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Abstract

The Earth’s largest geoid anomalies occur at the lowest spherical harmonic
degrees, or longest wavelengths, and are primarily the result of mantle convection.
Thermal density contrasts due to convection are partially compensated by boundary
deformations due to viscous flow whose effects must be included in order to obtain a
dynamically consistent model for the geoid. These deformations occur rapidly with
respect to the timescale for convection, and we have analytically calculated geoid
response kernels for steady-state, viscous, incompressible, self-gravitating, layered-
Earth models which include the deformation of boundaries due to internal loads. Both
the sign and magnitude of geoid anomalies depend strongly upon the viscosity struc-

ture of the mantle as well as the possible presence of chemical layering.

Correlations of various global geophysical data sets with the observed geoid can
be used to construct theoretical geoid models which constrain the dynamics of mantle
convection. Surface features such as topography and plate velocities are not obviously
related to the low-degree geoid, with the exception of subduction zones which are
characterized by geoid highs (degrees 4-9). Recent models for seismic heterogeneity in
the mantle provide additional constraints, and much of the low-degree (2-3) geoid can
be attributed to seismically inferred density anomalies in the lower mantle. The
Earth’s largest geoid highs are underlain by low density material in the lower mantle,
thus requiring compensating deformations of the Earth’s surface. A dynamical model
for whole mantle convection with a low viscosity upper mantle can explain these

observations and successfully predicts more than 80% of the observed geoid variance.

Temperature variations associated with density anomalies in the mantle cause

lateral viscosity variations whose effects are not included in the analytical models.
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However, perturbation theory and numerical tests show that broad-scale lateral
viscosity variations are much less important than radial variations; in this respect,
geoid models, which depend upon steady-state surface deformations, may provide
more reliable constraints on mantle structure than inferences from transient
phenomena such as postglacial rebound. Stronger, smaller-scale viscosity variations
associated with mantle plumes and subducting slabs may be more important. On the
basis of numerical modelling of low viscosity plumes, we conclude that the global
association of geoid highs (after slab effects are removed) with hotspots and, perhaps,
mantle plumes, is the result of hot, upwelling material in the lower mantle; this con-
clusion does not depend strongly upon plume rheology. The global distribution of
hotspots and the dominant, low-degree geoid highs may correspond to a dominant

mode of convection stabilized by the ancient Pangean continental assemblage.
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Introductory Remarks

The shape of the Earth’s long-wavelength gravitational potential field, or geoid,
became known from studies of satellite orbit ;;erturbations just after plate tectonic
and sea floor spreading concepts achieved widespread acceptance among geologists
and geophysicists. However, a direct correspondence between plate motions and con-
vection cells in the mantle was not verified by the gravity data. The largest geoid
anomalies are apparently unrelated to the current configuration of plates, and this
has remained a difficult problem for geodynamicists. This situation has improved in
the last several years, largely as a result of recent models of seismic heterogeneity in
the mantle. I was fortunate to have been working simultaneously on theoretical

models for geoid anomalies caused by lateral density contrasts due to convection.

The inherently non-unique relationship between the geoid and internal density
contrasts does not allow for independent inversion of the geoid data alone. My initial
investigations showed (as had earlier researchers) that the deformation of the Earth in
response to convecting density contrasts had a substantial effect upon the geoid. This
effect was found to depend strongly upon the viscosity structure of the mantle and
the depth of convection, neither of which was well constrained at the time. Having
begun with some pessimism, this theoretical work had made a difficult problem seem
even more intractable. However, with the new seismic data in hand to constrain
a priori the internal density structure, it has become possible not only to model

most of the observed long-wavelength geoid but also to derive new constraints on the



dynamics and viscosity structure of the mantle. These constraints are consistent with
postglacial rebound and other transient loading phenomena. In addition, what has
been assumed by most researchers for almost two decades can now be stated with
more confidence: the lack of a strong correspondence between plate tectonics and the
geoid is due to the relatively weak coupling of plates, outside of subduction zones, to

the large-scale mantle flow.

These remarks are included to give some flavor for the evolution of my thinking
since I began working on the geoid problem. The four chapters of this thesis, all of
which deal with some aspect of geoid modelling and interpretation, were written to be
published independently and, for the most part, contain their own introductory
material. Much repetition of the basic concepts of dynamic compensation will be
found from chapter to chapter, because these ideas are non-intuitive and are not fam-
iliar to many geophysicists. The first chapter, which was published some time ago,
has been kept more or less in its original form. It may be interesting to contrast some
of the ideas in that earlier paper to the more current conclusions of Chapters 2, 3,
and 4. I hope and expect that continuing advances in geodynamics will, within a few

years, make some of these recent efforts seem equally naive.



Chapter 1

Geoid Anomalies in a Dynamic Earth

INTRODUCTION

The relationship between large-scale geoid anomalies and thermally driven flow
in the Earth’s mantle was discussed almost 50 years ago by Pekeris (1935). He showed
that the gravitational effect of the surface deformation caused by the flow is opposite
in sign and comparable in magnitude to that of the driving density contrast. Conse-
quently, in a viscous Earth, the net gravity or geoid anomaly is also dependent in
both sign and magnitude upon the dynamics of the mantle. This represents a com-
plete departure from the result for a rigid or elastic Earth in which positive internal

density contrasts are always associated with positive gravitational anomalies.

