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IV 

The gate is straight, deep and wide 
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Abstract 

This thesis examines several examples of systems in which non-Abelian magnetic 

flux and non-Abelian forms of the Aharonov-Bohm effect play a role. We consider 

the dynamical consequences in these systems of some of the exotic phenomena as­

sociated with non-Abelian flux, such as Cheshire charge holonomy interactions and 

non-Abelian braid statistics. First , we use a mean-field approximation to study a 

model of U(2) non-Abelian anyons near its free-fermion limit. Some self-consistent 

states are constructed which show a small SU(2)-breaking charge density that van­

ishes in the fermionic limit . This is contrasted with the bosonic limit where the SU(2) 

asymmetry of the ground state can be maximal. Second, a global analogue of Chesire 

charge is described, raising the possibility of observing Cheshire charge in condensed­

matter systems. A potential realization in superfluid He-3 is discussed. Finally, we 

describe in some detail a method for numerically simulating the evolution of a net­

work of non-Abelian (S3) cosmic strings, keeping careful track of all magnetic fluxes 

and taking full account of their non-commutative nature. I present some preliminary 

results from this simulation, which is still in progress. The early results are suggestive 

of a qualitatively new, non-scaling behavior. 
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Chapter 1 

Introduction 

In 1959, Aharonov and Bohm [iJ described how a tube of magnetic flux can cause 

a shift in the interference pattern of two electron beams when those beams traverse 

paths on opposite sides of the flux tube, even if the electrons pass exclusively through 

regions in which the magnetic field and classical magnetic force are zero. This has 

proved to be a very profound discovery in the history of quantum mechanics. In 

modern language, the Aharonov-Bohm (A-B) effect can be understood as an essen­

tially topological interaction. The electrons are propagating under the influence of 

an electromagnetic background gauge connection, but the connection is locally flat in 

all of the regions where the electrons propagate. The interaction therefore depends 

on the overall topology of the connection and the particle trajectories and cannot be 

described in terms of any gauge-invariant local property of the background. 

Since this discovery, the Aharonov-Bohm effect, and topological interactions in 

general, have been shown to play a role in many disparate contexts, including ob­

served systems and hypothetical models. Cosmic strings;21 for example, are thin, 

confined tubes of magnetic flux, much like the thin solenoids considered by Aharonov 

and Bohm. If cosmic strings exist, A-B scattering is presumably one of their most 

important mechanisms for interacting with ordinary matter. 

Topological phases also are important in condensed-matter physics. Anyons;31 

particles in (2 + 1) dimensions with statistics intermediate between bosons and 

fermions, are thought to play a role in the quantum Hall effect 141 and in high­

temperature superconductivity.[sJ One particularly useful mathematical description 

of anyons is through Chern-Simons theory, in which anyons are described as ordinary 

fermions or bosons interacting with a statistical gauge field described by the Chern­

Simons Lagrangian. The Gauss constraint of this theory causes each charged particle 

to become attached to a unit of magnetic flux, and the statistical phases acquired by 

particles whose trajectories wind around each other arise in this description from the 
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Aharonov-Bohm interaction of one particle's charge with another particle's associated 

flux . 

Close analogues of cosmic strings also are abundant in the realm of condensed­

matter physics in systems which are (unlike cosmic strings) experimentally accessible, 

such as superfluids, nematic liquid crystals and type II superconductors:
6

'
71 

This leads 

to a very productive interaction between condensed matter physicists and cosmolo-
. t [8] g1s s. 

The Aharonov-Bohm effect, properly so called, occurs only in gauge theories. 

However, it is mathematically akin to many instances of geometric phases. In the 

presence of global topological defects, a type of frame-dragging may occur even in 

the absence of gauge connections, and this may lead to an effect that closely mimics 

A-B scattering:91 The discovery of this global analogue of the A-B effect raises the 

possibility of new experimentally realizable applications. Condensed-matter physics 

offers more examples of broken global symmetries than gauge symmetries. 

In the original electromagnetic context, the phase associated with a path enclosing 

magnetic flux is a single complex number; an element of the group U(l). If the group 

is non-Abelian and/or discrete, however, an additional range of exotic phenomena 

may occur. Discrete gauge theories are interesting in that they have no massless 

gauge fields , but they do have topological interactions. In such a case, gauge charge 

can be detected at long range only through topological interactions and not through 

classical forces. One of the early motivations for studying discrete gauge theories 

was the hope that such long-range interactions without massless fields might lead 

to a way of circumventing the black-hole "no-hair" theorem and partly resolving 

the information loss puzzle:
101 

The cosmic strings associated with discrete symmetry 

groups differ from U( l )-type strings in that they form branching networks. This 

can have consequnces for the dynamics of strings after they are formed in a phase 

transition!
111 

as I will discuss below in Chapter 4. 

Non-Abelian topological interactions and non-Abelian magnetic fluxes lead to 

quite a wide range of exotic phenomena which have only been discussed fairly re-

tl 
[12-16) 

cen y. 
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For the most part, these exotic phenomena all are consequences of the fact that 

non-Abelian magnetic flux is not a gauge-invariant quantity. In two space dimensions, 

non-Abelian braid statistics may occur. Non-Abelian Chern-Simons particles;
111 

a 

generalization of anyons, are one example. It has been suggested that such particles, 

called "nonabelions," may occur as quasiparticles in the quantum Hall effect~181 
An­

other is non-Abelian vortices. A peculiar feature of non-Abelian vortices is that the 

transport of one vortex around another changes the quantum numbers of the vor­

tices. In vortex-vortex scattering, this so-called holonomy interaction [
191 

can lead to 

an exchange contribution to the scattering amplitude even when the vortices have dif­

ferent fluxes (vortices can be "indistinguishable but not the same."j
161

ln three spatial 

dimensions, non-Abelian cosmic strings also exhibit holonomy interactions and tend 

to form branched networks. An additional consequence of the non-invariance of flux 

under group transformations is the phenomenon of "Cheshire charge.':!
15

'
141 

Quantum 

tunneling between states of different flux within the same conjugacy class allows a 

loop of string (or, in two dimensions, a pair of vortices) to exist in states that have 

no definite flux but rather are irreducible representations of the symmetry group. 

They carry a charge which has no local source on or near the string, but is a global 

topological property. Aharonov-Bohm interactions with charged particles can lead to 

a transfer of charge from the particle to the string loop. 

With the basic facts of non-Abelian topological interactions now fairly well un­

derstood, it is interesting to ask the following two types of questions: 1) How do 

non-Abelian A-B interactions affect the dynamics and many-body physics of systems 

in which they occur? 2) In what contexts might the non-Abelian A-B effect be phe­

nomenologically relevant? The goal of this thesis is to address a few of these questions. 

The remainder is organized as follows: 

In Chapter 2, I discuss a model of non-relativistic matter coupled to a U(2) Chern­

Simons (statistical) gauge field~201 The model with bosonic matter has previously 

been studied by Cappelli and Valtancoli using the Boguliubov approximation based 

fi 1 
[21] • 

on a mean- e d ground state. Those authors showed that the SU(2) symmetry is 

spontaneously broken in the ground state for certain values of the coupling constants. 

In Chapter 2, I consider the same model with a fermionic matter field. I describe a set 
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of self-consistent mean-field states with a small SU(2) "isospin" asymmetry for certain 

values of the Chern-Simons coupling constants. The SU(2)-breaking charge density 

vanishes, however, as the limit of free fermions is approached. This is contrasted with 

the free-boson limit of the boson-based theory, where the the asymmetry is large. 

The discovery of a global analogue of the Aharonov-Bohm effect raised interesting 

possibilities for its observation in condensed-matter systems. Chapter 3 shows how a 

counterpart of the "Alice" string[221 can occur in a model with no gauge symmetries, 

leading to a global analogue of Cheshire charge!
231 

A possible realization in superfluid 

helium-3 is pointed out. The presence of Cheshire charge on a pair of vortices can 

create a repulsion between them which may balance their logarithmically confining 

attraction. The amount of charge necessary to stabilize the pair against collapse is 

calculated in an appendix to chapter 3. 

In Chapter 4, I describe a numerical simulation whose aim is to learn how the 

peculiar interactions of non-Abelian cosmic strings affect their dynamics!
241 

A network 

of 53 strings is chosen as a representative example of a non-Abelian string system. 

The method of the simulation is described in some detail, as the simulation of non­

A belian fluxes poses many subtle problems. Finally, the end of the chapter describes 

some preliminary results from the simulation, which is still in progress. These are 

suggestive of qualitatively new behavior for this network. 
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Chapter 2 

Mean Field Theory for Fermion-Based U(2) Anyons 

In this chapter, we consider a 2 + 1 dimensional model with a non-relativistic 

matter field W minimally coupled to an SU(2) x U(l) = U(2) "statistical" or Chern­

Simons gauge field. The matter will be taken to carry a unit of U(l) charge and a 

fundamental representation of SU(2) "isospin." The Lagrangian is given by: 

£ = iwt (Do '11)- -
1
-(Diw)t (Diw)+ ~Eaf31(A~8(3A~ - ~EabcA~A(Jb A

1
c )+ ~Eaf3i Aa8(3A1 , 

2m 2 3 2 
(1) 

where Aµ and A~ are the U(l) and SU(2) gauge fields, with Chern-Simons coupling 

constants "' and K, respectively, and the covariant derivative is 

a 

Dµ = 8µ + iAµ + iA~ ~ . (2) 

We will consider cases of either bosonic or fermionic matter fields, so that W may 

obey either canonical commutation or anticommutation relations. The Hamiltonian 

corresponding to ( 1) is given by 

(3) 

while the gauge fields are subject to constraints which relate them to the matter 

fields : 

and 

L' 1 . "J 
1'0i = --etJ j, 

K, 

(4) 
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a 1 Ja 
Foi = --:::Eij j, 

K, 

where the densities and currents are defined by: 

(5) 

J· = -
1-(wtn·w - (D·w)tw) Jf:t = -

1-(wta-a D·w - (D·w)ta-a w). (6) 
z 2im z z ' z 2im 2 z z 2 

Since there is no Maxwell term, the gauge fields are non-dynamical and are completely 

determined (up to gauge transformation) by ( 4) and ( 5). 

As usual, the theory is gauge invariant only when K, is an integer multiple of l/47r. 

The Gauss constraints ensure that any electrically charged particle also carries mag­

netic flux, so the particles experience mutual Aharonov-Bohm interactions resulting 

in exotic statistics. In this case, the braiding of two particles leads not only to an 

overall phase change of the wave function but also a non-Abelian rotation acting on 

the isospin indices of the two particles. A two-particle wave function 7,b( x1, x2) is 

acted on by the braiding operator 

- -i io-(1) . 0"(2) 
exp[i(O + E>)] - exp[-

2 
+ - ], 

K, K, 
(7) 

where e can be thought of as a matrix-valued SU(2) "phase". The eigenstates of this 

two-particle braiding operator are states of definite total isospin, i.e., pure iso-singlet 

or triplet states. 

This model of "non-Abelian anyons" was studied in reference [1] using a mean field 

approximation. In this mean field technique one first quantizes the matter field in the 

presence of a classical background magnetic field. One searches for a self-consistent 

ground state having a uniform expectation value of the matter and isospin densities 

consistent with the Gauss constraints. Then, using the densities and currents as fun­

damental variables, one can study the effect of fluctuations about this approximate 

ground state, using the Bogoliubov approximation in which the commutators of fluc­

tuation operators are replaced by their expectation values in the zeroth-order ground 

state~21 
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In reference [1], it was shown that with bosonic matter the mean field ground 

state energy behaves differently depending on the values of the two Chern-Simons 

couplings. In particular, there was a phase in which the energy was minimized in 

the mean field approximation by the generation of a non-zero isospin density, and 

thus the SU(2) symmetry was spontaneously broken. This paper will investigate the 

consequences of coupling fermions instead of bosons to the U(2) Chern-Simons field. 

We will show that for spinless (or polarized) fermions, the resulting mean field theory 

differs from the bosonic case in two ways: (1) The form of the mean field energy 

density as a function of matter and charge densities is independent of the Chern­

Simons coupling constants and (2) For a given particle density, the lowest energy 

always occurs when the SU(2) charge density is zero. Thus the mean field picture 

does not show any breaking of the SU(2) symmetry. In the case of spin-1/2 fermions, 

however, there is a hint of spontaneous symmetry breaking which vanishes smoothly 

as the theory approaches that of pure fermions. 

1 MEAN FIELD APPROXIMATION FOR FERMION-BASED U(2) ANYONS 

For a theory where the matter field W is fermionic, we now search, much as in 

reference [1 J, for a self-consistent ground state ID) with uniform matter and isospin 

densities: 

(p) =po, (Ji) = 0, 

(8) 

According to the Gauss constraints, these nonzero densities will imply uniform mag­

netic fields. We will consider matter in the background of these fields, and then 

demand that the number of particles per unit area be consistent with the Gauss con­

straints. We can take the isospin density to be along the 0"3 direction, (pa) = 83po. 
Then we have U(l) and SU(2) magnetic fields given by 

(9) 

In the symmetric (or isotropic) gauge[
3
J Ai = (B/2)EijXj, the gauge field can be 
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written as 

(10) 

The single-particle orbitals are split into two sets according to the eigenvalue of 

0"3. Particles in states of up or down isospin feel different effective magnetic fields , 

B+ = (Bo + Bo/2) and B_ = (Bo - Bo/2) , respectively. The single-particle energy 

levels thus fall into two sets of Landau levels. The kth energy levels of the isospin up 

and down systems have energies given by 

± - B±(k !) 
Ek - m + 2 ' (11) 

and have degeneracy per unit area N±/A = IB±l/27r. 

Uniformity of the density requires that all orbitals of any given Landau level be 

filled with the same number of particles~41 In the case of spinless (or spin-polarized) 

fermions, this means either 0 or 1 per orbital. For spin-1/2 fermions, the possible 

occupancies are 0,1 , and 2. Let us first consider spinless fermions. The total energy 

per unit area for a state with the lowest n levels filled is given by: 

(12) 

(The factor B /27r in front of the sum represents the degeneracy.) In our system, if 

the lowest n+ and n_ of the isospin up and down levels , respectively, are uniformly 

filled with one particle per orbital, then the combined energy is given by 

2 - 2 -E n+ Bo 2 n_ Bo 2 -=-(Bo+-) +-(Bo--) . 
A 47rm 2 47rm 2 

(13) 

The density of isospin-up particles is given by the number of filled Landau levels 

times the degeneracy, P+ = n+N+/A, and similarly for the down particles it is P- = 
n_N_/A. The matter density pis the sum of the up and down densities , while the 
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isospin density for isospin-1/2 particles is given by half the difference[11
: 

n+N+ n_N_ IBo + Bo/21 IBo - Bo/21 
po = P+ + P- = A + A = n+ 27r + n_ 27r ' 

Po= !(P+ _ P-) = !(n+ IBo + Bo/21 _ n_ IBo - Bo/21 ). (l4) 
2 2 27r 27r 

These equations may be rewritten in the form 

n+ !Bo+ Bo/21 po _ n_ IBo - Bo/21 Po _ 
27r = 2 +po , 27r = 2 - PO· (15) 

The expression (13) for the energy then becomes: 

E 7r [(Po - )2 (Po - )2] 27r ( P6 -2) - = - - + po + - - PO = - - + Po . 
A m 2 2 m 4 

(16) 

For comparison, the result in the bosonic case of [1] was found to be: 

E = _1 [I po + p~ I (po + ,Oo) + I Po _ P~ I (Po _ ,Oo )] . 
A 2m ,.,, 2K 2 ,.,, 2K 2 (17) 

The latter expression is different because in the bosonic case, only the lowest of 

each of the two sets of Landau levels is occupied in the ground state, whereas in the 

fermionic system, the exclusion principle requires that higher levels be occupied. The 

two expressions (16) and (17) are plotted in figure 1 for representative values of the 

coupling constants. 

