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Abstract 

The Earth's largest geoid anomalies occur at the lowest spherical harmonic 

degrees, or longest wavelengths, and are primarily the result of mantle convection. 

Thermal density contrasts due to convection are partially compensated by boundary 

deformations due to viscous flow whose effects must be included in order to obtain a 

dynamically consistent model for the geoid. These deformations occur rapidly with 

respect to the timescale for convection, and we have analytically calculated geoid 

response kernels for steady-state, viscous, incompressible, self-gravitating, layered

Earth models which include the deformation of boundaries due to internal loads. Both 

the sign and magnitude of geoid anomalies depend strongly upon the viscosity struc

ture of the mantle as well as the possible presence of chemical layering. 

Correlations of various global geophysical data sets with the observed geoid can 

be used to construct theoretical geoid models which constrain the dynamics of mantle 

convection. Surface features such as topography and plate velocities are not obviously 

related to the low-degree geoid, with the exception of subduction zones which are 

characterized by geoid highs (degrees 4-9). Recent models for seismic heterogeneity in 

the mantle provide additional constraints, and much of the low-degree (2-3) geoid can 

be attributed to seismically inferred density anomalies in the lower mantle . The 

Earth's largest geoid highs are underlain by low density material in the lower mantle, 

thus requiring compensating deformations of the Earth's surface. A dynamical model 

for whole mantle convection with a low viscosity upper mantle can explain these 

observations and successfully predicts more than 80% of the observed geoid variance. 

Temperature variations associated with density anomalies in the man tie cause 

lateral viscosity variations whose effects are not included in the analytical models. 
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However, perturbation theory and numerical tests show that broad-scale lateral 

viscosity variations are much less important than radial variations; in this respect, 

geoid models, which depend upon steady-state surface deformations, may provide 

more reliable constraints on mantle structure than inferences from transient 

phenomena such as postglacial rebound. Stronger, smaller-scale viscosity variations 

associated with mantle plumes and subducting slabs may be more important . On the 

basis of numerical modelling of low viscosity plumes, we conclude that the global 

association of geoid highs (after slab effects are removed) with hotspots and, perhaps, 

mantle plumes, is the result of hot, upwelling material in the lower mantle; this con

clusion does not depend strongly upon plume rheology. The global distribution of 

hotspots and the dominant, low-degree geoid highs may correspond to a dominant 

mode of convection stabilized by the ancient Pangean continental assemblage. 
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Introductory Remarks 

The shape of the Earth's long-wavelength gravitation al potential field, or geoid, 

became known from studies of satellite orbit perturbations just after plate tectonic 

and sea floor spreading concepts achieved widespread acceptance among geologists 

and geophysicists. However, a direct correspondence between plate motions and con

vection cells in the mantle was not verified by the gravity data. The largest geoid 

anomalies are apparently unrelated to the current configuration of plates, and this 

has remained a difficult problem for geodynamicists. This situation has improved in 

the last several years, largely as a result of recent models of seismic heterogeneity in 

the mantle. I was fortunate to have been working simultaneously on theoretical 

models for geoid anomalies caused by lateral density contrasts due to convection. 

The inherently non-unique relationship between the geoid and internal density 

contrasts does not allow for independent inversion of the geoid data alone. My initial 

investigations showed (as had earlier researchers) that the deformation of the Earth in 

response to convecting density contrasts had a substantial effect upon the geoid. This 

effect was found to depend strongly upon the viscosity structure of the mantle and 

the depth of convection, neither of which was well constrained at the time. Having 

begun with some pessimism, this theoretical work had made a difficult problem seem 

even more intractable. However, with the new seismic data in hand to constrain 

a priori the internal density structure, it has become possible not only to model 

most of the observed long-wavelength geoid but also to derive new constraints on the 



- 2 -

dynamics and viscosity structure of the mantle. These constraints are consistent with 

postglacial rebound and other transient loading phenomena. In addition, what has 

been assumed by most researchers for almost two decades can now be stated with 

more confidence: the lack of a strong correspondence between plate tectonics and the 

geoid is due to the relatively weak coupling of plates, outside of subduction zones, to 

the large-scale man tie flow. 

These remarks are included to give some flavor for the evolution of my thinking 

since I began working on the geoid problem. The four chapters of this thesis, all of 

which deal with some aspect of geoid modelling and interpretation, were written to be 

published independently and, for the most part, contain their own introductory 

material. Much repetition of the basic concepts of dynamic compensation will be 

found from chapter to chapter, because these ideas are non-intuitive and are not fam

iliar to many geophysicists. The first chapter, which was published some time ago, 

has been kept more or less in its original form. It may be interesting to contrast some 

of the ideas in that earlier paper to the more current conclusions of Chapters 2, 3, 

and 4. I hope and expect that continuing advances in geodynamics will, within a few 

years, make some of these recent efforts seem equally naive. 



- 3 -

Chapter 1 

Geoid Anomalies in a Dynamic Earth 

INTRODUCTION 

The relationship between large-scale geoid anomalies and thermally driven flow 

in the Earth's mantle was discussed almost 50 years ago by Pekeris (1935). He showed 

that the gravitational effect of the surface deformation caused by the flow is opposite 

in sign and comparable in magnitude to that of the driving density contrast. Conse

quently, in a viscous Earth, the net gravity or geoid anomaly is also dependent in 

both sign and magnitude upon the dynamics of the mantle. This represents a com

plete departure from the result for a rigid or elastic Earth in which positive internal 

density contrasts are always associated with positive gravitational anomalies. 

Studies of postglacial rebound (e.g., Haskell, 1935; Cathles, 1975), as well as the 

very existence of plate motions, show that the mantle responds to stresses applied 

over geologic timescales by slow creeping flow. Therefore, any interpretation of long

wavelength geoid anomalies should include the dynamical effects first described by 

Pekeris. These effects, particularly boundary deformation caused by flow, have been 

investigated by Morgan (1965), McKenzie (1977), and Parsons and Daly (1983) for 

intermediate wavelength features using two-dimensional models with uniform mantle 

viscosity. Runcorn (1964, 1967) addressed the relationship between long-wavelength 

gravity anomalies and the flow field in a self-gravitating, uniform viscous sphere. 

Each of these studies showed that the deformation of boundaries, especially the upper 

surface, has a major effect upon the net gravity or geoid anomaly arising from a 
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density contrast at depth. Moreover, the effects of viscosity stratification and layered 

convection in the mantle can significantly alter the calculated relationship between 

geoid elevations and driving density contrasts (Richards and Hager, 1981; Ricard, 

Fleitou t, and Froidevaux, 1984). 

In this chapter, we develop and discuss several dynamical models and their 

implications for geoid interpretation. The aim is to provide quantitative relationships 

between density contrasts within the Earth and other geophysical observables, includ

ing boundary topography, as well as the geoid. At the present time we cannot solve 

the full problem of thermal convection for a given model to determine these dynami

cal relationships for the whole system (see McKenzie, 1977, for two-dimensional 

numerical examples). Since both the temperature structure of the mantle and the 

temperature dependence of the density and viscosity of mantle minerals are unknown, 

and since even the geometry of the convective circulation is not known (i.e., whole 

mantle vs. layered convection), a simpler and more direct approach is desirable. If the 

thermal density anomaly is treated simply as a "load", the resulting surface deforma

tion and geoid anomaly can be determined by solving only the equilibrium equations 

for a viscous Earth. 

The standard characterization of the Earth's response to tidal loading in terms 

of Love numbers (Love, 1911; Munk and MacDonald, 1960) suggests a useful way to 

characterize dynamic response functions. Love numbers for internal loading of the 

Earth are obtained by normalizing residual geoid anomalies and boundary deforma

tions by the gravitational potential of the driving load. We obtain these quantities as 

functions of the depth and harmonic degree of the load, thus yielding Love numbers 

that are equivalent to Green functions. 
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A maJor question currently is whether chemical stratification of the mantle, 

associated with the 670 km seismic discontinuity, presents a barrier to vertical flow 

and divides the mantle into separately convecting layers. In order to address this 

issue, our flow models include not only radial viscosity variations but also the possi

bility of either mantle-wide or chemically stratified flow in the mantle as illustrated in 

Figure 1. Both the geoid and boundary deformation response functions (Love 

numbers) show a strong model dependence. For example, for mantle-wide flow, posi

tive driving density contrasts cause net negative geoid anomalies for uniform mantle 

viscosity, since the negative anomaly caused by upper surface deformation 

overwhelms the geoid anomaly due to the density contrast itself. However, net posi

tive geoid anomalies are obtained for a channel of sufficiently low viscosity in the 

upper mantle . This occurs because low upper mantle viscosity reduces the deforma

tion of the upper surface. The core-mantle boundary deformation increases but has 

less effect upon the geoid because of its great depth. As shown in Figure l(b), the lay

ered flow case introduces much more complicated behavior. It is precisely this strong 

model dependence that makes these models useful in geodynamics. The observed 

spectral and loading-depth dependence of these response functions can be used to 

discriminate among various proposed models for mantle structure and rheology . 

Although observat ions of satellite orbits provided the means for determining the 

lower order harmonics of the geopotential over two decades ago (Kaula, 1963a; Guier, 

1963), subsequent efforts to interpret the long-wavelength geoid have been largely 

unsuccessful. Some correlations with tectonic features have been suggested (e .g., 

Kaula, 1972), notably a general correspondence between subduction zones and geoid 

highs. Chase (1979) and Crough and Jurdy (1980) demonstrated a remarkable 
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correlation between the spatial distribution of hot spots and the nonhydrostatic 

second harmonic geoid. Hager (1984) has shown that the fourth through ninth geoid 

harmonics are strongly correlated with the seismicity-inferred presence of subducting 

slabs, thus yielding quantitative estimates over a definite spectral range for the 

dynamic response functions which are the subject of this chapter. Additionally, 

recent seismological determinations of lateral variations in seismic velocities (e.g., 

Nakanishi and Anderson, 1982; Dziewonski, 1984; Clayton and Comer, 1983) provide 

another powerful constraint on geoid interpretation, and a large amount of informa

tion on crustal thickness, topography, and density has yet to be considered in relation 

to the geoid. It is therefore reasonable to expect increasingly accurate and useful 

observations of the Earth's density anomalies and effective boundary deformations. 

Cast in the form of dynamic response functions as discussed in this chapter, these 

data provide means for discriminating among various dynamic models for the mantle. 

MODELLING CONSIDERATIONS 

Quantitative models for the geoid derive from constitutive laws, equations of 

motion and material continuity, and boundary conditions. It is impossible at the 

present time to specify fully the Earth's rheology or to solve all these equations 

exactly. We must make various approximations and assumptions in developing 

mathematical models; in doing so we try to include the important physical effects 

while avoiding unnecessary complication in the method of solution. In this section we 

discuss our assumptions concerning mantle rheology and flow, boundary conditions, 

and the thermal driving forces involved. Boundary deformation is afforded a detailed 

treatment in a separate section. 
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Rheology and Flow 

The selection of appropriate models for the mechanical behavior of the litho

sphere, mantle, and core depends upon both the time and length scales involved. Here 

we are interested in length scales for which lithospheric strength is negligible, roughly 

defining what is meant by "long-wavelength" geoid anomalies, and time scales of the 

order of those required for substantial changes in the convective flow pattern in the 

mantle. As we show below, this implies harmonic degrees I less than 40 (wavelengths 

greater than 1000 km). If mantle flow is reflected in plate motions, the man tie flow 

pattern is stable for times far in excess of 1 Myr, which we take as a characteristic 

timescale. The core is in viscid for the timescales of interest here; it may also be 

assumed to be in a state of hydrostatic equilibrium. 

The lithosphere presents several problems, including those of finite elastic 

strength and of lateral variations in rheological properties, density, and thickness. 

For loads of wavelength greater than about 1000 km the elastic strength of the litho

sphere is negligible (McKenzie and Bowin, 1976; Watts, 1978), so that surface loads 

are supported by buoyancy and the resulting flow in the mantle. The lithosphere is 

essentially transparent to long-wavelength normal tractions from flow in the mantle. 

Lateral variations in rheological properties of the lithosphere are responsible for 

the plate tectonic style of convection in the Earth's mantle. The plates move as dis

tinct units with respect to each other and effectively form a rigid lid for any sub

lithospheric small-scale convection which may exist. Plate boundaries, on the other 

hand, are relatively weak, allowing the plates themselves to participate in mantle con

vection (Hager and O'Connell, 1981 ). This lateral heterogeneity of the effective viscos

ity of the lithosphere allows density contrasts in the interior to excite significant 
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toroidal flow (Hager and O'Connell, 1978), not just the poloidal flow which would 

result from a mantle with spherically symmetric viscosity structure. 

The choice of boundary conditions at the surface is not obvious, and the analyti

cal technique we use here does not account for lateral viscosity variations. We argue 

that the mechanical effect of the lithosphere on small-scale flow beneath plate interi

ors can be represented by a no-slip boundary condition at the Earth's surface. Flow 

involving the plates themselves is probably best approximated by a free-slip boundary 

condition. We present calculations for both cases and find that the results are similar. 

This suggests that a more complicated boundary condition that would better 

represent the effects of lithospheric plates would also be similar. 

The effect on the geoid of lateral variations in lithospheric thickness and density 

have been discussed by Chase and McNut.t (1982) and Hager (1983). These variations 

are primarily the result of variations in crustal thickness and in the age of the litho

sphere. Since they are close to the surface, they are generally well compensated, and 

their effect on the geoid is small (less than 20 m out of a total geoid variation of 

greater than 200 m). However, their effect on topography is large. If surface deforma

tion and the geoid are to be used concurrently to obtain sublithospheric density con

trasts as discussed below, corrections must be made to compensate for the topo

graphic effects of large density contrasts within the lithosphere. 

The appropriate constitutive law (or laws) for modelling flow in the mantle can

not be determined with certainty at the present time. Possible creep mechanisms for 

deformation of mantle minerals include dislocation climb (Weertman, 1968), which 

implies a non-linear rheology, and grain boundary diffusion or superplasticity (Twiss, 

1976; Ashby and Verrall, 1977; Berckhemer, Auer, and Drisler, 1979), which at low 
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stress levels might result in a linear relationship between shear stress and strain rate. 

Mathematical tractability has led most researchers to employ linear rheology, either 

Maxwellian or Newtonian, in modelling flow in the mantle. Furthermore, for some 

surface loading problems in which the magnitude of shear stress decays with depth, 

non-linear rheology might not be distinguishable from layered linear rheology; the 

lower stress levels found at depth would correspond to higher apparent viscosity. 

Estimates for effective man tie viscosity have been obtained for a variety of loading 

problems. Values given for average mantle viscosity have generally been on the order 

of 1021 Pa-sec (1022 Poise) (O'Connell, 1971; Cathles, 1975; Peltier, 1976; Yuen, 

Sabadini, and Boschi, 1982) although estimates as small as 1018 Pa-sec have been 

obtained for the upper mantle or asthenosphere for loads of smaller scale (Passey, 

1981). Although viscoelastic models have found application to shorter term problems 

such as glacial loading and unloading (Clark, Farrell, and Peltier, 1978; Wu and Pel

tier, 1982), the timescales of 1 Myr or greater of interest here are in excess of Maxwell 

times for the mantle, so we ignore elastic effects. For the purpose of exploring the 

basic physics of internal loading problems and for mathematical simplicity, we employ 

Newtonian models in which viscosity is dependent on depth only, although, when this 

theory is applied to actual data, the results suggest that lateral variations in effective 

viscosity may be important. 

Boundary Conditions 

Three possible boundaries are considered in our spherically symmetric, layered 

Earth models: (1) the core-mantle boundary; (2) the upper surface; (3) a change in 

composition and/or viscosity across the 670 km seismic discontinuity. 
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\Ve model the core-mantle boundary as one at which there is no shear traction 

and no steady-state vertical transport. As discussed above, the mantle-lithosphere 

boundary is more complicated. We have investigated both no-slip and free-slip condi

tions and have included both types in the results presented here, although, as we 

noted above, the difference between the two is not profound. 

Chemical stratification and multi-layer convection have been suggested (e.g., 

Anderson, 1979) to explain the major seismic discontinuity at 670 km. Geochemical 

budget models as well as the lack of seismicity below 670 km are thought by some to 

suggest that upper mantle flow does not penetrate this level (Jacobsen and Wasser

burg, 1980; Richter and McKenzie, 1981). We include the effect of such a boundary 

in our investigation in order to understand how geoid and geodetic data might be 

used to test the chemical layer hypothesis. A chemical discontinuity is modelled by 

setting the (steady-state) vertical velocity to zero at the boundary; horizontal veloci

ties and normal and shear tractions are continuous. This results in a two-layer, 

shear-coupled, antisymmetric flow system as illustrated in Figure l(b). Another possi

bility associated with both the 400 km and 670 km discontinuities is that of an 

abrupt phase change within the mantle, which in the simplest case might be modelled 

as a spike in the compressibility curve for the mantle, assuming that the transition is 

adiabatic and ignoring thermal effects. We have not treated this case since compressi

bility introduces nonlinearity into the field equations and makes solutions much more 

difficult to obtain. 
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Driving Forces and Loads 

The relationships among loading, gravity, and deformation can be obtained 

without solving for the thermodynamics. This is accomplished by calculating the flow 

driven by arbitrary density contrasts at any given depth. Kernels (Love numbers) 

representing the viscous response functions so obtained can then be integrated over 

depth in accordance with any prescribed distribution of thermal density anomalies; 

the linearity of the problem (with the caveat of linear, spherically symmetric viscos

ity) allows for superposition of solutions. Our method is to solve for loading due to a 

surface density contrast at a given depth and spherical harmonic degree, thereby 

characterizing the response as a function of spatial wavelength and depth in the man

tle. In this way we can isolate the relationships desired for geophysical observables 

from the thermal part of the convection problem. 

The Field Equations 

With the above qualifications and simplifications we can specify tractable field 

equations to investigate the loading problem for a variety of rheological and struc

tural configurations in the mantle. The mantle will be assumed to behave as a self

gravitating, spherically symmetric, incompressible, Newtonian viscous fluid . Since the 

Reynold's number is very large owing to the mantle's high viscosity, inertial or time

dependent terms are omitted from the equations of motion. The only time depen

dence is introduced by changes in position with time of the driving density contrasts 

and relaxation of the boundaries to a steady-state condition of deformation. We 

address the relaxation problem in detail in Appendix 2, the result being that boun

dary deformations decay rapidly compared to the timescale of flow in the interior. 
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The equations of motion can be written: 

'\i"I.+ pg= 0 (1) 

where I. is the stress tensor, p the density and g the gravitational acceleration . The 

mantle will be assumed to be incompressible throughout; although radial density 

layering can be arbitrarily imposed in our method of solution, allowance for finite 

fluid compressibility is mathematically difficult and is generally ignored by most 

authors (Cathles, 1975; Peltier, 1981) since the dynamic effect is probably small 

(Jarvis and McKenzie, 1980). Ricard et al. (1984) have shown that the effect of 

compression from lateral gravity variations is negligible. The incompressible con

tinuity equation is : 

v ·v = 0 (2) 

where v is the velocity vector. The Newtonian constitutive relation is: 

I. = -pl + 27].f. (3) 

where p is the pressure , l the identity matrix, 7J the viscosity, and .f. the strain rate 

tensor. 

For global scale loading problems, self-gravitation effects cannot be ignored 

(Love, 1911; Clark et . al., 1978). The gravitational effects of deformed boundaries 

must be included in any self-consistent model. The gravitational potential V must 

satisfy 

v 2v = 41TG P (4) 

where we have chosen the sign convention such that g = -V V. These equations are 

linear in all the variables and can be straightforwardly solved by either propagator 
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matrix (Hager and O'Connell, 1981) or numerical techniques. Before proceeding to a 

fully three-dimensional (spherical) solution, we present some useful results from the 

simple two-dimensional half space problem. Results from the viscous relaxation prob-

lem that justify the hypothesis of steady-state flow are given in Appendix 2. 

ANALYTICAL TREATMENT OF BOUNDARY DEFORMATION 

Loading of the Earth by gravitational potential (e .g., tidal loading), by external 

loads (e.g., glacial loading), or internal density contrasts (e.g., thermal convection), 

will produce deformations of both the surface and any internal boundaries. In this 

section we analytically treat boundary deformation to first-order accuracy and derive 

some useful results for the two-dimensional problem. Figure 2 illustrates the warping 

of a material boundary relative to its deformed or reference state , with densities p1 

and p2 above and below the boundary, respectively. The velocity and stress fields 

must be continuous at the deformed boundary. However, our solution technique 

requires that we propagate solution vectors from one horizontal boundary to the next, 

so we require expressions for the velocity and stress fields at the reference (uncle-

formed) boundaries. If the magnitude of deformation, 8z, is sufficiently small com-

pared to the thickness of either of the adjacent layers and the spatial wavelength, >-., 

of interest (as in this study), any variable, u i in medium i, may be continued, to 

first-order accuracy, from the deformed boundary to the reference level by: 

(5) 

Since flow-induced stresses are always much smaller (first-order) than the lithostatic 

stress level in the mantle (zeroth order), flow and stress variables are first-order also; 
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their derivatives behave like the product of first-order terms and the approximate 

spatial wavenumber. The only first-order correction due to deformation is the hydro-

static correction to the normal stress: 

(6) 

In passing from the reference boundary as seen in medium 2 to that seen in medium 

1, we get an apparent jump in normal stress: 

(7) 

where Ap12 = p1 - p2. By continuity of stress at the deformed boundary: 

A 12 A J: 
t..J. Tzz I = -1..J.P129 vZ 

" 
(8) 

(A similar argument will imply an effective jump in the gravitational acceleration at 

the reference boundary in the fully self-gravitating spherical case.) 

This result can be readily applied to a simple half space problem. Figure 3 illus-

trates a surface density contrast (i.e., a thermal density anomaly), O" d (k )cos(kx ), at 

depth d, exciting flow in a viscous half space of viscosity 1J and density p, with a 

traction free surface at the top. For simplicity we will first assume that the density 

contrast is not advected with the resulting flow so that it remains fixed in space (this 

could be done experimentally using a heat pump, for example). We will then show 

that the density contrast would not be advected a significant distance in the time it 

takes for the boundary deformation to reach equilibrium. Solving equations (1)-(3) 

using the two-dimensional propagator (Hager and O'Connell, 1981), we find that the 

boundary displacement 8z evolves from its initial undeformed position as 

8z 
O"d (k )cos (kx) 
-----(l+kd )exp (-kd )(1-e-t I] 

p 
(9) 
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The boundary relaxes with time exponentially toward a steady state of deformation 

with time constant 

,,. = 2r]k /pg (10) 

This is the same time as that derived for the surface loading or unloading problem, 

e.g., postglacial rebound (Haskell, 1935; Cathles, 1975). For example, with rJ = 1021 

Pa-sec, ).. = 27r/k > 1000 km, p = 3.5 Mg/m3
, g = 9.8 m/sec2

, we obtain 

r < 11,000 yr. Assuming velocities in the mantle of the order of 100 mm/yr or less, 

we see that mantle transport of at most a few kilometers (much less than the depth 

scale of mantle convection) occurs before the free surface is completely relaxed. 

Alternatively, we can assume that boundary deformation is rapid and calculate 

flow velocities under the assumption that vertical flow at the deformed surface van-

ishes (i.e., boundary deformation is complete). In this case, 

gCTd(k)cos(kx) 
vz(d) = [(1+2kd)exp(-2kd)-1] 

417k 
(11) 

Comparing this to the characteristic surface velocity obtained by differentiating (9), 

we find that: 

8z 
Vz ( d) 

2(1+kd )e-t fr 
(12) 

exp (kd )-(1+2kd )exp (-kd) 

Once again, we see that long-wavelength boundary deformation is rapid compared to 

changes in the convective flow pattern independent of CT d (k ). Note that this result 

holds even for "thin" layers which are normally associated with long relaxation times. 

In Appendix 2 we show that viscous relaxation occurs on a timescale much shorter 

than that for mantle convection by calculating relaxation times for several spherical 

Earth models. 
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The long time limit of equation (9) shows that the effective mass deficit associ-

ated with the surface deformation, <7 ef f = p8z, is of opposite sign and of the same 

order of magnitude as <7 d. It is now evident for at least two reasons that the assump-

tion that 8z is sufficiently small for the application of a linear continuation of the 

boundary condition is probably justified: (l)Thermal density contrasts in the Earth, 

with the possible exception of subducted slabs, are probably not large enough to 

cause gross deformation of either internal or external boundaries. (2) The Earth's 

topography a priori precludes lithospheric deformations greater than 10 km while 

seismic data do not suggest large deformations of the core-mantle boundary 

(Dziewonski and Haddon, 1974) or the 670 km discontinuity, although coverage is 

limited, especially in subduction zones where deformation is expected to be the largest 

(Hager, 1984). 

From equation (7) we can obtain the relationship between the observed gravita-

tional potential and the load as well as the relationship between topography and 

geoid due to <7 d (k ). The residual potential calculated at the reference surface contains 

contributions from both O' d and O' ef f : 

or 

8Vres(z=0) = 8l'eff +8VO'd = 2rrG cos(kx) [-(1 + kd) + l]exp(-kd)<7d(k) 
k 

8Vres (0) 
----~- =-kd 
8VO'd (0) 

(13) 

This means that, for a uniform half space, a positive density contrast at depth results 

in a negative geoid anomaly. The geoid anomaly goes to zero as the density contrast 

approaches the surface. Furthermore, for depths greater than the wavelength, the 
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geoid can be much larger in magnitude than that obtained for a rigid half space for 

which there would be no boundary deformation. This occurs because the stress that 

causes boundary deformation falls off less rapidly with the depth of loading than the 

potential from the load itself. 

For spherical models in general, the normalized potential 

(14) 

is the Green function for the Earth's surf ace potential per unit loading at radius r 

and spherical harmonic degree / . This quantity is a function of the Earth model in 

general and is related to Kaula's (1963b) elastic in tern al loading potential Love 

number, ki' 1 
, by 

(15) 

This response function is measurable if the driving density contrasts within the Earth 

are known a priori . Hager (1984) has used this in his discussion of geoid anomalies 

from su bducted slabs, where density contrasts can be estimated. Another application 

is in comparing seismic velocity heterogeneities to the geoid (Hager et . al., 1985). By 

assuming a relation between seismic velocity and density the long-wavelength geoid 

coefficients are obtained from the integral: 

r=a 

8vroid= ~;~; J Ki(r)(r/a)1+28p1(r)dr 
r=O 

(16) 

where a is the radius of the Earth , 8p1 ( r) is the I th harmonic density contrast at 

radius r,and G is the gravitational constant. 



- 18 -

The other observable we can calculate is a dimensionless "impedance", defined 

as the ratio of geoid elevation to boundary deformation: 

(17) 

where 8r1 is the I th harmonic deformation of the surface, and g is the gravitational 

acceleration. (Note that this is not a true impedance since it involves the observed 

potential 8vroid instead of the driving potential 8Va' .) Defining a surface deforma-

tion Love number ht' 1 (e.g., Munk and MacDonald, 1960), we have 

This quantity could be estimated for the surface by taking the ratio of harmonic 

geoid coefficients to topographic coefficients with the effects of crustal thickness varia-

tions removed. To estimate Z1 (r) for a given density distribution and Earth model, 

the numerator and denominator of (17) must be integrated separately. 

We have now defined two observables relating the geoid directly to internal 

loading and Earth structure for a density contrast at a given depth. Also, equation 

(16) shows how to interpret these quantities for models with distributed density con-

trasts. We have not yet introduced the gravitational interaction between the load 

and the mass anomalies due to boundary deformation. 
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SPHERICAL EARTH MODELS 

Formal Solution 

Analytical solutions to field equations (1) through (4) with radial variations in 

viscosity and density and for arbitrary, laterally varying internal loading are found in 

Hager and O'Connell (1981). Internal density contrasts drive poloidal flow fields for 

which the relevant stress, flow, and gravitational potential variables can be prop-

agated from one radial layer to another according to: 

r 

u(r) = P(r ,r 0 )u(r 0 ) + f P(r ,E)b(E)d E (18) 
ro 

where u is the six-vector given by 

[ 
Por 

2 
88V l T u(r) = vr , v 0, r Trr /TJo, r Tro/TJo, p0r 8V /TJo, -- --

T/o Br 
(19) 

with radial and tangential velocities vr and v 0 , normal radial and shear deviatoric 

stresses Trr and Tro , perturbed potential 8V, and reference density and viscosity Po 

and T/o· In these expressions and for the remainder of this chapter all dynamical vari-

ables contain an implicit spherical harmonic dependence which has been suppressed 

for simplicity . The 6x6 matrix P(r ,r 0) can be expressed analytically (Gantmacher, 

1960) as a function of r /r 0, normalized layer density p* = p/p0, normalized layer 

viscosity T/* = 17/TJ0 , and harmonic order l. The driving term for this system is the 

integral on the right in equation (18) in which the density contrasts are introduced by 

b(r) = [ 0, 0, rg (r )8p(r )/170 , 0, 0, 47rr 2G p08p(r )/TJo J T (20) 

where g (r) is the unperturbed (hydrostatic) gravitational acceleration and 8p(r) is 
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the density contrast at radius r. 

The problem is greatly simplified mathematically by casting the driving density 

structure not only as a sum over spherical harmonics but also as a sum over radial 

surface density contrasts; that is, 

8p(r) = l:8(r-bdO"i (21) 
b, 

where 8(r) is the Dirac delta function and the O"i are the surface density contrasts. 

Equation (18) becomes 

u(r) = P(r ,r 0)u(r 0) + l:P(r A )bi (22) 
b, 

where 

(23) 

Now, as was indicated previously in expressions (14) through (17), we can characterize 

all solutions in terms of harmonic order l and radial level or depth of the driving den-

sity contrasts since, owing to the linearity of the field equations, these solutions or 

kernels can be superposed to represent any arbitrary density contrast in the mantle. 

A familiar and useful property of the propagator matrix formulation is that solu-

tion vectors can be propagated through a series of different material layers by simply 

forming the product of the individual layer matrices: 

(24) 

Therefore, changes in viscosity (and density) with depth are easily incorporated into 

this formalism. 
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Boundary Conditions 

We have discussed two types of boundary conditions: (1) A free-slip (denoted 

"F") boundary condition requires zero radial velocity ( vr) and zero shear stress (Tr 0), 

a condition which applies at the core-man tie boundary. (2) A no-slip (denoted "N") 

boundary condition requires zero radial and tangential velocities ( vr and v 0). Good 

arguments can be made for applying either of these boundary conditions at the sur-

face. For completeness, and to gain insight into the physics of the problem we have 

modelled both combinations. For example, for no-slip at the deformed surface 

(r=a+8ra) and free-slip at the core-mantle boundary (r=c+8rc), we have , to first 

order, 

[ 
2 l T N Poa a8Va 

u (a +8ra) = 0 , 0 , 0 , a Tr o / 1Jo , Poa 8Va ho , -- ---
• 1Jo ar 

(25) 

and 

[ 

2 l T F PoC a8Vc 
u (c +8rc )= 0, Vo , c Trr /1Jo, 0, PoC 8Vc /1Jo, -----

' c 1Jo ar 

where we have also set the normal stress to zero at the surface. These boundary con-

ditions apply at the actual deformed boundaries (see Fig. 1), however equations (22) 

show only how to propagate from one spherical reference boundary to another. There-

fore expressions (25) must be analytically continued to the reference boundaries via 

equations (5) through (8) cast in spherical coordinates. This is a tedious operation 

which involves finding expressions for Trr ,Trr ,8Va ,8Vc in terms of the resulting har-
• c 

monic surface deformations (8ra, 8rc ), and the details as well as the resulting system 

of equations are included in Appendix 1. This procedure involves two physical effects: 

(1) When solution vectors are referenced to the undeformed boundaries, there is an 
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apparent jump m normal stress at each boundary given by an expression similar to 

equation (8): 

8rrr = -8pg ( r )8r (26) 

(2) There is a similar jump in gravity at each boundary (see Appendix 1). Accord-

ingly, each boundary deformation makes a first-order contribution to the perturbed 

potential. This occurs because, as demonstrated above, the mass displaced is of the 

same order of magnitude as the driving density contrast. The important thing to 

note is that we can cast the problem in a form whose solution gives the deformation 

of boundaries as well as the gravitational potential at those boundaries as functions of 

the harmonic order and depth of loading. From these solutions we can generate the 

desired quantities (Love numbers and impedances) defined by expressions (14) 

through (17). 

Equation (24) shows how to treat layering effects in material properties, but a 

layered flow system (Figure l(b )) requires a separate boundary condition at the flow 

barrier. We model this boundary as a compositional change accompanied by a den-

sity jump which results in a simple flow barrier with shear coupling between the two 

layers. Mathematically, this can be expressed as 

(27) 

m which the radial velocity is set to zero at the boundary. This also represents 

another boundary which will deform under loading and an additional apparent jump 

in normal stress and gravity will occur when (27) is analytically continued to its refer-

ence surface (e.g., 670km depth). For this two layer flow problem we have two sys

tems of equations (22) that are coupled at an internal boundary whose field variables 
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are given by (27). We have not included the details here, but solution of these prop

agator equations proceeds straightforwardly as in Appendix 1, where details are given 

for the case of whole mantle flow. 

