1 Pz !; sin p 1 H] - cos p 1 {a(H) tan 11 c(f) tan e + 

+p1 cosp1Hc(f)tan9-p1 cosp 1 Hsp2 -a(H)tannp2 ~J + 

+ [a(H) tan Tl b(f) tan 9 + p 1 cos p 1 H b(f) tan 9 - a(H) tan Tl p 1 sin p 1 f -

- pi sin p 1 f cos p 1 H - a(f) tan 9 b(H) tan Tl - p 1 cos p 1 fb(H) tan n + 

( 13) 

After some adding and rearranging of terms this equation can be 

rewritten as 

where tI>
0 

is given by: 

4.>
0 

= tann [-b(H)sinp
1
fsp

2
+a(H)p

2
;cosp1H-a(H)p

1 
sinp

1
f-

P1 . 

- p
1 
b(H) cos p

1 
HJ+ tan 9 [-p

1 
sin p

1 
f sin p

1 
H c(f) -

P1 

-c(f)p 1 cos p 1 H cos p/+ pl b(f) cos p 1 H+ a(f)p 1 sin p 1 H] + 

tan 9 tan Tl r, . 
+ Lb(H)c(f) sin p 1 f - a(H)c(f) cos p 1 f + 

P1 

+ a(H)b(f) - a(f)b(f)] (15) 

For the uniform layer on an infinite medium a.(x) = 0 and $(x) = -1 

for all x and therefor~ tan 9 and tan Tl become zero and <P 
0 

is then 
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identically zero for all x. In that special case the above equation ( 14) 

reduces to 

(16) 

or 

(17) 

which in the expanded form becomes 

( 17 
1

) 

which is the same as the classical period equation for the uniform layer. 

and 

Now deiine 

P2 -= y; 
P1 

Recall from (4a) and (4b) that f = a.(x)H0 and H = ijl(x)H
0

. 

Y = _P2 = _~1 lfi--.=c=""""'
1

_ = I /x2
e

2
-1 

P1 f32j f3i X l-e2 
{ - -:-2" 

c 

Let 

(18); (19); (20) 

(21); (22) 

Then 

(23) 
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(24); (25) 

Define 

(26) 

Then 

(27) 

or 

(28) 

Now from the period equation as given by (14) one has 

_ (sin p 1 H cos p 1 f - sin p 1 f cos p 1 H + ct>0 Ip 1) 

Y = P 1 HY S = -p 1 H \ sin pl f sin pl H + cos pl H cos pl f = -p 1 H( • ) ( 2 9) 

Also from (28) and (24) 

(30) 

or 

(31) 

which is the equation of an ellipse. Then using the above expression for 

y given by (29) and (24) one gets 

(32) 

or finally 
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1 1/Z 
1 -

€ = 1 - ~2 
( 33) 2 

1 + 1:L 
2 

~ · 

Examining the case of the uniform layer (4> 
0 

= 0), it is clear 

that, when (.) -+ 0 which occurs, among other possible cases, when 

w-+ 0, one obtains from (33), using also the definition for X in (21) , that 

C-+ (3
2

. Also, when(.)-+ +oo, E: .... 1 and therefore C .... 13
1

. Both limiting 

cases are as expected. For a layer with a variable thickness along the 

x-direction it would be expected that under certain restrictions 4>
0
(x)/p

1 

could be small so that it can be neglected in its contribution to the term 

in (.) given by (29). Defining (. l* = (. )4>
0

=0 one can write 

and 

( . )* = 
sin p

1
f cos p

1
H - sin p

1
Hcos p

1
f 

sin p
1
f sin p

1
H + cos p

1
H cos p

1
f ( 34) 

(.) " (.) * [ l - (sin P/ sin p 1:~:~s p 1
H cos P/H· )j (JS) 

Simple trigonometric transformation shows that 

( 34 1 ) 

and from definitions (24) and (25 ) for p
1

H and p
1

f 

also 
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pl H(x) wH0 ( ) 
-;======- = l3l ~(x) - a.(x) 

J 1- e:2(x) 

Since 

tan a. = tan (a.+ mr) ; n=O,l, ... 

identifying p 1 H(x) with a.+ n1T following can be written 

. a.+ n1T = A.( ~(x) - a.(x)) 

J1-e2
(x) 

where n = 0, 1, 2, ••. corresponds to t~e fundamental, first, second 

and higher modes. The usual approach in many treatments of the 

(37) 

(38) 

period equation is to solve the transcendental equation (14) by some 

numerical method. It is proposed here, instead, to choose n first, 

which determines the mode to be considered and then to choose the 

value of a. in the interval O<a.< i'. Using a.+n1T in place of p 1H(x) in 

equation (3 3) yields then the value of e:(x) for that a. and n. Equation 

(38) then gives the resulting value of A(•(x) - a.(x) ), i.e., A. which is 

. WHO 
given by 131 . Thus sweeping a. in the interval (0, 1T/2) will sweep out 

all values of A.e:(O, oo) and all corresponding values of E:(x) in the inter

val (~, 1 ). Since this can be done with great accuracy and for any 
! I 

spacing of the originally chosen value of a. this approach may be much 

better than solving the transcendental equation (14) which must be done 

by a method of interpolation which may be very time consuming. 