We note the following features of the fermionic result which differ from those 

of the bosonic result: (1) The expression is completely independent of the Chern­

Simons coupling constants ,.,, and k, and was derived without any reference to the 

Gauss constraints -KBo = po and -kBo = ,Oo. (2) For a given matter density po, 

the energy is always minimized by ,Oo = 0. Thus it appears that the assumptions 

(14) for the ground state are not self-consistent unless po = 0, and there is, in this 

approximation, no spontaneous breaking of the SU(2) symmetry. 
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(A) Energy 

(B) Energy 

Figure 1: Upper plot (A) (adapted from reference [ 1]) : energy of bosonic 
mean-field theory plotted against the ratio po/ po for three values of the coupling 
constants. Curve I is for K,/ K = 0.5, and is typical of the region KK > 0. curve II, with 
K,/ K = -0.1, is typical for KK < 0 and IK,l/IKI < .25. Curve III, with K,/ K = -0.7, is 
representative of"'"'< 0, IK,1/11':1 > 0.25 On the x-axis is the ratio po/ po, on the y-axis 
is energy in units of 1/2mK. In case I, The minimum occurs at po = 0. In case III there 
is a self-consistent mean-field ground state with maximal isospin density, po = po/2 
In case II, the mean-field approximation is not self-consistent: The minimum energy 
occurs in a limit where one of the effective magnetic fields B+ or B_ goes to zero and 
the Landau level picture breaks down. The lower graph (B) shows the much simpler 
form of the energy expression for spinless fermions: it is independent of K and K,, and 
is always a minimum when po = 0. The energy scale for the lower plot is 7r /2m. 
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The first of the above observations is not entirely surprising in view of the results 

for the Abelian model (which should correspond to the limit 1/1~1 ~ 1/111:1). When 

po = 0, (16)reduces to the result for fermion-based Abelian anyons. This result is 

similarly independent of the Chern-Simons coupling, and is equal to the energy of a 

degenerate Fermi gas in 2 + 1 dimensions. Corrections to this fermi energy are found 

only when one includes the effects of :fluctuations to quadratic order. The second 

property, the absence of a spontaneous non-Abelian charge density, is less obvious. 

In the boson-based case, it was found that the phase with po = ±po/2 was stable 

in the regime 1/1~1 < 4/111:1 with ~ and K having opposite signs. Fermions can in 

principle be generated from bosons by setting the Abelian Chern-Simons coupling 

to K = -l/27r, resulting in a statistical angle of 7r. If we were to continue naively 

from the behavior near the bosonic point ( K ---+ oo) to K = -1 /27r, we might expect 

symmetry breaking at the fermionic end when l~I > s17r· It might be argued, in view 

of the spin-statistics connection, that it is not natural to expect a theory of spinless 

bosons to be be connected continuously to one of spinless fermions. The properties 

of the pure Abelian theory obtained in refs. [1] and [2] interpolate smoothly between 

the bosonic theory and a theory of unpolarized spin-1 /2 fermions. Therefore, in the 

next section, we will consider a spin-1/2 matter field. 

Qualitatively, the comparatively greater susceptibility of the bosonic model to the 

development of a spontaneous asymmetry between the isospin-up and down Landau 

levels may be explained in terms of the particles' exclusion properties. An isospin 

asymmetry generally raises the energies of one set of Landau levels while lowering 

those of the other. Since any number of bosons may occupy the lowest Landau 

level, it can become energetically favorable to lower the energy of, say, the isospin-up 

Landau level and place all of the particles into this lowered level, while leaving the 

raised level unoccupied. The fermionic system, on the other hand, can be regarded 

to a first approximation as two fermi fluids, one filling the isospin-up levels and one 

filling the down levels. The development of an isospin asymmetry requires that more 

particles be added to one of the two fluids. Even if energy of the kth Landau level is 

lowered by the asymmetry, the levels must be filled up to a higher value of k, which 

offsets the energetic advantage. 
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2 SPIN-1/2 FERMIONS 

We now ask whether the result of the previous section is changed if we consider 

spin-1/2 fermions instead of spinless ones. For spin-1/2 fermions, there are two states 

per orbital, and so it is possible to fill a Landau level with either 1 or 2 particles 

per orbital. (We are supposing that the statistical gauge field does not couple to the 

spin, so that this double occupation is the only effect.) Let n = 2p + O", O" = 0, 1, and 

consider a state in which the lowest n/2 of a set of Landau levels are filled. If n is 

odd ( O" = 1 ), we mean by this that the lowest p levels are doubly filled, and the p + 1 

level is filled with one particle per orbital. The total energy per unit area of such a 

fi 
. . [1] 

con gurat1on is 

E B p-l B 1 B 1 B 2 
2 - = -[2"' -(k + -) + O"-(p + -)] = -(n + O") . 

A 211" ~ m 2 m 2 8?rm 
k=O 

(18) 

For our system with two sets of Landau levels, the total energy becomes 

2 - 2 -
E = (n+ +O"+)(B Bo)2 (n_ +O"-)(B _ Bo)2 . 

A 8?rm 0 + 2 + 8?rm 0 2 
(19) 

As before, the + and - subscripts refer to the isospin states. Whereas the corre­

sponding equation (13) for the spinless case only involved the products n±IBo ± +1 
and thus could be expressed in terms of the densities without reference to the Gauss 

constraints, that is not the case here. Using the Gauss constraints, we write 

and thus 

(20) 

Since the second and third terms are non-negative, we see that, at the mean-field 

level, the lowest energy state for a given po is still one with O"+ = (]"_ = 0 and po = 0. 
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However, if a-+ or a-_ is restricted to be 1, then a minimum of the energy does in fact 

appear at 

(21) 

(See figure 2.) This expectation value of p vanishes in the limit of free fermions 

(l/11,--+ 0, 1/K,--+ 0). The corresponding energy, in the limit where both l/11, and 1/K, 

are small, is given by 

E 7r P5 P5 1 
A =-[-4 +-8 2 2+0(4)]. 

m 7rK K 
(22) 

It is worth noting that in the Abelian case, states with the top level half-filled are 

also energetically unfavorable at the mean-field level, but that fluctuations introduce 

a-- dependent corrections of the same approximate size (O(l/11,2 )) and opposite sign. 

Thus it is concievable that in our model, the O"± = 1 ground states might be stabilized 

by quadratic corrections. Also, in the Abelian model, the half-filled ground states are 

the only consistent ones at odd values of the coupling constant. 

3 CONSISTENCY OF MEAN-FIELD THEORIES 

The assumption of a uniform matter density in a uniform magnetic field requires 

that all orbitals within a Landau level be filled equally. This means that the only 

degree of freedom for the ground-state distribution of particles in a set of Landau levels 

is the filling factor, which must be an integer. In the case of a bosonic ground state, 

this integer represents the occupation number of all orbitals in the lowest Landau 

level, while in a fermionic ground state it represents the number of levels which are 

filled. Combined with the Gauss constraints, this condition will in general pick out 

a discrete set of values of the Chern-Simons coupling constants at which the mean­

field ground state is well-defined. In the case of Abelian anyons (either boson- or 

fermion-based) there is only one set of Landau levels which may be filled with an 

integer factor. The matter density is given by the filling factor times the Landau 

level degeneracy per unit area. The degeneracy is related to the magnetic field, which 
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Figure 2 B: The two curves of figure 2 A, shown on the same axes. 
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is in turn related to the density by the Gauss constraint: 

(23) 

po may be divided out from both sides, leading to the familiar series of allowed values 

of the coupling constant: K = n/27r, corresponding to the series of statistical angles 

27r /n and 1 - 27r /n based on bosons and fermions, respectively. 

Similar constraints occur in the non-Abelian model we are considering, but the 

consistency conditions are more complicated because two sets of Landau levels are 

involved. This issue was not addressed in reference [1], so we consider here both the 

bosonic and fermionic systems. The basic equations are those of (14), which relate 

the isospin and matter densities to the filling factors and magnetic fields. When the 

Gauss constraints (4) are applied to substitute for the magnetic fields in (14), these 

equations become: 

(24) 

These basic equations have the same form for fermi and hose-based systems; only the 

interpretation of the filling factors n+ and n_ is different. 

Now consider a mean-field state with 

where -1 < 'f/ < 1. In such a state, equations (24) become: 

n+ 1 'f/ n_ 1 'f/ 
1 = -1- +--=-I+ -1- - --=-I 27r ff, 4K 27r K 4K 

n+ 1 'f/ n_ 1 'f/ 
'fl= -1- +--=-I - -1- - --=-I· 27r K 4K 27r K 4K 

(25) 

Because of the quantization off.: we may write f.: = m/47r, where m is an integer. 

with this substitution, the equations (25) may be combined into a relation between 
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n+ and n_, and another relation involving only n+: 

n+ 1 'f/7r n_ 1 'f/7r 
(1 - 'f!)-1-+ - I= (1 + 'f!)-1- - -I, 

27r "' m 27r "' m 
(26) 

7r 1 + 'f/ = I~+ 'f/7r 1. 
n+ "' m 

(27) 

In the case 'f/ = 0, these reduce to "' = 7- = n;, reproducing the familiar set of 

Abelian mean-field theories. The bosonic ground state of maximal isospin alignment 

described in ref. [1] corresponds to 'f/ = 1. In this case, we have n_ = 0 and 

1 
' n+ m 

(28) 

and thus find that "' takes values which are rational, but not necessarily integer, 

multiples of 1/7r. "' approaches integer values only in the limit m ~ n+ , or K, ~ '"-

We now consider the mean-field energy minimum (21) of the spin-1/2 fermion­

based theory, which corresponds to 

(29) 

The conditions on the coupling constants for a consistent mean-field theory at this 

value of 'f/ turn out to be more complicated. Noting the useful expressions 

and 

1 ± 'f/ = 7r1"(2m
2 

+ 1) =f m 
7r1"(2m2 + 1) 

I~± ll = _!___ (2m
2 
+ 1=f1) 

"' 4K, l"'I 2m2 + 1 ' 

we find that equation (26) (which relates n_ and n+) takes the form 

(30) 

(31) 

n+[7r1"(2m2 + 1) + m]m2 = n_[7r1"(2m2 + 1) - m](m2 + 1) . (32) 

Note that, as usual, 7r1" must be rational; we may write 7r1" = p/q, where p and q are 

relatively prime integers. By assumption, n_ is even while n+ is odd. When equation 

(32)is multiplied by q, the RHS is even, so that n+[p(2m2 +1)+qm]m2 must likewise 

be even. This can only be satisfied if either m is even, or p,q, and m are all odd. 
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If K > 0, the other consistency equation (27) becomes, after substitution of the 

expressions (30) and (31): 

or 

2m2n+ + m 
1rK = 

2m2 +1 

Substitution of the above expression for 7rK in (32) yields: 

m(mn+ + 1) = n_(m2 + 1). 

Letting n+ = n_ + D, with Dan odd integer, we find 

D(m2 +1) +m = n+. 

(33) 

(34) 

(35) 

By substituting this into the expression (33) for 7rK, we finally obtain a relation 

between the two coupling constants: 

2m2((Dm2 + 1) + m) 
1rK = 

2m2 +1 

(36) 

the latter expression being valid in the limit of small inverse coupling constants ~ ' % ~ 

0 (near the point of free fermions). 

4 DISCUSSION AND CONCLUSIONS 

The relation (36) describing the coupling constants at which ground states with 

broken SU(2) occur is a rather peculiar one. It is nonlinear, and does not appear 

to connect continuously to the theory's behavior near the bosonic point. Translated 
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into the variables () = l/7rK, and B l/7r'K, which represent the sizes of the Abelian 

and non-Abelian statistical phases, the relation becomes (in the(), B --t 0 limit): 

(37) 

In figure 3, the behavior of the mean field theory is plotted in the () - B plane 

between () = 0 and () = 7r . The points (0, 0) and ( 7r, 0) mark free bosons and free 

fermions, respectively, and it is near these two points that one expects the mean-field 

approximation to be useful. The odd-n fermion-based ground states appear between 

the line () = 7r and a parabola, and are clustered near the () = 7r axis. There is no 

obvious way to continue this behavior to that at the bosonic point. 

One might draw one of two conclusions: Either there are phase transitions on 

the () - a plot other than the ones shown (i.e.' between () = 0 and () = 7r) ' or mean­

field theory alone is not sufficient to understand the symmetry-breaking behavior of 

this theory near the free-fermion point. The fact that the expectation value ( 21) of 

the isospin density is second order in inverse coupling constants lends credence to 

the suspicion that the second conclusion is true: mean-field results typically receive 

corrections at quadratic order in inverse coupling constants due to fluctuations. The 

results in this paper, however, suggest that: (1) if there is a spontaneous isospin 

density near the fermionic point, it vanishes smoothly as that point is approached, 

and (2) it is worthwhile to study the question using other methods . It has been shown, 

for example, that the pure SU(2) theory (to which our model reduces in the limit 

K,/K, --t 0) is susceptible to the formation of Cooper pairs in an isosinglet state~51 
The 

condensation of isosinglet Cooper pairs would naturally form a ground state with zero 

isospin density. But it is possible that when the Abelian coupling is also included, 

isotriplet Cooper pairs might form in some regions of parameter space. 
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Figure 3: The 0 - B plane. The theory's behavior near the points (0, 0) (pure 
bosons) and (0, 7f) (pure fermions) delineates several regions. In region I, there is 
no spontaneous breaking of SU(2): the energy is minimized by p = 0, In region III, 
there is a consistent mean-field ground state with a maximal expectation value of 
(p) = po/2. In region II, mean-field theory fails: The ground state energy appears to 
have a minimum at some (p) < po/2, but no self-consistent state can be constructed 
at that minimum. These are the three regions of parameter space corresponding to 
the curves I, II, and III in figure 1. Near the fermion point (0, 7f) (regions IV and V), 
there are mean-field ground states with (p) = 0. In region IV, there also exist states 
differing from the others only at quadratic order, and having a small expectation 
value of p. These are the odd filling factor states we have been discussing. It is not 
clear how these regions might connect to one another in areas far from the fermionic 
and bosonic points. 
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Chapter 3 

A Global Analogue of Cheshire Charge 

March-Russell, Preskill , and Wilczek[iJ showed that vortices of a theory with 

a global U(l) symmetry broken to Z2 can scatter quanta of Z2 charge with a cross 

section almost equal to to the maximal Aharonov-Bohm cross-section, due to a frame­

dragging of local mass eigenstates. Here we demonstrate the realization of a non­

abelian Aharonov-Bohm phenomenon (Cheshire charge) in the context of a global 

model. 

In the first section, we describe a relativistic field theory that supports a global 

analog of Alice strings[
2
J and then describe how the process of charge exchange occurs 

by means of quantum interference. Some differences as well as similarities to the 

parallel phenomenon of Cheshire charge in gauge theories are mentioned, as well as 

the manner in which the global phenomenon can be viewed as a limit of the gauge 

case at very weak gauge coupling. 

One of the motivations for studying global vortices and global Aharonov-Bohm 

scattering is that many more global than local symmetry-breaking transitions are 

available for manipulation in condensed matter systems. The possibility arises of 

finding condensed-matter systems which can serve as laboratory analogs of otherwise 

observationally inaccessible gauge string phenomena. In section 2, we consider the 

possibility of finding a laboratory analog of Cheshire charge in the superfl.uid A phase 

of helium-3. The group-theoretic properties necessary for the existence of Cheshire 

charge are present in He-3 A, although in practice it may be difficult to devise an 

experiment to observe it . 
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1 CHESHIRE CHARGE IN A THEORY WITH BROKEN GLOBAL SYMMETRY 

The Model 

Consider a theory with a global S0(3) symmetry containing a Higgs scalar <I> 

transforming as the 5-dimensional symmetric tensor representation, which we will 

write as a 3 x 3 S0(3) matrix, and another scalar field W transforming as a 3-

dimensional vector. W will serve as the test particle that scatters from vortices. The 

fields transform under S0(3) according to: 

(1) 

where n is 3 x 3 S0(3) matrix. We will denote the generators of G = S0(3) as: 

(2) 

We also introduce a bilinear coupling of the W fields to the Higgs: 

(3) 

Now let the Higgs field acquire a vacuum expectation value <I>o vdiag(l, 1, -2). 