RESPONSE FUNCTIONS 

The mathematical formalism we have developed for solving the internal loading 

problem yields solutions in the form of boundary vectors that give the fluid velocities 

and stresses as well as the gravitational potential and its radial derivative at spherical 

reference boundaries corresponding to the unperturbed layer boundaries. These refer

ence boundary vectors can be propagated (see equation 18) to any radial level in the 

Earth, so each solution implicitly contains the stress-flow field and gravitational field 

throughout the mantle. For any specific model, solutions vary with the depth of load

ing and harmonic degree so that, even for the limited variety of models we have con

sidered here, a very large amount of information is generated. The spherical Earth 

results presented in this section are restricted to those involving either the geoid or 

boundary deformations. The results that follow involve only the approximations dis

cussed above and are analytic, although the resulting algebraic expressions are 

evaluated on a computer. 

Whole Mantle Flow 

The simplest model is that for mantle-wide flow, and most of the physical ideas 

from spherical modelling can be demonstrated with this model. Figures 4( a)-( c) show 

for model A (see Table 1) the amount of mass per unit area, normalized by the ampli

tude of the load, that is displaced by deformation of the core-mantle boundary and 
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the upper surface as a function of the depth of loading for representative harmonic 

degrees 2, 7, and 20. The displaced mass is opposite in sign to that of the driving 

mass anomaly, so its negative is plotted for ease in comparison. Figures 4(a)-(c) are 

for free-slip at both the core-mantle interface and the upper surface ("FF" case) while 

(f)-(h) are for no-slip at the upper surface ("NF" case). The closer the load is to a 

boundary the larger are the resulting mass displacement and deformation at that 

boundary. Also plotted is the total amount of mass displaced at both boundaries. By 

analogy to the Airy or Pratt principles of isostatic compensation in the lithosphere, 

these curves represent dynamic isostasy for mantle loads in a spherical Earth. The 

total mass displaced is opposite in sign and comparable, but not identical, in magni

tude to that of the load (dashed line) for long wavelengths. For the uniform viscosity 

model, -a disp (total )/ab is of order unity for I =2 and I =7, but for higher values of l 

this ratio becomes much smaller if the load is not close to a boundary: this means 

that the load is almost entirely dynamically supported by flow in the interior. Figures 

4(d) and (e) show the effects of one and two orders of magnitude viscosity contrast 

above 670 km depth (Model C) for I =7 for the "FF" case. The lower viscosity in the 

upper mantle lessens the coupling between the flow and the upper surface, thereby 

decreasing the deformation of the upper surface and increasing that of the core

mantle boundary. In Figure 4(e) the coupling is so weak that self-gravitation actually 

causes the deformation to reverse, resulting in the slightly negative excursion of its 

mass displacement curve. This effect will be addressed more fully below. 

Comparison of Figures 4(a) and (f) shows that the main effect of the no-slip con

dition, as opposed to the free-slip condition, at the upper surface is to restrict the 

flow near that boundary, resulting in more deformation and mass displacement at the 
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upper boundary. This effect diminishes with increasing l as seen by comparison of 

Figures (b) and (g) as well as (c) and (h) . Notice that for NF conditions the maximum 

mass displacement at the upper surface occurs with the load at depth rather than 

when it is nearest to the surface. A similar effect can be derived analytically for the 

two-dimensional case and is the result of flow restriction in a channel due to long

wavelength loading. In the three-dimensional (spherical) case this subsurface max

imum in deformation is also enhanced considerably by the self-gravitation of the 

boundary. In addition to the stresses generated by the load "sinking" in the ambient 

(zeroth order) potential field, there is a first order perturbation in the ambient field 

due to both the load and the mass displacements at the boundaries. Although this 

idea is no more complicated than that of a self-consistent gravity field, the effect is 

physically subtle and warrants some discussion. 

The basic propagator equations (18) are written for field variable six-vectors, the 

last two terms of which are the perturbed geopotential field and its radial derivative 

(gravitational acceleration). These two variables must satisfy Poisson's equation 

independently and it has recently been shown by O'Connell, Hager, and Richards (in 

preparation) that the 6x6 set of equations can be reduced to coupled 4x4 and 2x2 sys

tems in which the 2x2 system involves only the potential variables and Poisson's 

equation. The 4x4 system is obtained by substitution of u 3 + p* u 5 for u 3 in the six 

vector. This results in a decoupled four-vector system where 

u(6x6)-+ u' (4x4) = [vr, Vo, rTrr/1'/o + pr8V /rJo, rTro/rJo JT 

Physically, the normal stress term has been augmented by a "gravitational pressure" 

term, pr 8V /17 0, to form a system of equations that is otherwise similar to the 4x4 

propagator system used in two-dimensional problems (e.g., Cathles, 1975). This 
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formulation then shows explicitly how self-gravitation enters into the dynamics of the 

loading problem. Upon examination of the excitation vector {23) we notice that there 

are two driving terms: {I) The third term of the vector corresponds to the stress due 

to the density contrast being acted upon by the zeroth order field. {2) The sixth term 

represents the driving force due to the first-order field perturbation from the density 

contrast, that is, a gravitational pressure term. These extra pressure terms do not 

drive flow in steady-state, but they do affect boundary deformations. 

In Appendix 2 we discuss the problem of viscous relaxation to steady-state m 

terms of the largest decay time associated with a given Earth model. However, this 

approach constitutes a worst case analysis since all of the relaxation modes are, in 

general, excited by loading. Although we were able to justify the steady-state assump

tion for our models even for these worst cases, it is possible with the analytical tools 

here to solve for mode excitation as a function of the depth of loading and harmonic 

degree. An eigenmode for the simple two-layer case can be represented by a unit nor

malized two-vector giving the relative amount of mass displaced at the upper surface 

and the core-mantle boundary. For models A and C there is a mantle mode {MO) and 

a core mode (C). For MO, both boundaries flex in the same sense; for the C mode 

their flexure is oppositely directed. The relative amounts of mode excitation are deter

mined by finding the appropriate linear combination of MO and C required to give the 

boundary mass displacements in Figure 4. Note that this matching also solves the 

unloading problem, that is, excitation of modes due to the sudden release of an inter

nal load of long duration; the loading and unloading problems are equivalent in terms 

of relative mode excitation. Figures 5(a)-(c) show the results of the calculations for 

the FF models of Figure 4. 
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Figure 4 shows that, at least for Jong-wavelength loads, the amount of mass dis

placed at the boundaries is comparable to the mass of the load itself, so the total 

geoid anomaly at the surface involves significant contributions from these sources. 

Figure 6 shows the relative contribution from each of the three sources 

8Va ,8Vc ,and8V u as functions of the depth of the load . The 8V u ("o-") curve has a 

simple (a /r )1+2 dependence derived solely from potential theory (see equation A7) 

and the 8Va ("a") and 8Vc ("c") curves are proportional to the product of the mass 

displacement curves of Figure 4 and the (a/r)1+2 factor. Potentials 8Va and 8Vc are 

of opposite sign to 8V u· Their absolute values are plotted normalized by the max

imum value of 8Va, to facilitate direct comparison. Figures 6(a)-( c) are for FF condi

tions and ( d)-(f) are for NF conditions. In most of the figures to follow we refer to 

potential anomalies since they are related to geoid anomalies simply through 

8N = 8l1 / g, where 8N is the geoid height due to 8V and g is the gravitational 

acceleration at the surface. As was the case for the two-dimensional half space, the 

geoid contribution due to the deformation of the upper surface is generally larger 

than that due to the load. The contribution from the core-mantle boundary is gen

erally small except for loads at great depth. Again, comparing Figures 6(a)-(c) with 

(d)-(f), the effect of stronger upper surface coupling due to the no-slip condition is evi

dent. Notice that for I =2 and I =7 with NF conditions, the maximum 8Va contribu

tion occurs at depth. In Figure 6(d) we have plotted (see curve "a' ") the result 

obtained ignoring self-gravitation in order to demonstrate its importance for lower 

degree harmonics. This was accomplished by ignoring the self-gravitation terms 

described above (at the expense of a self-consistent field). Since the difference between 

curve 8V u and the sum of 8Va and 8Vc determines the surface potential anomaly , 
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this effect cannot be ignored for the lowest harmonic degrees. 

The total surface potential, 8V101 , normalized by the load potential , 8V 17 , 

results in the response function K, the modified Love number defined in equation 

(14). Figure 7 shows K as a function of loading depth and harmonic degree for the 

four possible combinations of boundary conditions. The differences among these 

results are not great, although the relative coupling effects due to N or F conditions 

can be seen, especially for low-order harmonics. The cases with no-slip at the core

mantle boundary are included because they simulate high viscosity in the lowermost 

mantle . In the more pertinent FF and NF cases, K is invariably negative for model A 

(no viscosity contrast). As predicted by equation 13, the magnitude of J( can be 

much greater than unity; consequently, the geoid signature of a density contrast at 

depth is amplified. The straight light lines in Figures 7(a) and (b) show the two

dimensional half space values for K. Note that with the load at either boundary, 

compensation of the geoid is complete to first order since all the loading stress is 

absorbed by deflection of the boundary. The geoid is much more sensitive to density 

contrasts in the middle regions of the mantle than to comparable density contrasts 

near boundaries. 

The dominating influence of the upper surface deformation is diminished by the 

effect of low viscosity in the upper mantle, resulting in less negative or even positive 

values for K. This is shown in Figure 8 for both FF and NF conditions. In this case 

the different boundary conditions result in more markedly different geoid signatures. 

The effect of the low viscosity channel in the upper mantle is strongest for shorter 

wavelengths (larger I), whereas the channel is almost transparent to I =2 loading. \Ve 

have not presented many of the other models of viscosity stratification which are also 
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plausible, but their effect can be roughly extrapolated from these figures. For exam

ple, a thinner channel, say 200 km thick, remains transparent to much shorter 

wavelengths than for the 670 km case . 

The ratio of geoid anomaly to surface deformation, the impedance function z 
(equation 17), is shown in Figure 9 for models A and C for both FF and NF condi

tions. For uniform viscosity, Z is positive since the sign of the geoid is determined by 

the upper surface deformation. With a viscosity contrast, the functions can become 

positive since the geoid itself may be positive. Note that for large viscosity contrasts, 

say 17* =0.01 (not shown), singularities in Z can occur since the surface deformation 

can change sign (go through a zero). In practical applications these singularities will 

be smoothed by integration over a depth distribution of density contrasts. 

Layered Flow 

The flow model representing a chemical discontinuity at 670 km depth is illus

trated in Figure l(b) corresponding to models D and E. Mass displacements at the 

boundaries are shown in Figure 10, comparable to Figure 4 for a uniform composition 

mantle. In these cases there is deformation and effective mass displacement at the 

layer boundary as shown by the "M" curves. For loads near the 670 km discon

tinuity the stress is taken up principally by the deformation of that boundary. The 

curves for total mass displacement in Figure 10, computed for NF boundary condi

tions, again represent dynamic isostatic compensation as discussed for the case of 

whole mantle flow. The sense of flow in both the upper and lower mantle is reversed 

for loading in the upper mantle from that resulting from loading in the lower mantle. 

Consequently, the sign of both the core-mantle boundary and upper surface 
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deformation depends upon whether the load is above or below the 670 km discon

tinuity; singularities occur in the corresponding impedance functions and the behavior 

of f{ becomes more complicated. Figure 11 shows the relative excitation of viscous 

relaxation normal modes for these layered models where we now have an additional 

mode, Ml, associated with deformation of the 670 km discontinuity. The depth 

dependence for the MO and C mode is strikingly similar to that for the whole mantle 

case. The Ml mode is, as expected, dominant near the 670 km discontinuity. 

The chemical layer response functions f{ and Z for models D and E are shown 

m Figures 12 and 13. The potential function f{ exhibits a more complicated depth 

dependence than for the whole mantle case . In particular, for no viscosity contrast, 

the sign of the geoid anomaly reverses as we cross the 670 km discontinuity due to 

the dominance and reversal of the upper surface deformation; geoid anomalies due to 

correlated upper and lower mantle density contrasts are anticorrelated. Also, all func

tions f{ have an additional zero at 670 km depth. For a viscosity contrast at 670 km, 

the coupling at the upper surface is reduced sufficiently so that the deformation of 

the 670 km discontinuity dominates the surface potential resulting again in negative 

values for J(. Therefore, a wide variety of behavior is possible for a relatively small 

range of viscosity contrasts (less than one order of magnitude). Upper surface 

impedance values, Z, are plotted in Figure 13, and these functions are also seen to be 

strongly model dependent. 

Note that the maximum values of I< for density contrasts in the upper mantle 

are small compared to those for the whole-mantle flow model (Figure 7) and those for 

density contrasts in the lower mantle for the stratified models. The physical interpre

tation of this behavior is useful in developing intuition about dynamic geoid 
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anomalies. As a first approximation, dynamic isostasy results in the conservation of 

mass in any column, at least at long wavelengths (see Figures 4 and 10). The total 

geoid anomaly results from a mass quadrupole consisting of a driving mass anomaly 

at depth and compensating mass anomalies at the deformed boundaries. The magni

tude of the anomaly depends upon the separation of the boundaries--the "arm 

length" of the quadrupole. For a given mass anomaly, the deeper the convecting 

layer, the larger the arm length and the greater the geoid anomaly. In the limit of 

zero thickness, the geoid anomaly in a convecting layer goes to zero. 

INTERPRETATION 

The range of solutions for K obtained for the simple models we have described 

are illustrated in Figure 14. Instead of plotting K as a function of depth and har

monic degree, we have now plotted it as a function of harmonic degree and Earth 

model for representative depths of 300, 1400, and 2600 km in order to emphasize the 

most important conclusion resulting from this study: The relationship that exists 

among internal loading, surface deformation, and the geoid is a strong function not 

only of the depth and harmonic degree of loading but also of the mechanical structure 

of the mantle. The dashed reference lines in Figures 14(a)-(c) represent the value of K 

that would be observed for a rigid Earth, that is, if we ignore the dynamic response. 

Even the limited range of models we have explored exhibit a wide range of values for 

K that indicate the sensitivity of the observables to structure. Interpretation of the 

Earth's geoid in terms of in tern al processes demands careful consideration of a variety 

of physical effects, but much of the nonuniqueness inherent in surface gravity prob

lems is removed because of the distinct signature of different models. 
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Figures 7-9 and 12-14 constitute "maps" that show how to relate geoid 

anomalies and surface deformations to the depth and harmonic degree of driving den

sity contrasts. In most of the models there is roughly an order of magnitude 

amplification of the higher harmonic geoid anomalies for loads at great depth. For 

example, [( attains its largest value of -12 in model A for l =20 with the load several 

hundred kilometers above the core-mantle boundary. This requires modification of 

simple state-of-stress type arguments concerning the maximum geoid anomalies which 

can be generated by loads supported at great depth (Kaula, 1963b ). Required devia

toric stresses up to an order of magnitude smaller can support density contrasts gen

erating a given geoid anomaly in dynamic Earth models as opposed to an elastic 

model. Of course, these modified Love numbers must still be multiplied by (r /a )1+2 

to give the total potential (see Figure 5 of Hager, 1984). Also from the figures showing 

K as a function of depth we see that, to first order, [( is zero at the boundaries, 

which implies that compensation of loads near boundaries is essentially complete. 

This means that bumps due to a variable thermal boundary layer in a convecting 

mantle are essentially masked out of the geoid signature. Since these density contrasts 

are likely to be among the largest associated with convection, this becomes a serious 

constraint on the resolvability of these features in the geoid. A good example of this 

is the observation that mid-oceanic ridges have very little long-wavelength geoid sig

nature. Also in reference to the upper boundary layer, crustal and lithospheric thick

ness and density are not in general very well known for the Earth. Application of the 

impedance response functions requires a more complete synthesis of information on 

lithospheric thickness and surface topography than is currently available and this 

problem is currently under study. In addition to these complications it should be 
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remembered that for a given density anomaly "map" for the mantle, say from seismic 

heterogeneity data or from a three-dimensional convection model, one must integrate 

K(r ,!) and Z(r ,!) over depth as in equation 16 (the numerator, oV, and the denom

inator, g or, of Z must be integrated separately). This will tend to smooth the 

respective models summarized in Figure 14. Another important point illustrated by 

these figures is that long-wavelength geoid anomalies are influenced more by density 

contrasts in the middle mantle than in the uppermost or lowermost mantle. Also, for 

a given range of density anomalies, whole-mantle convection results in larger geoid 

anomalies than layered convection. 

An example of the process of interpretation using dynamic response functions is 

found in Hager's (1984) analysis of the correlation between the geoid and subducted 

slabs as evidenced by deep focus earthquakes. Seismically active slabs represent 

known positive density contrasts that correlate spatially at better than the 99% 

confidence level in a positive sense with the degree 4-9 geoid. The positive correlation 

in this wavelength band requires an increase in viscosity with depth of two orders of 

magnitude between the upper and lower mantle in regions of active subduction. The 

amplitude of the observed geoid anomalies in the context of dynamic Earth models 

requires much more excess mass than can be provided by subducted slabs alone in the 

upper mantle . A straightforward explanation is that the positive density contrasts 

associated with subduction extend into the lower mantle . 

Seismology is now reaching the point where it is possible to map lateral velocity 

variations in the man tie. Examples include the determination of degree 2 lateral 

heterogeneity in the upper mantle by Masters et al. (1982), more detailed surface 

wave studies including odd and higher order harmonics (Nakanishi and Anderson, 
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1982; Woodhouse and Dziewonski, 1984), and body wave studies of lateral velocity 

variations in the lower mantle (Dziewonski, Hager, and O 'Connell, 1977; Dziewonski, 

1984; Clayton and Comer, 1983). When the velocity anomalies determined by these 

studies are compared to the observed geoid by assigning reasonable density contrasts 

to the velocity anomalies (neglecting the dynamical effects we have discussed), the 

geoids predicted are several times larger than those observed and may be of opposite 

sign. 

As we have shown in this chapter, the dynamics of flow in the mantle can 

reduce the long-wavelength geoid anomalies from those resulting from the driving 

density contrasts alone and can even lead to a reversal in sign. Thus, the seismologi

cal results are not qualitatively surprising. They are useful, when combined with the 

theory described here, in placing meaningful constraints on mantle dynamics. By com

bining observational seismology and the quantitative theory of dynamic geoid 

anomalies we can learn far more than we could by either technique alone. For exam

ple, Hager et al. (1985) have shown that 70% of the variance of the degree 2-3 geoid 

can be accounted for by seismically inferred density contrasts in the lower mantle, 

using the kernels of Figure 8(c), for a model with uniform composition and an 

increase in viscosity of a factor of 10 across the 670 km discontinuity. 

The other geophysical observable we have discussed is surface deformation, 

which is expected to show a correlation with the long-wavelength geoid. Before this 

signature of mantle dynamics can be measured, however, the large effects of crustal 

thickness variations on topography must be removed. A simple, preliminary result is 

obtainable if we limit our comparison to old shield areas. For these areas, erosion can 

be assumed to have established a constant continental freeboard over geologic time. 
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Also limiting our comparison to regions removed from collision zones, we find that the 

African shield, in a major geoid high, is high standing, while the Siberian and the 

Canadian shields, in major geoid lows, are relatively low standing (NOAA, 1980). 

Similar conclusions can be reached from the hypsographic curves of Harrison et al. 

(1981 ). From these observations we estimate that the impedance, Z, at long 

wavelengths is of order +0.1. This is consistent with the results for the long

wavelength correlation between seismic velocity heterogeneity in the lower mantle and 

the geoid. More detailed analysis using crustal thickness and density data should 

yield more accurate quantitative results over a broader spectral range. 

\Vithin the framework of a spherically symmetric model, we are unable to recon

cile the evidence from geoid anomalies over subduction zones that the effective viscos

ity increases by two orders of magnitude with the preliminary evidence from seismic 

studies and elevation of shield areas that the viscosity increases by only one order of 

magnitude. Perhaps not surprisingly, lateral variations in effective viscosity are sug

gested. Further theoretical improvements in our understanding of geoid anomalies in 

a dynamic Earth are clearly desirable. Modelling of the effects of lateral viscosity 

variations and nonlinear rheology would be particularly useful in understanding the 

geoid signature of su bd ucted slabs, since they exist in zones characterized by large 

deviatoric stresses and temperature gradients. We would also like to model the effects 

of adiabatic compressibility and adiabatic phase changes in the mantle. These 

improvements will require numerical modelling and would therefore imply a maJor 

departure from the analytical methods we have described. 
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Summary 

We have used spherical Newtonian Earth models to investigate the relationship 

between driving loads and their geoid and surface topographic signatures. Normal

ized surface potential, J(, and deformation impedance, Z, have been calculated for 

representative cases of viscous and chemical stratification in the man tie. The follow

ing dynamical effects are found to be important for geoid interpretation: 

(1) The response of the upper surface to loading has a large effect upon the 

behavior of the geoid signature, with negative geoid anomalies correlated with posi

tive driving density contrasts for the simplest models without viscosity contrasts. 

(2) Considerable amplification of deep, higher harmonic loads is reflected m the 

geoid due to the manner in which flow stresses drive boundary deformation. 

(3) The choice of the upper surface boundary condition (free-slip vs. no-slip) does 

not strongly affect the basic behavior of the response functions. 

(4) Lower viscosity in the upper mantle tends to drive J( positive and Z toward 

larger values. For a very large viscosity contrast, the upper surface deformation may 

reverse sign due to gravitational pressure resulting in a singularity in Z. 

(5) The introduction of a flow barrier corresponding to a chemical boundary has 

a pronounced effect on the magnitude of the response functions J( and Z. In partic

ular, density contrasts in the upper mantle have a much smaller geoid signature; this 

might help distinguish the two basic flow models when loads within the upper mantle 

can be estimated . 

(6) Near-boundary density contrasts are masked by the deformation of the 

boundary. 
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(7) Self-gravitation is important for low harmonic degree loading. 

(8) Viscous relaxation of boundaries occurs on a much shorter timescale than 

convective flow so that boundary deformation due to internal loading can be con

sidered steady-state. 

(9) Applications of this theory to global data from geodesy and seismology show 

that the dynamical effects we have predicted can be observed for the Earth . Improved 

analysis should yield a better understanding of mantle dynamics. 
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APPENDIX 1: Analytical Details for the Whole Mantle Problem 

In order to solve equations (22) the boundary conditions (25) must be analyti-

cally continued to their respective spherical reference surfaces which are the mean 

Earth radius a and the mean core radius c. The field variables are continued within 

the medium through which they are propagated in equations (22), in this case the 

mantle . To first order, the only terms in vectors (25) affected are the radial normal 

stress and the gravitational acceleration. Since the stress above the Earth's surface is 

zero, the normal non hydrostatic stress at the reference boundary is just the apparent 

jump described by equation (8), so 

(Al( a)) 

or 

F p0a o8Va 
[ 

2 l T 
u (a)= 0, Voa, -pmg(a)a8r /TJo, 0, Poa8Va/T/o, -;;;;----a;- (Al(b)) 

At the core, using equation (6) and the perturbed hydrostatic stress, -Pc 8Vc , at the 

reference level as seen in the mantle we obtain 

(A2) 

Note that the normal stress term in this vector contains not only the effective stress 

discontinuity (proportional to 8rc) but also a gravitational pressure term (propor-

tional to 8Vc ); this represents the pressure field within the inviscid core . 
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The deformations 8r6 and 8rc cause first-order perturbations in the potential 

8V in addition to that due to the driving density contrast a at depth b. These per-

turbations are appropriately treated as effective surface masses at the reference boun-

dary levels as discussed above in our analytical treatment of boundary deformation . 

We now calculate the potential at r = a (lithosphere) due to a surface mass distri-

bution also at r = a. The perturbed potentials just above and below the surface 

are: 

(A3) 

since v 28 V = 0 away from the surface density contrast . 

At the surface v 28V = 47rG p, so, integrating over a volume 0 enclosed by a 

surface S, 

I v(8V)·nda 
s 

(A4) 

by Green's Theorem. Integrating over a "pill box" containing a piece of the surface 

density contrast and shrinking the radial thickness of the box to zero, 

p --1- adr , n --1- f, v(8V) --1- B(bV) and (A4) becomes ar 

[ 
8(8V) l a+ 

ar a-
= 47rGa (A5) 

For our perturbed boundary conditions we impose an effective surface mass 

a ef f such that the apparent jump in normal stress at the reference boundary is given 

by 8rrr. = g (a )aef f. Expanding 8rrr. = "E8r/r. Y1 , where we have made the lth 
/ 
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harmonic dependence explicit, and usmg the above expansions for 8V to calculate 

[ O(~~) ]_+ we obtain the desired result: 

Similarly at r = c (core-mantle boundary) we obtain: 

8r 1 

8V/ = 47rGc E_::_(c /r )1+1y, 
g(c) I 2/+1 

Again, for the density contrast at b: 

The total potentials at a and at c are given by 

8V 101 = (8v- + 8V + + 8V-) c a c b r=c 

(A6) 

(A7) 

(AS) 

(A9) 

These expressions contain explicitly the perturbed potentials due to boundary defor-

mation that are required for a self-gravitating model. Writing the 8r jr 's in terms of 

the 8r 's we obtain the following expressions for the potentials in terms of the boun-

dary deformations and a 1: 
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bVc = 
4

7rG [a (c /a )1 Pm bra + c bPcm brc + b (c /b )1 a 1 J 
2/ +1 

Combining the first four of equations (22) with reference boundary expressions 

(Al( a)) and (A2) and potentials (AlO), we obtain the following equations for bra and 

br c as well as for v Be and Tr o : 
a 

(All) 

and where the driving terms on the right are usually normalized by setting a to 

unity. Exact values of the propagator elements P jt , P ft can be calculated according 

to the procedures in Hager and O'Connell, 1981, and equations (All) can be solved in 

a straightforward manner. With these solutions for the boundary deformations and 

the potentials via (AlO) we can calculate the kernels defined by expressions (14) 

through (17). 
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APPENDIX 2: Viscous Relaxation Times for Spherical Earth Models 

We need to demonstrate that the boundaries relax with time constants much 

smaller than the timescales for convective flow. These time constants can be obtained 

from consideration of the normal mode problem for relaxation in a radially stratified 

viscous Earth model. Viscoelastic solutions have been presented by Wu and Peltier 

(1982), but since convective timescales are far in excess of Maxwell times in the Earth 

the effect of elasticity can be ignored. The purely viscous normal mode problem is 

much less complicated and was first investigated by Parsons (1972). Using prop

agator matrix methods which are described in detail by O'Connell, Hager, and 

Richards (in preparation), we have solved for the relaxation spectra of the self

gravitating spherical models used in the geoid calculations that follow. By setting all 

the stress-flow variables and boundary deformations proportional to exp (-t /ri) and 

solving the resulting system of homogeneous equations (see Hager and O'Connell, 

1979), the eigenvalues Ti as well as the eigenmodes for flow, stress and deformation 

are obtained. Each flow boundary introduces an additional relaxation time constant 

and eigenmode. For example, for a simple model with an inviscid core overlain by a 

uniform mantle, we obtain a mantle and a core mode. These modes are, respectively, 

symmetric and antisymmetric with respect to the sense of boundary relaxation, and 

the time constant for the antisymmetric mode grows rapidly as the thickness of the 

flow layer decreases (Solomon, Comer, and Head, 1982). 

In Table I we have listed the parameters used for the models presented m this 

chapter. Density values have been chosen to match the total mass of each layer (as 

well as the Earth) and the gravity at each boundary (Dziewonski, Hales, and Lap

wood, 1975), although with such a layering scheme it is impossible to simultaneously 
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match other Earth parameters, such as moment of inertia, which are not important 

to this study. Also, for the viscous relaxation problem we use smaller, more realistic 

density contrasts across in tern al boundaries (adiabatic compression in the mantle 

being ignored), since these values strongly affect the time constants obtained. 

The two basic models used are those of whole mantle and layered mantle flow, 

both with an inviscid core. Arbitrary viscosity and density layering can be treated, so 

the models presented here are chosen to be illustrative rather than exhaustive. In 

Figures Al and A2 we plot the relaxation time constants (eigenvalues) and the associ

ated boundary deformations associated with each eigenmode. An individual e1gen

mode consists of a flow field throughout the mantle and could be represented. How

ever, for our purposes the boundary deformations serve to identify both the appropri

ate branch (mode) and the relative excitation of each mode as we demonstrate later. 

Figures Al(a) and (b) show the results which are obtained for the uniform mantle 

model (Model A). For each harmonic number /, following the nomenclature of Peltier 

(1976), there is a core mode (C) and a mantle mode (MO). For I < 20, the largest 

relaxation time obtained is less than 104 yrs. and is associated with the C mode. Note 

that for high harmonic order the relaxation time increases with increasing 

wavenumber as in equation (10). In Figure Al(b) we plot the core deformation ampli

tude normalized by the surface deformation amplitude for each mode. As we would 

expect, the modes are strongly coupled at low-harmonic order and relatively decou

pled at higher values of /, thus distinguishing the C and MO mode branches. Also 

shown in Figure Al(a) is the very slight change in relaxation times caused by model

ling the upper 100 km of mantle ("lithosphere") with two orders of magnitude higher 

viscosity than the mantle ( rJ = 1023 Pa-sec, or 'f/* = rJ/rJo = 100 with 'f/o = 10
21 
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Pa-sec denoting the reference or lower mantle viscosity). For the wavelengths of 

interest here such a layer is essentially transparent. In Figures Al(c) and (d) and 

Al(e) and (f) we illustrate the effect of low viscosity (11* = .01) in the upper mantle 

above 200 km and 670 km, respectively. There are three principal effects to be noted: 

(1) From the amplitude plots we see that the two modes tend to be decoupled by the 

low viscosity channel. (2) The C mode relaxation times are essentially unaffected 

while the mantle mode times are decreased by one to two orders of magnitude. (3) 

The strength of these effects increases with the thickness of the low viscosity channel. 

From these simple cases illustrating the effects of viscosity layering we conclude that, 

for a broad class of whole mantle flow models, no relaxation times greater than 104 

yrs. are obtained for a lower mantle viscosity of 1021 Pa-sec. 

We now consider models for two layer, shear coupled flow in the mantle (Models 

D and E) in which the depth of the top layer corresponds to the 670km discontinuity. 

Since the upper and lower mantle do not mix across the 670 km discontinuity in these 

models, we have introduced an internal boundary whose deformation contributes 

another mantle mode (Ml). This boundary could be a chemical discontinuity or a 

phase boundary with sluggish kinetics. Figures A2(a) through (c) show, respectively, 

the relaxation times, the relative deformation of the core-man tie boundary, and the 

relative deformation of the 670 km discontinuity for each of the modes C, MO, and 

Ml. The relaxation times for the C and MO modes are essentially the same as those 

obtained for the whole man tie case. However, the Ml mode has a much longer relaxa

tion time (about 105 yrs.). The boundary deformation amplitudes exhibit a much 

more complicated dependence upon l than for previous models, and the meaning of 

these eigenmodes will become more apparent when we address the problem of mode 
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excitation; for now we will concentrate on the relaxation times . In particular, when 

the density contrast across the 670 km discontinuity is decreased from 0 .. 5 to 0.3 

Mg/m3
, a significant increase in the Ml time occurs (Figure A2(a)). This can be 

easily understood physically since the buoyancy force that tends to restore a boun

dary to its reference configuration is proportional to the density jump, 8p, at that 

boundary. Therefore, as 8p is made smaller the associated relaxation time increases 

accordingly . Since the actual density contrasts within the Earth are not exactly 

known, it is important to remember this effect when modelling relaxation times. In 

Figures A2( d) through (f) we illustrate the effects of low viscosity in the upper mantle 

for two-layer flow. Both the MO and Ml modes accordingly exhibit smaller relaxation 

times, the effect on Ml being one-half to one order of magnitude. We conclude that 

for the two-layer flow model the longest relaxation time expected is about 105 yrs. 

An upper mantle flow layer involving chemical boundaries at say 400 km or 220 km 

(Anderson, 1979) would result in longer relaxation times, but we have not included 

these more complicated cases in our geoid models. 

None of the relaxation times calculated so far have been in excess of 105 yrs., 

which for reasonable mantle flow velocities would allow for about 10 km transport in 

the mantle . This is indeed small compared to the flow dimensions, so, for lower man

tle viscosities of 1021 Pa-sec, the assumption of steady-state flow is verified. Recent 

studies by Peltier (1981) and Yuen et al. (1982) indicate that the viscosity of the 

lower mantle is less than 1022 Pa-sec. Since the relaxation problem scales linearly with 

reference viscosity (which we always take to be that of the lower mantle), it is not 

likely that the steady-state hypothesis for boundary deformation is seriously violated 

for the overall convective circulation in the mantle. Alternatively, computing the 
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ratio of flow velocity to the velocity of relaxation of the boundary as in equation (12), 

the viscosity cancels, indicating that boundaries relax rapidly relative to changes in 

the flow regime whatever the mantle viscosity. 
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Table 1 - Basic models for spherical Earth calculations. Parameters include Earth 

and core radii, c and a, core, upper, and lower mantle densities, Pc, Pu, and 

p1 (in Mg/m3
), upper and lower mantle viscosities, T/u and T/t, effective density 

jumps at the core-mantle boundary and the 670 km discontinuity, bPcm and 

8p1u, and the depth of the upper flow or viscosity layer, d. 



fABLE 1: fYiodei Parameters 

All Models 

c a 
3480km 6371km 

Whole Mantle Flow 

Modei Pt OP tu 
A 4.43 o.o 
B 4.43 0.0 
c 4.43 o.o 

Layered Flow 

I Mo~del Pt OPtu 
4.92 0.5 
4.92 0.5 

Pc 
11.0 

Pu 
4.43 
4.43 
4.43 

Pu 
3.50 
3.50 

4.5 

?'Jt 
1021Pa s 
1 021Pa s 
1021Pa s 

17t 
1 o21 Pa s 
1 021Pa s 
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'r/u 
1021 Pa s 

1019 or 1 o20Pa s 
1019 or 1020Pa s 

'r/u 
1 0 21 Pa s 

1019 or 1 o20Pa s 

d 

---
200km 
670km 

d 

670km 
670km 
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Figure 1 - Illustrations of flow models for spherical Earth calculations (l =3): (a) 

Whole mantle flow. (b) Flow with a chemical barrier at the 670 km discon

tinuity. The "+" and "-" signs indicate positive and negative density con

trasts. The dashed lines are reference boundaries and the solid lines represent 

the displaced boundaries. Streamlines indicate the sense of flow. 
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Figure 2 - Illustration of the geometry for the analytical treatment of deformation 

of the boundary between two fluid half spaces with densities p1 and p2. The 

actual boundary (solid line) is displaced an amount 8z (x) from the reference 

boundary (dashed line). 



