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Abstract

We are at the cusp of a historic transformation of both communication system and electricity system.

This creates challenges as well as opportunities for the study of networked systems. Problems of

these systems typically involve a huge number of end points that require intelligent coordination in a

distributed manner. In this thesis, we develop models, theories, and scalable distributed optimization

and control algorithms to overcome these challenges.

This thesis focuses on two specific areas: multi-path TCP (Transmission Control Protocol) and

electricity distribution system operation and control. Multi-path TCP (MP-TCP) is a TCP exten-

sion that allows a single data stream to be split across multiple paths. MP-TCP has the potential to

greatly improve reliability as well as efficiency of communication devices. We propose a fluid model

for a large class of MP-TCP algorithms and identify design criteria that guarantee the existence,

uniqueness, and stability of system equilibrium. We clarify how algorithm parameters impact TCP-

friendliness, responsiveness, and window oscillation and demonstrate an inevitable tradeoff among

these properties. We discuss the implications of these properties on the behavior of existing algo-

rithms and motivate a new algorithm Balia (balanced linked adaptation) which generalizes existing

algorithms and strikes a good balance among TCP-friendliness, responsiveness, and window oscilla-

tion. We have implemented Balia in the Linux kernel. We use our prototype to compare the new

proposed algorithm Balia with existing MP-TCP algorithms.

Our second focus is on designing computationally efficient algorithms for electricity distribution

system operation and control. First, we develop efficient algorithms for feeder reconfiguration in

distribution networks. The feeder reconfiguration problem chooses the on/off status of the switches

in a distribution network in order to minimize a certain cost such as power loss. It is a mixed

integer nonlinear program and hence hard to solve. We propose a heuristic algorithm that is based

on the recently developed convex relaxation of the optimal power flow problem. The algorithm

is efficient and can successfully computes an optimal configuration on all networks that we have

tested. Moreover we prove that the algorithm solves the feeder reconfiguration problem optimally

under certain conditions. We also propose a more efficient algorithm and it incurs a loss in optimality

of less than 3% on the test networks.

Second, we develop efficient distributed algorithms that solve the optimal power flow (OPF)
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problem on distribution networks. The OPF problem determines a network operating point that

minimizes a certain objective such as generation cost or power loss. Traditionally OPF is solved in a

centralized manner. With increasing penetration of volatile renewable energy resources in distribu-

tion systems, we need faster and distributed solutions for real-time feedback control. This is difficult

because power flow equations are nonlinear and kirchhoff’s law is global. We propose solutions for

both balanced and unbalanced radial distribution networks. They exploit recent results that suggest

solving for a globally optimal solution of OPF over a radial network through a second-order cone

program (SOCP) or semi-definite program (SDP) relaxation. Our distributed algorithms are based

on the alternating direction method of multiplier (ADMM), but unlike standard ADMM-based dis-

tributed OPF algorithms that require solving optimization subproblems using iterative methods,

the proposed solutions exploit the problem structure that greatly reduce the computation time.

Specifically, for balanced networks, our decomposition allows us to derive closed form solutions for

these subproblems and it speeds up the convergence by 1000x times in simulations. For unbalanced

networks, the subproblems reduce to either closed form solutions or eigenvalue problems whose size

remains constant as the network scales up and computation time is reduced by 100x compared with

iterative methods.
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Chapter 1

Introduction

We are at the cusp of a historic transformation of both communication system and electricity system.

This creates challenges as well as opportunities for the study of networked systems. Problems of

these systems typically involve a huge number of end points that require intelligent coordinations in a

distributed manner. In this thesis, we develop models, theories, and scalable distributed optimization

and control algorithms that overcome these challenges.

Specifically, this thesis focuses on three topics: multi-path TCP, feeder reconfiguration in distri-

bution systems and distributed OPF algorithm on radial distribution networks.

1.1 Multipath TCP

Traditional TCP uses a single path through the network even though multiple paths are usually

available in today’s communication infrastructure; e.g., most smart phones are enabled with both

cellular and WiFi access, and servers in data centers are connected to multiple routers. Multi-path

TCP (MP-TCP) has the potential to greatly improve application performance by using multiple

paths transparently. It is being standardized by the MP-TCP Working Group of the Internet

Engineering Task Force (IETF) [30]. We present a fluid model of MP-TCP and study how protocol

parameters affect structural properties such as the existence, uniqueness and stability of equilibrium,

the tradeoffs among TCP friendliness, responsiveness and window oscillation. These properties

motivate a new algorithm that generalizes existing MP-TCP algorithms.

Various congestion control algorithms have been proposed as an extension of TCP NewReno

for MP-TCP. A straightforward extension is to run TCP NewReno on each subpath, e.g. [40, 43].

This algorithm, however, can be highly unfriendly when it shares a path with a single-path TCP

user. This motivates the Coupled algorithm, which is fair because it has the same underlying utility

function as TCP NewReno, e.g. [38, 46]. It is found in [89], however, that the Coupled algorithm

responds slowly in a dynamic network environment. A different algorithm is proposed in [89] (which

we refer to as the Max algorithm) which is more responsive than the Coupled algorithm and still
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reasonably friendly to single-path TCP users. Recently, opportunistic linked increase algorithm

(OLIA) is proposed as a variant of Coupled algorithm that is as friendly as the Coupled algorithm

but more responsive [50]. See [77] for more references to early work on multi-path congestion control.

Our goal is to develop structural understanding of MP-TCP algorithms so that we can system-

atically trade off different properties such as TCP friendliness, responsiveness, and window oscilla-

tion. Window oscillation can be detrimental to applications that require a steady throughput. For

single-path TCP, one can associate a strictly concave utility function with each source so that the

congestion control algorithm implicitly solves a network utility maximization problem [47, 62, 77].

The convexity of this underlying utility maximization guarantees the existence, uniqueness, and

stability of most single-path TCP algorithms. For many MP-TCP proposals considered by IETF,

it will be shown that the utility maximization interpretation fails to hold in general, necessitating

the need for a different approach to understanding the equilibrium properties of these algorithms.

Moreover the relations among different performance metrics, such as fairness, responsiveness, and

window oscillation, need to be clarified.

We propose a fluid model for a large class of MP-TCP algorithms and the existence, uniqueness,

and stability of system equilibrium are identified. The impact of algorithm parameters on TCP-

friendliness, responsiveness, and window oscillation are clarified and an inevitable tradeoff among

these properties are also derived. The implications of these properties on the behavior of exist-

ing algorithms motivate the algorithm Balia, which outperforms all the existing algorithms in our

experiment.

1.2 Feeder Reconfiguration in Distribution Networks

A primary distribution system consists of buses, distribution lines, and (sectionalizing and tie)

switches that can be opened or closed. There are two types of buses. Substation buses (or just

substations) are connected to a transmission network from which they receive bulk power, and load

buses that receive power from the substation buses. During normal operation the switches are

configured so that

1. There is no loop in the network.

2. Each load bus is connected to a single substation.

Hence, there is a tree component rooted at each substation and we refer to each such component

as a feeder. The optimal feeder reconfiguration (OFR) problem seeks to alter the on/off status of

these switches, for the purpose of load balancing or loss minimization subject to the above two

requirements, e.g., [6, 17, 19, 65]. See also a survey in [76] for many early papers and references to

some recent work in [45].
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The OFR problem is a combinatorial (on/off status of switches) optimization problem with

nonlinear constraints (power flow equations) and can generally be NP-hard. Various algorithms

have been developed to solve the OFR problems. Following the convention in [45], they roughly fall

into two categories: formal methods and heuristic methods.

Formal methods solve the OFR problem using generic mixed integer optimization approaches.

They usually require a significant amount of computation time, e.g. simulated annealing [17], ordinal

optimization [24], bender decomposition [51], etc..

Heuristic methods exploit problem structures to solve OFR. They are usually more efficient

than formal methods but lack theoretical guarantee on performance, e.g., iterative branch exchange

approach [6, 19,36] and successive branch reduction approach [35,39,65] etc..

We propose a new heuristic method with guaranteed performance. The effectiveness of this new

approach is illustrated both through simulations on standard test systems and mathematical analysis.

Specifically, the proposed algorithm only involves solving a small number of OPF problems and no

computationally intensive mixed-integer optimization. We prove that the proposed heuristic can

obtain the global optimal solution under certain assumptions. Indeed global optimal configurations

can always be found on the four practical networks in our simulations.

1.3 Distributed OPF Algorithm on Radial Distribution Net-

works

The optimal power flow (OPF) problem seeks to optimize certain objectives such as power loss

and generation cost subject to power flow physics and operational constraints. It is a fundamental

problem because it underlies many power system operations and planning problems such as economic

dispatch, unit commitment, state estimation, stability and reliability assessment, volt/var control,

demand response, etc. The continued growth of highly volatile renewable sources on distribution

systems calls for real-time feedback control. Solving the OPF problems in such an environment has

at least two challenges.

First, the OPF problem is hard to solve because of its nonconvex feasible set. Recently a new

approach through convex relaxation has been developed. Specifically semidefinite program (SDP)

relaxation [4] and second order cone program (SOCP) relaxation [44] have been proposed in the bus

injection model, and SOCP relaxation has been proposed in the branch flow model [25,27]. See the

tutorial [60,61] for further pointers to the literature. When an optimal solution of the original OPF

problem can be recovered from any optimal solution of a convex relaxation, we say the relaxation is

exact. For radial distribution networks (whose graphs are trees), several sufficient conditions have

been proved that guarantee SOCP and SDP relaxations are exact. This is important because almost

all distribution systems are radial. Moreover some of these conditions have been shown to hold for
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many practical networks. In those cases we can rely on off-the-shelf convex optimization solvers to

obtain a globally optimal solution for the nonconvex OPF problem.

Second, most algorithms proposed in the literature are centralized and meant for applications

in today’s energy management systems that, e.g., centrally schedule a relatively small number of

generators. In future networks that simultaneously optimize (possibly in real time) the operation of a

large number of intelligent endpoints, a centralized approach will not scale because of its computation

and communication overhead.

We will address the second challenge. Specifically, we develop computationally efficient dis-

tributed algorithms that can scale to large real networks for both balanced and unbalanced radial

distribution networks.

1.4 Thesis Overview

The thesis is organized as follows:

1. In Chapter 2, we develop a general theoretical framework to model mutli-path TCP, which

leads to a better algorithm (Balia) that strikes a better balance among competing performance

criteria. We also implement Balia in the Linux kernel. This work is based on [74,75].

2. In Chapter 3, we formulate the optimal power flow problem on both balanced and unbal-

anced networks and show how to solve them through second order cone program (SOCP)

and semidefinite program (SDP) relaxation. They are the foundations of our works on feeder

reconfiguration and distributed OPF algorithm.

3. In Chapter 4, we formulate the feeder reconfiguration problem in distribution networks, which

is a mixed integer nonlinear program. We then develop heuristic algorithms and show the

performance through both rigorous analysis and simulations on standard test networks. This

work is based on [72,73].

4. In Chapter 5, we first review alternating direction method of multipliers(ADMM). Based on

the general ADMM, we propose efficient centralized and distributed algorithms for a broad

class of graphical optimization problems.

5. In Chapter 6 and 7, we show how to develop distributed algorithms that solve the OPF problem

efficiently on both balanced and unbalanced radial distribution networks through the ADMM

based algorithm in Chapter 5. This work is based on [70,71].
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Chapter 2

Multipath TCP: Analysis, Design
and Implementation

Multi-path TCP (MP-TCP) has the potential to greatly improve application performance by using

multiple paths transparently. A fluid model is proposed for a large class of MP-TCP algorithms

and the existence, uniqueness, and stability of system equilibrium are identified. The impact of

algorithm parameters on TCP-friendliness, responsiveness, and window oscillation are clarified and

an inevitable tradeoff among these properties are also derived. The implications of these properties

on the behavior of existing algorithms are discussed and they motivate the algorithm Balia (balanced

linked adaptation), which generalizes existing algorithms and strikes a good balance among TCP-

friendliness, responsiveness, and window oscillation. Balia is implemented in the Linux kernel and

compared with existing MP-TCP algorithms.

Literature Traditional TCP uses a single path through the network even though multiple paths

are usually available in today’s communication infrastructure; e.g., most smart phones are enabled

with both cellular and WiFi access, and servers in data centers are connected to multiple routers.

Multi-path TCP (MP-TCP) has the potential to greatly improve application performance by using

multiple paths transparently. It is being standardized by the MP-TCP Working Group of the Internet

Engineering Task Force (IETF) [30]. In this chapter we present a fluid model of MP-TCP and study

how protocol parameters affect structural properties such as the existence, uniqueness and stability

of equilibrium, the tradeoffs among TCP friendliness, responsiveness, and window oscillation. These

properties motivate a new algorithm that generalizes existing MP-TCP algorithms.

Various congestion control algorithms have been proposed as an extension of TCP NewReno

for MP-TCP. A straightforward extension is to run TCP NewReno on each subpath, e.g. [40, 43].

This algorithm, however, can be highly unfriendly when it shares a path with a single-path TCP

user. This motivates the Coupled algorithm, which is fair because it has the same underlying utility

function as TCP NewReno, e.g. [38, 46]. It is found in [89], however, that the Coupled algorithm
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can respond slowly in a dynamic network environment. A different algorithm is proposed in [89]

(which we refer to as the Max algorithm) which is more responsive than the Coupled algorithm and

still reasonably friendly to single-path TCP users. Recently, opportunistic linked increase algorithm

(OLIA) is proposed as a variant of Coupled algorithm that is as friendly as the Coupled algorithm

but more responsive [50]. See [77] for more references to early work on multi-path congestion control.

Our goal is to develop structural understanding of MP-TCP algorithms so that we can system-

atically tradeoff different properties such as TCP friendliness, responsiveness, and window oscilla-

tion. Window oscillation can be detrimental to applications that require a steady throughput. For

single-path TCP, one can associate a strictly concave utility function with each source so that the

congestion control algorithm implicitly solves a network utility maximization problem [47, 62, 77].

The convexity of this underlying utility maximization guarantees the existence, uniqueness, and

stability of most single-path TCP algorithms. For many MP-TCP proposals considered by IETF,

it will be shown that the utility maximization interpretation fails to hold in general, necessitating

the need for a different approach to understanding the equilibrium properties of these algorithms.

Moreover the relations among different performance metrics, such as fairness, responsiveness, and

window oscillation, need to be clarified.

Summary The main contributions of this work are three-fold. First we present a fluid model that

covers a broad class of MP-TCP algorithms and identify the exact property that allows an algorithm

to have an underlying utility function. This implies that some MP-TCP algorithms, e.g., the Max

algorithm [89], has no associated utility function. We prove conditions on protocol parameters that

guarantee the existence and uniqueness of the equilibrium, and its asymptotical stability. Indeed,

algorithms that fail to satisfy these conditions, e.g. the Coupled algorithm, can be unstable and

can have multiple equilibria as shown in [89]. Second, we clarify how protocol parameters impact

TCP friendliness, responsiveness, and window oscillation and demonstrate the inevitable tradeoff

among these properties. Finally, based on our understanding of the design space, we propose Balia

(Balanced linked adaptation) MP-TCP algorithm that generalizes existing algorithms and strikes a

good balance among these properties. This algorithm has been implemented in the Linux kernel

and we evaluate its performance using our Linux prototype.

We now summarize our proposed Balia MP-TCP algorithm. Each source s has a set of routes r.

Each route r maintains a congestion window wr and measures its round-trip time τr. The window

adaptation is as follows:

• For each ACK on route r ∈ s,

wr ← wr +
xr

τr (
∑
xk)

2

(
1 + αr

2

)(
4 + αr

5

)
, (2.1)
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• For each packet loss on route r ∈ s,

wr ← wr −
wr
2

min {αr, 1.5} , (2.2)

where xr := wr/τr and αr := max{xk}
xr

.

2.1 Multipath TCP model

In this section we first propose a fluid model of MP-TCP and then use it to model MP-TCP

algorithms in the literature. Unless otherwise specified, a boldface letter x ∈ Rn denotes a vector

with components xi. We use x−i := (x1, . . . , xi−1, xi+1, . . . , xn) to denote the n − 1 dimensional

vector without xi and ‖x‖k := (
∑
xki )1/k to denote the Lk-norm of x. Given two vectors x,y ∈ Rn,

x ≥ y means xi ≥ yi for all components i. A capital letter denotes a matrix or a set, depending on

the context. A symmetric matrix P is said to be positive (negative) semidefinite if xTPx ≥ 0(≤ 0)

for any x, and positive (negative) definite if xTPx > 0(< 0) for any x 6= 0. For any matrix P ,

define [P ]+ := (P + PT )/2 to be its symmetric part. Given two arbitrary matrices A and B (not

necessarily symmetric), A � B means [A− B]+ is positive semidefinite. For a vector x, diag{x} is

a diagonal matrix with entries given by x.

2.1.1 Fluid model

Consider a network that consists of a set L = {1, . . . , |L|} of links with finite capacities cl. The

network is shared by a set S = {1, . . . , |S|} of sources. Available to source s ∈ S is a fixed collection

of routes (or paths) r. A route r consists of a set of links l. We abuse notation and use s both

to denote a source and the set of routes r available to it, depending on the context. Likewise, r is

used both to denote a route and the set of links l in the route. Let R := {r | r ∈ s, s ∈ S} be the

collection of all routes. Let H ∈ {0, 1}|L|×|R| be the routing matrix: Hlr = 1 if link l is in route r

(denoted by ‘l ∈ r’), and 0 otherwise.

For each route r ∈ R, τr denotes its round trip time (RTT). For simplicity we assume τr are

constants. Each source s maintains a congestion window wr(t) at time t for every route r ∈ s.

Let xr(t) := wr(t)/τr represent the sending rate on route r. Each link l maintains a congestion

price pl(t) at time t. Let qr(t) :=
∑
l∈LHlrpl(t) be the aggregate price on route r. In this chapter

pl(t) represents the packet loss probability at link l and qr(t) represents the approximate packet loss

probability on route r.

We associate three state variables (xr(t), wr(t), qr(t)) for each route r ∈ s. Let xs(t) := (xr(t), r ∈

s), ws(t) := (wr(t), r ∈ s), qs(t) := (qr(t), r ∈ s). Then (xs(t),ws(t),qs(t)) represents the corre-

sponding state variables for each source s ∈ S. For each link l, let yl(t) :=
∑
r∈RHlrxr(t) be its
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aggregate traffic rate.

Congestion control is a distributed algorithm that adapts x(t) and p(t) in a closed loop. Moti-

vated by the AIMD algorithm of TCP Newreno, we model MP-TCP by

ẋr = kr(xs) (φr(xs)− qr)+
xr

r ∈ s s ∈ S (2.3)

ṗl = γl (yl − cl)+
pl

l ∈ L, (2.4)

where (a)+
x = a for x > 0 and max{0, a} for x ≤ 0. We omit the time t in the expression for simplicity.

(2.3) models how sending rates are adapted in the congestion avoidance phase of TCP at each end

system and (2.4) models how the congestion price is (often implicitly) updated at each link. The

MP-TCP algorithm installed at source s is specified by (Ks,Φs), where Ks(xs) := (kr(xs), r ∈ s)

and Φs(xs) := (φr(xs), r ∈ s). Here Ks(xs) ≥ 0 is a vector of positive gains that determines the

dynamic property of the algorithm. Φs(xs) determines the equilibrium properties of the algorithm.

The link algorithm is specified by γl, where γl > 0 is a positive gain that determines the dynamic

property. This is a simplified model of the RED algorithm that assumes the loss probability is

proportional to the backlog, and is used in, e.g., [47, 62].

2.1.2 Existing MP-TCP algorithms

We first show how to relate the fluid model (2.3) to the window-based MP-TCP algorithms proposed

in the literature. On each route r the source increases its window at the return of each ACK. Let

this increment be denoted by Ir(ws), where ws is the vector of window sizes on different routes of

source s. The source decreases the window on route r when it sees a packet loss on route r. Let this

decrement be denoted by Dr(ws). Then most loss based MP-TCP algorithms take the form of the

following pseudo code:

• For each ACK on route r, wr ← wr + Ir(ws).

• For each loss on route r, wr ← wr −Dr(ws).

We now model the above pseudo codes by the fluid model (2.3). Let δwr be the net change to

window on route r in each round trip time. Then δwr is roughly

δwr = (Ir(ws)(1− qr)−Dr(ws)qr)wr

≈ (Ir(ws)−Dr(ws)qr)wr,

since the loss probability qr is small. On the other hand

δwr ≈ ẇrτr = ẋrτ
2
r .
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Therefore

ẋr =
xr
τr

(Ir(ws)−Dr(ws)qr).

From (2.3) we have  kr(xs) = xr
τr
Dr(ws)

φr(xs) = Ir(ws)
Dr(ws)

. (2.5)

We now apply this to the algorithms in the literature. We first summarize these algorithms in

the form of a pseudo-code and then use (2.5) to derive parameters kr(xs) and φr(xs) of the fluid

model (2.3).

Single-path TCP (TCP-NewReno)

Single-path TCP is a special case of MP-TCP algorithm with |s| = 1. Hence xs is a scalar and we

identify each source with its route r = s. TCP-NewReno adjusts the window as follows:

• For each ACK on route r, wr ← wr + 1/wr.

• For each loss on route r, wr ← wr/2.

From (2.5), this can be modeled by the fluid model (2.3) with

kr(xs) =
1

2
x2
r, φr(xs) =

2

τ2
r x

2
r

.

We now summarize some existing MP-TCP algorithms, all of which degenerate to TCP NewReno

if there is only one route per source.

EWTCP [40]

EWTCP algorithm applies TCP-NewReno like algorithm on each route independently of other

routes. It adjusts the window on multiple routes as follows:

• For each ACK on route r, wr ← wr + a/wr.

• For each loss on route r, wr ← wr/2.

From (2.5), this can be modeled by the fluid model (2.3) with

kr(xs) =
1

2
x2
r, φr(xs) =

2a

τ2
r x

2
r

.

where a > 0 is a constant.
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Coupled MPTCP [38,46]

The Coupled MPTCP algorithm adjusts the window on multiple routes in a coordinated fashion as

follows:

• For each ACK on route r, wr ← wr +
wr/τ

2
r

(
∑
k∈s wk/τk)2 .

• For each loss on route r, wr ← wr/2.

From (2.5), this can be modeled by the fluid model (2.3) with

kr(xs) =
1

2
x2
r, φr(xs) =

2

τ2
r (
∑
k∈s xk)2

.

Semicoupled MPTCP [89]

The Semi-coupled MPTCP algorithm adjusts the window on multiple routes as follows:

• For each ACK on route r, wr ← wr + 1
τr(

∑
k∈s wk/τk) .

• For each loss on route r, wr ← wr/2.

From (2.5), this can be modeled by the fluid model (2.3) with

kr(xs) =
1

2
x2
r, φr(xs) =

2

xrτr(
∑
k∈s xk)

.

Max MPTCP [89]

The Max MPTCP algorithm adjusts the window on multiple routes as follows:

• For each ACK on route r, wr ← wr + min
{

max{wk/τ2
k}

(
∑
wk/τk)2 ,

1
wr

}
.

• For each loss on route r, wr ← wr/2.

From (2.5), this can be modeled by the fluid model (2.3) with

kr(xs) =
1

2
x2
r, φr(xs) =

2 max{xk/τk}
xrτr(

∑
k∈s xk)2

,

where we have ignored taking the minimum with the 1/wr term since the performance is mainly

captured by
max{wk/τ2

k}
(
∑
wk/τk)2 .

Recently, OLIA MP-TCP algorithm [50] is shown to achieve good performance in many scenarios.

OLIA uses complicated feedback congestion control signals and cannot be modeled by (2.3)-(2.4).

We do, however, include OLIA in our Linux-based performance evaluation in Section 2.4.
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Table 2.1: MP-TCP algorithms

C0 C1 C2, C3 C4 C5

EWTCP Yes Yes Yes Yes Yes
Coupled Yes Yes No Yes Yes

Semicoupled No Yes Yes Yes Yes
Max No Yes Yes Yes Yes

Generalized No Yes Yes Yes Yes

Theorem 2.1 2.2, 2.3, 2.5 2.4 2.6

2.2 Structural properties

Throughout this chapter we assume, for all xs, r ∈ s, s ∈ S, kr(xs) > 0 and φr(xs) = 0 only if

xk = ∞ for some k ∈ s. A point (x,p) is called an equilibrium of (2.3)–(2.4) if it satisfies, for all

r ∈ s, s ∈ S and l ∈ L,

kr(xs) (φr(xs)− qr)+
xr

= 0

γl (yl − cl)+
pl

= 0

or equivalently,

xr ≥ 0, φr(xs) ≤ qr and φr(xs) = qr if xr > 0 (2.6)

pl ≥ 0, yl ≤ cl and yl = cl if pl > 0. (2.7)

We make two remarks. First an equilibrium (x,p) does not depend on Ks, but only on Φs. The

design (Ks, s ∈ S), however, affects dynamic properties such as stability and responsiveness as we

show below. Second, since kr(xs) > 0 and φr(xs) = 0 only if xk =∞ for some k ∈ s by assumption,

any finite equilibrium (x,p) must have qr > 0 for all r. In the following we always restrict ourselves

to finite equilibria.

In this section we denote an MP-TCP algorithm by (K,Φ) := (Ks,Φs, s ∈ S). We characterize

MP-TCP designs (K,Φ) that guarantee the existence, uniqueness, and stability of system equi-

librium. We identify design criteria that determine TCP-friendliness, responsiveness, and window

oscillation and prove an inevitable tradeoff among these properties. We discuss in chapter 2.3 the

implications of these structural properties on existing algorithms. All proofs are relegated to the

Appendices.
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2.2.1 Summary

We first present some properties of an MP-TCP algorithm (K,Φ) that we have identified. We then

interpret them and summarize their implications.

C0: For each s ∈ S and each xs, the Jacobians of Φs(xs) is continuous and symmetric, i.e.,

∂Φs
∂xs

(xs) =

[
∂Φs
∂xs

(xs)

]T
.

C1: For each s ∈ S there exists a nonnegative solution xs := xs(p) to (2.6) for any finite p ≥ 0

such that qr > 0 for all r. Moreover,

∂ysl (p)

∂pl
≤ 0, lim

pl→∞
ysl (p) = 0,

where ysl (p) :=
∑
r∈sHlrxr(p) is the aggregate traffic at link l from source s.

C2: For each s ∈ S and each xs, Φs(xs) is continuously differentiable; moreover, the symmetric

part [∂Φs(xs)/∂xs]
+ of the Jacobian is negative definite.

C3: For each r ∈ R, φr(xs) =∞ if and only if xr = 0. The routing matrix H has full row rank.

C4: For each r ∈ s, s ∈ S,
∑
j∈s[Ds]jr(xs) ≤ 0, where Ds(xs) :=

[
∂Φs
∂xs

(xs)
]−1

.

C5: For each r ∈ R and each x−r, limxr→∞ φr(xs) = 0.

These design criteria are intuitive and usually (but not always) satisfied; see Table 2.1.

Condition C0 guarantees the existence of utility functions Us(xs) that an equilibrium (x,p) of

a multipath TCP/AQM (2.3)–(2.4) implicitly maximizes (Theorem 2.1). It is always satisfied when

there is only a single path (|s| = 1 for all s) but not when |s| > 1.

Conditions C1–C3 guarantee the existence, uniqueness, and global asymptotic stability of the

equilibrium (x,p) (Theorems 2.2 and 2.3). C1 says that the aggregate traffic rate through a link l

from source s decreases when the congestion price pl on that link increases, and it decreases to 0 as

pl increases without bounds. C2 implies that at steady state, if xs,qs are perturbed by δxs, δqs,

respectively, then (δxs)
T δqs < 0. In the case of single-path TCP (|s| = 1 for all s), C2 is equivalent

to the curvature of the utility function Us(xs) being negative, i.e., Us(xs) is strictly concave. C3

means that the rate on route r is zero if and only if it sees infinite price on that route.

Condition C4 is natural and satisfied by all the algorithms considered in this chapter. It allows

us to formally compare MP-TCP algorithms in terms of their TCP-friendliness (see formal definition

below): under C1–C4, an MP-TCP algorithm (K,Φ) is more friendly if φr(xs) is smaller (Theorem

2.4). The existence of Ds in C4 is ensured by C2. To interpret C4, note that Lemma 2.10 in

Appendix 2.B implies that Φs(x
∗
s) = q∗s at equilibrium. The implicit function theorem then implies
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1T ∂xs∂qr
=
∑
j∈sDjr at equilibrium for all r ∈ s. Thus C4 says that the aggregate throughput 1Txs

at equilibrium over all routes r ∈ s of an MP-TCP flow is a nonincreasing function of the price qr.

Condition C5 is also satisfied by all the algorithms considered in this paper. It means that the

sending rate on a route r grows unbounded when the congestion price qr is zero. Under C1–C3,

an MP-TCP algorithm (K,Φ) is more responsive (see formal definition below) if the Jacobian of

Φs(xs) is more negative definite (Theorem 2.5). C5 then implies an inevitable tradeoff: an MP-TCP

algorithm that is more responsive is necessarily less TCP-friendly (Theorem 2.6).

We now elaborate on each of these properties.

2.2.2 Utility maximization

For single-path TCP (SP-TCP), one can associate a utility function Us(xs) ∈ R+ → R with each

flow s (xs is a scalar and |s| = 1) and interpret (2.3)–(2.4) as a distributed algorithm to maximize

aggregate users’ utility, e.g. [47, 59, 62, 77]. Indeed, for SP-TCP, an (x,p) is an equilibrium if and

only if x is optimal for

maximize
∑
s∈S

Us(xs) s.t. yl ≤ cl l ∈ L (2.8)

and p is optimal for the associated dual problem. Here yl ≤ cl means the aggregate traffic yl at each

link does not exceed its capacity cl. In fact this holds for a much wider class of SP-TCP algorithms

than those specified by (2.3)–(2.4) [59]. Furthermore, all the main TCP algorithms proposed in the

literature have strictly concave utility functions, implying a unique stable equilibrium.

