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Abstract

Let F = Q(¢+ 1’,-1) be the maximal real subfield of the cyclo-
tomic field Q(¢) where { is a primitive qth root of unity and q is an
odd rational prime. The numbers v;=-1, Uy = (gk- g—k)/(g—g"), k=2, .. 5 D5
p= (q-1)/2, are units in F and are called the cyclotomic units. Inthis
thesis the sign distribution of the conjugates in F of the cyclotomic units
is studied.

Let G(F/Q) denote the Galois group of F over Q, andlet V
denote the units in F. For each o€ G(F/Q) and p€V define a mapping
sgn(r: V —- GF(2) by sgno_(u) =1 iff o(u)< 0 and sgno_(;,c) =0 iff
o(p) > 0. Let {o;, ..., Up} be a fixed ordering of G(F/Q). The matrix
Mq = (sgnm(ui) ), i,j =1, ..., p is called the matrix of cyclotomic sig-
natures. The rank of this matrix determines the sign distribution ofthe
conjugates of the cyclotomic units. The matrix of cyclotomic signatures
is associated with an ideal in the ring GF(2)[x] / (xp+ 1) in such a way
that the rank of the matrix equals the GF(2)-dimension of the ideal., It
is shown that if p = (q-1)/2 is a prime and if 2 is a primitive root
modp, then Mq is non-singular. Also let p be arbitrary, let ¢ be
a primitive root mod q and let L = {i I 0 €£1i< p-1, the least positive
- residue of li mod q is greater than p} . Let Hq(x)EGF(Z)[x] be

defined by H_(x) = g.c.d. ((iGZin) (x+1)+1, XP+1). It is shown that the
rank of Mq equals the difference p - degree Hq(x).

Further results are obtained by using the reciprocity theorem of
class field theory. The reciprocity maps for a certain abelian extension
of F and for the infinite primes in F are associated with the signs of

conjugates, The product formula for the reciprocity maps is used to
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associate the signs of conjugates with the reciprocity maps at the primes
which lie above (2). The case when (2) is a prime in F is studied in
detail. Let T denote the group of totally positive units in F. Let U
be the group generated by the cyclotomic wunits. Asume that (2) is a
prime in F and that p is odd. Let F denote the completion of F

@)

at (2) and let V(z) denote the units in F(z)' The following statements

are shown to be equivalent. 1) The matrix of cyclotomic signatures is
non-singular. 2) UNT =U2. 3)UNFZH=UL 4 V(Z)/V(Z?‘) =
Z ® ¢ 2 z
<U1V(Z)>® ©) (vp V) ©) (3Vey )
The rank of Mq was computed for 5 < g <€ 929 and the results
appear in tables. Omn the basis of these results and additional calcula-

tions the following conjecture is made: If q and p = (q-1)/2 are both

primes, then Mq is non-singular.
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Chapter I
Introduction

This thesis is a study of the distribution of the signs of the
conjugates of the cyclotomic units! in the maximal real subfield of the
qth cyclotomic field?, g a prime. My interest in this subject arose
from a problem considered by O.Taussky [13]. The idea of studying
the distribution of the signs of the conjugates of the cyclotomic units for
the problem of Taussky is due to E, C. Dade.

In Chapter II we introduce some preliminary material and then
proceed to associate with the p = (a-1)/2 cyclotomic units a pXp
matrix whose entries lie in the Galois field of two elements, GF(2).
This matrix is called the matrix of cyclotomic signatures. A similar
association is found in Hasse [8], p. 27. The rank of the matrix of
cyclotomic signatures determines the distribution of the signs of the
conjugates of the cyclotomic units. It is shown that if the rank of the
matrix of cyclotomic signatures is p, i.e. the matrix is non-singular,
then every unit in the maximal real subfield F of the qth cyclotomic
field which is totally positive is the norm of a unit in the qth cyclotomic
ficld3, This fact gives a criterion needed in Taussky [13]. We then
associate with the matrix of cyclotomic signatures a submodule of the

group ring of the Galois group G(F/Q) over GF(2) in such a way that

1 The units defined in this thesis are not identical to the "Kreiseinheiten"

in Hilbert [9] but generate the same group and hence the same sign
distribution.

2 The field of qth roots of unity over the rationals.

3 It can also be shown that if the matrix of cyclotomic signatures is

non-singular, then the class number of F is odd (see Hasse [8],p.27).



2
the GF(2)-dimension of the submodule equals the rank of the matrix of
cyclotomic signatures (Theorem 2.6). Also it is shown that this sub-
module is a G(F/Q)-submodule. We conclude Chapter L. by exhibiting
a simple procedure for calculating the matrix of cyclotomic signatures.

In Chapter III we use the fact that G(F/Q) is cyclic ¢f order P
to obtain a GF'(2)-module isomorphism of the group ring of G(F/Q)
over GF(2) and the GF(2)-module GF(2)[x]/ (xp + 1), x indeter-
minate., Then there exists an Hq(x)e GF(2)[x] such that the matrix of
cyclotomic signatures is associated to the ideal (l'—Iq(§)> , X=x+ (xp+1> 5
and such that the rank of the matrix equals the GF(2) - dimension of
the ideal. We may assume that Hq(x) divides xP~1. Then the ideal
structure of the ring GF(2)[x] / <xp+ 1) is studied. Finally we obtain
an expression (Theorem 3.4) for the GF(2)-dimension of any ideal in
GF(2)[x] /(xp—l- 1). This expression is then used to prove that if p is a
prime and if 2 1is a primitive root mod p, then the matrix of cyclotomic
signatures is non-singular (Theorem 3.5). Chapter III is concluded by
determining an explicit means for calculating H (x) and hence the ideal
corresponding to the matrix of cyclotomic signatures. It follows from
other results in Chapter III that the rank of the matrix of cyclotomic
signatures equals p-degree I—Iq(x).

Whereas the results in Chapters Il and III are obtained by rather
elementary methods, Chapter IV lays the groundwork for the use of
deeper results. I am particularly indebted to E. C. Dade for the ideas
found in this chapter. The first part of Chapter IV is devoted to intro-
ducing the preliminary material necessary for the statement of the

reciprocity theorem of class field theory (Theorem 4.1). Then the basic
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idea is to consider the abelian extension E of F which is given by
adjoining to F the square roots of the cyclotomic units, and then relate
the corresponding reciprocity maps qu for infinite primes p in F to
the signs of conjugates (Lemma 4.5). Let U denote the group generated
by the cyclotomic units and let T be the group of all totally positive units
in F. We have from Corollary 2.6.1 of Chapter II that the number of
even invariants of the elementary abelian quotient group U/uNT equals
the rank of the matrix of cyclotomic signatures. It is shown that the
- quotient group U/UMNT is isomorphic to the product of the decomposition
groups for E/F at all of the infinite primes in F (Theorem 4.2). Hence
the number of even invariants of the latter group equals the rank of the
matrix of cyclotomic signatures. Then the ultimate object of this chapter
is attained. The product formula of the reciprocity theorem is used to
shift the various criteria from infinite primes to primes in ¥ which lie
above (2). We obtain the result that every totally positive element in U
is a square in U, i.e. UM T = U?%, if and only if the homomorphism

®: U/U%2— G(E/F) defined by ®uU?) = ¢ (u) is a2 monomorphism,

| }) l2) P
Finally a property of reciprocity maps is used to reduce the calculation
of reciprocity maps for E/F to the calculation of the Hilbert symbol in
F (Corollary 4.4.1).

In Chapter V we assume that (2) is a prime in F. This
assumption simplifies the criteria from Chapter 1V, Having reduced the
criteria to statements about the Hilbert symbol at (2) on F we are led
to the study of binary quadratic forms on F(z)’ the completion of F at

(2). The first part of Chapter V is devoted to preliminary results on

quadratic forms. In particular, in the case of p odd, explicit
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representatives for the quotient group of 2-adic units in F

(2)

to the subgroup of their squares are determined. Then several calcula-

with respect

tion lemmas are proved. These results are applied to the case q=7
and are used to compute the coset representatives for the cyclotomic
units, This example then motivates the main results of the chapter.

Assume that p is odd. Every unit in U which is a 2-adic square in

F(z) is in U? if and only if the quotient group of 2-adic units in F(z)

with respect to the subéroup of squares equals the direct sum of the sub-
groups generated by the cosets containing the cyclotomic units and the unit 3
(Theorem 57). Itisshownthatthe homomorphism &:U/U2— G(E/F) is a
monomorphism if and only if every unit in U which is a square in F

(2)
is in U?, i.e. UmF(ZZ)= U? (Theorem 5.8). These theorems have
several consequences (Corollary 5.8.1), among them the result that in
the case of p odd, the matrix of cyclotomic signatures is non-singular
if and only if every unit in U which is a 2-adic square in F(z) is in

fact in U9,

The rank of the matrix of cyclotomic signatures was computed on
an IBM 7094 for all primes q, 3 € q € 929 using the method given at
the end of Chapter II. The results of this computation are found in
tables in Appendix I, It happens that for these q (3 € q < 929) when-
ever p = (q-1)/2 is a prime then the matrix of cyclotomic signatures is
non-singular. Using results in Chapter III the cases for 929 <q <4703,
q prime and p=(q-1)/2 prime were computed and in each case the
matrix of cyclotomic signatures was non-singular. The calculations for
these cases are explained in AppendixIl. We have the following

Conjecture: If g is a prime and p= (q-1)/2 is a prime then the

matrix of cyclotomic signatures is non-singular,
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Chapter II
The Matrix of Cyclotomic Signatures

The object of this chapter is to introduce preliminary material,
define the matrix of cyclotomic signatures and prove a theorem which
exemplifies its significance. We conclude the chapter by giving a pro-
cedure for obtaining the matrix of cyclotomic signatures.

Throughout let q denote a rational odd prime, let p=(q-1)/2
and let [ denote a primitive qth root of unity. We consider the field
Q(z) where Q denotes the field of rational numbers. The field Q(f) is

called the qth cyclotomic field, We have the following theorem.

Theorem 2.1. The qth cyclotomic field Q(z) is a Galois extension of

Q with a Galois group G(Q(Z)/Q) which is cyclic of order q-1.
Proof; See Weiss [15], p.255.

By Theorem 2.1 the group G(Q(g)/Q) is isomorphic to the multi-
plicative group G.’E‘(cj‘)>=< of non-zero residues mod q. Therefore
G(Q(2)/Q) contains an element ¢ of order 2, namely the element whose
image in GF(q) is -1. The element ¢ is unique, for if k is a rational
integer and k% =1 mod q, then k=1 or k= -1modgq, Therefore ¢ is
the automorphism defined by complex conjugation. We shall denote the
complex conjugate of a nurmnber a by a. If F is the fixed field of the
subgroup generated by o, then by Galois theory F is a cyclic extension
of Q of degree p= (q-l)/z which is contained in Q(f) and which has a
Galois group G(F/Q) isomorphic to the quotient group G(Q(g)/Q)/<(r> .
Furthermore F is a real field; it is the maximal real subfield of Q(r),
i.e. F=Q({ + ¢). The automorphisms of F over Q are obtained by

restricting the automorphisms of Q(f) over Q to F, for under this
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restriction the two elements of any coset of the subgroup (¢) in
G(Q(2)/Q) may be identified. In the following it will be assumed that
automorphisms of F over Q have been obtained in this way.

Corollary 2.1.1. The maximal real subfield F =Q({+ ;'1) of the gth

cyclotomic field is a Galois extension of Q which has a Galois group
G(F/Q) which is cyclic of order p=(q-1)/2.
Let Z denote the ring of rational integers.,

Theorem 2.2. The numbers 1,¢, ..., gq—Z form an integral basis, a Z-

basis, for the ring of algebraic integers in Q(Z).
Proof: See Weyl [16], p.81.

Corollary 2.2.1. The real numbers ¢ + z;_,l — gp-;— g_p, p=(q-1)/2, form

an integral basis for the ring of algebraic integers in F =Q({+ ?;—1).
Proof: Theorem 2.2 implies that ¢, ..., gq'l form an integral basis for
the ring of algebraic integers in Q(Z) because { is a unit in this ring.
If a 1is an algebraic integer in Q(Z + ;’1), it is one in Q(f). Therefore

a has a unique representation

@ =altal®t cta 4, a.eZ
Since O is real, a = 0. Hence
aylt+a, L2 + -0 + 31 97 = a, §_1+ G X <y % C.
Since L. L2 5 swe s ?;q-l form an independent field basis for Q(r) we
conclude that
a; = a.q._1 y By = aq—z ¢ sweg ap = aq-p .

Hence

a=a(¢+ g'l) EREM F RN ) TR +ap(;p+ Py .
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Therefore we have a basis for the ring of algebraic integers in
QL + ;—1), We now describe some units in this ring., We need the
following

Lemma 2.1. If k is a rational integer such that k # 0 mod q, then
k
1-¢)/ @-r)

is a unit in Q(7).
Proof: See Weiss [15],p. 267.
It is clear that gk is a unit in Q(g¢) for any ke Z. Let k be a
rational integer such that k # 0 mod q. Then 2k # 0 mod q. Hence

2k

(¢ -1/ (¢-1)
is a unit in Q(¢).
Also
£?-1
=1
is a unit in Q(¢).
Therefore
g g g™
S S A a

is a unit in Q(Z) for every ke Z for which k # 0 mod q. But these

units are real, therefore they are units in Q(7 + g—l)_ The real units

v; = -1

Y r-¢"1



are called the qth cyclotomic units.