Studies of postglacial rebound (e.g., Haskell, 1935; Cathles, 1975), as well as the
very existence of plate motions, show that the mantle responds to stresses applied
over geologic timescales by slow creeping flow. Therefore, any interpretation of long-
wavelength geoid anomalies should include the dynamical effects first described by
Pekeris. These effects, particularly boundary deformation caused by flow, have been
investigated by Morgan (1965), McKenzie (1977), and Parsons and Daly (1983) for
intermediate wavelength features using two-dimensional models with uniform mantle
viscosity. Runcorn (1964, 1967) addressed the relationship between long-wavelength
gravity anomalies and the flow field in a self-gravitating, uniform viscous sphere.
Each of these studies showed that the deformation of boundaries, especially the upper

surface, has a major effect upon the net gravity or geoid anomaly arising from a



density contrast at depth. Moreover, the effects of viscosity stratification and layered
convection in the mantle can significantly alter the calculated relationship between
geoid elevations and driving density contrasts (Richards and Hager, 1981; Ricard,

Fleitout, and Froidevaux, 1984).

In this chapter, we develop and discuss several dynamical models and their
implications for geoid interpretation. The aim is to provide quantitative relationships
between density contrasts within the Earth and other geophysical observables, includ-
ing boundary topography, as well as the geoid. At the present time we cannot solve
the full problem of thermal convection for a given model to determine these dynami-
cal relationships for the whole system (see McKenzie, 1977, for two-dimensional
numerical examples). Since both the temperature structure of the mantle and the
temperature dependence of the density and viscosity of mantle minerals are unknown,
and since even the geometry of the convective circulation is not known (i.e., whole
mantle vs. layered convection), a simpler and more direct approach is desirable. If the
thermal density anomaly is treated simply as a “load”, the resulting surface deforma-
tion and geoid anomaly can be determined by solving only the equilibrium equations

for a viscous Earth.

The standard characterization of the Earth’s response to tidal loading in terms
of Love numbers (Love, 1911; Munk and MacDonald, 1960) suggests a useful way to
characterize dynamic response functions. Love numbers for internal loading of the
Earth are obtained by normalizing residual geoid anomalies and boundary deforma-
tions by the gravitational potential of the driving load. We obtain these quantities as
functions of the depth and harmonicr degree of the load, thus yielding Love numbers

that are equivalent to Green functions.



A major question currently is whether chemical stratification of the mantle,
associated with the 670 km seismic discontinuity, presents a barrier to vertical flow
and divides the mantle into separately convecting layers. In order to address this
issue, our flow models include not only radial viscosity variations but also the possi-
bility of either mantle-wide or chemically stratified flow in the mantle as illustrated in
Figure 1. Both the geoid and boundary deformation response functions (Love
numbers) show a strong model dependence. For example, for mantle-wide flow, posi-
tive driving density contrasts cause net negative geoid anomalies for uniform mantle
viscosity, since the negative anomaly caused by upper surface deformation
overwhelms the geoid anomaly due to the density contrast itself. However, net posi-
tive geoid anomalies are obtained for a channel of sufficiently low viscosity in the
upper mantle. This occurs because low upper mantle viscosity reduces the deforma-
tion of the upper surface. The core-mantle boundary deformation increases but has
less effect upon the geoid because of its great depth. As shown in Figure 1(b), the lay-
ered flow case introduces much more complicated behavior. It is precisely this strong
model dependence that makes these models useful in geodynamics. The observed
spectral and loading-depth dependence of these response functions can be used to

discriminate among various proposed models for mantle structure and rheology.

Although observations of satellite orbits provided the means for determining the
lower order harmonics of the geopotential over two decades ago (Kaula, 1963a; Guier,
1963), subsequent efforts to interpret the long-wavelength geoid have been largely
unsuccessful. Some correlations with tectonic features have been suggested (e.g.,
Kaula, 1972), notably a general correspondence between subduction zones and geoid

highs. Chase (1979) and Crough and Jurdy (1980) demonstrated a remarkable



correlation between the spatial distribution of hot spots and the nonhydrostatic
second harmonic geoid. Hager (1984) has shown that the fourth through ninth geoid
harmonics are strongly correlated with the seismicity-inferred presence of subducting
slabs, thus yielding quantitative estimates over a definite spectral range for the
dynamic response functions which are the subject of this chapter. Additionally,
recent seismological determinations of lateral variations in seismic velocities (e.g.,
Nakanishi and Anderson, 1982; Dziewonski, 1984; Clayton and Comer, 1983) provide
another powerful constraint on geoid interpretation, and a large amount of informa-
tion on crustal thickness, topography, and density has yet to be considered in relation
to the geoid. It is therefore reasonable to expect increasingly accurate and useful
observations of the Earth’s density anomalies and effective boundary deformations.
Cast in the form of dynamic response functions as discussed in this chapter, these

data provide means for discriminating among various dynamic models for the mantle.

MODELLING CONSIDERATIONS

Quantitative models for the geoid derive from constitutive laws, equations of
motion and material continuity, and boundary conditions. It is impossible at the
present time to specify fully the Earth’s rheology or to solve all these equations
exactly. We must make various approximations and assumptions in developing
mathematical models; in doing so we try to include the important physical effects
while avoiding unnecessary complication in the method of solution. In this section we
discuss our assumptions concerning mantle rheology and flow, boundary conditions,
and the thermal driving forces involved. Boundary deformation is afforded a detailed

treatment in a separate section.



