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Abstract 

Let F = O(s + s - 1
) be the maximal real subfield of the cyclo-

tomic field O(s) wh~re i; is a primitive qth root of unity and q is an 

k -k / -1 odd rational prime. The numbers u 1 = -1, uk= (s - ~ ) (s-s ), k= 2, ... ,p, 

p = (q-1)/ 2, are units in F and are called the cyclotomic units. In this 

thesis the sign distribution of the conjugates in F of the cyclotomic units 

is studied. 

Let G(F/Q) denote the Galoi's group of F over Q, and let V 

denote the units in F. For each o-E G(F/Q) and µEV define a mapping 

sgn : V - GF(2) by sgn (µ) = 1 
U" U" 

iff o-(µ) < 0 and sgn (µ) = 0 iff 
U" 

o-(µ) > O. Let {o- 1 , ... , o-p} be a fixed ordering of G(F/Q). The matrix 

M = (sgn (u.) ) , i, j = 1, ... , p is called the matrix of cyclotomic sig-
q o-. 1 

J 
natures. The rank of this matrix determines the sign distribution of the 

conjugates of the cyclotomic units. The matrix of cyclotomic signatures 

is associated with an ideal in the ring GF(2) [x] / (xp + 1) in such a way 

that the rank of the matrix equals the GF(2)-dimension of the ideal. It 

is shown that if p = (q-1)/ 2 is a prime and if 2 is a primitive root 

modp, then M is non-singular. Also let p be arbitrary, let 1 be 
q 

a primitive root mod q and let L = {i I 0 ~ i ~ p-1, the least positive 

residue of 

defined by 

1.i mod q is greater than p}. Let H (x) E GF(2)[x] be 
q 

H (x) = g. c. d. (( Li xi) (x+l) + 1, xp + 1). It is shown that the 
q iE L 

rank of M equals the difference p - degree H (x). 
q q 

Further results are obtained by using the reciprocity theorem of 

class field theory. The reciprocity maps for a certain abelian extension 

of F and for the infinite primes in F are associated with the signs of 

conjugates. The product formula for the reciprocity maps is used to 
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associate the signs of conjugates with the reciprocity maps at the primes 

which lie above (2). The case when (2) is a prime in F is studied in 

detail. Let T denote the group of totally positive units in F. Let U 

be the group generated by the cyclotomic units. Asume that (2) is a 

prime in F and that p is odd. Let F (z) denote the completion of F 

at (2) and let V(z) denote the units in F(z)" The following statements 

are shown to be equivalent. 1) The matrix of cyc l otomic signatures is 

non-singular. 2) Un T = U 2
• 3 ) Un F(:) = U 2 • 

(u 1 V'1.
2
)) (±) · · · (±) (up v:)) (±) ( 3V(~)). 

The rank of M was computed for 5 ~ q ~ 929 and the results 
q 

appear in tables. On the basis of these results and additional calcula­

tions the following conjecture is made: If q and p = (q -1)/ 2 are both 

primes, then M is non-singular. 
q 
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Chapter I 

Introduction 

This thesis is a study of the distribution of the signs of the 

conjugates of the cyclotomic units 1 in the maximal real subfield of the 

qth cyclotomic field 2 , q a prime. My interest in this subject arose 

from a problem c onsidered by 0.Taussky [13]. The idea of studying 

the distribution of the signs of the conjugates of the cyclotomic units for 

the problem of Taussky is due to E. C. Dade. 

In Chapter II we introduce some preliminary material and then 

proceed to associate with the p = (q-1)/2 cyclotomic units a pXp 

matrix whose entries lie in the Galois field of two elements, GF(2). 

This matrix is called the matrix of cyclotomic signatures. A similar 

association is found in Hasse [8], p. 27 . The rank of the matrix of 

cyclotomic signatures determines the distribution of the signs of the 

conjugates of the cyclotomic units. It is shown that if the rank of the 

matrix of cyclotomic signatures is p, i.e. the matrix is non- singular, 

then every unit in the maximal real subfield F of the qth cyclotomic 

field which is totally positive is the norm of a unit in the qth cyclotomic 

field 3 • This fact gives a criterion needed in Taus sky [13] . We then 

associate with the matrix of cyclotomic signatures a submodule of the 

group ring of the Galois group G(F/Q) over GF(2) in such a way that 

l The units defined in thiE thesis are not identical to the "Kreis einheiten" 
in Hilbert (9] but generatE the same group and hence the same sign 
distribution. 

2. The field of qth roots of unity over the rationals. 

3 It can also be shown that if the matrix of cyclotomic signatures is 
non- singular, then the class number of F is odd (see Hasse [ 8] , p. 27 ). 
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the GF(2)-dimension of the submodule equals the rank of the matrix of 

cyclotomic signatures (Theorem 2.6). Also it is shown that this sub-

module is a G(F /Q)-submodule. We conclude Chapter L. by exhibiting 

a simple procedure for calculating the matrix of cyclotomic signatures. 

In Chapter III we use the fact that G(F /Q) is cyclic of order p 

to obtain a GF(2)-module isomorphism of the group ring of G(F/Q) 

over GF(2) and the GF(2)-module GF(2) [x]/ (xp + 1), x indeter-

minate. Then there exists an H (x) E GF ( 2) [x] such that the matrix of 
q 

cyclotomic signatures is associated to the ideal (Hq(~)), ~= x + (xP+l), 

and such that the rank of the matrix equals the GF(2) - dimension of 

the ideal. We may assume that H (x) divides xp, 1. Then the ideal 
q 

structure of the ring GF(2) [x] / (xp + 1) is studied. Finally we obtain 

an expression (Theorem 3.4) for the GF(2.)- dimension of any ideal in 

GF(2.) [x] / (xp + 1). This expression is then used to prove that if p is a 

prime and if 2. is a primitive root mod p, then the matrix of cyclotomic 

signatures is non-singular (Theorem 3.5). Chapter III is concluded by 

determining an explicit means for calculating H (x) and hence the ideal 
q . 

corresponding to the matrix of cyclotomic signatures. It follows from 

other results in Chapter III that the rank of the matrix of cyclotomic 

signatures equals p-degree H (x). 
q 

Whereas the results in Chapters II and III are obtained by rather 

elementary methods, Chapter IV lays the groundwork for the use of 

deeper results. I am :particularly indebted to E. C. Dade for the ideas 

found in this chapter. The first part of Chapter IV is devoted to intro-

ducing the preliminary material necessary for the statement of the 

reciprocity theorem of class field theory (Theorem 4.1). Then the basic 



3 

idea is to consider the abelian extension E of F which is given by 

adjoining to F the square roots of the cyclotomic units, and then relate 

the corresponding reciprocity maps cp p for infinite primes p in F to 

the signs of conjugates (Lemma 4.5). Let U denote the group generated 

by the cyclotomic units and let T be the group of all totally positive units 

in F. We have from Corollary 2..6.1_ of Chapter II that the number of 

even invariants of the elementary abelian quotient group U/Uf\ T equals 

the rank of the matrix of cyclotomic signatures. It is shown that the 

quotient group U/Uf\ T is isomorphic tb the product of the decomposition 

groups for E/F at all of the infinite primes in F (Theorem 4.2). Hence 

the number of even invariants of the latter group equals the rank of the 

matrix of cyclotomic signatures. Then the ultimate object of this chapter 

is attained. The product formula of the reciprocity theorem is used to 

shift the various criteria from infinite primes to primes in F which lie 

above (2). We obtain the result that every totally positive element in U 

is a square in U, i.e. U(\ T = U 2 , if and only if the homomorphism 

\I?: U /U 2 - G(E/F) defined by \I?(µU 2 ) = -1-1 I cp (µ) is a monomorphism. 
p (z) p 

Finally a property of reciprocity maps is used to reduce the calculation 

of reciprocity maps for E/F to the calculation of the Hilbert symbol in 

F (Corollary 4.4.1). 

In Chapter V we assume that (Z) is a prime in F. This 

assumption simplifies the criteria from Chapter IV. Having reduced the 

criteria to statements about the Hilbert symbol at (Z) on F we are led 

to the study of binary quadratic forms on F(z)' the completion of F at 

(Z). The first part of Chapter Vis devoted to preliminary results on 

quadratic forms. In particular, in the case of p odd, explicit 
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representatives for the quotient group of 2-adic units in F(l) with respect 

to the subgroup of their squares are determined. Then several calcula-

tion lemmas are proved. These results are applied to the case q = 7 

and are used to compute the coset representatives for the cyclotomic 

units. This example .then motivates the main results of the chapter. 

Assume that p is odd. Every unit in U which is a 2-adic square in 

F is in U 2 
(2) 

if and only if the quotient group of 2-adic units in F(z) 

with respect to the subgroup of squares equals the direct sum of the sub-

groups generated by the cosets containing the cyclotomic units and the unit 3 

(Theorem 5 .7). It is shown that the homomorphism 11?: U /U 2 - G(E/F) is a 

monomorphism if and only if every unit in U which is a square in F(z) 

is in U 2
, i.e. U(lFtz) = U 2 (Theorem 5.8). These theorems have 

several consequences (Corollary 5.8.1), among them the result that in 

the case of p odd, the matrix of cyclotomic signatures is non-singular 

if and only if every unit in U which is a 2-adic square in F(z) is in 

fact in U 2 • 

The rank of the matrix of cyclotomic signatures was computed on 

an IBM 7094 for all primes q, 3 ~ q ~ 929 using the method given at 

the end of Chapter II. The results of this computation are found in 

tables in Appendix I. It happens that for these q ( 3 ~ q ~ 92 9) when-

ever p = (q-1)/ 2 is a prime then the matrix of cyclotomic signatures is 

non-singular. Using results in Chapter III the cases for 929 ~- q ~ 4703, 

q prime and p = (q-1)/ 2 prime were computed and in each case the 

matrix of cyclotomic signatures was non- singular. The calculations for 

these cases are explained in AppendixII. We have the following 

Conjecture: If q is a prin1e and p = (q -1)/l is a prinH: then the 

matrix of cycloto1nic signatures is non-singular. 
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Chapter II 

The Matrix of Cyclotornic Signatu res 

The object of this chapter is to introduce preliminary material, 

define the matrix of cyclotomic signatures and prove a theorem which 

exemplifies its significance. We conclude the chapter by giving a pro-

cedure for obtaining the matrix of cyclotomic signatures. 

Throughout let q denote a rational odd prime, let p = (q-1)/ 2 

and let s denote a primitive qth root of unity. We consider the field 

Q(s) where Q denotes the field of rational numbers. The field Q (s) is 

called the qth cyclotomic field. We have the following theorem. 

Theorem l.l. The qth cyclotomic field Q(S,) is a Galois extension of 

Q with a Galois group G(Q(s)/Q) which is cyclic of order q-1. 

Proof: See Weiss [15], p. 255. 

By Theorem 2.1 the group G(Q(s)/Q) is isomorphic to the multi-

* plicative group GF(q) of non-zero residues mod q. Therefore 

G(Q(s)/Q) contains an element er of order 2, namely the element whose 

image in GF(q) is -1. The element er is unique, for if k is a rational 

integer and k 2 := 1 mod q, then k == 1 or k = -1 mod q. Therefore er is 

the automorphism defined by complex conjugation. We shall denote the 

complex conjugate of a nurnber a by a. If F is the fixed field of the 

subgroup generated by er, then by Galois theory F is a cyclic extension 

of Q of degree p= (q-1)/Z which is contained in Q(s) and which has a 

Galois group G(F /Q) ). somorphic to the quoti e nt group G(Q (S)/Q )/ (er). 

Furthermore F is a real field; it is the maximal real subfield of O(s), 

i.e. F = Q(s + ~). The automorphisms of F over Q are obtained by 

restricting the automorphisms of Q(S,) over Q to F, for under this 
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restriction the two elements of any cos et of the subgroup ( <T) in 

Ci(Q(s)/Q) may be identified. In the following it will be assumed that 

automorphisrns of F over Q have been obtained in this way. 

Corollary 2. .1.1. The maximal real subfield F = Q ( s + s -l) of the qth 

cyclotomic field is a Galois extension of Q which has a Galois group 

G(F/Q) which is cyclic of order p= (q-1)/2. 

Let Z denote the ring of rational integers. 

q-2 
Theorem 2.2. The numbers 1, s .. .. , s form an integral basis, a z-

basis, for the ring of algebraic integers in Q(t;,). 

Proof: See v\r eyl (16] , p. 81. 

Corollary 2..2.1. The real numbers -1 p -p -S + s , ... , s + s , P - ( q -1) / 2., form 

an integral basis for the ring of algebraic integers in F = Q(s + s-
1 

). 

Proof: Theorem 2..2. implies that s, ... , sq-l form an integral basis for 

the ring of algebraic integers in Q(s) because s is a unit in this ring. 

If a is an algebraic integer in 

a has a unique representation 

Since Ci. is real, Ci. = Ci.. Hence 

a1 s + a2 S2 + . . . + a q-1 s 

-1 a(s+s >. it is one in Q(z;,). 

a .E: Z. 
1 

Therefore 

q-1 -1 -2 
= a1 s + a2 S + . . . + a r. . q-1 -

q -1 
Since z;,, sz., ... , (, form an independent field basis for Q(s) we 

c onclude that 

a , a 2 q-1 ••• 1 a =a 
p q-p 

Hence 
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Therefore we have a basis for the ring of algebraic integers in 

-1 
Q(S, + s ). We now describe some units in this ring. We need the 

following 

Lemma 2.1. If k is a rational integer such that k =f 0 mod q, then 

is a unit in Q(S,). 

Proof: S ee Weiss [15], p. 267. 

It is clear that sk is a unit in Q(S,) for any kE Z. Let k be a 

rational integer such that k '$ 0 mod q. Then 2k '$ 0 mod q. Hence 

zk 
(s -1> I (s-1> 

is a unit in Q(s). 

Also 

is a unit in Q(s). 

Therefore 

L! 
s-1 

is a unit in Q(s) for every kE Z for which k "f:'f= 0 mod q. But these 

units are real, therefore they are units in Q(S, + s -l). The real units 

u 1 = -1 

u = k 

r,k-l,-k 

s-s.-1 k= 2.,3, ..• , p 
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are called the qth cyclotomic units. 