This breaks the symmetry group down to H = U(l) xs.D. Z2. This is the same 

symmetry breaking pattern previously considered in the case of Alice strings [2] ; the 

difference is that we are considering a global, rather than a gauge, symmetry. The 

VEV <I>o induces a mass splitting among the the members of the multiplet W, much 

as in Reference [1 J. The first two components of W are degenerate and are mixed by 

the unbroken U(l) generator T3, while the third component is an H singlet. From 

the first two we can form basis eigenstates of opposite U ( 1) charges: 

u+ = (1, i, 0) , u_ = (1, -i, 0) . (4) 

The VEV in this theory can be thought of as taking values on the surface of a 

sphere with antipodal points identified. A visual analogy for the symmetry-breaking 
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pattern is the director field of a nematic liquid crystal (NLC). The order parameter of 

the NLC, like that of our theory, can be thought of as an undirected line segment at 

each point in space. The group of transformations which leave this segment invariant 

include continuous rotations about the director's axis (the U(l) component ) as well 

as a discrete 180° rotation about an axis perpendicular to the segment. This 180° flip 

generates the Z2 component. Since the discrete 180° rotation does not commute with 

continuous rotations about the preferred axis , the full unbroken group is a semidirect 

product. This visual analogy will be useful later in explorations of condensed-matter 

systems. Our model can be reformulated in terms of a director field cl, a vector in 

internal space, rather than a tensor, by defining 

(5) 

and making the identification d = -d. 

Construction of Alice Strings and Vortices 

The above model can form topologically stable 11'1 type defects. For simplicity 

we consider the model in two spatial dimensions, so that the defects are vortices. All 

arguments can be generalized straightforwardly to strings in three spatial dimensions. 

A vortex with core at the origin could have an asymptotic field configuration far from 

the origin given in polar coordinates by: 

-ic.pT1 ic.pT1 
<I>(x) =exp[ 

2 
]<I>o exp[-

2
-] . (6) 

The Higgs field is single valued, but the mass eigenstates of the W field are not well­

defined globally. One can define local (frame-dragged) mass eigenstates Pi at any 

point outside the core by p = exp[-i~Ti ]w. 

As in reference [1], these local eigenstates define a frame at each point outside 

the core, and a state is adiabatically transported if its components in the local basis 

remain unchanged at each point. Notice that p2(0) = -p2(27r ). This means that 

when a state p2 is adiabatically transported through a loop that encloses the vortex 
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core once, it acquires an Aharonov-Bohm-like phase of -1, whereas Pl acqmres no 

such phase. In terms of the fields of definite U(l) charge, P+ = Pl+ ip2 and P- = 

Pl - ip2, the boundary condition can be written as P+(27r) = P-(0), P-(27r) = P+(O). 

This means that the sign of the global U ( 1) charge is reversed when a p particle is 

adiabatically transported once around the string. Thus we have a global analog of 

the Alice string that occurs in the corresponding gauge theory. 

In the gauge theory case it is known that a vortex-antivortex pair can acquire a 

"Cheshire charge" which compensates the charge gained by the particle upon thread­

ing the pair, so that the total charge is actually conserved!31 This charge is a global 

property of the vortex pair; it cannot gauge-invariantly be localized to either one of 

the vortices or to any region of space near them. To see how charge conservation 

is maintained in this global model, consider a vortex-antivortex pair with the two 

cores separated along the x-axis by a distance D which is large compared to the core 

radius. Outside the cores, the vortex-antivortex solution to the field equations can 

be written: 

;fi. ( ) [-i6c.pT1] ;fi. [ i6c.pT1] 
'1'0 x = exp 

2 
'1'0 exp 

2 
(7) 

where <l>o = vdiag(l, 1, -2) and 6c.p = c.p1 -c.p2 as defined in figure 1. (Since the fluxes 

of the two vortices lie in the same U(l) subgroup, it is easy to show that when the 

Higgs field is constrained to lie in the vacuum manifold, the static 2-d field equations 

reduce to Laplace's equation. Thus V<l> is dual to the electric field of two opposite 

charges in two dimensions, and the solution ( 7) is obtained.) 

At points far away from both cores (r ~ D), the Higgs field approaches a single 

asymptotic value <l>o. Thus the embedding of the unbroken group H is well-defined 

on any large circle outside the the two cores: its connected component is the U(l) 

generated by T3. 

The local mass eigenstates are given by p = exp[-i6c.pTif2]'1i and are thus un­

changed under adiabatic transport along paths that remain far away from the pair 

where 6.c.p ~ 0. However, if a '1i2 state is transported from y = -oo to y = +oo 

along the y-axis (or along any path that passes between the two cores), the angle 6c.p 
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winds through 2?r, and the state '112 acquires an Aharonov-Bohm phase of -1, whereas 

'111 acquires no such phase. None of the triplet components acquires a phase if it is 

transported from y = -oo to y = +oo on a path which does not pass between the 

two cores. Thus an eigenstate of U(l) charge changes the sign of its charge when it 

passes through the pair. 

In order to understand how charge conservation is maintained, we must realize 

that there is an infinite family of vortex pair solutions related by U(l) rotations. The 

solutions 

<I>a(x) =exp( iaT3)<l>o(x) exp(-iaT3), (8) 

where 0 <a< 2?r and <I>o(x) is given by (7), all have the same energy because they 'are 

related by a global symmetry transformation. Since they all have the same asymptotic 

value of the Higgs field, they can be continuously deformed into each other; thus there 

is a charge rotor zero mode. Figure 2 shows the action of the symmetry on the field of 

a vortex-antivortex pair. The order parameter is drawn as an undirected line segment 

as discussed above. Figure 2a shows one representative of a class of flux eigenstates. 

Other states degenerate with this one are obtained by rotating each of the directors 

through arbitrary angle a about the x-axis: Fig. 2b shows the result when a = ?r /2. 

(Note that unlike our model, physical NLC's do not in general possess a continuous 

degeneracy of this type, but only a twofold degeneracy, because the free energy is not 

invariant under purely internal rotations of the director, but only under rotations of 

the whole coordinate frame!41 The broken symmetry in NLC's is not truly an internal 

one of the type that occurs in relativistic field theories.) 

The pair states which transform as irreducible representations of the asymptoti­

cally unbroken U(l) group are coherent superpositions of the solutions (8): they are 

the quantized energy levels of the zero mode. A state with charge n is given by: 

27r 

In >= j da exp( -ina) l<I>a > . 

0 

(9) 
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The Charge Transfer Process To understand the process of charge transfer by which 

a test particle reverses its charge and the vortex pair acquires a compensating charge, 

consider first the case where the vortex pair is originally in the state lo: > described 

above. For each value of o:, there is one component of W that acquires a phase upon 

passing between the vortices, and another which does not . However, these states 

depend on the value of o:. Let Ufo be the state which acquires no phase, and u2a be 

the state which acquires a phase of -1. Then: 

Ula= (coso:,-sino:,O), u2a = (sino:,coso:,O). (10) 

The U(l) charge eigenstates u+ = (1, i, 0) and u_ = (1, -i, 0) are expressed in terms 

of Ula and u2a as: 

u+ = exp(-io:)(u1a + iu2a), u_ = exp(io:)(u1a - iu2a)· (11) 

Thus, when the state u+ is adiabatically transported along a path that threads the 

pair, it is turned into the state exp(-2io:)u_, whereas u_ becomes exp(2io:)u+. These 

relations may be expressed simply in terms of a monodromy matrix, written in the 

charge eigenstate basis as follows: 

p(2x) = M(a)p(O), 

where 

[ 
O e2ia l 

M(a) = 
2

. . 
e- w 0 

(12) 

Now take an initial state in which the vortex pair is in the charge-zero eigenstate 

IO > and the test particle is in the state u+: 

27!" 

lu+ > 010 >= j dalu+ > @l<I>a > . 
0 

(13) 
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After the particle is dragged through the loop, the final state will be: 

27!" 

j da exp(-2ia)lu- > ®l<I>a >= lu- > ®12 > . 
0 

(14) 

The state has evolved into one in which the vortex pair has charge +2, because of 

the different phases acquired by the wavefunction in the different a sectors. The 

zero mode has been excited by means of a quantum-mechanical interference process, 

which is the usual means for the transfer of Cheshire charge, except that in this case 

it has occurred in a model with no gauge symmetry and does not have any topological 

interpretation [sJ in terms of lines of electric flux being trapped between the vortices. 

It may be noticed that even though the charged states In > exist for all integers, 

only those with n even can be produced by this process from an initially uncharged 

vortex. This is not necessarily the case in gauge Alice models. We can, in the case of 

a gauge model, take the initial gauge group G to be SU(2) rather than S0(3), and 

include matter fields transforming in the spinor representation. After the symmetry is 

broken to U(l) xs.D. Z2, the spinor components become two oppositely charged states 

which interchange under the action of the Z2 flip. The smallest electric charge in the 

theory is that carried by these spinor particles, and it is by passing these through a 

loop of Alice string (or pair of Alice vortices) that the odd-numbered Cheshire charge 

states are excited. However, the frame-dragging effect considered in Ref. [l] and in 

the present paper requires a matter field bilinearly coupled to the symmetry-breaking 

order parameter. Since the Higgs field in our model transforms in the 5-dimensional 

representation, no singlet can be formed from the Higgs field with only two spinors, 

and we are forced to consider matter fields W lying in a vector representation. Thus, 

in comparing our global Alice system to the corresponding gauge model, the states 

which we have called P± should be thought of as doubly charged. The monodromy 

matrix (12), for example, has the property M 2 = 1, rather than M 2 = -1 as in the 

case of singly charged objects~61 

Comparison With Ordinary Gauge Cheshire Charge 

It is interesting that, although the existence of Cheshire charge is a consequence 
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of the symmetry breaking pattern only, and occurs in this global model for the same 

reason as in a gauge theory, the nature of the charge is rather different. As we see in 

the following paragraphs, global Cheshire charge actually is localizable and is carried 

by the scalar fields rather than the vector fields. 

In the global theory we are considering, the zero mode is simply a "rigid" U(l) 

rotation of the entire Higgs field configuration: thus it is a subgroup of the global 

S0(3) transformations. a is the coordinate of the zero mode, and classically the 

excitations of this mode are states where da/dt -=/:- 0. Quantum mechanically, da/dt 

will be replaced by a canonical momentum with discrete eigenvalues. This is to be 

contrasted with the case of a gauge model, where a rigid rotation of the Higgs fields 

alone fails to satisfy the equations of motion. In temporal gauge, the zero mode can 

be written [?J: 

<I> = n<I>n-1 A = n.A n-1 + 5i a-nn-1 
' µ µ µ z ' (15) 

where <I> and Aµ are static solutions and f!(x, t) is a spatially varying S0(3) trans­

formation that tends to an element of the unbroken group H (namely exp(iaT3)) at 

infinity. (Notice that if the term otainn-1 were replaced by 8µnn- 1 then this would 

be a physically irrelevant gauge transformation.) By transforming to another gauge, 

one can view the zero mode as purely an excitation of the gauge fields, 

(16) 

whereas in the global case it is purely an excitation of the scalar fields. 

In our global case one can see that there is a nonzero charge density (i .e. , 0 

component of the global current) which is localized in the region of space surrounding 

the vortices: 

..,,.. 2 
Jo(3) = 2Tr<l>T38o<I> = 36vsin (6.1.p/2)(da/dt). (17) 

This definitely localizable charge carried by the scalar fields contrasts with the usual 

case, where the charge is carried by the gauge fields and its apparent location can 

be moved by performing gauge transformations [sJ. Since the global charge density is 
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locally measurable, it must be the case that the charge is gradually transferred as the 

charged particle moves between the vortex cores. One must suppose that the charge 

density propagates away from the particle as the particle moves, and spreads itself 

through the region of space surrounding the cores. The transfer of gauge Cheshire 

charge, on the other hand, cannot gauge-invariantly be said to happen at a particular 

time and place, or even incrementally at a well-defined rate. 

The relation between charge and energy is also different in the global case com­

pared to the gauge case. This can be demonstrated by quantizing the zero mode. 

First treat a as a classical coordinate. Assume that the Higgs field configuration is 

given by 

<I>(x , t) = exp[ia(t)T3]<I>o(x) exp[-ia(t)T3] (18) 

i.e. , a time-varying rigid rotation of the angle a. Then 8t<I> = ia[T3, <I>o] and the 

gradient part of the Lagrangian gives 

(19) 

(Since the static configurations of different a are degenerate, all other terms in the 

Lagrangian are independent of a and do not enter in that coordinate's equations of 

motion.) Letting 

I = j d3 xTr[T3, <I>o] 2
, (20) 

we can define a momentum Ila conjugate to a and write a Hamiltonian 

(21) 

Now the commutator [T3, <I>o] is of order l<I>I within some volume surrounding the 

vortex cores. Since there is no domain wall connecting the cores, D is the only 

relevant length scale, and dimensional analysis then dictates that the "moment of 

inertia" I scales as Dd, where d is the number of spatial dimensions. Accordingly, 

the charge rotor Hamiltonian has eigenvalues En= n~f ~ n 2n2 /(l<I>l 2 x Volume), so 



33 

the energy splittings among the global charge eigenstates scale as 1 / Dd. One may 

contrast this with the Coulomb energy (logarithmic in 2 space dimensions, 1/ D in 3) 

of the usual gauge Cheshire charge. 

The global vortex pair can be considered as a limit of the gauge model where the 

gauge coupling is so small that the Compton wavelength of the massive vector bosons 

is much larger than the separation D of the two vortex centers. In this limit, the Higgs 

field cores (regions where the Higgs leaves the vacuum manifold) can remain small 

while the gauge field cores (regions of nonzero magnetic flux) of the vortices become 

much larger than D so that there is actually no winding of the gauge field near the 

pair. In this case all the fields are defined on a trivial bundle and the Higgs VEV is 

covariantly non-constant just as in the global model. Presumably the Cheshire charge 

states will behave as in the global case, with a gauge invariantly localizable charge 

density carried by the scalars near the string. 

Scattering From a Global Alice String 

It is worth noting briefly that a single global Alice string of the type we have 

constructed will scatter incoming quanta of the W fields. In fact, if we limit our 

attention to the pz and p3 components, the calculation of the scattering amplitude 

proceeds precisely as in reference [l]. Pl , on the other hand, does not scatter at 

all (except perhaps off the vortex core itself). In other words, Pl and pz are the 

monodromy eigenstates, and Pl has eigenvalue unity. The result is that, if an incoming 

plane wave consists of either of the charge eigenstates P+ and p-, the scattered wave 

will be pure pz , which is a superposition -i(p+ -p-)/2 of the two charge eigenstates. 

Consider the scattering of a P+ incident at momentum below the threshold for p3 

production. We expect the Pl and pz to behave asymptotically as an incoming and a 

scattered wave. We may write this asymptotic behavior as follows: 

f + and f- are the charge-preserving and charge-reversing amplitudes for the scattered 

particle. The diagonal matrix in front enforces the boundary conditions on the frame-
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dragged states. For simplicity we are considering a vortex in the flux eigenstate with 

a = 0. Proceeding by analogy with [1], the equations of motion for the second 

component lead to 

e-icp/2 ( 1 
00 

. [ 1 ] ) 
f+(c.p)-f-(c.p)= (27rik)l/2 cos(c.p/2) +2~(-lt(ezlln_l)cos (n+2)c.p ' 

(23). 

Since the first component does not scatter, we also have f + ( c.p) + f-( r.p) = 0 and 

the amplitudes are uniquely determined. The differential cross-sections for charge­

preserving and charge-flipped scattering, drJ+/dO and drJ_jdO, are identical to each 

other and equal to one fourth the scattering cross-section derived in reference [1] for 

an Abelian global vortex: 

drJ+ 
dO 

drJ_ 

dO 
(24) 

where 0 = 7r - c.p is the scattering angle and C(O), which vanishes at 0 = 0, is a 

function obtained by summing (and squaring) the series in (23). The inclusive cross 

section drJ + / dO + rJ -/ dO is half that of the Abelian case considered in [1], because the 

Pl state is, so to speak, "filtered out" of the scattered wave, just as a linear polarizer 

halves the intensity of a circularly polarized light beam. 