Rheology and Flow

The selection of appropriate models for the mechanical behavior of the litho-
sphere, mantle, and core depends upon both the time and length scales involved. Here
we are interested in length scales for which lithospheric strength is negligible, roughly
defining what is meant by “long-wavelength” geoid anomalies, and time scales of the
order of those required for substantial changes in the convective flow pattern in the
mantle. As we show below, this implies harmonic degrees ! less than 40 (wavelengths
greater than 1000 km). If mantle flow is reflected in plate motions, the mantle flow
pattern is stable for times far in excess of 1 Myr, which we take as a characteristic
timescale. The core is inviscid for the timescales of interest here; it may also be

assumed to be in a state of hydrostatic equilibrium.

The lithosphere presents several problems, including those of finite elastic
strength and of lateral variations in rheological properties, density, and thickness.
For loads of wavelength greater than about 1000 km the elastic strength of the litho-
sphere is negligible (McKenzie and Bowin, 1976; Watts, 1978), so that surface loads
are supported by buoyancy and the resulting flow in the mantle. The lithosphere is

essentlally transparent to long-wavelength normal tractions from flow in the mantle.

Lateral variations in rheological properties of the lithosphere are responsible for
the plate tectonic style of convection in the Earth’s mantle. The plates move as dis-
tinct units with respect to each other and effectively form a rigid lid for any sub-
lithospheric small-scale convection which may exist. Plate boundaries, on the other
hand, are relatively weak, allowing the plates themselves to participate in mantle con-
vection (Hager and O’Connell, 1981). This lateral heterogeneity of the effective viscos-

ity of the lithosphere allows density contrasts in the interior to excite significant



toroidal flow (Hager and O’Connell, 1978), not just the poloidal flow which would

result from a mantle with spherically symmetric viscosity structure.

The choice of boundary conditions at the surface is not obvious, and the analyti-
cal technique we use here does not account for lateral viscosity variations. We argue
that the mechanical effect of the lithosphere on small-scale flow beneath plate interi-
ors can be represented by a no-slip boundary condition at the Earth’s surface. Flow
involving the plates themselves is probably best approximated by a free-slip boundary
condition. We present calculations for both cases and find that the results are similar.
This suggests that a more complicated boundary condition that would better

represent the effects of lithospheric plates would also be similar.

The effect on the geoid of lateral variations in lithospheric thickness and density
have been discussed by Chase and McNutt (1982) and Hager (1983). These variations
are primarily the result of variations in crustal thickness and in the age of the litho-
sphere. Since they are close to the surface, they are generally well compensated, and
their effect on the geoid is small (less than 20 m out of a total geoid variation of
greater than 200 m). However, their effect on topography is large. If surface deforma-
tion and the geoid are to be used concurrently to obtain sublithospheric density con-
trasts as discussed below, corrections must be made to compensate for the topo-

graphic effects of large density contrasts within the lithosphere.

The appropriate constitutive law (or laws) for modelling flow in the mantle can-
not be determined with certainty at the present time. Possible creep mechanisms for
deformation of mantle minerals include dislocation climb (Weertman, 1968), which
implies a non-linear rheology, and grain boundary diffusion or superplasticity (Twiss,

1976; Ashby and Verrall, 1977; Berckhemer, Auer, and Drisler, 1979), which at low



stress levels might result in a linear relationship between shear stress and strain rate.
Mathematical tractability has led most researchers to employ linear rheology, either
Maxwellian or Newtonian, in modelling flow in the mantle. Furthermore, for some
surface loading problems in which the magnitude of shear stress decays with depth,
non-linear rheology might not be distinguishable from layered linear rheology; the
lower stress levels found at depth would correspond to higher apparent viscosity.
Estimates for effective mantle viscosity have been obtained for a variety of loading
problems. Values given for average mantle viscosity have generally been on the order
of 10”! Pa-sec (10% Poise) (O’Connell, 1971; Cathles, 1975; Peltier, 1976; Yuen,
Sabadini, and Boschi, 1982) although estimates as small as 10 Pa-sec have been
obtained for the upper mantle or asthenosphere for loads of smaller scale (Passey,
1981). Although viscoelastic models have found application to shorter term problems
such as glacial loading and unloading (Clark, Farrell, and Peltier, 1978; Wu and Pel-
tier, 1982), the timescales of 1 Myr or greater of interest here are in excess of Maxwell
times for the mantle, so we ignore elastic effects. For the purpose of exploring the
basic physics of internal loading problems and for mathematical simplicity, we employ
Newtonian models in which viscosity is dependent on depth only, although, when this
theory is applied to actual data, the results suggest that lateral variations in effective

viscosity may be important.

Boundary Conditions

Three possible boundaries are considered in our spherically symmetric, layered
Earth models: (1) the core-mantle boundary; (2) the upper surface; (3) a change in

composition and/or viscosity across the 670 km seismic discontinuity.
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We model the core-mantle boundary as one at which there is no shear traction
and no steady-state vertical transport. As discussed above, the mantle-lithosphere
boundary is more complicated. We have investigated both no-slip and free-slip condi-
tions and have included both types in the results presented here, although, as we

noted above, the difference between the two is not profound.