Let u- be an element of G(F/Q), 
-1 

the Galois group of F=Q((,+S, ) 

over Q, * and let a be an element of F. Let I · I denote ordinary 

absolute value. Then we call 

the u-- sign of a . If { u-1 , u-2 , ••• , u-p} is a fixed but arbitrary ordering 

of G(F /Q) then we call the p-tuple 

(sign (a), sign (a), 
u-1 U-z ... ' sign (a) 

er 
p 

the G(F/Q)-sign of a. And if p is the map from {l, -1} to GF(2) 

defined by p (-1) = 1, p (1) = 0, then we call 

s gn (a) = p sign (a) 
er u-

the u--signature of a. We call the p-tuple 

(p sign (a), 
erl ... ' p sign (a) 

u-p 

the G(F /Q) - signature of a. The sign and signature functions defined 

above exhibit the sign behavior of the conjugates of a. In particular the 

p X p matrix 

M = (m .. ) 
q lJ 

where 

m .. = sgn (u.),i,j = 1, •.. , p 
lJ erj i 

exhibits the sign structure of the cyclotomic units. 

matrix of cycloton1ic signatures. 

We call M the 
q 
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Before we desc ribc the significance of the Jnatrix M we shall 
q 

nee cl to know more about the units in Q (s + s -1
). Denote the units in 

Q (s + s -1
) by V. As a result of the Dirichlet Unit Theorem (Weiss [15). 

p. 207) we have 

Theorem 2.3. The group V of units in the field 
-1 F=a(s+s ) is the 

direct sum of the subgroup generated by -1 and p-1 infinite cyclic 

subgroups. 

If we apply the Dirichlet Unit Theorem to O(s), we find that the 

same result holds if -1 is replaced by S· We also have 

Theorem 2.4. If a is a unit in Q(s) then there exists a rational 

integer k and a real unit f3 in G(s+ s- 1
) such that 

k a = '(, f3. 

Proof: See Borevich and Shafarevich (5], p.158. 

Let U denote the subgroup of V generated by the cyclotomic 

units 

Theorem 2. 5. The subgroup U of V is a subgroup of finite index. 

Proof: See Borevich and Shafarevich (5], p. 362 or Bass (3). Recall 

that we are assuming that q is a prime. 

An element µEV is said to be totally positive if and only if for 

all automorphisms aE G(F /Q), <T(µ) > 0. An element µEV is said to be 

a norm if and only if there exists a unit v in Q (S} such that µ = vv. 

An element µ in V is said to be a square if and only if there exists a 

unit v in V such that µ = (v ) 2 ·• Let 

T = {µIµ Ev, µ is totally positive} 

N= {µ\µEV, µ is a norm} 

s = {µ\µEV, µ is a square} 
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Lemma 2.2. The sets T, N and S are multiplicative subgroups of V 

and SC NC T. 

Proof: It is clear that T, N and S are subgroups of V. Moreover it 

is clear that SC N. If µ € N then µ = v v. If ct€ G(Q(!;,)/Q) then 

rrµ = (rrv) (~) > 0. Therefore µET. Hence NC T. 

Lemma 2.3. S = N. 

Proof: We need only show that NC S. If µ € N, then there exists a unit 

v in Q( !;,) nuch that µ = vv. By Theorem 2.4, there exist a 

rational integer k and a unit fJ in Q((, + (, -i) such that v = i;,ke . Hence 

µ = (,kfJ . (,-kfJ = ez. Hence µ € S. Therefore N c S. 

Naturally we might ask if it ever happens that S = N = T. We 

shall find a condition on the matrix M which implies S = N = T. 
q 

Consider the group ring GF(2) [ G(F/Q)] of the Galois group of 

F over Q over the Galois field of two elements. Let sgn be the 

mapping from the units V to GF(2)[ G(F/Q)] defined by 

sgn(µ) = ~ sgnrr(µ)· rr µEV. 

rr€G(F /Q) 

Lemma 2.4. The mapping sgn: v- GF(2) [ G(F/Q)] is a homomorphism 

of groups and ker sgn = T. 

Proof: We need only prove for each rrE G(F/Q) that the mapping 

sgn :V - GF(2) is a homomorphism. But sgn is a homomorphism of 
<T <T 

groups iff sign :V- {+l, -1} is a homomorphism. We have 
<T 

= 

Also µ€ T iff sign (µ) = 1 for all rr€ G(F/Q). Hence µ € T iff sgn (µ)= O 
<T <T 

for all rrEG(F/Q). Therefore µET iff sgn(µ)=O, iff µEker sgn. 
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Theorem 2..6. The dimension of sgn(U) as a vector space over GF(2.) 

equals the rank of the rnatrix M of c ycloton1ic signatures. 
q 

Proof: f } Let 1 cr1 , ••• , er . p be an ordering of G(F/Q). The n1atrix M 
q 

has rank r over GF(Z) iff it has exactly r independent rows, i.e. iff 

r of the p-tuples 

( s gn ( u.), ... , s gn ( u. ) ) , i = l, ... , p 
er1 i er i 

are linearly independent over GF(2). 

p 

Since er1 , ••• , er form a free GF(l)­
p 

basis for GF(2) [G(F/C2)], exactly r of the above p-tuples are linearly 

independent iff r of the elements 

s gn ( u.) · er 1 + · · · + s gn ( u.) · er , i = 1, ... , p 
cr1 i crp i p 

are linearly independent over GF(2). Therefore the rank of the matrix 

M is r iff the elements sgn(u.), i=l, . •. ,p generate a vector space 
q 1 

over GF(2) of dimension r. 

Corollary 2.6.1. The number of even invariants of the group u/un T 

equals the rank of the ::natrix of cyclotomic signatures. 

Proof: By Lemma 2.4, we have the following isomorphism of vector 

spaces over GF(2). 

U/U(IT ~ sgn(U) 

Hence by Theorem 2.6, the GF(2)- dimension of U/U (\ T, i.e. the 

number of even invariants, equals the rank of the matrix of cyc lotomic 

signatures. 

Theorem 2.7. The homomorphism sgn:V - GF(2) [G(F/Q)] is an 

epimorphism iff S = N = T. 
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Proof: Since S=NCT, S=N=T iff [V:S1 = [V:T], i.e. [V:T ] = 2P by 

Theorem 2.3. Assume that sgn:V-GF(Z)[G(F/Q) \ is onto. Then sgn 

in<h1ces an i sornorphisrn of groups, 

V/T = V/ker sgn ~ GF(Z) l G(F /Q) ] . 

But the order of the additive group GF(Z) [G(F/Q) J is 2P because 

G(F /Q) has order p. Therefore [ V:T J = 2P, and hence S = N = T. 

Conversely, assume [V:T J = 2P. By Lemma 2.4 sgn induces a mono-

morphism of groups, 

V/T - GF(2)(G(F/Q)l • 

Hence the image of V/T under this monomorphism is a subgroup of the 

additive group GF(Z) [G(F/Q)] which has order zP, that is, GF(2)[G(F/Q)] 

itself. Therefore sgn:V - GF(2) [G(F/Q)) is onto. 

Corollary 2.7 .1. Let W be a subgroup of V. If sgn \W:W-GF(Z)[G(F/Q)] 

is an epimorphism, then S = N = T. 

Proof: If sgn\W:W-GF(i,)[G(F/Q)] is onto, then sgn:V-GF(Z)[G(F/Q)) 

is onto, hence S=N=T by Theorem 2 .7. 

We can apply Corollary 2. 7.1 to the subgroup U generated by 

th e cyclotomic units. Moreover we have 

Corollary 2. 7 .2 . If the matrix M of cyclotorn.ic signatures is non­
q 

singular over GF(2), then S = N = T. 

Proof· If M is non-singular, then the GF(Z)- dimension of s gn(U) is . q 

p by Theorem 2.6. Hence sgn \ U is an epimorphism. Hence S = N = T 

by Corollary 2. 7 .1. 

Given the generators of any subgroup of finite index in the group 
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of units V we could define a n1atrix of signatures and prove a result 

analogous to the above corollary. The advantage of using the cyclotomic 

units is that the associated matrix of signatures can be calculated easily. 

Before we show how the matrix of cyclotomic signatures is calculated we 

prove some results wh:,ch are exploited in the next chapter. 

Theorem 2.8. Let W be a subgroup of the group of units V. If for all 

crE G(F /Q), 0- \ W defines a multiplicative automorphism on W, then 

sgn(W) is a G(F/Q) - submodule of the group ring GF(2) [G(F/Q)]. 

Proof: We must show for all crEG(F/Q) and wEsgn(W) that cr·w is in 

sgn(W), where the multiplication is multiplication in GF(Z)[G(F/Q)]. 

Let w = sgn(w), wEW, and let crEG(F/Q). We have, 

cr · w = cr • sgn(w) = cr '\' sgn (w) • 'T Li . 'T 

'TEG(F/Q) 

= L: sgn (w) cr'T = \' sgn _
1 

(w) 'T 
'T lJ Cf 'T 

'TE G(F/Q) 'TE G(F /Q) 

= l: sgn'Tcr- 1 (w) 'T= I:, sgn'T~ - 1
(w)) · 'T = sgn~-1(w~. 

'TEG(F/Q) 'TEG(F/Q) 

I 
-1 

Since <r W is an automorphism of W, cr (w) <: W. Hence cr · wE sgn(W). 

Corollary 2.8.1. Let V be the group of units in F. Then sgn(V) is a 

G(F/Q)- submodule of GF(2) [G(F/Q)]. 

Proof: If crE. G(F/Q) then cr IV is an automorphism of V. Apply 

Theorem 2.8. 

Corollary 2.8.2. Let U be the subgroup of the group V which is 

generated by the cyclotomic units. Then sgn(U) is a G(F/Q)- subrnodule 

of the group ring GF(2) [G(F/Q)]. 

Proof: By Theorem 2.8 it is sufficient to show that cr(U) c U for all 
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(JEG(F/Q). Therefore it is sufficient to show that (J(U.) EU for all 
1 

(JE G(F/Q) and for all i = 1, ... , p. Assume (JE G(O(s>/O). Then there 

exists jE Z,O ~ j ~ q-1 such that (J(l~,) = 1;,j. We have 

(J(ui} = <T(-1) = -1 . 

If 2. !:; i ~ p, then 

There exist (uniquely) kE Z, 0 ~ k ~ p and o = + 1 or -1 such that 

k = o ij modq. Then 

Therefore (J(u.)EU for all (JEG(F/Q) and all i=l, ... ,p. 
1 

We now show how to calculate M . We are interested in the 
q 

rank of M . Therefore we are not interested in the ordering of the rows 
q 

or colurrms of M . Hence we may choose any convenient ordering of the 
q 

Galois group G(F/Q). The elements of G(F/Q) can be chosen as coset 

representatives of the cosets of the subgroup generated by complex 

conjugation in G (Q(s)/Q). Each element of G (Q(s,)/Q) is determined 

by its action on s and two distinct elements are in the same coset if 

their actions on t; are complex conjugates. Therefore we can write 

G(F/Q) as 

where (J.(t;) = t;J, j = 1, ... , p. We n1ust choose a particular prin1itive 
J 

qth root of unity. Hence for the purpose of calculation l et 
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ZrrH / q / ,-, . / s = e = cos(Zrr q) + y-1 s1n(2.rr q) 

Th c n for k = 2., ..• , p, 

2.rr{-1 k/q -2.rrH k/q c -e sin 2.krr 
sin(2rr q) = 

Zrr.../-1 -zrr.../-1 e - e 

Hence for k = 2, ... , p and j = 1, ... , p we have 

2rrH jk/q - ZrrH jk/q e -e 

2nN j/q - 2nH j/q e -e 

= 
sin 2rr"k 

sin(Zrrj q) 

We define a function [ ·] : Z -{o, 1, ... ,q-1} by 

[k] = j for kE Z, jE {0,1, ... ,q-1} 

if and only if 

k = j mod q. 

That is, [ k] is the least positive residue of k mod q. Let n be an 

arbitrary int eger such that n =F- 0 mod q. Then the sign of sin(2nn/q) 

is determined by the least positive residue of n mod q. Namely 

sin 2nn ~ 
I sin(2rrn q) I = 1 

+ 1 if 0 < [ n] ~ p 

- 1 if p < [ n] ~ q-1 

The refor e for k = 2, ... , p and j = 1, ... , p 

= ~ + 1 if 0 < [ jk] ~ p 

t - 1 if . p < [ jk] ~ q -1 

Hence for k= 2, ... ,p and j==l, ... ,p 
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if o < [ jkTI ~ p 

if p < [ jk] ~ q-1 

Also it is cle ar that sgn (ui) = 1 for j = 1, ..• , p. The matrix of cyclo­
CT. 
J 

tomicsignatures M is given by 
q 

m .= 
kJ 

sgn (uk)' j,k=l, ... ,p. 
CT· 
J 

H e nc e 

m1 . = 1 for j = l , ... , p 
J 

~ 
0 if 0 < ~jk] ~ p 

mkj = for k= 2, ... , p 

1 if p < [jkTI ~q-1 J = 1, ... 'p 

We are interested in the rank of M . If we add the first row of M to 
q q 

e ach successive row then we obtain a matrix M' which has the same 
q 

rank as M . The matrix M' can be expres s ed easily. 
q q 

I 

M = (m .. ) where 
q lJ 

I 

= ~ 
1 if [ ij] ~ p 

m .. 
lJ 0 if [ ij] > p 

I 

T h e c omputation of M 7 and M 7 follows. 

Con side r the following multiplication table of least po s itive 

r esidu es mod 7. 

1 2 3 

1 1 2. 3 

2. 2. 4 6 

3 3 6 2. 
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Using the definition of M 7 we have 

u 1 1 

M7 = 1 ~) 1 

and 

c 1 

~) I 

M1 = 0 

0 

I 

Clearly M 7 and M 7 have rank 3 over GF(2). The matrix 

its rank over GF(2) wer e computed for all primes q, 3 ~ q ~ 

tables of rank appear in Appendix I. 

I 

M and 
q 

929. The 
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Chapter III 

The G(F/Q) Submodule sgn(U) of the Group Ring GF(2) [G(F/Q)] 

as an Ideal in the Ring GF(2) [x]/ (xP+ 1). 

By Corollary 2.8.2 of Chapter II, the subring sgn(U) of 

GF(2) [G(F/Q)] is a G(F/Q)-submodule. The group G(F/Q) is a cyclic 

group of order p. Let CT be a generator of G(F /Q), so that 

G(F/Q) =(CJ). Let x be an indeterminate. The GF(2)-homomorphism 

from the polynomial ring GF(2) [x] to GF(2) [G(F/Q)] which is induced 

by x - CT is an epimorphism of GF(2)-modules. The kernel of this 

epimorphism is the ideal (xP+ 1) in GF(2) [x]. We therefore have the 

following isomorphism of GF(2)-modules. 

GF (2) [x] / ( xP-:- 1) s:f GF(2) [ G(F /Q)] . 