- 60 -

Reference boundary 



- 61 -

Figure 3 - Illustration of the Fourier flow analysis in a two-dimensional half space. 

The surface density contrast u d (k )cos (kx) at depth d excites flow, resulting 

in deformation of the free surface. We assume here that the advection of the 

density contrast by the flow is negligible on the timescale for establishing the 

boundary deformation. 
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Figure 4 - Mass displacement at the boundaries as a function of loading depth for 

harmonic degrees 2, 7, and 20 (whole mantle flow). Plots are normalized to a 

unit density contrast load. The "S" curve is for the upper surface, "C" is for 

the core-mantle boundary, and "T" is the total mass displaced. Figures (d) 

and (e) show the effect of low viscosity in the upper mantle for harmonic 

degree 7. Figures (a) through (e) are for FF boundary conditions and (f) 

through (h) are for NF conditions. 
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Figure 5 - Viscous normal mode excitation as a function of loading depth for 

whole mantle models. The "C" (core) and "MO" (mantle) modes are unit nor

malized and their excitation amplitudes are plotted for harmonic degrees 2, 7, 

and 20. Figures (d) and (e) illustrate the effect of low viscosity in the upper 

mantle. 
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Figure 6 - Absolute values of gravitational potential contributions from the den

sity contrast at the indicated depth ("o"'), the deformation of the core-mantle 

boundary ("c"), and the upper surface deformation ("a") for harmonic degrees 

2, 7, and 20. (The "a" and "c" curves actually have opposite sign from the 

"er" curve). Values plotted are normalized by the maximum value of curve "a" 

for convenience in comparison. Figure ( d) shows the upper surface deformation 

not corrected for self-gravitation (curve "a 1 
"). Figures (a) through (c) are 

for FF boundary conditions and (d) through (f) are for NF conditions, all for 

uniform mantle viscosity. 
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Figure 7 - Surface potential response, K, as a function of loading depth for har

monic degrees 2, 7, and 20. Illustrated are the four possible combinations of 

free-slip (F) and no-slip (N) boundary conditions, all calculated for a uniform 

viscosity mantle. The light, straight lines in (a) and (b) show the two

dimensional half space result, K = -kd. The dashed line at K =1 gives the 

rigid Earth result for comparison. 
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Figure 8 - Surface potential response, K, as a function of loading depth for viscos

ity contrasts of 0.1 and 0.01 in the upper mantle. Figures (a) and (b) are for 

FF boundary conditions and (c) and (d) are for NF conditions. 
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Figure 9 - Surface deformation impedance, Z, as a function of loading depth illus

trating the effect of low viscosity in the upper mantle for harmonic degrees 2, 

7, and 20. Figures (a) and (b) are for FF boundary conditions and (c) and (d) 

are for NF conditions. The solid, long-dashed, and short-dashed lines are, 

respectively, for l =2, 7, and 20. The dashed line at Z =0 gives the "perfect" 

compensation result for comparison . 
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Figure 10 - Mass displacement at the boundaries as a function of loading depth 

for two-layer flow models with uniform viscosity (same as Figure 4 with addi

tional displacement curve "M" for the 670km discontinuity). 
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Figure 11 - Viscous normal mode excitation as a function of loading depth for 

two-layer flow models with uniform viscosity (same as Figure 5 with the addi

tional Ml mode due to deformation of the 670km discontinuity). 
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Figure 12 - Surface potential response, K, as a function of loading depth for two

layer models, illustrating the effect of low viscosity in the upper man tie. Boun

dary conditions are no-slip (N) at the surface and free-slip (F) at the core

mantle boundary. 
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Figure 13 - Surface deformation impedance, Z, as a function of loading depth for 

two-layer models, illustrating the effect of low viscosity in the upper mantle. 

The solid, long-dashed, and short-dashed lines are, respectively, for l =2, 7, 

and 20. 
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Figure 14 - Harmonic dependence of response functions, K, for representative 

loading depths of 300km, 1400km, and 2600km for a variety of models. 

Curves "a" and "c" are for whole mantle flow with FF boundary conditions 

and upper mantle viscosity contrasts of 1.0 and 0.01, respectively. Curves "d" 

and "f" are for two-layer flow with NF boundary conditions and upper mantle 

viscosity contrasts of 1.0 and 0.01. 
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Figure Al - Relaxation times and relative boundary displacement amplitudes for 

viscous normal modes as functions of harmonic degree for whole mantle flow. 

MO refers to the symmetric mantle mode and C refers to the asymmetric core 

mode. The notation "-C" in (b ), ( d), and (f) emphasizes that the boundary 

deformations are of opposite sign for the core mode. The models represented 

include uniform mantle viscosity and low viscosity channels above 200 km and 

670 km depth. Figure (a) also shows the relatively minor effect of a high 

viscosity "lithosphere" layer. 
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Figure A2 - Relaxation times and relative boundary amplitudes for viscous normal 

modes as functions of harmonic degree for two-layer flow. The Ml mode is 

generated by deformation of the flow barrier at 670 km depth, and the right

hand column of figures are for a low viscosity upper mantle. Plus and minus 

signs on the amplitude curves indicate sign reversals in the sense of deforma

tion relative to that of the surface. Figure (a) also shows the effect of using a 

density jump of 0.3 instead of 0.5 Mg/m3 at the 670 km discontinuity . 
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Chapter 2 

The Earth's Geoid and the Large-scale Structure of Mantle 
Convection 

Introduction 

Variations m the Earth's gravitational po ten ti al field, expressed as undulations 

of the geoid, are ultimately derived from density contrasts due to solid-state convec-

tion deep within the mantle. The observed long-wavelength geoid (Lerch et al., 1983), 

referenced to the equilibrium hydrostatic figure (Nakiboglu, 1982), is dominated by a 

very long wavelength pattern which shows little resemblance to the Earth 's topogra-

phy or to the present configuration of plate tectonics (Figure la). Less than 30 m of 

this signal of ,...._,,200 m can be due to isostatically compensated variations in lithos-

pheric thickness or density (Hager, 1983), so the remainder must be related to mantle 

convection. The question is then : if plate tectonics is the surface expression of mantle 

convection, and if convection causes variations in the geoid, why are the plates and 

the geoid not more obviously related? 

By contrast, long-wavelength geoid highs on both Mars (Balmino et al., 1982) 

and Venus (Sjogren et al., 1980) are strongly correlated with topographic highs. The 

prominent Tharsis bulge on Mars, with its huge volcanic shields, is either an active or 

fossil expression of hot upwelling in the Martian mantle, and the Venusian highlands 

are straightforwardly explained as surface bulges due to mantle convection (Kiefer et 
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al., 1986). The apparent absence of plate tectonics on these terrestrial planets (Kaula 

and Phillips, 1981 ), as well as the presence of isostatically compensated, chemically 

buoyant continental masses on Earth, are probably the key differences. The Earth's 

lithospheric plates can move about on a timescale much shorter than that required for 

convective overturn of the lower mantle because of the decoupling effects of low 

viscosity in the asthenosphere. A likely cause for this decoupling zone 1s the 

approach of the geotherm to the wet peridotite solidus (Anderson and Sammis, 1970; 

Wyllie, 1971). This may result in a long (,..._,100 Ma) time lag between the tempera

ture contrasts due to the cooling of plates and their effect upon the large-scale tem

perature structure of the mantle . 

Upon filtering out the longest wavelength components (harmonic degrees 2-3) of 

the geoid (Figure lb) we find a remarkable correspondence between convergence or 

subduction zones and geoid highs, i.e ., the circum-Pacific "ring of fire". These 

smaller, more "local" anomalies correspond to sinking lithosphere at least in the 

upper mantle, so the paradox discussed above is limited mainly to the dominant, 

lowest-degree pattern. In previous papers we have proposed that this very long 

wavelength pattern is derived mainly from lower mantle density contrasts (Hager et 

al., 1985), while much of the higher degree (l >4) geoid is caused by slabs in the 

upper mantle (Hager, 1984). 

In this paper we start with an empirical approach to understanding the Earth's 

geoid, the object being to contrast the global data that seem related to the geoid with 

global features that are apparently unrelated. We examine statistical correlations 

between the observed geoid and two types of data. The first type includes surface 

features (topography, plate velocities, subduction zones, hotspots) which are plausible 
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symptoms of mantle convection. The second data source is seismic tomography 

which has recently provided models of velocity heterogeneity in the mantle. The next 

step is to formulate geodynamic models that provide a physical connection between 

the geoid and the global data sets that correlate strongly with the geoid. The result 

is a model for the Earth's geoid, based mainly upon velocity heterogeneity in the 

lower mantle and upon the locations of subducting slabs, which explains most 

(>80%) of the observed geoid variance. This model presumably describes a similar 

proportion of the large-scale density and temperature contrasts that result from man-

tie convection. 

Global Correlations with Surface Features 

The Earth's topography is dominated by the distribution of continental and oce-

anic crust. For comparison with the long-wavelength geoid, we have used a harmonic 

expansion of 1°x 1° averages of global topography (NOAA, 1980) corrected for oceanic 

and polar ice loads referred to a density of 2.7 g/cm 3 . The harmonic expansion of 

this equivalent rock topography, h, is 

oo I 

h (8,¢) = I; I; him Yim (B,¢) (1) 
l=l m=-1 

where the Y1m 's are surface spherical harmonics normalized so that their mean square 

value is unity (Kaula, 1967), i.e., 

f d ¢ f sinB de Y1m (B,¢) Y1~ (B,¢) = 47r (2) 
0 0 

where Y1~ denotes the complex conjugate of Yim. Similarly, the non hydrostatic geo-

po ten ti al is represented by 
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oo I 

g (B,¢) = E E 9/m Yim (B,¢) (3) 
1=2 m=-1 

The geopotential coefficients may be converted to geoid elevation coefficients by sim-

ply dividing by the gravitational acceleration at the surface. Correlation coefficients 
' 

r1, between topography and the geoid are given by the ratio of covariance to variance 

at each harmonic degree, 

E(91m h,:n) 
r1 (g ,h ) = -;;;:::;:;;;;;;;m=;;;;;;;:::::::;;;;==.= 

E(91m 91:n)E(h1m h1:n) 
m m 

(4) 

Cumulative correlations for several or many harmonic degrees simultaneously can be 

misleading since spectral power is not uniform (Eckhardt, 1984), so we present raw 

degree correlations. The significance of a correlation is evaluated by a Student's t test 

for 2/ degrees of freedom, and the computed correlations are shown in Figure 2a 

along with confidence limits. For example, a confidence level of 0.98 implies only a 2% 

chance that a correlation is random. Figure 2a verifies that there is no consistent 

correlation between topography and the low-degree geoid. 

For higher degrees (I> 6) there is a consistent positive correlation between 

topography and the geoid which is due mainly to the ,__,5_10 m geoid elevations 

encountered in going from oceanic to continental crust (Haxby and Turcotte, 1978; 

Chase and McNutt, 1982). Hager (1983) has computed global isostatic geoid 

anomalies based upon a cooling plate model for oceanic lithosphere and isostatic com-

pensation of 35 km thick continental crust. We have improved this global isostatic 

model by including geoid elevations calculated from Airy compensation of 

anomalously thick crust in con tinen ta! convergence zones (Tibet, Andes, Iranian-
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Caucasus highlands). These predicted anomalies also correlate well with the higher 

degree geoid (Figure 2a). 

These isostatic anomalies actually contribute very little total power to the 

observed geoid as shown by the spectral amplitude comparison of Figure 2b. Here, the 

root mean square harmonic coefficient amplitude at each degree is given by 

(5) 

where V1
2(A ) is the variance at each degree for a given set of expansion coefficients 

(A1111 ). We have plotted A1 (rms) as opposed to, e.g., variance, because the spectrum 

of random noise on a sphere is fiat ("white") on such a plot. Therefore, any low-

degree, or long-wavelength, bias ("reddening") will show up as a negative slope for 

A1 ( rms) vs. l . The observed geopoten tial shows a very strong long-wavelength bias. 

The isostatic model predicts geoid anomalies of much lower amplitude than 

those observed (Figure 2b ), especially at the lowest degrees ( <5) where the two data 

sets are uncorrelated. The relative lack of low-degree power in the isostatic model is 

to be expected for two reasons: (1) The topography spectrum is, itself, "whiter" than 

that of the geoid. (2) Compensation at relatively shallow lithospheric depths results in 

very little low-degree geoid signal. 

In assessing the success of a model m explaining an observed surface field such 

as the geoid, we use the total variance, ~ V1
2, because, unlike amplitude, this quan-

1 

tity is additive for uncorrelated signals and it is additive by degree. Subtracting our 

best estimate for isostatic anomalies from the observed geoid actually increases the 

total variance by 4.9% because of the poor fit at the low degrees. Even in the band 

l =6-20, where the correlation is good, we achieve only a 9.7% variance reduction. 
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For this reason, the isostatic correction has little effect upon the correlations that fol

low, and we have chosen to ignore it for the sake of simplicity. 

We have also examined the relationship between the geoid and continental shield 

areas (Figure 2a) by using a harmonic expansion of areas classified as largely Archean, 

Proterozoic, or Precambrian undeformed terranes by Mauk (1977). For degrees 2-8, 

the correlation is consistently negative although not consistently significant. This 

implies a weak association of geoid lows with old shield areas. We note that Turcotte 

and McAdoo (1979) concluded that there was no systematic difference between con

tinental and oceanic geoid elevations, but they used broad spatial averages over 

selected terranes rather than the global, wavelength dependent (harmonic) approach 

we have taken. Since shallowly compensated (crustal) topography results in a small 

but positive geoid anomaly, our observation suggests a deep, high density, continental 

root associated with the most stable terranes, perhaps of the order of several hundred 

kilometers in depth. Consistent with this speculation, Nakanishi and Anderson (1984) 

and Tanimoto and Anderson (1984) have noted a correspondence between high man

tle Love wave velocities (periods <250 seconds) and both geoid lows and shields in 

the harmonic degree I =4-6 band. Although this is a topic of considerable interest 

(see Jordan, 1975; 19i8), we shall not pursue it further here; the shield signal is weak, 

and, like the isostatic model, it explains little of the observed geoid variance. We 

conclude from our analysis of topographic and crustal/lithospheric effects that most 

of the Earth's geoid must be derived from density contrasts deep in the mantle due to 

convection. 

A more direct connection between the convection derived geoid and surface 

features might be reflected in tectonic plate motions since they are coupled to flow in 
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the mantle. To investigate this possibility, we have obtained harmonic representa

tions of both the poloidal and toroidal scalar fields that describe the plate velocity 

vector field (see Hager and O'Connell, 1978). The toroidal component, representing 

mainly transform motion between plates, is not significantly correlated with the geoid 

for any of degrees 2-20 (not shown). The poloidal component represents both the con

vergence (subduction) and divergence (sea-floor spreading) of plates. Since poloidal 

surface velocity fields imply vertical motions in the underlying mantle and can be 

driven by density contrasts (e.g., Hager and O'Connell, 1978), the poloidal velocity 

component might be expected to be directly related to the interior density contrasts 

that give rise to the observed geoid. However, there is only a weak correlation 

between the geoid and the poloidal plate velocity field for degrees 2-20 (Figure 2c ). 

The single high correlation at degree 4 is about what is expected for a random sample 

of 20 degrees (Hager and O'Connell, 1978). Note from Figure 2d that the spectral 

power here, relative to the overall spectral trend, is not as large as degree 5 which 

does not correlate well. This correlation has, however, led some researchers to con

clude that both ridges and trenches are strongly correlated with the geoid (Peltier and 

Forte, 1984). 

Such a conclusion is misleading. Reference to Figure 1 shows that while conver

gence (subduction) zones correspond consistently with geoid highs, there is no con

sistent relationship between the geoid and spreading ridges. To investigate this quan

titatively, we have correlated both divergence and convergence rates with the geoid 

(Figure 2c). Harmonic representations of convergence and divergence were obtained 

by expanding the product v 81 along all plate boundaries, where v is the convergence 

(positive) or divergence (negative) velocity (Minster and Jordan, 1978; Chase, 1978) of 
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each boundary segment length bl. For harmonic degrees 4-9 there is a very strong 

correlation between the geoid and convergence rate (Hager, 1982), but plate diver

gence is not correlated with the geoid for harmonic degrees < 9. The isolated correla

tion at degree 3 corresponds to a relative low in the divergence spectrum (Figure 2d), 

and the sign of correlation is inconsistent for the low degrees. The weak correlation 

between the poloidal plate velocity field and the geoid is a result of the strong conver

gence zone correlation diluted by the uncorrelated divergence components. 

Specifically, there is no evidence in the geoid for deep thermal support or active man

tle upwelling under ridges. The weak correlation between geoid highs and divergence 

rate for degrees >9 may be due to isostatically compensated lithospheric thickening 

away from ridges (Haxby and Turcotte, 1978). These observations are consistent 

with passive upwelling under mid-ocean ridges and the presence of cold, sinking slabs 

under subduction zones. 

The geoid highs over subduction zones are evident in Figure lb, and correlation 

coefficients between a predicted slab geopotential and the observed geoid (Figure 2c) 

are even stronger than those for convergence vs. the geoid; the total amount of sub

ducted slab (proportional to the product of subduction rate and some characteristic 

time) is more physically related to the geoid than to the rate of subduction itself. The 

slab geoid signal was calculated by using deep seismicity to locate subclucting litho

sphere and by associating slabs with an average density contrast of 0.1 g/cm 3 (see 

Hager, 1984). This model predicts most of the geoid signal associated with subduction 

zones. An excellent fit is obtained without allowing for compensating downwarp of 

the lithosphere at subduction zones (i.e., trenches), and we further discuss this prob

lem below. 



- 97 -

By subtracting a model for the slab geoid from the observed geoid , we obtain a 

residual geoid which is even more dominated by harmonic degrees 2 and 3 (Figure 3c). 

Chase (1979) and Crough and Jurdy (1980) noticed that most of the Earth's hotspots 

(e .g., Hawaii and Iceland) occur in residual geoid highs. This is shown dramatically in 

Figure 4a, where the black dots correspond to 47 prominent hotspots. These volcanic 

centers are essentially fixed with respect to plate motions and are often attributed to 

the passage of the lithosphere over deep mantle plumes (Morgan, 1972). A spherical 

harmonic expansion of the global spatial density of hotspots is obtained by represent

ing each hotspot as a point source of equal (unit) strength. Correlations with both 

the geoid and the residual geoid are shown in Figures 3a and 3b, respectively. For 

degrees 2-6 hotspots are strongly correlated with the residual geoid, as was obvious in 

Figure 4a, and the degree 2 and 6 correlations correspond to peaks in the hotspot dis

tribution spectrum (Figure 3c). If the hotspots, or mantle plumes, are causing the 

residual geoid highs, these hot, low density upwellings must be well compensated by 

dynamic uplift of the lithosphere . This seems difficult to reconcile with the apparently 

weak compensation of slabs, but in following sections we will show how this paradox 

can be explained. 

Seismic Heterogeneity in the Mantle 

Analysis of seismic travel times and phase velocity delays are two methods avail

able to estimate density contrasts at great depth in the mantle. Substantial velocity 

heterogeneity has been found both in the upper mantle (Masters et al., 1982; Wood

house and Dziewonski, 1984; Nakanishi and Anderson, 1984; Nataf et al., 1984; Tani

moto, 1986) and in the lower mantle (Dziewonski et al., 1977; Clayton and Comer, 
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1983; Dziewonski, 1984). These velocity variations might be due to either thermal or 

compositional gradients in the mantle, and the associated density variations must 

contribute to the geoid. 

Long period ( > 100 sec) surface waves are sensitive to shear velocity hetero

geneity in the mid-upper mantle as well as to near surface effects. Here we examine 

two recent surface wave phase velocity inversions to see if upper mantle heterogeneity 

can explain the large geoid anomalies not associated with subduction zones. Wood

house and Dziewonski ("WD") and Tanimoto ("Tan") found shear velocity variations 

as large as 3% at depths greater than 200 km. Correlations with both the observed 

geoid and the slab residual geoid are shown in Figure 3a, b for shear velocity averages 

over depth ranges of 200-500 km (\11,'D) and 200-400 km (Tan). On the whole, these 

velocity anomalies are not well correlated with either the observed or the residual 

geoid. The Tanimoto model shows a strong correlation at degree 3, but the \VD 

model does not . Degree 2 velocity anomalies in this depth range are not significantly 

correlated with the geoid, so little of the residual geoid can be accounted for by these 

models of mid-upper mantle heterogeneity. Curiously, at harmonic degree 6 the resi

dual geoid is very significantly, and negatively, correlated with hotspots and with the 

surface wave models of WD and Tan as well as Nakanishi and Anderson (1984) . This 

anomaly corresponds to the most prominent peak in the distribution spectrum of 

hotspots (Figure 3c) and to the degree 6 correlation failure for slabs (Figure 2b); we 

have proposed that all three correlated observations are related to upper mantle heat

ing (Richards, Sleep, and Hager, to be submitted, 1986: Chapter 4). We also note 

that these surface wave models show no consistent correlation with subduction zones. 

This might seem surprising given the power in the long-wavelength geoid associated 
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with su bducted slabs. Typical subduction zones are, however, characterized by (low 

velocity) arcs and back-arc basins overlying (high velocity) slabs (Nakanishi and 

Anderson, 1984). Surface waves integrate over depth (Tanimoto, 1986), and these 

effects apparently cancel in the seismic models leaving no strong subduction signal. 

This provides an interesting contrast to dynamic geoid kernels (see next section) 

which are insensitive to near-surface variations, such as back-arc spreading, but are 

sensitive to deeper variations such as subducted slabs. 

By contrast, from analysis of longer period fundamental spheroidal modes, Mas

ters et al. (1982) ("MJSG") inf erred degree 2 velocity heterogeneity in the transition 

zone ( 400-670 km depth) that is strongly and positively correlated with the geoid (see 

Table). The WD model, in rough agreement with MJSG, is positively, although 

weakly, correlated with the geoid for degree 2 at depths of 550 and 650 km. (WD 

applied surface wave overtone data to help resolve these depths.) The Tanimoto 

model (450-650 km), which changes less rapidly with depth, shows a consistent, posi

tive correlation with the degree 2 (as well as degree 3) geoid and with the MJSG tran

sition zone model. Also shown in the Table are the more impressive correlations 

between these velocity models and the locations (from deep seismicity) of subducted 

slabs. Nataf et al. (1986) similarly find a high velocity signature at some depths 

below the oldest oceanic lithosphere and trenches. From these observations we inf er 

that seismic heterogeneity as well as some of the degree 2 geoid are both due to slabs 

in the transition zone. However, the MJSG study was limited to harmonic degree 2, 

and the \VD and Tanimoto models ( 450-650 km) are uncorrelated with both sub

ducted slabs and the geoid at higher degrees. We cannot, therefore, place much 

confidence in higher-degree geoid models based upon these transition zone velocity 
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models. 

A more likely source for the large degree 2-3 geoid anomalies is revealed by P

wave travel time residuals mapped by the least-squares inversion of Dziewonski (1984) 

and the tomographic inversion of Clayton and Comer (1983). Lower mantle compres

sional wave velocity anomalies from both studies are highly correlated with both the 

geoid and the slab residual geoid at harmonic degrees 2 and 3 (Figure 3). The velo

city model of Clayton and Comer (1983) was integrated uniformly throughout the 

depth of the mantle in order to compute the correlations. This includes some poorly 

resolved regions near the core-mantle boundary and between 670 and 900 km depth 

which somewhat degrade these remarkable correlations. Otherwise, the low-degree 

velocity heterogeneities are largely coherent throughout the lower mantle; the degree 

2 peak in the P-wave velocity spectrum (Figure 3c) is due to stronger depthwise 

coherence than at other degrees. \Ve obtain similarly strong correlations between 

Dziewonski's (1984) degree 2-3 P-wave anomalies and the geoid (not shown) and 

between the two lower mantle P-wave models (Hager et al., 1985). For degrees >4 

the geoid/tomography correlations fail for both of the lower mantle velocity models, 

and the seismic models no longer correlate with each other. Reasons to expect this are 

discussed in a forthcoming paper (Richards and Hager, manuscript in preparation: 

Chapter 3). The negative degree 2-3 correlation coefficients mean that slow velocity 

anomalies in the lower mantle underlie the low-degree geoid highs as shown in Figure 

4. Slow velocity is also strongly correlated with the distribution of hotspots (r = 

0.85) at degree 2, where both spectra are peaked. 

The implied correspondence of hot, low velocity mantle to geoid highs may seem 

just as paradoxical as the lack of correspondence of the low-degree geoid to plate 
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tectonics. Even if we suppose that seismic velocity and density are inversely related, 

possibly due to chemical rather than thermal gradients, the implied velocity /density 

conversion factor, ,...._, -12 km sec-1/g cm -3
, is about a factor of 3 larger in magnitude 

than expected (Birch, 1961; Dziewonski et al., 1977). 

Dynamic Geoid Models 

These apparent contradictions are the result of the gravitational effects of large

scale, compensating deformations of the Earth's surface and the core mantle boun

dary in response to lower mantle density contrasts. Unfortunately, the Earth's 

dynamic surface deformations are obscured by the bimodal distribution of oceamc 

and continental lithosphere and by variations in crustal thickness (e.g., the Tibetan 

Plateau). We cannot at present distinguish the purely dynamic component of 

observed elevation differences (of the order of 1 km over distances greater than 10,000 

km) from the large topographic signatures of isostatically compensated, near-surface 

features. However, it is possible to estimate these effects in the Earth based on our 

knowledge of mantle structure and viscosity. 

In a convecting mantle, boundary surfaces are elevated by hot, upwelling 

material and depressed by cold downwellings (Figure 5). The contributions of these 

surface deformations to the geoid are of opposite sign and comparable magnitude to 

the contribution from the interior density contrasts that cause them (Pekeris, 193.5; 

Runcorn, 1964; Morgan, 1965; McKenzie, 1977; Parsons and Daly, 1983; Ricard et al., 

1984; Richards and Hager, 1984: Chapter 1). Therefore, geoid anomalies result from 

the balance of competing contributions, i.e., a relatively small difference of large 

numbers. The amplitude of bc;mndary deformation depends strongly upon the 
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viscosity structure of the mantle, so the geoid is a sensitive indicator of mantle struc-

ture. We have calculated these effects for Newtonian viscous flow in spherically sym

metric, incompressible, self-gravitating Earth models (Richards and Hager, 1984: 

Chapter 1). 

If the viscosity structure vanes only radially, then a given density contrast 

8P1m ( r) at radius r excites only an Im th harmonic boundary deformation . Since 

solutions for linear (Newtonian) rheology may be superposed, we can obtain the total 

harmonic geopoten tial coefficients from 

411'/R 
2/ + 1 

R 

J G, (r )8P1m (r )dr (6) 
c 

where / is the gravitational constant, R the Earth's radius, c the core radius, and 

G1 (r) is the dynamic response function or kernel. This kernel is independent of the 

azimuthal order m for the assumed spherically symmetric viscosity structure, and it 

contains contributions from both boundary deformations and the density contrast 

itself. 

Response functions for both whole mantle flow and chemically layered flow are 

shown in Figure 6 with lower/upper mantle viscosity ratios of 1, 10, and 100. 

Although flow velocities depend upon the absolute value of viscosity, the stresses, 

boundary deformations, and geoid depend only upon the relative values. Free-slip 

boundary conditions are applied at the core-mantle boundary and at the surface. For 

uniform viscosity and whole mantle flow (model Ul, Figure 6a) the geoid response is 

always negative because of the overwhelming gravitational effect of the deformed 

upper surface. The response functions, plotted as a function of depth, are normalized 

to the geoid that would be obtained if the uncompensated density contrast, 8P1m (r ), 
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were placed at the surface. 

The Ul model could explain the negative correlation between lower mantle velo

city anomalies and the geoid. The average degree 2-3 response in the lower mantle is 

about -0 .2, so using equation (6) we can explain most of the low degree residual geoid 

with a velocity /density conversion factor of about +8 km sec - 1/g cm -3_ The posi

tive sign of this factor is consistent with the effects of temperature upon velocity and 

density, although the magnitude is still about twice that expected from both low 

pressure laboratory measurements and the average adiabatic value for the lower man

tle. Figure 6 shows that the low-degree geoid is most sensitive to density contrasts in 

the lower mantle, so such an explanation for the longest-wavelength geoid features is 

not surprising. 

This simple model is consistent with the interpretation of post-glacial rebound 

data in terms of relatively uniform mantle viscosity (Cathles, 1975; Peltier, 1981). 

Low viscosity in the uppermost mantle or asthenosphere will not strongly affect the 

degree 2-3 response functions in the lower mantle. However, the Ul model is not 

compatible with the observed geoid highs caused by subducting slabs. In order to 

explain these geoid anomalies, the upper mantle response functions must be strongly 

positive for degrees 2-9 (i.e., little dynamic compensation). This requirement can be 

satisfied by a model with about a factor of 30-100 increase in viscosity through the 

upper mantle (Hager, 1984). Relatively low viscosity in the upper mantle reduces the 

negative geoid contribution from surface deformation and results in positive geoid 

response functions. An excellent fit to the slab/geoid data is obtained with model 

UlOO (Figure 6c). However, this model cannot explain the lower mantle results, 

because the lower mantle response functions are also positive. 
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A chemical barrier model (Figure 6e,f) could solve this particular problem by 

giving opposite responses for the upper and lower mantle. However, we obtain 

response functions about a factor of 5 too small for slabs if compensation is allowed 

at the 670 km discontinuity for any models of viscosity layering in the upper mantle. 

For this reason we conclude that, even if the mantle is chemically stratified, at least 

the thermal structure of slabs must penetrate the 670 km seismic discontinuity. We 

find the alternative, that mass anomalies associated with slabs in the mid-upper man

tle are a factor of five larger than our assumed value, implausible. Further evidence 

for mixing across this level is the correlation between the degree 2 distribution of 

hotspots and slow seismic velocity in the lower mantle. 

A Refined Model for Whole Mantle Convection 

Model UlO, with a moderate (factor of 10) increase m viscosity with depth, 

shows that it is also possible to have both positive upper mantle and negative lower 

mantle responses for mantle-wide flow (Figure 6b). With two simple modifications to 

this model we can account for most of the subducted slab/lower mantle discrepancy. 

First, it is clear that we should include a high viscosity lithospheric layer. Second, 

the region above the transition zone ( asthenosphere) should have low viscosity 

(Passey, 1981). These adjustments give upper mantle kernels like model UlOO but 

tend to drive all the response functions more negative in the lower mantle. Response 

curves for such a 4-layer model are shown in Figure 7a. Here the lithosphere is 

assigned the same effective viscosity, 11o, as the lower mantle; the transition zone has 

viscosity 0.1170, and the low viscosity channel in the upper mantle is assigned 0.3110· 
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This model explains the lower mantle P-wave velocity /geoid correlations since 

the lower mantle degree 2-3 responses are negative. The relatively small responses for 

(l >4) help explain why little of the higher-degree geoid correlates with the equally 

strong higher degree heterogeneity in the lower mantle. The upper mantle responses 

are still mostly positive, so this model remains compatible with the slab/ geoid correla

tions. However, a much better fit to the slab data is obtained for a model such as 

UlOO, which has more strongly positive upper mantle response functions. Similar 

responses are obtained if the lithospheric viscosity is reduced by an order of magni

tude in the 4-layer model (Figure 7b ). Such a modification is physically reasonable 

since the effective viscosity of the lithosphere is probably weakened at subduction 

zones (Sleep, 1979). Also, the effect of high slab viscosity should transfer more stress 

toward the lower man tie and drive the responses more positive. Unfortunately, it is 

impossible to model these lateral variations in viscosity with our simple analytical 

models. We have addressed these problems in more detail using numerical methods, 

and the results verify the effects described above (Richards, Sleep, and Hager, to be 

submitted, 1986: Chapter 4). 