Let o be an element of G(F/Q), the Galois group of F:Q(§+g_1)
over Q, andlet a be an element of F' Let | - | denote ordinary

absolute value. Then we call

sign0 (a) = TUU_&))I

the ¢-sign of ao. If {(rl 5 05 5w ,crp} is a fixed but arbitrary ordering

of G(F/Q) then we call the p-tuple

(51gnvl(a), 51gn0_2(a), vee s 51gn0p(a) )

the G(F/Q)-sign of a. Andif p is the map from {1,-1} to GF(2)

defined by p(-1) =1, p(l) = 0, then we call
sgno_(a) =p 81gn(r(a)

the og-signature of a. We call the p-tuple
(p sign. (@), ..., psign_ (a) )

p

the G(F/Q) - signature of @. The sign and signature functions defined

above exhibit the sign behavior of the conjugates of o . In particular the

p X p matrix

where

i Sgncrj(ui)’l,J =1, eeus P

exhibits the sign structure of the cyclotomic units. We call M(1 the

matrix of cyclotomic signatures,.




9
Before we describe the significance of the matrix M we shall
need to know more about the units in Q(T + ;'1)_ Denote the units in
QT+ g") by V. As a result of the Dirichlet Unit Theorem (Weiss [15],

p.207) we have

Theorem 2.3. The group V of units in the field F =Q(¢+ l;_l) is the
direct sum of the subgroup generated by -1 and p-1 infinite cyclic
subgroups.

If we apply the Dirichlet Unit Theorem to Q(Z), we find that the

same result holds if -1 is replaced by . We also have

Theorem 2.4. If ¢ is a unitin Q({) then there exists a rational

integer k and a real unit B8 in Q(Z+ g"l) such that

Proof: See Borevich and Shafarevich [5], p.158.

Let U denote the subgroup of V generated by the cyclotomic

units s V5 5 wees Ve
Ve V2 p
Theorem 2.5. The subgroup U of V is a subgroup of finite index.

Proof: See Borevich and Shafarevich [5], p.362 or Bass [3]. Recall

that we are assuming that q is a prime,

An element p €V is said to be totally positive if and only if for

all automorphisms 0€G(F/Q), ocu)> 0. An element p€V is said to be

a norm if and only if there exists a unit v in Q(g) such that yu = vv,

An element gy in V is said to be a sguare if and only if there exists a

unit v in V such that u:(v)zn, Let

T = {u|u€eV, p is totally positive }
NZ{N‘M‘iV,u isanorm}
S = {“ erV, p o is a Square} .
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Lemma 2.2. The sets T,N and S are multiplicative subgroups of V
and SC NC T.
Proof: It is clear that T,N and S are subgroups of V. Moreover it
is clear that SC N. If u€N then u =vv. If c€G(Q(L)/Q) then
ou = (ov) (cv)> 0. Therefore u€T., Hence NC T,
Lemma 2.3. S =N,
Proof: We need only show that NC S. If u€N, then there exists aunit
v in Q(z) such that “ =v;.‘ By Theorem 2.4, there exist a
rational integer k apd aunit 6 in QT+ Z;_l) such that v=gk6 . Hence
B = ng -;'ke = 0%. Hence p€S. Therefore N C S.

Naturally we might ask if it ever happens that S=N=T., We
shall find a condition on the matrix Mq which implies S=N=T,

Consider the group ring GF(2) [G(F/Q)] of the Galois group‘of
F over Q over the Galois field of two elements., Let sgn be the

mapping from the units V to GF(2)[ G(F/Q)] defined by

sgn = sgn .o EV,
gn) GEGZ(F/Q) gn_ () "
Lemma 2.4. The mapping sgn: V — GF(Z)[G(F/Q)] is a homomorphism
of groups and ker sgn =T,
Proof: We need only prove for each o€ G(F/Q) that the mapping
sgno_:v — GF(2) is a homomorphism, But sgn_ is a homomorphism of

groups iff signo_:V-—-> {+1, —1} is a homomorphism, We have

. _ oy pz) _ o) ouy) e pud .
sign;ikz) = fobipz)| — ow)] - Jolwa)| ~ sign)sign ).

Also p€eT iff signc(u) =1 for all c€G(F/Q). Hence p€eT iff sgng(u)zo

for all c€G(F/Q). Therefore pu€T iff sgn@u)=0, iff u €ker sgn,
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Theorem 2.6. The dimension of sgn(U) as a vector space over GF(2)

cquals the rank of the matrix Mq of cyclotomic signatures,

Proof: Let {»(rl 5 sy (Ip} be an ordering of G(F/Q). The matrix M
has rank r over GF(z2) iff it has exactly r independent rows, i.e. iff
r of the p-tuples

(sgng1 W) .ens sgngp(ui)),wl, wwy P

are linearly independent over GF(2). Since oy,... ,Up form a free GF(2)-
basis for GF(2) [G(F/Q) 1, exactly r of the above p-tuples are linearly
independent iff r of the elements

(Ug) -0y 4 ==+ + sgn_ (ﬁi)-o , i=1,

sgn
o b P

oy D
1

are linearly independent over GEF(2). Therefore the rank of the matrix
Mq is r 1iff the elements sgn(ui), i=1,...,p generate a vector space
over GF(2) of dimension r,

Corollary 2.6.1. The number of even invariants of the group U/Um T

equals the rank of the matrix of cyclotomic signatures.
Proof: By Lemma 2.4, we have the following isomorphism of vector

spaces over GF(2). ¢

U/UNT= sgn(U)

Hence by Theorem 2.6, the GF(2)~- dimension of U/U(\ T, i.e. the
number of even invariants, equals the rank of the matrix of cyclotomic

signatures.

Theorem 2.7. The homomorphism sgn:V — GF(2) [G(F/Q)] is an

epimorphism iff S=N=T,
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Proof: Since S=NCT, S=N=T iff [V:S] = [V:T], i.e. [V:T]= 2P by
Theorem 2.3. Assume that sgn:V—-GF(&)['G(F/Q)\) is onto. Then sgn

induces an isomorphism of groups,
V/T = V/ker sgn = GF(2)[G(F/Q)].

But the order of the additive group GF(Z)[G(F/Q)] is 2P because
G(F/Q) has order p. Therefore (V:T] = 2P, and hence S=N=T,

Conversely, assume [V:T] = 2P, By Lemma 2.4 sgn induces a mono-

morphism of groups,
V/T — GF(2)[G(F/Q)] .

Hence the image of V/T under this monomorphism is a subgroup of the
additive group GF(2)[G(F/Q)] which has order 2P, that is, GFQ[G(FE/Q)]
itself. Therefore sgn:V — GF(2)[G(F/Q)] is onto.

Corollary 2.7.1. Let W be a subgroup of V. If sgn|W:W—GFQ)[GE/Q)]

is an epimorphism, then S=N=T,
Proof: If sgn|W:W—GF(2)[G(F/Q)] is onto, then sgn:V—GF(2)[G(F/Q)]
is onto, hence S=N=T by Theorem 2.7.

We can apply Corollary 2.7.1 to the subgroup U generated by

the cyclotomic units. Moreover we have

Corollary 2.7.2, If the matrix Mq of cyclotomic signatures is non-
singular over GEF(2), then S=N=T,

Proof: If Mq is non-singular, then the GF(2)- dimension of sgn(U) is
p by Theorem 2.6. Hence sgn!U is an epimorphism. Hence S=N=T
by Corollary 2.7.1.

Given the generators of any subgroup of finite index in the group
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of units V we could define a matrix of signatures and prove a result
analogous to the above corollary. The advantage of using the cyclotomic
units is that the associated matrix of signatures can be calculated easily.
Before we show how the matrix of cyclotomic signatures is calculated we
prove some results which are exploited in the next chapter.

Theorem 2.8. Let W be a subgroup of the group of units V. If for all

c€G(F/Q), o |W defines a multiplicative automorphism on W, then
sgn(W) is a G(F/Q) - submodule of the group ring GF(2)[G(F/Q)].
Proof: We must show for all O‘EG(F/Q) and weésgn(W) that o-w is in
sgn(W), where the multiplication is multiplication in GF(Z)[G(F/Q)] .

Let w =sgn(w), weW, and let o‘EG(F/Q). We have,

0"W=0"Sgn(w): o Z sgnT(w)-'T

TeG(F/Q)
= z sgnT(w) oT = Z sgna_l 1_(‘-0) T
T€G(F/Q) T€G(F/Q)
= z sgn_ -, (w) T= Z sgn,r(a_l(w)>- s sgn(cr_l(w)>.
€ G(F/Q) T€ G(F/Q)

Since U'IW is an automorphism of W, o ! (w)eW. Hence ¢-we€sgn(W),

Corollary 2.8.1. Let V be the group of units in F. Then sgn(V) is a

G(F/Q)-submodule of GF(2)[G(F/Q)].

Proof: If oe¢G(F/Q) then 0|V is an automorphism of V. Apply
Theorem 2.8.

Corollary 2.8.2. Let U be the subgroup of the group V which is

generated by the cyclotomic units. Then sgn(U) is a G(F/Q)— submodule
of the group ring GF(2)[G(F/Q)].

Proof: By Theorem 2.8 it is sufficient to show that o(U)C U for all
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o€ G(F/Q). Therefore it is sufficient to show that O‘(Ui)EU for all
c€G(F/Q) and for all i=1,...,p. Assume c€G(Q(f)/Q). Then there

exists je€ Z,0 < j < q-1 such that o(7) = QJ. We have

o(v,) = o(-1) = -1,
If 2 <1i=p, then
i -i ij_-ij

There exist (uniquely) keZ, 0 <k < p and 5=41 or -1 such that

k= 61j modgq. Then

6ij - 6ij k .-k -t _
O'(Ui) =6 4 F L_J =6 L ;_1 "% - = 6UkUj '
el 4 L~ § '~ %
Therefore O‘(Ui)G U for all o€ G(F/Q) and all i=1,...,p.

We now show how to calculate Mq' We are interested in the
rank of Mq. Therefore we are not interested in the ordering of the rows
or columns of Mq' Hence we may choose any convenient ordering of the
Galois group G(F/Q). The elements of G(F/Q) can be chosen as coset
representatives of the cosets of the subgroup generated by complex
conjugation in G (Q(g)/Q). Each element of G (Q(g)/Q) is determined
by its action on { and two distinct elements are in the same coset if

their actions on { are complex conjugates, Therefore we can write

G(F/Q) as

{‘71 ,Uz,...,ﬁp}

where crj((,) =; I;J, i=1,...,p. We must choose a particular primitive

gth root of unity. Hence for the purpose of calculation let
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£ = ezm/—_—1 /a = cos(2n/q) + V-1 sin(27/q) .

Then for k=2,...,p,

e e&w\/—l k/q_e‘z"”ﬁ k/q _ sin(2kn/q)
K ez.';r«/-—l ] e—Zﬂ\f—_i sin(27/q)

Hence for k=2,...,p and j=1,...,p we have

o2mV-1 jk/a_ -2mV-1 jk/q

o.(v,) = = _ sin(2mjk/q)
K emV i/ -2nV L ifa sin(2mj/q)

We define a function [[-] : 2 -*{0,1, ,q—l} by
[x] =j for keZ, je{0,1,...,q9-1}
if and only if
k = j mod q.

That is, [ k]] is the least positive residue of k mod q. Let n be an
arbitrary integer such that n # 0 mod q. Then the sign of sin(27n/q)

is determined by the least positive residue of n mod q. Namely
sin(27n _
|sin(27n/q) | ~

Therefore for k=2, ...,p and j=1,...,p

+1 if 0<[[n]l <p

-1 if p<n] <q-1 .

S +1 if o<[jk] <p
sign  (v,) =
oK | Lo pe ] < g1

Hence for k=2,...,p and j=1,...,p
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0 if 0<[jk]l <sp
sgn (v, ) =
ol 1 if p<[ik] < q-1

Also it is clear that sgno_ (v;) =1 for j=1,...,p. The matrix of cyclo-

J
tomicsignatures Mq is given by

i

MCl = (mkj) where mka sgnoﬁ(uk), j., k=1, ...,p.

Hence
m1j=1 for j=i,...,p
0 if 0 < [jk] <p

m, .= for
J 1 if p <[jk] <q-1

Lysiw 5 P
]-s cse s P

k
J

We are interested in the rank of Mq' If we add the first row of M to
each successive row then we obtain a matrix M which has the same

rank as Mq' The matrix Mc'1 can be expressed easily.

M =(m.j) where

; 1 if [ij] <op

X o if [ijl > p
1
The computation of M; and M, follows,

Consider the following multiplication table of least positive

residues mod 7.

11213
1114 2)3
2|1 2|46
313612
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Using the definition of M, we have

[
et
fa—y

M7:

o
—
o =
¥

and

M7 =

—
il

1
Clearly M; and M, have rank 3 over GF(2). The matrix M:il and
its rank over GF'(2) were computed for all primes q, 3 < q < 929. The

tables of rank appear in Appendix 1L
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Chapter III
The G(F/Q) Submodule sgn(U) of the Group Ring GF(2)[G(F/Q)]

as an Ideal in the Ring GF(2) [x]/ (xp+ 1).