Furthermore under this isomorphism ideals in GF(2) [x]/ (xP+ 1) corre­

spond uniquely to G(F/Q)- submodules in GF(2) [G(F/Q)]. By Theorem 

2.6 of Chapter II we are interested in the GF(2)- dimension of the G(F/Q)­

submodule sgn(U). In this chapter we first study the ideal structure of 

GF(2) [x] / (xP+ 1). Then we find an expression for the ideal in 

GF(2) [x]/ (xP+ 1) which corresponds to sgn (U). Also we find an 

expression for its GF(2)-dimension. 

It is not difficult to theoretically determine the ideal structure of 

the ring GF(2) [x] / (xp + 1). However, for specific cases it is difficult to 

actually obtain the structure by calculation. We are interested in both 

aspects. We study the former aspect first (see Jacobs on [10] , p. 9). 

Let 

xp + 1 = fa (x) f 1 (x) · · · fh (x) 
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be a complete factorization of xP+ 1 into relatively prime factors in 

GF(2) [x], so that each factor is irreducible or a power of an irreducible 

polynomial in GF(2) [x]. For i = 0, ... , h let 

£. (x) = (xp + 1)/ f. (x) . 
l l 

Then 

A A 
g. c. d. (£ 0 (x), .•. , fh(x) ) = 1 m GF(2) [x]. 

Hence there exist polynomials 10 (x), .•. , -b(x) in GF(Z) [x] such that 

For i = 0, .•. , h, let 

A 
e.(x) = 1 . (x)f.(x). 

l l l 

Let 

The mapping k(x) - k( x) for any polynomial k(x) defines the natural 

epimorphism from GF(2) [x] to GF(Z) [x]/(xP+ 1). Also we can write 

We have 

Lemma 3.1. The ring GF(2) [~J is equal to the direct sum of the ideals 

(ei(x)), i=O, ... ,h. Thatis, 

Proof: We have +eh(~)= 1, 

+ eh (x) = 1 . 

hence 



lO 

Therefore if k(~) € GF(2) [~], then 

Hence 

If i =f:. j, 

k(x} = k(x) ~o (x} + + k(x) eh (x) . 

xP+l divides ~ . (x}e.(x) over GF(2)[x]. 
1 J 

- -e.(x)f::!.(x) = 0 if i * J. 
1 J 

Therefore 

Hence, if we multiply the relation e0 (x) + · · · + eh(x) = 1 by ei(x) , 

0 ~ i ~ h, we obtain 

e. (x} e. (x} = e. (x) 
1 1 1 

Summarizing, we can write 

e.(x) e.(x) = o .. e.(x) 
1 J 1J 1 

where o.. is the Kronecker delta. If 
1J 

ko(x) + + ~(x) = 0 

where ki (x) is an element of ( ei (x)), 

in GF (2) [~] such that 

·-then there exist elements k. (x) 
1 

I -
k.(x) = k.(x) e.(x). 

1 1 1 

Hence, 

I -
ko (x} e0 (x) + 

Then multiplying by e. (x) and using the above relations, we get that 
1 

- ,_ -
k. (x) = k. (x) e. (x) = 0. 

1 1 1 
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-Hence (e0 (x)) + ·•· + (eh(x)) is actually direct. 

We see by the proof above that the elements e0 (x), ... , eh (x) 

form a set of orthogonal idempotents for GF(Z) [;]. We now classify 

the ideals (ci(x))for i=O, •.• ,h. 

Lemma 3.2. Let i be an integer such that 0 ~ i -:S h. Then the ideal 

( ei (~)) considered as a subring of GF(2) [~] is isomorphic to the ring 

GF(2) [x]/ (fi (x)). 

Proof: Consider the mapping Ti: (ei(~)) - GF(2)[x]/(fi(x)) defined by 

T.(g(;_) e.(~)) = g(x) + (f.(x)) 
1 1 1 

where g(x) is an element of GF(2) [x]. We show that T. is an iso-
1 

I 

morphism. T. is well-defined: Let g(x), g (x) E GF(2) [x]. The relation 
1 

,...,, ,..., ' - -
g(x) e. (x) = g (x) e . (x) 

1 1 

implies that xp + 1 l (g(x) - g 
1 

(x) ) ei (x), hence fi (x) l (g (x) - g 
1 

(x) ) , 
I I 

hence g(x) - g (x ) E (fi (x)). Therefore 

I 

g(x) + (fi (x)) = g (x) + (fi (x)) . 

T. is a homomorphism: 
l 

- ,_ ,,...,, ,...,. - ·- - ' T.( g(x)e . (x)+ g (x)e.(x)) = T . ((g(x)+ g (x))e.(x)) = (g(x)+ g (x))+ (f
1
.(x)) 

l i · 1 1 1 

I - - I - -= g(x)+(f.(x))+g (x)+(f.(x)) = T.(g(x)e.(x))+T.(g (x)e.(x)). 
1 1 1 1 1 1 

T . is onto: If g(x)+ (\(x))E GF(2)[x]/(fi(x)) , then 
1 

- -T. (g(x) e. (x)) = g(x) + 
1 1 

(f.(x)). 
' 1 

- - fi (x) I g(x). T. is one-to-one: If T.(g(x)e.(x)) = 0, then Sinc e 
1 1 1 
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/'. ) X.p . L 1 f.(x) f.(x = r ' 
J. 1 

we then have that xP+llg(x)ei(x), i.e. 

Therefore T. is an isomorphism. 
1 

Combining these lemmas we have 

Theorem 3 .1. 

Proof: Lemma 3.1 and Lemma 3.2. 

- -g(x)c. (x) = 0. 
1 

The projection from GF(2) [x]/ (xp +1) to the summand 

GF(2) [x]/ (fi(x)) is given by 

where g(x) is in GF(2) [xJ. Hence the ideal structure of 

GF(2) [:x]/ (xP+ 1) is determined by the ideal structure of GF(2)[x]/(fi (x)) 

where £. (x) is irreducible or a power of an irreducible element in 
1 

GF(2) [x]. The ideal structure of such a ring is easily determined by a 

general result. 

Lemma3.3. Let k(x)EGF(2)[x]. Let ~=x+(k(x)). If (g(~)) isa 

non-zero ideal of the ring GF(Z) [~] = GF(Z) [x]/ (k(x)), then there is a 
I 

unique factor g (x) of k(x) such that 

Proof: We prove the existence. Let g(x) b e any pre-image in GF(2)[~ 

I 

of g(~). Let g (x) = g . c. d. (k(x), g(x) ) over GF(2') [x]. There exist 

I 

m(x), n(x) in GF(Z) [x] such that m(x) g(x) + n(x) k(x) = g (x). Hence 

I 

g (~) = m(~) g(~). 
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Therefore 
I 

( g (~) > c ( g(~) > . 

However, g 
1 

(x) I g(x), and therefore 
I 

(g (xk)) 2 (g(~)) 

Hence 

I II 

Now we prove uniqueness. Suppose there exist two factors g (x), g (x) 

of k(x) such that 
I II 

(g (~)) = (g (~)) = (g(~)) 

Then there exists m(x) in GF(2)[x] such that 
II I 

g (~) = m(~)g (~) . 

Hence 
II I 

g (x) + (k(x) ) = m(x)g (x) + (k(x)) . 

There exists n(x) in GF(2)[x] such that 

11 I 

g (x) = m(x)g (x) + n(x) k(x) . 

I I 11 

By assumption g (x) lk(x). Hence g (x) I g (x). In a similar way we can 
II I I II 

show that g (x) I g (x). Hence g (x) = g (x). 

Let <f>(x) be an irreducible element in GF(2) [x], let n be a 

positive integer and let x</> = x + (cfP(x)). By the above lemma the ideals 

of GF(2)[x</>] = GF(2) [x]/(<f>n(x)) are precisely 

In particular GF(2)[x] / ( <f>(x)) is a field. Also by the above lemma the 

ideals of GF(2) [~] = GF(2) [x] / (xP+ 1) corre spond unique ly to the factors 

of xP+ 1. This result enables us to characterize the GF(Z.)-dimension of 
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every ideal in GF(2) [x]. More generally we prove 

Theorem 3.2. Let l(x)E GF(2) [x]. Let x
1
= x+ (_f(x)). Let g(x) be an 

element in GF(Z)[x] such that g(x)ll(x). Then the GF(2)-dimension of 

(g(x
1

)) equals degree l(x) - degree g(x). 

Proof: We show that every element of (g(x
1

)) has a unique represent­

ation in the form 

n-1 

~ bi x~ g(x1 ) 

i=O 

where n=deg.£-degg and b.EGF(2) for i=O, •.. , n-1. 
1 

We prove existence: Let 
1

k(x
1

)E (g(x
1

)). Then there exists m(x
1

) such 

that k(x
1

) = m(x
1

) g(x
1

). Let k(x) and m(x) be pre-images in GF(Z)eg 

of k(x
1

) and m(x
1

). We may assume that degk(x)< deg .f(x). Then 

there exists n(x) in GF(2) [x] such that k(x) = m(x) g(x) + n(x) l(x). By 

I 

assumption g(x) \ l(x), hence there exists g (x) in GF(2) [x] such that 

I 

g (x) g (x) = 1 (x). Therefore 

I 

k(x) = m(x) g(x) + n(x) g (x) g (x) 

I 

= (m(x) + n(x) g (x) ) g(x). 

I 

Hence, deg(m(x)+n(x)g (x))~ degl(x) - degg(x) -1= n-1. Let 

Then 

n-1 

~bi xi= m(x) + n(x) g
1 

(x) , bi E GF(2). 

i=O 

n-1 

i= 0 

n-1 n-1 

We prove uniqueness: If ~ bix~ g(x
1

) = Li 
i= 0 i=O 



Hence, 

But 

l5 

n-1 

~ ' i (b . -b . ) xi. g(x.£) = o. 
l l 

i=o 

n-1 

I 2.: ' l 
i. (x) (b. -b . ) x g(x) . 

l l 

i=o 

n-1 

deg L ' . l 
(b.-b.)x g(x)~ n-l+degg(x) =degi.(x)-1< deg.£(x). 

l l 

i=o 

Therefore n-1 

i=o 

' . l (b.-b.)x g(x)=O, 
l l 

' hence b.=b. for i=O, .•. ,n-1. 
l l 

The information about the ideal structure of GF(Z) [~] = 

GF(Z) [x]/ (xP+l) which can be obtained from the above results depends 

completely on how much is known about the factorization of xp +l over 

GF(Z) [x]. So we study the factorization of xP+l over GF(l) [x]. First 

we may assume that p 
k' is odd, for if p = 2 p where p is odd, then 

p p' 2k 
(x +l) = (x +l) over GF(Z). We have the following well known result 

concerning the factorization of xp-1 over Q. 

Lemma 3.4. For each positive integer d, let sd be a primitive dth 

root of unity. Let 

Then 

wd(x) =TI (x- si ). 
(i,d)=l d 

i) w d(x) is a polynomial with rational integral c oeffici en ts. 

ii) wd(x) is Q-irreducible and has degree cp(d), wher e <fJ is the 

Euler function. 
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iii) For any positive integer p, 

is the complete factorization of xp -1. 

Proof: Van der Waerden [14], p. 113 and p.16 2. 

The polynomial wd(x) for d a positive integer is called the dth 

cyclotomic polynomial. We have 

~+l = n wd(x) over GF(2) [x] • 
dip 

In general this is not a complete factorization; some wd(x) may not be 

GF(2)-irreducible. Therefore we consider the factorization of wd (x) 

over GF(2). Since we may assume that p is odd, we may also assume 

that d is odd. Let Ad denote the multiplicative group of non - zero 

least positive residues mod d which are relatively prime to d. Then 

2 E Ad because d is odd. Let B d denote the multiplicative group 

which is the quotient group of Ad with respect to the subgroup of Ad 

generated by 2. 

That is, B d is the multiplicative group of cos ets of the subgroup ( 2) 

of Ad. If b E B d' that is if b is such a cos et, we define 

~b(x) = TT <x - s~> 
iE b 

where the product is taken over the field GF(2) [ sd ]. 

Theorem 3. 3. Let d be a positive odd rational integer. Let e be the 

order of the subgroup ( 2) of Ad. Then 
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i) For every bEBd' l(Jb(x)E GF(2.) [x]. 

ii) For every bEBd, ~(x) is GF(2)- irreducible and has degree e. 

iii) Also 

is the complete factorization of wd(x) into irreducible poly­

nomials over GF(2). 

Proof: By definition of Ad we have 

Since the cosets in Bd partition Ad, we have that 

Each l(Jb (x) E GF (2) [~] [xJ has degree equal to the number of elements 

in a cos et b in B d' that is, the order of ( 2.) in Ad, which is e. 

We need only show that each ~(x) is an element of GF(Z) [x] and is 

irreducible. The Galois group of the field GF(2) [sd] over GF(2) is a 

cyclic group generated by the automorphism C1 - a.2 for 

(see Albert [l], p. 127). If we apply this automorphism to l(Jb(x) we 

obtain 

But hence we may choose representatives for all the powers of 

sd to be least positive residues mod d. However if i E b, the least 

positive residue of 2i mod d is again in b because b is a cos et of ( 2.). 

The mapping which takes each least positive residue iE b onto the least 

positive residue of 2. i mod d is a one-to-one ni.apping of b onto its e lf . 
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Hence 

crl\t (x) = tjib (x) . 

Therefore all the coefficients of tjib (x) are fixed by the Galois group of 

GF(Z) [sd] over GF(2). Hence llb(x) is a polynomial whose coefficients 

are in GF (2). Moreover each tjib (x) is irreducible because l\t (x) is 

the minimum polynomial in GF(2) [xJ for s~ if iE b. For if tji(x) is a 

polynomial in GF(2) [x] such that tJi(s~) = 0 for some iE b, then 

applying the automorphism 
2k. 

that tJi(sd 
1

) = o for all k. 

i 
er and its powers to tJi(sd) we would conclude 

But then tJi(s~) = O for j Eb. Hence l\t (x) 

divides tji(x). Therefore tjib (x) is GF (2 )- irreducible. 

If d is an odd positive integer, then the order of the subgroup 

( 2) of the multiplicative group Ad is called the exponent of 2 mod d. 

The order of Bd=Ad/(2) iscalledtheindexof 2modd. If ed is 

the exponent of 2. mod d, then clearly e d j cp (d) where q'J is the Euler 

phi function. Adopt the convention that e 1 = 1 and <tJ(l) = 1. 

Theorem 3.4. Let p be an arbitrary positive integer. Let p= Zkp' 

where p' is odd and for each d J p' let e d be the exponent of 2 mod d. 