Setting C(O) = 0 in (24) would give the cross section for doubly charged projectiles 

scattering from a gauge Alice string. C ( 0), a correction present only in the global 

analog, results from diagonal 1/r2 potential terms appearing in the equations of 

motion for the p fields.* Evidently, these corrections modify the inclusive cross section 

but they do not affect the ratio rJ+/rJ_, which depends on the monodromy properties 

of the scattered particles and not on the local or global nature of the vortices. 

* This cross-section was derived by neglecting off-diagonal terms that cause mixing of p2 and 
p3 near the vortex. Navin 's analysis 101 suggests that the corrections to the standard Aharonov­
Bohm cross section may disappear when the scattering problem is solved exactly. 
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2 A CONDENSED-MATTER EXAMPLE 

Cheshire charge is a generic phenomenon that occurs when a theory has vortices 

whose winding fails to commute with a generator of the unbroken symmetry group of 

the vacuum. The results of the previous section show that Cheshire charge also arises 

if the theory has only global and not gauge symmetries. The essential group-theoretic 

concept is the same although the mechanism is different. 

In this section, we discuss a physical system which exhibits the type of symmetry­

breaking necessary for the existence of Cheshire charge: one which allows mixing 

of flux eigenstates within a conjugacy class. The system is the superfluid A-phase 

of liquid helium-3. While the right symmetry-breaking pattern is present, it may 

be difficult to observe Cheshire charge phenomena experimentally. There are many 

complications in dealing with a real condensed-matter system rather than a relativistic 

field theory. Some of these difficulties will be pointed out. 

The Order Parameter in Superfluid He-3 A 

He-3 atoms are fermions. A condensation of Cooper pairs of atoms is thought to 

be responsible for superfluidity in this system. Unlike the electrons in BCS super­

conductors, however, the helium atoms tend to pair in p-wave, rather than s-wave 

states, so they have a net orbital angular momentum of 1. In order for the two-atom 

wavefunction to be symmetric, therefore, members of the pair must also have their 

spins aligned in a triplet state with total spin 1. In addition to the overall phase of 

the condensate wavefunction, there are thus two separate angular momentum vectors 

which can a priori rotate independently. The full internal symmetry group of the pair 

wavefunction is (ioJ (nJ 

S0(3)(L) x S0(3)(S) x U(l )<f>. 

This richness in degrees of freedom leads to a wealth of interesting phenomena as­

sociated with He-3 superfluidity. Let us denote the generators of these three factors 

by L, S, and f, respectively. The symmetry of the superfluid ground state depends 

on temperature and pressure: there are at least two phases which are stable in bulk, 
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unmagnetized fluid, characterized by different ground state configurations. The A 

phase is described by a spin state I 10 > along some preferred direction, and an or­

bital state I 11 > along some other axis. The object corresponding to the Higgs field 

is a 3 x 3 complex matrix of two-particle correlation functions, Aai, with each entry 

representing a particular spin state and orbital harmonic. Rotations in spin space act 

on the first index, a, and rotations in ordinary space act on the second index: Aai 

transforms as a vector under each of the two 50(3) factors of the symmetry group. 

The U(l) factor acts on the overall phase of the matrix. In the A-phase, the matrix 

takes a value of the form: 

(25) 

Here ~A(T), a temperature-dependent gap parameter, can be thought of as the mag­

nitude of the superfluid wave function, much like the magnitude of the Higgs vev 

in a field theory. The vector d is the axis along which the projection of the spin 

angular momentum is zero. e1 and e2, together with the vector l = e1 x e2, define 

a local orthonormal frame such that the projection of the pair's mutual orbital an­

gular momentum onto l is + 1. The phase <P represents the overall phase of the pair 

wavefunction. 

In order to see what the pattern of symmetry-breaking is, consider what trans­

formations leave the order parameter invariant. Continuous rotations in spin space 

about the axis d leave Aai unchanged. These form an unbroken U(l) subgroup with 

generator Sz. (The state 110 > is invariant under rotations about the z axis.) Rota­

tions in orbital space about f result in a phase (corresponding to the phase gained in 

rotations of the state 111 > about the z axis.) However, this can be compensated by 

a change in </J . Thus the Lz - i generates another unbroken U(l) subgroup. These 

are the only two elements of the Lie algebra which annihilate Aai, but the discrete 

transformation d --7 -d, <P --7 <P +Jr leaves the matrix invariant . The d vector can 

be flipped 180 degrees if the phase <P is simultaneously shifted by Jr. This makes the 

unbroken group H = U(l) x U(l) xs.D. Z2. 

Because of the presence of this discrete 180° rotation in the little group, the spin 

quantization axis d acts like the director field in a NLC: there are configurations in 
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which d can be rotated continuously through 180° along a closed path which winds 

once around the core of a vortex. Such a configuration is the "half-quantum vortex," 

so called because the phase </> winds only halfway around the unit circle and the 

vortex carries only half of the conventional quantum of circulation. Half-quantum 

vortices are analogous to the Alice vortices of the previous section. A similar zero 

mode should in principle exist. In the next section, configurations with such a zero 

mode are described. 

Half-quantum Vortices in He-3 A 

Static configurations of the superfluid order parameter are extrema of the Landau­

Ginzburg free energy functional [101
, which takes the place of the field Hamiltonian. 

The free energy density includes a gradient energy term: 

(26) 

where Ii are constants. For general values of Ii, this term is not invariant under 

rotations of the orbital frame (e1, e2)) unless the external coordinates are simulta­

neously rotated. However, since the spin indices a are never contracted with any of 

the differentiation indices, the gradient energy is invariant under all global rotations 

of d, regardless of the values of Ii· S0(3)spin is truly an internal symmetry if only 

the gradient energy is included. 

Only the spin-orbit, or dipole, interaction couples spin with orbital indices. This 

term has no analog in the model of section 2: 

(27) 

The dipole force is weak compared to the other interactions, but it has the consequence 

that in the bulk fluid, d tends to line up parallel to f. This is known as dipole locking. 

In the presence of a pair of HQV's, the dipole energy must depart from minimum 

over some region between the cores (dipole unlocking). This is because f, unlike d, 
cannot wind by odd multiples of 7r, so f will tend instead to remain constant. When 
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the cores are widely separated, the consequence is that the winding of the d vector 

occurs within a domain wall, or soliton, whose width is of order 

(28) 

en, known as the dipole length, is the scale at which the dipole energy becomes 

comparable to the gradient energy. The presence of a domain wall causes the half­

quantum vortices to be confined linearly rather than merely logarithmically in two 

dimensions. Figure 3 shows land cl for such a configuration. Since the dipole energy 

depends only on the angle between land cl a global rotation of all the d vectors in 

figure 3 about the x axis will still leave the Landau-Ginzburg free energy invariant. 

This is the zero mode which gives rise to Cheshire charge in this case: a global rotation 

which belongs to the subgroup unbroken at infinity. 

The Observability of Cheshire Charge 

In the case of He-3 vortices, the "charge" that can be transferred is a form of 

angular momentum. The momentum conjugate to dis the spin density, or net nuclear 

magnetization, S. In the A-phase equilibrium, the spin density has expectation value 

zero. Dynamics slower than the gap frequency characterizing the symmetry-breaking 

scale but faster than ,....., lH z is governed by an effective Hamiltonian 

(29) 

where H is an externally applied magnetic field and I is the gyromagnetic ratio of 

the atomic spins. Unless otherwise stated, we will assume no external field. x, the 

magnetic susceptibility, is a symmetric tensor with two distinct eigenvalues Xii and 

X..L reflecting the greater polarizability of the fluid in directions perpendicular to d: 

(30) 

In spite of the coupling of land cl through the dipole interaction, (29) ignores the 

dynamics of the orbital axis l is because the motion of l is so strongly damped that 
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all but very slow motions of d can be treated as occurring on a background of fixed l. 
11 The Hamiltonian (29), together with the commutation relations {Si, dj} = Eijkdki 

{Si, Sj} = EijkSk, leads to the Leggettr
121 

equations of motion. d precesses about S 
according to 

_, _, ,s 
od/ot = 1d x (--). 

X1-
(31) 

Thus the first term of (29) plays the role of a kinetic term for motions of d, with S 
being the momentum. In particular, for the pair configuration shown in Figure 3, the 

x component of Swill be nonzero when the charge rotor is excited, and the quantized 

zero mode will have excitations where the total angular momentum J ddxSx = nn. 

These excitations will carry an energy of order 

(32) 

where Vsoliton is the volume of the dipole-unlocked region near the cores. For large 

n, one can identify a classical precession frequency w = (1/n)dE/dn, and the kinetic 

energy is given by: 

(33) 

As in the model of Section 2, this energy has, for fixed n, an inverse dependence 

on the soliton volume, and thus on the separation of the cores. In a two-dimensional 

geometry where string tension does not operate, it is possible that a sufficiently excited 

pair could be stabilized against the attractive force due to the dipole interaction, 

provided the "Cheshire charge" cannot be radiated away rapidly. This would occur 

if the energy stored in the zero mode was comparable to the dipole energy of the the 

soliton connecting the two cores: 

(34) 

Using formulas and numbers that can be found in Reference[lO], one can estimate the 
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volume at which this occurs (more details of this estimate are found in the Appendix): 

(35) 

The classical precession frequency of cl corresponding to this energy level is approxi­

mately 104 s-1 . By comparison, the gap frequency below Tc is typically ,....., kTc /'Ii ,....., 
107 s-1. 

The stability of a charged excited state of a vortex loop or pair is also uncertain. 

It may depend on details of the spin relaxation behavior of the fluid and such factors 

as coupling between the superfluid and the normal fluid component[131
• However, 

since the precession frequency found above to be sufficient to cancel the attractive 

force is lower than the gap frequency, one would imagine that at least the radiation 

of "Higgs" modes would be suppressed. Also, since the "Cheshire charge" consists 

of a nonzero spin density in the direction of l (assuming that l maintains a uniform 

value everywhere which is parallel to the asymptotic value of cl), no torque should 

be exerted on this component of S by the dipole force. This renders one of the usual 

[
111 .c 1 · f s .... · ir · 1 · d · b 1. 0 means ior re axat10n o meuective: name y its ampmg y coup mg to c 

A Charge Exchange Process 

The spin wave excitations of the He-3 A order parameter carry quantum num­

bers which allow the possibility of an Aharonov-Bohm interaction with half-quantum 

vortices. In general, spin waves consist of a coupled oscillation of cl and S. Consider 

the form 

Ci= do(r) + i$(r, t). 

Oscillations of 7/J parallel to do have a gap characterized by the symmetry-breaking 

scale. On the other hand, oscillations of 7/J perpendicular to do only have a frequency 

shift f!A proportional to the dipole energy. In particular, the two propagating low­

frequency modes obey a wave equation of the form 

027/J 2 2 - at2 = nA'ljJ + nA(U'ljJ + D'ljJ), (36) 
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where 

(37) 

U is a potential which is zero in the bulk fluid, and D is a kinetic operator: 

II _t_ 

D¢ = -eJ[~¢ + Psp ~ Pspv. (l(l· V)¢)]. 
Psp 

(38) 

p;p ex (211 + /2 + /3) and p~p ex 211 are the spin rigidity coefficients describing the 

energy of gradients in d. The lower cutoff frequency nA arises because an oscillation 

of d about l is an oscillation in the potential well formed by the dipole coupling 

gn(l· d)2 . (As mentioned previously, l can effectively be regarded as fixed on the 

time scales of these oscillations. The fluctuations of l are diffusive or overdamped.) 

The potential U becomes nonzero when l is not parallel to d (as inside domain walls) 

or when nonuniform textures of the order parameter are present. These oscillations of 
..... 

¢perpendicular to do would be Goldstone modes if the dipole energy were neglected, 
..... ..... [14] 

and they are degenerate with each other as long as do II C. There are thus three 

modes which have the pattern of splitting analogous to the splitting of the \]! modes 

in section 2. 

Figure 4 demonstrates the "frame dragging" of the spin wave modes. We assume 

a frequency lower than the gap frequency, which corresponds to the assumption in 

Section 2 or in reference [1] that scattering experiments are done at an energy such 

that only the light components of the split multiplet \]! are excited. Then the two 

propagating oscillations (corresponding to \]! 1 and \]! 2) are the two different polariza­

tions of ¢ perpendicular to do. In accordance with eqn. (31 ), the fluctuation of d is 
accompanied by a fluctuation of Sin the ~ x do direction. In the region far from the 

vortex cores, land d are taken to lie along the x-axis, so that one of the propagating 

modes, labeled 1, involves 1/Yy and Sz, while mode 2 involves 1/Jz and Sy. As one fol­

lows a path around one of the vortices, however, mode 2 experiences a frame-dragging 

which causes it to mix with Sz, acquiring an Aharonov-Bohm minus sign when trans­

ported around a loop. Mode 1 remains unaffected. It is therefore conceivable that a 
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similar charge exchange process could occur in the scattering of spin waves off pairs 

of half-quantum vortices. A circularly polarized spin wave (an eigenstate of the un­

broken subgroup of rotations) could scatter from the pair of vortices, changing to the 

opposite circular polarization and depositing angular momentum (Cheshire charge) 

in the vicinity of the vortices. 

The theoretical possibility of an Aharonov-Bohm type scattering from HQV's us­

ing collective excitations of the fluid as the projectiles has been mentioned previously 

by Khazan and others [
15

'
101

• However, the context studied by these authors was that of 

NMR experiments in which either spin waves or an orbital "Higgs" excitation called 

the clapping mode are excited by means of a fluctuating magnetic field. The high 

steady-state magnetic field which is used in NMR breaks the degeneracy between the 

two "light" spin wave modes, leaving us with an Abelian situation like that of refer­

ence [1]. Situations in which the non-Abelian Aharonov-Bohm effect might be seen 

were not discussed. 

It may in practice be difficult to devise a Cheshire charge experiment without 

having the S0(3) symmetry destroyed by an external field. An additional difficulty 

arises from the potentials U in equation (36). In addition to the Aharonov-Bohm 

effect, one expects spin waves to be scattered by these non-topological potentials 

which are nonzero within a soliton where do is not parallel to f These potentials 

arise because of the change in the dipole restoring force as do leaves the bottom of the 

dipole potential well, and because of other anisotropies associated with the orbital 

state. In fact, the two linear polarization states of the spin wave experience different 

potentials inside the soliton, which could give rise to phase shifts between them in 

addition to the Aharonov-Bohm phase. 
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APPENDIX A 

Estimate of Charge Necessary to Stabilize Pair of HQV's. 

This appendix contains a derivation of the order-of-magnitude estimate (35) for 

the level of excitation of the charge rotor mode (and corresponding classical precession 

frequency) at which its energy becomes comparable to the dipole energy of the soliton 

connecting a pair of half-quantum vortices. The data and formulas used here can be 

found in references [10] and [11]. 

We begin with equation (34), equating the dipole energy with the zero-mode 

energy: 

(Al) 

X..L is the larger eigenvalue of the magnetic susceptibility tensor. It differs from 

the susceptibility xlfv = 1 21i2 N(O) of a noninteracting degenerate Fermi gas only 

by a factor of order unity, so we may use this value as an estimate of X..L· In the 

previous expression, N(O) is the density of states at the Fermi surface, given by 

N(O) = m* ktf27r21i2 where k11i is the Fermi momentum. 

We also rewrite the dipole coupling constant in terms of measurable length scales 

as follows: 

(A2) 

10 is a typical coefficient of the gradient energy: in the weak-coupling, or small­

interaction limit, the coefficients /i in the gradient energy (26) are all equal to /O· 

We have in turn related this coefficient to the coherence length eo(l - T/Tc)-112 . 

The two length scales are quoted by [10] as of order eD ,..._, 10-3cm and eo ,..._, 10-6cm. 