The 4-layer model of Figure 7a, applied to the lower mantle P-wave hetero

geneity and modified appropriately for slabs, allows us to successfully predict 82% of 

the observed geoid variance (Figure 7b,d). The best-fitting lower mantle P

velocity /density con version factors are about 3 km sec -l / g cm -3 for both degrees 2 

and 3, and the fact that they agree with each other indicates that we have used 

approximately the correct lower man tie response functions. 
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Thermal Properties of the Lower Mantle 

Our estimate of the constant pressure derivative of compressional wave velocity 

with respect to density, (a VP /8p)p ,::::;:; 3 km sec -1/g cm -3
, has relatively large uncer-

tainty associated with it due to a variety of error sources in the data and modelling 

trade-offs (nonuniqueness). However, it is interesting to compare this result to labora-

tory data for candidate mantle minerals. If the lower mantle is well below the melt-

ing temperature (Anderson, 1981), it is likely that shear and compressional velocity 

behave similarly in response to temperature variations. If this condition holds, then a 

sim pie relation can be derived between the second isen tropic Gruneisen parameter, 8
8

, 

and the variation of P-wave velocity with density 

-( aJogK8 ) ( 81ogVP ) p ( avP ) 88 = ,::::;:; 1+2 = 1 + 2- --
alogp p aJogp p VP 8 p p 

(7) 

where K 8 is the isentropic bulk modulus. Using the essentially constant ratio 

p/Vp =0.40 (Dziewonski and Anderson, 1981) ·for the lower mantle, we estimate an 

average lower mantle value of 88 = 3.4. This value, uncertain by a factor of at least 

30%, falls in the middle to low range of values obtained from low pressure and tern-

perature laboratory measurements (Anderson, 1968). The parameter 88 , as well as 

( a VP ) , is not expected to depend strongly upon temperature and pressure (Orson 
ap P 

Anderson, personal communication) and should be essentially constant throughout 

the lower mantle barring a strong compositional gradient. 

Implied lower mantle temperature variations corresponding to the broadscale (l 

2,3) lower man tie heterogeneity are only about ±15 °C. By extrapolating the 

heterogeneity spectrum to higher degrees, O'Connell and Hager (1984) estimated a 
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mm1mum of about 1023 Poise for the lower mantle viscosity m the 4-layer model. 

This value is constrained by a maximum average global advected heat flux of about 

80 mW /m 2
; hence, the lower bound. 

Such small, broadscale temperature variations are likely to cause less than an 

order of magnitude lateral variation in viscosity. Although we have not included 

these variations in our geoid models, their dynamical effect is small for the lowest har

monic degrees (Richards and Hager, manuscript in preparation: Chapter 3). However, 

we expect that strong short-wavelength heterogeneities do exist in the lower mantle 

(e .g., mantle plumes), and large horizontal viscosity contrasts may complicate their 

geoid signatures. Also, we have not modelled the effects of stress dependent rheology 

which tend to homogenize the viscosity structure (Christensen, 1984). These prob

lems can now be addressed via numerical modelling on a new generation of supercom

puters, and it will soon be possible to derive better constraints on mantle rheology 

from our new knowledge of density contrasts in the mantle . 

The Residual Geo id 

Despite uncertainties in the seismic data and necessary oversimplifications in our 

dynamical models, comparison of Figure 7b,d with Figure la,b shows that we have 

accounted for most of the features in the Earth's long-wavelength geoid. The residual 

geoid obtained by subtracting that predicted in Figure 7 is shown in Figure 8a. Resi

dual anomalies are reduced to about ±40 m from the ±100 m geoid anomalies 

observed. Low-degree ( <5) correlations between the isostatic model and the residual 

geoid are not improved (Figure 8b) over those obtained previously (Figure 2a). How

ever, we can tentatively recognize two other signals remaining in Figure 8a. First, the 
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upper mantle shear velocity model of Tanimoto (1986) is strongly correlated with the 

low-degree (2-5) residual geoid, so much of the residual geoid may be due to unmo

delled density contrasts in the upper mantle. Secondly, we note that prominent geoid 

lows remain over Hudson Bay and Antarctica which suggest a signature of incomplete 

rebound from the last major Pleistocene deglaciation. 

To test this latter possibility we have estimated the total unrebounded geoid sig

nature due to the 18,000 B.P. deglaciation. The postulated ice sheets (Wu and Peltier, 

1983) were "melted" and distributed over the oceans. An expansion of residual geoid 

lows was calculated from the estimated topographic depressions after deglaciation. 

Self-consistency was maintained by iterating upon the "new" geoid to properly redis

tribute the oceans. Correlations between this expansion and the residual geoid (Fig

ure Sb) are consistently positive for degrees 2-11 and significant for degrees 2, 5, 9, 10, 

and 11. Of course, rebound has occurred to reduce these post-glacial geoid lows, but 

their shape and, hence, the correlations should be largely unaffected if viscous relaxa

tion is linear. A more complete treatment of this problem using residual geoid 

anomalies may provide additional constraints on viscous relaxation models and man

tle rheology. 

Conclusions 

On the basis of the global data we have examined we can draw a number of 

strong conclusions concerning the sources of long-wavelength geoid anomalies: 

(1) Most of the Earth's low-degree geoid power is derived from density hetero

geneity in the lower mantle. Compensating deformation of the upper surface and 

core-mantle boundary dominates this geoid signal and resuJt,.. in geoid highs over low 
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density, buoyant lower mantle. 

(2) Much of the remaining geoid power is caused by high density slabs in active 

subduction zones. Compensation of these subducted slabs by deformation of the litho

sphere is weakened by relatively low viscosity in the upper mantle, and geoid highs 

result over subduction zones. 

(3) Compensated topography and lithospheric or crustal thickness variations 

contribute strongly to the observed geoid only for harmonic degrees > 6. 

( 4) Spreading velocity is not strongly correlated with long-wavelength geoid 

anomalies (/ < 15). This observation, along with the lack of seismic evidence for 

pronounced low velocity anomalies at great depth (>250 km) below ridges (Grand 

and Helmberger, 1984), leads to the conclusion that ridges, with the exception of 

hotspots, are mostly passive, tensional features and are not the direct result of ther

mally driven deep mantle upwelling. 

(5) The spatial distribution of hotspots is significantly correlated with geoid 

highs for degrees < 6 after the effect of subducted slabs is removed. Two prominent 

spectral peaks in the hotspot distribution also correspond to correlations of the geoid 

with low velocity in both the upper (l = 6) and lower (l = 2) mantle. 

(6) There is considerable seismic heterogeneity in the mid-upper mantle (200-400 

km), but relatively little geoid signal results at the longest wavelengths (degree 2-3). 

Heterogeneity in the transition zone is probably related to subduction and may con

tribute significant low-degree geoid power. If the upper mantle viscosity is much 

lower than that of the lower mantle, then we would expect less broadscale hetero

geneity to be sustained below the lithosphere in the upper mantle (outside of subduc

tion zones). The large upper mantle shear velocity variations observed may be 



- 110 -

enhanced by the strong temperature dependence of the shear modulus above the 

solidus. Much of the unexplained 18% of the observed geoid variance, mainly at 

degrees l >4, may result from upper mantle heterogeneity. Also, unmodelled lows 

over Hudson Bay and Antarctica (Figures lb, 8a) may be due to incomplete rebound 

from Pleistocene deglaciation. These residual geoid lows may be largely responsible 

for the weak negative correlation between continental shields and the geoid. 

The dynamical model we have used to explain these observations assumes whole 

mantle convection. Our evidence indicates that the upper and lower mantle are ther

mally continuous. We cannot, at present, determine whether or not mixing due to 

subducted slabs and, possibly, mantle plumes will destroy any tendency toward chem

ical stratification . Plate motions are driven largely by subducting slabs and lithos

pheric cooling, and spreading ridges do not represent return flow in closed cells either 

in the upper mantle or in the whole mantle. (Hager and O'Connell, 1979). This view 

is consistent with convection driven largely by internal heating due to radioactive 

decay in the mantle. 

The dominant degree 2-3 geoid lows (Figure 4a) correspond roughly to a ring of 

subduction around the Pangean continental assemblege which may have been stable 

for a very long time before its breakup ,...._, 125 Ma ago (Anderson, 1982; Chase and 

Sprowl, 1983). We suspect that high velocity (density) anomalies in the lower mantle 

are due to dead slabs distributed through the lower mantle over the last ,...__,100-200 

Ma. Along with a negative degree 2-3 lower mantle geoid response, these old slabs 

would cause the geoid lows which bound the large equatorial geoid highs over Africa 

(Pangea) and the central Pacific. Hotspots clustered in these geoid highs may be deep 

mantle plumes that have not been sheared or quenched by subducting slabs. If this 
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scenario is correct, very high Rayleigh number, presumably time-dependent convec

tion in the mantle was, in the past, artifically stabilized at low degrees by the chemi

cally buoyant continental assemblage. 
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Table - Correlation coefficients at harmonic degree 2 between transition zone velo

city models (Masters et al., 1982; Woodhouse and Dziewonski, 1984; Tani

moto, 1986) and both the observed geoid and subducted slabs (Hager, 1984). 

Positive correlations indicate the correspondence of geoid highs and subducted 

slabs to high seismic velocity. Confidence levels for these correlations may be 

read from, e.g., Figure 3a,b. Note: a correlation with the geoid of +0.79 was 

found by Masters et al. using an earlier geoid model and a slightly different 

hydrostatic correction. 
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TABLE: Upper Mantle Degree 2 Correlations 

Model vs. Geoid vs. Slabs vs. MJSG( 400-670km) 

MJSG(400-670km) + .71 +.87 

\VD(450km) +.05 +.77 +.59 

WD(550km) +.49 + .93 + .79 

WD(650km) +.61 +.90 + .78 

Tan(450km) + .58 +.73 +.62 

Tan(550km) +.63 + .77 +.65 

Tan(650km) +.67 +.78 +.66 
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Figure 1 - Observed long-wavelength geoid (Lerch et al., 1983) referred to the 

hydrostatic figure of the Earth (Nakiboglu, 1982). (a) Spherical harmonic 

degree and order 2-20 representation. (b) Degrees 4-20 only. Continents are 

outlined for reference, and plate boundaries are also shown in (a). Geoid lows 

are shaded; cylindrical equidistant projection. 
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Observed Geoid: degree 2-20 

(a) contour interval: 20 m 

Observed Geoid: degree 4-20 

(b) contour interval: 10 m 
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Figure 2 - (a),(c) Degree-by-degree correlations, r1, between the observed, nonhy

drostatic geoid and surface features. Contours give the confidence of correla

tion, with a confidence level of 0.98 indicating a 2% chance that the correla

tion is random. 

(b ),( d) Log-log comparison of root mean square harmonic coefficient 

amplitudes, JV1
2/(2/ +l). Units are as follows: Observed geopotent.ial, 

1M / R (fraction of average geopotential at surface); Topography, 105 km 

(equivalent rock topography referred to density 2.7 g/cm 3
); Isostatic model, 

1M / R; Shields, 4.0x 103 fraction of shield terrane per unit surface area; Con

vergence and Divergence, 100 km 2/yr; Plate velocity (poloidal component), 

l.2x 105 cm/yr; Slab potential, 1M / R. Geopotentials, in units 1M / R, may 

be converted to geoid elevations by dividing by the gravitational acceleration 

at the surface or by multiplying by R. (I is the gravitational constant, M the 

mass of the Earth, and R the Earth's radius.) 
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Figure 3 - (a) Correlations, r1, between the observed geoid and both hotspots and 

seismic velocity heterogeneity. (b) Correlations between the slab residual geoid 

(subducted slab signal removed) and both hotspots and seismic velocity. The 

WD velocity model extends only to degree 8. 

(c) Log-log comparison of root mean square harmonic coefficient ampli

tude . Units are: Residual geopotential, 1M / R (fraction of average geopoten

tial at surface); Upper mantle S-velocity (Woodhouse and Dziewonski, 1984; 

Tanimoto, 1986), 104 km/sec; Lower mantle P-velocity (Clayton and Comer, 

1983), 104 km/sec; Hotspot distribution, 4.lx 106 hotspots per Earth area. 
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Figure 4 - (a) Observed, nonhydrostatic geoid (degrees 2-10) after the subducted 

slab geoid signal (Hager, 1984) is removed. Black dots represent hotspot loca

tions used to obtain the harmonic expansion of the hotspot distribution; geoid 

lows are shaded. (b) Average degree 2-3 seismic compressional wave velocity 

anomalies in the lower mantle; low velocity is shaded. 
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Slab Residual Geoid: degree 2-1 O 

(a) contour interval: 20 m 

Lower Mantle P-Wave Velocity: degree 2-3 

(b) contour interval: 3 m/sec 
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Figure 5 - Illustrations of flow models for spherical Earth calculations (l =3). (a) 

Whole mantle flow. (b) Flow with a chemical barrier at the 670 km discon

tinuity. Plus and minus signs indicate positive and negative density contrasts. 

The dashed lines are reference boundaries, and the solid lines represent the 

displaced boundaries. Streamlines indicate the sense of flow. 
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Figure 6 - Dynamic response function, G1 (r ), for surface density contrasts of 

spherical harmonic degrees 2, 4, 6, and 8 plotted against radius, r, for six 

Earth models. Models U, left, permit mantle-wide flow; models C, right, have 

a (chemical) barrier at 670 km depth, causing stratification into separate 

upper and lower mantle flow systems. Models Ul and Cl have uniform viscos

ity; models UlO and ClO have a factor of 10 viscosity increase below 670 km; 

models UlOO and ClOO have a factor of 100 increase. The geoid responses are 

normalized to the geoid which would be obtained if the harmonic density con

trasts were placed at the top surface with no dynamic compensation allowed. 
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Figure 7 - (a),(c) Dynamic response functions for two slightly differing 4-layer 

viscosity models with mantle-wide flow. The viscosity of the transition zone 

(400-670 km depth) is a factor of 10 smaller than that of the lower mantle, 1Jo, 

and the viscosity between 200 and 400 km depth is a factor of 300 lower than 

'r/o· In (a) the lithospheric viscosity is 'f/o while in (b) the lithospheric viscosity 

is lowered to 0.1 'f/o· Response functions are plotted for harmonic degrees 2, 4, 

and 8. 

(b ),( d) Predicted long-wavelength geoid anomalies for harmonic degrees 

2-9 and 4-9, respectively; geoid lows are shaded. Predicted anomalies are com

puted by convolving the 4-layer dynamic model responses of (a) and ( c ), 

respectively, with lateral density variations inferred from lower mantle P-wave 

tomography and the locations of subducted slabs. 
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Figure 8 - (a) Residual geoid after the predicted slab-lower mantle geoid model 

(previous figure) is subtracted from the observed geoid (Figure 1). In (b) we 

show correlation coefficients, r 1 , between this residual geoid and upper mantle 

shear velocity (Tanimoto, 1986), the isostatic model (see Figure 2), and the 

geoid predicted from Pleistocene (18,000 B.P.) deglaciation (Wu and Peltier, 

1983) without viscous readjustment. 
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Chapter 3 

Modelling Effects of Long-wavelength Lateral Viscosity 
Variations on the Geoid 

Introduction 

The Earth's long-wavelength, nonhydrostatic geoid is primarily the result of 

density contrasts associated with mantle convection. Although the geoid alone can-

not be inverted uniquely to determine these density contrasts, it does provide a well-

measured constraint with which any complete theory of convection must be con-

sistent. However, the deformations of the surface, the core-mantle boundary, and, 

possibly, internal chemical boundaries due to convective stresses complicate the 

interpretation of geoid anomalies. It has been shown by many authors (Pekeris, 1935; 

Runcorn, 1964; Morgan, 1965; McKenzie, 1977; Parsons and Daly, 1983; Ricard et al., 

1984; Richards and Hager, 1984: Chapter 1) that dynamic compensation due to boun-

dary deformation is of dominant importance in determining the nonhydrostatic geoid 

of a convecting planet. Induced boundary deformations cause geoid anomalies that 

are of opposite sign and comparable magnitude to the geoid due to interior density 

contrasts. Long-wavelength geoid anomalies are therefore the relatively small 

difference of large numbers. Because the details of boundary deformation depend 

strongly on the viscosity structure and presence or absence of chemical layering in the 

mantle (Richards and Hager, 1984: Chapter 1; henceforth referred to as "RH"), 
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knowledge of both the geoid and the thermal density structure of the mantle can pro

vide powerful constraints on mantle dynamics. 

In the previous chapter we have presented results that explain more than 80% 

of the Earth's geoid variance on the basis of seismically determined lateral density 

contrasts. The principal sources of the geoid appear to be subducted slabs (Hager, 

1984) and a large-scale pattern of density heterogeneity inf erred from recent studies 

of seismic velocity heterogeneity in the lower mantle (Dziewonski, 1984; Clayton and 

Comer, 1983; Hager et al., 1985). Subducting slabs represent convective downwelling, 

and the lower mantle seismic tomography reveals low velocity and, presumably, hot 

buoyant material under the large, low-degree geoid highs centered on Africa and the 

central Pacific (see Figure 1, Chapter 2). Our models include the geoid contributions 

due to boundary deformation and include the effects of radial variations (due to com

position or pressure) in effective viscosity. However, we have ignored the effects of 

viscosity variations due to stress-dependence and lateral variations in the mantle tem

perature field associated with convection. 

The effects of temperature on viscosity and fl.ow could be quite large (Torrance 

and Turcotte, 1971; Christensen, 1984). The strong temperature- and pressure

dependence of viscosity is a key element in the self-regulation of solid state convection 

in the terrestrial planets (Tozer, 1967; 1972) and must be responsible in large part for 

the very existence of plate tectonics. The density heterogeneities we believe to be 

responsible for the geoid necessarily imply temperature variations and, therefore, 

viscosity variations whose effects on dynamic compensation of the geoid must be con

sidered. We find it somewhat surprising that our simple geoid models, which assume 

spherically symmetric viscosity structure, have worked so well, but there are some 



- 141 -

discrepancies in our results: (1) We cannot explain very much of the geoid for har

monic degrees > 6; our success in describing most of the variance applies mainly to 

the lowest degrees which dominate the geoid (see Table). (2) Subducted slabs appear 

to sense more viscosity increase with depth or, alternatively, a weaker lithosphere, 

than the density anomalies inferred from lower mantle tomography. (3) Both sub

ducted slabs and presumed low density material (hotspots) in the upper mantle are 

associated with geoid highs. Although other sources of error are present, these obser

vational problems may be explained as effects due to expected lateral variations in 

effective viscosity. 

In order to model the geoid more accurately we need to understand how horizon

tal viscosity contrasts affect the dynamic response functions used in the previous 

chapter. Radial viscosity stratification and/or layered convection have a large effect 

upon these kernels (Figure 6, Chapter 2), and this strong sensitivity to radial struc

ture serves as a standard for evaluating the importance of lateral viscosity variations. 

Such comparisons will be the principal focus of this chapter. 

The effects of lateral viscosity variations are quite complicated, largely because 

all wavelengths become coupled and the harmonic degree independence of the 

response kernels (equation 6, Chapter 2) no longer applies. It is, therefore, difficult to 

address the problem in any general way. As a matter of experience we have found a 

logical separation between the lateral viscosity effects of very short wavelength ther

mal density contrast sources, such as subducting slabs and mantle plumes, and much 

more broadscale density and temperature fluctuations. Plumes and slabs are treated 

in detail in Chapter 4, and in this chapter we concentrate on the effects of truly 

long-wavelength variations in viscosity. The principal application of this approach is 
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to modelling of the low-egree geoid components from lower mantle heterogeneity. 

However, the calculations we present are applicable to the general case in which most 

of the horizon ta] density contrasts occur at wavelengths comparable to or larger than 

the depth of convection. 

Large-scale Mantle Heterogeneity 

The observed geoid spectrum 1s very strongly biased toward the long 

wavelengths or low harmonic degrees and is peaked at degree 2 as shown in Figure l. 

(For a comparison with other terrestrial planets see Mottinger et al., 1985.) Upon 

removal of the modelled slab signal (Hager, 1984), which represents a short 

wavelength source, an even stronger low degree spectral bias is obtained. This slab 

residual geoid is dominated by a harmonic degree 2-3 pattern with two large, antipo

dal equatorial highs (Figure 4, Chapter 2). This does not necessarily mean that the 

lateral density structure of the mantle is also spectrally "red", because, for some 

dynamic models, short wavelength geoid anomalies from deep sources are more 

attenuated than those of longer wavelengths (Figure 6, Chapter 2). 

Seismic models of lower mantle P-wave velocity heterogeneity are, m general, 

spectrally "white" by comparison with the geoid, but at the present time we have no 

satisfactory check on their resolution beyond harmonic degree 4. Also, although a 

degree 1 geoid term is absent by definition, there is degree 1 heterogeneity in the 

Earth as evidenced by the 1.1 km center of figure/center of mass offset (Balmino et 

al., 1973). The peak at degree 2 in the geoid might, therefore, be misleading if 

equally strong heterogeneity exists at degree l. However, much of the degree 1 offset 

could be due to variations in crustal or lithospheric thickness which contribute very 
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little geoid signal (,.......,2-4 m) (Hager, 1983). 

When averaged vertically (from the core-mantle boundary to 670 km depth) the 

lower mantle P-wave velocity heterogeneity model of Clayton and Comer (1983) is 

highly correlated with the geoid for degrees 2 and 3 (Chapter 2), and the spectrum is 

peaked at degree 2 (Figure 1). The 22 depth layers (100 km thick) are themselves 

spectrally white; the longest wavelengths are, not surprisingly, more coherent depth

wise. In addition, the peak at degree 2 is preserved by the fact that the lower-most 

and uppermost degree 1 heterogeneities in the lower mantle velocity model are 

anticorrelated and cancel to a large extent. The evidence for a dominant degree 2 

convection pattern must, therefore, be considered somewhat ambiguous, especially 

since the current lower mantle P-wave models neither agree with each other nor 

correlate with the geoid for degrees l >4. 

The degree 2-3 lower mantle seismic velocity variations, of the order of 0.1%, are 

consistent with at most ,..._,50° K horizontal temperature differences at these very long 

wavelengths. This suggests that relatively modest thermal viscosity variations may 

suffice in modelling the large-scale flow pattern and geoid. If the spectral characteris

tics of seismic velocity variations in Figure 1 are assumed valid, a rough constraint on 

the average lower mantle viscosity can also be obtained. By extrapolating the spec

trum to higher degrees and by simultaneously matching the Earth's advective heat 

flux ( ,.......,80 mW /m 2) and the geoid, O'Connell and Hager (1984) determined that the 

large-scale convection associated with the dominant, low-degree geoid anomalies 

requires a minimum lower mantle viscosity of 1022 Pa-sec. Lower viscosities give larger 

flow velocities and require even smaller lateral temperature contrasts. 
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Whether or not a dominant, large-scale pattern should exist on Earth is ques

tionable on theoretical grounds. Marginal stability theory (e.g., Chandrasekhar, 1961) 

suggests that an Earth-like planet should stabilize its convective pattern at degree 3 

or higher, although such criteria ignore the stabilizing effects of temperature

dependen t viscosity on the upper boundary layer. More importantly, it is possible 

that the low-degree heterogeneity (and geoid) results mainly from very strong, small

scale temperature contrasts. Very high Rayleigh number convection should result in 

heterogeneity and temperature contrasts of dimensions comparable to a relatively 

small boundary layer (lithospheric) thickness. Subducted slabs and possibly mantle 

plumes, manifested as hotspots, suggest a small horizontal length scale for very large 

density contrasts. Hotspots are strongly correlated with the degree 2-6 slab residual 

geoid highs (Chapter 2) as well as with slow velocity in the lower mantle at degree 2 

(also a relative spectral peak for hotspots). However, the low-degree geoid may be a 

memory of the insulating effects of the stable Pangean continental assemblage as sug

gested by Anderson (1982), and hotspots could be a symptom of hotter than average 

mantle on a very broad scale. Unfortunately, we cannot at present resolve this issue 

with the information available. It is, however, difficult to explain the long-wavelength 

geoid in terms of man tie plumes because of the required spectral characteristics 

(Richards, Sleep, and Hager, to be submitted, 1986; Chapter 4). The main certainty 

is that high temperature and low viscosity should be associated with upwelling 

material (and vice versa for cold downwellings), and our emphasis here is on broad

scale convection. 
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Temperature- and Stress-Dependent Viscosity 

Experimental studies of mantle constituents such as olivine show that the viscos

ity of the mantle is be strongly temperature, pressure, and probably stress-dependent 

(Kohlstedt and Goetze, 1974; Berckhemer, Auer, and Drisler, 1979; Twiss, 1976). 

Mechanisms of dislocation climb or glide (Weertman, 1968) may be responsible for 

power-law type flow in which the effective viscosity decreases approximately as the 

square of the shear stress. Diffusion rates which govern creep generally increase 

exponentially with temperature, T, and a theoretical law is often used to describe the 

relationship between shear stress, a, and strain rate, f. 

(1) 

where E * and V * are activation energy and volume, R is the gas constant, p is the 

pressure, q is the power-law exponent, and A is a constant. 

The pressure-dependence is almost purely a function of depth in the mantle due 

to the lithostatic load (lateral pressure gradients are small by comparison) and may 

well be dominated by phase changes, either abrupt or gradual, in the upper mantle . 

For uniform composition, pressure alone might conceivably increase the viscosity of 

the mantle by as much as 6 orders of magnitude from top to bottom (Sammis et al, 

1977). In principle, pressure-dependent viscosity can be modelled by a sufficiently fine 

spacing of radial layers; these are the viscosity contrasts we have modelled in a rough 

form in Chapter 2. 

Temperature increases with depth tend to counteract the influence of increasing 

pressure, and again, the effect on viscosity may be many orders of magnitude for the 

possible ,....._,1000°K non-adiabatic temperature difference between the core-mantle 
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boundary and the lithosphere. Rising and falling plumes of hot and cold material 

derived from the boundary layers will give rise to lateral changes in temperature and 

therefore viscosity. The most conspicuous example of this in the Earth is that of sub

ducting slabs remaining cold enough to cause earthquakes as deep as 700 km, the 

slabs being perhaps as much as 1000°K colder than the surrounding upper mantle. If 

hotspots are derived from the core-mantle boundary they may cause excess tempera

tures of > 700°K in plumes as narrow as 20 km (Verhoogen, 1973; Stacey and Loper, 

1983). The accompanying viscosity changes raise doubts about the applicability of 

the layered models. However, as discussed above, horizontal temperature contrasts in 

excess of ,....._,100°K are unlikely on a global scale, and the resulting thermal viscosity 

contrasts may be only about an order of magnitude. 

Stress dependent rheology reduces the effective viscosity m zones of high stress 

and diminishes the effects of temperature in a convecting system (Christensen, 1984) 

by driving it back toward an isoviscous state. This is a possible regulating mechanism 

which may help explain the interpretation of post-glacial rebound data in terms of a 

relatively isoviscous mantle (Peltier, 1981). However, studies of post-glacial rebound 

do not provide unique constrain ts on stress-dependent rheology, because the devia

toric stress field due to ice loading is contaminated by the in s£tu stresses due to 

convection. For the same reason, stress-dependence destroys the linear superposition 

principle assumed in equation (6) of Chapter 2 and can be addressed only for specific 

cases in which all loading stresses can be treated simultaneously. We have included 

several examples of stress-dependence in the numerical experiments that follow. 
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Perturbation Theory 

Steady-state loading problems for which viscosity is a function only of depth can 

be solved by analytical methods in which the flow and stress variables are Fourier 

analyzed in the transverse coordinates. The resulting equations governing flow are 

linear in the transformed variables within each layer and the whole solution is formed 

by analytically "propagating" solutions from one viscosity layer to the next. The 

spherical Earth response functions (shown in Figure 6 of the previous chapter) which 

include the effects of radial viscosity variations were calculated using such a technique 

(RH). However, if viscosity varies transversely the Fourier components (or spherical 

harmonics) are no longer decoupled and the analysis becomes difficult. The reason for 

this can be seen immediately upon examination of the Newtonian constitutive law 

:L = -pl+ '211£. (2) 

where :r.. is the stress tensor, p the pressure, l the identity matrix, 17 the effective 

viscosity, and f.. the strain-rate tensor. Since both 17 and f.. are functions of the 

transverse coordinates, the resulting transformed equations are no longer linear and 

other solution methods are required. 

Before resorting to numerical methods, such as the finite element calculations 

that follow, it is instructive to extend the analytical formulation to include small 

lateral perturbations in viscosity . Many of the important effects upon the long

wavelength loading problem can be derived in this way. Consider a two-dimensional 

fluid layer in which the viscosity is given by a background value, 170, plus a perturba

tion term 817 

17 = 170 + 817(x) (3) 
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We assume the flow to be periodic in L in the x (horizontal) direction and express all 

velocity and stress variables in Fourier series 

(4) 

etc. 

as well as the viscosity 

(5) 

where km = 27rm / L . The density contrasts which drive flow are arbitrary and are 

represented by 

00 

8p = ~ 8pm(z)cos(kmx) 
m=l 

If we substitute these expressions into the constitutive equations (2) and exploit their 

orthogonal properties we obtain, for example 

Tz~ = -Pcm+2170DVz~ + f: [ ( 817cm+q+817cl m-q I) Dvz~ + ( b1} 8m+q_817 8 1 m-q I) Dvz; ](6) 
q=l 

Tm =-pm+217 Dvm+ '°' [(-817m+q+817 lm-q I )Dvq +(817m+q+817 lm-q I )Dvq] zz, 8 0 z, L...J c c z, 8 8 z, 
q =l°" 

where D =_:!:__. Similar expressions result for Tzz and Tzz . The terms within the sum
dz 

mations show that each spatial wavenumber km = 27rm /L is coupled to spatial 

wavenumber kq via the Fourier viscosity components at sum and difference 

wavenumbers. This means that for arbitrary viscosity variations one can no longer 
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associate a given m th component of density contrast only with an m th component 

flow field, surface deformation, or geoid response. Therefore, the harmonic geoid 

response functions are contaminated by this coupling. 

In applying this theory to man tie convection we can introduce three conditions 

which greatly simplify the analysis: (1) Viscosity contrasts occur spatially in phase 

with density contrasts. (2) There are dominant spatial wavelengths associated with a 

given convective style. (3) The viscosity contrasts corresponding to each spatial 

wavenumber are small. vVe will examine just what is meant by "small" at a later 

point. The first assumption is obviously reasonable for temperature-dependent viscos-

ity since the buoyancy forces are also thermal in origin. Furthermore, even though 

viscosity is probably exponentially dependent upon temperature, the spectra of den-

sity and viscosity fluctuations are similar as long as the temperature contrasts are 

small compared to the background man tie temperature (e.g., < 100° /{ ). In the case 

of stress-dependent rheology with power law q =3, the effective viscosity, 17eff> 

depends on the second stress invariant, T, such that 

(7) 

so effective viscosity will vary roughly in phase with the load but at the doubled 

(squared) harmonic. 

We implement the "in phase" condition by eliminating the sinusoidal viscosity 

variation components, 817 8m. If we now substitute our Fourier expansions into the 

consitutive equations as well as the incompressible continuity equation, 

v·v = 0 (8) 

and the equations of motion 
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'\l'I. + pg = 0 (9) 

where pg is the gravitational body force, we obtain the following set of first order 

differential equations 

-k rx": + D rx": = 0 
c s 

00 

Tz~ =-Pcm+ 2'f/oDVz~ + :E ( 817cm+q + b'f/cl m-q I) Dvz~ 
q=I 

00 

rx";, =-Pcm+217okmvx~ + :E (817cm+q+8'1clm-ql)kqvx~ 
q =I 

(10) 

(11) 

(12) 

Note that these equations contain only the m phase field components 

( Vz , vx , Tzz , Tzx , Tzz , Pc) and, except for the coupling terms containing the b'f/'s, are 
c s c c s 

identical to the uniform layer equations for which we have analytical solutions. 

The appropriateness of the second simplifying assumption, that of a dominant 

(degree 2) wavelength, was discussed earlier in reference to observations of man tie 

convection. Let us suppose for now that we have a harmonic temperature field, 

wavenumber kn, that causes a corresponding harmonic density fluctuation, 

8pn cos( kn x ), m a medium with mildly temperature-dependent viscosity which is 

approximately b'f/n cos( kn x ). We shall refer to this special case as the "self-coupled" 

problem. The consitutive equations for the kn stress field become 

n _ n + ') D n + i: D 2n Tzz - -Pc -1/o Vz ut/ Vz c c c 
(13) 
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) 
_ n + 2 k n + s: n k 2n - -Pc T/o n Vz VT/ 2n Vz s s 

For the 2kn stress field we have 

T 2n = -p 2n + 2ri Dv 2n + 8rin Dv n 
z~ c ·10 ~ ~ ~ (14) 

2n _ 2n + 2 k 2n i: n k n 7 xx - -pc T/o 2n Vz +VT/ n Vz 
c ' s 

and for the 3kn field, 

T~n = -p 3 n + 2ri Dv 3 n + 8rin Dv 2n 
L, C '10 ~ ~ ~ (15) 

etc. 

If we now require that bTJ be "small" we can at least formally solve each set of field 

equations. The zeroth order field is that driven by 8pn, namely, the nth harmonic 

field. Equations (14) show that a 2n th harmonic field is generated in proportion to bTJ, 

which makes it a first-order field in bTJ. Via equations (13) there then arises an addi

tional nth harmonic field component to second order in bTJ as well as a second-order 

3n th harmonic field via equations (15), a third-order 4n th field, etc. The main point 

is that the strongest effect is the generation of flow (and hence surface deformation) 

at the doubled harmonic and that self-coupling and higher order coupling are at most 

second-order in the viscosity perturbation. 