Consider again the expression 

(35) 
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~ cp ] * 0 1 - * ( • ) = ( • ) 1 + - . ( H f) = ( • ) A 
' P1 sm P1 - P1 

~o 1 A= l+----sin (a.+ mr) p 1 

(3 5 '> 

(3 9) 

So far, nothing has been said about ¢>
0 

except that one could hope that 

it is "small" for some values of the parameters. If that condition is 

satisfied in addition a. must be close to ir /2 so that I sin (a.+ mr) I is close 

to 1 and consequently A~ 1. Thus if 4>
0 

is small for a. in the proximity 

of ir /2 it could be expected t:hat the approximation to €(x) calculated 

from (33) by interchanging ( •) by (. )
1
.c will be good. 

It can be shown (using expression (6) in Appendix II) that x.H is 

given by 

Since 

and 

dx C(x) C(x) dx C(x) wx 
dC(x) _ ~(l- 2._ dC(x))tan Wx + O( 1 ) 

cos C(x) 

131 
€(x) = C(x)' 

I I< 1 1 d€(x) + ~ ( 1 + xC(x) d€(x)) tan Wx 
x.H "' 2 €(x) <IX C(x) 13

1 
dx C(x) 

f 

( 
1 ) + 0 wx 

cos C(x) 

f 

( 40) 

( 41) 
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d.:-lv\ 
When a. is close to -rr/2, C(x)-13 1 and ~-+O so that 

I K I wx w ( de(x)) 
~ cos C(x)~ C(x) 1 +x dx +O(l) (42) 

From definitions (7a) and (7b) and using the result (29) from Appendix II 

one can write 

I e(~) I =o[w~~x) (~)] = o[w~~x) A0] 

1 l)(H) I =O [WH(x) (8)] =O [wH(x) A J 
f 13 1 T'\ L 13 1 0 

Further, using (7c) and (llc), i.e., 

it can be shown that 

where A
0 

=max [8, riJ over xda, b]. 

(43) 

(44) 

( 45) 

(46) 

To avoid difficulty in the behavior of KH when ;t~) becomes 

f 
~ + mr, and since KH were introduced for formal convenience only, the 

f 
whole period equation (14) can be multiplied by cos

2 c7x). This does 

not affect the previous results since the equation has to vanish for any 

,,,.. 2 wx / . 
x anyway. Then one may observe that '*'o cos C(x) =4'>0 will now be an 

appropriate error term to consider. Using ( l la) and (l lb) multiplied by 

cos
2 ;t~:), the following can be written 
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using the result (obtained in Appendix II) that ~,....(~)when a. is close 

to rr /2. Now using the above derived individual bounds on terms . that 

enter in the expression for cI>
0 

in (15), one can bound 4>~ using the fol

lowing defiriitions : 

A~ = max (tan 8, tan Tl) 
xe[a,b] 

Then from (15) it follows that 

~ 2 wx -0 cos C(X) 

P1 

il 
AS [ 2] ~ --y 2MN+ 2Mp 1 +4p 1M+ 4A~M 
P1 

(48) 

(49) 

(50) 

Now remembering that p 1 H(x) =a.+ nrr and using (47), (48) and (49), the 

following can be written 

( 51) 

Here, the term (~)( l+x) is left explicitly in the order term in 

(51) only to illustrate the x dependence of the error. For xe:[a, b] this 

term could have been absorbed in the order constant in (51 ). With this 

result, relation (3 9) becomes 



A = 1 + _.,..-...,.1---. s in (0. + mr) 
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(52) 

The only possible way for A to be "close" to 1 is that a. be away from 

zero and that order term defined by (51) be small. This can be 

achieved only if A~ which is the maximum value of the slope of the 

surface of the layer er of the contact of the layer and the infinite 

medium is small. Therefore it should be required that A~ be of the 

order 

(53) 

