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Abstract 

The influence of sloping boundaries on the long wave response of bays and 

harbours is studied in this work. Laboratory experiments are performed to help 

validate the theoretical analysis which is applicable to nonbreaking waves. 

A set of long wave equations in the Lagrangian description is derived which 

includes terms to account for nonlinear, dispersive, and dissipative processes for 

wave propagation in two horizontal coordinates. A finite element model is devel

oped based on these equations which is capable of treating arbitrary geometry and 

the runup of nonbreaking waves on a beach. 

An analytical harbour response model, capable of treating narrow rectangu

lar harbours with variable bathymetry and sidewall geometry, is developed and 

applied to several simple geometries. The model shows that for a given harbour 

length and entrance width, the resonant frequencies and the response of a harbour 

are very dependent on the harbour sidewall geometry and bathymetry. 

Some of the nonlinear effects of the runup of nonbreaking periodic waves on 

a plane beach are discussed. In particular, the time average of the water surface 

time history at a fixed spatial location is negative and the wave crests are smaller 

than the troughs. Nonlinear effects do not alter the runup maxima or minima and 

the maximum fluid acceleration occurs at the point of maximum rundown of the 

wave. 

Laboratory experiments were performed to determine the long wave reponse 

of a narrow rectangular harbour whose still water depth decreases linearly between 

the harbour entrance and the shoreline. Good agreement with the finite element 
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model was obtained, including the prediction of the depression of the mean water 

level within the harbour. 

A three-dimensional application of the finite element model treats the runup 

of solitary waves on a coastline with variable bottom topography and a curved 

shoreline. The results indicate that the model can predict the trapping of wave 

energy along a sloping coastal margin, a process of fundamental importance for 

predicting potential tsunami damage. 
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CHAPTER I 

Introduction 

It is well known that undersea seismic activity and certain atmospheric condi

tions can generate long wavelength surface gravity waves in the ocean. The subset 

of these waves which are generated by large scale, short duration disturbances are 

known as "tsunamis" and are generally of seismic origin. 

In the deep ocean, typical tsunami wavelengths are 100-400 km. This is very 

long compared with the average depth of the Pacific Ocean which is about 4 km, 

and yields deep ocean wavelength-to-depth ratios of 25 to 100. Waves with such 

length to depth ratios propagate as shallow water waves at a speed c determined 

by the local water depth: c = ygh,, where g is the acceleration of gravity and h 

the water depth; hence, typical propagation speeds are of the order of 700 km/ hr. 

Given these values of the wavelength and propagation speed, and the fact that 

tsunami amplitudes in this region of the ocean generally are probably less than 

1 m, it is clear that they usually pass unnoticed in the deep ocean and pose no 

harm at all to ships of any size. The rise and fall of the water surface by a metre, 

over a period of several minutes, would be masked entirely by the wind generated 

sea and swell. 

However, as a tsunami propagates up the continental slope and across the 

continental shelf, its amplitude increases and its wavelength decreases as the wave 

shoals. Through the processes of refraction, diffraction, shoaling and reflection 

the wave can be greatly distorted as it approaches the coast. Indeed, by the time 
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a tsunami reaches the shoreline it may bear little resemblance to its appearance 

in the deep ocean. Its amplitude can grow large enough to cause considerable 

damage. A tsunami that is practically invisible in the deep ocean can transform 

into a very menacing threat along the coastal margin. The Japanese coast is 

particularly susceptible to tsunami attack because Japan's offshore sea bed is 

geologically prone to tsunamigenic seismic activity and because its coastline is 

highly populated. In addition, much of its coastline is very irregular, containing 

many harbours and bays which can amplify and trap long wavelength waves. 

However, many other areas of the world are also vulnerable to tsunami attack, 

especially those regions bordering the seismically active Pacific "Ring of Fire." 

For a historical compilation of the vast number of recorded tsunamis in this region 

see Soloviev & Go (1974, 1975). 

For both economic and social reasons the world's ocean coastlines have his

torically attracted large populations to live near and to visit for recreation. In 

addition, a vast amount of capital is invested in nearshore coastal structures and 

moored ships. Hence, a tsunami attack can be potentially a very devastating 

event, measured in loss of both life and money. 

Over the past one hundred years there has been, on average, approximately 

one destructive tsunami per year, which has caused loss of life or serious property 

damage somewhere in the world. The eruption of the Krakatoa volcano on August 

27,1883 generated a 30 m tsunami which killed 36,000 people in Indonesia. A 

strong earthquake, felt in northern Japan on June 15, 1896, also generated a 

tsunami with devastating consequences. The greatest damage occurred along the 

Sanriku coast. According to official accounts, over 27 ,000 people died, more than 

10,500 buildings were destroyed and over 9,000 people injured. The water rose 

24 m at Yoshihama and a runup of 30 m was recorded at Ryori. In more recent 

times, a catastrophic earthquake in southern Chile on May 22, 1960 generated 
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a very large tsunami. About 1000 people were killed in Chile, 60 people in the 

Hawaiian Islands, and 200 people in Japan. The maximum tsunami runup reported 

was approximately 20 m in Chile, 10.5 m in the Hawaiian Islands, 6.5 m in Japan 

and the USSR, and 3.5 m in the United States. In addition to the deaths caused 

in Japan, the tsunami was also strong enough to move large boats significant 

distances inland. This is a remarkable feat, considering this is after the tsunami 

had propagated over 15,000 km across the Pacific Ocean from the southern coast 

of South America. The tsunami generated by the Alaska earthquake of March 28, 

1964 was responsible for at least 121 deaths in Alaska, Oregon, and California. 

Damage was estimated to be in excess of $100,000,000. The Nihonkai-Chubu 

tsunami, generated by an earthquake in the Sea of Japan on May 26, 1983, was 

responsible for 101 deaths in Japan and 3 deaths in Korea. The maximum runup 

recorded was 14.9 m on Minehama beach in Akita prefecture. Damage along the 

coast of Japan amounted to more than $800,000,000. 

The nearshore bathymetry and coastline geometry are often a crucial factor 

with respect to the destructive power of a tsunami. In particular, if a tsunami 

enters an inlet or a man-made harbour which has a natural period of oscillation 

near the dominant period of a tsunami, its amplitude may be amplified greatly 

by the process of resonance. In effect, this amplification occurs because a wave 

which reflects from the head of the basin propagates back offshore toward the sea 

but has some of its energy reflected at the harbour entrance back into the basin, 

thereby trapping some of the wave's energy within the harbour. The tsunami 

amplitude can be greatly enhanced if the trapped waves are in phase with the 

incident waves entering the harbour from the open sea, resulting in heavy damage 

to moored ships, coastal structures, and low lying coastal communities. It is not 

surprising that "tsunami" is a Japanese word which translates to "harbour wave." 

As an example of this process, consider the town of Port Alberni located 65 km 
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from the coast at the head of Alberni Inlet on Vancouver Island, British Columbia. 

Alberni Inlet is connected with the open ocean through Trevor Channel. The town 

was inundated with waves whose maximum amplitude exceeded 5.2 m generated 

by the 1964 Alaska earthquake (Murty 1977). However, at the exposed town of 

Tofino (which does not lie within an inlet or a harbour), only 65 km up the coast, 

the amplitude never exceeded 2.5 m. The large amplification measured in Alberni 

Inlet has been largely attributed to resonance. The tsunami contained a significant 

amount of energy in a frequency band which closely matched a natural oscillation 

frequency of the combined Alberni Inlet, Trevor Channel waterway (Murty & 

Boilard 1970 and Thomson 1981). 

1.1 Objective of this Study 

The protection of life and property from tsunami attacks depends primarily 

on understanding the physical processes involved and on being able to predict 

both the damage caused by a hypothetical tsunami attack at a given location 

and the consequences of engineering attempts to help mitigate future losses in the 

area. Therefore, the hope is that as better models are developed, better decisions 

can be made to help improve the safety of future coastal developments and to 

help protect existing ones as well. It is in this spirit that this investigation was 

carried out. The objective of this study is to investigate the runup of nonbreaking 

waves on both straight and irregular beaches and to incorporate this process into 

a comprehensive nonlinear, dispersive, numerical model, which will be capable 

of predicting the dynamic response of harbours excited by long waves such as 

tsunamis. The model will handle problems with arbitrary geometry. 

The long wave dynamic response characteristics of a harbour are determined 

largely by its bathymetry, shoreline and entrance geometry. The offshore topog-
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raphy exterior to the harbour may also have an influence. Some harbours are 

bounded by vertical boundaries, or at least have very steep shores which can be 

approximated by vertical boundaries. It is reasonable to analyze such harbours 

or bays with long wave models which make the vertical boundary approximation. 

Such a boundary is relatively easy to incorporate into a model because its location 

is known. However, if the harbour is bounded by a sloping boundary, the shoreline 

position is not fixed and will move as waves run up and down the boundary. If the 

wave amplitude is large, this motion of the shoreline must be handled properly 

to compute the correct wave field and harbour response. Therefore, for a sloping 

beach the runup of waves can be an important process that may influence the 

response of a harbour to long wave excitation. It is a process which must be cou

pled with a harbour response model to predict quantitative estimates of the wave 

field within a basin excited by long waves. Perhaps the biggest influence that a 

sloping boundary can have on a wave field is that the waves may break as they 

propagate towards the shoreline. This is an exceedingly complex process which 

can dissipate much of the available wave energy. If this is the case, little energy 

will be reflected back towards the harbour entrance so resonance is not likely. This 

investigation will not consider breaking waves. It will be assumed that the slopes 

of the boundaries are large enough to prevent breaking, although nonlinear runup 

effects may still be large. 

The treatment of moving boundaries in a numerical model cast in the Eulerian 

description is awkward, though possible. An alternate approach is to cast the 

model in the Lagrangian description. This is the description most widely used 

in solid mechanics but it can also be applied to fluid problems as well. In the 

Lagrangian description material boundaries (such a a shoreline for nonbreaking 

waves) are fixed with respect to the Lagrangian coordinate system, even though 

these boundaries may move in the more traditional Eulerian coordinate system. 
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Therefore, to facilitate the treatment of wave runup along sloping boundaries, 

it was decided to develop the numerical model in the Lagrangian description. 

Analytical work and laboratory experiments on wave runup and harbour resonance 

were also done. These results will be used to test the validity of the numerical 

model. 

1.2 Thesis Outline 

In Chapter 2 a review of previous work relevant to this study is presented. 

Chapter 3 contains the theoretical analysis performed for this investigation. This 

analysis consists of a derivation of the long wave equations of motion in the La

grangian description for two horizontal coordinates, a derivation of a harbour 

resonance model applicable to long narrow harbours with otherwise arbitrary 

bathymetry and geometry, a presentation of some nonlinear effects associated with 

wave runup on linear sloping beaches, and finally the development of a nonlinear, 

dispersive finite element numerical model based on the long wave equations of mo

tion derived earlier in the chapter. The experimental equipment and procedures 

used in the study are described in Chapter 4. In Chapter 5 finite element model 

calculations are compared with both the analytical theory of Chapter 3 and the 

results of laboratory experiments outlined in Chapter 4. The major conclusions 

drawn from this investigation are presented in Chapter 6. Appendix A contains 

a simplified derivation of the nonlinear, nondispersive, long wave equations of 

motion in the Lagrangian description that is based on physical and geometrical 

reasoning. 
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CHAPTER 2 

Literature Review 

Accounts of coastal tsunami damage can be traced back more than two thou

sand years. Many of these old records give highly detailed qualitative descriptions 

and most are of great statistical interest to scientists and engineers. However, it 

is only in the past 50 years or so that careful scientific measurements and inves

tigations have actively addressed the tsunami problem. According to Van Dorn 

(1965) modern tsunami research began in Japan, following the tsunami generated 

by the Sanriku earthquake of March 3, 1933. More than 3,000 residents died and 

more than 6,000 structures and 12,000 boats were washed away and destroyed 

(Soloviev & Go 1974). Since then, a large body of work has been compiled on 

the generation and propagation of tsunamis. No attempt will be made to offer an 

exhaustive review of previous work in this field. For a general survey of tsunami 

related topics see Wiegel (1964), Van Dorn (1965), and Carrier (1971). For a com

pilation of more recent work see Hwang & Lee (1979), and Iida & Iwasaki (1983). 

Previous reviews and further references related to the excitation of harbours and 

bays by long waves can be found in Raichlen (1966, 1976), Wilson (1972), Miles 

(1974), and Lepelletier (1980). 

This review will be limited to previous work on wave-induced oscillations 

in harbours or bays and on runup studies that have relevance to this topic. The 

literature which strictly relates to harbour or bay oscillation and does not consider 

runup will be reviewed first. This literature will be further divided into linear and 
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nonlinear studies. Then the literature on wave runup with relevance to harbour 

oscillations will be covered. It will be divided into three groups, reflecting the 

different techniques used to to study this process. 

2.1 Harbour Oscillations 

Many early methods for treating wave propagation were based on ray tech

niques borrowed from linear geometric optics theory. These techniques are well 

suited to treating problems with arbitrary geometry. However, without significant 

modification they cannot treat diffraction or reflection from objects or shorelines. 

In addition, they cannot quantitatively predict runup. Therefore, these methods 

are not directly applicable to harbour oscillation studies, so the related literature 

will not be reviewed. In the next section literature related to studies of harbour 

or bay oscillations that neglected nonlinear effects will be reviewed. Then, follow

ing that, literature related to studies which did include nonlinear effects will be 

reviewed. 

2.1.l Linear Investigations 

Early work on oscillations in harbours or bays made the assumption 

that at resonance either a node or an antinode existed at the mouth, depending 

on the entrance geometry. This imposed a constraint on the coupling between the 

basin and the exterior body of water. Unless viscous losses were included, the 

wave heights within the basin could grow unbounded, since energy was prevented 

from escaping from the harbour or bay at resonance. This problem was solved 

by Miles & Munk (1961), who investigated the coupling of a harbour to the open 

sea. They specialized their theory to treat long wave harbour oscillations induced 

through the entrance of a constant depth rectangular harbour. By modelling the 
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process by which energy is radiated out of the harbour through the entrance to 

the open sea, they showed that the amplitude within the harbour was finite even 

at resonance. They were also able to compute the effect of changing the width 

of the entrance on the wave amplitude in the harbour. They found that as the 

entrance width was reduced to zero, the response of the harbour increased without 

bound at resonance. The authors named this effect the "harbour paradox." This 

apparent paradox arose because viscous dissipation at the mouth of the harbour 

was neglected. If this is properly accounted for, the wave amplitude remains 

bounded as the entrance width is reduced to zero, even at resonance, and the 

paradox is resolved. 

Ippen & Raichlen (1962) looked at the problem of simulating the open sea in 

laboratory studies. They conducted experiments to study the response of a small 

rectangular harbour connected to a large, highly reflective rectangular wave basin. 

They found that there was a high degree of coupling between the small harbour 

and the outer basin. They obtained a large number of closely spaced spikes in 

the harbour response curve, much different than the peaks associated with the 

resonant modes of a rectangular harbour connected to the open sea. Their obser

vations agreed fairly well with a simple theoretical model they developed, except 

near resonance, since nonlinearities and viscous losses were not considered. Their 

work stressed the need for using efficient wave absorbers and filters to accurately 

simulate the open sea in small experimental wave basin facilities. 

Ippen & Goda (1963) studied experimentally the response of a constant depth 

narrow rectangular harbour connected to the open sea, using deep water waves. 

They also developed a linear dispersive theoretical model which agreed reasonably 

well with the experiments, provided they installed efficient wave absorbers in the 

wave basin to simulate the open ocean exterior to the harbour. Although they did 

introduce a correction factor for laminar viscous losses in the boundary layers along 
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the side walls, they did not account for energy dissipation due to the formation of 

eddies at the harbour entrance, so their theory tended to overpredict the harbour 

response at resonance. 

Both Lee (1969, 1971) and Hwang & Tuck (1970) studied linear inviscid 

harmonic harbour oscillations using boundary integral techniques to solve the 

Helmholtz equation. Both models treated arbitrary harbour geometry but were 

limited to domains with constant water depth. Lee's method expresses the solu

tion as a distribution of sources and dipoles along the boundary, whereas Hwang 

& Tuck used only sources. Hwang & Tuck compared their model to the theory 

of Ippen & Goda (1963) for a narrow rectangular harbour connected to the sea 

and found good agreement, although their model predicted a larger response at 

resonance than Ippen & Goda's theory. At the first resonant mode the difference 

was approximately 12%. They also presented numerical results for an arbitrary 

shaped bay. Lee compared his numerical model to analytical solutions and also 

to experimental results for both a narrow rectangular harbour and for a circular 

harbour. He obtained good agreement, although near resonance his numerical 

and analytical theory overpredicted the amplification within the harbour. This 

is likely because his did not model viscous losses, especially near the harbour en

trance where flow separation can occur. He also constucted a model of the East 

and West Basins of Long Beach Harbour, Long Beach, California. His experi

mentally determined harbour response characteristics agreed quite well with the 

predictions of his numerical model. 

Olsen & Hwang (1971) presented a linear nondispersive numerical technique 

for investigating long wave oscillations in a bay or harbour. They combined a 

finite difference solution of the Helmholz equation within the bay with an open 

sea integral solution outside the bay. Variations in depth could be treated but 

the bay was bounded by vertical walls. Arbitrary planform geometry within the 
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bay was treated by approximating the boundary by straight line segments of the 

grid system. Thus, normal boundary derivatives were in only one of the two 

coordinate directions. They compared their results with field data available for 

Keauhou Bay, Hawaii. Their model showed general agreement with the field data 

but there were some discrepancies for the lower frequencies which they attributed 

to shelf resonance and edge wave effects. 

Chen & Mei (197 4) developed a linear inviscid nondispersive hybrid finite 

element model for treating arbitrary planform geometry and variable water depth. 

They used the model to study the steady-state harmonic response characteristics of 

an offshore harbour. The domain of the problem was divided into an inner and an 

outer region. In the inner region, the solution was obtained using standard finite 

element techniques. In the outer region, the solution was represented as the sum 

of a known incident wave and a radiated wave expressed as a series solution. The 

outer analytic solution was matched to the inner finite element solution along their 

common boundary. In addition, the model could treat sharp-ended breakwaters 

by expressing the solution in a small region around the breakwater tip as a series 

solution and then matching it with the finite element solution along their common 

boundary. 

Houston (1978) studied the interaction of tsunamis with the Hawaiian Islands. 

Using sea floor deformation estimates for both the 1960 Chilean earthquake and 

the 1964 Alaskan earthquake, he used a numerical model to generate the resulting 

tsunamis and to propagate them across the Pacific Ocean to determine their deep 

water signatures near the Hawaiian Islands. He used this information as input 

to a linear nondispersive hybrid finite element model modified from Chen & Mei 

(1974). He reported good agreement with tide gauge records from the actual 

events at several different locations. This indicated that nonlinear and dispersive 

processes may not have played a large role in the interaction of the tsunamis with 
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the Hawaiian coast at the locations studied. 

Behrendt, Jonsson & Skovgaard (1983) modified the finite element model of 

Chen & Mei (1974) to include an absorbing boundary condition. This boundary 

condition was used to simulate the full or partial absorption of wave energy along 

a boundary, presumably by wave breaking. The boundary condition corresponded 

to the simple admittance radiation condition for plane progressive waves in water 

of constant depth, although they introduced a parameter to vary the amount of 

transmission and reflection. Even though the boundary condition was based on 

plane waves propagating in water of constant depth, they applied it to more general 

conditions, so its physical significance is difficult to assess theoretically. They did 

not comment on how one could choose the adjustable parameter to simulate real 

boundary dissipation mechanisms. However, their work does reflect the need to 

incorporate boundary dissipation in tsunami models, especially if the waves break. 

They also investigated the effect of varying the angle of the incident waves. They 

found that even though the amplitudes in the open sea were heavily influenced by 

the angle of incidence, the response of the harbour was relatively insensitive to it. 

2.1.2 Nonlinear Investigations 

Most of the linear numerical models reviewed in the previous section 

computed steady-state harmonic solutions. More general cases could be treated 

using Fourier superposition. However, nonlinear problems cannot be solved with 

simple Fourier superposition (except for certain spectral methods). Therefore, 

nonlinear problems are generally solved in the time domain with a time-marching 

scheme. 

Leendertse (1967) developed a nonlinear nondispersive finite difference model 

to treat the propagation of long waves. Friction was modelled by a bottom stress 



-13-

proportional to the square of the velocity. The model results were often very sen

sitive to the choice of the friction coefficient. In those cases the friction coefficient 

had to be determined iteratively by comparing the computed results with field 

measurements. A weakness of the model was that the surface displacement time 

history had to be completely specified along a boundary of the domain. Therefore, 

waves reflected or scattered from boundaries could not leave the solution domain 

unless their time histories were known a priori. In general, these time histories 

are not known, since they are part of the solution to be computed. 

Peregrine (1967) derived equations of motion in the Eulerian description for 

long waves propagating in water of varying depth in two horizontal space dimen

sions. His derivation retained terms which modelled the effects of nonlinearities 

and of frequency dispersion. As an example, he computed numerically the climb 

of a solitary wave on a beach of uniform slope. However, he terminated the simu

lation before the wave reached the shore, so no runup information was obtained. A 

method similar to Peregrine's will be used in this work to derive a set of nonlinear 

dispersive long wave equations in Lagrangian coordinates. 

Iwagaki & Murakami (1972) performed laboratory experiments to investigate 

the response of a narrow constant depth rectangular harbour excited by perodic 

nonharmonic long waves. Incident waves were generated which contained three, 

two, or just one main harmonic component. They found that the resonant charac

terisics of the harbour for the composite waves were different from that obtained 

by linearly superimposing the resonant characteristics for each of the harmonic 

components of the composite waves. They concluded that the differences were 

due to nonlinear interactions between the different harmonics in the composite 

waves. 

Houston & Garcia (1978) used model of Leendertse (1967) to predict the 

100 and 500-year runup elevations along the west coast of the continental United 
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States. The generation and deep ocean propagation of the tsunami generated by 

the 1964 Alaskan earthquake was simulated by a linear nondispersive long wave 

model described by Houston & Garcia (1974). It was originally developed by 

Hwang, Butler & Divoky (1972). The output of this model was used as input 

to the model of Leendertse to compute the detailed nearshore propagation. The 

coastal boundary was treated as a perfectly reflecting vertical wall. It was assumed 

that the tsunami runup heights would be equal to the coastline wave elevations. 

For steep beaches this is a good assumption, but clearly this may be only a crude 

estimate for more gently sloped beaches. 

Rogers & Mei (1978) studied steady-state nonlinear resonant excitation of a 

long and narrow rectangular bay of constant depth. They argued that the radiated 

wave away from the bay entrance was small enough to allow a linear analysis of 

the motion in the open ocean outside the bay. Within the bay they used weakly 

nonlinear equations of the Boussinesq class. They restricted their analysis to one

dimensional wave motion within the harbour, since two-dimensionality was only 

important in the immediate vicinity of the bay entrance. They also performed lab

oratory experiments with three bays of different lengths, corresponding to the first 

three linear resonant modes. They found that at resonance nonlinearities tended 

to decrease the amplitude of the fundamental harmonic as energy was spread to 

higher harmonics. The nonlinear generation of higher harmonics led to additional 

resonant peaks in the harbour response curve. They also showed that nonlinear 

effects produced a mean setup at the backwall; i.e., the mean water level at the 

backwall was positive. From their calculations and experiments they concluded 

that for a short bay entrance losses may be more important than intrinsic non

linear effects, but for long bays the reverse is true. However, it should be noted 

that their laboratory experimental conditions were such that the dispersive effects 

were probably stronger than the Boussinesq equations are capable of treating ac-
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curately. Hence, the validity of some of their comparisions between theory and 

experiment may be questionable. 

In the linear harmonic numerical models reviewed in the previous section the 

open ocean could be treated by expressing the radiated portion of the solution as 

a sum or integral over a particular set of singular solutions. This has the physi

cal interpretation of expressing the radiated solution as either a superposition of 

point source wave solutions along a two-dimensional curve or as a superposition of 

rnultipole wave solutions at a single point in space. Unfortunately, the expressions 

for the multipole solutions are frequency dependent, so this technique to simulate 

the open sea cannot be used easily in the time domain. A different approach is 

needed. The technique most widely used is to specify a radiation boundary con

dition at the outer boundary of the domain to allow the radiated wave to pass 

out of the solution domain without reflecting back in to contaminate the solution. 

Mungall & Reid (1978) derived and numerically experimented with a boundary 

condition of this type using a linear finite difference model. It permitted radially 

propagating long waves to pass freely through the outer boundary of a domain. 

They found it was very effective provided the boundary condition was not applied 

too close to the point where the waves were generated. Although the boundary 

condition applies to radially spreading waves, they obtained good results using a 

rectangular domain. The boundary condition is linear, but if it is applied suffi

ciently far from the source of the waves it can be applied to nonlinear problems 

as well. Hebenstreit & Reid (1980) and Hebenstreit, Bernard & Vastano (1980) 

modified the linear model of Bernard & Vastano (1977) to include this boundary 

condition. Lepelletier (1980) successfully implemented the boundary condition in 

his numerical model. The same boundary condition will be used in this work as 

well, although in a form suited to the Lagrangian description. 

Wu (1979,1981) developed a nonlinear dispersive shallow water theory in two 
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horizontal coordinates. Starting with three "layer-mean-transport" equations rep

resenting the conservation of mass and horizontal momentum, he obtained three 

coupled long wave equations of the Boussinesq class. These were valid, in par

ticular, for Ursell numbers of 0(1). Solutions of these equations were slightly 

rotational (if the still water depth was not constant). Therefore, the horizontal 

fluid velocity could not be expressed in terms of a standard velocity potential. 

However, by introducing a depth averaged velocity potential he was able to reduce 

the three equations of motion down to a sz'ngle equation involving this pseudopo

tential. This was important from a numerical point of view since only a single 

scalar field needed to be computed. After the pseudo-potential was determined, 

the two components of velocity and the water surface displacement could then be 

computed, although they were not needed explicitly in the formulation. 

Lepelletier (1980) extended the equations of Wu (1979, 1981) slightly by in

cluding a term to account for viscous losses in a thin boundary layer along the 

bottom and along a free surface contaminated with surfactants. Lepelletier's model 

was based on the finite element technique and could treat problems with arbitrary 

geometry, although his formulation could not treat moving boundaries and hence 

was not directly applicable to runup studies. He looked in detail, experimentally 

and numerically, at the response of a constant depth long narrow rectangular har

bour excited by periodic and transient nonlinear long waves. He found that if 

the wave length of the incident waves was greater than four times the harbour 

length, then nonlinearities had little effect on the response characteristics of the 

harbour. However, for smaller wavelengths he found that a nonlinear dispersive 

theory was necessary to get good agreement with experimental results, especially 

at resonance. His numerical model also predicted secondary resonant peaks in the 

response curve of the harbour, which were not predicted by linear theory. These 

were confirmed by experiments. He also looked briefly at the transient response 
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of three long narrow harbours: 1) rectangular with a constant water depth, 2) 

rectangular with a depth that decreased by a factor of two linearly from the mouth 

to the backwall (the back wall was vertical), and 3) trapezoidal with a constant 

depth. Agreement between the experiments and the model was good. As a prac

tical application of his model, he simulated the response of Ofunato Bay, Japan, 

to a tsunami. Raichlen, Lepelletier, & Tam (1983) used the model to determine 

the long wave response of Hilo Harbour, Hawaii. Lepelletier stressed that viscous 

losses due to flow separation at the entrance of a harbour were very important, 

especially if the entrance is partially blocked by a breakwater. An accurate treat

ment of this process in a model is difficult, and he suggested that further work on 

this topic was warranted. 

Most studies of oscillations in bays or harbours have approximated the open 

ocean outside the bay or harbour by a region where the still water depth is con

stant. In many cases this may be a reasonable approximation, but often the depth 

variations are not so simple and, in fact, there may be large depth variations, par

ticularly if the continental shelf is narrow. Noiseux (1983) looked at the effect of 

depth variations near the mouths of very idealized harbour-like geometries on the 

transmission properties of wave radiation from a cavity into an outer region. Using 

linear nondispersive theory, he showed that there are combinations of planforms 

and depth variations for which the wave energy in selected modes would not leak 

out. In addition, for more realistic geometries the trapping of energy within Lhe 

cavity can still be effective, resulting in very large e-folding times for some modes. 

Therefore, he stressed that the offshore depth variations may also be important in 

determining the resonance characteristics of a bay or harbour, in addition to the 

geometry of the harbour itself. 
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2.2 Runup 1Vlodels 

The runup of waves on a sloping beach is an exceedingly complex process. 

For that reason most models that deal with this process are numerical in nature 

and rely heavily on the use of computers. A notable exception to this is the 

elegant work of Carrier & Greenspan (1958). They showed that it is possible to 

transform the nonlinear nondispersive shallow water equations for one horizontal 

coordinate into a single linear differential equation for the case where the still 

water depth increases linearly offshore. Using this transformation they were able 

to show that there exist solutions that can climb a sloping beach without breaking. 

Later, Spielvogel (1975) used the Carrier & Greenspan transformation to look at 

the nearshore amplification of tsunamis. 

The runup of waves on sloping boundaries is generally more difficult to in

corporate into models than the more traditional boundary condition for vertical 

boundaries where the normal mass flux is zero. Many different techniques have 

been proposed to treat this problem. The simplest technique is to introduce an 

imaginary vertical barrier near boundaries, which otherwise would experience a 

moving shoreline. The water depth at this barrier is always nonzero. The position 

of the shoreline can then be approximated by a horizontal inland extrapolation 

from the wave height at this barrier. If the actual shoreline is steep, then such 

an approximation can be reasonable. However, for large shoreline motions or for 

gradually sloped beaches this approximation can obviously lead to poor estimates 

of tsunami runup or inundation. The geography above the still shoreline may 

influence significantly the runup process. In addition, both mass and momentum 

are not conserved by such extrapolations (Lynch & Gray 1978). 

In this section literature will be reviewed on studies that treat shoreline mo

tions by more sophisticated techniques. These techniques will be divided into three 
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categories: 1) Eulerian techniques which use fixed numerical grids or meshes, 2) 

Eulerian techniques which use deforming meshes, and 3) various Lagrangian tech

niques. Certainly this does not cover all possible techniques investigators have used 

to model runup, and some models may combine aspects of all three of these, but 

for the purpose of reviewing the literature these three divisions are convenient. 

2.2.1 Eulerian Techniques With Fixed Grids 

Eulerian techniques that make use of fixed grids or meshes usually treat 

moving shorelines by turning cells or elements on and off at the boundary, using 

techniques that conserve mass. They are simpler to implement than techniques 

that make use of deforming meshes, but they possess other problems. Often the 

impulsive filling of a cell with fluid can lead to numerical problems unless treated 

very carefully. 

Keller & Keller (1964, 1965) investigated the runup of waves in one horizon

tal coordinate. They looked at the propagation of time harmonic waves through 

water of slowly varying depth and derived an expression for the height of a wave 

at the shoreline given its offshore wavelength, the offshore depth (which may be 

infinite), and the nearshore beach slope. The analysis was based on linear dis

persive theory and was applicable to small beach slopes. They also developed a 

nonlinear nondispersive finite difference model to treat long wave runup for a sin

gle horizontal coordinate. It was based on a fixed grid system, although the exact 

shoreline position was tracked between the fixed grid points. The model was used 

to investigate the runup of periodic waves on a uniformly sloping beach. Finally, 

by combining the theory of weak shock waves with the nonlinear nondispersive 

shallow water theory they studied analytically the formation and growth of bores 

on a beach. However, because of the weak shock approximation, the analysis was 
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not valid at the shoreline. 

Reid & Bodine (1968) investigated transient storm surges in Galveston Bay, 

Texas. They developed a finite difference numerical model based on the linear 

nondispersive long wave equations, with corrections for rainfall, windstress, and 

bottom friction. The elevation of the sea bed or of the land was represented by 

a square grid. The elevation over each grid square was assumed to be constant. 

Hence, the actual topography was approximated in a stair-step fashion. If the 

elevation of the water in a flooded square was less than the base elevation of an 

adjacent dry square, then a zero normal fl.ow boundary condition was applied along 

their common boundary. However, if the water elevation in a flooded square was 

greater than that of an adjacent dry square, then water was permitted to fl.ow 

into the dry square. The fl.ow rate between the two squares was determined using 

an empirical equation for flow over a broad-crested barrier. The overtopping of a 

barrier (e.g., a sea wall) could be treated also. The model could treat only barriers 

aligned along the grid mesh divisions. The flow across the barrier was permitted 

when the water height on one side exceeded the barrier height. If the water height 

exceeded the barrier height on both sides, then the flow rate was determined using 

an empirical equation for flow over a submerged weir. The empirical coefficients in 

the model were determined by iteration, comparing the model with tide data and 

data from hurricane Carla (September 9-12, 1961). The model was then compared 

with field data from hurricane Cindy (September, 16-17, 1963). The gross features 

of the inundation were predicted reasonably well. This model is also applicable to 

tsunami inundation studies elsewhere in the world, although they did not consider 

this application. It should be remembered that the empirical coefficients used 

could be very site-dependent, however. 

Xanthopoulos & Koutitas (1976) described a nonlinear finite difference model 

to study two-dimensional flooding from a dam failure. They assumed a hydrostatic 
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pressure distribution and neglected the inertial terms in the momentum equations. 

Thus, pressure gradient forces were balanced entirely by viscous boundary stress 

forces. They used a fixed rectangular mesh. The shoreline was defined to within 

the accuracy of one mesh cell. However, they did not describe the details of how 

these cells were turned on or off. They found that the model could be calibrated 

using one-dimensional data from laboratory dam break experiments for small ini

tial water heights. However, the accuracy of the model greatly decreased as the 

initial height of water behind the dam was increased. This is presumably because 

the unsteady inertial terms in the momentum equation were neglected. The force 

balance used in this investigation is too restrictive to study the runup and in

undation of tsunamis. In order to apply the techniques outlined in this work to 

tsunamis, the inertial terms would have to be accounted for except, perhaps, at 

the extreme tip of the runup tongue where the water depth is very shallow and 

viscous forces can dominate inertia effects. 

Yeh & Yeh (1976) described a nonlinear nondispersive numerical model for 

simulating storm surge. The shoreline in the numerical model moved as the flow 

inundated low lying land. However, the details of the treatment of this boundary 

are not given. It appears that the shoreline advanced or retreated in discrete 

increments of grid cells rather than deforming continuously. They reported good 

agreement with field data. 

Yeh & Chou (1979) developed a nonlinear finite difference surge model. It 

operated with reference to a fixed rectangular grid system. The shoreline location 

always coincided with a grid line. Therefore, the shoreline moved in discrete 

jumps. A new grid point was added to the computations if the surge elevation of 

any of its neighbours was above the base elevation of that grid point. A slightly 

more complicated scheme was used to remove the grid point from the calculations 

during rundown. They compared the model to field results and also with a similar 
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numerical surge model, which used a fictitious vertical wall instead of a sloping 

shoreline. They reported that their model showed much better agreement with 

field data than the fixed boundary model. The fixed boundary model predicted up 

to 30% higher surge levels than their moving boundary model. The discrepancy 

was greatest for higher surge values. They explained the descrepancy as being due 

to the storage effect of the inland region where water can accumulate but which 

is not part of the computational domain of the fixed boundary model. 

Houston & Butler (1979) developed a linear nondisperive tsunami inundation 

model very similar to that of Reid & Bodine (1968), although Houston & Butler 

slightly generalized the grid system so that variable sized rectangular cells could 

be used to represent the topography. Houston & Butler calibrated their model 

using data recorded from the 1964 Alaskan tsunami in Crescent City, California. 

The model was then used to predict the 50 and 100-year tsunami runup heights 

expected in the Hauula-Punaluu region of the Island of Oahu, Hawaii. 

Tanaka, Ono & Ishise (1980) developed a nonlinear finite element model which 

treated tsunami runup and wave overtopping of barriers. The moving shoreline 

was simulated by adding entire wet elements into the domain of the problem 

as the shore advanced or by removing dry elements as it receded. The rate of 

flow into a wet element was determined from an empirical equation. Hence, a 

flux boundary condition specifying the volume flow rate was applied along the 

shoreline boundary as it advanced or retreated in discrete steps. However, a 

fixed finite element mesh was used along boundaries where wave overtopping was 

simulated. The overtopping flow rate was determined from an empirical equation 

based on the wave height at the barrier. This flow rate was then used as a flux 

boundary condition at that point. 
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2.2.2 Eulerian Techniques With Deforming Grids 

Very little work with numerical methods that use deforming grids has 

been applied to long wave runup. This technique tends to be more complicated 

than methods that use fixed grids. However, the additional work can lead to 

models that more accurately treat the motion of the fluid near the shoreline. 

Lynch & Gray (1978, 1980) outlined a general technique whereby moving 

boundaries can be treated by finite element Eulerian models. The finite element 

basis functions are chosen to be functions of time so that the element boundaries 

track the moving shoreline. They showed how this motion generates extra terms 

which, if treated properly, reduce the problem to one that can be treated by stan

dard finite element procedures. They showed how to apply the method to treat the 

propagation and runup of long waves. They looked at two very simple problems 

involving the runup of waves on plane beaches. The results of these examples did 

not offer any new insights into the runup process. However, they did show that 

estimating the runup by extrapolating the wave height at a vertical wall could 

introduce significant errors. Treating deforming elements is more computationally 

expensive than fixed ones so they stressed that, in general, one would like to keep 

elements away from the shoreline fixed, while allowing the ones near and at the 

shoreline to freely deform. However, they did not offer a method to determine 

which elements should deform and which should not. Such a problem does not 

occur in Lagrangian models since all fluid particles are free to move. They also 

recognized the potential problem that can arise if the mesh becomes too geomet

rically distorted. Should that problem arise, they recommeded that the solution 

domain be remeshed, even though such an algorithm is generally quite difficult 

to implement. Although the meshes used for Lagrangian models do not deform, 

distortion problems can still arise in these models, especially if there exists a mean 
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flow with shear. 

Gopalakrishnan & Tung (1980, 1983) described a nonlinear long wave finite 

element runup model valid for one horizontal dimension. The model contained 

terms that accounted for vertical accelerations. The moving shoreline was handled 

by allowing the shoreline element to deform so that the beach node always tracked 

the shoreline. If the shoreline element became too "stretched," it split into two 

elements. The element containing the shoreline node continued to deform but 

the other new element created by the splitting stayed fixed. From the results of 

their model they reported that before a positive disturbance reached the beach the 

shoreline first receded a little before it advanced. They reported that the model 

could treat the transformation of a solitary wave on a beach into a bore, although 

they showed no results. They also reported a curious behaviour of the shoreline 

near the maximum runup point as predicted by their model for the case of periodic 

waves. As the shoreline approached the maximum runup point, it first receded a 

little and then continued up to the maximum runup point. They did not show 

any plots that detailed the rundown process. Presumably, as the shoreline element 

was compressed during rundown, an element could have been removed from the 

computations by a process opposite to the one used to split the element on runup. 

However, no mention of this process was made. There was no reason to expect 

that the rundown profiles would look the same as the runup profiles for the cases 

they treated. Therefore, although the technique outlined by the authors seems 

applicable to tsunami runup, they did not present a thorough or a convincing 

argument to show that their model could be used reliably for such studies. It 

should be noted that the techniques in this work cannot be extended easily to 

include two horizontal dimensions since the element-splitting procedure would be 

very complex. For example, it would not work well for rectangular elements unless 

all the shoreline elements split simultaneously. 
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2.2.3 Lagrangian Methods 

Lagrangian methods are more suited to treating moving physical bound

aries than are Eulerian techniques. In Lagrangian techniques the fluid is repre

sented as a large number of fluid particles that move with the local fluid velocity. 

Tracking these particles up a beach slope is generally no more difficult than track

ing them out in the bulk of the fluid. 

Heitner (1969, 1970) and Heitner & Housner (1970) developed a nonlinear 

model for wave runup based on a Lagrangian method. Heitner's formulation 

treated only plane waves propagating on water of constant depth or on a linearly 

sloping beach. His theory included terms representing the kinetic energy of ver

tical motion. This introduced frequency dispersion and allowed permanent wave 

solutions over a fl.at bottom to be computed. By introducing an artificial viscosity 

term he was able to model the formation and propagation of bores. Although 

the runup of a bore could be examined, the technique had difficulties treating the 

subsequent rundown for large waves. If the rundown problems could be solved, 

his technique might also have application to modelling harbour oscillations. 

Shuto (1967) showed how the linear nondispersive long wave equations m 

the Lagrangian description for one horizontal dimension can be obtained from 

the exact Lagrangian expressions for mass and momentum conservation. He used 

these long wave equations to study theoretically the runup of nonbreaking small 

amplitude long waves on a linearly sloping beach. He compared the theory with 

laboratory experiments and obtained reasonable agreement for the range of pa

rameters he considered. Shuto (1968) later extended the theory to include two 

horizontal coordinates but he did not apply it to a problem. Shuto (1972) used 

the inviscid linear nondispersive Lagrangian long wave equations to study theoret

ically the runup of periodic waves on a linearly sloping beach joined to a region of 
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constant depth. The aim of the investigation was to study the runup height and 

bottom pressure distribution for waves reflecting from a sloping dike. By applying 

a simple wave breaking condition proposed by Miehe (1944) he reported reason

able comparison with laboratory experiments for the wave height at breaking and 

the reflection coefficient from the dike. Shuto & Goto (1978) developed a simple 

linear nondispersive finite difference model based on the long wave Lagrangian 

equations of motion for one horizontal spatial coordinate. It could treat arbitrary 

water depth. They computed the runup of a harmonic wave on a sloping beach 

connected to a channel of constant depth (similar to the theoretical work of Shuto 

1967, 1972). Their results compared well with the theoretical work of Keller & 

Keller (1964, 1965). They also used the model to simulate the runup of a tsunami 

on a beach on the Sanriku Coast, Japan. The purpose of the simulation was to 

show that more general cases could be treated by their model, but no conclusions 

could be drawn from their results. 

The theoretical work of Shuto (1967, 1968, 1972) and Shuto & Goto (1978) 

was based on the linear long wave equations in the Lagrangian description. It 

should be noted that if finite displacement (nonlinear) effects are neglected, there 

is no fundamental difference between the Lagrangian and Eulerian descriptions. 

By neglecting the finite amplitude effects, one assumes tacitly that all quantities 

computed may be evaluated at the equilibrium positions of the fluid particles. 

Goto (1979) derived a set of nonlinear nondispersive long wave equations in 

the Lagrangian description for one horizontal coordinate. Using an explicit finite 

difference method, he computed the runup of a nonbreaking periodic wave on a 

linearly sloping beach and reported approximately a 10-20% difference between 

the linear and nonlinear results. Goto & Shuto (1980) extended the theory to 

treat two horizontal dimensions. They used a simple finite difference scheme to 

study the runup of the Meiji Sanriku Tsunami of 1896 in Okkirai Bay, Japan. 



-27-

They reported good agreement with some of the high water marks recorded in 

1896. However, since no wave records of the incident tsunami exist, input to the 

model was obtained from estimates of the ocean bottom motion caused by the 

earthquake. Reconstruction of historical tsunamis by this technique is difficult. 

Therefore, it is difficult to ascertain the accuracy of a runup model that uses such 

estimates for input. 

Pedersen & Gjevik (1983) developed a finite difference numerical model based 

on a Lagrangian description which was capable of studying the runup of long waves 

on a beach. The model was based on a set of Boussinesq-type equations, which 

included both nonlinear and dispersive terms. The model was based on only 

a single horizontal coordinate, but it could treat the propagation of waves in a 

channel of slowly varying cross-sectional area. The authors treated the case of 

the propagation of a solitary wave down a constant depth channel connected to 

a uniformly sloping beach. They reported that the results compared very well 

with the experiments of Langsholt (1981). Although the model could not treat 

breaking waves, they reported that it did predict the formation of a bore during 

the backwash of the wave, in agreement with Langsholt's experiments. 
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CHAPTER 3 

Theoretical Analysis 

3.1 The derivation of the Long Wave Equations in the La

grangian Description 

In the more traditional Eulerian approach to fluid mechanics the fluid flow 

1s described by a set of field variables, which are considered to be functions of 

the time t and three spatial coordinates ( x, y, z) . For any fixed value of t these 

functions define the fluid motion at that instant at all points in space occupied 

by the fluid. Similarly, if we fix ( x, y, z) these functions describe the time history 

of the fluid motion at a fixed point in space. For most applications this is the 

preferred description because it is the easiest and most convenient description to 

attack a fluid flow problem with either numerical or analytical methods. For most 

problems the fluid occupies a given fixed domain over which (x, y, z) ranges and 

over which the solution is sought. However, if this domain is not fixed but varies 

with time in an unknown manner (i.e., if the domain of the problem depends upon 

the solution itself), then a fluid mechanical description in Eulerian coordinates 

becomes awkward. This type of domain behaviour occurs when nonlinear (finite 

displacement) effects are included in the runup of long waves on a beach. As the 

waves wash up and down the beach, the two-dimensional horizontal domain of the 

fluid changes. One boundary of the fluid is the shoreline and this moves with time 

in a manner that depends upon the solution itself. Therefore, one cannot first 
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determine the domain of the problem and then the solution. The two must be 

found together simultaneously. 

However, in the Lagrangian description all fluid variables are considered func

tions of the time t and three variables (a, b, c) , which serve to label a particle of 

fluid. The idea is that one follows infinitesimal particles of fluid and observes how 

the fluid functions vary in time as they move about. In general, the quantities 

a, b, c may be any three quanities that identify a particle and that vary continu

ously from one particle to the next. In this work (a, b, c) will be defined to be the 

spatial coordinates of the particle at the time t = 0. Thus, for any fixed value 

of t the fluid functions define the fluid motion for all the particles of fluid and if 

we fix (a, b, c), then these functions describe the time history of the fluid motion 

as we follow a particular fluid particle. Since the (a, b, c) domain of a problem 

represents all the initial coordinates of the fluid particles, it is fixed, whether the 

physical boundaries of the domain move or not. Hence, the Lagrangian descrip

tion is suited to problems with moving boundaries. That is the motivation for 

developing a set of long wave equations of motion in the Lagrangian description. 

It is expected that the average reader has had more experience and is more 

comfortable with the Eulerian description of fluid motion. Therefore, rather than 

simply state these 3-D equations in the Lagrangian description let us first review 

the equation of motion in the Eulerian description and then use these to derive 

the corresponding 3-D equations in the Lagrangian description. It is hoped that in 

this way the reader will feel more comfortable with this alternate description of the 

fluid motion. Finally, from these 3-D equations in the Lagrangian description we 

will derive the long wave equations in the Lagrangian description for two horizontal 

dimensions. For a less rigorous (but more intuitive) derivation of the long wave 

equations, the reader is referred to Appendix A. 
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Fig. 3.1.1 Definition sketch of the Eulerian variables. 

3.1.1 Review of the Three-Dimensional Eulerian Equations of Motion 

In the Eulerian system we will denote the independent spatial coordi-

nates by (x 1 ,x2 ,x3 ) = (x,y,z) = X. The coordinates (x,y) = x are in the 

horizontal plane and z is positive upwards from the still water level. In the 

analysis which follows, boldface Roman letters will be used to denote vectors. Up-

percase bold letters will refer to three-dimensional vectors (i.e., X) and lowercase 

bold letters will denote the vector whose components are the two horizontal com-

ponents of the corresponding three-dimensional vector (i.e., x). The still water 

depth is h(x). The unknowns to be solved for are the vertical displacement of the 

water surface above the mean water level 17(x, t), the pressure p(X, t), and the 

three components of velocity parallel to the three coordinate axes u 1 (X, t) = u, 

u2 (X,t) = v, and u3 (X,t) = w. Let u· = (u,v,w) and u = (u,v). See Fig. 3.1.1 

for a sketch defining the geometry. If we assume that the fluid density p is con-
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stant, the continuity and momentum equations can be written as: 

(3.1.1) 

(3.l.2a) 

(3.l.2b) 

where 

E ,__,. Eulerian, 

Pd is the dynamic pressure defined by Pd = p + pgz, v is the kinematic viscosity 

of the fluid, and the subscript E refers to the Eulerian description. Let us denote 

the three-dimensional gradient operator by YE : 

It is understood that all quantities here are in the Eulerian description. We could 

indicate this by subscripting each variable with the letter E, but since it is clear 

at this point we will refrain from doing so until there is a possibility of confusion. 

After we introduce the Lagrangian equations of motion, we will avoid any confusion 

by following this subscript convention 

The viscous terms in Eq. (3.1.2) are responsible for energy dissipation. One 

can divide the source of this dissipation into two separate regions: the dissipa-

tion that occurs in a thin boundary layer region near solid boundaries, and the 

dissipation due to the internal fluid friction away from these boundaries. As will 

be shown later in Section 3.1.1.1, this second mechanism is negligible in compar-

ison with the first for the range of physical situations that are of interest in this 

investigation. Therefore, the viscous terms in Eqs. (3.1.2) are important only in 

boundary layers, and only along these boundaries will the influence of these terms 
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be considered in the derivation of the long wave equations. It will also be shown in 

Section 3.1.1.1 that, for typical physical situations of interest, the boundary layer 

thickness is negligible in comparison to the total depth, although this condition 

must of course be violated near a shoreline where the waterdepth goes to zero. 