Then every ideal of GF (2) [x]/ ( xp +l) has GF(2)- dimension of the form 

where 

Proof: We shall use Lemma 3.3, Theorem 3.2, Lemma 3.4 and Theorem 

3.3. Let ~ = x+ (xP+l) in GF(2)[x]. Let (k(~>) be an arbitrary ideal 

in GF(2)[x]/(xP+l). If (k(~)) isthez;croidcal, th e n let ad=f-cr(d)/cd 

for every d j p'. We have 
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p-I 2\p(d)=p-2kI q7(d). 
dip' dip' 

By Theorem 63, Hardy and Wright [7] , 

L <P (d) = p' . 
<lip' 

Hence 

which is the dimension of (0). Therefore assume that (k(x)) is not 

the zero ideal. Assume k(x) E GF(2) [x]. By Lemma 3.3 we may 

assume that k(x)lxP+l. By Theorem 3.2 the GF(2)-dimension of 

(k(x)) is p-degree k(x). By Lemma 3.4 and Theorem 3.3 the factori-

over GF(2) is 

If bEBd, degree 4b(x) is ed. The order of Bd is cp(d)/ed. There­

fore if k(x) I xp +l then degr e e k(x) has the form 

where 

H e nce the dimension of (k(x)) has the form 

Corollary 3.4.1. Let q be an odd prime and let p= (q-1)/ 2. Let 

p = 2kp' where p' is odd and for each d Ip' let e d be the exponent of 
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2 mod d. Then the rank of the matrix of cyclotomic signatures 

the form 

where 

Proof: Theorem 2. 7 and Theorem 3.4. 

M has 
q 

For example consider the case q = 29. Then p = 14 = 2 · 7. The 

requirement d I 7 implies d = 1 or d = 7. Then e 1 = 1 and e 7 = 3. Also 

cp (1) = 1 and cp (7) = 6. We obtain the expression 14-a1 - 3a 7 where 

0 ~ a 1 ~ 2, 0 ~ a 7 ~ 4. From Appendix I we have that M 29 has rank 

11. Hence a 1 = 0, a 7 = 1. 

Corollary 3.4.1 limits the value of the rank of the matrix of 

cyclotomic signatures. Before more can be said about the rank of M 
q 

we must study the ideal in GF(Z) [x]/(xP+l) which corresponds to it. 

In Chapter II we introduced a homomorphism sgn:V-GF(2)19(F/Q)] 

from the group of units in the field F to the group ring GF(2) [G(F/Q )] . 

Let er be a generator of G(F/Q). Then we have an isomorphism from 

GF(2) [G(F/Q)] to GF(2) [x]/ (xP+l) given by er-~= x+ (xp+l). There­

fore there is a homomorphism sgn: V-GF(Z) [x]/ (xP+l) from the 

group of units in F to GF(2) [x]/ (xP+l) and it is defined by 

p-1 
\' sgn (µ) = '--1 

i=o 

~i 
sgn

0
_i (µ) x , µE V. 

We are interested in the ideal in GF(Z) [x]/ (xP+l) which is generated 

by the images sgn (u 1 ), ••• , sgn (u ). 
p 

1 The homomorphism s gn is therefore dependent on the choice er of 
a generator of G(F /Q). 
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Let 1 be a primitive root mod q. Let <Ti be the automo~phism 

1 . 11 

on O(s) which is induced by setting <T
1

(s) = s Then <T;(s) = s and 

therefore the order of cr
1 

is q -:i, whence <Ti generates the Galois 

group of O(s) over Q. 
-1 

Therefore the restriction of cr
1 

to O(s+s )= F 

generates the Galois group of F over Q. Hence 

p-l 

s gn ( µ ) = l: s gn . ( µ ) ~ i . 
. 1 
1=0 (]"1 

In Chapter II we defined the automorphisms 

Let 0 ~ i ~ p-1. If 1 ~ j ~ p is such that j =ii mod q or -j:= imodq, 

i l 
then <Tj and cr

1 
determine the same automorphism on O(s+s- ). We 

adopt the following notation: If j is a non-zero residue modq, let 

1g
1
j=i iff j=limodq and O~i~q-1. Wewrite 1gj inplaceof 

1g
1

j unless there may be some confusion. It is asserted that as j 

ranges through the set { 1,2, ... , p} then the least positive residues of 

1 gj mod p range through the set { 0, ..• , p-1} . We need only show that 

igl, .•. , 1gp are incongruent mod p. If 1gh <= i.gjz mod p, then 

Therefore j 1 <= ± j 2 mod q. But 1 ~ j 1 ,jz ~ p implies that j 1 .:= jzmod q. 

Hence j 1 = j 2 • 

We have that x = x + (xP+l) 

Therefore, if 1 ~ j ~ p, then 

sgn ( u.) 
J 

satisfies 
-i -j 
x = x iff i <= j mod p. 

p-1 

= L: 
i=o 

p 

= L: 
i=I 

-i 
sgn . (u.) x 

1 J 
a-1 

-£gi 
sgn ~ .(u.)x 

x g 1 J 
(]"£ 

But r:ri.P.gi = <Ti by the definition of igi. Hence 



sgn (u.) = 
J 

p 

I: 
i= l 
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sgn 
Cf. 

1 

- ig i 
(u.) x . 

J 

From Chapter II we have that M ; = (m . . ), i,j=l, ... , p whe re 
q J1 

Hence 

Let 

m . . = s gn ' ( u . ) . 
Jl Cf i J 

p 

s gn ( u.) = l: - ig i m .. x . 
J i= l 

Jl 

h.(x) = sgn(u.) 
J J 

j = 1, ... ' p. 

Then the ideal (h 1 (~) , ••• , hp(~)) in GF(2) [X.J is the ideal corre­

sponding to the G(F/Q)-submodule sgn(U) in GF(2) [G(F/Qf\. Hence 

the GF(2)-dimension of (h 1 (x), ... , hp(x)) equals the rank of Mq. 

The ring GF(2) [X.J = GF(Z) [x]/ (xP+l) is a principal ideal ring and 

therefore there exists Hq(x) in GF(2) [x] such that 

By Lemma 3.3 

We prove 

-(H (x)) = (h 1 (x), ... , h (x)). q p 

2 
we may assume that H (x) I xP+l. 

q 

Theorem 3.5. Let q be an odd prime. If p = (q-1)/2 is a prime and if 

2 is a primitive root mod p then the matrix M of cyclotomic sig­
q 

natures is non-singular over GF(Z). 

P roof: We s how that the rank of M is exactly p. It is easy to see 
q 

that for any odd prime q the first two rows of the matrix M are 
q 

distinct and the refore the rank of M is at least l. Since the rank of q 

l. 
The polynomial Hg (x : is not uniquely defined. It dep_§nds on the 

chosen generator of G(F/Q). _However the ideal (H (x)) is unique up 
to automorphisms of GF(Z) [x_\ . q 
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M equals the dimension of (H (x)) it follows that degree H (x) ~ p-2 
q q q 

by Theorem 3.2. By Lemma 3.4 and Theorem 3.3 the complete factori-

zation of xp +l over GF(2) is 

P p-1 p-z 
x + 1 = (x + 1) (x + x + · · · + x + 1). 

But H (x) I xp +l. 
q 

Since h 1 (~) = 1 + ~ + · · · + ;'.P-lE (H (;'.)) we have that 
q 

I 
p-1 

H (x) l+ x+ ··· + x . But degree H (x) ~ p-2. 
q q 

Hence H (x) = 1. q 

Therefore (H (~)) = GF(2) [;'.] and hence the 
q 

Corollary 3.5.1. Let q be an odd prime ;::;,; 7. 

rank of M is p. 
q 

If p = (q -1)/2 is a prime, 

p = 3 mod 8 and if (p-1)/ 2 is a prime, then the matrix M of cyclo -
q 

tomic signatures is non- singular over GF(2). 

Proof: We show that 2 is a primitive root mod p and then apply 

Theorem 3.5. It is known that 2 is a quadratic residue of primes 

p = ± 1 mod 8 and a non-residue of primes p = ± 3 mod 8 (Hardy and 

Wright [7] p. 75). Therefore 

( ~ ) = - 1 
p 

(---7-) is the Legendre symbol 

since p = 3 mod 8. It is also known that for any non-zero residue 

m mod p that 
..E..:l 

m _ 2 (-) = m mod p 
p 

if p is prime (Hardy and Wright [7] p. 74). If (p-1)/2 is a prime 

then the exponent of 2 mod p is p-1, (p-1)/ 2 or 2. If the exponent of 

2 mod p is 2 then pl2 2 -l = 3, hence p = 3 and hence 2 is a prim-

itive root mod p. If the exponent of 2 mod p is (p-1)/ 2 then 

which contradicts 

2(p-i)/z = 1 mod p 

2(p- l)/z = (~)mod p. 
p 
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Therefore, in every case the exponent of 2 mod p is p-1 and hence 2 

is a primitive root mod p. 

For example the above corollary applies to the following cases: 

1) q = 23, p = ll, (p-1)/2 = 5 

2) q = 2039, p = 1019, (p-1)/2 = 509 

Theorem 3. 5 is a stronger result however fo r it applies to the following 

cases but the corollary does not. 

3) q = 59, p = 29' (p-1)/ 2 = 14 

4) q = 107. p = 53, (p-1)/2 = 26 

In fact the corollary applies precisely to a triple of primes q, p=(q-1)/ 2, 

p' = (p-1)/ 2 where p' = 1 mod 4. 

We now prove a general theorem about H (x) . Recall the 
q 

definition of the least positive residue function [ ·] from Chapter II. 

Theorem 3.6. Let q be an odd prime and let .£. be a primitive root 

mod q . . If L is the set of positive integers defined by 

and if 

then, 

L = { i I 0 ~ i ~ p-1, [ .£.i] > p } 

G(x) = ~ . x
1 

iE L 

H (x)= g.c.d. (G(x)(x+l)+l, xP+l) 
q 

over GF(2) [x]. 

Proof: H (x) is the polynomial in GF(2) [x] such that q 

(H (~)) = (h 1 (x), q ... , h (x)) 
p 

and 
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where 
p-1 

h.(~) = sgn(u.) =Li sgn i(u . )~i 
J J i= 0 (J"i. J 

i. 1 
Recall that a:

1 
(s) = s . If m = ± i. mod q, 0 ~ i ~ p-1, 1 ~ m ~ p, 

then 

0 if [ jm] ~ p 
sgn i(u.) = 

(J" i. J 1 if [ jm] > p for j = l, ... , p , 

For each i = 0, ..• , p-1 there exists a unique integer r. such that 
1 

a) r. = + 1 or -1, b) 1 ~ [ r. ii] ~ p. Then we can write 
1 1 

We have that r. i.ir .i.j = r. r. i.i+j mod q. Also 1P = -1 mod q. Hence for 
1 J 1 J 

0 ~ k ~ q-1, let 

~ = ( -1) [ k/ p ] 

where [ . ) is the greatest integer function. If k is any integer let 

r - r. if j = k mod p, 0 ~ j ~ p-1 k- J 

~= d. if j = k mod q, 0 ~ j ~ q-1. 
J 

Then, 

i j i+j - t r.i. r.i. = r.r.i. = r.r.r .. d . . (r .. i.) mod q 
1 J 1 J 1 J l+J i+J i+J 

where 0 ~ t ~ p-1 and t = i + j mod p. Also 

Therefore, 
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0 if r.r.r . . d .. = 1 

{ sgn j (u . ) = 1 J 1+J i+J 

(J" [ r . ..eJ ] 1 if r.r.r .. d .. = -1 . 
Let 

P· = 
1 

Then 

Hence 

J 

OcGF(2) if r.=l 
~ 1 

i 1 E G F ( 2) if r. = -1 
1 

1 J 1+ J i+ J 

0 . = 
1 

OE GF(l) if d. = 1 
1 

lE GF(2) if d. = -1 
1 

s gn i ( u . ) = p . + p + p + 6 
u-1 [r . ..eJ] 1 j i+j i+j' 

J 

-i 
(p. + P· + P·+· + o .. )x 

1 J 1 J l+J 

for j = 0, ... , p-1. For ease of notation, let 

I -
h . (x) = h . (x) , j = 0, ... , p-1. 

J [ r . ..eJ] 
J 

I ~ I -Then h 0 (x), .•. ,hp-I (x) is a rearrangement of h 1 (x), ... ' h (x). 
p 

let 

Note that, 

p-1 

t. (~) = Li 
J i= 0 

6 .. x, 
l+J 

G(~) = 2: ~ i = I l 

iE L i=o 

j = 0, 

-i 
p. x 

1 

... ' p-1. 

Also 

since iE L iff [Ji] > p, iff r . = -1, iff p. = 1 in GF(l). We have 
1 1 

p-1 

~ p- j G(~) = . L: 
i=o 

p-1 

pi~i+p-j = ~ 
i=O 

-i-j 
p. x 

1 

But rk = rj iff k = j mod p, hence pk= p j iff k = j mod p. Therefore 
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Also note that 
' 

h~ (~) = 1 + ~ + ... + ~ p- 1
• 

Hence 

h'.(i) = G(~) + p.h~ (~) + ~p-j G(~) + t.(~) 
J J J 

= p .h~ (~) + t. (~) + (~ p-j+ 1) G(~) 
J J 

for j = 0, .•• , p-1. 

Note that 

t . (~) = ~p-j (1 + ~ + 
J 

- j-1 + x ). 

We have for 0 ~ j ~ p-1 

whence, if 2 ~ j ~ p, 

' - 1 ~ ' - 1 -
h .(x)+p .h 0 (x)+h (" )(x)+p (" )h 0 (x) p-J p-J p- J-1 p- J-1 

= ~j-1 + ~j-1 (~+l) G(~) 

= ~j-l (l+(l+~) G(~) ). 

But ~j-l is a unit in GF(2) [x]. 

Hence 
(Hq (x)) ~ (G(~) (~ + 1) + 1 ) • 

Since x + 1 1 G(x) (x+l) + 1, it follows that 

h~ (~) = l + ~ + · · • + ~p- 1 E (G(~) (x+l) +l). 

We have for 2 ~ j ~ p 
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h
1 

.(x) + p .h
1

0 (~) + h
1 

(" )(~) + p (" )h~ (~) = ;?-1 (l+(l+~)G(~)). 
p-J p-J p- 3-1 p- J-1 

Successively setting j = p, p-1, p-l, ... , l we conclude that 

Hence 

I ,_ I ~ -h 1 (x), h 2 (x), ... ' ' -h (x) E 
p-l (G(x) (x +l) +l). 