Chemical stratification and multi-layer convection have been suggested (e.g.,
Anderson, 1979) to explain the major seismic discontinuity at 670 km. Geochemical
budget models as well as the lack of seismicity below 670 km are thought by some to
suggest that upper mantle flow does not penetrate this level (Jacobsen and Wasser-
burg, 1980; Richter and McKenzie, 1981). We include the effect of such a boundary
in our investigation in order to understand how geoid and geodetic data might be
used to test the chemical layer hypothesis. A chemical discontinuity is modelled by
setting the (steady-state) vertical velocity to zero at the boundary; horizontal veloci-
ties and normal and shear tractions are continuous. This results in a two-layer,
shear-coupled, antisymmetric flow system as illustrated in Figure 1(b). Another possi-
bility associated with both the 400 km and 670 km discontinuities is that of an
abrupt phase change within the mantle, which in the simplest case might be modelled
as a spike in the compressibility curve for the mantle, assuming that the transition is
adiabatic and ignoring thermal effects. We have not treated this case since compressi-
bility introduces nonlinearity into the field equations and makes solutions much more

difficult to obtain.
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Driving Forces and Loads

The relationships among loading, gravity, and deformation can be obtained
without solving for the thermodynamics. This is accomplished by calculating the flow
driven by arbitrary density contrasts at any given depth. Kernels (Love numbers)
representing the viscous response functions so obtained can then be integrated over
depth in accordance with any prescribed distribution of thermal density anomalies;
the linearity of the problem (with the caveat of linear, spherically symmetric viscos-
ity) allows for superposition of solutions. Our method is to solve for loading due to a
surface density contrast at a given depth and spherical harmonic degree, thereby
characterizing the response as a function of spatial wavelength and depth in the man-
tle. In this way we can isolate the relationships desired for geophysical observables

from the thermal part of the convection problem.

The Field Equations

With the above qualifications and simplifications we can specify tractable field
equations to investigate the loading problem for a variety of rheological and struc-
tural configurations in the mantle. The mantle will be assumed to behave as a self-
gravitating, spherically symmetric, incompressible, Newtonian viscous fluid. Since the
Reynold’s number is very large owing to the mantle’s high viscosity, inertial or time-
dependent terms are omitted from the equations of motion. The only time depen-
dence is introduced by changes in position with time of the driving density contrasts
and relaxation of the boundaries to a steady-state condition of deformation. We
address the relaxation problem in detail in Appendix 2, the result being that boun-

dary deformations decay rapidly compared to the timescale of flow in the interior.



= 12 =

The equations of motion can be written:

vZt+peg=0 (1)
where 7 is the stress tensor, p the density and g the gravitational acceleration. The
mantle will be assumed to be incompressible throughout; although radial density
layering can be arbitrarily imposed in our method of solution, allowance for finite
fluid compressibility is mathematically difficult and is generally ignored by most
authors (Cathles, 1975; Peltier, 1981) since the dynamic effect is probably small
(Jarvis and McKenzie, 1980). Ricard et al. (1984) have shown that the effect of
compression from lateral gravity variations is negligible. The incompressible con-

tinuity equation is:
Vv =0 (2)
where v is the velocity vector. The Newtonian constitutive relation is:
T=-pl+ e (3)
where p is the pressure, I the identity matrix, 5 the viscosity, and ¢ the strain rate

tensor.

For global scale loading problems, self-gravitation effects cannot be ignored
(Love, 1911; Clark et. al., 1978). The gravitational effects of deformed boundaries
must be included in any self-consistent model. The gravitational potential V' must
satisfy

vV = 47Gp (4)

where we have chosen the sign convention such that g = -y V. These equations are

linear in all the variables and can be straightforwardly solved by either propagator
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matrix (Hager and O’Connell, 1981) or numerical techniques. Before proceeding to a
fully three-dimensional (spherical) solution, we present some useful results from the
simple two-dimensional half space problem. Results from the viscous relaxation prob-

lem that justify the hypothesis of steady-state flow are given in Appendix 2.

ANALYTICAL TREATMENT OF BOUNDARY DEFORMATION

Loading of the Earth by gravitational potential (e.g., tidal loading), by external
loads (e.g., glacial loading), or internal density contrasts (e.g., thermal convection),
will produce deformations of both the surface and any internal boundaries. In this
section we analytically treat boundary deformation to first-order accuracy and derive
some useful results for the two-dimensional problem. Figure 2 illustrates the warping
of a material boundary relative to its deformed or reference state, with densities p,
and p, above and below the boundary, respectively. The velocity and stress fields
must be continuous at the deformed boundary. However, our solution technique
requires that we propagate solution vectors from one horizontal boundary to the next,
so we require expressions for the velocity and stress fields at the reference (unde-
formed) boundaries. If the magnitude of deformation, 6z, is sufficiently small com-
pared to the thickness of either of the adjacent layers and the spatial wavelength, X,
of interest (as in this study), any variable, u® in medium ¢, may be continued, to

first-order accuracy, from the deformed boundary to the reference level by:

; ; du’t
Uref = Udes ~ —5—0% (5)

Since flow-induced stresses are always much smaller (first-order) than the lithostatic

stress level in the mantle (zeroth order), flow and stress variables are first-order also;
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their derivatives behave like the product of first-order terms and the approximate
spatial wavenumber. The only first-order correction due to deformation is the hydro-

static correction to the normal stress:
T;Z”/ = T;Zd‘[ i pi g 62 (6)

In passing from the reference boundary as seen in medium 2 to that seen in medium

1, we get an apparent jump in normal stress:

Arf — gl 12 - Apiage @)

sze/

where Apjo = p; — po. By continuity of stress at the deformed boundary:
AT — Appg 6 (8)

(A similar argument will imply an effective jump in the gravitational acceleration at

the reference boundary in the fully self-gravitating spherical case.)