Finally, we use the relation D.A ,..._, kTc(l - T /Tc )112 for the gap parameter. We 

can substitute the estimates for X..L, 9D, and D.A into (Al). Assuming temperatures 

in the millikelvin range, molar volumes of a few tens of cm3 , and quasiparticle mass 
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m* approximately equal to the atomic weight of helium, we obtain: 

nn2~D Vsol ,...., ,...., n x 10-16 cm3 

fom*ktkTc(l - T/Tc)l/2 
(A3) 

We may also express the answer in terms of a classical precession frequency. 

Expressed in terms of w, (Al) becomes: 

(A4) 

Using the same estimates as above, we find: 

(A5) 

This shows that the frequency is of order 10-3 times the gap frequency, or about 

10 kHz if (1-T /Tc) ,...., 1. Not surprisingly, this is also of the same order as the cutoff 

frequency !1A for spin waves . 
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FIGURE CAPTIONS 

1) Definition of angles 'Pl, cp2, and 6.cp in vortex pair geometry. 

2) Degenerate configurations of vortex pair. This figure shows two order param­

eter configurations for a vortex-antivortex pair, related by a global symmetry 

operation. The order parameter is represented by an undirected line segment. 

In Fig.2A, the directors all lie within the plane of the page. In Fig.2B, they 

rotate outward, and only their projection in the plane of the page is shown. 

3) Domain wall of dipole energy. The spin axis cl is represented by the undirected 

line segments, while the thick arrows represent f the region in which land d 
are not parallel has a width of order en. 

4) Parallel transport of orthogonal spin wave modes. The effect of parallel trans­

port about an HQV core on the two degenerate spin-wave modes is shown. d 
is indicated by the undirected line segments. The amplitude of oscillation of 

the spin density S is shown by the thick arrows. The thin arrows show the 

corresponding motion of d. In mode 1 (upper figure) the spin density ampli­

tude points out of the page and remains the same on transport around the core. 

For mode 2, (lower figure) the spin density amplitude is within the page and 

experiences a sign change. 
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FIGURE 1 
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Chapter 4 

Dynamical Simulation of Non-Abelian Cosmic Strings 

A generic feature of many spontaneously broken gauge theories is the existence 

of topological solitons, including strings or :flux tubes. Many grand unified models 

would predict the formation of such strings, known as cosmic strings, during a cosmo­

logical phase transition.[11 The many potential cosmological effects of cosmic strings[21 

motivate one to wish to understand the subsequent evolution of such strings. For ex­

ample, since the gravitational effects of cosmic strings have occasionally been invoked 

as a possible source of density perturbations leading to galaxy or cluster formation, 

one is interested in knowing whether the strings are likely to decay very rapidly or 

persist long enough to seed density perturbations. One is naturally also interested in 

the probability of observing strings in the present-day universe. On the other hand, 

one might rule out certain phenomenological models if they seem to predict an abun­

dance of strings inconsistent with present observations, much as the non-observation 

of monopoles has created difficulties for some models which predict a great abundance 

of monopoles. 

Some theoretical and numerical studies[
3
J have been devoted to the evolution of 

networks of Abelian strings such as those corresponding to the Nielsen-Oleson [41 vortex 

solution of the Abelian Higgs model. It is generally believed that networks of this type 

are likely to form many closed loops which decay into smaller loops by the mechanism 

of intercommutation, resulting in a "scaling" distribution of loop sizes such that the 

number of loops within a cosmological horizon volume of the universe is roughly 

constant over time. Vachaspati and Vilenkin [sJ have performed a numerical simulation 

of a network of Z3 strings, which have the novel feature that three strings may intersect 

in a vertex. Their results suggested that such strings tend to form an infinite network 

of vertices connected by string segments. The annihilation of these vertices leads to a 

similar scaling behavior, with the number of vertices and string segments per horizon 

volume being roughly constant. To my knowledge, however, very little is known about 
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more complicated models in which the strings carry non-commutative magnetic fluxes 

and there is more than one type of string. Such strings are known to exhibit a number 

of exotic types of interactions 161
• Particularly significant is the fact that when two 

non-Abelian strings cross each other, they cannot generally intercommute, nor can 

they pass through one another without forming new vertices and becoming joined by 

a new segment of string. Linked loops of string cannot usually become unlinked, and 

vice versa. One might expect that this would inhibit the decay of a cosmic network 

by providing obstruction to the free removal of string segments. 

In this chapter, we describe a numerical simulation of a network of S3 strings. 

As in the Z3 case, the strings form 3-string vertices. In the spirit of reference [5] 

we generate initial conditions from a lattice Monte Carlo simulation and then evolve 

the network according to highly simplified model of string dynamics which we hope 

captures the essential features of the system. All string segments are assumed to be 

straight. The vertices move under the influence of the string tensions acting on them. 

We will see that a simulation of the non-commutative nature of the strings poses 

some rather difficult computational problems. Only the method of the simulation 

is described here; results will be presented elsewhere!11 Section 1 provides a brief 

summary of the properties of non-Abelian strings as they apply to this simulation. 

We demonstrate some of the ambiguities inherent in the description of the state of a 

network of strings, and the necessity of a (gauge fixing) convention to resolve these 

ambiguities. Section 2 describes the particular S3 model which we have chosen to 

simulate. In sections 3 and 4 we describe the gauge fixing convention implemented 

by our program, and our method for making any needed comparisons of string fluxes 

in the simulated network. Section 4 in particular discusses some of the subtleties 

that arise when periodic boundary conditions are used. Section 5 describes how we 

generate an initial condition for our simulation using a lattice Monte Carlo method. 

The transcription of a lattice configuration into a network that is fully specified 

according to the conventions of our simulation is itself a tricky task. In section 6, we 

describe the actual procedure for simulating the time-evolution of the initial network, 

making reference to the conventions described in previous sections. Finally, in section 

7, we present some preliminary results from the simulation, which is still in progress. 
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In this discussion, the strings will be considered as classical objects with well­

defined fluxes (after a gauge has been fixed). We will not consider quantum­

mechanical effects such as Cheshire charge!81 even though the possibility exists that 

Cheshire charge might influence string dynamics. 

1 VORTICES AND STRINGS IN A NON-ABELIAN DISCRETE GAUGE THEORY 

Generically, topological defects of codimension 1 (vortices in two space dimen­

sions, strings in three) occur when a gauge symmetry group G is spontaneously bro­

ken to a subgroup H such that there are non-contractible closed loops in the vacuum 

manifold G / H. This is formally expressed by saying that 7rJ ( G / H) is nontrivial, 

where 7rI stands for the first homotopy group. This does in fact happen when G is 

simply connected and His a discrete group. Here, we review very briefly some of the 

properties of non-Abelian vortices and strings which are important for the current 

simulation. More details may be found in ref. 6. 

The breaking of an underlying G gauge theory to a discrete group H leaves no 

light propagating gauge fields: At low energies in any simply connected region without 

defects, the gauge field A~ is pure gauge. However, when string defects are present, 

the region of true vacuum is not simply connected: it is R = M - {D}, where {D} is 

the union of all defect cores (regions of false vacuum) and M is the spatial manifold 

on which the defects exist . Each string gives rise to a class of noncontractible closed 

paths in M - { D} which encircle the string. The flux enclosed by any closed loop r 
is a group element defined as a path-ordered exponential of the gauge field: 

flux= P exp(f A· di!). 

r 

(1) 

For any r within R this must be an element of H. This is because the Higgs field 

is covariantly constant throughout R and so the transformation that results from 

parallel transport around a loop must leave the Higgs field invariant. 

The flux of a cosmic string is defined by the above exponential along a path 

which winds around the string. In a non-Abelian theory, this definition of the flux 
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is not gauge invariant , and may depend on the point at which the path begins and 

ends. A key observation, however, is that the flux through any loop which does not 

enclose a string is necessarily trivial, and a corollary is that two closed loops which 

share the same beginning and ending point xo, and can be continuously deformed 

into each other, have the same flux. The relevant structure for the description of 

the system of defects is the fundamental group or first homotopy group 7r1 ( M -

{ D}, xo), defined with respect to a basepoint xo. Each string is associated with 

a generator of the fundamental group. Once xo has been (arbitrarily) chosen, the 

fluxes of all closed paths (and of all strings) are specified by a homomorphism from 

7r1 ( M -{ D}, xo) into H . The only remaining gauge freedom is a global one. However, 

there is a considerable amount of ambiguity in what we mean by "the flux" of one 

particular string: an arbitrariness in how exactly the set of generators is chosen for 

the homotopy group. In figure 1, for example, there are two loops, both beginning 

and ending at xo, both enclosing the same string without enclosing any others, which 

are nonetheless representatives of different homotopy classes (and consequently may 

be associated with different fluxes): Another intervening string prevents one path 

from being continuosly deformed to the other. The fluxes associated with the two 

different paths may differ through conjugation by the flux of the other string. In an 

Abelian theory, conjugation is trivial; not so in a non-Abelian one. It follows that 

fluxes cannot meaningfully be compared (say, to determine if they are the same) if 

the paths used to define those fluxes pass on opposite sides of some other string. 

Comparisons must be made using "nearby" paths. 

In the sequel, the establishment of a conventional set of generators for 7r1 ( M -

{D}, xo) and determining their associated H elements is often referred to somewhat 

loosely as "fixing a gauge." As a notational convention, we will usually label the 

representatives of particular homotopy classes with Greek letters, while using Roman 

letters for the associated H elements. 

The dependence of the definition of a string's flux on other strings between it 

and the basepoint, as described above, has important consequences for the behavior 

of a network of non-Abelian strings. One of these is the occurrence of so-called 

"holonomy interactions" or exotic exchange interactions. These are a consequence 
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a' a 

Figure 1: The paths a and a' both enclose the same string and no other strings, 
but they cannot be continuously deformed into each other without crossing another 
string. Thus, they represent different elements of the fundamental group 7r1(M -
{D}, xo), and so the fluxes associated with them may be different. Specifically, the 
homotopy classes of a and a' are related through conjugation by another generator: 
a' ,....., (3a(3- 1. (We follow the usual convention of composing paths from right to left: 
(3a(3- 1 means the path formed by traversing first the reverse of /3, then a, then (3. The 
relation ,....., represents homotopy equivalence.) The associated fluxes are analogously 
related: a nontrivial relation if the fluxes don't commute. 
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of the fact that as strings move through space, the paths which are most convenient 

for describing their fluxes may be required to cross other strings. Strings may thus 

change their flux quantum numbers simply by changing their positions with respect to 

other strings. An example is shown in figure 2, where two strings rotate around each 

other and thus change their fluxes. Since non-Abelian strings with conjugate fluxes 

may be transformed into one another through holonomy interactions or by gauge 

transformations, all strings with fluxes in a given conjugacy class must be degenerate 

with each other in terms of their tensions. Different conjugacy classes of H, however, 

may be associated with different types of strings. 

Another consequence of the non-Abelian interactions is that two strings with 

noncommuting flux cannot intercommute, nor can they pass through each other un­

affected; to do so would violate flux conservation. As illustrated in figure 3, noncom­

muting strings can only pass through each other if a new string segment is formed, 

linking the two strings to each other and carrying a flux which is the commutator of 

the fluxes of the two original strings. We will be especially interested in the conse­

quences of this entanglement process for the evolution of a string network: it might 

impede the collapse of the network. 

2 OUR MODEL: S3 STRINGS 

We consider here a model with unbroken gauge group H = S3, the permutation 

group on three objects. The spectrum of this model will include strings whose fluxes 

are elements of S3. S3 has six elements in all. The identity corresponds to the trivial 

permutation. There are three odd permutations (two-cycles or transpositions) each 

leaving one of the three elements invariant and interchanging the other two. We 

may denote these, for convenience, by: t1 = {(123)- > (132)}, t2 = {(123)- > 

(321)}, t3 = {(123)- > (213)}. In this notation, ti is the two-cycle which leaves 

the i-th element in the same position. The two non-trivial even permutations are 

the three-cycles, or cyclic permutations, which we denote here by s+ = {(123)- > 

(312)} , s_ = { (123)- > (231 )}. In the more conventional cycle notation l
9
J, we have 

t1 = (23), t2 = (13), t3 = (12), s+ = (123), s_ = (132). 
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Figure 2: A holonomy interaction: we show here a planar cross-section of a 
process in which two strings wind around each other. If two strings (or rather their 
intersections with the plane) are initially in the positions shown in (A), and one 
of them winds completely around the other, then the path a shown in (A) can be 
deformed to the dotted path a in (B) without crossing any strings. However, the path 
shown as a' is the same path in space as the old path a, so it makes sense to redefine 
the flux of the string according to this new path, which is actually homotopically 
equivalent to f3af3- 1. Therefore the new flux of one string is conjugated by the 
flux of the other: if a, b, a', and b' are the fluxes associated with a, /3, a' and /3' 
respectively, then a' = bab-1• In this figure , the flux of the other string is also 
affected: /3' rv a'/3(a')-1 and hence b' = a'b(a')-1 = (ba)b(ba)- 1. Note that the 
product of the fluxes is conserved: b' a' = ba. This is to be expected as /3a can be 
deformed to a loop that completely encircles the pair and need not be affected by 
their relative motion. 
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Figure 3: Attempt to pass two strings through each other. In (A) the flux of 
one string may be defined by either of the paths a or /, and that of the other string 
by /3. Let the fluxes associated with a, /3 and I be a, b, and c respectively. In this 
case, c = bab-1. In general, c # a. Now, if we attempt to pass the strings through 
each other, no strings need cross the paths a and /, so the associated fluxes will not 
change. But if the strings were to pass through each other freely, as in (B), a and 
I would be continuosly deformable into each other. This is impossible if they have 
different fluxes . In order to conserve flux, the string must branch somewhere and 
be connected to the other by a new string whose flux as defined by path 8 in (C) is 
ca-l = bab-1a-1. 
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The 2-cycles form one of the two non-trivial conjugacy classes, and the 3-cycles 

form another. Thus our model supports two types of strings, which we shall refer to as 

t-strings and s-strings, respectively. The three-cycles generate a Z3 subgroup, so that 

any system containing only s-strings will behave identically to the Z3 string system 

previously studied in [ 5]. There can be junctions where threes-strings join. Another 

type of junction is one where two 2-cycle (or t) strings merge to form a 3-cycle ( s) 

string. Since each two-cycle is equal to its inverse, oppositely oriented t-strings are 

topologically equivalent. s-strings, on the other hand, possess a natural orientation: 

The flux through a path encircling it with one orientation is s+, while it is s- for 

the opposite orientation. In subsequent figures , s-strings will often be denoted by 

oriented lines, with the string carrying flux s+ in the direction of the arrow, while 

t-strings have no arrow. Figure 4 shows the two types of junctions in our model. 

The system we propose to simulate consists of s and t strings joined together at 

two types of vertices (sss and stt) which we shall take to be two types of monopoles. 

The tensions of all t-strings are the same, as are the tensions of all s-strings. The ratio 

of these two tensions will presumably depend on the details of the Higgs mechanism 

which produces the strings, and we will take it to be an adjustable parameter of the 

model. 

