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ABSTRACT 

The common belief that fermions lying on linear Regge traj­

ectories must have opposite-parity partners is shown to be false. 

The mechanism by which these experimentally nonexistant states are 

eliminated from the theory depends on the presence of fixed Regge 

cuts in fermion exchange amplitudes. Thus it is predicted that 

fermion Regge trajectories are always accompanied by fixed Regge 

cuts. More generally, if particles may be classified as composites 

of spin-1/2 (fermion) quarks, fixed cuts are expected to be present 

in boson exchange amplitudes as well. This result is demonstrated 

in the framework of the Van Hove model and a few further experimental 

consequences are discussed. 
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PART I 

INTRODUCTION 

In Regge pole theory there has been a long standing diffi­

culty in the treatment of half-integral spin particles (fermions). 

Theoretical arguments utilizing the experimental fact that trajec­

tory functions are approximately linear in the (energy) 2 predict 

that fermion states should occur in approximately degenerate parity 

doublets. There is, however, no convincing example of a parity 

partner for any of the known fermion states. 

The principal result of this thesis is the demonstration that 

linear fermion trajectories need not have degenerate opposite parity 

partners. In order that this be the case it is necessary that each 

fermion trajectory be accompanied by a fixed Regge cut of a specific 

type. Using the Van Hove model we show how such cuts arise in a 

natural way. We conclude that fixed cuts should be present in all 

fermion exchange processes. 

In the quark model particles are classified as composites of 

spin 1/2 (fermion) quarks. In this model the exchange of any parti­

cle is equivalent to the exchange of a set of quarks. If in Regge 

theory any fermion exchange is accompanied by a fixed Regge cut, 

the exchange of a set of fermion quarks should also require the 

presence of a cut. This is indeed the case, and again the cuts play 

the role of eliminating extraneous states. Were the quarks allowed 



-2-

to be parity doublets, three-quark states would be parity doublets 

and quark-antiquark states would be simple doublets (that is, 

pairs of states of the same parity). 

In Part II we demonstrate the existence of fixed cuts in fer­

mion exchange reactions. Properties of the cuts are discussed and a 

few experimental correlations are noted. Part III elaborates on sev­

eral points raised in Part II. We review the experimental situation 

regarding fermion parity doublets, and give a detailed discussion 

of the fixed cuts which are present in the solution of the Dirac 

equation with a Coulomb potential. 

Part IV discusses the origin of fixed cuts in the quark model. 

First we show that the quark model implies the vertex symmetry 

SU(6)W; then we show how a Regge amplitude constructed from SU(6)W­

symmetric vertices must contain fixed Regge cuts. A detailed 

discussion of the experimental consequences of these cuts is given 

along with a comparison with qualitative features in vector meson 

exchange data. 



PART II 

FER..~ION REGGEIZATION WITHOUT PARITY DOUBLING 

Gribov1 showed that every fermion.Regge trajectory a+(W) 

must be accompanied by a MacDowell symmetric2 trajectory 

- + a (W) = a (-W) of the opposite parity. If (as is indicated by 

experiment for Na and 60) a trajectory is linear in u = w2
, its Mac­

Dowell twin will be degenerate with it. Hence it has always seemed 

puzzling that no parity partners of the N and 6(1238) have been 

found. Attempts to find an analytic form in which states on the Mac­

Dowell twin are systematically suppressed have not been successful. 3 

We deduce the appropriate analytic form from a model containing only 

resonances of positive parity lying on a linear trajectory. The 

partial-wave amplitudes are found to have a fixed Regge cut, and the 

negative-parity (MacDowell twin) trajectory lies on an unphysical 

sheet of the J plane at positive energies. The idea of a fixed Regge 

cut is not new; it is present in the solution of the Dirac equation 

with a Coulomb potential. 4 In the present problem it is, of course, 

possible to have parity doubling and no Regge cut; but lacking any 

a priori reason for parity doubling, we anticipate in general the 

presence of a fixed Regge cut. in fermion-exchange amplitudes. 

We will illustrate the origin of the fixed cut in the Van Hove 

5 model. The ampl~tude in this model ·is the sum of Feynman diagrams 

for the exchange of all resonances along a given trajectory. Clearly, 
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this ampli~ude satisfies the usual analyticity requirements and con-

tains only the resonances of the input trajectory. In nN scattering, 

the Feyrunan diagram for the exchange of a natural-parity 

p + - . + 
(J = 1/2 , 3/2 , 5/2 , ••• ) fermion resonance of spin J = Jl + 1/2 

and mass m(Jl) in the u channel6 ' 7 is 

2 ( ) 2Jl ' ( ) g Jl p PJl+l zu 

u - m
2

(i) 
, (1) 

J where T is the propagator for a spin-J fermion. We Reggeize by 
µ '\) 

summing a sequence of resonances and transforming the sum into an 

8 integral a la Sommerfeld and Watson : 