Tr wH(x) Remembering that when a. ... z, the parameter 
131 

tends to 

infinity, it is seen that a compromise must be made so that a. is close 

to rr/2 but still not "too close" so that the term W~(x) does not become 
l 1 

too large. These requirements are certainly very severe but it still 

may be expected that when (53) is satisfied the approximate solution 

can be used. 
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·APPENDIX II 

ERRORS OF THE APPROXIMATE SOLUTION 

The form of the approximate solution associated with each 
I 

modeshape frequency and corresponding characteristic value or phase 

velocity C has been shown to be the product of the three functions 

X(x), Z(x, z) and T(t), so that 

v(x, z, t) = X(x)Z(x, z)T(t) 

It was also shown that for the arbitrarily chosen initial conditions 

and 

with 

and 

T(t) =cos wt 

1/2 
X(x) = c1

/
2

(x) cos ;t~) + o(C w (x)) 

{

C sin p 1 z + D cos p 1 z, in the layer 

Z(x, z) = -p z 
Fe 

2 
in the infinite medium 

( 1) 

(2) 

(3,) 

(4) 

where Z(x, z) is the form of the solution of the modal equation in the 

layer and in the infinite medium. Remembering that H(x)=-H
0

(0.(x)-W(x)) 

and normalizing modeshapes so that the surface amplitude equals unity, 
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one can write 

{

cos p
1 

(z-W (x)H
0

) in the layer 

Z(x,z)= -p z+p a(x)H 
2 2 0 

cos p1 H 0
(a(x)-w(x))e in the infinite medium 

when the boundary conditions 1, 2, 3 and 4 (Section C) have been used. 

It will be useful to write down some derivatives of the above 

solutions. 

T tt = - w
2 

cos wt ( 5) 

X -!.c-1/2( ) dC(x) wx -Cl/2( )[~- wx dC(x)l . wx +O(l) (6) 
x- 2 x dx cos C(x) x C(x) C2(x) dx :J sin C(x) 

The first and second derivatives of Z(x, z) with respect to x become, in 

the layer, 

and 

z (x z)= H _l ~W(x)+H d ,.(x)+H d$(x) 1 
[ 

dp 2. dp 

xx ' o dx dx oP 1 dx 2 O dx CIX 

. 2 

d P1] . [ d$(x) -(z-$(x)H0)~ smp 1 (z-w(x)H0 ) + H 0p 1 ~ 

dpl] [ dpl 
-(z-w(x)H ) - • (z-W(x)H )-0 dx Odx 

(8) 

Now since PM= l/~ 2 , because the shear wave velocity of SH waves 

is given by~= /µ,tp', it then follows 
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p Ttt w2 
--=---..; 
µ T 13' 

(9) 

(10) 

where (10) comes directly from the differential equation for X, assum-

ing that T and X do not vanish at this point. 

From the differential equation for Z(x, z), also directly, if 

Z(x, z) I 0, it follows that 

z {-pi in the layer } 

~z = p~ in the infinite medium 
( 11) 

Substitution of the assumed solution v(x, z, t)=X(x)Z(x, z)T(t) into the 

differential equation (3) (Section C) gives (omitting the arguments in 

the functions) 

( 
T X Z ) (X Z Z )? XZT £___..!!_~-~ -XZT 2 x x +~ :::: 0 

µ T X Z XZ Z 
(12) 

For the layer of uniform thickness in the x direction, the second term 

in the brackets in equation (12) would vanish by virtue of the fact that 

Z(x, z) would not be a function of x. The question mark on the equality 

sign in equatic•n (12) indicatt!s that if one had the exact solution to the 

problem then one would have equalities for all x, z and t. Since here 

only a trial solution v(x, z, t) has been considered as suggested by a 

limiting case of a layer with a constant thickness, no equality can be 

expected to hold in general. 

Now substituting relations (9), ( l 0) and ( 11) into the first 

bracket on the left in equation (12) it follows 
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w2 w2 w2 (, ~ ~ \ 

- ~i+ C 2 (x)+ ~i\- C2 (x}t"~. o inthe layer 

and 

2 2 2 ~ ~
2 y - W 

2 
+ 

2
W - W 

2 2 
2 -1 = 0 in the infinite medium. 

~ 2 C (x) ~ 2 C (x) 

Thus the first term in equation ( 12) is always zero and so this 

shows that v(x, z , t)=X(x)Z(z)T(t) indeed satisfies exactly the differential 

equation for the layer with H(x)=Ho=const. 

If the trial solution to equati on (12) is to be acceptable at least 

in the asymptotic sense, then the contribution to the differential equa-

tion from the second term in brackets should be 11 sm.all". That is 

2X Z + XZ =error (13) 
x z xx 

should· be small. 

Before interpreting the above error term it is necessary to 

consider first the behavior of the derivatives of p
1 

along the x axis. 

Here C(x) is the velocity of the wave front along the surface of the 

layer (A in Fig. 2.6) while ~l is the velocity of the SH wave in the layer. 