In simulating the dynamical evolution, the strings will be approximated as straight 

segments between junctions. This amounts to averaging over any oscillations of the 

strings. We will also assume, following ref. 5, that the string junctions undergo 

damped motion under the influence of string tensions. This assumption may be a 

crude approximation to the dynamics of any real network. It becomes realistic if the 

monopoles are imagined as carrying some unconfined magnetic flux. For example, 

the actual symmetry-breaking pattern may be locally G- > S3 x (SU(3) x SU(2) x 

U(l)EM ), with some discrete factor divided out so that the monopoles at string 

junctions may carry electromagnetic U(l) charge. Their magnetic charges should then 

result in radiation damping. Such a pattern has been demonstrated in a model where 

topological Zn strings become attached to monopoles which also carry other charges!
101 

It is possible in principle for S3 strings to join at monopoles, although it may require 

a more complicated model. For example, consider the monopoles that form when 
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(A) 

(B) 

Figure 4: String junctions in the S3 model. (A) Two possible sss junctions: 
three strings with the same flux, s+ or s_, emanate from the node. (Or two s+ 
strings merge into a single s_, etc.) (B) One of the class of stt junctions: Two t­
strings merge into an s-string. Fluxes are defined with respect to xo by the paths 
shown. Here, as in many subsequent figures , an s-string is drawn as an oriented line. 
The string carries flux s+ in the direction of the arrow: i.e. , a counterclockwise path 
around the arrow encloses flux s+. 
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an SU(5) group is broken in the familiar way to SU(3) x SU(2) x U(l)/Z6. This 

transition is known to yield stable monopoles with SU(3), SU(2), and U(l) flux~111121 

We could imagine a second symmetry-breaking stage in which the SU(3)/Z3 factor is 

broken down to 53 in such a way that the resulting srings also carry nontrivial flux in 

the Z2 center of SU(2). Whenever three such strings join, the resulting net Z2 flux 

can unwind through a monopole, which has both SU(2) and U(l) flux. 

The masses and unconfined charges of the two types of monopoles may be model­

dependent parameters relevant to the network's evolution. 

3 GAUGE FIXING CONVENTIONS 

The present simulation requires that we choose some convention by which to 

define the fluxes 'of all strings in the network, and keep track of the evolution of those 

fluxes as the strings and nodes move. 

In our algorithm, the strings and nodes exist inside a rectangular volume with 

opposite sides identified: a 3-torus. The subtleties associated with the periodic bound­

ary conditions will be discussed later: for now we simply consider a network inside a 

rectangular volume with boundaries. We choose a cubic volume with one corner at 

(0, 0, 0) and the far corner at (L, L, L ). We choose a basepoint at the center of our 

simulation volume, (L/2, L/2, L/2). Let each node be associated with a straight line 

segment (a "tail") along the direction B N from the basepoint to the node's location. 

Then let the flux of each outgoing string be defined with respect to a path which runs 

outward along this tail to a point which is taken to be vanishingly close to the the 

node. The path then encircles the string in a counterclockwise direction and returns 

to the basepoint along the node's tail. This is illustrated in figure 5. This will be 

our convention for defining the fluxes of the strings which join at a given junction. 

As illustrated in figure 6, flux conservation requires that the product of all three 

fluxes emanating from a node be trivial when the fluxes are multiplied in a clockwise 

order with respect to the direction BN. i.e., if the strings in clockwise order are a, b, 

and c, then 

cba = e. (2) 



a 

63 

b 

a ~/ 

-----.8 I 
I 
i 
I 

c 

Figure 5: Conventions for measuring the fluxes of the three strings emanating 
from a node. Each string's flux is defined as the flux through a path which leaves 
the basepoint xo along a straight line toward the node, then encircles the string in a 
counterclockwise direction as seen from the far end of the string and returns to the 
basepoint . 
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In our algorithm, a record is maintained of the geometry of each node: the strings 

carry labels indicating the appropriate clockwise orientation. 

It is possible for a pair of nodes to be connected by more than one string, as 

shown in figure 7. In this case, the two (or more) segments are treated as collinear, 

and the order is therefore ill-defined. In such a case we allow the order to be arbitrary, 

but the fluxes of the two strings must be defined in such a way consistent with that 

order, such that the product of all three fluxes is as usual trivial. The ordering must 

also be compatible between the two nodes which the segments join, so that the flux 

of a given segment is consistent at its two ends. (The consistency of segments from 

one end to another will be discussed below.) 

The collection of standard paths defined above represents a set of generators for 

7r1(M - {D} ). The flux state of a network of strings is fully specified when we know 

the fluxes enclosed by all of these standard paths. The condition (2) supplies one set 

of relations among these generators. For each string segment, there is also a relation 

involving the fluxes defined at its two endpoints, as discussed below. 

"Sliding" flux from the endpoint 

By the conventions above, the flux of each string is defined at its two endpoints. 

But for the purposes of this simulation it will be necessary to make comparisons 

of the fluxes of strings at arbitrary points along their lengths. For example, if two 

strings cross each other, it will be necessary to determine whether or not their fluxes 

commute. A meaningful comparison of the fluxes of nearby string segments can 

be obtained only if the paths used to define those two fluxes remain close to each 

other everywhere except in the immediate vicinity of the strings to be compared. In 

particular, the "tails" of the paths must not pass on opposite sides of any string, 

because such paths would give different flux measurements for the same string. It 

is possible to define the flux of a string at an arbitrary point along its length by 

sliding the standard path to the one which encircles the string at the point we wish 

to measure, as illustrated in figure 8. If another string with flux b pierces the triangle 

which is swept out by the sliding path, then the flux at the new position is conjugated 

by b. If multiple strings occur, then the new flux a' is given by f af-1 , where f, the 
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Figure 6: The composition 1/3a of all three paths can be continuously deformed 
to a point. Therefore cba, the product of all three fluxes taken in a clockwise direction 
as seen from above the node, must be trivial. 
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Figure 7: Doubly linked nodes. 
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total flux inside the triangle, is defined as the product of the fluxes of all enclosed 

strings, taken in order of increasing angle from the initial ray BP. The flux of each 

other string at the point where it pierces the triangle must in turn be defined by a 

similar sliding procedure from one of its ends. This procedure, applied recursively, 

can thus define the flux of any string at an arbitrary point P along its length, as 

measured by a path which follows a straight line from xo towards P and encircles 

the string near P. If one slides the path all the way to the far end of the string, 

the resulting value of the flux must be consistent with the value measured by the 

standard path at the other end. This specifies an additional set of relations among 

the generators of 7r1 ( M - { D}) and furnishes one way of testing for errors in the 

simulation. 

Holonomy Interactions 

As the network evolves dynamically and nodes change their position, it is possible 

for the fluxes defined by these conventions to change by several different mechanisms. 

First, as a node moves, its tail may be dragged across another string segment. Con­

versely, a string segment may be dragged across the node's tail by the motion of other 

nodes. In both cases, the fluxes of all strings at the node must be conjugated by the 

flux which is crossed, as shown in figure 9. In addition, the geometry of the strings 

at a given junction may change, resulting in holonomy interactions among the three 

strings joined at that node. Such a process is shown in figure 10: the motion of string 

a causes its standard flux to change, and also changes the clockwise ordering of the 

strings a, b,and c. 

4 PERIODIC BOUNDARY CONDITIONS 

In order to maintain isotropy everywhere in the simulation volume, we use periodic 

boundary conditions. The cube face x = 0 is identified with x = L, and similarly 

for y and z. This identification has two consequences. The first is that there are 

three additional classes of noncontractible closed loops starting and ending at the 

basepoint: namely those which wrap around one of the boundaries before returning. 

It is possible for these loops to be associated with nontrivial flux, and a complete 
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Figure 8: When the flux a of a string has been defined according to a path which 
encircles it near one end, the flux a' of that string at another point along its length can 
be defined by "sliding" the standard path a to a' as shown. If no other strings pierce 
the triangle which is swept out, then this merely represents a continuous deformation 
of a, and thus a' = a (fig. SA). However, if the triangle is pierced by string with flux 
b as measured by path /3, then the flux is conjugated by b: a' = bab-1 (SB). More 
generally, if the triangle (or the oriented path </>shown in SC) encloses flux f, then 
a is conjugated by the total flux f, i.e., a' = f af- 1 . The total flux is given by the 
product of individual string fluxes, taken in order of increasing angle from the initial 
tail. (This can be seen by deforming a product of loops to a single loop enclosing all 
strings.) 
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Figure 9: Crossing of a node's tail by a string. This can happen either when 
the moving node drags its tail across the string (A), or when the string is dragged 
across the tail due to the motion of another node (B). In both cases, the fluxes of all 
strings attached to the node whose tail is crossed must be conjugated by the flux of 
the crossing string. 
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Figure 10: Example of a holonomy interaction between strings attached to the 
same node. When the string carrying flux a is lifted over the other string carrying 
flux b, its flux must be redefined as bab-1 , and the conventional clockwise order of 
the three strings changes, with a and b exchanging places. The flux conservation 
condition is maintained: if cba = e originally, then also ca'b = e. 
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specification of the state of our network requires that we choose representatives of 

these classes and maintain a record of the associated fluxes. The second consequence 

is that nodes may move freely across the cube boundaries, and string segments may 

wrap around from one side of the cube to another. 

As representatives of the three "wraparound" classes, we choose straight-line 

paths which we will refer to as fx,fy, and fz. fx, for instance, leaves the base­

point along the +x direction, wraps around the boundary from x = L to x = 0, and 

then returns to the basepoint from the -x side. 

A record of the fluxes Cx, Cy, and Cz associated with these three paths, combined 

with the record of all string fluxes as defined earlier, specifies the state of the string 

network on T3. In order to complete the description, however, there is one ambigutity 

to be resolved. The fluxes of strings, as described above are measured along paths 

which follow a "tail" from the basepoint to the point where the flux is to be measured, 

then encircle the flux and return to the basepoint. On T3, however, a segment from 

xo to an arbitrary point x is not unique, as shown in figure 11. The two points may 

be connected by a line segment which does not wrap around, or by one which does. 

(In fact, there is an infinite set of possibilities.) We may choose to define all tails in 

such a way that none of them cross the boundary, but it is still necessary to make flux 

comparisons across the boundary, and it is necessary to redefine fluxes when a node 

moves across the boundary. In short, is necessary to relate the alternative definition 

of a string's flux which are related to one another by wrapping. A prescription for 

doing so is shown in figure 12: The transformation from one description to the other 

requires us to know the flux associated with one of the ri. 

Much as holonomy interactions may change the measured fluxes of strings, similar 

effects compel a redefinition of ri when a string segment is dragged across the standard 

path. As illustrated in figure 13, the new flux value Ci will be a product of the old 

value Ci with the flux of the string which crosses it. (The order in which the two 

are multiplied depends on the handedness of the crossing and on which side of the 

basepoint it occurs.) 

The existence of the three closed paths which wrap around the boundary, and of 
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Figure 11: Under periodic boundary conditions, there is more than one straight 
line segment from the basepoint to a given node. In (A), we show one segment which 
extends to the left of xo and ends at a node (solid line), and another which extends to 
the right, wraps around the cube boundary, and ends at the same node (dotted line). 
By convention, we will choose to describe nodes using the shortest possible segment 
as a "tail" (shown here as the solid line). If the node moves to the left as shown by 
the arrow, and wraps around the cube boundary to reach the final state shown in 
(B), then the shortest segment will no longer be the one extending to the left from 
xo, but instead it will be the one extending to the right. The new 'shortest segment 
is shown as the solid line in (B). Because of this change in the choice of "tail," it is 
necessary to know how to transform a flux from one description to the other. 
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Figure 12: Transformation from one description of a flux to another at the 
boundary. Here a string is shown intersecting the plane of the page precisely where it 
intersects the boundary of the cubic simulation volume (dotted line). Under periodic 
boundary conditions, the two points labeled xo are identified. The flux of the string 
may be described in terms of a path whose tail extends to the right of xo (a) or to 
the left (a'). If no other strings are present , then a is homotopically equivalent to 
r-1a 1f. In the more general situation shown in (B), a rv (<f>LI'<f>R)-1a 1(</>LI'</>R), and 
so the two descriptions of the flux are related through conjugation by JLG f R , where 
C is the flux associated with the path r and f L and f R are the overall fluxes enclosed 
by </> L and </> R, respectively. The latter can be defined in terms of paths lying entirely 
on one side or the other of the boundary. 



74 

r 

----------,:,.. 
Xo 

@ r' 
------~~·,------------

X o 

(A) 

r 

r' 

(B) 

Figure 13: Interaction between a string and one of the large loops of the 3-torus. 
As a string with flux a as defined by the path a crosses to the right of xo as shown in 
(A) , the path ar, where r is a straight-line path which wraps around the 3-torus, can 
be continuously deformed to the new straight-line path r'. Thus the flux C associated 
with r must be multiplied from the right by the string's flux, C' = Ca. If the string 
crosses to the left as in (B), ar is deformed to r' and so the multiplication is from 
the other side: C' = aC. 
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holonomy interactions between the fluxes of these paths and those of strings, make 

this system a higher-dimensional analogue of the system of vortices on a Riemann 

surface which was previously studied by Lee!131 

5 INITIAL CONDITIONS 

In order to perform our dynamical simulation, we must start with a randomly 

generated initial configuration. The generation of initial conditions should to some 

extent be a model of the symmetry-breaking transition which produces the strings. 

Following the lead of Vachaspati and Vilenkin's Z3 simulation, we use a lattice to 

generate an initial string network. The lattice spacing is to be identified in our minds 

with the correlation length of the Higgs field which acquires a vacuum expectation 

value in order to break a continuous gauge group to a discrete subgroup H. The Higgs 

VEV is thus uncorrelated over distances longer than a lattice spacing, and at each site 

of the lattice, it takes a random value within the vacuum manifold. With a suitable 

interpolation along the length of each link, any plaquette of the lattice is mapped to 

some closed loop on the vacuum manifold. If this path is one of the non-contractable 

loops, then a string must pierce this plaquette. Each link of the plaquette is associated 

with an element of G which relates the Higgs values at the two ends of the link. The 

product of these elements must lie within the unbroken group H, and can be taken as 

the flux of the string which pierces that plaquette. Strings which pierce the faces of 

a given unit cube must be joined together inside the cube in some appropriate way. 

If only two faces of the cube are non-trivial, then we interpret this as a single string 

segment passing through the cube. If three faces are non-trivial, and our model is one 

in which three-string vertices occur, then we conclude that there is a single vertex 

inside the cube. Cubes pierced by more than three ends require a more complicated 

arrangement of nodes and strings inside the cube, and there may be more than one 

self-consistent way to join the string ends. In the following subsections, we will first 

describe methods for simulating on a lattice the string-forming phase transition, and 

then how to translate the results into a string network which can serve as the initial 

condition for our dynamical evolution algorithm. 
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Discrete Higgs Simulation 

Generating random points on an arbitrary continuous vacuum manifold and then 

interpolating suitably between them can be a difficult proposition. A useful technique 

is to approximate the broken group G by a discrete group g C G which contains the 

unbroken group Has a subgroup!
14

'
151 Instead of a continuum of values, the Higgs field 

takes values in a discrete coset space g / H. Then with each link of the lattice there is 

associated an element of g which transforms the Higgs field value at one end of the 

link to the value at the other. The element relating one coset to another is not unique; 

the possible elements themselves form a coset. The convention in this discrete Higgs 

method is to choose the "smallest" possible element for each link variable. "Small" 

is defined with reference to a metric on the continuous group G: if all elements are 

written in the form g = exp( iaT) where T is a normalized element of the Lie algebra 

of G, then the smallest element is the one with the smallest number a. With this 

prescription the Higgs field is effectively interpolated in the smoothest possible way 

between lattice points. A suitable gauge transformation can be performed so that all 

Higgs field values lie in the same coset, and all link variables lie within H, allowing all 

subsequent computations to be performed in terms of only H link variables. This was 

the technique used in previous studies of Z3 networks~151 
and we will use it here, taking 

g to be one of the discrete subgroups of SU(3). For example, we may use a 24-element 

"dihedral-like" subgroup of SU(3) known as ,6.(24)!161 This group is isomorphic to 

S4, the permutation group on four elements, and is the smallest discrete subgroup of 

SU(3) which contains S3 as a proper subgroup. 

An easier way to generate a random network of strings is to use an infinite tem­

perature lattice gauge theory: simply assign a random element of the unbroken group 

H to each link of the lattice, and evaluate the product of links on the plaquette to 

find the flux through the plaquette. One thus dispenses with the simulated Higgs 

field. Either the discrete-Higgs or the lattice-gauge-theory method results in the as­

signment of S3 elements to each link of the lattice, and one must only evaluate a 

plaquette to determine whether it is pierced by a string. These two methods give rise 

to string distributions which may differ in detail but are qualitatively similar. Expe­

rience with the Z3 model (including my own simulations) shows that the subsequent 
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evolution of the network is not sensitive to the details of the initial conditions: Z3 

networks generated by the discrete-Higgs and lattice gauge methods begin to behave 

very similarly after just a few steps of dynamical evolution. We can test whether this 

is also the case in our S3 model by comparing the evolution of networks generated by 

different methods. 