Jn.= E :Jh.(J) ~ ~ f dJl 
J 

2( ) 2Jl ' ( ) g Jl p PJl+l -zu 
' 2 

(u - m (Jl)) sin nJl 
(2) 

All terms but those contributing to the leading power of the asympto­

tic expansion of 'JU(u,z ) as z + 00 have been dropped. 
u u 

If we take m2
(si) = (Jl-a )/a' and assume for convenience that 

0 

g
2

(i) is analytic in i, 9 we can open the contour in the Jl plane and 

obtain a contribution from the pole at m2
(si) = u and the cut with 

branch point at Jl =a (see Fig. 1). This gives 
0 

Jn.cu, z ) = 
u 

n g2 (a(u)) p2a(u) P' (-z ) a' 
a(u)+l u 

sin n a(u) ~~wj 
2Jl ' ( ) p PJl+l -zu 

~) 2 (u - m (Jl)) sinnJl 

(3) 
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2 JI, 
dQ, g (Ji,) c(Ji,) s 

~ (u - m2
(J1,)) sin nJI, 

c < 51,) = _r_c_2_51,+_2_) __ 

451, (r(Ji,+1)) 2 

(5) 

(6) 

The first term of (5) has the form of a Regge pole contribution while 

the second term has the form of a Regge cut. The singularity at u=O 

in the residue of the pole term is cancelled by the cut term, so that 

~is analytic in u (see Eq. (11)). 

The principal features of our solution can be seen in the par-

tial-wave amplitudes 
+ . 2 

f J±l/Z(W), which can be read off directly from 

(1). We find that 

+ 
fJ±l/2 

where 

cut at 

Efil(~ ±~o) a' p2Q, g2(J1,) 
= - 8nW Q, - a -a' u ~ 

. 0 0 

JI, = J - 1/2. There is a moving pole at 

that the moving pole in JI, = Cl. . Note 
0 

physical sheet of the Q, plane only for w < o. 

(7) 

Q, = a(u) and a fixed 

+ is the f J-1/2 on 

As we move from W < 0 

to W > O, the pole at JI, = Cl. cw2) moves through the fixed cut onto 

the second sheet of the JI, plane as shown in Fig. 2; this explains why 
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there are no negative-parity resonances in our model. 

The cut (t-a )-l/Z in (7) is due to the presence of odd powers 
0 

of m(t) in (1). We can obtain a solution with no Regge cut only if 

we include. negative-parity states along with the positive-parity 

ones. This would correspond the the usual solution; but it clearly 

involves the ad hoc assumption that the negative-parity states exist. 

Unless g
2

(a ) = O, the partial-wave amplitudes (7) have infin-o . 

ities for t ~ a , in violation of unitarity. ~f course, our model 
0 

has zero-width resonances, so it is clearly not unitary . We wish to 

demonstrate that there exists a smooth limit from the unitarized 

theory to the zero-width limit, and that this limit should be useful 

in parametrizing experimental data. The procedure for unitarizing 

the model has been discussed by Sugar and Sullivan,
11 

who find that 

certain fixed poles are converted into moving poles in the process. 

12 
In our case the unitarized partial-wave amplitudes have the 

form 

+ E±M. 
fJ±l/2 = 87TW (8) 

[m(t)-l(t)a(u)] W -[m
2

(t)+g2(t)b(u)J 

where a(u) and b(u) are functions with the proper right-hand cuts in 

The amplitudes + have a fixed t = a and only mov-u. f J±l/2 cut at 
0 

ing poles. In particular if g2 (t) + have = c, a cqnstant, f J±l/2 

two moving poles, 13 with trajectories 14 given by al 2 
' 

2m(a1 2(u)) = W ±...Jw2 -4cWa(u) -4cb(u) 
' 

(9) 
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In the limit a,b + 0, a
1 

+ a(u) (the input positive-parity traj-

ectory) and a2 + ao (a fixed pole). Thus we can interpret the 

factor (.Q. - -1/2 in (7) the coincidence of a fixed cut , a ) . as 
0 

(.Q. _ a ) 1/2 (.Q. - -1 When the model is uni-and a fixed pole, Ci. ) . 0 , 0 

tarized, the fixed pole becomes a moving pole just as in Ref. 11 . 

Although the pole at .Q. = a
2

(u) does contribute to the asymptotic 

scattering amplitude, as long as a and b are small the trajectory 

a 2 (u) will never rise high enough to produce any physical resonances. 

Unless a(u) and b(u) are small, the unitarized trajectory will 

deviate from the linear form (4). Since experiment indicates approx-

imately linear trajectories, we conclude that a and b may be neglected 

and data may be parametrized using (5). 