A discussion of these viscous terms is important because they influence the 

boundary conditions to be imposed to obtain a solution of Eqs. (3.1.1) and (3.1.2). 

The boundary conditions to be satisfied for the flow exter£or to the boundary layer 

(at z = -h(x)) are: 

Pd= P9'r/ 

Dr; iJr; 
w = Dt = at + u. 'VE 11 

Dh 
w = - Dt = -u·Y'mh 

where 

z = 11 

z = 11 

z = -h(x) 

(3.l.3a) 

(3.l.3b) 

(3.l.3c) 

Here we have neglected the thickness of the boundary layer and applied these 

conditions directly at the boundaries instead of a distance b away, where b is 

the boundary layer thickness. There are two boundary conditions specified at the 

free surface because the position of this boundary, 17 , is unknown a prior£ and 

must be included as an unknown to be solved for along with the components of 

velocity and the pressure. The boundary condition described by Eq. (3.l.3b) is 

the extra boundary condition introduced to determine 17 • If we wanted to try to 

model the viscous terms exactly, then at the free surface we would have to impose 

Eqs. (3.l.3a), (3.l.3b), as well as a boundary condition of zero shear (assuming 

the surface is not contaminated with surfactants). At the bottom we would have 

to impose a no-slip boundary condition. 

Let us denote the horizontal velocity within the boundary layer by Ubl . Then 

provided h(x) is a "slowly" varying function of x and the boundary layer thick-
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ness is "small" in comparison to the total water depth (these conditions will be 

made more precise later), we can obtain an expression for the velocity gradient 

aubi/oz at the bottom in terms of the velocity u just outside the boundary layer, 

e.g., see Lepelletier (1980). The result is: 

co au ( ') 
a {fj-t-t 

lib! (x, -h(x)' t) = 2-- at dt' 
OZ JrV Vt' (3.1.4) 

0 

where u is evaluated just outside the boundary layer. However, it will be shown 

that under most conditions the boundary layer is thin in comparison with the total 

water depth, so this value of u can be approximated by its value at the bottom 

z = -h(x). 

Since the nonlinear advective terms in the equations of motion were neglected 

in the derivation of Eq. (3.1.4), its accuracy can be expected to diminish as the 

wave motion increases. In particular, if the boundary layer becomes turbulent, 

this expression will no longer be valid. However, the boundary layer should remain 

laminar for most of the laboratory conditions of interest, as will be discussed later 

in Section 3.1.1.1. 

Given the velocity gradient at the bottom, the shear stress and hence the 

energy dissipation due to the presence of the boundary layer can be computed. 

Therefore, by the use of Eq. (3.1.4), the boundary layer dissipation can be eval

uated simply with the knowledge of the fluid velocity immediately outside the 

boundary layer. 

Ifwe specialize u to be harmonic, i.e., u = u 0 cos wt, then Eq. (3.1.4) reduces 

to: 

oub1 !w 
~ = y-;; u 0 cos(wt + 7r/4) (3.1.5) 

The shear force per unit area at the bottom is T = µ oubi/ oz (neglecting a small 

correction proportional to the slope of the slowly varying bottom), where µ is 
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the absolute viscosity of the fluid. Hence, by the use of Eq. (3.1.5), the energy 

dissipated per period T per unit area is: 

(3.1.6) 

The same energy dissipation results if, instead of Eq. (3.1.5), the following expres-

sion for the bottom velocity gradient is used: 

aub1 rw /w az = v 2V Uo COS wt = v ~ U (3.1.7) 

For waves that contain a spectrum of frequencies, the circular frequency, w , in 

Eq. (3.1.7) is not precisely defined, but for cases where there is a dominant fre-

quency present it should yield satisfactory results. This expression is much simpler 

than Eq. (3.1.4) and will be used in the derivation of the long wave equations to 

introduce the effect of energy dissipation in the boundary layer. 

Finally, since viscous effects can be ignored throughout the bulk of the fluid 

exterior to the boundary layers, there is no mechanism to generate vorticity unless 

the free surface intersects with itself. The free surface will intersect with itself only 

if a wave breaks. However, this investigation will deal only with nonbreaking wave 

systems. Therefore, provided the fl.ow is irrotational at some point in time, such 

as if the fluid is at rest at the time t = 0, it will remain irrotational thereafter. 

Then we will have: 
Bu ow 
oz ox 
av ow 
- - (3.1.8) oz oy 
av OU 

-ox ay 
Since approximations must be made in developing the long wave equations, it 

is important to nondimensionalize the variables by the appropriate quantities so 

that the nondimensional variables will be 0(1) . Then the relative importance of 
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each of the terms in the equations and boundary conditions can be determined by 

comparing the magnitudes of the dimensionless constants that appear as a result of 

the nondimensionalization chosen. Let e denote a characteristic horizontal length 

scale of the problem, H a characteristic wave height, ho a characteristic water 

depth, and w a characteristic wave frequency. Then based on linear nondispersive 

inviscid wave theory, the following nondimensionalization will yield dimensionless 

variables of order unity: 

x* 
x=-e 

r(" 
rJ=-

H 

u~ h0 u=---
~H 

z* 
z=-

ho 

pd, 
Pd= -

pgH 

w* e 
w=---
~H 

t = t* ylghO 
e 

h* 
h=

ho 

where the starred symbols are the original dimensional variables. For the remain-

der of this section all variables will be nondimensional unless specifically stated 

otherwise. As before, ~ will be defined as: 

a a 
~=(ax' By) 

although now x and y refer to dimensionless variables. Under this nondimen-

sionalization Eqs. (3.1.1) and (3.1.2) become: 

aw 
\'.:: ·U + - = 0 

E az (3.1.9) 

where: 

H 
a=-

ho 
(3.1.11) 
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The vorticity conditions (3.1.8) become: 

au = /3aw 
az ax 
av = /3aw 
az ay 
av au 
ax ay 

(3.1.12) 

(3.1.13) 

(3.1.14) 

(3.1.15) 

The boundary conditions for the inviscid flow exterior to the boundary layer and 

the expression for the velocity gradient at the bottom (in the boundary layer) 

become: 

Pd= 7J 

877 
w = at + au· \i'E ry 

w=-u·\i'Eh 

Z = CXrJ 

z = CX.7] 

z = -h(x) 

z = -h(x) 

(3.1.16a) 

(3.l.16b) 

(3.l.16c) 

(3.1.17) 

The two most important dimensionless parameters which emerge from this 

choice of nondimensionalization are the nonlinear parameter ex and the dispersion 

parameter ,13. As their names suggest, ex is a measure of the importance of 

the nonlinear (finite amplitude) effects and /3 is a measure of the importance of 

frequency dispersion. The ratio of these two parameters is called the Ursell number 

after Ursell (1953), Ur = cx//3 = H £2 
/ h6. If Ur < 0(1), then dispersive effects 

dominate so that a linear dispersive theory is appropriate. If Ur > 0(1), then 

nonlinear effects dominate and a nonlinear nondispersive theory is appropriate. 
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If Ur = 0 (1) both nonlinear and dispersive effects are important, so a nonlinear 

dispersive theory should be used. 

The parameters I and {) also appear, although only in the combination 1 2 {), 

where from Eqs. (3.1.13) and (3.1.14): 

(3.1.18) 

Notice that the quantity 1 2 {) does not depend on w, so the characteristic fre-

quency w is not actually needed in this nondimensionalization. It was not neces-

sary to introduce both / and {) as independent parameters at this point (a single 

parameter 1' = 1 2 {) could have been introduced instead). However, it is the pa-

rameter I which will appear later in the long wave equations, so both / and the 

scaling factor {) have been introduced here for later reference. The characteristic 

frequency w will be introduced through Eq. (3.1. 7), when boundary layer dissi

pation is treated in detail. It is clear that {) = 0(1) for long waves. The quantity 

1 2 {) (and hence also /) is a measure of the importance of viscous dissipation in 

the boundary layers. 

So far, no approximations to the equations of motion have been made except 

for the assumption of incompressibility. Now that our choice of nondimensional-

ization has been made, the assumptions that will be used in the derivation of the 

long wave equations can be stated. It will be assumed that: 

(i) The ratio a = H / h0 of the characteristic wave height H to the 

characteristic water depth h0 is small but not infinitesimal. 

(ii) The ratio f3 = ( h0 / €) 2 of the characteristic water depth h0 to the 

characteristic wavelength f is small but not infinitesimal. 

(iii) The kinematic viscosity u of the fluid is small so that the parameter 

/ = £/h0 ylwu/2gh0 is small but not infinitesimal. 
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(iv) The slopes ohx/axx and oh' /oyx are O(h0 /£) and the curvatures 

82 h* /8x* 2
, 82 h"'/ox'8y', and o2h'/8y* 2 are O(h0 /t 2 ), so that 

oh/ox, oh/oy, o2 h/ox 2
, o2 h/oxoy,and o 2 h/oy 2 are all 0(1). 

In addition, it will be assumed that the small parameters a, /3, and I are 

of the same small order of magnitude; i.e., 

O(a) 0(/3) = 0(1) < 0(1) (3.1.19) 

Therefore, in the derivation of the long wave equations only terms up to order a, 

/3, and / will be retained. All terms that are quadratjc in these quantities or of 

even smaller order will be discarded. 

Notice that the viscous terms in Eq. (3.1.lOa) appear to be 0(12
). This 

shows that the viscous dissipation throughout the bulk of the fluid external to the 

boundary layers can be neglected. However, dissipation in the boundary layers 

cannot be neglected because according to Eq. (3.1.17) oubi/oz is O(l/1), so 

that the actual order of the boundary layer dissipation terms will be 0(1) . The 

reason why the velocity gradient Jub1/Bz is O(l/1) and not 0(1) is that the 

nondimensionalization used was chosen based on linear nondispersive inviscid the-

ory where boundary layers do not appear. Hence, if this nondimensionalization is 

used within a boundary layer, one would not expect 3ub1/oz to be 0(1). One 

would have to choose a vertical length scale based on the boundary layer thickness 

to achieve this. 

If we ignore the terms quadratic in small quantities, then Eqs. (3.1.9) and 

(3.1.10) reduce to: 

aw 
~-u + az - 0 

au au 1 ' 2 o2u 
at+ au·~ u +aw dz = - p ~Pd -t- / 1J Jz 2 + 0(,81

2
) 

(3.1.20) 

(3.1.21a) 
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(3.l.21b) 

3.1.1.l Laminar Boundary Layers in Oscillatory Flow 

Let us now justify the claims made in the previous section regarding a 

boundary layer in an oscillatory flow subject to the range of laboratory conditions 

of interest to this investigation. First, it will be shown that the boundary layer 

will be thin in comparison with the total water depth. Then it will be shown that 

internal dissipation is much less than dissipation that occurs near solid boundaries 

in thin boundary layers. Finally, it will be shown that we can expect the boundary 

layer to remain laminar. 

An estimate of the boundary layer thickness b 1s: 

(3.1.22) 

This is called the Stokes length after G. G. Stokes (1851). Typical laboratory 

conditions for experiments performed in this investigation are: h0 ~ 10 cm, wave 

period T = 2 sec; i.e., w ~Jr sec- 1 , and v ~ 0.01 cm2sec- 1 . Using these values 

the relative boundary layer thickness is: 

!_ = ~ r;:;; ~ 0.008 
ho ho V-::; (3.1.23) 

Hence, the boundary layer is indeed very small in comparison with a typical water 

depth. It is interesting now to note the physical significance of the dissipation 

parameter / as defined by Eq. (3.1.13). For weakly dispersive long waves the first 

order approximation, gho = (w 2 
/ k 2

) [1 + O(p)], can be made where k = 2Jr /A. is 

the wavenumber of a sinusoidal wave and A. is its wavelength. If we substitute 

this expression for gh0 into Eq. (3.1.13) and define the characteristic length scale 
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£ to be the wavelength .A we get (neglecting higher order terms): 

I= !!_1/2v = 7r!__ 
ho V w ho 

(3.1.24) 

Hence, the dissipation parameter / is proportional to the ratio of the typical 

boundary layer thickness to the characteristic water depth. Therefore, the as-

sumption that / is of small order is equivalent to the assumption that /5 /ho is of 

small order. 

We have already indicated that the internal dissipation can be neglected in 

comparison to the boundary layer dissipation. This can be shown more directly. 

Using linear dispersive theory Lighthill (1978) showed that the proportional energy 

density loss per period (the ratio of the energy per unit surface area lost per 

period to the instantaneous energy per unit surface area) due to boundary layer 

dissipation is: 

6 Ebt = 2?r jv 2kh0 

ho V ~ sinh 2kho 
(3.1.25) 

This is an approximate result which is valid provided the boundary layer thickness 

is much less than ho . He also showed that the proportional energy density loss 

per period due to internal dissipation is: 

8?rvk2 

6Eint = --
w 

(3.1.26) 

This is an exact result (using linear dispersive theory) and was first obtained 

by G. G. Stokes. Again, if we let £ = A = 2?r / k and use Eq. (3.1.24), expres

sions (3.1.25) and (3.1.26) reduce to: 

15 
6Eb1 =?rho [1+0(/3)] = i + O(ij3) (3.l.27a) 

6Eint = 16?r/3/ 2 [1+0(/3)] = 0(/31 2
) (3.l.27b) 

Hence, the internal dissipation is 0 (/31 2 ) and can be neglected since it is a third 

order quantity. If nonlinear effects were included, the same conclusion would be 
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reached provided the boundary layer remained laminar since only terms of 0 ( a1) 

would be added to Eq. (3.1.27a) and terms of O(af31 2
) to Eq. (3.1.27b). 

Finally, let us examine the range of laboratory conditions under which the 

boundary layer can be expected to remain laminar under oscillatory waves. Ac-

cording to Jonsson (1978), boundary layer transition on a smooth bottom oc

curs for Res ~ 563, where Res = U b / v is the Reynolds number based on the 

Stokes length 8, and U is the maximum fluid particle velocity immediately out-

side the boundary layer. An estimate for U from linear nondispersive theory 

is U = (H / ho)y'ghO = ay'ghO. Hence, using Eq. (3.1.22) the condition for the 

boundary layer to remain laminar is: 

ay/gh; ~v f{fj-gho 563> -=a --
v W WV 

(3.1.28) 

As before, with ho = 10 cm and w = 1f sec- 1 this implies a < 0. 71, which is a 

very large value of the nonlinear parameter a. Therefore, under most laboratory 

conditions the boundary layer is expected to remain laminar. 

3.1.2 The Three-Dimensional Lagrangian Equations of Motion 

Now let us derive the three-dimensional Lagrangian equations of motion. 

It will be assumed at this point in the discussion that all quantities will be in 

the Lagrangian description unless otherwise stated or if the variable is subscripted 

with the letter E (e.g., uE ) , and that all variables are dimensional unless otherwise 

stated. The variables (x, y, z) = X will now denote the position at time t of a 

fluid particle, which at time t = 0 was located at (a, b, c) = A. Let x = ( x, y) ; 

a = (a, b). This relation between (a, b, c) and (x, y, z) should be considered 

as simply a transformation of variables from the (a,b,c) plane to the (x,y,z) 

plane. The time t simply plays the role of a parameter, so the transformation is 
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different for different values of t (although it varies continuously with t). It will 

be necessary to introduce the Jacobian of the transformation between the (x, y, z) 

variables and the (a, b, c) variables. The three-dimensional Jacobian J is defined 

as: 
ax ox ax 
oa ob oc 

J = o(x,y,z) ay ay ay 
(3.1.29) -

o(a,b,c) oa ob oc 
oz oz ch 
oa ob oc 

where the vertical bars are used to denote the determinant of the enclosed matrix. 

Let a 1 = a, a 2 = b, a3 = c. From this point on, the subscripts i , J. , k , and l 

will range over the integers 1,2,3. The Einstein summation convention will be used 

(sum over repeated subscripts) unless stated otherwise. The minor of OXj /Bak 

will be denoted by Mik. The minor Mik is defined to be the 2 x 2 submatrix 

obtained by deleting the J·th row and the k th column of the matrix that appears 

in Eq. (3.1.29). The cofactor of dXj /Bak will be denoted by Ajk. It is a number 

defined as Ajk = (-l)i+klMikl. For example: 

where 

a and 

B(x, z) 
o(a, b) 
b. 

Bx Bx 

A23 =(-l)2+3 Ba Bb 
Bz Bz 
Ba Bb 

= (-l) 2+3 B(x,z) =-(ax Bz _Bx Bz) 
B(a,b) Baab oboa 

(3.1.30) 

denotes the two-dimensional Jacobian of x and z with respect to 

So far we have considered x, y, and z to be functions of a, b, and c; i.e., 

Xi= xi(a,b,c,t) or X = X(A,t). However, it is equally correct to think of a, 

b, and c to be functions of x, y, and z; i.e., ai = ai(x, y, z, t) or A= A(X, t). 

This inverse exists because the Jacobian of the transformation, Eq. (3.1.29), is 

never zero. In fact, the Jacobian, J, must be unity (for incompressible flow). 
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This will be obvious when the continuity equation is considered. In this case, 

given the time t and the position of a fluid particle (x, y, z) , we can obtain the 

initial position of the particle. Then we must have: 

where {)ii is the Kronecker {) symbol defined as {jiJ = 1 if i = J ; {jiJ 0 if 

i -/= j. If we write (3.1.31) out in matrix notation we get: 

ax ax ax aa aa aa 
- - 1 0 0 aa ab ac ax By az 

ay ay ay ab ab ab 
(3.1.32) - 0 1 0 aa ab ac ax ()y az 

az az az ac ac ac 
- - 0 0 1 

aa ab ac ax ()y az 

We can solve for aak/ 8xi by computing the inverse of the first matrix. We get 

(e.g., Kolman 1970): 

aak Aik 
(3.1.33) 

axi J 

Now consider an arbitrary function g(A, t) . Let gE denote its Eulerian de-

scription; i.e., 

gE(X,t) = g(A(X,t),t) (3.1.34) 

This equation simply states that the value at time t of an arbitrary function 

expressed in the Eulerian description evaluated at an arbitrary location X must 

be the same as the value of this function expressed in the Lagrangian description 

evaluated at the initial location of the particle, which at time t has reached the 

location X. If we take the derivative of gE with respect to Xi and use Eq. (3.1.33), 

we get: 

(3.1.35) 
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For i = 1, this is just 1/ J times the cofactor expansion of the determinant: 

ag ag ag 
-

aa ab ae 
ay ay ay a(g,y,z) 

-
aa ab ae a(a,b,e) 
az az az 

- -
aa ab ae 

about the first row (e.g., Kolman 1970). In general, we get: 

OgE 1 O(g,y,z) 
ax J a(a,b,e) 

agE _ 1 O(x,g,z) 
ay - J a(a,b,e) 

BgE _ __!_ a(x,y,g) 
az J a(a,b,e) 

(3.1.36) 

(3.1.37) 

This result will be used to derive the momentum equations in the Lagrangian 

description. 

For brevity, it will be convenient to denote the partial derivative of a function 

g with respect to the coordinate q by gq; e.g., By/Be= Ye' 32 x/Bt 2 = Xtt. This 

should not be confused with the italic subscripts i, J, k , and l , which refer to 

elements of a vector or a matrix. 

So far, only stated mathematical relations and definitions have been stated 

without reference to the physics of the problem. This has been necessary to provide 

a clear derivation of the three-dimensional Lagrangian equations of motion, which 

we are now in a position to do. 

The equation of continuity takes on a simple form in the Lagrangian de-

scription. Consider the small element of fluid in Fig. 3.1.2, which at time t = 0 

occupies an infinitesimal parallelepiped with one reference corner located at the 

point (a, b, c) and with edges of length da, db, and de , each parallel to one of the 

coordinate axes. Its volume is da db de. At some later time t , this element has 

deformed and now forms an oblique parallelepiped with the reference corner lo-

cated at (x(a,b,e,t),y(a,b,c,t),z(a,b,c,t)). Ifwe look upon the relation between 

(a, b, e) and (x, y, z) as simply a change of variables, it is clear (e.g., Greenspan 
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arbitrary time t later 

t=O 

I 
I 

8(x,y,z) 
volume = a( ) da db de 

a, b, e 

/ 
/ 

I 
I 
}----

volume = da db de 

Fig. 3.1.2 Deformation of a differential element of fluid. 

& Benney 1973) that the new volume of this element is a(x, y, z) da db de. Since 
a( a, b, c) 

mass must be conserved, we get: 

( ) ( )
a(x,y,z) 

p A,O dadbdc = p A,t a(a,b,c) dadbdc (3.1.38) 

For incompressible flow p = is constant and therefore, using Eq. (3.1.29), the 

continuity equation for incompressible flow in the Lagrangian description is: 

J=l (3.1.39) 

This appears to be a simple equation. However, Eq. (3.1.39) is, in fact, a nonlinear 

differential equation since, if J were expanded as given by Eq. (3.1.29), we would 

obtain six nonlinear terms one of which is, for example, Xa Yb Zc. The nonlin-

earity arises because a small element of fluid (e.g., Fig. 3.1.2) may undergo large 

deformations as time progesses. For arbitrary motion, the statement of continuity, 

J = 1, can be linearized only if a short differential time interval is considered, 
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since all deformations over such an interval will be small. However, over a larger 

time interval the nonlinear terms cannot be neglected. In contrast, the Eulerian 

continuity equation (3.1.1) is linear. The linearity is a consequence of the fact that 

the statement of continuity in the Eulerian description is local in both space and 

time; at each point in time the local divergence of the velocity field must be zero 

to conserve mass. There is no need to consider the time evolution of an element 

of fluid, as in the Lagrangian case. 

The momentum equations will be derived next. The ith component of veloc-

ity of a particle is: 

a~i (A, t) (3.1.40) 

At any time t this velocity must of course be equal to the ith component of the 

Eulerian velocity at the present position of the fluid particle; i.e., 

OXi 
at(A, t) = UiE (X(A, t), t) (3.1.41) 

Stated in words, this says that the velocity at time t of a fluid particle whose 

initial coordinates were A is equal to the Eulerian velocity at time t evaluated 

at the present location of that particle. The ith component of the acceleration of 

this particle of fluid is: 

(3.1.42) 

But this must equal the ith component of the Eulerian advective acceleration at 

the present position of the fluid particle; i.e., 

(3.1.43) 

Now it is straightforward to transform the Eulerian momentum equations to 

the Lagrangian description. The Eulerian equations can be written as: 

i=l,2,3 (3.1.44) 
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If we substitute Eq. (3.1.43) into this expression we get: 

i = 1,2,3 (3.i.4s) 

where the pressure is now considered a function of the Lagrangian coordinates 

(a, b, c) . The Fi are the terms that result from transforming the viscous terms 

into the Lagrangian description. Their exact expressions will be complicated and 

will not be presented here since we will be interested only in the first order (linear) 

quantities. Equation (3.1.45) is awkward because, although p is a function of the 

ai , it is differentiated with respect to the Xi . Further simplification leads to two 

different forms of the momentum equations in the Lagrangian description. The 

first form can be obtained by using Eq. (3.1.37) with g = p (and with J = 1 from 

Eq. (3.1.39)). Then Eq. (3.1.45) becomes: 

B
2
x = _! B(p,y,z) +Fi 

Bt2 p B(a,b,c) 

B
2
y =-!B(x,p,z) +F

2 at2 p B(a,b,c) 

B
2
z + g = _! B(x,y,p) + F"' 

at2 p B(a,b,c) " 

(3.1.46) 

This is the form of the momentum equations that will be used to derive the long 

wave equations. Notice that in these equations the acceleration terms are lin-

ear but the pressure gradient terms are nonlinear, in contrast to the momentum 

equations in the Eulerian description where the opposite is true. The nonlinear-

ity in the pressure terms in Eq. (3.1.46) occurs because the pressure gradient at 

the present location of a fluid particle depends on how the surrounding fluid has 

deformed from the initial instant, t = 0. These deformations can be large and, 

hence, nonlinear. 

Another form of the momentum equations can be obtained by multiplying 
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Eq. (3.1.45) by Bxi/Baj (and then summing over i). The result is 

or in matrix form: 

Ya 
Yb 
Ye 

) ( ) ( ) (

Fox ) Za Xtt 1 Pa i aa' 

Zb Ytt + p Pb = Fi 11: 
Zc Ztt + g Pc Fi7JC 

(3.l.46b) 

Equations (3.1.46a) and (3.l.46b) compare to (3.1.2) in the Eulerian description. 

Notice that in Eq. (3.1.46a) the acceleration terms are linear but the pressure 

gradient terms are nonlinear. In the Eulerian description the opposite is true, as 

is the case with the alternate form of the momentum equations in the Lagrangian 

description, Eq. (3.1.46b). 

Now let us look at the irrotationality conditions, Eq. (3.1.8). These can be 

written concisely using the permutation symbol E:iJk defined as: e:123 = c312 = 

c231 = 1, e:213 = c321 = c132 = -1, E:ijk = 0 otherwise. Then Eq. (3.1.8) can be 

written as: 

z' = 1,2,3 (3.1.47) 

If we use the Lagrangian description of the velocity from Eq. (3.1.41), and then 

use Eq. (3.1.33) with J = 1, Eq. (3.1.47) becomes: 

auk daz 0 = E:ijk ___ _ 

Baz Bxi 

=e: k!!__(Bxk)Baz 
iJ at daz OXj 

a axk 
= Ei]k at ( IJaz )AJt £ = 1,2,3 (3.1.48) 
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Alternately, we can use Eq. (3.1.37) with gE = UkE k = 1, 2, 3 and (3.1.41). Then 

Eq. (3.1.47) reduces to: 

B(x, Zt, z) 
B(a, b, c) 

B(x, y, Xt) 
B(a,b,c) 

B(yt,y,z) 
B(a,b,c) 

B(x,y,yt) 
B(a,b,c) 

B(zt, y, z) 
B(a,b,c) 

B(x,xt,z) 
B(a,b,c) 

(3.1.49) 

These are the irrotationality conditions to be used in the derivation of the long 

wave equations. They compare with Eq. (3.1.8). Note they are nonlinear. It is also 

important to note that because the irrotationality conditions in the Lagrangian 

description are fundamentally different from that in the Eulerian description where 

they are expressed by the vanishing of the curl of the velocity, there will not, in 

general, be a velocity potential analogous to that in the Eulerian description. 

Assuming all motion starts from rest at time t = 0, the boundary conditions 

for the irrotational flow external to the boundary layers are: 

p=O c=O (3.1.50a) 

z = -h(x) c = -h(a) (3.1.50b) 

Eq. (3.1.50a) corresponds to the dynamic boundary condition (3.1.3a) in the Eu-

lerian description. It is evaluated at c = 0 . That refers to particles that lie at 

the free surface at time t = 0 . However, since the free surface is a material sur-

face, these particles must remain at the free surface. Hence, c = 0 describes the 

free surface for all time and, therefore, Eq. (3.1.50a) states that the pressure is 

zero at the free surface for all time. Boundary condition (3.1.50b) corresponds to 

Eq. (3.l.3c). It states that particles which lie at the bottom at time t = 0; i.e., 

particles for which c = -h(a) , remain on the bottom thereafter. It is, in general, 

nonlinear unless h( a) is a linear function of a and b. 
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Notice that there is only one boundary condition to impose at the free sur-

face. In the Eulerian description there were two because the position of the free 

surface is an extra unknown to be solved for as part of the problem. However, 

since the free surface is a material surface, its position is fixed in the Lagrangian 

description. In our case it corresponds to c = 0. Therefore, an extra variable 

need not be introduced to keep track of the position of the free surface. However, 

for conveni'ence, we we will make the following definition: 

ry(a,b,t) = z(a,b,0,t) (3.1.51) 

This definition is analogous to boundary condition (3.l.3b) in the Eulerian de

scription. However, Eq. (3.1.51) is not an extra boundary condition that the flow 

must satisfy. It merely states that we will denote z(a, c = 0, t) by 7J (a, t) . 

Now let us look at the relationship between the Eulerian and the Lagrangian 

descriptions. In particular, if we are given the set of fluid functions describing 

the flow in one description, how do we transform them into the other description? 

First, suppose we are given the three components of the velocity in the Eulerian 

description, U E (X, t) . These are three functions defined for t > 0 at all points in 

space occupied by fluid particles at time t. From them we want to determine the 

three functions X(A, t), which give the location of any particle of fluid at time 

t, given its initial position, A. To do that we must integrate Eq. (3.1.41) with 

respect to time: 
t 

X(A,t) =A+ J VE(X(A,t'),t') dt' (3.1.52) 

0 

In general, it will be very difficult to obtain X(A, t) because, as can be seen, 

it involves solving three coupled integral equations. However, if we can obtain 

X(A, t), then an arbitrary function gE(X, t) in the Eulerian description can be 
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transformed very simply to the Lagrangian description: 

g(.A.,t) = gE(X(.A.,t),t) (3.1.53) 

where X(.A., t) is determined from Eq. (3.1.52). 

On the other hand, suppose we are given X(.A., t) , the location of any particle 

of fluid at time t, whose initial position is .A.. In theory, this can be inverted 

to get .A.(X, t), the initial coordinate of any particle of fluid which at time t 

is located at the position X. The inversion is possible because the Jacobian 

of the transformation is always nonzero from Eq. (3.1.39). Given .A.(X, t), any 

function in the Lagragian description, g(.A., t) , can be transformed to the Eulerian 

description using in Eq. (3.1.34): 

9E(X,t) = g(.A.(X,t),t) (3.1.54) 

This states that the Eulerian description of an arbitrary function g is obtained 

by evaluating the function in the Lagrangian description at the initial coordinate 

of the particle that reaches the location X at time t . Clearly, all of the effort 

to transform from the Lagrangian to the Eulerian description involves inverting 

X(.A., t) to obtain A(X, t) . 

The present variables are inconvenient for numerical work or for the derivation 

of the long wave equations. It is more convenient to work with the deviations 

of these variables from their initial values. In the Eulerian description this is 

analogous to working with the dynamic pressure instead of the static pressure. 

This will allow us to do a consistent nondimensionalization so that the importance 

of the various terms in the equations can be determined easily. Therefore, let: 

x'"' == X* - a* * ...... * ""* z = z - c p* = P'' + pgc* 

t* = [* X A* a =a X A* c = c 
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where x*' z*' p*' a*' c*' and r· refer to x, z, p, a, c, and tin the analysis 

up to this point; i.e., (a*, b", c*) are the initial (dimensional) coordinates of a par

ticle which at time t is located at (x"', y*, z*). Now let us nondimensionalize. The 

nondimensionalization which is consistent with that previously used in Eulerian 

description is: 

a* 
a=-

f, 

x* h0 
X=--

f, H 

c* 
c= -

ho 

p* 
p=-

pgH 

z* 
z= -

H 

t = t* v9ho 
f, 

h* 
h- -- ho 

As before, the quantities H, f,, ho refer to a characteristic wave height, horizontal 

length, and water depth. In this section the nondimensional parameters a: , f3 , 

/, and iJ are defined as in Section 3.1.1: 

H 
a=-

ho 

From now on all quantities will be nondimensional unless specifically stated oth-

erwise. The operators V' and P will be defined as: 

(3.1.55) 

With this change of variables and nondimensionalization, the Lagrangian 

functions X(A, t) no longer specify the absolute coordinates of a fluid particle, 
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only its deviation from its initial position; its absolute coordinates are X = X* / £. 

In terms of the displacements X or x we get: 

X(A, t) =A+ aX(A, t) or x(A, t) =a+ ax( A, t) (3.1.56) 

The first equation can be inverted to get A(X, t). Then A(X, t) must satisfy: 

A(X, t) = X - aX(A(X, t), t) (3.1.57) 

These relations can now be used to obtain the dimensionless form of the trans-

formation equations between the Lagrangian and Eulerian description given by 

Eqs. (3.1.52), (3.1.53), and (3.1.54). In terms of the nondimensional variables 

Eq. (3.1.52) becomes: 

t 

X(A, t) = J VE (A+ aX(A, t'), t') dt' (3.1.58) 

0 

Now let us make the assumption, of Eq. (3.1.19); i.e.: 

0( a) = 0(,8) = 0(1) < 0(1) (3.1.59) 

If we expand UE in a Taylor series, Eq. (3.1.58) becomes: 

t t 

X(A, t) = J UE(A, t') dt' +a J X(A, t') ·~~ UE (A, t') dt' + O(a 2
) • (3.1.60) 

0 0 

We can solve for X(A, t) to get: 

t t [ t' J 
X(A,t) = J VE(A,t') dt' +a J J VE(A,t") dt" ·~VE(A,t') dt' + O(a 2

). 

0 0 0 

(3.1.61) 

This is a first order approximate solution to Eq. (3.1.58). It is an explicit formula 

to compute X(A, t) , the location of any particle of fluid at time t, if we are given 
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the three components of the velocity in the Eulerian description, UE(X, t). If we 

differentiate it with respect to t, we obtain: 

a; (A, t) = u.(A, t) +" [/ u.(A, t') dt'] ·,'\\. U,(A, t) + O(a2
) (3.1.62) 

Now let us return to the transformation from the Eulerian to the Lagrangian 

description. In terms of these new variables Eq. (3.1.53) becomes: 

g(A,t) = gE(A + aX(A,t),t) (3.1.63) 

This expression is used to transform an arbitrary function in the Eulerian descrip

tion to the Lagrangian description. To use it, X(A, t) must first be computed 

from Eq. (3.1.61) (with an error of 0( a 2 )). 

In terms of these new variables Eq. (3.1.54) becomes: 

gE(X,t) = g(A(X,t),t) (3.1.64) 

Using Eq. (3.1.57), this becomes: 

gE(X,t) = g(X- aX(A(X,t),t),t) 

= g(X,t) - aX(A(X,t),t)·Pg(X,t) + O(a2
) (3.1.65) 

But from Eq. (3.1.57), A(X, t) = X + 0( a), and so this last expression can be 

written as: 

(3.1.66) 

Given X(A, t) , any function can be transformed from the Lagrangian description 

to the Eulerian description using this expression (with an error of 0 ( a 2 ) ) • No

tice that the quantities on the right hand side of Eq. (3.1.66) in the Lagrangian 



-55-

description are all evaluated at the location of interest, X, and not at the ini

tial position of the particle that reached that location at time t , A (X, t) . For 

example, if g = fJ we get: 

'r/r;:(x,t) = ry(x,t) - ax(X,t)·V'ry(x,t) + O(a2
) (3.1.67) 

Now let us obtain expressions for the viscous terms, Fi, which appear in 

(3.1.46). From Eqs. (3.1.37) and (3.1.56) we get: 

agE _ ag o( ) ---+ a 
ox· oa· J J 

If we apply this twice with gr;: = UiE (X, t) we get: 

~2 . ~2 . u UiE A u Ui A 

ox2 (X, t) = oa2 (A(X, t), t) + 0( a) 
J J 

(3.1.68) 

(3.1.69) 

Using this result and the relation Ui = oxi/ at we can transform the viscous terms 

in Eq. (3.1.10) to the Lagrangian description. We get: 

2 asx ( 2 2) 
Fi= 1 -a oc2ot + 0 CT/ ,/31 (3.1.70a) 

F2=12-a a~:~t + O(a12,/312) (3.1.70b) 

(3.1.70c) 

Similarly, the Lagrangian representation of Eq. (3.1.17) is: 

c = -h(a) (3.1.71) 

where XbJ is the horizontal fluid particle displacement vector in the boundary 

layer. 

Now let us return to the equations of motion. In terms of the new dimension-

less variables the continuity equation (3.1.39), the momentum equations (3.1.46a) 

and the irrotationality conditions (3.1.49) become: 
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Continuity: 

[
a(x,y) B(x,z) B(y,z)] 2 8(x,y,z) 

Xa+Yb+zc+a a(a,b) + B(a,c) + B(b,c) +a a(a,b,c) =O (3.1. 72) 

Momentum: 

[
a(p, y) B(p, z) B(z, y)] 2 B(p, y, z) 

Xtt +Pa+ Za +a a(a, b) + a(a, c) + a(a, b) +a a(a, b, c) =Fi 

[
a(x,p) B(p,z) B(x,z)] 2 8(x,p,z) 

Ytt +Pb+ zb+o: B(a, b) + B(b, c) + B(a, b) +a B(a, b, c) = Fz (3.1. 73) 

[
a(x,p) B(y,p) B(x,y)] 2 8(x,y,p) 

/3zu+Pc-Xa-Yb+a B(a,c) + o(b,c) - B(a,b) +a B(a,b,c) = F3 

Irrotationality: 

+ [
a(x, Yt) + B(y, Yt)] + 2 B(x, y, Yt) _ 

Yet a ) a -a(a,c) a(b,c a(a,b,c) 

/3 /3 [
8(x,zt) 8(zt,Z)] z/30(X,Zt,z) 

Zbt+o: a(a,b) + B(b,c) +a a(a,b,c) (3.1. 74a) 

[
a(x, Xt) B(y, Xt) l 2 a(x, y, Xt) 

Xct + a ( + + a ( = a a,c) a(b,c) a a,b,c) 

/3 /3 [
a ( zt, y) a ( zt, z) J 2/3 a ( zt, y, z) 

Zat +a + +a 
a(a, b) a(a, c) a(a, b, c) 

(3.1.74b) 

+ [o(yt,Y) + B(yt,z)l + 2 8(yt,y,z) _ 
Yat a B(a,b) o(a,c) a B(a,b,c) -

[
a(x,xt) o(xt,z)l 2 8(x,xt,z) 

Xbt + a + + a ---
8( a, b) o(b,c) a(a,b,c) 

(3.1.74c) 

In terms of the nondimensional variables, the boundary conditions (3.1.SOa) and 

(3.1.SOb) become: 

p=O 

h(a) - h(a +ax) 
z=------

a 

c=O 

c = -h(a) 

(3.1.75a) 

(3.1. 75b) 
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plus the definition: 

'fl= z c = 0 . (3.1.76) 

Now if we neglect all terms quadratic in small quantities and use Eq. (3.1.70) 

for the Fi, the equations of motion (3.1.72)-(3.1.74) and the boundary conditions 

(3.1.75) reduce to the following approximate expressions: 

Continuity: 

[
a(x,y) B(x,z) B(y,z)] 2 

Xa +Yb+ Zc +a a(a,b) + a(a,c) + B(b,c) = O(a) (3.1.77) 

Momentum: 

[
a(p, y) a(p, z) a(z, y)] 2 ( 2) 

Xtt +Pa+ Za +a a(a, b) + a(a, c) + a(a, b) - "/ '!Jxcct = 0 a (3.1.78a) 

[
a(x,p) a(p,z) a(x,z)l 2 2 

Ytt +Pb+ Zb +a B(a,b) + B(b,c) + o(a,b) - "/ '!Jycct = O(a) (3.1.78b) 

[
a(x,p) o(y,p) a(x,y)] 2 

f3ztt +Pc - Xa -yb +a o(a,c) + a(b,c) - o(a:b) = O(a) (3.1. 79) 

Irrotationality: 

[
a(x,yt) a(Y,Yt)] ( 2 

Yet -/3Zbt +a o(a,c) + B(b,c) = 0 a(J,a) 

[
o(x,xt) B(y,xt)l 2 

Xct-/3Zat+a o(a,c) + o(b,c) =0(a(J,a) (3.1.80) 

_ [B(yt,Y) B(yt,z) _ o(x,xt) _ o(xt,z)] - ( 2 ) 

Yat Xbt +a o(a,b) + B(a,c) o(a,b) o(b,c) - O a 

The boundary conditions become: 

p=O at c=O (3.1.81a) 

and 

at c = -h(a). (3.1.Slb) 
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Equations (3.1.77)-(3.1.81) are approximate expressions for the three-dimensional 

equations of motion in the Lagrangian description valid for small o:, (3, and /. 

In the next section these equ·ations will be manipulated to reduce them to a set 

of long wave equations in two horizontal coordinates, independent of the vertical 

coordinate, c. 

3.1.3 The Long Wave Lagrangian Equations 

To simplify subsequent manipulations, let us write the horizontal mo-

mentum equations, Eqs. (3.l.78a) and (3.l.78b), in vector notation. To do that, 

notice that the vector: 

( 
o(p,z) a(p,z)) 
o(a, c)' o(b, c) 

can be written as: Zc V' p - Pc V' z. We also can write: 

(
o(p,y) o(z,y) B(x,p) B(x,z)) ( ) 
:::i( b) + :::i( b) ' ::i(a,b) + ::i(a,b) = V' p + z ·D v a, v a, v v 

(3.1.82) 

where D is the second order tensor whose representation in this coordinate system 

is: 

(3.1.83) 

Hence, in vector notation, Eqs. (3.1. 78a) and (3.l.78b) can be written as: 

B3x 
Xtt + \i'(p + z) + o: [zc \i'p - Pc Y' z + \i'(p + z) ·DJ -1

2 1J Bc 2ot = 0( o:2
) . (3.1.84) 

To introduce the effect of boundary layer dissipation into the long wave equations, 

we will integrate this equation with respect to the variable c from c = -h( a) to 

c = 0 and then use Eq. (3.1.71) to eliminate the boundary layer gradient term 
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which results from the integration. The result is: 

0 

J { Xtt + Y' (p + z) + a [ Ze Y' p - p e Y' z + Y' (p + z) · D] } de + / ~~ (a, - h (a) , t) 

-h(a) 

(3.1.85) 

Here we assumed that 8 2x/ ac at was zero at c = O. This will be true if there 

is no horizontal shear at the free surface. This will not be true if the surface is 

contaminated with surfactants and this will be discussed later in Section 5.2 of 

Chapter 5. 

Now let us assume that the unknowns can be expanded in a power series in 

a. Peregrine (1967) used expansions of this type to derive a set of equations in 

the Eulerian description for long waves in water of varying depth. Let: 

00 

X = L anxn(a,c,t) 
n=O 

00 

z = L anzn(a,c,t) 
n=O 

00 

P = L anpn(a, c, t) . 
n=O 

(3.1.86) 

Numbers used as subscripts will denote the order of the term in these expansions. 

As usual, the subscripts a, b, c, and t will denote differentiation with respect to 

these quantities (i.e., Zoe= azo/ac ). In the following, the subscripts 0 and 1 refer 

to the zero and first order terms in the expansions of Eq. (3.1.86) (i.e., n = 0, 1). 

If we substitute these expansions into Eqs. (3.1.77), (3.1.85), (3.1.80), (3.1.81), 

and (3.1.76) and collect terms of similar order in a, we get (assuming f3 = O(a) 

and / = O(a) ): 

To the lowest order, 0( a 0 ): 

Continuity: 

Y' · Xo + Zoe = 0 (3.1.87) 



Momentum: 

Irrotationality: 

Boundary conditions: 

and: 
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0 J [xott + Y'(po + zo)] de= 0 

-h(a) 

Poe - Y' · Xo = 0 

Yoet = 0 

Xoet = 0 

Yoat - Xobt = 0 

Po= 0 c = 0 

zo = -V' h·x0 c = -h(a) 

zo = rto c = 0 . 

To the next order, 0 ( o:) : 

Continuity: 

Momentum: 

(3.l.88a) 

(3.l.88b) 

(3.l.89a) 

(3.l.89b) 

(3.l.89c) 

(3.l.90a) 

(3.l.90b) 

(3.1.91) 

(3.1.92) 

(3.l.93a) 

~ 8(xo,Yo) 
-;;_zott + Ple - V' ·X1 +Poe V' ·Xo - XoePOa - YoePOb - a(a, b) = 0 (3.l.93b) 
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Irrotationality: 

(3 + o(xo, Yot) + o(yo, Yot) 
Y1ct - -;;_Zobt o(a,c) o(b,c) = 0 (3.l.94a) 

(3 a(xo, Xot) B(yo, Xot) 
X1ct - -;;_zoat + B(a,c) + o(b,c) = 0 (3.1.94b) 

+ B(Yot, Yo) + B(Yot, zo) B(xo, Xot) B(xot, zo) 
Ylat - XIbt B(a,b) o(a,c) B(a,b) o(b,c) = 

0 (3.1.94c) 

Boundary conditions: 

PI= 0 c=O (3.l.95a) 

1 
z1 = - \7h·x1 - :z Xo · H · Xo c = -h(a) (3.1.95b) 

and: 

Z1 = r/1 c=O (3.1.96) 

where 

Do= ( Yob 
-yoa 

-Xob) 
Xoa 

H = ( haa hab) 
- hba hbb 

(3.1.97) 

The procedure now will be to "depth average" these equations to eliminate 

the vertical coordinate c , and then to use these averaged equations to obtain an 

approximate set of equations of motion that will be accurate to 0 (a, (3, I) . One 

way to proceed is to solve the order zero equations, substitute these solutions into 

the order one equations, and then solve these. As explained by Peregrine (1967), 

such a procedure will yield a solution valid only for small values of t . A better way 

to proceed is to combine the order zero equations with the order one equations to 

obtain a single set of equations that includes both the order zero and the order one 

effects. We must choose the variables that will appear in these equations. For the 

water surface elevation the only clear choice is the variable da, t) defined as: 

da, t) = rJo(a, t) + <:xrJ1 (a, t) (3.1.98) 
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Clearly da, t) = 17(a, t) + 0( o:2
). However, there is not as clear a choice for the 

particle displacement variables. We cannot define the variables to be x 0 (a, c, t) + 

ax1 (a, c, t), analogous to Eq. (3.1.98), because the long wave equations will be 

independent of c , so the variables corresponding to the fluid particle displace-

ments must also be independent of c. There are two obvious choices for these 

variables: 

and 

x'(a,t) = x 0 (a,O,t) + axr(a,O,t) 

0 

x(a, t) = h(~) J {xo(a, c, t) + O:X1 (a, c, t)} de 
-h(a) 

(3.1.99) 

(3.1.100) 

The vector x' corresponds to the displacements of the fluid particles at the free 

surface and the vector x corresponds to "depth averaged" fluid displacements. 

We will derive one set of equations of motion for the variables ~ and x' , and 

another set of equations for the variables ~ and x. Both sets of equations will be 

accurate to 0( o:., /3, /) . 

It is worth noting the role that the three vorticity conditions will take in the 

derivation of the long wave equations. The three vorticity conditions (that each 

component of the vorticity must be zero) are not additional constraints which the 

variables x, y, z, and p must satisfy in addition to the continuity equation and 

the three momentum equations. Since we have only four unknowns, we need only 

four equations (continuity and momentum). The vorticity conditions can be de

rived from the continuity and momentum equations (given the appropriate initial 

conditions). Hence, the three vorticity conditions are consistent and contained in 

the continuity and momentum equations. Therefore, it is perfectly consistent to 

use the vorticity conditions in the derivation of the long wave equations if they are 

useful, but it is not necessary that we do. In fact, it is only the two horizontal 
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components of vorticity that are found to be convenient in the derivation. 

Now from Eqs. (3.l.89a) and (3.l.89b) we get that the zero order horizontal 

particle displacements are independent of c : 

xo = xo(a, t) (3.1.101) 

If we integrate the zero order continuity equation, (3.1.87), from c = -h(a) to any 

arbitrary value of c and then use the boundary conditions (3.1.90b) and (3.1.101), 

we can solve for the zero order vertical displacement variable, zo: 

zo = -Y'·(hxo) - cY'·xo (3.1.102) 

From now on we will denote h(a) simply by h. If we evaluate Eq. (3.1.102) at 

c = 0 and use the definition of 'Y/o, Eq. (3.1.91), we get: 

'Y/o = -Y'·(hxo) (3.1.103) 

This is the zero order approximation of the long wave continuity equation. Let 

us now add the continuity equation (3.1.87) to the vertical momentum equa

tion (3.1.88b), integrate this expression with respect to c from any arbitrary value 

of c up to c = 0, and then use the dynamic free surface condition, Eq. (3.1.90a), 

and the definition of T/o, Eq. (3.1.91). The result is: 

Po+ zo = t7o (3.1.104) 

This is simply the hydrostatic equation. Finally, if we substitute this last ex

pression into Eq. (3.1.88a) and perform the integration (remembering that x 0 is 

independent of c) we get: 

Xott + Y'170 = 0 (3.1.105) 

This is the zero order approximation of the long wave momentum equation. This 

ends the order zero manipulations. 
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Now let us look at the order one equations. If we substitute Eq. (3.1.101) 

into the horizontal components of the vorticity equation (3.l.94a) and (3.1.94b), 

we get: 

/3 
Xie = - V' Zo 

a 
(3.1.106) 

Now we can substitute the Eq. (3.1.102) for zo into this and integrate with respect 

to c from any arbitrary value of c to c = 0. The result is: 

j3 { c2 } 
Xi= Xi\ - - cV'[V'·(hx0 )] + -V'(V'·x0 ) 

c=O a 2 (3.1.107) 

This is the first order correction to the horizontal particle displacement vector. The 

lowest order contribution, Eq. (3.1.101), is independent of the vertical coordinate 

c. However, the additional term, Xi, is dependent on c; it represents the effect of 

nonhydrostatic vertical fluid accelerations that lead to frequency dispersion when 

wave propagation is considered. 