Initial location of nodes 

The lattice Monte Carlo algorithm, whether it is of the discrete-Higgs or lattice 

gauge type, generates a set of variables defined on a lattice. From a lattice config­

uration, one can easily determine which plaquettes are pierced by strings, and it is 

also easy to determine the conjugacy class of the flux through a particular plaquette. 

This, however, does not determine the precise location of each string inside the unit 

cube, or to which other strings a given string is connected. Knowing lattice variables, 

we know through which cube faces strings emerge, but what happens to these strings 

inside the cube is completely unspecified. Therefore, the next stage of our Monte 

Carlo algorithm must specify the actual locations of nodes within each lattice cube, 

and determine which nodes are connected to each other by straight string segments. 

Having done this, we will finally be able to define all fluxes according to standard 

paths with respect to a single basepoint. 

In generating a configuration of nodes and strings within a particular unit cube, 

we use the following criteria: 1) The configuration within a cube should not be more 

complicated than necessary. 2) Every string which pierces a cube face must end at a 

node inside that cube. The reasons for this stipulation should become apparent later; 

one is that it ensures that the flux of the string will be well-defined at some point 

inside the cube (since our conventions define string fluxes near their ends). 3) Nodes 

inside a cube are placed approximately (not necessarily exactly) at the center of the 

cube. This is purely for the sake of simplicity. 4) Nodes inside the same cube should 

be separated from one another by some non-zero distance. In order to define the 

conventional clockwise order of strings at each node, it is necessary that all strings 

have nonzero length. It is for this reason that not all nodes are placed exactly at the 

center of the cube. 
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Anywhere from two to six string ends, or none at all, may emerge from a given 

unit cube. A cube with three ends emerging is simple: we simply place a single vertex 

at the center of the cube. If exactly two plaquettes of a cube are nontrivial, we could 

interpret this as a single string entering the cube through one face and exiting through 

the other. In compliance with criterion (2) above, our algorithm interrupts such a 

segment with a doubly linked pair of nodes. This ensures, as previously mentioned, 

that the flux of the string will be well-defined at a point inside the cube (a necessity 

when we perform the gauge fixing in order to define all fluxes with respect to the 

same basepoint .) It also allows for the possibility that the string bends inside the 

cube. A cube with string ends emerging from two adjacent faces implies that the 

string bends as it passes through the cube. Since our simulation only allows for 

straight string segments between nodes, a bent string can only be implemented by 

introducing a doubly linked pair of nodes. In the later dynamical evolution of the 

network, these nodes may annihilate, allowing the string to straighten. In the process 

of straightening, the string may be obstructed by other non-commuting strings, and so 

it is important that the straightening not be allowed to happen until all string fluxes 

are suitably well-defined to allow the necessary comparison. In order to separate the 

two nodes by a finite distance (see point ( 4) above), each one is displaced slightly 

away from the center and toward the cube face through which its string emerges. 

Examples are shown in figure 14. 

Cubes with four or more emerging strings are more complicated. In general, 

there may be more than one consistent way of connecting the ends inside the cube. 

In our algorithm, we attempt to choose more or less at random from among the set of 

possibilities. A helpful observation is the following: If two plaquettes are nontrivial, 

but the product of links along a path which circumnavigates both is trivial, then it is 

possible to connect the two associated string ends through a string segment which has 

no linking with any of the other strings in the cube. (See figure 15.) Let us call this 

a "free segment ." Our procedures for dealing with cubes of four, five ,or six emerging 

strings consist, roughly speaking, of searching in random order for a pair of faces 

allowing such a free segment. If one is found , then it is formed in the same manner as 

for a cube with two ends, i.e., by inserting a doubly linked pair of nodes. In the case 
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Figure 14: When strings pass through exactly two ends of a lattice cube, this 
represents a segment, either straight or bent, passing through the cube. Our Monte 
Carlo algorithm represents this as a doubly linked pair of nodes . 
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of four or five ends, the connection of the remaining ends is determined as soon as one 

free segment has been established. In the 4-end case , the two remaining ends join in 

an another free segment; in case of five, the three remaining ends meet at a node. In 

the case of a cube with six outgoing strings, if a free segment is produced from two of 

the ends, then a similar search for a consistent configuration can be performed on the 

remaining four ends. For a cube with five outgoing ends, another possibility, aside 

from one free segment and one node, is a 3-node configuration of the type shown in 

figure 16, in which one of the nodes is attached to just one outgoing string, and the 

others are each attached to two outgoing strings. 

The procedure of our Monte Carlo algorithm for establishing the nodes inside a 

cube with five ends is to search through a list of possible patterns involving either one 

free segment or none, starting at a random place in the list and checking them for 

consistency by evaluating appropriate products of links around pairs of cube faces. 

When a pattern is found which is consistent, the nodes are established in that pattern. 

For a 6-string cube with some t-strings, the procedure is as follows: Pick, at 

random, two adjacent faces of the cube, and determine whether or not those two 

faces can be connected by a free segment. If so, connect them; otherwise, they are 

assumed to join at a node which has an additional connection to another node inside 

the same cube. Then pick randomly a pair of adjacent faces from among the remaining 

four and apply a similar procedure. The possible results of this procedure are that 

zero, one, or three pairs of adjacent faces are joined by free segments. If only one pair 

is connected by a free segment, then the other four strings are connected in pairs to 

nodes which are then connected to each other (figure 17B). If no free segments are 

found, then there are three nodes, each attached to two of the outgoing segments, 

and we connect these by additional string segments to a fourth node located at the 

center of the cube (figure 17C). 

In order to ensure a nonvanishing distance between nodes, we displace each node 

by a small distance (such as .05 of the lattice spacing) from the cube center in the 

direction of each external string attached to it. For example, if a node is connected to 

strings which exit the cube in the x and z directions, the node is displaced in the x + y 
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Figure 15: (A) If a string segment (or a string segment interrupted by a dou­
bly linked pair of nodes) passes into a cube through one face and out through an 
adjacent one, with no linkage to any other strings in the cube as shown here, then 
the highlighted path along the edges of both faces can be continuously shrunk to a 
point without crossing any strings; hence the corresponding product of links must 
be trivial. Conversely, if the product is not trivial , then the connection of those two 
string ends by a free segment is not consistent. An analogous criterion applies in (B). 
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Figure 16: Example of a cube with five outgoing strings but no free segments. 
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Figure 17: Configurations for a cube with all six faces pierced by strings: (A) 
Three free segments. (B) One free segment. (C) No free segments. 
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direction. Finally, a small random perturbation is added to the position of the node. 

This last step is purely a precaution against problems which could arise in defining 

the fluxes if many nodes were precisely aligned along some ray from the basepoint. 

It is hoped that the above procedure generates an adequately representative initial 

configuration of strings and nodes. Experience with the Z3 model indicates that the 

precise details of the initial conditions are not crucial. 

Gauge-fixing of the initial network 

When the location of all nodes has been established, along with their connections 

to each other, the gauge fixing which establishes definitions of all of the fluxes must 

still be performed. The problem is that initially, fluxes are defined only on paths 

consisting of lattice links. The establishment of canonical flux definitions according 

to the prescription of the previous section requires that lattice paths be deformed into 

paths involving only straight-line tails from the basepoint and short loops encircling 

the strings near their ends. We proceed in two steps. First, we perform a gauge fixing 

within each individual unit cube, choosing one corner of the cube as a local basepoint 

and defining a tail from this basepoint to each of the nodes within that cube. Then 

these standard paths are attached to an external tail to form a path beginning and 

ending at the global basepoint. Initially, this external tail consists of lattice links, 

but it can in turn be deformed to a straight line path. 

The first step, local gauge-fixing on a lattice cube, is illustrated in figure 18. 

Each string end emerging from a cube is treated individually. We first compute, by 

multiplying link variables, the flux through a lattice path which encircles the string 

in question. If the string passes through one of the three cube faces which include 

the corner we have chosen as local basepoint, then this path is simply a plaquette; 

otherwise the path runs along an edge to the face which is pierced by string f, 
then around that face and back along the same edge, as shown in figure 18A. By 

construction, only one string may emerge through any given face. Therefore, the 

lattice path can be shrunk to the one shown in figure 18B without crossing any other 

strings, and thus this path must have the same flux. The flux is now defined along 

a path consisting of a tail and a small loop enclosing only the string, near the point 
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where it pierces the cube face . We then wish to straighten the tail as in figure 18C, 

and finally slide the path so that it encircles the string near its end (figure 18D) as do 

the standard paths of figure 5. In some cases these last two steps can occur without 

any other string segments being crossed, and so the flux as defined in figure 18D is 

the same as that of the original lattice path in 18A. In other cases, however, the tail 

may cross another string as it is being deformed (figure 19). Then the flux of the 

first string must be conjugated by the flux of the other. Hence, the flux of the first 

string cannot be defined until that of the other string has already been defined. When 

computing the fluxes of the strings emerging from a given cube, we first deal with 

those ends which do not depend on other strings, and then compute others. As long 

as every string passing through a cube ends at a node inside the cube, it will not be 

necessary at this stage to refer to any nodes outside of the cube. 

In order to complete the definition of flux, we attach the path from the cube 

corner to the node to a tail which runs from the global base point to the cube corner. 

This tail is initially defined as lattice path of the type shown in figure 20, consisting 

of three straight segments along each of which only one coordinate changes. If the 

product of links along this tail is t, and the "local" flux of a path within the cube 

starting and ending at the corner is a, then the new flux of the string is r 1at. The 

tail is then deformed to a single straight line by several steps, as shown. At each 

stage of the straightening, other strings may be crossed within other cubes. The flux 

measurement is conjugated by the appropriate fluxes. Finally, we arrive at a flux 

defined along a path which proceeds along a straight line to the corner of the unit 

cube in question and then from there to a node, where it encircles string a. As a 

final step, we straighten this path to a single line segment (figure 21), obtaining a 

definition of the string's flux according to the conventions of section 2. Since this 

definition depends on the values of string fluxes in other cubes, the unit cubes of our 

lattice must be handled carefully in order. The flux definition procedure must be 

applied first to those cubes closest to the basepoint, and then, layer by layer, to the 

cubes farther away. 

After the fluxes of all strings emerging from the cube have been defined, those 

which link one node to another inside the same cube may be fixed by means of the flux 
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Figure 18: "Local" gauge-fixing on a unit cube of the lattice. The flux of a 
string piercing the cube face is defined first along a path consisting of lattice links. 
The path is then deformed to a path which runs along a straight tail to the node 
inside the cube, and encircles the string near its end. If this deformation can be done 
without crossing any other strings, then the flux defined by the final path shown in 
18D is the same as that defined by the lattice path in 18A. 
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Figure 19: Example of an obstruction to the last stage of the deformation shown 
in figure 18: A string has flux fas defined by the path in 19A (which corresponds to 
18C), but in the final stage of deformation, the tail crosses another string whose 'flux 

is g. The flux f must be conjugated: in this case f' = g-1 f g. 
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Figure 20: Defining a tail from the basepoint to the corner of a lattice cube. 
Initially, the tail is defined as a product of lattice links. This tail is then deformed to 
a single straight segment. If other strings are crossed during this deformation, then 
the flux is adjusted appropriately. This procedure requires that the fluxes of strings 
in intervening cubes have been defined already. 
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Figure 21: When the procedure of figure 20 has been applied, the tail from xo to 
a given node consists of one straight segment to the corner of a unit cube, and another 
to the node itself. The final stage is to remove the last kink, straightening this tail 
to the one shown here as a dotted line. Then all fluxes of strings joining at the node 
are well-defined according to the conventions used in the dynamical simulation. 
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conservation condition: the product of all strings joining at a node (taken in clockwise 

order as defined in the previous section) must be the identity. With all string fluxes 

thus defined, and the fluxes of the wrap-around paths ri computed by multiplying 

lattice links, we then have a fully specified initial condition for the evolution of the 

network. 

6 DYNAMICAL EVOLUTION 

After the establishment of initial conditions, we may proceed with the dynamical 

evolution of the network. The system we are modelling, as in ref. 5, is one of 

monopoles (vertices) connected by cosmic strings, which we are modelling as straight 

line segments. The monopoles , as stated earlier, are assumed to undergo damped 

motion under the influence of string tensions. Our simulation proceeds as follows: 

During each time step, each node is moved by a displacement proportional to the 

vector sum of all tensions acting on it. This type of evolution corresponds to damped 

motion: Force oc Velocity. The constant of proportionality is a parameter which may 

be absorbed into the size of the time step. However, the ratio of damping constants 

for the two types of nodes may be a separately adjustable parameter. The ratio 

of tensions of the two different types of strings ( s- and t-type) is also separately 

adjustable. The nodes are moved one at a time during each time step. During the 

motion of a given node, all effects of this motion on the flux definitions throughout 

the space are monitored. (For example, the necessary adjustments are made if one of 

the moving node's strings crosses the tail of another.) 

In addition to this simple motion of the node, the following other types of events 

may occur. 

i) Intercommutation. If in the process of moving a node from its initial to final 

position, one of its string segments intersects some other segment, then the fluxes of 

those two segments are compared at the point where the crossing occurs. If these 

two fluxes commute, then the the two segments may either pass through each other 

unaltered, or intercommute. The probabilities of these two outcomes may be taken 

as an adjustable parameter of the simulation. It is widely believed that intercommu-
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tation is generically the more common outcome whenever two cosmic strings cross. 

Thus it seems most natural to let the probability of intercommutation be 1, or close 

to 1. Intercommutation may occur in two possible situations: either both strings are 

3-cycle strings, or both are 2-cycles. In the latter case, the fluxes of the two strings 

must in fact be equal. In an intercommutation, the string ends are rearranged in 

such a way as to conserve flux. In the case of two s-strings, there is always only one 

way to rearrange the ends, as shown in figure 22a. A string end carrying flux s+ 

to the point of intersection may not be joined to one carrying the inverse flux s_. 

When two t-strings intercommute, however, there are two possible rearrangements 

of the ends, owing to the fact that a 2-cycle is equal to its own inverse and 2-cycle 

or t-strings consequently have no preferred orientation* (fig. 22b.) In the absence 

of a reason to prefer one of these rearrangements over the other, the choice must 

be made randomly. After intercommutation, the newly joined segments straighten 

immediately. Of course, all necessary adjustments are made if they should cross any 

tails during the process of straightening. It may also happen that as the rejoined 

segments straighten, they intersect other segments, which may lead to further inter­

commutations. Segments straighten as much as they are able to before encountering 

obstructions. 

ii) Non-commutative intersection (or linking). If two non-commuting strings in­

tersect, then it is assumed that they form a new pair of nodes and thus become linked 

by a new segment, as shown in figure 23. The flux of the intervening string segment 

is uniquely determined by the requirement of flux conservation. (The intervening flux 

must always be a 3-cycle, as the commutator subgroup of S3 is Z3.) 

The actual implementation of this linking process in the simulation is slightly 

tricky. Defining the flux measurements of the two new nodes requires a reference to 

previously existing nodes. But linking events occur when one node is moving, dragging 

* Strictly speaking, we can only say that there is no topological reason for a t-string to have a 
preferred orientation. It is possible that the field equations could have two distinct solutions, 
corresponding to differently oriented strings, which are topologically equivalent but can be 
deformed into one another only by surmounting a finite energy barrier. A situation of this 
sort occurs in the global vortices of nematic liquid crystals. This was pointed out to me by J. 
Preskill. 
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Figure 22A: When two three-cycle or s-strings intercommute, there is a unique 
rearrangement which is compatible with the orientations of the strings. 
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Figure 22B: Since t-strings (2-cycle strings) have no orientation, an intercom­
mutation can result in either of two possible rejoinings of the ends. 
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an attached string segment to cross another. One must be careful that this motion not 

cause holonomy-type interactions with the newly created nodes before the new nodes 

are properly specified in terms of their associated fluxes. Our strategy is to create and 

fully specify the new nodes first, before the previously existing node is moved at all. 