In a similar development for an idealized stress-dependent, self-coupled case m 

which t/eff behaves like the doubled harmonic, we can now see upon inspection of 

equation (6) that first-order perturbations are expected in the nth and 3n th fields, 



- 152 -

second-order perturbations in the 2n th, etc. These conclusions might have been 

guessed from the presence of the T/f. product terms in (2), but this formal framework 

will be useful later in understanding the numerical solutions. 

We can use equations (14) with (10) and (11) to calculate the first-order 2n th 

field for the self-coupled case. These equations can be rearranged to yield 

Du=Au2n +h (16) 

where 

V 2n z 
V 2n 

u2n 
x 

Tz~n /2TJok 

Tz2zn /211ok 

0 k 2n 0 0 

-k2n 0 0 2k2n 
A= 0 0 0 k2n 

0 2k2n -k2n 0 

and 

0 

bT]k 21 -u4 
h= 

T/o 0 

u~ /2 

Since u n can be determined to first order by analytical methods, equations (16) may, 

with the appropriate boundary conditions, be integrated through a given series of 

depth layers. In practice this turns out to be tedious even for a single layer problem. 

However, we can get two very useful results by simple inspection of Eqns. (16). Upon 
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integration these equations would be expected to yield 

u2n ,....._, Uon + 817kn 8z Un 

where 8z is the layer depth and similarly 

Un ,....._, Uon + ( 817kn 8z )2u n 

(17) 

(18) 

This means that the self-coupled anomalous surface deformation and, consequently, 

anomalous geoid will behave as (kn 8z )2. On the other hand, the geoid due to loading 

in a viscous layer behaves as kn 8z (RH) so that the percent geoid error due to self

coupling will be proprotional to kn 8z. This result, which is born out by the numerical 

calculations, shows that long-wavelengt h (small k) loading is much less susceptible 

than shorter wavelengths to the effects of lateral viscosity variations. This result was 

not obvious at the start because, even though the anomalous surface deformation 

must vanish for the limit of very thin layers, so also must the geoid . 

The other point to note from equations (16) is that the zeroth order shear stress, 

u ~, drives the 2n th stress field ( rlzn), via the vector b, in phase with positive buoy

ancy and therefore high viscosity. At the same time it drives the 2n th velocity field 

( v/n) in phase with negative buoyancy and low viscosity. This can be stated more 

clearly without reference to this highly idealized case of self-coupling: flow is enhanced 

and stress and surface deformation are diminished over hot, buoyant , low viscosity 

material. The opposite effect occurs for cold, high viscosity material, and this could 

be important with respect to mantle viscosity structure inferred from the subducted 

slab geoid signal (e.g., Hager, 1984). 
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Numerical Tests 

The theory developed above describes qualitatively the major effects on surface 

deformation and the geoid due to long-wavelength lateral variations in viscosity. In 

order to evaluate these effects quantitatively and also in order to address the non

linear problem of stress-dependent rheology, it is necessary to resort to numerical 

methods. We have used the finite element method in the two-dimensional calcula

tions that follow for both Stokes flow and thermal convection. Our computer codes 

use a penalty function formulation (Hughes et al, 1979) for viscous, incompressible 

flow. Stress-dependent rheology is handled by damped iteration on the effective 

viscosity field until suitable convergence is achieved. We use grids of rectangular ele

ments which typically range in number from 24 to 48 depthwise and 40 to 120 in the 

horizontal direction. The finite element code was tested for accuracy by comparing 

numerical solutions for plane-layered viscosity with exact analytical results obtained 

from a 2-D propagator matrix method (e.g., Cathles, 1975; Hager and O'Connell, 

1981). Sufficient resolution was obtained by using successively refined grids until cal

culated surface deformations were accurate to 1 % or better for all wavelengths of 

interest. 

We begin by testing the predictions of perturbation theory for the self-coupled 

case. These results must hold for very small lateral viscosity variations, so we need to 

determine how well they hold for larger, more realistic variations. At the top of Fig

ure 2 we illustrate a cosinusoidal load located at half the depth (z =0.5) of a 2-D, 

Cartesian, Newtonian fluid box of unit depth. We have also imposed a cosinusoidal 

viscosity variation in phase with the load throughout the depth of the box 

'f/ = 170 + 8cos (2?rnx / L) = 'f/o + 8cos (kn x) (19) 
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where L is the width of the box. The ratio of wavelength to box depth, which we 

shall refer to as the aspect ratio, is L /n, where n is called the mode number. We 

have set L =11.0 in the following examples so that mode 2 has approximately the 

same aspect ratio as spherical harmonic degree 2 for the Earth's mantle, mode 4 simi

larly corresponds to degree 4, etc. (The appropriate aspect ratios are computed 

roughly by dividing the average mantle radius by the product of mantle depth and 

harmonic degree.) 

Figure 2 shows the anomalous upper surface deformation in terms of displaced 

mass as a percentage of the driving load (mode 2) for modes 2-10. The odd modes are 

absent by symmetry. By "anomalous" we mean surface deformation that would not 

be present in the isoviscous case. The different curves represent viscosity perturba

tions ranging from 0.1 to 0.9 times the background viscosity. The amount of surface 

distortion due to the viscosity perturbation is quite small ( < 5%) in all cases and the 

curves are strongly peaked at the doubled mode number n=4, as expected. We have 

also plotted the theoretically predicted anomalous deformations as dashed lines. 

These were calculated by scaling the small 8=0.1170 values by 8 for mode 4, 82 for 

modes 2 and 6, 83 for mode 8, etc., as prescribed by perturbation theory. For 8=0.1, 

0.25, and 0.5170 the dashed lines overlay the solid lines from the numerical calcula

tions. Only for the case 8 = 0. 9170, corresponding to a factor of 19 lateral viscosity 

variation, does the perturbation theory depart significantly from the numerically 

determined values. Figure 3 shows how the percent anomalous geoid in the funda

mental mode varies with the aspect ratio, or self-coupling mode number. As predicted 

in equation (18), the size of the effect increases linearly with the fundamental mode 

number, n, or wavenumber, kn. In other words, shorter wavelengths are more 
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strongly contaminated than larger wavelengths. 

Our calculations show that the analytical theory developed above is accurate for 

8<0.751}0 (see Figure 2) and that very little anomalous surface deformation is intro

duced for large aspect ratios. By varying the depth of loading it is possible to con

stuct apparent geoid response curves at the loading wavelength, i.e., the ratio of the 

total geoid, including deformation of the top and bottom boundaries, to the geoid 

obtained if the load is placed at the top surface with no compensation allowed. In 

analogy to the Ul model of Figure 6, Chapter 2, Figure 4a shows the two-dimensional 

uniform viscosity response (solid line) compared to that obtained for 8=0.75rJo 

(dashed line), which gives a factor of 7 lateral viscosity variation. Similar curves are 

shown for a low viscosity "upper mantle" in Figures 4b,c; in these cases the upper 

one-quarter of the box was assigned factors of 10 and 100 lower viscosity than the 

lower three-quarters to simulate, respectively, models UIO and UlOO. All three cases 

show that the self-coupling effect is small and certainly not comparable to the effects 

of depthwise viscosity variation or layered convection. However, these curves 

represent only the second-order, self-cou piing component of contamination and not 

the cross-coupling terms, some of which are first-order, which occur in a real convect

ing system. 

The case of simple cross-coupling, in which the load mode (at depth 0.5) is again 

2 but the viscosity variation mode is allowed to vary, is shown in Figure Sa. The 

anomalous geoid is strongly peaked ( ,....._,93 at 8=0.5170) for viscosity mode 4. This 

occurs because modes 2 and 4 give rise to a difference mode 2 first-order perturbation 

as shown by equations (12). This case is similar to what we would expect for simple 

loading of a fluid with stress-dependent rheology, and we see that the effect is 
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somewhat stronger than the self-coupled case. In Figure Sb we show anomalous first

order cross-coupling into mode 2 surface deformation due to other difference modes 
' 

which is seen again to be small. However, for a more "white" spectrum of viscosity 

and density perturbations the integrated effect may be more important. For these 

relatively mild viscosity variations, modes greater than about 9-11 do not contribute 

strongly to contamination of mode 2. A similar curve results when viscosity and load 

modes are interchanged. The peak at about 6-4 is result of the chosen aspect ratio. 

As a bridge between the highly idealized calculations above and the more ela

borate convection calculations that follow, we consider another intermediate example. 

We now let the viscosity depend exponentially upon density contrast (i.e ., tempera

ture) 

1J/1lo = e Ccos(2rrnx/L) (20) 

where C is chosen to model the desired viscosity contrast. The cosinusoidal load 

(n =2) is now distributed throughout the box as is the viscosity function, and we cal

culate the total surface deformation and geoid. Figure 6a compares deformation 

profiles for uniform viscosity (C=O) and for two orders of magnitude viscosity varia

tion (C=-4.6), and the two profiles differ only slightly. Figures 6b,c show the defor

mation and geoid spectra, both normalized to the mode 2 load. The effect upon the 

mode 2 ("fundamental") geoid is negligible, but the upward coupled higher harmonic 

("overtone") contamination is considerable. This upward coupling is enhanced by the 

strong exponential temperature-dependence of viscosity. The lack of downward cou

pling is due to the lack of shorter wavelength load in this example, and in spectrally 

whiter convection cells there will be some downward coupling. Also plotted in Figure 

6c are the results for one order of magnitude viscosity contrast with and without 



- 158 -

stress-dependent (power-law exponent q =3) flow . (We can solve for stress

dependence now that the entire box is loaded.) Stress dependent flow, as predicted 

above, couples more strongly into degree 6 and less so into degree 4, and increases the 

upward coupling to some extent . In Figure 6c,d,e we show the same results for a fun

damental aspect ratio that corresponds to harmonic degree 6 instead of 2 (aspect 

ratio=ll.0/ 6). In this case, only one order of magnitude viscosity contrast causes 

almost a 100% change in maximum surface deformation and ,....._,503 change in the 

fundamental (mode 6) geoid. Only a factor of 3 difference in the wavelength to mantle 

depth aspect ratio strongly degrades the geoid results for these simple cells. 

The surface deformation and geoid are determined by the pressure induced at 

the boundaries due to flow . The flow velocities themselves are much more strongly 

affected by viscosity variations than the stress field for prescribed loads. Fortunately 

for gcoid modelers, seismic heterogeneity is much more directly related to density and 

velocity fluctuations than to viscosity variations. Figure 7a compares horizontal 

profiles of vertical velocity at mid-depth and very near the top of the box for only one 

order of magnitude viscosity contrast. These curves are very different in shape and 

higher harmonic content from their isoviscous (cosinusoidal) counterpart. This means 

that, at least at long wavelength, variable viscosity is much more important in model

ling transport properties than in modelling the geoid. Transient deformations (e.g., 

post-glacial rebound) might also be strongly affected by lateral viscosity variations 

due either to temperature or stress-dependent effects (Crough, 1977). 

To emphasize this last point, we have made the following example calculation. 

A viscous box whose width is 5.5 times its depth (aspect ratio=5.5) is loaded at the 

upper free surface by a cosinusoidal load (the lower boundary is a free-slip boundary) , 
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thus mimicking a degree 2 type glacial loading/unloading problem. If the box is of 

uniform viscosity, the vertical velocity at the surface is also cosinusoidal and the 

effective load is reduced by relaxation of the boundary. If we allow one order of mag

nitude viscosity contrast, which we have placed in phase with the load only for con

venience, the instantaneous vertical velocity profile at the surface is strongly altered 

(Figure 7b). Consequently, the simple exponential relaxation and harmonic mode 

independence assumed in most studies of post-glacial rebound (Wu and Peltier, 1982) 

is not strictly applicable. In the spectral domain, the time evolution of the effective 

load will suffer strong cross-contamination, although this problem will be self

correcting to some extent. To state things more simply, low viscosity areas rebound 

faster than areas of high viscosity, and transient responses may be as sensitive to 

lateral viscosity variations as to radial variations. This example calculation is 

presented by way of comparison to the resolving power of geoid modelling with 

respect to radial viscosity contrasts, which we believe to be robust at long 

wavelengths. In this context we note that Laurentide, Hudson Bay, and Antarctic 

rebound are all occurring over areas of the mantle that may be anomalously cold and, 

presumably, of relatively high viscosity (Chapter 2). More complete numerical experi

ments with transient responses are needed to properly compare our geoid/internal 

loading work with results for post-glacial rebound, but this is a major undertaking 

beyond the scope of this paper. 
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Convection Solutions 

The examples above apply to very gentle, broadscale temperature variations 

which may or may not be applicable to mantle convection. For systems with high 

Rayleigh number, the rising and falling convection currents are sharper (spectrally 

whiter) than these examples. Even at modest Rayleigh numbers, e.g., Ra <106, there 

is a great deal of loading at wavelengths shorter than the fundamental cell width. 

Such intermediate wavelength cases cannot be idealized as above, and it is more satis-

fying at this point to use load/viscosity fields from self-consistent calculations of con-

vection with fully temperature and/or stress-dependent viscosity. Geoid anomalies 

and surface deformation for temperature-dependent convection in unit aspect ratio 

cells have been treated by McKenzie ( 1977) and have recently been reexamined by 

Jian and Parmentier (1985) for a range of Rayleigh numbers, Racritical <Ra <106
. 

Here we examine three example solutions for large aspect ratio cells with both bottom 

heating and internal heating which probe the effects of lateral viscosity variations on 

the lowest-order harmonics of the geopotential. 

We begin by considering a form of the rheological law in equation (1) introduced 

by Torrance and Turcotte (1971) and subsequently applied by Christensen (1984), 

_ 1 [ 76.912 + 36.912(1-z) ] 
rt - crq-I exp 2.088+8T (21) 

O<z <1 0<8T <1 - -

to simulate strongly temperature-, stress-, and pressure-dependent convection m 

numerical experiments. Here rt is the effective viscosity, er the second stress invariant, 

q the stress-dependence exponent (e.g., q =1 for Newtonian rheology), z the dimen

sionless depth, and 8T the dimensionless nonadiabatic temperature drop. The 
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depth-dependent term gives the viscosity variations with lithostatic pressure and does 

not result in lateral viscosity variations. The simpler, layered viscosity geoid models 

can in principle account for these changes and we will ignore this term in order to 

more directly address the effects of temperature. Expression (21) (for z=l) gives 5 

1/2 orders of magnitude decrease in viscosity as 8T goes from 0 to 1; this will give an 

almost equally large viscosity variation between the rising and falling limbs of convec-

tion cells. 

In comparing uniform, temperature-dependent, and stress-dependent viscosity 

convection an immediate problem arises as to what parameters are to be held con-

stant . Christensen (1984) has shown that the flow pattern, isotherms, and Nusselt 

number (net heat transport) for strictly temperature-dependent ( q =1) viscosity are 

almost identical to those for stress- (q =3) and temperature- dependent viscosity if 

the activation enthalpy, H*=E*+pV*, is reduced by a factor of about ,8=0.3-0.5 

in the former case. The viscosity fields are, of course, quite different (see Figure 13 of 

Christensen, 1984). If we use equation (21) for the power-law case (with z=l), then 

we should get similar isotherms (i .e., density contrasts) for the two rheological laws 

[ 
76.912/3 l d 1 [ 76.912 l - ex an - ex 

'Tl - P 2.088+8T 'Tl - ~ P 2.088+8T 
(22) 

Qualitatively, this can be understood by noting that temperature dependent viscosity 

drives narrower upwellings and broader downwellings, whereas purely stress-

dependent rheology has the opposite effect . Adding stress-dependence to 

temperature-dependence reduces effective viscosity contrasts in high stress areas (cold 

downwellings) and generally reduces the dynamical effects of temperature-dependence 

by mobilizing otherwise "frozen" regions of convection cells. 
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In Figure Sa we show the isotherms for a bottom heated convection cell with 

insulated sidewalls. The Rayleigh number, through which the buoyancy forces are 

introduced, is set to 105 (,...__,100 times critical) for the viscosity corresponding to 

8 T =0.7. This is the average temperature of the "core" of the convection cell so that 

the overall Rayleigh number is also roughly 105 (Nataf and Richter, 19S3). By setting 

/3=0.3 in (22) we introduce about 1 1/2 orders of magnitude lateral viscosity varia

tion. This temperature-dependence stabilizes larger aspect ratio cells than are nor

mally obtained for uniform viscosity because of the stability of the upper boundary 

layer. We were able to get steady-state solutions for a half-cell aspect ratio of 2.5:1. 

Since reflection symmetry is imposed at the vertical boundaries, this yields a 5:1 dom

inant horizontal scalelength to depth ratio which is appropriate for degree 2-3 convec

tion in the whole mantle. The grid contains 4S elements vertically and 100 elements 

horizontally, and convergence was demonstrated by obtaining the same solution with 

a 24 x 50 grid. Our finite element method uses a penalty function formulation to 

solve the flow equations (same as in previous section), while the energy equation is 

solved by a streamline upwind Petrov-Galerkin method. Results using this code have 

been presented by Daly et al. (19S2), Hager and Mori (19S4), and Ho-Liu, Hager, and 

Raefsky (manuscript in preparation). 

Let us for the moment assume that we are provided by seismic tomographers 

with a mantle density field which can be assumed, without much loss in accuracy, to 

be linearly related to the convective temperature field, e.g., Figure Sa. The question 

for the geoid modeller then becomes that of how much our lack of knowledge about 

mantle rheological laws degrades our ability to infer mantle structure and dynamics 

from geoid modelling. We can use the thermal field in Figure Sa (f3=0.3;Ra =10
5

) to 
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test model resolution, only in this case we have the benefit of knowing the formal cal

culation parameters. These isotherms could be roughly consistent, according to 

Christensen {1984), with either power-law { q =3) flow , with over 5 orders of magni

tude temperature-dependence in viscosity {,8=1.0), as well as with 1 1/2 orders of 

magnitude of simple temperature-dependence as was actually calculated. Using ther

mal buoyancy forces proportional to temperature we can compare geoids for these 

two cases with the isoviscous geoid response . The surface deformations that control 

the geoid can be found by feeding a Stokes flow finite element calculation these buoy

ancy forces and modifying the flow law for each case to be tested. 

The results of such an experiment are shown in Figure 9a, which gives the total 

geoid as a function of mode number for the differing assumptions of uniform, 

temperature-dependent , and temperature-stress dependent viscosity. The completely 

self-consistent calculation is the one labeled 77( T ), but as exp lained above, the 77( T ,er) 

calculation might also be a good approximation. (Only the even harmonics appear due 

to the symmetry of the temperature field .) Also shown is the geoid obtained using the 

horizontally averaged viscosity due to temperature alone, 77( T )av . This accounts for 

the strictly vertical viscosity variations that occur mainly in the boundary layers (e.g., 

lithosphere) which we can account for with simple layered models. As in Figure 6, 

both the surface deformation and the geoid are normalized to the total mode 2 load 

since we are interested in comparing these quantities for various models, not in calcu

lating the Earth's geoid from first principles. {The geoid scaling is non-unique, 

because the temperature differences which cause the buoyancy forces enter only 

through the Rayleigh number, which involves other physical parameters.) 
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The upper portion of Figure 9a shows the surface deformation profile across the 

convecting half-cell. The gentle deformation on the left side is due mainly to thicken

ing of the cold upper boundary layer toward the right side of the cell which contri

butes little to the geoid due to near surface compensation. The narrow, low viscosity 

upwelling does not cause much deformation. The broad, largely "frozen" downwelling 

on the right causes a sharper deformation profile, and it is mainly this feature that is 

affected by thermal viscosity variations and which, in turn, has the most effect upon 

the geoid. In the spatial wavenumber domain the error introduced by ignoring viscos

ity variations ranges from about 20% at mode 2 to over 100% at mode 8, and much 

of the discrepancy at mode 2 is removed by the average model, 11( T )av. (In this con

vection calculation, we have for simplicity taken the origin, x =0, to be the right

hand side boundary. Reflection symmetry is imposed at x =0 and all the geoid com

ponents are negative; this convention is also maintained in the remaining examples.) 

Stress dependence, 17( T ,a), changes the geoid very little from the purely 

temperature-dependent case, both of which have the principal effect of increasing the 

higher mode spectral components . The broad, cold, high viscosity downwelling is 

strongly coupled to the upper surface, which results in enhanced short-wavelength 

downwarping of the boundary. 

For {3=0.5 (Figure 8b) the total lateral viscosity contrast is increased to about 2 

1/ 2 orders of magnitude, with consequent broadening of the cold downwelling and 

narrowing of the hot upwelling compared with /3=0.3. For this case ({3=0.5) the 

upward coupling into higher mode deformation is stronger. This gives almost 15% 

error in the mode 2 (fundamental) geoid due to lateral variations in viscosity only 

and, again, introduces a strong negative geoid response at the higher modes. The 
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stress-dependent calculation ( q =3;,B=l.0) somewhat underestimates the total geoid. 

As a slight variant on this kind of experiment we have compared the surface deforma

tion and geoid (Figure 9c) that would result from purely stress- dependent rheology, 

17(a), and the Newtonian, isoviscous assumption, 17=170 . (Here the isotherms of Figure 

8b are used simply as an arbitrarily prescribed buoyancy field, not as a self-consistent 

convection calculation.) These two calculations differ very little, and we conclude 

that, for this scale of convection, it is much more important in geoid modelling to 

include temperature-dependent effects than those due to power-law creep. 

Although we can measure only the total geoid at the surface, the depth resolu

tion of lateral variations in seismic velocity from tomography allows us to model the 

geoid by integrating through the depth of the mantle along dynamic response curves. 

Perhaps a better way to evaluate the effects of viscosity variations is to examine the 

harmonic geoid components as a function of depth for the temperature-dependent 

convection cells. This is accomplished by evaluating the geoid due to a single depth 

layer of the convecting fluid at a time in a box with the viscosity distribution of the 

fully temperature dependent convection . This simulates, for example, the procedure 

we use in modelling the seismic tomography data -- the seismically inf erred density 

contrasts at each harmonic degree, or wavelength, are multiplied by a model response 

at each depth to produce a harmonic geoid contribution from each depth level. 

The results of this forward modelling simulation are shown in Figure lOa,b 

where we compare the depth wise geoid contributions for horizon tally averaged viscos

ity with those obtained with the full 2 1/2 orders of magnitude lateral viscosity varia

tion (,B=0.5;Ra =105). We see that the mode 2 (labelled "l =2") curves in Figures 

lOa and IOb are almost indistinguishable and that only small changes occur for modes 
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4 and 6. By companson with changes due to viscosity and flow layering (Figure 6, 

Chapter 2) these differences are inconsequential; i.e., they would have virtually no 

effect upon models of the low-degree geoid contribution from the lower mantle. 

The relative loading for each mode is shown in Figure lOc which emphasizes the 

large boundary layer density contrast at the fundamental wavelength, mode 2. 

Apparent response functions, like those of Figure 4, are obtained by dividing the 

curves of Figure lOb by those of Figure lOc. These functions (Figure 11 b) are also 

similar to those obtained for laterally averaged viscosity (Figure Ila). The mode 4 

and 6 responses are increased somewhat in magnitude due to the increase in short

wavelength depression above the high viscosity downwelling. The largest differences 

occur where the loading is nearly zero (Figure Ile) and cross-contamination from 

other modes causes near singularities in the apparent response at some particular 

depth. For this reason the curves of Figure lOa,b, which give the product of response 

function and load, provide a more meaningful comparison. 

In these first examples, the steady-state solutions were artifically dominated by 

mode 2 wavelengths, and the odd modes were absent by symmetry. As a final test 

we have used a convection model (half-cell aspect ratio 5:1) that contains mode 1 

temperature contrasts so that first-order upward contamination of mode 2 is present. 

The numerical grid here is 24 x 120 elements. We have also switched to internally 

heated convection (see Daly, 1980) with an insulated bottom boundary. We have 

kept the pure temperature-dependence of equation (21) (stress exponent q =l;z =0) 

which results in a factor of 25 total lateral viscosity variation across the box. For an 

effective Rayleigh number Ra =105 (computed at the dimensionless core temperature 

8T ;::::::;:0.2; the maximum temperature in the cell is 8T max;::::::;:0.28) the convection in this 



- 167 -

long box is time dependent. At the top of Figure 12 we show the temperature field for 

a particular instant in time (chosen at random) long after the heat flow and kinetic 

energy have reached a steady level of fluctuation. 

Convection is unsteady (chaotic), and there is no dominant wavelength of tem

perature (density) contrast as shown in Figure 12c. Figures 12a,b give the harmonic 

geoid contributions (as in Figure 10) for laterally averaged and fully temperature 

dependent viscosity. The response curves are largely unaffected by the lateral viscos

ity variations despite contamination by strong higher mode ( q =3-4) heterogeneity. 

This result is even more encouraging than the previous examples, because it allows us 

to relax the hypothetical condition that there is a dominant, low-degree pattern of 

heterogeneity in the mantle. Less well-organized systems will, evidently, not result in 

much long-wavelength geoid contamination due to lateral viscosity variations, which 

means that the low-degree (2-3) geoid components may be fairly accurately modelled 

by simple layered-earth models. 

The results of these numerical convection experiments are not qualitatively 

different from the simple cases of the previous section, even though we have modelled 

very large viscosity variations and more realistic thermal fields: cold downwellings 

give enhanced long-wavelength deformation while the opposite (milder) effect is 

observed for hot upwellings, the longest-wavelengths (large compared to box depth) 

are less strongly affected, etc. These results can be expected to apply for the Earth if 

there indeed is a relatively gentle, large-scale mantle temperature field. It is not our 

purpose to exhaust the parameter space for convection models, but any long

wavelength, low Rayleigh number calculations will give essentially the same results we 

have shown. As the Rayleigh number is increased we can expect the resulting lateral 
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heterogeneity and geoid spectra to become whiter (see Jarvis and Peltier, 1986, for 

unit aspect ratio, constant viscosity examples at high Rayleigh number) and more 

contaminated due to temperature-dependent viscosity effects. However, it is not clear 

that a catalogue of progressively higher Rayleigh number calculations would be worth 

the computational requirements involved. For example, one might say that subduc

tion is an example of very vigorous convection, but that this process is probably con

trolled by lithospheric and/or asthenospheric rheological variations that are too com

plicated for the present models based on simple boundary layer convection theory to 

simulate accurately. Even though the effective Rayleigh n um her for the Earth may 

exceed 107
, we cannot confidently model convection for Ra > 106 in large aspect ratio 

systems with our present computational facilities. Instead, we have taken a different 

approach to calculations involving plumes and slabs, and those results are contained 

in Chapter 4. 

Conclusions 

The theoretical examples we have considered have been necessarily two

dimensional due to computational constraints. For broad-scale flow three-dimensional 

and spherical effects will come into play, but the spatial wavelength scaling of the 

effects due to rheological variations, both vertically and horizontally, should not be 

seriously altered. For example, the results of the 2-D perturbation theory involving 

sum and difference spatial wavenumbers have obvious analogues in product-sum for

mulas for spherical harmonics (Kaula, 197.5). We are currently developing 3-D spheri

cal finite element codes for use on a new generation of computers that will allow us to 

directly model the global geoid/heterogeneity data with complicated rheologies, and 



- 169 -

the conclusions of the present work will serve as a guide m evaluating the relative 

importance of lateral viscosity variations. 

Considering the complicated mathematical and physical nature of the problem, 

we find the following conclusions remarkably straightforward insofar as technical 

points for the geoid modeller are concerned: 

(1) The geoid due to the very longest wavelength convective patterns (l <4) on 

Earth is probably not seriously contaminated by lateral variations in effective viscos

ity due either to temperature- or stress-dependence. This statement is qualified by the 

assumption that the low-degree components of density heterogeneity inferred from 

seismology are not just the low-degree signature of spectrally white upwellings and 

downwellings (e.g., plumes) . This is a possibility that is now being tested more 

rigorously in the resolution of seismic tomography, but which seems on the whole 

unlikely given the bimodal pattern of hotspots and their association with the Pangean 

continental assemblage (Anderson, 1982) as well as the overwhelming spectral peak in 

the geoid at degree 2. In general, geoid wavelengths much greater than the depth of a 

convecting system, ~either whole mantle (degrees < 6) or the upper mantle (degrees < 

20) should be affected much more strongly by radial stratification in viscosity due to 

lithostatic pressure, phase changes, or partial melting than by expected lateral viscos

ity variations. 

(2) Considerable contamination of the higher degree geoid (l >4) is to be 

expected due to lateral viscosity variations in phase with the fundamental convection 

scalelength. Given the strength of the degree 2 geoid and density heterogeneity in the 

mantle, we can expect great difficulty in modelling the degree >4 geoid (this does not 

necessarily apply to subducted slabs). For the Earth we would expect strong 
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contamination of the degree 4 geoid due to degree 2 heterogeneity in both density and 

viscosity. A comparison of the degree 2 lower mantle tomography geoid and the resi

dual (unmodelled) degree 4 geoid after the lower mantle and slab signal are removed 

(Figure 13a,b) suggests that this contamination may be observable. The theory we 

have developed predicts that degree 4 should be contaminated by additional (doubled 

harmonic) lows over both upwelling and downwelling degree 2 zones. The equatorial 

residual degree 4 low pattern corresponds roughly with both the large antipodal lower 

mantle upwellings (Figure 13a) and major equatorial subduction zones (Figure 13c), 

and the strong degree 4 zonal pattern is of the correct sign to similarly correspond to 

the zonal degree 2 pattern. This suggests that much of the unexplained degree 4 geoid 

could be due to lateral viscosity coupling for degree 2 as well as mismodelling of the 

subduction geoid. By comparing the amplitude of the residual degree 4 geoid (,...._,1.5 

meters) and the observed degree 2 geoid ( ,...._,70 meters) we can constrain the low

degree variation in effective viscosity to less than an order of magnitude (see Figures 2 

and 6), consistent with the inferred large-scale temperature contrasts of <so°K. In 

order to address this problem properly it is necessary to model the entire mantle flow 

system driven by subduction, lower mantle heterogeneity, etc., with temperature

dependent rheology. Three-dimensional, spherical numerical models will eventually 

allow us to deal more quantitatively with these observations, but this emphasizes that 

we are already reaching a stage in our understanding of the geoid at which these con

siderations are important. 

(3) Broad-scale, gentle, relatively low Rayleigh number convection will produce 

mild lateral variations in viscosity, and these effects can be qualitatively understood 

by a simple perturbation theory approach. This procedure could be applied in 3-D as 
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well as 2-D and remams remarkably accurate for viscosity variations of less than an 

order of magnitude at long wavelength. 

( 4) While the in tern al loading geoid problem is relatively insensitive to long

wavelength lateral viscosity contrasts, transient problems such as glacial unloading 

and transport phenomena such as heat advection appear to be more sensitive. For 

these problems involving mantle flow velocities, the mode decoupling or harmonic 

independence and superposition principle may break down for viscosity variations 

greater than half an order of magnitude. Geoid modelling might, therefore, be a 

better method for determining the radial stratification of mantle viscosity as well as 

the possible presence of chemical layering. 

(5) Stress dependent rheology reduces the effects of temperature-dependent con

vection, but the difference between boundary deformations for power-law ( q =3) flow 

and Newtonian flow are in general small compared to substantial temperature varia

tions. The induced lateral viscosity variations due to stress-dependence alone are not 

nearly as important as vertical viscosity stratification in determining the geoid. 

Our results are in qualitative agreement with the unit aspect ratio calculations 

of Jian and Parmentier (1985). Under no conditions do we obtain upper surface 

depressions over convective upwelling, so we conclude, as they did, that contrary 

findings by McKenzie (1977) are due to numerical problems. Additional comparisons 

to other previous work are difficult because most surface deformation and geoid 

results are not presented in the spectral domain. 