Now if we add Eqs. (3.1.92) and (3.1.93b) and use Eqs. (3.1.101) and (3.1.104) 

the result reduces to: 

a /3 
-(Pi+ z1) = --Zott ac a 

(3.1.108) 

If we integrate this expression from any arbitrary value of c to c = 0 and make 

use of Eqs. (3.1.95a), (3.1.96), and (3.1.102) we get: 

j3 { c2 } P1 +z1 = 'IJi + ~ c\i'·(hxott) + z-Y'·Xott (3.1.109) 

This equation represents the deviation of the pressure from hydrostatic due to 

vertical fluid accelerations. If we substitute Eqs. (3.1.102), (3.1.104), (3.1.107), 

and (3.1.109) into the integrated horizontal momentum equations (3.1.93a), use 

Eq. (3.1.101), and perform the integration over the variable c we get: 

(3.1.110) 
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Finally, if we solve Eq. (3.1.92) for Z1c, integrate with respect to c from c = -h to 

c = 0 and use Eqs. (3.1.90b), (3.1.91), (3.1.95b), (3.1.96), (3.1.101), and (3.1.107), 

we can solve for 17 1 to get: 

1 D(xo,Yo) 
n1 = --xo·H·xo - Y'·[hx11 ] - Y'·xo[17o + Y'h·xo] - h---., 2 - c=O D(a,b) 

~ hz h3 
- ;Y'·{-

2 
Y'[Y'·(hxo)] - -

6 
Y'(Y'·x0 )} 

(3.1.111) 

Now for the moment let us just consider the variables 5," and x'. We can 

obtain the long wave continuity equation in terms of these variables by adding 

Eq. (3.1.103) to a times Eq. (3.1.111) and using Eqs. (3.1.98) and (3.1.99): 

[V' ·x' +a 8(x' ,y')] 
- Y'h·x' - ~x'·H·x' - h B(a,b) 

2 - l+aY'·x' (3.1.112) 

{ 
h2 h3 } 

- ~Y'· 2 Y'[Y'·(hx')] - 6 Y'(Y'·x') + O(a~,a2 ) 

The momentum equations can be obtained in the same way by adding Eq. (3.1.105) 

to a times Eq. (3.1.110) and using Eqs. (3.1.98) and (3.1.99): 

(3.1.113) 

where the definition of D' is the same as that for D in Eq. (3.1.83), but with 

primes on each of its entries. If we multiply Eq. (3.1.113) by (1 + a\i' ·x') we 

get: 

(3.1.114) 

These are the momentum equations in terms of the variables ~ and x' . 
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Now let us consider the variables ~ and x. We can obtain an expression for 

x in terms of x 0 (a,t), and x 1 (a,0,t) if we substitute Eqs. (3.1.101) and (3.1.107) 

into Eq. (3.1.100) and perform the integration: 

h h 2 

x = x 0 + ax i I + f3 {-Y' [ Y' · ( hxo)] - - Y' ( Y' · xo) } 
c=O 2 6 

(3.1.115) 

Comparing this with the expression for x', Eq. (3.1.99), we see that: 

(3.1.116) 

Along a shoreline where h ----)> 0 we have x = x'. In terms of ~ and x the long 

wave continuity and momentum equations are: 

[~ - + o(x,y) J a v ·X a o(a b) 
-Y'h·x - -x·H·x - h ' + O(af3 a2

) 
2 - 1 + aY'·x ' 

(3.1.117) 

/ - { h h
2 

} (1 + aY'·x)[xtt + hxt] + aY'~·D + Y'~ = f3 2Y'[Y'·(hxu)] - 6 Y'(Y'·xtt) 

+ O(af3,a1,a 2
) 

(3.1.118) 

where the definition of D is the same as that for D in Eq. (3.1.83) but with 

bars over each of its entries. Equations (3.1.117) and (3.1.118) are the long wave 

equations which will be used in the finite element numerical model. Note that 

in Eqs. (3.1.117) and (3.1.118) the dispersion terms are contained in the momen

tum equations, whereas in Eqs. (3.1.112) and (3.1.114) they are contained in the 

continuity equation. 
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Note that to the same order of accuracy the continuity equation (3.1.117) can 

be written as: 

_!_ { h(a) a( ) -h(a+o:x)} +O(o:,8,0:2) 
o: 1 + a\i' ·X + a2-3:..JJL a ( a,b) 

(3.1.119) 

This equation does not explicitly contain any spatial derivatives of h since they 

have been absorbed into the term h(a + o:x). This equation can be used in place 

of Eq. (3.1.117). However, for clarity, the development of the finite element model 

in Section 3.4 will treat only Eq. (3.1.117). 

Now let us look at the vorticity. Notice that we did not use the vertical 

component of irrotationality condition represented by Eqs. (3.1.89c) and (3.1.94c) 

in deriving the long wave equations. As mentioned earlier, this does not mean that 

we still need to enforce this condition on the solution. It is merely a statement 

of what condition the exact solution x and z will satisfy. Let us see what this 

condition implies for the approxz"mate solutions x' and x. If we use Eq. (3.1.101) 

and combine Eqs. (3.1.89c) and (3.1.94c), the irrotationality condition can be 

written as: 

(3.1.120) 

or 

W[x] = O(o:2) (3.1.121) 

where W represents the vorticity operator in Eq. (3.1.120). Equation (3.1.120) 

must be satisfied by any solution to the three-dimensional continuity and mo-

mentum equations (exterior to the boundary layers where viscous effects can be 

ignored), provided the vorticity is zero at some point in time. Using Eqs. (3.1.99), 

(3.1.101), and (3.1.107) we can write this vorticity condition in terms of x'. The 
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result is: 

W [x'] = 0( a/3, 0:2) (3.1.122) 

i.e., x' is an irrotational vector field. This is to be expected because x(a, c, t) 

is irrotational and from Eq. (3.1.99) x'(a, t) differs from x(a, 0, t) by terms of 

only 0( o:2 ) • We can also obtain the vorticity condition satisfied by x. Using 

Eqs. (3.1.120), (3.1.116), and (3.1.122) we get: 

{
1 a 1 a h a h a } w [x] = /3 -h -Y' · (hxt) - -hb-Y' · (hxt) + -hb-Y' ·xt - -h -Y' ·Xt 
2 a Bb 2 Ba 3 Ba 3 a ob 

(3.1.123) 

Therefore, provided Y' h "I 0 and the flow is not restricted to one horizontal coor

dinate, x is in general a rotational vector field with vorticity of 0(,8) . Variations 

in the still water depth h(a) generate the vorticity represented by the right hand 

side of Eq. (3.1.123) (e.g., see Wu 1981). That is perfectly acceptable; the vector 

x(a, c, t) must be irrotational but its "depth average" (1/ h) J~h x de need not be. 

3.1.3.1 Dispersive Range of Validity of the Long Wave Equations 

The long wave equations derived in Section 3.1.3 are based on the 

assumption that the parameters a, /3, and / satisfiy: O(o:) = 0(/3) = 0(1) < 

0(1). Therefore, these equations will cease to be valid as a, /3, and / grow 

large and become 0(1). It is impossible to set a precise upper bound on how 

large these parameters can become before the solution is invalid. However, we can 

get an idea of the range of validity of the dispersive correction terms in the long 

wave equations of motion. Since we can solve the fully dispersive linear inviscid 

case exactly for constant depth, we can check the results of this theory with the 

results of the long wave model equations and see how the two differ as we vary 

the amount of dispersion. Unfortunately, we cannot solve the nonlinear problem 
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exactly, so we cannot make a similar comparison to investigate the nonlinear range 

of validity. 

It is well known that according to linear inviscid dispersive theory in a region 

of constant depth, h0 , the dispersion relation, phase speed, and group speed for a 

plane harmonic wave are given, respectively, by the following expressions: 

w2 = gk tanh kh0 

c=~ 
tanhkho 

kho 

c = ~ (l + _2_k_ho_) 
9 2 sinh 2kho 

We can expand these expressions in powers of kh0 as: 

w 2 = gh0 k 2 (1 - ! (kh0 )
2 + ~ (kh0 )

4 + O(kh0 )
6

) 
3 15 

c = ~ (1 - ~(kh0 ) 2 + 19 
(kho) 4 + O(kho) 6

) 
6 360 

c9 = ~ (1 - ~ (kh0 )
2 + 19 

(kh0 )
4 + O(kh0 )

6
) 

2 72 

(3.1.124) 

(3.1.125) 

(3.1.126) 

(3.1.127) 

(3.1.128) 

(3.1.129) 

Here, the quantity (kh0 ) 2 plays the role of the dispersion parameter, f3. 

If we neglect the nonlinear and dissipative terms and specialize the long wave 

equations (3.1.117) and (3.1.118) to one horizontal dimension for a constant depth, 

ho , we can eliminate the particle displacement variable x between the two equa-

tions and obtain a single equation for the water surface elevation, which we will 

denote by 1J . In dimensional variables we get: 

h2 
1Jtt - gho1Jaa = 

3
°17aatt (3.1.130) 

The term on the right hand side of this equation is the dispersive correction term. If 

we assume a solution of the form 17 ,....., ei(ka-wt) , we obtain the following dispersion 
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relation (e.g., see Whitham 1974): 

2 . ) 2 gh0 k 2 1 .., 1 4 6 
w = 1 ( )2 = ghok (1 - -(kho)'" + -(kho) + O(kho) 

1 + 3 kh 0 3 9 
(3.1.131) 

Comparing this with Eq. (3.1.127) we see that the model dispersion relation agrees 

with the exact one to O(kh0 ) 2 . We find the same sort of agreement regarding the 

phase and group speeds. From Eq. (3.1.131) the phase and group speeds are: 

.;gr;:z CL ( 1 2 1 4 6) c = -----
1
-12 = y gho 1 - -(kho) + -(kho) + O(kh0 ) (3.1.132) 

[1 + ~(kh0 )2] 6 24 

.;gr;:z CL ( 1 2 5 4 6) 
312 

= y gho 1 - -(kho) + -(kho) + O(kho) .(3.1.133) 
[1 + ~(kho)Z] 2 24 

In contrast, the classic nondispersive long wave expressions for c and c9 

are: 

c ~. (3.1.134) 

In Table 3.1.1 the exact linear dispersive expressions for c and c9 given 

by Eqs. (3.1.125) & (3.1.126) are compared with both the dispersive long wave 

expressions of Eqs. (3.1.132) & (3.1.133) and with the nondispersive result of 

Eq. (3.1.134). The first column lists values of the parameter h0 / >. and the second 

column lists the corresponding values of kh0 = 2Jrh0 / >., where >. denotes the 

wavelength. Increasing values of these parameters correspond to increasing the 

importance of dispersion. The two columns labelled "Nondispersive Theory" list 

the deviations of the nondispersive results of Eq. (3.1.134) from the exact linear 

result of Eqs. (3.1.125) & (3.1.126), and the last two columns, labelled "ist Order 

Theory," list the deviations of the dispersive long wave expressions of Eqs. (3.1.132) 

& (3.1.133) from the exact linear expressions. The deviations listed in this table for 

the phase speed c are the percentage errors defined as ( c approx - Cexact) / Cexact X 

100. Here Cexact denotes the exact linear expression of Eq. (3.1.125) and c approx 
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denotes either the nondispersive result of Eq. (3.1.134) for the deviations in the 

third column or the dispersive long wave result of Eq. (3.1.132) for the fifth column. 

The percentage errors for cg are defined similarly. 

In Table 3.1.1 note that the first order dispersive theory is much more accurate 

than the classical nondispersive long wave theory. Note also that the nondispersive 

theory consistently overpredicts c and Cg , whereas the opposite is true for the 

1st order theory. The classic upper limit of applicability of nondispersive theory is 

usually taken to be ho/,\ = 0.05 (Eagleson & Dean 1966). Beyond this value, the 

error between nondispersive theory and exact linear dispersive theory can grow 

unacceptable for many applications. The line in Table 3.1.1 corresponding to this 

limit is written in boldface. For the nondispersive theory there is an error of 

approximately 1.6 % in c and 5 % in cg at this value of ho/,\. The group speed 

cg is always less than c , so the error in cg is always greater than that in c . 

However, for the 1st order theory the errors in c and Cg are extremely small, 

only about 0.01 % and 0.05 % , respectively. 

The other line in Table 3.1.1 that is written in boldface corresponds to the 

analogous upper limit of applicability of the 1st order theory; it lies at ho/,\ = 

0.17. At this value of ho/,\ the error in cg for the 1st order theory is about 5 % , 

the same error in cg for the nondispersive theory at the classic limit, h0 / ,\ = 0.05. 

Note that at ho/,\ = 0.17 the corresponding error in c is less than 1 % for the 1st 

order theory, whereas the errors in c and cg for the nondispersive theory are very 

large, about 16 % and 54 % , respectively. The last line of the table, ho/,\ = 0.17, 

corresponds to ho/,\ = 0.2. This is the value of h0 / ,\ for which the error in the 

phase speed c for the 1st order theory is about 1.6 % , the same error in c for the 

nondispersive theory at the classic limit, ho/,\ = 0.05 . Therefore, this could also 

be defined as the upper limit of applicability of the 1st order theory. However, 

the group speed ca is of greater dynamical interest than the phase speed c, so 
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Table 3.1.1 

Percent error in phase speed c and group speed cg from 
that computed by linear dispersive theory. 

Nondispersive Theory 1st Order Theory 

ho/>.. kho c Cg c Cg 

0.00 0.000 0.00 0.00 -0.00 -0.00 
0.01 0.063 0.07 0.20 -0.00 -0.00 
0.02 0.126 0.26 0.79 -0.00 -0.00 
0.03 0.188 0.59 1.77 -0.00 -0.01 
0.04 0.251 1.04 3.15 -0.00 -0.02 

0.05 0.314 1.62 4.92 -0.01 -0.05 

0.06 0.377 2.32 7.07 -0.02 -0.11 
0.07 0.440 3.13 9.61 -0.04 -0.20 
0.08 0.503 4.06 12.53 -0.06 -0.33 
0.09 0.565 5.09 15.81 -0.10 -0.51 
0.10 0.628 6.22 19.46 -0.15 -0.76 
0.11 0.691 7.44 23.46 -0.21 -1.09 
0.12 0.754 8.75 27.79 -0.29 -1.49 
0.13 0.817 10.14 32.45 -0.38 -2.00 
0.14 0.880 11.60 37.42 -0.49 -2.60 
0.15 0.942 13.13 42.69 -0.63 -3.31 
0.16 1.005 14.72 48.19 -0.78 -4.13 

0.17 1.068 16.37 53.96 -0.95 -5.06 
0.18 1.131 18.07 59.95 -1.14 -6.11 
0.19 1.194 19.80 66.12 -1.36 -7.27 
0.20 1.257 21.58 72.47 -1.59 -8.54 

the upper limit of applicability of the 1st order theory, h0 / >.. = 0.17, was based 

on the error in c9 , not c. 

Therefore, although this does not set an absolute upper limit on the range of 

validity of the 1st order theory, it does suggest that the inclusion of the 1st order 

dispersive correction terms in the long wave equations permits us to accurately 

simulate waves with a time scale or length scale at least three times smaller than 

that possible without the correction terms (for a given water depth). This is 

important even if an incident wave system does satisfy h0 / ,\ < 0.05 because 
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nonlinear effects within a bay or harbour may generate higher harmonics that lie 

outside the classic long wave limit. 

3.2 Response of Variable Depth Narrow Harbours 

To investigate the effect of variable depth on the response of harbours to 

long wave excitation, let us specialize to narrow harbours so that the complexity 

of the problem can be reduced and we can extract important information using 

analytical tools. We will neglect the nonlinear terms in the equations of motion, so 

it is imillaterial whether we choose the Lagrangian or the Eulerian description. Let 

us choose the Eulerian description. Since there will be no conflict in this section, we 

will not subscript the Eulerian variables with the letter E. Much of the analysis of 

this section will be valid for any narrow harbour with arbitrary bathymetry where 

the fl.ow within the harbour can be approximated by two-dimensional wave theory 

within the harbour with wave propagation in a single coordinate direction. 

The solution domain is divided into two nonoverlapping regions, I and II. See 

Fig. 3.2.1 for a definition sketch of the problem. The stars refer to the dimensional 

variable; i.e., x* is the dimensional horizontal coordinate measuring distance away 

from the still shoreline. The variable x* is similar but it measures distance away 

from the harbour entrance. The coordinate x* is convenient for describing the 

fl.ow within the harbour, whereas the coordinate x"' is convenient for describing 

the fl.ow in the outer region. Figure 3.2.1 shows the still water depth gradually 

diminishing to zero at the shore CD but this need not be so. Instead, the still 

water depth may be non zero along CD in which case CD would correspond to 

a vertical wall. In addition, the points C and D may coalesce to a single point. 

Region I consists of the harbour itself and Region II is the open ocean outside 

the harbour. Where confusion is possible, variables in the two regions will be 
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differentiated with the subscripts I and II (e.g., f/ 1 and fin). It will be assumed 

that the incident wave propagates normal to the coastline. 

We will quantify the response of the harbour in two different ways. First, we 

will compute its amplification factor R, which is traditionally defined as one-half 

of the ratio of the amplitude of the wave motion at x = 0 to the amplitude of 

the incident wave. The factor of one-half is included because the amplitude at a 

plane vertical wall with no harbour present is twice that of the incident wave (for 

normal incidence). The amplification factor, R , can be evaluated in places other 

than at the shore, x = 0. In fact, the laboratory experiments that were performed 

to compare with this theory, and which will be discussed later in Section 5.2 of 

Chapter 5, measured the harbour response at the centre, x = 1/2. However, for 

clarity, in this derivation of the harbour response theory we will consider only the 

amplification factor, R , evaluated at the shore or backwall, x = 0 . 

Although the amplification factor, R, defined in the manner just described is 

important, it can be misleading because it incorporates two separate effects. The 

wave amplitude at x = 0 is dependent not only on the trapping of energy within 

the harbour due to an abrupt change in the wave impedance at the harbour en

trance, but also on the shoaling and geometrical amplification of the waves due to 

variable bathymetry and harbour sidewall geometry within the harbour. There

fore, it is of interest to define an alternate amplification factor, R', which quan

tifies only the energy trapping due to the coupling of the harbour at its entrance 

with the semi-infinite ocean but which does not include the wave amplification due 

to variable bathymetry and sidewall geometry within the harbour. Therefore, let 

us define S to be the amplification factor for the same harbour which is connected 

to an infinitely long constant depth channel, instead of a semi-infinite open sea 

(the width of the channel is chosen to be the same as the width of the entrance of 

the harbour so the width is continuous across the entrance). Then S will quantify 
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the shoaling and geometrical amplification of waves due to variable bathymetry 

and sidewall geometry within the harbour. The possible abrupt change of the 

bathymetry and harbour sidewall geometry at the entrance between the harbour 

and the channel may also cause a small amount of energy to be reflected, so S 

may also exhibit resonant behaviour at certain frequencies, but, in general, the ef-

feet is much smaller than the resonant amplification that results from the coupling 

of the harbour with the semi-infinite ocean. The alternate amplification factor, 

R' , can then be defined as the ratio of the traditional amplification factor, R , 

which includes both wave amplification processes, with the amplification factor, 

S, which includes only the wave shoaling and geometrical amplification processes; 

I.e., 

R 
R' = -- s (3.2.1) 

Both of the amplification factors R and R' are obtained by normalizing the 

wave amplitude at x = 0 in Fig. 3.2.1 by some quantity. For R, this quantity 

is the amplitude which would be measured at the entrance of the harbour if the 

harbour entrance were closed off and the incident wave reflected from a plane 

vertical wall. For R', this quantity is the amplitude which would be measured at 

the shore of the harbour, x = 0, if the harbour were connected to an infinitely 

constant depth channel instead of a semi-infinite ocean. For a constant depth 

rectangular harbour, both of these quantities will be the same. Hence, for a 

constant depth rectangular harbour, R' will be identical to R but for other types 

of harbours they will, in general, be different. 

3.2.l General Assumptions 

We will make the following assumptions: 

(i) still water depth: 
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a) The still water depth in region II is constant and equal to ho . 

b) Within the harbour the still water depth, h * , is a function of x* only. 

(ii) boundaries: 

a) The coastlines AB and EF are straight and extend out to y* ± oo. All 

energy is perfectly reflected. 

b) The harbour sidewalls BC and DE are vertical and perfectly reflecting. 

c) The wave height is finite and all energy is reflected at the shoreline CD. 

d) The width of the harbour, 2b x ( x*) , varies slowly with x* . 

e) The ratio of the width of the harbour to its length, 2b*(x*)/L, is small. 

(iii) incident wave system: 

a) The propagation direction of the incident wave system is normal to the 

coastline. 

b) The departure of the water surface from its still level is small everywhere 

so that the nonlinear terms in the equations of motion may be neglected. 

c) The ratio of the still water depth to a characteristic wavelength scale is 

small so that dispersive effects may be neglected. 

d) The ratio of the width of the harbour to a characteristic wavelength scale 

is small. 

We will consider only one source of viscous dissipation: entrance flow separa

tion losses due to flow passing through the entrance of the harbour BG. However, 

this analysis will also model the radiation of energy from the harbour entrance to 

the open sea and this process can also be viewed as a source of (inviscid) dissipation 

as far at the response of the harbour is concerned. 
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3.2.2 Equations of Motion 

The equations of motion can be obtained by specializing the long wave 

equations derived in Section 3.1 to one horizontal coordinate and by discarding 

the nonlinear, dispersive, and laminar viscous terms. The continuity equation and 

momentum equations reduce to the following familiar expressions in the Eulerian 

description: 

817 * = -~(h*u*) - ~(h*v*) 
Bt* Bx* oy* 

au* 817* 
-=-g-
Bt* ox* 

av* 817* 
---g-
Bt* By* 

. where h* is the (dimensional) still water depth. 

Let us assume the incident wave is a harmonic plane wave: 

n.* (x* t*) = A" e+ik(x· +~ t•) 
·11nc ' inc 

Let us choose the following nondimensionalization: 

x* 
X= L' 

- x* 
x=-

u* h0 
U=---

VihO H 

h* 
h=

ho 

L 

y* 

y = b*(L) 

v* 
v=--

,/ihO 

b* 
b=--

b* (L) 

t = t* y1gfto 
L 

17 
'rJ=-

ho 

(3.2.2) 

(3.2.3) 

(3.2.4) 

(3.2.5) 

In terms of these variables the governing equations and incident wave system 

become: 

a11 a 1 a - = --(hu) - --(hv) 
at ax E By 

au 

at 

(3.2.6) 

(3.2.7) 
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av a'r/ 
at By 

(3.2.8) 

,.,. - A· e+il\;(x+t) 
'/lilC - lilC (3.2.9) 

where 

A- = Ainc 
lilC ho K = kL 

b*(L) 
E=--

L 
(3.2.10) 

We have chosen a nondimensionalization based on the harbour geometry and 

the still water depth instead of on the characteristics of the incident wave system. 

This is because we would like to imagine the harbour geometry as fixed and then 

determine the response of the harbour as we vary the wavelength of the incident 

wave system. However, the laboratory experiments to be discussed in Chapters 4 

and 5 actually determined the harbour response by varying the harbour dimensions 

and keeping the incident wave constant. 

For region II we can combine Eqs. (3.2.6)-(3.2.8) (with h=l) to obtain a single 

equation for rJ : 

(3.2.11) 

By virtue of assumptions (ii) cl) and (iii) d), we will treat the flow as two-

dimensional with wave propagation in a single coordinate direction in region I. 

We can obtain the appropriate continuity equation for this region by integrating 

Eq. (3.2.6) across the width of the harbour under the assumption that 'r/ and u 

are independent of y : 

+b(x) 

arJ a 1 j a 
at = - ax (hu) - 2E b(x) ay (hv) dy 

-b(x) 

a h [ ] = --(hu) - vi - vi ax 2Eb(x) y=+b(x) y=-b(x) 

We can approximate the velocities v at y = ±b(x) by: 

db 
v ly=±b(x) = ±rn dx 

(3.2.12) 

(3.2.13) 
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Then Eq. (3.2.12) becomes: 

a11 1 a 
- = ---(hbu) at b ax (3.2.14) 

We can combine this with Eq. (3.2.7) to get the following equation for the wave 

motion in region I: 

a
2

11 = ~ ~(hb a11) 
at 2 b ax ox (3.2.15) 

3.2.3 Matching Conditions 

The solution for the wave motion in regions I and II will be obtained by 

the following general method. The solution in region I will be found by solving 

Eq. (3.2.15). It will contain an unknown amplitude and phase parameter. Then, 

the solution in region II will be found by solving Eq. (3.2.11) in terms of these same 

two parameters. Finally, these two parameters will be determined by connecting 

the two solutions, using the appropriate matching conditions. Since there are two 

parameters, there must be two matching conditions. 

The first matching condition introduces a head loss across the entrance BG, 

and therefore introduces dissipation. The introduction of harbour entrance losses 

removes the well known harbour paradox phenomenon (Miles & Munk 1961). 

Without these losses the response of a harbour can grow unbounded at its reso-

nant frequencies as the harbour entrance is made narrower and narrower. This is 

because radiation damping decreases and approaches zero as the harbour entrance 

width goes to zero. However, entrance dissipation does not scale in this manner 

and therefore, if it is included in the analysis, the harbour response remains well 

behaved in this limit. 

In most inviscid wave theories it is generally assumed that the fluid moves 

tangential to all solid boundaries, even if the boundary contains sharp corners. 
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In reality, viscous effects will force the flow to separate if there is an unfavorable 

pressure gradient, and the generation of turbulence by this separated flow can 

be responsible for a significant amount of energy dissipation. An example of this 

is the case where waves propagate through a narrow constriction at a harbour 

entrance. This is of particular interest to this research. For such a case the 

following dimensional quadratic head loss formula in the Eulerian description has 

been used with success; e.g., see Mei, Liu & lppen (1974): 

f Lou 
'r/- - 'r/+ = -ulul + --

2g g at (3.2.16) 

u (3.2.17) 

where rt- and rt+ are the free surface displacements on each side of the constric-

tion and u is the averaged horizontal velocity through the constriction. Dimen-

sional variables will be used in this section until stated otherwise. The velocity u is 

positive for flow moving from the rt- side to the rt+ side of the gap. The parame

ters f and L are empirical coefficients. For the geometry shown in Fig. 3.2.1, rt-

and 17 + would correspond to rtr and rtu , respectively, and u would correspond 

to the x-component of the horizontal velocity through the entrance BG. 

Mei, Liu & Ippen (1974) looked at the transmission of long waves through a 

narrow gap using Eqs. (3.2.16) & (3.2.17). They showed that for the transmission 

of long waves through a narrow gap, the inertia term in Eq. (3.2.16) can usually 

be neglected leaving: 

(3.2.18) 

The Lagrangian forms of Eqs. (3.2.17) and (3.2.18) will be used in the finite el-

ement model to be discussed in Section 3.4. Equation (3.2.18) has been used by 

several investigators to introduce dissipation into long wave models. Unliiata & 

Mei (1975) developed a purely analytical model using this equation to study the 
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response of a harbour with simple geometry. Their results showed that Eq. (3.2.18) 

was responsible for the generation of higher harmonics not necessarily present in 

the incident waves, although the amplitudes of these harmonics were in general 

quite small. They did not significantly alter the harbour response characteris

tics. Ito (1970) and Horikawa & Nishimura (1970) used an entrance loss defined 

by Eq. (3.2.18) in both finite difference numerical and simplified analytical wave 

models to model the dissipation produced by tsunami breakwaters. Murakami & 

Noguchi (1977) modified the theory of Ippen & Goda (1963) using an approximate 

technique to include the head loss formula of Eq. (3.2.18). 

Equation (3.2.17) may appear to be inconsistent with Eq. (3.2.18) because 

conservation of mass requires that u - (ho + 17-) = u + (ho + 17 +) . Hence, if the 

jump in 17, !:::.17 = 17- - 17+, is nonzero then the jump in u, b.u = u- - u+, must 

also be nonzero. However, it is clear from the head loss formula, Eq. (3.2.18), that 

b.17 is O(Ainc/ho) 2
• Conservation of mass then requires that b.u is O(Ainc/ho) 3

• 

Now since assumption (iii) b) requires that A inc/ ho is small, we can neglect 

terms of 0 (A inc/ ho) 3 in comparison with terms 0 (A inc/ ho) 2 
, so the matching 

condition b.u = 0 is actually consistent to the order of accuracy of interest to this 

investigation. 

Although Eq. (3.2.18) can be implemented in numerical models without an 

inordinate amount of work, its highly nonlinear nature makes it difficult to be used 

in purely analytical models. For analytical models a simplified "equivalent head 

loss" formula of the form 17- - 17 + = cu can be used. The dimensional constant 

c can be obtained by equating the energy loss over one period of a harmonic wave 

using this expression and Eq. (3.2.18). The rate, per unit width, at which energy 
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is dissipated across the gap is: 

{ P: ( h + T/ - ) 2 + ~ pu -
2 

( h + T/ - ) } u - - { P: ( h + T/ +) 2 + ~ pu + 
2 

( h + T/ +) } u + . 

(3.2.19) 

If this expression is integrated over one period of the wave's motion for both head 

loss formulae and the results equated to each other, the constant c is found to be 

4/ Umax/37rg, i.e., 

+ 4/ 
- T/ = --UmaxU 

37rg 
(3.2.20) 

where Umax is the maximum horizontal velocity through the gap. The maximum 

velocity, Umax , is not a function of time. This expression can be applied to periodic 

flow which is not sinusoidal, although its accuracy diminishes as more energy is 

placed in other harmonics. This formula has also been used with success. Using 

Eq. (3.2.20), Rogers & Mei (1978) concluded that for a short harbour or bay, 

entrance losses may be more important than intrinsic nonlinear effects throughout 

the fluid, but for long harbours the opposite is more likely. 

The evaluation of the entrance loss coefficient f is not easy. It will depend 

upon the geometry of the constriction in question. For the case of a fully open 

rectangular harbour with sharp corners at the entrance (no breakwater present), 

Lepelletier ( 1980) reports that 

f = { 0.8Umax/2bw 
0.8 

for Umax/2bw < 1 
for 1tmax/2bw 2 1 

(3.2.21) 

where 2b is the width of the harbour and w is a typical frequency associated 

with the motion. Equation (3.2.21) was obtained by comparing the results of a 

finite element model with corresponding experiments. This form for f, especially 

its maximum value of 0.8, is somewhat dependent on the particular numerical 

algorithm employed and the particular finite element mesh used for the simula-

tions. When empirical coefficients, such as f , are determined from the comparison 
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of experimental results with numerical results, this dependence should always be 

kept in mind. Indeed, it will be shown later in Section 5.1.3 that it is likely that 

Eq. (3.2.21) underestimates J somewhat. 

Now let us return to nondimensional variables introduced in the previous 

section: If we write Eq. (3.2.20) in nondimensional form we get: 

4/ 
171(t) -17II(y,t) = -UmaxU1(t) 

37f 
!YI :S 1 (3.2.22) 

Here all the variables are evaluated at the harbour entrance (i.e., x = l or x = 0) 

and Umax := mrX lJ?{ur lx=l} and l:R{} denote the real part of a complex quantity. 

Note that across the entrance to the harbour T/n , in general, depends on y but 

T/r does not, since we assumed that the fl.ow was one-dimensional in region I. Let 

us therefore propose an alternate matching condition where we replace 17n(Y, t) 

by its average value across the entrance: 

+1 
1 I 4f 171(t) - 2 17u(y,t) dy = 

3
7f UmaxUr(t) x = 1, Jyl ::; 1 (3.2.23) 

-1 

This is the form of the head loss matching condition which will be used to join 

the two solutions in regions I and II. 

The second matching condition, Eq. (3.2.17), is that the jump in the velocity, 

u , is zero. We need to write this matching condition in terms of 17 . Since u is 

continuous along BG, Ut must be continuous also. Now the x component of the 

momentum equation in region II is Ut = -TJx. Hence, if Ut is continuous, T/x 

must be also. Hence, the second matching condition can be written as: 

OTJ I Ort I ax I = ax II 
x = 1, IYI ::; 1 (3.2.24) 

Now in general, the first term in this equation, 'r/xr , does not depend on y but 

the second term, rtxu , does. However, when the two solutions are matched, we 

can force 'rlxu to be independent of y, so there will be no inconsistency. 
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3.2.4 Solution Inside the Harbour 

Let us write the solution of Eqs. (3.2.6)-(3.2.8) or of Eq. (3.2.15) m 

region I in the form: 

11(x,t) = AJl(K,x) eix:t (3.2.25a) 

u(x, t) = -iAU (K, x) eix:t (3.2.25b) 

The functions ){ ( K, x) and U ( K,, x) contain the spatial variations of 1J and u in 

region I, corresponding to the nondimensional frequency K,. The functions ){ and 

U are real but in general A_ is complex. The function ).( ( K, x) will be referred to 

as the "harbour function." U(K,x) is related to J.l(K,x) through Eq. (3.2.7): 

1 a J.1 
U(K,x) = --~(x:,x) 

/\, ux 

We will choose J.l(K,x) so that: 

J.l(K,0) = 1 

Then the amplification factor of the harbour will be: 

R= /A/ 
2jAincl 

(3.2.26) 

(3.2.27) 

(3.2.28) 

Also, with this form for u(x, t) we find that the temporal maximum of the velocity 

at the entrance ( x = 1) is: 

/A/ /3)1 I Umax = JAi IU (K, 1) J = ---,;- I ax (K, 1) (3.2.29) 

As mentioned earlier, to compute R' we must normalize JAi by the amplitude 

at x = 0 which would exist if the harbour were connected at its entrance ( x = 1) 

to an infinitely long channel of unit depth ( h = 1 ). Let us denote that amplitude 

by As; then R' = /AJ/JAs/. In the channel the wave motion will be harmonic 
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in space and time. Since from assumption (ii) c) all energy is reflected at the 

shoreline x = 0, the amplitude in the channel will be 2IAincl: 

11(x, t) = 2Ainc sin(Kx + ¢)eiid 

. t 
u(x, t) = i2Ainc cos(Kx + <f>)ei"' 

x > 1 

x > 1 

(3.2.30a) 

(3.2.30b) 

where ¢ is some phase angle. From Eqs. (3.2.25) and (3.2.26) the solution in the 

harbour will be: 

x < 1 (3.2.31a) 

( ) . 1 a J.t ( ) i1d ux,t =iAs--
0 

K,xe 
K X 

x < 1 . (3.2.31b) 

We want to determine JAs I , the wave amplitude at x = 0. To match this solution 

with Eq. (3.2.30) at the harbour entrance ( x = 1 ), we must force both the water 

surface elevation and the velocity to be continuous at x = 1 ; i.e., 

AsJ.l(K,1) =2Aincsin(K+</>) 

1 a J.t 
As--

0 
(K,1) =2Ainccos(K+¢). 

K, x 

(3.2.32a) 

(3.2.32b) 

The phase angle ¢ does not concern us here. If we solve for !As J we get: 

(3.2.33) 

Hence, the alternate amplification factor R' is: 

(3.2.34) 
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For a constant depth rectangular harbour we will have ).( ( K, x) = cos KX. Then, 

as mentioned earlier, R = R'. Let us define the factor multiplying R in (3.2.34) 

as 1/ S; i.e., 

(3.2.35) 

Then, as mentioned earlier, the modified amplification factor for the harbour, R', 

can be obtained from: 

R' = R 
s (3.2.36) 

where S is defined by Eq. (3.2.35). The quantity S is solely a function of rt,. 

The amplification factor R is a function of "" but may also depend on other 

parameters as well. 

The key step to determine the amplification factors R and R' will be to 

obtain the harbour function, J.( (rt,, x) . An equation for J.( ( ""' x) can be obtained if 

we substitute Eq. (3.2.25a) into Eq. (3.2.15): 

-- hb- + K ).( = 0 1 a ( BJ.() 2 

box ox 
(3.2.37) 

In order to apply the results to be derived later in this section, let us obtain 

explicit forms for J.( ( K, x) for special cases of the functions h( x) and b( x) . 

3.2.4.1 Rectangular Harbour, Linear Bottom 

h(x) = { ~/s (3.2.38) 

b(x) = 1 (3.2.39) 

Here we have a rectangular harbour where the still water depth is 

constant ( h(x) = 1) for x > s. For x < s the bottom slopes linearly and 
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intersects the still water level at x = 0. The length of the sloping region, s, is 

arbitrary and will appear as a parameter in the solution. 

In the region x < s, where the bottom slopes linearly, Eq. (3.2.37) is: 

x a 2 )I 1 a)I 2 --+--+K,)/=0 
s ox2 s Bx 

(3.2.40) 

With the change of variables e = 2"'VSX this equation reduces to Bessel's equation 

of order zero: 

(3.2.41) 

There are two linearly independent solutions to this equations, the Bessel functions 

of the first and second kinds of order zero, J 0 ( e) and Yo( e) . To satisfy assumption 

(ii) c), the Yo solution must be excluded since Yo(e) has a logarithmic singularity 

at e = O. Therefore, the solution which satisfies Eq. (3.2.27) is: 

)l(x:,x) = J0 (2x:ylSX) x<s (3.2.42a) 

x < s. (3.2.42b) 

For x > s, where the depth is uniform, ).( will be harmonic: 

).( ("', x) = a 1 cos KX + a2 sin KX s<x<l (3.2.43a) 

(3.2.43b) 

The parameters a1 and a2 must be determined by matching these two solutions 

together at x = s . The matching conditions are the same as those that will be 

used to match the solution in region I to the solution in region II, except that the 

head loss is assumed to be zero. In other words, we can determine a 1 and a2 by 

forcing Tf and ory /Bx to be continuous at x = s . The result is: 

(3.2.44a) 

a2 = J0 (2x:s)sinKs - Ji(2x:s) cosx:s (3.2.44b) 
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Hence, in the region s < x < 1 the expressions for J.l and o ).//ox are: 

)I (r;,, x) = Jo(2r;,s) cosr;,(x-s) - J 1 (2r;,s) sinx:(x-s) (3.2.45a) 

~~ (K, x) = -K: [Ji(2Ks) cos K(x-s) + J 0 (2Ks) sin K(x-s)) (3.2.45b) 

With this solution we can investigate the response of a constant depth rectangular 

harbour with a vertical endwall (s = 0), a rectangular harbour with a bottom 

which slopes linearly from the harbour mouth to the shoreline ( s = 1) , or a 

harbour anywhere between these two cases. 

3.2.4.2 Triangular Harbour, Linear Bottom 

h(x) = { ~/s x<s 
s:::; x:::; 1 

(3.2.46) 

b(x) = x (3.2.47) 

This is the same as the example just described except that the ver-

tical harbour side walls converge linearly to a vertex at x = 0; i.e., the points C 

and D in Fig. 3.2.1 coalesce to a single point. 

In the region x < s, Eq. (3.2.37) becomes: 

xo 2 J.l 2oJ.l 2 
---+--+K:)/=0 
s ox2 s ox 

(3.2.48) 

Although this is very similar to Eq. (3.2.40), the behaviour of )./ is very different. 

With the change of variables E = 2KySX and H = E )I this equation reduces to 

Bessel's equation of order one: 

(3.2.49) 
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Now as e --;. O, Y1 ( e) ,...., 1/ e. Hence, in order to satisfy assumption (ii) c) we 

must discard this part of the solution. Then the solution that satisfies Eq. (3.2.27) 

IS: 

Ji(2KySX) 
J.l(K,x)= KVSX x<s (3.2.50a) 

a){ (K, x) = _ Jz(2Ky'Sx) 
ax x 

x < s . (3.2.50b) 

In the region x > s Eq. (3.2.37) takes the form: 

a2 J.t 1 a J.t 2 -+--+K:J.l=O 
ax2 x ax 

(3.2.51) 

With the substitution ~ = K:X, this equation reduces to Bessel's equation of order 

zero. Hence, we get: 

s < x < 1 (3.2.52a) 

(3.2.52b) 

As for the previous case, we must determine a 1 and a 2 by forcing rJ and 8ry /ox 

(i.e.' )./ and a)./ I ax) to be continuous at x = s. This condition yields: 

7r 
a1 = 2 [J2(2Ks)Yo(Ks) - Ji(2K:s)Y1 (Ks)] (3.2.53a) 

a2 = ~ [Ji(2Ks)Ji(K:s) - J2(2Ks)Jo(Ks)] (3.2.53b) 

where we used the identity Jn+de) Yn(e) - Jn(~) Yn+de) = 2/(7r~). Hence, the 

solution for x > s is: 

7rK 
-Ji(x:,x) [J1(2x;s)Yi(x:,s) - J2(2Ks)Yo(x;s)] 
2 

(3.2.54a) 

1f K: 
+ TY1(Kx) [J2(2Ks)Jo(K:s) - Ji(2x:,s)Ji(K:s)] . (3.2.54b) 
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3.2.4.3 Rectangular Harbour, Parabolic Bottom 

h(x) = x(2 - x) (3.2.55) 

b( x) = 1 (3.2.56) 

In this case the still water depth decreases quadratically from the 

mouth of the harbour to the shoreline at x = 0. The slope of the bottom is 

continuous at the mouth of the harbour (i.e., equal to zero) and is equal to two at 

the shoreline. 

For this case Eq. (3.2.37) becomes: 

a2'tl a'tl 2 
x(2-x)-+2(1-x)-+K, 'ti =0 ax2 ax (3.2.57) 

With the change of variables e = 1 - x, this equation reduces to: 

(3.2.58) 

This is Legendre's equation of order v where "- 2 = v(v+ 1). There are two funda-

mental solutions to this equation: ){(K,,X) = Pv(l-x) and )((K,,X) == Qv(l- x), 

where Pv(e) and Qv(e) are Legendre Functions of the first and second kind, 

respectively, of degree v. (See Magnus, Oberhettinger & Soni (1966) for a de

scription of the properties of these functions.) We must exclude the function 

Q v ( e) ' since it has a logarithmic singularity at e = 1 ( x = 0): 

~-1 1 (1-e) Qv(e) -+ - 2 ln -
2

- -1 - t/J(v + 1) vi- -1,-2,-3, ... (3.2.59) 

where / = 0.57721 ... is Eulers constant and t/J(z) is the psi or digamma function 

defined as: 
d 

1/;(z) = dz Inf (z + 1) (3.2.60) 
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and f(z) is the gamma function. Hence, )I must be proportional to Pv(l - x). 

Since the function Pv(l - x) is unity at the shore ( x = 0 ), the constant of 

proportionality must be 1 in order to satisfy Eq. (3.2.27). Therefore, we must 

have: 

J.l(K,x) = Pv(l - x) (3.2.61) 

For later use we will need expressions for )I ( K, 1) and a )I ( K, 1) /ax. They are: 

r (v + 1) 
1 7'iV 2 

)I (x:, 1) = Pv(O) = r:;; cos - (v ) 
v7r 2 r -+1 

2 

(3.2.62a) 

a )I aPv 2 . 7rV f ( ~ + 1) 
-(K,1) = --(0) = --sm- ----
ax ax ~ 2 r ( v ; 1) (3.2.62b) 

3.2.4.4 Parabolic Harbour, Horizontal Bottom 

h(x) = 1 (3.2.63) 

b(x) = Vx (3.2.64) 

In this case the harbour side walls vary parabolically and there is no 

vertex at x = 0 as there was for the triangular harbour in Section 3.2.4.2. 

For this case Eq. (3.2.37) becomes: 

8 2 )1. 1 8)1. 2 
-+---+Kft=O 
Bx2 2x ax 

(3.2.65) 

With the change of variables e = KX and H = e- 1/ 4 )/' this equation reduces 

to: 

(3.2.66) 
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This is Bessel's equation of order ~ . Hence, two linearly indepen.dent solutions 

to Eq. (3.2.65) are: 

and (3.2.67) 

Although both of these solutions are finite at x = 0, the slope of the first one 

diverges as 1/ ylx as x-+ 0. To satisfy Eq. (3.2.27) and the vertical wall boundary 

condition a )I/ ax = o at x = o, we must have: 

).1(11:,x)= f(3/4) (11:x)1/4 J i (11:x) 
21/4 -4 (3.2.68a) 

(3.2.68b) 

3.2.4.5 Other Geometries 

Geometries other than those presented in Sections 3.2.4.1-3.2.4.4 can 

also be treated analytically. However, the geometries presented here are, in many 

cases, quite good approximations to many natural bays, inlets, and man-made 

harbours. However, if much more irregular geometries must be treated, then the 

harbour function, )./ ( 11:, x) , can be determined numerically. This can be done quite 

easily since it is not necessary to couple the motion within the harbour (region I in 

Fig. 3.2.1) to that in the open ocean region (region II in Fig. 3.2.1). The coupling 

will be treated later in Section 3.2.6, when the solutions in regions I and II are 

matched. 

3.2.5 Solution Outside the Harbour 

The solution outside the harbour must satisfiy the two-dimensional wave 

equation (3.2.11). The boundary conditions are obtained from assumption (ii) a) 
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in Section 3.2.1, matching condition (3.2.24), and expressions (3.2.9) and (3.2.25a): 

_!!_ (O t) = A--;--- r;,, 1 e a { a J.t ( ) i1d 

~- 'y, ux 
ux 0 

2A - i1d r/ -> inc COS KX e 

/yj ::; 1 

IYI > 1 

x2 + Y2 _, oo 

(3.2.69) 

(3.2.70) 

In addition, the radiated wave must satisfy the radiation condition that all energy 

must be outgoing as ±2+y2 -> oo. The wave represented by Eq. (3.2.70) is simply 

the incident-reflected wave which would exist if the harbour were not present. The 

radiated wave is the difference between the incident-reflected wave in Eq. (3.2. 70) 

and the actual amplitude r/. Now the two-dimensional harmonic point source 

solution of the wave equation (3.2.11) is (e.g., Whitham 1974): 

+oo 

_2_ J e-ii<:Vx2
+c

2 y2
cosh1 d~- eii<:t = i_HJ2\r;,yx2 + E2y2) eii<:t 

4rr 4 
(3.2.71) 

-oo 

where HJ 2\z) is the Hankel function of the second kind of order zero defined 

as J0 (z) - iY0 (z), where Jo(z) and Y0 (z) are Bessel functions of the first and 

second kind, respectively, of order zero. The Hankel function of the second kind 

was chosen to satisfy the radiation condition. To see that Eq. (3.2.71) does indeed 

correspond to outgoing waves at infinity we can replace the Hankel function by its 

asymptotic form for large argument (e.g., Abramowitz & Stegun 1972): 

lzl-> oo (3.2.72) 

Using this asymptotic form for the Hankel function, the point source solution of 

Eq. (3.2.71) far from the harbour entrance becomes: 

£/V4Ji- e-ii<:( vxz+c2y2-t) 
(x2+E2y2)1/4 

(3.2. 73) 
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This is an outgoing cylindrical wave. The Hankel function of the first kind satisfies 

the same asymptotic form but with £ replaced by -£. It therefore corresponds 

to an incoming wave. Our solution can be obtained by superposing point sources 

(i.e., integrating the point source solution) along x = 0 in order to satisfy the 

boundary condition (3.2.69). The result is: 

+1 

11(x,y,t) = 2Ainc cosx:x eiid +~EA~~ (x:, 1) j H~2)(x:Jxz + EZ(y - y')Z) dy' eiK,t. 

-1 

(3.2.74) 

3.2.6 Matching the Solutions 

The amplitude parameter A is still undetermined. To determine its 

value we must match the solution within the harbour with the solution outside 

the harbour, using the remaining matching condition (3.2.23). If we substitute 

Eqs. (3.2.25) and (3.2.74) into Eq. (3.2.23) with U (x:, x) given by Eq. (3.2.26) and 

Umax given by Eq. (3.2.29), we get: 

4£ f j a).( j a).( }-
1 

--/A/ -(K,l) -(K,1) 
3~r;, 2 Bx Bx 

(3.2. 75) 

This expression can be simplified. Incident wave systems of interest will have 

wavelengths of the same order of magnitude as the length of the harbour L; i.e., 

r;, = kL = 0(1) (3.2.76) 

According to assumption (iii) d), the width of the harbour is small compared to the 

wavelength of the incident wave; i.e., kb< 0(1). Combining this with Eq. (3.2.76) 

we get b/ L < 0(1); i.e., E « 1 (say E < 0.1 ). Then the argument of the Hankel 
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function in Eq. (3.2.75) will be small and we can approximate H6 2
) (KEjy - y'I) 

by the following expression which is valid for small values of E (Abramowitz & 

Stegun 1972): 

(2) 2i { KE } H0 (KE/y - y'/) = 1 - -:; In 2 1Y - y'j +I + 0(E2 ln E) (3.2.77) 

where I is Euler's constant. If we substitute this approximate expression for H62
) 

into Eq. (3.2.75) and perform the integration, the equation for A reduces to: 

(3.2.78) 

Hence: 

2E a){ 
R = ){(K,l) - --a (K,l)[lnEK +1-3/2] 

7r x 

-1 

(3.2. 79) 

Given an arbitrary harbour function ).{ ( 11:, x) , these expressions determine the 

complex amplitude of the wave system in the harbour, A (defined in Eq. 3.2.25a), 

and the amplification factor, R. The modified amplification factor, R', which 

removes from R the effects of shoaling and geometrical amplification within the 

harbour, can then be obtained by substituting Eq. (3.2.79) into Eq. (3.2.34). No-

tice that because of the nonlinear nature of the head loss matching condition, R 

is a function of the magnitude of the incident amplitude, IA inc j • 

Now we can substitute the results for the special cases of Sections 3.2.4.1-

3.2.4.4 into Eqs. (3.2.34), (3.2.35) and (3.2.79) to obtain the response curves for 

those harbours. Figures 3.2.2, 3.2.3 and 3.2.4 show the results for the case where 

the ratio of the width of the harbour entrance to the length of the harbour is 0.2; 
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I.e., 2b* ( L) / L = 0.2 or E = 0.1 ( E is defined in Eq. (3.2.10)). Entrance losses are 

neglected ( f = 0). Each figure shows the results for two different geometries. For 

each geometry the two amplification factors, R and R' , as well as the factor S 

are plotted as a function of kL. 