For small negative u, we make the approximation 

2 
g (a(u)) c(a(u)) a' 

Then (5) becomes 

• ( ~0 .+ G1 w) 

• [( ~0 + G1 w) 

sin 7ra(u) 

s 
a +a'u 

0 Cll - W) 

a'u Gl 
s (1-erf (-J a' u .Q.n s)) - -Va 1 dn J 

a 
s 

0 
il s 

The first term is clearly a Regge pole, and the second is a fixed 

Regge cut, since 

(10) 

(11) 

erf (x) > l--1-e-x
2 

[1 --1-+ .. J jargx!< 3TI/4 • (12) 
! x! + 00 fir. Lx 2x3 :J 
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We can see explicitly how the singularity in the pole residue is 

canceled by the cut. The remaining part of the cut term has no -J;;. 

singularity because erfx is odd in x. Signature may be incorporated 

in our formulas by the modification 

With this modification, the pole term in (11) will acquire the usual 

signature factor and the cut will have a complicated varying phase . 

The strongest experimental support 'of our work lies in the ab-

sence.of parity partners to known fermion resonances. Also our 

conclusion that the partial-wave amplitudes contain a fixed Regge cut 

does not clash with experiment. Note that by an appropriate choice 

of G
0 

and G
1

, the ratio of the cut contribution to that of the pole 

can be chosen arbitrarily for a given range of s. If the pole contri-

bution is dominant, we expect to see typical Regge shrinkage and dips 

where the trajectory passes through wrong-signature nonsense points. 

When the cut dominates, there will be no shrinkage and no wrong-

signature nonsense dips. Nucleon-exchange data support this corre­

lation. In + 
TI p backward scattering, the data show Regge shrinkage 

and a marked dip at u = -0.2. 0 In backward TI photoproduction, there 

is no shrinkage and no dip at u ~ -0.2. 
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FIGURE CAPTIONS 

Fig. 1: Dashed line-initial contour; solid line-opened contour. 

Fig. 2: Pole trajectory for f+. Dashed lines show path on second 

sheet; solid lines refer to the principal sheet. 
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PART III 

1 . Experimental Evidence on Parity Doubling 

Experimental evidence strongly indicates that there are no 

fermion parity doublets. One way of seeing this is to note the 

1 success of the conventional SU(6) quark model in classifying known 

fermion states. In Table 1 (page 16) we list the low-lying quark 

model states and indicate experimental candidates 2 for each state. 

Only 1 of the 17 states in the chart has no experimental candidate. 

Even more striking is the fact that of all the known S = 0 resonan­

ces2 with masses under 1950 MeV, only 1 state is not accomodated 

in Table 1. And this state, the P11 (1780),fits nicely into the pic­

ture as part of another 56, L = O+, the second daughter of the 

P11 (939). Thus if we accept the SU(6) classification, we can find no 

evidence for parity doubled fermion states. 

· Ignoring the success of the SU(6) classification scheme, we may 

ask if any candidates exist for a fermion parity doublet. Barger and 

Cline3 suggested several possibilities, but new data on spins and 

parities have eliminated all but one of their candidates. This is the 

pair of octets of spin-parity 5/2+ and 5/2- Although the masses of 

these octets make them possible candidates for a parity doublet, other 

properties make their status dubious. In particular the F/D ratios 

+ for coupling to pseudoscalar mesons and baryons are 1.2 for the 5/2 

octet and -0.2 for the 5/2- octet . 4 If these were really parity 

doublets, the F/D ratios would be identical. Furthermore the differ-
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ence in F/D ratios ..is no mystery; it is correctly predicted by 

duality. 4 

2. Fixed Cuts in Potential Scattering Theory 

As was noted in Part II (page 3) fixed Regge Cuts do occur in 

some potential theory problems. Here we will examine V. Singh's 

solution5 to the Dirac equation with a Coulomb potential. His 

expression for the scattering matrix is 

S(E,J,L=J-1/2)= (J + 1/2 +mp) r (/(J + 1/2)
2 

-e
4 

-Ep) 

r (/(J + 1/2)2 -e4 +l +Ep) 

where 
2 e 

p = -:;:::;;:::=:;:;=-
/ m 2 -E2 

cr = J + 1/2 - /(J + 1/2) 2 -e4 

i1rcr 
e (1) 

It is clear that S has a cut in J running from J = -1/2 -e2 to 

2 J = -1/2 +e • The Regge trajectories are given by the location of the 

zeroes of the r function in the numerator of (1). These occur at 

"" Ep - n nm o, 1, 2, ... (2) 

The nth trajectory will move onto the second sheet of the J plane at 

the value of E where 

Ep - n = 0 
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that is, 

In Fig.l we plot the real part of the leading two trajectory functions 

for jEj < m. The ReJ < -1/2 branch of the leading (n = 0) trajectory 

is absent on account of the factor (J + 1/2 +mp) in Eq. (1). 