The case of MP-TCP is much more delicate: whether an underlying utility function exists depends

on the design choice of Φs and not all MP-TCP algorithms have one. Consider the multipath

equivalent of (2.8):

maximize
∑
s∈S

Us(xs) s.t. yl ≤ cl l ∈ L, (2.9)

where xs := (xr, r ∈ s) is the rate vector of flow s and Us : R|s|+ → R is a concave function.

Theorem 2.1 (utility maximization). There exists a twice continuously differentiable and concave

Us(xs) such that an equilibrium (x,p) of (2.3)–(2.4) solves (2.9) and its dual problem if and only if

condition C0 holds.

Condition C0 is satisfied trivially by SP-TCP when |s| = 1. For MP-TCP (|s| > 1), the models

derived in Section 2.1.2 show that only EWTCP and Coupled algorithms satisfy C0 and have under-

lying utility functions. It therefore follows from the theory for SP-TCP that EWTCP has a unique

stable equilibrium while Coupled algorithm may have multiple equilibria since its corresponding util-

ity function is not strictly concave. The other MP-TCP algorithms all have asymmetric Jacobian

∂Φs
∂xs

and do not satisfy C0.
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2.2.3 Existence, uniqueness and stability of equilibrium

Even though a multipath TCP algorithm (K,Φ) may not have a utility maximization interpretation,

a unique equilibrium exists if conditions C1–C3 are satisfied.

Theorem 2.2 (existence and uniqueness). 1. Suppose C1 holds. Then (2.3)–(2.4) has at least

one equilibrium.

2. Suppose C2 and C3 hold. Then (2.3)–(2.4) has at most one equilibrium

Thus (2.3)–(2.4) has a unique equilibrium (x∗,p∗) under C1–C3.

Conditions C1-C3 not only guarantee the existence and uniqueness of the equilibrium, they also

ensure that the equilibrium is globally asymptotically stable, when the gain kr(xs) is only a function

of xr itself, i.e., kr(xs) ≡ kr(xr) for all r ∈ R. This is satisfied by all the existing algorithms presented

in Section 2.1.2.

Theorem 2.3 (stability). Suppose C1-C3 hold and kr(xs) ≡ kr(xr) for all r ∈ R. Then the

unique equilibrium (x∗,p∗) is globally asymptotically stable. In particular, starting from any initial

point x(0) ∈ R|R|+ and p(0) ∈ R|L|+ , the trajectory (x(t),p(t)) generated by the MP-TCP algorithm

(2.3)–(2.4) converges to the equilibrium (x∗,p∗) as t→∞.

Our proposed algorithm does not satisfy kr(xs) ≡ kr(xr) even though it seems to be stable in

our experiments. This condition is only sufficient and needed in our Lyapunov stability proof; see

Appendix 2.C. When kr(xs) depends on xs, one can replace kr(xr) in the definition of the Lyapunov

function V in (2.21) with kr(x
∗
s) evaluated at the equilibrium and the same argument there proves

that (x∗,p∗) is (locally) asymptotically stable. Also see Theorem 2.5 below for an alternative proof

of local stability.

2.2.4 TCP friendliness

Informally, an MP-TCP flow is said to be ‘TCP friendly’ if it does not dominate the available

bandwidth when it shares the same network with a SP-TCP flow [30]. To define this precisely we

use the test network shared by a SP-TCP flow and a MP-TCP flow under test as shown in Fig. 2.1.

All paths traverse a single bottleneck link with capacity c, with all other links with capacities

strictly higher than c. The links have fixed but possibly different delays. To compare the friendliness

of two MP-TCP algorithms M̂ := (K̂, Φ̂) and M̃ := (K̃, Φ̃), suppose that when M̂ shares the test

network with a SP-TCP it achieves a throughput of ‖x̂‖1 in equilibrium aggregated over the available

paths (the SP-TCP therefore attains a throughput of c− ‖x̂‖1). Suppose M̃ achieves a throughput

of ‖x̃‖1 in equilibrium when it shares the test network with the same SP-TCP. Then we say that M̂

is friendlier (or more TCP-friendly) than M̃ if ‖x̂‖1 ≤ ‖x̃‖1, i.e., if M̂ receives no more bandwidth

than M̃ does when they separately share the test network in Fig. 2.1 with the same SP-TCP flow.
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c

MP-TCP
Flow

MP-TCP
Flow

SP-TCP
Flow

SP-TCP
Flow

Figure 2.1: Test network for the definition of TCP friendliness. The link in the middle is the only
bottleneck link with capacity c.

From the theory for single-path TCP (|s| = 1 for all s ∈ S), it is known that a design is more

TCP-friendly if it has a smaller marginal utility U ′s(xs) = Φs(xs). The same intuition holds for

MP-TCP algorithms even though the utility functions may not exist for MP-TCP algorithm.

Theorem 2.4 (friendliness). Consider two MP-TCP algorithms M̂ := (K̂, Φ̂) and M̃ := (K̃, Φ̃).

Suppose both satisfy C1–C4. Then M̂ is friendlier than M̃ if Φ̂s(xs) ≤ Φ̃s(xs) for all s ∈ S.

2.2.5 Responsiveness around equilibrium

Suppose conditions C1–C3 hold and there is a unique equilibrium z∗ := (x∗,p∗). Assume all links in

L are active with p∗l > 0; otherwise remove from L all links with prices p∗l = 0. Let δz(t) := z(t)−z∗.

The behavior of (2.3)–(2.4) around the equilibrium is defined by the linearized system:

δż = J∗ δz(t). (2.10)

Here J∗ is the Jacobian of (2.3)–(2.4) at the equilibrium z∗:

J∗ := J(x∗) :=

Λk
∂Φ
∂x −ΛkH

T

ΛγH 0

 ,
where Λk = diag{kr(x∗s), r ∈ R}, Λγ = diag{γl, l ∈ L}, and ∂Φ

∂x is evaluated at x∗.

The stability and responsiveness of the linearized system (2.10) (how fast does the system con-

verges to the equilibrium locally) is determined by the real parts of the eigenvalues of J∗. Specifically

the linearized system is stable if the real parts of all eigenvalues of J∗ are negative; moreover the

more negative the real parts are the faster the linearized system converges to the equilibrium. We

now show that the linearized system (2.10) is stable (i.e., converges exponentially fast to z∗ locally)

and characterize its responsiveness in terms of the design choices (K,Φ).

Let Z = {z := (x,p) ∈ C|R|+|L| | ‖z‖2 = 1}.

Theorem 2.5 (responsiveness). Suppose C1–C3 hold. Then
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1. The linearized system (2.10) is stable, i.e., Re(λ) < 0 for any eigenvalue λ of J∗. Moreover

Re(λ) ≤ λ(J∗), where

λ(J∗) := max
z∈Z

{
xH
[
∂Φ
∂x

]+
x

xHΛ−1
k x + pHΛ−1

γ p

}
≤ 0,

where Λk and ∂Φs
∂xs

are evaluated at the equilibrium point z∗.

2. For two MP-TCP algorithms (K̂, Φ̂) and (K̃, Φ̃), λ(Ĵ∗) ≤ λ(J̃∗) provided

K̂s ≥ K̃s and
∂Φ̂s
∂xs

� ∂Φ̃s
∂xs

for all s ∈ S.

Theorem 2.5 motivates the following definition of responsiveness. Given two MP-TCP M̂ and

M̃ , we say that M̂ is more responsive than M̃ if λ(Ĵ∗) ≤ λ(J̃∗). Theorem 2.5(2) implies that an

MP-TCP algorithm with a larger Ks(x
∗
s) or more negative definite

[
∂Φs
∂xs

(x∗s)
]+

is more responsive,

in the sense that the real parts of the eigenvalues of the Jacobian J∗ have a smaller more negative

upper bound.

Then the next result suggests an inevitable tradeoff between responsiveness and friendliness.

Theorem 2.6 (tradeoff). Consider two MP-TCP algorithms (K, Φ̂) and (K, Φ̃) with the same gain

K. Suppose both satisfy C1-C3 and C5. Then for all s ∈ S

∂Φ̂s(xs)

∂xs
� ∂Φ̃s(xs)

∂xs
⇒ Φ̂s(xs) ≥ Φ̃s(xs).

In light of Theorems 2.4 and 2.5, Theorem 2.6 says that a more responsive MP-TCP design is

inevitably less friendly if they have the same K.

The theorem is easier to understand in the case of SP-TCP, i.e., when |s| = 1 for all s ∈ S and

Φs(xs) = U ′s(xs). Then it implies that a more concave utility function Us(xs) has a larger marginal

utility, and is hence less friendly.

2.2.6 Window oscillation

Window oscillations are inherent in loss-based additive increase multiplicative decrease (AIMD)

TCP algorithms. We close this section by discussing informally why a larger design Ks(xs) generally

creates more severe window oscillations. This implies a tradeoff between responsiveness (which is

enhanced by a large Ks(xs)) and oscillation (which is reduced with a small Ks(xs)).

The effect of Ks(xs) on window fluctuations can be understood by studying how it affects the

decrease Dr(ws) per packet loss in the following packet level model:

• For each ACK on route r, wr ← wr + Ir(ws).
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• For each loss on route r, wr ← wr −Dr(ws).

Let Zr ∈ {0, 1} be an indicator variable of whether a packet loss is observed on route r at an

arbitrary time in steady state. Then

Ds(xs) :=
1

‖xs‖1
E

(∑
r∈s

Dr(ws)

τr
Zr

∣∣∣∣∣∑
k∈s

Zk ≥ 1

)
.

represents the expected relative reduction in aggregate throughput
∑
r∈sDr(ws)/τr, given that there

is at least one packet loss on some route r ∈ s. It is a measure of throughput fluctuation for each

packet loss that an application experiences. For TCP-NewReno (for which s = {r} and ws is a

scalar), the window size is halved on each packet loss, Dr(ws) = wr/2, and hence Ds(xs) = 1/2.

To understand Ds(xs) for MP-TCP algorithms, we need the following result.

Lemma 2.7. Let Ai := {ai1, ai2, . . .} with |Ai| elements. Each element aij is an independent binary

random variable with P(aij = 1) = 1− P(aij = 0) = qi. Define Di(Ai) := di1(
∑
j aij≥1). Then

E

∑
k

Dk(Ak)

∣∣∣∣∣∣
∑
i,j

aij ≥ 1

 =

∑
k dkqk|Ak|∑
k qk|Ak|

+ o

(∑
k

qk

)
.

Suppose each route has a fixed loss probability qr. Then within each RTT, Lemma 2.7 implies

Ds(xs) =
1

‖xs‖1

(∑
r∈s wrqrDr(ws)/τr∑

r∈s qrwr
+ o

(∑
r∈s

qr

))
.

Substituting wr = xrτr and xrDr(ws) = τrkr(xs) from (2.5), we get, ignoring the high-order terms,

Ds(xs) =
1

‖xs‖1

(∑
r∈s τrqrkr(xs)∑
r∈s τrqrxr

)
. (2.11)

to the first order. Note that kr(xs) does not affect the equilibrium rates xs. Hence, with the

assumption that τr are constants, Ds(xs) is determined by the functions kr(xs) in steady state.

Specifically an MP-TCP algorithm with a larger Ks(xs) tends to have a larger Ds(xs) and

hence more severe window oscillations. Theorem 2.5, however, suggests that a larger Ks(xs) also

leads to better responsiveness, suggesting an inevitable tradeoff between responsiveness and window

oscillation.

2.3 Implications and a new algorithm

In this section we discuss the implications of these structural properties on the behavior of existing

MP-TCP algorithms. They are further illustrated in the experiment results in Section 2.4. The
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discussion motivates a new design that generalizes the existing MP-TCP algorithm.

2.3.1 Implications on existing algorithms

Recall Table 2.1 that summarizes the conditions satisfied by the various algorithms. Only EWTCP

and Coupled algorithms satisfy C0. Their equilibrium properties can be studied in the standard

utility maximization model as done for single-path TCP. Semicoupled and Max algorithms do not

satisfy C0 and therefore analysis through utility maximization is not applicable. However, Theorem

2.8 below implies that both Semicoupled and Max algorithms satisfy C1–C3 provided they enable

no more than 8 routes. Theorem 2.2 and 2.3 then imply that they have a unique and globally stable

equilibrium. It is also easy to show that EWTCP satisfies C1-C3. The Coupled algorithm does not

satisfy C2 and is found to have multiple equilibria in [46].

Next we discuss friendliness of existing MP-TCP algorithms. It can be shown that the φr(xs)

corresponding to these algorithms satisfy:

φewtcpr (xs) ≥ φsemicoupledr (xs) ≥ φmaxr (xs) ≥ φcoupledr (xs)

for all xs ≥ 0 if all routes r ∈ s have the same round trip time. Since all of them satisfy C4,

Theorem 2.4 implies that their friendliness will be in the same order, i.e., their throughputs in the

test network of Fig. 2.1 are ordered as follows:

EWTCP(a ≥ 1)1 ≥Semicoupled≥Max≥Coupled.

This is confirmed by the Linux-based experiment.

Third we will discuss responsiveness of existing MP-TCP algorithms. These algorithms have the

same gain function kr(xs) = 0.5x2
r and

(
∂Φs
∂xs

)ewtcp � (
∂Φs
∂xs

)semicoupled � (
∂Φs
∂xs

)max � (
∂Φs
∂xs

)coupled.

Theorem 2.5 then implies that their responsiveness should be in the same order, as confirmed by

our experiments in section 2.4.

Finally we discuss window oscillation of existing MP-TCP algorithms using Ds(xs) as the metric.

As mentioned in Section 2.2.6, Ds(xs) = 0.5 for TCP NewReno, a benchmark single-path TCP

algorithm. According to (2.11), if kr(xs) ≤ 0.5xr‖xs‖1, we have, to the first order

Ds(xs) ≤ 1

2

∑
r∈s τrqrxr‖xs‖1

‖xs‖1
∑
r∈s τrqrxr

=
1

2
.

1When a < 1, the MP-TCP source can obtain even smaller throughput than the competing single-path TCP
source.
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All existing MP-TCP algorithms have the same kr(xs) = 0.5x2
r ≤ 0.5xr‖xs‖1, with strict inequality

if |s| > 1 and xr > 0 for at least two r ∈ s. Thus enabling MP-TCP always tends to reduce window

oscillation for existing algorithms compared to TCP NewReno. Moreover, the window oscillation is

always reduced compared to TCP NewReno when kr(xs) ≤ 0.5xr‖xs‖1.

2.3.2 A generalized algorithm

Consider the class of algorithms parametrized by (β, n, η) as follows:

 kr(xs) = 1
2xr(xr + η(‖xs‖∞ − xr)), η ≥ 0

φr(xs) = 2((1−β)xr+β‖xs‖n)
τ2
rxr‖xs‖21

, n ∈ N+, β ≥ 0
. (2.12)

This class includes the Max (β = 1, η = 0, n = ∞), Coupled (β = 0, η = 0), and Semicoupled

(β = 1, η = 0, n = 1) algorithms as special cases when all RTTs on different paths of the same

source are the same, i.e., τr = τs, r ∈ s.

The next result characterizes a subclass that have a unique and locally stable equilibrium point.

Theorem 2.8. Fix any η ≥ 0 and n ∈ N+. For any s ∈ S, the φr(xs) in (2.12) satisfies

1. C1 if β ≥ 0.

2. C2–C3 if 0 < β ≤ 1, |s| ≤ 8 and τr are the same for all r ∈ s (assuming H has full row rank).

The requirement that |s| ≤ 8 is not restrictive since in practice a device may typically enable

no more than 3 paths. The requirement that τr are the same for all r ∈ s is used in proving the

negative definiteness of the (symmetric part of the) Jacobian of Φs(xs). Since a negative definite

matrix remains negative definite after small enough perturbations of its entries, Theorem 2.8 holds

if the RTTs of the subpaths do not differ much. This (sufficient) condition seems reasonable as two

paths between the same source-destination pair often have similar RTTs if both are wireline paths.

Note that our experiments in chapter 2.4 show that the algorithm also converges even if the RTTs

on different paths differ dramatically, e.g. the RTT of WiFi is usually much smaller than that of

3G.

For the class of algorithms specified by (2.12), Theorem 2.8 motivates a design space defined by

β ∈ (0, 1], η ≥ 0, n ∈ N+, where β and n control the tradeoff between friendliness and responsive-

ness and η controls the tradeoff between responsiveness and window oscillation. In Table 2.2, we

summarize how the parameters (β, η, n) affect the performance.

We now describe our design philosophy. As discussed above the design of MP-TCP algorithms

involves inevitable tradeoffs among responsiveness, friendliness, and the severity of window oscilla-

tion. Specifically a design is more responsive if it has a higher gain Ks or a more negative definite
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Table 2.2: How design choices affect MP-TCP performance.

Performance Parameter Parameters in (2.12)
TCP friendliness φr(xs) ↓ β ↓, n ↑
Responsiveness kr(xs) ↑, −∂Φs/∂xs ↑ β ↑, n ↓, η ↑

Window oscillation kr(xs) ↓ η ↓

Jacobian [∂Φs/∂xs]
+

(Theorem 2.5). However, a larger Ks usually creates a bigger window oscilla-

tion; a more negative definite [∂Φs/∂xs]
+

implies a larger Φs, usually hurting friendliness (Theorems

2.6 and 2.4). This is summarized in Table 2.2. Since enabling multiple paths already reduces win-

dow oscillation compared to single-path TCP (section 2.3.1), MP-TCP can afford to use a relatively

large gain Ks for responsiveness. This does not compromise too much on window oscillation, but

allows us to use a less negative definite Jacobian [∂Φs/∂xs]
+

with a smaller Φs to maintain sufficient

TCP friendliness. Moreover, responsiveness is mainly affected by subpaths with small throughput

while window oscillation is mainly affected by subpaths with large throughput. The parameter η

in the generalized algorithm (2.12) scales kr(xs) in the right way: a path r that has a large xr has

kr(xs) ≈ 0.5x2
r and hence a similar degree of window oscillation as existing algorithms, while a path

r with a small xr has larger kr(xs) than that under a design with zero η and therefore is more

responsive.

Our experiments show that Max algorithm ((β, η, n) = (1, 0,∞)) overtakes too much of the

competing single-path TCP flows. Therefore, we can only use a smaller β since n is already infinite

in order to improve friendliness. To compensate for the responsiveness performance, we will use

a larger η, which will sacrifice window oscillation performance. The Balia MP-TCP algorithm

given at the beginning of this chapter corresponds to the choice (β, η, n) = (0.2, 0.5,∞). Instead

of allowing the window size to drop to 1 for a packet loss, we add a cap for the decrement of

window size, which improves the performance as confirmed in our experiments. Note that there

is no “best” parameter setting since there are tradeoffs among all the performance metrics and

we choose (β, η, n) = (0.2, 0.5,∞) based on our experiments in chapter 2.4, which show that this

parameter setting strikes a good balance among responsiveness, friendliness, and window oscillation.

2.4 Experiment

In this section we summarize our experimental results that illustrate the above analysis. In addition

to the MP-TCP algorithms illustrated in chapter 2.1.2, we also include the recently developed OLIA

MP-TCP algorithm [50]. We evaluate the MP-TCP algorithms using a reference Linux implemen-

tation of MP-TCP, Multipath TCP v0.88 [66]. Since it currently includes only Max and OLIA

algorithms, we implement EWTCP, Semicoupled, Coupled, and the proposed Balia algorithm in the

reference implementation. For the Coupled and our algorithm, the minimum ssthresh is set to 1
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Figure 2.2: Network for our Linux-based experiments on TCP friendliness and responsiveness, with
N1 MP-TCP flows and N2 single-path TCP flows sharing two links of capacity, c1, c2, and propa-
gation delay (single trip) T1, T2. MP-TCP flows maintain two routes with rate x1, x2. Single-path
TCP flows maintain one route with rate x3.

instead of 2 when more than 1 path is available.

The network topology is shown in Fig. 2.2. In the testbed, all nodes are Linux machines with a

quad-core Intel i5 3.33GHz processor, 4GB RAM, and multiple 1Gbps Ethernet interfaces, running

Ubuntu 13.10 (Linux kernel 3.11.8). The network parameters such as c1, c2, T1, and T2 are controlled

by Dummynet [13].

Our experiments are divided into three parts. First we compare TCP friendliness of Balia

algorithm and prior algorithms. The result confirms that the Couple algorithm is the friendliest, and

that the Balia algorithm is close to the Coupled algorithm and friendlier than the other algorithms.

Second, we compare the responsiveness of each algorithm in a dynamic environment where flows come

and go. The result shows that the Coupled and OLIA algorithms are unresponsive (illustrating the

tradeoff between responsiveness and friendliness). EWTCP is the most responsive; Balia is similar in

responsiveness but friendlier to single-path TCP flows. Finally we show that all MP-TCP algorithms

have smaller average window oscillations than single-path TCP.

These experiments confirm our analytical results and suggest our design choice strikes a good

balance among friendliness, responsiveness, and window oscillation.

2.4.1 TCP friendliness

We study TCP friendliness of each algorithm, first with paths of similar RTTs and then with paths

of different RTTs, which emulates the wireless scenario. We assume all the flows are long lived and

focus on the steady state throughput.

In the first set of experiments, we let T1 = T2 = 5ms, c1 = c2 = 60Mbps and N1 = N2 = 30. We

repeat the experiments 20 times, and the average aggregate throughput of MP-TCP and single-path

TCP users and the 95% margin of error for confidence interval (CI) are shown in Table 2.3. The

Coupled algorithm is the friendliest and the Balia algorithm is closer to the Coupled algorithm than

the others.
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Figure 2.3: Responsiveness Performance: congestion window trajectory of MP-TCP for each path
(left column). SP-TCP starts at time 40s and ends at 80s. The throughput of SP-TCP and total
throughput of MP-TCP are shown in the right column. Parameters: T1 = T2 = 10ms, c1 = c2 =
20Mbps, and N1 = 1, N2 = 5.
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Table 2.3: TCP friendliness (same RTTs): Average throughput (Mbps) and 95% confidence interval
of MP-TCP and single-path TCP users. (T1 = T2 = 5ms, c1 = c2 = 60Mbps and N1 = N2 = 30)

ewtcp semi. max balia coupled olia
mp-tcp

(throuput)
2.75 2.65 2.60 2.52 2.44 2.61

mp-tcp
(CI)

0.005 0.004 0.005 0.006 0.005 0.004

sp-tcp
(throuput)

0.951 1.07 1.13 1.22 1.29 1.12

sp-tcp (CI) 0.005 0.007 0.008 0.006 0.005 0.004

In the second set of experiments, we assume a highly heterogeneous RTTs by emulating the

scenario of a mobile device with both 3G and WiFi access. WiFi access usually has higher capacity

and lower delay compared to 3G. Specificially, we set T1 = 10ms, c1 = 8Mbps for the first link to

emulate WiFi access and T2 = 100ms, c2 = 2Mbps for the second link to emulate 3G access. When

there exists single-path TCP flows, i.e. N2 > 0, the behaviors of all the algorithms are similar to

the equal RTT case in the first set of simulation. The Coupled algorithm is the friendliest and the

Balia algorithm is closer than other algorithms. However, when there is no single-path TCP flow,

i.e. N1 = 1 and N2 = 0, the performance of OLIA is not stable enough to effectively take all the

available capacity while the other algorithms do not have such problem. We repeat the experiments

20 times and we find that sometimes OLIA does not use the 3G access link. The average throughput

of MP-TCP user and the 95% margin of error for confidence interval is shown in Table 2.4.

Table 2.4: Basic behavior (WiFi/3G): throughput (Mbps) of a MP-TCP user and 95% confidence
interval. (T1 = 10ms, T2 = 100ms, c1 = 8Mbps, c2 = 2Mbps, N1 = 1, N2 = 0)

ewtcp semi. max balia coupled olia
throughput 9.26 9.27 9.26 9.27 9.28 9.19
confidence interval 0.008 0.006 0.006 0.01 0.01 0.09

2.4.2 Responsiveness

We use the network in Fig. 2.2 with c1 = c2 = 20Mbps, T1 = T2 = 10ms and N1 = 1, N2 = 5. To

demonstrate the dynamic performance of each algorithm, we assume the MP-TCP flow is long lived

while the single-path TCP flows start at 40s and end at 80s. We record the aggregate throughput of

the single-path TCP flows from 40-80s, which measures the friendliness of MP-TCP. We also measure

the time for the congestion window on the second path to recover2 of MP-TCP users. It measures

the responsiveness of MP-TCP. These measurements are shown in Table 2.5 and the congestion

window and throughput trajectories of all algorithms are shown in Fig. 2.3. To clearly show the

2Defined as the first time the congestion window on the second path reaches the average congestion window (e.g.,
60) after the single-path users have left.
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responsiveness performance, we record the longest convergence time found in our experiment in

Table 2.5 and the corresponding trajectories are shown in Fig. 2.3.

Table 2.5: Responsiveness: convergence time (s) of MP-TCP and total throughput (Mbps) of all
single-path TCP users. (T1 = T2 = 10ms, c1 = c2 = 20Mbps, N1 = 1, N2 = 5)

ewtcp semi. max balia coupled olia
Convergence 3.25 7.46 17.75 14.73 94.36 58.5

SP-TCP 13.89 15.35 15.8 16.28 16.64 16.97

EWTCP is the most responsive among all the algorithms. Ours is as responsive as the Max

algorithm, yet significantly friendlier than EWTCP. Both Coupled and OLIA algorithms take an

excessively long time to recover. For Coupled algorithm, the excessively slow recovery of the conges-

tion window on the second path (see Fig. 2.3) is due to the design that increases the window roughly

by wr/(
∑
k∈s wk)2 on each ACK, assuming the RTTs are similar. After the single-path TCP flow

has left, w2 is small while w1 is large, so that w2/(w1 +w2)2 is very small. It therefore takes a long

time for w2 to increase to its steady state value. In general, under the Coupled algorithm, a route

with a large throughput can greatly suppress the throughput on another route even though the other

route is underutilized. The reason of the poor responsiveness performance of OLIA can be explained

using a similar argument to the Coupled algorithm since they have the same increment/decrement

for each ACK/loss in this scenario.
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Figure 2.4: Window oscillation: the red trajectories represent throughput fluctuations experienced
by the application in the case of MP-TCP and the case of single-path TCP.

2.4.3 Window oscillation

We use a single-link network model to compare window oscillation under MP-TCP and single-path

TCP. First a MP-TCP flow initiates two subpaths through that link, and we measure the window

size of each subpath and their aggregate window size. Then a TCP-Reno flow traverses the same link

and we measure its window size. The results are shown in Fig. 2.4 for our algorithm in comparison

with single-path TCP (other MP-TCP algorithms have a similar behavior). They confirm that



25

enabling multiple paths reduces the average window oscillation compared with only using a single

path.

2.5 Conclusion

We have presented a model for MP-TCP and identified design criteria that guarantee the existence,

uniqueness, and stability of the network equilibrium. We have characterized the design space and

study the tradeoff among TCP friendliness, responsiveness, and window oscillation. We have pro-

posed the Balia MP-TCP algorithm that generalizes existing algorithms and strikes a good balance

among these properties. We have implemented the Balia in the Linux kernel and used it to evaluate

the performance of our algorithm.
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Appendix

2.A Proof of Theorem 2.1 (utility maximization)

The Lagrangian of (2.9) is:

L(x,p) =
∑
s∈S

Us(xs)−
∑
l∈L

pl(yl − cl)

=
∑
s∈S

Us(xs)−
∑
l∈L

pl(
∑
r∈R

Hlrxr − cl)

=
∑
s∈S

(
Us(xs)−

∑
r∈s

xrqr

)
+
∑
l∈L

plcl,

where p ≥ 0 are the dual variables and qr :=
∑
r∈RHlrpl. Then the dual problem is

D(p) =
∑
s∈S

max
xs≥0
{Bs(xs,p)}+

∑
l∈L

plcl p ≥ 0,

where Bs(xs,p) = Us(xs)−
∑
r∈s xrqr. The KKT condition implies that, at optimality, we have

∂Us(xs)

∂xr
< qr ⇒ xr = 0 and xr > 0⇒ ∂Us(xs)

∂xr
= qr (2.13)

yl < cl ⇒ pl = 0 and pl > 0⇒ yl = cl. (2.14)

Comparing with (2.6)–(2.7) we conclude that, if a MP-TCP algorithm defined by (2.3)–(2.4) has an

underlying utility function Us, then we must have

∂Us(xs)

∂xr
= φr(xs) r ∈ s, xr > 0. (2.15)

Given φr(xs), (2.15) has a continuously differentiable solutions Us(xs) if and only if the Jacobian of

Φs(xs) is symmetric, i.e., if and only if

∂Φ(xs)

∂xs
=

[
∂Φ(xs)

∂xs

]T
.
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2.B Proof of Theorem 2.2 (existence and uniqueness)

2.B.1 Proof of part 1

For any link l ∈ L, let

p−l = {p1, . . . , pl−1, pl+1, . . . , p|L|},

whose component composes of all the elements in p except pl. For l ∈ L, let

gl(p) := cl −
∑
r:l∈r

xr = cl −
∑

s:r∈s,l∈r

ysl (pl,p−l)

and hl(p) := −g2
l (p). According to C1, we have the following two facts, which will be used in the

proof.

• gl(p) is a nondecreasing function of pl on R+ since ysl (p) is a nonincreasing function of pl.

• limpl→∞ gl(pl,p−l) = cl since limpl→∞ ysl (p) = 0.