Figure 3.2.2a shows the results for a constant depth rectangular harbour. 

Notice that S = 1 as remarked earlier. This means that there is no amplification 

at the backwall of the harbour because of depth or sidewall variations within the 

harbour. As a consequence, both R and R' are identical. Figure 3.2.2b then 

shows the effects of a linearly sloping bottom. There are significant differences 

between Figs. 3.2.2a and 3.2.2b. The factor S now steadily increases with kL. 

This is simply because, for a constant slope, shorter wavelengths shoal more than 

longer wavelengths. Due to this shoaling the total response of the harbour, R, 

is much greater than for the constant depth case in Fig. 3.2.2a. However, the 

magnitudes of the alternate amplification factors, R' , are of comparable size. 

Both of the harbours in Fig. 3.2.3 have sidewalls that converge linearly to 

a vertex. Figure 3.2.3a treats the case of constant depth and Fig. 3.2.3b treats 

the case where the bottom slopes linearly from the harbour entrance to the shore. 

Notice that S is very large in Fig. 3.2.3b, where both the width and depth of the 

harbour decrease from its entrance to the shore. That is a result of both shoaling 

and geometrical amplification. As a result, the total response, R, is extremely 

large. In fact, the shoaling and geometrical amplification increases so fast with 

kL that the total response, R, also increases rapidly with kL, although R also 

shows much resonant structure. However, the alternate amplification factor, R', 

behaves much like all the R' factors for the other harbours. 

Figure 3.2.4 shows the results for a rectangular harbour with a parabolic bot

tom and for a parabolic harbour with a flat bottom. The effect of shoaling due 

to the decrease in water depth is stronger than the effect of geometrical amplifi-
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cation due to the decrease in harbour width, so the parameter S is greater for 

the harbour with the parabolic bottom. As a result, the total response, R , for 

the harbour with the parabolic bottom is greater than for the harbour with the 

parabolic sides. 

Tables 3.2.1 and 3.2.2 summarize the important quantities in Figs. 3.2.2, 3.2.3 

and 3.2.4 for the first two resonant modes. The first column shows the plan and 

side views of the harbour. The second column gives the corresponding harbour 

function ){ ( x:, x) . The third column lists the values of Kres , the values of x: 

( = kL) at resonance. These are the values of K that maximize R . The last three 

columns list the values of R , R' and S corresponding to Kres . Since dS / dx: ,2: 0 

for the special cases considered, the values of K that maximize R' will be slightly 

smaller than Kres or equal to it for the constant depth rectangular harbour where 

S ( K) = 1 . The har hours are listed in order of increasing values of Kres for the 

first resonant mode. 

All the harbours have the same length and the same width and depth at their 

entrances, but their response curves are very different. Not only do the magnitudes 

of the resonant peaks differ greatly but their locations do so as well. The values 

of Kres vary by almost a factor of two for both the first and second modes. Thus, 

the harbour length, entrance width and depth are not at all sufficient to yield 

an estimate of the resonant frequencies of a harbour. The details of the harbour 

planform and bathymetry must also be considered. Shoaling and geometrical 

amplification caused by decreasing water depth and harbour width both tend to 

increase the shoreline amplitudes although it is difficult to quantify this effect for 

the general case. Green's law is not valid for most of these harbours. It states that 

the amplitude for a wave system varies as b- 1/ 2h- 1/ 4 and this clearly is useless 

if b --t 0 or h --r 0 . 

The periods of free oscillation of the harbours shown in Tables 3.2.1 and 3.2.2 
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Table 3.2.1 

First resonant mode response for six harbours with different 
geometries. E = 0.1 f = 0. 

First Resonant Mode 

Har hour Geometry Harbour Function Kres Rres R'res 

~ Jo(2Ky'X) 1.089 16.43 9.40 

- ----- sz 

~ Pv(l - x) 

l/=-l+Jl+K-2 
1.229 10.96 8.36 

- sz 2 4 -----
~ COS KX 1.315 7.81 7.81 

I sz 

====; I 

f ( ~) ( 11:2x )4 J _ ± ( KX) 1.696 8.12 6.14 

I sz 

-===; Ji (2Kyix) 
1.757 21.85 5.91 

KVX 
I sz ------
-===; J0 (Kx) 2.050 8.50 5.14 

I sz 

Sres 

1.75 

1.31 

1.00 

1.32 

3.70 

1.65 
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Table 3.2.2 

Second resonant mode response for six harbours with differ
ent geometries. E = 0.1 f = 0. 

Second Resonant Mode 

Harbour Geometry Harbour Function Kres Rres R'res Sres 

~ Jo(2Kyfx) 2.565 11.45 4.18 2.74 

- 2 ----
~ Pv(l - x) 

I/= _.!. + v .!. + /\,2 

3.177 7.61 3.43 2.22 

-- 2 2 4 ----
~ COS KX 4.182 2.68 2.68 1.00 

I 2 

======; l 

f ( ~) ( ,,_; ) 4 J _ i ( KX) 4.559 4.32 2.49 1.73 

I 2 

-=====; Ji (2Kyfx) 
3.280 32.18 3.33 9.67 

Kyfx 
I 2 ------
-=====; Jo( KX) 4.926 6.19 2.33 2.65 

I 2 
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have been estimated by a number of investigators in the past (e.g., see Lamb 1945). 

However, this early work determined these periods by assuming a node existed at 

the harbour entrance. This is equivalent to treating an infinitesimally narrow har

bour where there is no radiation damping. Hence, such an analysis cannot yield 

an estimate of the amplification factor at resonance since the neglect of radiation 

damping results in unbounded motion within the harbour at resonance. By in

cluding the effect of finite entrance width, a realistic estimate of the amplification 

factor can be determined. The resonant frequencies are a weak function of the en

trance width and, in general, the values of Kres in Tables 3.2.1 and 3.2.2 are lower 

than the corresponding ones for zero entrance width. The first attempt to model 

the effects of the radiation of energy from the mouth of a harbour appears to be 

due to Miles & Munk (1961). However, they did not consider entrance losses. For 

narrow mouthed harbours this source of dissipation must usually be considered, 

especially near resonance. 

It can be seen from Tables 3.2.1 and 3.2.2 that decreasing water depth has 

an opposite effect on the values of Kres than decreasing the harbour width. The 

resonant frequencies for a harbour with a still water depth which decreases as one 

moves toward the shoreline are lower than for a similar harbour with a constant 

depth. This can be seen clearly by comparing Figs. 3.2.2a and 3.2.2b. This effect 

can be explained because, as the wave shoals, its speed decreases. Hence, it takes 

longer for a wave to propagate to the shoreline and reflect back to the harbour 

entrance. Such a delay could also be produced by keeping the still water depth 

constant and increasing the harbour length and this, of course, would lower the 

resonant frequencies of the harbour. On the other hand, it can be seen that the 

resonant frequencies for a harbour whose wz"dth decreases toward the shoreline are 

hz"gher than for a similar harbour with straight parallel sides. This can be seen 

clearly by comparing Figs. 3.2.2a and 3.2.3a. 
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Although the factor S is a monotonic function of kL in Figs. 3.2.2-3.2.4, it 

seems to show :more structure for certain harbour geometries than for others. This 

waviness in S is due to the reflection of wave energy at the harbour entrance due 

to an abrupt change in the slope of the bottom. Reflections can also occur if the 

sidewalls are not parallel at the harbour entrance because the factor S was defined 

by joining the harbour with a channel of constant width. The waviness is greatest 

in Fig. 3.2.3b where the bottom slope jumps from zero outside the harbour to a 

constant value inside the harbour and where the sidewalls are not parallel at the 

entrance. The waviness in S is the least noticeable in Figs. 3.2.2a, 3.2.4a, and 

3.2.4b. For these harbours the bottom slope is continuous (equal to zero) at the 

harbour entrance and, in addition, the sidewalls are parallel at the entrance. 

Harbour response curves for a nonzero entrance loss coefficient, f =f 0, can 

also be computed from Eq. (3.2.79). These will be shown later in Section 5.1.3 

of Chapter 5 when they will be compared with response curves obtained by nu

merically solving the long wave equations of Section 3.1.3 using the finite element 

model. 

3.2.7 Behaviour Near Resonance 

Now let us look in detail at the behaviour of the harbour response near 

resonance. It is clear from Eq. (3.2.79) for the amplification factor R that as the 

relative harbour entrance width goes to zero ( E -+ 0) and as the amplitude of 

the incident wave goes to zero ( IAinc I ---+ 0), resonance will occur for those values 

of K ( = kL) which satisfy ){ (K, 1) = 0. Let us denote these values of K by 

Ki i = 1, 2, ... ; i.e., 

i = 1,2, ... (3.2.80) 

As K approaches one of these values the harbour response tends to infinity unless 
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we include the effect of finite harbour entrance width ( E > 0) or entrance losses 

(IAincl > 0). However, for nonzero values of E and IA1ncl it is not obvious from 

Eq. (3.2.79) how R depends on the various parameters of the problem, especially 

at resonance. Clearly we can solve Eq. (3.2.79) numerically for R. This was 

done to obtain the values of Rres in Tables 3.2.1 and 3.2.2. However, since R 

depends on at least three parameters: K, E, and JA1ncl (assuming that f is 

constant), this is not the most desirable way to investigate the dependence of R 

on these parameters. Most of the important information can be extracted much 

more easily if we proceed analytically. In this discussion the focus will be on the 

behaviour of R when K corresponds to a resonant harbour mode; i.e., K = Kres. 

It will be shown that at resonance R depends very differently on E and JA1ncl, 

depending on the relative magnitude of these two parameters. This is because 

Eq. (3.2.79) represents a quartic polynomial for the determination of R, and the 

coefficients of the higher order powers of R in this equation are proportional to 

powers of the small parameters E and JA1nc J . Hence, the behaviour of R near 

resonance must be determined by singular perturbation techniques. Depending 

on the relative magnitude of E and A1nc , different terms in the equation are 

dominant; therefore, the dependence of R on these parameters near resonance 

will be different as well. 

If E and A111c are small but finite, resonance will occur for K near Ki , and 

the corresponding harbour response will be bounded. Let us look at the harbour 

response near resonance and define the deviation of "' from Ki as K
1 

: 

K
1 < 0(1) (3.2.81) 

Then we will have (using Eq. 3.2.80): 

( ) fa)/ ( ) 12 
)/ K, 1 = K a K, Ki, 1 + 0 ( K ) (3.2.82a) 
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(3.2.82b) 

If we substitute these expressions into Eq. (3.2.79) we get: 

(3.2.83) 

At resonance we will have BR/BK/= 0 (and B2 R/B"'' 2 < 0 ). Let us denote the 

values of quantities evaluated at resonance with the subscript "res," i.e., K~es and 

Rres. If we differentiate Eq. (3.2.83) with respect to K
1 and then solve for 

we get: 

(3.2.84) 

We still have not determined the amplification factor at resonance, Rres , but when 

we do we must check that it is consistent with Eq. (3.2.83): 

(3.2.85) 

If this condition is not satisfied, the terms neglected in Eq. (3.2.83) could be as 

important as the ones retained. Notice that K~es is independent of ) A inc) or f . 

To this approximation the entrance loss dissipation does not affect the frequency at 

which resonance occurs (although it does, of course, greatly affect the amplification 

factor at resonance). 

The ratio of the derivatives in Eq. (3.2.84) has a significance. We have defined 

Ki to be the solutions to )I (Ki, 1) = 0; i.e., Ki are the zero order approximations 
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to the values of kL at resonance for a harbour of length L (nondimensional 

length = 1 ). For a harbour of length xL (nondimensional length = x ), the zero 

order approximations to the values of K at resonance would be determined by 

).( ( "'i, x) = 0 . This would define "'i ( x) , the zero order approximations of kL at 

resonance for a harbour of length xL. With this definition of "'i(x), the ratio of 

derivatives in Eq. (3.2.84) is simply -dK,i(l) / dx, and so: 

(3.2.86) 

In general, Ki is a decreasing function of x (since the resonant frequencies will de-

crease as the harbour length increases). Hence, dKi(l)/dx is negative. Therefore, 

for small E: 

<es< 0 (3.2.87) 

Hence, K-res < K-i. This means that the resonant frequencies of a harbour decrease 

as its entrance width increases. The resonant frequencies approach the theoretical 

values, K-i , only if the relative entrance width goes to zero ( E --+ 0). 

Now let us look at the behaviour of R near resonance, in particular its depen-

dence on E and jAincl. If Eq. (3.2.84) is substituted into (3.2.83), the following 

approximate expression is obtained to determine Rres . 

(3.2.88) 

+H.O.T. 

where H.O.T. refers to higher order terms of smaller magnitude. The solution to 

this equation is: 

E 

Rres = IAinc I +H.O.T .. (3.2.89) 
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This expresion is valid for any relative magnitude of E and IA inc I (provided that 

they are both small). In particular this is the expression that must be used when 

both entrance losses and radiation are equally important. We can see that the 

condition for this is \Aincl = 0(E2 ). There are two important cases of interest 

where this expression can be simplified. 

Case I 

In this case the amplitude of the incident wave system is very small. Therefore, 

entrance losses do not contribute a significant amount to the total dissipation. 

Radiation of energy from the mouth of the harbour is the dominant source of 

dissipation and it is this mechanism that limits the harbour response at resonance. 

The amplification factor at resonance becomes: 

1 
Rres = ---,--1-----,-1 

E ~~ (~i, 1) 

+ H.O.T. (3.2.90a) 

= o(!) 
E 

(3.2.90b) 

Notice that Rres is inversely proportional to the width of the harbour. This 

behaviour has been called the harbour paradox (Miles & Munk 1961). If the effect 

of entrance losses is not included in the analysis of the harbour response of a narrow 

rectangular harbour, the wave amplitude will grow unbounded at resonance as its 

entrance is made narrower and narrower. It may appear from Eq. (3.2.90) that 

even with entrance losses the wave amplitude will grow unbounded as E --i- 0, but 

that is not so. As E --i- 0, it is true that Rres --i- oo, but Eq. (3.2.90) is valid only 

for IA inc I < 0( E2
) and so, even if Rres is large the actual wave amplitude in the 

harbour will be small: 

1 2 
[Ares[= 2Rres/Ainc[ < 0(-) O(E ) < O(E) 

E 
(3.2.91) 
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Case II 

In this case dissipation is dominated by entrance losses and we find the following 

behaviour for Rres : 

+H.O.T. (3.2.92a) 

(3.2.92b) 

Here the harbour response is limited by the amplitude of the incident wave system. 

Again there is no paradox. 

Notice that from Eqs. (3.2.89), (3.2.90b) and (3.2.92b), Rres does satisfy 

Eq. (3.2.85), so the analysis is consistent. 

So far we have considered the geometry and bathymetry of the harbour fixed, 

so E and )A inc) have been the only parameters of the problem that determine 

Rres . However, we can also investigate the dependence of Rres on the geometry 

and bathymetry of the harbour. Its effect enters the problem through the harbour 

function )I (K, x). Different harbour geometry and bathymetry will generate differ-

ent harbour functions. Now consider the incident wave and relative harbour width 

fixed so that E and IAincl are constant. From Eqs. (3.2.89), (3.2.90), and (3.2.92) 

we see that the behaviour of R at resonance depends on the parameters Ki and 

the slope of the harbour function )I at the harbour entrance, i.e., a )I (Ki' 1) I ax. 
For cases I and II the behaviour is: 

Case I: i = 1, 2, ... (3.2.93a) 

Case II: i=l,2, ... (3.2.93b) 

Now let us look at the behaviour of the modified amplification factor, R', 

at resonance. From Eq. (3.2.36), it is obtained by dividing R by the factor S, 



-111-

where S is defined by Eq. (3.2.35). The quantity S measures the amount by 

which the amplitude of a plane harmonic wave is amplified as it travels from the 

harbour entrance to the shore, due to shoaling and geometrical amplification. By 

dividing out the amplification due to these processes, the modified amplification 

factor, R', is a better measure of the amplification directly attributable to the 

resonance process. If Eq. (3.2.82) is substituted into Eq. (3.2.35) we get: 

(3.2.94) 

If this expression and Eq. (3.2.89) are substituted into Eq. (3.2.34), one obtains: 

1 E 37rK:l { 
R res = IAinc I 16J 

For Case I and Case II this expression can be reduced to: 

Case I 

Case II 

I 1 
R res = - + H.O.T. 

/\:it 

f 1 f!J7r R res= I . 1112 -
1 

+ H.O.T. 
Arne 8 

(3.2.95) 

(3.2.96) 

(3.2.97) 

For f constant, R' res is solely a function of the relative harbour entrance width, 

E, the incident wave amplitude /A inc/ , and the zero order approximation to the 

nondimensional frequency of resonant mode i, Ki. The particular harbour ge-

ometry and bathymetry enter only through its influence on the nondimensional 

resonant wave frequency, Ki, where Ki is determined from Eq. (3.2.80). Notice 

that, in Case II, R' res is independent of the particular resonant mode (i.e., R'res 

does not depend on i). In fact, it is even independent of the particular harbour 

geometry and bathymetry. Hence, we expect fairly uniform response at each of 

the resonant modes. However, in Case I, R'res ,......, 1/ r;,i; hence, the resonant re-

sponse will decrease for the higher modes as r;,i increases. This behaviour can be 

seen in the results presented in Tables 3.2.1 and 3.2.2. For the general case, the 
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harbour response will behave in a manner intermediate between these two cases. 

In addition, the higher order terms neglected in this analysis will modify these 

results a little. 

This analysis shows that for a fixed relative harbour entrance width, E, and 

incident wave amplitude, [A inc I , the harbour response R' res at the first reso

nant mode will be maximized (minimized) by the harbour whose geometry and 

bathymetry minimizes (maximizes) the lowest nondimensional resonant frequency, 

Ki . However, as just mentioned, the harbour geometry and bathymetry will have 

little influence if the entrance dissipation is large (as shown by Eq. (3.2.97)). 

For applications, this analysis is valid only for the lower resonant modes, i.e., 

for modes where i or Ki is small. In order to use a one-dimensional theory within 

the harbour, it was necessary to make the assumption that the ratio of the width 

of the harbour to a characteristic wavelength scale was small; i.e., 

kb*(L) « 1 (3.2.98) 

Since K = kL and E = b* ( L) / L, this can be rewritten as: 

K,E « 1 (3.2.99) 

If the geometry of the harbour is fixed, i.e., E = const, then this assumption must 

be violated for the higher modes where K, _____, oo . It was also assumed that the 

effects of frequency dispersion were negligible. Therefore, the condition: 

kho « 1 

must also be satisfied for this analysis to be valid. Since K 

rewritten as: 

(3.2.100) 

kL, this can be 

(3.2.101) 
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If the ratio of the water depth to the harbour length is held constant, then this 

ratio can be made arbitrarily large by letting /'\, ---+ oo . Therefore, dispersive effects 

cannot be ignored for the higher resonant modes, and a dispersive theory must 

be used to treat those cases. Of course, if the ratio ho/ L in Eq.(3.2.101) were 

reduced at the same rate as "' increased then Eq. (3.2.100) would remain valid 

but this is not possible, except in laboratory experiments. Since both Eq. (3.2.99) 

and (3.2.101) must be satisfied, the upper limit of applicability of this theory will 

depend on how small E and h0 / L are. However, the fact that this analysis is not 

valid as i __,. oo is not a problem because in general we will be interested only in 

the lowest resonant modes since they are responsible for the largest amplification 

factors. 

3.2.8 General Case 

The more general case where the incident wave is not purely sinusoidal 

can be treated by the method of Fourier superposition; i.e., Eqs. (3.2.25a) and 

(3.2.25b) can be generalized to: 

00 

17(x, t) = L AnJln(K,, x) einK.ot (3.2.102a) 
n=l 

00 

u(x,t) = -i L AnUn(K,,X) einK.ot (3.2.102b) 
n=l 

If entrance losses are neglected, the amplitude of the nth Fourier component 

within the harbour, An , can be expressed in terms of the nth Fourier component 

of the incident wave using Eq. (3.2.78) with f = 0. However, if entrance losses are 

included ( f =j: 0), the situtation is more complicated because the nonlinear nature 

of the headloss matching condition prevents a simple uncoupling of the Fourier 

components. The coupling arises because the expression for the maximum velocity 
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through the harbour entrance, Umax , which appears in the matching condition 

of Eq. (3.2.23), depends on all of the Fourier components; i.e., Eq. (3.2.29) for 

Umax must be replaced by a more general expression involving all of the Fourier 

components: 

(3.2.103) 

This coupling can be treated effectively using a simple numerical algorithm 

which computes the Fourier coefficients, {An}, using an iterative scheme. This 

scheme will be used in Chapter 5 in order to compare this theory with the labora-

tory experiments and the results of the finite element model. The only term that 

complicates the analysis is Eq. (3.2.103) for Umax. Therefore, the scheme involves 

approximating Eq. (3.2.103) at each iteration by simpler expressions. 

The scheme proceeds as follows. If we Assume that the majority of the energy 

is contained in the first harmonic, as will be the case for the experiments with which 

this theory will be compared to, then Umax in Eq. (3.2.103) can be approximated 

by the first term in the sum; i.e., 

(3.2.104) 

This is exactly the same as Eq. (3.2.29). Therefore, a first estimate for the {An} 

can be obtained using precisely the theory just presented for the harmonic case. 

After these values for the {An} have been computed, a better estimation for 

Umax can then be obtained by substituting these {An} into Eq. (3.2.103). By 

using that estimate of Umax, improved values for the {An} can then be generated. 

This process can be repeated until the {An} converge to the degree of accuracy 

required. 

While this numerical algorithm will not necessarily converge if the energy is 

spread over a large band of frequencies, it was found to be very efficient when the 
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first harmonic was dominant. For the comparison with the harbour response lab

oratory experiments in Chapter 5, convergence was obtained very quickly, usually 

within 2 iterations. This algorithm can be simplified by neglecting entrance losses 

for the first iteration. That is equivalent to making the approximation Umax = 0 

at the first step, instead of using Eq. (3.2.104). However, it was found that con

vergence problems could arise if this simplification was made, so Eq. (3.2.104) was 

used for the first step of the algorithm. 

3.3 Nonlinear Runup Effects for a Linearly Sloping Bottom 

In this section various nonlinear effects relevant to the runup of nonbreaking 

waves on a beach will be covered. These results will be useful for validating the 

finite element model (which will be discussed later in Section 5.1.1 of Chapter 5) 

based on the long wave equations (3.1.117) and (3.1.118). 

Due to the nonlinear nature of the equations that govern the runup of non

breaking waves on a beach, it is difficult to extract information about this process 

with only analytical techniques. However, if one specializes the geometry to the 

case of a linearly sloping beach and neglects dispersive and dissipative effects, it 

is possible to obtain some interesting results. These results can provide an in

dication of the effects of the nonlinear terms in the equations of motion on the 

runup of nonbreaking waves on beaches for other cases where such an analysis is 

not possible. 

Therefore, let us specialize to the case where the still water depth vanes 

linearly with the dimensional horizontal coordinate, x* , as shown in Fig. 3.3.1. 

Since all of the work in this section will be in the Eulerian description it will not be 

necessary to subscript variables with the letter E to emphasize that the variable 
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z* 

h· 

' ' \, \ 

'\ \ \ \ ''\' 
\ \ \ \ \ 

\ \ \ \ 
\ 

Fig. 3.3.1 Definition Sketch for the Runup of Waves on a Linearly 
Sloping Beach. 

is a function of Eulerian variables. For a small beach angle, </> , we have: 

h* = </>x* (3.3.1) 

The problem is strictly two-dimensional. There are no variations in the y* di-

rection. Since frequency dispersion will be neglected, this analysis cannot be 

physically valid as x* -+ oo , since as the water gets deeper and deeper, dispersive 

effects become more important. Far offshore the wave must eventually transform 

into a deep water wave where the horizontal fluid particle velocities decay rapidly 

with depth. Frequency dispersion cannot be neglected in this region. Therefore, 

this analysis will be valid only in the near shore region where dispersive effects 
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are small; i.e., the wavelengths are large relative to the depth. The shallow water 

continuity and momentum equations are well known and may be found in many 

books on water wave theory (e.g., Stoker 1957). In dimensional form they are: 

B * B 
B

17 + -B [(11* + h*)u*] = o 
t* x* 

(3.3.2a) 

Bu* *Bu* B17* 
Bt* + u Bx* + g Bx* = o (3.3.2b) 

where g is the acceleration of gravity. Let l be a characteristic horizontal length 

scale of the wave motion. It will depend on the particular problem being studied. 

Based on shallow water linear wave theory, a characteristic wave celerity can be 

defined: 

c = Vifi; . 

Then we can define a time scale, T = l/C, and velocity scale, u0 

follows: 

T=Jr 
Uo =Viii 

Let us choose the following nondimensionalization: 

x* 
x=-

f, 

h* 
h= - =x 

¢£ 

and make the definition: 

t* 
t = -

T 

tl 
u=

uo 

h* + 17* 
c2 = = h + 1J = x + 17 

¢£ 

h* 
h= - =x 

¢>£ 

(3.3.3) 

l/T, as 

(3.3.4) 

(3.3.5) 

(3.3.6) 

(3.3.7) 

Here c can be interpreted loosely as a local wave celerity. It will not be confused 

with the independent Lagrangian vertical coordinate a3 = c since all work in this 
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section will be in the Eulerian description. With these definitions the equations 

of motion become: 

'lt + [('7 + x)u)x = 0 (3.3.8a) 

Ut + UUx + T/x = 0 (3.3.8b) 

For the rest of this section all variables will be nondimensional unless stated oth-

erw1se. 

If the still water depth is constant, the shallow water equations can be solved 

by the method of characteristics. In that analysis it is convenient to introduce the 

wave speed as a dependent variable. That is also convenient in this case. In terms 

of u and c Eqs. (3.3.8) become: 

(3.3.9a) 

Ut + UUx + 2ccx - 1 = 0 (3.3.9b) 

Through an elegant series of transformations, Carrier & Greenspan (1958) were 

able to transform this problem, with two coupled nonlinear equations, into a new 

problem with only one !£near equation. A brief derivation based on Whitham 

(1979) will be presented. This development is included as a convenience for the 

reader to aid the interpretation of the subsequent analysis. 

If Eqs. (3.3.9) are added and subtracted we get: 

d 
dt ( u ± 2 c - t) = 0 along 

dx 
- =u±c 
dt 

Let us define the characteristic variables o: and /3 by: 

o: = u + 2c - t 

/3 = -u + 2c + t 

(3.3.10) 

(3.3.lla) 

(3.3.llb) 
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Hence, Eq. (3.3.10) becomes: 

a= const along 

/3 = const along 

dx 
- =u+c 
dt 
dx 
- = u-c 
dt 

(3.3.12a) 

(3.3.12b) 

Now let us cont>ider x and t to be functions of a and /3. Then for a = const or 

(3 = const we get: 

ox 
dx 8/3 
---
dt at 

8/3 

ox 
dx aa 
dt at 

oa 

if a= const (3.3.13a) 

if f3 = const (3.3.13b) 

Combining these relations with Eqs. (3.3.11) and (3.3.12) we obtain the two rela-

tions: 

(3.3.14a) 

(3.3.14b) 

The last terms in these two equations, (t 2 /2)°' and (t 2 /2)(3, arise from the linear 

variation of the still water depth with x. If the still water depth were constant, 

these two terms would be zero and the equations would be linear. However, for 

the special case considered here, where the still water depth varies linearly with x, 

the nonlinear terms can be eliminated by simply differentiating the first equation 

with respect to a, the second equation with respect to (3, and then subtracting 

one from the other to get: 

(3.3.15) 
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This is a linear partial differential equation for t( ex, /3) . It is convenient to intro-

duce new variables a and .A by: 

.A = f3 - ex = 2(t - u) (3.3.16a) 

a = ex + f3 = 4c (3.3.16b) 

Then Eq. (3.3.15) beomes: 

(3.3.17) 

Now since from Eq. (3.3.16a), t = .A/2 + u, u must also satsify Eq. (3.3.17): 

(3.3.18) 

Finally, if we introduce a "potential" <p(a, .A) so that 

(3.3.19) 

then Eq. (3.3.18) reduces to the two-dimensional radially symmetric wave equation 

in polar coordinates where .A plays the role of time and a plays the role of the 

radial coordinate: 

(3.3.20) 

The problem has now been reduced to solving Eq. (3.3.20), which is a single 

linear partial differential equation. The boundary condition at the shoreline also 

becomes very simple. In the original nonlinear equations, where x and t were the 

independent variables, the shoreline moved and its motion had to be determined 

as part of the problem. However, in this case the shoreline is fixed in terms of the 

coordinate a. At the shoreline the total water depth must be identically zero (for 

all time). This means that at the shoreline c = 0, or from Eq. (3.3.16b): 

O' = 0 (at the shoreline) (3.3.21) 
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This simplifies the problem even further. It may be noted here that the shore-

line also becomes a fixed boundary when the equations of motion are written in 

the Lagrangian description. However, in that description the equations are still 

nonlinear. The transformation outlined here also linearizes the equations of mo-

tion (for the special case of a linearly sloping bottom). It is not equivalent to 

transforming to the Lagrangian description. 

In terms of the variables a and ,\ and the potential IP(a, .\) , the expressions 

for t , x , 17 , u , and c are: 

,\ ,\ IPa-
t = - + u = - + -

2 2 (J' 

1 2 2 1 1 ( IPa-) 2 1 a
2 

x = z-u + c + 41P>. = 2 -;;- + 41P>. + 16 

11 = c
2 

- x = :; - x = - ~IP>. - ~u 2 = - ~IP>. - ~ ( ~) 
2 

IPa
u = -

(J' 

O' 
c = -

4 

(3.3.22) 

(3.3.23) 

(3.3.24) 

(3.3.25) 

(3.3.26) 

Although Eq. (3.3.20) is certainly much simpler to solve than the two original 

coupled nonlinear equations (3.3.8a) and (3.3.8b), it is difficult to obtain 17 or u 

as explicit functions of x and t. If IP(a, ,\) is given, then Eqs. (3.3.22)-(3.3.25) 

will give t , x , 17 , and u all parametrically in terms of the variables (J' and >. . In 

general, it will be very difficult to eliminate (J' and ,\ to obtain direct functional 

relationships for 11 and u in terms of x and t. In fact, this may be impossible 

if the Jacobian of the transformation between the (x, t) variables and the (a,,\) 

variables vanishes. In such cases the solution becomes multivalued, and there will 

be no unique functional relationship for 17 and u in terms of x and t . Such a 

situation indicates that a bore should be fitted to the solution. However, even 

with this drawback, important information can still be obtained. 
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An important result concerns the effect of the nonlinear terms in the original 

equations of motion on the maximum and minimum runup heights predicted at the 

shoreline. To compare the linear and nonlinear theories, the same transformations 

outlined above can also be applied to the l£near£zed shallow water equations. The 

same second order partial differential equation identical to Eq. (3.3.20) is obtained, 

but the expressions for t, x, r/, u, and c in terms of a, A and (f)(a, -\) are 

simpler. For completeness, the governing differential equation is repeated here 

with the five new expressions for t , x , 17 , u , and c : 

(3.3.27) 

where 

-\ 
(3.3.28) t = -

2 
0'2 

(3.3.29) x=-
16 

1 
(3.3.30) ry=--ip).. 

4 
(f)cr 

(3.3.31) u=-
O' 

O' 
(3.3.32) c = -

4 

In this case it is easy to eliminate a and A from the problem, but for the purposes 

of comparing the linear theory with the nonlinear theory it is convenient not to 

do that. 

Now suppose that we are given a solution (f)(a, -\) to Equation (3.3.20) or 

(3.3.27). Provided the solution decays as x --+ oo, the nonlinear effects will 

also decay as x --+ oo and both the linear and the nonlinear solutions will agree 

with each other. The more important region is at and near the shoreline. The 

shoreline corresponds to a = 0. At the points of maximum and minimum runup, 
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the velocity at the shoreline must be zero. Hence, from Eq. (3.3.25) or (3.3.31), 

maximum and minumum runup must occur when: 

<pO' I - o 
(} 0'-+0 

(3.3.33) 

If this equation has solutions, it will determine a set of one or more values for ,\ : 

,\ 1 , ,\ 2 , .... The ,\i will be identical for both the linear and nonlinear theories 

because <p(a, ,\) is the same for both theories. Each ,\i will correspond to a 

relative maximum or minimum runup height (recall that ,\ is time-like). From 

Eq. (3.3.33) the nonlinear term in Eq. (3.3.24), 1/2(<p0'/a) 2 , is exactly zero for 

a = 0, >.. = ,\i. Therefore, the corresponding runup heights, T/i , are the same 

according to both the nonlinear theory of Eq. (3.3.24) and the linear theory of 

Eq. (3.3.30): 

(3.3.34) 

Hence, both the linear and nonlinear theories predict the same maximum and 

minimum runup. The times at which the runup extrema occur are also the same 

according to both theories: 

(3.3.35) 

However, in general, the wave profiles at these times and the trajectory of the 

shoreline in (x, t) space will not be the same. 

Now let us look at a particular case. A simple solution of Eq. (3.3.20) or 

(3.3.27) pointed out by Carrier & Greenspan (1958) is: 

8Ao a . ,\ 
<p(a, ,\) = --Jo(e-) sm e-e 2 2 

(3.3.36) 

where Ao is an arbitrary amplitude parameter and e is a separation constant. 

Without loss of generality let us set e = 1 and assume that Ao > 0. This potential 

corresponds to a standing wave solution resulting from the perfect reflection from 
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the shore of a wave of unit frequency ( e = 1 ). From Eqs. (3.3.28)-(3.3.30) this 

potential, i.e., Eq. (3.3.36), corresponds to the linear solution: 

TJ = AoJo(2JX) cost (3.3.37) 

With the choice of length scale f = <f>g / w2 , this solution can be expressed in 

dimensional units as: 

"' *J( fig~) * TJ · = A 0 o 2w - cos wt 
<f>g 

(3.3.38) 

where 

(3.3.39) 

Both the linear and nonlinear theories predict maximum and mm1mum runup 

heights of ±Ao. The Jacobian of the transformation between the (a,..\) coordi

nates and the ( x, t) coordinates is nonzero for small Ao and first becomes zero 

for Ao = 1 (e.g., see Whitham 1979). Consequently, the nonlinear solution cor-

responding to Eq. (3.3.36) is valid only for Ao :::; 1. For Ao = 1, the tangent 

to the water surface displacement, TJ, is vertical at the maximum rundown point. 

Therefore, in all that follows we will assume that Ao :::; 1 . 

From Eq. (3.3.37), linear theory predicts that nodes will occur for: 

1 ·2 
Xs = 4Js i.e., s = 1,2, ... (3.3.40) 

where fs is the s th zero of J0 ( z) . It is interesting to examine the behaviour of 

the nonlinear solution at these values of x = X 8 s = 1, 2, .... It will be shown 

that according to the nonlinear theory these locations are not nodes in the strict 

sense of the word, but the behaviour of the solution at these points does display 

some of the characteristics seen at true node points. Therefore, we will refer to 

these points as "node" points, using quotation marks. In fact, we will show that 

the water surface height at these "node" points is always either negative or at 
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most zero and is equal to zero exactly twice every period of the incident wave. In 

particular, let us examine the behaviour of the solution at these points precisely 

at the time of maximum or minimum runup at the shoreline, i.e., at t = ti = >..i/2 

as given by Eq. (3.3.35). If we substitute Eq. (3.3.36) into Eq. (3.3.22) we get: 

i = 0, ±1, ±2, ... (3.3.41) 

At these times the water surface profile is: 

(3.3.42a) 

(3.3.42b) 

u:=O (3.3.42c) 

Note that u = 0 (everywhere) at the times of maximum and minimum runup. 

Linear theory also predicts this behaviour. The even values of i correspond to 

maximum runup and the odd values of i correspond to minimum runup (maximum 

rundown). At the points x = {1 /4, Eq. (3.3.42b) is satisfied for a = 2;'8 , s = 

1, 2, ... exactly as in the linear case. Hence, at a "node" point: 

1] = 0 x=/}/4, t=i7r (3.3.43) 

This is also the same as linear theory. Now let us examine a17 I at and a 2rt I at2 at 

the "node" points at the times of maximum and minimum runup. Linear theory, 

of course, predicts art/ at = a2 ry I at 2 = 0 (in fact, it predicts that all the time 

derivatives of rt are zero since it predicts rt is identically zero). At the "node" 

points x = J; / 4, the variables a and >.. are solely functions of the time t . If 

Eq. (3.3.24) for rt is differentiated with respect to t holding x constant the result 

is: 

~~ I x=const 

ada 

8 dt 
(3.3.44a) 
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a2r/1 ad2a 1 (da)
2 

i)t2 x=const = S dt2 + S dt (3.3.44b) 

In order to get an expression for da / dt at a "node" point at the time of maximum 

or minimum runup, expression (3.3.36) for <p(a, .\) (with e = 1) can be substi

tuted into Eq. (3.3.23) for x. This expression is then differentiated with respect 

to t holding x constant. At the time of maximum or minimum runup at a "node" 

point we then get: 

Now for Ao < 1: 

Hence, Eq. (3.3.45) reduces to: 

da 
-=0 
dt 

(3.3.45) 

Ao < 1 for all s (3.3.46) 

·2; at x = Js 4, t = i'lf (3.3.47) 

Substituting this into Eq. (3.3.44a) yields the result that Orf/ at = O at a "node" 

point at the times of maximum or minimum runup: 

ar/ I 
Bt x=j;/4 = 0 

at t = i'lf (3.3.48) 

This again is the same as linear theory. However, when we look at 8 2r// 8t 2 we get 

a very interesting result which differs from linear theory. From Eq. (3.3.44b) we see 

that we must obtain an expression for d2a / dt 2 • If we substitute Eq. (3.3.36) into 

Eq. (3.3.23) and differentiate twice with respect to t holding x fixed and make 

use of (3.3.47), then at the time of maximum or minimum runup at a "node" point 

we find: 

[
2Ao J 1 ~J·s) d.\] 2 

Js dt 
(3.3.49) 
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To evaluate this expression we need an expression for d>../ dt. That can be obtained 

by substituting Eq. (3.3.36) into Eq. (3.3.22) and differentiating with respect to 

t , holding x fixed. The result is: 

d>.. 
dt 

(3.3.50) 

The important thing is that d>../ dt -::/= 0. If this expression for d>../ dt and Eqs. 

(3.3.49) and (3.3.47) is substituted into Eq. (3.3.44b) then at the time of maximum 

and minimum runup we find that at the "node" points the second time derivative 

of the water surface displacement is given by the following expression: 

at x = /; / 4, t = i'lf . (3.3.51) 

Equation {3.3.46) shows that the denominator is positive in this expression. For 

s odd, the curvature is greater at the time of minimum runup ( i odd), but if s 

is even, the curvature is greater at the time of maximum runup ( i even). This 

is a very interesting result because when it is combined with the previous results 

of Eqs. (3.3.43) and (3.3.48), it shows that rt must have at least two maxima for 

every period of the wave's motion. With the addition of some numerical work one 

can show that fJ has exactly two maxima for every period. 

To evaluate rt(x, t) for arbitrary x and t, Eqs. (3.3.22)-(3.3.24) must be 

solved using a numerical technique, since the parameters a and >. can not be elimi-

nated by analytical methods. With the <p(a, >..) given by Eq. (3.3.36), Eqs. (3.3.22) 

to (3.3.24) represent three nonlinear parametric equations for t, x, and rt in terms 

of a and >... Using Newton's method, rt(x, t) can easily be obtained. At and near 

the first "node" point x =if/ 4, the time history of rt is plotted in Fig. 3.3.2 for 

two periods of the incident wave. Notice how there are two relative maxima every 

period of 27r . Far offshore ( x -+ oo) the motion is sinusoidal with period 27r . 

The other important observation is that at the "node" point the water surface 
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Ao= 1.0 

6 
t 

-----· x = 1.5 

x=jf/4 
= 1.446 .. 

. x = 1.4 

14 1 6 

Fig. 3.3.2 Time record of the water surface elevation at and near 
the first "node." Ao= 1 ( T/ = ry*w 2 /¢> 2g t =wt*). 

elevation is always either zero or negative. Hence, the mean value of T/ must be 

negative. This is characteristic of wave setdown, although setdown normally refers 

only to progressi"ve waves which propagate in water of decreasing depth (Dean & 

Dalrymple 1984). For breaking waves there is also a region of wa.ve setup within 

the breaker zone, but it is not predicted by this solution because the theory being 

presented here does not model wave breaking. In the linear case the time aver-

age of T/ is zero everywhere. Figures 3.3.3 and 3.3.4 contrast the wave profiles 

predicted by linear theory (Ao -r 0) and nonlinear theory. All the results were ob

tained by numerically solving Eqs. (3.3.22)-(3.3.24) for the case where r.p is given 

by Eq. (3.3.36). In the nonlinear case, the amplitude Ao was chosen to be unity 

to emphasize the nonlinear effects. By following the free surface at the "node" 

in Fig. 3.3.4, one can see how the wave system manages to exhibit two peaks per 
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period in this region but only one elsewhere. The mean value of rJ is negative 

everywhere and increases in magnitude monotonically for decreasing values of x. 

For Ao = 1 the mean value of the water surface profile at the maximum rundown 

point ( x = +1) is ,..., -0.118. 

This double peak phenomenon was observed by Kato & Hattori (1980) from 

laboratory pressure measurements made under nonbreaking waves on a sloping 

beach. The pressure measurements showed two maxima for every period of the 

incident wave. They showed that this effect was predicted by the runup theory of 

Shuto (1967). When they used Shuto's theory to compute the free surface, they 

found that it also displayed the same two-peak behaviour in this region. However, 

they did not discuss the drop in the mean water level near the shore, even though 

this effect was evident from the theoretical results they presented. 

As the parameter Ao is increased the wave becomes more and more distorted 

near the shore and when Ao reaches unity the wave profile exhibits a vertical 

tangent at the shoreline at the time of maximum rundown, as shown in Fig. 3.3.4 

at t = 7r. For Ao near unity the vertical accelerations at the rundown point are 

large enough so that the assumption of a hydrostatic pressure distribution, which 

is implicit in the shallow water theory of Eq. (3.3.8) being applied here, is no longer 

valid. This can be shown quantitatively, since explicit formulae for the variables 

'Y/ and u and their time derivatives at the point of maximum rundown can be 

obtained. If Eq. (3.3.36) (with fl = 1) is substituted into Eqs. (3.3.22)-(3.3.25) 

and the expressions are evaluated at the shoreline, i.e., <7 = 0, we get: 

>. A . >. t = - + 0 sm-
2 2 

(3.3.52) 

>. A6 . 2 >. 
x = -Ao cos - + - sm -

2 2 2 
(3.3.53) 

>. A6 · 2 >. 
rJ = -x = A0 cos- - -sm -

2 2 2 
(3.3.54) 
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Fig. 3.3.3 Linear theory (Ao --+ 0); (a) wave profiles at succes

sive time intervals, (b) wave envelope and mean value. 
( 1J = 11*w2 /<Pzg x = x*w2 /<Pg) 
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Fig. 3.3.4 Nonlinear theory (Ao= 1); (a) wave profiles at succes

sive time intervals, (b) wave envelope and mean value. 
( 77 = 17*w2 /</J2 g x = x*w 2 /</Jg). 
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. >.. 
u = A0 sm-

2 

The horizontal acceleration of the fluid at the shoreline is then 

du Ao >.. d>.. 
- =-cos--
dt 2 2 dt 

Ao cos >../2 
-

l+Aocos>../2 

(3.3.55) 

(3.3.56) 

The maximum rundown point corresponds to >../2 = (2i' - l)7r i' = 1, 2, .... At 

this point the horizontal fluid acceleration is: 

du 
dt 

Ao 
l-Ao 

(3.3.57) 

Hence, as Ao _,. 1 du/ dt _,. -oo. If the horizontal acceleration becomes 

infinite, then so also must the vertical acceleration, since the beach has a finite 

slope. However, this is physically impossible. To treat the fl.ow more accurately 

near the rundown point for Ao near unity, a nonlinear shallow water theory that is 

not based on the assumption of a hydrostatic pressure distribution must be used. 

Figure 3.3.5 shows two periods of the motion of the shoreline as given by 

Eqs. (3.3.52), (3.3.54) and (3.3.55) for six different values of Ao, ranging from 

zero up to one. Each value of Ao is plotted at the same height as the amplitude 

of the corresponding runup record. Fig. 3.3.5a shows the runup of the wave as 

a function of time. The runup oscillates between -A0 and +Ao . For small 

amplitudes the motion is approximately sinusoidal, as predicted by linear theory, 

but as Ao _,. 1 the motion becomes very distorted. The shoreline remains above 

the still water line much longer than it does below it. Near the point of maximum 

runup the shoreline moves very slowly. It gradually starts to run down and slowly 

increases its speed. Its speed continues to increase almost all the way up to the 

point of maximum rundown. Near the rundown point it quickly decelerates and 
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Shoreline motion; (a) shoreline elevation TJ computed 
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u computed from Eqs. (3.3.52) and (3.3.55) ( t =wt* 
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at the rundown point it immediately reverses direction and quickly "snaps" back 

above the still water line where it slowly returns to the point of maximum runup. 

Therefore, although the nonlinear theory predicts that u = 0 everywhere at the 

time of maximum rundown (Eq. (3.3.42c)), the velocity at the shoreline for the 

case Ao -+ 1 is only near zero for an infinitesimally short length of time. 

The wave height as a function of time for a fixed value of x differs markedly 

from that shown in Fig. 3.3.5. Figure 3.3.6 shows two periods of the wave height 

and horizontal velocity at the location x = 1 for a range of amplitude parameters, 

Ao . The location x = 1 is special since it is the location of the point of maximum 

rundown for the limiting case of the maximum possible amplitude, Ao = 1 . For 

Ao < 1 the point of maximum rundown occurs for x < 1 . A continuous plot 

of the wave height as a function of time for Ao = 1 cannot be made at a point 

where x < 1 since the point will be exposed to dry bed for some portion of the 

wave's motion near the time of maximum rundown. The velocity records at x = 1 

in Fig. 3.3.6b are very similar to the shoreline velocity records in Fig. 3.3.Sb. 

Again the infinite acceleration at the rundown point for Ao = 1 is reflected 

by the vertical tangent of the velocity records at those points. However, the 

wave height records in Fig. 3.3.6a are very different from the shoreline elevation 

records in Fig. 3.3.5a. Notice in Fig. 3.3.6a that as the amplitude parameter, 

Ao, increases, the magnitude of the minimum wave height increases much faster 

than the maximum wave height. In contrast, the shoreline runup elevation in 

Fig. 3.3.Sa always oscillates between equally spaced extrema at 7J = ±Ao. For 

Ao = 1.0 the minimum wave height is 7J = -1 (i.e., the dry bed is just exposed 

at x = 1) and the maximum wave height is only 7J ,....., 0.114. This behaviour 

can easily be seen in the series of wave profiles shown in Fig. 3.3.4a for the case 

Ao = 1 . Another noticeable difference between the records in Fig. 3.3.Sa and 

3.3.6a is that as A0 -+ 1 the wave records at x = I exhibit a cusp at the rundown 
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Fig. 3.3.6 Wave motion @ x = 1 computed from Eqs. (3.3.22) -
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point. This behaviour is not seen in Fig. 3.3.5a. These two results are consistent 

with each other. The time derivative of the records in Fig. 3.3.5a represents the 

material time derivative, dry/ dt, since these runup records represent the wave 

height following a fluid particle at the shoreline. This derivative is well behaved 

and bounded, as one would expect. However, the time derivative of the records in 

Fig. 3.3.6a represents the local time derivative, ory / Bt , for fixed x. It need not 

be bounded for the case Ao = 1 . For the case Ao = 1 the tangent to the wave 

surface at the shoreline is vertical at the rundown point. Hence, the shoreline need 

only move an infinitesimal distance and the wave height at x = 1 will jump by 

a large amount. This effect produces the cusps in Fig. 3.3.6a for Ao = 1. This 

behaviour can also be shown analytically but the effort does not provide a better 

understanding of the solution, so it will not be presented here. 