The effects of broadscale lateral viscosity variations in the mantle are expected 

to be second-order in comparison with those due to radial stratification. However, 

having formulated a model for 82% of the observed geoid variance (Chapter 2), these 
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effects may give nse to unmodelled geoid signals comparable to the remammg unex

plained geoid anomalies. More powerful, fully three-dimensional numerical modelling 

of the global seismic and geodetic data should not only help us to better understand 

the geoid and seismic data, but will also enable us to formulate a much more realistic 

picture of heat and mass transport in the mantle which will bear on many aspects of 

global geodynamics. Modelling of temperature and stress-dependent rheology will be 

an important consideration in this effort, but other effects may also require some 

modification of the simple layered geoid models. For example, mantle compressibility 

may affect the longest-wavelength surface deformations (Ricard et al., 1984; Hong and 

Yuen, 1985), and the dynamical effects of phase transitions may be more complicated 

than the simple radial viscosity changes we have modelled. These are areas for future 

theoretical development which can, perhaps, be constrained by modelling of the geoid 

and the new observations of deep mantle structure. 
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Table - Residual vanance after the subducted slab/ lower mantle geoid model is 

subtracted from the observed geoid . The middle column gives the residual 

variance at each spherical harmonic degree, while the right-hand column gives 

the cumulative residual variance from degree 2 through the degree indicated 

in the left-hand column. 
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TABLE 

DEGREE RESIDUAL VARIANCE 
by degree cumulative 

2 6% 6% 
3 33% 11% 
4 44% 14% 
5 49% 15% 
6 107% 17% 
7 86% 17% 
8 74% 18% 
9 63% 18% 
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Figure 1 - Log-log companson of root mean square harmonic coefficient ampli

tudes (see Chapter 2 for definition). Units are as follows: Observed geopoten

tial (also slab residual and lower mantle/ slab residual), 1M /R (fraction of 

geopotential at surface); Lower mantle P-velocity (Clayton and Comer, 1983), 

104 km/sec; Hotspot distribution, 4.lx 105 hotspots per Earth area. Geopoten

tials, in units 1M / R, may be converted to geoid elevations by dividing by the 

gravitational acceleration at the surface or by multiplying by R. (I is the 

gravitational constant, M the mass of the Earth, and R the Earth's radius.) 
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Figure 2 - Spectrum of anomalous upper surface deformation produced by a mode 

2 load at mid-depth in a box with mode 2 viscosity variation given by 8. The 

dashed line for 8=0.9170 is computed by scaling the deformation from the 

finite element calculation for a small perturbation (8=0.1170) to 8=0.9170 

according to the perturbation theory. Similar scaling leads to dashed lines for 

8<0.5170 that are indistinguishable from the solid lines from numerical experi

ments. 
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Figure 3 - Anomalous geoid (%of load) at the load / viscosity mode number from a 

finite element calculation for viscosity variation 8=0.75TJo· The vertical axis 

gives the self-coupled load/viscosity mode number. The dashed line gives the 

scaling, according to perturbation theory, based on the numerically deter

mined value at mode 2. 
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Figure 4 - Apparent dimensionless dynamic geoid response as a function of depth 

for mode 2 loading and viscosity variation. Model "Ul" has uniform back

ground (unperturbed) viscosity, while "UlO" and "UIOO" have factors of 10 

and 100, respectively , lower background viscosity in the upper one-quarter of 

the box. The geoid responses are normalized to the geoid which would be 

obtained if the mode 2 loads from each depth level were placed at the top sur

face with no dynamic compensation allowed. 
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Figure 5 - (a) Error in geoid caused by ignoring anomalous surface deformation 

due to cross-coupling from viscosity variations at modes different from the 

load mode . 

(b) First-order surface deformation coupling into mode 2 (load and 

viscosity modes differ by 2). 
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Figure 6 - (a),(b),(c) Mode 2 loading with a factor of 100 exponential 

temperature-dependence of viscosity (solid lines). Dotted lines indicate uniform 

viscosity calculations with the same loading. In ( c) the long-dashed line gives 

the geoid spectrum for only a factor of 10 lateral viscosity variation, and the 

short dashed line is for a factor of 10 variation with stress-dependent (q =3) 

rheology . Surface deformations and geoid are normalized to the total mode 2 

load which is distributed uniformly throughout the box . 

(d),(e),(f) Same as (a),(b),(c) except that loading and visocity have 

one-third the wavelength/depth ratio (mode 6) and the lateral (exponential) 

viscosi ty variation is only a factor of 10. 
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Figure 7 - (a) Relative vertical fluid velocities for the mode 2 ("/ =2") experiment 

of Figure 6 with a factor of 10 viscosity variation. The dotted line gives the 

velocity profile at mid-depth for uniform viscosity. The solid and dashed lines 

give the profiles for variable viscosity at mid-depth and at one-tenth of the 

box depth, respectively. 

(b) Vertical upper surface velocity profiles for a mode 2 load at the 

upper free surface. Dotted line is for uniform viscosity. The solid line is for a 

factor of 10 viscosity variation arbitrarily chosen to be in phase with the "gla

cial" load. 
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Figure 8 - Upper panels: temperature contours for bottom heated temperature 

dependent convection (Ra =105
) with /3=0.3 (a) and /3=0.5 (b) . Contour 

interval is 0.1 of dimensionless temperature. True relative vertical and hor

izontal dimensions are shown . 
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Figure 9 - Upper panels show relative surface deformation across the top of the 

mode 2 convection half-cells of Figure 8. Lower panels give the geoid spectra, 

normalized to the total mode 2 load, for various rheological experiments. 

Reflection symmetry is applied about the vertical coordinate axis (x =0) 

which is chosen to be at the right-hand side of the half-cell in order to make 

all the spectral geoid components negative. The various labels for line types, 

given in (b) are explained in the text and apply in both the upper and lower 

panels of (a) and (b). The lines in the upper and lower panels in (c) correspond 

similarly. 
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Figure 10 - Geoid signal for modes 2,4,6 (corresponding in aspect ratio to har

monic degrees l =2,4,6) as a function of depth (mode 2 convection; /3=0.5; 

Ra =105). Curves in (a) are for horizontally averaged viscosity , and curves in 

(b) are for fully temperature-dependent viscosity. The mode 2,4,6 loads at 

each depth level are shown in (c) in units of dimensionless temperature con

trast. Units for (a) and (b) are the same since the geoid is proportional to the 

product of the thermal load and a dimensionless geoid response (see Figure 

11). 
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Figure 11 - (a),(b) Apparent dimensionless dynamic geoid response functions 

(mode 2 convection; /3=0 .5; Ra =105
) computed by dividing curves (a) and 

(b) of Figure 10 by (c) at each depth level. 
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Figure 12 - Upper panel: temperature contours for internally heated, temperature 

dependent convection (Ra =105
; ,8=1.0) . Contour interval is 0 .033 of dimen

sionless temperature. True relative vertical and horizontal dimensions are 

shown. Lower panels: geoid signal for modes 1,2,3,4 (corresponding in aspect 

ratio to spherical harmonic degree 1,2,3,4) and thermal loads as functions of 

depth. Curves in (a) are for horizontally averaged viscosity, and curves in (b) 

are for fully temperature-dependent viscosity. Units are as in Figure 10. 
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Figure 13 - Global maps, in cylindrical equidistant projection, with outlines of 

continents. (a) The harmonic degree 2 component of the geoid signal modelled 

from lower mantle seismic P-wave tomography (Chapter 2). (b) The residual 

degree 4 geoid after the modelled geoid signals of subducted slabs and the 

lower mantle are removed. (c) The degree 2 component of the subducted slab 

geoid signal. Lows are shaded; geoid signals are in meters. 
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LM Predicted Geoid: degree 2 

contour interval: 10 m (a) 

LM & Slab Residual Geoid: degree 4 

contour interval: 5 m (b) 

Slab Predicted Geoid: degree 2 

contour interval: 10 m (c) 
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Chapter 4 

Dynamically Supported Geoid Highs Over Hotspots: 
Observation and Theory 

Introduction: 

Linear seamount and island chains, such as the Hawaiian islands, have fre-

quently been attributed to the passage of the lithosphere over deep convective upwel-

lings (Wilson, 1963; Morgan, 1972; 1981). The age progression from the active 

"hotspot" to the guyots on the inactive end of the chain is particularly well esta-

blished for Hawaii (Jarrard and Clague, 1977; Dalrymple and Clague, 1976), and rela-

tive motion among the more prom in en t of these "hotspots" is constrained to be about 

an order of magnitude less than typical plate rates (Morgan, 1972; 1981; Engebretson 

et al., 1984; Chase, 198.J). Therefore, the thermal plumes, or whatever process is 

responsible for hotspots, must be essentially stationary with respect to tectonic plate 

motions. 

The theory of mantle plumes has not received universal acceptance, because 

much mid-plate volcanic activity is not easily associated with hotspot traces. For 

example, the Tertiary volcanic activity in eastern Australia (Pilger, 1982) and the 

recent volcanism near Easter Island (Bonatti et al., 1977) are actually "hot lines" 

rather than hot spot tracks. The Line Islands require either widespread contem-

poraneous volcanism or several hot spot tracks (Schlanger et al., 1984; Epp, 1984b). 
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Alternative explanations for mid-plate volcanism have usually involved propagating 

cracks or faults in the lithosphere (Betz and Hess, 1942; Turcotte and Oxburgh, 1973; 

1976; Sleep, 1974; 1984a; Solomon and Sleep, 1974), even though there is no resem

blance between the surface morphologies of mid-oceanic swells and other tensional 

features in the lithosphere such as mid-ocean ridges and continental rifts. 

The crack theory and the plume theory predict very different sub-lithospheric 

structures beneath a hot spot. These differences can be inferred by considering mid

plate swells such as the one associated with the Hawaiian Islands. These ......_,1000 km 

wide features are attributed to heating of the lower lithosphere as it passes over the 

hotspot (Detrick and Crough, 1978; Crough, 1978; Von Herzen et al., 1982; Epp, 

1984a). The topographic uplift appears to form within a few million years at the 

hotspot and then subside similarly to young seafloor. The thermal origin (wit.hin the 

lithosphere) of the swells is further indicated by their elevated heat flow (Von Herz en 

et al., 1982) and the systematics of volcano heights (Epp, 1984a). The formation of 

the hotspot swells is sufficiently rapid that bulk replacement of the lower lit hosphere, 

as opposed to thermal conduction, is required (Detrick and Crough, 1978). The 

replacement process could be intrusion of hot plume material into the lower litho

sphere or, in the crack theory, bulk stoping or delamination of the lower lithosphere 

which then sinks as dense blobs into the underlying mantle. The two hypotheses 

therefore predict opposite types of structures underlying hotspots: a hot, low density 

plume or cold, sinking lithospheric material. 

Since cases intermediate between these end members are conceivable, it is neces

sary to clarify our terminology . By "plumes" we mean more or less cylindrical zones 

of upwelling with radii of the order of 10-100 km. Plumes might either be strong and 
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supply the bulk of the heat needed to thin the lithosphere, or they may be weaker 

and act mainly as a trigger for delamination. Broad zones of mantle upwelling are dis

tinguished from narrow plumes. Mostly passive "blobs" in the upper mantle (Allegre 

et al., 1984; Batiza et al., 1984) which may cause chemical and isotopic anomalies in 

off-axis volcanism are also distinct from active plumes. We use the term "delamina

tion" to describe either thermally or mechanically triggered sinking of blobs of high 

viscosity material at the base of the lithosphere, i.e., convective instability. We distin

guish this process from lithospheric thinning due only to thermal erosion of the litho

sphere by a plume. 

Geophysical methods that might discriminate among these alternatives include 

modelling the gravity signatures of hotspot traces and studies of the deep se1sm1c 

velocity structure beneath active hotspots. Seismic evidence would seem to favor the 

plume hypothesis since certain hotspots such as Yellowstone are underlain by slow 

velocity material to a considerable depth below the lithosphere (Iyer, 1975; Hadley et 

al., 1976). Short-wavelength ( <1000 km) gravity anomalies, although conspicuous, 

are largely the result of lithospheric thinning and compensated swell topography 

(Detrick and Crough, 1978; McNutt, 1984) and do not offer much direct information 

concerning dynamic processes deep in the mantle . However, very long-wavelength 

geoi<l anomalies (harmonic degrees < 10) are relatively insensitive to contamination 

from lithospheric heterogeneity (Hager, 1983) and are most sensitive to the deep

seated density contrasts in the mantle (Richards and Hager, 1984: Chapter 1, hen

ceforth referred to as "RH") that are presumably the result of convection. 

The general association of hotspots with long-wavelength geoid highs both glo

bally (Crough and Jurdy, 1980; Chase, 1979) and more locally (Kaula, 1970; Morgan, 
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1972) suggests that, if hot plumes cause hotspots, topographic compensation dom

inates their geoid signature; otherwise, low density material would result in geoid 

lows. Paradoxically, subducted slabs representing cold, sinking material in the upper 

mantle are associated with geoid highs (Kaula, 1970; Chase, 1979; Crough and Jurdy, 

1980; Hager, 1984), indicating that dynamic surface topography is not the overwhelm

ing effect there. Kaula explained this apparent contradiction as the result of differing 

rheology under hotspots and subduction zones. The effect of subducting slabs 

encountering a relatively high viscosity lower mantle may be to reduce the resulting 

surface topography ("trench") at long-wavelengths so that the positive geoid anomaly 

due to the dense slab dominates the geoid signature. An alternative explanation for 

the geoid highs over hotspots is that cold, dense lithospheric blobs are delaminated at 

hotspots and result in geoid highs just as do subducting slabs. 

The purpose of this study is to provide a test of the various hotspot theories by 

modelling the long-wavelength geoid anomalies with which they are associated. We 

use models of hot plumes and cold downwellings (slabs), which include temperature 

dependent rheology, to predict long-wavelength geoid anomalies which can then be 

compared with observations. \Ve also consider other quantities of interest such as 

heat flow and long-wavelength dynamic topography, but they are more difficult to 

constrain via observation. A key question which we state now and expand upon later 

is: Could narrow mantle plumes be directly responsible for the geoid highs over 

hotspots, or are hotspots and, perhaps, plumes associated with more broad-scale con

vection patterns in the mantle which cause geoid highs? Emphasis in modelling will 

be placed on the conspicuous geoid high over Hawaii since it is the classic hotspot. 

However, m order to provide a more general observational base, we begin by 
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analyzing quantitatively the relationship between hotspots and the geoid in a global 

sense, including information from recent seismic studies of mantle heterogeneity. 

Global Observations and Hotspots 

The Earth's long-wavelength geoid (shown in Figure la referred to the hydros

tatic figure) has been well determined from observations of satellite orbits (Kaul a, 

1963; Lerch et al., 1983), but its interpretation has remained somewhat enigmatic 

because of its lack of resemblance to surface features such as continents and mid

ocean ridges. However, by filtering out the lowest harmonics (degrees 2-3) which dom

inate the geoid spectrum (see Figure 2), it is obvious that many of the "intermediate" 

wavelength geoid highs are located over active subduction zones (Figure lb). This 

subduction signal can be removed from the geoid with moderate confidence because of 

the high degree of formal correlation between slabs and the geoid at harmonic degrees 

4-9 (see Figure 3). Hager (1984) has presented a model, which we review in more 

detail below, that allows us to subtract a subduction geoid signal, calculated using a 

fluid dynamical model, from the observed geoid to obtain the residual geoid shown in 

Figure le. 

The residual geoid is dominated by two large highs centered over Africa - north 

Atlantic and over the west-central Pacific. Crough and Jurdy (1980) and Chase(l979) 

recognized that residual geoid highs (left after subtracting slab effects) cover areas 

that include most of the world's hotspots (marked with dots in Figure 1). Although 

not as striking as with all degrees included, upon filtering the lowest degree (2-3) com

ponents (Figure ld) we still find more "local" residual geoid highs over many of the 

hotspot provinces including Hawaii, Tasmania, Raton - Yellowstone - Bowie - Juan de 
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Fuca, Christmas Island - Kerguelen - Crozet - Verna, Afar, Easter - Juan Fernandez, 

and Iceland - Madeira - Canary - Azores - Cape Verde - Rio Grande - Fernando. The 

Hawaiian anomaly is very striking and less likely than, e.g., Iceland to be contam

inated by plate boundary effects. There are conspicuous exceptions including Mt. 

Erebus, Samoa, and Bermuda which occur in pronounced residual geoid lows. Also, 

geoid highs remain over the Iranian-Caucasus-Tibetan highlands, which are related to 

convergence and thickening of the continental crust (Hager, 1983). 

We have selected our list of 47 hotspots (Table I) based on the compilations of 

Morgan (1981) and Crough and Jurdy (1980) . Although exception may be taken with 

any of several inclusions or deletions (conceivably, only some hotspots are associated 

with plumes), this list probably represents the distribution fairly well. The compila

tion by Burke and Wilson (19i6) of 115 possible hotspots also exhibits a strong associ

ation with the low-degree geoid as shown by Crough and Jurdy (1980). The dynamic 

geoid response of the Earth to internal density contrasts depends quite strongly on 

the wavelength considered (RH). It is convenient, as well as instructive, to calculate 

models for comparison to observations in the spectral domain using spherical harmon

ics. The spherical harmonic representation of hotspots which we use for statistical 

correlations is obtained by mathematically representing hotspots as point sources of 

equal (and arbitrary) strength on the surface of the Earth. We have made no attempt 

to selectively weight certain hotspots such as Hawaii, Iceland, and Kerguelen, which 

are surely more important than others, such as Raton, whose legitimacy as hotspots 

may be questioned. 

The hotspot distribution spectrum is shown in Figure 2 along with the geoid and 

residual geoid spectra. These spectral amplitude plots are obtained from the square 
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root of the sum of squares of harmonic coefficients at each harmonic degree : 

A (l) = ~ (c1~+s1~)/(2l+l) (1) 
m=O 

The elm and s1m are the cosme and sine coefficients for a fully normalized spherical 

harmonic expansion. The factor 1/(2/ +1) is included because a random distribution 

of delta functions (hotspots) on a sphere will have a fiat ("white" ) spectrum with this 

normalization . The hotspot spectrum (Figure 2) is much whiter than either of the 

geoid spec t ra; it is mildly peaked at degrees 1-2 with a striking peak also at degree 6. 

(Because the geoid is referred to the center of mass coordinate system, it has no 

degree 1 component.) 

The correlation coefficient, r 1 , between the geoid and hotspots may be obtained 

from 

~( Ctm glm +s1m him) 
m (2) 

~ (g,~+h,~) 
m=O 

where (c1m , Stm) are the geoid coefficients and (g1m , him) are the hotspot coefficients. 

Cummulative correlations with several or many harmonic degrees simultaneously can 

be misleading since spectral power is not uniform (Eckhardt , 1984), so we examine 

only degree-by-degree correlations. Hotspots are significantly correlated with the 

observed geoid only at degree 2, but the low-degree correlations for hotspots vs. the 

slab residual geoid are higher as shown in Figure 3. Confidence limit contours deter-

mined by a Student's t test with 2/ degrees of freedom are also shown in Figure 3. A 

confidence level of 0 .9.5 implies that there is a 5% probability that the two sets of 

functions are random . 
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The residual geoid is significantly correlated with hotspots at degrees 2, 4, and 6 

with some correlation at degree 3. Higher harmonics are essentially uncorrelated (no 

correlations are significant with >90% confidence for l =7-20). The correlations at 

degrees 2 and 6 are particularly noteworthy because they correspond to peaks in the 

hotspot spectrum. Crough and Jurdy (1980) found a correlation coefficient of 0.85 at 

degree 2, significant with >95% confidence, that is even higher than our value of 

0.75; the difference arises from different methods of calculating the slab signal. 

The degree 2 correlation is made even more compelling by recent observations of 

seismic velocity heterogeneity in the lower mantle. Both the tomographic inversions of 

Clayton and Comer (1983) and the least-squares inversion of Dziewonski (1984) of P

wave travel times show that low velocity in the lower mantle is very strongly corre

lated with low-degree (2-3) geoid highs (Hager et al, 1985). We also find that slow 

velocity and presumably hot, low density anomalies are well correlated with the 

hotspot distribution at degree 2 (r 2=0.85). Figure 4 emphasizes this point by com

paring harmonic degree 2 maps of the slab residual geoid, a depth average of seismic 

heterogeneity from Clayton and Comer (1983), and the hotspot distribution. All of 

these fields closely resemble the entire low-degree residual geoid (Figure le) because 

the geoid spectrum is so strongly peaked at degree 2. (The vertically averaged lower 

mantle P-wave velocity model is also peaked at degree 2 as shown in Figure 2.) These 

three phenomena are apparently related, and even though statistical correlations con

tain no information concerning cause-and-effect relationships, we form the following 

hypotheses: Occurrences of hotspots (mantle plumes) are directly related to the 

broad-scale temperature structure of the lower mantle, and the largest residual geoid 

highs are the result of long-wavelength topographic highs that are dynamically 
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supported by either broad scale or plumelike (hotspot) thermal anomalies. 

Additional evidence of this kind comes from studies of upper mantle hetero

geneity from surface wave studies (Masters et al, 1982; Woodhouse and Dziewonski, 

1984; Nataf, Nakanishi, and Anderson, 1984; Tanimoto, 1986). At degree 2, there is a 

high velocity feature in some models of the transition zone that correlates well with 

the geoid (e.g., Masters et al., 1982; Woodhouse and Dziewonski, 1984; Nataf et al., 

1986). This feature is even better correlated with subducted slabs than with the 

observed geoid (Hager, 1984; Richards and Hager, 1986: Chapter 2) and appears to be 

associated with cold downwellings rather than hot plumes. Both the Woodhouse and 

Dziewonski and the Tanimoto studies show a remarkable correlation with both the 

residual geoid and hotspots at degree 6. Table II gives the degree 6 correlation 

coefficients, and the negative signs indicate that slow shear velocity is correlated with 

both geoid highs and hotspots. Since there is a spectral peak in the hotspot distribu

tion at degree 6, the correlation at degree 6 is expected if hotspots are to show a 

strong relationship to either the geoid or shear velocity anomalies. If the upper man

tle is near the solidus, then shear waves should be very sensitive to elevated tempera

ture . In Figure 5 we compare the degree 6 surface wave velocity heterogeneity, resi

dual geoid, and hotspot distributions to illustrate the strength of an ,...,_,Q. 7 correlation 

coefficient at degree 6. (We should note that the lower mantle heterogeneity models 

do not correlate with hotspots or the geoid at harmonic degrees >4. Lack of resolu

tion may be at fault, and other possible reasons for this are addressed in Richards 

and Hager, manuscript in preparation: Chapter 3.) Also note that degree 6 is the one 

harmonic degree for which slabs do not correlate well with the observed geoid. How

ever, it is only when the dynamically modelled degree 6 slab geoid is removed that 
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the hotspot distribution shows good correlation with the geoid. Figure 5 shows that 

the degree 6 hotspot peak represents the large groupings of hotspots (e.g., Christmas 

Island - Kerguelen - Crozet - Verna) rather than individual spacings which appear to 

be random. (The hotspot spectrum beyond degree 10 is essentially white.) Again, we 

can formulate a testable hypothesis concerning hotspots: Plumes are directly related 

to either heating or chemical heterogeneity in the upper mantle at degree 6, which 

may be a dominant wavelength for their formation. 

These observations suggest that we formulate a quantitative global test to deter

mine whether mantle plumes might be directly responsible for the density contrasts 

that cause the large-scale residual geoid features as well as the seismic velocity 

anomalies . The question then becomes that of whether reasonable models of 

hotspots , either mantle plumes or delaminating lithosphere, can explain the slab resi

dual geoid. The alternative, of course, is that hotspots are only symptoms of a 

broad-scale thermal field or, perhaps, compositional heterogeneity in the mantle. 

The correlations of Figure 3 suggest to us that much of the long-wavelength slab 

residual geoid is causally related to hotspots. We assume that for each harmonic 

degree this relationship can be written in the linear form 

residual geoid = (dynamic response ) *(hotspot distribution ) + (noise ) 

or, for example, 

( C1m ,s1m) = b1 (91m ,him) + (noise ) (3) 

From our analysis we obtain the least-squares estimates for the dynamic response 

functions, b1, shown in Figure 6. The coefficients (g1m ,h1m) are in units of hotspots, 

and the spectral "response" curve is in the rather peculiar units of geoid / hotspot. 
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Although we cannot reliably determine the response at degree 5, where the correlation 

is poor, it appears that the response is a relatively smooth, monotonic function of 

harmonic degree, suggestive of a dynamical filtering process as discussed below. Also 

shown are the values of b1 obtained if, instead of assuming that all the error in esti

mation is the result of other density heterogeneity signals in the geoid, we perform 

the mutual correlation of residual geoid and hotspots under the pessimistic assump

tion of equal noise in each signal. The extra noise on the geoid (left) side of equation 3 

may be due primarily to mismodelling of the subduction signal; at these wavelengths 

the geoid can otherwise be considered to be perfectly measured. The "equal noise" 

response is not substantially different than the initial model (equation 3), so our 

response curve is robust at least in this respect. Unfortunately, the least-squares fits 

for the coupling coefficients, b1 , are less well constrained as shown by the 2o- error 

bars at each harmonic degree. The best fitting response amplitudes give about a fac

tor of 8 decrease from harmonic degree 2 to degree 6. This spectral shape is largely 

that of the residual geoid, since the hotspot spectrum does not show the same long

wavelength bias. 

In addition to the global association of hotspots with geoid highs, we can also 

use the local ,..__,13 m geoid high (degrees 4-10) centered on Hawaii to constrain our 

models (see Figures lb,c) . The contours are not elongated in the direction of the older 

islands and seamounts in the chain (toward the northwest), so it is difficult to explain 

this long-wavelength signal as an effect of the lithospheric swell itself. The anomaly 

actually appears to be elongated toward the upstream direction (southeast), suggest

ing, perhaps, that the active Hawaiian shield is lagging slightly behind a deep thermal 

source. 
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The spectral content of the Hawaiian geoid anomaly is difficult to assess quanti

tatively because it is necessary to arbitrarily select some spatial subdomain within 

which to perform spectral analysis. However, Figures 7a,b show that about IO m of 

the 13 m signal occur in the harmonic degree 4-6 band, while less than ,..._,3 m occur in 

the degree 7-12 band. Figure 7c shows that the degree 10-20 geoid signal over Hawaii 

is almost zero, and also verifies the lack of any consistent correspondence between 

geoid highs and hotspots (noted above) in this wavelength band. (Note, however, 

that there is a strong shorter-wavelength signal over Yellowstone.) Since the Hawaiian 

swell is of relatively small width ('"'-'1000 km), the lack of degree 7-20 signal makes it 

an implausible source for the longer-wavelength positive geoid anomaly. These obser

vations for the isolated case of Hawaii are consistent with the pronounced long

wavelength bias of the inferred global hotspot geoid response curve of Figure 6. We 

use both the local and global observations to discriminate among long-wavelength 

geoid responses for the competing hotspot models discussed below. 

Dynamic Response Functions 

It is necessary at this point to review some basic ideas about how long

wavelength geoid anomalies are generated in a viscous, convecting planet like the 

Earth. Chase and lvicNutt (1982) and Hager (1983) have shown that only about 20 

meters out of a total long-wavelength geoid signal of about 200 meters can be gen

erated by uncompensated topography and lithospheric or crustal thickness variations, 

e.g., the geoid high over the Tibetan Plateau. Therefore, most of the geoid must 

result from the internal density contrasts that drive convective flow: subducted slabs, 

man tie plumes, or broader scalelength variations. 
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Interior density contrasts drive flow that causes deformations of the surface, the 

core-mantle boundary, and possibly, internal chemical boundaries. At very long 

wavelengths ( l < 10) the lithosphere has effectively no long-term flexural strength 

(McKenzie and Bowin, 1976), and deformation will occur rapidly compared to the 

timescale for convection (RH). These deformed surfaces have an important effect on 

geoid anomalies . In order to correctly model the long-wavelength geoid, a fluid 

dynamic Earth model must be used to calculate the geoid contributions due to these 

boundary deformations. It has been shown by many authors (e.g ., Pekeris, 1935; 

Runcorn, 1964; Morgan, 196.5; McKenzie, 1977; Parsons and Daly, 1983; Ricard et al, 

1984; RH) that dynamic compensation due to boundary deformation is of dominant 

importance in determining the geoid . Since induced boundary deformations cause 

geoid anomalies that are of opposite sign and comparable magnitude to the geoid due 

to interior density contrasts, long-wavelength geoid anomalies are the difference of 

large numbers. The details of boundary deformation depend strongly on the viscosity 

structure of the mantle, so the geoid is a sensitive indicator of mantle structure (RH). 

If the viscosity structure varies only radially (i.e., is spherically symmetric), then 

a given density contrast 8p1m ( r) at radius r excites only an Im th harmonic flow field 

and causes only Im th harmonic boundary deformation. Since solutions for linear 

(Newtonian), spherically symmetric viscosity may be superposed, we can obtain the 

total harmonic geopotential coefficients from 

R 

u,m = 
47r/R I c, ( r )8P1m ( r )dr 
21 +1 c 

(4) 

where 1 is the gravitational constant, R the Earth's radius, c the core radius, and 

G1 (r) is the dynamic response function or kernel. This kernel is independent of the 
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azimuthal order m and contains contributions from both boundary deformations and 

the density contrast itself. In RH we showed how to analytically calculate G1 ( r) for 

spherically symmetric, incompressible, self-gravitating Earth models. 

Response functions for both whole mantle flow and chemically layered flow are 

shown in Figure 8 with lower/upper mantle viscosity ratios of 1, 10, and 100. Note 

that although flow velocities depend on the absolute value of viscosity, the stresses, 

boundary deformations, and geoid depend only on the relative values. Free-slip boun

dary conditions are imposed at the core and at the surface; the difference between 

no-slip and free-slip is discussed in RH. For uniform viscosity and whole mantle flow 

(Figure 8a) the geoid response is always negative because of the overwhelming gravi

tational effect of the deformed upper boundary . Decreasing the viscosity of the upper 

mantle causes less deformation of the upper boundary (Figure 8b,c) and tends to 

drive the geoid response toward more positive values. Therefore, both the size and 

magnitude of the geoid response are strongly affected by relatively mild changes in 

viscosity with depth. These pressure induced changes can occur either gradually due 

to compaction or abruptly due to phase changes; phase changes probably do not oth

erwise strongly affect the flow field (Richter and McKenzie, 1981 ). However, a chemi

cal discontinuity acting as a barrier to radial flow will deform and also affect the 

geoid. This forces the geoid response to zero at the boundary (in the same way that 

we get perfect compensation at the surface and core) and generally reduces the mag

nitude of the response functions (Figure 8d,e,f). 

In addition to the response function G1 (r) we have also calculated dynamic 

impedance functions, z1 (r) which give the ratio of induced topography to observed 

geoid (RH). Unfortunately, the Earth's dynamically supported topography is obscured 
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at long-wavelength due to gravitationally compensated continental masses and ther

mal plate thicknesses, and there is no consistent correlation between topography and 

gravity. At the present time we cannot reliably estimate the global long-wavelength 

(degrees< 10) dynamic topography associated with mid-oceanic swells or hotspots. 

An obvious application of the response functions of Figure 8 is in modelling the 

subducted slab geoid signal (see Figure lb). A dynamical model using deep seismicity 

to locate subducted slabs was developed by Hager (1984). By associating slabs with 

approximately 0.1 gm/cm 3 density contrast and convolving these mass anomalies 

with various response functions, the following conclusions were reached based on com

parison of the observed and predicted geoids: (1) The magnitude of the observed 

geoid response is consistent with only a small degree of dynamic compensation . (2) 

The sign of the response function is positive for harmonic degrees 2-9 in the upper 

mantle, requiring a viscosity increase with depth. (3) Chemically layered models 

require about a factor of 5 more density contrast associated with subducting slabs 

than expected. (4) The best-fitting two-layer viscosity model is that of whole mantle 

flow with a factor of about 30-100 increase in viscosity between the upper and lower 

mantle (see Figure 8c). 

Figures 8b,e,f show that it is possible to have positive responses m the upper 

mantle and negative ones in the lower mantle for a variety of models. This at first 

suggests one easy solution to the problem of geoid highs over both slabs and plumes, 

namely, that plumes are primarily lower mantle features. (More realistic models that 

include a low viscosity asthenosphere and high viscosity lithosphere added to model 

UlO give more positive upper mantle kernels but maintain negative kernels in the 

lower mantle.) This idea turns out to be basically correct in the numerical plume 



- 222 -

models which are discussed below. However, we feel that it is important to assess the 

impact on our response kernels caused by neglecting the large viscosity variations 

expected to be associated with slabs and plumes. One motivation for numerical 

modelling is the hypothesis that these viscosity variations might be responsible for 

the paradox of having geoid highs over both slabs and plumes. An alternative expla

nation is that the geoid highs over hotspots are due to delamination of cold litho

sphere, consistent with the slab results. With the upper mantle "calibrated" by the 

geoid response of cold, subducting slabs, it is straightforward to estimate the geoid 

signature of unstable lithosphere sinking below a hotspot if we can estimate the 

amount of high density material present. We present both types of models in the fol

lowing sections. 

Delaminated Blobs 

Although the uppermost 30 km of the lithosphere under Hawaii behaves elasti

cally (e.g., Watts, 1978), the portion of the thermal lithosphere below the elastic layer 

should behave as a cold, dense, high viscosity boundary layer. It is convectively 

unstable and might sink into the mantle, or "delaminate." For Hawaii, if all of the 

swell topography is attributed to delamination, the flux of delaminated blobs is com

parable to that of slabs at subduction zones. The age of the crust around Hawaii is 

about 90 11yr and the apparent thermal age after the ,....___, 1 km uplift of the swell is 

around 25 Myr (Epp, 1984a). The elevation and hence the average mass anomaly in 

the lithosphere is proportional to the square root of age, so the delamination is 

equivalent to subduction of a 20 Myr plate at the rate of hot spot migration (100 

mm/yr) across the ,....__,1000 km width of the swell. We assume that large-scale 
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horizontal motions in the mantle are much less than plate velocities (e.g., Hager and 

O'Connell, 1979), so that the locus of delamination is roughly fixed with respect to 

the mantle, not the plates. If we assume 10 Myr as a characteristic time of transit 

through the upper mantle, then, for a slab of material 1000 km long (along swell) by 

1000 km wide with an excess mass per unit area of 3.3x 106 kg/m 2 (associated with 

the uplift of the swell), the excess mass of lithospheric material in the mantle beneath 

Hawaii is ...._.,3x 1018 kg. 