Next, we will show that hl(p) is a quasi-concave function of pl. In other words, for any fixed

p−l, the set Sa := {pl | hl(p) ≥ a} is a convex set. If gl(0,p−l) ≥ 0, then

gl(pl,p−l) ≥ gl(0,p−l) ≥ 0 ∀pl ≥ 0,

which means hl(pl,p−l) is a nonincreasing function of pl, and hence is a quasi-concave function of

pl and

arg max
pl

hl(pl,p−l) = 0. (2.16)

On the other hand, if gl(0,p−l) < 0, then there exists a p∗l > 0 such that gl(p
∗
l ,p−l) = 0 since gl(·)

is continuous and limpl→∞ gl(pl,p−l) = cl > 0. Note that gl(p) is a nondecreasing function of pl,

then hl(pl,p−l) is nondecreasing for pl ∈ [0, p∗l ] and nonincreasing for pl ∈ [p∗l ,∞). Thus, hl(pl,p−l)

is also a quasi-concave function of pl in this case and

max
pl

hl(pl,p−l) = 0. (2.17)

By Nash theorem, if hl(pl,p−l) is a quasi-concave function of pl for all l ∈ L and p is in a bounded

set, then there exists a p? ∈ R|L|+ such that

p?l = arg max
pl∈R+

hl(pl,p
∗
−l).

According to (2.16) and (2.17), for any l ∈ L, either p∗l > 0 or g∗l (p∗) > 0 but neither holds at any
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time. Therefore p∗ satisfies Eqn. (2.7). Since q = RTp, there exists an x∗ to (2.6). Thus there

exists at least one solution (x,p) that satisfies (2.6) and (2.7).

2.B.2 Proof of part 2

Lemma 2.9. Assume a function F : Rn → Rn is continuously differentiable and
[
∂F
∂x (x)

]+
is

negative definite for all x. Then for any x1 6= x2 ∈ Rn,

(x1 − x2)T (F (x1)− F (x2)) < 0.

Proof. Fix any x1 6= x2 ∈ Rn. Define A(t) := F (tx1 + (1− t)x2). Since ∂F/∂x is continuous, there

exists a λ < 0 such that the eigenvalues of [∂F/∂x]+ ≤ λ over the compact set {tx1 + (1 − t)x2 |

0 ≤ t ≤ 1}. Then

(x1 − x2)T (F (x1)− F (x2))

=

∫ 1

0

(x1 − x2)T
dA

dt
(τ) dτ

=

∫ 1

0

(x1 − x2)T
∂F

∂x
(τx1 + (1− τ)x2) (x1 − x2) dτ

≤ λ‖x1 − x2‖22 < 0.

Lemma 2.10. Suppose C3 holds. Then x∗r > 0 at equilibrium for all r ∈ R.

Proof. Suppose x∗r = 0. Then q∗r ≥ φr(x∗r) =∞ by C3 and hence there is a link l ∈ r with p∗l =∞.

But then, for all paths r′ 3 l, q∗r′ = ∞ and hence x∗r′ = 0 by C3. This implies y∗l = 0 < cl, and

hence p∗l = 0 by (2.7), contradicting p∗l =∞.

Recall the vector notations that x := (xs, s ∈ S) := (xr, r ∈ s, s ∈ S) and Φ(x) := (Φs(xs), s ∈

S) := (Φr(xs), r ∈ s, s ∈ S). To prove uniqueness of the equilibrium, suppose for the sake of

contradiction that there are two distinct equilibrium points (x,p) and (x̂, p̂). By Lemma 2.10 we

have x > 0 and x̂ > 0. Thus (2.6) implies Φ(x) = q = HTp and Φ(x̂) = q̂ = HT p̂. By Lemma 2.9

and assumption C2 we then have

0 > (x− x̂)T (Φ(x)− Φ(x̂))

= (x− x̂)THT (p− p̂)

= (p− p̂)T (y − ŷ).
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Thus

pTy + p̂T ŷ < pT ŷ + p̂Ty. (2.18)

Equilibrium condition (2.7) implies

pT (c− y) = 0 and p̂T (c− ŷ) = 0 (2.19)

y ≤ c and ŷ ≤ c. (2.20)

Substituting (2.19) into (2.18) yields

pT c + p̂T c < pT ŷ + p̂Ty

pT (c− ŷ) + p̂T (c− y) < 0.

But (2.20) implies that the left-hand side of the last inequality is nonnegative (since p ≥ 0, p̂ ≥ 0),

which is a contradiction. Therefore the equilibrium is unique.

2.C Proof of Theorem 2.3 (stability)

We will construct a Lyapunov function and use LaSalle’s invariance principle [49] to prove global

asymptotic stability of the unique equilibrium point (x∗,p∗). Define δx := x − x?, δp := p − p?.

Consider the candidate Lyapunov function:

V (x,p) =
∑
r∈R

∫ xr

x∗r

z − x∗r
kr(z)

dz +
1

2

∑
l∈L

δp2
l

γl
. (2.21)

By definition, V (x,p) > 0 for all (x,p) 6= (x∗,p∗) and V (x,p) = 0 if (x,p) = (x∗,p∗). Furthermore

V is radially unbounded, i.e., V (x,p)→∞ as ‖(x,p)‖2 →∞. Finally

V̇ (x,p) =
∑
r∈R

1

kr(xr)
δxrẋr +

∑
l∈L

1

γl
δplṗl.

If δxr 6= 0 then we have (since kr(xs) = kr(xr))

1

kr(xr)
δxrẋr = δxr (φr(xs)− qr)+

xr

≤ δxr (φr(xs)− qr)

= δxr (φr(xs)− φr(x∗s)− δqr) .
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The first inequality holds since (φr(xs)−qr)+
xr = φr(xs)−qr if xr > 0 and φr(xs)−qr ≤ 0, δxr = −x∗r

if xr = 0. The last equality holds since φr(x
∗
s) = q∗r by Lemma 2.10 and (2.6). Therefore

∑
r∈R

1

kr(xr)
δxrẋr ≤ δxT (Φ(x)− Φ(x∗))− δxT δq

< −δxTHT δp,

where the last inequality holds since δxT (φ(x)− φ(x∗)) < 0 by Lemma 2.9 and assumption C2.

Similarly

1

γl
δplṗl = δpl(yl − cl)+

pl
≤ δpl(yl − cl) ≤ δplδyl,

where the last inequality holds since δplcl ≥ δply∗l by the equilibrium condition (2.7). Thus

∑
l∈L

1

γl
δplṗl ≤ δpTHδx.

Therefore if δx 6= 0 then

V̇ (x,p) < −δxTHT δp + δpTHδx = 0

and if δx = 0 then V̇ (x,p) = 0. This means V̇ (x,p) ≤ 0 and V is indeed a Lyapunov function.

Consider the set

Z := { (x(t),p(t)) | V̇ (x(t),p(t)) = 0 for all t ≥ 0 }

of trajectories on which V̇ ≡ 0. If the only trajectory in Z is the trivial trajectory (x,p) ≡ (x∗,p∗)

then LaSalle’s invariance principle implies that (x∗,p∗) is globally asymptotically stable. We now

show that this is indeed the case.

As shown above V̇ ≡ 0 implies δx ≡ 0, i.e., any trajectory (x(t),p(t)) in Z must have x(t) = x∗

for all t ≥ 0. This means ẋ ≡ 0 and hence for all t ≥ 0, q(t) = Φ(x(t)) since x(t) = x∗ > 0 by

Lemma 2.10. That is, for all t ≥ 0, HTp(t) = Φ(x∗) and hence p(t) = p∗ since H has full row rank

by C3. Therefore (x,p) ≡ (x∗,p∗) is indeed the only trajectory in Z. This completes the proof of

Theorem 2.3.
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2.D Proof of Theorem 2.4 (friendliness)

Let the MP-TCP source be defined by

φr(xs;µ) = µφ̃r(xs) + (1− µ)φ̂r(xs), µ ∈ [0, 1].

Algorithm M̂ and M̃ correspond to µ = 0 and µ = 1, respectively. Let xg and τg be the throughput

and RTT of the TCP NewReno source in Fig. 2.1. The equilibrium is defined by F (x, µ) = 0, where

x := (xs, xg) and F is given by

Φs(xs;µ)− 1

τ2
g x

2
g

1 = 0

1Txs + xg = c,

where the first equation follows from

p∗ =
1

τ2
g x

2
g

= φr(xs;µ), r ∈ s

and p∗ is the congestion price at the bottleneck link. Applying the implicit function theorem, we

get

dx

dµ
= −

(
∂F

∂x

)−1
∂F

∂µ

= −

∂Φs
∂xs

2
x3
g

1

1T 1

−1 Φ̃s(xs)− Φ̂s(xs)

0

 ,
where the inverse exists by condition C2. C2 also guarantees the inverse of ∂Φs

∂xs
(xs;µ), denoted by

D(µ); C4 ensures
∑
i∈sDij(µ) ≤ 0. Let

A :=
∂Φs
∂xs

− 2

x3
g

11T and d := 1− 2

x3
g

∑
i,j

Dij(µ).

Then

∂Φs
∂xs

2
x3
p

1

1T 1

−1

=

 A−1 −D1d

−d1TA−1 d−1

 .
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Thus

1T
∂xs
∂µ

= −[1T 0]

(
∂F

∂x

)−1
∂F

∂µ

= −1TA−1(Φ̃s(xs)− Φ̂s(xs)). (2.22)

By matrix inverse formula,

A−1 =

(
∂Φs
∂xs

− 2

x3
g

11T
)−1

= D(µ) +
1

x3
g

2 − 1TD(µ)1
D(µ)11TD(µ).

Substitute it into (2.22), and we have

1TA−1(Φ̂s(xs)− Φ̃s(xs))

=

(
1 +

1TD(µ)1
x3
g

2 − 1TD(µ)1

)
1TD(µ)(Φ̃s(xs)− Φ̂s(xs))

=
x3
g

x3
g − 21TD(µ)1

∑
r∈s

(∑
i∈s

Dir(µ)

)
(φ̃r(xs)− φ̂r(xs))

≤0,

where the inequality follows because D(µ) is negative definite,
∑
i∈sDir(µ) < 0 and φ̃r(xs) −

φ̂r(xs) ≥ 0. Thus we have 1T ∂xs∂µ ≥ 0 for µ ∈ [0, 1], i.e., the aggregate throughput of the MP-TCP

over its available paths is increasing in µ. This means M̃ (corresponding to µ = 1) will attain a

higher throughput than M̂ (corresponding to µ = 0) when separately sharing the test network in

Fig. 2.1 with the same SP-TCP.

2.E Proof of Theorem 2.5 (responsiveness)

2.E.1 Proof of part 1

Fix any eigenvalue λ of J∗. Let z := (x,p) ∈ Z be the corresponding eigenvector with ‖z‖2 = 1.

Then we have

λ

x

p

 =

Λk 0

Λγ

∂Φ
∂x −HT

H 0

x

p

 .
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Thus

λ

Λ−1
k 0

Λ−1
γ

x

p

 =

∂Φ
∂x −HT

H 0

x

p

 .
Premultiplying zH on both sides, we have

λ =
xH ∂Φ

∂x x + (pHHx− xHHTp)

xHΛ−1
k x + pHΛ−1

γ p
.

The denominator is real and positive, and (pHHx− xHHTp) in the numerator is imaginary. Thus

Re(λ) =
Re
(
xH ∂Φ

∂x x
)

xHΛ−1
k x + pHΛ−1

γ p

=
xH
[
∂Φ
∂x

]+
x

xHΛ−1
k x + pHΛ−1

γ p
< 0,

where the last inequality holds because the numerator is negative by condition C2 and the denomi-

nator is positive. Since this holds for all eigenvalues λ of J∗, the linearized system (2.10) is stable.

Moreover Re(λ) ≤ λ(J∗) ≤ 0 as desired.

2.E.2 Proof of part 2

Consider two MP-TCP algorithms (K̂, Φ̂) and (K̃, Φ̃) such that

K̂s ≥ K̃s and
∂Φ̂s
∂xs

� ∂Φ̃s
∂xs

for all s ∈ S.

For any (nonzero) z = (x,p) ∈ Z we have

0 ≤ xHΛ̂−1
k x ≤ xHΛ̃−1

k x (2.23)

xH

[
∂Φ̂

∂x

]+

x ≤ xH

[
∂Φ̃

∂x

]+

x < 0. (2.24)

Thus λ(Ĵ∗) ≤ λ(J̃∗).

2.F Proof of Theorem 2.6 (tradeoff)

Fix an s. Let fr(xs) := φ̂r(xs) − φ̃r(xs) and F (xs) := (fr(xs), r ∈ s) = Φ̂s(xs) − Φ̃s(xs). Suppose

for the sake of contradiction that ∂Φ̂s(xs)/∂xs � ∂Φ̃s(xs)/∂xs but Φ̂s(xs) ≥ Φ̃s(xs) does not hold,
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i.e., there exists a finite x0
s and a r ∈ s such that

fr(x
0
s) = φ̂r(x

0
s)− φ̃r(x0

s) < 0. (2.25)

Since [∂F/∂xs]
+ � 0 by assumption, a trivial modification of Lemma 2.9 shows that for all

xs 6= x0
s, (xs − x0

s)
T (F (xs)− F (x0

s)) ≤ 0, i.e.,

0 ≥
∑
r′∈s

(xr′ − x0
r′) (fr′(xs)− fr′(x0

s)). (2.26)

Choose an xs as follows: for all r′ 6= r, choose xr′ = x0
r′ and then use condition C5 to choose an

xr <∞ large enough so that xr > x0
r and fr(xs) > fr(x

0
s)/2. With this xs, (2.26) becomes

0 ≥ (xr − x0
r) (fr(xs)− fr(x0

s))

> (xr − x0
r)

(
−fr(x

0
s)

2

)
> 0,

where the last inequality follows from (2.25). This is a contradiction and hence Φ̂s(xs) ≥ Φ̃s(xs).

2.G Proof of Theorem 2.8

We will show the results hold for any n ∈ N+. Since limn→∞ ‖xs‖n = ‖xs‖∞, the results also hold

for n =∞. When β = 0, it is easy to show that φr satisfies C1 and
[
∂Φs
∂xs

]+
is negative semidefinite

under the conditions of the theorem. We hence prove the theorem for β > 0.

2.G.1 Proof of part 1

Fix any n ∈ N+ and β > 0. Fix any finite p ≥ 0 such that qr > 0 for all r. Fix any s ∈ S. We now

show that there exists an xs > 0 that satisfies (2.6), in particular φr(xs) = qr, in two steps.

First, there exists an xs that satisfies φr(xs) = qr if and only if

φr(xs) =
2

τ2
r ‖xs‖21

(
1 + β

(
‖xs‖n
xr

− 1

))
= qr, (2.27)

which is equivalent to

xr
‖xs‖n

=
2β

2β + qrτ2
r ‖xs‖21 − 2

. (2.28)
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Since this holds for all r ∈ s, we have

1 =
∑
r∈s

(
xr
‖xs‖n

)n
(2.29)

=
∑
r∈s

(
2β

2β + qrτ2
r ‖xs‖21 − 2

)n
=: ψ

(
‖xs‖21

)
.

Clearly ψ (C)→ 0 as C →∞. Let

C :=
2

minr∈s qrτ2
r

. (2.30)

Then C <∞ since qr > 0 for all r by assumption. Moreover qrτ
2
rC ≥ 2 for all r ∈ s and hence

ψ (C) = 1 +
∑
r 6=r

(
2β

2β + qrτ2
rC − 2

)n
> 1,

where r is a minimizing r ∈ s in (2.30). Since ψ(C) is continuous, there exists an C̃ ∈ [C,∞) with

ψ(C̃) = 1. Moreover such a C̃ is unique since ψ(C) is strictly decreasing.

Finally consider the set of xs with ‖xs‖21 = C̃. All such xs satisfy (2.28) with

xr =
2β

2β + qrτ2
r C̃ − 2

‖xs‖n =: ar ‖xs‖n. (2.31)

But C̃ = ‖xs‖21 =
(∑

r∈s ar ‖xs‖n
)2

, implying

‖xs‖n =

√
C̃∑

r∈s ar
.

In summary, given any finite p ≥ 0 such that qr > 0 for all r, a solution xs > 0 to (2.28) is uniquely

given by

xr =
ar∑
k∈s ak

√
C̃, r ∈ s, (2.32)

where

ar :=
2β

2β + qrτ2
r C̃ − 2

and C̃ = ‖xs‖21 is the unique value at which ψ(C̃) = 1.

We now prove the other conditions in C1:

∂ysl (p)

∂pl
≤ 0, lim

pl→∞
ysl (p) = 0.
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According to (2.29), we can show that C̃ is a decreasing function of qr and qrτ
2
r C̃ is an increasing

function of qr for r ∈ s. Thus, C̃ is a decreasing function of pl and qrτ
2
r C̃ is an increasing of pl if

l ∈ r because qr =
∑
l∈LHlrpl. For each l ∈ L, let sl := {r | l ∈ r, r ∈ s}, then by definition and

(2.32), we have

ysl (p) =

∑
r∈sl ar∑
r∈s ar

√
C̃ =

∑
r∈sl ar∑

r∈sl ar +
∑
r 6∈sl ar

√
C̃.

Since ar is a decreasing function of qrτ
2
r C̃, it is also a decreasing function of pl if l ∈ r. Recall that√

C̃ is also a decreasing function of pl, y
s
l (p) is thus a decreasing function of pl, in other words,

∂ysl (p)
∂pl

≤ 0.

On the other hand, as pl → ∞, qr → ∞ for all paths r traversing l. Then xr → 0 by (2.27) for

l ∈ r, which shows limpl→∞ ysl (p) = 0.

2.G.2 Proof of part 2

To prove φr(xs) satisfies C2 and C3 for β > 0, we will show that the Jacobian ∂Φs(xs)/∂xs is

negative definite if 0 < β ≤ 1, |s| ≤ 8 and τr are the same for r ∈ s. Other properties of C2 and C3

are easy to prove and we omit the proof. Fix an s and let τr = τ , the common round-trip time for

all r ∈ s.

Let Λs := diag{xs} and

as :=

(
2xr
‖xs‖1

− xnr
‖xs‖nn

, r ∈ s
)
.

Then the Jacobian of Φs at xs is

∂Φs
∂xs

= −4(1− β)

τ2‖xs‖31
11T − 2β

‖xs‖n
τ2‖xs‖21

Λ−1
s

(
I|s| + 1aTs

)
Λ−1
s

and it is negative definite for β > 0 if
[
I|s| + 1aTs

]+
is positive definite. We now show that this is

indeed the case when |s| ≤ 8, i.e., for any zs ∈ R|s|,

zTs (I|s| + 1aTs )zs = ‖zs‖22 +
∑
r∈s

zr
∑
r∈s

arzr > 0. (2.33)

By Lemma 2.11 below, 1Tas = 1 and ‖as‖22 ≤ 1. Then (2.33) follows from Lemma 2.12 below

provided |s| ≤ 8. Thus the Jacobian is negative definite.3 The proof of Theorem 2.8 is complete

after Lemmas 2.11 and 2.12 are proved.

3If β = 0 the Jacobian degenerates to
∂Φs

∂xs
= −

4

τ2‖xs‖31
11T , (2.34)

which is merely negative semidefinite.
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To show that it satisfies C3, it follows directly from (2.27) that if xr = 0 then φr(xs) =∞. It is

also clear from (2.27) that the converse holds. This proves C3.

Lemma 2.11. Fix any integer p ≥ 1. Given any x ∈ Rm+ , define a vector a in Rm as follows:

ai =
2xi∑m
j=1 xj

− xpi∑m
j=1 x

p
j

, 1 ≤ i ≤ m.

Then
∑m
i=1 ai = 1 and

∑m
i=1 a

2
i ≤ 1.

Proof. It is obvious that
∑m
i=1 ai = 1. To show

∑m
i=1 a

2
i ≤ 1, we have

m∑
i=1

a2
i =

∑
i x

2p
i(∑

j x
p
j

)2 +
4
∑
i x

2
i(∑

j xj

)2 −
4
∑
i x

p+1
i(∑

j x
p
j

)(∑
j xj

)
≤ 1 +

4
∑
i x

2
i(∑

j xj

)2 −
4
∑
i x

p+1
i(∑

j x
p
j

)(∑
j xj

)
= 1− 4

∑
1≤i<j≤m xixj(xi − xj)

(
xp−1
i − xp−1

j

)
(∑

j xj

)2 (∑
j x

p
j

)
≤ 1.

Lemma 2.12. Let a ∈ Rm that satisfies
∑m
i=1 ai = 1 and

∑m
i=1 a

2
i ≤ 1. Then for any nonzero

z ∈ Rm we have

f(z) :=

m∑
i=1

z2
i +

m∑
i=1

zi

m∑
i=1

aizi > 0

provided m ≤ 8.

Proof. Given any M let ZM := {z |
∑m
i=1 zi = M}. It then suffices to show that, for every M ∈ R,

f(z) > 0 for z ∈ ZM . Given any M , consider

min
z∈ZM

f(z) = min
z∈ZM

m∑
i=1

z2
i +M

m∑
i=1

aizi. (2.35)

Its Lagrangian is

L(z, µ) =

m∑
i=1

z2
i +M

m∑
i=1

aizi + µ

(
m∑
i=1

zi −M

)
,

where µ is the Lagrange multiplier. Setting ∂L/∂zi = 0 for all 1 ≤ i ≤ m and substituting it into
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i=1 zi = M , we obtain the unique minimizer given by µ = −3M/m and zi = M

2 ( 3
m − ai). Then

min
z∈ZM

f(z) =
M2

4

(
9

m
−

m∑
i=1

a2
i

)
≥ M2

4

(
9

m
− 1

)
.

Thus, when M 6= 0, minz∈ZM f(z) > 0 if n < 9. When z is nonzero but M = 0, then f(z) > 0 from

(2.35).

2.H Proof of Lemma 2.7

By the definition of Dk(Ak), we have

E

Dk(Ak) |
∑
i,j

aij ≥ 1

 =dkP

∑
j

akj ≥ 1 |
∑
i,j

aij ≥ 1


=dk

P(
∑
j akj ≥ 1)

P(
∑
i,j aij ≥ 1))

=dk
qk|Ak|∑
i qi|Ai|

+ o

(∑
i

qi

)
,

where the last equality follows from the independence of aij and P(
∑
j akj ≥ 1) = 1− (1− qk)|Ak| =

|Ak|qk + o(qk), P(
∑
ij aij ≥ 1) = 1−

∏
i(1− qi)|Ai| =

∑
i |Ai|qi +

∑
i o (qi). Thus,

E

∑
i

Dk(Ak) |
∑
i,j

aij ≥ 1

 =

∑
k dkqk|Ak|∑
k qk|Ak|

+ o

(∑
k

qk

)
.
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Chapter 3

Optimal Power Flow and Convex
Relaxation

The optimal power flow (OPF) problem is a mathematical optimization program that seeks to

minimize a certain objective such as generation cost or power loss, subject to the Kirchhoff’s laws

and operational constraints. It is fundamental in power system as it underlies many applications

such as economic dispatch, unit commitment, state estimation, stability and reliability assessment,

volt/var control, demand response, etc. It was first formulated in the seminal work [14] in 1962.

Literature The power flow equations are quadratic and hence the OPF problem can be formulated

as a quadratic constrained quadratic program (QCQP). It is generally non-convex and hence hard

to solve. DC-OPF, which is a linear approximation of the non-convex OPF problem, is obtained

through linearization of the power flow equations [3,78,79]. The accuracy of DC-OPF hinges on the

fact that 1) line resistances are small, 2) voltages magnitudes are approximately constants, and 3)

voltage angle differences between adjacent buses are small. DC-OPF approximation is widely used

for transmission networks, but does not apply to distribution networks where line resistances are not

small and voltage magnitudes may significantly deviate from their nominal value. Furthermore, DC-

OPF is not applicable for many applications where reactive power needs to be actively controlled,

e.g. volt/var control.

Recently a new approach through convex relaxation has been developed. There are two types

convex relaxations of the OPF problem: semidefinite programming (SDP) relaxation and second

order cone programming (SOCP) relaxation. For SDP relaxation, the nonlinear power flow equations

are transformed into linear constraints on a rank one positive semidefinite matrix, and the rank

one constraint is removed to obtain an SDP relaxation. It is first proposed in [4] for the bus

injection model and shown to be exact for all the IEEE test networks [56]. SDP is computationally

prohibitive for large networks because the original n dimensional space is lifted to n2 dimensional

space. By assuming balanced power flow, SOCP relaxation has been proposed in both the bus
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injection model [44] and the branch flow model [27]. Compared with the semidefinite program, the

second order cone program can be solved more efficiently [2]. However, the assumption of balanced

power flow only holds for transmission networks. In distribution networks, which are the focus of

this thesis, power flow is not balanced. Recently, a computationally efficient SDP relaxation, which

leverages the radial structure of distribution networks, has been proposed in [33] for networks with

unbalanced power flow. See the tutorial [60, 61] for further pointers to the literature.

When an optimal solution of the original OPF problem can be recovered from any optimal

solution of a convex relaxation, we say the relaxation is exact. For radial distribution networks

(whose graphs are trees), it is shown that both SOCP and SDP relaxation are exact for standard

IEEE test networks and many practical networks, both in the balanced case (e.g. [27, 56]) and

unbalanced case (e.g. [22,33]). This is important because almost all distribution systems are radial.

Then we can rely on off-the-shelf convex optimization solvers to obtain a globally optimal solution

for the nonconvex OPF problem.

Summary In this chapter, we will review the mathematical formulation of the OPF problem on

both balanced and unbalanced networks. We will also review the recent development of SDP/SOCP

relaxation on solving the OPF problems. These results will be used extensively in this thesis and

are foundations for solving feeder reconfiguration problem (Chapter 4) and developing distributed

OPF algorithms (Chapter 6 and 7).

3.0.1 Notations

The distribution network consists of substation and load buses, and distribution lines that connect

these buses. Substation buses receive bulk power from the transmission networks and deliver power

to load buses through the distribution lines. We model a distribution network by a directed graph

G := (N , E), where N represents the set of buses and E represents the set of distribution lines

connecting the buses in N . Let Ns ⊂ N denote the set of substation buses. Index one of the

substation bus by 0, defined as the root of the graph. Each directed line (i, j) ∈ E connects bus i

and j, where bus j lies between bus 0 and bus i. Then we call j as i’s ancestor and i as j’s child.

For each bus i ∈ N , let Ai := {j | (i, j) ∈ E} denote the set of i’s ancestors, Ci := {k | (k, i) ∈ E}

denote the set of i’s children, and Ni := {i} ∪Ai ∪Ci denote the set of i’s neighbor including itself.

The notations are illustrated in Figure 3.1.

We denote the set of complex numbers with C, the set of n-dimensional complex numbers with

Cn, and the set of m × n complex matrix with Cm×n. The set of hermitian (positive semidefinite)

matrix is denoted by S (S+). The hermitian transpose of a vector (matrix) x is denoted by xH .

The trace of a square matrix x ∈ Cn×n is denoted by tr(x) :=
∑n
i=1 xii. The inner product of

two matrices (vectors) x, y ∈ Cm×n is denoted by 〈x, y〉 := Re(tr(xHy)). The Frobenius (Euclidean)
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Figure 3.1: Notations of graph G(N , E), where the ancestor and children set of node 3 are also
labeled explictly.

norm of a matrix (vector) x ∈ Cm×n is defined as ‖x‖2 :=
√
〈x, x〉. Given x ∈ Cn×n, let diag(x) ∈

Cn×1 denote the vector composed of x’s diagonal elements. A variable without a subscript denotes

a column vector with appropriate components.

3.1 OPF and its SOCP Relaxation on Balanced Networks

In this section, we formulate the OPF problem on balanced networks and show how to solve it

through SOCP relaxation. We employ the branch flow model (BFM) to model the power flow

equations, which are first proposed in [7, 8].

3.1.1 Branch flow model

Under the assumption that the network has balanced three phases, we can simply analyze each

phase independently. For each bus i ∈ N , let Vi = |Vi|eiθi be its complex voltage. Let si := pi + iqi

be its net complex power injection, which is generation minus load. For each line (i, j) ∈ E , let

zij = rij + ixij be its complex impedance and yij = z−1
ij be its complex admittance. Let Iij be the

complex branch current from bus i to j. Then bus injection model (BIM) can be described as

Vi − Vj − zijIij = 0 (i, j) ∈ E (3.1a)

si +
∑
j∈Ci

ViIji −
∑
k∈Ai

ViIik = 0 i ∈ N , (3.1b)

where (3.1a) describes the Kirchhoff’s law and (3.1b) describes power balance at bus i. BIM does

not directly model branch variables, which are crucial for some applications. Branch flow model

(BFM), on the other hand, models both nodal and branch variables. It is first proposed in [7,8] and

is more numerically stable than BIM. It has been advocated for the design and operation for radial

distribution networks; see [16,27,32,57,84,86] for recent papers. We employ BFM in this thesis and

its formulation is given below.

Some new notations are needed to describe BFM. For each bus i ∈ N , denote by vi := |Vi|2 the
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Figure 3.1: Notations for Balanced Network.

voltage magnitude squared. For each line (i, j) ∈ E , denote by Sij := Pij + iQij the branch power

flow from bus i to j. Then BFM ignores the phase angles of voltages and currents and uses only the

set of variables (v, s, `, S), where

v := (vi, i ∈ N )

s := (si, i ∈ N )

` := (`ij , (i, j) ∈ E)

S := (Sij , (i, j) ∈ E).

Given a network G(N , E), the branch flow model is defined by:

vj − vi + (zijS
∗
ij + Sijz

∗
ij)− `ij |zij |2 = 0 (i, j) ∈ E (3.2a)∑

k∈Ci

(Ski − `kizki) + si −
∑
j∈Ai

Sij = 0 i ∈ N (3.2b)

|Sij |2 = vi`ij . (i, j) ∈ E (3.2c)

Given a vector (v, s, `, S) that satisfies (3.2), the phase angles of the voltages and currents can be

uniquely determined if the network is a tree, i.e. |Ai| = 1 for i ∈ N \ {0} and |A0| = 0. Hence the

branch flow model (3.2) is equivalent to the BIM for radial network.