We see that as ReE is decreased, trajectories move through the cut 

in the J-plane and onto the second sheet, exactly as was discussed 

in Part II. Note, however, that the cuts in the potential theory 

problem have nothing to do with MacDowell twins, since the potential 

problem has no MacDowell symmetry. Here the physical reason for 

the disappearance of the poles from the principal sheet is that if 

the fermion sees an attractive pot~ntial, its antiparticle (with 

opposite charge) will see a repulsive potential. 
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TABLE 1. Nucleon resonances. 

SU (6) Class (SU(3), quark spin) Resonances JP 

56 , L = O+ 
""""' 

(8' 1/2) 
V4 

P11 (939) 1/2+ 

(10' 3/2) p 33 (1236) 3/2+ .,.... 

{s11 (1535) 1/2 -

70' L = 1 (§., 1/2) - n13 (1520) 3/2 -

{;31 (1650) 1/2 -
(10' 1/2) ..,_. 

n
33

(1670) 3/2 -

-s11 (1700) 1/2 

-(8, 3/2) n13 (1700) 3/2 -
n15 (16 70) 5/2 -

(1, 1/2) -
56, L = O+ (8' 1/2) p 11 (1470) 1/2+ 
WA- -

(10, 3/2) P33C1690?) 3/2+ -
L = 2+ 

tl3 (1860) 3/2+ 
56, (8' 1/2) 
~ - F15 (1688) 5/2+ 

p31(1910) 1/2+ 

p33 3/2+ 
(10' 3/2) ...... F 35 (1890) 5/2+ 

F37 (1950) 7/2+ 
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FIGURE CAPTION 

Fig. 1: Regge trajectories for Dirac equation with a Coulomb Field. 

Solid lines indicate trajectory on principal sheet of the J 

plane; dashed lines, trajectory on second sheet of the J 

plane. 
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PART DJ 

REGGE AMPLITUDE ARISING FROM SU(6)W VERTICES 

1. Introduction 

The SU(3) synnnetry of the quark model has been extremely use-

ful in classifying strongly interacting particles and in predicting 

the relative strengths of their couplings. Spin has been incorporated 

in the model to give a successful classification of hadron states 

under SU(6). 1 The most natural way of treating spin at three particle 
. 2 3 

vertices yields the synnnetry SU(6)W. ' While this symmetry correct-

ly describes many vertices, 
3 

there has previously been no successful 

1 . . . 4 l' d app ication to scattering amp itu es. 

In this thesis we determine the form of the Regge amplitude 

which results from assuming SU(6)W as a vertex symmetry. Knowledge of 

vertices involving a spin J resonance enables us to construct the 

Feynman amplitude for the exchange of the resonance. Then, using the 

5 
Van Hove model,- we can express the Regge amplitude as a formal 

sum (on J) of such resonance exchanges. Hence in this model, 

the form of 'the Regge amplitude is determined by the assumption of 

SU(6)W synunetric vertices. We find that Regge poles are, in general, 

accompanied by fixed Regge cuts, with branch points at the zero energy 

intercept of the trajectory. These fixed cuts are similar to those 

suggested in Partirof this thesis for fermion exchange amplitudes as a 



consequence of the absence of parity doubled fermion states. 6 The 

fixed cuts found here for meson (quark-antiquark) exchange amplitudes 

may be viewed as a consequence of the absence of parity doubled quarks. 7 

The presence of significant fixed cut terms has important exper­

imental consequences. The shrinkage characteristic of a Regge trajec­

tory with normal slope will be absent in those amplitudes which have 

large fixed cuts, and there will be no dips at wrong-signature nonsense 

points along the trajectory. Given the magnitudes of pole and cut terms 

in some reaction, we are able to predict the magnitudes of these terms 

for a whole class of SU(6) related reactions. Applying our approach 

to a set of vector meson exchange processes, we find that the numerical 

importance of cut terms--as indicated by the presence or absence of 

wrong-signature nonsense dips in differential cross sections--is in 

accord with our predictions. 

An outline of Part IV of this thesis is as follows. In Section 2 

we show that SU(6)W is the natural vertex symmetry arising from the 

quark model and remind the reader how to calculate SU(6)W vertices. 

Construction of a Regge amplitude from the SU(6)W vertices is carried 

out in Section 3. Some consequences of our approach are given in 

Section 4, with particular attention to the question of wrong-signature 

nonsense dips. A discussion of our work is given in Section 5 with 

some suggestions for further research on this problem. 
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2. The Quark Model and SU(6)W 

The classification of baryons as qqq composites and mesons as 

qq composites implies that any SU(3) invariant vertex 

may be pictorially represented by quark graphs. (See Fig. 1.) These 

graphs are drawn according to the following rules: (a) Each quark or 

antiquark is represented by a directed line. (b) A baryon or anti-

baryon is represented by three lines running in the same direction. 