.... .... -
(H (x)) = (G(x) (x+l)+l). 

q 

Then applying Lemma 3.3 we conc lude that 

H (x) ,= g.c.d. (G(x) (x+l) + 1, xP+l). 
q 

One significant feature of Theorem 3.6 is that it can be used to 

compute H (x) and hence the rank of M . And if q is large it is 
q q 

definitely easier to compute Hq (x) with a computer than to compute the 

rank of M . Moreover if H (x) can be factored into irreducibles we 
q q 

can obtain information about the ideal (H (x)). The methods for 
q 

factoring H (x) are discussed in Appendix II. The following theorem 
q 

was used to verify by computer that for all primes q, 7 ,,; q,,; 4703 

such that p= (q-1)/2 is prime, the matrix Mq is non-singular. Of 

course for each of these cases it had to be shown that H (x) = 1. 
q 

Theorem 3.7. Let q be an odd prime such that p = (q-1)/2 is odd. Let 

I 

i. be a primitive root mod q and let k = i. 2 • If L is the set of integers 

defined by 

and if 

then 

G
1 

(x) = I: 
iE L' 

i 
x 

' p-1 p-l 
Hq(x) = g.c.d. (G (x), x + x +· · · + x+ 1) 
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Proof: The proof is analogous to the proof of Theorem 3.6. The element 

a-k is a generator of G(F /Q). For if ki = ± 1 mod q, then J. 2 i = ± 1 

mod q, hence 4i = 0 mod q-1. Therefor e li = 0 mod p. But sine e p 

is odd, we have that i = 0 mod p. Therefore u-k has order p. Let 

Then 

-- p~~ n. (x) lJ 
J i=o 

1 
s gn ( u . ) x , j = 1, . • . , p . 

<Tk J 

(H (x)) = (n1 (x), 
q ... ' n (x)) 

p 

I 

For each i = 0, ... , p-1 there exists a unique integer r . such that 
1 

I 

a) r . = 1 
1 

or -1, b) 1 ~ [ r
1

• ki] ~ p. Then we can write 
1 

0 if [ r
1
.kir'.kj] 
l J 

1 if [ r
1
.kir'.kj] 
l J 

If n is any integer let 

I I 

r = r . if n = J mod p, 0 ~ j ~ p -1. 
n J 

Then 

1 • 1 • 1 1 i+j 
r .k

1
r .kJ = r. r .k 

1 J 1 J 

and 

1 1 1 1 i+j 
- r . r . r . . ( r . .k ) mod q 

1 J l+J l+J 

~p 

> p. 

since kp = 1 mod q. 

Therefore, 
I 

1 
0 i f r .r .r .. = 1 

sgn i (u ) = 1 J HJ 

[ r
1

.kj] 
1 I I <Tk 1 if r .r . r .. = -1. 

J 1 J i+J 

Let I 

~ 
OEGF(Z) if r. = 1 

1 
p . = 

' 1 
lE GF(Z) if r. = -1. 

l 



Then 

Hence 

Now let 

Then, 

Also, 

Then, 

Hence, 
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sgn i (u 1 • ) = p~ + PJ~ + P~+J· . 
erk [ r .kJ] 

p-1 

n 1 • (x) 
[ r .kJ] 

J 

= .2:: 
1=0 

I -

J 

I I I -i 
(p.+ P· + P·+·) x 

1 J 1 J 

for j = 0, ... , p-1. 

n . (x) = n 1 • (x) 
J [ r .kJ] 

j = 0, •.• 'p-1. 

J 

I - - p-1 
n 0 (x) = 1 + x + · · · + x . 

p-1 
I 

2:: i 2:: I i 
G (x) = x = p.x 

1 

iEL' i=o 

j = 0, ... ' p-1. 

p-1 p-1 p-1 

2:: n'.(~)+(L: 
j=o J j=O 

I I -
p.) n 0 (x) 

J 
= ((L ~p-j)+p) c' (~} ' ,..., 1 ,..., 

= (n 0 (x)+ 1) G (x). 
J= 0 

Therefore, 
p-1 

Hence 

But, 

c' (~) = 1Ll 
j=O 

n
1

.(~) + ( L: p1 .)n~ (~) + c' (~}n~ (~}. 
J j=O J 

1 ......, t ,....,, I ,..., 

(G(x))C (n 0 {x), ... ,n (x))= (n 1(x), ... ,n (x)). 
p p 

' -n .{x) 
J 

1, ... ' p-1. 

Therefore 

I I -

(G (x), n 0 (x)) = (n 1 (x), ... , n {x)) 
p 

= (H (x)). q 



41 

Chapter IV 

Application of the Reciprocity Theorem of Class Field Theory 

The object of this chapter is to use the reciprocity theorem of 

class field theory to replace the problem of the sign distribution of 

cyclotomic units in F 'by a problem in the completion of F at the 

primes which lie above (2). Before stating the reciprocity theorem we 

must recall some elementary definitions and facts of algebraic number 

theory (see O'Meara [11] ). 

Let K be a number field, i.e., a finite field extension of Q, 

and let L be a finite Galois extension of K with Galois group G( I/K). 

A prime of K is an equivalence class of valuations of K. If p 

prime of K, we let J · J 

p 
denote some 

example, the normalized valuation if p 

particular valuation in f 
is discrete). We let K 

p 
denote the completion of K at the prime p There is a natural 

embedding of K into K 
p 

so we may assume that Kc K 
- p 

is a 

(for 

Let rt- be a prime in L which lies over the prime p in K, 

i.e. ~· induces the prime p if it is restricted to K. We write jlp 

Let u- be an element of G(L/K). The relation 

defines a prime of L (which we denote by u~) which also lies over p 

If TE G(L/K) then U"(Tg> = (U"T)g-. If U" acts on a Cauchy sequence for 

~ in L then it gives a Cauchy sequence for U"ff in L. Conversely, if 

-1 
(J acts on a Cauchy sequence for (J'l in L, it gives a Cauchy se-

quence for ~ in L. Therefore (J induces an isomorphisn1 (J ~ of the 

completions L~ and Lu~ of L. Moreover this isomorphism is a ~-
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isomorphism, i. c. it fixes the completion K element wise. 
p 

Let 'l be a prime in L which lies over the prime p in K. 

The subgroup G
1

(L/K) of G(L/K) defined by 

is called the decomposition group of fr If CJ€ G(L/K), it is easy to see 

that 

Also H CJE G<J-(L/K) then CJ induces a KP -automorphism CJ <J- of Lg: 

We now state two lemmas without proof (see Cassels and Frl:Shlich [6], 

p. 163). 

Lemma 4.1. Let <3- an~ <3-' be primes of L which lie over the prime p 

in K. Then there exists a CJE G(L/K) such that CJ '6- = g-'. 
Lemma 4.2. Let 'l be a prime in L which lies over the prime p in 

K. Then 

i) L is Galois over K . 
'l p 

ii) The mapping from G<J-(L/K) to G(L0jK ) given by CJ - CJ 

tJ p CJ-
is an isomorphism. 

p· 

Let N Lg:/Kp be the norm from L~ to KP 

We apply the two lemmas above to prove 

where g- lies above 

Lemma 4.3. Let g- and g-' be primes in L which lie above the prime 

p in K. Then 

* >!' 
NL /K (L ) =NL /K (Lo_') 

cg- p 'l ~· p ?f 

Proof: By Lemma 4.1, there exists a CJ€ G(L/K) such that CJ 'l= g-'. We 
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* i-;how that if lH L~ then 

We have, 

Hence 

Hence 

0- 'l(N L IK (a)) = 0- <J- n T <J(a) 

p TE G(L/K) by Lemma 4.2. 

o- (NL /K (a))= 

'l 'l p 
TT() 'lT<Jo- i1 (o-<J(a)) 

TE G 'J(L/K) 

= n T (rT (Cl')) 
'1 r; 1 

T E o- ( G ( L/ K ) ) rT -
g-

= n T (rT (0:)) 
'l <J 

TE G (L/K) by Lemma 4.l. 
(J <J-

Sinc e 

and are subgroups of r<; and since o-'l 

fixes K , we conclude that 
p 

* * NL /K (Lo)=NL /K (Lo_,). 
'l p (} <;f-' p ~ 
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of the multi -* Lemma 4.3 shows that the subgroup NL /K (L~) 

* d 1 h . w- P. ,K plicative group KP depen s on y on t e prime p in and not upon 

the prime ~ in L which lies above p . Therefore we write, 

If L/K is abelian then Gcr<f(L/K) = crG~(L/K) cr-
1 

= G~(L/K). 

Therefore if L/K is abelian, G~ \L/K) depends only on p where ~ 

lies above p . Hence if L/K is abelian we write 

We can now state the reciprocity theorem. 

Theorem 4.1. Let L be a finite Galois extension of the number field K 

such that G(L/K) is abelian. Then for all primes p in K there exists 

* a homomorphism <p. :K - G (L/K) such that 
* p p p 

i) cp : K - G (L/K) is surjective and p p p 
* ii) If aE K , then cpp (a) = 1 for almost all p , and 

n cp (a) = 1 . 
p p 

Remarks: If it becomes necessary to identify the extension L/K with 

the map cpp, we shall write cpp ,L/K· The proof of the reciprocity 

theorem will be omitted. The theorem stated here with i) appears as 

Theorem 2, Cassels and FrBhlich [6], p. 140, if we recall that G (L/K) p 
is canonically isomorphic to G(L /K ) (Lemma 4.l). In this form the 

<J- p 
theorem becomes the local reciprocity theorem. Property ii) is 

referred to on p.188 of Cassels and Frt:Shlich (6]. The r eciprocity rnap 
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is also studied in Artin [z] pp. 144-164, where it is called the norm 

residue symbol. 

We shall need one elementary property of the reciprocity map. 

Let K and L be fields which satisfy the hypotheses of Theorem 4.1, 

and let M. be a field such that K C M C L. Then M is a finite Galois 

extension of K and its Galois group G(M/K) is abelian. Let p be a 

* prime in K. Then by Theorem 4.1 we have maps cp L/K:K - G (L/K) p. p p 

* cp M/K: K - G (M/K). P· p P 
Then we have the and 

Supplemental property of the reciprocity map. The diagram 

(identity) 

G (L/K) 
p 

I 
G (M/K) 

p 

(projection) 

is commutative. 

Remarks: The projection map from G (L/K) to G (M/K) is defined by p p 
<r - cr j M. The above property is property 4), Serre [12], p. 178, or 

equivalently property Z), Artin [z), p. 158. 

We apply the reciprocity theorem to the following situation. Let 

-1 
F=Q(z;,+z;, ), whereas before, z;, isaprimitive qthrootofunity. Let 

E be the field F(~, ~, ... , ~) where u 1 , ••• , u are the cyclo­
p 

tomic units. The field F is a subfield of the real numbers. Since E 

is the compositum of the fields F(~), i = 1, ... , p, E is Galois over 

F and its Galois group G(E/F) is an elementary abelian Z-group. 

Therefore we can apply Theorem 4.1. 

Let p be a prime in F. There exists an epirnorphisn1 
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,.~ 

cp of F p p onto G (E/F) which induces an isomorphism 
p 

I * cp :F /N(E/F •p) ~ G (E/F) p p . p 

* and if aE F , then 

IT cp <a> = i. 
p p 

If K is any subfield of the real numbers, let ooK be the prime 

on K which is determined by ordinary absolute value. We shall write 

oo instead of ooK when there is no chance of confusion. A prime p 

in F is called infinite if p lies above 000 , i.e . p I 000 . Clearly ooF 

is an infinite prime in F. Hence, by Lemma 4.1 every infinite prime 

in F has the form o- ooF for some o-E G(F /Q) . Let o- ooF be such a 

prime in F. The completion of F at o- ooF is the same as the 

completion of o-F at ooF. Hence the completion of F at o- ooF is a 

subfield of the reals because F itself is. However the completion of 

F at o- ooF must contain the completion of Q at oo, and Q = R, 
00 

the reals. Therefore F = R. 
(f 00 

The embedding of F into F is 
(f 00 

given by the injection a - o-(a) for aE F. 

Consider the field E. Note that ~ = ../-1 is an element of E, 

therefore Q(H) CE CC, where C is the field of complex numbers. 

If g- is a prime in E such that 'jf I oo, then it follows as above that 

E~ = C. 

Lemma 4.4. Let E and F be the fields above. + Let R denote the 

positive nonzero reals. Let p = er oo be an infinite prime in F, where 

o-E G(F/Q). Then 
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Proof: Let ~ be a prime in E such that ~ Ip. Then E = C and 
~ 

Fp = R. The only automorphisms of C which fix R are the identity 

and a+ H {3 - a - ..f7i. f3. Therefore, 

Recall the definition of er-sign from Chapter II. 

Lemma 4.5. Let E and F be the fields above. Let p = er oo,crEG(F/Q) 

be an infinite prime in F, and let tp be the reciprocity map given by 

p * 
aE F , cp (a) = 1 iff sign (a) = 1. p CT 

Theorem 4.1 for E/F. Then for 

* Proof: Suppose that aE F. The image of a under the embedding of F 

into F is cr(a). Then cp (a)= liff cr(a)E N(E/F,p) by property i) of Theorem p p 
4.1. By Lemma 4.4., cr(a)E N(E/F.p) iff cr(a)E R~ i.e. iff signcr(a) = :t. 

Lemma 4.5. gives the connection between the reciprocity map 

and the o--sign. It is essentially this connection which allows the use of 

the reciprocity theorem. From the corollary, p. 29, Cass els and 

F r<:Shlich [ 6] , we have 

Lemma 4.6. Let L be a finite Galois extension of the number field K. 

Let g. be a prime in L which is unramified over the prime p in K. 

Then every unit in KP is the norm of a unit in 

We apply Lemma 4.6. to obtain 

Lemma 4. 7. Let E and F be as before. For each prime p in F let 

be the reciprocity map given by Theorem 4.1. Let (2) denote the 

prime on Q which is determined by the prime rational integer 2.. If µ 

is a unit in F, i.e. µEV, then the following relation holds: 
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Proof: Call a prime p in F odd if p ~ (2) and if p t oo. Let p be 

a prime in F such that p f oo. A prime f in E such that ~ Ip is 

unramified iff the value of p on the discriminant of E over F is not 

less than 1. But E is obtained from F by successively adjoining 

square roots of units in F. Hence the discriminant of E over F is a 

product of the primes which lie over (2). Therefore if p is a prime of 

F which is odd, then p is unramified. Therefore, by Lemma 4.6, if 

p is odd and if µEV then µ€N(E/F .• p)· Hence <pp(µ)= 1 if µEV and 

p is odd. Therefore, by property ii) of Theorem 4.1. 

The mapping 

µ - n "'p(µ) 
p loo 

of the units V in F into G(E/F) is a homomorphism. 

gives an isomorphism 

and 

*; I *; *z Fp N(EF,p)=R R. 