3.1.2 OPF and SOCP Relaxation

The OPF problem seeks to optimize certain objective, e.g. total line loss or total generation cost,

subject to power flow equations (3.2) and various operational constraints. We consider an objective

function of the following form:

F (s) =
∑
i∈N

fi(si). (3.3)

For instance,
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• to minimize total line loss, we can set for each i ∈ N ,

fi(si) = pi.

• to minimize generation cost, we can set for each i ∈ N ,

fi(si) =
αi
2
p2
i + βipi,

where αi, βi ≥ 0 depends on the type of bus i, e.g. αi = 0 and βi = 0 for bus i where there

is no generator and for generator bus i, the corresponding αi, βi depends on the characteristic

of the generator.

We consider two operational constraints. First, the power injection si at each bus i is constrained

to be in a region Ii, i.e.

si ∈ Ii for i ∈ N . (3.4)

The feasible power injection region Ii is determined by the types of device attached to bus i. Some

common devices are given below.

• For controllable load, whose real power can vary within [p
i
, pi] and reactive power can vary

within [q
i
, qi], the injection region Ii is

Ii := {p+ iq | p ∈ [p
i
, pi], q ∈ [q

i
, qi]} ⊆ C. (3.5a)

• For solar panel connecting the grid through an inverter with nameplate si, the injection region

Ii is

Ii := {p+ iq | p ≥ 0, p2 + q2 ≤ s2
i } ⊆ C. (3.5b)

Second, the voltage magnitude at each bus i ∈ N needs to be maintained within a prescribed region,

i.e.

vi ≤ vi ≤ vi for i ∈ N . (3.6)

Typically the voltage magnitude at substation buses is assumed to be fixed at some prescribed value,

i.e. vi = vi for i ∈ N . At other load buses i ∈ N \ Ns, the voltage magnitude is typically allowed

to deviate by 5% from its nominal value 1, i.e. vi = 0.952 and vi = 1.052.
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To summarize, the OPF problem for balanced networks is

OPF: min
∑
i∈N

fi(si)

over v, s, S, ` (3.7)

s.t. (3.2), (3.4) and (3.6).

The OPF problem (3.7) is nonconvex due to the quadratic equality constraint (3.2c). In [25,27],

(3.2c) is relaxed to a second order cone constraint:

|Sij |2 ≤ vi`ij for (i, j) ∈ E , (3.8)

resulting in a second-order cone program (SOCP) relaxation of (3.7)

ROPF: min
∑
i∈N

fi(si)

over v, s, S, ` (3.9)

s.t. (3.2a), (3.2b), (3.8) and (3.4), (3.6).

Clearly the relaxation ROPF (3.9) provides a lower bound for the original OPF problem (3.7)

since the original feasible set is enlarged. The relaxation is called exact if every optimal solution

of ROPF attains equality in (3.2c) and hence is also optimal for the original OPF. For networks

with tree topology, SOCP relaxation is exact under some mild conditions [27, 32]. There are also

other sufficient conditions for the exactness of SOCP relaxation. Even though they are proved under

BIM, the of BFM and BIM implies that these conditions also guarantee that ROPF (3.9) is exact.

See [60,61] for extensive references on these conditions.

3.2 OPF and its SDP relaxation on Unbalanced Networks

In this section, we will formulate the OPF problem on unbalanced networks and show how to solve

it through SDP relaxation. We employ the branch flow model, which is first generalized to the

unbalanced network in [33] that inherents the numerical stability of BFM for balanced networks.

3.2.1 Branch flow model

Let a, b, c denote the three phases of the network. For each bus i ∈ N , let Φi ⊆ {a, b, c} denote

the set of phases. In typical networks, the set of phases for bus i is a subset of the phases of its

parents and superset of the phases of its children, i.e. Φi ⊆ Φk for k ∈ Ai and Φj ⊆ Φi for j ∈ Ci.

On each phase φ ∈ Φi, let V φi ∈ C denote the complex voltage and sφi := pφi + jqφi denote the
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complex power injection. Denote Vi := (V φi , φ ∈ Φi) ∈ C|Φi|, si := (sφi , φ ∈ Φi) ∈ C|Φi|. For each

line (i, j) ∈ E connecting bus i and j, the set of phases is Φi ∩ Φj = Φi since Φi ⊆ Φj by our

definition of graph orientation. On each phase φ ∈ Φi, let zij ∈ C|Φi|×|Φi| denote the impedance

and yij := z−1
ij denote the admittance. Let Iφij ∈ C denote the complex branch current and denote

Iij := (Iφij , φ ∈ Φi) ∈ C|Φi|. Then BIM for unbalanced networks can be written as

Vi − Pi(Vj)− zijIij = 0 (i, j) ∈ E (3.10a)

si +
∑
j∈Ci

ViPi(Iji)−
∑
k∈Ai

ViIik = 0 i ∈ N , (3.10b)

where Pi(x) denotes projecting x onto the set of phases on bus i if x has more phases than Φi and

lifting x onto the phases of bus i with missing phase filled with 0 if x has less phases than Φi, e.g.

if (j, i), (i, k) ∈ E and Φk = {a, b, c}, Φi = {a, b} and Φj = {a}, then

Pi(Vk) :=
(
V ak , V

b
k

)
Pi(Iji) :=

(
Iaji, 0

)
.

Similar to BIM on balanced networks in section 3.1, BIM on unbalanced networks also does not

model branch variables directly. In [33], BFM is first generalized to the case of unbalanced networks

that both models branch variables and has better numerical stability than BIM.

For each bus i ∈ N , let vi := V Hi Vi ∈ C|Φi|×|Φi|. For each line (i, j) ∈ E , `ij := IijI
H
ij ∈

C|Φij |×|Φij | and Sij := ViI
H
ij ∈ C|Φi|×|Φi|. The notations are illustrated in Figure 3.1. Then BFM

for unbalanced networks uses the set of matrix variables (v, s, `, S), where

v := (vi, i ∈ N )

s := (si, i ∈ N )

` := (`ij , (i, j) ∈ E)

S := (Sij , (i, j) ∈ E).
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Figure 3.1: Notations for Unbalanced Networks.

Given a network G(N , E), the branch flow model for unbalanced networks is defined by:

Pi(vj)− vi + zijS
H
ij + Sijz

H
ij − zij`ijzHij = 0 (i, j) ∈ E (3.11a)

diag

∑
j∈Ci

Pi(Sji − zji`ji)−
∑
k∈Ai

Sik

− si = 0 i ∈ N (3.11b)

 vi Sij

SHij `ij

 ∈ S+ (i, j) ∈ E (3.11c)

rank

 vi Sij

SHij `ij

 = 1 i ∈ E , (3.11d)

where Pi(vj) denotes projecting vj to the set of phases on bus i and Pi(Sji − zji`ji) denotes lifting

the result of Sji − zji`ji to the set of phases Φi and filling the missing phase with 0.

Given a vector (v, s, `, S) that satisfies (3.11), it is proved in [33] that the bus voltages Vi and

branch currents Iij can be uniquely determined if the network is a tree. Hence this model (3.11) is

equivalent to a full unbalanced AC power flow model, i.e. BIM in (3.10). See [33, Section IV] for

details.

3.2.2 OPF and SDP relaxation

Similar to the OPF problem on balanced networks, the OPF problem on unbalanced networks seeks

to optimize certain objective, e.g. total power loss or generation cost, subject to unbalanced power

flow equations (3.11) and various operational constraints. We consider an objective function of the

following form:

F (s) :=
∑
i∈N

fi(si) :=
∑
i∈N

∑
φ∈Φi

fφi (sφi ). (3.12)
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For instance,

• to minimize total line loss, we can set for each φ ∈ Φi, i ∈ N ,

fφi (sφi ) = pφi .

• to minimize generation cost, we can set for each i ∈ N ,

fφi (sφi ) = (
αφi
2

(pφi )2 + βφi p
φ
i ),

where αφi , β
φ
i > 0 depend on the load type on bus i, e.g. αφi = 0 and βφi = 0 for bus i

where there is no generator and for generator bus i, the corresponding αφi , β
φ
i depends on the

characteristic of the generator.

For each bus i ∈ N , there are two operational constraints on each phase φ ∈ Φi. First, the power

injection sφi is constrained to be in a injection region Iφi , i.e.

sφi ∈ I
φ
i for φ ∈ Φi and i ∈ N . (3.13)

The feasible power injection region Iφi is determined by the types of load attached to phase φ on

bus i. Some common controllable loads are:

• For controllable load, whose real power varies within [pφ
i
, pφi ] and reactive power varies within

[qφ
i
, qφi ], the injection region Iφi is

Iφi = {p+ iq | p ∈ [pφ
i
, pφi ], q ∈ [qφ

i
, qφi ]} ⊆ C. (3.14a)

For instance, the power injection of each phase φ on substation bus 0 is unconstrained, and

thus pφ
i
, qφ
i

= −∞ and pφi , q
φ
i =∞.

• For solar panel connecting the grid through a inverter with nameplate sφi , the injection region

Iφi is

Iφi = {p+ iq | p ≥ 0, p2 + q2 ≤ (sφi )2} ⊆ C. (3.14b)

Second, the voltage magnitude needs to be maintained within a prescribed region. Note that

the diagonal element of vi describes the voltage magnitude square on each phase φ ∈ Φi. Thus the

constraints can be written as

vφi ≤ v
φφ
i ≤ v

φ
i i ∈ N , (3.15)
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where vφφi denotes the φth diagonal element of vi. Typically the voltage magnitude at substation

buses is assumed to be fixed at a prescribed value, i.e. vφi = vφi = 1 for φ ∈ Φi, i ∈ Ns. At other

load buses i ∈ N \Ns, the voltage magnitude is typically allowed to deviate by 5% from its nominal

value, i.e. vφi = 0.952 and vφi = 1.052 for φ ∈ Φi.

To summarize, the OPF problem for unbalanced multi-phase radial distribution networks is:

OPF: min
∑
i∈N

∑
φ∈Φi

fφi (sφi )

over v, s, S, ` (3.16)

s.t. (3.11) and (3.13)− (3.15).

The OPF problem (3.16) is nonconvex due to the rank constraint (3.11d). In [33], an SDP

relaxation for (3.16) is obtained by removing the rank constraint (3.11d), resulting in a semidefinite

program (SDP):

ROPF: min
x

∑
i∈N

∑
φ∈Φi

fφi (sφi )

over v, s, S, ` (3.17)

s.t. (3.11a)− (3.11c) and (3.13)− (3.15).

Clearly the relaxation ROPF (3.17) provides a lower bound for the original OPF problem (3.16)

since the original feasible set is enlarged. The relaxation is called exact if every optimal solution of

ROPF satisfies the rank constraint (3.11d) and hence is also optimal for the original OPF problem.

It is shown empirically in [33] that the relaxation is exact for all the tested distribution networks,

including IEEE test networks [48] and some real distribution networks from Southern California

Edison.

3.3 Conclusion

In this chapter, we first formulate the optimal power flow problem on balanced networks and review

how to solve it through the second order cone relaxation. Then, we formulate the optimal power

flow problem on unbalanced networks and show how to solve it through the semidefinite relaxation.

The results in this chapter underlie our work on feeder reconfiguration and distributed algorithm

for optimal power flow problems.
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Chapter 4

Feeder Reconfiguration in
Distribution Networks Based on
Convex Relaxation of OPF

The feeder reconfiguration problem chooses the on/off status of the switches in a distribution network

in order to minimize a certain cost such as power loss. It is a mixed integer nonlinear program

and hence hard to solve. In this chapter we propose a heuristic algorithm that is based on the

recently developed convex relaxation of the AC optimal power flow problem. The algorithm is

computationally efficient and scales linearly with the number of redundant lines. It requires neither

parameter tuning nor initialization for different networks. It successfully computes an optimal

configuration on all four networks we have tested. Moreover we have derived a sub-optimality bound

for the proposed algorithm under certain conditions for the case where only a single redundant line

needs to be opened. We also propose a more computationally efficient algorithm and show that it

incurs a loss in optimality of less than 3% on the four test networks.

Literature A primary distribution system consists of buses, distribution lines, and (sectionalizing

and tie) switches that can be opened or closed. There are two types of buses: Substation buses (or

just substations) that are connected to a transmission network from which they receive bulk power,

and load buses1 that receive power from the substation buses. During normal operation the switches

are configured so that

1. There is no loop in the network.

2. Each load bus is connected to a single substation.

Therefore, there is a tree component rooted at each substation and we refer to each such compo-

nent as a feeder. The optimal feeder reconfiguration (OFR) problem seeks to alter the on/off status

of these switches, for the purpose of load balancing or loss minimization subject to the above two

1Distributed generations are viewed as loads with negative real power injections in this chapter.
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requirements, e.g., [6, 17, 19, 65]. See also a survey in [76] for many early papers and references to

some recent work in [45].

The OFR problem is a combinatorial (on/off status of switches) optimization problem with

nonlinear constraints (power flow equations) and can generally be NP-hard. Various algorithms

have been developed to solve the OFR problems. Following the convention in [45], they roughly fall

into two categories: formal methods and heuristic methods.

Formal Methods solve the OFR problem using existing optimization approach. They usually

require a significant amount of computation time. In [17], the problem is solved using a simulated

annealing technique where the problem is formulated as a multi-objective mixed integer constrained

optimization. In [24], ordinal optimization is proposed to reduce the computational burden through

order comparison and goal softening. In [51], the problem is solved using generalized Benders

decompositions. In [10], a mixed integer linear programming solver is applied to solve the problem

after linearization of the power flow equations. In [39, 45], the problem is formulated as a mixed

integer nonlinear program which is then solved as a mixed integer convex program through the

second-order cone program (SOCP) relaxation.

Heuristic Methods exploit structural properties to solve the OFR problem. They are usually more

computationally efficient than formal methods. In [19], an “iterative branch exchange approach” is

applied to OFR. The network is initialized with a feasible topology. At each iteration, an opened

switch is closed and a closed switch is opened to reduce the cost and maintain the radial structure.

The algorithm stops once a local minimum is reached, i.e. for each currently opened switch, closing

it and opening another switch will not further decrease the cost. See [6,36] for further developments

on this approach. This approach has the advantage that the intermediate configuration is always

feasible, and hence we can terminate the algorithm at any iteration to obtain a feasible solution.

However, the performance is sensitive to the initial configuration and sometimes it takes too many

iterations for the algorithm to terminate. A different heuristic approach, first proposed in [65] and

termed “successive branch reduction approach” in this chapter, assumes that all the switches are

initially closed and they are sequentially opened based on a given criteria until a radial configura-

tion is reached. This approach has two major advantages: 1) unlike the “iterative branch exchange

approach”, no initialization is required; and 2) the number of iterations is bounded by the num-

ber of redundant lines, which is usually small in practice. Some developments on this approach

include relaxing the binary variable representing the status on the switch [35] and generalization to

unbalanced network based on a constant current model [20].

Summary Optimal feeder reconfiguration is a mixed integer nonlinear optimization problem and

therefore NP-hard in general. To overcome the first difficulty (mixed integer optimization), we

propose a heuristic approach that only involves solving a small number of AC optimal power flow
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(OPF) problems and no mixed-integer optimization. We theoretically show that the proposed

heuristic can obtain the global optimal solution under certain assumptions. Indeed global optimal

configurations can always be found on the four practical networks in our simulations. To overcome

the second difficulty (nonconvexity of AC OPF), we build on the recent development of SOCP

relaxation of AC OPF. The effectiveness of this new approach is illustrated both through simulations

of standard test systems and mathematical analysis under certain assumptions. Specifically the main

contributions of the chapter are twofold.

First, we propose an algorithm to optimize the “successive branch reduction approach”. The

algorithm uses a branch flow model introduced in [6, 7] for radial systems and exploits the recent

development on solving the optimal power flow problem through convex relaxation [26, 27, 31]; see

the tutorials in [60,61] for more details. The algorithm has three major advantages:

1. Efficient: the complexity is linear in the number redundant lines that need to be opened.

2. Accurate: The algorithm is proved to solve OFR optimally under certain assumptions in the

case where there is a single line that needs to be opened. Simulations on four practical networks

show that it can find a globally optimal solution in the general case as well.

3. Hassle free: There are no parameters and initialization that need to be tuned for different

networks.

Second, we simplify the above algorithm into one that has a constant complexity, i.e. the time

complexity is independent of the number of redundant lines. Simulations on the same four practical

networks show that the loss in optimality is less than 3%.

4.1 Problem Formulation

In this section, we define the optimal feeder reconfiguration (OFR) problem on a balanced distribu-

tion network.

4.1.1 Notations

In addition to the notations defined in Chapter 3, we introduce the following new notations, which

will only be used in this chapter.

Given two real vectors x, y ∈ Rn, x ≤ y means xi ≤ yi for 1 ≤ i ≤ n and x < y means xi < yi for

at least one component. The Pareto front (See [12] for more properties) of a compact set A ⊆ Rn is

defined as

O(A) := {x ∈ A | @x̃ ∈ A \ {x} such that x̃ ≤ x}. (4.1)
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Given a graph G(N , E). Let Ns denote the set of substation buses, Nl denote the set of load buses

and Ns ∪Nl = N . For each line (i, j) ∈ E , define Sji in terms of Sij and `ij by Sji := −Sij + `ijzij .

Hence −Sji represents the power received by bus j from bus i.

For each bus i ∈ N , denote E(i) the set of lines in E that has one end at i, i.e.

E(i) := {(i, k) | i ∈ Ai, (i, k) ∈ E} ∪ {(j, i) | j ∈ Ci, (j, i) ∈ E}.

For any E ′ ⊆ E , a path exists between two nodes i, j ∈ N in graph G(N , E ′) if and only if there is a

collection of edges in E ′ that connect node i and j. Denote

D1
E′ :=# of paths in G(N , E ′) among buses in Ns (4.2)

D2
E′ :=# of loops in G(N , E ′) (4.3)

DE′ :=D1
E′ +D2

E′ . (4.4)

4.1.2 Model and Problem formulation

There are sectionalizing or tie switches on the lines that can be opened or closed. Optimal feeder

reconfiguration (OFR) is the problem of reconfiguring the switches to optimize certain objective

subject to the topological constraints, power flow equations, and operational constraints on voltage

magnitudes and power injections.

The objective function, power flow equations, and operational constraints for the OFR problem

are the same as the OPF problem on balanced networks in section 3.1. There are two topological

constraints on configuring the switches during normal operations:

1. Each load bus is connected to a single substation.

2. There is no loop in the network.

Any subset of lines E ′ ⊆ E whose switches can be closed concurrently to satisfy both 1) and 2) is

defined as a feasible configuration. Let

ST := {ET | G(N , ET ) satisfies 1) and 2)},

which represents the set of all feasible configurations.

When |Ns| = 1, i.e. there is only one substation, ST consists of the set of ET such that G(N , ET )

is a spanning tree of G(N , E).

Given a configuration line subset E ′ ⊆ E , define
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• `(E ′) and S(E ′)

`(E ′) := {`ij , (i, j) ⊆ E ′}

S(E ′) := {Sij , (i, j) ⊆ E ′},

which represent the branch current and power flow on the distribution lines that are actively

used in configuration E ′, i.e. `(E ′) (S(E ′)) collects all the variables in ` (S) except the branch

current `ij (branch power Sij) for (i, j) ∈ E \ E ′. Then denote

x(E ′) := (v, s, `(E ′), S(E ′)),

which represents all the physical variables in configuration E ′ (The nodal variables v and s will

always be used regardless of the configuration.).

• X(E ′) and Xc(E ′)

X(E ′) := {x(E ′) | x(E ′) satisfies (3.2), (3.4) and (3.6)}

Xr(E ′) := {x(E ′) | x(E ′) satisfies (3.2a), (3.2b), (3.8) and (3.4), (3.6)},

where X(E ′) represents the feasible physical variables that satisfy the branch flow model (3.2),

power injection constraints (3.4), and voltage constraints (3.6). Xr(E ′) represents the feasible

sets after SOCP relaxation, i.e. the feasible set of the ROPF problem (3.9).

• OPF-E ′ and ROPF-E ′

OPF−E ′ : minF (p) over x(E ′) ∈ X(E ′)

ROPF−E ′ : minF (p) over x(E ′) ∈ Xr(E ′),

which represent the OPF problem defined on configuration E ′ and the relaxed OPF problem,

respectively.

Using the above notations, the OFR problem can be written as

OFR : min F (p∗(ET )) (4.5)

over ET ∈ ST ,
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(a) |Ns| = 2 and |E| = |N | − 1. (b) |Ns| = 1 and |E| = |N |.

Figure 4.1: Possible network topology with one redundant line.

where

x∗(ET ) := arg min
x
{F (p) s.t. x(ET ) ∈ X(ET )} . (4.6)

Different configurations ET are implemented by different switch settings. OFR is difficult to solve

due to the nonlinear feasible set X(ET ) for a given configuration ET and the discrete nature of ET .

In section 3.1.2, SOCP relaxation is shown to be exact for the OPF problem under mild conditions

if the underlying undirected graph is acyclic, which holds for all the feasible configuration ET .

The proposed algorithm leverages the SOCP relaxation to deal with the nonlinearity. Throughout

this chapter, we assume the SOCP relaxation is always exact. Then we have the following result

of [31, Theorem 3], which will be useful for us.

Theorem 4.1. Suppose the ROPF problem (3.9) is exact and the feasible set is nonempty. Then

there exists a unique solution (v∗, `∗, `∗, S∗) provided the objective function F (s) is convex and non-

decreasing in Re(s) and Im(s).

4.2 Network Configuration with Single Redundant Line

In this section we consider the special case where there is only one redundant line that needs to be

opened, i.e. DE = 1. We develop an algorithm to solve the OFR problem in this case and prove

that the algorithm solves OFR optimally under certain assumptions. In addition, we simplify the

above algorithm to reduce its computation complexity and incur negligible loss in optimality. We

extend both algorithms to general networks in the next section.

4.2.1 Algorithms

When there is only one redundant line that needs to be opened, there are two possible cases as

illustrated in Fig 4.1.
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1. |Ns| = 2 and |E| = |N |− 1, i.e. there are two substations and |N |− 1 lines as shown in Figure

4.1a. Then each load bus is connected to two substations and we need to open one line from

the path between the two substations.

2. |Ns| = 1 and |E| = |N |, i.e. there is one substation and |E| = |N | lines as in figure 4.1b. Then

there exists a loop and we need to open one line to break the loop.

Algorithm 4.1 Network with one redundant line

1: E∗T ← E
2: Solve OPF-E with an optima x∗

3: Calculate ê ∈ arg mine{|P ∗e (E∗T )| | DE∗T \e = 0}
4: Denote ê := (n1, n2)
5: if Pê > 0 then
6: e∗ ← arg mine{F (p∗(E∗T \ e)) | e ∈ N(n2)}
7: else
8: e∗ ← arg mine{F (p∗(E∗T \ e)) | e ∈ N(n1)}
9: end if

10: E∗T ← E∗T \ e∗
11: return E∗T

The algorithm to solve both cases in Fig. 4.1 is stated in Algorithm 4.1. The basic idea of

Algorithm 4.1 is simple and we illustrate it using the line network in Fig. 4.2. For the line network

in Fig. 4.2, let the buses at the two ends be substation buses and buses in between be load buses.

Then Ns := {0, 0′}, Nl := {1, . . . , n} and N := {0, 1, . . . , n, 0′}. We use n+1 and 0′ interchangeably

for notational convenience.

For the line network shown in Figure 4.2, each load bus is connected to both substation 0 and

0′, and thus the set of feasible configuration is given as

ST := {E \ (k, k + 1) | 1 ≤ k ≤ n},

i.e. each line in E can be opened to create a feasible configuration. For each bus k, the set of lines

with one end at it is given as

E(k) =


{(k, k + 1), (k − 1, k)} k 6= 0, n+ 1

{(0, 1)} k = 0

{(n, n+ 1)} k = n+ 1

.

In Algorithm 4.1, we first solve OPF-E , which provides an optimal solution x∗ assuming all the

lines are closed. Then we search for a branch ê, whose branch power flow is minimum in E . Denote

ê = (k, k + 1) and the line we will open is based on the following criteria:
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Figure 4.2: A line Network

1. Pê > 0 and k = n + 1: There is only one candidate, i.e. E(n + 1) = {(n, n + 1)} and line

(n, n+ 1) is opened. It means substation 0′ absorbs real power.

2. Pê > 0 and k < n+ 1: There are two candidates, i.e. E(k) = {(k, k+ 1), (k+ 1, k+ 2)}. Either

line (k, k + 1) or (k + 1, k + 2) is opened, depending on which gives a smaller objective value.

3. Pê ≤ 0 and k = 0: There is only one candidate, i.e. E(0) = {(0, 1)} and line (0, 1) is opened.

It means substation 0 absorbs real power.

4. Pê ≤ 0 and k > 0: There are two candidates, i.e. E(k + 1) = {(k, k + 1), (k − 1, k)}. Either

line (k, k + 1) or (k − 1, k) is opened, depending on which gives a smaller objective value.

The intuition behind Algorithm 4.1 is that the line which will be opened is close to the line

where there is minimum branch flow power if we solve the problem assuming all the lines are closed

(OPF-E). Thus, we need to solve two other OPF problems for comparing the objective of the two

candidates in addition to OPF-E . Indeed, we can directly open the line with minimum branch

power flow to simplify the algorithm after OPF-E is solved. By doing this, we sacrifice accuracy,

but simulation results show that the solution of the corresponding algorithm incurs a similar cost as

that of Algorithm 4.1. The simplified algorithm is stated in Algorithm 4.2.

Algorithm 4.2 Network with one redundant line (simplified)

1: Solve OPF-E with an optima x∗.
2: Calculate ê ∈ arg mine{|P ∗e | | DE\e = 0}
3: E∗T ← E \ ê
4: return E∗T

4.2.2 Performance analysis

We analyze the performance of Algorithm 4.1, i.e. whether the configuration E∗T returned by Algo-

rithm 4.1 is optimal for OFR. There are two possible cases as illustrated in Fig. 4.1. Case (b) can

be reduced to case (a) by replacing the substation 0 by two virtual substations 0 and 0′ as shown in

Fig. 4.1a, where Ns := {0, 0′}, Nl := {1, . . . , n}. Thus, we only need to focus on case (a). For ease

of presentation we only prove the results for a line network as shown in Fig. 4.2. They generalize in

a straightforward manner to radial networks as shown in Fig. 4.1a. We make several assumptions

below for our analysis:
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A1 : pi < 0 for i ∈ Nl and pi > 0 for i ∈ Ns.

A2 : vi = vi = 1 for i ∈ N .

A3 : |θi − θj | < arctan(xij/rij) for (i, j) ∈ E .

A4 : The objective function F (s) = F (p0, p0′) is convex and increasing of p0, p0′ .

A5 : The feasible set X(E) is compact.

A6 : The injection region Ii takes the box constraint defined in (3.5a).

A1 says that only substation buses 0 and 0′ inject real power while load buses 1, . . . , n absorb real

power. A2 says that the voltage magnitude at each bus is fixed at their nominal value. A3 bounds

the angle difference between adjacent buses.2 A4 says that the objective function is merely a function

of the power injections at two substations. A5 are technical assumptions that guarantees that our

optimization problems are feasible. A6 says the control on real and reactive power injections can be

decoupled.

The assumptions A1-A6 may not hold in practice, e.g. A1 is violated when there are distributed

generators at some load buses, and A2 is violated when buses have limited reactive power injection

capability. However, we only need A1-A6 to make precise statements about the performance of

Algorithm 4.1. We will first explain the intuition before formally stating the result in Theorem 4.3.

We now rewrite the OFR problem (4.5) for the line network in Fig. 4.2. Some new notations will

be defined which will only be used in this section. For any (k, k+ 1) ∈ E , let Gk0 and Gk+1
0′ represent

the two subtrees rooted at 0 and 0′, respectively, if line (k, k + 1) is opened. Denote

(pk0 , p
k+1
0′ ) :=

(
p∗0(Ek,k+1

T ), p∗0′(E
k,k+1
T )

)
, (4.7)

where Ek,k+1
T := E \ (k, k+ 1) and x∗(Ek,k+1

T ) is the optimal solution to a given configuration Ek,k+1
T

and defined in (4.6). (pk0 , p
k+1
0′ ) represents the minimum power injection at the substations for the

two subtrees Gk0 and Gk+1
0′ after line (k, k + 1) is opened. Then the OFR problem (4.5) for the line

network (Fig. 4.2) can be written equivalently as

min
0≤k≤n

F (pk0 , p
k+1
0′ ). (4.8)

Define an OPF problem:

OPF-Es: f(p0) := min
x∈X(E)

p0′ (4.9)

s.t. p0 is a given constant

2Although voltage phase angles θi are relaxed in the relaxed branch flow model (3.2), they are uniquely determined
by θi − θj = ∠(vi − z∗ijSij) in a radial network [27].
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(a) Intuition under A1-A5. (b) Intuition without A1-A5.

Figure 4.3: Intuitions of Algoirthm 4.1.

Recall that X(E) is the feasible set of physical variables given a configuration E and Xr(E) is

the convexified X(E). Let P := {(p0, p0′) | ∃x ∈ X(E)} represent the projection of X(E) on R2 and

Pr := {(p0, p0′) | ∃x ∈ Xr(E)} be the projection of Xc(E) on R2. By definition of the Pareto front in

(4.1), the exactness of SOCP relaxation implies that O(P) = O(Pc).

Lemma 4.2. Suppose A4-A5 hold and the SOCP relaxation is exact. Then

1. (p0, f(p0)) ∈ O(Pr).

2. f(p0) is a strictly convex decreasing function of p0.