By Corollary 2.8.2 of Chapter II, the subring sgn(U) of
GF(2)[G(F/Q)] is a G(F/Q) - submodule, The group G(F/Q) is a cyclic
group of order p. Let o be a generator of G(F/Q), so that
G(F/Q) = (c). Let x be an indeterminate. The GF (2)-homomorphism
from the polynomial ring GF(2) [x] to GF(2) [G(F/Q)] which is induced
by x— ¢ is an epimorphism of GF(2)-modules. The kernel of this
epimorphism is the ideal (xp+ 1) in GF(2) [x]. We therefore have the

following isomorphism of GF(2)-modules,

GF(2)[x] / (xP+1) =2 GF(2)[G(F/Q)].

Furthermore under this isomorphism ideals in GF(Z)[x]/(xp+ 1) corre-
spond uniquely to G(F/Q)-submodules in GF(2)[G(F/Q)]. By Theorem
2.6 of Chapter II we are interested in the GF'(2)-dimension of the G(F/Q)-
submodule sgn(U). In this chapter \%/e first study the ideal structure of
GF(2) [x]/(xp+ 1). Then we find an expression for the ideal in

GF(2)[x]/ (xp+ 1) which corresponds to sgn(U). Also we find an
expression for its GF(2)-dimension.

It is not difficult to theoretically determine the ideal structure of
the ring GF(Z)[X]/ (xp+ 1). However, for specific cases it is difficult to
actually obtain the structure by calculation., We are interested in both
aspects. We study the former aspect first (see Jacobson [10], p.9).

Let

xP+1= §(x)f(x) -+ -f (%)
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be a complete factorization of xP+1 into relatively prime factors in
GF(2)[x], so that each factor is irreducible or a power of an irreducible

polynomial in GF(2) [x]. For i=0, ..., h let

/N

£, (x) = (xP+ 1)/fi(x) )

Then

g.c.d. (F(0), o, T =1 in GF(2)[x].
Hence there exist polynomials [f,(x), ..., Ih(x) in GF(2)[x] such that
Lo () To) + -+ 0 + 2, (0T () = 1.

For i=0, ..., h, let

Let

x=x+(xF+1) .

The mapping k(x) — k(?{) for any polynomial k(x) defines the natural

epimorphism from GF(2) [x-] to GF(2 [x[/(x +1). Also we can write
2)[x]/(xP+1)y = GF(2)[ x ] .

We have

Lemma 3.1. The ring GF'(2) [;c:l is equal to the direct sum of the ideals

<ei(§)> , i=0, ..., h. That is,

F(2)[x] = (o) @ -+ @ (e, ().

Proof: We have eol(x) + = -+ + eh(x) 1, hence

1.

1l

eo(X) + -+ - + ey (%)
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Therefore if k(;;)e GF(2) [;] , then
k(x) = k(%) & (%) + ==+ + k(x) e (%).

Hence

GF(2)[x] = (&(X)) + -+« + (& (%).
If i+ j, xP+1 divides e;(x) e;(x) over GF(2)[x]. Therefore
e, (x) ej(;l) =0 if i# j.

Hence, if we multiply the relation eo(;c) +oee 4+ eh(;) =1 by ei(;c) .

0 <i<h, we obtain

ei(x) ei(x) = e.(x) .
Summarizing, we can write

ei(x) ej(x) = §.. e.(x)
where 61j is the Kronecker delta, If

Io(x) + *° + X (x) = 0

where ki(;) is an element of (ei(;c) ), then there exist elements ki'(;)
in GF(Z)[;{] such that
~ 1 ~ ~

ki(x) = ki(x) ei(x).

Hence,
1~ ~ 1 ~ ~

ko(x) (x) + «++ + Kk (x) e (x) = 0.

Then multiplying by ei(;) and using the above relations, we get that

k, (%) = k;(;?) e, (%) = 0,
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Hence (eo(;)> + s+ (eh(;)) is actually direct.
We see by the proof above that the elements eo(;), — eh(;)
form a sct of orthogonal idempotents for GF(2) [;] . We now classify
the ideals <ci(;)> for 1i=0, ..., h.

Lemma 3.2. Let i be an integer such that 0 € i < h, Then the ideal

<e.1(:»~<)) considered as a subring of GF(2) [;] is isomorphic to the ring
GF (2) [x]/ (£, (x) ).

Proof: Consider the mapping T.: (e,(x)) — GF(2)[x]/(f;(x)) defined by
T (g(x)e;(x) ) = g(x) + (£ (x))

1 i B

where g(x) is an element of GF(Z)[x] . We show that Ti is an iso-

1
morphism, Ti is well-defined: Let g(x), g(x)e GF(2)[x]. The relation
~ ~ I ~ ~
g(x) e;(x) = g (x) e, (x)

implies that x® +1 |(g(x) - g'(x) ) e;(x), hence £(x) | (g(x)-g (x)),

hense gle) = 8 =)@ (f,(x)). Therefore
gx) + (L)) = g (x) + (£,(x)) .
T, is a homomorphism :
T, (g(X)e; (%) + g' (¥)e, (%)) = T,((g(x) + g (x))e;(x) = (g(x) + g' () + (£;(3))
= g(x)+ (£ (x) + g (x)+ (£(x)) = T,(g(x) e, (x) + T, (g' (x) e;(x)).
T, is onto: If g(x)+ (f;(x))e€ GF(Z)[x]/(fi(x)> , then
T, (g(x) e;(x)) = g(x) + (£,(x)).

T, is one-to-one: If Ti(g(;;) ei(§)) = 0, then f (x)|g(x). Since
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o~ - JP . : = o
fj(x) fi(x) = x"+1, we then have that x"+1|g(x) ei(x), i.e. g(x)ei(x)_ 0.
Therefore Ti is an isomorphism,

Combining these lemmas we have

Theorem 3.1.

GF(2)[x]/ (xP+1) 2GF(2)[x]/(%(x) @ - - - @ GF(2) [x]/ (£, (x)).

Proof; Lemma 3.1 and Lemma 3.2,
The projection from GF(2) [x]/ (xp +1) to the summand

GF(2)[x]/(f,(x)) is given by
g(x) + (xP+1) — glx) + (£(x))

where g(x) is in GF(2) [x:] . Hence the ideal structure of

GF(2) [x]/(xp-i— 1) is determined by the ideal structure of GF(Z)[x]/(fi(x»
where fi(x) is irreducible or a power of an irreducible element in
GF(2) [x] . The ideal structure of such a ring is easily determined by a

general result,

Lemma 3.3. Let k(x)eGF(2)[x]. Let x =x+(k(x)). If (g(x)) isa
non-zero ideal of the ring GF(2)[x ] = GF(2)[x]/(k(x)), then there is a

1
unique factor g (x) of k(x) such that

(2(x)) = (g () .

Proof: We prove the existence. Let g(x) be any pre-image in GF(2)[x
1
of g(x). Let g (x)=g.c.d. (k(x), g(x)) over GF(2)[x]. There exist
!

m(x), n(x) in GF(2)[x] such that m(x) g(x)+n(x)k(x)=g (x). Hence

g'(xk) = m(xk) g(xk).
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Therefore
1

(g (5)) C (8lx)) -

However, g'(x) g(x), and therefore
(8 (5)) 2 (0g))
Hence
(g () = (elx))
Now we prove uniqueness, Suppose there exist two factors g'(x), g"(x)

of k(x) such that

1 n

(g (%)) = (g8 (%)) = (8(x)) .
Then there exists m(x) in GF(2)[x] such that

g'(x,) = mix g () .

Hence

g (x) + (k(x)) = m(x)g (x) + (k(x)) .
There exists n(x) in GF(2)[x] such that

g'(x) = m(x)g (x) + n(x)k(x) .

1 1 1
By assumption g (x) Ik(x). Hence g(x) ‘ g l(x). In a similar way we can
n 1 1 "
show that g (x)|g(x). Hence g(x) = g (x).
Let ¢(x) be an irreducible element in GF(2)[x], let n be a

positive integer and let x¢ = x + (¢n(x)). By the above lemma the ideals

of GF(2)[x,] = GF(2)[x]/(¢ (x)) are precisely

¢
(0)S (7 (=) S+ S (Plxh S (1)

In particular GF(Z)[x] / (q[)(x)) is a field. Also by the above lemma the

ideals of GF(2) [;] = GF(2)[x] / (xp+ 1) correspond uniquely to the factors

of xP+ 1. This result enables us to characterize the GF(2)~dimension of
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every ideal in GF(2) [:’Z] . More generally we prove
Theorem 3.2. Let [f(x)e GF(Z)[X]. Let x1=x+ (L(x)). Let g(x) be an
clement in GF(2) [x] such that g(x)ll(x). Then the GF(2)-dimension of

(g(x£)> equals degree {(x) - degree g(x).
Proof: We show that every element of <g(x1)> has a unique represent-

ation in the form
n-1
i
L ;% eix)

i=o

where n=degf-degg and bi€ GF(2) for i=0, ..., n-1,

We prove existence: Let k(xl)e (g(xl)). Then there exists m(xl) such

that k(x,) = m(x,) g(x,). Let k(x) and m(x) be pre-images in GF@)[x
of k(xl) and m(xl). We may assume that degk(x)< deg £(x). Then

there exists n(x) in GF(2)[x] such that k(x) = m(x) g(x)+n(x) £(x). By
assumption g(x H ), hence there exists g|(x) in GF(Z)[x] such that

g(x) g (x) = £(x). Therefore

k(x) = m(x) g(x) + n(x) g (x) g(x)

(m(x) + n(x) g (x) ) g(x).

Eenoe, deg(m(x)+n(x)g'(x))s deg JiZ) - degglx) 1= v-1, Tk

be = mofx) + nl=) & (%) , b, € GF(2).

i=o
Then

n-1

i=0

n-1 n-
i
uniqueness: >

We prove uniqueness; If Z b x g Z lg(xﬂ) then

i=o
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n-1
" -
), (b;-b)) x, glx,) = 0.

i=o
Hence,
n-1
¢ B
z(x>! Y, (by-b)x g(x).
i=o
But B
-
deg ), (b;-b.)x g(x) < n-1+ degg(x) = deg £(x)-1 < deg £(x).
i=o
Therefore
n-1
1 i 1 .
2 (bi-bi)x g(x)=0, hence bi_bi for i=0,.,.,n-1.
i=o

The information about the ideal structure of GF(2) [;;:I =
GF(2) [X]/ (xp+1> which can be obtained from the above results depends
completely on how much is known about the factorization of xP+1 over
GF(2) [x:] . So we study the factorization of xP+1 over GF(2) [x] First
we may assume that p is odd, for if p=2.kp' where p' is odd, then
P = (=P 312" over GF(Z). We bave the following well known resulh
concerning the factorization of xP-1 over Q.
Lemma 3.4. For each positive integer d, let Lq be a primitive dth
root of unity. Let

v =T (x-tl).
(i,d)=1

Then

i) \Ird(x) is a polynomial with rational integral coefficients,

ii) \Ifd(x) is Q-irreducible and has degree @(d), where ¢ is the

Euler function.
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iii) For any positive integer p,

xP-1 = T—r \Ifd(x)
d|p

is the complete factorization of xP-1,
Proof: Van der Waerden [14], p. 113 and p.162.

The polynomial \Ild(x) for d a positive integer is called the dth

cyclotomic polynomial. We have

xP+1 = TT \Ifd(x) over GF(2) [x] .
dp

In general this is not a complete factorization; some \Itd(x) may not be
GF(2)-irreducible, Thergfore we consider the factorization of \Ird(x)
over GF(2). Since we may assume that p is odd, we may also assume
that d is odd. Let Ad denote the multiplicative group of non-zero
least positive residues modd which are relatively prime to d. Then
2€ Ad because d is odd. Let B, denote the multiplicative group
which is the quotient group of Ad with respect to the subgroup of A

d
generated by 2.

B, = Ad/ {2
That is, B(1 is the multiplicative group of cosets of the subgroup (2)

of Ad' If be Bd’ that is if b is such a coset, we define

W= TT (x-th
ie b

where the product is taken over the field GF(2) [z;d ]

Theorem 3.3. Let d be a positive odd rational integer. Let e be the

order of the subgroup (2) of Ad' Then
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i) For cvery be’Bd, Lpb(x)e GF(&)[X].
ii) For every beBd, Lpb(x) is GF(2)-irreducible and has degree e.
iii) Also

T3t = Tlhep, 4

is the complete factorization of \Ifd(x) into irreducible poly-
nomials over GF(2).

Proof: By definition of Ad we have

_ -l-—l- gk
Since the cosets in Bd partition Ad, we have that

\Ifd(x) = | bEBd q;b(x) over GF(Z)[gd] .

Each U,Jb(x) € GF(2) [gd] [x:\ has degree equal to the number of elements
in a coset b in Bd’ that is, the order of (2) in Ad’ which is e,
We need only show that each q;b(x) is an element of GF(2) [x] and is
irreducible. The Galois group of the field GF(Z.)[(,d:l over GF(2) is a
cyclic group generated by the automorphism o — ¢ for Qe GF(Z)[I;d]
(see Albert [1], p. 127). If we apply this automorphism to Yy (x) we

obtain
) = T Teplx-t3h)-

But gg =1, hence we may choose representatives for all the powers of
Lq to be least positive residues modd. However if i€ b, the least
positive residue of 2i modd is againin b because b is a coset of (2)
The mapping which takes each least positive residue ie b onto the least

positive residue of 2imodd is a one-to-one mapping of b onto itself,
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Hence

cr\lJb(X) = Ll»b(X) .