Each <p .pl oo 
p 

Hence G (E/F) is cyclic 
p 

* of order 2 for each pl oo. Let Q'.€ F and let 

p = er oo, er€ G(F/Q) be a prime in F. Then we write a > 0 at p if 

signer (a) = 1, and a< 0 at p if signcr(a) = -1. We prove 
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Theorem 4.2. Let U = (u 1 , ••• , u ) be the multiplicative group 
p 

generated by the cyclotomic units in F. Let T be the group of totally 

positive units in F. Then 

u/u n T ~ TI G (E/F>. 
ploo p 

Proof: Let G (E/F) = (CT) for each p loo. The group TI G (E/F) is 

an elementar:abelian 2-froup with exponent 2, hence if J ~s~he 
number of even invariants of TI G (E/F) then there exist primes 

p\oo p 
pi, ... , fk such that 

k n G (E/F) = c±) G (E/F). 
p I oo P i=1 Pi 

Let (U/u 2)# denote the dual or character group of U/UZ. Define a 

mapping 

by 

The mapping 

x: n G (E/F) - (U/U2)# 
p \oo p 

X(CT) (µU 2) = CT(..fµ) I~ ' µEu . 

X is a homomorphism, for if u, 'TE TI G (E/F) then 
P loo p 

X(CTT)(µU 2) = (CTT)(..fµ)/,/µ = CT((T(..fµ)//µ)·{/J,)//µ = (T(;/µ)/;/µ). (CT(;/µ)/;/µ)' 

since T(;/µ)/Fµ = ± 1. Hence, 

x(CTT) (µ U 2) = X(CT) (µ U 2) • x( T) (µ uz) , µEu. 

Therefore 

x(CTT) = x(CT). x( T). 
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The mapping X is even a monomorphism, for if a- E n Gp(E/F) and 
ploo 

X(o) = 1, then x(o) (µU 2 ) = 1 for all µEU. Hence u-({µ) = {µ for all 

µEU. Hence o- fixes every element of the field E and therefore a-= 1. 

Hence X is a monomorphism. We chose P 1, ••• , Pk so that the 

elements a-Pi' ... , a-pk form a basis for TIGp(E/F). Then the 
p\oo 

elements X(<rp ) , ... , x<a-p ) form a basis for X ( TI Gp(E/F )), because 
1 k p\oo 

X is a monomorphism. Then there exist µ 1, ••• , µkEU which are dual 

Hence, 

Then, 

That is, 

c5 .. 
x ( U"p ) ( µ . u 2) = ( -1) lJ' i ,j = 1, ... ' k . 

i J 

c5 .. 
U"p (-./µ.) 

i J 
= (-1) lJ ..;µ. 

J 

µ. < 0 at p. = p. 
J 1 J 

µ.>oat P-*P· 
J 1 J 

, i, j = 1, ... ' k. 

i,j = 1, ... ' k. 

If Pi= u-ioo' u-iE G(F/Q), i=l, ... , k, then we have 

Hence, 

c5 .. 
sign (µ.) = (-1) lJ 

a-i J 
i, j = 1, •.. ' k. 

TI Gp (E/F) = Zk ~ U/U (\ T 
p loo -

We shall show that in fact equality holds. Define a mapping A: 

U - TI Gp (E/F) by 
ploo k 

A(µ)=~ cpp_(µ)' µEU. 
l=l 1 



51 

Clearly A is a homomorphism. Consider kcr A. If µEU(\ T, then 

<pp(µ) =kl for all p loo. Hence µEker A. On the other hand, if µE ker A, 

then (±) 'Pp.(µ) = 1. Hence 'Pp.(µ) = 1 for i = l, ... , k. Then µ > O at 
i= 1 1 1 

pi for i = 1, ... , k. Therefore CYp. (Jµ) =f; for i = 1, ..• , k. The 
1 

elements (JP1' ... ' CYpk form a basis for n Gp(E/F). Hence if p Joo, 
p Joo . . 

then CYP(Fµ) = ..[µ. Hence µ > 0 at p for all p Joo and therefore 

µEU(\ T. We have shown that ker A= U 11 T. Hence A induces a 

monomorphism A':U/U(l T - TI Gp(E/F). By the previous inequality 
p Joo . 

it follows that A' is an isomorphism. 

We have the following 

Corollary 4. 2.1. Let U = (up ..• , up) be the multiplicative group 

generated by the cyclotomic units in F. Let T be the group of totally 

positive units in F. Then U(\ T = U 2 iff G(E/F) has order zP and 

G(E/F) = c±) Gp(E/F). 
p Joo 

Proof: Assume that T (\ U = U 2 • Then U/U(l T = U/U 2 has order zP 

by Theorem 2.5. 

by Theorem 4.2. 

it follows that 

Hence the group TI Gp(E/F) has p even invariants 
P Joo 

Therefore TI Gp(E/F) is direct . Since jG(E/F)j ~zP 
p Joo 

G(E/F) = (t) Gp(E/F) 
p 100 

and jG(E/F)J=zP. 

Conversely, assume that G(E/F) has order zP and 

G(E/F) = c±) Gp(E/F). 

p \oo 
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Then by Theorem 4.2, U/un T has order zP. 

of Un T and U /U 2 has order 2P. Hence 

But U 2 is a subgroup 

U 2 =Un T. 

Corollary 4.2.2. The ho1nomorphism from the group U/U 2 to the group 

G(E/F) which is defined by 

µU 2 -TI <pp(µ), µEU, 
p\oo 

is a monomorphism iff 

unT=u 2 • 

Proof: Assume that the homomorphism µU 2 -- TI Gp(E/F) is a mono­

morphism, i.e. its kernel is exactly U 2 • If µ~ ~n T, then 

<pp(µ) = l for every p \oo. Hence if µEU n T then ~ <flp(µ) = 1. 

µ E U 2 • Hence Un T C U 2 • In any case, U 2 c U ~ ~. therefore 

Hence 

Un T = U 2 • Conversely assume that U 2 =Un T. Consider the homo­

morphism µ U 2 - TI 'Pp(µ). We shall show that its kernel is U 2 = unT. 
p \oo 

By Corollary 4.2.l~ G(E/F) has order 2P and 

By Theorem 4.1, 

G(E/F) = (±) Gp(E/F) 

p\oo 

is a homomorphism from 

each p \oo. Therefore if µEU and 

n<fJp(µ)=l 

p\oo I 

then 'Pp(µ) = 1 for each p \oo. But then µE U(1 T by Lemma 4. 5. Clearly 



53 

if µE U ( ' ! T then TI cpp(µ) = 1. Hence U (I T = U 2 is the kernel of 
p loo 

µU2- n cp (µ) 
p loo p 

and therefore it is a monomorphism. 

We can apply Lemma 4. 7 to obtain 

Theorem 4.3. Every totally positive element in U is a square in U iff 

the homomorphism ~:U/U 2 - G(E/F) from U/U 2 to G(E/F) defined by 

µu 2 -n cpp(µ), µEu 
p \(2) 

is a monomorphism. 

Proof: By Lemma 4. 7, if µ is a unit in F, then 

Therefore the homomorphism q;: U/U 2 - G(E/F) is a monomorphism 

iff the homomorphism from U/U2 to G(E/F) defined by 

µEU 

is a monomorphism. The latter mapping is a monomorphism iff 

U 2 = U{1 T by Corollary 4.2.2. 

In order to use Theorem 4.3 we shall need more results about the 

reciprocity maps. First we prove 

Theorem 4.4. Let p be a prime in F. Then 

N(E/F ,p) 
p 

=n 
i=l 
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Proof: The supplemental property of the reciprocity map is used. We 

have that 
p 

N(E/F,p) c ( \ N(F(~)/ F',p) 
i= 1 

p 
by the transitivity of the norm. Let a be an element of (1 N(F(~)/F,p). 

* 1~ 
Let <Pp be the reciprocity map from F p to Gp(E/F). ThenaEN(E/F,p) 

iff <fJp(a) = 1 by Theorem 4.1. For each i = 1, ... , p, let <p%) be the 

reciprocity map from F; to Gp(F(.r-;;;_ )/F) given by Theorem 4.1. Then 

(i) . p 
<fJp (a)= 1 for 1 = 1, ... , p, because aE 2 N(F(!ui )/F,p). By the 

supplemental property of the reciprocity map, <pfa
1

)(Ci) is the restriction 

to the field F(~), i = 1, ... , p. Hence <pp(Ci) is an element of 

which fixes every subfield F(.,[;;:) element wise. Therefore 
1 

<pp(a) = 1. Therefore CiE N(E/F , p). 

Let K be a number field and let p be a prime in K . Let Ci, (3 

be elements of K. The Hilbert symbol (O'Meara [11], p.164) (Ci,f3)p at 

p is defined by 

l 
l if there exist '(, oEK such that ay~ + (36 2 = 1 

(Ci,f3)p = 

-1 otherwise 

Therefore (Ci, f3)p = 1 iff CiE N(K(/r3)/K,p). Hence we have 

Corollary 4.4.1. L e t p be a pr i me in F. Let <pp be the r e ciprocity 

map <pp: F,.~ _. Gp(E/F) and let µEU. The n <pp(µ) = 1 iff (µ, ui)p = 1 

for every i = 1, .. . , p. 

Proof: By Theorem 4.1, <pp(µ) = 1 iff µE N(E/F , p). By Theorem 4.4, 

µE N(E/F ,p) iff µE N(F(~) /F .p) for every i = 1, .. • , p. Therefore 

<pp(µ)= 1 iff (p,ui) p = (ui ,µ) p = 1 for eve ry i = 1, ... , p . 
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Chapter V 

The Case when (2) is a Prime in F. 

The object of this chapter is to apply the results of the previous 

1 
chapter to the case when (2) is a prime in F. The first part of this 

chapter is devoted to preliminary results on quadratic forms. These 

results along with some additional results of a computational nature are 

used to do some computations in the case q = 7. The results of the 

computation motivate the main results of the chapter . However, the 

proofs of the main results rely mainly on results of the previous chapters. 

Assume henceforth that (2) is a prime in F, i.e. there exists only 

one prime p in F such that p I (2). Since (2) cannot ramify we write 

(2) = p. Then we have by Theorem 4.3 of the previous chapter that a 

necessary and sufficient condition for the totally positive units in U to 

be the squares of elements of U is for the homomorphism 

;p: U/U2- G (E/F) defined by 

µU2 - cp (µ) 
(z) 

to be a momomorphism. By Corollary 4.4.1, we have that cp(z)(µ) = 1 iff 

(µ, ui)(z) = 1 for every i = 1, ... , p, where ( • , • ) (2 ) is the Hilbert 

symbol at (2) on F. Fora given i, the symbol (µ,ui)(z)=l ifandonly 

if the quadratic form x 2 
- µy 2 represents ui in F (z), the completion of 

F at (2). Thus we are led to the s'tudy of quadratic forms over F (
2

)" 

The field F(Z) is Galois over Q(2)' has the same degree p as F over 

Q, and every integral basis for F over Q determines an integral basis 

1 
If p is a prime integer then (2) is a prime in F (see Weyl [16] p. 83). 
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for F(z) over Q(z) by means of the natural embedding of F into F(z) 

(see Weiss [15), p.159). We shall assume that F is a subfield of F(z)" 

We shall use the terminology of O'Meara [ll). In particular we 

call a field K a local field if K is complete at a discrete prime p 

and if the residue class field at p is finite. An element -rr in K is a 

prime element if its value at the prime p generates the value group at 

p. We write Np for the order of the residue class field of K at p. 

The positive integer Np is called the absolute norm of p. 

Theorem 5.1. (Local Square Theorem). Let K be a local field at a 

prime p and let -rr be a prime element in K. Let a be an integer in 

K. Then there is an integer f3 in K such that 

1 + 4-rr a = ( 1 + 2 -rr f3 ) 2 
• 

Proof: See O'Meara (ll), p.159. 

Theorem 5.2. Let K be a local field at the prime p and let V be its 

group of units. Then 

* * ordp2 
( K : K 2 ) = 2 [ V: V 2 ) = 4(Np) 

Proof: See O'Meara [11], p. 163. 

We apply these theorems to the local field F(z)" 

Theorem 5.3. Let V(z) be the group of units in F(z)' Let µ,vEV(z)' Then 

2 
there exists wEV(z) such thatµ= vw 2 mod(8) iff µEvV(z) 

Proof: We apply Theorem 5 .1 with K = F(z) and -rr = 2. Assume there 

exists wE V(z) such that µ = vw 2 mod(8). Then µ = vw 2 + 8CJ. for some 

integer a in F(z). 
-1 1 

Then µ= vw 2 (1+8CJ.(vw 2 ) ) , and CJ.(vw 2 )- is an integer · 

in F(z) because v, w are in V(z). Hence by Theorem 5.1, there exists an 
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- 1 
integer 13 in F(2) such that 1+8 a(vw2 ) = (1+4(3) 2 • Therefore µ = 

vwz (1+4 [3)Z. Hence µ E vV~)" Conversely, if µ E v v(:) then there exists 

w E V(z) such that µ = v w 2 • Hence µ := v w 2 n1od(8 ). 

Theorem 5.4. Let V(z) be the group of units in F(z)" Let v 1 , ••• , v n 
z 

be a complete set of cos et representatives for V(2) / V(z) • Then v 1 , ••• , 

v , 2v 1' ••• , 2v is n n 
* * a complete set of coset representatives for F(z/F(i.t 

* Proof: Let CH F(2). Then we can write a = 2ord(2)a · a' where a' is a 

unit in F(2). I vz But a Ev i (2) for some i. 

Therefore v 1' •.• , v , 2v 1, ••• ,2v 
n n 

* I * 2 is a set of coset representatives for F(z) F(2) . 

represent distinct cosets of F~)2 . 

By Theorem 5.2 they 

h f h * I * 2 . 2P+ 2. Theorem 5.5. T e order o t e group F(2) F(2) is 

Proof: Apply Theorem 5.2. The absolute norm of p is 2P and or~2 )2=1. 
Hence 

[ * * ~ p p+2 F(2): F(
2
)j = 4(2 ) = 2 . 

We shall now determine a set of co set representatives for '(2/'(:r 
Let F<.z) denote the residue class field of F(2). Let 0(2) denote the ring 

of integers in F(2)" Let A be a fixed set of representatives of F(
2

) in 0(2)" 

Theorem 5.6. Let p be odd and let v be a unit in F(z). Then there exist 

uniquely ae A, {3 = 0, 1 such that 

v e (1 + 2a + 4{3 ) v(~) • 

Proof: By Theorem 5.3 it is sufficient to show that there exist uniquely 

ae A, {3 = 0 or 1 such that 

v = (1 + 2a + 4/3) w 2 mod (8) 
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for some wE V(
2
)' We have that v is a unit, therefore there exists a 

unit 'I such that v'{ = 1. The mapping o - 6 2 is an automorphism of 

F(
2
)' hence there exists oE V(

2
) such that 6 2 = 'I mod (2). Then 

v 0 2 =.: l mod (2). Then there exists ae A such that vo 2 = l + 2Ci mod (4). 
2 

Moreover, a is uniquely determined by the class of v in V(
2
/V(

2
). 