In summary, it should be stated that although the nonlinear solution corre

sponding to Eq. (3.3.36) is mathematically valid for Ao :S 1, its range of validity 

is reduced even further when the physical requirement of small vertical acceler

ations is imposed. However, the results of this section are still important and 

they do indicate some of the general effects of the nonlinear terms in the equa

tions of motion. For the general case of a beach that does not slope linearly or 

that exhibits variations in the y direction, it is difficult to obtain quantitative 

results analogous to those found for this special case. However, the slopes of many 

beaches are approximately linear and it is reasonable to extend these results, at 

least qualitatively, to those cases as well. 

3.4 Finite Element Model 

One cannot hope to solve the nonlinear, dispersive, dissipative long wave 

equations derived in Section 3.1 for arbitrary geometry, using only analytical meth-
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ods. A numerical approach is required if we desire detailed quantitative results. 

Therefore, a time marching finite element model, which includes the nonlinear, 

dispersive, and dissipative terms, was written to solve these equations. Since the 

equations are expressed in the Lagrangian description, this allows the nonlinear 

effects of the runup of nonbreaking waves on a beach to be modelled easily. In 

addition, the model is able to treat arbitrary geometry so that the runup of waves 

along an irregular beach can be investigated. In the following sections the devel

opment and implementation of this model will be described. 

3.4.1 Analytical Formulation 

Before we can obtain a finite element formulation of the problem, we first 

must set up the problem analytically. See Fig. 3.4.1 for a definition sketch of the 

geometry that the model will deal with. The finite element model will be applied 

to several problems. The geometry in Fig. 3.4.1 will be used to develop the finite 

element model because it is the most general. All problems treated with the model 

will be special cases of this harbour geometry. In Fig. 3.4.1 all quantities have been 

nondimensionalized by the nondimensionalization chosen in Section 3.1.2. To keep 

the following derivations and notation as clear as possible, it will be assumed that 

the domain of the problem contains only one constriction where entrance losses 

will be modelled. There is no added complexity in treating an arbitrary number 

of these constrictions. Therefore, for clarity, only one constriction will be included 

in the formulation and it will be denoted by rHM' joining points c and E in 

Fig. 3.4.1. We will compute the solution over a finite domain n , where D will be 

comprised of the union of three nonoverlapping regions DH, DM, and 0 0 ; i.e., 

(3.4.1) 
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Fig. 3.4.1 Definition Sketch of the Model Geometry 
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The boundary of 0, JO, is the union of the boundary r o and the curve ADG. 

Note that the soution domain 0 has been drawn in the (a, b) plane. Therefore, it 

represents the physical domain which the fluid particles occupy at time t = 0. For 

t > 0 the instantaneous physical domain will in general be different, particularly 

where the waves run up and down sloping boundaries. 

The region OH is the inner harbour region bounded by the harbour entrance 

fHM and the curve CDE. As shown in the definition sketch, the water depth may 

continuously decrease to zero at the shoreline. The harbour may also be bounded 

by vertical walls or by a combination of vertical walls and sloping boundaries. All 

energy is reflected by the boundary CDE, whether or not the walls slope or are 

vertical. 

The region OM is the area comprising the harbour mouth out to the boundary 

denoted by rMo. In the definition sketch this boundary is shown as a semicircle 

of radius RM but in general rMo can be of arbitrary shape. The boundary rMo 

is chosen far enough away from the harbour mouth that the wave heights are small 

enough so that the nonlinear terms in the equations of motion are small in com

parison with the linear terms. The reason for this will be explained subsequently. 

The outermost region Oo is bounded by f Mo , f o , and the the physical 

boundaries AB and FG. This region is used to model the open ocean. By as

sumption, the boundaries AB and FG are vertical and perfectly reflecting. The 

water depth is constant and equal to h0 . The reason why the boundary rMo is 

chosen so that nonlinear terms in the equations of motion are small exterior to 

this boundary is so the solution in region Oo can be linearly decomposed into 

an "incident-reflected" wave system and a "radiated" wave system. The incident

refl.ected wave system is defined as the wave system which would be present if the 

water depth was constant everywhere and the harbour was absent with the vertical 

wall extended from point A to point G on the definition sketch. This wave system 
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is known once we have specified the incident wave system. The radiated wave 

system is then defined simply as the difference between the actual wave system 

in region Do and the incident-reflected wave system. It represents the radiation 

of energy from the mouth of the harbour out to infinity. This decomposition is 

important because, by subtracting off the incident-reflected wave system, only the 

radiated wave system need be computed. This system asymptotically satisfies a 

known radiation condition away from the harbour mouth. Hence, if we choose the 

boundary r 0 sufficiently far from the harbour entrance and apply this radiation 

condition along r 0 , we can compute the solution on a finite domain even though 

the open ocean extends out to infinity in the right half-plane. This radiation 

condition allows the radiated waves to pass through the boundary r 0 without 

being reflected. Boundary r o need not be chosen as a semicirle as shown in the 

definition sketch. However, a semicirle is the most logical choice for the boundary 

since the radiated wave system is a radially spreading system. Since the radiated 

wave system satisfies only the radiation condition asymptotically as one moves 

away from the harbour entrance, Ro must be chosen sufficiently large enough 

so this condition is satisfied to a desired degree of accuracy. However, it is also 

desirable to keep Ro as small as possible to minimize the amount of computation. 

A further discussion on the choices for RM and Ro will be given later in this 

section. 

In regions DH and nM the full long wave equations of Section 3.1 will be 

solved. This means that nonlinear, dispersive, and laminar viscous loss effects will 

be modelled. In the outer region Do these effects will not be modelled. If we 

denote the water surface elevation by ry(a, t) and the water particle displacement 

vector by x(a, t) then the long wave equations (3.1.117) and (3.1.118) are: 
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a [ V' ·X +a ~~::t?] 
-'Y'h·x - -x·H·x - h------

2 - 1 + aV'·x 
(3.4.2) 

I { h h
2 

} (1 + a'Y'·x)[xtt + hxt] + aV'ry·D + V'ry = /3 2 V'[V'·(hxtt)]- 6 V'(V'·xtt) . (3.4.3) 

These equations are accurate to 0( a, /3, 1) where a, /3, and 1 are defined exactly 

as in Section 3.1: 

H 
a=-

ho 
(3.4.4) 

H, e, and w denote a characteristic wave height, length, and frequency and 

will depend on the particular problem being modelled. D and H are defined 

by Eqs. (3.1.83) and (3.1.97). Eqs. (3.4.2) and (3.4.3) are the model equations 

for regions OH and OM. In region Oo, where the nonlinear, dispersive, and 

dissipative effects are not modelled, they reduce to (setting a = /3 = I = 0): 

17 -V' · (hx) (3.4.5) 

Xtt = -V'ry (3.4.6) 

A variety of different boundary conditions can be applied along 80 . There 

are approximately four different ones of interest: 

1) Along a sloping boundary where the still water depth decreases continuously 

to zero (a beach), the water surface elevation is related to the still water 

depth as: 

1 
rJ --h(a+ax) 

Q 

(3.4. 7) 

For regions of a beach above the still waterline h is negative. Along the still 

water line we have h(a) ::::: 0. 
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2) Along a boundary where the still water depth is nonzero, we may simply 

specify the water surface elevation as a given function of time t and initial 

fluid particle position a; i.e., 

T/ = T/s(a, t) (3.4.8) 

This would be used if one knew what the water surface displacement time 

history was, along a given boundary. This would be known if, for instance, 

one had previously measured it with a series of wave gauges. 

3) Along a vertical wall, fluid particles which lie against the wall at time t = 0 

must remain against it for all subsequent times. Hence, the motion of a fluid 

particle must be perpendicular to the wall outward normal, n , at the present 

position of the particle: 

Xt·n(a +ax) = 0 (3.4.9) 

Note that as the particle moves, the outward normal will in general change 

direction if the wall is curved. Therefore, since n is in general a function of 

x we cannot integrate this expression to get: 

x·n O 

4) Along r 0 the radiated wave will satisfy a radiation condition for radially 

spreading nondispersive in a region of constant depth. Written in the La-

grangian description, the boundary condition is: 

t 

Br 1 j 
T/ = 8t - 2Ro T/ dt (3.4.10) 

0 

where r = r( a, t) is the radial component of displacement of a fluid particle; 

i.e., 

r(a, t) = x(a, t) cos 0 + y(a, t) sin 0 = x·ne (3.4.11) 
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where e(a, b) is the polar angle of the position of the particle at time t = 0 

(see Fig. 3.4.1). The quantity Ro is the distance from the coordinate ori

gin to the boundary f o. Mungall & Reid (1978) showed that this boundary 

condition is relatively insensitive to the coordinate origin, provided the origin 

is chosen reasonably close to the origin of the radiated waves. The term with 

the integral of T/ represents a correction factor to account for the curvature 

of the radially spreading wavefronts. The further away from the origin that 

the radiation boundary is taken, the smaller the effect of this term. A deriva-

tion of this radiation condition in the Eulerian description can be found in 

Mungall & Reid (1978). They incorporated this boundary condition into a 

depth integrated finite difference long wave model (in the Eulerian descrip

tion). By comparing the results of the model with known analytical solutions 

they were able to test this condition and verify its effectiveness for modelling 

radially spreading gravity waves. Unfortunately, Eq. (3.4.10) is awkward 

to implement in its present form (in either the Eulerian or the Lagrangian 

description) because of the presence of the correction factor which involves 

the time integral of T/. Mungall & Reid simply approximated this integral 

with its value at the previous time step. In the Lagrangian description, an 

alternate radiation condition can be derived, similar to Eq. (3.4.10), which 

does not have this difficulty. It can readily be obtained from Eq. (3.4.10) by 

solving for T/ iteratively, making use of the fact that the correction term is 

small. 

t ( t' ) 1J = ar - _1_/ ar - _1_/11dt' dt 
at 2Ro at 2Ro 

0 0 

ar r 
= at - 2Ro + H.O.T. (3.4.12) 

This is a much easier boundary condition to implement than Eq. (3.4.10). 



-144-

Using a procedure similar to that used by Mungall & Reid, one can derive this 

alternate radiation condition directly without first obtaining Eq. (3.4.10). It 

is then clear that the higher order terms neglected in the derivations of both 

Eq. (3.4.10) and Eq. (3.4.12) are of similar order. Therefore, Eq. (3.4.12) 

will be used in the finite element model. 

Since one would like to minimize Ro to reduce the amount of compu-

tation, a criterion must be used to set the lower limit for Ro instead of 

obtaining it by trial and error. Let us denote a typical harbour entrance 

width by b0 • Let A. denote a typical wavelength of an incident wave with 

k = 271" /A.. Then for kb0 < 0.5 a simple error analysis (e.g., Lepelletier 1980) 

shows that Eq. (3.4.10) will be accurate to within a few percent, provided: 

R0 > 0.6.\. (3.4.13) 

or, smce Ro= R0/£: 

(3.4.14) 

If we choose e = A. this criterion reduces to Ro :.::::: 0.6. If kb0 > 0.5 , then 

Ro must be increased beyond this lower limit to achieve the same accuracy. 

For large kbo , Ro must be increased so much that the use of the radiation 

condition approach is no longer an economical way to simulate the open 

ocean. 

An estimate for the value of RM also can be made. Lepelletier (1980) 

also shows that the nonlinear interactions between the incident-reflected wave 

system and the radiated wave system can be neglected for a narrow mouthed 

harbour (kbo « 1) provided: 

R "' > 0 1' M . -" (3.4.15) 
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i.e., 

(3.4.16) 

Again, as the width of the harbour entrance increases, so also must RM . It 

should be emphasized that these are only rough estimates for RM and Ro . 

Their final choice may be dependent on the particular problem being studied. 

Equations (3.4.14) and (3.4.16) will be used to choose the parameters Ro 

and RM when the results of the finite element model are compared with the 

harbour response laboratory experiments (to be discussed in Section 5.2 of 

Chapter 5). 

As mentioned earlier, the solution domain will be divided into three regions: 

(i) Inner Harbour Region OH: 

In this region we will solve the nonlinear, dispersive, and dissipative long 

wave equations (3.4.2) and (3.4.3). Along the boundary CDE any combina

tion of the beach boundary condition (3.4.7), specified wave height boundary 

condition (3.4.8), or vertical wall boundary condition (3.4.9) may be specified. 

(ii) Harbour Mouth Region OM: 

In this region the same model equations will be solved, and along boundaries 

BC and EF the same boundary conditions may be specified as in the inner 

harbour region, OH. 

(iii) Outer Region 0 0 : 

In this region the solution will be decomposed into an incident and reflected 

wave (denoted by Xm and 1Jm ) and a radiated wave (denoted by xR and 

?Jn.). Each system of waves will satisfy the linear equations of motion (3.4.5) 

and (3.4.6). The total wave system x and 17 will be a linear superposition 
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of these two systems: 

x = Xm +xR (3.4.17a) 

T/ = T/m + T/n (3.4.17b) 

It is assumed that the form of the incident wave is known either from a wave 

record or from a mathematical formula. The reflected wave (for a vertical wall 

joining the points A and G), which satisfies the no fl.ow boundary condition 

along a = 0 and the linear equations of motion (3.4.5) and (3.4.6), can easily 

be found. For example, if the incident wave is a plane wave travelling in the 

-a direction normal to the coastline, i.e., 

T/incident = f (t +a) (3.4.18) 

then the reflected wave will have the same form but will travel in the opposite 

direction: 

T/reflected = f ( t - a) (3.4.19) 

The wave speed has been normalized to unity in these formulae. If the inci-

dent wave does not approach the coastline in a perpendicular direction, the 

reflected wave will be related in a similar way to the incident waves system 

except that the propagation direction of this reflected wave must satisfy the 

familiar geometrical optics law: the angle of incidence equals the angle of 

reflection. 

For the special case T/incident = f ( E) where E = t + a, the particle dis

placements Xincident can be obtained by integrating Eq. (3.4.6). In that case 

Eq. (3.4.6) reduces to 

dXincident 
(3.4.20) --8-E-- = -T/incident 
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This can easily be integrated to give Xincident as a function of t + a . The 

particle displacement corresponding to ??reflected can be obtained by the same 

general procedure except that the equation to integrate in this case is: 

BX reflected 

ax = ??reflected (3.4.21) 

where x = t - a. 

Since we know the incident-reflected wave we need compute only the radiated 

wave xR and ?7R in region n0 . Hence, in region n0 we will only compute 

xR and ??n, using the linear model equations (3.4.5) and (3.4.6). Along 

the boundaries AB and FG where we assumed the walls were vertical, this 

radiated wave system must satisfy the wall boundary condition (3.4.9). Along 

the outer radiative boundary r o the radiated wave system must satisfy the 

radiation boundary condition (3.4.12). 

The three regions must be joined together by applying the appropriate matching 

conditions along their common boundaries fHM and fMo. 

Joining Regions nH and nM: 

Across rHM a head loss occurs which, in the Eulerian description, is given 

by Eq. (3.2.18). If this equation is written in nondimensional variables in the 

Lagrangian description we get: 

a/-1-\ l:::.TJ = T/RegionnH - T/Region!.1M = 2U U (3.4.22) 

where U is the component of particle velocity across fHM in the direction 

of the outward unit normal of region nH: 

(3.4.23) 
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and U is the average of U across the entrance rHM. From Eqs. (3.2.17) 

and (3.2.18) the jump in the particle displacement vector x is zero across 

fHM: 

(3.4.24) 

Expressions (3.4.22) and (3.4.24) are the two conditions used to join the so

lution in region nH with the solution in region OM. 

Joining Regions OM and Oo: 

Across fMo there will be a jump in both the computed water surface ele

vations and the particle displacements because in region 0 0 the incident

reflected wave system, Xm and rJm , is subtracted from the total wave sys

tem, x and rJ , and only the radiated wave system, Xrr and TfR , is computed. 

Hence, across rMo we must have: 

3.4.2 

rJRegionnM - T/R = r/rn 

Finite Element Formulation 

(3.4.25a) 

(3.4.25b) 

The finite element model will be based on the weighted residual method. 

Let x , y and fj represent a trial or test function corresponding to the x and y 

momentum equations and the continuity equations, respectively. If we multiply 

the continuity equations (3.4.2) and (3.4.5) by fj and then integrate over the entire 

domain of the problem we get: 
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~ a ·X a~ A 

{ 

[V' + 8(x,y)] } ff f/ fj da db = - ff V' h · x + 2 x · H · x + h 1 + a V'. x f/ da db 

o nHunM 

- j f V' · ( hx) fj da db (3.4.26) 

no 

Notice that the nonlinear and dispersive terms have been neglected in the outer 

region 11 0 in accordance with the assumptions made previously. 

We can also weight the momentum equations (3.4.3) and (3.4.6) with x and 

y and integrate over the domain of the problem: 

J J { ( 1 + a V' · x )( Xtt + ~ Xt) · x + a V' 11 · D · x + V' 17 · x} da db 

nHunM 

-/3 ff {~V'[V'·(hxu)]- ~
2

V'(V'·xtt) }·xdadb (3.4.27) 

nHunM 

+ fj(xu+V'f!)·xdadb =0 

no 

where x = (x, f)). By taking the dot product of the vector momentum equation 

with x this appears to give only one equation, but since x and y are independent 

of each other, it actually represents two equations, one equation with x equal to 

zero and one equation with f) equal to zero. The vector notation is used because 

it simplifies the derivation of the finite element formulation of the problem. 

It is important to eliminate all of the second order spatial derivatives of the 

components of x since they are difficult to handle in a finite element scheme. 

Therefore, let us derive an alternate expression, which does not contain second 

order spatial derivatives, to replace the dispersive terms in Eq. (3.4.27). These 

derivatives can be eliminated by applying the two-dimensional version of Gauss' 
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theorem (divergence theorem): 

J J { ~ \7 [\7 · (hxu)] - :
2 

\7(\7 ·Xu)} ·x da db (3.4.28) 

QH 

= -jj {h
2

\7·xu\7·x+ ~\7-xtt'Vh·x+ ~\7h·xtt\7·x+ ~\7h·xtt\7h·x} dadb 3 6 2 . 2 
QH 

+ I { ~2 

\7 •Xtt + ~ \7h•Xtt} x·n ds 

anH 

where n is the outward unit vector to region nH. The boundary anH consists 

of the curve CDE and the interregion boundary fHM. 

We could also write down a similar expression for region nM . We would 

then pick up a line integral along the boundary anM . This boundary consists of 

the curves BC and EF as well as the two interregion boundaries rHM and rMo 

(see Fig. 3.4.1). Since from Eq. (3.4.24) the particle displacements are continuous 

across fHM, the two boundary integrals along f HM from the regions f2H and 

nM will exactly cancel each other since the outward unit vectors are the negative 

of each other. Since we are not modelling dispersive effects in region Do we can 

neglect the boundary integral along fMo, although it would present no extra 

difficulty to retain it. Then if we combine the integrals over the two regions OH 

and OM , we get: 

J J { ~ \7 [\7 · (hxtt)] - :
2 

\7(\7 ·Xtt)} ·X da db 
nHunM 

=- II 

+I {~
2

'Y!·xtt+~\7h·xu}x·nds 
BDF 

(3.4.29) 
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If we substitute this expression into Eq. (3.4.27), we will eliminate all second 

spatial derivatives of the components of x . 

It is possible to eliminate the surface displacement variable 1J from the 

the problem by substituting the continuity equation (3.4.2) (and (3.4.5)) into 

Eq. (3.4.27). The variable 1J would no longer appear. Hence, we would need 

only to solve the two momentum equations to obtain x; after x was obtained 

r; could be computed with the continuity equation. This would greatly simplify 

the problem. For this procedure to be useful it is necessary to eliminate all the 

spatial derivatives of Tf in Eq. (3.4.27), since the expression 'V Tf involves second 

derivatives of the components of x . This can be done by making use of Gauss' 

theorem. However, close examination indicates that although all derivatives of 1J 

can be eliminated with the use of Gauss' theorem, such a procedure then intro-

duces spatial derivatives of the componenents of D. Since from Eq. (3.1.83) D 

itself is defined in terms of spatial derivatives of x, this appears to produce second 

derivatives of the components of x; therefore, no advantage seems to be gained. 

However, as we will now show, it is possible to eliminate all derivatives of 1J in 

Eq. (3.4.27) without generating any second derivatives of x or y since all the 

derivatives of the components of D must exactly cancel. With the use of Gauss' 

theorem, the terms involving 'VT/ in Eq. (3.4.27) can be rewritten: 

j j {a'Vry·D·x + 'Vry·x} dadb 

DH 

J f {'V · [ a17D ·x + 17x] - a17D: 'Vx - 0:17 ('V ·D) ·x - 17 'V ·x} da db 

OH 

= - ff {a11D:'Vx + a11('V·D)·x + 11'V·x} dadb (3.4.30) 

OH 

+ J 17 [o:n·D·x + x·n] ds + f TJ [o:n·D·x + x·n] ds 

COE PHM 
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where the two vertical dots refer to the Gibbs' double dot product: 

D '7~ D axi 
_: vX= ijBa J 

(3.4.31) 

The expression for 7J in terms of x could now be substituted into Eq. (3.4.30), 

and no second spatial derivatives would appear except for the term V' ·D which, 

as can be seen from Eq. (3.1.83) involves second derivatives of the components of 

x. However, from the definition of D we see that the divergence of D must be 

exactly zero! 

=:O (3.4.32) 

Hence, if we eliminate 7J using the continuity equation, no second spatial deriva-

tives will appear in Eq. (3.4.30). 

An expression similar to Eq. (3.4.30) can be written for region OM: 

j j {o:Y'ry·D·x + V'ry·x} dadb 

QM 

= - j J { o:ryD:V'x + o:ry(V' ·D) ·x + 7J V' ·x} da db (3.4.33) 

QM 

+ I 7J [o:n·D·x + x·n] ds + I 7J [o:n·D·x + X·n] ds 

BCUEFUfMo feM 

This expression can be combined with Eq. (3.4.30) to yield an integral over the 

region nH u nM. However, since 7J jumps discontinuously across rHM as given 

by Eq. (3.4.22)' the two boundary integrals along rHM from the regions nH and 

OM will not cancel as they did for the dispersive terms. Although 7J jumps across 

f 8 M, x is continuous as given by Eq. (3.4.24), so D will also be continuous 
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across rHM. The unit vector for the line integral along rHM corresponding to 

region flM will be the negative of that corresponding to region flH: 

(3.4.34) 

Hence, if we combine the two line integrals along rHM corresponding to the two 

regions 11 8 and nM and use Eqs. (3.4.22) and (3.4.34), the result is: 

J 1JnH [annH ·D·x + x·nnH] ds+ J 1JnM [annM ·D·x + X·nnM) ds 

rHM rHM 

= j !::i.rJ [anoH ·D·x + x·nnH] ds 

I'HM 

J af-
1

-

1 

2 
= 2 u U x·noHds + O(a ) . (3.4.35) 

f'HM 

Since nonlinear effects are not modelled in region 11 0 , we can neglect nonlinear 

terms in the boundary integral along fMo, although these could be retained with 

no extra difficulty. Hence, if we combine the two integrals of the terms containing 

\lrj from regions flH and flM we get: 

j j {a'Vr,i·D·x + Y'r,i·x} dadb = - j j 1J [Y'·x + o:D:Y'x] dadb 

oHunM oHuoM 

+ J 1J [o:n·D·x + x·n] ds 

BDF 

J af-1-1 + 2 u U x·noHds 

I'HM 

+ j 1JX·n ds 

I'Mo 

(3.4.36) 

Here, use was made of Eqs. (3.4.30), (3.4.32), (3.4.33), (3.4.34) and (3.4.35). If 

this expression is substituted into Eq. (3.4.27), then all spatial derivatives of 1J 
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will be eliminated without introducing second spatial derivatives of x. 

Now let us look at the outer region 0 0 to obtain an equation for the integral 

over Oo in Eq. (3.4.27). If the decomposition (3.4.17) is substituted into the 

integral over region Oo in (3.4.27) we get: 

ff (xu + V'17) ·X da db= ff (xRtt + V'17R) ·x da db 

no no 

+ff (xrntt + V'rtrn)·xdadb (3.4.37) 

no 

We have assumed that the incident-reflected wave is known and is a solution to 

the linear nondispersive momentum equation: 

Xrntt + Y'rtm = 0 (3.4.38) 

Hence, the second integral on the right hand side in Eq. (3.4.37) vanishes identi-

cally. Gauss' theorem can then be applied to the remaining integral to obtain: 

ff (xtt + V'rt) ·X dadb =ff {xRu-x - r/R V' ·x} da db 

no Oo 

+ f f/nX·n ds + f f/nX·n ds (3.4.39) 

rMo ABUFGuro 

When the line integral along f Mo in this expression is combined with the corre-

sponding one in Eq. (3.4.36), the two will not cancel even though the unit nor-

mals are exactly the negative of each other because the computed values of the 

surface elevation (fl and fin ) jump discontinuously across I'Mo according to 

Eq. (3.4.25a). Hence, if these two integrals are combined, the following is ob-
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tained: 

f 17x·nnM ds + f 1JRX·nn0 ds = f 1JmX·nnM ds (3.4.40) 

rMo rMo rMo 

where T/m is a known function of a and t. 

Combining expressions (3.4.36), (3.4.39) and (3.4.40) then yields: 

ff {a\717·D·x+Y'11·x}dadb+ ff (xu+Y'11)·xdadb 

nHunM Do 

= - ff 11 [\7 ·x + o:D:V'x] da db+ f j {xRtt'x - TJR \7 ·x} da db 

nHunM 110 

+ J rJ [a n · D · x + x · n] ds + J 1JR x · n ds 

BDF ABUFGuro 

+ f a; U /U/ x·nnads + f 1JrnX·nnM ds . (3.4.41) 

rHM rMo 

Expressions (3.4.2) and (3.4.5) for rt and 1Jn in terms of x and xR can be sub

stituted into the area integrals in (3.4.41) to eliminate rt and rJR. To satisfy 

the radiation boundary condition, expressions (3.4.11) and (3.4.12) can be substi

tuted into the line integral along f o in Eq. (3.4.41). Then, to eliminate 17 from 

Eq. (3.4.27) without introducing second spatial derivatives of x, Eqs. (3.4.29) and 

(3.4.41) can be substituted into Eq. (3.4.27). The final result (neglecting terms of 

0( o: 2
)) is: 

O = ff { (1 + o:Y'·x)xu + ~Xt }·x dadb 

f2aU11M 

[ 

[
'M 8(x,y)]] a v·x+aa(ab) 

+ jj \i'h·x + -x·H·x + h \7 ' (\7 ·x + o:D:V'x) dadb 
2 1 + 0: ·X 

OaunM 

+fl ff { ~2 

Y'·xttY'·x + ~Y'·xuV'h·x + ~V'h·xuV'·x + ~V'h·xttV'h·x} dadb 

f2ttU11M 
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+ // { Xn tt -:x + V' · ( hxn) V' · x} da db 

Do 

-(J j {h:Y'·xtt+~Y'h·xtt}x·nds 
BDF 

+I a; u 1u1 x·nnHds + I lJrnX·noMds +I { xrno - 2~o x·no} X·n ds 
rHM rMO I'o 

+ j TJ [an·D·x + x·n] ds + /17RX·n ds (3.4.42) 

BDF ABUFG 

This is the finite element formulation which will be used to integrate long wave 

equations (3.1.117) and (3.1.118). To satisfy boundary conditions (3.4. 7) and 

(3.4.8), those expressions for TJ are substituted into the last two boundary integrals 

of Eq. (3.4.42) along the portions of the boundary where they apply. 

Boundary condition (3.4.9) does not involve specifying the value of rt along 

the boundary, and so it must be treated differently than the other three boundary 

conditions. The treatment of this boundary condition will be covered fully in 

Section 3.4.5. 

3.4.3 Spatial Discretization 

Now the problem will be discretized to transform it into a matrix problem 

with a finite number of unknowns. The domain is subdivided into a number of 

small nonoveriapping regions called elements. Within each element there is a 

shape function associated with each node bordering on that element. Within the 

element the shape functions are used to interpolate the values of the unknowns at 

the nodes of the element. 

In order to discretize arbitrary two-dimensional regions, isoparametric ele-

ments were chosen. For flexibility, four different types of elements were chosen: 
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8 node quadrilaterals: 
77 

j ~ 

Ni(e,11) = (1+e)(1+11)(e + 11 - 1)/4 2 5 
N2(e,11) = (1 - e)(1+11)(11 - e - 1)/4 

N3(e,11) = -(1- e)(1- 11)(e + 11+1)/4 

N4(e,11) = (1 + e)(1 - 11)(e - 11 - 1)/4 
•• 6 e 

Ns(e,11) = (1 - e2)(1+11)/2 8 

N6(e,11) = (1 - 11 2)(1 - e)/2 

N1(e,11) = (1 - e2)(1 - 11)/2 

Ns(e,11) = (1 - 11 2)(1 + e)/2 
3 _7 4 -

6 node triangles: 

Ni(e,11,~) = (2€-1)€ 

N2(e,11,~) = (211 - 1)17 

N3(e,11,~) = (2~ - 1)~ 

N4(e,11,~) = 4€11 

Ns(e,11,~) = 411~ 
NG( e, 11, ~) = 4e~ 

3 

4 node quadrilaterals: 77 
2 ~ 

Ni(e,11) = (1+e)(1+11)/4 

N2(e,11) = (1- e)(1+11)/4 

N3(e,11) = (1- e)(1 -11)/4 - e 
N4(€,11) = (1 + e)(1-11)/4 

3 4 

3 node triangles: 
2 

Ni(e,11,~) = e 
N2(e,T/,~) = 11 

N3(e,11,~) = ~ 
3 

Fig. 3.4.2 Elements used in the Finite Element Model. 
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8 node quadratic quadrilaterals, 6 node quadratic triangles, 4 node linear quadri-

laterals, and 3 node linear triangles. These elements are shown in Fig. 3.4.2 in 

terms of parent rectangular coordinates ( ~, T/) for the quadrilaterals and parent 

area coordinates ( e, 77, ~) for the triangles. The vertices of the quadrilaterals lie at 

(~,11) = (±1,±1). The vertices of the triangle lie at (e,77,~) = (0,0,1), (0,1,0), 

(1, 0, 0) . Any one of these or any consistent combination of these types of shape 

functions may be used in the finite element model. These shape functions ensure 

continuity of the interpolated function along interelement boundaries of adjacent 

elements. 

The nodal and element structure along the interregion boundaries I'mvr and 

fMo will be discussed in detail in Section 3.4.6. The computed solution jumps 

abruptly across these boundaries. 

The weighting functions x, y and fj have not yet been specified. They will 

be chosen to be the same as the shape functions. This will result in a particular 

weighted residual method known as Galer kin's method. It is the most common 

weighted residual method used with finite element techniques. 

The discretization of Eq. (3.4.42) will lead to a system of algebraic equations 

which can be written in matrix form as : 

(3.4.43) 

where the dots represent time derivatives of the components of d. The vector d 

contains the particle displacement nodal unknowns: 

d(t) = N = number of nodes. (3.4.44) 



-159-

The "mass" matrix M , dissipation matrix C , and the forcing vector f can be 

assembled from the element matrices Afe and ce and element vectors re , using 

standard finite element assembly procedures. Actually Me and ce need not both 

be assembled. Only the combination M + (~t/2)C is needed, as will be shown 

when the time integration scheme is covered. 

For a particular element with n nodes, the element matrix Me can be ex-

pressed as a partitioned matrix of the form: 

M' = I m11 m12 ... min 

m21 m22 ... m2n 

ffinl mn2 ... mnn 

) (3.4.45) 

where each of the mij are 2 x 2 matrices defined as: 

(3.4.46) 

Dh BNi]} Ba Bb 
Bh BNi dadb 

Bb Db 

ahaNi] [(ah)
2 

ah ah l} 
()b Da +~N·N· Da Ba Db dadb 
ah a Ni 2 

1 1 
ah ah (ah) 

2 

Db Bb Ba ob ob 

where the nonlinear and dispersive terms are included only for elements which lie 

in the region nH U nM . The terms na and nb are the a and b components of 

the outward normal unit vector along the boundary of the element domain ne. In 

the region Oo the nonlinear and dispersive terms are neglected and x is replaced 

by Xn . Ni is the shape function for the element corresponding to local node 
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number i. Note that if we neglect dispersion (/3 = 0), M will be symmetric but 

not otherwise. 

The boundary integral in Eq. (3.4.46) is evaluated only along element bound

aries which lie along the portion of the boundary BDF where boundary condi-

tion (3.4.8) is applied. That is because this integral gives no contribution along the 

portions of the boundary BDF where either boundary condition (3.4.7) or (3.4.9) 

are specified. Where boundary condition (3.4.7) is applied we have h(a, b) = 0 

and hence the integral is identically zero. Where boundary condition (3.4.9) is 

applied the integral is not zero; however, it gives no contribution since only equa-

tions associated with degrees of freedom parallel to the wall are assembled. The 

component of the outward unit normal vector associated with each of these equa-

tions is zero, so there are no contributions (this will be covered in more detail 

later in Section 3.4.5 when the treatment of the vertical wall boundary condition 

discussed) . 

Similarly, the element dissipation matrix ce can be expressed as: 

C' = I c11 C12 ... 
C21 C22 ... 

Cnl Cn2 ... 

where each of the Cij are 2 x 2 matrices defined as: 

ff I [N·N 
h(a, b) io J 

ne 

+ J NiN· [nacos() 
1 nb cos() 

ane 

C1n 

C2n 

Cnn l (3.4.47) 

(3.4.48) 

where the area integral is computed only for elements which lie in the region 

OH U OM and the boundary integral is only evaluated along element edges which 

lie on r 0. 
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We also can write an expression for the element forcing vector re : 

(3.4.49) 

where the fi are 2 x 1 vectors defined as: 

{ 

['V·x + ao(x,y)] } a 8[a,b) 
'Vh·x + -x·H·x + h dadb 

2 - 1 + a'V·x 

(3.4.50) 

where the nonlinear terms are included only for elements which lie in the region 

On U OM and the boundary integrals are evaluated only for the elements which lie 

on the appropriate boundaries. In region 0 0 the nonlinear terms are neglected 

and x is replaced by Xn. Boundary conditions (3.4.7) and (3.4.8) are imposed by 

subsituting the corresponding expressions for rJ into the last boundary integral in 

Eq. (3.4.50) along the portions of the boundary where they apply. This integral 

need not be evaluated along the portion of the boundary where boundary condi

tion (3.4.9) is specified. It will give no contribution for the same reason discussed 

when the expression for mij in Eq. (3.4.46) was presented. 

Initial conditions must also be specified. For motion starting from rest we 
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must specify: 

d(O) = d(O) = O (3.4.51) 

The Galerkin formulation of the continuity equation (3.4.26) can also be dis-

cretized to obtain a set of algebraic equations for the nodal values of the surface 

elevation. However, because rJ was eliminated from the problem, this set of equa-

tions need not be solved simultaneously with Eq. (3.4.43). In fact, they are no 

longer strictly needed to solve the problem. Nevertheless, since the nodal values 

of the wave elevation are important quantities, they will be computed, once the 

particle displacements are obtained from Eq. {3.4.43). They can be computed 

whenever desired, not necessarily at each time step. The matrix representation of 

these equations is: 

He=p (3.4.52) 

where the vector e contains the nodal values of the water surface elevations: 

e(t) =CD N =number of nodes. (3.4.53) 

For an element with n nodes the element matrices He is of the form: 

ell h12 h1n) 
h21 h22 h2n 

= J J Ni N1 da db . He= where hi] (3.4.54) 

hnl hn2 hnn 
0'' 

The ith component of the element forcing vector pe is: 

{ 

[
'M 8(x,y)] } a v·x+a.8(1)) 

(pe)i =-ff \7h·x + -x·H·x + h \7 a, Ni dadb. 
2 1 +a ·X 

oc 
(3.4.55) 

For elements which lie in region Oo the nonlinear terms are neglected and x is 

replaced by Xrr. 
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Assuming that the motion starts from rest, the appropriate initial condition 

lS 

e(O) = 0 (3.4.56) 

All integrations in Eqs. (3.4.46), (3.4.48), (3.4.50), (3.4.54) and (3.4.55) were 

performed numerically using Gauss quadrature schemes. For the quadrilateral 

elements, 2 x 2 and 3 x 3 point formulae from Connor & Brebbia (1976) were used 

for the linear and quadratic elements, respectively. For the triangular elements, 

3 point and 6 point formulae from Cowper (1973) were used for the linear and 

quadratic elements, respectively. 

3.4.4 Time Integration Scheme 

The central difference method was employed for the temporal integra-

tion. In this method it is assumed that: 

d(t) = d(t + !::..t) - 2d(t) + d(t - !::..t) 
f::..t2 

d(t) = d(t + !::..t) - d(t - !::..t) 
21::..t 

(3.4.57) 

(3.4.58) 

Then, if the discretized value of d( t) at time t 

Eq. (3.4.43) can be written as: 

n!::..t is denoted by d (n) , 

(3.4.59) 

This is an algebraic system of equations for the particle displacement vector d at 

time t = ( n + 1) !::..t : 

Gd(n+1) = g (3.4.60) 

where 



and 

G=M+D.tc 
2 
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(3.4.61) 

(3.4.62) 

The matrix G is assembled from the element matrices Me and ce . The vector 

g is assembled from the element matrices 1\tfe and ce ' the element vectors re ' 
and the element vectors for d ( n) and d ( n + 1) . 

Gray & Lynch (1977) studied ten different schemes for marching finite element 

long wave solutions through time. They restricted the analysis to propagation 

in one horizontal coordinate in a fluid of constant depth, neglecting nonlinear 

and dispersive terms in the equations of motion, although linear dissipation was 

included. The finite element spatial discretization was done using uniform linear 

elements. Of those methods, the central difference method employed here was the 

only one that was conservative (exactly conserved mass and momentum) in the 

absence of the dissipation terms represented by the matrix C, but which damped 

all wavelengths, even the troublesome short wavelengths of twice the grid spacing 

when friction was included. The scheme is stable, provided 6.t* < 6.a"' / y13gh 

where 6.a* is the dimensional grid spacing. 

For a general nonuniform two-dimensional grid with nonuniform depth vari-

ations it is not possible to obtain a general stability constraint of this type but a 

goodestimateis 6.t"' < (l/J3g")(6.s*/vih) 111 in where 6.s* represents the distance 

between any two nodes and h is the average water depth between the nodes. Thus, 

as h gets smaller, 6.s can be reduced without the necessity to reduce 6.t. This is 

important because it allows a finer grid to be used near a shoreline where shoaling 

causes wavelengths to decrease. If, in addition, nonlinear and dispersive terms are 

included in the equations of motion, then this time step criterion is not strictly 

valid but it was found to give a good estimate nonetheless. In practice, a slightly 
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more conservative estimate was usually used: i::l.t* = (0.5/ yg)(i::l.s* /Vh)min. 

3.4.5 Boundary Condition for a Vertical Wall 

The boundary condition for a vertical wall, Eq. (3.4.9), does not involve 

specifying the water surface elevation, rJ , along the boundary, so it must be treated 

differently than the other boundary conditions. Associated with each node point 

there are usually two degrees of freedom corresponding to the two components 

of the fluid particle displacement. The wave elevation is not considered to be a 

third degree of freedom because it has been decoupled from the problem and is 

completely determined when the nodal values of the particle displacements are 

known. In order to satisfy boundary condition (3.4.9) there can be only one 

degree of freedom associated with a node point lying along a vertical wall. This 

degree of freedom corresponds to the component of particle displacement tangent 

to the wall at the present location of the fluid particle. 

One way to accomplish this would be to proceed as follows. First, assemble 

the set of algebraic equations (3.4.60) as just described in the previous section. 

Then perform an orthogonal transformation on these equations which rotates the 

degrees of freedom associated with nodes along a vertical wall so that one degree 

of freedom is tangent to the wall and the other one is perpendicular to the wall. 

Let us denote this orthogonal transformation matrix by Q . Then the system of 

equations (3.4.60) transforms to: 

G*d*(n+1) = g"' (3.4.63) 
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-166-

G* = QTGQ 

d*(n+l) = QTd(n+l) 

g* =QT g 

(3.4.64) 

Here the T refers to the transpose of a vector or matrix. The components of 

acceleration normal to the wall are set to zero and the equation corresponding to 

these equations of freedom are discarded. Then the remaining equations are solved 

to obtain the two components of acceleration at the internal nodes and the single 

tangential component of acceleration at the vertical wall nodes. In fact, instead of 

setting the normal components of acceleration to zero, these may be specified as 

non zero, thereby modelling the fl.ow induced by a moving vertical wall, including 

the effects of finite displacement. If this is done, extra terms are generated on the 

left hand side of the equal sign. These terms are transferred over to the right hand 

side into the forcing vector f* before the matrix equation is solved. The orthogonal 

transformation matrix Q may depend on the fluid particle displacements along 

a wall. If the wall is curved, then the local wall tangents will depend on where 

the fluid particles are along the wall. Hence, as the fluid particles move, the 

matrix Q will slowly change. However, if finite displacement (nonlinear) effects 

are neglected, the matrix Q will be constant. 

This is not quite the way that the finite element model handles this boundary 

condition, although the results are exactly the same. Since the finite element 

equations are assembled from the element level, the orthogonal transformations 

are also performed at the element level. Then when the equations are assembled, 

the equations corresponding to components of displacement normal to a vertical 

wall are not assembled. Hence, storage is not required for the coefficients in these 

equations. An element orthogonal transformation matrix for an element with n 
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Fig. 3.4.3 Situation where the outward unit normal vector is not 
uniquely defined at a node point. 

nodes is of the form: 

cos 01 - sin 01 
sin 01 cos 01 

0 

0 

cos On 
sin On 

- sin On 
cos On 

(3.4.65) 

where (Ji is the angle between the (v, r) axes and the (a, b) axes. v is the 

component of displacement normal to the wall and r is the component tangent 

to the wall. For a node not on a vertical wall f}i is chosen to be zero. 

The proper choice for {} must be made because it may not be uniquely defined. 

This can happen at a corner node of an element located along a vertical wall as 

shown in Fig. 3.4.3. The outward unit vector n is well defined along the two sides 

of the elements shown in the figure, but it changes discontinuously at node A. The 
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Fig. 3.4.4 Harbour entrance where fl.ow separation occurs. 

following definition for nA was chosen. 

JnNA ds 
nA = If nNA dsl 

(3.4.66) 

where NA is the interpolation function associated with node A. The integration 

extends along the two element edges adjacent to the wall. Gray {1976) and Pinder 

& Gray (1977) defined the nodal normal direction in this manner and it was used 

successfully in finite element wave models by Lynch & Gray (1978), (1979) & 

(1980). In addition, Wang & Connor (1975) have indicated that this choice of 

nodal normal direction conserves mass for linear triangular elements. 

At a constricted or narrow harbour entrance the boundary geometry may 

change very abruptly, much more so than as in Fig. 3.4.3. Of interest to this 

investigation is the case shown in Fig. 3.4.4. The darkened vertical line represents 

rHM' also depicted in Fig. 3.4.1. At the harbour entrance the boundaries turn 
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through a very abrupt 90 degrees. The analytical solution to the model equa

tions (3.4.2) and (3.4.3) subject to the boundary condition that the flow remain 

attached everywhere would exhibit infinite gradients at the corners and very large 

gradients nearby. It would be pointless to try to model accurately such a flow 

because real fluid effects will cause the flow to separate at the corners for any fluid 

motions of interest. Therefore, it is not important to ensure that the fluid particles 

remain attached and move perfectly tangent to the boundary in this region. In 

fact, since we know the flow will separate around these corners, especially for flow 

to the right out of the harbour, we can relax the requirement that this boundary 

condition be satisfied at the corners and impose an alternate ad hoc condition 

which is closer in agreement with the observed flow in this region. The aim is not 

so ambitious as to develop a model for flow separation but to impose a condition 

which is more suited to this particular geometry than the usual requirement that 

the flow be everywhere tangent to solid boundaries. Across rHM we can apply 

Eqs. (3.4.22) and (3.4.24) in order to introduce the dissipation associated with the 

separated flow but these two conditions are not sufficient to determine the bound

ary condition associated with the separated flow. For a long narrow harbour a 

simple condition is to constrain the degrees of freedom associated with particle 

displacements normal to the entrance to be the same for each of the nodes across 

the entrance, but not to constrain the transverse degrees of freedom, not even for 

the corner nodes. Hence, the flow will be free to contract when moving to the right 

in Fig. 3.4.4 and to contract when moving to the left, but the particles associated 

with the corner nodes will not be so severely constrained that they remain per

fectly attached around the corners. See Fig. 3.4.5. The arrows represent the paths 

of the fluid particles. In general these paths will be curved and more complex. 

This condition can be easily implemented in the numerical model. First, the 

degrees of freedom associated with nodes across the entrance are rotated, using 
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Fig. 3.4.5 Flow through the harbour entrance. 

an orthogonal transformation as described in this section so that one degree of 

freedom for each node is normal to the boundary rHM and one is tangential to it. 

Then the coefficients of the element matrices and vectors associated with the nor

mal degrees of freedom are all assembled into the the same equation. However, the 

coefficients associated with the tangential degrees of freedom are assembled into 

separate equations so that these components of displacement are not constrained 

at all. 

3.4.6 Interregion Boundaries 

Across the interregion boundaries rHM and rMo the computed solu

tion jumps discontinuously. The numerical treatment of these jumps has not yet 

been included in the description of the model up to this point. The unknowns 
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rMO 

Fig. 3.4.6 Double set of nodes along interregion boundary f Mo . 

in the model must be carefully defined along these boundaries. The treatment of 

the boundary r HM is actually a special case of the treatment used for boundary 

fMo, since across fMo both the fluid particle displacements and the water sur

face elevation jump discontinuously, whereas across rHM only the water surface 

elevation jumps. Therefore, let us look only at the treatment of the boundary 

rMo. The method used for it can then be specialized to rHM. 

The solution along fMo could be treated by using a double set of nodes along 

it as shown in Fig. 3.4.6. This is not the way this boundary is treated in the model, 

but it is necessary to consider this method in order to explain how the boundary 

is actually treated. For the moment let us assume that this is the method used. 

When interpolation is done within an element bordering on fMo, the nodal values 

along fMo associated with either OM or Oo are used, depending on which side 
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of f :rv10 the element lies on. There are four particle displacements associated 

with each double node, two associated with the OM node and two associated with 

the 0 0 node. Using the techniques described in the previous sections, the set of 

equations represented by Eq. (3.4.43) could be assembled: 

(3.4.67) 

but they would not correctly model the flow. This is because the particle displace

ments at each double node are not independent degrees of freedom. The jumps 

in the particle displacements are given by Eq. (3.4.25b). Hence, if we are given 

the particle displacements at one node on fMo, the particle displacements at 

the bordering node are completely determined by the jump condition (3.4.25b), 

since Xm is a given known function. The jump condition represents a series of 

constraints which the particle displacements at each of the double (or contact) 

nodes along fMo must satisfy. These constraints were not included in the system 

of equations (3.4.67). 

If i and j are corresponding degrees of freedom at a contact node, then the 

corresponding constraint can be expressed as: 

(3.4.68) 

where the jump giJ is known once the incident-reflected wave system Xm is given. 

If there are N v degrees of freedom in the problem and c constraints, then all of 

the constraint equations of the form (3.4.68) can be written in a matrix equation 

as: 

(3.4.69) 

where gc is a c x 1 vector containing the giJ terms and C is a c x N v matrix. 

If the degrees of freedom at the contact nodes were to be numbered sequentially, 

first on one side of f Mo and then on the other side such that the contact degrees 
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of freedom are the last to be numbered in the problem, then C would be of the 

form: 

C= 

0 ... 0 1 0 ... 0 -1 0 ...... 0 
0 0 1 0 ... 0 -1 0 0 

0 .. . 0 1 0 
0 .. . 0 1 0 ... 

0 -1 0 
... 0 -1 

(3.4.70) 

In the actual finite element model there is no restriction on the numbering of the 

degrees of freedom. It is done here only for clarity. 

There is more than one way to show how the constraints of Eq. (3.4.69) can be 

included in the finite element formulation oft.he problem. One way is as follows. 

One can think of the system of equations (3.4.67) (which are not correct since 

they do not include the constraints of Eq. (3.4.69)) as resulting from extremizing 

the quadratic form: 

(3.4. 71) 

over the components of d(n+l). Then the correct system of equations can be 

obtained by extremizing this quadratic form subject to the constraints of Eq. 