By Lemma 4.2-1), (p0, f(p0)) ∈ O(Pc), hence OPF-E can be written equivalently as

min F (p0, f(p0)). (4.10)

In other words, solving OPF-E is equivalent to finding a point when the level set of F (p0, p0′) first

hits the curve (p0, f(p0)) on a two-dimensional plane, where the x-axis and y-axis are the real power

injections from substation 0 and 0′, as shown in Fig. 4.3. On the other hand, the OFR problem can

be written as (4.8) and solving OFR is equivalent to find a point when the level set of F (p0, p0′)

first hits one point in {(pk0 , pk+1
0′ ) | 0 ≤ k ≤ n} on the two-dimensional plane. Suppose A1-A5 hold,

all the feasible points (pk0 , p
k+1
0′ ) locate exactly on the curve (p0, f(p0)) as shown in Fig. 4.3a. Thus,

we can obtain exactly the optimal solution to OFR by checking the points (pk0 , p
k+1
0′ ) adjacent to

the optimal solution to OPF-E , which is performed in Algorithm 4.1. The result is formally stated

in Theorem 4.3.

Theorem 4.3. Suppose A1–A6 hold. Then the configuration E∗T returned by Algorithm 4.1 is optimal

for OFR (4.5).
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Remark: Theorem 4.3 shows that Algorithm 4.1 computes an optimal solution of OFR under

assumptions A1-A6, which may not hold in practice. Without assuming A1-A6, (pk0 , p
k+1
0′ ) does not

locate exactly on the curve (p0, f(p0)) as shown in Fig. 4.3b. Thus, the points (pk0 , p
k+1
0′ ) adjacent

to the optimal solution to OPF-E may not be optimal for OFR. Indeed, we can create artificial

examples to show that Algorithm 4.1 fails to find a global optimal configuration. However, the

sub-optimality gap is usually small since the points (pk0 , p
k+1
0′ ) are close to the the curve (p0, f(p0)),

and global optimal configuration can always be found in our simulations on four practical networks.

In the following, we will derive the sub-optimality gap of Algorithm 4.1 by relaxing assumption

A2 by A2+, which is still not realistic, but the result gives further intuition of the performance of

the proposed algorithm.

A2+ : vi = vi, qi = −q
i

=∞ for i ∈ N

When the voltage magnitudes are fixed but different at different buses, Algorithm 1 is not

guaranteed to find a global optimum of OFR. However, it still gives an excellent suboptimal solution

to OFR. By nearly optimal, it means the suboptimality gap of Algorithm 4.1 is negligible.

Let Ip0
:= {p0 | ∃x ∈ X(E)} represent the projection of X(E) on real line. Ip0

is compact since

X(E) is compact by A5. f(p0) is strictly convex and monotone decreasing by Corollary 4.2, it is

right differentiable and denote its right derivative by f ′+(p0), which is monotone increasing and right

differentiable and denote its right derivative by f
′′

++(p0). Let

κf := inf
p0∈Ip0

f
′′

++(p0) ≥ 0. (4.11)

κf represents the minimal value of the curvature on a compact interval if f(p0) is twice differentiable.

Define Lk for each line (k, k + 1) ∈ E(0, 0′) as sequel.

Lk :=
δv2
k rk,k+1/|zk,k+1|2

(vk + vk+1) +

√
(vk + vk+1)2 − δv2

k

(
r2
k,k+1

x2
k,k+1

+ 1
) ,

where δvk := vk − vk+1. Lk represents the thermal loss of line (k, k + 1) when either Pk,k+1

or Pk+1,k is 0. Conceptually it means all the real power sending from bus on one end of the

line is converted to thermal loss and the other bus receives 0 real power, namely either Pk,k+1 =

`k,k+1rk,k+1 or Pk+1,k = `k,k+1rk,k+1. Then the expression of Lk = `k,k+1rk,k+1 can be obtained

by substituting either Pk,k+1 = `k,k+1rk,k+1 or Pk+1,k = `k,k+1rk,k+1 into (3.2a) and (3.2c). Lk

is negligible compared to the power consumption of a load in a distribution system. Therefore the

ratio of these two quantities, defined as Rk := −pk+1/Lk, is usually quite large.

Let R := minRk and κf as defined in (4.11), which is a constant depending on the network. Let

F ∗ be the optimal objective value of OFR and FA be the objective value if we open the line e∗ given
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by Algorithm 4.1.

Theorem 4.4. Suppose A1,A2+,A3-A6 hold and for all i ∈ N . Then

F ∗ ≤ FA ≤ F ∗ + max

{
c20
c0′
,
c20′

c0

}
2

R2κf
,

if F (p0, p0′) := c0p0 + c0′p0′ for some positive c0, c0′ .

Remark: R is large, usually on the order of 103, in a distribution system when there is no

renewable generation. Although it is difficult to estimate the value of κf in theory, our simulation

shows that κf is typically around 0.025MW−1 for a feeder with loop size of 10, and thus the bound

is approximately 80W if c0 = c0′ = 1, which is quite small. Moreover, simulations of two SCE

distribution circuits show that Algorithm 4.1 always finds the global optima of OFR problem; see

section 4.4. Therefore the bound in the theorem, already negligible, is not always tight.

4.3 General network configuration

In section 4.2, we propose two algorithms to solve the OFR problem assuming there is only one

redundant line that needs to be open. In this section, we will extend both Algorithms 4.1 and 4.2

to general networks where there may be more than one redundant line that need to be opened. As

before, one of the algorithms has a higher accuracy but requires more computation (Algorithm 4.3)

and the other lower accuracy but less computation (Algorithm 4.4).

Loosely speaking, Algorithm 4.1 consists of the following procedure:

1. Solve OPF problem assuming all the lines are closed.

2. Find the line ê with minimum branch power flow.

3. Check line ê against the lines adjacent to line ê and the minimum of those lines as a solution.

For a general network, there are multiple lines that need to be simultaneously open. Then we

generalize Algorithm 4.1 in the following manner: we iterate the procedure in Algorithm 4.1 and

remove one line from E at the end of each iteration, resulting in a different OPF problem to solve

for the next iteration. There are |E| − |Nl| redundant lines and hence |E| − |Nl| iterations. The

algorithm is formally stated in Algorithm 4.3.

Similarly, we can mimic Algorithm 4.2 and have an efficient algorithm which merely solves one

OPF problem. Algorithm 4.2 consists of the following procedure:

1. Solve OPF problem assuming all the lines are closed.

2. Open the line ê with minimum branch power flow.
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Algorithm 4.3 General Network Reconfiguration

1: E∗T ← E
2: while DE∗T > 0 do
3: Solve OPF-E∗T with optima x∗(E∗T )
4: Calculate ê ∈ arg mine{|P ∗e (E∗T )| | DE∗T \e < DE∗T }
5: Denote ê := (n1, n2)
6: if Pê > 0 then
7: e∗ ← arg mine{F (p∗(E∗T \ e)) | e ∈ C(n2) ∩ E∗T }
8: else
9: e∗ ← arg mine{F (p∗(E∗T \ e)) | e ∈ C(n1) ∩ E∗T }

10: end if
11: E∗T ← E∗T \ e∗
12: end while
13: return E∗T

We generalize Algorithm 4.2 in the following manner. We solve only one OPF problem OPF-E ,

which assumes all the lines are closed. Then we sequentially choose one line with the smallest branch

power flow in the remaining closed lines merely based on the solution to OPF-E . Our simulations

show that the simplification leads to negligible loss in optimality compared to Algorithm 4.3. The

algorithm is stated in Algorithm 4.4.

Algorithm 4.4 General Network Reconfiguration (simplified)

1: E∗T ← E
2: Solve OPF-E ; let x∗ be an optimal solution.
3: while DE∗T > 0 do
4: Calculate ê ∈ arg mine{|P ∗e | | DE∗T \e < DE∗T }
5: E∗T ← E∗T \ ê
6: end while
7: return E∗T

Remark: Algorithm 4.3 scales linearly with the number of redundant lines and Algorithm 4.4

is independent of the number of redundant lines. For large distribution system, solving one OPF

problem requires a significant amount of time and Algorithm 4.4 can greatly reduce the computation

time if there are many redundant lines.

4.4 Simulations

In this section we present examples to illustrate the effectiveness of the algorithms proposed in

section 4.3 (the algorithms in section 4.2 are special cases). We used a Macbook Pro with 2.9 Ghz

Intel Core i7 and 8GB memory. The algorithms are implemented in Matlab 2013a and the OPF

problem is solved using Gurobi optimization solver.

We test the algorithms on four practical distribution networks. Test network 1 is from Taiwan

Power Company and the network data is taken from [81]. Test network 2 is from Brazil and
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Table 4.1: Network of Fig. 4.1: Line impedances, peak spot load KVA, Capacitors and PV genera-
tion’s nameplate ratings.

Network Data

Line Data Line Data Line Data Load Data Load Data PV Generators

From To R X From To R X From To R X Bus Peak Bus Peak Bus Nameplate
Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) No. MVA No. MVAR No. Capacity

1 2 0.259 0.808 8 41 0.107 0.031 21 22 0.198 0.046 1 30 34 0.2
2 13 0 0 8 35 0.076 0.015 22 23 0 0 11 0.67 36 0.27 13 1.5MW
2 3 0.031 0.092 8 9 0.031 0.031 27 31 0.046 0.015 12 0.45 38 0.45 17 0.4MW
3 4 0.046 0.092 9 10 0.015 0.015 27 28 0.107 0.031 14 0.89 39 1.34 19 1.5 MW
3 14 0.092 0.031 9 42 0.153 0.046 28 29 0.107 0.031 16 0.07 40 0.13 23 1 MW
3 15 0.214 0.046 10 11 0.107 0.076 29 30 0.061 0.015 18 0.67 41 0.67 24 2 MW
4 20 0.336 0.061 10 46 0.229 0.122 32 33 0.046 0.015 21 0.45 42 0.13
4 5 0.107 0.183 11 47 0.031 0.015 33 34 0.031 0.015 22 2.23 44 0.45 Shunt Capacitors
5 26 0.061 0.015 11 12 0.076 0.046 35 36 0.076 0.015 25 0.45 45 0.2 Bus Nameplate
5 6 0.015 0.031 15 18 0.046 0.015 35 37 0.076 0.046 26 0.2 46 0.45 No. Mvar
6 27 0.168 0.061 15 16 0.107 0.015 35 38 0.107 0.015 28 0.13
6 7 0.031 0.046 16 17 0 0 42 43 0.061 0.015 29 0.13 Vbase= 12.35kv 1 6
7 32 0.076 0.015 18 19 0 0 43 44 0.061 0.015 30 0.2 Sbase = 1MW 3 1.2
7 8 0.015 0.015 20 21 0.122 0.092 43 45 0.061 0.015 31 0.07 37 1.8
8 40 0.046 0.015 20 25 0.214 0.046 1 12 0.076 0.146 32 0.13 47 1.8
8 39 0.244 0.046 21 24 0 0 1 30 0.116 0.146 33 0.27

the network data is taken from [63]. There are no renewable generations in these two networks.

Test networks 3 and 4 are from Southern California Edison with renewable generations and taken

from [26,28]. Since the original data on these two networks consist of a single substation and contain

no loop, we make several modifications to add loops in order to test our algorithms. The modified

circuit diagram and network data of test network 3 are shown in Fig. 4.1 and Table 4.1. The modified

circuit diagram and network data of test network 4 are shown in Fig. 4.2 and Table 4.4.

In the simulations, the voltage magnitude of the substations is fixed at 1 p.u. The voltage

magnitudes at all other buses are allowed to vary within [0.95, 1.05]p.u. Our objective is to minimize

the power loss, i.e. αi = 0, βi = 1 for i ∈ N in (3.3), which means F (p) :=
∑
i∈N pi. For all four

networks, Algorithm 4.3 always computes an optimal configuration and Algorithm 4.4 computes a

configuration with only up to 3% loss in optimality.

4.4.1 Case I: Tai-83 Bus System [81]

The Tai-83 bus system consists of 96 lines and 13 of them needs to be kept open to satisfy the

configuration requirement. This network has been tested in [15, 18, 45, 80, 81, 87] using different

approaches. In [45], Jabr, et. al show that opening lines (7, 13, 34, 39, 42, 55, 62, 72, 83, 86,

89, 90, 92) gives an optimal solution using mixed integer convex programming solver. The results

are summarized in Table 4.3, where we also show the loss reduction3, which represents the relative

saving on power loss due to reconfiguration.

We run both Algorithm 4.3 and 4.4 for this network. Algorithm 4.3 returns the same optimal

solution as [15,45,87]. However, Algorithm 4.3 is computationally very efficient since we only solved

39 OPF problems, which take 0.94 seconds on a laptop (MacBookpro). Algorithm 4.4 opens lines

(7, 13, 33, 39, 42, 63, 72, 82, 84, 86, 89, 90, 92) with a power loss of 471.39KW. Compared with the

optimal solution of 469.88KW, the difference in the power loss is less than 0.4% but we only need

to solve 1 OPF problem, which takes 0.024 second on a laptop.

3loss reduction=1− power loss (after reconfiguration)
power loss (before reconfiguration)
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Figure 4.1: A modified SCE 47-bus feeder. The blue bar (1) represents the substation bus, the red
dots (13, 17, 19, 23, 24) represent buses with PV panels, and the other dots represent load buses
without PV panels.

Table 4.2: Summary on Brazil-135 Bus System

Method Opened Lines Losses (KW) Loss reduction

[63]
51 ,106 ,136 ,137 ,138 ,139 ,141 ,142 ,143
,144 ,145 ,146 ,147 ,148 ,149 ,150 ,151
,152 ,154 ,155 ,156

285.77 10.80%

[15,45]
7 ,35 ,51 ,90 ,96 ,106 ,118 ,126 ,135 ,137
,138 ,141 ,142 ,144 ,145 ,146 ,147 ,148
,150 ,151 ,155

280.19 12.54%

Algorithm 3
7 ,35 ,51 ,90 ,96 ,106 ,118 ,126 ,135 ,137
,138 ,141 ,142 ,144 ,145 ,146 ,147 ,148
,150 ,151 ,155

280.19 12.54%

Algorithm 4
35 ,51 ,55 ,84 ,90 ,106 ,126 ,135 ,136
,137 ,138 ,141 ,143 ,144 ,145 ,147 ,148
,152 ,150 ,151 ,155

288.01 10.10%

4.4.2 Case II: Brazil-135 Bus System [63]

The Brazil-135 bus system consists of 156 lines and 21 of them needs to be kept open to satisfy the

configuration requirement. This network has been tested in [15, 45, 63] using different approaches.

In [45], Jabr, et. al show that opening lines 7, 35, 51, 90, 96, 106, 118, 126, 135, 137, 138, 141,

142, 144, 145, 146, 147, 148, 150, 151, and 155 gives an optimal solution using mixed integer convex

programming solver. The results are summarized in Table 4.2.

Algorithm 4.3 computes the same optimal solution as [15,45]. However, Algorithm 4.3 is compu-

tationally very efficient since we only solved 63 OPF problems, which take 2.2 seconds on a laptop.

Algorithm 4.4 opens lines 35, 51, 55, 84, 90, 106, 126, 135, 136, 137, 138, 141, 143, 144, 145, 147,

148, 152, 150, 151, and 155 with a power loss of 288.01KW. Compared with the optimal solution

of 280.19KW, the difference in the power loss is less than 2.8% but we only need to solve 1 OPF

problem, which takes 0.055 seconds on a laptop.
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Table 4.3: Summary on Tai-83 Bus System

Method Opened Lines Losses (KW) Loss reduction
[18,80,81] 7 ,13 ,34 ,39 ,41 ,55 ,62 ,72 ,83 ,86 ,89 ,90 ,92 471.08 11.45%
[15,45,87] 7 ,13 ,34 ,39 ,42 ,55 ,62 ,72 ,83 ,86 ,89 ,90 ,92 469.88 11.68%

Algorithm 3 7 ,13 ,34 ,39 ,42 ,55 ,62 ,72 ,83 ,86 ,89 ,90 ,92 469.88 11.68%
Algorithm 4 7, 13 ,33 ,39 ,42 ,63 ,72 ,82 ,84 ,86 ,89 ,90 ,92 471.39 11.40%

Table 4.4: Network of Fig. 4.2: Line impedances, peak spot load KVA, Capacitors and PV genera-
tion’s nameplate ratings.

Network Data

Line Data Line Data Line Data Load Data Load Data Load Data

From To R X From To R X From To R X Bus Peak Bus Peak Bus Peak
Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) No. MVA No. MVA No. MVA

1 2 0.160 0.388 20 21 0.251 0.096 39 40 2.349 0.964 3 0.057 29 0.044 52 0.315
2 3 0.824 0.315 21 22 1.818 0.695 34 41 0.115 0.278 5 0.121 31 0.053 54 0.061
2 4 0.144 0.349 20 23 0.225 0.542 41 42 0.159 0.384 6 0.049 32 0.223 55 0.055
4 5 1.026 0.421 23 24 0.127 0.028 42 43 0.934 0.383 7 0.053 33 0.123 56 0.130
4 6 0.741 0.466 23 25 0.284 0.687 42 44 0.506 0.163 8 0.047 34 0.067 Shunt Cap
4 7 0.528 0.468 25 26 0.171 0.414 42 45 0.095 0.195 9 0.068 35 0.094 Bus Mvar
7 8 0.358 0.314 26 27 0.414 0.386 42 46 1.915 0.769 10 0.048 36 0.097 19 0.6
8 9 2.032 0.798 27 28 0.210 0.196 41 47 0.157 0.379 11 0.067 37 0.281 21 0.6
8 10 0.502 0.441 28 29 0.395 0.369 47 48 1.641 0.670 12 0.094 38 0.117 30 0.6
10 11 0.372 0.327 29 30 0.248 0.232 47 49 0.081 0.196 14 0.057 39 0.131 53 0.6
11 12 1.431 0.999 30 31 0.279 0.260 49 50 1.727 0.709 16 0.053 40 0.030 Photovoltaic
11 13 0.429 0.377 26 32 0.205 0.495 49 51 0.112 0.270 17 0.057 41 0.046 Bus Capacity
13 14 0.671 0.257 32 33 0.263 0.073 51 52 0.674 0.275 18 0.112 42 0.054
13 15 0.457 0.401 32 34 0.071 0.171 51 53 0.070 0.170 19 0.087 43 0.083 45 5MW
15 16 1.008 0.385 34 35 0.625 0.273 53 54 2.041 0.780 22 0.063 44 0.057
15 17 0.153 0.134 34 36 0.510 0.209 53 55 0.813 0.334 24 0.135 46 0.134 Vbase = 12kV
17 18 0.971 0.722 36 37 2.018 0.829 53 56 0.141 0.340 25 0.100 47 0.045 Sbase = 1MVA
18 19 1.885 0.721 34 38 1.062 0.406 1 32 0.113 0.434 27 0.048 48 0.196 Zbase = 144Ω
4 20 0.138 0.334 38 39 0.610 0.238 53 57 0.1 0.3 28 0.038 50 0.045
19 58 0.09 0.2

4.4.3 Case III: SCE-47 Bus System

The original data for the SCE 47-bus system does not contain loops, so we added two lines to connect

the substation bus 1 to two load buses, 12 and 30, respectively. Thus there are 49 lines and 2 of

them needs to be open in the modified feeder. In addition to the loads, there are 5 PV panels and

their power injections can be controlled. The nameplates for these 5 PV panels can be found in

Table 4.1.

There are in total 95 feasible configurations. We first calculate the objective value of all the 95

configurations. The best configuration is opening lines {(1, 2), (8, 9)}, resulting in 32.6KW power

loss. The average power loss is 63.7KW and the worst configuration’s power loss is 136.9KW across

the 95 configurations. Thus the average power loss is almost twice as bad as the minimum power

loss and the worst configuration is 4 times as bad as the minimum!

Both Algorithms 4.3 and 4.4 find the optimal configuration for this network. Algorithm 4.3 solves

4 OPF problems (0.055 second) and Algorithm 4.4 solves 1 OPF problem (0.014 second). Compared

with solving one OPF problem for each configuration to obtain the optimal solution, both algorithms

are much more efficient without any loss in optimality.
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Figure 4.2: A modified SCE 56-bus feeder. The blue bars (1, 57, 58) represent the substation buses
and the red dot (45) represents the bus with PV panels.

4.4.4 Case IV: SCE-56 Bus System

In contrast to the SCE-47 system, where there are 5 relatively small PV panels, the SCE 56-

bus system consists of a single big PV system with a capacity of 5MW. We make the following

modifications:

• We add a line between bus 1 and bus 32 to create a loop.

• We assume there are two additional substations (bus 57 and 58): attached to substation 19

and 53, respectively.

There are 59 lines and 3 lines need to be kept open. There are in total 724 feasible configurations.

We first calculate the objective value of all the 724 configurations. The best configuration is opening

lines {(11, 13), (23, 25), (41, 47)}, resulting in 9.89KW power loss. The average power loss is 23.4KW

and the worst power loss is 211KW across the 724 configurations.

We run both Algorithm 4.3 and 4.4 for this network. Algorithm 4.3 computes the optimal

solution by opening lines {(11, 13), (23, 25), (41, 47)} but solves just 9 OPF problems, which take

0.14 seconds. Algorithm 4.4 opens lines {(11, 13), (23, 25), (47, 49)} with a power loss of 9.92KW.

Compared with the optimal solution of 9.89KW, the difference in the power loss is less than 0.3%

but Algorithm 4.4 only needs to solve one OPF problem, which takes 0.015 seconds.

4.5 Conclusion

We propose two algorithms with different tradeoffs on efficiency and accuracy for feeder reconfig-

uration, based on the SOCP relaxation of OPF. We derive a sub-optimality gap of the proposed

algorithm under certain conditions and argue that the gap is usually small for practical networks. We

also demonstrate the effectiveness of our algorithms through simulations on four practical networks.
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Appendix

4.A Proof of Lemma 4.2

We will first show that (p0, f(p0)) ∈ O(Pr). Since O(Pr) = O(P), it is equivalent to prove

(p0, f(p0)) ∈ O(P).

By property of Pareto Front [12], for each point (p0, p0′) ∈ O(Pr) = O(P), there exists a convex

nondecreasing function F ∗ : R2 → R such that (p0, p0′) is an optima for OPF-E . Given any

(p0, p̂0′) ∈ O(P), let F ∗(p0, p0′) be the objective function such that (p0, p̂0′) solves OPF-E . Since

F ∗(p0, p0′) is a nondecreasing function, OPF-E can be written equivalently as

min
p0

F ∗(p0, p0′)

s.t. p0′ = f(p0).

Therefore, at optimality, f(p0) = p̂0′ and (p0, f(p0)) ∈ O(P).

Next, we prove f(p0) is a strictly convex decreasing function of p0.

Lemma 4.5. Let A be a compact and convex set in R2. Define g(x) := y for any (x, y) ∈ O(A).

Then y = g(x) is a convex decreasing function of x for (x, y) ∈ O(A).

Proof. We first show g(x) is a decreasing function and then show g(x) is also convex.

Let (x1, g(x1)) and (x2, g(x2)) be two points in O(A). Without loss of generality, assume x1 > x2.

If g(x1) ≥ g(x2), it violates the fact that (x1, g(x1)) ∈ O(A) and hence g(x1) < g(x2), which means

that g(x) is a decreasing function.

Next, we will show g(·) is convex. Recall that A is a compact set, we have (x1, g(x1)), (x2, g(x2)) ∈

O(A) ⊆ A. A is also a convex set, and thus (x1+x2

2 , g(x1)+g(x2)
2 ) ∈ A. By definition of Pareto front,

g(
x1 + x2

2
) = inf

(
x1+x2

2 ,y)∈A
{y} ≤ g(x1) + g(x2)

2
,

which shows g(x) is a convex function.

Since Xc(E) is convex and compact by A5, its projection on a two dimensional space Pr is also

compact and convex. Note that (p0, f(p0)) ∈ O(Pc) by part 1) of Lemma 4.2, we have part 2).
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4.B Proof of Theorem 4.3

For the line network in Fig. 4.2, denote ê = (k̂, k̂ + 1) (Line 4 in Algorithm 1). Without loss of

generality, assume Pk̂,k̂+1 > 0 and we need to show that e∗ is the optimal line to open for OFR, i.e.

either (k̂, k̂ + 1) or (k̂ + 1, k̂ + 2) will be opened for the optimal solution.

Based on Theorem 4.1, there exists a unique solution x∗ for any OPF problems with convex

nondecreasing objective function. Therefore there is also a unique solution x∗ to OPF-Es for any

feasible real power injection p0 at substation 0. In other words, x∗ is a function of p0 and let

x(p0) := (s∗, S∗) represents the solution to OPF-Es with real power injection p0 at substation 0.

We skip v and ` in x since vi is fixed by A2 and `k,k+1 is uniquely determined by Sk,k+1 according

to (3.2c). By Maximum theorem, x(p0) is a continuous function of p0.

Lemma 4.6. Suppose A2-A6 hold. Then Pk,k+1(p0) is an increasing function of p0 for all (k, k+1) ∈

E.

Proof. See Appendix 4.C for the proof.

Since Pk,k+1(p0) is an increasing and continuous function of p0, there exists a unique p0 to

Pk,k+1(p0) = 0 and denote p0(k) := P−1
k,k+1(0), i.e. Pk,k+1(p0(k)) = 0.

Lemma 4.7. Suppose A1-A6 hold. Then p0(k) < p0(k + 1) for 0 ≤ k ≤ n.

Proof. By A1 (pi < 0 for i ∈ Nl) and (3.2b), we have for 0 ≤ k < n,

Pk,k+1(p0) = Pk+1,k+2(p0)− pk+1 > Pk+1,k+2(p0),

which means

0 = Pk,k+1(p0(k)) > Pk+1,k+2(p0(k)).

By Lemma 4.6, Pk+1,k+2(p0) is a increasing function of p0, hence p0(k) < p0(k + 1).

Recall that (pk0 , p
k+1
0′ ) is the minimal real power injection for subtrees Gk0 and Gk+1

0′ , respectively.

Our next result shows that (pk0 , p
k+1
0′ ) = (p0(k), f(p0(k))).

Lemma 4.8. Suppose A2–A6 hold, then

(pk0 , p
k+1
0′ ) = (p0(k), f(p0(k))) (k, k + 1) ∈ E .
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Proof. By definition, Pk,k+1(p0(k)) = 0. Then, we have

2xk,k+1Qk,k+1(p0(k)) = `k,k+1(p0(k))|zk,k+1|2

`k,k+1(p0(k)) =
Q2
k,k+1(p0(k))

vk

if vk = vk+1 based on (3.2b) and (3.2c). Solving the above two equations gives Qk,k+1(p0(k)) = 0.

Therefore, p0(k) is a feasible power injection for subtree Gk0 and it means pk0 ≤ p0(k). Next, we

will show that p0(k) is the smallest possible power injection for Gk0 . Suppose we have pk0 < p0(k),

then (pk0 , f(p0(k))) is a feasible power injection for network G with pk0 < p0(k). It contradicts

(p0(k), f(p0(k))) ∈ O(P) (Lemma 4.2). Therefore we have pk0 = p0(k) and pk+1
0′ = f(p0(k)).

By Lemma 4.2, (p0(k), f(p0(k))) ∈ O(P). Then Lemma 4.8 means the minimal power injection

for each partition of graph G locates exactly on the Pareto front of the feasible power injection region

of OPF-E . Therefore the OFR problem (4.8) is equivalent to the following problem:

min
0≤k≤n

F (pk0 , p
k+1
0′ ) = min

0≤k≤n
F (p0(k), f(p0(k))), (4.12)

whose minimizer is denoted by k∗.

On the other hand, by (4.10), OPF-E can be rewritten as

min
p0

F (p0, f(p0)),

whose unique minimizer is denoted by p∗0.

Lemma 4.9. Suppose A1-A6 and Pk̂,k̂+1(p∗0) > 0 hold. Then,

p0(k̂) ≤ p∗0 ≤ p0(k̂ + 1).

Proof. By our assumption at the beginning of the proof, Pk̂,k̂+1(p∗0) > 0, which implies that p0(k̂) ≤

p∗0. since Pk̂,k̂+1(p0) is a increasing function of p0 based on Lemma 4.6. On the other hand, by A1

Pk̂,k̂+1(p∗0) = Pk̂+1,k̂+2(p∗0)− pk̂+1(p∗0) > Pk̂+1,k̂+2(p∗0),

implying that Pk̂+1,k̂+2(p∗0) < 0. Otherwise |Pk̂,k̂+1(p∗0)| > |Pk̂+1,k̂+2(p∗0)|, contradicting that (k̂, k̂+

1) = arg mine{|P ∗e (E)|}. Therefore, p∗0 ≤ p0(k̂+ 1) since Pk̂+1,k̂+2(p0) is an increasing function of p0

by Lemma 4.6.
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Considering Lemma 4.7 and 4.9, we have

p0(k) ≤ p∗0 k ≤ k̂

p0(k) > p∗0 k > k̂.

Since F (p0, f(p0)) is a convex function with minimizer p∗0, we have for k1 ≤ k2 ≤ k̂

F (p0(k1), f(p0(k1))) ≥ F (p0(k2), f(p0(k2))) ≥ F (p∗0, f(p∗0)).

For k1 ≥ k2 ≥ k̂,

F (p0(k1), f(p0(k1))) ≤ F (p0(k2), f(p0(k2))) ≤ F (p∗0, f(p∗0)),

which indicates the OFR problem (4.12) can be reduced to

min
0≤k≤n

F (p0(k), f(p0(k))) = min
k=k̂,k̂+1

F (p0(k), f(p0(k))),

which is solved in line 6 of Algorithm 1. Hence Algorithm 1 solves the optimal solution to OFR.

4.C Proof of Lemma 4.6

For a line (k, k + 1) between two buses k and k + 1 with fixed voltage magnitude, (Sk,k+1, `k,k+1)

are governed by (3.2b)-(3.2c) and Qk,k+1, `k,k+1 can be united solved given a Pk,k+1 if A3 holds.

Denote

φ(Pk,k+1) := −Pk,k+1 = Pk,k+1 − `k,k+1rk,k+1

and we have the following result.

Lemma 4.10. Suppose A2 and A3 hold, φ(Pk,k+1) is a concave increasing function of Pk,k+1 for

(k, k + 1) ∈ E.