Therefore all the coefficients of q;b(x) are fixed by the Galois group of
GF(&)[Z_,(J] over GF(2). Hence pr(x) is a polynomial whose coefficients
are in GF(2). Moreover each Lpb(x) is irreducible because q,ab(x) is
the minimum polynomial in GF(Z)[X] for Lid if ieb. For if Y(x) is a
polynomial in GF(Z)[x:] such that Lj;(gid) = 0 for some i€ b, then
applying the automorphism ¢ and its powers to Lp(gid) we would conclude
that (22 ') = 0 for all k. But then Y(z)) = 0 for jeb. Hence dy (x)
divides (x). Therefore q;b(x) is GF(2)-irreducible.

If d is an odd positive integer, then the order of the subgroup
(2 ) of the multiplicative group Ad is called the exponent of 2modd.
The order of Bd = Ad/ (2) is called the index of 2modd, If eq is
the exponent of 2mod d, then clearly ed[qy(d) where ¢@ is the Euler
phi function. Adopt the convention that e; =1 and ¢(1) = 1.

Theorem 3.4. Let p be an arbitrary positive integer. Let p= &kp'

where p' is odd and for each d]p‘ let ey be the exponent of 2modd.

Then every ideal of GF(2) [x]/(xp-i-l) has GF(2)-dimension of the form

where

k
0<a,<2 g@(d/e,

Proof: We shall use Lemma 3.3, Theorem 3.2, Lemma 3.4 and Theorem
3.3, Let x=x+(xP+l) in GF(2)[x]. Let (k(X)) be an arbitrary ideal
in GF(2)[x]/(xP+1). If (k(X)) is the zero ideal, then let a = Z.k(p(d)/(‘d

for every d|p'. We have
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p-) 2%p(a) = p - 2" Zd‘p'cp(d).

By Theorem 63, Hardy and Wright [7],

), @@ =p' .

d|p

Hence

k Lk
p-ZZ @pd)=p-2p =p-p=0
dlp’

which is the dimension of (0). Therefore assume that <k(;<)> is not
the zero ideal. Assume k(x) € GF(2) [x] By Lemma 3.3 we may
assume that k(x)|xP+l. By Theorem 3.2 the GF(2)-dimension of
<k(;~:)> is p-degree k(x). By Lemma 3.4 and Theorem 3.3 the factori-

zation of xP+1 over GF(2) is
k

P o, L
x +1 = (T—l—d‘p, T_rbEBd \Pb(x)) .

If b€Bd, degree %(x) is ey The order of Bd is qo(d)/e There -

q-
fore if k(x) |xp+1 then degree k(x) has the form

where

k
0<a, s 2 @(d/e,.

Hence the dimension of <k(;)> has the form

P - a.e..
Zdlp‘ 4 d

Corollary 3.4.1. Let g be an odd prime and let p=(q-1)/2. Let

p= ka' where p' is odd and for each d|p' let eq be the exponent of
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2 mod d. Then the rank of the matrix of cyclotomic signatures Mq has

the form

where

0<a, < 2X¢p(d/e for d|p'.

d
Proof: Theorem 2.7 and Theorem 3.4.

For example consider the case q=29., Then p=14=2-7, The
requirement d|7 implies d=1 or d=7. Then e =1 and e;=3. Also
@1)=1 and @(7) = 6. We obtain the expression 14-a, -3a; where
0<a <2, 0<a; <4, From Appendixl we have that M,y has rank
11. Hence a; =0, a;=1.

Corollary 3.4.1 limits the value of the rank of the matrix of
cyclotomic signatures. Before more can be said about the rank of M
we must study the ideal in GF(2) [x]/(xp+1> which corresponds to it.

In Chapter II we introduced a homomorphism sgn:V——»GF(Z)E}(F/Q)]
from the group of units in the field F to the group ring GF(2) [:G(F/Q )] s
Let o be a generator of G(F/Q). Then we have an isomorphism from
GF(2) [G(F/Q)] to GF(2)[x]/(xP+1) givenby o— x=x+ (xP+1). There-
fore there is a homomorphism 3gn: V—GF(2) [x]/(xp+1> from the

group of units in F to GF(2) [x]/(xp+1> and it is defined by
R " ,
sgn (p) = Z sgn_j(p)x", pe V.
i=o0

We are interested in the ideal in GF(2) [x]/ <xp+1> which is generated

by the images sgn (v;), ..., Sgn (up).

! The homomorphism sgn is therefore dependent on the choice ¢ of
a generator of G(F/Q).
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Let f be a primitive root mod q. Let o be the automorphism
: i
on Q(¢) which is induced by setting Ul(g) = gf. Then 0';([_,) = I;I and

therefore the order of ¢, is q-1, whence ¢, generates the Galois

£ £

group of Q(¢) over Q. Therefore the restriction of o, to Q((,+t_,_l)=F
generates the Galois group of F over Q. Hence

p-1

sgn(u)= ), sgn; (W)x',
1=0 g
£

In Chapter II we defined the automorphisms o¢,,0,, ..., o_ by U.(g):gJ.

p J
Let 0 <is<p-1. If 1 <j<p is such that jEllmodq or —jEIlmodq,

then O'j and (r; determine the same automorphism on Q(§+§_1). We
adopt the following notation: If j is a non-zero residue modq, let
fgzj =i iff j= limodq and 0 <i < q-1l. We write {gj in place of
lglj unless there may be some confusion. It is asserted that as j
ranges through the set -{1,2, —— p} then the least positive residues of

fgjmodp range through the set {O, ,p-l} . We need only show that
£gl, ..., £gp are incongruent mod p. If £gj, = £gj, mod p, then
l‘egjl =4 Elgjz mod q, since 2P = -1 mod q.
Therefore j, = £ j, modq. But 1< j,,j, <p implies that j, = j,mod q.
Hence j; = j,.
We have that x = x + (xp+1> satisfies ;iz ;j iff i= j mod p.

Therefore, if 1 < j < p, then

p-1 )
sgn(v.) = Z sgn i(U.)x1
U T AN
£
P
= ~fgi
= Z sgn (v ) =™=",
R

But %lgl =0 by the definition of fgi. Hence
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P
— % ~1gi
sgn o) = sgn ) x ’
gn () i;l g, (v
From Chapter II we have that Mq = (mji)’ i,j=1, ..., p where
mji = sgnUi(uj).
H
ence p
~lgi
sgn(v.) = m.. x .
gn (v;) i=zx i
Let
h.(%X) = sgn(v,) j=1, ..., p.
J J
Then the ideal (h,(x) , ..., hp(§)> in GF(2)[%X] is the ideal corre-

sponding to the G(F/Q)-submodule sgn(U) in GF(2)[G(F/Q)]. Hence
the GF(2)-dimension of (h, (;), — hp(;)) equals the rank of Mq'
The ring GF(2) [;{] = GF(2) [x]/(xp+1> is a principal ideal ring and

therefore there exists Hq(x) in GF(Z)[x] such that
(Hq(x)} = (h, (%), ..., hp(x)),
2
By Lemma 3.3 we may assume that Hq(x) | xP+1.

We prove

Theorerh 3.5. Let q be an odd prime, If p= (q—l)/z is a prime and if

2 is a primitive root mod p then the matrix Mq of cyclotomic sig-
natures is non-singular over GF(2).

Proof; We show that the rank of Mq is exactly p. It is easy to see
that for any odd prime q the first two rows of the matrix M _ are

distinct and therefore the rank of Mq is at least 2. Since the rank of

%

The polynomial Hg(x. is not uniquely defined. It depends on the
chosen generator of G(F/Q). However the ideal (H_(x)) is unique up
to automorphisms of GF(2)[X]. q
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Mq equals the dimension of (Hq(;()> it follows that degree Hq(x) <p-2
by Theorem 3.2. By Lemma 3.4 and Theorem 3.3 the complete factori-

zation of xP+l over GF(2) is
Pri= (x+ 1) PP e b x4,

But H_(x) |xP+1. Since h (%) =1+ x+--- +§p"e(Hq(§)> we have that
Hq(x)}l + x4+ -+ + xP7', But degree H (x) < p-2. Hence H_ (x)= 1.
Therefore <Hq(;)> = GF(Z)[?{] and hence the rank of Mq is p.

Corollary 3.5.1. Let q be an odd prime = 7, If p= (q—l)/Z is a prime,

p = 3 mod 8 and if (p—l)/Z. is a prime, then the matrix Mq of cyclo -
tomic signatures is non-singular over GF(2).

Proof: We show that 2 is a primitive root mod p and then apply
Theorem 3.5. It is known that 2 is a quadratic residue of primes
P=+ 1 mod 8 and a non-residue of primes p =4+ 3 mod 8 (Hardy and
Wright [7] pP. 75). Therefore

(% )= -1 (—-) 1is the Legendre symbol

since p = 3 mod 8. It is also known that for any non-zero residue
m mod p that o

(%)Em 2 mod p

if p is prime (Hardy and Wright [7] p. 74). If (p-1)/2 is a prime
then the exponent of 2 mod p is p-1, (p-1)/2 or 2. If the exponent of
2 mod p is 2 then p|22-1=3, hence p=3 and hence 2 is a prim-

itive root mod p. If the exponent of 2 mod p is (p-—l)/Z. then

2(p-1)/2

which contradicts
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Therefore, in every case the exponent of 2 mod p is p-1 and hence 2
is a primitive root mod p.
For example the above corollary applies to the following cases:

1) q=23, p=1, (p-1)/2=5

il

2) q=2039, p=1019, (p-1)/2 =509
Theorem 3.5 is a stronger result however for it applies to the following

cases but the corollary does not.

29, (p-1)/2=14

53, (p-1)/2 = 26

3) =59, p

1]

4) q=107, p
In fact the corollary arplies precisely to a triple of primes ¢, p=(q-1)/2.,
p' = (p-1)/2 where p'=1mod 4,
We now prove a general theorem about Hq(x). Recall the

definition of the least positive residue function f-1 from Chapter 1I,

Theorem 3.6, Let g be an odd prime and let ¢ be a primitive root

mod q.  If L is the set of positive integers defined by
L={i|o0o<i<p-1, 20> 0p}

and if

then,

Hq(x) = g.c.d. (G(x)(x+1)+1, xP+1)

over GF(2)[x].

Proof: Hq(x) is the polynomial in GF(Z)[X] such that
(Hq(§)> = (h, (%), ..., hp(§)> and

Hq(x) I xP+1
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where
p-1
hy () = 5en (v;) :ZJO sgnoi(uj);{i .
Recall that crﬂ(g) = gﬁn If m=g ﬂi modgq, 0<is<p-l, 1<m<p,
then
0 if [Ijml<p

Sgnc}(UJ) ) 1 if [jml>p for j=2, ..., p,

sgngii(ul) = v
For each i=0, ..., p-1 there exists a unique integer T, such that

a) r, = +1or-1,bh) 1< [[ri ﬂl]] < p. Then we can write

0 if l[r.l,elr.ﬂ]] <p

sgn (v . :
1 if [[riﬂlrjﬂ‘]]] > Pu

Gﬂ [[rjﬂ‘]]]

We have that riﬁlrjﬂJ = rirj£1+'] modq. Also 4P = -1 mod q. Hence for
0 <k <qg-1, let

4 - (_l)lk/p]

where [ - ] is the greatest integer function., If k is any integer let

I

1‘k:rj if j

dk dj if j=kmodq, 0<j<q-1l.

kmodp, 0=<j<rp-1

I
1]

Then,

T I P t
ril rjl = rirjﬂ = rirjri+jdi+j(ri+j£ ) modq

n

where 0 <t < p-1 and t=i+ j mod p. Also

Therefore,
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_ 0 if r1r3r1+3d1+_] =1
sgno_}(u J ) =
[[rjﬂ 1 1 if r1r3r1+3 g, = -1
Let
0cGF(2) if r. =1 s Oe GF(2) if d.
p; = ! P oy = '
* le GF(2) if r, = -1 17 ] 1eGF(2) if d,
Then
sgn _j(v . )=p.+p.+p.,.FT 6. .
7y [[rj .ZJ]] 1 ) 1) 1+)
Hence
p -
h . (%) = Z (ps + P+ Pyt 6, )x
[[rJJZJI] i=o i T Oit
for j=0, ..., p-1 For ease of notation, let
1 ~ ~
h (X) = 3 (X) y J = 0: ) P_l
J [[r.lJ]]
J
1 ~ 1 ~ ~
Then h 4 (x), . .,hp_l(x) is a rearrangement of h, (x),
let
P-1
t.(x) = X, j=0, ..., p-1
J : iz;o 8] ? =
Note that,

since ieL iff [ '] > p, iff r.= -1, iff p, =

pP~1 P=1
ol 0% PP W 4 Atp-j oL i-3
x* “G(x) = Z Pyt Z P;
1=0 i=0

But r =rj iff k = jmodp, hence pk:pj

k

1

1]

, hp(SZ).

1 in GF(2).

iff k= j mod p.

Also

We have

Therefore



p-1
“Picim = Y i
x G(x) = Z" pi+jx .
i=o
Also note that
1 ~ ~ ~ 5
he(x) =1+ x+ + x P!
Hence
[ s 1~ ~p-j ~ o
hj(x) = G(x) + Pjho (x) + x G(x) + tj(x)
1 ~ ~ ~p_j ~
= pjho (x) + tj(x) + (x + 1) G(x)
for j=0, ..., P-1.
Note that

tj(?;) =xP I a4 x4+ +x37Y,

We have for 0 < j < p-1
1

h' G0+ pjh'o () = () + &P I41) G®

1 ~ 1 ~ 1
. h 55 o
p-jtF) T Py Ro ) F By, (5

~ 1 ~

yhaei lDP-(J'-I)h" ()
Wi 1 PP o | WP L ISt i« W e AT

= %37 X317 (41) G(x)

= 337 (14 (14 %) G(X) ).