This requires that the linking of strings actually be accomplished before the existing 

node has moved. A prescription for doing this is shown in figure 24. Related issues 

arise to some extent in implementing an intercommutation event: intercommutations 

occur when one node is moved, dragging along a string segment which intersects 

another as it is being dragged. Tail crossings and other holonomy interactions occur 

both as a result of the node's motion and as a result of the rearrangement of string 

ends during the intercommutaion, the non-commutativity of fluxes requires careful 

attention to the order in which these interactions are handled. As in linking events, 

the present simulation follows a strategy of making all rearrangemements of string 

ends before any existing nodes are actually moved. 

The linking process creates new nodes and new strings, and therefore it might be 

expected to impede the collapse of the network. 

iii) Annihilation. When two nodes approach each other closer than a distance rmin 

which is a parameter of the simulation, they are allowed to annihilate. The segment( s) 

which join the two nodes is eliminated, and the other segments emanating from the 

two annihilating nodes are joined to each other and straightened (or straightened 

until an obstruction is encountered). Two nodes are able to annihilate only if there 

is a consistent way to rearrange the free string ends (i.e., each string is able to find 

a partner with the same flux). Annihilation is always possible if the two nodes are 

doubly linked as shown in figure 25. It is also always possible if both junctions 

are of the sss type, even if they are only singly linked. In this case, there are two 

possible rearrangements of the free string ends (figure 26). One of these two must 

be chosen at random. When two stt-type junctions approach each other, there may 

exist at most one consistent rearrangement of the free ends allowing the two nodes 

to annihilate. Annihilation requires that each of the two segments on one side be 

matched with one on the other side carrying the same flux. Figure 27 shows an 

example of a pair of nodes which cannot annihilate because there is no consistent 
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Figure 23: The intersection of two strings whose fluxes do not commute causes 
them to become linked by a new segment. 
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Figure 24: Actual implementation of the "linking" or "non-commutative inter­
section" process shown in Fig. 23. (A) If the node at point Y were to move to Z 
while dragging with it the string segment XY, the string would intersect another one 
(with non-commuting flux) at the point labelled W and marked with a cross. We 
create the new nodes first before moving the existing node. (B) First, the two nodes 
are both created at the intersection point W, and the moving segment is deformed to 
two segments joined at W, making all necessary adjustments for the crossing of other 
nodes' tails, etc. ( C) In order to define the conventional clockwise order of the two 
new nodes, they must be separated. We do this by moving one of them to a new point 
V. V must be chosen so that the path consisting of XV and VY actually does lie on 
the opposite side of the other string as compared with XY; i.e., so that the linking 
of strings has occurred even though the node at Y has not moved yet. Assuming V 
is coplanar with X ,Y and Z, this means it must lie in the shaded region. This can 
be ensured by placing V somewhere along the segment WZ, and we may arbitrarily 
choose to put it at the midpoint of that segment. The fluxes of the new nodes at W 
and V are then fixed by requiring consistency with the string segments to which they 
are attached and with the single-node consistency relation (2). (D) Finally, the node 
may move from Y to its destination Z. 
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Figure 25: A pair of nodes linked by two strings may annihilate, leaving a single 
string. 



98 

er r 

• /" . 
• • 

Figure 26: Annihilation of two sss nodes joined by a single string. There are 
two possible ways to reconnect the strings consistent with their orientation. 
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Figure 27: The two nodes shown here cannot annihilate, because there is no 
consistent way to reconnect the string ends. 
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Figure 28: Unlinking of two strings- the inverse of the process shown in figure 
23- can occur in several steps if the string tensions pull in the right direction to unlink 
the strings. A linking followed by two annihilations has the net result of removing 
the short intervening segment and unlinking the two longer strings. In this figure , 
the basepoint is assumed to lie behind the page, so that the definition of an s-string's 
flux changes when it passes in front of any t-string. 
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rejoining of the string ends. If two junctions approach each other but are unable to 

annihilate, then they continue to move normally, going wherever they are pulled by 

string tensions. They might either remain nearby or be pulled apart once again. If 

two stt-type nodes do annihilate, it is easily seen that there can never be more than 

one consistent rearrangement of string ends. If two of the outgoing ends are s strings 

and two are t strings, then there cannot be more than one rearrangement because 

each string can only be joined with one in the same conjugacy class. If all outgoing 

strings are of t type, then all four cannot have the same flux- if they did, then the 

total flux of any pair would be trivial and they would not be connected by a segment. 

Nor may any three have the same flux . It follows that, at best, each string end may 

reconnect with a unique partner. Annihilation of nodes is, of course, the principal 

mechanism by which the network dissipates its energy in our model. 

We might imagine another type of annihilation process which is the inverse pro­

cess to the non-commuting intersection. If string tensions were pulling in appropriate 

directions, then two nodes might annihilate, leaving two strings free which were pre­

viously connected by another string. Because of, among other things, the difficulty of 

constructing an algorithm to determine when this may occur, we do not include such 

events explicitly in the simulation. The unlinking of two strings can occur, however, 

through a multi-step process involving several string intersection and annihilation 

events (figure 28). We expect that such a process probably will occur whenever the 

geometry is appropriate for the unlinking of two strings, so that it is not necessary 

to perform the unlinking "by hand" in a single step within the simulation. 

Finally, let us note a problem that may occur if the length an individual string 

segment becomes comparable to half the width of the simulation volume. A segment 

of string is defined by its two endpoints, which are the locations of two nodes. As 

in the case of the tail from each node to the base point, there is in principle an 

ambiguity associated with winding around the the periodic conditions (see figure 11 

and the accompanying discussion). As long as nodes are close together, there is no 

difficulty in always defining a string as lying along the shortest possible segment 

connecting two nodes. However , if two nodes connected by a string move far enough 

apart, it is possible that this definition will change suddenly, just as the motion of 
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a node across the boundary can cause the tail to be redefined as in figure 11. If a 

string were allowed to change its winding in this manner, flux conservation might be 

violated. We can prevent this from happening by adding a new doubly linked pair in 

the middle of the long segment before it changes its winding. 

7 SOME PRELIMINARY RESULTS 

The algorithm we have just described has been implemented with a 14,000-line 

C program which is beginning to produce results. It has been run sucessfully on a 

43 simulation volume (in units of the initial lattice spacing). The program has been 

prone to occasional violations of flux conservation, and these errors have only recently 

been sufficiently brought under control so that the program can be run reliably on 

larger volumes. Much larger volumes may eventually require additional computing 

resources. 

In this section we present briefly some of the data that have been obtained so far. 

More thorough analysis will be postponed until more results are available. 

The Z3 Network 

Since S3 contains Z3 as a subgroup, our program can easily be used to simulate 

a Z3 network by generating only s-strings in the initial conditions. This was done 

at an early stage in the development of the simulation code, and the results for the 

Z3 network agree well with those obtained by Vachaspati and Vilenkin. Figure 29 

shows the total string length and total number of nodes as a function of time for a 

typical run on a 303 simulation volume. The initial conditions were generated with a 

Z3 lattice gauge method, rather than the discrete Higgs method of [5]. The difference 

in initial conditions has no noticeable effect after the first few time steps. Every 

node was moved in each time step according to 6.x = 6.t L:r tr, where 6.t is the 

time step (.05 in this case) and tr is the unit vector along the direction of the r-th 

string connected to the node. The time variable plotted on the x-axis in the figure 

is i6.t, where i is the number of elapsed time steps. (This will be our convention for 

all remaining plots .) All distances and lengths are measured in units of the original 

lattice spacing. Following [5], we transform the data in a way that displays more 
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clearly the "scaling" behavior of the network. The inverse cube root of the number 

of nodes per unit length is a quantity with the dimensions of length and represents 

a typical distance between nodes. (Let us call it D( n ). ) From figure 30, we can 

see that this length scale grows linearly with time. The slope of approximately 0.3 

is close to that observed in reference [5]. Note that the energy stored in the strings 

(which is proprotional to the total length) also follows a scaling law. The total length 

of string is given by the total number of segments multiplied by their average length: 

Ltotal = nlAv· (3) 

In a scaling evolution characterized by a single length scale D, n is proportional to 

the inverse cube of the scale, while the average segment length is proportional to the 

scale, so Ltotal ex: n-2 • In the second plot of figure 30, the the inverse square root 

of the string length per unit volume (let us call this D( l)) is plotted as a function of 

time. We see that D( l) also grows linearly with time and is approximately equal to 

D(n). 

Initial Conditions from the Lattice Monte Carlo 

In the simulation of the 53 system, two different Monte Carlo methods were used 

to generate initial conditions: the lattice-gauge method and the discrete Higgs method 

using the .6.(24) subgroup of SU(3). Both of these methods generate infinite networks 

of strings (finite networks or loops are almost never observed.) In this respect, the 

two methods are similar, but they differ in statistical details. In the table below, we 

summarize some statistical features of the initial conditions generated by the different 

methods. For comparison, we also include the corresponding information for the Z3 

system (including both a Z3 lattice-gauge method and the tetrahedral discrete-Higgs 

simulation of [15]. The Z3 discrete-Higgs numbers are from Reference [15], and the 

numbers in the other three columns are averages over three runs of each Monte Carlo 

algorithm on a 103 lattice!
171 

For each method, the fractions of plaquettes pierced by 

strings of each conjugacy class is reported. (In the Z3 case, of course, there is only 

one class.) Note that in the lattice gauge method, each group element is weighted 

equally; therefore 2/3 of all plaquettes are pierced by strings in the Z3 lattice gauge 
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Figure 29: Number of nodes and total st ring length as a function of time for Z3 
strings on a 303 volume. 



105 

D(n) 
Node Scale 

D(l) 
String Scale 

Figure 30: Scaling behavior of Z3 strings on a 303 volume. The typical distance 
between nodes, D(n), grows linearly with time, and so does the inverse square root 
of the string energy density, D(l) . 
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case, and 5/6 for S3. Below this are the fractions of cubic lattice cells with 0,2,3,4,5 

and 6 of their faces pierced by strings. It is evident that for both Z3 and S3 systems, 

the lattice gauge method produces a denser network: more cube faces are pierced by 

strings and more cells have high numbers of strings emerging through their faces. 

Method Z3 L.G. Z3 Higgs S3 L.G. S3 Higgs 
Faces with 

s string 0.67 0.52 0.33 0.14 
t string - - 0.50 0.37 

Cubes with 
0 ends 0.01 0.04 0.00 0.06 
2 ends 0.12 0.34 0.01 0.32 
3 ends 0.17 0.20 0.05 0.21 
4 ends 0.38 ... 0.32 0.21 0.31 
5 ends 0.24 0.09 0.20 0.02 
6 ends 0.09 0.02 0.55 0.08 

Table 1: Statistics of Initial Conditions 

Evolution of S3 Networks 

We now display the results of several early runs of the S3 dynamical simulation 

on a 43 volume. The displacement of each node during each time step is given in 

this case by b.x = b.t l.:r Tr tr, where Tr is the magnitude of the tension of the 

appropriate type of string. Runs were conducted using three different pairs of values 

of the tensions Ts, and Tt of the two classes of strings ( s and t), in order to pro be the 

cases Ts > Tt, Ts = Tt and Ts < Tt. Figures 31 - 36 include plots generated by six 

different runs (labelled as runs 1-6). The first two have tensions Ts = 1, Tt = 0.5, runs 

3 and 4 use Ts = Tt = 1, and the last two runs are for Ts = 0.5, Tt = 1. Each of these 

three sets of parameters was used for two runs; one using lattice gauge and another 

using discrete Higgs initial conditions. In each case, the "string scales" D( l) were 

computed separately for the two different types of strings and plot ted on the same 

axes as funct ions of time. The total number of nodes is also plotted as a function 
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of time in each case. The "node scale" D(n) is not shown because its graph did not 

appear to be very enlightening in any of these cases; it was too bumpy to show clearly 

either linear scaling or its absence. Finally, for comparison, corresponding plots are 

shown in figure 37 for a typical run of the Z3 simulation on the same volume (43 ). 

A few comments are in order concerning these plots. One is that, to a first approx­

imation, the shapes of the curves are not strongly dependent on the initial conditions 

used, but their intercepts are certainly different when starting from different condi­

tions. Another is that the behavior of the system shows signs of being quite a bit 

more complicated than the Z3 network. 

The case with larges string tension is particularly interesting: The energy density 

int strings shows no sign of decreasing with time, but rather appears to become frozen, 

even though the s strings are shrinking in the manner typical of a scaling solution. ( 

D(ls) grows linearly with time.) Especially in run 1, the annihilation of nodes from 

the network all but ceases after a brief relaxation. Nodes frequently approach each 

other closely, but are unable to annihilate in a flux-conserving manner. In this case 

the system appears to be approaching a near-equilbrium state consisting oft strings 

tied to each other by very short segments of s string. A snapshot of such a state is 

shown in figure 38. 

A contrasting picture is seen in the opposite limit where the t string tension is 

larger than the s tension. An example of a late-time configuration in this case is 

shown in figure 39. It appears in this case that the t strings do not become tangled to 

the same degree. The formation of new s strings is comparatively cheap in this case, 

and so it is apparently possible for strings to pass through each other and continue 

moving while stretching an s string between them. The network in figure 39 has the 

appearance of a few relatively long, straight t strings joined to each other by a web 

of s strings. 

It is apparent from these preliminary results that the system of S 3 strings can 

exhibit a range of interesting behaviors not seen in Abelian strings. The evolution 

does not, in general, seem to be a self-similar one characterized by only a single 

typical length. In some regions of parameter space, the energy density of the network 
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Figure 31: Plots for run 1: Ts 1, Tt 0.5 with lattice gauge initial conditions. 
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Figure 32: Plots for run 2: Ts 1, Tt 0.5 with discrete Higgs initial conditions. 
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Figure 35: Run 5: Ts 0.5, Tt 1 with lattice gauge initial conditions. 
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Figure 38: Configuration of the S3 string network at a late time for the case 
where Ts = 1 and Tt = 0.5. The dark-colored segments are s strings, and the light­
colored segments are t strings. The configuration, resulting from the evolution of a 
lattice-gauge Monte Carlo initial network, which was reached after time t = 3.0 and 
remained nearly static except for a slow shrinking of the remaining long s segments. 
It is dominated by a tangle oft strings tied together by short s segments. 
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Figure 39: Configuration of the network after evolving with T8 = 0.5 and Tt = 1. 
This was obtained at evolution time t = 3.0 during the evolution of a discrete-Higgs 
initial network on a volume of size 63 . The configuration appears to contain a few 
comparatively long, straight t strings between which are stretched webs of s strings. 
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shows a tendency to become static rather than scaling away as time progresses. More 

conclusive statements await the results of simulations on larger volumes. 
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Concluding Remarks 

The goal of this thesis was to shed light on a few questions concerning the dy­

namics and phenomenological relevance of systems exhibiting non-Abelian topological 

interactions. Many other questions in this category are likely to continue to provide 

fruitful subjects for research, and some of the subjects described in the preceding 

chapters are ripe for further study. 

The U(2) anyon model seems to call for more work that goes beyond the zeroth 

order mean field approximation near the fermionic limit. The many-body physics of 

"nonabelions" (objects obeying non-Abelian braid statistics) is intrinsically intriguing 

whether or not an obvious manifestation can be found in nature. Kent Bradford is 

currently conducting numerical studies of the many-body quantum mechanics of S3 

vortices; [iJ hopefully this will also lead to a more general understanding of non-Abelian 

statistics. 

Work on the cosmic string simulation of Chapter 4 is still in progress. The early 

results are tantalizing, especially in the cases where the t-string energy appears to 

become static. This work might potentially lend credence to the scenario of a string­

dominated universe[
2
J resulting from a persistent non-Abelian string network. There 

has been some recent new interest in such models as a resolution of the cosmological 

1 
[3] 

age puzz e. 
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