Proof. By (3.2c), we have `k,k+1 = (P 2
k,k+1 +Q2

k,k+1)/vi and substitute it in φ(Pk,k+1), we have

φ(Pk,k+1) = Pk,k+1 −
rk,k+1

vi

(
P 2
k,k+1 +Q2

k,k+1

)
.

The relation between Pk,k+1 and Qk,k+1 is governed by (3.2b). Let θk,k+1 := θi−θj and then Pk,k+1
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and Qk,k+1 can be written as

Pk,k+1 =
virk,k+1

|zk,k+1|2
+

√
vivj
|zk,k+1|2

sin(θk,k+1 − βk,k+1)

Qk,k+1 =
vixk,k+1

|zk,k+1|2
−
√

vivj
|zk,k+1|2

cos(θk,k+1 − βk,k+1),

where βk,k+1 := arctan rk,k+1/xk,k+1. Substitute them into φ(Pk,k+1), we obtain

φ(Pk,k+1) = − vjrk,k+1

|zk,k+1|2
+

√
vivj
|zk,k+1|2

sin(θk,k+1 + βk,k+1).

Take derivative of φ(Pk,k+1) with respect to Pk,k+1, we have

dφ(Pk,k+1)

dPk,k+1
=

cos(θk,k+1 + βk,k+1)

cos(θk,k+1 − βk,k+1)
.

which is always positive by assumption A3 that |θk,k+1| < arctanxk,k+1/rk,k+1. Furthermore,

d2φ(Pk,k+1)

dP 2
k,k+1

= −

√
|zk,k+1|2
vivj

sin 2βk,k+1

cos3(θk,k+1 − βk,k+1)
,

which is always negative by assumption A3 that |θk,k+1| < arctanxk,k+1/rk,k+1. Thus, φ(Pk,k+1) is

a concave increasing function of Pk,k+1.

Lemma 4.10 means that if the one end of the line increases its real power injection on the line,

the other end should receive more real power under assumption A2 and A3. We now show that

Pk,k+1(p0) is a nondecreasing function of p0 for all (k, k + 1) ∈ E .

Suppose Pk,k+1(p0) is not a nondecreasing function of p0 at p∗0 for a line (k, k + 1) ∈ E , then

either C1 or C2 below will hold for arbitrary small ε > 0,

C1: ∃p0 ∈ (p0, p
∗
0 + ε) such that Pk,k+1(p0) < Pk,k+1(p∗0).

C2: ∃p0 ∈ (p0 − ε, p∗0) such that Pk,k+1(p0) > Pk,k+1(p∗0).

We will show by contradiction that (p∗0, f(p∗0)) 6∈ O(P) in this case, which violates Lemma 4.2.

Assume without loss of generality that Pi,i+1(p0) is a nondecreasing function of p0 for 0 ≤ i < k.

Case I: qk(p∗0) > q
k
. Suppose C1 holds, then there exists a monotone decreasing sequence p

(m)
0 ↓ p∗0

such that {Pk,k+1(p
(m)
0 ),m ∈ N} is a monotone increasing sequence that converges to Pk,k+1(p∗0)
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because x(p0) is continuous over p0. By power balance equation (3.2b) at bus k, for any m, we have

pk(p
(m)
0 ;G) = Pk,k+1(p

(m)
0 )− φ(Pk−1,k(p

(m)
0 ))

< Pk,k+1(p
(m+1)
0 )− φ(Pk−1,k(p

(m+1)
0 ))

= pk(p
(m+1)
0 ).

Thus {pk(p
(m)
0 ), n ∈ N} is a monotone increasing sequence that converges to pk(p∗0). We now

construct a point x̃ = (P̃ , Q̃, p̃, q̃) as follows. First, pick up (P̃k,k+1, Q̃k,k+1, p̃k, q̃k) such that p̃k ∈

{pk(p
(m)
0 ;G),m ∈ N}, q̃k ∈ (q

k
, qk(p∗0)) and they satisfy the following equations:

P̃k,k+1 =Pk,k+1(p∗0)− pk(p∗0) + p̃k (4.13a)

Q̃k,k+1 =Qk,k+1(p∗0)− qk(p∗0) + q̃k (4.13b)

vk+1 =vk − 2(rk,k+1P̃k,k+1 + xk,k+1Q̃k,k+1) +
P̃ 2
k,k+1 + Q̃2

k,k+1

vk
|zk,k+1|2. (4.13c)

The existence of (P̃k,k+1, Q̃k,k+1, p̃k, q̃k) is guaranteed by the following two facts:

• pk(p
(m)
0 ) is a monotone increasing sequence that converges to pk(p∗0).

• q̃k is a continuous decreasing function of p̃k if they satisfy (4.13).

Since P̃k,k+1 ∈ [Pk,k+1(p
(1)
0 ), Pk,k+1(p∗0)] and x(p0) are continuous over p0, then there exists a p′0 ∈

[p∗0, p
(1)
0 ] such that Sk,k+1(p′0) = S̃k,k+1.

Next, we will construct the feasible physical variable for i 6= k. For 0 ≤ i < k, let s̃i = si(p
∗
0) and

S̃i,i+1 = Si,i+1(p∗0). For k < i ≤ n, let s̃i = si(p
′
0) and S̃i,i+1 = Si,i+1(p′0). Clearly that x̃ ∈ X(E)

with (p∗0, f(p′0)) as the real power injection at substation 0 and 0′. However, f(p′0) < f(p∗0), which

contradicts (p∗0, f(p∗0)) ∈ O(P).

Case II: qk(p∗0) < qk. Similar approach can be used to show C2 does not hold by contradiction.

So far, we have shown that Pk,k+1(p0) is non-decreasing either on its left or right neighborhood.

Thus Pk,k+1(p0) is non-decreasing of p0 if q
k
< qk because P (p0) is a continuous function of p0. The

case where q
k

= qk can be covered by taking limitation of the case of q
k
< qk.

4.D Proof of Theorem 4.4

Lemma 4.11. Suppose A2+ and A3-A6 hold. Given a solution x(p0) to OPF-Es, Pk,k+1(p0) is a

concave increasing function of p0 for all (k, k + 1) ∈ E.

Proof. It is shown that Pk,k+1(p0) is a nondecreasing function of p0 in Lemma 4.6. We now show

it is also a concave function of p0. Let G1 = (N1, E1), where N1 = {i | 0 ≤ i ≤ k + 1} and
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E1 = {(i, i+ 1) | 1 ≤ i ≤ k}. All the physical constraints are the same as G except the bus injection

power sk+1 at node k + 1, which is relaxed to be a free variable. Mathematically, it means

`i,i+1(G1) = `i,i+1(G) i ≤ k

si(G1) = si(G) i ≤ k and sk+1(G1) =∞

si(G1) = si(G) i ≤ k and sk+1(G1) = −∞.

Consider the following OPF problem:

OPF-Gs1: min
x∈X(G1)

pk+1 s.t. p0 is a fixed.

Let pk+1(p0;G1) be the optimal value for OPF-Gs1 and Pk,k+1(p0;G1) be the real branch power flow

across line (k, k + 1), respectively.

Next, we will show Pk,k+1(p∗0) = Pk,k+1(p∗0;G1). Clearly that Pk,k+1(p∗0) ≤ Pk,k+1(p∗0;G1). Oth-

erwise, by Lemma 4.10, we have

−pk+1(p∗0;G1) = φ(Pk,k+1(p∗0;G1)) < φ(Pk,k+1(p∗0)),

which contradicts that pk+1(p∗0;G1) is optimal for OPF-Gs1. Thus, it suffices to show Pk,k+1(p∗0) <

Pk,k+1(p∗0;G1) does not hold. Suppose Pk,k+1(p∗0) < Pk,k+1(p∗0;G1) holds. By Lemma 4.6, Pk,k+1(p0)

is a nondecreasing function of p0, and thus there exists a p̂0 > p∗0 such that

Pk,k+1(p̂0) ∈ [Pk,k+1(p∗0), Pk,k+1(p∗0;G1)].

Recall that Xr(E), which is the set of feasible solutions after the SOCP relaxation, is convex and is

connected, there exists a x ∈ Xr(E) with Pk,k+1 = Pk,k+1(p̂0) but p0 = p∗0. It means (p∗0, f(p̂0)) is

also feasible for OPF-E , which contradicts that (p̂0, f(p̂0)) ∈ O(P).

Now we have Pk,k+1(p∗0) = Pk,k+1(p∗0;G1). Since the convex relaxation is exact, pk+1(p0;G1) is a

convex decreasing function of p0 by Lemma 4.2. In addition,

φ(Pk,k+1(p0)) = φ(Pk,k+1(p0;G1)) = −pk+1(p0,G1),

where φ(·) is a continuous increasing function, and thus is invertible. Thus, we have Pk,k+1(p0) =

φ−1(−pk+1(p0,G1)), which means Pk,k+1(p0) is a concave function of p0.

Let pf0 (k) be the solution to Pk,k+1(p0;G) = 0 and pb0(k) be the solution to Pk+1,k(p0;G) = 0.

The uniqueness of pf0 (k) and pb0(k) can be shown in a similar manner as the uniqueness of p0(k) in

the proof of Theorem 4.3. When the voltage magnitude of each bus is the same, pf0 (k) = pb0(k) and
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they degenerate to p0(k).

Lemma 4.12. Suppose A1,A2+,A3,A4 hold. For any (k, k + 1) ∈ E, pk0 = pf0 (k) and pk+1
0′ =

f(pb0(k)).

Proof. It suffices to show pf0 (k) is optimal for Gk0 due to symmetry. First, we show pf0 (k) is feasible

for Gk0 . Given a solution x(pf0 (k)) to OPF-Es, let x̃ := (P̃ , Q̃, p̃, q̃), where

S̃i,i+1 = Si,i+1(pf0 (k)) i < k

s̃i = si(p
f
0 (k)) i < k

p̃k = pk(pf0 (k))

q̃k = qk(pf0 (k))−Qk,k+1(pf0 (k)).

Thus, we have x̃ ∈ X(Gk0 ), which means pf0 (k) is feasible for Gk0 . Next, we will show pf0 (k) is the

minimal power injection for Gk0 . Suppose p̂0 < pf0 (k) is feasible for Gk0 , then we can construct

a feasible solution x̃ ∈ X(E) and the real power injection at node 0 and 0′ are p̂0 and f(pf0 (k)),

respectively. Therefore it contradicts that (pf0 (k), f(pf0 (k))) ∈ O(P). The construction process is as

follows:

S̃i,i+1 =

Si,i+1(p̂0) i < k

Si,i+1(pf0 (k)) i ≥ k,

s̃i =


si(p̂0) i < k

pk(p̂0) + i(qk(p̂0) +Qk,k+1(pf0 (k))) i = k

si(p
f
0 (k)) i > k

.

It can be verified that x̃ ∈ X(E). Therefore, we show that pf0 (k) is the minimal power injection for

Gk0 .

Lemma 4.13. Suppose A1,A2+,A3,A4 hold. Then we have

pb0(k)− pf0 (k)

pf0 (k + 1)− pb0(k)
≤ 1

Rk
.

Proof. By Lemma 4.11, Pk,k+1(p0) is a concave increasing function with respect to p0. Therefore

−Pk+1,k(p0) = φ(Pk,k+1(p0)) is also a concave increasing function of p0. Recall that−Pk+1,k(pf0 (k)) =



74

−Lk, −Pk+1,k(pb0(k)) = 0 and −Pk+1,k(pf0 (k + 1)) = −pk+1 ≥ −pk+1, and we have

0− (−Lk)

pb0(k)− pf0 (k)
≥

−pk+1 − 0

pf0 (k + 1)− pb0(k)

by definition of a concave function. Rearrange the above inequality, and we obtain

pb0(k)− pf0 (k)

pf0 (k + 1)− pb0(k)
≤ 0− (−Lk)

−pk+1 − 0
:=

1

Rk
.

Lemma 4.14. Let g(x) be a strictly convex decreasing function supported on [a, b] and κg :=

infx∈(a,b) g
′′

++(p0). Define G(x) := c1g(x) + c2x (c1, c2 > 0), which is also strictly convex with a

unique minimizer x∗ on [a, b]. Let a ≤ y1 ≤ · · · ≤ y2n−1 ≤ y2n ≤ b be a partition on [a, b] such that

y2i − y2i−1

y2i+1 − y2i
≤ 1

R
(1 ≤ i ≤ n− 1) (4.14)

for some R > 0. Then there exists a 0 ≤ k ≤ 2n such that yk ≤ x∗ ≤ yk+1, where y0 = a and

y2n+1 = b. Let Gi := c1g(y2i) + c2y2i−1 for 1 ≤ i ≤ n and G∗ := min1≤i≤n {Gi}. Define

GA :=



G1 if k = 0

Gn if k = 2n

G(k−1)/2 if k is odd

min{Gk/2, Gk/2+1} if k 6= 0, 2n and is even

.

Then

G∗ ≤ GA ≤ G∗ + max

{
c21
c2
,
c22
c1

}
2

R2κg
.

Proof. Without loss of generality, assume c1 ≤ c2 and let λ := c2
c1

. The unique minimizer x∗ of

G(x) := c1g(x) + c2x is

x∗ = arg sup
x∈[a,b]

{x | G′+(x) ≤ 0}

= arg sup
x∈[a,b]

{x | g′+(x) ≤ −λ}.
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In addition, let

xl := arg sup
x∈[a,b]

{
x | g′+(x) ≤ −λ(1 +

1

R
)

}
xr := arg inf

x∈[a,b]

{
x | g′+(x) ≥ −λ(1− 1

R
)

}
.

Then we have xl ≤ x∗ ≤ xr because g(x) is strictly convex. Let

t1 := max{i | y2i−1 ≤ x∗}

t2 := min{i | y2i ≥ 2xl − x∗}

t3 := min{i | y2i ≥ x∗}

t4 := max{i | y2i−1 ≤ 2xr − x∗}.

Next, we will prove the result for different k as sequel.

Case I: k = 2n. In this case, we have da = Gn, t1 = n. We need to further divide it into two

categories.

(1.a) [y2t1−1 ≤ xl or y2t1−1 ∈ [xl, x
∗] and t1 = t2].

For any i < t1,

Gi −Gi+1

c0
= λg(y2i) + y2i−1 − g(y2i+2)− λy2i+1

≥ λg(y2i) + y2i−1 − g(y2i+1)− λy2i+1

= λ(y2i−1 − y2i) +G(y2i)−G(y2i+1)

≥ λ

R
(y2i − y2i+1) +G(y2i)−G(y2i+1)

≥ 0. (4.15)

The first inequality follows from g(x) is an increasing function and the second inequality follows

from the assumption (4.14). For the last inequality, if y2t1−1 ≤ xl, we have G′+(y2i+1) < −λ/R

for all i < n and the inequality holds according to mean value theorem. If y2t1−1 ∈ [xl, x
∗] and

t1 = t2 = n, the inequality holds for i < n− 1 due to similar reason above. When i = n− 1,

G(y2i)−G(y2i+1) ≥ G′+(xl)(y2i − y2i+1) ≥ − λ
R (y2i − y2i+1)

because y2n−2 ≤ 2xl − x∗ by definition of t2 and G(x) is convex. (4.15) means the sequence {Gi} is

of descending order and G∗ = Gn = GA, and thus G∗ −GA = 0.

(1.b) [y2t1−1 ∈ [xl, x
∗] and t2 < t1].
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In this case, y2i+1 − y2i ≤ 2(x∗ − xl) for t2 ≤ i < t1. Denote

δyi := y2i − y2i−1 ≤
y2i+1 − y2i

R
≤ 2(x∗ − xl)

R
(4.16)

for t2 ≤ i < t1. Note that the curvature of g(x) is bounded below by κg, and that x∗−xl ≤ λ/(Rκg).

Substitute it into (4.16), and we have for t2 ≤ i < t1

δyi ≤
2λ

R2κg
. (4.17)

Then for t2 ≤ i < t1,

Gi −Gt1 = c1g(y2i) + c2y2i−1 −Gt1

≥ c1g(y2i) + c2y2i−1 −G(y2t1−1)

= −c2δyi +G(y2i)−G(y2t1−1)

≥ − 2c22
c1R2κg

.

Clearly the first inequality holds. The second inequality follows from (4.17) and G(x) is monotone

decreasing for x ≤ x∗.

For i ≤ t2, Gi > Gt1 can be shown in a similar manner as (1.a). Thus, we have Gi−Gn ≥ − 2c22
c1R2κg

for any i ≤ n, which indicates GA −G∗ ≤ − 2c22
c1R2κg

.

Case II: k = 0. In this case, GA = G1 and the bound can be established in a similar manner as Case

I.

Case III: k is odd. In this case, GA = G(k−1)/2, t1 = t3 = (k − 1)/2. A similar approach can be

applied as Case I and Case II to show

Gi ≥

G(y2t1−1)− 2c22
c1R2κg

if i ≤ t1

G(y2t3)− 2c22
c1R2κg

if i ≥ t3.

And GA = G(k−1)/2 ≤ max{G(y2t1−1), G(y2t3)} ≤ Gi +
2c22

c1R2κg
for 1 ≤ i ≤ n.

Case IV: k 6= 0 and is even. In this case, GA = min{Gk/2, Gk/2+1} and t1 = k/2, t3 = k/2 + 1. A

similar approach can be applied as Case I and Case II to show

Gi ≥

Gt1 −
2c22

c1R2κg
if i ≤ t1

Gt3 −
2c22

c1R2κg
if i ≥ t3

and we arrive at our conclusion.
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Consider the sequence pf0 (0) ≤ pb0(0) ≤ . . . ≤ pf0 (n) ≤ pb0(n) as the partition on Ip0
and f(p0) as

the function g(x) in Lemma 4.14, and we can prove Theorem 4.4.
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Chapter 5

Alternating Direction Method of
Multipliers (ADMM)

Alternating direction method of multipliers (ADMM) blends the decomposability of dual decompo-

sition with the superior convergence properties of the method of multipliers [11]. It is well suited to

distributed convex optimization, and in particular to large-scale problems arising in statistics and

machine learning. In this chapter, we first review some background knowledge of ADMM. Then we

show how to develop efficient centralized and distributed algorithms for a broad class of optimization

problem based on ADMM. The proposed approach is applied in the design of efficient algorithms

that solve the OPF problem on balanced networks in Chapter 6 and unbalanced networks in Chapter

7.

5.1 Background on ADMM

Consider the following optimization problem1:

min f(x) + g(y)

over x, y ∈ Cm×n (5.1)

s.t. x ∈ Kx, y ∈ Ky

x = y,

where f(x), g(y) are convex functions and Kx,Ky are convex sets. Let λ denote the Lagrange

multiplier for the constraint x = y. Then the augmented Lagrangian is defined as

Lρ(x, y, λ) := f(x) + g(y) + 〈λ, x− y〉+
ρ

2
‖x− y‖22, (5.2)

1This is a simplified version of the general ADMM introduced in [11]. The general problem allows a linear constraint
Ax+By = c between x and y instead of x = y. The z variable used in [11] is replaced by y since z represents impedance
in power system.
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where ρ ≥ 0 is a constant. When ρ = 0, the augmented Lagrangian degenerates to the standard

Lagrangian. At each iteration k, ADMM consists of the iterations:

xk+1 ∈ arg min
x∈Kx

Lρ(x, y
k, λk) (5.3a)

yk+1 ∈ arg min
z∈Ky

Lρ(x
k+1, y, λk) (5.3b)

λk+1 = λk + ρ(xk+1 − yk+1). (5.3c)

Specifically, at each iteration, ADMM first updates x based on (5.3a), then updates y based on

(5.3b), and after that updates the multiplier λ based on (5.3c). Compared to dual decomposition,

ADMM is guaranteed to converge to an optimal solution under less restrictive conditions. Let

rk := ‖xk − yk‖2 (5.4a)

sk := ρ‖yk − yk−1‖2, (5.4b)

which can be viewed as the residuals for primal and dual feasibility, respectively. They converge to

0 at optimality and are usually used as metrics of convergence. Assume:

• A1: f and g are closed proper and convex.

• A2: The unaugmented Lagrangian L0 has a saddle point.

The correctness of ADMM is guaranteed by the following result; see [11, Chapter 3].

Proposition 5.1 ( [11]). Suppose A1 and A2 hold. Let p∗ be the optimal objective value. Then

lim
k→∞

rk = 0, lim
k→∞

sk = 0,

and

lim
k→∞

f(xk) + g(yk) = p∗.

To better leverage ADMM, we generalize the above standard ADMM as below. Instead of using

the quadratic penalty term ρ
2‖x − y‖

2
2 in (5.2), we will use a more general quadratic penalty term,

1
2 (x−y)HΛ(x−y), where Λ is a positive diagonal matrix. Then the augmented Lagrangian becomes

LΛ(x, y, λ) := f(x) + g(y) + 〈λ, x− y〉+
1

2
(x− y)HΛ(x− y). (5.5)

The convergence result in Proposition 5.1 carries over directly to this general case.

ADMM has broad applicability in different areas, e.g. matrix factorization [83], image recovery

[1]. It is particularly useful when the subproblems can be solved efficiently [34], for example when
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the subproblems in the x-update (5.3a) and the y-update (5.3b) admit closed form expressions. In

the following analysis, we show how to develop efficient algorithms for a broad class of optimization

problem through ADMM.

5.2 Algorithm Design using ADMM

There are various generic optimization solvers for convex programs, e.g. Gurobi [69] and MOSEK

[68], etc.. Most of them employ general purpose algorithms, such as interior point method [64],

and do not leverage the special problem structures, which are conducive to improving the compu-

tation efficiency. In this section, we will apply ADMM to develop both centralized and distributed

algorithms that can efficiently solve a broad class of problem defined in (5.6).

Consider the following optimization problem:

min
∑
i∈N

fi(xi) (5.6a)

over {xi | i ∈ N} (5.6b)

s.t.
∑
j∈Ni

Aijxj = 0 for i ∈ N (5.6c)

xi ∈ Ki for i ∈ N , (5.6d)

where for each i ∈ N , xi is a complex vector, fi(xi) is a convex function, Ki is a convex set, and Aij

(j ∈ Ni, i ∈ N ) are full row rank matrices with appropriate dimensions. A broad class of graphical

optimization problems (including ROPF) can be formulated as (5.6). Each node i ∈ N is associated

with some local variables stacked as xi, which belongs to a local feasible set Ki and has a cost

objective function fi(xi). Variables in node i are coupled with variables from their neighbor nodes

in Ni through linear constraints (5.6c). The goal is to minimize the total cost across all nodes.

5.2.1 Centralized Algorithm

In this subsection, we develop a computationally efficient centralized algorithm that solves the

problem in (5.6). We introduce a set of variables yi for i ∈ N , which represents a “duplicate” of the
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original variable xi, and then (5.6) can be reformulated as

min
∑
i∈N

fi(xi) (5.7a)

over x = {xi | i ∈ N}

y = {yi | i ∈ N}

s.t.
∑
j∈Ni

Aijyj = 0 for i ∈ N (5.7b)

xi ∈ Ki for i ∈ N (5.7c)

xi = yi for i ∈ N , (5.7d)

where x and y represent the two groups of variables in standard ADMM. The consensus constraint

(5.7d) ensures that each duplicate yi equals the original variable xi, and thus the solution x∗ to (5.7)

is also optimal to the original problem (5.6).

The problem (5.7) falls into the standard form of ADMM, where (5.7b) and (5.7c) correspond

to Ky and Kx, respectively. The key feature of (5.7) that makes it potentially easier to solve than

(5.6) is that xi are decoupled into local costs fi(xi) and local constraints (5.7c), and that, taking

the entire vector y = {yi, i ∈ N} as a single local variable, (5.7b) is a local constraint. Moreover,

the cost function does not contain y and, as we will see below, this allows a closed form solution

for the subproblem that updated the y variable. Then the only coupling constraint is the consensus

constraint (5.7d), one for each i. This is not only simpler and more local than the constraint (5.6c),

more importantly, it decouples variables xi and xj . This allows the x-update step to be completely

local to each i (see (5.12) below).

Loosely speaking, the optimization subproblems ((5.3a) and (5.3b)) are potentially easy to solve

because the constraints (5.7b) and (5.7c) are distributed into different optimization subproblems.

Following the standard ADMM procedure, we will relax the consensus constraint (5.7d), whose

Lagrangian multiplier is denoted by λi for i ∈ N . Then the augmented Lagrangian for (5.7) can be

written as

Lρ(x, y, λ) =
∑
i∈N

(
fi(xi) + 〈λi, xi − yi〉+

ρ

2
‖xi − yi‖22

)
. (5.8)

In the x-update (5.3a) at each iteration k, we solve the following optimization problem to update

xk+1:

min
x∈Kx

Lρ(x, y
k, λk), (5.9)



82

where Kx is the Cartesian product of each local constraint Ki, i.e.

Kx = ⊗i∈NKi.

For the objective, it can be written as a sum of local objective as shown below

Lρ(x, y
k, λk) =

∑
i∈N

(
fi(xi) + 〈λki , xi − yki 〉+

ρ

2
‖xi − yki ‖22

)
=

∑
i∈N

Hi(xi)−
∑
i∈N
〈λki , yki 〉,

where the last term
∑
i∈N 〈λki , yki 〉 is independent of the decision variable x and

Hi(xi) := fi(xi) + 〈λki , xi〉+
ρ

2
‖xi − yki ‖22. (5.10)

Then the problem (5.9) can be written explicitly as

min
∑
i∈N

Hi(xi)

over x = {xi | i ∈ N} (5.11)

s.t. xi ∈ Ki for i ∈ N ,

whose objective and constraint are both separable, and hence can be decomposed into |N | indepen-

dent problems that can be solved in parallel for each node i ∈ N . The associated problem for node

i is

min
xi∈Ki

Hi(xi). (5.12)

Whether (5.12) can be solved efficiently depends on the form of fi(xi) in the objective Hi(xi) and

the constraint set Ki. For the ROPF problem on balanced radial distribution networks, we show in

Chapter 6 the corresponding (5.12) can be solved with closed form solution.

Next, we investigate the subproblem solved in the y-update (5.3b). At iteration k, the variable

yk+1 is updated according to (5.3b):

min
y∈Ky

Lρ(x
k+1, y, λk). (5.13)
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For the objective, it can be written as

Lρ(x
k+1, y, λk) =

∑
i∈N

(
fi(x

k+1
i ) + 〈λki , xk+1

i − yi〉+
ρ

2
‖xk+1

i − yi‖22
)

=
∑
i∈N

Gi(yi) +
∑
i∈N

(
fi(x

k+1
i ) + 〈λki , xk+1

i 〉
)
,

where the last term
∑
i∈N

(
fi(x

k+1
i ) + 〈λki , x

k+1
i 〉

)
is independent of yi and

Gi(yi) := −〈λki , yi〉+
ρ

2
‖xk+1

i − yi‖22.

The constraint Ky can be written explicitly as

Ky =

y | ∑
j∈Ni

Aijyj = 0 for i ∈ N

 .

Then the subproblem solved in the y-update can be explicitly written as

min
∑
i∈N

Gi(yi)

over y = {yi | i ∈ N} (5.14)

s.t.
∑
j∈Ni

Aijyj = 0 for i ∈ N .

To solve (5.14) in closed form, we can stack the real and imaginary part of the variables y = {yi |

i ∈ N} in a vector with appropriate dimensions and denote it as ỹ. Then (5.14) takes the following

form:

min
1

2
ỹTMỹ + cT ỹ

over ỹ (5.15)

s.t. Ãỹ = 0,

where M is a positive diagonal matrix, Ã is a full row rank real matrix since Aij has full row rank,

and c is a real vector. M, c,A are derived from (5.14). There exists a closed form solution for (5.15)

given by

ỹ =
(
M−1ÃT (ÃM−1ÃT )−1ÃM−1 −M−1

)
c. (5.16)

which can be obtained by the KKT conditions of (5.15).

In summary, the original problem (5.7) is decomposed into two subproblems that can be solved
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using ADMM. At each iteration, we solve (5.12) in the x-update and (5.14) in the y-update. Since

there exists a closed form solution (5.16) to (5.14), whether (5.7) can be solved efficiently depends

on the existence of an efficient solver for (5.12).

In Chapter 6, we show that the corresponding (5.12) admits a closed form solution for the ROPF

problem on balanced radial distribution networks. However, for unbalanced radial distribution

networks, the corresponding (5.12) does not admit any efficient solution. In the following, we will

investigate how to further reformulate (5.7) such that all the subproblems can be solved efficiently

for unbalanced networks as well.

For i ∈ N , let Kir (0 ≤ r ≤ Ri) for some integer Ri ≥ 0 denote a superset of Ki and

∩Rir=0Kir = Ki.

Then (5.6) can be reformulated as

min
∑
i∈N

fi(xi0) (5.17a)

over x = {xir | 0 ≤ r ≤ Ri, i ∈ N}

y = {yi | i ∈ N}

s.t.
∑
j∈Ni

Aijyj = 0 for i ∈ N (5.17b)

xir ∈ Kir for 0 ≤ r ≤ Ri i ∈ N (5.17c)

xir = yi for 0 ≤ r ≤ Ri i ∈ N . (5.17d)

In contrast to (5.7), where there is one copy xi for each node i ∈ N , there are multiple copies xir in

the x-update for each node i ∈ N . Likewise, we apply ADMM and relax the consensus constraint

(5.17d), whose Lagrangian multiplier is denoted by λir for 0 ≤ r ≤ Ri and i ∈ N . Then the

augmented Lagrangian for (5.17) can be written as

Lρ(x, y, λ) =
∑
i∈N

(
fi(xi0) +

Ri∑
r=0

(
〈λir, xir − yi〉+

ρ

2
‖xir − yi‖22

))
. (5.18)

In the x-update, the optimization subproblem that updates xk+1 is

min
x∈Kx

Lρ(x, y
k, λk). (5.19)
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For the objective, it can be written as a sum of local objective as shown below:

Lρ(x, y
k, λk) =

∑
i∈N

(
fi(xi0) +

Ri∑
r=0

(
〈λkir, xir − yki 〉+

ρ

2
‖xir − yki ‖22

))

=
∑
i∈N

Ri∑
r=0

Hir(xir)−
∑
i∈N

Ri∑
r=0

〈λkir, yki 〉,

where

Hir(xir) = fi(xi0)1{r=0} + 〈λkir, xir〉+
ρ

2
‖xir − yki ‖22.