This load can be convolved with the preferred geoid response curves ("UlOO") 

for subducted slabs (Figure 8c) to estimate the long-wavelength geoid. If the excess 

mass 1s roughly distributed in a cylinder <1000 km in radius and 1000 km deep 

beneath Hawaii, we predict about an 6.3 m geoid high over Hawaii for harmonic 

degrees 4-9, which is about half the observed signal. However, the spectral response 

for this model is not nearly as strongly peaked at the lowest degrees as the global 

response curve (see Figure 18 for a comparison) owing to the small horizontal scale of 

the load. The degree 2-10 topographic downwarp is about 85 m, a value not likely to 

be resolved by analysis of bathymetric data given other perturbing influences. The 

lithospheric swell itself will generate relatively little geoid signal since it is isostatically 

compensated at shallow depth; whatever signal is generated will also be essentially 

"white" at low harmonic degrees since the swell is only ...._.,1000 km wide . 

The shorter wavelength (!> 10) geoid contribution could be as much as 10 m if 

there is little compensation, but this value depends strongly on the detailed viscosity 

structure of the upper mantle (RH). It is evident that the short-wavelength geoid is 

not elevated 10 m near the hotspot, and about 300-400 m of downwarp is required to 

keep the I> 10 geoid anomaly small. If this down warp occurs, a place on the seafloor 



- 224 -

would be expected to expenence subsidence (superimposed on the lithospheric swell 

due to delamination) as it approached the hotspot, and then uplift as it drifted 

further west. Since we cannot predict the detailed timing of the delamination it is 

difficult to model the upstream (east) side of the hotspot . On the west side of Hawaii, 

simple thermal contraction should produce about 350 m of downwarp in the first 11 

Myr if the lithosphere is reset to a thermal age of 25 Myr. If this downwarp is super

imposed on an uplift of ,...._,300-400 m due to rebound as the lithosphere moves away 

from the sinking, delaminated blobs, we obtain approximately a neutral net 

uplift/subsidence on the downstream side of the hotspot . Although this computation 

is crude, this might explain the fact that the Hawaiian swell has not substantially 

subsided as far as 10° West of the hotspot as shown in Figure 9. (This topographic 

variation could conceivably be attributed to greater activity of the hotspot 11 Myr 

ago.) This description of swell topography due to delamination can be contrasted with 

the following model based on heat flux from a mantle plume. 

Plume Kinematics 

Before describing our numerical plume models, we consider a simplified 

kinematic description of a plume for Hawaii that relates the heat flow, mass flux, 

temperature excess, and swell topography. Assuming for now that there 1s no trig

gered lithospheric delamination, the plume must diverge widely enough beneath the 

lithosphere to account for the swell width and must also supply enough heat to thin 

the lithosphere. That is, the flux of positive buoyancy from the plume should equal 

the rate of production of positive buoyancy in the swell. Using, as before, a migration 

rate of 100 mm/yr, a width of 1000 km, an elevation of 1 km and a density of 3300 
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kg/m 3 for the swell, the net flux m of negative buoyancy is 10 Mg/sec. The actual 

mass flux in the plume is the buoyancy flux divided by the fractional density contrast 

in the plume, ni p/8p. For thermal expansion the density contrast is 8p=pexf),. T, 

where ..6.. T is the excess plume temperature and ex is the volume thermal expansion 

coefficient, 3x 10-5 /°K. The resulting heat flux from the Hawaii hotspot, Crii /ex, 

(C=l.2x 103 J/kg °K is the specific heat) is 4.2x 1011 W or about 1% of the global 

mantle heat flux. The volume of flow, Q, through the plume necessary to make the 

swell is inversely proportional to the temperature contrast 

Q = 112 /exp!:::.T (5) 

(For reference, a plume with !:::. T =100°K, 100 km diameter, and m =10 Mg/sec 

ascending as a cylindrical plug will have an ascent velocity of 4 m/yr.) 

Next, the flow from the plume must diverge widely enough to produce the 

observed swell. To a first approximation this flow can be considered to be the interac

tion of radial flow from the plume through an asthenospheric channel and the hor

izontal drag produced by the motion of the plate over the hot spot. The average velo

city in the asthenosphere far away from the center of the plume is 

v plume = ( Q /27rrA )ar (6) 

where r is the horizontal distance from the plume, A is the thickness of the astheno

sphere, and ar is a unit radial vector from the hotspot. The average velocity in the 

asthenosphere from drag at the base of the plate is about half the plate velocity if the 

base of the asthenosphere is moving much more slowly than the overlying plate: 

(7) 

where the x direction is positive upstream from the plume and vL is the plate 
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velocity. The upstream stagnation point occurs at r 8 = Q / 1TA vL . The stagnation 

streamline assuming 100 km asthenosphere thickness is shown for temperature con

trasts of 300°K and 1000°K (Figure 9) and the flux computed above. The 1000°1< 

curve is narrower than the swell, but the 300°K curve is a fairly good fit to the edge 

of the swell, which extends about 500 km ahead of the hotspot. (The topographic 

contours for the Hawaiian swell in Figure 9 have been adapted from Schroeder, 1984, 

who computed the anomalous seaftoor topography in the Pacific ocean after correc

tions were made for isostatic loading, sediment thickness, seaftoor age, etc. Note that 

the islands and seamounts themselves involve many kilometers of topography, but 

these loads occur at short wavelength and are partially supported by lithospheric 

flexure, e. g., Watts, 1978.) 

The preceeding calculation is crude, but it shows that the swell shape and buoy

ancy flux are kinematically consistent with a plume delivering several or many hun

dreds of degrees excess temperature and also with a reasonable limit for the heat flux 

due to the Hawaii hotspot. (This heat ft ux is probably at least a factor of 2 or 3 too 

high for an average hotspot, since 47 hotspots would otherwise account for half of the 

Earth's entire heat budget.) It remains to be seen whether a mantle plume fitting this 

surface kinematic model can also satisfy the geoid observations and constrain ts from 

convection theory on the thermal structure of plumes. We consider more refined 

models in the next section. 
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Fluid Dynamical Models of Plumes 

Our basic idea of a plume is that of a narrowly confined, stable, hot upwelling 

from a deep boundary layer due to bottom heating. The seismic D 1 1 layer at the 

bottom of the Earth's mantle may be in part the result of heating of the base of the 

mantle by radioactive or latent heat within the core. Most estimates for the amount 

of core heat flux are somewhat less than 10% of the total geothermal flux (Gubbins et 

al, 1979). If there is a plume under Hawaii it is probably less than ,_,_,zoo km in 

radius as evidenced by the width of the volcanic trace (Morgan, 1972b). This small 

dimension is consistent with a very high effective Rayleigh number and the strong 

temperature dependence of viscosity, as shown by the stability analysis of Yuen and 

Peltier (1980). 

The thermal structure of a plume is dependent upon such unknowns as the rheo

logical laws of the mantle and plume material, the amount of heat being vented, the 

superadiabatic temperature drop, whether the plume is chemically distinct from the 

upper mantle, and the possible influence of partial melting. Thus, we do not know 

the plume structure very well. By contrast, we can make an educated guess as to the 

thermal structure of a su bducted slab or even a delaminated lithospheric blob. Our 

approach is to address some general questions about plume dynamics and compare 

the results to the observations discussed above. In particular, we ask: (1) How does 

the low viscosity of the plume alter the geoid responses derived for purely layered 

viscosity? (2) Is the thermal buoyancy of a narrow plume consistent with both the 

observed amplitude of hotspot geoid anomalies and reasonable limits on the amount 

of heat flow due to a hotspot? 
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The main difficulty in modelling is the result of the extreme horizontal varia

tions in viscosity expected for a thermal plume. No analytical methods exist to treat 

this problem in detail, so a numerical solution is required. We need to calculate very 

long-wavelength c-_,10,000 km) stress fields to obtain long-wavelength surface defor

mation and geoid estimates, but we must also resolve the strong short-wavelength 

( '"'"'10-100 km) plume structures which drive the flow. The finite element method is 

well suited to this problem because of the advantage of variable grid size, and a typi

cal grid for our plume models is shown in Figure 10. In all of the calculations that fol

low we have used 10 km horizontal grid spacing for treating the prescribed buoyancy 

forces and viscosity variations for both plumes and slabs, th us allowing good resolu

tion of thermal structures as thin as 50 km or less. Much smaller spacings are possible 

by further packing the nodal lattice at the origin, but this was not necessary except 

as a check on solution accuracy. \Ve have also used 20 km vertical spacing in the top 

200 km and bottom 100 km of the mantle to properly resolve viscosity changes in the 

lithosphere/asthenosphere and core-mantle boundary (D 1 1 ) region. Rotational or 

reflection symmetry imposed about r =0 (r is the radial distance from the plume 

center) or x =0 gives a total effective width of 10,000 km in both cylindrical and 

Cartesian geometry. (In the cylindrical calculations we assume a free-slip boundary 

at the outer boundary of the cylinder, r =d .) The numerical code is based on a 

penalty method formulation (Hughes et al., 1979) of the Stokes flow problem (steady, 

incompressible, very low Reynold's number flow with spatially variable Newtonian 

rheology). The code handles nonlinear rheology by damped iteration upon the viscos

ity field. 
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We are currently limited to numerical solutions in two dimensions (2-D Carte

sian or cylindrical geometry with axial symmetry) rather than the spherical geometry 

for which we earlier showed analytical solutions. The two-dimensional results that fol

low are represented in the horizontal spatial wavelength domain, just as we 

represented our spherical, analytical models (Figure 7) in spherical harmonics. In 

Cartesian coordinates (appropriate for subducted slabs) we have the approximate spa

tial wavelength equivalence, 

)..F ~ 27rR /Jl (I +1) 

where )..F is the Fourier transformed spatial wavelength, l is the corresponding spher

ical harmonic degree and R is the Earth's radius. In cylindrical coordinates (r ,z) 

with no e dependence, we use the Fourier-Bessel transform of the spatial coordinate r 

(see Appendix A) . Therefore, for axial symmetry (appropriate for plumes) we have the 

approximate wavelength equivalence, 

where Pn 1 1s the nth zero of the derivative of the zeroth order Bessel function, 

J 0(r ), and d is the radius of the cylindrical domain . For our numerical grid, d =5000 

km and AF=l0,000 km for Cartesian geometry, so the maximum allowable 

wavelengths in both cases correspond approximately to spherical harmonic degree 4. 

(This was the maximum horizontal dimension our computer model could handle with 

accuracy and still provide high resolution at the center of symmetry.) The first and 

second "overtones" in both coordinate systems correspond to harmonic degrees 8 and 

12, respectively. 
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In the absence of lateral viscosity variations, the flow and stress fields due to a 

density contrast of a given spatial wavelength are independent of disturbances at 

other wavelengths. Two-dimensional geoid response functions similar to G1 in equa

tion 4 can be calculated analytically as a function of spatial wavelength, and the dot

ted lines in Figure 11 show responses for a uniform mantle (model A, Figure 12) at 

spatial wavelengths corresponding to harmonic degrees 4, 8, and 12. These functions 

are exactly the same in Cartesian and cylindrical geometry for a given wavelength 

(see Appendix A). The response is uniformly negative due to the dominance of boun

dary deformation, and the curves are similar to those for the Ul model of Figure 8. 

We now consider three different cases in which the low viscosity of a plume may 

affect the geoid signal. The first case is that of hot blobs (such as those investigated 

experimentally by Olson and Singer , 1985) guided in their ascent by a narrow, pre

established pathway. The upper surface deformation and geoid due to these solitary 

blobs can be adequately modelled by the analytical theory (RH). Unless the blobs are 

very closely spaced , i.e., connected, there will not be an effective low viscosity stress 

pathway to the upper surface (or the core-mantle boundary), so induced surface 

deformations will not be very different from those calculated using the ambient man

tle viscosity structure. Their buoyancy will act approximately as point sources, with 

respect to the long-wavelength flow-stress field, embedded in a high viscosity back

ground (mantle). The particular case of a hot blob impinging on the lithosphere is a 

special case which we will discuss later. A more closely spaced string of low viscosity 

hot blobs might behave more like the plume models described next. 

The other two plume types with which we are concerned are like the more classi

cal, steady-state structures in which vertical flow is very rapid with respect to mantle 
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flow as a whole and is nearly uniform, with convergence at the bottom toward the 

plume and divergence at the top. The probable narrowness ( <200 km) of mantle 

plumes implies that the zones of flow convergence/divergence will be of equally small 

dimension (perhaps that of the D 1 1 layer and the asthenosphere); we temporarily 

ignore these complications. We can envision two end-member classes of these steady-

state plumes for which the low plume viscosity may affect the geoid signature. Mantle 

plumes may be essentially low viscosity "pipes" in which low viscosity rising fluid is 

contained by the relatively rigid walls (mantle). The other type is more typical of 

mantle convection models in which the radial excess temperature profile decays 

smoothly away from the axis of the plume (e.g., Parmentier et al., 1975; Yuen and 

Schubert, 1976; Boss and Sacks, 1985). If the plume is not distinct chemically from 

the surrounding mantle, a long-lived plume should evolve to this latter state as the 

surrounding mantle is heated conductively and, possibly, by viscous dissipation. We 

concentrate on this "thermal halo" case in the models that follow, returning to the 

"pipe" case when a comparison is needed. 

The thermal profile for the halo model can be parameterized by a characteristic 

width, r 0 , and by a peak (axial) excess temperature, l::!.T 0 , which should be essentially 

independent of depth if the plume rises nearly adiabatically. The temperature profile 

near the plume axis must satisfy the condition 

oT = 0 at r =0 ar (8) 

Since most of the flow and transport will occur very near the axis due to temperature 

softening of the mantle material, the dynamics of the plume is sensitive to the excess 

temperature profile. In accord with equation 8, we have adopted the form used by 



- 232 -

Loper and Stacey (1983) 

(9) 

where ~ T 0 is the peak excess temperature in the plume and r 0 is a characteristic 

plume radius. Expression (9) can be modified to include a thermal "halo" surround

ing the mobile near axis region by a temperature profile of the form 

(10) 

where r 0 gives the characteristic thermal width of the plume. Estimated values for 

~ T 0 associated with the superadiabatic increase across D 1 1 vary widely up to a 

maxim um of about 1000°K (Verhoogen, 1973). This parameter is not well constrained 

by observation, and we consider a wide range of values in our models. 

The density contrast in the plume is given by 

(11) 

where Po is the density at the background mantle temperature and o is the volume 

coefficient of thermal expansion. We have taken p0=5.14 g/cm 3 and o=3x 10-5 / 0K. 

The uplift above an inviscid plume is given by ~ (D 8p/ Po)' where D is the mantle 

depth, so a temperature contrast of only 100°K results in an excessive uplift of 4.3 

km. Therefore, viscous drag must limit flow in the plume. 

The viscosity of mantle minerals is a strongly decreasing function of tempera

ture, and we have used the exponential form 

1J = 170exp(-f3~ T / T 1 
) (12) 

which also closely mimics the form used by Loper and Stacey (1983) for a characteris

tic temperature T 1 =2300°K and (3<35. For example, with ~ T =800°K and /3=35, 
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we obtain more than five orders of magnitude viscosity decrease from the colder sur

rounding mantle to the hot plume axis. Stress-dependent rheology, by diffusing 

viscous stresses away from the plume, lowers the effective value of f3 (Christensen , 

1984). 

Note that for large values of f3 or .6. T 0 the combination of exponential depen

dences in expressions 10 and 12 will restrict most of the flow to a very narrow region 

near the axis, even though most of the thermal buoyancy, or "halo," may lie outside 

of this region. Expressions 10 and 12 allow us to characterize a wide variety of 

dynamical behavior by using /3, .6. T 0, and r 0 to specify, independently, the maximum 

viscosity contrast, the thermal buoyancy, and the characteristic width of the plume. 

This parameterization could closely match most published temperature and viscosity 

profiles for plume models, e.g., Yuen and Schubert (1976). 

In our first model (A) (see Figure 12) we consider a plume of characteristic width 

r 0= 70 km and peak excess temperature 700°K through the entire depth of the man

tle. Using expressions 10-12 to specify the load and laterally varying plume viscosity 

structure, we have calculated the total geoid response by obtaining the induced boun

dary deformation from a finite element solution. Strictly speaking, the depthwise, 

wavelength dependent response functions of equation 4 do not exist for laterally vary

ing viscosity; the different spatial wavelengths are mutually coupled. However, we can 

construct "pseudo response functions" for comparison with analytic kernels by con

sidering all of the geoid at a particular wavelength to be due only to the load com

ponent at that wavelength. The depthwise pseudo response functions for a plume 

with about 4 1/2 orders of magnitude viscosity contrast (/3=35) are shown in Figure 

11 . These curves are more negative in the upper mantle than for the uniform viscosity 
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case m the upper mantle, but the effect is rather small in companson to that of 

depthwise viscosity variation or chemical stratification (Figure 8). One reason for this 

is that much of the plume buoyancy, or thermal halo, lies outside of the very low 

viscosity plume core and the resulting change in surface deformation is relatively 

small. The change that does occur causes the geoid response to become more negative 

due to enhanced long-wavelength boundary deformation. \Ve note here that changes 

in the outer radius boundary condition (at r =d) from free-slip to rigid have less 

than a 5% effect upon the geoid calculations. Therefore, the finite cylinder radius 

prob ably has less effect than other neglected effects such as the dynamical interaction 

of plumes. The long-wavelength deformation field is even less sensitive, so it is safe 

to conclude that the 5000 km maximum radius for the finite element grid is not a 

severe limitation in these calculations. Extrapolation to a degree 2 wavelength may be 

more questionable, but in that case the effects of self-gravitation (RH), sphericity, and 

self-compression (Ricard et al, 1984; Hong and Yuen , 1985) are even more important. 

The response curves in Figure 11 are truncated at 200 km depth , because the solution 

accuracy degrades ( > 1 % error in the I =4 surface deformation compared to analyti

cal solutions) for loads above this level. 

The narrowness of a single plume gives essentially equal loading at all 

wavelengths of interest (a spectrally "white" load) so that the relative geoid response 

at each wavelength can be obtained by integrating along the response curves. From 

Figure 11 we see that the low plume viscosity causes enhancement of the shorter 

wavelength ( l =8,12) geoid and surf ace deformation compared to the longer 

wavelengths (l =4). The low plume viscosity allows more efficient transfer of the 

buoyancy forces ("head") in the plume to the upper and lower surfaces, so that the 
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load is effectively closer to these boundaries. The magnitude of the effect upon the 

total geoid signature is shown in Figure 13 for a wide range of the parameters f3 and 

.6. T 0 . (The relative size of this effect also increases with the plume radius as demon

strated for the pipe models in Figure 16.) Our numerical experiments show that for 

(f3.6.T 0/T' )<6 (less that 2 1/2 orders of magnitude viscosity contrast) the geoid sig

nal is enhanced by a relatively modest factor of 20% or less. Unless the temperature 

dependence of viscosity is much stronger than given by the rather high value of 

f3=35, a plume temperature excess of at least 600-800°K will be required to substan

tially affect the geoid signature of this type of mantle plume. 

The plume radius, r 0=70 km, in the example of model A was chosen so that the 

amplitude of the long-wavelength geoid signal (l =4,8) would be comparable to that 

observed over Hawaii ( ,..__,13 m) for .6. T 0=700°K. The geoid elevation (per °K tem

perature contrast) from this halo model with no viscosity perturbation (f3=0) is 

(0.72, 0.72, 0.55) cm / °K for I=( 4, 8 , 12) scale lengths . These values can be scaled by 

the cross-sectional area of the plume ( ,..__,r 0
2 ) within a few percent accuracy over the 

range 30 km < r 0 < 100 km. The .6.geoid curves of Figure 13 give the geoid signal 

(f3 > 0) in excess of the unperturbed signal (f3=0). The size of the geoid anomaly will 

scale roughly as .6. T 0 r 0
2 unless the effects of low viscosity are large. 

In matching the observed geoid signal, we must not greatly exceed the approxi

mate upper limit of ,..__,10 Mg/ sec buoyancy flux (see previous section). Figure 14 

shows the buoyancy flux, normalized to a background mantle viscosity 170=1021Pa

sec , for r 0=70 km plumes with varying .6. T 0 and {3. For {3=35, .6. T 0=700°K, we 

obtain ,..__,200 :Mg/ sec buoyancy flux, so the mantle viscosity must be raised by a fac

tor of 20 to 2x 1022Pa-sec to lower the flux to 10 Mg/sec. (Flow velocities in all of our 
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examples scale inversely as 'T/o-) Flow in these plume models is limited by viscous drag 

in the surrounding mantle; the buoyancy flux varies little with depth except very near 

the top and bottom of the mantle, and the values in Figure 14 are calculated at mid

depth. Figure 15 shows that the buoyancy flux scales linearly with the 4th power of 

the radius, r 0
4

, as expected for fl.ow in a long, narrow conduit. 

We now consider a "pipe" model in which the temperature profile is steplike, 

i.e., 

t. T = constant , r < r 0 (13) 

t.T=0,r>r 0 

Both temperature and viscosity are uniform within the pipe. Figure 16 shows the 

geoid effect of low viscosity for a suite of pipe models parameterized by the radius, r 0, 

and by the viscosity contrast relative to the background mantle viscosity. The unper

turbed geoid signal (pipe viscosity = 1.0) is (0.63, 0.63, 0.48) cm/ °K for r 0=70 km 

(almost the same as for the halo model) and scales as t..T r 0
2 as for the halo model. 

We get about 10 m of geoid signal for 800°K excess temperature in the pipe. 

Now we ask: How does the pipe model compare to the halo model in perturbing 

the geoid signal? We begin by locating a pipe model, r 0=70 km, in Figure 16 that 

gives about the same perturbation (,....._,30%) to the l =4 geoid signal (see Figure 13) as 

did halo model A. This requires a viscosity contrast of about a factor of 0.006 within 

the pipe. The buoyancy flux for the pipe models is mapped in Figure 17 and scales as 

the square of the excess temperature (buoyancy x force). For a temperature contrast 

of soo°K, radius r o=70 km, and a pipe viscosity contrast of 0.006, we obtain a buoy

ancy flux of 36 Mg/sec, or about a factor of 3 1/2 more than for the comparable halo 
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mod el. Therefore, given the restriction on the maximum allowable buoyancy flu x and 

giv en the requirement for the amplitude of the geoid signal, the pipe model is not as 

efficient as the halo model in perturbing (increasing) the size of the geoid signal from 

the uniform viscosity value . Similar comparisons show that this difference between 

the pipe and halo models persists , to a varying degree, for other plume radii . Also 

shown for comparison in Figure 17 (dashed lines) are the fluxes calculated analytically 

for an infinitely long pipe in a rigid mantle, but with the same pipe viscosity and 

buoy ancy forces; i. e., classical Poiselle flow (proportional to the fourth power of the 

pip e radius). For very low pipe viscosities (.001-.0001 mantle background) , the flow in 

numerical experiments is limited by the finite pipe length . For high pipe viscosity ( .1-

1.0 m antle background) , induced flow in the mantle becomes significant and th e flux 

in numerical experiments is higher than the analytical result. 

In the models that follow we find that large perturbations m the geoid signal 

(e.g ., suffic ient alone to account for geoid highs over both subducted slabs and 

hots pots) often require unacceptably large buoyancy fluxes . Therefore , in seeking to 

und erstand the largest effects on the geoid of low plume viscosity , we concentrate on 

th e h alo model. Before presenting more sophisticated models for hot plumes , we inves

tigat e the geoid signature for a very simple model of a cold subducting slab. 

W e model a high viscosity slab by considering (in Cartesian geometry) a 100 km 

wide slab , density contrast 0.1 g/ cm 3
, and having two orders of magnitude higher 

viscosity than the surrounding mantle. The " slab" for this first example extends 

throughout the depth of the mantle, so this case and the previous plume models 

might be taken to simulate the rising and falling hot and cold columns in a very high 

Rayleigh number , bottom heated , whole mantle convection system. The pseudo 
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response curves for the slab model in Figure 11 show that for I =4 and 8 as well as 

for I =12 in the upper mantle, the high slab viscosity causes the response to be much 

less negative (more positive) than for a uniform mantle viscosity. If the background 

viscosity layering in the mantle gives a "marginal" upper mantle response, perhaps 

with a zero crossing such as for model UlO (Figure 8b), both slabs and plumes resid

ing entirely in the upper mantle are qualitatively consistent with positive geoid 

anomalies. A more quantitative test is thus suggested. 

We start by repairing some of the obvious inadequacies Ill plume model A. In 

model B we have added a high viscosity lithosphere, a low viscosity asthenosphere or 

outlet channel, and a low viscosity D 1 1 layer which simulates the lower boundary 

layer feeding the plume (see Figure 12b ). The plume parameters are similar to those 

of model A with 6 T 0=700°K, f3=3.S, and a slightly diminished radius, r 0=60 km. 

The total resulting buoyancy flux, 11.0 ~1g/sec, accounts for the maximum heat flux 

for Hawaii if the mantle reference viscosity, 7Jo, is 102'.l Pa-sec. The peak velocity in 

the plume is then 2.3 m/yr. 

The long-wavelength dynamic topography (I =4,8) for plume model B is about 

16.S m. The total long-wavelength geoid signature (I =4,8) is 10.9 m, and the degree 

4 and 8 responses are plotted along with the estimated global response curve in Fig

ure 18. (The I =4 and I =8 geoid anomalies from the plume calculation are divided 

by 4 as plotted in Figure 18; in a real Earth the power concentrated at these 

wavelengths due to the limited radius of the finite element geometry will actually be 

smeared over an interval of approximately 4 harmonic degrees.) Although we have 

obtained a geoid amplitude and buoyancy flux compatible with observation, there are 

three serious problems with this plume model which are very instructive: 
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(1) The background mantle viscosity of 1022 Pa-sec required to keep the buoy

ancy flux down to a reasonable value is probably too high a viscosity to assign to the 

entire mantle based on post-glacial rebound and rotational data (Peltier, 1981; Yuen 

et al., 1982). (This viscosity is probably not too high for the lower man tie, and we 

shall explore this point further in model C.) 

(2) The geoid spectrum from model B is much too white (Figure 8) . If we sum up 

contributions for all wavelengths less than 500 km, we get a total geoid signature of 

40 m and 2.6 km of dynamic uplift (in addition to the uplift due to lithospheric thin

ning). Such a model is clearly not acceptable for any hotspot, including Hawaii. 

Increasing or decreasing the viscosity of the lithosphere in the model does not sub

stantially alter the large dynamic uplift; it is mainly the result of allowing the outlet 

of a strong narrow plume to be within 200 km of the surface. 

(3) Subducted slabs in the upper mantle part of model B will not give a positive 

geoid signal, even if we assign the same viscosity to a downgoing slab as to the litho

sphere (see Appendix B) . In order to get positive upper mantle geoid response curves 

similar to those in model UIOO of Figure 8 (required in order to fit the observed geoid 

anomalies over subduction zones), the viscosity of the asthenospheric channel must be 

at least a factor of 10,000 smaller than the underlying mantle, which we find implau

sible. 

Problem (1) in model B can be eliminated by decreasing the average viscosity 

contrast in the plume by simply lowering f3 or by simultaneously lowering b. T 0 while 

increasing r 0 (in order to conserve the total geoid signal). Problems (2) and (3) are 

more difficult and are addressed in model C. 
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We have yet to find a model that can explain the apparent geoid signatures of 

both slabs and plumes. An obvious way to approach this problem is to start with a 

reference model whose upper mantle responses are neither strongly negative nor posi

tive. Model C (Figure 11) satisfies this criterion by including a high viscosity litho

sphere, a low viscosity zone extending to 400 km depth, a moderate viscosity increase 

through the transition zone, and a higher viscosity lower mantle. We have also 

included a low viscosity D 1 1 layer in which the viscosity profile is determined by a 

temperature gradient of 7°K/km (,8=35) in accord with the boundary layer model of 

St.acey and Loper (1983). This layer does not significantly affect the lower geoid har

monics or mid-mantle buoyancy flux, but it is included for consistency with the idea 

of plumes originating at the core-mantle boundary. If there are no lateral viscosity 

variations, the response functions for this model (Figure 19, dotted lines) are small 

and negative in the lower mantle and are small and positive in the upper mantle. 

To obtain the geoid response for model C we have used the same plume parame

ters as in models A and B for the lower man tie except for the plume radius, r 0, which 

we have increased to 100 km to compensate for the generally smaller low-degree 

response functions. In the two low viscosity upper mantle layers the plume must 

diminish in radius if the plume buoyancy flux is approximately constant throughout 

the entire mantle (i.e., steady-state). If we assume that the temperature excess at the 

plume's center is also constant (both the plume and mantle are adiabatic) and that ,B 

does not vary with depth, then the plume radius, r 0, must decrease as the fourth root 

of the layer viscosity as demonstrated above. Therefore, a constant flux plume of 100 

km radius in the lower mantle should neck down to ,....__,32 km radius in the upper 

mantle since 17-->170/IOO. Since the plume buoyancy and geoid signature are 
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proportional to r 0
2

, the upper mantle plume will contribute relatively little to the 

total long-wavelength geoid signature. Most of the geoid signal will result from the 

lower mantle plume. The reduction of width as the plume rises will also be enhanced 

if a large fraction of the plume partially melts and causes a large decrease in the 

plume viscosity. For a temperature excess of 300-700°K the plume might encounter 

the solidus as little as ,.._,1000 km above the core-mantle boundary (Anderson, 1981). 

Plumes in the upper mantle may only be streamers of melt from more substantial 

solid state plumes in the lower mantle. 

The depthwise pseudo response functions for this plume model are shown in Fig

ure 19. The lighter line in the upper mantle emphasizes that even though the normal

ized response is of the same order for the upper and lower mantle, the upper mantle 

buoyancy multiplying this response (equation 4) is very small by comparison . Again , 

the response curves are more negative than for the purely layered case, but when 

integrated through the lower mantle the resulting geoid spectrum is much stronger at 

the longer wavelengths (l =4) than at shorter wavelengths (/ =12). Note that this 

would be the case regardless of whether or not the low viscosity in the plume affects 

the response (compare the solid and dotted curves of Figure 19). The plume radius of 

100 km for this model results in a geoid signature of similar amplitude to the global 

response curve as shown in Figure 18. The geoid spectrum is now much more "red" 

(biased toward long-wavelengths) and is a more satisfactory approximation to the glo

bal response spectral shape than any of our previous models. (The total signature for 

I =4,8 is less than 5 m, so scaling the plume radius up to about r 0=140 km will 

account for the Hawaiian anomaly.) The short wavelength geoid signature (I> 12) is 

only a few meters, so model C does not suffer the problems of very large geoid 
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anomalies at shorter wavelengths that we found for model B. The shear stress, Trz, 

at the base of the lithosphere drops from about 10 bars at a distance of 200 km from 

the plume center to only about 1 bar at a distance of 1200 km, so the plume will not 

drive much plate motion. The shear stress at plume center is over 200 bars and could 

result in erosion of the lithosphere. 

The buoyancy flux for model C (r 0=100 km) is 8.S Mg/ sec for a lower mantle 

reference viscosity 170=1022Pa-sec, so, unless the average viscosity of the lower mantle 

is as high as 1023 Pa-sec, this model must be considered unacceptable. However, if we 

use a weaker temperature dependence for effective viscosity (likely due to stress

dependent effects) or a lower excess plume temperature, we can greatly reduce the 

flow while preserving the geoid signature . For example, a reduced value of /3=22 pro

duces essentially the same geoid signature as for /3=3.S with a buoyancy flux of only 

10 . .S Mg/ sec for 170=1022 Pa-sec. Alternatively, for !:::. T 0=300°K and /3=35, essen

tially the same geoid response may be produced by a plume of radius 200 km in the 

lower mantle and with a buoyancy flux of only 0.52 Mg/ sec. A wide range of plume 

parameters can , therefore, match the geoid and flux constraints either globally or for 

the particular case of Hawaii. 

Both the low viscosity plume geoid response curves and the purely layered 

viscosity curves (dotted) in Figure 19 will give the correct long-wavelength spectral 

characteristics for hotspots. The overall negative response functions (resulting in geoid 

highs for low density plumes) in the lower mantle overwhelm the upper mantle plume 

signal because the plume's radius is smaller in the low viscosity upper mantle. This 

necking down effect may be very important to the dynamics of mantle plumes, espe

cially plumes of lower mantle origin, and appears to be a neglected phenomenon in 
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both numerical and experimental modelling. 

To emphasize the relative importance of vertical stratification of mantle viscos

ity, we have included two additional models in the spectral response plot of Figure 18. 

First, model C / (,8=0) is the same as model C, except that there is no viscosity con

trast between the plume and surrounding mantle. Its spectrum is somewhat more 

"red" than for .8=35, and, according to the numerical experiments (model A type) 

discussed above, this purely layered model is probably sufficiently accurate for up to 

two orders of magnitude viscosity contrast within the plume. However, we can per

form this type of calculation (.8=0) analytically for spherical Earth models including 

all harmonic degrees. For a 300°K plume of 200 km radius (no viscosity contrast) in 

the mod el C type layered mantle, we obtain the response given by dashed lines in 

Figure 18. This response curve gives a reasonable fit, at least for l <8, to the 

observed global response curve . Clearly , increasing mantle viscosity with depth can 

result in a strong low-degree bias in the geoid signature of a plume (or any convective 

upwelling or downwelling), regardless of the viscosity of the plume itself. This is the 

main point to be gained from our numerical models . 