(c) A meson is represented by two lines running in opposite directions. 

Zweig
8 

suggested an additional rule: (d) The quark and antiquark lines 

of a single meson should not be connected. (This rule accounts for the 

absence of the decay ~ ~ prr and the weak coupling of the ~ to 

nucleons.) Note that the rules (a) - (d) are precisely those used by 

9 10 
Harari and Rosner to construct their duality diagrams. 

We wish to inco.rporate spin into the quark graph picture in the 

simplest possible fashion. We choose a Lorentz frame in which the 

particle momenta are collinear along the z axis. In such a frame, we 

assume that the spins of quarks a~ b, and d (in Fig. 1) are unchanged 

in the reaction. How, then, must the spins of the annihilating quarks 

c and e be related? The parity of a qq pair is -(-1) 1 , so if parity 

is to be conserved, q and q must annihilate in an odd angular 
c e 

momentum state. Then angular momentum conservation requires that L = 1 

and that the quark spins form a triplet. If, furthermore, the trans-

verse motions of the annihilating quarks may be neglected, then the 

quark momenta lie along the z axis, so L = 0 and hence z s = o •. z 
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Thus we see that the qq state annihilates with the quark spins 

in a triplet state, S = 1, S = 0. This is exactly the result given 
z 

by the collinear symmetry SU(2)W. 2 Taking into account the SU(3) 

quantum numbers of the quarks, we obtain SU(6)W as the natural vertex 

11 symmetry of the quark model. Note that the derivation above is 

independent of what collinear frame we choose, since SU(2)W states are 

invariant under boosts along the z axis. 

Choosing some collinear frame, it is easy to calculate the SU(6)W 

symmetric vertex functions. Let each quark be represented by a pair 

of indices (a, a), where a specifies its SU(3) nature and~ gives its 

spin orientation along the z axis. In a collinear frame, the meson-

baryon vertex (Fig. 1) has the form 

B B(aa)(Sb)(od) M(ye) D 
(aa)(Sb)(yc) (od) ec 

(1) 

The matrix 

:) (2) 

in (1) specifies that qc and qe annihilate in a spin state S = 1, 

s = o. z 

( ) 
. 12 

Let us recall the form of the SU 6 wave functions for th.e 

.2.§ baryons, B(aa)(Sb)(yc), and the~ mesons, M(aa) (Sb)" 
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(3) 

The superscript m = a+b+c gives the spin projection of the baryon. 

X is a two-component 'spinor 

x (+1/2) = (:) 

and i;(m) is a vector-spinor, 
a 

i; (m) 
1 . . 

= E <2 er, lp 
a crp 

where 

x(-1/2) = (:) 

I 3 (er) e: (p) - m) xa 2 

±1 1 (+1, -i, O) e: =VT 

0 
(O' 0' 1) e: = 

The matrix C is given by 

Ba and DaSy are the SU(3) matrices for the octet and decuplet: s 

_L Lo 
Y2 

+ 1 Ao 
-rb" 

L+ p 

Ba = E --ri-- Lo +-vi-- Ao n 
13 

. - Eo 2 Ao -.::. --\fb" 

(4) 

(5) 

(6) 

(7) 

(8) 



Dlll = ll-H-

Dll3 = _l_ z*+ 
'13 . 

Dl23 = _l_ >:*o 
\f6 

D222 = ll- . 

D233 = _l_ 3-

. "\/3 

The meson wave function is 

where 

and 

1 0 + 1 0 
-7f -n 
~ "6 

7f 

K 

_l_ (wo +po) 

Y2 
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Dll2 = -4 ll + 

Dl22 = _l_ ll o 

-VJ 
D133 = _l_ o;;o 

-J3 -
D223 = _l_ z*-

-.fi" 

D333 = rt 

+ 
7f 

1 0 
- - 7f y; . 

+ p 

K° 

1 +-n 
Y6 

p 
1 0 0 

- (w - P ) 
-£ 

*:.. 
K 

-*o 
K 

0 

*+ K 

*o K 

K+ 

Ko 

2 
- - n -v6 

(9) . 

(10) 

(11) 

0 

• (12) 
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The superscript m specifies polarization for the vector meson nonet. 

Using (3) and (10) in (1), we obtain the vertex functions gi-

ven in Table 1. The 56-56-35 vertices are all determined to within - ...... ,,,,,,,. 

a single constant factor by the SU(6)W synunetry. Similarly, the 

35-35-35 vertices may be computed from the coupling - .... -
Ml(a.a) 
. (Sb) 

M2(Sb) 
(ye) 

M3(yd) 
(a.a) 

The results are summarized in Table 2. 