For the constraint set Kx, it can be represented as a Cartesian product of
∑
i∈N (Ri + 1) disjoint

sets, i.e.

Kx = ⊗i∈N ⊗Rir=0 Kir.

Thus, the x-update can be decomposed into
∑
i∈N (Ri + 1) subproblems and there are Ri + 1

subproblems associated with node i. The rth (0 ≤ r ≤ Ri) problem for node i is

min
xir∈Kir

Hir(xir). (5.20)

(5.20) is structurally simpler than (5.12) due to the simpler constraint. However, whether (5.20)

admits an efficient solution relies on both the partition and the form of Ki. In Chapter 6, we show

that a single partition (Ri = 0) suffices for solving OPF efficiently in balanced networks, i.e. (5.7)

can be used directly. In Chapter 7, we show that two partitions (Ri = 1) are required in order to

have a computationally efficient algorithm for the ROPF problem on unbalanced radial distribution

networks.

In the y-update, the optimization problem that updates yk+1 is

min
y∈Ky

Lρ(x
k+1, y, λk), (5.21)

which has similar structure as (5.13) and can be written explicitly as below.

min
∑
i∈N

Gi(yi)

over y = {yi | i ∈ N} (5.22)

s.t.
∑
j∈Ni

Aijyj = 0 for i ∈ N ,
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where

Gi(yi) =

Ri∑
r=0

(
−〈λkir, yi〉+

ρ

2
‖xk+1

ir − yi‖22
)
.

(5.22) still takes the form of (5.15) and admits a closed form solution (5.16).

5.2.2 Distributed Algorithm

In section 5.2.1, we show how to develop an efficient solution using ADMM that solves (5.6) in

a centralized manner. In this section, we further leverage ADMM to develop a computationally

efficient distributed algorithm.

Recall that the original optimization problem (5.6) can be mapped onto a graph G(N , E). Then

a distributed algorithm satisfies the following two properties:

• Computation is local to each node i ∈ N such that all the nodes in N can solve their own

problems in parallel.

• Communication is only required among neighbors on the graph G.

For the centralized algorithms that solve (5.17), the problem in the x-update (5.19) can be decom-

posed into |N | subproblems, i.e. the subproblems (5.20) are local to each node i. However, the

problems solved in the y-update (5.22) involve variables from all the nodes in N . In this subsection,

we will further reformulate (5.17) such that the subproblems in the y-update can also be decomposed

into local subproblems, which can be solved in parallel.

Note that the coupling among nodes is due to (5.17b) in (5.17). To decouple the constraint

(5.17b), we introduce another set of slack variables yji, which represents the variables of node j

observed at node i for j ∈ Ni, i ∈ N . Then (5.17) can be further reformulated as

min
∑
i∈N

fi(xi0) (5.23a)

over x = {xir | 0 ≤ r ≤ Ri, i ∈ N}

y = {yji | j ∈ Ni, i ∈ N}

s.t.
∑
j∈Ni

Aijyji = 0 for i ∈ N (5.23b)

xir ∈ Kir for 0 ≤ r ≤ Ri i ∈ N (5.23c)

xir = yii for 1 ≤ r ≤ Ri i ∈ N (5.23d)

xi0 = yij for j ∈ Ni i ∈ N . (5.23e)

The constraints that involve both x and y in (5.23) are the two sets of consensus constraints (5.23d)

and (5.23e). Therefore, we relax both constraints, whose Lagrangian multipliers are denoted by λir
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and µij , respectively. The augmented Lagrangian then can be written as

Lρ(x, y, λ, µ) (5.24)

=
∑
i∈N

fi(xi0) +

Ri∑
r=1

(
〈λir, xir − yii〉+

ρ

2
‖xir − yii‖22

)
+
∑
j∈Ni

(
〈µij , xi0 − yij〉+

ρ

2
‖xi0 − yij‖22

) .

Next, we show that both the x-update (5.3a) and y-update (5.3b) can be decomposed into local

subproblems that can be solved in parallel by each node i with only neighborhood communications,

i.e. the problem (5.23) can be solved in a distributed manner using ADMM.

For each node i ∈ N , it updates not only its own duplicates xir and the associated multiplier λir

for 0 ≤ r ≤ Ri, but also the “observation” of variables yji from its neighbor Ni and the associated

multiplier µji. Let Ai denote the set of local variables for node i and

Ai := {xir, λir | 0 ≤ r ≤ Ri} ∪ {yji, µji | j ∈ Ni}. (5.25)

In the x-update, the optimization subproblem that updates xk+1 is

min
x∈Kx

Lρ(x, y
k, λk), (5.26)

which has similar structure as (5.19) and there are Ri + 1 subproblems associated with each node i.

The rth subproblem is

min
xir∈Kir

Hir(xir), (5.27)

where

Hir(xir) =

fi(xi0) +
∑
j∈Ni

(
〈µkij , xi0〉+ ρ

2‖xi0 − y
k
ij‖22

)
if r = 0

〈λkir, xir〉+ ρ
2‖xir − y

k
ii‖22 otherwise

. (5.28)

In (5.27), the variables ykij , µ
k
ij ∈ Aj are stored in i’s neighbor Ni. Thus, each node i needs to collect

(ykij , µ
k
ij) from all of its neighbors prior to solving (5.27). The message exchanges in the x-update is

illustrated in Fig. 5.1a.

In the y-update, we solve the following problem to update yk+1:

min
y∈Ky

Lρ(x
k+1, y, λk), (5.29)
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(a) Before x update. (b) Before y update.

Figure 5.1: Message passing for a node i.

whose objective can be written as a sum of local objective as shown below.

Lρ(x
k+1, y, λk+1)

=
∑
i∈N

fi(xk+1
i0 ) +

Ri∑
r=1

(
〈λkir, xk+1

ir − yii〉+
ρ

2
‖xk+1

ir − yii‖22
)

+
∑
j∈Ni

(
〈µkij , xk+1

i0 − yij〉+
ρ

2
‖xk+1

i0 − yij‖22
)

=
∑
i∈N

fi(xk+1
i0 ) +

Ri∑
r=1

(
〈λkir, xk+1

ir − yii〉+
ρ

2
‖xk+1

ir − yii‖22
)

+
∑
j∈Ni

(
〈µkji, xk+1

j0 − yji〉+
ρ

2
‖xk+1

j0 − yji‖22
)

=
∑
i∈N

Gi({yji | j ∈ Ni}) +
∑
i∈N

fi(xk+1
i0 ) +

Ri∑
r=0

〈λkir, xk+1
ir 〉+

∑
j∈Ni

〈µkji, xk+1
j0 〉

 ,

where

Gi({yji | j ∈ Ni}) =

Ri∑
r=1

(
−〈λkir, yii〉+

ρ

2
‖xk+1

ir − yii‖22
)

+
∑
j∈Ni

(
−〈µkji, yji〉+

ρ

2
‖xk+1

j0 − yji‖22
)
.

For the constraint set Ky, it can also be represented as a Cartesian product of |N | disjoint sets, i.e.

Ky = ⊗i∈N {yji, j ∈ Ni |
∑
j∈Ni

Aijyji = 0}.

Therefore, the subproblem (5.29) in the y-update can be decomposed into |N | subproblems and the

subproblem for node i is

min Gi({yji | j ∈ Ni})

over {yji | j ∈ Ni} (5.30)

s.t.
∑
j∈Ni

Aijyji = 0,
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which still takes the form of (5.15) and admits a closed form solution (5.16). Note that in order to

solve (5.30), not all the information is available to the node i, e.g. xk+1
j0 (j ∈ Ni) resides in node i’s

neighbor. Thus, before updating {yji | j ∈ Ni}, each node i needs to request those data from its

neighbor and the communication is shown in Fig. 5.1b.

5.3 Applications

In [11], the authors show that many optimization problems, such as `1 regularization problem,

consensus and sharing, distributed model fitting etc. can be cast into the general ADMM form

(5.1). In this section, we show that another two important optimization problems: the optimal

power flow problem and second order cone program, can be recast into the form (5.6). By using the

proposed technique, closed form expression can be derived for subproblems for both the x-update

and y-update. Hence those two problems can be solved more efficiently than using generic iterative

optimization solvers.

5.3.1 Optimal Power Flow

The ROPF problem for both balanced (3.9) and unbalanced (3.17) networks takes the form of (5.6).

Here, we will use ROPF for balanced networks as an example. Note that (3.9) can be written

explicitly as

min
∑
i∈N

fi(si) (5.31a)

over v, s, S, ` (5.31b)

s.t. vj − vi + (zijS
∗
ij + Sijz

∗
ij)− `ij |zij |2 = 0 (i, j) ∈ E (5.31c)∑

k∈Ci

(Ski − `kizki) + si −
∑
j∈Ai

Sij = 0 i ∈ N (5.31d)

|Sij |2 ≤ vi`ij (i, j) ∈ E (5.31e)

si ∈ Ii i ∈ N (5.31f)

vi ≤ vi ≤ vi i ∈ N (5.31g)

Denote xi := (vi, si, {Sij , `ij | j ∈ Ai}), then (5.31c) and (5.31d) correspond to the coupling con-

straints (5.6c). For constraint (5.31e), it can be written equivalently as

⊗(i,j)∈E{vi, Sij , `ij | |Sij |2 ≤ vi`ij}

= ⊗i∈N {vi, {Sij , `ij | j ∈ Ai} | |Sij |2 ≤ vi`ij , j ∈ Ai}.
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Figure 5.1: Graph representation of SOCP.

Thus, (5.31e) together with (5.31f), (5.31g) can be written in the form of (5.6d). The details are

illustrated in Chapter 6.

5.3.2 Second Order Cone Program

Second order cone program (SOCP) is a nonlinear convex problem that minimizes a linear function

over the intersection of second order cones. Various problems can be recast into SOCP, e.g. robust

linear program [9], robust least square [29], etc. In [58], the general SOCP is written as:

min fTx

over x ∈ Rn (5.32)

s.t. ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . , N,

where f ∈ Rn, Ai ∈ Rni−1 × n, bi ∈ Rni−1, ci ∈ Rn, and di ∈ R. Next, we will show how to solve

(5.32) efficiently by casting (5.32) into (5.6).

Denote zi := Aix+ bi and ti := cTi x+di for i = 1, . . . , N , then (5.32) can be written equivalently

as

min fTx (5.33a)

over x ∈ Rn, {zi, ti | i = 1, . . . , N} (5.33b)

s.t. Aix− zi + bi = 0 i = 1, . . . , N (5.33c)

cTi x− ti + di = 0 i = 1, . . . , N (5.33d)

‖zi‖2 ≤ ti i = 1, . . . , N. (5.33e)

which takes the form of (5.6). Specifically, (5.33e) corresponds to the local constraint (5.6d), and

(5.33c)–(5.33d) correspond to the coupling constraint (5.6c).

For brevity, we will only show how to solve (5.33) in a centralized manner using the proposed

method and the distributed version can be derived in a similar manner. (5.33) can be represented
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using the graph in Figure 5.1, where only node 0 is associated with an objective fTx. Following

the procedure in chapter 5.2.1, we introduce a duplicate for x, {zi, ti | i = 1, . . . , N}, denoted by

y, {wi, vi | i = 1, . . . , N}, and (5.33) becomes

min fTx (5.34a)

over x, {zi, ti | i = 1, . . . , N} (5.34b)

y, {wi, vi | i = 1, . . . , N} (5.34c)

s.t. Aix− yi + bi = 0 i = 1, . . . , N (5.34d)

cTi x− ti + di = 0 i = 1, . . . , N (5.34e)

‖wi‖2 ≤ vi, i = 1, . . . , N, (5.34f)

y = x (5.34g)

wi = zi, i = 1, . . . , N (5.34h)

vi = ti, i = 1, . . . , N. (5.34i)

Note that the problem (5.14) in the y-update has a closed form solution and can be solved efficiently.

We show below the problem (5.11) in the x-update also has a closed form solution. Let λ, µi, γi

denote the Lagrangian multiplier associated with (5.34g)–(5.34i), respectively. At each iteration k,

the corresponding problem for node 0 in the x-update is

min
x

ρ

2
‖yk − x‖22 − (λk)Tx,

whose closed form solution x = yk + λk

ρ . For node i = 1, . . . , N , the corresponding problem is

min
ρ

2

(
‖wki − zi‖22 + (tki − vi)2

)
− (µki )Twi − γki vi

over wi, vi (5.35)

s.t. ‖wi‖2 ≤ vi,

which can be written equivalently as

min
vi

F (vi) +
ρ

2
(tki − vi)2 − γki vi, (5.36)

where

F (vi) = min
wi

ρ

2
‖yki − wi‖22 − (µki )Twi (5.37)

s.t. ‖wi‖2 ≤ vi,
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whose solution

F (vi) =

−
‖µki ‖

2
2

2ρ − (µki )T yk+1
i , if vi ≥ ‖µ

k
i

ρ + yki ‖2
ρ
2

(
v2
i + ‖yki ‖22

)
− ‖µki + ρyki ‖2vi, otherwise.

Substitute it into (5.36), and we can obtain the closed form solution to (5.35) as:

(wi, vi) =

(yki +
µki
ρ , t

k
i +

γki
ρ ), if tki +

γki
ρ ≥ ‖

µki
ρ + yki ‖2

1
2

(
tki +

γki
ρ + ‖µ

k
i

ρ + yki ‖2
)
×
(

µki+ρyki
‖µki+ρyki ‖2

, 1
)
, otherwise.

5.4 Conclusion

In this chapter, we first review the standard alternating direction method of multipliers (ADMM),

which blends the decomposability of dual decomposition and superior convergence performance

of augmented Lagrangian. Using the standard ADMM, we then develop efficient centralized and

distributed algorithms that solve a broad class of graphical optimization problems.
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Chapter 6

Distributed OPF Algorithm:
Balanced Radial Distribution
Networks

The optimal power flow (OPF) problem is fundamental in power system operations and planning.

Large-scale renewable penetration in distribution networks calls for real-time feedback control, and

hence the need for fast and distributed solutions for OPF. This is difficult because OPF is nonconvex

and Kirchhoff’s laws are global. In this chapter we propose a solution for balanced radial distribution

networks. It exploits the results in Chapter 3.1 that suggests solving for a globally optimal solution

of OPF over a radial network through the second-order cone program (SOCP) relaxation. Our

distributed algorithm is based on the ADMM based algorithm proposed in Chapter 5. Unlike

standard ADMM algorithms that often require iteratively solving optimization subproblems in each

ADMM iteration, our decomposition allows us to derive closed form solutions for these subproblems,

and greatly speed up each ADMM iteration.

Literature The optimal power flow (OPF) problem seeks to optimize certain objective such as

power loss and generation cost subject to power flow equations and operational constraints. The

continued growth of highly volatile renewable sources on distribution systems calls for real-time

feedback control. Solving the OPF problems in such an environment has at least two challenges.

First, the OPF problem is hard to solve because of its non-convex feasible set. We have addressed

this issue through convex relaxation in Chapter 3.

Second, most algorithms proposed in the literature are centralized and meant for applications

in today’s energy management systems that centrally schedule a relatively small number of genera-

tors. In future networks that simultaneously optimize (possibly real-time) the operation of a large

number of intelligent endpoints, a centralized approach will not scale because of its computation

and communication overhead. In this chapter we address this challenge by developing a distributed

algorithm that solves the SOCP relaxation of OPF for balanced radial distribution networks.
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Various distributed algorithms have been developed to solve the OPF problem. Through op-

timization decomposition, the original OPF problem is decomposed into many local subproblems

that can be solved in parallel. Based on the optimization decomposition used, existing algorithms

roughly fall into four categories:

• Dual decomposition: Dual decompositions are applied to the convexified OPF problem

in [54,55] under certain assumptions. In [55], only voltage constraints are considered and power

injection constraints are ignored. On the other hand, in [54], voltage magnitude is assumed to

be fixed for each bus. However, in typical distribution networks, those assumptions usually do

not hold and the algorithms in [54,55] do not apply directly.

• Method of multipliers: Different method of multipliers are leveraged to develop distributed

OPF algorithms, including some of the early works [5, 52], which do not deal with the non-

convexity issue of the OPF problem. Therefore, the convergence of these algorithms is not

guaranteed. In contrast, algorithms for the convexified OPF problem are proposed to guarantee

convergence, e.g. the algorithm in [23] is based on SDP relaxation for the bus injection model

and [57] is based on SOCP relaxation for the branch flow model.

• ADMM: Most of the recent algorithms are based on ADMM, e.g. [21,53,82], because ADMM

blends the distributed structure of dual decomposition and the convergence property of aug-

mented Lagrangian. In [82], ADMM is applied to the nonconvex OPF and convergence is not

guaranteed. In [53], ADMM is applied to the DC-OPF model, which is extensively used in

transmission networks but is a less accurate model for distribution networks. In [21], it is

applied to SDP relaxation for the bus injection model.

• Optimality condition decomposition: Optimality condition decomposition [42, 67] only

requires solving a single Newton step for each subproblem, instead of the optimal solutions as

required by the above methods. However, convergence is not guaranteed because it depends

on the optimal solutions to the problem, which are not known a prior.

One of the key performance metrics of a distributed algorithm is the time of convergence (ToC),

which is the product of the number of iterations and the computation time to solve the subproblems

in each iteration. To our knowledge, all the distributed OPF algorithms in the literature rely on

generic iterative optimization solvers, which are computationally intensive, to solve the optimization

subproblems. In this chapter, we will improve ToC by reducing the computation time for each

subproblem.

Summary We develop a scalable distributed algorithm through decomposing the convexified OPF

(ROPF) problem into many local subproblems based on the ADMM based algorithm proposed in
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Chapter 5.2.2. In particular, the ROPF problem can be cast into the form (5.6) and the proposed

algorithm has two advantages:

1. We provide a sufficient condition, which holds for practical applications, for the existence

of closed form solutions to the optimization subproblems, thus eliminating the need for an

iterative procedure to solve a SOCP problem for each ADMM iteration.

2. Communication is only required between adjacent buses.

We demonstrate the scalability of the proposed algorithm using a real-life network. In particular,

we show that the algorithm converges within 0.6s on a laptop for a 2,065-bus system. To show the

superiority of deriving close form solutions of each subproblems, we compare the computation time

for solving a subproblem by our algorithm and an off-the-shelf optimization solver (SDPT3, [85]).

Our solver requires on average 6.8×10−4s while SDPT3 requires on average 0.5s. We also show that

the convergence rate is mainly determined by the diameter 1 of the network through simulating the

algorithm on networks of different topologies.

6.1 Problem formulation

The OPF problem and its SOCP relaxation for balanced networks are discussed in Chapter 3.

Because the focus of this chapter is on network with radial topology, we will first simplify the

notations used in Chapter 3, which allows arbitrary network topology. The following assumptions

are made throughout this chapter.

A1 : The network graph G(N , E) has a tree topology.

A2 : There is one substation indexed by 0 in the network, i.e. Ns = {0}.

A3 : The SOCP relaxation is exact, i.e. the solution to the ROPF problem (3.9) is feasible for

the original OPF problem (3.7).

A4 : There exists a closed form solution to the following optimization problem for all i ∈ N

min fi (s) +
ρ

2
‖s− ŝ‖22

over s (6.1)

s.t. s ∈ Ii

given any constants ŝ and ρ.

1The diameter of a graph is defined as the number of hops between two furthest nodes.



96

Under assumption A1 and A2, for each node i ∈ N \{0}, there is only one element in its ancestor

set Ai. Thus we will abuse notation and denote Ai as i’s unique ancestor. Consequently the notation

for the line set E can also be simplified, and for each directed line connecting node i and its ancestor

Ai we will simply denote it as i instead of (i, Ai). Therefore the line set becomes E = {1, . . . , n}.

Using the simplified notations, the OPF problem (3.7) can be written as:

min
∑
i∈N

fi(si)

over v, s, S, `

s.t. vAi − vi + ziS
∗
i + Siz

∗
i − `i|zi|2 = 0 i ∈ E∑

i∈Ci

(Sj − zj`j)− Si + si = 0 i ∈ N

|Si|2 = vi`i i ∈ E

si ∈ Ii i ∈ N

vi ≤ vi ≤ vi i ∈ N

Under assumption A3, we can solve the ROPF problem (3.9) to obtain the optimal solution for

OPF. The ROPF problem can be written explicitly as:

min
∑
i∈N

fi(si) (6.3a)

over v, s, S, ` (6.3b)

s.t. vAi − vi + ziS
∗
i + Siz

∗
i − `i|zi|2 = 0 i ∈ E (6.3c)∑

i∈Ci

(Sj − zj`j)− Si + si = 0 i ∈ N (6.3d)

|Si|2 ≤ vi`i i ∈ E (6.3e)

si ∈ Ii i ∈ N (6.3f)

vi ≤ vi ≤ vi i ∈ N . (6.3g)

Denote

xi := {vi, si, Si, `i} (6.4)

Ki := {xi | |Si|2 ≤ vi`i, si ∈ Ii, vi ≤ vi ≤ vi}. (6.5)

Then (6.3) takes the form of (5.6), where (6.3c)–(6.3d) correspond to (5.6c), and (6.3e)–(6.3g)

correspond to (5.6d).

A4 is a technical assumption that is required for the existence of closed form solutions for all
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the subproblems when the algorithm in Chapter 5.2.2 is applied to solve the ROPF problem. In

practice, the objective function fi(s) usually takes the form of fi (s) := αi
2 p

2 + βip (αi, βi ≥ 0),

which models both line loss and generation cost minimization as discussed in Chapter 3.1.2. For the

injection region Ii, it usually takes either (3.5a) or (3.5b). It is shown in Appendix 6.B that there

exist closed form solutions for all of those cases. Thus, (5.27) can be solved efficiently for practical

applications.

6.2 Distributed OPF Algorithm on Balanced Networks

We assume A1–A4 and now derive a distributed algorithm that solves the ROPF problem (6.3)

based on the algorithm in Chapter 5.2.2. Specificially, using the ADMM based algorithm developed

in Chapter 5.2.2, the global ROPF problem is decomposed into local subproblems that can be solved

in a distributed manner with only neighborhood communication. In addition, we provide a sufficient

condition for the existence of closed form solutions to all the optimization subproblems. Compared

with existing methods, e.g. [5, 21, 23, 52, 54, 55, 57, 82], that use generic iterative optimization solver

to solve each subproblem, the computation time is improved by more than 1000 times.

Note that in Chapter 5.2.2, the proposed algorithm requires specifying the partitions of set Ki
for each i ∈ N . For our application, we use Ri = 0, i.e. (5.27) is the same as (5.12), for i ∈ N ,

which is sufficient to have a closed form solution.

Recall that there is always a closed form solution to the optimization subproblem (5.30) in the

y-update. Now we will show if the objective function fi(s) and injection region Ii satisfy A4, the

subproblems in the x-update can also be solved with closed form solutions for the ROPF problem.

Based on Chapter 5.2.2, we first need to transform (6.3) into the form of (5.23). Note that (6.3e)–

(6.3g) are local constraints to bus i that correspond to Ki in (5.6d), and (6.3c), (6.3d) describe the

coupling constraints among i and its neighbors that correspond to (5.6c). Since there is only one

partition of Ki, i.e. Ri = 0, we will skip the subscript r in xir and simply denote it as xi. Then



98

ROPF can be written in the form of (5.23) as follows,

min
∑
i∈N

fi(s
(x)
i ) (6.6a)

over x := {xi, i ∈ N}

y := {yji, j ∈ Ni, i ∈ N}

s.t. v
(y)
Aii
− v(y)

ii + zi

(
S

(y)
ii

)∗
+ S

(y)
ii z

∗
i − `

(y)
ii |zi|

2 = 0 i ∈ E (6.6b)∑
i∈Ci

(
S

(y)
ji − zj`

(y)
ji

)
− S(y)

ii + s
(y)
ii = 0 i ∈ N (6.6c)

|S(x)
i |

2 ≤ v(x)
i `

(x)
i i ∈ E (6.6d)

s
(x)
i ∈ Ii i ∈ N (6.6e)

vi ≤ v
(x)
i ≤ vi i ∈ N (6.6f)

xi − yij = 0 j ∈ Ni i ∈ N , (6.6g)

where we put superscripts (·)(x) and (·)(y) on each variable to indicate whether the variables are

updated in the x-update or y-update.

The problem (6.6) falls in the general form of (5.23) with Ri = 0 for all i ∈ N , i.e. Ki in (6.5) is

not partitioned. Specifically, (6.3c) models the voltage of its ancestor Ai as a function of the local

variables of bus i, and (6.3d) describes the power flow balance among the set of children Ci and bus

i itself. In other words, the coupling between a node and its ancestor is different from coupling with

its children. Thus, each bus i does not need full duplicates of its neighbors’ variables. It only needs

voltage information v
(y)
Aii

from its parent Ai and branch power S
(y)
ji and current `

(y)
ji information from

its children j ∈ Ci based on (6.6). Thus, yij contains only partial information about xi, i.e.

yij :=


(S

(y)
ii , `

(y)
ii , v

(y)
ii , s

(y)
ii ) j = i

(S
(y)
iAi
, `

(y)
iAi

) j = Ai

(v
(y)
ij ) j ∈ Ci.

As a result, xi and yij do not consist of the same component for j 6= i in the consensus constraint

(6.6g). Here, we abuse notation and xi − yij is composed of the components that appear in both xi

and yij , i.e.

xi − yij :=


(S

(x)
i − S(y)

ii , `
(x)
i − `

(y)
ii , v

(x)
i − v(y)

ii , s
(x)
i − s

(y)
ii ) j = i

(S
(x)
i − S(y)

iAi
, `

(x)
i − `

(y)
iAi

) j = Ai

(v
(x)
i − v(y)

ij ) j ∈ Ci

.
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Table 6.1: Multipliers associated with constraints(6.6g)

µ
(1)
ii : S

(x)
i = S

(y)
ii µ

(2)
ii : `

(x)
i = `

(y)
ii

µ
(3)
ii : v

(x)
i = v

(y)
ii µ

(4)
ii : s

(x)
i = s

(y)
ii

µ
(1)
iAi

: S
(x)
iAi

= S
(y)
iAi

µ
(2)
iAi

: `
(x)
i = `

(y)
iAi

µij : v
(x)
i = v

(y)
ij

Recall that the local variables to each node i include its original copy xi, its “observation” of

variables yji from its neighbor Ni, and the corresponding multiplier µji. Then the set of local

variables Ai (defined in (5.25)) for each bus i can be written explicitly as

Ai := {xi} ∪ {yji, µji | j ∈ Ni}

= {S(x)
i , `

(x)
i , v

(x)
i , s

(x)
i } ∪ {S

(y)
ii , `

(y)
ii , v

(y)
ii , s

(y)
ii , µ

(1)
ii , µ

(2)
ii , µ

(3)
ii , µ

(4)
ii }

∪{S(y)
ji , `

(y)
ji , µ

(1)
ji , µ

(2)
ji | j ∈ Ci} ∪ {v

(y)
Aii
, µAii},

where µ denotes the Lagrangian multipliers associated with (6.6g) and each component is defined

in Table 6.1.

Next, we will show how to solve the subproblem (5.27) in the x-update with closed form solution

under A4. For ease of presentation, we remove the iteration number k in (5.3) for all the variables,

which will be updated accordingly after each subproblem is solved.

In the x-update, the subproblem (5.27) solved by each bus i can be written explicitly as

min Hi(xi) (6.7a)

over xi

s.t. |S(x)
i |

2 ≤ v(z)
i `

(x)
i (6.7b)

s
(x)
i ∈ Ii (6.7c)

vi ≤ v
(x)
i ≤ vi. (6.7d)

Hi(xi) is defined in (5.28) and

Hi(xi) = fi(s
(x)
i )−

∑
j∈Ni

〈µij , xi〉+
ρ

2

∑
j∈Ni

‖xi − yij‖22 (6.8)

= ρH
(1)
i (S

(x)
i , `

(x)
i , v

(x)
i ) +H

(2)
i (s

(x)
i ) + constant,
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where

H
(1)
i (S

(x)
i , `

(x)
i , v

(x)
i ) = |S(x)

i − Ŝi|2 + |`(x)
i − ˆ̀

i|2 +
|Ci|+ 1

2
|v(x)
i − v̂i|2 (6.9)

H
(2)
i (s

(x)
i ) = fi(s

(x)
i ) +

ρ

2
‖s(x)
i − ŝi‖

2
2. (6.10)

The last step in (6.8) is obtained by completing the square and the variables labeled with hat are

constants for the x-update, i.e.

Ŝi =
S

(y)
ii + S

(y)
iAi

2
+
µ

(1)
ii + µ

(1)
iAi

2ρ

ˆ̀
i =

`
(y)
ii + `

(y)
iAi

2
+
µ

(2)
ii + µ

(2)
iAi

2ρ

v̂i =
v

(y)
ii +

∑
j∈Ci v

(y)
ij

|Ci|+ 1
+
µ

(3)
ii +

∑
j∈Ci µij

ρ(|Ci|+ 1)

ŝi = s
(y)
ii +

µ
(4)
ii

ρ
.

Thus, the objective (6.7a) in (6.7) can be decomposed into two parts, where the first part

H(1)(S
(x)
i , `

(x)
i , v

(x)
i ) involves variables (S

(x)
i , `

(x)
i , v

(x)
i ) and the second part H(2)(s

(x)
i ) involves s

(x)
i .

Note that the constraint (6.7b)–(6.7d) can also be separated into two independent constraints.