But xJ7' is a unitin GF(2)[%].

Hence - - o~
<Hq(x)) = Gz (=4 1),

Since x+ 1/ G(x) (x+1) + 1, it follows that
1 ~

ho(x) =1+ x+ +-+ + xP e (G(x) (x+1) +1),

We have for 2 <j <p
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~ 1 ~
x) + pp_jh0 (x) + hp_(j_1

~ 1 ~ ~'_l ~ ~
LM Y6+ (5 yho (%) = 3 (14 (14 %) G(X)).

Successively setting j = p, p-1, p-2, ..., 2 we conclude that

hy (%), hy(X)s eens e (X) € (G(x) (x +1) +1).

Hence
(Hq(§)) = (G(%) (x +1)+1).
Then applying Lemma 3.3 we conclude that

Hq(x); g.c.d. (G(x) (x+1)+1, xP+1).

One significant feature of Theorem 3.6 is that it can be used to
compute Hq(x) and he‘nce the rank of Mq' And if q is large it is
definitely easier to compute Hq(x) with a computer than to compute the
rank of Mq' Moreover if Hq(x) can be factored into irreducibles we
can obtain information about the ideal (Hq(x) Y. The methods for
factoring Hq(x) are discussed in Appendix II. The following theorem
was used tolverify by computer that for all primes q, 7 < q < 4703
such that p= (g-1)/2 is prime, the matrix Mq is non-singular, Of
course for each of these cases it had to be shown that H (x) = 1.

Theorem 3.7. Let q be an odd prime such that p = (q-1)/2 is odd. Let

!
2 be a primitive root mod q and let k = ¢%, If I is the set of integers

defined by
1
L =4i|o<is<p-l, [K]>p}
and if
G(x)= ), x
ie L'
then

1 &
H () = g.c.d. (G (), PP h k]



39
Proof: The proof is analogous to the proof of Theorem 3.6. The element

Ol is a generator of G(F/Q). For if k' = + 1 mod q, then IZi =41

mod q, hence 4i = 0 mod gq-1. Therefore 2i = 0 mod p. But since p

is odd, we have that i = 0 mod p. Therefore o, has order p. Let

k

i pT‘l &
nj(x) = Z, sgn_ (u.)xl, 1= 15 seny P

Then

(H ) = (2 (), ..r n ()

U
For each i=0, ..., p-1 there exists a unique integer r ; such that

a) r'i =1 or -1, b)l< IIr'i k'] < p. Then we can write

{ o it [[rlikir'jkj]] < p

sgngi(u v l . it
k IIrjk]] 11f[[rikrjk]]>p.

If n is any integer let

rner if n=jmodp, 0<=<j<p-1
Then
1 i 1 j:: 1 1 i+J _ 1 1 1 1 i+j
rikr.k —rir.k = E 1+j( 1_|_Jk ) mod q
aﬁd
1< [ T4 ] < p since kP = 1modq
Therefore, i i
0 if r.r (T T 1
sgn (v 0w ) ) |J 1 L
& [[r.k‘}]] L if ».¥r.v.. .= -1
J J 1)
e , 0€GF(2) if r, =1
i
Py = 3 ) 1
le GF(2) if r, = =1 4
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Then
sgn = : i
g ) [[r'ij]]) Pi T P37 Piyj
Hence
p-1
~ .
A=) = (Pt Py + py 0) X7
[r kJ]] 12=Jo ] i+
for j=0, ..., p-1
Now let
n.(x)=n , . (% j= 0, v, p-1
[r .kJ]]
J
Then,
1] ~ ~ -
ng(x) =1+ x+ +xpl
Also,
1
G(x)= ) x Z xl
iel! i=o
Then,
. >
n (%) = ping (%) + ( PTG (x j=0, ..., p-1
Hence,
P-1 b1 b1
1 ~ ) 1 ~ ~p_j 1 ~ L ~ !~
Y X+ () p)ng () = (), xPTN4p)G (%) = (ng ()41 G (%).
j= 1 jF0 ) j=o
Therefore,
o P '
:ﬁ n Z )no(x+G()0(x).
j:O :
Hence
1 ~ 1 ~ o, ~ ~
(G (%)) C (ng (%), ...,n'p<x)>= (M), eem () ).
But,
1 ~ ? 1 ~ ~p_j 1 ~
nj(x) = pjno (x) + (x* "+1) G (x), j=1, ..., p-1.
Therefore

(G'(X), np (X)) = (0 (X, ..., n (x)) = (H (3)).
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Chapter IV

Application of the Reciprocity Theorem of Class Field Theory

The object of this chapter is to use the reciprocity theorem of
class field theory to replace the problem of the sign distribution of
cyclotomic units in F 'by a problem in the completion of F at the

primes which lie above (2). Before stating the reciprocity theorem we

must recall some elementary definitions and facts of algebraic number
theory (see O'Meara [11]).

Let K be a number field, i.e., a finite field extension of Q,
and let L be a finite Galois extension of K with Galois group G(I/K).
A prime of K is an equivalence class of valuations of K. If p is a
prime of K,. we let |- | denote some particular valuation in p (for

example, the normalized valuation if P is discrete). We let K

P

denote the completion of K at the prime p There is a natural

embedding of K into K , so we may assume that KC K .
P P

Let g, be a prime in L which lies over the prime P in K,
1565 Z induces the prime P if it is restricted to K. We write %IP .

IL.et ¢ be an element of G(L/K). The relation

la | lo_l(a)lg_,aeL

Ug,z

defines a prime of L (which we denote by Ug,) which also lies over p -
If 7e G(L/K) then o('rg) = (¢7)g. If ¢ acts on a Cauchy sequence for

g in L then it gives a Cauchy sequence for 0—57, in L. Conversely, if

¢ ' actsona Cauchy sequence for og in L, it gives a Cauchy se-

quence for 2 in L. Therefore ¢ induces an isomorphism o, of the

&

of L. Moreover this isomorphism is a K -

& P

completions L _ and Lo
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isomorphism, i,e. it fixes the completion K element wise.
Let 2 be a prime in L which lies over the prime P in K.

The subgroup G%(L/K) of G(L/K) defined by

GZL(L/K) = {oloe GIL/K), og= g}

is called the decomposition group of g. If oce G(L/K), it is easy to see

that

G, (L/K) = O'G%(L/:K)O'-l.

7

Also if o€ Gg’(L/K) then o induces a KP -automorphism o'% of L%.

We now state two lemmas without proof (see Cassels and Frdhlich [6],

p. 163).

Lemma 4.1. Let 2 ansl g,' be primes of L which lie over the prime P
in K. Then there exists a o€ G(L/K) such that cg-= g,'.

Lemma 4.2. Let q be a prime in L which lies over the prime p in

K. Then

i) LZ’ is Galois over K

ii) The mapping from G

5/(

L/K) to G(L,/K ) givenby o — ¢
F p '3
is an isomorphism,

Let NL /K be the norm from Lg to K where % lies above

2
P We apply the tevo lemmas above to prove

Lemma 4.3. Let g and g,' be primes in L which lie above the prime

P in K. Then

* *
Ny /K (Lg_) =N, /K (Lg").
P

g p 3

Proof: By Lemma 4.1, there exists a oe G(L/K) such that crg;g,'. We
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sk
show that if e L then

"g,(NL /K () = NL%'/KP (0'%(01) ).

T P
We have,
a%(NL%K (@) = 0'%-‘—[- -rg(a)
7€ G(L/K) by Lemma 4.2,
Hence ]_l..
(N (@)=
g L /K "53¢ 3
P 7e G _(L/K)
7
=TT (c ()
¢°g B
Te o(G (L/K))(r
F
= T—]- T (o_(a))
7
TE GG%(L/K) by Lemma 4.2.
Hence
o (N (@) = N o, (a) ).
L /K L_,/K
7 Lg%, % 3
Therefore ¢, maps NL K L) onto N * . Since
& g%/ o L%/K g
NLg’/K (L*g’) and N %,/K %') are subgroups of K;; and since UZ*
fixes K , we conclude that
(Lh) = N (L))
I. K - L /K LA
gt /%Y
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*
Lemma 4.3 shows that the subgroup NL /K (L) of the multi-

F
plicative group K;; depends only on the prime p in K and not upon
the prime q in L which lies above p Therefore we write,

*

L,} .

L%/KP( 2

N(L/K,P) =N

If L/K is abelian then GG%(L/K) = O'G%(L/K)O'—l’—-‘ G%(L/K).
Therefore if L/K is abelian, G%(L/K) depends only on p where 2

lies above P Hence if L/K is abelian we write

F

We can now state the reciprocity theorem,

G (L/K) = G, (L/K).
2

Theorem 4.1. Let L be a finite Galois extension of the number field K

such that G(L/K) is abelian. Then for all primes P in K there exists
*
a homomorphism ¢ :Kp—’ G (L/K) such that

p

>k
i) ¢ :K — G _(L/K) is surjective and ker¢ = N(L/K,,).

ii) If @€k, then ¢P(a) =1 for almost all , , and

TT o (@=1.
p P

Remarks: If it becomes necessary to identify the extension IL/K with

the map Py > we shall write ‘p/o,L/K' The proof of the reciprocity

theorem will be omitted. The theorem stated here with i) appears as

Theorem 2, Cassels and Frdhlich [6], p. 140, if we recall that Gp(L/K)

is canonically isomorphic to G(Lg//KP) (Lemma 4.2). In this form the

theorem becomes the local reciprocity theorem. Property ii) is

referred to on p.188 of Cassels and Fr&hlich [6]. The reciprocity map
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(pp is also studied in Artin [2] pp. 144-164, where it is called the norm
residue symbol.

We shall need one elementary property of the reciprocity map.
Let K and L be fields which satisfy the hypotheses of Theorem 4.1,
and let M be a field such that KC M C L. Then M is a finite Galois
extension of K and its Galois group G(M/K) is abelian. Let p be a
prime in K. Then by Theorem 4.1 we have maps gpp,L/K:K;;—* GD(L/K)

*

and (pp ,M/K: Kp—* GP(M/K). Then we have the

Supplemental property of the reciprocity map. The diagram

%, L/K
K P G_(L/K)
P P
(identity) (projection)
%3 M/K
K; e i G, (M/K)

is commutative,

Remarks: The projection map from GP(L/K) to GP(M/K) is defined by
o IM The above property is property 4), Serre [12], p. 178, or
equivalently property 2), Artin [2], p. 158.

We apply the reciprocity theorem to the following situation. Let
F=Q(+ I;—l), where as before, [ is a primitive qth rootofunity, Let
E be the field F(~f11_1 5 \/u_2 s wwes \/;I;) whetre v, .. ’-Up are the cyclo-
tomic units. The field F is a subfield of the real numbers. Since E
is the compositum of the fields F(\/u—i), i=1, ..., p, E is Galois over
F and its Galois group G(E/F) is an elementary abelian 2-group.
Therefore we can apply Theorem 4.1.

Let P be a prime in F. There exists an epimorphism
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¢ of F>=< onto G (E/F) which induces an isomorphism
vox
¢ :F_/N(E/F,,) =G (E/F)
PP S

and if o€ F*, then

If K is any subfield of the real numbers, let 4 be the prime
on K which is determined by ordinary absolute value., We shall write

o instead of e when there is no chance of confusion. A prime P

in F is called infinite if P lies above Oy 1.€% P‘OOQ' Clearly oL

is an infinite prime in F. Hence, by Lemma 4.1 every infinite prime

in F has the form o on for some creG(F/Q). Let o O be such a

prime in F, The completion of F at ¢ o is the same as the

completion of ¢F at oo Hence the completion of F at ¢ oo, is a

F

subfield of the reals because F itself is, However the completion of

P

F at ¢ cop must contain the completion of Q at oo, and Qoo= R,
the reals. Therefore F = R. The embedding of F into F is
o QO g OO
given by the injection & — ¢(Q) for Q€eF,
Consider the field E. Note that «/—u_1 = Y-1 is an element of E,
therefore Q(\/TI) C EcC C, where C is the field of complex numbers,

If ¢ is a prime in E such that 7 |co, then it follows as above that

E, = C.

¥

Lemma 4.4. Let E and F be the fields above. Let R" denote the
positive nonzero reals. Let P = ¢ oo be an infinite prime in F, where

oce G(F/Q). Then

N(E/F,p) =K,
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Proof: Let g be a prime in E such that %IP Then E = C and
FP = R. The only automorphisms of C which fix R are the identity

and a+V-1 8§ — « -V-1 B. Therefore,

1]

N(E/F,P) loz+p2| a,peR, a2+ B2z O}

1}

{02 |ae R} = RT .

Recall the definition of ¢-sign from Chapter II,
Lemma 4.5. Let E and F be the fields above. Let p = o 00,0€G(F/Q)

be an infinite prime in F, and let be the reciprocity map given by

i
Theorem 4.1 for E/F. Then for QeF, ople)=1 iff sign (@) = 1.
Proof: Suppose that a€ 15‘#.< The image of & under the embedding of F
into FP is o(&). Then ¢P(a)=liff o(a)e N(E/Ep) by property i) of Theorem
4,1, By Lemma 4.4., o(Q)€ N(E/F,/:))iff o(a)e R_t i.e, iff signo_(a) = K,
Lemma 4.5, gives the connection between the reciprocity map
and the ¢-sign. It is essentially this connection which allows the use of
the reciprocity theorem. From the corollary, p.29, Cassels and

Frohlich [6], we have

Lemma 4.6. Let L be a finite Galois extension of the number field K.