(13) 

Using the information in Tables 1 and 2, it is a straightfor-

ward matter to calculate the invariant vertex functions which, in a 

collinear frame, reduce to those given in the Tables. These invariant 

13 
vertex functions are listed in Table 3. Common mass factors have 

been absorbed in the constants c and d to give the entries a simple 

form. 

The extension of the couplings in Table 3 to vertices ~nvolving 

Regge recurrences of the listed states is easily made. For example, 

the SU(6)W symmetric coupling of two pseudoscalar mesons to a V recur­

rence (quark spin 1) of spin J = L + 1 will be 

(e denotes the polarization of the V recurrence . ) The higher spin 

indices simply couple to appropriate momentum factors. In general, 

couplings for excited states with a given quark spin assignment may be 
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constructed by decomposing the spin of the states into quark spin 

and orbital angular momentum and coupling the quark spin according to 

SU(6)W. This will give a unique result whenever two of the states 

have no orbital excitation. In other cases there will be more than a 

single coupling for each class of SU(6)-related reactions. 

Note the presence in Table 3 of factors involving the masses M
1

, 

M2 , M3 • These factors have a simple kinematic origin. Some of these, 

( ) 2 . 2 (6) e.g., M1 + M2 - M3 , arise because the SU W symmetry relates 

vertices involving different angular momenta. Other factors, e.g., 

M
3 

in the P
1 

P2 V vertex, arise because the symmetry relates vertices 

involving vector mesons of different helicities. The polarization 

14 vector for a vector meson of zero helicity is proportional to l/~. 

Hence, within a class of vertices related by SU(6)W' those vertices 

involving a zero helicity vector meson will contain an extra factor of 

~ relative to those not involving a zero helicity vector meson. This 

is the only source of odd powers of meson mass; the angular momentum 

2 factors will always contain factors of (meson mass) • 

3. Construction of a Regge Amplitude 

The presence of extra "kinematic" factors in the vertex functions 

has important consequences when we construct a Regge amplitude. In 

general, we find the presence of fixed Regge cuts with branch points 

coinciding with the zero energy intercepts of the Regge trajectories. 
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This phenomenon has been discussed previously for fermion exchange 

processes; here we find cuts for boson or fermion exchange processes 

and predict the relative strengths of the cuts in different processes. 

15 
The Van Hove model expresses a Regge amplitude as a formal sum 

of Feynman diagrams for the exchange of all resonances along a given 

trajectory. 
16 

Consider, for example, the reaction 

+ - 0 0 7T +'IT +7T +w 

mediated by p exchange (see Fig . 2 ) • * The coupling at a wp 7T vertex is 

-i-{2 d(J)ea.µlyo * * p p 2Je * 
E(w)a. p(p )y p(7T)o (7T)µ2••• (7T)µJ (p )µ1µ2 ••• µJ 

(14) 

* * for a p of spin J. The 7T7Tp coupling is 

(15) 

* The Feynman diagram for the exchange of a p · of a spin J is therefore 

'.m.<J> =2id2 (J)m(J) 4 J 

\ 

(J) * a.vi yo 
p + p + T p .t- p . p Q.y E. ('·').,.,, E 

X µ1•• • µJ µ1•••µJ;v1•••\I~ . u \12••• .VJ w ... 

t - m (J) 



= 
2ii(J)m(J)4J 

2 
t - m (J) 
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1 
J 

(16) 

where T~;~/(t - m
2

(J)) is the Feynman propagator for a particle of 

spin J, 

and 2 
t = Q • We assume that m = m to simplify the kinematics. 

'IT w 

Summing over J and transforming the sum into a contour integral gives 

Jn.= l: ?n.(J) = l. z f dJ 
J 2 B c 

using the abbreviation 

i(J)m(J) 
2 

t - m (J) 
(18) 

1 
J 

(19) 

The contour C is indicated in Fig. 3. If we assume that the m2 is a 

linear function of J, 

J - a 
m2(J) = ___ o 

a' (20) 

and that d
2

(J) is analytic, then we can open the contour in the J 

plane obtaining contributions from the pole at 

with branch point J = a • T~is gives 
0 

2 
m (J) = t and the cut 



2 'Jn= 'IT d ~a) -Jt a' 
sin 'ITa 
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d
2

(J) ~ 1 

(t - m2 (J)) sin 'ITJ J 

where a(t) = a +a't 
0 

In the limit 

where 

+ - 2 s = (p + p ) + 00 

dJ d2(J)~ b(J) SJ-1· 

(t - m
2

(J)) sin 'ITJ 

b (J) = 
r(2J + 1) 

(f(J+1))
2 

(21) . 