This result can be readily applied to a simple half space problem. Figure 3 illus-
trates a surface density contrast (i.e., a thermal density anomaly), o4 (k )cos(kz ), at
depth d, exciting flow in a viscous half space of viscosity n and density p, with a
traction free surface at the top. For simplicity we will first assume that the density
contrast is not advected with the resulting flow so that it remains fixed in space (this
could be done experimentally using a heat pump, for example). We will then show
that the density contrast would not be advected a significant distance in the time it
takes for the boundary deformation to reach equilibrium. Solving equations (1)-(3)
using the two-dimensional propagator (Hager and O’Connell, 1981), we find that the

boundary displacement 6z evolves from its initial undeformed position as

I | )cp"s ) (1 kd Yeap (ckd Y1me /7 (9)
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The boundary relaxes with time exponentially toward a steady state of deformation

with time constant

T =27k /pg (10)

This is the same time as that derived for the surface loading or unloading problem,
e.g., postglacial rebound (Haskell, 1935; Cathles, 1975). For example, with 5 = 10
Pa-sec, A\ = 27/k > 1000 km, p=3.5 Mg/m® ¢ = 9.8 m/sec’, we obtain
7 < 11,000 yr. Assuming velocities in the mantle of the order of 100 mm/yr or less,
we see that mantle transport of at most a few kilometers (much less than the depth

scale of mantle convection) occurs before the free surface is completely relaxed.

Alternatively, we can assume that boundary deformation is rapid and calculate
flow velocities under the assumption that vertical flow at the deformed surface van-

ishes (i.e., boundary deformation is complete). In this case,

gog(k)cos (kz)
4dnk

g, {d )} = [(14+2kd )exp (—2kd )-1] (11)

Comparing this to the characteristic surface velocity obtained by differentiating (9),

we find that:

6z _ 2(1+kd e/
v,(d)  exp (kd)~(1+2kd )exp (—kd ) (12)

Once again, we see that long-wavelength boundary deformation is rapid compared to
changes in the convective flow pattern independent of o, (k). Note that this result
holds even for “thin” layers which are normally associated with long relaxation times.
In Appendix 2 we show that viscous relaxation occurs on a timescale much shorter
than that for mantle convection by calculating relaxation times for several spherical

Earth models.
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The long time limit of equation (9) shows that the effective mass deficit associ-
ated with the surface deformation, o,;; = péz, is of opposite sign and of the same
order of magnitude as o, . It is now evident for at least two reasons that the assump-
tion that 6z is sufficiently small for the application of a linear continuation of the
boundary condition is probably justified: (1)Thermal density contrasts in the Earth,
with the possible exception of subducted slabs, are probably not large enough to
cause gross deformation of either internal or external boundaries. (2) The Earth’s
topography a priori precludes lithospheric deformations greater than 10 km while
seismic data do not suggest large deformations of the core-mantle boundary
(Dziewonski and Haddon, 1974) or the 670 km discontinuity, although coverage is
limited, especially in subduction zones where deformation is expected to be the largest
(Hager, 1984).

From equation (7) we can obtain the relationship between the observed gravita-
tional potential and the load as well as the relationship between topography and
geoid due to o, (k). The residual potential calculated at the reference surface contains

contributions from both o, and o :

SV (50) — 6V 1V — QW_C”f_s_(k_Il[_(l + kd) + 1)eap (~kd )o 4 (k)

or

resg
ol NS Y. (13)

sV (0)
This means that, for a uniform half space, a positive density contrast at depth results

in a negative geoid anomaly. The geoid anomaly goes to zero as the density contrast

approaches the surface. Furthermore, for depths greater than the wavelength, the
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geoid can be much larger in magnitude than that obtained for a rigid half space for
which there would be no boundary deformation. This occurs because the stress that
causes boundary deformation falls off less rapidly with the depth of loading than the

potential from the load itself.

For spherical models in general, the normalized potential

6"/"'83
K (r)= V0
;

(14)

is the Green function for the Earth’s surface potential per unit loading at radius r
and spherical harmonic degree /. This quantity is a function of the Earth model in
general and is related to Kaula’s (1963b) elastic internal loading potential Love

number, k;/ ! | by
K(r)y=1+k"" (15)

This response function is measurable if the driving density contrasts within the Earth
are known a priori. Hager (1984) has used this in his discussion of geoid anomalies
from subducted slabs, where density contrasts can be estimated. Another application
is in comparing seismic velocity heterogeneities to the geoid (Hager et. al., 1985). By
assuming a relation between seismic velocity and density the long-wavelength geoid
coeflicients are obtained from the integral:

r—a

eos 4rG
sV geoid — T’fﬁ“riox,(r)(r/a ) *+26p, (r )dr (16)

where a is the radius of the Earth, 8p,(r) is the /th harmonic density contrast at

radius r,and G is the gravitational constant.
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The other observable we can calculate is a dimensionless “impedance”, defined

as the ratio of geoid elevation to boundary deformation:

6Vlgeoia’
Zi(r)= TR (17)

where 6r; is the /th harmonic deformation of the surface, and g is the gravitational
acceleration. (Note that this is not a true impedance since it involves the observed
potential 6V, instead of the driving potential §V°" .) Defining a surface deforma-

tion Love number h;' ! (e.g., Munk and MacDonald, 1960), we have

This quantity could be estimated for the surface by taking the ratio of harmonic
geoid coefficients to topographic coefficients with the effects of crustal thickness varia-
tions removed. To estimate Z;(r) for a given density distribution and Earth model,

the numerator and denominator of (17) must be integrated separately.