Let g be a prime in L which is unramified over the prime P in K,
Then every unit in K is the norm of a unit in L%.

We apply Lemma 4.6. to obtain

Lemma 4.7. Let E and F be as before. For each prime p in F let
(pP be the reciprocity map given by Theorem 4.1. Let (2) denote the
prime on Q which is determined by the prime rational integer 2. If u

is aunitin F, i.e. p€V, then the following relation holds:
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(/le"L qopw)) (;I[) ¢/,w)) =1.

~ Proof: Call a prime p in F odd if p ! (2) andif p | . Let p be

a prime in F such that P | ©. A prime ? in E such that g lP is

unramified iff the value of p on the discriminant of E over F is not

less than 1. But E is obtained from F by successively adjoining

square roots of units in F. Hence the discriminant of E over F is a

product of the primes which lie over (2). Therefore if p is a prime of

F which is odd, then P is unramified. Therefore, by Lemma 4.6, if

p is oddandif uev then ,ueN(E/F‘,P). Hence goP(p,)=1 if u€V and

P is odd. Therefore, by property ii) of Theorem 4.1. :

(PTI"OFO qopw) (,-,% «pp(u)) = 1.

The mapping

— ()
n PTIIqop(u

of the units V in F into G(E/F) is a homomorphism.
gives an isomorphism

'
@

) F;/N(E/F,P) ~G_(E/F),

/.’)

and

>k >k X 2
FP/N(E/F’P) =R /R 2

Each ¢ _,p|oo
) P

Hence GP(E/F) is cyclic of order 2 for each P|oo Let ae F* and let

p=c oo,' g€ G(F/Q) be a prime in F, Then we write a> 0 at P if

signq(a) =1, and A< 0 at P if signq(a) = -1. We prove
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Theorem 4.2. Let U = (v,, ..., up) be the multiplicative group
generated by the cyclotomic units in F. Let T be the group of totally

positive units in F. Then

U/UNT = T | G (EF).
pm

Proof: Let G (E/F) = (o ) for each PIOO The group ] l G (E/F) is
P o P

an elementary abelian 2-group with exponent 2, hence ifpk is the

number of even invariants of [ ‘ G (E/F) then there exist primes

fo o}
prs o px such that P

k
TT G (®&F) = ® G_ (EF).
0 P -

P i=1 i
Let (U/UZ)# denote the dual or character group of U/U2, Define a
mapping
x: T1 G (E/F)— (u/unf
ple
by x(¢) WU?) = o(Vu) / Vi , peu.

The mapping x is a homomorphism, for if ¢, TE€ [ I GP(E/F) then
p o

(e @U2) = (e = c((TW)AN) V)N = (/) - (e ANp)
since 'r(\/‘[z)/\/;t = + 1. Hence,

X(o7) @U?) = x(o) @U?2)-x(7) @U?) , uneU,

Therefore

x(o7) = x(o) - x(7).
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The mapping X is even a monomorphism, for if ce IGP(E/F) and

ploo

x(o) =1, then x(o) (uU?) =1 for all yeU, Hence o(Vu)=vu for all

pneU, Hence

Hence ¥ is a monomorphism. We chose 2, ...

elements orp
elements Ty )y wns
Xp,

X is a monomorphism. Then there exist u,, ...

to X(Gpl)’

Hence,

Then,

1f Pi = 0,00,

Hence,

R
pk

o fixes every element of the field E and therefore o=1.

, . That is,
x(crpk)

2) =

5. .

crpiwu_j) = (-1) W,Tj i Bed

. <0 at pP. =pP.
M 7y PJ
My >0 at P, # Pj i]

o, € G(F/Q), i=l, ..., k,

)

form a basis for [ [ G (E/F).

ple
. X(O'p ) form a basis for x(
k

61.
(=1 Y8551 ..

1

. Pk so that the

Then the
P

TTG,(E/F)), because
plo *

s ukeU which are dual

k.
1: ’ k-
1, wsy Ko

then we have

. e e s
51gn6.(uj) = (-1) i,j=1, «., k.

1

-
ple

Gp(E/F) = 2

We shall show that in fact equality holds.

u—- TT
ple

Gp (E/F) by

Alp) = @ ¢p (1), peU.
1i=1 1

Define a mapping A:
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Clearly A is a homomorphism. Consider ker A. If pueU( T, then
(p/,)(“) =1 for all Ploo. Hence peker A. On the other hand, if ne ker A,
k
then @ ¢, (u) =1. Hence ¢, (u)=1 for i=1, ..., k. Then p> 0 at
i=1 Pi Pi
Pi for i=1, ..., k. Therefore crp (Vu) =vu for i=1, ..., k. The
i

elements 0'/31, RO (rpk form a basis for EGP(E/F).' Hence if /gloo,

then Up(\/ﬁ) =\/[,z. Hence u > 0 at P for all /gloo and therefore

peU(\ T. We have shown that ker A= U () T. Hence A induces a

monomorphism A:U/UNT — | | Gp(E/F)- By the previous inequality
x5

it follows that A' is an isomorphism.

We have the following

Corollary 4.2.1. Let U = (v,, ..., up) be the multiplicative group
generated by the cyclotomic units in F. Let T be the group of totally

positive units in F, Then UMNT = U2 iff G(E/F) has order 2P and
G(E/F) = Gp(E/F).
p i

Proof: Assume that T(\ U = U2, Then U/U(\T = U/U? has order 2P

by Theorem 2.5. Hence the group GP(E/F) has p even invariants
s}

by Theorem 4.2. Therefore céj (E/F) is direct. Since |G(E/F)|<2P

plo
it follows that

G(E/F) = G, (E/F)
oo 7

and |G(E/F)| = 2P,

Conversely, assume that G(E/F) has order 2P and

GE/F)=® G,

o (E/F).
pleo



52
Then by Theorem 4.2, U/U(\ T has order 2P, But U? isa subgroup

of UMT and U/U2? has order 2P, Hence
U2 =W T,

Corollary 4.2.2. The homomorphism from the group U/U?2 to the group

G(E/F) which is defined by

JTE o TiT oplun) , pel,
plo

is a monomorphism iff
UL = U=

Proof: Assume that the homomorphism pU?%— TT Gp(E/F) is a mono-

morphism, i.e. its kernel is exactly U?. If pe I(J)Om T, then

(pp(u) =1 for every ploo Hence if uye U\ T then | | gop(u) = 1. Hence

peU2, Hence U\ T C U2, Inany case, U?’C U (/i ?, therefore

U\ T =U?%, Conversely assume that U2 = U () T. Consider the homo-

morphism py Ué— T|_1— (pp([,l,). We shall show that its kernel is U2=UT.
p |co

By Corollary 4.2.1, G(E/F) has order 2P and

GE/F) = ® Gp(E/F> )
P leo

E3
By Theorem 4.1, op is a homomorphism from FP into GP(E/F) for

each /3]00. Therefore if ueU and

TT <p‘,9(u) =1
P leo

then (pp(u) =1 for each ploo. Butthen pe UMNT by Lemma 4.5. Clearly
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if pne U( T then ‘ (pp =1, Hence U()T =U? is the kernel of
pleo
pU2 = op(n)
pieo

and therefore it is a2 monomorphism.,

We can apply Lemma 4.7 to obtain

Theorem 4.3. Every totally positive element in U is a square in U iff

the homomorphism &:U/U%?— G(E/F) from U/U? to G(E/F) definedby

pi® = T°T oplu), pel
pl

is a monomorphism.

Proof: By Lemma 4.7, if y is a unit in F, then

TT opw)) = (TT eptw) =1.

Therefore the homomorphism &:U/U%2 — G(E/F) is a monomorphism

plia P

iff the homomorphism from U/U? to G(E/F) defined by

g OE ! qop(u peyu
/3 lo'e}
is a2 monomorphism. The latter mapping is a monomorphism iff
U2 = U T by Corollary 4.2.2.
In order to use Theorem 4.3 we shall need more results about the

reciprocity maps. First we prove

Theorem 4.4. Let p be a prime in F. Then

N(E/F,p) = m N(F(Vv,)/F,p) .

i=1
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Proof: The supplemental property of the reciprocity map is used. We

have that

P
N(E/F,p) ¢ (1 N(FGv,)/ F,p)

1=1

P
by the transitivity of the norm. Let o be an element of () N(F(‘/U—i)/F,P)-
i=1

s
Let 2 be the reciprocity map from FP to Gp(E/F)- ThenozeN(E/F,p)
iff @,(@) =1 by Theorem 4.1. For each i=1, ..., p, let gp%) We ths

sk
reciprocity map from F/D to GP(F(\/ vy )/F) given by Theorem 4.1. Then

. p
¢/(91)(a) =1 for i=1, ..., p, because ae\ N(F(Vu, )/F,p). By the
i=1

supplemental property of the reciprocity map, :p/(_,)l)(a) is the restriction
of (pP(Ol) to the field F(\/ui), i=1, ..., p. Hence cpP(Ol) is an element of

GP(E/F) which fixes every subfield F (v Ui) element wise. Therefore
(pp(a) =1, Therefore aeN(E/F ,p)

Let K be a number field and let p be a prime in K., Let a,f

be elements of K. The Hilbert symbol (O'Meara [11], p.164) (a,p)P at

P is defined by

1if there exist y,6€K such that ay%+ps2=1
o =

-1 otherwise ,

Therefore (Oé,ﬁ)p = T iff O!EN(K(\/B)/K,/D). Hence we have

Corollary 4.4.1. IL.et p be a prime in F. Let (pp be the reciprocity

map ¢ FP—» Gp(E/F) andlet peU. Then Ppw) = 1 AT (b, v,), =1
for every i=1, ..., p.

Proof: By Theorem 4.1, (pp(p) =1 iff peN(E/F, /9). By Theorem 4.4,
pe N(E/F,p) iff pe N(F(\/TJ-;)/F,/_’)) for every i=1, ..., p. Therefore

(pP(p)Zl iff (p,U.l)P = (Ui,p.)p =1 for every i=1, ..., p.
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Chapter V

The Case when (2) is a Prime in F,

The object of this chapter is to apply the results of the previous
chapter to the case when (2) is a prime in F.l The first part of this
chapter is devoted to preliminary results on quadratic forrns; These
results along with some additional results of a computational nature are
used to do some computations in the case g = 7. The results of the
computation motivate the main results of the chapter. However, the
proofs of the main results rely mainly on results of the previous chapters,

Assume henceforth that (2) is a prime in F, i.e, there exists only
one prime P in F such that P 1(2). Since (2) cannot ramify we write
(2) = p. Then we have by Theorem 4.3 of the previous chapter that a
necessary and sufficient condition for the totally positive units in U to
be the squares of elements of U is for the homomorphism

$:U/U2— G (E/F) defined by

IJUZ g ‘P(z)(u)

to be a momomorphism. By Corollary 4.4.1, we have that ¢, (u)=1 iff

(2)
(“’Ui)(z) =1 for every i=1, ..., p, where (-, - )(2) is the Hilbert

symbol at (2) on F. For a given i, the symbol (“’Ui)(z):l if and only

if the quadratic form =x%-puy? represents v, in F the completion of

(@)’

F at (2). Thus we are led to the study of quadratic forms over F(z)'

The field F(z) is Galois over Q has the same degree p as F over

@)’

Q, and every integral basis for F over Q determines an integralbasis

1
If p is a prime integer then (2) is a prime in F (see Weyl [16] p. 83).
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for F over Q by means of the natural embedding of F into Fz

@) @) @)
(see Weiss [15], p.159). We shall assume that F 1is a subfield of F(z)'
We shall use the terminology of O'Meara [11]. In particular we

call a field K a local field if K is complete at a discrete prime P

and if the residue class field at p is finite. An element 7 in K is a

prime element if its value at the prime p generates the value group at
p. We write Np for the order of the residue class field of K at p.

The positive integer N/3 is called the absolute norm of p.

Theorem 5.1. (Local Square Theorem). Let K be a local field at a

prime p and let 7 be a prime element in K, Let & be an integer in

K. Then there is an integer B in K such that
1+ 4ra = (1+ 27B)2,

Proof; See O'Meara [11], p.159.

Theorem 5.2. Let K be a local field at the prime p and let V be its

group of units. Then

. a2
[KMK?] =2[Vv:V?] = 4(Np)or P

Proof: See O'Meara [11], p. 163.
We apply these theorems to the local field F

@)"
Theorem 5.3. Let V(z) be the group of units in F(z)' Let u,vev
VA

)" Then

there exists € V(z) such that g = vw?mod(8) iff pev VZZ

@ -

Proof: We apply Theorem 5.1 with K= F(z) and g =2. Assume there

exists w€ V(z) such that y = vw? mod(8). Then u = vw?+8a for some

integer a in F, Then u= vw2(1+8a(vwz)-l)

@)"

in F(z) because v,w are in V(z)' Hence by Theorem 5.1, there exists an

=3 . g ;
, and Q(vw?) is an integer
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integer f in F(z) such that 1+8a(vw2')_1= (1+4p)2. Therefore pu =
vw?2(1+4B)2. Hence pue€E vVé). Conversely, if p€ v Vé) then there exists

wGV(Z) such that py=vw?2. Hence u=vw?mod(8).