(22) 

(23) 

(24) 

It is clear that (23) consists of a moving Regge pole term and a fixed 
.. -

Regge cut. Nonsense couplings along the trajectories are presumably 

eliminated in the usual way by zeros of d
2

(J) at J=O, -1, -2, •••• 

Therefore, for negative t, we can approximate 

d2 (a(t)) b(a(t)) a' 
sin 'ITet(t) = d 

0 
(25) 
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Then (23) becomes 

a -1] 'l"l-r~..,.d Z +[r: f( 1 a.'t.Q.ns) a(t)-l+ 1 s 0 
J"~ " o S Ps L""'t er '"" s -Ja'7T .Q.n s 

Cl. -1 

[..rt Sa(t)~l + S 
0 

1 
3 / 2 (1 + 0 ( I Q. 

2t -../TI (a' .Q.n s) a t n 

(26) 

In Eq. (18) it is clear that the fixed cut arises from the pre­

sence of an odd power of m(J) and the assumption that d
2

(J) is 

even in m(J), i.e., analytic in J. If, for example, 

d2 (J) = m(J) d
1 

(J), with d
1 

(J) analytic, then the 7T7T + 1TW ampli-

tude would have no fixed cuts. In this case, however, there would be 

fixed cuts in the amplitudes 7T7T + 7T7T and 7TW + 1TW. Hence the pre-

sence of fixed cuts in some amplitudes is inescapable. 

4. Experimental Consequences 

The presence of fixed Regge cuts has three important experi-

mental consequences. (1) Asymptotic behavior. At sufficiently high 

energies, the Regge .cut term gives an energy falloff independent of 

t. 17 (2) Polarization. When signature is incorporated in the model 

by the replacement 

(27) 
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Regge pole tenns will acquire the usual Regge phase, but cut terms 

will have some complicated varying phase. Thus there can be inter-

ference between the pole and cut terms , and exchange of a single 

Regge trajectory will be able to give non-zero polarization. (3) 

Wrong-signature nonsense dips. The contribution from a single Regge 

pole 'term vanishes when the trajectory passes through a nonsense 

value of the wrong-signature. The cut term does not vanish, however, 

so an amplitude with a significant cut term will show. no dip at 

18 
wrong-signature nonsense points. 

A qualitative discussion of the third point is easy to make. 

We will restrict our .attention to processes involving vector meson 

exchange. In Section 2 we gave a simple criterion for determining 

the presence of odd powers of~ in vector meson vertices. The 

argument required examining the vertex in a collinear frame. Note 

that the t-channel center-of-mass frame is collinear for both ver-

tices, so we can apply the argument of Section 2 directly to t-chan-

nel helicity amplitudes. The factors of m(J) which will appear 

* * in t-channel ·helicity amplitudes involving various p or w 

vertices are given in Table. 4. Assuming the absence of a cut term 

in some particular helicity amplitude, this Table allows us to 

predict the presence or absence of cut terms in other helicity amp-

litudes. In general, a reaction will have no cuts in some ampli-

tudes and cuts in others. We must pay attention to the relative 
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magnitudes of the different amplitudes in order to assess the 

importance of cut terms in any given process. 

In Table 5 we tabulate the magnitudes of the helicity ampli-

tudes and the factors of m(J) which lead to Regge cuts for a 

number of reactions 19 involving the vertices of Table 4. The 

* relative magnitudes of the contribution of a spin J V exchange to 

the various t-channel helicity amplitudes are given by 

f ( 2 (J) ) = V (>,) V (µ) (>.) 
>.µ t=m ,s 1 2 81 

* e (µ) G(J) 
2 

(28) 

v
1

(A) and v (µ) 
2 . are the SU(6)W vertex coefficients from Tables 1 

and 2, and e (µ)and e (µ) specify the orientation of the quark spin of 
1 2 

* the V at vertices 1 and 2 respectivel~ in the t-channel center-of-

mass. Equation (28) is obvious for J = 1 and is valid for arbi-

traryJ because the higher spin indices always couple to additional 

momentum factors at each vertex. In the limit s ~ ~ , 

In Table 5, then, we tabulate simply 

Iv (>.) v (µ) c(J) d(J)/(-0:) l >-! + l µ!I 
1 2 . 

For convenience, we have defined · 

g(J) =·c(J) d(J) 
36 m(J) 
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Genuine kinematic factors (kinematics of TIN + TIN are assumed 

for all reactions listed) are tabulated as-It or t. The factors 

of m(J) induced by SU(6)W are determined from Table 4 and tab-

ulated in the appropriate helicity amplitudes. 

The qualitative features of the data for the reaction 

0 
TI p + TI n indicate that the reaction is dominated by a Regge pole 

in the t-channel helicity 1 amplitude. Therefore, the function 

g(J) in Table 5 must be approximately even in m(J), i.e., analy-

tic in J, so that the helicity 1 amplitude is purely a Regge pole 

term while the helicity 0 amplitude contains a Regge cut as well. 