We have now defined two observables relating the geoid directly to internal
loading and Earth structure for a density contrast at a given depth. Also, equation
(16) shows how to interpret these quantities for models with distributed density con-
trasts. We have not yet introduced the gravitational interaction between the load

and the mass anomalies due to boundary deformation.
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SPHERICAL EARTH MODELS

Formal Solution

Analytical solutions to field equations (1) through (4) with radial variations in
viscosity and density and for arbitrary, laterally varying internal loading are found in
Hager and O’Connell (1981). Internal density contrasts drive poloidal flow fields for
which the relevant stress, flow, and gravitational potential variables can be prop-

agated from one radial layer to another according to:

u(r) = B(r,ro)u(ro) + [B(r E)b(€)d € (18)

To

where u is the six-vector given by

por? sV
T]O ar

(19)

u(r)= vr7v(?:rTrr/”O?rTrﬁ/T’OrpOréV/nO’

with radial and tangential velocities v, and vy , normal radial and shear deviatoric
stresses 7,, and 7,4 , perturbed potential 6V, and reference density and viscosity pg
and 7ny. In these expressions and for the remainder of this chapter all dynamical vari-
ables contain an implicit spherical harmonic dependence which has been suppressed
for simplicity. The 6x6 matrix P(r,rq) can be expressed analytically (Gantmacher,
1960) as a function of r /r(, normalized layer density p* = p/py, normalized layer
viscosity * = 5/n, and harmonic order /. The driving term for this system is the

integral on the right in equation (18) in which the density contrasts are introduced by
2 T
b(r) = [ 0,0, rg(r)66(r)/o, 0,0, 477G pobolr)/mo | (20)

where g (r) is the unperturbed (hydrostatic) gravitational acceleration and &p(r) is
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the density contrast at radius r.

The problem is greatly simplified mathematically by casting the driving density
structure not only as a sum over spherical harmonics but also as a sum over radial

surface density contrasts; that is,

ép(r) = Y36(r —b; )o; (21)

where §(r) is the Dirac delta function and the o; are the surface density contrasts.

Equation (18) becomes

u(r) = B(r,rou(ro) + ;E(r ,bi )b; (22)

1

where
\ T
b; = [0,0,b,-g(bz-)o,-/no,oyo,“’rbi G”O"i/”"} )

Now, as was indicated previously in expressions (14) through (17), we can characterize
all solutions in terms of harmonic order / and radial level or depth of the driving den-
sity contrasts since, owing to the linearity of the field equations, these solutions or

kernels can be superposed to represent any arbitrary density contrast in the mantle.

A familiar and useful property of the propagator matrix formulation is that solu-
tion vectors can be propagated through a series of different material layers by simply

forming the product of the individual layer matrices:
B(T ,To) = __E(T ,1‘1)_13(7'1,7‘0) (24)

Therefore, changes in viscosity (and density) with depth are easily incorporated into

this formalism.
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Boundary Conditions

We have discussed two types of boundary conditions: (1) A free-slip (denoted
“F”) boundary condition requires zero radial velocity (v,) and zero shear stress (7,4),
a condition which applies at the core-mantle boundary. (2) A no-slip (denoted “N”)
boundary condition requires zero radial and tangential velocities (v, and v,). Good
arguments can be made for applying either of these boundary conditions at the sur-
face. For completeness, and to gain insight into the physics of the problem we have
modelled both combinations. For example, for no-slip at the deformed surface
(r=a+6r,) and free-slip at the core-mantle boundary (r =c +6r, ), we have, to first
order,

T

poa? 86V,
Mo or

(25)

uN(a+5ra = 10,0,0,a7.4 /09, poadV,/ny,
) 2

and

poc? A8V, j(T

uF (C +67‘c )= [0, vec; c 7-rrc /7701 0; PoC 6Vc /7707
ng Or

where we have also set the normal stress to zero at the surface. These boundary con-
ditions apply at the actual deformed boundaries (see Fig. 1), however equations (22)
show only how to propagate from one spherical reference boundary to another. There-
fore expressions (25) must be analytically continued to the reference boundaries via
equations (5) through (8) cast in spherical coordinates. This is a tedious operation

which involves finding expressions for 7., ,7,, ,6V,,6V, in terms of the resulting har-
monic surface deformations (ér,, 67, ), and the details as well as the resulting system

of equations are included in Appendix 1. This procedure involves two physical effects:

(1) When solution vectors are referenced to the undeformed boundaries, there is an



apparent jump in normal stress at each boundary given by an expression similar to

equation (8):
ér,, = —bpg (r)oér (26)

(2) There is a similar jump in gravity at each boundary (see Appendix 1). Accord-
ingly, each boundary deformation makes a first-order contribution to the perturbed
potential. This occurs because, as demonstrated above, the mass displaced is of the
same order of magnitude as the driving density contrast. The important thing to
note is that we can cast the problem in a form whose solution gives the deformation
of boundaries as well as the gravitational potential at those boundaries as functions of
the harmonic order and depth of loading. From these solutions we can generate the
desired quantities (Love numbers and impedances) defined by expressions (14)
through (17).