For if there exists p E V(z) such that 

(1 + 2a)p~ = 1 + 2a1 mod (4), a, a• e A, 

then 

p 2 = 1 mod (2) . 

Hence p = 1 mod (2) and p = 1 + 2p', p'E0(
2
)' Then 

2 
(1+2a)p 2 - (1+2a) (l+ 2p') = l+ 2a mod (4). 

Hence 1 + za = 1 + 2a1 mod (4). Then a= a• mod (2). But a, a• e A, hence 

a= a•. 2 pH 
By Theorems 5.2 and 5.5 the order of V(

2
/V(2 ) is 2 . The 

Set A has 2p elements. Th f · d t 1 t th f "t ere ore, in or er o comp e e e proo , i 

is sufficient to show that if ae A and µ E V(z) then it cannot happen that 

(1 + za)µ 2 - (l+ za+ 4) mod (8). 

Suppose it does happen. Then µ = 1 mod (2). Hence µ = 1+2µ 1 ,µ 1E0(
2

)" 

2 
Hence (l+Za)µZ = (l+ 2a) (1+2µ 1 ) = (1+2a) (1+4(µ 1 +µl)) = 1+2a+4µ 1 +4µ 12 

mod (8). Then we have 

1 + 2.Ci + 4µ 1 + 4µ 1
2 = 1 + 2.a + 4 mod ( 8) • 

Hence 

µ 1
2 + µ 1 + 1 = 0 mod (2) • 
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This last relation would imply that F (2) has a subfield of degree l. over 

GF(l.), which contradicts the assumption that p is odd, since F(z.) has 

degree p over GF(2.). (O'Meara (11], p. 23). 

For each i = 1, ... , p 
i -i -1 

let e. = -(s + s ) where F =O(s+ s ). 
1 

The numbers ... ' e are integers in F which give a Z -basis for 
p 

all the integers in F. Therefore the set 

p 

A = { a I a = ~1 ak ek, ak E { o ,l}} 

is a set of representatives for the residue class field F of F at (2). 

By 0 1Meara (11], p. 23 it follows that the set A is a set of representatives 

in O(z) for the residue class field of F(z)" We are interested in finding 
2 

the representatives for the cosets in V(
2
/V(z) which contain the units 

... , u because this information will enable us to compute the 
p 

Hilbert symbol (µ, ui)(;) for µEU. We shall develop some relations ' 

which will simplify the calculation of representatives. The relations are 

not used in the proof of the succeeding theorems but will be used in an 

example which motivat~s the succeeding theorems. 

Let kE Z. Then there exists uniquely iE Z such that 0 ~ i ~ p 

and k = i or k = -i mod q . Let ((k)) denote this i. 

Lemma 5.1. 01 + · · · + e = 1. p 

Proof: The number s satisfies q -1 
1 + s + r:,z + ... + i;, = 0. 

Hence 01 + · · · + e = 1. p 

Lemma 5.2. Let 1 ~ i, j ~ p, i-:/:- j. Then 

and 

Hence 
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Proof: -(r;,i + (i) (-(r;,i+ Z:,-~)= r;,2i+ l+ r;,-2i+ l= 2+ (l;,2i+ (2i)= 2- e((2i)). 

-(r;,i+r;,-i)(-(r;,j+r;,-j)) = r;,i+j+z;,i-j+r;,-i+j+r;,-i-j= z;,i+j+r;,-i-j+r;,i-j+((i-j) 

= -e((i+j)) -e((i-j)) . 

Then, 

But 

The use of these lemmas is illustrated in the case q = 7: 

= al b1 ( 2 - ez ) + a.·1 b2 ( - el - e3 ) + al b3 ( - 82 - e3 ) 

+ a 2 b 1 ( - e1 - e3 ) + a 2 b2 ( 2 - e3 ) + a 2 b 3 ( - e1 - 02 ) 

+ a 3 b1 ( - e2 - 93 ) + a 3 b 2 ( - 91 - 92 ) + a 3 b 3 ( 2 - 91 ) 

Therefore 

This equation reduces to 

a f3 = ((al -az><bi -bz) + (a2 -a3)(b2 -b3) +al b1) el 

+ ((a1 -a3)(b1 -b3) + (a2 -a3) (b2 -b3) + a 2 b 2 ) 92 

+ ((a1 -a~)(b1 -b3)+(a1 -az)(b1 -bz)+a3b3)83 
' 
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In particular 

a 2 = (( a1 - a2 )2 + ( a2 - a3 )2 + a1 2) 81 

+ ( ( a1 - a3 )2 + ( a2 - a3 )2 + a2 2) 82 

+ ( ( a1 - a3 )2 + ( a1 - a2 )2 + al ) 83 . 

In fact these relations hold in general. 

Lemma 5. 3. Let a., b., i = 1, ..• , p be arbitrary. Then 
1 1 

where, 

and 

Proof: 

p p p 

(~1 akek) (~1 bkek) = l1 ckek 

(a.-a.) (b.-b.) 
1 J 1 J 

(i,j) E Ck 

Ck= {(i,j) \ l~i<j~p. ((i+j)) =k or ((i-j)) =k}. 

p 

( L a.e.) 
i=l 1 1 

p p 

= j~. 1 ( ~1 aibj (-e((i+j)) -e((i-j))) + (z-e((Zj)))ajbj) 

ii=j 

and 2 = 201 + 202 + · · · + zap. Hence the coefficient of ek above is 

p 

-I 
J=l 

where 

Consider 

a.b. 
1 J 

p 

+ L za
3
.b

3
. - a

1
b

1 j= 1 

(( 21)) = k, and 1 ~ i ~ p. 

ck = akbk + L (a. -a.) (b. -b.) . 
(. ') c 1 J 1 J 
1,J E k 
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For any 1 ~ i,j ~ p, we have 

Also 

(a.-a.) (b.-b.): a.b.-a.b.-a.b. +a.b .• 
1 J 1 J 11 lJ Jl JJ 

p 

-a.b.-a.b. 
1 J J 1 

= - L: 
j=1 

p 

L: 
i=l 
if:j 
or 

a.b. 
1 J 

Fix k and .I., where 1 ~ .I. ~ p and (( 2.1.)) = k. 

complete if it can be shown that 

p 

(*) 2: 
j=l 

= akbk + 2: (a.b. + a.b.). 
(i ,j)€Ck 1 1 J J 

The proof will be 

Write Ck = {(it' jt) I t = 1, .•• , r} where r is the number of elements in 

ck. It is asserted that 

1) If 1 ~ m ~ p and m * k, .I., then exactly one of the following occur. 

There exist exactly two integers f, g, 1 ~f,g ~ r such that 

i) m = i = if g 

ii) m = jg = Jf 

iii) m = i = jf . g 

2) If 1 ~ m ~ p and m=k or J. then exactly one of the follo-.ving occur. 

There exists exactly one integer g, 1 ~ g ~ r such that 

i) m = i 
g 

ii) m = jg . 

If statements 1) and 2) hold, then (*) follows by comparing the terms 

of each side. We prove 1) by proving 

3) Given any m * k, .I. there exist 1 ~ n, n' ~ p such that n =t- n', 

m =t- n, n' a:nd ((m + k)) = n, ((m-k)) = n'. Note n and n' are unique 
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if they exist. Let n = ((m+k)) and n' = ((m-k)). If n = n', then 

m+k := ± (m-k) mod q, so either k= -k or lm == 0, which is a contra-

diction to assurnption. If m=n, then rr1+k == ± n1, so either lm::::: -k 

whence m = l, or k = 0, both of which contradict the assun1ption. If 

m = n' then m-k::: ± m, so either 2m == k whence m = .R., or -k :.'= 0, 

again contradictions. Therefore 3) holds. Given m as in 1) choose 

n, n' as in 3). Then either 

i) m< n and m < n', hence (m,n), (m,n' )€ ck 

or ii) m>n and m < n', hence (n,m), (m,n') e ck 

or iii) m<n and m> n', hence (m,n), (n' ,m)E ck 

or iv) m> n and m > n', hence (n,m), (n' ,m)E ck . 

But this proves 1). We prove 2) directly. If m = k there exists 1 ~ n ~ p 

such that k+k = ± n mod q . Either i) m < n or ii) m '> n. Hence 2) 

holds for m = k. If m = .R., then either 

a) .R. + .R.::: + k mod q, whence .R.-k::: -.R., and hence there exists n, 

1 ~ n ~ p such that .R. + k = ± n; whence either i) m < n or ii) m > n, 

or b) .R. + .R. ::: -k mod q, whence .R. + k = -.R. and hence there exists n, 

1.,,; n.,,; p such that .R. - k = ± n; whence either i) m<n or ii) m>n. 

This proves 2). 

for 

Suppose again that 
l 

V /v are 
(l) (l) 

q = 7. In this case the coset representatives 
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1 + 2 92 

1 + 2 93 

l+ 2(91 +92 ) 

l+ 2(92 +93) 

1 + 2 (81 + 93) 

l+ 2(91 +92 +93) 
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1 + 4 

1+293+4 

1 + 2 ( 91 + 92 ) + 4 

1 + 2 (92 + 93 ) + 4 

1 + 2 ( 91 + 93 ) + 4 

1 + 2 ( 91 + 92 + 93) + 4 

We calculate the representatives for the class containing 

U1 = -1, 
-Z I -1 

uz = (l; 2
- s ) <s-Z:. ), 

where s is a primitive 7th root of unity. We have, u 1=-l= 7=1+2+4mod(8). 

Hence u 1 =1+2(9 1 +92 +93)+4mod(8). Hence the representative for u 1 is 

l+ 2 (9 1 + 92 + 93)+ 4, by Theorem 5.3. 

W z -z I -1 -1 e have u z = ( z; - z; ) ( z; - z; ) = z; + z; = - e 1. By Lemma 5.3, 

(a 1 9 1 +a2 9 2 +a3 93)(-9 1 ) = ((a 1 -a2 )(-l) +a 1)6 1 

+ (a 1 -a3 )(-l) 9 2 

+ ((a 1 -a3)(-l) + (a 1 -a 2)(-l)) 93 

Therefore 

(91 + 92 )(-Si) = 91 + 92 + 93 = 1 mod(2). 

Again by Lemma 5.3, (a1 91 + az 92 + a 3 93)2 - 9i + 9z mod(Z) 

implies 

Hence a 3 = a 1 = 1, a 2 = O. Therefore if we multiply -91 by the square of 

a unit congruent to 01 + 03 mod (2), then the result will be congruent to 
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01 + 02 + l.(01 + 03 ) + 4((b1 + bz + h3) 01 + (h1 + ~) 03) mod (8). Also, 

-01 (91 + 92 + l.(01 + 03) + 4((bi + bz + h3) 01 +(bi+~) 93) 

= 91 + 92 + 03 + 2(01 +Oz.)+ 4((bi + bz + h 3) 91 + (1 +bi+ h3) 0z.) + 4 (1+ hz)03 mod(8). 

Let b 2 = ~ = 1, b1 = O. Then we have that 

Therefore the class representative of u 2 is 1+ 2(91 + 92 ). 

-2 = S z + 1 + S = 1 - 02 = 9 I+ 93 • 

Using the method shown in detail above we find that 

Therefore the cos et representative of u 3 is 1 + 202 + 4. We write a- {3 

Then we have 

u 3 - 1 + 292 + 4 . 

Additional calculation will show that 

Also, 

\J I \J z - 1 + 2 03 + 4 

\J z \J3 - 1 + 2 0 I + 4 

3u I - 1 + 4 

3u 2 - 1 + 203 

3u3 - 1 + 2 (el + 03) + 4 

3-1+2(01+02+03). 
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Note that the co sets. containing u 1 , u 2 , u 3 , and 3 generate the entire 

group. We shall show that this situation is related to the distribution of 

signs. First we shall need the following 

Lemma 5.4. Let p be odd. Let k be a rational (2)-adic number and 

let a be an element of F(z)" The quadratic form x 2 - k y 2 represents a 

in F(z) iffthe form x 2 -ky2 represents NF /Q (a) in Q()" 
(z) (Z) z 

Proof: Assume that there exist '{, oE F(z) such that '{z. - ko 2 = a. If k is 

a square in F(z) then it is a square in Q(z)" Hence x 2 - ky 2 represents 

all of Q(z) if k is a square in F(z)" Assume then that k is not a square 

in F(z)" The extension F(z) h'k) is Galois over Q(z)" Hence 

NF (../k)/Q (../k) ('{ + 6../k) = '{' + 6 1 ../k 
(z) (z) 

where '{', 6' are elements in Q(z)" Then it follows from the transitivity 

of the norm that 

Hence xz-ky 2 represents NF /Q (a) in Q(z)" 
(z) (z) 

Conversely, assume 

that there exist g,d in Q(z) such that gZ-kdz = NF /a (a). Given 
(z) · (z) 

o-E G(F(
2
/Q(z», the form x 2 

- k y 2 represents a in F(z) iff it represents 

o-(a) in F(z)" That is, (k,a)(z)=l iff (k,o-(a))(z)=l. But the Hilbert 

symbol is multiplicative, i.e. (k,a j3)(z) = (k,°'(z) · (k,j3)(z) (0 1Meara (11], 

p. 166. ). Hence if (k, a)(z) = -1, then 

because G(F(2 /Q(z» has order p which is odd by assumption. But this is 

a contradiction. Therefore (k,a)( )= 1, i.e. x 2 - k y 2 represents a in F 
z · (z)" 
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Theorem 5. 7. Let p be odd. Then 

2. 
Proof: Assume that F(i) (1 U = uz . 

e e ep ea l 
Suppose that u 1

1.u 2 Z···up 3 EV(z) 

where ea, el, 

degree of F (z) 

... , e are in Z. Since p is odd by assumption, the 
p 

over Q(z) is odd, therefore we conclude by applying 

ea z 
or -3 e: Q(Z) • Hence Co= 0 mod(Z). Therefore 

e e e z 
assume that u 1 u 2 • • • u p e: V. 

1 z p (z) Then 
e z 

••• u p e:F (\ U = uz p (2.) • 
e 

But u 1et ... u Pe:uz implies that e. = Omod(Z) for i = 1, ... , p. By 
p 1 

Theorems 5.2 and 5.5, the order of V(z./v(:) is zP+t. Hence 

2. 2. 2. 2. 
V(

2
/V(z) = (u 1V(2.) )© ·•· ©(up V(z) )© (3V(z)). Conversely, assume that 

2. 