This cut arises from the presence in the amplitude of a factor 

m(J) and is referred to in Table 5 as a weak cut. As can be seen 

in (26), the contribution to the scattering amplitude of a weak cut 

(m(J) g(J)) at t = 0 is suppressed by a factor 

(TI ·a' tn s )-l/Z relative to a pole term (g(J)). A cut arising 

from the presence of a factor l/m(J) is referred to as a strong 

cut. The magnitude of a strong cut (g(J)/m(J)) is larger than 

that of a weak cut by a factor of 2 a' tn s. 

Now in Table 5 we see that the helicity 1 amplitude in 

TI p + wn contains a strong cut with a numerical coefficient larger 

than that for the pole term in the helicity 0 amplitude. Therefore, 

in this reaction, the cut effects should be appreciable and we 

expect no wrong-signature nonsense dip. Proceeding in this manner, 
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we may make the other predictions given in the last column of Table 

5. These predictions agree with experiment for all the reactions 

. 20 
listed. 

5. Discussion 

The qualitative discussion above should be largely unaffected 

by the manner in which the SU(6) symmetry of our theory is broken . 

Symmetry breaking will alter the SU(3) factors and numerical coef-

ficients in Table 3, but will not affect the mass factors, which 

arise solely from kinematic considerations . In Table 5 it is 

apparent that the question of dip or no dip depends primarily on 

these mass factors. In a quantitative fit of differential cross sec-

tions and polarization phenomena , synrrnetry breaking effects will be 

important and a more detailed theory will be necessary. 

Aside from symmetry breaking, an important question concerns 

the relation of our work to duality. Since both schemes are based 

on identical quark graphs, it seems likely that they may be fused 

in a unified ·approach. After completing our work on the manner in 

which SU(6)W leads to fixed Regge cuts, we learned that K. Bardacki 

21 and M.B. Halpern have in fact constructed a dual amplitude containing 

fixed cuts and have proposed that this amplitude be utilized in the 

quark model. S •. Ellis 22 has also investigated this problem, which we 

expect to open a fruitful area of new research. 
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TABLE 1 

Baryon-Baryon-Meson Vertices 

t Spins 

1/2, 1/2, 0 

1/2, -1/2, l 

1/2, 1/2, 0 

1/2' 1/2' 0 

3/2, 1/2, l 

1/2, 1/2, 0 

1/2; -1/2, l 

3/2, 3/2, 0 

1/2, 1/2, 0 

3/2, 3/2, 0 

3/2, 1/2, 1 . 

1/2, 1/2, 0 

1/2, -1/2» l 

1/2~ 3/2, -1 

'I 

* Value 

l~ ~ (aPB) .+(BB~ 

-ef:vr @ <avJ9 + (sB~ - <i3~(v~ 
! ~Bvl)) - (BB~ + (Bi9 <V8 

1 ~ - D · 3 aSy 

tParticle l is outgoing; particles 2 and 3, incoming. 

* BPB denotes Ba PS By 
S y · a 
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TABLE 2 

Meson-Meson-Meson Vertices 

Vertex ' . . . . .. . . '. S12ins · Value 

P1P2V o, o, 0 . ~ [<'P1P2v> - (PlVPz>] 

v1v2P . 1, 1, 0 ~ [< V l V z P) + < V l PV ~ 

v1v2v3 o, o, 0 t [<v1v2v{- .(v3v2v18 

1, 1, 0 . ~ 8v1v2v3)- (v3v2v1~ 

1, o, 1 ~ Gv1v2v{- (v3v2v1~ 
v i 8v1v2v{- .<v3v2vj o, 1, -1 
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TABLE 4 

Odd powers of m(J) in vector meson vertices. 

* Vertex v Helicity m(J) Factors 

* NNp ±1 c(J) 

0 m(J) c(J) 

* 6Np ±1 (a) c(J) 

* NNw ±1 c(J) 

0 m(J) c(J) 

* 'll''ll'p 0 (b) m(J) d(J) 

* 'll'pW ±1 (b) d(J) 

* . 'll'WP ±1 (b) d(J) 
J 

* .· npp ±1 (b) ' d(J) 
• .. r 

I 

.. ~a) Only helicities allowed by SU (6)W. 

(b)Only helicities allowed by parity and angular momentum • 
• J 
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. TABLE 5 ·(cont~) 

a) 
do -1- + 
dt (ir ~p p) 

do - - do - o + dt (ir ~P p)- dt (ir p-+-p n) 

b) 
do ( o 
dt yp-+-ir p) 

>. 

~· ;.~ c) 
do · cit ( yp-+-np) 

\ _/ 

d) 
do ( + do -.cit yp-+-ir n) - - (yn-+-rr p) dt 
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FIGURE CAPTIONS 

Fig. 1: Quark graph for meson-baryon vertex. 

Fig. 2: Kinematics for TITI + TIW. 

Fig. 3: Dashed line - initial contour; solid line - opened con­

tour. 
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