Equation (24) shows how to treat layering effects in material properties, but a
layered flow system (Figure 1(b)) requires a separate boundary condition at the flow
barrier. We model this boundary as a compositional change accompanied by a den-
sity jump which results in a simple flow barrier with shear coupling between the two
layers. Mathematically, this can be expressed as

T
por® 85V
or

u(r +6r )= |0, vy, r 7, /770, r T.4/M0, Por 6V /1y, (27)

in which the radial velocity is set to zero at the boundary. This also represents
another boundary which will deform under loading and an additional apparent jump
in normal stress and gravity will occﬁr when (27) is analytically continued to its refer-
ence surface (e.g., 670km depth). For this two layer flow problem we have two sys-

tems of equations (22) that are coupled at an internal boundary whose field variables
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are given by (27). We have not included the details here, but solution of these prop-
agator equations proceeds straightforwardly as in Appendix 1, where details are given

for the case of whole mantle flow.

RESPONSE FUNCTIONS

The mathematical formalism we have developed for solving the internal loading
problem yields solutions in the form of boundary vectors that give the fluid velocities
and stresses as well as the gravitational potential and its radial derivative at spherical
reference boundaries corresponding to the unperturbed layer boundaries. These refer-
ence boundary vectors can be propagated (see equation 18) to any radial level in the
Earth, so each solution implicitly contains the stress-flow field and gravitational field
throughout the mantle. For any specific model, solutions vary with the depth of load-
ing and harmonic degree so that, even for the limited variety of models we have con-
sidered here, a very large amount of information is generated. The spherical Earth
results presented in this section are restricted to those involving either the geoid or
boundary deformations. The results that follow involve only the approximations dis-
cussed above and are analytic, although the resulting algebraic expressions are

evaluated on a computer.

‘Whole Mantle Flow

The simplest model is that for mantle-wide flow, and most of the physical ideas
from spherical modelling can be demonstrated with this model. Figures 4(a)-(c) show
for model A (see Table 1) the amount of mass per unit area, normalized by the ampli-

tude of the load, that is displaced by deformation of the core-mantle boundary and
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the upper surface as a function of the depth of loading for representative harmonic
degrees 2, 7, and 20. The displaced mass is opposite in sign to that of the driving
mass anomaly, so its negative is plotted for ease in comparison. Figures 4(a)-(c) are
for free-slip at both the core-mantle interface and the upper surface (“FF” case) while
(f)-(h) are for no-slip at the upper surface (“NF” case). The closer the load is to a
boundary the larger are the resulting mass displacement and deformation at that
boundary. Also plotted is the total amount of mass displaced at both boundaries. By
analogy to the Airy or Pratt principles of isostatic compensation in the lithosphere,
these curves represent dynamic isostasy for mantle loads in a spherical Earth. The
total mass displaced is opposite in sign and comparable, but not identical, in magni-
tude to that of the load (dashed line) for long wavelengths. For the uniform viscosity
model, -0, (total )/o; is of order unity for /=2 and /=7, but for higher values of {
this ratio becomes much smaller if the load is not close to a boundary: this means
that the load is almost entirely dynamically supported by flow in the interior. Figures
4(d) and (e) show the effects of one and two orders of magnitude viscosity contrast
above 670 km depth (Model C) for /=7 for the “FF” case. The lower viscosity in the
upper mantle lessens the coupling between the flow and the upper surface, thereby
decreasing the deformation of the upper surface and increasing that of the core-
mantle boundary. In Figure 4(e) the coupling is so weak that self-gravitation actually
causes the deformation to reverse, resulting in the slightly negative excursion of its

mass displacement curve. This effect will be addressed more fully below.

Comparison of Figures 4(a) and (f) shows that the main effect of the no-slip con-
dition, as opposed to the free-slip condition, at the upper surface is to restrict the

flow near that boundary, resulting in more deformation and mass displacement at the
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upper boundary. This effect diminishes with increasing / as seen by comparison of
Figures (b) and (g) as well as (c) and (h). Notice that for NF conditions the maximum
mass displacement at the upper surface occurs with the load at depth rather than
when it is nearest to the surface. A similar effect can be derived analytically for the
two-dimensional case and is the result of flow restriction in a channel due to long-
wavelength loading. In the three-dimensional (spherical) case this subsurface max-
imum in deformation is also enhanced considerably by the self-gravitation of the
boundary. In addition to the stresses generated by the load “sinking” in the ambient
(zeroth order) potential field, there is a first order perturbation in the ambient field
due to both the load and the mass displacements at the boundaries. Although this
idea is no more complicated than that of a self-consistent gravity field, the effect is

physically subtle and warrants some discussion.