Theorem 5.4. Let V(z) be the group of units in F(z)‘ Let vy, ..., Vo

2
be a complete set of coset representatives for V(z)/ V2

(2)

. . >k e

Voo 2V s sees Zvn is a complete set of coset representatives for Fz)/Fiz.)z‘
X .

Proof: I.et ®€eF,,. Then we can write a =

@)
sk

unit in F(z)‘ But Ol‘EviVé) for some i. If ord, & is even then C!(EviF"2

@) @)

Then v,,

cees g

Zord(z)a. a' where ' is a

and if ord, & is odd then Q€ Zv.F*Z. Therefore v,y .oy V_; 2Vyyiee 52V
@) i"@) n
>k >k
is a set of coset representatives for F(z)/F(z)z' By Theorem 5.2 they

*
represent distinct cosets of F(Z)Z ;

* *
Theorem 5.5. The order of the group F(z)/F(z)Z is 2Pt
Proof: Apply Theorem 5.2. The absolute norm of p is 2P and ord(2)2=1.

Hence

¥ ookl P, _ ,pt2
[F(Z). F(Z)] = 4(2%) =2 :

We shall now determine a set of coset representatives for V('Z)/V(':).
Let _F-:(z) denote the residue class field of F(z)' Let O(z) denote the ring

of integers in F(z)' Let A be a fixed set of representatives of f(z)in O(z)‘
Theorem 5.6. L.et p be odd and let v be a unit in F(z)' Then there exist

uniquely a€A, B=0,1 such that

ve (1+ 2a+ 48) Vé) .

Proof: By Theorem 5.3 it is sufficient to show that there exist uniquely

aeA,B=0 or 1 such that

v =(1+ 2+ 48) w? mod (8)
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for some wé€ V(z)' We have that v is a unit, therefore there exists a
unit y such that vy = 1. The mapping & — 6% is an automorphism of
i‘_(z)’ hence there exists 6¢€ V(z) such that 6%= y mod (2). Then
v 52 = 1 mod (2). Then there exists @€ A such that v6% =1+ 20 mod (4).
Moreover, ® is uniquely determined by the class of v in V(Z)/V;) .

For if there exists p€ V(z) such that
(1+ 20)p*=1+ 20" mod (4), a,a'€ A,

then

p? =1 mod (2) .

Hence p =1mod (2) and p =1+ 2p', p'€ O(z)‘ Then

1+ 20)p2 = (1+ 2a) (1 + Zp‘)Z =1+ 20 mod (4).

Hence 14+ 20 =1+ 20" mod (4). Then a= a' mod (2). But a,a'€e A, hence
2

a=a', By Theorems 5.2 and 5.5 the order of V(Z)/V(Z) is 2P* . The

set A has 2P elements. Therefore, in order to complete the proof, it

is sufficient to show that if €A and pueE V(z) then it cannot happen that
1+ 20)u? = (14 2a+4) mod (8).

Suppose it does happen. Then u =1 mod (2). Hence py =1+ 2u;,u,€ O(z)'
2
Hence (1+2)u? = (1+ 20) (1+2p,) = 1420) (1+4@,+ud) = 142 Q0+ 4u, + 4u,?

mod (8). Then we have

14+ 200+ 4u,+ 4uf? =1+ 20 +4 mod (8) .

Hence

P+ +1=0 mod (2),
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I'his last relation would imply that F(z) has a subfield of degree 2 over
GF (2), which contradicts the assumption that p is odd, since -FT(Z) has
degree p over GF(2). (O'Meara (111, p.23).
For each i=1, ...,p let O, = -t + ¢Y) where F=Q(z+z™).

The numbers 6,, ..., Gp are integers in F which give a Z -basis for

all the integers in F, Therefore the set

P

A={ala=) oB8,0c¢€{01}}

k=1
is a set of representatives for the residue class field F of F at (2).
By O'Meara [11], p.23 it follows that the set A is a set of representatives
in O(z) for the residue class field of F(z)' We are interested in finding
the representatives for the cosets in V(Z)/Vi) which contain the units
My g ssmy Uy because this information will enable us to compute the
Hilbert symbol (u, Ui)(z-) for ueU. We shall develop some relations
which will simplify the calculation of representatives, The relations are
not used in the proof of the succeeding theorems but will be used in an
example which motivates the succeeding theorems.

Let ke Z., Then there exists uniquely i€ Z such that 0<i<p

and k=i or k= -imod q. Let ((k)) denote this i.
Lemma 5.1, 6, + °-- + Gp =1,
Proof: The number [ satisfies 1+ L+ 2% + +++ + ¢ 97'= 0. Hence
<gaL” P g

Lemma 5,2, Let 1<1i, j<p, i# j. Then

-2

-tP-z"P =1, Hence 0, +--:- +ep= 1.

“i% T 4T Oy

and

%% T Sy T NGy
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Proof: (¢t + £ (v = g v 24 (P =2 O (2iyy -
e h (g Ty = I g T L M i i o ()
= @0, ave 0. R e

(i) (i-ip

The use of these lemmas is illustrated in the case q=7:

Then,

+a,b 0,6 +a,b,0,0, + a,b; 6,0,

+ a3b1 93 Gl + a—3bz 9392 + asb3 93 93

al bl (2"62) + ?'1 bz("el"63) s al b3(—92 "93)
& azbl(-el -93) + azbz (2"63) + az b3 (—91 —ez)

+ a3b1 ("92 -63) + a.3b2 (-91 -92) + a3 b3 (2-91)

2a; b, + 28,b, + 223b;
+ (-a; by ~a by -3, by a3 b, ~a3 by) 6
+ (-a; by ~a; by -a, by —a; b, a3 b,) 6,
+ (-a, b, -2, by ~a, b, -a, b, ~a; b;) 6;
But
1=06, +6, + 6,
Therefore
af =(22,b, + 2a,b, + 2a3;b; -a; b, -a,b; -a,b; ~az b, ~a3; b;) 6,
+ (22, by + 22, b, + 223 b3 -a; b) ~a; b; -2, b; ~a; b, ~a3 b,) 6,
+ (22 b, + 2a,b, + 223 b; -2, b, -a, by -2, b, -a,b, ~a;b;) 6;
This equation reduces to |
af = ((a; -a;)(by -b;) + (a; -a3)(b, -b3) +a; by ) 6
+ ((a; -a3)(b; -b3) + (a, -a3) (b, -bs)+a, b,) 6,

+ ((a, —a?)(b1 -b3)+ (2; -a,)(b, -b,) + 23 b3) 65
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In particular
a? = ((a, -a,)% + (a, ~a3)® + a,2) 6,
+ ((a; —a3)% + (a, -a3)% + a,2) 6,
+ ((a, ~a3)? + (a; -a,)% + az?) 0,
In fact these relations hold in general,

Lemma 5.3. Let 2, bi i=1, ..., p be arbitrary. Then

b

p p p
Al
(kz=l akek) (kzz'lbkek) = kz;lckek

where,

R D) (a;-2;) (b;-b))
(i,j)€ Cy

and
= {(i,)) | 1si<js<p, (it))) =k or ((i-j)) =k}.

Proof:

P P P P
( iZ"l aiei) ( jZ} b;o.) = Jzz_l iZ,l a;b,0,0;
P
2 ( Z 15 (~0ariy i) * (-%aip )P
1=/:J
and 2= 26,+26, + --- + zep. Hence the coefficient of ek above is
P P p
< 7
—JZ'I i;l aibj + j; aajbj - a,b,

i#j, ((it]))=k
or ({i-j))=k

where
((22))y =k, and 1< ¢ < p.
Consider
= a b+ ) (a,-a.) (b.-b.)
(i,j)e C
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Forany 1<1i,j <p, wehave
(a.-a.) (b.-b.?= a.b.-a.b.-a.b. +a.b. .
i7j i iti iy 3L 33

Also

_ P
Z —aib.-a.bi = = Z
e, 43 j=1

Fix k and £, where 1< £ <p and ((2f)) =k. The proof will be

complete if it can be shown that

P
(*) Z 2a.b.-a,b =a b + Z (a.b. + a.b.) .
1) 11 k'k (i,j)ECkll 375

j=

Write Ck = {(it, jt) I t=l, o ,r} where r is the number of elements in

Ck' It is asserted that

1) If 1<m < p and m # k, £, then exactly one of the following occur,

There exist exactly two integers f,g, 1<f,g < r such that
i) m = ig = if
ii) m = jg = jf
iii) m = ig — jf .

2) If 1<m <p and m=k or { then exactly one of the following occur,
There exists exactly one integer g, 1 < g < r such that
i) m=1
il) m = j
1f statements 1) and 2) hold, then (*) follows by comparing the terms
of each side‘. We prove 1) by proving
3) Given any m # k,f there exist 1 < n,n' € p such that n # n',

m # n,n' and ((m + k)) =n, ((m-k)) =n', Note n and n' are unique
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if they exist. Let n=({m+k)) and n'={(m-k)). If n=n', then
m+k = £ (m-k)mod q, so either k=-k or 2m=0, whichis a contra-
diction to assumption., If m=n, then m+tk=+m, so either 2m= -k
whence m=1£, or k=0, both of which contradict the assumption, If
m=n' then m-k =4+ m, so either 2m =k whence m={¢, or -k=0,
again contradictions. Therefore 3) holds., Given m as in 1) choose

n,n' as in 3). Then either

i) m<n and m < n', hence (m,n), (m,n')€ Ck
or ii) m>n and m<n', hence (n,m), (m,n')€ Ck
or iii) m <n and m > n', hence (m,n), (n',m)e€ Ck
or iv) m>n and m > n', hence (n,m), (n',m)e€ Ck .

But this proves 1). We prove 2) directly. If m=k there exists 1<n<

such that k+tk =+ nmodq . Either i) m<n or ii) m > n, Hence 2)
holds for m=k, If m = {, then either

a) £+ 2=+kmodq, whence f-k=-f, andhence there exists n,
l<ns<p suchthat £ + k=1 n; whence either i)m<n or ii)m>n,
or b) £+ £=-kmodq, whence £+ k= -f{ and hence there exists n,
l<n<p suchthat £ -k =4 n; whence either i) m<n or ii) m>n.
This proves 2).

Suppose again that q = 7. In this case the coset representatives

2
for V(z)/v(z) are
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1 1+ 4

1+ 26, 1+ 26, +4

1+ 286, 1+26,+4

1+ 26, 1+26;+ 4

1+ 2(6, +86,) 1+ 2(6,+6,)+ 4

14+ 2(0,+ 6;) 1+ 2(6,+65) + 4

1+ 2(6, +6;) 1+2(6,+6;)+ 4

1+ 2(6, +6,+ 03) 1+2(6,+6,+63)+ 4 .

We calculate the representatives for the class containing

v o= -1, v, = (€2-179 /0T, v =@ -T2

where { is a primitive 7th root of unity. We have, y=-1=7=1+2+4mod(8).
Hence v,;=1+2(0,+6,+ 6;)+4mod(8). Hence the representative for v, is
1+2(0,+6,+ 6;)+4,by Theorem 5,3.
We have v,=({%- Z_Z,_Z)/(g--g—l)= L+ g'l = -0,. By Lemma 5.3,
(a;0,+2,6,+a; 6;)(-06,) = ((a;-a,)(-1) +a,) 0,
+ (a; -a3)(-1) 6,
+ ((ay -a3)(-1) + (a;-2,)(-1)) 0,
=a,0,+(a;-a;3)0,+ (a2, -a3) 63 mod(2).
Therefore

1

Again by Lemma 5.3, (a, 6, +a, 6,+2a; 6;)2 = 6, + 6, mod(2)
implies a; 6, +a; 6,+a, 6; = 0, + 6, mod(2).
Hence a; =a, =1, a, =0, Therefore if we multiply -6, by the square of
a unit congruent to 6, + 65 mod (2), then the result will be congruent to

1mod (2). We have (6;+ 05+ 2(b, 6, +b, 6, + b3 0;))? =
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Oy + 0, + 2(0, + 03) + 4((by + by, + by) 0, + (by +by) 6;) mod (8). Also,

0, (8 +0, +2(0, + ;) + 4((by + by + by) 0, + (by + by) 6;)

= 0, +0,+0;+2(0,+0,) + 4((by+ b+ by) 0 + (1 +by +by)6,) + 4(L+by)0; mod(®.

Let b, =b; =1, by=0. Then we have that
-0, (6, +0;+2(6,+ 6;))2 =1+ 2(6, +6,) mod (8).
Therefore the class representative of v, is 1+ 2(6, +6,).

(23 -7/ (L-¢7") = t(gé-1)/g3 (22 -1) = {72 (g4 + g2+ 2°)

V3

22+1+7 2 =1-0, = 0,+6,.
Using the method shown in detail above we find that
(6,+6;) (6,+26,)2 =1+ 26,+ 4 mod (8) .

Therefore the coset representative of v; is 1+26,+4. We write a~f
if 01(—:BV®z .. Then we have

v, ~1+4+ 2(0,+6,+6;) + 4

v, ~1+ 2(0,+6,)

LSEY ~1+ 292+4.