(3.4.69). One way to proceed is to use the method of Lagrange multipliers. Let A 

represent a c x 1 vector containing the Lagrange multipliers. Then the appropriate 

quadratic form to extremize in order to obtain the correct set of equations is: 

(3.4.72) 

The extremization must be carried out over the components of A as well as the 

components of d(n+l); i.e., 

arr' 
---=0 
ad(n+t) 

and 
arr' 
-=0 
BA 

(3.4.73) 
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This leads to the following system of equations. 

Gd(n+i)+CTA=g} 

Cd(n+l) = gc 
(3.4.74) 

These equations may be expressed as the following partitioned matrix set of equa-

tions: 

(3.4.75) 

This system of equations possesses undesirable characteristics from a numerical 

point of view. First, it has a large bandwidth, and second, it contains a block 

of zeros along the diagonal. However, starting with this system of equations, one 

could imagine doing a series of row and column operations which would eliminate 

the Lagrange multipliers from the problem. In fact, one could perform additional 

row and column operations and eliminate the degrees of freedom along one side of 

fMo from the problem, leaving only one set, say the ones on the OM side of fMo 

in the system of equations. This would result in a matrix system of equations: 

G'd(n+1)' = g' (3.4.76) 

where the vector d (n+i)' contains the degrees of freedom corresponding to all the 

nodes not on r MO , plus the degrees of freedom corresponding only to the contact 

nodes along f Mo , which are associated with region OM . 

In the finite element model, the effects of doing all of these row and column 

operations are done at the element level, and the system of equations (3.4.76) are 

assembled directly. Hence, in the finite element model only one set of nodes is 

needed along the interregion boundary rMo. The degrees of freedom calculated 

at these nodes correspond to the wave system on the OM side of f Mo . The 

degrees of freedom associated with the nodes in region OM correspond to the 
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complete wave system x, and the degrees of freedom associated with the nodes 

in region Do correspond to the radiated wave system xR . 

3.4.7 Transforming to the Eulerian Description 

By the use of the results of Section 3.1.2, the water surface elevations 

computed by the finite element model can be transformed to the Eulerian descrip

tion. The water surface elevations computed by the finite element model are the 

elevations of the water surface at the positions of the fluid particles which at time 

t = 0 were located at the node points. These values can be transformed to the 

Eulerian description so they correspond to the surface elevations at the locations 

which the water particles occupied at time t = 0. These locations are fixed in 

space. 

From Eqs. (3.1.86) and (3.1.116) the fluid particle displacements computed 

by the shallow water equations differ from the true particle displacements (which 

would be computed if the exact three-dimensional equations of motion were solved) 

by terms of O(a,/3). From Eqs. (3.1.76), (3.1.86) and (3.1.98) the water surface 

elevation differs from the true elevation by terms of O(a2
). Hence, Eq. (3.1.67) 

can be written in terms of the water particle displacements x and surface elevation 

rJ computed by the model as: 

rJE(a,t) = rJ(a,t) -ax(a,t)·Y'rJ(a,t) + O(a/3,a2
) (3.4. 77) 

But from the momentum equations (3.4.3): 

Y'rJ = -xu + 0( a, /3, 1) (3.4.78) 

Substituting this into Eq. (3.4. 77) gives: 

rJE(a,t) = rJ(a,t) + ax(a,t)·xu(a,t) + O(a/3,a1,a2
) (3.4. 79) 
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In particular, we can evaluate this equation at each time step, i.e., for t = nl::..t 

n = 1, 2, ... and at each node point a = ai i = 1, 2, ... , N where N is the 

number of node points. Then all of the quantities on the right hand side of 

Eq. (3.4.79) are nodal quantities which are computed each time step where Xtt 

can be obtained from Eq. (3.4.57). Hence, the evaluation of 'rJE at the node points 

is very easy. However, this method will not necessarily give correct results at 

node points located in the vicinity of a beach where the shoreline moves with time 

because the fixed locations of the node points may or may not be part of the 

instantaneous fluid domain. When the shoreline recedes, some of the node points 

are left behind where there is no fluid. The other shortcoming is that when the 

shoreline moves up onshore, there are no node points corresponding to locations 

above the still water line, and so no Eulerian measurements of runup can be made 

in this region with this technique. Because of the nature of the description, none 

of these problems are encountered with the quantities computed in the Lagrangian 

description. Therefore, to resolve the nearshore region in the Eulerian description, 

a slightly more elaborate technique than Eq. (3.4.79) is needed. However, this 

method will work well offshore where Eulerian measurements are usually made 

anyway. 

3.4.8 Sample Implementation of the Finite Element Model 

In order for the finite element model to successfully model the response 

of a harbour to long wave excitation it is important that it be able to subtract 

the incident-reflected wave system in the outer region Do and to permit the 

remaining radiated wave system to pass through the outer radiation boundary 

r 0 . This allows the outer semi-infinite region to be modelled using a reasonably 

small finite sized grid, thus saving considerable amounts of computation. The 
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b 

Fig. 3.4.7 Finite element mesh used for the sample implementa
tions. 

effectiveness of these two aspects of the model can be demonstrated in two simple 

implementations of the model. 

For both cases the grid shown in Fig. 3.4. 7 was used. The disturbances were 

symmetrical about b = 0, so the grid was defined only for b 2 0. The boundary 

a = 0, b 2 0 represents a semi-infinite coastline. It is vertical and perfectly 

reflecting. The radius of the grid is Ro = 7 .02 , the still water depth is unity 

everywhere, and the corner element at (a, b) = (0, 0) has the dimensions 0.1x0.1. 

Hence, a time step of flt = 0.05 was chosen. For both simulations, nonlinear, 

dispersive, and viscous dissipative effects were neglected. 

The first test case investigates the effectiveness of the procedure used to sub

tract the incident-reflected wave system in region no. For this case rMo appears 
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as the darkened circular arc in Fig. 3.4.7. The incident wave was chosen to be: 

77 = H(t +a - q))(l - e-(t+a-4')) sin(t +a - </>) (3.4.80) 

where H(t) is the unit Heaviside step function and the term (1- e-(t+a-4')) was 

chosen so that at the leading edge of the incident wave the surface displacement 

is zero and well as the fluid particle displacement, velocity, and acceleration. The 

phase q) is simply chosen so that at time t = 0 the leading edge of the wave has 

just reached the boundary rMo where b = 0. Since there is no harbour in this 

case and the boundary a = 0 is a vertical perfectly reflecting wall, there is no 

radiated wave. Hence, exterior to the boundary f Mo in region Oo there should 

ideally be no motion, whereas within the boundary in region OM the incident-

reflected wave system should be present. Along f Mo the model computes only the 

wave heights associated with the region OM . However, the wave heights along this 

boundary associated with region Oo can easily be obtained using Eq. (3.4.25a). 

In Fig. 3.4.8 the computed solution is compared to the theoretical solution 

along b = 0 for a number of successive time values. In Fig. 3.4.9 the time record 

at (a, b) = ( 0, 0) is compared against the theoretical one. The agreement is very 

good in both cases. Along the boundary r o , the radiation boundary condition 

is applied, but since there is almost no motion in the outer region Oo , it really 

does not play a significant role in the simulation. 

The second test investigates the effectiveness of the radiation boundary con-

dition applied along r 0 . For this case a radially symmetric disturbance is created 

along the darkened circular boundary, I'Mo, in Fig. 3.4.7. At time t = 0 the fluid 

is quiescent. At t = 0 the forcing function: 

t2 (27r-t) 2 

H(t-27r) 
4 

sint 
7r 

(3.4.81) 

is applied along this arc in a similar way as the head loss matching condition is 
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Fig. 3.4.9 Comparison of the computed solution to the theoretical 

one at (a,b)=(O,O). 

implemented across rHM. A jump in rt proportional to Eq. (3.4.81) is generated 

along this arc. In Figs. 3.4.10 and 3.4.11 this jump can be seen at the times 

t = 1.0, 2.0 and at t = 4.0, 5.0. These figures show the wave profile along 

b = 0 for a number of successive time values. At t = 1.0, 2.0 the jump has the 

opposite sign to that at the times t = 4.0, 5.0 in accordance with the sign of the 

forcing function in Eq. (3.4.81). Since the grid has finite resolution the jump is 

actually spread over three or four node points but it is still quite sharp. Note 

from Eq. (3.4.81) that at t = 7r the forcing is zero, and this is reflected by the 

continuous water surface at the time t = 3.0. For t > 27r the forcing is zero and so 

from this time on the waves propagate freely, subject to the boundary conditions 

imposed. The actual technique used to generate the wave system is not important. 

The important thing is to generate a localized wave system near the origin so that 
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its propagation can be followed out to the boundary r o . An alternate approach 

would have been to specify an initial localized wave height at time t = 0. There is 

no boundary rMo in these simulations, and so an incident-reflected wave system 

is not subtracted off anywhere in the computational domain. 

The results of two different tests are shown. Fig. 3.4.10 shows the results 

when the boundary condition fl = 0 is applied along r 0 , and Fig. 3.4.11 shows 

the results when the radiation boundary condition Eq. (3.4.12) is applied along 

r 0 . Notice that in the first case the wave system is strongly reflected along 

r 0 since the boundary condition fl = 0 does not allow the transmission of the 

waves out through r o . In the second case, the wave system passes freely out of 

the computational domain across r 0 . Fig. 3.4.12 shows the wave heights as a 

function of time at the origin (a, b) = (0, 0) for both of these cases up to t = 25. 

Note the very large reflection that occurs if the radiation boundary condition is 

not used. 

These computations were performed on a Floating Point Systems FPS 164 

Attached Processor hosted by an IBM 4341 computer. Each run required approx

imately 45 seconds of execution time. 
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CHAPTER 4 

Experimental Equipment and Procedures 

4.1 The Wave Basin 

The experiments for this investigation were conducted in the wave basin 

shown in Figs. 4.1.1 and 4.1.2. A schematic figure of the basin and the experi

mental arrangement is shown in Fig. 4.1.3. The basin was 58cm deep, 4.73m wide 

and 9.60 m long. Both the vertical walls and the bottom of the basin were con

structed of marine plywood, l.91cm (3/4in) for the sides, and 2.54cm (lin) for 

the bottom. The floor of the basin was raised 25.4 cm (10 in) above the floor of the 

laboratory on a substructure of wood sills and joists. The substructure was built 

mainly to allow for proper levelling of the basin floor. In order to ensure water 

tightness and to provide a level bottom, a layer of polyester resin approximately 

0.64 cm ( 1/4 in) thick was poured onto the basin floor. The resulting bottom was 

horizontal to within ±0.05 cm (0.02 in) . For additional details of the construction 

of this basin see Raichlen (1965). 

Also shown in Figs. 4.1.1, 4.1.2, and 4.1.3 are wave energy absorbers along the 

two sides of the basin. They were built to help simulate the open ocean by partially 

absorbing the waves which radiated from the harbour entrance out into the basin. 

Each absorber was 46 cm high, 60 cm thick, 9.15 m long, and was constructed of 

50 layers of fiberglass window screen cloth. The screens were composed of 18 

wires per inch in one direction and 16 wires per inch in the other direction, with a 
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Fig. 4.1.1 Overall view of the wave basin. The wave generator at 
the left end in this view and the model harbour is at the 
right end. 

Fig. 4.1.2 Overall view of the wave generator and wave basin. 



'~ 
~ 

-187-

--------3.50m-----

WAVE PLATE 

..,_FIXED 
WAVE 
GUIDE 

~MOVABLE 
WAVE 
GUIDE 

~WAVE 

ABSORBER 

COASTLINE 

2.5m 

I~ 

= 1.75m 

J_ 
6.8m 

0.6m_.,. 

. ,.~~·------------ A • 
HARBOR 

,.__ 

Fig. 4.1.3 Schematic figure of the wave basin and the experimental 
setup. 

9.6m 



-188-

wire diameter of 0.3 mm. Both absorbers consisted of five identical units mounted 

adjacent to each other. Each unit consisted of ten screens spaced 0.95cm (3/8in) 

apart, held together by brackets at each end. They were stretched taut by 0.95 cm 

(3/8 in) diameter stainless steel rods connected to the brackets and to a structural 

frame located outside the basin. The rods passed through "0" -ring seals mounted 

in the walls to prevent leakage. 

For the class of waves of interest to this investigation (wavelength'""' 1.5 m, 

water depth,...., 7 cm), the reflection coefficient for these wave absorbers was esti

mated to be between 30% and 60% (Lepelletier 1980). This is rather large, and 

it reflects the difficulty of constructing an efficient long wave absorber that can 

fit in a small experimental wave basin. However, only a small fraction of the en

ergy radiated from the harbour entrance returned to the harbour before the main 

reflections return from the wave plate itself. Therefore, simulation of the open 

sea condition for this investigation was limited by the distance from the wave 

plate to the harbour, relative to the wavelength of the waves generated, not by 

the efficiency of the lateral wave absorbers. The experimental conditions used for 

this investigation limited the simulation of the open sea to approximately eight 

incident wavelengths. 

4.2 The Wave Generator 

The wave generator used for this study consisted of a vertical plate, driven 

horizontally by a servo-controlled hydraulic system. The plate motion could be 

specified in an arbitrary fashion by a microcomputer. The description of this wave 

generator will be divided into four parts: the wave plate and carriage, the hydraulic 

system, the servo system, and the microcomputer. The descriptions of the wave 

plate and support structure, the hydraulics system, and the servo system will be 
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Fig. 4.2.1 View of the wave plate and support structure. 

abbreviated since they have been documented elsewhere (Goring 1978, Lepelletier 

1980). The microcomputer was designed specifically for this study, so it will be 

described in somewhat greater detail. However, for a thorough description of the 

design and operation of the microcomputer the reader is referred to Zelt (1986). 

4.2.1 The Wave Plate and Carriage 

Photographs of the wave plate, overhead support and carriage are shown 

m Figs. 4.1.1, 4.1.2, and 4.2.1. The vertical wave generating surface was an 

aluminum plate 3.60 m wide, 61 cm high, and 0.64 cm (1/4 in) thick. In order 
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to increase its stiffness, it was attached to a structural aluminum angle frame. 

This assembly was suspended from an overhead structure by three pairs of linear 

ball bushings which travelled on 3.18cm diameter (1-1/4in) hardened steel rails. 

As seen in Fig. 4.2.1, each rail was connected to two vertical channels which 

were fastened to the overhead structure using slotted holes to allow for vertical 

alignment of the rails. The overhead structure was in turn fastened to a reinforced 

concrete ceiling beam. 

The wave plate travelled between two aluminum guide walls 60 cm high, 

3.30 m long, and 0.95 cm (3/8 in) thick which were aligned parallel to the side

walls of the basin between the wave absorbers and the wave plate. These guide 

walls can be seen in Figs. 4.1.1, 4.2.1 and, schematically, in Fig. 4.1.3. One end 

of each guide plate was connected to the backwall of the basin and each plate 

was held vertical by three braces from the top of the plate to the sidewall of the 

basin. To reduce diffraction effects around the ends of the wave guides, they were 

extended 1. 75 m with movable vertical walls constructed from 16 gauge galvanized 

iron. Lepelletier (1980) reported that such an arrangement improved the quality 

of the incident wave at the harbour entrance without significantly altering the 

open sea characteristics of the wave basin. To avoid problems of leakage around 

the wave plate, it was sealed against the guide walls and the bottom of the of the 

wave basin by rubber windshield wiper blades. The mounting arrangement for the 

wiper blades is shown in Fig. 4.2.2. It consisted of two identical aluminum bars 

with grooves cut out to accept the body of the wiper blade. The blade is held in 

place by bolting the two bars together tightly. 

As seen in Fig. 4.1.2, the wave plate assembly was connected to the rod of 

the hydraulic cylinder by three arms made of aluminum tube 6.35 cm (2-1/2 in) 

in diameter with a wall thickness of 3.18 mm (1/8 in). As a safety precaution to 

guard against a malfunction of the servo-hydraulic system, the cylinder rod was 
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Fig. 4.2.3 Drawing of the safety device connecting the hydraulic 
cylinder rod to the drive arm assemby (after Lepelletier, 
1980). 

connected to the drive arm assembly via a safety device designed to rupture if it 

was subjected to excessive force. A drawing of this device is shown in Fig. 4.2.3. 

The connection was made using a shear plate 0.03 cm (0.012 in) thick, made of 

Phosphor Bronze, which was designed to break if the shear load exceeded 13300 N 

(3000lb). This was the maximum load which could be taken safely by the ball 

bearing and plate assembly. If the shear plate ruptured under an excessive load, 

the cylinder rod could slide freely inside the central arm. The shear plate did not 

rupture during this study. 

4.2.2 The Hydraulic System 

The hydraulic system is shown schematically in Fig. 4.2.4. The main 
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Fig. 4.2.5 View of the hydraulic system showing the LVDT and 
the small accumulator. 

Fig. 4.2.6 View of the hydraulic system showing the filter and the 
pressure gauge. 
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components in the system were an oil reservoir, a pump, two accumulators, a 

servo valve, and a hydraulic cylinder. The reservoir had a capacity of 151 litres 

of hydraulic oil. The pump, used to fill the accumulators with oil, was a Denison 

constant volume, axial-piston-type pump, rated at 11 litres/min at a pressure of 

approximately 20.7MPa (3000psi). It was powered by a 5.6kW (7.5hp) 1800rpm 

electric motor. Immediately downstream of the pump was a filter with a nominal 

particle diameter rating of 10 µm, followed by an unloading valve and then a check 

valve. The unloading valve directed the flow of oil back into the reservoir if the 

pressure exceeded a preset value of 17.2 MPa (2500 psi). The check valve prevented 

a reverse flow through the pump from the pressurized system when power to 

the pump was turned off. The pump supplied oil to two 37.9 litre accumulators 

which were precharged to 3.1 MPa (450psi) with nitrogen gas bladders. Their 

maximum rated operating pressure was 20. 7 MP a (3000 psi). The pressurized oil 

was supplied to the hydraulic cylinder by a servo valve (Moog Model 71-103) with 

a rated flow of 227 litres/min when supplied with 40 ma of current from the servo 

amplifier. The double ended hydraulic cylinder had a 10.2 cm ( 4 in) bore within 

which travelled a 4.45cm (1-3/4 in) diameter rod with a 40.6cm (16in) stroke. 

Immediately downstream of the servo valve, a small 5. 7 litre accumulator was 

installed to reduce pressure fluctuations caused by rapid changes of the flow rate 

through the servo valve. Finally, a check valve, which opened at 97 kPa (14 psi) 

was placed just before the reservoir to keep the return line full of oil. 

The hydraulic supply system and pump were located one floor below the 

wave basin. As a result, the accumulators and the hydraulic cylinder which drove 

the wave plate were about 5 m above the oil reservoir and pump. The hydraulic 

cylinder and rod can be seen in Figs. 4.2.5 and 4.2.6. The servo valve, with its 

electrical connection to the servo amplifier, is the object seen located on top of the 

cylinder. The small accumulator can be seen in Fig. 4.2.5. 
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4.2.3 The Servo System 

The servo system controlled the flow of the oil to the hydraulic cylinder 

and, hence, the generation of waves with the wave plate. The system consisted of 

a servo amplifier and a linear feedback device. The feedback device generated a 

voltage proportional to the instantaneous position of the wave plate carriage. The 

microcomputer supplied an accurate time varying analog control voltage to the 

servo amplifier. This voltage defined the motion of the wave plate in the following 

way. The voltage from the feedback device and from the microcomputer were of 

opposite signs and were added together by the servo amplifier to give an "error" 

voltage. The servo amplifier amplified this error signal and then supplied a current 

proportional to it to the servo valve. This current controlled the flow of hydraulic 

oil to the hydraulic cylinder, and, thus, the velocity of the hydraulic piston and 

wave plate carriage. Since the feedback loop was very stable, the gain of the servo 

amplifier could be adjusted to be large enough so that the instantaneous position 

of the wave plate was almost directly proportional to the instantaneous control 

voltage supplied by the microcomputer to the servo amplifier. In reality, the gain 

must be kept finite, and for this reason the instantaneous position of the wave plate 

cannot be exactly proportional to an arbitrary input control voltage. However, for 

the range of wave plate velocities and accelerations needed to generate waves for 

this investigation, the errors were very small. By iteratively adjusting the input 

control voltage to account for the finite response time of the servo system, these 

errors could have been eliminated. However, this was not necessary because the 

waves generated with this system were measured with a wave gauge and this 

measured wave was used in all the analysis, not the theoreti'cal wave which would 

have been generated, assuming the servo system had a perfect response. The servo 

amplifier can be seen above the microcomputer on the left in Fig. 4.2. 7. 



- 197-

Fig. 4.2.7 Servo amplifier and microcomputer (left), and Sanborn 
recorder (right) . 

The feedback device used was an LVDT (Linearly Variable Differential Trans

former) , Collins Model LMT 711 P38, shown in Fig. 4.2.5 along the side of the 

hydraulic cylinder. The LVDT generated a current directly proportional to the 

position of the wave carriage. It consisted of a primary and a secondary coil wound 

in the form of a tube inside which a ferro-magnetic core moved. The primary coil 

was supplied with 6 VAC from the servo amplifier unit and the output of the sec-

ondary coil was returned to the servo amplifier where it was demodulated into a 

direct current signal. The core was attached directly to the hydraulic piston rod. 

Hence, as the piston moved, the core moved within the coils and the demodulated 

signal from the secondary coil varied linearly with the position of the wave plate 

carnage. 
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Fig. 4.2.8 The microcomputer. 

4.2.4 The Microcomputer 

The microcomputer is the central control unit of the wave generator. The 

microcomputer generates the analog control voltage supplied to the servo ampli

fier, which determines the motion of the wave plate carriage. The trajectory (i.e., 

the position as a function of time) of the wave plate is stored in the memory of the 

microcomputer and this information is sent to the servo amplifier in real time with 

the use of a Digital to Analog (D /A) converter. A photograph of this unit is shown 

in Fig. 4.2.8 (it can also be seen in Fig. 4.2.7). Information and commands from 

the user are entered through the front panel of the unit via the switches and the 

keyboard shown in this figure. The microcomputer consists of seven main hard

ware units, which communicate over a 72-line system bus. Each of these units 
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will be described separately. There is a Central Processing Unit (CPU) board, 

memory board, programmable Input/Output (I/O) board, programmable inter

rupt controller and timer board, Digital to Analog (D /A) converter board, and an 

Erasable Programmable Read-Only Memory (EPROM) programmer board. Each 

of these units was constructed on wire wrap circuit boards which plugged directly 

into the system bus. There is also a wire wrapped keyboard/ display unit, which 

communicates to the CPU over the system bus, although it is physically interfaced 

directly to the CPU board. A block diagram of the microcomputer is shown in 

Fig. 4.2.9. All of the hardware is managed by a monitor and a control program, 

which will be discussed following the descriptions of the hardware units. 

4.2.4.1 Central Processing Unit 

The CPU was adapted from an existing design (Nosenchuck, 1982). 

It is the only bus master in the microcomputer (the only device capable of initiating 

bus cycles). It performs all memory and I/O data transfers, instruction and data 

processing, and interrupt handling. The CPU is constructed from an Intel 8085A 

microprocessor, 4 kbytes of 2716 EPROM, an Intel 8155 2048-bit static Random 

Access Memory (RAM) with I/O ports and timer chip, and various logic gates, 

latches, bus drivers, and bus transceivers. 

The 8085A is an 8-bit data, 16-bit address microprocessor and is run with a 

clock speed of 2 MHz. The 8085A transfers data over an 8-bit bidirectional 3-state 

bus which is time multiplexed with the 8 low-order address bits. Eight additional 

high-order dedicated address bits complete the 16-bit address bus. The 8085A 

can therefore directly address up to 64 kbytes of memory. The 8085A has twelve 

addressable 8-bit registers. Four of them can function only as two 16-bit register 

pairs (stack pointer and program counter). Six others can be used interchangeably 
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as 8-bit registers or as 16- bit register pairs. There is also an 8-bit accumulator 

and a flag register. 

The 8085A has five interrupt inputs which from the lowest to the highest 

priority are: INTR, RST 5.5, RST 6.5, RST 7.5, and TRAP. When either of the 

interrupts RST 5.5, 6.5, 7.5, or TRAP is recognized, program execution is trans

ferred to fixed low memory addresses. The TRAP interrupt is used for single step 

program execution from the keyboard/ display interface. The RST 7 .5 interrupt 

is directly wired to the key I RST 7.5 j (see Fig. 4.2.8) on the front keyboard and 

is used to transfer program execution to the monitor from the software routine 

which the microcomputer executes while waiting for commands from the bank of 

white momentary switches. The RST 6.5 interrupt is not used. The RST 5.5 

interrupt is used by the keyboard/display interface to interrupt the CPU when a 

key closure from the keyboard is detected. The INTR interrupt is very different 

from the other interrupts. When action is requested by pressing one of the 24 

white momentary switches, an INTR interrupt is requested by the programmable 

interrupt controller. When it is recognized by the 8085A, the ·interrupt controller 

then places a call instruction and then a two-byte address onto the bus. When this 

instruction is executed by the 8085A, program execution is then transferred to the 

particular software routine located at that address to provide the specified action. 

Hence, pressing one of the white switches will normally cause program execution 

to transfer to a corresponding software service routine. The actual process is 

somewhat more complicated and will be explained more fully when the operation 

of the interrupt controller is covered. 

Four kbytes of 2716 EPROM are provided at memory locations 0000 H to 

OFFF H (H ~Hexadecimal). It is used to store the software which controls the 

operation of the microcomputer. The first one kbyte (0000 H to 03FF H) contains a 

monitor program that contains utility routines to perform many simple operations 
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such as front panel keyboard/display scanning and single step program execution. 

It also allows the user to examine and modify memory locations and 8085A internal 

registers. The final three kbytes of EPROM are used to store the software which 

the microcomputer executes to perform each of its specialized tasks after one of 

the white switches is pressed. This software will be discussed later after all of the 

hardware has been described. 

The 8085A is also connected to an 8155 chip which contains 256 bytes of RAM 

(address locations from 2000 H to 20FF H), three general purpose I/O ports (with 

port numbers 21 H, 22 H and 23 H), and a 14-bit programmable counter/timer. 

The RAM is used for scratchpad memory and various other purposes such as 

storing default values for quantities which may be modified by the user. The 8-bit 

I/O ports 21 Hand 22 Hare used to read the status of the 16 toggle switches. Each 

of the switches form one bit of an 8-bit byte. I/O port 23 H is not used in the 

present configuration. The programmable timer/ counter is used by the monitor 

for the single step routine to interrupt the processor following the execution of 

each instruction. 

Apart from the chip select decoder circuitry the rest of the CPU board con

tains system bus interface circuitry. All of the devices on the system bus require a 

demultiplexed address bus. Therefore, an Intel 8212 I/O port is used to latch the 

lower eight bits of the address/data bus from the 8085A when the Address Latch 

Enable (ALE) is asserted by the 8085A. The high-order address byte is buffered 

by an 8212. The data lines and the 8085A control signals are buffered by Intel 

8216 bidirectional bus transceivers before being sent to the system bus. 

4.2.4.2 Keyboard and Display 

The keyboard/display unit is a single board mounted on the front 
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panel of the microcomputer and contains a 24-key keyboard, a six-digit general 

purpose hexadecimal LED display, plus the keyboard/display scanning and driving 

circuitry. It was built from an existing design (Nosenchuck, 1982). It interfaces 

directly with the CPU board. 

The keyboard is comprised of 16 hexadecimal data entry keys and 8 com

mand keys. Two of the command keys, I RESET I , and I RST 7.51 (see Fig. 4.2.8) 

are connected directly to the CPU (after passive debouncing). The other keys 

are scanned for key closure by an Intel 8279 programmable Keyboard/Display 

Interface (KDI) chip. 

The keyboard is arranged in three logical rows and eight columns (the last 

row has only six columns due to the hard connection, directly to the CPU, of 

the two keys just mentioned). The 8279 KDI generates row scan signals with a 

3-to-8 line decoder (74LS156). When a key closure (debounced by the KDI) is 

detected by one of the eight column return lines, the KDI interrupts the 8085A 

via the RST 5.5 interrupt. The code of the detected key is passed to the 8085A 

during the keyboard interrupt service routine stored in the monitor. The monitor 

program then decides what action to take, based on which key was struck. 

The 8279 KDI is also used to output hexadecimal information to a 6-digit 7-

segment LED display. Data are multiplexed to the LED display digits via two 4-bit 

KDI ports. The output ports are synchronized to the decoded line scan signals 

(shared by the keyboard), which are used to multiplex the 7-segment display data 

to the individual LED displays. The 6-digit hexadecimal display can be used to 

display memory addresses, the data stored at these locations, and the contents of 

the 8085A internal registers. 
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4.2.4.3 Memory 

The memory board contains sixteen kbytes of M58725P static RAM 

(memory locations 4000 H to 7FFF H) and eight kbytes of EPROM (memory loca

tions DOOO H to EFFF H). The EPROM consists of four 2716 chips mounted in zero 

insertion force sockets to facilitate entry and removal. In the present configura

tion the two EPROM's at memory locations EOOOH-E7FF Hand E800H-EFFF H 

can be used to store two separate 1024-point wave plate trajectories or a single 

2048-point trajectory. The RAM can also be used to store a wave plate trajectory 

of up to 8192 points. The trajectory is computed on the W .M. Keck Laboratory 

PDP 11/24 or PDP 11/60 computer and then sent to the microcomputer unit 

from the PDP 11/60 (or any other computer with a DRll-K compatible parallel 

interface), where it is placed in RAM. This transmission process will be described 

later. After the trajectory is placed in RAM, it can be used to control the motion 

of the wave plate. When the power to the microcomputer is switched off, this 

trajectory is lost. However, if this trajectory is needed for future use, the EPROM 

programmer can be used to burn the trajectory into one or more 2716 EPROM's, 

which can then be placed into the zero insertion force sockets for later use. 

4.2.4.4 Programmable Input/Output Unit 

The programmable I/O board performs most of the digital input and 

output to and from the microcomputer. The board holds six 8255A Programmable 

Peripheral Interfaces (PP I's) which will be denoted PPI 1 to PPI 6. Each con

tains 24 programmable I/ 0 pins which can be software configured to operate in a 

number of different modes, usually as three groups of 8-bit memory mapped I/O 

ports denoted as ports A, B and C. 

The I/O pins of PPI 1, PPI 2, PPI 3, and port C of PPI 6 are all configured as 
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8-bit input ports to read the status of the thumbwheel switches seen on the right 

side of the microcomputer in Fig. 4.2.8. The data from the thumbwheel switches 

are read in BCD so that each 8-bit port is capable of reading two decimal digits 

from the thumbwheel switches. The flashing lights on the 24 white momentary 

switches are fully software controlled. The 24 I/O pins of PPI 4 are configured in 

three 8-bit output ports where each bit is used to enable or disable the flashing of 

one of these lights. 

PPI 5 and sixteen of the I/O pins of PPI 6 are used to transfer data between 

the microcomputer and the laboratory PDP 11/60 computer. With the addi

tion of some circuitry external to the PPI's on the programmable I/O board, the 

microcomputer is interfaced directly to the PDP 11/60 computer through its ex

isting DRll-K parallel interface. This allows 16-bit words to be transferred either 

from the microcomputer to the PDP 11/60 or from the PDP 11/60 to the micro

computer over separate parallel lines. Data transfer is performed asynchronously, 

using handshaking signals. For each data transfer from the PDP 11/60 to the 

microcomputer the following sequence of events occurs. A 16-bit data word is 

placed on the output lines of the DRll-K. When the voltages on these lines have 

stabilized, the DRll-K issues an Internal Low Data Ready signal in the form of 

a zero voltage pulse lasting for a duration of no greater than 0.5 µs, which tells 

the microcomputer that a word is present to be read. When this handshake signal 

is received by the programmable I/ 0 board, it is used to latch the lower 8 bits of 

the word by an 8212 I/O port and also to trigger a one-shot multivibrator, which 

is wired directly to the STBA input of PPI 5. This strobes the higher 8 bits of 

the word into the input latch of port A of PPI 5 and also causes PPI 5 to assert 

the IBF A (Input Buffer Full) line and the INTRA (interrupt request) line. The 

INTRA signal is sent to the programmable interrupt controller and timer board 

via the IRA line of the main system bus. This causes an interrupt request to be 
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issued to the CPU, whereupon execution is vectored to an interrupt service routine 

which reads and stores the word that is being transferred from the DRll-K. The 

lower 8 bits of the word are read from the 8212 I/ 0 port by port A of PPI 6, and 

the higher 8 bits (which were latched into port A of PPI 5 by the STBA signal) 

are read by port A of PPI 5. Meanwhile, the IBF A signal is used to trigger a 

one-shot multivibrator to send out a short voltage pulse on the External Data 

Accepted line of the DRll-K. This signals the DRll-K that the word being sent 

to the microcomputer has been captured. The DRll-K is then free to output the 

next word, completing the cycle. 

Data are transferred from the microcomputer to the DRll-K in a similar 

way. For each 16-bit word transferred from the microcomputer to the PDP 11/60, 

the following sequence of events occurs. When the previous word sent to the 

PDP 11/60 has been accepted by the DRll-K, it issues a pulse of zero voltage 

on its Internal Data Accepted line lasting for at least 5 µs . This signal tells 

the microcomputer that it is free to send the next word of data. When this 

signal is received by PPI 5, it asserts the INTRB line. This signal is sent to the 

programmable interrupt controller and timer board via the IRB line of the main 

system bus. This causes an interrupt request to be issued to the CPU. Execution 

is then transferred to an interrupt service routine which outputs the next word to 

be sent to the PDP 11/60. The low-order 8-bit byte is written out to port B of 

PPI 6. The high-order 8-bit byte is then written out to port B of PPI 5. This 

causes the voltage to go low on the OBFB (Output Buffer Full) line of PPI 5. 

This transition triggers a one-shot multivibrator which sends a zero voltage pulse 

to the External Data Ready input of the DRll-K to inform the DRll-K that 

there is a word present to be read. After the DRll-K reads this word, it issues a 

low voltage pulse on its Internal Data Accepted line, completing the cycle. 

As just mentioned, the INTRA and INTRB signals are used to generate 
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interrupts to transfer execution to service routines to read or write data words from 

or to the PDP 11/60. These signals are not sent directly to an 8259 programmable 

interrupt controller but to an 8253 programmable interval timer, which delays the 

signals to the 8259 for approximately 1 ms . This slows the data transfer rate 

between the microcomputer and the PDP 11/60, so that the resources of the 

PDP 11/60 will not be monopolized by the microcomputer when data transfers 

are being made. However, it still allows a data transfer rate of approximately one 

thousand 16-bit words per second. 

4.2.4.5 Programmable Interrupt Controller and Timer Unit 

This board is used to coordinate all of the CPU interrupt requests 

via the INTR line of the main system bus and to provide all of the hardware timing 

control signals apart from the system clock signal CLK. The timing is performed 

by five 8253 Programmable Interval Timers (PIT's). Each timer contains three 

independent general purpose 16-bit counters, each of whose modes of operation 

are software programmable. These timers are used to generate interrupt requests 

to the interrupt controller in order to: 

1) output a word to the D /A converter to control the motion of the wave 

plate 

2) return the wave plate to its initial position in the auto-return mode 

3) read a word from and write a word to the lab PDP 11/60 computer 

4) program a byte of data into a 2716 EPROM by the EPROM programmer 

Several of the timers are not used at the present and so may be dedicated for 

future uses. 
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Interrupt requests are handled by five 8259 Programmable Interrupt Con

trollers (PIC's). One PIC is used as a master, leaving four cascaded slave con

trollers. An interrupt initiated through these controllers is used to transfer pro

gram execution to one of the service routines in the main control program. The 

sequence of events to accomplish this is as follows: 

1. One of the Interrupt Request lines (IRO-IR7) of a slave controller is raised 

high. As the names of these lines suggest, this is done when an interrupt 

is necessary to transfer execution to one of the service routines. 

2. If this interrupt has not been masked (disabled), the slave then sends an 

INT to the master controller, which in turn sends an INT to the CPU 

via the INTR line of the main system bus. This tells the CPU that an 

interrupt is being requested. 

3. As soon as the CPU can service this request, it responds with an INTA 

(INTerrupt Acknowledge) pulse. 

4. Upon receiving the INTA from the CPU, the master controller releases a 

CALL instruction code (11001101) onto the 8-bit data bus. 

5. This CALL instruction initiates two more INTA pulses from the CPU. 

6. These two INTA pulses enable the slave controller that is requesting the 

interrupt to release a preprogrammed subroutine address (corresponding 

to the service routine) onto the data bus. The lower 8 bits of the address 

are released at the first INTA pulse, and the higher 8 bits of the address 

are released at the second INTA pulse. 

7. The CALL instruction is executed and program execution is transferred 

to the specified service routine. 
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All of the interrupts are assigned a priority. Hence, two or more interrupt requests 

can occur simultaneously. The highest priority interrupt is acknowledged first, 

then the next highest, etc. 

This approach to executing the service routines allows more than one oper

ation to be performed "simultaneously" by the microcomputer. The microcom

puter, of course, can execute only one program at any instant in time but by using 

the interrupt controller, the CPU can quickly jump between different interrupt 

service routines and appear to be performing more than one job simultaneously. 

4.2.4.6 Analog Output 

The position of the wave plate is determined by the analog voltage 

supplied to the input of the servo amplifier. In order to convert the digital repre

sentation of the wave plate trajectory stored in the memory of the microcomputer 

to an analog signal, a 12-bit D /A converter is used. An 8255A PPI is used to 

provide the digital input to a DAC-HZ12BMC D /A converter manufactured by 

Datel-Intersil. Port A and the upper four bits of Port C of the PPI are used to 

output the 12 bits of data each time the D /A output interrupt service routine 

is executed. For a typical wave plate trajectory, a new voltage is output every 

0.5-2 rns, depending on the number of points in the trajectory and the duration 

or period of the wave plate motion. 

4.2.4. 7 EPROM Programmer 

A wave plate trajectory or a portion of executable code can be pro

grammed into one or more 2716 EPROM's using the EPROM programmer board. 

Apart from a small amount of support circuitry this board contains an 8255A 

PPI connected to a zero insertion force socket. The three ports on the 8255A are 
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used to output the address, data, and control signals necessary to program a 2716 

EPROM placed in the zero insertion force socket. 

4.2.4.8 Control Software 

There are two separate software packages that run on the micro

computer. The first package is a one kbyte monitor program. The monitor is 

a collection of utility routines used to perform many simple operations such as 

front panel keyboard/ display scanning and single step program execution. It also 

allows memory locations and 8085A internal registers to be examined and modi

fied. Since this software is not central to the use of the microcomputer as a wave 

maker controller, and because its operation is transparent to the user, it will not 

be described in detail here. The second package is the wave generator control pro

gram. It consists of numerous service routines that coordinate the hardware units 

throughout the various operations associated with the wave generation process. 

This software will be described briefly in this section. 

When power to the microcomputer is switched on via the line switch at the 

rear of the unit, a hardware reset occurs and program execution is transferred to 

location 0000 H in the monitor program. The monitor performs several initializa

tion operations and then transfers execution to the wave generator control program 

at location (address) 0400 H. This portion of the control program initializes and 

programs the 8259 programmable interrupt controllers, the 8255A programmable 

peripheral interfaces, the 8155 RAM;I/O;timer, and the 8253 programmable inter

val timers for subsequent use. The user need not be aware of the many operations 

in this procedure since it is all done automatically when the unit is powered up. 

After the microcomputer has been successfully started up it then executes a four 

step endless loop starting at locations 0614 H. This is the code that the micro-
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computer executes when not performing any other special tasks. When the CPU 

receives an interrupt request, control is transferred to the appropriate interrupt 

service routine. After this routine is executed, program execution returns to this 

endless loop. 

The control program, that includes software to allow a file containing a wave 

plate trajectory, can be transferred from the lab PDP 11/60 computer to the mi

crocomputer. This operation is initiated when the white button J READ FILE I 

is pressed on the front panel of the microcomputer (see Fig. 4.2.8). The appro

priate interrupts to enable the data transfers are then unmasked, and execution is 

returned to the endless loop. Interrupts are then generated approximately every 

1 ms to execute the service routine, which reads one word of the file being trans

ferred and then stores it in RAM. This continues until the entire file is received. 

With sixteen kbytes of RAM, the trajectory can be up to 8192 16-bit words long. 

After the file is send to the microcomputer, it is then automatically sent back to 

the PDP 11/60 where it is compared against the copy of the file just sent to the 

microcomputer to check whether there were any transmission errors. 

Software is also provided to allow a wave trajectory or a block of executable 

code to be programmed into a 2716 EPROM so that it can be retained for future 

use. For a description of this software, see Zelt (1986). 

The bulk of the code in the wave generator control program is dedicated 

to controlling the motion of the wave plate carriage. A wave plate trajectory 

is stored in the microcomputer as a sequence of integer numbers (ranging from 

0-4095) stored in contiguous memory locations. These numbers are output, in 

sequence, to the D /A converter in order to supply a time-varying analog control 

voltage to the servo amplifier (see Fig. 4.2.4). The wave plate trajectory can 

be stored in either RAM or EPROM. The rate at which these numbers are sent 

to the D /A converter can be chosen by the user by entering the time interval, 
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rn microseconds, in the thumbwheel switches labelled "D /A~ T" in Fig. 4.2.8. 

In addition, the number of wave periods to be generated can be entered in the 

thumbwheel switches labelled "# OF PERIODS." 

The waveplate is set in motion by pressing the white button I START j . Before 

the motion is actually initiated, the microcomputer performs a test on the selected 

wave trajectory. Each successive point in the trajectory is checked to see that it 

does not differ widely from the previous value. In addition, the D /A ~ T value 

entered in the thumbwheel switches is checked to see that it is not too small. Both 

of these conditions could cause a violently quick motion of the wave plate carriage, 

which could damage the wave generator equipment or persons nearby. If either of 

these conditions is found, the wave plate is not started, the user is informed of the 

condition via the front panel LED display, and program execution returns to the 

endless loop to await further instructions. However, if the trajectory is determined 

to be safe, then a programmable timer/ counter is loaded with the D /A ~ T value 

entered on the thumbwheel switches, the appropriate interrupt which allows data 

to be written out to the D /A converter is unmasked, and then control is transferred 

back to the endless loop routine. These tests are performed very quickly so that 

the user will not notice the slight delay necessary to perform them before the wave 

plate is started in motion. 

The timer/ counter then generates interrupt requests to the interrupt con

troller every "D /A~ T" microseconds. When each interrupt is serviced, the next 

word in the wave plate trajectory is written out to the D /A converter. When the 

last point in the trajectory is reached, it is checked against the first point to check 

that the two do not differ widely. If they do, then the wave plate is stopped. If 

they do not, then another period is generated, provided more than one period was 

requested. Therefore, if the trajectory does not correspond to oscillatory motion, 

the user need not worry that the wave plate will slam back to its initial position 
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after it is fully extended, even if the number of periods requested is greater than 

one. An example of such a trajectory is one that will generate a solitary wave. 

After the requested number of periods has been generated then the wave plate is 

stopped. 

The motion of the wave plate may be stopped by the user at any time before 

the requested number of periods has been completed simply by pressing the button 

I STOP I . The wave plate will not come to an immediate stop but will complete 

the present period of motion and stop when it is finished. 

If the wave plate motion is not oscillatory (such as the plate motion which 

generates a solitary wave), then the plate must be returned to its starting point 

after the wave is generated. This can be done by pressing the button [RETURN I . 
The wave plate then slowly ramps back to its initial position. One can also choose 

to let the microcomputer return the plate automatically. After the wave has been 

generated, the microcomputer checks to see if the toggle switch labelled "AUTO 

RET ." is turned on. If it is, then a programmable timer/ counter is loaded with 

a predetermined value to provide a delay of approximately 17 seconds. After this 

time period the wave plate is then automatically returned to its initial position. 

4.3 The Harbour Model 

A lucite harbour model with variable dimensions was used for this investiga

tion. It was rectangular in planform and the still water depth decreased linearly 

from the entrance to the shoreline, as can be seen in Fig. 4.3.1. A "U" shaped 

outer frame composed of three lucite walls surrounded the harbour to reinforce the 

rigidity of the model. The harbour sidewalls consisted of two parallel walls 178 cm 

long, 44 cm high, and 1.27 cm (1/2 in) thick, connected to the backwall of the outer 

U-frame. The distance between these side walls could be varied in a continuous 
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Fig. 4.3.1 The lucite harbour model. 

manner. The sloping bottom of the harbour consisted of a single piece of 1.27 cm 

(1/2 in) thick lucite. One end of the piece of lucite forming the bottom was ex

tended with a piece of 1.59 mm (1/16 in) thick stainless steel plate, sharpened to 

a knife edge along its free end. This permitted the harbour bottom to meet flush 

with the floor of the wave basin. The plate can be clearly seen at the harbour 

entrance in Fig. 4.3.1. The harbour bottom was placed in its proper position, 

and then the harbour sidewalls were pressed against it. The two side edges of the 

lucite bottom and its stainless steel end were lined with weather stripping foam to 

eliminate leakage. The injection of dye near these edges showed that there was, in 

fact, no leakage. A series of eight harbour bottoms were used in the experiments, 

each with a slightly different width, varying from 2.85 cm to 11.0 cm wide. Hence, 
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the harbour width was varied in discrete steps, although its length could be varied 

continuously simply by varying the angle of the harbour bottom. The entrance to 

the harbour was fully open for all the experiments. 

A small amount of dissipation due to capillary hysteresis occurs from wave 

action on solid surfaces (Miles 1967). This effect is particularly noticeable for 

surfaces that are not wetted by the liquid (e.g., lucite and distilled water). This 

effect can be minimized by adding a small amount of wetting agent to the liquid 

(Keulegan 1959). For this investigation, a small amount of Photo-Flo 200 solution 

(manufactured by Kodak) was added to the water before each experiment. 

The harbour model was designed so that it would fit into a gap in a false 

wall simulating a perfectly reflecting coastline (see Fig. 4.1.3). The coastline was 

parallel to, and about 7 m from, the wave plate. The coastline was 40 cm high 

and made of 0.95 cm (3/8 in) thick lucite, mounted on a frame of galvanized iron 

angles. There were two identical walls, one on either side of the harbour entrance. 

Lucite spacers, 0.95 cm (3/8 in) thick, 2.54 cm (1 in) wide, and 45 cm high, were 

placed between each screen of the lateral wave absorbers, in line with the coastline. 

They are represented in Fig. 4.1.3 by the dashed lines passing through the wave 

absorbers in line with the coastline. These extended the coastline to the outer 

walls of the wave basin and prevented wave energy from penetrating the absorbers 

into the still water region behind the coastline. 

4.4 Measurement of the Water Surface Elevation 

A resistance wave gauge was used to measure the wave amplitude in the har

bour for each of the experiments. A photograph of a typical wave gauge used can 

be seen in Fig. 4.4.1. The wave gauge consisted of two parallel stainless steel rods 

0. 7 4 mm in diameter, 9 cm long, and spaced 0.5 cm apart. The rods had sufficient 



-216-

Fig. 4.4.1 A wave gauge. 
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Fig. 4.4.2 Circuit diagram for the wave gauge (after Raichlen, 
1965). 
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stiffness to allow them to be supported at only one end; the other ends penetrated 

the free surface. The wave gauge was used in conjunction with a Sanborn (150 se

ries) recorder (see Fig. 4.2. 7). A Sanborn Carrier Preamplifier supplied a 2400 Hz, 

4.5 volt excitation for the gauge and also received the output signal from the wave 

gauge which, after demodulation and rectification, was displayed on the recording 

unit. The circuit diagram for the wave gauge is presented in Fig. 4.4.2. The im

mersion of the wave gauge in water causes an imbalance in the full bridge circuit 

and induces an output voltage proportional to the change of depth of immersion 

of the wave gauge relative to its balanced position. 

In addition to the recording obtained from the Sanborn recorder, the demod

ulated and rectified signal from the wave gauge was recorded by the laboratory's 

PDP 11/60 computer with an Analog-to-Digital (A/D) converter (the same com

puter used to send the wave plate trajectory to the microcomputer). The signal 

from the Sanborn recorder still retained some of the 2400 Hz excitation and its 

voltage was too high to be recorded directly by the A/D converter. Therefore, 

the voltage had to be reduced and the signal had to be filtered to eliminate this 

electrical noise. In addition, since the A/D converter was located several hundred 

feet away from the Sanborn unit, it was necessary to convert the signal into a dif

ferential signal which was transmitted to the PDP 11/60 computer via a twisted 

pair of cables. At the computer the signal was converted back to a single ended 

signal referenced to the user's ground potential. By the use of this technique to 

transmit the signal, noise picked up during transmission automatically cancelled, 

since all the information was encoded into the dzff erence in the transmitted po

tentials. For a detailed description of this additional signal conditioning circuitry, 

see Lepelletier (1980). 