The basic propagator equations (18) are written for field variable six-vectors, the
last two terms of which are the perturbed geopotential field and its radial derivative
(gravitational acceleration). These two variables must satisfy Poisson’s equation
independently and it has recently been shown by O’Connell, Hager, and Richards (in
preparation) that the 6x6 set of equations can be reduced to coupled 4x4 and 2x2 sys-
tems in which the 2x2 system involves only the potential variables and Poisson’s
equation. The 4x4 system is obtained by substitution of ug + p* ug for us in the six

vector. This results in a decoupled four-vector system where
T
u(6z6) — u' (4z4) = [v, , Vg, T Ty /Mg + préV /ng, TT,.g/ﬂo]

Physically, the normal stress term has been augmented by a ‘“gravitational pressure”
term, pr 6§V /n,, to form a system of equations that is otherwise similar to the 4x4

propagator system used in two-dimensional problems (e.g., Cathles, 1975). This



formulation then shows explicitly how self-gravitation enters into the dynamics of the
loading problem. Upon examination of the excitation vector (23) we notice that there
are two driving terms: (1) The third term of the vector corresponds to the stress due
to the density contrast being acted upon by the zeroth order field. (2) The sixth term
represents the driving force due to the first-order field perturbation from the density
contrast, that is, a gravitational pressure term. These extra pressure terms do not

drive flow in steady-state, but they do affect boundary deformations.

In Appendix 2 we discuss the problem of viscous relaxation to steady-state in
terms of the largest decay time associated with a given Earth model. However, this
approach constitutes a worst case analysis since all of the relaxation modes are, in
general, excited by loading. Although we were able to justify the steady-state assump-
tion for our models even for these worst cases, it is possible with the analytical tools
here to solve for mode excitation as a function of the depth of loading and harmonic
degree. An eigenmode for the simple two-layer case can be represented by a unit nor-
malized two-vector giving the relative amount of mass displaced at the upper surface
and the core-mantle boundary. For models A and C there is a mantle mode (MO0) and
a core mode (C). For MO, both boundaries flex in the same sense; for the C mode
their flexure is oppositely directed. The relative amounts of mode excitation are deter-
mined by finding the appropriate linear combination of MO and C required to give the
boundary mass displacements in Figure 4. Note that this matching also solves the
unloading problem, that is, excitation of modes due to the sudden release of an inter-
nal load of long duration; the loading and unloading problems are equivalent in terms
of relative mode excitation. Figures 5(a)-(c) show the results of the calculations for

the FF models of Figure 4.
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Figure 4 shows that, at least for long-wavelength loads, the amount of mass dis-
placed at the boundaries is comparable to the mass of the load itself, so the total
geoid anomaly at the surface involves significant contributions from these sources.
Figure 6 shows the relative contribution from each of the three sources
6V, ,6V,,andéV, as functions of the depth of the load. The 6V, (“0”) curve has a
simple (a/r)l+2 dependence derived solely from potential theory (see equation A7)
and the 6V, (“a”) and 6V, (‘“c”) curves are proportional to the product of the mass
displacement curves of Figure 4 and the (a /r )’ *2 factor. Potentials 6V, and 6V, are
of opposite sign to 6V ,. Their absolute values are plotted normalized by the max-
imum value of §V,, to facilitate direct comparison. Figures 6(a)-(c) are for FF condi-
tions and (d)-(f) are for NF conditions. In most of the figures to follow we refer to
potential anomalies since they are related to geoid anomalies simply through
8N = 6V /g, where 6N is the geoid height due to 6V and ¢ is the gravitational
acceleration at the surface. As was the case for the two-dimensional half space, the
geoid contribution due to the deformation of the upper surface is generally larger
than that due to the load. The contribution from the core-mantle boundary is gen-
erally small except for loads at great depth. Again, comparing Figures 6(a)-(c) with
(d)-(f), the effect of stronger upper surface coupling due to the no-slip condition is evi-
dent. Notice that for /=2 and /=7 with NF conditions, the maximum 6V, contribu-
tion occurs at depth. In Figure 6(d) we have plotted (see curve “a’ ”) the result
obtained ignoring self-gravitation in order to demonstrate its importance for lower
degree harmonics. This was accomplished by ignoring the self-gravitation terms
described above (at the expense of a self-consistent field). Since the difference between

curve 6V, and the sum of 6V, and 8§V, determines the surface potential anomaly ,
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this effect cannot be ignored for the lowest harmonic degrees.

The total surface potential, 6V, , normalized by the load potential , 6§V,
results in the response function K, the modified Love number defined in equation
(14). Figure 7 shows K as a function of loading depth and harmonic degree for the
four possible combinations of boundary conditions. The differences among these
results are not great, although the relative coupling effects due to N or F conditions
can be seen, especially for low-order harmonics. The cases with no-slip at the core-
mantle boundary are included because they simulate high viscosity in the lowermost
mantle. In the more pertinent FF and NF cases, K is invariably negative for model A
(no viscosity contrast). As predicted by equation 13, the magnitude of K can be
much greater than unity; consequently, the geoid signature of a density contrast at
depth is amplified. The straight light lines in Figures 7(a) and (b) show the two-
dimensional half space values for K. Note that with the load at either boundary,
compensation of the geoid is complete to first order since all the loading stress is
absorbed by deflection of the boundary. The geoid is much more sensitive to density
contrasts in the middle regions of the mantle than to comparable density contrasts

near boundaries.

The dominating influence of the upper surface deformation is diminished by the
effect of low viscosity in the upper mantle, resulting in less negative or even positive
values for K. This is shown in Figure 8 for both FF and NF conditions. In this case
the different boundary conditions result in more markedly different geoid signatures.
The effect of the low viscosity channel in the upper mantle is strongest for shorter
wavelengths (larger /), whereas the channel is almost transparent to [ =2 loading. We

have not presented many of the other models of viscosity stratification which are also
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plausible, but their effect can be roughly extrapolated from these figures. For exam-
ple, a thinner channel, say