Additional calculation will show that

vu, ~ 1+ 20;+4 3v,u, ~ 1+ 2(0,+ 6,) + 4
vivs ~ 1+ 2(0,+6,) 3u,us ~ 1+ 26,
v,vy ~ 1+ 20,+ 4 3uu3 ~ 1+ 2(0,+6;)+ 4
vyupuy ~ 1+ 2(6,+06;) 3u,vu53 ~ 1+ 26,

Also,
3v, ~14+ 4 ) Bu; ~ 1+ 2(6,+6;)+4

3u, ~1+ 26, 3~1+ 2(0,+0,+6,)



66
Note that the cosets containing v,,v,,v;, and 3 generate the entire
group. We shall show that this situation is related to the distribution of
signs, First we shall need the following
Lemma 5.4. Let p be odd. Let k be a rational (2)-adic number and

let @ be an element of F(z). The quadratic form x%-ky? represents a
in F(z) iff the form x?-ky? represents NF(Z)/Q(Z)(a) in Q( 2)°
Proof: Assume that there exist vy, §€ F(z) such that y2-ké6%=0a, If k is

a square in F(z) then it is a square in Q(z). Hence x?-ky? represents

all of Q(z) if k is a squarein F,_,. Assume then that k is not asquare .

@)

in F(z)' The extension F(Z)(‘/lz) is Galois over Q(z)‘ Hence
. '
NE o) (Vi) (VE) (y+ 6k} = 3 + 59k
where y', §' are elements in Q(z)' Then it follows from the transitivity

of the norm that
2 _ 85121 —
§8'%k NF(;_)/Q (a) .

Hence x?-ky? represents NF /Q (a) in Q2 Conversely, assume
@)

@)
(2)
that there exist g,d in Q(z such that g2-kd? = /Q . Given
: "/
UEG(F(Z)/Q(Z)), the form x%-ky? represents O in F() 1ff it represents
o (A) in F(Z) That is, (k,a)(z)—.: 1 iff (k,o*(a))(z)= 1. But the Hilbert
symbol is multiplicative, i.e. (k,a ﬁ)(z) = (k,oo(z) . (k,ﬁ)(z) (O'Meara [11],

p. 166.). Hence if (k,a)(z) = -1, then
6 Ng. /0, @ Y = TT (e,c(@), =

(2) o€ G(F(Z)/ Q

because G(F(z)/Q(z)) has order p which is odd by assumption. But this is

a contradiction. Therefore (k,a)(2)= 1, i,e. x®-ky? represents & in F

@)"
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Theorem 5.7. Let p be odd. Then

2 . p . 2 2
F, MU =U? iff (2)/ <u,v@)>@--@(upv('z))@@vm)

2 e, e “paeo. 2
Proof: Assume that F&)(\U = U2, Suppose that v, l‘vzz"'up 3 GV(Z)

where ¢;,e,, ..., ep are in Z, Since p is odd by assumption, the

degree of F(\z) over Q(z) is odd, therefore we conclude by applying

2

NF(Z)/Q(Z) that + 30 or -3 EQ(Z). Hence e;=0mod(2). Therefore
e, e, ep 2 e, e

assume that ue1 vp f tet vy E\iz) . Then v, ! --- vs EF&)(_\U Uz

But vlel UPPGUZ irnplies that eiE Omod(2) for i=1, ..., p. By

Theorems 5.2 and 5.5, the order of (2)/ is 2p+1 . Hence
2 2 2
V /V = <”1V(z)>® @(up\{z))®(3 (z) . Conversely, assume that

(z)/ o= (V@ - ® <upv(:)>@<3vé)>. Clearly UZC E.MU. If

@)
v=ul .. Vs °Pe F, (z)ﬂU then ve VZZZ) Hence by assumption e,=0

mod(2) for 1=1, ..., p. Therefore ve U?., Hence U?= (z)mU

Theorem 5.8, Let p be odd. The mapping &: U/U2— G(E/F) defined by

i e = <P(Z)(JJ) npeU
is a monomorphism iff

2
= 2
F(z)mU—U

Pfoof: Assume that the mapping q?;U/UZ — G(E/F) is a monomorphism,
If ae Fé)mU, then (p(z)(a) = 1. Hence a€U? by the assumption

Therefore U? = Fzz)mU. Conversely, assume that (\U Uz, 1t

(2)

veU and (p(z)(u) =1, then (U’ui)(z) L 1 for i=1, ..., p, by Corollary

4.4.1. In particular, (u,ul)(?_) = 1. Hence x?+y? represents v in F(z)'
24 2 2 =

Therefore x%*+y? represents NF(Z)/Q(Z)(U) in Q(z) by Lemma 5.4. But
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ve U implies that NF "(v)=+1 or -1, Therefore N (v)=+1
F
e/ %) %)
(see Borevich and Shafarevich [5], p.54). Then x%2-N (v)y2=x?%-y?
By )
. o 5 - . 2. 2 " e
represents 3 in Q(z)’ therefore x“-3y® represents NF{;)/Q(.»_)(U) in

a represents v in F(z) by Lemma 5.4. Therefore

-3’)’2

Q(z)’ whence x
(v, 3)(2) =1. Similarly (U’Z)(z) =1. Then by Theorem 5.7, the assumption
F(:)ﬂ U = U2?, and the multiplicativity of the Hilbert symbol, it follows
2
that (v,a), =1 forall @ in F_. . Hence veF, (see O'Meara [11],
@) @) @)
p.166). Therefore ve U%, Hence §:U/Uz — G(E/F) is a monomor-

phism,

Corollary 5.8.1. Let p be odd. The following statements are equivalent,

u?

2
1) UM F(z)

2) UNT
2, 2 .2 2

3) Vi Ve = (v1V)) @ @(v V) @ (3V,,)

4) G(E/F) has order Zp‘ and G(E/F)=®P

U2

- GP(E/F)
5) The matrix Mq of cyclotomic signatures is non-singular
6) ®:U/U%2 — G(E/F) is a monomorphism .
Proof: 1) <= 6): Theorem 5.8
1) <= 3): Theorem 5.7
2) <> 6): Theorem 4.3
2) <> 4): Corollary 4.2.1

2) <= 5): Corollary 2.6.1
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Appendix I - Tables

For each prime q, 5 < q < 929, the rank of the matrix of
cyclotomic signatures was calculated on an IBM 7094 computer. The
rank computation was actually made on the matrix M'q defined in
Chapter II. Two programs were written to perform this computation.
The first program was written in Fortran IV without bit-processing.
Hence this program could only be executed for 5 < q < 211 because for
greater q the core memory would be exceeded. The second program
was written in IBMAP in order to take advantage of bit-processing and
the binary nature of the computation, The results from the first program
were used to check the initial results which were obtained using the
second program, Although the Fortran program consisted of about 50
statements, the IBMAP program consisted of 640 IBMAP instructions.
Using the IBMAP program, the computer performed the computation for
5 < q < 929. The tota time for the Fortran run for 5 < q < 211 was 5
minutes, 5 seconds. The total time for the IBMAP run for 5 < q < 541
was 23 minutes, 4 seconds, The total time for the IBMAP run for
547 < q < 739 was 45 minutes, 51 sg:conds. The total time for the
IBMAP run for 743 < q € 929 was 1 hour, 32 minutes, 3 seconds. The
following table contains the results. The first column contains the value
of the prime q. The second column contains the value of p=(q-1)/2.
The third column contains the rank of the matrix Mq of cyclotomic
signatures. The fourth column contains the prime factorization of p if

P is not a prime, and the index of 2 mod p if p is prime,
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149
151
157
163
167
173
179
181
191
193
197
199
211
223
227
229
233
239
241
251
257
263
269
271

281
283
293
307
311
313
317
331
337
347

105
111

113
114
116
119
120
125
128
131

134
135
138
140
141

146

153

155
156
158
165
168
173

71

2
2
2 «3%s
5
25.
2
32
5
*5
Z 3
22-
23-.3
&
33
2 -3
2%2-5
3
2
32
5
2%2-3
2
3 -5
&3-3 @



491

499
503
509
521
523
541

557
563
569
571

174
176
179
183
186
189
191
194

198

200
204
209
210
215
216
219
221

224
228
230
231
233
239
245
249
251

254
260
261

33
w o

278
281
284
285

72

170
176
179
183
181
189
191
194
194
200
204
209
206
215
216
219
221
224
228
230
228
233
239
239
249
251
254
260
261
270
271
278
281
284
285

2 *3 -29
2. 11

1

- 61

2 %3 =31
3B 7

2

2 97

2 =3%+11
23 . 52
2%+3 » 17
11-19
Be 7

5 .43
23 . 33

3 -73
13 -17
2% v 7
223 19
5 .23
«3.1

8

2

72

3 -83

5

2 127
24=5 +1%
32.29

2 -33+« 5
«13
2 -139

4

&4=71
-b +19



577
587
593
599
601

607

613
617
619
631
641
643
647
653

661

73

288
293
296
299
300
301
306
308
309
315
320
321

323
326
326
330
336
338
336
345
347
350
359
363
366
369
371

371
378
380
384
386
393
398
404

&5. 32
1
23 .37
2-13-23
z2.3 53
3 -101
2 -32.17
257 11
3 -103
32.5 - 7
28+ 5
3 -107
7 *19
2 +163
7 -47
2*3 +5 11
2%=3 7
2 -132
1 -31
*5 +23
.52. 7
*3 *§9
2
3 -112
2 -3 .61
32-41
53
3 53
2 -33- 7
22-5 .19
2T+ 3
2 +193
3 -131
2 +199
22-101
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410
411

413
414
419
426
428
429
431

438
440
441
443
453
455
459
464
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405
410
411

407

414
419

424

428
429
431
438
440

435

443
453
455
459
464

23 .

3*s B
*5 -41
3 -137
7 =59
s 3% 23

1
3 =71
2+ =107
*11-13

10
3 =73
5 .11
gl 2

1
3 -151
7 -13
o e

&4.29



75

Appendix II - Polynomial Calculations

By the results found in Chapter III, it is evident that polynomial
calculations over GF(2) deserve some attention. The two most useful
algorithms are the Euclidean algorithm for the computation of a greatest
common divisor and éhe method of Berlekamp [4] which is used to factor
polynomials over finite fields. Both of these algorithms are simple to
apply over GF(2) because of the binary nature of digital computers,
particularly if bit-processing is available.

Using IBMAP to achieve bit-processing, a program was written
for an IBM 7094 to compute Hq(x) by Theorem 3.7 for 929 < q < 4703,

q prime, p odd. The program was used to check the non-singularity of
Mq for 929 < q < 4703, q prime, p prime, There are 43 such cases,
Of these 43 cases, 13 cases satisfy the hypotheses of Theorem 3.5 and
hence Mq is nbn-singula.r in these cases, The remaining 30 cases
required approximately 13 minutes of computer time. In each case it

was found that Mq is non—singu;ar. The same program was subsequently
expanded (1200 statements) to include a method for factoring Hq(x) in
the case of p odd. The method used was an unpublished method due to
Robert J. McEliece. McEliece's method is essentially the same method
as Berlekamp's but apparently was found independently. The program
was designed to compute the exponents of each irreducible factor. The
computer time required was considerable. For example, the cases

p = 245, 375, 441 required 1 hour, 9 minutes. The following tables
summarize the results of all computations made with Hq(x). Polynomials
are expressed by writing down their coefficients in octal notation. For

example, the polynomial x3+ x+1 is denoted by 13 octal, which is 1011 binary.
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Polynomial Calculations on Hq(x)

matrix ! H (x)f factors of exponents
p nullity 4 Hq(x)_‘r of factors
81 2 7 7 3
155 10 2303 75, 67 31, 31
245 6 177 13,15 7,7
273 2 7 7 3
303 2 7 7 3
341 | 5 73 73 31
375 4 23 23 15
413 6 177 13,15 7,7
426 2 7 7 3
441 6 103 103 63

TPolynomials are expressed by writing down their coefficients in octal
For example, the polynomial 3+ x+1 is denoted by 13 octal,
which is 1011 binary.

notation.



g.c.d.
GF(2)
G(L/K)

G

/9

(L/K)

GF(2)[G(F/Q)]

Hq(X)
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Index of Notation

multiplicative group mod d of least positive residues
prime to d, d odd

Ad/(2>, group of cosets of (2) in A

Kronecker delta

exponent of 2 mod d, d odd

field F(Vv,, ...,JU;)
field Q (z+77 ")

Euler phi function

reciprocity map

mapping from U/U2 to G(E/F)

greatest common divisor in GF(2)[x]

Galois field of two elements

Galois group of L over K

decomposition group at P

group ring of G(F/Q) over GF(2)

see definition

completion of field K at prime p

non zero elements of field K

see definition

matrix of cyclotomic signatures

see definition

units in F which are norms

absolute norm of prime P

local norm group

norm map

(a-1)/2

d

p. 44

p.53

p.42

p.31
p.8

p.16
p. 9
p. 56

p. 44
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Index of Notation - cont'd.

primes

odd rational prime integer
field of ratiogal numbers
field of real nurhbers

positive real numbers

units in F which are squares P.9

o - sign of & pP.8

o - signature of « p.8
see definition p.10
see definition p. 30
units in F which are totally positive P.9
cyclotomic unit PP. 7-8

group generated by cyclotomic units

dual group of U/U?

group of units in F

dth cyclotomic polynomial

primitive qth root of unity

primitive dth root of unity

the coset x + (xp+1)

rational integers

ordinary absolute value or set cardinality

least positive residue mod g

see definition P.59
Hilbert symbol p. 54

Legendre symbol
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