Our geoid models involve the balance between dynamic surface deformation and 

the (plume) load. Figure 20 shows the actual radial profiles of surface deformation 

from models B and C. Shown for comparison are Hawaiian swell profiles A-A / and 

B-B / from Figure 9, which cross the island of Hawaii and a point 500 km "down

stream," respectively. Figure 20 shows the relative richness in long-wavelength sur

face deformation in model C compared to model B. Dashed lines also give the defor

mation with no viscosity contrast in the plumes (,8=0). For our "preferred" model C, 

the predicted long-wavelength deformation outside of the swell is several hundred 
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meters, which is probably not resolvable from bathymetric anomalies. However, the 

swell topography itself is not explained by this model. Furthermore, since the ridge

like swell topography extends far toward the WNW from the active hotspot, lithos

pheric thinning (effectively resetting the thermal age of the lithosphere) is obviously a 

more satisfactory explanation (Detrick and Crough, 1978). The predicted short

wavelength ( <500 km wide) deformation from model C of more than 1 km will be 

redu ced by lithospheric flexure and masked to a great extent by the ,...._,8 km seamount 

topography (volcanic edifice) itself, which does not appear in Figure 20. 

\Ve now have an acceptable working model for a plume derived long-wavelength 

geoid , but the main virtues of model C are that it has a generally negative lower 

mantle geoid response for i <8 and that it involves a substantially reduced upper 

mantle contribution . We must now determine if this model is compatible with the 

observed subducted slab geoid response. For a 100 km wide slab with the same viscos

ity as the lithosphere and extending to 1100 km depth , we get an effect opposite to 

that found in model A. The response (Figure 19, heavy-dashed line) is now more 

negative than the purely layered response and produces almost a null geoid signature 

for slabs at degrees 4 and 8. The slab load is coupled more efficiently to the litho

sphere, which results in more surface deformation. This coupling may not occur in 

the real Earth since the lithosphere at subduction zones is probably weaker than nor

mal (e.g ., Sleep, 1979; Hager and O'Connell, 1981). If we simulate the weak plate 

boundary by reducing the effective viscosity of the lithosphere by two orders of mag

nitude within 100 km of the subducting slab, the slab is supported more by the high 

viscosity of the lower mantle. This results in less long-wavelength surface deforma

tion and a much more positive response (Figure 19 , heavy , dash-dot line). 
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Comparing the slab-with-weakened-lithosphere response with either the plume 

response or the purely layered response, we see that it is possible to have geoid highs 

over both plumes and slabs. This in itself is not too surprising considering the results 

of model A. However, the detailed rheology and dynamics of subduction are of even 

more importance than the influence of low plume viscosity . The "calibration" of the 

upper mantle geoid response using subducted slabs depends strongly on the parame

terization of the lithosphere . Hager's (1984) conclusions that the slab-geoid observa

tions require penetration of the 670 km discontinuity by slabs and require a one to 

two order of magnitud e increase in mantle viscosity through the upper mantle are 

still valid, but the details of the upper mantle structure are not resolved. In Appen

dix B we have includ ed a more systematic analysis of models for rheological variations 

associated with subducting slabs. On the basis of these models we conclude that the 

lithospheric weakening effec t is the most efficient way to make the slab geoid response 

more positive than for purely layered viscosity. Slab mod els including nonlinear rheol

ogy (not presented here) tend , in general , to drive the slab geoid response more nega

tive due to the homogenizing effect of power law flow on effective mantle viscosities. 

A more extensive treatment of the large-scale dynamic support of su bd ucting slabs, 

including such effects as dip angle and non-linear rheology, might yield important new 

insights , but such a study is beyond the scope of this paper. 

In order to obtain average subducted slab velocities of about 100 mm / yr in 

model C, it is necessary to set the lower mantle reference viscosity 710 to 1022 Pa-sec. 

This value, which is substantially higher than recent estimates from post-glacial 

rebound (Peltier, 1981) and rotational data (Yuen and Sabadini, 1982), served as the 

reference viscosity in our model C plumes. We can think of two resolutions of this 
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apparent paradox. One is that the rotational response is actually on the high viscosity 

branch (O'Connell, 1971). The other is that postglacial rebound samples transient 

rheology while convection responds to steady-state rheology. 

Finally, we consider an upper mantle plume for model C, i.e., one that originates 

above 670 km depth . In order to get the l =4,8 purely layered responses to become 

negative in the upper mantle, it is necessary to have more than 3 orders of magnitude 

viscosity contrast in the plume. As before, a plume radius >70 km is required to pro

duce the observed geoid anomaly over Hawaii. However, we again obtain too much 

heat flow (even for an upper mantle viscosity as high as 1021 Pa-sec) just as we did 

for plume model B. This problem results from the low viscosity of the plume, and 

this is the main difference between our calculation and 1\forgan's (1972) estimate of a 

75 km radius upper mantle plume. The plume can only overcome the effects of 

viscosity stratification (required by slabs) by stronger coupling of buoyancy from the 

lower parts of the plume to the surface through the low viscosity channel. It. is very 

difficult then to produce large positive geoid anomalies over primarily upper mantle 

plumes without violating reasonable limits on plume heat flow. Since the conditions 

under which model C can satisfy the slab observations are somewhat extreme (high 

viscosity slab and very weak lithosphere), this conclusion is difficult to avoid by con

trivances in the upper mantle viscosity structure. This is not to say that strictly 

upper mantle plumes do not exist, but only to imply that they are an unlikely source 

of long-wavelength geoid highs . 
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Larger-scale Plumes in the Upper Mantle? 

The final issue we address is that of more broad-scale heating associated with 

hotspots in the upper mantle, or, perhaps, a solitary blob of hot material impinging 

on the base of the lithosphere . (The correlation of surface wave velocities with the 

degree 6 geoid and hotspot expansion may be symptomatic of a hotter than average 

asthenosphere.) In order to fit the observed long-wavelength bias described above, the 

basic horizontal scalelength of heating surrounding a hotspot must be >5000 km. 

This will lower the average viscosity of the upper mantle on a scale much larger than 

the depth of the upper mantle, resulting in geoid response curves that are more posi

tive, not more negative (see Chapter 3). In other words, coupling of the buoyancy 

forces to the lithosphere will be weakened by higher temperature and lower than 

average viscosity, resulting in less surface deformation. Therefore, given the require

ment of increasing upper mantle viscosity with depth (based on slab modelling), we 

cannot explain geoid highs over such broadscale hot blobs in the uppermost mantle. 

Again, this does not exclude the existence of hotter than average asthenosphere asso

ciated with hotspots (which we would expect at the head of any thermal plume), but 

our models imply a deeper source for the associated geoid anomalies. 

In this same vein, it is curious that the strong correlations of the residual geoid 

with hotspots at degrees 2 and 4 are not accompanied by significant correlations 

between hotspots and upper mantle seismic velocity variations (Richards and Hager, 

1986: Chapter 2). This also suggests a deep source associated with, if not caused by, 

plumes, and is consistent with the greater sensitivity of the lower geoid harmonics to 

density heterogeneities at great depth in the mantle. Lastly, we note that the surficial 

evidence for mantle plumes indicates that they are very narrow, at least in the upper 
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mantle . The Hawaiian swell is only of order 1000 km in width, and the volcanic 

shields (islands) form a much narrower track within the swell. An active thermal 

source at the base of the lithosphere an order of magnitude wider seems unlikely . 

Discussion 

The geoid models we have presented show that there is no inherent contradic

tion in having geoid highs produced by both subducted slabs in the upper mantle and 

mantle-wide plumes. If the thermal buoyancy of the plume directly generates the 

observed geoid highs, we can offer some restrictions on their characteristics: 

(1) Plumes that are of uniform strength in terms of thermal buoyancy (approxi

mately constant in radius), or that are primarily upper mantle phenomena, cannot 

produce the very long-wavelength bias (degrees 2-6) of the observed geoid . They are 

also unlikely candidates to produce the more local (l >4) geoid highs over hotspots. 

(2) Plumes that are of radius ,..__,100-200 km (Ll T 0~200-700°K) in the lower 

mantle, but that bec·ome much more confined as they rise due to decreasing mantle 

viscosity, can produce the low-order geoid (degrees 2-6). However, such plumes must 

be restricted to about 3 orders of magnitude or less viscosity contrast in order not to 

exceed maximum estimates for heat flux from the core. l\1uch narrower, low viscosity 

plumes (e .g., Loper and Stacey, 1983) can also account for the heat flux, but they 

cannot cause the long-wavelength geoid anomalies. 

(3) More local, intermediate wavelength (l >4) geoid anomalies associated with 

hotspots may be caused by either the plume itself or triggered lithospheric delamina

tion due to the plume. Unfortunately, this study has not revealed a method based on 

geoid models to discriminate between these alternatives. It is remarkable that the 
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delamination could indeed cause large ( > 5 m) geoid anomalies, but this process is not 

able to produce the low-order (l =2-6) observed geoid without producing much more 

pronounced and consistent local ( l > 6) anomalies over hotspots. Of particular impor

tance is the temperature of the sublithospheric upper mantle, which would be heated 

by plumes but cooled by delaminated blobs. (The mantle at lithospheric depths is 

heated by both processes.) The strong association of hotspots with both low velocity 

upper mantle (degree 6) and lower mantle (degree 2) as revealed by seismic studies, 

along with the relatively stationary nature of hotspots with respect to plate motions, 

implies that they are at least symptomatic of deep thermal processes . None of these 

observations supports passive lithospheric delamination (e.g., due to cracks) as the 

primary source of either hotspots or the observed geoid. 

The correlation of hotspots with low-order residual geoid highs (Figure le) and 

with seismic velocity anomalies (Figure 4) does not necessarily imply that the thermal 

anomalies within the plumes associated with hotspots are the primary cause of these 

phenomena. The considerable effort we have made to explore the conditions for which 

this is possible should not be taken to imply that we necessarily believe in such a 

strong role for hotspots . Even our "preferred" model C appears unsatisfactory in 

some respects. In ord er to explain the low-degree (2-3) geoid, nearly all 47 of our 

selected hotspots would have to be associated with very large plumes (e . g., 

radius=200 km and average temperature contrast 300°K), and with conspicous 

"local" (l >4) geoid anomalies. Hawaii and a few other major hotspots might fullfill 

this prescription, but many others would seem unlikely candidates. 

Further insight into this question may be gained from consideration of the global 

hotspot distribution. Hotspots are distributed almost randomly over about half the 
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Earth's surface (contained by the large residual geoid highs), but are almost absent in 

the other half of the globe. Stefanie and Jurdy (1984) have claimed less than 1 % 

likelihood that such a broad-scale bimodal pattern is random, and we suspect that 

the location of hotspots is controlled by some other global thermal pattern in the 

mantle that limits their surface access to the areas of the large-scale geoid highs. An 

alternative explanation related to a process of delamination is not evident. 

A candidate control mechanism is found by considering the reconstruction of 

paleo-subduction zones proposed by Chase and Sprowl (1983). If, as they claim, the 

Pangean supercontinental assemblage was surrounded by subduction zones at ,...__,125 

Myr B.P ., then the major residual geoid lows (Figure le) correspond to areas which 

haYe experienced subduction as the American continents have swept westward during 

the last ,..._100 Myr. These are also areas largely devoid of hotspots, with some excep

tions such as Yellowstone. Intense shearing in the mantle and / or thermal quenching 

due to deeply subducted material may block or completely shut off mantle plumes. 

Strong plumes such as Hawaii, Iceland, and Kerguelen have probably been shielded 

from subduction for 100 Myr or more. Chase and Sprowl also point out that other 

hotspots such as l\ft. Erebus, having only recently escaped a subducting slab, are rela

tiYely \Veak newcomers . 

This conceptual model provides an alternative explanation for the correlation of 

low seismic velocity in the lower man tie with both the largest geoid highs and 

hotspots. High seismic velocity in the lower mantle may be giving us a broad-scale 

map of dead slabs that haH been deposited in the lower mantle during the last 100-

200 Myr , and these positive mass anomalies, combined with negative lower mantle 

response kernels, would generate geoid lows. Both Figures 8 and 19 show that this 
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would not be a contradiction of the fact that currently subducting slabs in the upper 

mantle cause geoid highs. Lower mantle response functions are probably negative 

even with a low viscosity upper mantle. We can roughly estimate the degree 2 geoid 

from ancient subducted slabs in the lower mantle as follows: 

Subducted slabs currently residing in the upper mantle cause about +20 m of 

degree 2 geoid for an average upper mantle response of +0.3 (see Figure 8c). For a 

purely layered C type model we calculate an average lower mantle degree 2 response 

(using the spherical, analytic model of RH) of about -0.1. If we assume that the 

ancient subduction zones have put 10 times as much lithosphere into the lower man

tle over the past 100 Myr as currently resides in the upper mantle due to recent sub

duction, then we estimate ,..._,70 m amplitude degree 2 geoid lows associated with these 

old subduction zones. This is about the right size to explain the current low-degree 

geoid. Also, dead slabs in the lower mantle will produce a very attenuated signal at 

higher harmonic degrees, resulting in a geoid spectrum strongly peaked at degree 2. 

Further reddening of the geoid would result from shearing and diffusing away of short 

wavelength slab heterogeneities. Since at least 70% of the Earth's heat flow is 

involved in the cooling of lithospheric plates (O'Connell and Hager, 1980), this expla

nation is satisfactory in that the largest geoid features are related to the dominant 

mode of convection. This scenario, with a relatively passive lower mantle , is similar to 

the recently proposed whole mantle convection model of Loper (1985), although we 

have been motivated by different observations. The mantle convecting system, dom

inated by internal heating and driven by subduction of the upper boundary layer 

(plates), would be semi-transparent to mantle plumes resulting from a relatively small 

heat flux from the core. Such plumes could, of course, be much smaller in radius 
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than those required to directly cause the long-wavelength slab residual geoid. 

If the Pangean supercontinent was stable for a long period of time, the geoid 

may have a long-term memory of that episode as proposed by Anderson (1982). A 

ring of subduction around this supercontinent may also have resulted in antipodal 

rifting and broad-scale upwelling in the central Pacific which is also "remembered" by 

a large residual geoid high. Hotspots shielded from subduction beneath the super

continent would have caused long-term heating beneath the continental lithosphere. 

This may have eventually led to the breakup of the stable configuration as evidenced 

by the many hotspots along the mid-Atlantic ridge and the rapidly disintegrating 

African continent. Thus, the two convecting systems interacted strongly at this point. 

The chemically buoyant supercontinent may have stabilized a degree 2 convection 

mode on Earth of which the present geoid is a fossil, and the correlation of hotspots 

with the low-degree geoid is symptomatic rather than causal. 

This hypothesis stands in contrast to the possible dominant role of hotspots on 

}.fars and Venus. The largest gravity and topography anomalies on Mars are due to 

the Tharsis bulge (Sleep and Phillips, 1985) which contains huge shield volcanoes . On 

Venus, the large gravity highs over the highland areas are most easily attributed to 

large mantle plumes in a relatively isoviscous mantle (Kiefer et al., 1986). A central 

question that remains, in our view, is that of just which density contrasts in the 

Earth's mantle cause the large-scale shape of both the geoid and the lower mantle 

velocity variations. \Ve cannot completely resolve this issue on the basis of our study, 

even though only a restricted class of hotspot models can account for the geoid. 

However, because not all hotspots are associated with local geoid highs, even our 

"preferred" plume model is not a very satisfactory explanation for low-degree (2-3) 
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geoid highs. More broad-scale sources appear to offer a less problematic explanation 

(Hager et al., 1985). This work might be improved by substituting a variety of con-

vective plume solutions for our generalized plume models. We hope that some of our 

obvious oversimplifications may spur other workers to predict long-wavelength geoid 

anomalies from their plume models. Improvement in the resolution of seismic velocity 

anomalies in the deep mantle can be expected, since this is a relatively recent area of 

research. A rigorous test of resolving power with respect to thermal plumes might be 

of great value in understanding the correlations we have noted. 

Appendix A: Flow in Cylindrical Geometry 

The governing first-order differential equations for incompressible flow at very 

low Reynold's number include the continuity condition 

\J.V = 0 

the equations of motion 

\J . .1. + 8pg = 0 

and the Nev.;tonian constitutive law 

.1. = -pl + 2ry£... 

where v is the velocity vector, g the gravitational acceleration, 8p the density con-

trast, .r. the stress tensor,£... the strain rate tensor, 'f/ the viscosity, p the pressure, and 

l the identity matrix. In cylindrical coordinates (r ,z) we have 

avz 1 a 
--+--(rvr) = 0 
az r ar 

(Al) 

arrr arzr 1 ) --+--+-( 7rr -Tee = 0 
ar az r 

(A2) 
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a7zr 1 07zz 
--+-Tzr +-- = -opg or r oz 

avz 
Tzz = -p +217--

0Z 

(A3) 

(A4) 

(AS) 

(A6) 

(A7) 

We can eliminate the r dependence by an appropriate Fourier-Bessel respresen-

tation. For example, for a finite cylinder of radius a the radial velocity must vanish 

at a, so we can write the inverse discrete transform 

where [vrn] is the discrete Fourier-Bessel transform of vr (r ,z) and Pn 1 is the nth zero 

of the first-order Bessel function J 1. With some foresight concerning the use of ortho-

normal expansions, and with F 0 respresenting the zeroth order transform, we also 

write: 
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The stresses Tee and Trr will turn out to be mixtures of J 0 and Jli but will be for-

mally eliminated from the equations in a later step. 

Some useful orthogonality and completeness properties of Fourier-Bessel 

transforms are summarized below (see Sneddon, 1951). 

Orthogonality: 

where Pm and Pq can be either the zeros or the zeros of the first derivative of J1 . 

Representation (completeness): 

[ 

a 
00 Pm r '> Pm r 

f ( r ) = ~ J, [-) 2 2 - J J ( r ) J, [-) rdr 
m=l a a J1+dPm) O a 

Useful derivatiYes: 

for any real k . 

00 

_!_~ [rJ 1(kr )] = kJ0(kr) 
r Br 

By taking J rJ0(kr) [eq. (I)] dr ad usmg the expansions for Vz and vr, we 
0 

obtain a transformed equation: 

(Al') 

d p I 

where D ==- and the wavenumber is k =-
11
-. Similarly we obtain for Equations 6 

dz a 
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and 3 

(A6') 

(A3') 

arrr avz 
If we use equations 1, 5, 6, and 8 to eliminate Trr-r00, -a;-' and fu from equation 

2, we obtain 

(A2') 

Equations 1' , 61 
, 31 

, and 2' are id entical in form to the two-dimensional Cartesian 

formulation of Cathles (1975) and Hager and O'Connell (1981) 

0 -k 0 0 
Vz 1 Vz 0 

k 0 0 
Vr 'f/ Vr 0 

D 0 0 0 -k + 8pg (A8) 
7 zz 7zz 

Tzr 0 4'fjk 2 k 0 7zr 
0 

where we have dropped the wavenumber superscript n. This system of equations can 

be solved analytically for v and :r.. via a propagator matrix technique for arbitrary 

layer ing of viscosity with depth (z) (see Hager and O'Connell, 1981, for examples). 

Thus the depth dependence for cylindrically symmetric flow in layered media 

can be solved in exactly the same way as for 2-D Cartesian coordinates . For a 

prescribed cylindrically symmetric loading problem driven by 8p ( Pn: ) we can write 

Vz Vz 

Vr Vx 

7zz 7zz 

7zr cylindrical 
7zx Cartesian 
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with the Cartesian solution driven by 8p(k ), where k =27r/ \ and \ is the spatial 

wavelength, if 

Pn 
1 

k =--
a 

In other words, cylindrical and Cartesian flow are "wavenumber equivalent". Note 

a lso that in an effectively infinite domain (a --+oo) we can use the integral transform 

00 

vr (r ,z) = J Vr (z ,a)J1(o:r )o:d o: 
0 

to agarn obtain equations 8. In practice, we have used the discrete transform to 

represent our finite element results in the wavenumber domain. 

Appendix B: Slab Geoid Models with Variable Viscosity 

\Ve have tested two series of models . The first ("LIOO") has a 100 km thick high 

\·iscosity (100170) lithosphere with a uniform background mantle viscosity (770) . Geoid 

anomalies are calculated in a box of width 4000 km (corresponding to l =5 with 

reflection symmetry imposed at the left side boundary). The finite element grid is the 

same one shown in Figure IO. The 100 km thick slab extends to 1100 km depth (Fig

ure BI) and is assigned a density contrast of 0.1 g/cm 3. (The density contrast actu-

ally normalizes out of the response curves.) Pseudo response functions are calculated 

at four depth intervals ranging from 200 to 1100 km depth (accuracy is not sufficient 

for loads above 200 km) and are plotted in Figure B2 for the first and second har-

monies (l =5,10) of the box. 

Model 1100.u (Figure B2, dotted lines) gives the purely layered response. In 

model 1100.slab (solid lines) the slab is assigned viscosity 100770 . In models 
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Ll00.slab200 and Ll00.slab400 (long and short dashes) the lithospheric viscosity 1s 

lowered to 'f/o within 200 km and 400 km, respectively, of the center of the downgoing 

slab . As shown in Figure B2, the effects of these rheological variations are relatively 

mild. Stronger coupling of the slab load to the lithosphere through the high viscosity 

shtb causes the responses to become more negative in the deeper part of the slab. 

The second series of models ("LUlOO") is the same as the 1100 series except that 

the background viscosity of the lower mantle (below 670 km) is increased to lOO'f/o· 

Figure B3 gives the pseudo response curves for models LUlOO.u, LUlOO.slab , 

LU100.slab200, and LU100.slab400 (dotted , solid , long-dashed , and short dashed lines, 

respectively). Here the effect of decreased lithospheric strength near the slab is more 

pronounced. The slab is less strongly coupled to the lithosphere and more strongly 

co upl ed to the high viscosity lower mantle. This results in less upper surface cleforma

t io n an d gives a much more positive geoid signature for models LU100.slab200 and 

Ll.100.slab400. Again , we cannot resolve the geoid anomalies accurately for loads 

above 200 km depth . However, our parameterization is probably too coarse to 

rep resent the subduction process in this complicated zone even if a finer grid spacing 

'ms possible. 
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Table 1 - Hotspot locations used to obtain the spherical harmonic expansion of 

the hotspot distribution. 
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TABLE I : Hotspot Locations 

Lat. Long. 

so 7 
23 6 
21 17 
13 24 

4 9 
- 3 36 
12 42 

-12 44 
-21 56 
-45 45 
- 45 65 
-35 80 
-40 150 

45 -111 
37 -104 
27 -113 
53 -135 
46 -128 
20 -155 

-29 -140 
-18 -148 
-27 -129 

3 167 
- 11 -139 
-27 -109 

0 -91 
-27 -80 
-34 -79 

72 -8 
64 -20 
30 -60 
38 -28 
33 -17 
28 -17 
29 -29 
15 -24 
-4 -32 

-17 -25 
-21 -29 

- 8 -14 
-16 -6 
- 3 7 -12 
-42 0 
-54 4 
-32 16 
-78 167 
-15 -168 

Name 

Eifel, Belgium 
Hoggar Mountains, Algeria 
Tibesti, Chad 
Jebel Marra, Sudan / Darfur 
Mt. Cameroon 
Lake Victoria / East Africa 
Afar / Ethiopia 
Cornores Islands 
Reunion 
Cr oz et 
Kerguelen 
Christmas Island, Indian Ocean / Amsterdam 
Tasmania 
Yellowstone 
Raton, New Mexico 
Baja California / Guadalupe Seamount 
Bowie Searnount / Kodiak Searnounts 
Juan de Fuca / Cobb Searnount 
Hawaii 
MacDonald Searnount / Cook--Austral Islands 
Mehetia / Society Islands / Tahiti 
Pitcairn Island / Gambier Islands 
Caroline Islands 
Marquesas Islands 
Easter Island 
Galapagos Islands 
San Felix, Nazca Plate 
Juan Fernandez, Nazca Plate 
Jan Mayen 
Iceland 
Bermuda 
Azores 
Madeira 
Canary Islands 
New England Seamounts / Great Meteor Searnount 
Cape Verde 
Fernando 
Arnold Seamount 
Trindade 
Ascension 
St. Helena 
Tristan de Cunha 
Discovery Searnount 
Bou vet 
Verna Searnount 
Mt. Erebus 
Samoa 
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Table 2 - Correlation coefficients at harmonic degree 6 between upp er mantle 

shear velocity models (Tanimoto , 1986; Woodhouse and Dziewonski , 1984) and 

the observed geoid, the slab residual geoid, and the hotspot distribution . 
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TABLE II: Degree 6 Correlations (confidence) 

Upper Mantle Velocity Model 

Tan(350km) Tan(250km) W&D(200-500km) 

Geo id -.63 (98%) -.67 (99%) -.58 (95%) 

Residual Geoid -.72 (99%) -.74 (99%) - .65 (99%) 

Hots2ots -.54 (95%} -.49 (90%} - .70 (99%} 
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Figure 1 - (a),(b) Observed long-wavelength geoid (Lerch et al., 1983) referred to 

the hydrostatic figure of the Earth (Nakiboglu, 1982). In (b) the degree 2-3 

components have been removed. Hotspot locations are indicated by black 

dots. Continents are outlined and plate boundaries are also shown. Geoid 

lows are shaded; cylindrical equidistant projection. 

(c),(d) Residual geoid after the subducted slab geoid model of Hager 

(1984) is removed. 
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Figure 2 - Log-log companson of root mean square harmonic coefficient ampli

tudes. Units are as follows: Observed and residual geopotentials, 1M / R (frac

tion of geopotential at surface); Hotspot distribution, 4.lx 105 hotspots per 

Earth area; Lower mantle P-velocity (Clayton and Comer, 1983), 104 km / sec; 

Geo potentials, in units 1M / R , may be converted to geoid eleYations by divid

ing by the gravitational acceleration at the surface or by multiplying by R. 

(J is the gravitational constant, M the mass of the Earth, and R the Earth's 

radius.) 
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Figure 3 - Degree-by-degree correlations, r 1 , between the hotspot dist ribution and 

the slab residual geoid (solid line). Correlations between the slab geoid model 

(Hager, 1984) and the observed geoid are shown for comparison (dash ed line). 

Contours give the confidence of correlation, with a confidence level of 0.98 

indicating only a 2% chance that the correlation is random. 
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Figure 4 - Degree 2 comparison of the slab residual geoid, the vertically averaged 

lower mantle P-wave velocity model (Clayton and Comer, 1983), and the 

hotspot density distribution. Geoid lows, slow velocity anomalies, and low 

hotspot density areas are shaded. Hotspot density con tour intervals are in 

units of 16.5 hotspots per Earth area. 
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Residual Geoid: degree 2 

(a) contour interval: 20 m 

Lower Mantle P-Wave Velocity: degree 2 

( b) contour interval: 2 m/sec 

Hotspot Density: degree 2 

( c) 
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Figure 5 - Degree 6 companson of the slab residual geoid, upper mantle shear 

velocity (200-500 km : Woodhouse and Dziewonski, 1984), and the hotspot den

sity distribution. Geoid lows, slow velocity anomalies, and low hotspot density 

areas are shaded . Hotspot density contour intervals are in units of 33 hotspots 

per Earth area. 
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Residual Geoid: degree 6 

(a) contour interval: 5 rn 

Upper Mantle Shear Velocity: degree 6 

( b) contour interval: 10 m/sec 

Hotspot Density: degree 6 

(c) 
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Figure 6 - Best-fitting hotspot/geoid response curve (solid dots) according to equa

tion 3 of text. Error bars (20") indicate the uncertainty of fit. Open circles give 

best-fitting curve under the assumption of equal noise in both the slab residual 

geoid and the hotspot distribution (error bars not shown). 
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Figure 7 - Slab residual geoid in harmonic degree bands 4-6 , 7-12 , and 10-20. 

Hotspot locations are shown by black dots. 
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Residual Geoid: degree 4-6 

contour interval: 5 m (a) 

Residual Geoid: degree 7-12 

col"tour interval : 5 m (b) 

Residual Geoid: degree 10-20 

contour interval: 5 m (c) 
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Figure 8 - Dynamic response function, G1 (r ), for surface density contrasts of 

spherical harmonic degrees 2, 4, 6, and 8 plotted against radius, r, for six 

Earth models. Models U, left, permit mantle-wide flow; models C, right, have 

a (chemical) barrier at 670 km depth, causing stratification into separate 

upper and lower mantle flow systems. Models Ul and Cl have uniform viscos

ity; models UlO and ClO have a factor of 10 viscosity increase below 670 km; 

models UlOO and ClOO have a factor of 100 increase . The geoid responses are 

normalized to the geoid which would be obtained if the harmonic density con

trasts were placed at the top surface with no dynamic compensation allowed. 



- 290 -

Whole Mantle Flow 

- Ui 

(a) 

Layered 
Surface~ 

670 
km 

t 
r 

( d) 

Flow 
I 

Ci 

Co re _...___ _ ____._,_, 

( b) 

( c) 

-0.5 0 

I 

U10 

( e) 
I 

U100 
( f) 

+0.5 -0.5 
G.e ( r) 

I 

-

C10 
I 

I 

C100 

0 +0.5 



- 291 -

Figure 9 - Residual depth anomaly map of the Hawaiian swell (adapted from 

Schroeder , 1984). Latitudes and longitudes are indicated, respectively , along 

the vertical and horizontal borders. Flow stagnation con tours for 300°K and 

1000°K kinematic plume models are shown by bold lines . 
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Figure IO - Example finite element grid used in plume and slab models. 
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Figure 11 - Pseudo geoid response functions (see text) for the first three harmonics 

(wavelengths corresponding to degrees 4,8,12) of the cylinder (or box) for the 

finite element model A plume (solid line) and the high viscosity slab (dashed 

line). The dotted line gives the analytical solution for uniform mantle viscos

ity. 
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Figure 12 - Illustration of the A, B, and C plume models. Horizontal and vertical 

scales are equal. rJo is the reference viscosity. 
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Figure 13 - Geo id signal perturbation (excess), relative to the isoviscous geoid, for 

the range of excess plume temperatures and viscosity exponents, /3, tested at 

plume radius r 0=70 km. The l =4, 8, and 12 curves are for the first three 

harmonics of the cylinder for halo model A. 
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Figure 14 - Buoyancy flux (r 0=70 km) as a function of excess plume temperature 

and f3 for halo model A. 
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Figure 15 - Buoyancy flux as a function of plume radius for halo model A. The 

right-hand vertical scale is linear and gives the fourth root of the flux . Solid 

lines are for excess temperatures of 400°K and 800°K with /3=28 . Dashed lines 

are for the isoviscous models (/3=0) . 
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Figure 16 - Geoid signal perturbation (excess), relative to the isoviscous geoid, as a 

function of radius and viscosity contrast. The l =4, 8, and 12 curves are for 

the first three harmonics of the cylinder for the pipe model. 
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Figure 17 - Buoyancy flux as a function of radius and viscosity contrast for the 

pipe model. The flux is normalized to the square of the excess temperature for 

density p0= 5.14 and volume coefficient of thermal expansion 3x 105/°K. The 

right-hand scale is linear and gives the fourth root of the flux. Dashed lines 

give the theoretical flux for an infinite rigid pipe (mantle) for the same interior 

pipe viscosities and buoyancy forces (see text). 
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Figure 18 - Comparison of global hotspot response curve (solid line with error bars) 

and several dynamic models. Solid triangles give the l =4,8 geoid signal, divided by 4, 

for plume model B (,8=35). Solid diamonds are for model C (,8=35), also divided by 4 

to account for smearing of the signal over a range of ,...._,4 harmonic degrees in a spher

ical Earth. Model C / (,8=0), indicated by open diamonds, has no viscosity contrast 

between the mantle and the plume. The "spherical Earth" model (dashed lines) was 

calculated analytically using the method of Richards and Hager (1984; Chapter 1) 

with a 200 km radius plume, average temperature contrast 300°K, and no viscosity 

contrast. The dotted line gives the (spherical) analytical calculation for the geoid 

spectrum from lithospheric delamination. 
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Figure 19 - Pseudo geoid response functions (see text) for the model C plume 

(solid line), subducted slab (dashed line), and slab with weakened lithosphere 

(dash-dot line). The dotted line gives the analytical solution for the purely lay

ered response. 
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Figure 20 - Comparison of dynamic topography from .tvfodels B and C with the 

observed Hawaiian swell topography. The heavy dotted line is from section A-A / of 

Figure 9, and the lighter dotted line is from section B-B / 500 km WNW of Hawaii 

(" anomalous" bathymetry adapted from Schroeder, 1984). Light and heavy solid 

curves are for strongly temperature dependent viscosity (,8=35) in models B and C, 

respectively . Light and heavy dashed curves are for no viscosity contrast between 

plume and mantle (,8=0) in models B and C, respectively. Deformation profiles for 

the theoretical models decay toward the zero level out to 5000 km from the plume 

axis , but are truncated in this figure in order to emphasize deformation near the swell 

itself. 
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Figure Bl - Illustration of the geometry for the high viscosity slab calculations. Hor

izon ta! and vertical scales are equal. 
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Figure B2 - Pseudo response curves (l =5,10) for models 1100.u (dotted lin e), 

1100.slab (solid line), 1100.slab200 (long dashes), and 1100.slab400 (short dashes). 
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Figure B3 - Pseudo response curves (I =5,10) for models LUlOO.u (dotted line) , 

LUlOO.slab (solid line), LU100.slab200 (long dashes), and LU100.slab400 (short 

dashes). 
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