The wave gauge was attached to a remotely controlled calibration device 

shown in Fig. 4.4.3, which consisted of a rack and pinion driven by a synchronous 
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Fig. 4.4 .3 Wave gauge and calibration device. 

Fig. 4.4.4 Wave gauge master control unit. 
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motor. The wave gauge was attached to the rack with its weight counterbalanced 

by a lead weight. The synchronous motor was connected to a master control unit 

shown in Fig. 4.4.4, which consisted of a synchronous generator driven by a pinion 

and the rack of a point gauge. Therefore, when the point gauge was moved, a 

current was generated and relayed to the motor, which moved the wave gauge 

vertically in a one-to-one ratio. This arrangement allowed a quick calibration of 

the wave gauge before each run. To record the calibration data with the A/D 

converter of the laboratory's PDP 11/60 computer, the motion of the rack of the 

point gauge was converted to an electrical signal by a multiturn potentiometer 

and constant voltage signal. 

4.5 Experimental Procedure for Data Acquisition 

The computer aided A/D data acquisition system made it possible to calibrate 

the wave gauge, record the wave amplitudes, and then reduce the data very quickly 

and accurately. Calibration of the wave gauge was performed before every run. 

Each experiment consisted of three consecutive steps: 

(1) Calibration Step: The wave gauge was placed in its equilibrium position 

and the bridge circuit was balanced. Then the wave gauge was immersed down

ward a distance greater than the maximum positive wave height expected. The 

gauge was then raised slowly by manually turning the wheel on the point gauge 

of the master unit until the wave gauge was raised above its equilibrium position 

a distance greater than the maximum negative wave height expected. During this 

phase the voltages from both the wave gauge and the potentiometer of the master 

unit were recorded with the A/D system of the PDP 11/60. This information was 

sufficient to calibrate the wave gauge after the experiment was finished. Before the 

experiment was started, the wave gauge was returned below its equilibrium posi-
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tion and then raised back up again precisely to that level to avoid gear backlash 

in the synchronous motors. 

(2) Run Step: The microcomputer was activated to generate the incident 

waves, and then the A/D data acquisition on the PDP 11/60 computer was started 

to record the voltage from the wave gauge. 

(3) Data Reduction Step: A software package was run on the PDP 11/60 

computer to calibrate the wave gauge and reduce the voltages recorded during 

the experiment to wave amplitudes. The calibration routine fitted a fourth degree 

polynomial to the calibration curve of the wave gauge. Very good agreement 

was obtained between the measured calibration curve and the fitted curve. The 

correlation coefficient was typically 0.998 or greater. 

Since the last two steps could be performed very quickly, usually within two 

to three minutes, there was no need to recalibrate again after the experiment. 
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CHAPTER 5 

Comparison of Results of the Finite Element 

Model with Those from Theory and Experiments 

In order to test the validity of the finite element model, it is important to 

compare its predictions to both theoretical and experimental results. Theoret

ical solutions for many different conditions often can be obtained, allowing one 

to isolate individual aspects of the flow. In addition, a parametric analysis is 

much easier to conduct theoretically since physical experiments are, in general, 

very time-consuming. Unfortunately, theoretical solutions cannot include all of 

the real fluid effects found in nature; therefore, comparison with experimental 

data is also important. From such a comparison one can determine whether the 

approximations made to develop the numerical model were valid. One can also 

determine which real fluid effects are not important and therefore need not be 

modelled. 

5.1 Comparison With Theory 

In this section the finite element model will be compared to three different 

theoretical solutions. The first comparison will primarily investigate the model's 

capability to compute the nonlinear effects associated with wave runup (for non

breaking waves). The second comparison will validate the model's ability to treat 

nonhydrostatic vertical fluid accelerations. Such accelerations are responsible for 

frequency dispersion. The final comparison will focus on the harbour resonance 
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Fig. 5.1.1 Finite element mesh used for modelling the runup of a 
plane wave on a linearly sloping beach. 

process for three harbours with very different bathymetries. This comparison will 

test the model's ability to handle different bathymetries, and it will also be use-

ful to investigate some of the numerical problems associated with modelling flow 

through a harbour entrance. 

5.1.1 Comparison With a Nonlinear Theoretical Solution 

Exact solutions to nonlinear wave theories are rare, especially if the 

fluid boundaries are free to deform with the runup and rundown of waves on a 

sloping boundary. For that reason the Carrier-Greenspan solution of Section 3.3 

is remarkable. It is the ideal solution to test the finite element model's ability to 

handle the nonlinear aspects of wave runup, since this aspect can be isolated and 

all other real fluid effects eliminated from the problem. 

Simulations were performed using the finite element mesh shown in Fig. 5.1.1. 

Since the finite element model treats two horizontal dimensions, a 2-D mesh was 
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used even though the problem involves only one horizontal coordinate. Eight node 

quadrilateral elements were used very successfully although linear elements also 

worked well. Since shoaling causes the local wavelength scale to decrease as a 

wave approaches the shoreline, the nodal spacing was decreased in this direction 

accordingly. The nodal spacing was chosen to vary roughly with the square root 

of the depth, so that there would be no time step penalty due to the smaller 

node spacing near the shoreline. The mesh consisted of 57 elements. The same 

nondimensional variables as given by Eq. (3.3.6) in Section 3.3 were used for the 

finite element numerical computations. For convenience they are repeated here: 

x* 
x= -

£ 

h* 
h= - =x 

</>£ 

t* 
t= -

T 

u* 
u=

uo 

h* 
h= - =x 

¢£ 
{5.1.1) 

Also, the same length scale, £ = <f>g /w* 2 , was chosen. Since the same depth 

scale (i.e., ¢£) was used to nondimensionalize the water depth, h*, as well as 

the wave height, r(" , the nonlinear parameter o: is equal to unity in the finite 

element model. The importance of the nonlinear terms is governed by the wave 

amplitude parameter Ao defined in Eqs. (3.3.37) and {3.3.39), and which appears 

in Eq. (5.1.2) below. As shown in Section 3.3 the steady-state solution exists 

only over the range 0 ::::; Ao ::::; 1 . The shoreline was located at a = 0 and the 

offshore boundary at a = amax = 95.0. The nodal spacing at the shoreline was: 

Aa = 0.229, and at the offshore boundary was: Aa = 1.62. The longshore nodal 

spacing was: Ab = 2.0. A time step of At = 0.05 was chosen. At time t = 0 the 

fluid was quiescent. For t > 0 the wave amplitude: 

(5.1.2) 

was applied at the offshore boundary. Here lR refers to the real part of the quantity 
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enclosed within the braces. The phase <P was chosen so that 17 = 0 at t = 0. 

The exponential factor was included so that the particle accelerations would be 

zero at t = 0. Equation (5.1.2) represents a plane wave normally incident to the 

shoreline. This wave will reflect from the shore ( a = 0) and propagate back toward 

the offshore boundary (a = amax), setting up a standing wave system. Since the 

boundary condition given by Eq. (5.1.2) will not permit this reflected wave to pass 

freely through the offshore boundary, the reflected wave will be re-reflected back 

into the computational domain, changing the standing wave system. Thus, the 

simulation must stop before this "re-reflected" wave contaminates the region of 

interest. 

Since the distance to the offshore boundary, a = amax , is large, the amplitude 

of the incident wave given by Eq. (5.1.2) is very small; hence, nonlinear effects are 

negligible in the offshore region. Although the boundary condition represented 

by Eq. (5.1.2) is a solution to the li'near shallow water equations, it will set up 

a standing wave which is a solution to the nonlz'near shallow water equations 

corresponding to the potential of Eq. 3.3.36 (for e = 1). 

Figure 5.1.2a shows the elevation of the shoreline as a function of time as 

computed by the finite element model for six different values of the amplitude 

parameter Ao . The lowest amplitude runup record corresponds to Ao = 0.2 

and in order of increasing amplitude the other records correspond to Ao = 0.5, 

0.8, 0.9, and 1.0. The dashed curve corresponds to Ao = 1.15. The shoreline 

is quiescent until the wave arrives at about t = 19. The re-reflected wave, i.e., 

the wave reflected from the outer computational boundary, returns at about three 

times this value: about t = 57. Its return can be noticed by the slightly decreased 

height of the last runup crest. The numerical solution for the case Ao = 1.15 

(dashed curve) could only be computed until approximately t = 23.5, at which 

point the wave had reached the point of maximum rundown. At this time the 
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quantity 1 + a \7 · x computed for the shoreline element was less than a small 

tolerance parameter (which had been arbitrarily set to 0.01 in the numerical 

model). Since 1 + a\7 ·X is the first order approximation for the Jacobian of the 

transformation between the Lagrangian and the Eulerian frames (see the simple 

derivation of the nonlinear long wave Lagrangian equations in Appendix A), this 

means that the water surface is almost vertical and is trying to fold over on itself 

to become multivalued. Since the quantity 1 + a\7 ·x appears in the denominator 

of the equation to determine the water surface displacment (Eq. 3.4.2), the finite 

element model calculations had to be stopped. Theoretically, this should have 

occurred for Ao = 1. , but since the finite element mesh has a finite resolution at 

the shoreline, it is difficult to compute these large gradients accurately. In fact, 

the numerical solution could be computed even for the case Ao = 1.1. If a finer 

mesh were used, then presumably the shoreline gradient would be more accurate 

and the numerical solution would break down closer to Ao = 1. 

Two periods of the motion in Fig. 5.1.2a from about t = 39. to t = 52. are 

compared to the theory of Carrier & Greenspan (1958) (Section 3.3) in Fig. 5.1.2b. 

This plot is similar to Fig. 3.3.5a, where only the theory is shown. Since the 

Carrier-Greenspan solution is a steady-state solution, the phase of the theoretical 

result is arbitrary. The theoretical results were shifted in time to line up with the 

finite element results. The agreement is very good even for the case Ao = 1 . That 

is quite remarkable. 

Figure 5.1.3a shows both the Lagrangian and the Eulerian surface elevations 

for the case Ao = 0.5 associated with the two nodes located at a = 0.688, very 

near the shoreline. The Lagrangian surface elevations are computed directly by 

the finite element model (FEM) and the Eulerian elevations are computed from 

these Lagrangian elevations using the procedure of Section 3.4.7. The Eulerian 

elevations are the ones that would be measured by a wave gauge fixed at a = 
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0.688 , and the Lagrangian elevations are the ones that would be measured by a 

wave gauge that moved with the particle which at time t = 0 was located at 

a = 0.688. Notice there is a large difference between the two since the Lagrangian 

fluid particle associated with the node at a = 0.688 moves sufficiently far from 

its initial position so that the instantaneous wave heights at these two points are 

quite different. The greater the nonlinear parameter Ao, the greater the difference 

will be between these two descriptions. Figure 5.1.3b compares two periods of the 

motion in Fig. 5.1.3a from about t = 39. to t = 52. with the theoretical Eulerian 

result. Notice that the agreement between theory and the numerical Eulerian 

result is very good except near the times of maximum rundown. The reason for 

this is related to the fact that the curvature of rJ in the nearshore region is greatest 

at the time of maximum rundown (see Fig. 3.3.4a). Therefore, near these times it 

is most difficult to numerically differentiate rJ to obtain an accurate estimate for 

'lry. By virtue of Eq. (3.4.78) it is also most difficult to obtain accurate values 

for Xtt at these times as well. Since "V'ry or Xtt are needed to compute 'r/E using 

Eqs. (3.4.77) or (3.4.79), respectively, these estimates of rJE will also be the least 

accurate at the times of maximum rundown. Hence, the discrepancy between 

the theoretical Eulerian result and the numerical result at the times of maximum 

rundown is due to errors introduced in the transformation from the Lagrangian to 

the Eulerian description as described in Section 3.4. 7, not in the quantities that 

are directly computed by the finite element model in the Lagrangian description. 

Figures 5.1.4 & 5.1.5 compare the wave profiles as predicted by the theory 

of Carrier & Greenspan (1958) and by the finite element model. These figures 

are similar to Figs. 3.3.3 & 3.3.4 where only the theory is shown. The theory 

is plotted for the times t = i7f'/ 4, i = 0, 1, 2, 3, 4. The numerical results are 

plotted for the times: t = 39.1, 39.9, 40. 7, 41.5, & 42.25. If these values are offset 

by the first time value, t = 39.9, they become: t = 0., 0.8, 1.6, 2.4, & 3.15. 
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Note that these values are not equal to i7r / 4 for any i, but they are the closest 

possible values to compare with theory, given the discrete time step f::.t = 0.05 , 

since temporal interpolation was not performed. Hence, most of the error in 

Figs. 5.1.4 & 5.1.5 is due to the fact that the theoretical and numerical results are, 

in fact, being compared at slightly different values of the time t. Nevertheless, the 

agreement is very good. By following the symbols plotted for the finite element 

solution, one can get an idea of the trajectories of the particles throughout the 

fluid, since those symbols indicate the surface elevation at the average location of 

the fluid particles whose horizontal coordinates coincided with the node points at 

time t = 0. Up until Ao = 0.8 the numerical results are perfectly well behaved. 

However, for Ao = 0.9, one can see a slight oscillation in Fig. 5.l.5a, with a 

wavelength roughly equal to twice the grid spacing, superimposed on the wave 

profiles. The oscillations are small but a little more obvious in the case Ao = 1.0. 

These oscillations were introduced at the time of the first rundown trough shown 

in Fig. 5.l.2a at about t = 23.5 where the model tried to compute the large 

accelerations at the shoreline. However, these high frequency oscillations did not 

grow noticeably over the duration of the simulation. Unfortunately they do make 

it difficult to make accurate local estimates for 'V'r/ or Xtt and hence make it 

difficult to transform the output from the model to the Eulerian description as 

described in Section 3.4. 7. Notice also the extreme gradients near the shoreline 

at the time of maximum rundown in Figs. 5.1.5a and 5.1.5b. That is the main 

reason why a relatively fine finite element mesh was used; for small values of the 

nonlinear parameter Ao a much coarser mesh can be used with little degredation 

m accuracy. 
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ho 

Fig. 5.1.6 Definition sketch of the channel geometry. 

5.1.2 Comparison with Theoretical Dispersion Relations 

The derivation of the long wave equations in Section 3.1.3 included terms 

that accounted for deviations of the pressure from the hydrostatic law caused by 

vertical fluid accelerations. As a result, the dispersion relation for these equations 

predicts that waves with short wavelengths propagate more slowly than waves 

with longer wavelengths. In order to test the ability of the finite element model 

to treat properly the effects of vertical accelerations, the dispersion relation for 

these equations will be computed numerically in this section. The results will 

be compared to the theoretical dispersion relation for these equations as well 

as the theoretical dispersion relations for fully dispersive linear theory and for 

nondispersive long wave theory. 

The following numerical simulation will be conducted. Waves of a single har-
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monic frequency will be generated in a long constant depth channel with straight 

parallel sides; see Fig. 5.1.6 for a definition sketch of the channel geometry. Al-

though there is little reason for confusion here, the axis coordinate labels, x and 

z , have hats to emphasize that they represent the Cartesian coordinates relative 

to the common origin ( x, 2) = (0, 0) , not relative to a particle's initial position. 

Initially the free water surface is quiescent. The waves will be generated at one 

end of the channel with a perfectly reflecting vertical wall at the other end, al-

though this latter boundary condition is irrelevant, since the simulation will be 

terminated before reflections from this boundary reach the domain of interest. The 

waves generated will be uniform across the width of the channel, so the problem 

is strictly two-dimensional with wave propagation along a single coordinate direc-

tion. Hence, the wave celerity can be determined easily by measuring the time for 

a point of constant phase, e.g., a zero crossing, to propagate a known distance. 

By repeating this procedure for several different frequencies the wave celerity can 

be determined numerically as a function of the wave frequency. 

The theoretical dispersion relation for the linearized long wave equations cor-

responding to Eqs. (3.1.117) and (3.1.118) of Section 3.1.3 for wave propagation 

in one horizontal dimension in a fluid of constant depth is given by Eq. 3.1.131 

and is repeated here for the convenience of the reader: 

2 _ gho k2 

Wwd -
1 + Hkho) 2 

(5.1.3) 

Here w is the dimensional wave frequency, k is the dimensional wave number 

( = 27r /A.), h0 is the dimensional still water depth, A. is the wavelength, and g 

is the acceleration of gravity. The subscript ( )wd refers to the weakly dispersive 

theory represented by Eqs. (3.1.117) and (3.1.118) of Section 3.1.3. All quantities 

in this section will be dimensional. 
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In comparison with Eq. (5.1.3), the dispersion relations for the fully dispersive 

linear theory and the nondispersive linear long wave theory are, respectively: 

wjd = gk tanh kh0 (5.1.4) 

w~d = ghok 2 (5.1.5) 

Here the subscripts ( )rd and ( )nd refer to the fully dispersive wave theory and 

the nondispersive long wave theory, respectively. Corresponding to these three 

dispersion relations are the following expressions for the phase velocity, c. 

Cfd=~ 
tanhkh0 (5.1.6) 

kho 

Vaho (5.1.7) Cwd = 
[1+Hkho)2J112 

Cnd=~ (5.1.8) 

The deviations of expressions (5.1.7) and (5.1.8) from the exact linear dispersive 

result of Eq. (5.1.6) are tabulated in Table 3.1.1. 

However, Eqs. (5.1.6), (5.1.7), and (5.1.8) are not the most convenient expres-

sions to compare with the results of the finite element model. This is because the 

wave speed in these expressions is expressed in terms of the wave number k , not in 

terms of the temporal frequency w . The waves will be generated by forcing them 

at one end of the channel at a known frequ€ncy. Hence, the wave frequency is a 

known input parameter to the problem, but not the wave number (or wavelength). 

The wavelength must be determined by measuring it as the waves are generated. 

Therefore, it is best to rewrite the celerity relations in Eqs. (5.1.6)-(5.1.8) in terms 

of the wave frequency, w . For the weakly dispersive theory and the nondispersive 
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where {J is defined to be: 
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Cwd = ~ Vl - {J /3 

Cud=~ 

{J = w
2
ho 

g 

(5.1.9) 

(5.1.10) 

(5.1.11) 

It is not possible to write down a simple closed form expression for Cfd as a 

function of /3. However, one can, in principal, eliminate kho between Eqs. (5.1.4) 

and (5.1.6) to obtain Cfd as a function of {J. 

The parameter {J is a measure of the importance of frequency dispersion in the 

problem. For very small values of {J it is clear from Eq. (5.1.4) that {J ~ (kh0 ) 2 • 

However, for larger values of {J this is not so. 

The relations between c and {J are interesting. Equation (5.1.10) is the fa

miliar nondispersive result which states that the wave celerity is independent of 

the wave frequency. This is valid for small values of {J but not so for larger val

ues. Equation (5.1.9) is a better approximation to the wave celerity for small to 

moderate values of {J, but it is interesting to note that it goes to zero at a finite 

value of {J = 3. The same is true for the group speed as well. Figure 5.1.7 shows 

the dependence of Cfd, Cwd, and Cnd on (3 112 over a large range of {J. This 

figure shows that both long wave theories are very inaccurate for large {J, where 

dispersion is most important, but in the region {J < 1 , where dispersion is weak, 

both long wave theories approach the exact solution, although the weakly <lisper-

sive theory is considerably more accurate over this range. Since this investigation 

is concerned only with long waves (small {J), the weakly dispersive wave theory is 

entirely adequate and is more accurate than the nondispersive theory. Very little 

energy will be distributed in wave frequencies where {J > 1; therefore, the error 
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in the dispersion relation for j3 > 1 will have little influence. Nevertheless, the 

case j3 2: 3 will be investigated numerically to show that this situation does not 

pose any numerical problems. 

The finite element mesh corresponding to the domain shown in Fig. 5.1.6 

consisted of a single row of linear quadrilateral elements. The node spacing was 

chosen so that there were forty elements per nondispersive wavelength, And . The 

nondispersive wavelength, And , is the wavelength associated with the temporal 

frequency w computed from the nondispersive relation of Eq. (5.1.5). For /3 > 0 

the wavelength is shorter than And , and therefore, in general for /3 > 0, there 

were fewer than forty elements per wavelength. With this nodal spacing, the time 

step 6t was chosen to be: 6t = 0.01 And/~. The mesh was 280 elements 

long; therefore, it could accommodate seven nondispersive wavelengths. At one 
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end of the channel the following forcing was applied for t > 0: 

rJ = H(l - e-p(wt)
2

) sin wt (5.1.12) 

The exponential factor was included to ensure that the applied fluid acceleration 

was zero at t = 0. The parameter p was chosen to be 6.9/(27r) 2 , which leads to 

(1 - e-p(wt)
2

) ~ 0.999 after one period of the generation. The amplitude H is 

irrelevant since nonlinear effects are not considered here. 

Equation (5.1.12) is plotted in Fig. 5.1.8a as a function of t/T where T = 

27f / w is the wave period, and with time increasing to the left to provide easy 

comparison with the spatial wave records in Fig. 5.1.8b. These spatial wave records 

are plotted as a function of x(>..nd where x is the distance from the end of the 

channel and And is the nondispersive wavelength defined previously. The waves 

are generated at x = 0 and propagate to the right with the vertical endwall 

indicated by the hatched line at x / ,\ = 7 . Each of the three spatial wave profiles 

are plotted for the time t/T = 6. 

The first spatial wave profile in Fig. 5.1.8b is for /3 = 0, i.e., no dispersion. 

This corresponds to the case where the wavelength is so much greater than the still 

water depth (ho/,\ --t 0) that vertical fluid accelerations are negligible. The wave 

propagates to the right at the speed end where end is defined by Eq. (5.1.10). 

Since the origin, t /T = 0, of the water surface time history in Fig. 5.1.8a is 

aligned with x/ And = 6 in Fig. 5.1.Sb, the two records should be identical, since 

for the nondispersive case the spatial wave profile can be determined by moving 

the input time record along the x axis at the speed Cnd = ~. Indeed, it 

can be seen that the two records are nearly identical, and the only perceptible 

difference is the very slight negative depression at the leading edge of the spatial 

profile. This is presumably due to numerical dispersion. Thus, if the parameter p 

were reduced (i.e., if the curvature of the leading edge of the wave were reduced) 
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then this depression could also be reduced. At t/T = 7 the wave will strike the 

vertical endwall and reflect back upon itself. 

The second spatial wave profile is for (3 = 0.59 . This represents the case 

where dispersion is small but certainly not negligible. It can be seen that the 

wavelength is noticeably shorter than the nondispersive case and, as a result, the 

wave travels correspondingly more slowly. The effect of dispersion can also be 

seen by the distortion of the leading edge of the wave. The leading edge of the 

wave in Fig. 5.1.8a contains the highest concentration of wave numbers different 

from the fundamental associated with the forcing frequency; therefore, the effect 

of dispersion is especially noticeable in this region. The first half wavelength for 

the case (3 = 0.59 (corresponding to 0 < t < 0.5 in the time record of the forcing 

function in Fig. 5.1.8a) is no longer readily apparent. As a result, the wave appears 

to start with a large negative depression (corresponding to 0.5 < t < 1 in the time 

record of the forcing function). Hence, this depression is fundamentally different 

than the depression visible at the leading edge of the wave for the nondispersive 

case. Another interesting dispersive effect for (3 = 0.59 is that the third trough 

has an amplitude greater than the steady-state amplitude of the wave train. This 

is presumably due to a superpostition of the main wave with the slower moving 

wave number components near the leading edge of the wave. 

The final spatial wave profile is for the special case (3 = 3. As seen in 

Fig. 5.1.7 and Eq. (5.1.9), this profile corresponds to the value of (3 at which the 

phase speed goes to zero. As mentioned previously, the group speed also goes to 

zero at (3 = 0. This is easy to see from Eqs. (3.1.132) and (3.1.133) because they 

can be combined to give: 

3 

( ) 
cwd 

Cg wd = -h 
g 0 

(5.1.13) 

where (c9)wd is the group speed according to the weakly dispersive theory. There-
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fore, the group speed goes to zero when the phase speed goes to zero at /3 = 3. 

For f3 > 3, the group speed, wave speed, and wave number become imaginary. 

This means that the corresponding waves cannot propagate but will decay expo

nentially with distance. Therefore, the spatial wave profile shown at the bottom 

of Fig. 5.1.8b corresponds to the maximum value of /3 for which the wave energy 

can freely propagate away from the generation point at x = 0 . For the case 

f3 > 3 (not shown in Fig. 5.1.8b) the wave amplitude computed numerically is 

even smaller than for the case /3 = 3 and the wave envelop dies out much more 

quickly with x . 

It is clear that the propagation of high frequency (short wavelength) waves 

corresponding to /3 > 1 (see Fig. 5.1.7) is not modelled well by the weakly dis

persive theory, but at least these wave components do not cause any numerical 

problems. As mentioned previously, this investigation is concerned only with long 

waves (small f3), so very little energy will be distributed in wave frequencies where 

/3 > 1 . However, this alone is not enough to conclude that these high wave number 

components are not important, since it is also important that these wave compo

nents do not cause numerical instability problems for the finite element model. If 

they did cause numerical problems, the amount of energy in these higher modes, 

however small, would not matter; eventually, the associated instability could con

taminate the solution. 

One reason why Eqs. (3.1.117) and (3.1.118) were chosen over Eqs. (3.1.112) 

and (3.1.114) for the finite element model was due to the potential of numerical 

problems associated with the dispersion relation of Eqs. (3.1.112) and (3.1.114). 

If Eqs. (3.1.112) and (3.1.114) are linearized, the dissipative terms neglected, and 

wave propagation is restricted to a single horizontal coordinate direction in a region 
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of constant depth, then the following dispersion relation is obtained: 

(5.1.14) 

Notice that w' argrees with w as given by Eq. (5.1.3) for small kho to O((kh0 ) 2 ). 

This should be expected since both pairs of equations, (3.1.117) & (3.1.118) and 

(3.1.112) & (3.1.114) were derived to be first order accurate in terms of the dis

persion parameter /3 . 

On the other hand, Eqs. (5.1.14) and (5.1.3) behave very differently for large 

values of kh0 . From Eq. (5.1.3), the frequency Wwd is defined for all wave numbers 

k , but the wave number k is defined only for finite values of the frequency Wwd • 

For large values of Wwd (or more precisely for large values of /3 where /3 is defined 

by Eq. (5.1.11)), the wave number k becomes imaginary as mentioned and the 

wave amplitude decays exponentially with distance. However, for Eq. (5.1.14) the 

situation is different. The wave frequency w~d is defined only for a finite range of 

values of kh0 . For large kh0 the wave frequency w~d becomes imaginary. In this 

case numerical problems can occur because small amplitude perturbations with 

large wave numbers can grow with time (Whitham 1974). Therefore, for numerical 

work, the dispersion relation (5.1.3) is preferred over Eq. (5.1.14). 

As mentioned earlier, the wave celerity can be determined by measuring the 

time for a point of constant phase to propagate a known distance. Using the finite 

element model, waves were generated for six different values of /3 ranging from 

f3 = 0 to f3 = 0.99, and the wave celerity was determined by measuring the time it 

took for a zero crossing to propagate three wavelengths. The measurements were 

made in the steady-state region behind the transient leading edge of the wave. 

These results are plotted in Fig. 5.l.9a as a function of the dispersion parameter 

/3, using square point plot symbols. Also plotted are the expressions for the wave 

celerity according to linear dispersive theory (Eq. (5.1.4) and (5.1.6)), weakly 
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dispersive long wave theory (Eq. (5.1.9)), and nondispersive long wave theory 

(Eq. (5.1.10)). Notice how the expressions for the celerity from the dispersive 

and weakly dispersive theories vary linearly with the dispersion parameter f3 . 

The quadratic behaviour near /3 = 0 in Fig. 5.1. 7 occurs because the abscissa is 

(3 112 , not f3. The finite element model results agree very well with the weakly 

dispersive theory from which the model was developed. This comparison shows 

that the model can accurately treat the effects of frequency dispersion caused by 

vertical fluid accelerations. 

Figure 5.l.9b shows the same celerity data plotted against the still water depth 

relative to the wavelength, ho/ A . The linear dispersive theory, weakly dispersive 

theory, and nondispersive theory correspond to Eqs. (5.1.6), (5.1.7), and (5.1.8), 

respectively. The values of h0 / >.. for the finite element results were obtained by av

eraging over three wavelengths of each of the spatial profiles. Hence, for the finite 

element results in Fig. 5.l.9b, both the ordinate and the abscissa represent meas

ured quantities, whereas in Fig. 5.l.9a only the ordinate is a measured quantity. 

It is important to remember that points with const'ant values of f3 in Fig. 5.l.9a 

do not correspond to points with constant values of ho/ A in Fig. 5.l.9b. Since 

the dispersion relations for each of the theories plotted are different, a single value 

of /3 will correspond to different values of h0 / A, depending on which theory is 

used. 

Also plotted in Figs. 5.l.9a and 5.1.9b is the classical long wave limit. This 

is not a precisely defined quantity, but it is generally agreed to correspond to 

approximately h0 / >.. ~ 0.05 (Eagleson & Dean 1966). This corresponds to f3 ~ 

0.1. Beyond these values, the error between nondispersive long wave theory (the 

horizontal dashed line) and fully dispersive theory (solid line) grows unacceptable 

for many applications. However, from these figures it can be seen that the weakly 

dispersive theory (and the finite element model) is much more accurate and can 
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be applied to much larger values of ho/>. (or (3 ), as discussed in Section 3.1.3.1. 

5.1.3 Comparison With a Harbour Response Theory 

The finite element model can also be compared to the harbour response 

theory of Section 3.2. Three harbours each with a rectangular planform but with 

three different bathymetries were chosen: (1) constant depth, (2) linearly sloping 

bottom, and (3) parabolic bottom. A typical finite element mesh used for the 

simulations is shown in Fig. 5.1.lOa although near the second resonant mode for 

the harbour with the linearly sloping bottom the nodes were concentrated near 

the shoreline as shown in Fig. 5.1.lOb for the same reason that the nodes were 

concentrated near the shoreline in Section 5.1.1 as seen in Fig. 5.1.1. Figure 5.1.11 

shows the harbour regions for these two meshes in more detail. Since the problem 

is symmetric about the centreline of the harbour, the mesh represents only one

half of the domain. This reduces the amount of computation by a factor of two. 

Hence, a mesh of the entire harbour would have 4 elements and 5 nodes across its 

width. The ratio of the width of the harbour to its length, L, was 0.2. Therefore, 

the ratio of the width of the harbour region to its length in Fig. 5.1.10 is half this 

value, E = 0.1, where E is defined in Eq. (3.2.10) of Section 3.2. The interregion 

boundary rMo in Figs. 5.1.lOa and 5.1.lOb is the circular arc, which has been 

darkened for better definition. The interregion boundary r HM is the darkened 

vertical line across the entrance to each harbour. 

The incident wave was chosen to be sinusoidal. To nondimensionalize the 

problem, the length scale /!, was chosen to be the length of the harbour L, the 

water depth scale ho was chosen to be the uniform still water depth exterior to the 

harbour, and the wave height scale H was chosen to be equal to the amplitude of 

the incident wave. With this nondimensionalization the incident wave was defined 
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b 

(a) 

b 
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Fig. 5.1.10 Typical finite element meshes used for the harbour re-
sponse simulations; (a) nodes not concentrated near 
shoreline, (b) nodes concentrated near shoreline. 
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Fig. 5.1.11 Enlarged view of the harbour regions for the two meshes 
in Figs. 5.1.lOa and 5.1.lOb. 

as: 

(5.1.15) 

where e = a+t-</>, H(e) is the Heaviside step function, and k is the dimensional 

wave number of the wave system. The exponential factor was included so that 

the particle accelerations associated with the waves would be zero at its leading 

edge e = 0. The phase </> was chosen to be equal to the radius of the arc f Mo 

so that at time t = 0 the wave had just reached this interregion boundary. The 

parameter p was chosen to be 0.02, a conservative value, which generates a gentle 

transition between the quiescent fluid preceding the waves ( e < 0) to the steady

state oscillations behind the wavefront ( c » 1 ) . In order to compare the results 

of this section with the theory of Section 3.2, the nonlinear and dispersive terms 

in the equations of motion were neglected. However, the full nonlinear head loss 

formula (Eq. (3.4.22)) was used in the finite element model, whereas the theory 
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Fig. 5.1.12 Response of a constant depth rectangular harbour as 
computed by the finite element model with three differ
ent finite element meshes. 

of Section 3.2 uses the simpler equivalent head loss formula {Eq. (3.2.23)). For 

these head loss formulae the nonlinear parameter a was chosen to be 0.025 and 

the head loss coefficient f chosen to be 0.8, the maximum value suggested by 

Lepelletier {1980) for a fully open harbour (see Eq. {3.2.21) ). 

The first set of comparisons focuses on one of the numerical problems of 

modelling the fl.ow through the harbour entrance. A constant depth harbour was 

chosen and entrance losses were neglected ( f = 0). The results are shown by 

the triangles in Fig. 5.1.12 (cf. Fig. 3.2.2a). Notice the finite element model 

underpredicts the height of both of the first two resonant peaks as predicted by 

the analytical theory (Eq. (3.2. 79)). The following reason for this is proposed. The 

finite element procedure involves integrating quantities over each of the element 
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Co 

A 

Fig. 5.1.13 Geometry where the boundary turns sharply through a 
large angle, e.g., at a harbour entrance. 

domains and along some of their boundaries. The fluid particle displacements 

and surface elevations are computed only for each of the node points, but to 

evaluate the integrals the variables are interpolated between the node points. This 

procedure works well if the domain of the problem varies smoothly everywhere. 

However, at the entrance to the harbour, the boundary direction changes sharply 

through 90 degrees from the harbour sidewall to the coastline, e.g., at the node 

labelled "A" in Fig. 5.1.13. Along the coastline (represented by the line AC in 

Fig. 5.1.13) there should, ideally, be no component of the particle displacement 

vector normal to this wall since the wall is vertical and perfectly reflecting. In the 

numerical model, that will be true for each of the nodes on this wall except for the 

corner node (node A) joining the harbour with the coastline. This node will have 

a component of displacement normal to the line AC associated with it. Therefore, 
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Fig. 5.1.14 Coarse finite element mesh with only one row of ele
ments in the harbour region. 

if the particle displacements are interpolated between this node and the one next 

to it (labelled "B") along the coastline, the interpolation will yield a nonzero 

component of particle displacement normal to the coastline along the entire line 

segment AB. Hence, the harbour will in some sense look wider than it actually 

is near the mouth. The particle displacements at the entrance are the largest at 

resonance and so this effect will be most noticeable near the resonant peaks of 

the harbour response curve. The result is that more energy is radiated from the 

mouth of the harbour than would be if the normal component of displacement 

were exactly zero along the line segment AB. Thus, the numerical model predicts 

a slightly lower response near resonance than the theoretical model. A finer finite 

element mesh would improve the estimate of the harbour response because the 

distance AB over which there would be a nonzero normal component of particle 

displacement would decrease. 
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To test this hypothesis, the simulations were performed again using two dif

ferent type meshes. One mesh was coarser than that in Fig. 5.1.10. As shown in 

Fig. 5.1.14 it had only one row of elements instead of two along the length of the 

half-harbour (i.e., 2 elements across the full width of the harbour). These results 

are represented by the squares in Fig. 5.1.12. The other mesh (not shown) was 

finer. It had three rows of elements along the length of the half-harbour (i.e., 6 

elements across the full width of the harbour). The results for this harbour are 

represented by the diamonds in Fig. 5.1.12. As expected, the maximum response 

corresponding to the first two modes increases in height for the finer mesh and 

decreases in height for the coarser mesh. 

The maximum value of the amplification factor corresponding to the first 

resonant mode, Rres, is plotted as a function of the number of elements across 

the full width of the harbour in the inset of Fig. 5.1.12. It is not clear how close the 

numerical solution would converge towards the theoretical response curve given 

an arbitrarily fine mesh, but it is clear that the mesh resolution near the harbour 

entrance is probably the major source of error near the peaks in the response curve. 

Notice that away from resonance, where the harbour response is less sensitive 

to the amount of energy radiated from the entrance, the harbour response, as 

computed with each of the three different mesh resolutions, shows good agreement 

with each other and with the theory of Section 3.2. For subsequent simulations 

it was decided to use the meshes respresented in Figs. 5.1.lOa and 5.1.lOb. The 

coarser mesh was too crude and did not give very good results for the larger values 

of kL, and the finer mesh required significantly more computation, although it 

• did yield better results. In any practical application the user must compromise 

between mesh resolution and computational cost. 

It is interesting to note that Lee (1969) obtained similar results to those re

spresente<l by the triangles in Fig. 5.1.12. However, he used a boundary integral 
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technique based on the Helmholz equation, usmg three segments across the en

trance of the harbour. Even though his numerical method was fundamentally 

different from the finite element technique being used here, it is likely that he, 

too, would have benefited from a finer discretization as well, particularly near 

resonance. 

It was mentioned in Section 3.2.3 that if the entrance loss coefficient f was 

determined by simply comparing experimental results to a numerical model and 

adjusting its value until the two agreed, then the value obtained would likely be a 

little smaller than the "true" value that would be obtained if the model equations 

could be solved exactly by an analytical technique. The effect of the finite size of 

the elements at the harbour entrance is to introduce additional radiation dissipa

tion into the model. Hence, the value of f, which would be obtained by matching 

the experimental results to the numerical results, would not have to account for 

this additional dissipation introduced by the finite mesh resolution. The "true" 

value of f (corresponding to infinite resolution at the harbour entrance) would be 

larger since it would also account for the additional dissipation introduced by the 

finite mesh resoution. On the other hand, computing the entrance loss coefficient 

f by matching the experimental results to the numerical results would tend to 

lump other physical sources of dissipation, which weren't explicitly accounted for 

in the model, into this coefficient. This would increase the value of f somewhat. 

Therefore, it is important that these sources be included and treated accurately 

in the model. Nevertheless, the value used in the numerical model for simulations 

would depend upon the particular geometry and the finite element mesh used. The 

finer the resolution near the harbour entrance, the larger the value of f. Even for 

a fixed nodal geometry, the value of f would depend upon the type of elements 

used, i.e., linear or quadratic, quadrilaterals or triangles. 

For the remaining comparisons, entrance losses were included. As discussed 
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Fig. 5.1.15 Finite element model wave records associated with the 
3 nodes along the backwall of a constant depth rectan
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Fig. 5.1.16 Response of a constant depth rectangular harbour. En
trance losses included. 

earlier, the entrance loss coefficient, f, was chosen to be 0.8. Also, as mentioned 

previously, three different bathymetries were modelled: (1) constant depth, (2) 

linearly sloping bottom, and (3) parabolic bottom. For each of these cases two 

different figures are shown. Figures 5.1.15 & 5.1.16 correspond to the constant 

depth harbour, Figs. 5.1.17 & 5.1.18 correspond to the harbour with the linearly 

sloping bottom, and Figs. 5.1.19 & 5.1.20 correspond to the harbour with the 

parabolic bottom. Each of the first figures, 5.1.15, 5.1.17, and 5.1.19 shows five 

representative water surface time histories obtained at the backwall of the constant 

depth harbour or at the shoreline of the sloping bottom harbours. Two of the five 

water surface time histories correspond to the first and second resonant modes of 

the harbour and the other three correspond to wave periods different from these. 

To give an idea of the degree of three-dimensionality within the harbour, each wave 
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Fig. 5.1.17 Finite element model wave records associated with the 
3 nodes along the shoreline of a rectangular planform 
harbour with a linearly sloping bottom. 
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Fig. 5.1.18 Response of a rectangular harbour with a linearly slop
ing bottom. Entrance losses included. 

6 

record is actually a superposition of the three wave records corresponding to the 

three nodes along the backwall or shoreline of the harbour. The following figures, 

5.1.16, 5.1.18, and 5.1.20 show the comparison between the harbour response curve 

computed from Eq. (3.2.79) of Section 3.2 and from the finite element model. 

The finite element model results correspond to the centre node at the harbour 

backwall or shoreline. Notice that the scales for each of the corresponding figures 

are the same, so one can get a good idea of the relative magnitudes of the response 

characteristics of each of these harbours. 

The response of each of the harbours was very uniform across the width of the 

harbour at the backwall or shoreline, although there was a small amount of three-

dimensionality near the first resonant mode for the harbour with the quadratic 

bottom (Fig. 5.1.19). The cause of this slight three-dimensionality was not clear. 



0 

0 

0 

0 

€ = 0.1 
a:= 0.025 
f = 0.8 

20 

-256-

40 

tvfiho/L 

-..c:::::::::::::: ___ v_ 

60 

kL = 3.60 

kL = 3.17 

(2nd mode) 

kL = 2.20 

kL = 1.19 

(1st mode) 

kL = 0.80 

Fig. 5.1.19 Finite element model wave records associated with the 
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Fig. 5.1.20 Response of a rectangular harbour with a parabolic bot
tom. Entrance losses included. 

6 

The finite element results compare very well with the theory of Section 3.2, 

although the numerical model slightly underpredicts the height of the resonance 

peaks, as discussed in the case with f = 0 for the constant depth harbour; how-

ever, the discrepancy appears to be a little less for these cases with f = 0.8. Also, 

notice that the second resonant mode response is greater than at the first mode for 

the harbour with the linearly sloping bottom in Fig. 5.1.18. That occurs because 

the entrance dissipation is much greater for the first mode response; at the second 

mode the velocities at the harbour entrance are smaller, so there is less entrance 

dissipation. Also, shoaling effects are much greater for the second mode, so the 

overall response at this mode is greater than that of the first mode (however, if the 

effects of shoaling over the sloping bottom were removed from the response curve 

in Fig. 5.1.18, the second mode response would fall below that of the first mode). 
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However, for the harbour with the parabolic bottom (Fig. 5.1.20), the response 

at both the first and second resonant modes is nearly identical, whereas for the 

constant depth harbour (Fig. 5.1.16) where shoaling plays no role, the response at 

the first mode is clearly greater than at the second mode. 

5.2 Comparison With Harbour Response Experiments 

Harbour response experiments were conducted in the wave basin facility 

discussed in Section 4.1 and shown in Figs. 4.1.1 and 4.1.2. A rectangular harbour 

with a linearly sloping bottom was chosen. In the constant depth outer region, 

representing the open sea, the still water depth was h0 = 7 cm . A train of weakly 

nonlinear cnoidal waves was generated in the initially quiescent basin with the 

microprocessor-controlled servo-hydraulic wave generator discussed in Section 4.2. 

The wave period was T = 2sec; thus, w = Jrsec- 1
. Based on cnoidal wave theory, 

the approximate wavelength of this wave system is A = 1.64 m (.\/ho = 23.4), 

very close to the linear long wave result computed from A = T ~. The wave 

generator was located approximately 6.9 m from the harbour entrance. Since the 

basin outside the harbour was meant to simulate the open ocean, which allows all 

wave energy radiated from the harbour mouth or reflected from the coastline to 

propagate away out to infinity without returning, this placed an upper limit on 

the number of periods of the incident wave system the harbour could be exposed 

to. Waves that propagated away from the harbour eventually reflected from the 

wave generator and returned to the harbour. Therefore, for these experiments 

it was possible to expose the harbour to only approximately eight periods ( 2 x 

6.9 m 71.64 m ~ 8) of the incident waves. The steady-state wave amplitude at the 

harbour entrance with the entrance closed was 2H = 0.20 cm. This wave record 

was used to define the incident-reflected wave record used for input to the finite 
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element model. The ratio of the width of the harbour to its length 2b/ L was 

chosen to be 0.2 as it was in the previous section, where the finite element model 

was compared with the harbour response theory of Section 3.2. The same incident 

waves were used for each of the runs so that the spectral energy distribution in the 

incident wave was fixed and the characteristic time scale T was also fixed. The 

response of the harbour was varied by changing the length of the harbour, keeping 

the width to length ratio equal approximately to 0.2, as discussed in Section 4.3. 

The har hour response parameter w L / ~ was therefore varied by changing L , 

not w. See Appendix B for a complete list of the values of 2b, L, and the 

parameters 2b/ L, and wL/ ~ for each of the experiments. 

The parameter wL/ ~ was chosen as the harbour response parameter 

instead of kL = 271" L/ >.. because the wave frequency, w, was a specified parameter, 

whereas the wavelength, >.., would have to be measured experimentally. According 

to linear nondispersive long wave theory these two parameters are identical since 

this theory predicts k = w / ~. However, due to small nonlinear and dispersive 

effects, which are accounted for in cnoidal wave theory, kL and wL/ ~ differ 

slightly. 

The terms in the long wave equations that relate to boundary layer dissipation 

must be modified slightly to treat this harbour bathymetry. The derivation of these 

terms in the equations of motion required the assumption that the water depth 

h( a, b) was much greater than the boundary layer thickness. This assumption 

must of course break down at the shoreline, where h(a, b) --+ 0. From Eq. (3.4.3) 

the coefficient of these terms is ; / h( a, b) , where ; is the boundary layer dissipa

tion parameter defined in Eq. (3.4.4). The violation of the assumption is reflected 

by the singular behaviour of this coefficient at the shoreline. In reality the dissi

pation, of course, does not grow unbounded at the shoreline. The following simple 

modification to this formula was made to avoid this problem. An estimate of the 
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boundary layer thickness 6 was made using Eq. (3.1.22). The boundary layer 

dissipation terms are valid away from the shoreline where the still water depth 

is much greater than the boundary layer thickness {j; i.e., h( a, b) > d6 where 

d » 1. The coefficient 1/h(a,b) was used everywhere away from the shoreline 

where this was valid, but near the shore where h(a, b) < d6 the coefficient was 

replaced with / / d6, the value of the coefficient near the shoreline where the ap

pro:ximations are still valid. The constant d was chosen to be 10. Although this 

may seem to be a somewhat crude method of clearing up the difficulty at the shore, 

it is not necessary to be more accurate for the following reason. For the range 

of parameters applicable to the experiments performed in this investigation, the 

amount of power dissipated within the boundary layers is very small in comparison 

to the dissipation associated with entrance losses and the radiation of energy back 

out of the harbour entrance to the open basin. The relative importance of these 

sources of dissipation was discussed by Lepelletier (1980) for a constant depth 

rectangular harbour. For the conditions corresponding to the experiments in this 

investigation, the laminar friction losses are approximately an order of magnitude 

smaller than those associated with radiation. With a linearly sloping bottom the 

boundary layer losses will be somewhat larger since the average depth throughout 

the harbour is one-half that for a constant depth harbour, but these losses will 

still be small compared to the radiation and entrance losses. Hence, a small error 

in the treatment of the boundary layer losses will have very little effect on the 

solution computed. However, it should be noted that if the motion were confined 

to a closed basin with no radiation or entrance loss effects, the relative importance 

of laminar viscous dissipation would be much greater. It is true that if the waves 

break the dissipation will be very large near the shoreline. However, that dissipa

tion mechanism is not at all related to the boundary layer dissipation model being 

considered here. Hence, the present investigation is limited to nonbreaking waves 
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only. 

A further modification to the boundary layer dissipation terms was made to 

account for contamination of the water surface. Surfactants can form a thin film, 

which introduces a horizontal laminar shear stress at the surface of the water. 

The velocity gradient can be expressed, approximately, in a form analogous to 

Eq. (3.1.71) as: 

c ax 
--
1iJ at 

c=O (5.2.1) 

where Xbt is the horizontal fluid particle displacement vector in the boundary 

layer at the surface. The parameter C is known as the surface contamination 

factor. This effect can easily be accounted for in the finite element model by 

replacing the dissipation parameter, /, in Eq. (3.4.3) by / (1 + C). Experiments 

by Van Dorn (1966) indicate that for an initially clean liquid surface in contact 

with the ambient atmosphere, C rapidly approaches a limiting value of unity, 

corresponding to a fully contaminated surface film. Therefore, for comparison 

with the harbour response experiments, a value C = 1 was used. 

The treatment of dissipation in the boundary layer has been included in the 

finite element model to allow comparison with the experiments in this section. 

Therefore, it has been assumed that the boundary layer is laminar as discussed 

in Section 3.1.1.1. However, in an actual harbour the boundary layer will be 

turbulent so the associated dissipation must be modelled differently. In that case 

the bed stress can be modelled proportional to the square of the horizontal velocity. 

However, since the finite element model will not be compared with field data, this 

capability was not included, although it would not present a large problem to do 

so. 

A head loss coefficient at the harbour entrance of f = 0.8 was used in the 

numerical simulations of each of the experiments. This is the same value that was 
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used to compare the results of the finite element model to the harbour response 

theory developed in Section 3.2. It is also the same value used by Lepelletier 

(1980) for the harbours with fully open entrances (i.e., no breakwater partially 

closing the entrance). 

The harbours used in the experiments were symmetric about the longitudinal 

axis of the harbour, so the finite element computations were performed using only 

one-half of the domain. Finite element meshes similar to that shown in Fig. 5.1.lOa 

were used. 

The response parameter wL/ ~ was varied from 0.70 to 2.08. This range 

fully encompasses the first resonant mode, as shown in Fig. 5.1.18. Figure 5.2.1 

compares six of the water surface time histories obtained experimentally with those 

computed by the finite element model. The measurement location was along the 

centreline of the harbour midway between the entrance and the quiescent shoreline. 