Denoting by cp the angle between the ray and the norm.al to the boundary 

of the layer, one has (here cp is used instead of 8 as given in Fig. 2.6 to 

"d b " •t . t• . aa(x)_t e . . . 2 4) avoi am. igui y in nota ion, since ax- - an as given in Fig. . 

~l 
€(x) = C(x) = sin cp ( 14) 
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and from (14) 

(15) 

Now 

where dq/dx represents a change of cp along the x direction. Since the 

layer medium is uniform, this change can occur only on the boundary 

of the layer. If the boundary has a slope 6 or T) with respect to the 

horizontal, dcp/dx will be equal to 6 or T) depending on the boundary in 

question (see Fig. 2.4). Thus 

dpl = - ~sincp( 6) 
dx !31 T) 

Also 

Now since €=sin cp from ( 14) 

and also 

Define now 

d€ dcp (6) dx =coscpdx =coscp T) 

A= max [6(x),T)(x)J 
xda, b] 

(17) 

( 18) 

(19) 

(20) 

(21) 
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and 

K = [d9(x) dri(x)J - max d , 
· [ b] x dx XE: a, 

(22) 

If it is assumed that both A and K are snall, then neglecting 

squares of small quantities one can write 

ldpll l1l 
max CE{ =-A 

xe:[a,b] ~l 
(23) 

2 . 

max ,~,,.., ~ K 
xe:[a,b] dx ~l 

(24) 

Also, from Fig. 2.4 for small 8 and Tl it follows that 

d";}:)~e(x) and dlLx)~Tl(x) (25), (26) 

so that 

max \~!l~A 
xe:[a,b] 

(27) 

and 

'
dz~ I max ~ ~K 

xe:[a,b] dx 
(28) 

If now the above bounds given by (21) to (28) together with (15) 

are used in (7) and (8) one can write 

(29) 

and 

I I l1l ( 2 ) 2 w
2 

2 max Zxx(x, z) ~H(x)p- 2A +2K + 4H (x)-zA 
xe:[a,b] 1 ~l 

(30) 
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Recalling the expression for the derivative of X(x) function (6) 

and using the relation 

. d~(x) - ac dt - - f31 dt 
x - 8€ dx - 2 dx 

€ 

(31) 

together with bounds for de:/dx given by (19), it can be shown by the 

direct substitution of (31) and (19) into the (6) that 

max I Xx(x)I = o[; ( 1 + xA)] 
xt[a,b] 1 

(32) 

Now, expressions (29), (30) and (32) can be used to estimate the 

order of the error in the differential equation (12) given by (13). Since, the 

the error in the layer is given by 

E = ZX z +xz x x xx 
( 13) 

neglecting the contribution of the higher order terms, E becomes 

[ 
Ul l ( Ul ) 2 w

2 
2 E. =0 r.f-<l+xA)j•H(x)A 1+7.i:'""""" +4H (x)-zA 

. 1-'l 1-'l f31 
(33) 

Here the first term in (30) was neglected because both A2 and K are 

assumed to be second order small quantities. From (33) it follows that 

for xe[a, b], where the interval [a, b] is sufficiently small, i.e., at 

most 

(35) 

This illustrates that the quality of the solution "becomes worse" 

as one goes "too far" along the x axis. This appears to be obvious 

also from simple physical insight into the problem. 
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The analysis of the error has been concentrated so far only on 

the part of the solution v(x, z, t) in the surface layer, i.e. , when 

H
0 
~(x) ~ z ~ H

0
a.(x). The form of the solution, given by (4 1

) in the infi-
-p z 

nite medium for z ~ a.(x)H
0 

contains an exponential e 2 where p
2 

>O. 

Continuity of the approximate solution across the boundary a.(x)H
0 

indi

cates that the error has to be continuous also and of precisely the same 

order as (34) in the vicinity of the boundary a.(x)H
0

. The presence of 
-p z 

the exponential term e 2 causes the error to exponentially decrease 

as z-+oo, Thus it follows that the error in approximating the differential 

equation (12) by v(x, z, t) is also of a "surface character" as are the 

waves considered. 

It is interesting to observe that when a.-+rr/2, Ul~~x)... oo. Thus in 

fact a. may not attain exactly the value of rr/2 because in the limit E 

would become infinite for any fixed A away from zero. This, however, 

does not mean that the solution developed is not useful in the fairly 

wide range of values of w~~x) when a.e(zo, ~). and where 0 is less 

tllan 1, but sufficiently far away from zero. In fact when Ul~{x) el and 
. 2 1 

I= (-2, M) where Mis chosen so that M A<<l, many practical cases of 

interest can still be successfully treated by this approximate approach. 
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