V(z/v(~) = (u 1V~»© ··• © (upv(:))© (3V~»· Clearly uzc F(z)nu. If 

e e z" 2 \.) = \J 1 1 ••• "p Pe: F(z) I I u, then \.) E v(z)" Hence by assumption ei = 0 

2. 
mod(Z) for i = 1, ... , p. Therefore u E uz. Hence uz = lZ) (\ U. 

Theorem 5.8. Let p be odd. The mapping iJi: U/U 2- G(E('F) defined by 

µ uz - cp(2) (µ) µe:U 

is a monomorphism iff 

2. 

F(z) (\ U = U 2 
• 

Proof: Assume that the mapping ;p: U/u 2 - G(E/F) is a monomorphism. 

If at F~) (\ U, then cp(z)(a) = 1. Hence m: U 2 by the assumption. 
2. 2. 

Therefore U 2 = lz) (\ U. Conversely, assume that lZ) f':U = U 2 • If 

u e: U and cp(2)(u) = 1, 

4.4.1. In particular, 

then (u, u. )() = 1 for i = 1, ... , p, by Corollary 
1 2. . 

(u ,u 1)(2.) = 1. Hence x 2 + y 2 represents u in F (z)" 

Therefore x 2 + y 2 represents NF /Q (u} in Q() by Lenuna 5.4. 
(2.) (2) 2. 

But 
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u € U implies that NF /Q. (u) = + 1 or 
(z) (z) 

- 1. Therefore NF /Q (u )= +l 
(z) (z) 

(see Borevich and Shafarevich [5], p. 54). Then x 2 - N /. (u )y 2= x 2 -yz 
lz)1Q(z) 

represents :3 in Q(z)' therefore x 2 -3y2 represents NF. /Q (u) in 
(z) (l) 

Q whence x 2 - 3y2 
(z)' 

represents u in F(z) by Lemma 5.4. Therefore 

(u,2)(z) = 1. Then by Theorem 5.7, the assumption ( u, 3) (z) = 1. Similarly 

F(~)n U = uz, and the multiplicativity of the Hilbert symbol, it follows 

* z that ( u, a)(z) = 1 for all a in F(z) . Hence u e: F(z) (see 0' Meara [11] , 

p.166). Therefore uE U 2 • Hence ~:U/U2 - G(E/F) is a monomor-

phism. 

Corollary 5.8.l. Let p be odd. The following statements are equivalent. 

Proof: 

1) 

2) 

3) 

4) 

5) 

6) 

z 
Un F(z) = uz 

Un T = uz 
z . 2 ' z 2 

V(z/v(z) = (u 1V(z» ©··· ©(upV(z» © (3V(z)) 

G(E/F) has order zP and G(E/F) =@ I G (E/F) . p 00 p 

The matrix Mq of cyclotomic signatures is non-singular 

~: U/u 2 - G(E/F) is a monomorphism . 

1) 4----:> 6) : Theorem 5.8 

1) <--- ;> 3) : Theorem 5.7 

2) <---;:> 6) Theorem 4.3 

2) <::; ;> 4) Corollary 4.Z.l 

2) 4----:> 5) : Corollary 2.6.1 
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Appendix I - Tables 

For each prime q, 5 ~ q ~ 929, the rank of the matrix of 

cyclotomic signatures was calculated on an IBM 7094 computer. The 
I 

rank cornputation was actually made on the matrix M defined in 
q 

Chapter II. Two programs were written to perform this computation. 

The first program was written in Fortran IV without bit-processing. 

Hence this program could only be executed for 5 ~ q ~ 211 because for 

greater q the core memory would be exceeded. The second program 

was written in IBMAP in order to take advantage of bit-processing and 

the binary nature of the computation. The results from the first program 

were used to check the initial results which were obtained using the 

second program. Although the Fortran program consisted of about 50 

statements, the IBMAP program consisted of 640 IBMAP instructions. 

Using the IBMAP program, the computer performed the computation for 

5 ~ q ~ 929. The tota:.:. time for the Fortran run for 5 ~ q ~ 211 was 5 

minutes, 5 seconds. The total time for the IBMAP run for 5 ~ q ~ 541 

was 23 minutes, 4 seconds. The total time for the IBMAP run for 

547 ~ q ~ 739 was 45 minutes, 51 seconds. The total time for the 

IBMAP run for 743 ~ q ~ 929 was 1 hour, 32 minutes, 3 seconds. The 

following table :::ontains the results. The first column contains the value 

of the prime q. The second column contains the value of p = (q-1)/ l. 

The third column contains the rank of the matrix M of cyclotomic 
q 

signatures. The fourtp column contains the prime factorization of p if 

p is not a prime, and the index of 2 mod p if p is prime. 
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The Rank of the Matrix M 
q 

3 1 1 1 

5 2 2. 1 

7 3 3 1 

11 5 5 1 

13 6 6 2 . 3 

17 8 8 23 

19 9 9 32 

23 11 11 1 

29 14 il 2 . 7 

31 15 15 3 5 

37 18 18 2 32 

41 20 20 zz. 5 

43 21 21 3 7 

47 23 23 2 

53 26 2.6 2. . 1 3 

59 29 2. 9 1 

61 30 30 2.. 3 . 5 

67 33 33 3 . 11 

71 35 35 5 . 7 

73 36 36 22. 32 

79 39 39 3 . 13 

83 41 41 2 

89 44 44 2 2 · 11 

97 48 48 24. 3 
101 50 50 2 . 52 

103 51 51 3 . 1 7 

107 53 53 1 
109 54 54 2 33 

113 56 53 z3 . 7 
127 63 63 32. 7 
1 ;31 65 65 5 . 13 

137 68 68 22 · 1 7 
139 69 69 3 •23 
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149 74 74 l. . 37 

151 75 75 3 . 52 

157 78 78 l. . 3 . 1 3 

163 fil. 79 3• 

167 83 8:3 1 
173 86 86 l . 43 

179 89 89 8 
181 90 90 2 . 32. 5 
191 95 95 5 . 19 

193 96 96 z.5 . 3 

.!.TI 98 95 l . 72 

199 99 99 32 . 11 

211 105 105 3 . 5 . 7 
l.23 111 111 2 . 5 . 11 

227 113 113 4 
l.29 114 114 l . 3 . 19 

233 116 116 2 2 • l.9 

239 119 116 7 · 1 7 
241 ll.O 120 . z.3. 3 . 5 
251 125 125 53 

257 128 128 21 

26 3 131 131 1 
l.69 134 134 2. • 67 

271 135 135 33 . 5 
l.77 138 134 z . 3 . l.3 
2.81 140 140 2 2 ·5 . 7 
l.83 141 141 3 . 47 

293 146 146 2. • 7 3 
307 153 153 3 2 • 1 7 

' 
311 155 145 5 . 31 

313 156 156 2 2 • 3 · 1 3 
317 158 158 l ·79 

' 331 165 165 3 . 5 . 11 

337 168 162. z.3 • 3 7 
347 173 173 1 
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349 174 170 2 . 3 . 29 

353 176 176 l 4 • 11 

359 179 179 1 

367 183 183 3 . 61 

373 186 181 2 . 3 . 31 

379 189 189 33. 7 

383 191 191 2 

389 194 194 2 . 97 

397 198 ' 194 2 . 3 2 • 11 

401 200 200 23. 52 

409 204 204 2 2 -3 . 17 

419 2.09 209 11·19 

421 210 206 2·3 . 5· 7 

431 215 215 5 ·43 

433 216 216 23. 33 

439 219 219 3 ·73 

443 2.21 221 13 . 1 7 

449 224 224 zs. 7 

457 228 228 2 2 ·3 . 1 9 

461 230 230 2 . 5 . 23 

463 231 228 3 . 7 . 11 

467 233 233 8 
479 239 239 l 

491 245 239 5 72 

499 2.49 249 3 . 83 

503 251 2.51 5 
509 254 254 2 ·127 

521 260 260 2 2 ·5 . 13 
523 261 261 32 ·29 
541 270 270 l . 33 . 5 
547 273 271 3 . 7 . 1 3 

557 278 278 2 ·139 
563 281 281 4 

569 284 284 21. · 11 
571 285 285 2·3 ·5 . 19 
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577 l88 l88 .z5 . 32 

587 l93 l93 l 

593 l96 l96 l 3 • 37 

599 l99 l99 l·l3·l3 

601 300 300 .z2. 3 . 53 

607 303 301 3 . 1 01 

613 306 306 l . 3 2 • 1 7 

617 308 308 l,2. 7 . 11 

619 309 309 3 . l 03 

631 315 315 3 2 • 5 . 7 

641 320 320 l.6. 5 

643 321 3ll 3 •107 

647 323 323 17 . 1 9 

653 326 326 l . 163 

659 329 3Z6 7 . 47 

661 330 330 2•3 . 5 . 11 

673 336 336 24 
• 3 . 7 

677 338 338 2 . 1 32 

683 341 336 11 . 31 

691 345 345 3 . 5 . 23 

701 350 347 2 . 52. 7 -
709 354 350 2 . 3 . 59 - -
719 359 359 l 

727 363 363 3 . 11 2 

733 366 366 l . 3 . 61 

739 369 369 32 . 41 

743 371 371 7 . 53 

751 375 3.71 3 . 53 

7~7 378 378 2. . 33 . 7 
761 380 380 2 2 . 5 . 19 

769 384 384 21 • 3 
773 386 386 2.. ·193 
787 393 393 3 . 131 

797 398 398 l . 199 

809 404 404 l 2 . 101 



74 

811 405 405 34. 5 
821 410 410 2. . 5 . 41 

823 411 411 3 . 137 

827 413 407 7 ·59 

829 414 414 2. · 3z • 2.3 

839 419 419 1 

853 426 424 2. . 3 . 71 

857 428 428 2.4 . 1 07 

859 42.9 429 3 • 11 • 13 

863 431 431 10 
877 438 438 2. . 3 ·73 
881 440 440 2.3 

• 5 · 11 
883 441 435 3z. 7z 

887 443 443 1 
907 453 453 3 . 151 

911 455 455 5 . 7 . 1 3 

919 459 459 33 • 1 7 

92.9 464 464 2.4 ·2.9 

/. 
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Appendix II - Polynomial Calculations 

By the results found in Chapter III, it is evident that polynomial 

calculations over GF(2) deserve some attention. The two most useful 

algorithms are the Euclidean algorithm for the computation of a greatest 

common divisor and the method of Berlekamp [4] which is used to factor 

polynomials over finite fields. Both of these algorithms are simple to 

apply over GF(2) because of the binary nature of digital computers, 

particularly if bit-processing is available. 

Using IBMAP to achieve bit-processing, a program was written 

for an IBM 7094 to compute H (x) by Theorem 3.7 for 929 :s:;: q :s:;: 4703, 
q 

q prime, p odd. The program was used to check the non-singularity of 

M for 929 :s:;: q :s:;: 4703, q prime, p prime. There are 43 such cases. 
q 

Of these 43 cases, 13 cases satisfy the hypotheses of Theorem 3 .5 and 

hence M is non-singular in these cases. The remaining 30 cases 
q 

required approximately 13 minutes of computer time. In each case it 

was found that M is non-singular. The same program was subsequently 
q ! 

expanded (1200 statements) to include a method for factoring H (x) in 
q 

the case of p odd. The method used was an unpublished method due to 

Robert J. McEliece. McEliece 1 s method is essentially the same method 

as Berlekamp' s but apparently was found independently. The program 

was designed to compute the exponents of each irreducible factor. The 

computer time required was considerable. For example, the cases 

p = 245, 375, 441 required 1 hour, 9 minutes. The following tables 

summarize the results of all computations made with H (x). Polynomials 
q 

are expressed by writing down their coefficients in octal notation. For 

example, the polynomial x3 + x+l is denoted by 13 octal, which is lOll binary. 
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Polynomial Calculations on H (x) 
q 

matrix H (x)t factors of exponents 
p nullity q H (x) t of factors q . 

81 2. 7 7 3 

155 10 2.303 75, 67 31. 31 

2.45 6 177 13. 15 7,7 

2.7 3 2 7 7 3 

303 2 7 7 3 

341 5 73 73 31 

375 4 2.3 23 15 

413 6 177 13, 15 7,7 

426 2 7 7 3 

441 6 103 103 63 

tPolynomials are expressed by writing down their coefficients in octal 
notation. For example, the polynomial x3 + x+ 1 is denoted by 13 octal, 
which is 1011 binary. 
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Index of Notation 

multiplicative group mod d of least positive residues 
prime to d, d odd 

Bd 

o .. 
1J 

E 

F 

<P (d) 

g. c. d. 

GF(2) 

Ad/ ( 2), group of cosets of ( 2) in Ad 

Kronecker delta 

exponent of L. mod d, d odd 

field F(~, .. . , .;-;;-) 
p 

field o (s+s- 1
) 

Euler phi function 

reciprocity map 

mapping from U/U 2 to G(E/F) 

greatest common divisor in GF(2)[x] 

Galois fi~ld of two elements 

G(L/K) Galois group of L over K 

Gp(L/K) decomposition group at p 

GF(Z)[G(F/Q)] group ring of G(F/Q) over GF(2) 

H (x) see definition 
q 

kp completion of field K at prime p 

K* 

N 

non zero elements of field K 

see definition 

matrix of cyclotomic signatures 

see definition 

units in F which are norms 

absolute norm of prime p 

local norm group 

norm map 

(q ; l)/ 2 

p.2.8 

p.44 

p.53 

p.42 

p. 32. 

p. 31 

p.8 

p.16 

p. 9 

p.56 

p.44 



p' 'l 
q 

Q 

s 

sign (a) 
CT 

sgn (a) 
CT 

sgn(µ) 

sgn(µ) 

T 

u . 
1 

v 

x 

z 

1·1 

[·] 

« . » 
(·' ->p 

(-:-- ) 
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Index of Notation - cont'd. 

primes 

odd rational prime integer 

field of rational numbers 

field of real numbers 

positive real numbers 

units in F which are squares 

CT - sign of a 

CT - signature of a 

see definition 

see definition 

units in F which are totally positive 

cyclotomic unit 

group generated by cyclotomic units 

dual group of u/uz 

group of units in F 

dth cyclotomic polynomial 

primitive qth root of unity 

primitive dth root of unity 

the cos et x + (xP+l) 

rational integers 

ordinary absolute value or set cardinality 

least positive residue mod q 

see definition 

Hilbert symbol 

Legendre symbol 

p.9 

p.8 

p.8 

p.10 

p.30 

p.9 

pp.7-8 

p. 59 

p.54 
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