For this comparison the results of the finite element model were converted to the 

Eulerian description using the method of Section 3.4.7. Measurements of the 

height of the shoreline (runup) as a function of time were not made because of the 

difficulties in the experimental techniques at the scale of these measurements. 

The water surface time history in Fig. 5.2.1 with wL/.;ghO = 0. is the 

experimental wave record obtained at the entrance to the harbour (point A in 

Fig. 4.1.3) with the harbour entrance closed (i.e., the record obtained when the 

incident wave reflected from a vertical wall). It was used to define the function 

f (t) in Eqs. (3.4.18) and (3.4.19). The other six wave records compare the results 

of experiment and the finite element model for different values of wL / .;ghO. 

The records for wL/~ = 0.70 and 0.89 correspond to wavelengths below 

the first resonant mode. The finite element model results agree extremely well 

with the experimental results for wL/ ~ = 0.70. The comparison is still very 

good for wL/~ = 0.89 with only a very slight discrepancy in the minimum 
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Fig. 5.2.1 Wave records measured at the centre of the harbour. 
Comparison of experiments with the finite element 
model for different values of w L / ~ . 



-264-

wave extrema. 

The largest response occurred for the experiment with wL/ ~ = 1.01 

which corresponded to the first resonant mode of the harbour. The amplitude of 

the finite element model results is slightly smaller than that of the experimental 

results but the agreement is still very good. Notice how the troughs are larger than 

the peaks. That difference is due to the nonlinear effects which were discussed in 

detail in Section 3.3 and Section 5.1.1 (Fig. 5.1.3). The effect is very noticeable near 

resonance where the wave heights, and hence the nonlinear effects, are the greatest. 

The crests and troughs in the experimental wave record are approximately rt/ h 0 = 

0.11 and rJ /ho = -0.16, respectively. 

The agreement between the experimental results and the finite element model 

is also very good for normalized frequencies beyond resonance. Of all the records 

shown, the one corresponding to wL / ~ = 1.26 is the slowest to reach steady 

state. In fact, it does not reach steady state within the eight periods of excitation 

shown. In addition, its shows that the maximum harbour response occurs during 

the transient portion of the motion. It appears that the steady-state response 

will be lower. These characteristics were present to some degree in most of the 

experiments for frequencies just above resonance in the region where the harbour 

response decreased as wL / vfijho increased. 

The harbour response for wL/ ~ = 1.69 appears to be suprisingly small. 

Although the steady-state response at the measurement location is indeed very 

small, the overall harbour response is not this small. At steady state a node is 

very near the measurement location for wL/ ~ 1.69, so the wave height 

is very small near this location but not so elsewhere in the harbour. It was 

shown in Section 3.3 (see Fig. 3.3.2) that periodic waves on a linearly sloping 

bottom can exhibit a curious behaviour, in a nonlinear sense, at and near the 

points where nodes are predicted by linear theory. The wave height is not zero 
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at these points. Instead, at and near these points the wave records exhibit twice 

as many minima and maxima compared to locations away from these points. The 

results of Section 3.3 are based on the assumption that the sloping bottom extends 

to infinity where the motion is perfectly harmonic and two-dimensional. The 

harbour response experiments do not satisfy these assumptions but the motion 

was quite two-dimensional within the harbour; the incident wave was very close 

to a single harmonic plane wave, and the bottom was linearly sloping within the 

harbour, so one would expect some qualitative agreement between these two cases. 

Unfortunately, this effect cannot be seen in the record for wL/ V9h; = 1.69. First 

of all, the overall response of the harbour for wL/vfiihO = 1.69 was not large, so 

the nonlinear effects were not great. Also, the presence of small amplitude higher 

harmonics in the incident wave would tend to mask this effect. Finally, it is not 

clear that the transient harbour response had completely died out at the end of 

eight periods of the incident wave. 

The agreement for wL/ ~ = 2.08 is still fairly good, although there is a 

small phase shift between the two records which can be seen during the first period 

of motion up to t/T = 2. The two records were aligned to maximize the agreement 

of the established motion after the arrival of the incident wave system. The reason 

for this phase shift is not known. The numerical model actually predicts a slightly 

larger response than the experimental results. 

As mentioned previously, the value of the entrance loss coefficient f was cho

sen to 0.8 based on the results of Lepelletier (1980). He obtained this value by 

forcing agreement between many sets of experiments and his numerical model. It 

appears that a value of f slightly less than 0.8 would provide best agreement 

between the present experiments and the finite element model. That would cause 

the amplitude of the finite element results to increase near resonance. The agree

ment in the response away from resonance would remain very good because it is 
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insensitive to the value of the entrance loss coefficient. However, the overall agree

ment here for f = 0.8 is very good, nonetheless, and any effort spent making 

small adjustments in the entrance loss coefficient to force even better agreement 

is of doubtful value since the coefficient depends on many factors. If the same set 

of experiments were modelled with a different finite element mesh, the value of 

J which maximized the agreement would be slightly different again, as shown in 

Section 5.1.3. 

The results of the experimental runs are summarized in Fig. 5.2.2 where these 

results are compared with the linear theory of Section 3.2 and with the nonlinear 

dispersive finite element numerical model. As mentioned earlier, the measurement 

location is on the centreline of the harbour midway between the entrance and the 

quiescent shoreline. In Fig. 5.2.2 three different quantities are displayed, each as 

a function of the parameter wL/y'gho: the wave height maxima, the wave height 

minima, and the mean water level. The drop in the mean water level can also 

be seen in Fig. 5.2.1 near resonance ( wL / ~ = 1.01) where it is seen that the 

troughs of the waves are much greater than the peaks. This leads to a negative 

mean water level as described in Section 3.3 where the nonlinear effects of runup 

on a beach with a linearly sloping bottom were discussed. 

The results of the linear theory of Section 3.2 are indicated m Fig. 5.2.2 

by the solid lines which represent the steady-state maximum and minimum wave 

heights at the measurement location. The steady-state wave record at the harbour 

entrance with the entrance closed was used to define the incident wave. Using 

this record, the results shown in Fig. 5.2.2 were then obtained using the Fourier 

synthesis technique described in Section 3.2.8. It should be recalled that the 

individual Fourier modes are coupled through the headloss formula of Eq. 3.2.23. 

Hence, although the theory of Section 3.2 is basically linear in nature, the nonlinear 

character of the headloss dissipation introduces a weak nonlinear coupling of the 
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Fourier modes. The small peaks in the linear response curves in Fig. 5.2.2 near 

wL/ ygh0 0.5 are due to the first resonant mode response of the second harmonic 

component in the incident wave. 

Since there is no mechanism provided to transfer energy into the zero fre

quency harmonic component, the linear theory predicts that the mean water level 

coincides everywhere with the still water level rJ / h0 = 0. For that reason, the lin

ear theory overpredicts the maxima and underpredicts the minima in the harbour 

response in Fig. 5.2.2. 

The finite element model agrees much better with the experimental results 

than does the linear theory, and the mean water level is reproduced well. Near 

the resonant peak at wL/ V9hQ:;:::;:; 1 (where the wave ampitude is the largest) the 

mean water level is significantly less than zero, which is consistent with the results 

discussed in Section 3.3 where the mean water level became more negative as the 

amplitude of the wave increased. The wave height extrema are also predicted well, 

although the finite element model underpredicted both the peaks and the troughs 

slightly near resonance. If an entrance loss coefficient f slightly smaller than 

0.8 were used, the agreement near resonance between the experiments and theory 

would improve without significantly altering the response away from resonance, 

as discussed previously. 

In the discussion of Fig. 5.2.1 it was noted that in the region wL / ~ > 1; 

i.e., normalized frequencies greater than the first resonant mode, a steady-state 

response was not always obtained within the first eight oscillations, although the 

convergence was generally good enough to permit a reasonable estimate. For those 

cases where a definite steady state had not been reached, the harbour response was 

arbitrarily defined by the average of the maxima and the average of the minima 

in the wave record for the 7th and 8th periods of oscillation. Similarly, the mean 

water level was defined by the mean value of the wave record for the 7th and 
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by the rectangular mesh. The outline of the still surface is delineated by the 

single closed line located above the bottom. The curved portion of this line traces 

the shoreline which, in plan view, is one period of a sine wave. The constant 

depth region continues indefinitely offshore. The computations were performed 

assuming the region was bounded laterally by vertical walls. By symmetry this is 

also equivalent to treating a periodic coastline formed from bays situated between 

steep promontories. The slope of the bottom perpendicular to the shoreline at 

these two extreme lateral extents is 1:5. The slope of the bottom perpendicular 

to the shoreline at the centre of the bay is 1:10. The vertical scale in Fig. 5.3.1 

is correct although it may appear to be exaggerated due to foreshortening caused 

by the three-dimensional perspective. 

It is evident from the view of the bathymetry in Fig. 5.3.1 that many different 

processes may occur and interact to modify the shoreline runup. Refraction will 

tend to cause incident waves to bend towards the promontories at either edge of 

the domain seen in Fig. 5.3.1, whereas reflection from these projections will tend 

to direct wave energy to the shoreline at the centre of the bay. In addition, the 

sloping bathymetry can support edge wave type modes that may partially trap 

energy in the nearshore region. The combination of these above effects may greatly 

influence the shoreline runup in ways not possible in models that approximate the 

nearshore geometry with a vertical wall. 

A definition sketch of the geometry is shown in Fig 5.3.2. As mentioned 

previously, this geometry is equivalent to treating a periodic coastline formed from 

bays situated between steep promontories. This periodic extension is indicated by 

the dashed lines extending from each lateral boundary of the shoreline. Although 

there is little reason for confusion, the hats above the coordinate axis labels, i.e., 

x and fJ , emphasize that they represent the coordinates relative to the origin 

(x, y) = (0, 0), not relative to a particle's initial position. All quantities in this 
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figure are nondimensional and all quantities in this section will be nondimensional 

unless otherwise explicitly stated. The nondimensionalization of Section 3.1.2 was 

chosen where the characteristic water depth , ho, was chosen to be the constant 

offshore water depth, the horizontal length scale, £, was chosen to be one-half of 

the width of the bay in Fig. 5.3.2, and the characteristic wave height, H, was 

chosen to be the incident wave height, to be discussed shortly. Hence, the offshore 

non dimensional water depth is h = 1 , and the lateral boundaries of the domain are 

located at x = ±1. The nonlinear parameter, a, and the dispersion parameter, 

/3, are defined exactly as in Section 3.1: 

H 
O'. = -

ho 
(5.3.1) 

In terms of the dimensionless variables, the still water depth was chosen to 

be: 

{ 
y+D 

h(x, y) = :- B cos 7rx + D 
y ?:_ -D 

y < -D 
(5.3.2) 

For regions above the still water depth, h is negative. The contours in the region 

y 2 -D corresponding to this bathymetry are: 

y = B(l- ~)cos7fx-yo Yo :SD (5.3.3) 

The quantity y0 is a free parameter which specifies a particular contour. The 

shoreline corresponds to Yo - 0 : 

Yshoreline = B COS 7fX (5.3.4) 

For the finite element model the parameters B and D were chosen to be: 

(5.3.5) 

(5.3.6) 
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Fig. 5.3.3 Contours of the nearshore bathymetry. Heavy solid line 
corresponds to shoreline. Dashed lines below still water 
surface. 

The contours of the still water depth are shown in Fig. 5.3.3 for !xi ~ 1 

and 1111 ~ 3/7r. For y < -3/7r the still water depth is constant. The shoreline 

corresponds to the heavy solid line. The dashed lines correspond to contours 

below the still water surface. The contour spacing was chosen to be one-tenth 

of the offshore still water depth. The labels 1, 2, ... , 5 refer to positions where 
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runup predictions will be made. They correspond to x = 0., 0.25, 0.5, 0.75, and 

1.0. 

Viscous bed stresses will be neglected. In general, their importance is difficult 

to judge. For typical laboratory studies of the scale considered in this work where 

the beach is smooth, the flow will be laminar and the concomitant dissipation will 

be small; it is likely that it will not alter the runup characteristics significantly. 

However, for large scale studies where the surface roughness of the shore region is 

large, the flow will be turbulent and the attendant dissipation may be large enough 

to be a major factor determining the runup height. Since this test case will be 

compared with neither laboratory nor field results, it is not possible to estimate 

"typical" bed stress dissipation rates and so, therefore, they will be neglected 

entirely. 

A typical finite element mesh used for the computations is shown in Fig. 5.3.4. 

The entire mesh is shown alongside an enlarged view of the nearshore region. It 

is comprised exclusively of linear quadrilateral elements (see Fig. 3.4.2). Notice 

how the use of isoparametric elements allows the rectangular mesh to be gradually 

distorted in the nearshore region so that one of its boundaries conforms exactly 

to the still shoreline. 

The input wave was chosen to be a solitary wave of the form: 

y 
2 v3a y 1JE(t - -) sech

4
,B(l +a) (t- ~) 

c 

sech 2 x ( t - Q) 
c 

(5.3.7) 

where 

x J~;u +a) (5.3.8) 

and 
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mesh near the shoreline. 
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c (5.3.9) 

where a = H / h0 , and the subscript E on rt shows that this is the expression 

for the water surface displacement in the Eulerian description. The characteristic 

wave height H is the (dimensional) amplitude of the incident solitary wave far 

offshore in the constant depth region. The solitary wave of Eq. ( 5.3. 7) travels with 

a nondimensional celerity c = ylr+a. 

The results for eight cases will be shown with a varying from 0.001 up to 0.03. 

The incident solitary wave will be specified at the offshore boundary represented 

by the lower boundary of the finite element mesh in Fig. 5.3.4a. For each case the 

maximum and minumum runup values along the shore will be recorded as well as 

the time history of the runup at the locations 1, 2, ... , 5 shown in Fig. 5.3.3. 

The solitary wave of Eq. (5.3. 7) is written in the Eulerian description. How-

ever, input to the finite element model must be in the Lagrangian description. 

Therefore, Eq. (5.3.7) must be transformed to the Lagrangian description. Actu

ally, using Eq. (5.3.7) as input to the model is unlikely to cause significant error 

since, for the range of amplitudes, a :::; 0.03 , the difference between the two de-

script ions at the offshore boundary is small. However, a very simple expression 

for the solitary wave in the Lagrangian description can be obtained, so it will be 

used. As a first step in transforming to the Lagrangian description, let us use 

Eq. (3.1.63) of Section 3.1.2 for the special case 9E = 17£(t - y/c): 

rt(b, t) ( 
b+a.y(b,t)) 

'7E t - ----
C 

(5.3.10) 

where now y without the hat refers to the position of a fluid particle relative 

to its initial position at y = b. (We have assumed that rtE is solely a function 

of ( t - y / c) , independent of x. Equation ( 5.3.10) is the required expression for 

the surface displacement in the Lagrangian description except that the particle 
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position y(b, t) is not known. The particle position y(b, t) can be written in 

terms of the Eulerian velocity of the particle, vE(t - y/c), using Eq. (3.1.61). In 

turn, the Eulerian velocity can be determined from the water surface elevation, 

17E , for the special case of a permanent form wave. In that case the Eulerian fluid 

velocity is approximately (e.g., Svendsen 197 4): 

(At) - Cl]E(Y,t) 
VE y, - (A ) 

l+a?JE y,t 
(5.3.11) 

If this expression for the Eulerian velocity is substituted into Eq. (3.1.61), then 

after an integration by parts the expression for the fluid particle displacement, 

y(b, t), reduces to: 

(5.3.12) 

This equation is strikingly similar to Eq. (5.3.11). It must be remembered that 

both Eqs. (5.3.11) and (5.3.12) are valid only for permanent form waves. For the 

solitary wave of Eq. (5.3.7), Eq. (5.3.12) reduces to (for b = 0 ): 

( ) 
c tanh x t 

y 0,t = -------
x ( 1 + o: sech 2 x t) 

(5.3.13) 

(To generate a solitary wave with a vertical plate piston wave generator, one would 

move the plate according to Eq. (5.3.13).) 

The Lagrangian form of the solitary wave can be obtained by substituting the 

particle displacement, y(b, t), from Eq. (5.3.12) into Eq. (5.3.10) (with 1JE (f), t) = 

r/E ( t - f) / c) ) . Since we are interested only in obtaining an expression for the wave 

for a constant value of b we can, without loss of generality, set b = 0. Then the 

result is: 

11 ( t) (5.3.14) 
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For the solitary wave of Eq. (5.3.7), this expression for the Lagrangian surface 

displacement (for b = 0) becomes: 

77 ( t) sech x t 2( a tanh X t ) 
1 +a sech 2 x t 

The equivalent Eulerian result for f) = 0 from Eq. (5.3. 7) is: 

Equation (5.3.15) was used for input to the finite element model. 

(5.3.15) 

(5.3.16) 

Since the characteristic length scale, £, was chosen to be one-half the width 

of the bay, independent of the incident solitary wave, the dispersion parameter, 

/3 , is also independent of the incident wave. Since the slope of the bottom at the 

centre of the bay was chosen to be 1/10, the dispersion parameter is: 

f3 = [he0
J

2 
= [o.l(B + D)] 2 

= 0.0162 (5.3.17) 

As mentioned previously, the nonlinear parameter, a, was varied from 0.001 

up to 0.03. This represents a factor of 30 in the difference between the largest and 

the smallest amplitudes of the solitary waves. Since the shape of the solitary wave 

in Eq. (5.3.15) depends on a through the parameter x, where x is defined by 

Eq. (5.3.8), solitary waves of different amplitudes necessarily contain a different 

frequency content of Fourier wave numbers. Therefore, the solitary wave becomes 

more peaked as its amplitude increases, so the frequency content of the solitary 

wave shifts to higher frequencies as its amplitude increases. This is a very im-

portant point for interpreting the results of the eight test cases to be presented 

here. As the amplitude of the incident solitary wave is increased, nonlinear effects 

increase simply because of this increase in the incident wave height. In addition, 

as more energy gets placed into the higher wave numbers, frequency dispersion 

becomes more important; hence, shoaling in the sloping region near the shoreline 
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intensifies. This shoaling causes a further increase in wave height, thus enhancing 

the nonlinear effects and increasing the three-dimensionality of the wave field. 

Figures 5.3.5-5.3.12 summarize the results for the eight cases: o: = 0.001, 

0.0025, 0.005, 0.010, 0.015, 0.020, 0.025, 0.030. In each figure four plots are shown. 

Plot (a) shows the runup extrema in the (x, y) plane. It is the same as Fig. 5.3.3 

except for the two long-dashed lines that mark the lines of maximum runup and 

the maximum rundown. Plot (b) is similar to plot (a). It also plots the maximum 

and minimum runup as a function of x. However, in this case the shoreline has, in 

effect, been stretched out into a straight line and the values plotted correspond to 

the maximum and minimum runup measured perpendicular to the shore at a given 

value of x . The runup has been normalized by the still water depth, h0 , of the 

constant depth region far offshore. Plot (d) is exactly the same as plot (b) except 

that the runup values are normalized with respect to the incident solitary wave 

height, H. Plot (c) shows the runup measured perpendicular to the shoreline as 

a function of time at the five locations shown in Fig. 5.3.3. 

Clearly the results for the case o: = 0.001 shown in Fig. 5.3.5 are very different 

than for the case o: = 0.030 shown in Fig. 5.3.12. Since the amplitude of the 

wave is very small for the case o: = 0.001 , nonlinear effects are negligible. The 

runup is very small, as can be seen in Figs. 5.3.Sa and 5.3.5b. In Fig. 5.3.5a 

the runup cannot be be distinguished from the width of the line representing the 

still shoreline. In Fig. 5.3.5b the runup is negligible since it has been normalized 

by the still water depth. However, in 5.3.5d the runup has been normalized by 

the amplitude of the incident solitary wave. In this figure it can be seen that the 

maximum runup is almost uniform across the bay and equal to twice the amplitude 

of the incident wave. This is the expected result for a small amplitude long wave 

reflecting from a vertical wall. That is precisely the situation for the case o: = 0.001 

since, from Eqs. ( 5.3. 7) and (5.3.8), the characteristic length scale of a solitary wave 



-280-

(a) 

O. I - -

y 0 ~01-----------------------~ 0 

-1 

0 

0 

0 

0 

············· 

.... · .. ·· 
····· .. . . ::·: ... ·: .. ~: .... ···· 

........ 

... ::: ........... ·· ··············· 
........ ::: .... ::: .. ::.~·::::: . 

.... ·· ... ··· ...... . 
···········-··-·······--.. ~::::::··--·:.-:· 

. .................... . ··---.... ··-
··········-···-····----·-·-····--· ··············· 

- 1 0 
x 

0. 

0.25 

0.5 

0.75 

1. 

-o. 1 -

6 

4 -

2 

-2 -

-4 -

-5.__~.____,~--'~--'~--'-~--'-~--' -6 
-1 0 0 1 0 20 30 40 50 60 -1 

t 

(d) 
I 

I 

0 
x 

-

-

-

-

-
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extrema perpendicular to the shoreline, (c) time records of runup 
perpendicular to the shoreline. 
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Fig. 5.3.9 a:= 0.015 (a) runup extrema in the (x,y) plane, (b) & (d) runup 
extrema perpendicular to the shoreline, (c) time records of runup 
perpendicular to the shoreline. 
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Fig. 5.3.10 a = 0.02 (a) runup extrema in the (x, y) plane, (b) & (d) runup 
extrema perpendicular to the shoreline, (c) time records of runup 
perpendicular to the shoreline. 
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Fig. 5.3.11 a= 0.025 (a) runup extrema in the (x,y) plane, (b) & (d) runup 
extrema perpendicular to the shoreline, (c) time records of runup 
perpendicular to the shoreline. 
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Fig. 5.3.12 a= 0.03 (a) runup extrema in the (x,y) plane, (b) & (d) runup 
extrema perpendicular to the shoreline, (c) time records of runup 
perpendicular to the shoreline. 
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is proportional to 1/ fo. Therefore, the solitary wave for the case a = 0.001 is 

very long, much longer than the length of the nearshore sloping region. Hence, 

the coastline is essentially a vertical wall relative to the characteristic length scale 

of the incident wave. In Fig. 5.3.5d the runup is slightly larger at the centre of 

the bay ( x = 0) than at the lateral boundaries x = ±1. That is a small effect of 

the three-dimensional nature of the nearshore bathymetry; although the incident 

wave is much longer than the length of the sloping nearshore region, the converging 

bathyrnetry is able to reflect some of the wave energy towards the centre of the 

Lay at x = 0. The rundown is negligible across the entire bay. In Fig. 5.3.5c the 

runup at the five locations indicated in Fig. 5.3.3 is plotted as a function of time. 

At each location the runup is almost identical, although it is slightly greater at 

the centre of the bay ( x = 0) for the reason just mentioned. This figure clearly 

shows that the bathymetry has very little influence on the wave runup for the case 

where the length scale of the wave is much greater than the length scale of the 

nearshore sloping region. 

Figures 5.3.6-5.3.12 show the effects of increasing the amplitude of the inci

dent solitary wave beyond a = 0.001 . The normalization of T/ by the offshore still 

water depth, ho , in part (b) of each of the figures gives a good representation of 

the absolute magnitude of the shoreline motion within the bay, whereas the nor

malization of 'f/ by the incident wave height, H, in part ( d) of each of the figures 

gives a good representation of the relative amplitude of the shoreline motion along 

the shore of the bay. Part ( c) of each figure not only gives a good indication of 

the three-dimensionality of the runup within the bay but also includes phase in

formation about the relative times of maximum or minimum runup between each 

of the locations along the shore of the bay. 

In general, as a is increased, the effects mentioned for the case a = 0.001 

become more pronounced. The runup amplitudes increase and, in fact, the max-
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imum rundown eventually exceeds the maximum runup in absolute value at the 

centre of the bay ( x 0). Three-dimensionality becomes very pronounced and 

the runup amplitude becomes very location sensitive. Runup is much greater at 

the centre of the bay due to reflections from the shores on either side which tend 

to channel the wave energy to the head of the bay. The maximum runup ampli

tude along the shore always occurs on the first advance of the shoreline, but the 

maximum rundown amplitude does not necessarily occur on the first retreat of 

the shoreline, especially along the promontories away from the centre of the bay. 

Hence, the maximum rundown amplitudes across the bay in parts (b) and (d) were 

not all achieved on the same oscillation of the shoreline. The first rundown of the 

shoreline at x = 0 in part ( c) of the figures is very large for the larger values of a. 

This, in fact, was the reason why values of o: larger than 0.03 are not considered 

here since for values of 0:: somewhat larger than 0.03 numerical problems occurred 

at the time of maximum rundown at this location. The numerical problem was 

precisely the same as occurred in Section 5.1.1 when the parameter Ao was in

creased beyond 1.1. The water surface approached the vertical at the rundown 

point in an attempt to become multivalued. 

Perhaps the most important result evident for large values of a is the persis

tent ringing seen in part ( c) of the figures long after the fore ing from the incident 

wave has stopped. Such ringing is often associated with bays or harbours with 

narrow entrances that reflect some of the wave energy back into the basin due to 

a large jump in the wave impedance across the entrance. However, for the present 

case being considered here, the bay entrance is fully open. The ringing in this case 

is due to a coupling of the three-dimensional wave motion within the bay with 

that in the offshore sloping region, which partially traps the wave energy along 

the coast. One would not expect such a persistent ringing if the water depth was 

constant everywhere and the shoreline boundary were a vertical wall. Therefore, 
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the bathymetry itself, in addition to the shoreline geometry, has an important 

influence on the overall response of the bay to wave forcing. 

If a harbour were situated at some point along the bay m Fig. 5.3.2, then 

the excitation applied at the mouth of this harbour would be much different than 

the incident solitary wave time record. Instead, the excitation would be similar to 

the time records shown in part (c) of Figs. 5.3.5-5.3.12. For the larger values of 

a, the solitary wave loses its identity and the time records become oscillatory in 

nature; this will lead to an entirely different harbour response than that associated 

with the solitary wave excitation. The conclusion that the offshore topography 

can significantly influence the response of a bay is not new but has been expressed 

by several investigators in the past. However, very little work has been reported 

on numerical models which can examine this process quantitatively. 

Munk (1962) examined tsunami records associated with different recording 

stations and concluded that the records were governed principally by the topogra

phy near the recording station, not by the character of the tsunami at its source. 

He concluded that some of the tsunami energy became distributed in partially 

trapped edge or shelf wave modes. Therefore, the wave spectrum in a harbour 

or bay situated along such a coast would be determined by the combination of 

two factors: (1) the spectrum of the wave field along the nearshore shelf and 

slope (predominantly a function of its topography) and (2) the bathymetry of the 

particular harbour or bay in question. 

Olsen and Hwang (1971) examined the wave records of Keauhou Bay, Hawaii, 

and developed a numerical response model for the harbour. They reported good 

. agreement with the measured wave records except for the lowest frequencies. For 

these low frequencies they concluded that shelf resonance and edge waves played 

a significant role in determining the bay response. 

The coupling of harbours with the offshore topography was studied by Noiseux 
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( 1983), who looked at the effect of depth variations near the mouths of idealized 

harbour-like geometries. He concluded that the offshore depth variations may be 

very important in determining the resonance characteristics of a bay or harbour, 

in addition to the planform geometry within the harbour. 

The observations of these investigators are consistent with the results pre

sented in this section. The finite element model developed in Section 3.4 of this 

work appears to be a very effective tool for investigating these very complicated 

processes. 

As a final comment it should be noted that although the case treated in 

this section corresponds to a periodic coastline of bays coupled with a sloping 

offshore region, the results can be applied, at least qualitatively, to the case of a 

single bay situated on an infinitely long coast with a sloping offshore topography. 

The coupling of the bay with the offshore region and the spectral response of the 

offshore region to long wave excitation will be quantitatively different, but most 

of the discussion of the general processes associated with the periodic coastline 

is still applicable to the single bay case. The case of a single bay can be treated 

equally as easily with the finite element model except that a larger finite element 

mesh is required to represent the solution domain. 
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CHAPTER 6 

Conclusions 

The major objective of this investigation has been to study the influence of 

sloping boundaries on the response of bays and harbours to transient long wave 

excitation. Much of the analysis has been theoretical, with laboratory experiments 

conducted to compare with some of the theoretical developments. The major 

conclusions of this invesigation will be divided into three sections, each reflecting 

a different aspect of the study. 

6.1 Harbour Response Theory 

A theoretical harbour response model was developed, applicable to narrow 

harbours with fully open entrances, and applied to several harbours, each with a 

different geometry or bathymetry. The theory includes a rigorous treatment of the 

combined effects of both entrance width and entrance dissipation. The theory was 

used to validate the finite element numerical model and, in addition, a number of 

conclusions can be drawn: 

1. In addition to the standard amplification factor, R, the modified (or re

duced) amplification factor, R', is a useful quantity to describe the response 

of a narrow harbour. The modified amplification factor removes the effects 

of geometric amplification and bathymetric shoaling from the standard am

plification factor. 
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2. There are three regimes of the resonant harbour response that depend upon 

the relative sizes of the nondimensional amplitude of the incident wave, 

IAinc I, and the nondimensional harbour entrance width, E: 

(i) For large amplitudes ( )Aincl > O(t: 2
) ), the response of the harbour at 

resonance is limited by entrance losses. 

(ii) For moderate amplitudes (/A inc I = 0( t:2 ) ), the response of the har

bour at resonance is limited by both entrance dissipation and radia

tion of wave energy from the harbour mouth. 

(iii) For small amplitudes ( IAincl < O(t: 2
) ), the response of the harbour 

at resonance is limited by radiation. For this case it was found that 

the harbour paradox still existed in that the amplification factor, R, 

grows arbitrarily large as the harbour entrance width is reduced to 

zero. However, the actual amplitude within the harbour remains small. 

3. The harbour bathymetry and sidewall geometry have a strong influence on 

both the resonant frequencies and the harbour response at resonance. For a 

given harbour length and entrance width, the frequency of the first resonant 

mode was found to vary by nearly a factor of two, and the response of the 

first mode ranged by nearly a factor of three (entrance losses neglected) for 

the special geometries and bathymetries considered in this work. 

4. In comparison with a constant depth rectangular harbour, the resonant fre

quencies are lower for a harbour with sloping bottom but are higher for a 

harbour with converging sidewalls. (If a harbour has both a sloping bottom 

and converging sidewalls, then it is not possible, in general, to arrive at a 

similar conclusion.) 
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6. 2 Nonlinear Effects of Wave Runup 

The nonlinear effects of the runup of nonbreaking periodic waves on a plane 

beach were investigated using the transformation of Carrier & Greenspan ( 1958). 

For most of the analysis the waves were assumed to be harmonic far offshore and 

frequency dispersion was neglected. Although the conclusions drawn from this 

analysis are strictly valid only under these assumptions, they are also probably 

applicable, at least qualitatively, to the general case of the runup of waves on many 

natural beaches. 

1. At a fixed location near the shore, the minimum wave amplitude is larger 

in absolute value than the maximium wave amplitude; i.e., the troughs are 

larger than the crests. As a result, the mean wave height near the shore is 

negative and this effect decreases monotonically offshore. The fact that the 

crests are smaller than the troughs may have importance in the estimation 

of tsunami runup from nearshore tide stations. 

2. Near the location where nodes are predicted by linear theory, the water 

surface time history exhibits twice as many oscillations as the incident wave, 

and precisely at the "nodal" location the surface elevation oscillates between 

zero and a negative value (which depends on the value of the parameter 

Ao= A~w 2 /<f> 2g ). 

3. The maximum fluid acceleration occurs at the shoreline at the point of 

maximum rundown of the wave. 

4. Nonlinear effects do not alter the maximum and minimum runup amplitudes 

of nonbreaking periodic waves on a beach from the values predicted by linear 

theory. (This is true for arbitrary periodic waves, not only for waves that 

are harmonic far offshore.) 
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6.3 Finite Element Model 

A finite element model was developed, based on a set of long wave equations 

in the Lagrangian description, which is capable of treating nonlinear and dispersive 

effects in regions of arbitrary geometry and bathymetry. In particular, the model 

can compute the runup of nonbreaking waves on a beach with an arbitrarily curved 

shoreline. Based on the results of this model, the following conclusions can be 

drawn: 

1. Comparison with nonlinear Carrier-Greenspan (1958) solution was very 

good, indicating that the model can compute accurately the runup of non

breaking waves on a beach. 

2. Comparison with linear dispersive theory indicates that the model can ac

curately treat weakly dispersive effects resulting from vertical fluid acceler

ations. 

3. An abrupt change in the boundary geometry at the mouth of a harbour can 

be responsible for enhanced radiation damping in a finite element model. 

This reduces the harbour response at resonance, and, therefore, it is impor

tant to resolve the geometry at the harbour entrance with as fine a mesh as 

is practical. 

4. Three-dimensional simulations of the runup of solitary waves on a curved 

beach indicate that some of the wave energy can become partially trapped 

along the coast. Hence, the excitation of a harbour situated along such a 

coast is strongly dependent on the bathymetry of the sloping region and 

it may, in fact, bear little resemblance to the incident wave itself. In such 

situations it is essential to include in the analysis the sloping region exterior 

to the harbour. 
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6.3.1 Comparison with Laboratory Experiments 

Laboratory experiments were performed to study the response of a rect

angular harbour whose still water depth decreased linearly from the entrance to 

the shoreline. Based on comparisons between the results of these experiments and 

the finite element model, the following conlusions are evident: 

1. Overall agreement between the experiments and the nonlinear, dispersive, 

dissipative finite element model was very good for both the transient and 

the steady-state response. The agreement was better than that between the 

experiments and the linear harbour response theory. 

2. The water surface time histories, recorded along the centreline of the harbour 

midway between the entrance and the quiescent shoreline, were asymmetric, 

with larger troughs than crests. This nonlinear effect was most apparent 

near the first resonant mode where the harbour response was the greatest. 

As a result of this asymmetry, the mean water level, at the point of mea

surement, was negative. These features were reproduced accurately by the 

finite element model. 

3. Entrance dissipation, due to fl.ow separation, is still a difficult effect to model 

accurately. Although a quadratic head loss appears to be a useful approxi

mation to model this dissipation mechanism for a narrow harbour entrance, 

the value of the entrance loss coefficient must still be determined by exper

iment. Future work to determine this coefficient numerically, without the 

need to perform laboratory experiments, would be of great benefit. 

4. Although this investigation did not treat wave breaking, it is a process of 

great importance, and future work to incorporate this effect into three

dimensional runup models is warranted. 
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LIST OF SYMBOLS 

the vector (a, b) 

amplitude of incident wave system 

the vector (a, b, c) 

the ith Cartesian coordinate of a fluid particle at time t = 0, 
i=l,2,3 

differentiation with respect to the variable a; e.g., Xa = ~~ 

amplitude of periodic runup on a linearly sloping beach 

cofactor of ox.i 
oak 

half the breadth of a narrow harbour at the location x 

differentiation with respect to the variable b; e.g., xb = ~~ 

a3 or the phase speed of a wave 

group speed of a sinusoidal wave 

differentiation with respect to the variable c; e.g., Xe = ~~ 

dissipation matrix in the finite element model, characteristic wave 
celerity, or surface contamination factor 

constraint matrix in the finite element model 

vector which contains the fluid particle dispacements at the node 
points 

( 
Yb 

-ya 

proportional energy density loss per period under a sinusoidal 
wave due to boundary layer dissipation 

proportional energy density loss per period under a sinusoidal 
wave clue to internal dissipation 
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refers to a variable in the Eulerian description, e.g., UE 

entrance loss coefficient 

vector containing the forcing terms for the finite element matrix 
equation Md = f to determine the nodal values of the fluid 
particle displacements 

exact expressions for the viscous terms in the Lagrangian descrip
tion, i = 1, 2, 3 

acceleration due to gravity 

arbitrary function in the Lagrangian description 

arbitrary function in the Eulerian description 

still water depth 

characteristic wave height 

harbour function for rt corresponding to the nondimensional fre
quency K 

Hankel function of the first kind of order zero ::::: J 0 ( ) + iY0 ( ) 

Hankel function of the second kind of order zero ::::: J0 () - iY0 ( ) 

characteristic still water depth 

the sth zero of J0 (z). s = 1, 2, ... 

Jacobian D(x,y,z) 
D(a,b,c) 

Bessel function of the first kind of order n 

wavenumber = 2;: 

characteristic wavelength 

length of a rectangular harbour 

"mass" matrix in the finite element model 

Dx· 
minor of -;o1-

u ak 
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n = (na, nb) outward unit vector of a two-dimensional region 

ne radial unit vector (cos 0, sin 0) where 0 is the polar angle 

Ni finite element shape function corresponding to local node number 
i 

p In the Eulerian description this refers to the static pressure. 
In the Lagrangian description this refers to the deviation of the 
pressure from its intitial value. 

Pd dynamic pressure 

Pv( ) Legendre function of the first kind of degree v 

Q orthogonal transformation matrix 

Q v ( ) Legendre function of the second kind of degree v 

R amplification factor of a harbour 

R' alternate amplification factor of a harbour adjusted to account for 
the effect of shoaling and geometrical wave amplification, R' 
R/S 

lR{ } real part of a complex quantity 

Re 8 Reynolds number based on the boundary layer thickness 8 and 
the velocity immediately outside the boundary layer 

RM Radius of the harbour mouth region 

Ro Radius of the outer region where the radiated wave is computed 

( ) res the value of the enclosed variable at resonance 

s the ratio of the length of the sloping region in a harbour to its 
total length 

S factor by which the amplitude of a wave will increase within a 
harbour due to the effects of shoaling and amplification caused by 
variable bathymetry and harbour sidewall geometry within the 
harbour. 

t time 

( ) t differentiation with respect to the variable t; e.g., Xt = ~~ 

T wave period 

T horizont.al viscous shear force along the bottom 
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the ith component of velocity m the ith coordinate direction, 
i=l,2,3 

harbour function for u corresponding to the nondimensional fre
quency /\. 

the vector (u,v) 

amplitude of horizontal velocity 

horizontal velocity within the boundary layer 

the vector ( u, v, w) 

- °' Hf_2 U rsell number = 7J = h() 

Uz 

energy dissipated per period due to laminar boundary layer dissi
pation 

approximate operator for the vertical component of vorticity 

Cartesian coordinate whose origin is at the harbour entrance 

In the Lagrangian description this refers to the ith component 
of displacement in the ith coordinate direction of a fluid particle 
from its initial position, i = 1, 2, 3. 
In the Eulerian description this refers to the ith Cartesian coor
dinate. 

the vector (x,y) 

horizontal fluid particle displacement vector within the boundary 
layer 

approximate horizontal fluid particle displacement vector for par
ticles at the free surface 

approximate "depth averaged" horizontal fluid particle displace
ment vector 

the horizontal absolute coordinates of a fluid particle = x + o:a 

the vector (x,y,z) 
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Bessel function of the second kind of order n 

nonlinear parameter = hH 
() 

dispersion parameter = ( he_i ) 2 

dissipation parameter =: he ~zwhv 
o y 2gho 

or Euler's constant = 0.57721 ... 

the boundary of a plane two-dimensional region 

gamma function 

the common boundary between the inner harbour region and the 
harbour mouth region 

the common boundary between the harbour mouth region and the 
outer region 

the boundary of the outer region where the radiation boundary 
condition is applied 

boundary layer thickness 

Kronecker /5 symbol: 15iJ = 1 if i = J. , 15iJ = 0 if i j:. J 

one-half the ratio of the width of the entrance of a harbour to its 
length 

permutation symbol: E123 = E312 

€132 = -1, EiJk = 0 otherwise 
E:231 1, €213 

approximate vertical displacement of the water surface above the 
mean water level which includes the first order effects of nonlin
earity, dispersion, and viscous dissipation 

vertical displacement of the water surface above the mean water 
level 

incident wave system 

angular coordinate in 2-D polar coordinates 
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nondimensional wavenumber or frequency of an incident wave sys
tem = kL 

deviation of K from Ki 

zero order approximation to the ith nondimensional resonant fre
quency of a rectangular harbour 

wavelength of a periodic wave 

absolute viscosity 

kinematic viscosity. It also refers to the order of a Legendre func
tion, e.g., Pv or Qv. 

3.14159 ... 

fluid density 

phase angle or beach slope 

J!;(l +a) 

psi or digamma function 

characteristic wave frequency 

a plane two-dimensional region 

the inner harbour region 

the harbour mouth region 

the outer region where the radiated wave is computed 

SPECIAL SYMBOLS 

absolute value or modulus of enclosed number or vector 

determinant of enclosed matrix 

refers to a dimensional quantity, e.g., x* 

either refers to the absolute quantity of the fluid function as op-
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posed to its deviation from its initial value, e.g., X, or refers to a 
trial or test function used in the weighted residual finite element 
method. 

Lagrangian gradient operator = ( a~i, ;b) 

three-dimensional Lagrangian gradient operator = (:a, ;b, ;c) 

Eulerian gradient operator = ( rlx , 8°Y) 

three-dimensional Eulerian gradient operator = ( aax, :Y, :z) 

order symbol 

used to denote the boundary of a two-dimensional region; e.g., the 
boundary of region n is an . 

two-dimensional Jacobian 

three-dimensional Jacobian 

set union 
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APPENDIX A 

Simplified Derivation of the Nonlinear Long 

Wave Equations in the Lagrangian Description 

The derivation of the long wave equations (3.1.119) and (3.1.118) in Section 

3.1.3 was based on the assumptions O(a) = O(,B) = 0(1) < 0(1). The quantities 

a, ,B, and I represent the relative importance of nonlinear effects, frequency 

dispersion effects, and viscous disipation, respectively. However, it is difficult to 

see where each of the terms in the equations comes from and what their physical 

significances are. In this appendix a simplified derivation of the nonlinear long 

wave equations will be given based on a set of more restricted assumptions. The 

advantage of this derivation is that it is based more on physical arguments that 

reveal the physical significance of each of the terms in the equations of motion. 

The assumptions which wilJ be made are that: (1) viscous effects are negligi

ble, (2) the horizontal fluid particle displacements x and y are independent of the 

verical coordinate c, and (3) the pressure is hydrostatic. Assumption (1) allows 

one to neglect internal as well as boundary layer viscous dissipation. Assumptions 

(2) and (3) are both long wave assumptions which are so strong that they neglect 

all dispersive effects. Hence, the long wave equations that will be derived subject 

to these assumptions will not have dissipative or dispersive terms but will include 

nonlinear correction terms. These are the most important correction terms, since 

the Lagrangian description was chosen in order to model the nonlinear effects of 

long wave runup. 
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Let us first derive the continuity equation. In Figure A.1 a vertical paral-

lelepiped material element of fluid is shown at both the initial time, t = 0, and an 

arbitrary time t later. At time t = 0 the fluid is quiescent and the top surface of 

the fluid element lies in the plane z 0. As before, the A refers to the absolute 

quantity rather than to its deviation from its initial value; i.e., 

x=a+x y=b+y (A.1) 

so that: 

x(a,b,O) =a y(a,b,O) = b (A.2) 

As before, we will define 17(a,b,t) as: 

17(a,b,t) = z(a,b,O,t) (A.3) 

since the free surface corresponds to c = 0 . At this point all quantities are 

dimensional. At the initial time, t = 0, one corner of the parallelepiped lies 

at (a,b,O). At time t later it has the coordinates (x(a,b,t),y(a,b,t),11(a,b,t)). 

Figure A.2 shows the projections of this element at these two times onto the (x, y) 

plane. Since the element shown in Figures A.1 and A.2 is a material element and 

there are no sources or sinks of mass, we must have: 

i.e., 

ph(a,b) dadb = p [11 + h(x,y)] ~~~:;j dadb 

h(a, b) 
17(a,b) = B(x,y) 

B(a, b) 

h(x,y) 

This is the continuity equation in terms of the dimensional variables (x, Y). 

(A.4) 

(A.5) 

Now let us derive the momentum equations. Actually, we need only derive 

one component since the other component will follow directly from the first by 
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replacing x by f) and a by b. Therefore, we will derive only the a component 

here. Conservation of momentum requires that: 

I p 
82

x dV = - I pna ds at 2 

V(t) S(t) 

(A.6) 

where V (t) and S(t) are the volume and surface area of the element, respectively. 

The left hand side of Eq. (A.6) is easy to evaluate: 

(A.7) 

Now let us evaluate the right hand side of Eq. (A.6). It involves computing the 

net force on the element at time t due to pressure forces acting on the sides and 

bottom of the element. Since it was assumed the pressure was hydrostatic, we 

have: 

P = pg(rt - z) (A.8) 

Hence, the a component of the pressure force acting on side CD in Fig. A.2 is: 

1) 

F® = ~~db J pg(11 - z) dz 
-h(x,f)) 

1 ag[ (A A)]2db =2pgab11+hx,y 

Similarly, the a component of the pressure force acting on side @ is: 

1 ag[ (A A)]2 F@ = -pg-
8 

17 + h x,y da 
2 a 

(A.9) 

(A.10) 

The a component of the pressure force acting on the bottom of the element is 

equal to the pressure at the bottom (from Eq. (A.8)) multiplied by the projected 

area in the a direction. The projected area in the a direction is equal to the 

cross-sectional area of the element multiplied by the bottom slope Bh(i:, y) I ax: 

a(x,:O) a .. 
projected area = o( a, b) ox h( x, y) da db (A.11) 
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From the two-dimensional analog of Eq. (3.1.37) we get: 

8(h,f;) 
a a(a,b) h( A A) aA x,y = .'._)(A A) 
x u x,y 

a(a,b) 

Substituting this into Eq. (A.11) we get: 

projected area = B( h, y) da db 
a( a, b) 

(A.12) 

(A.13) 

Hence, the a component of the pressure force acting on the bottom of the element 

is: 

FB = pg[17 + h( x, f;) j ~~~: ~j da db . (A.14) 

Since from Eq. (A.8) the pressure is zero along the free surface, there is no compo-

nent of the pressure force associated with that surface. From Eqs. (A.9), (A.10), 

and (A.14) we find that the total pressure force on the element is: 

J 8F<D BF© 
pnads=- da-da+[ibdb+FB 

s (t) 

A A { ag ary ag a17 } 
= pg[rt + h(x, y)] oa ab - ab oa (A.15) 

Hence, if we substitute Eqs. (A.7) and (A.15) into Eq. (A.6) the a component of 

the momentum equation is: 

8 2 x a(x,y) a(y,ry) 
- =g 
at 2 8(a, b) a(a, b) 

(A.16a) 

Similarly, the b component is: 

82 y a(x,y) 8(17,x) 
- =g---
()t2 B(a, b) B(a, b) 

(A.16b) 

Equations (A.5) and (A.16) don't look like the long wave equations of Section 

3.1.3 since they are written in terms of different variables. To show they are 
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indeed equivalent to 0( o:), let us first make the change of variables: 

y = b* + y* 

Then let us nondimensionalize exactly as in Section 3.1.2: 

a* 
a= -

£ 

x* ho 
x=--

£ H 

b"' 
b= -

£ 

y* ho 
y=--

£ H 

Then the continuity equation (A.5) becomes: 

t=t"~ 
£ 

h* 
h= 

ho 

1{ · h(a,b) } 
fl= o: 

2
B(x,y) -h(a+o:x,b+o:y) 

1 + o:(xa +Yb)+ o: B(a,b) 

and the momentum equations (A.16) become: 

[ ( ) 
2 B(x,y) B(r/,Y) 

Xtt 1 + o: Xa +Yb + o: B(a,b)] + O: B(a,b) + r/a = 0 

2 B(x,y) B(x,fl) 
Ytt[l + o:(xa +Yb)+ o: B(a, b)] + o: B(a, b) + r/b = 0 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

where o: = H / h0 . Equations (A.19) and (A.20) agree with equations (3.1.119) 

and (3.1.118), respectively, to O(o:). 
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APPENDIX B 

Harbour Geometry and Experimental Conditions 

This Appendix contains the harbour geometry and experimental conditions 

used for the laboratory experiments discussed in Secion 5.2. 

Table B.l 

Harbour Geometry and Experimental Conditions. 
ho= 7.00 cm, T = 27r /w = 2 sec. 

wL 2b 2b L 
-

~ L [cm] [cm] 

0. - - 0. 
0.698 0.223 4.1 18.4 
0.759 0.205 4.1 20.0 
0.823 0.189 4.1 21.7 
0.888 0.222 5.2 23.4 
0.948 0.204 5.1 25.0 
1.013 0.191 5.1 26.7 
1.073 0.219 6.2 28.3 
1.138 0.207 6.2 30.0 
1.206 0.195 6.2 31.8 
1.259 0.217 

' 
7.2 33.2 

1.312 0.208 I 7.2 34.6 
1.396 0.196 7.2 36.8 

1.445 0.215 8.2 38.1 
1.517 0.205 i 8.2 40.0 
1.567 0.199 I 8.2 41.3 
1.620 0.218 I 9.3 42.7 
1.688 0.209 9.3 44.5 
1.745 0.202 9.3 46.0 
1.897 0.208 I 10.4 50.0 
2.082 0.206 11.3 54.9 