Variables (S
(x)
i , `

(x)
i , v

(x)
i ) only depend on (6.7b)–(6.7d) and s

(x)
i depends on (6.7c). Hence, (6.7) can

be decomposed into two subproblems, where the first one solves the optimal (S
(x)
i , `

(x)
i , v

(x)
i ) and the

second one solves the optimal s
(x)
i . The first subproblem can be written explicitly as

min
∣∣∣S(x)
i − Ŝi

∣∣∣2 +
∣∣∣`(x)
i − ˆ̀

i

∣∣∣2 +
|Ci|+ 1

2

∣∣∣v(x)
i − v̂i

∣∣∣2
over v

(x)
i , `

(x)
i , S

(x)
i (6.11)

s.t.
∣∣∣S(x)
i

∣∣∣2 ≤ v(x)
i `

(x)
i

vi ≤ v
(x)
i ≤ vi,

which has a quadratic objective, a second order cone constraint and a box constraint. (6.11) has a

closed form solution and the procedure is illustrated in Appendix 6.A. Compared with using generic

iterative solver, the procedure is computationally efficient since it only requires one to solve the zero

of three polynomials with a degree less than or equal to 4, which have closed form solutions.

The second subproblem is

min fi

(
s

(x)
i

)
+
ρ

2

∥∥∥s(x)
i − ŝi

∥∥∥2

2

over s
(x)
i (6.12)

s.t. s
(x)
i ∈ Ii,
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which has exactly the same structure as A4 and thus can be solved with closed form solution. Thus,

all the subproblems involved in the x-update can be solved with closed form solutions and we have

the following theorem.

Theorem 6.1. Under assumption A4, there exists a closed form solution to the subproblem in the

x-update (5.27) for ROPF with Ri = 0.

In the y-update, the subproblem solved by each agent i takes the form of (5.30) and can be

written as

min Gi({yji | j ∈ Ni})

over {yji | j ∈ Ni} (6.13)

s.t. v
(y)
Aii
− v(y)

ii + zi

(
S

(y)
ii

)∗
+ S

(y)
ii z

∗
i − `

(y)
ii |zi|

2 = 0∑
i∈Ci

(
S

(y)
ji − zj`

(y)
ji

)
− S(y)

ii + s
(y)
ii = 0,

which has a closed form solution given in (5.16) and we do not reiterate here.

Algorithm 6.1 Initialization of the Algorithm

1: v
(x)
i = 1 for i ∈ N

2: Randomly pick a point in Ii to initialize s
(x)
i for i ∈ N

3: Initialize S(x) by calling DFS(0)

4: `
(x)
i =

|S(x)
i |

2

v
(x)
i

for i ∈ N
5: yji = xj for j ∈ Ni and i ∈ N

6: function DFS(i)

7: S
(x)
i = s

(x)
i

8: for j ∈ Ci do

9: S
(x)
i + = DFS(j)

10: end for
11: return S

(x)
i

12: end function

Finally, we specify the initialization and stopping criteria for the algorithm. A good initialization

can greatly reduce the number of iterations for convergence. We use the following initialization

suggested by our empirical results. We first initialize the x variable. The voltage magnitude square

v
(x)
i = 1. The power injection s

(x)
i is randomly picked from a feasible point in the feasible region Ii.

The branch power S
(x)
i is assumed to be the aggregate power injection s

(x)
i from the nodes connected

by line i (Note that the network has a tree topology.). The branch current `
(x)
i =

|S(x)
i |

2

v
(x)
i

according

to (3.2c). The y variables are initialized using the corresponding x variable according to (6.6g).

Intuitively, the above initialization procedure can be interpreted as finding a solution to the branch

flow equation (3.2) assuming zero impedance on all the lines. The procedure is formally stated in
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(a) Primal and dual residual (b) Objective value

Figure 6.1: Simulation results for 2065 bus distribution network.

Algorithm 6.1.

For the stopping criteria, there is no general rule for ADMM based algorithm and it usually

hinges on the particular problem. In [11], it is argued that a reasonable stopping criteria is that

both the primal residual rk defined in (5.4a) and the dual residual sk defined in (5.4b) are below

10−4
√
|N |. We adopt this criteria and the empirical results show that the solution is accurate

enough. The pseudo code for the complete algorithm is summarized in Algorithm 6.2.

Algorithm 6.2 Distributed OPF algorithm on Balanced Radial Networks

1: Input:network G(N , E), power injection region Ii, voltage region (vi, vi), line impedance zi for
i ∈ N .

2: Output:voltage v, power injection s.

3: Initialize the x and y variables using Algorithm 6.1.
4: while rk > 10−4

√
|N | or sk > 10−4

√
|N | do

5: In the x-update, each agent i solves (6.7) to update x.
6: In the y-update, each agent i solves (6.13) to update y.
7: In the multiplier update, update µ by (5.3c).
8: end while

6.3 Case Study

In this section, we first demonstrate the scalability of the proposed distributed algorithm by testing

it on the model of a 2,065-bus distribution circuit in the service territory of the Southern California

Edison (SCE). We also show the advantage of deriving closed form expression by comparing the

computation time of solving the subproblems using off-the-shelf solver (SDPT3 [85] through CVX

[37]) and using our algorithm. Second, we simulate the proposed algorithm on networks of different

sizes to understand the impacts of network size and diameter on the convergence rate. The algorithm

is implemented in Matlab 2014 and run on a Macbook pro 2014 with an i5 dual core processor.
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Table 6.1: Statistics of different networks

Network Diameter Iteration Total Time(s) Avg time(s)
2065Bus 64 1114 1153 0.56
1313Bus 53 671 471 0.36
792Bus 45 524 226 0.29
363Bus 36 289 112 0.24
108Bus 16 267 16 0.14

6.3.1 Simulation on a 2,065-bus circuit

In the 2,065-bus distribution network, there are 1,409 household loads, whose power consumptions

are within 0.07kw–7.6kw, and 142 commercial loads, whose power consumptions are within 5kw–

36.5kw. There are 135 rooftop PV panels, whose nameplates are within 0.7–4.5kw, distributed across

the 1,409 houses.

The network is unbalanced three phase. We assume that the three phases are decoupled such

that the network becomes identical single phase network. The voltage magnitude at each load bus

is allowed to lie within [0.95, 1.05] per unit (pu), i.e. vi = 1.052 and vi = 0.952 for i ∈ N \ {0}. The

control devices are the rooftop PV panels whose real and reactive power injections are controlled.

The objective is to minimize power loss across the network, namely fi(si) = pi for i ∈ N . Each

bus is a node and there are 2,065 nodes in the network that solve the OPF problem in a distributed

manner.

We mainly focus on the time of convergence (ToC) for the proposed distributed algorithm. The

algorithm is run on a single machine. To roughly estimate the ToC (excluding communication

overhead) if the algorithm is run on distributed machines, we divide the total time by the number

of nodes. Recall that the stopping criteria is that both the primal and dual residual are below

10−4
√
|N | and Figure 6.1a illustrates the evolution of rk/

√
|N | and sk/

√
|N | versus iterations

k. The stopping criteria are satisfied after 1, 114 iterations. The evolution of the objective value is

illustrated in Figure 6.1b. It takes 1,153s to run 1,114 iterations on a single computer. Then the ToC

is roughly 0.56s if we implement the algorithm in a distributed manner not counting communication

overhead.

Finally, we show the advantage of closed form solution by comparing the computation time of

solving the subproblems by an off-the-shelf solver (SDPT3) and by our algorithm. In particular,

we compare the average computation time of solving the subproblem in both the x-update and the

y-update step. In the x-update step, the average time required to solve the subproblem is 1.7×10−4s

for the proposed algorithm but 0.2s for SDPT3. In the y-update step, the average time required

to solve the subproblem is 5.1× 10−4s for the proposed algorithm but 0.3s for SDPT3. Thus, each

ADMM iteration only takes about 6.8 × 10−4s for the proposed algorithm but 0.5s for using the
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(a) Line networks (b) Fat tree networks

Figure 6.2: Topologies for tree and fat tree networks.

Table 6.2: Statistics of line and fat tree networks

Size # of iterations (Line) # of iterations (Fat tree)
5 43 31
10 123 51
15 198 148
20 286 87
25 408 173
30 838 119
35 1471 187
40 2201 109
45 2586 182
50 3070 234

iterative algorithm, which is a 1,000x speedup.

6.3.2 Rate of Convergence

In section 6.3.1, we demonstrate that the proposed distributed algorithm can dramatically reduce

the computation time within each iteration and therefore is scalable to a large practical 2,065-bus

distribution network. The time of convergence(ToC) is determined both by the computation time

required within each iteration and the number of iterations. In this subsection, we study the number

of iterations.

To the best of our knowledge, most of the works on convergence rate for ADMM based algorithms

study how the primal/dual residual changes as the number of iterations increases. Specifically,

it is proved in [41, 88] that the general ADMM based algorithms converge linearly under certain

assumptions. Here, we study empirically how the rate of convergence depends on the network size

N and diameter D, i.e. given the termination criteria in Algorithm 6.2, the impact of network size

and diameter on the number of iterations.

First, we simulate the algorithm on different networks (that are subnetworks of the 2,065-bus

system) and some statistics are given in Table 6.1. For simplicity, we assume the number of iterations

T to converge takes the linear form T = aN + bD. Using the data in Table 6.1, the parameters
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a = 0.34, b = 5.53 give the least square error. It means that the network diameter has a stronger

impact than the network size on the rate of convergence.

To further illustrate the phenomenon, we simulate the algorithm on two extreme cases: 1) Line

network in Fig. 6.2a, whose diameter is the largest given the network size, and 2) Fat tree network

in Fig. 6.2b, whose diameter is the smallest (2) given the network size. In Table 6.2, we record

the number of iterations for both line and fat tree network of different sizes. For line network, the

number of iterations increases notably as the size increases. For fat tree network, the trend is much

less prominant compared to the line network.

6.4 Conclusion

In this chapter, we have developed an ADMM based distributed algorithm for the optimal power flow

problem on balanced radial distribution networks. We have derived a closed form solution for the

subproblems solved by each bus, and thus significantly reduced the computation time. Preliminary

simulation shows that the algorithm is scalable to a 2,065-bus system and the optimization sub-

problems in each ADMM iteration are solved 1,000x faster than using generic iterative optimization

solver SDPT3.
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Appendix

6.A Solution Procedure for Problem (6.11)

Denote x1 := Re(S
(x)
i ), x2 := Im(S

(x)
i ), x3 :=

√
|Ci|+1

2 v
(x)
i and x4 := `

(x)
i . Then the optimization

problem (6.11) can be written equivalently as

min

4∑
i=1

(x2
i + cixi) (6.14a)

over x1, x2, x3, x4

s.t.
x2

1 + x2
2

x3
≤ k2x4 (6.14b)

x3 ≤ x3 ≤ x3, (6.14c)

where x3 > x3 > 0 and ci, k are constants that hinges on the constants in (6.11).

Next, we will derive a procedure that solves (6.14). Let γ ≥ 0 denote the Lagrangian multiplier

for constraint (6.14b) and λ, λ ≥ 0 denote the Lagrangian multipliers for constraint (6.14c), then

the Lagrangian of P1 is

L(x, γ, λ) =

4∑
i=1

(x2
i + cixi) + γ

(
x2

1 + x2
2

x3
− k2x4

)
+ λ(x3 − x3)− λ(x3 − x3).

The KKT optimality conditions imply that the optimal solution x∗ together with the multipliers

γ∗, λ∗, λ
∗

satisfies the following equations. For ease of notations, we sometimes skip the superscript
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? of the variables in the following analysis.

2x1 + c1 + 2γ
x1

x3
= 0 (6.15a)

2x2 + c2 + 2γ
x2

x3
= 0 (6.15b)

2x3 + c3 − γ
x2

1 + x2
2

x2
3

+ λ− λ = 0 (6.15c)

2x4 + c4 − k2γ = 0 (6.15d)

λ(x3 − x3) = 0 λ ≥ 0 x3 ≤ x3 (6.15e)

λ(x3 − x3) = 0 λ ≥ 0 x3 ≥ x3 (6.15f)

γ

(
x2

1 + x2
2

x3
− k2x4

)
= 0 γ ≥ 0

x2
1 + x2

2

x3
≤ k2x4. (6.15g)

Lemma 6.2. There exists a unique solution (x∗, γ∗, λ∗, λ
∗
) to (6.15) if x3 > x3 ≥ 0.

Proof. P1 is feasible since z = (0, 0, x3, 1) satisfies (6.14b)-(6.14c). In addition, P1 is a strictly

convex optimization problem since the objective (6.14a) is a strictly convex function of z and the

constraints (6.14b) and (6.14c) are also convex. Therefore, there exists a unique solution z∗ to

P1, which indicates there exists a unique solution (x∗, γ∗, λ∗, λ
∗
) to the KKT optimality conditions

(6.15).

Lemma 6.2 says that there exists a unique solution to (6.15), which is also the optimum to P1. In

the following, we will solve (6.15) through enumerating value of the multipliers γ, λ, λ. Specifically,

we first assume γ∗ = 0 (Case 1 below), which is equivalent to assuming that the constraint (6.14b)

is inactive. If there is a feasible solution to (6.15), it is the unique solution to (6.15). Otherwise,

we assume γ∗ = 0 (Case 2 below), which is equivalent to assume that the equality is obtained at

optimality in (6.14b).

Case 1: If γ = 0, (6.15) becomes

2x1 + c1 = 0 (6.16a)

2x2 + c2 = 0 (6.16b)

2x3 + c3 + λ− λ = 0 (6.16c)

2x4 + c4 = 0 (6.16d)

λ(x3 − x3) = 0 λ ≥ 0 x3 ≤ x3 (6.16e)

λ(x3 − x3) = 0 λ ≥ 0 x3 ≥ x3 (6.16f)

x2
1 + x2

2

x3
≤ k2x4. (6.16g)
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The solution to (6.16a)–(6.16f) ignoring (6.16g) is

x1 = −c1
2
, x2 = −c2

2
, x3 =

[
−c3

2

]x3

x3

, x4 = −c4
2

λ = −(2x3 + c3)1{x3=x3}, λ = −(2x3 + c3)1{x3=x3},

and if the solution satisfies (6.16g), it is the solution to (6.15). Otherwise, we go to Case 2.

Case 2: If γ > 0, (6.15) becomes

2x1 + c1 + 2γ
x1

x3
= 0 (6.17a)

2x2 + c2 + 2γ
x2

x3
= 0 (6.17b)

2x3 + c3 − γ
x2

1 + x2
2

x2
3

+ λ− λ = 0 (6.17c)

λ(x3 − x3) = 0 λ ≥ 0 x3 ≤ x3 (6.17d)

λ(x3 − x3) = 0 λ ≥ 0 x3 ≥ x3 (6.17e)

γ =
1

k2
(2x4 + c4) (6.17f)

x4 =
x2

1 + x2
2

k2x3
. (6.17g)

Substitute (6.17g) into (6.17f), and we obtain

γ =
1

k2
(2x4 + c4) =

2(x2
1 + x2

2)

k4x3
+
c4
k2
. (6.18)

Then substituting (6.17f) into (6.17a)-(6.17e), we can write (6.17) equivalently as

2 +
c1
x1

+ 4
(x2

1 + x2
2)

k4x2
3

+
2c4
k2x3

= 0 (6.19a)

2 +
c2
x2

+ 4
(x2

1 + x2
2)

k4x2
3

+
2c4
k2x3

= 0 (6.19b)

2 +
c3
x3
− 2

(x2
1 + x2

2)2

k4x4
3

− c4
x2

1 + x2
2

x3
3

+
λ− λ
x3

= 0 (6.19c)

λ(x3 − x3) = 0 λ ≥ 0 x3 ≤ x3 (6.19d)

λ(x3 − x3) = 0 λ ≥ 0 x3 ≥ x3, (6.19e)

where (6.19a)–(6.19c) are obtained through dividing both sides of (6.17a)–(6.17c) by x1, x2 and

x3, respectively. The variables γ, x4 can be recovered via (6.17f) and (6.17g) after we solve (6.19).
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By (6.19a) and (6.19b),

c1
x1

=
c2
x2

Denote p := x1

c1x3
= x2

c2x3
. Then (6.19) is equivalent to the following equations:

p =
x1

c1x3
=

x2

c2x3
(6.20a)

2 +
1

px3
= −

(
4(c21 + c22)

k4
p2 + 2

c4
k2x3

)
(6.20b)

2 +
c3
x3

=
2(c21 + c22)2

k4
p4 +

c4(c21 + c22)

k2

p2

x3
+
λ− λ
x3

(6.20c)

λ(x3 − x3) = 0 λ ≥ 0 x3 ≤ x3 (6.20d)

λ(x3 − x3) = 0 λ ≥ 0 x3 ≥ x3, (6.20e)

where (6.20b) is obtained by substituting x2 = c2px3 into (6.19b), (6.20c) is obtained by

substituting x1 = c1px3, and x2 = c2px3 into (6.19c). To solve (6.20), we further divide our

analysis into two sub-cases depending on whether x∗3 hits the lower or upper bound.

• Case 2.1: x∗3 = x3. (λ = 0, λ > 0) ( The case of x∗3 = x3 can be solved using similar

procedure.)

We first substitute x3 = x3 into (6.20b) and have

4(c21 + c22)

k4
p3 +

(
2
c4
k2x3

+ 2

)
p+

1

x3
= 0, (6.21)

whose solution2 is denoted by p∗. Then substitute p∗ and x3 into (6.20a), we can recover x∗1

and x∗2. Then we can obtain γ∗, λ
∗

using (6.18) and (6.19c) by substituting x∗1, . . . , x
∗
4. If

γ∗, λ
∗ ≥ 0, they collectively solve (6.15). Otherwise, we go to Case 2.2.

• Case 2.2: x3 < x∗3 < x3 (λ, λ = 0).

Since λ and λ = 0, (6.20) reduces to

p =
x1

c1x3
=

x2

c2x3
(6.22a)

2 +
1

px3
= −

(
4(c21 + c22)

k4
p2 + 2

c4
k2x3

)
(6.22b)

2 +
c3
x3

=
2(c21 + c22)2

k4
p4 +

c4(c21 + c22)

k2

p2

x3
. (6.22c)

2There are potentially multiple solutions and we need to check all the real solution p∗ using the following procedure.



110

Dividing each side of (6.22b) by (6.22c) gives

2x3 + 1
p

2x3 + c3
= − 2

(c21 + c22)p2
,

which implies

x3 = − (c21 + c22)p+ 2c3
2((c21 + c22)p2 + 2)

. (6.23)

Then substitute (6.23) into (6.22b), we have

(c21 + c22)p2 + 2

(c21 + c22)p2 + 2c3p
− 2(c21 + c22)

k4
p2 +

2c4((c21 + c22)p2 + 2)

k2((c21 + c22)p+ 2c3)
= 1,

which is equivalent to

(c21 + c22)2

k4
p4 +

c21 + c22
k2

(
2c3
k2
− c4

)
p3 +

(
c3 −

2c4
k2

)
p− 1 = 0,

whose solution2 is denoted by p∗. Substitute p∗ into (6.23), and we can recover x∗3, and then x∗1, x
∗
2

can be recovered via (6.22a). γ∗ is recovered using (6.18). If γ∗ ≥ 0, the corresponding solution

solves (6.15).

6.B Solution Procedure for Problem (6.1).

We assume fi (s) := αi
2 p

2 + βip (αi, βi ≥ 0) and derive a closed form solution to (6.1).

6.B.1 Ii takes the form of (3.5a)

In this case, (6.1) takes the following form:

min
p,q

a1

2
p2 + b1p+

a2

2
q2 + b2q

s.t. p
i
≤ p ≤ pi

q
i
≤ q ≤ qi,

where a1, a2 > 0 and b1, b2 are constants. Then the closed form solution is

p =

[
− b1
a1

]pi
p
i

q =

[
−̂21

a2

]qi
q
i

,

where [x]ba := min{a,max{x, b}}.
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6.B.2 Ii takes the form of (3.5b)

The optimization problem (6.1) takes the following form:

min
p,q

a1

2
p2 + b1p+

a2

2
q2 + b2q (6.24a)

s.t. p2 + q2 ≤ c2 (6.24b)

p ≥ 0, (6.24c)

where a1, a2, c > 0 , b1, b2 are constants. The solutions to (6.24) are given as below.

Case 1: b1 ≥ 0:

p∗ = 0 q∗ =

[
− b2
a2

]c
−c
.

Case 2: b1 < 0 and
b21
a2

1
+

b22
a2

2
≤ c2:

p∗ = − b1
a1

q∗ = − b2
a2
.

Case 3: b1 < 0 and
b21
a2

1
+

b22
a2

2
> c2:

First solve the following equation in terms of variable λ:

b21(a2 + 2λ)2 + b22(a1 + 2λ)2 = (a1 + 2λ)2(a2 + 2λ)2, (6.25)

which is a polynomial with degree of 4 and has closed form expression. There are four solutions to

(6.25), but there is only one strictly positive λ∗, which can be proved via the KKT conditions of

(6.24). Then we can recover p∗, q∗ from λ∗ using the following equations:

p∗ = − b1
a1 + 2λ∗

and q∗ = − b2
a2 + 2λ∗

.

The above procedure to solve (6.24) is derived from standard applications of the KKT conditions

of (6.24). For brevity, we skip the proof here.
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Chapter 7

Distributed OPF Algorithm:
Unbalanced Radial Distribution
Networks

In Chapter 6, we have developed an ADMM based distributed algorithm that solves the OPF problem

on balanced radial networks. We show that by using the technique in Chapter 5.2.2, a closed form

expression for each optimization subproblem can be derived. Thus, the computation time is reduced

significantly and the proposed algorithm is scalable to a 2,065-bus network.

In this chapter, we will develop an ADMM based distributed algorithm that solves the OPF

problem on unbalanced radial networks. The main idea is still to exploit the tree topology of distri-

bution networks and decompose the OPF problem in a way that the subproblems in each ADMM

macro-iteration can be solved efficiently. In contrast to the algorithm in Chapter 6 for balanced

networks, where there exist closed form solutions for all the subproblems, the optimization subprob-

lems reduce to either closed form solutions or eigenvalue problems whose size remains constant as

the network size scales up. However, we show that the proposed algorithm can still speed up the

algorithm by 100x compared with using the generic iterative optimization solvers. We present simu-

lations on IEEE 13, 34, 37, and 123 bus unbalanced distribution networks to illustrate the scalability

and optimality of the proposed algorithm.

Summary We develop a scalable distributed algorithm that solves the convexified OPF (ROPF)

problem for unbalanced radial networks. In particular, we decompose the ROPF problem into local

subproblems that can be solved in parallel based on the ADMM based algorithm in Chapter 5.2.2.

The proposed algorithm has two advantages:

1. We provide a sufficient condition, which holds for practical applications, for the existence of

a computationally efficient solution (either solved with closed form solution or through eigen-

decomposition of a 6 by 6 matrix) to the optimization subproblems. It eliminates the need for
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an iterative procedure to solve SDP problems for each ADMM iteration.

2. Communication is only required between adjacent buses.

We demonstrate the scalability of the proposed algorithms using standard IEEE test networks

[48]. The proposed algorithm converges within 0.7s on all the IEEE-13, 34, 37, 123 bus systems.

To show the superiority of using the proposed procedure to solve each subproblem, we compare the

computation time for solving a subproblem by our algorithm and an off-the-shelf SDP optimization

solver (SDPT3 [85]). Our solver requires on average 3.8 × 10−3s while SDPT3 requires on average

0.58s, which is a 100x speedup on a laptop.

The rest of this chapter is structured as follows. We formulate the OPF problem on unbalanced

radial networks in section 7.1. The distributed algorithm is developed in section 7.2 and simulation

results on IEEE standard test networks are demonstrated in section 7.3.

7.1 Problem formulation

The OPF problem and its SDP relaxation on unbalanced networks are discussed in Chapter 3.2.

Because the focus of this chapter is on network with radial topology, we will first simplify the

notations used in Chapter 3, which allows arbitrary network topology. Similar to Chapter 6, the

following assumptions are made throughout this chapter.

A1 : The network graph G(N , E) has a tree topology.

A2 : There is one substation indexed by 0 in the network, i.e. Ns = {0}.

A3 : The SDP relaxation is exact, i.e. the solution to the ROPF problem (3.17) is feasible to the

original OPF problem (3.16).

A4 : There exists a closed form solution to the following optimization problem for all i ∈ N and

φ ∈ Φi

min fφi
(
sφ
)

+
ρ

2

∥∥sφ − ŝφ∥∥2

2

over sφ (7.1)

s.t. sφ ∈ Iφi

given any constant ŝφ and ρ.

Under assumption A1 and A2, for each node i ∈ N \{0}, there is only one element in its ancestor

set Ai. Thus we will abuse notation and denote Ai as i’s unique ancestor. Consequently the notation

for the line set E can also be simplified and for each directed line connecting node i and its ancestor

Ai, we will denote by i instead of (i, Ai). Therefore the line set becomes E = {1, . . . , n}.
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Using the simplified notations, the OPF problem (3.16) for unbalanced radial networks can be

written as:

min
∑
i∈N

∑
φ∈Φi

fφi (sφi )

over v, s, S, `

s.t. Pi(vAi)− vi + ziS
H
i + Siz

H
i − zi`izHi = 0 i ∈ E

diag

(∑
i∈Ci

Pi(Sj − zj`j)− Si

)
+ si = 0 i ∈ N vi Si

SHi `i

 ∈ S+ i ∈ E

rank

 vi Si

SHi `i

 = 1 i ∈ E

sφi ∈ I
φ
i φ ∈ Φi and i ∈ N

vφi ≤ v
φφ
i ≤ v

φ
i φ ∈ Φi and i ∈ N ,

and the ROPF problem (3.17), which removes the rank-1 constraint, can be written explicitly as:

min
∑
i∈N

∑
φ∈Φi

fφi (sφi ) (7.3a)

over v, s, S, ` (7.3b)

s.t. Pi(vAi)− vi + ziS
H
i + Siz

H
i − zi`izHi = 0 i ∈ E (7.3c)

diag

(∑
i∈Ci

Pi(Sj − zj`j)− Si

)
+ si = 0 i ∈ N (7.3d) vi Si

SHi `i

 ∈ S+ i ∈ E (7.3e)

sφi ∈ I
φ
i φ ∈ Φi and i ∈ N (7.3f)

vφi ≤ v
φφ
i ≤ v

φ
i φ ∈ Φi and i ∈ N (7.3g)

where S+ is the set of (Hermitian) positive semi-defintie matrices. Under assumption A3, the

relaxation (7.3) is exact and has the same optimal solution with the the original OPF problem.
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Denote

xi := {vi, si, Si, `i} (7.4)

Ki :=


 vi Si

SHi `i

 ∈ S+, {sφi ∈ I
φ
i | φ ∈ Φi}, {vφi ≤ v

φφ
i ≤ v

φ
i | φ ∈ Φi}

 . (7.5)

Then (7.3) takes the form of (5.6), where (7.3c)–(7.3d) correspond to (5.6c) and (7.3e)–(7.3g) cor-

respond to (5.6d).

A4 is a technical assumption that is required for the existence of efficient solutions for all the

subproblems when the algorithm in Chapter 5.2.2 is applied to solve the ROPF problem. In practice,

the objective function fφi (s), usually takes the form of fφi (s) :=
αφi
2 p

2 +βφi p, which models both line

loss and generation cost minimization as discussed in Chapter 3.2. For the injection region Iφi , it

usually takes either (3.14a) or (3.14b). Then we can use the same procedure as (6.1) to solve (7.1)

with closed form solution, which is shown in Appendix 6.B.

7.2 Distributed OPF Algorithm on Unbalanced Networks

We develop in this section a distributed algorithm that solves the ROPF problem (7.3) based on

the approach developed in Chapter 5.2.2 under assumption A1–A4. Specifically, the global problem

is decomposed into local subproblems that can be solved in a distributed manner with only neigh-

borhood communication. In addition, we provide a sufficient condition, which holds in practice, for

the existence of efficient solution to the optimization subproblems, thus eliminating the need for an

iterative procedure to solve a SDP problem for each ADMM iteration.

Following a similar method in Chapter 6 for balanced radial networks, we first rewrite (7.3) in

the form of (5.23), the differences between balanced and unbalanced networks are threefold:

1. For balanced networks, we show that Ri = 0 for i ∈ N suffices to provide an efficient solution.

In contrast, for unbalanced networks, Ri = 1 for i ∈ N are required to have computationally

efficient solutions for all the subproblems.

2. There are closed form solutions for all the subproblems for the algorithm of balanced networks.

For unbalanced networks, there exists one subproblem that can only be reduced to an eigenvalue

problem for a 6 × 6 matrix, which does not admits a closed form solution. However, we

demonstrate in the simulation that a 100x speedup is still achieved on the standard IEEE test

networks compared with using iterative optimization solvers.

3. For balanced networks, we use standard augmented Lagrangian (5.2) for our ADMM based

algorithm. For unbalanced network, we rely on using the generalized augmented Lagrangian

(5.5) to have an efficient ADMM based algorithm.
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As stated above, we will use Ri = 1, i.e. we have two partitions Ki0 and Ki1 of set Ki for each

node i ∈ N , given as

Ki0 :=


 vi Si

SHi `i

 ∈ S+, {sφi ∈ I
φ
i | φ ∈ Φi}

 (7.6)

Ki1 := {vφi ≤ v
φφ
i ≤ v

φ
i | φ ∈ Φi}. (7.7)

Recall that there is always a closed form solution to the optimization subproblem (5.30) in

the y-update, we next show the subproblems in the x-update can also be solved efficiently under

assumption A4.

Note that the ROPF problem (7.3) falls in the form of (5.6), where (7.3e)–(7.3f) are local con-

straints to node (bus) i that correspond to Ki in (5.6d), (7.3c) and (7.3d) describe the coupling

constraints among node i and its neighbors that corresponds to (5.6c). Similar to the design of the

algorithm for balanced networks, we can transform (7.3) in the form of (5.23) as below:

min
∑
i∈N

∑
φ∈Φi

fφi ((sφi0)(x)) (7.8a)

over x := {xir | 0 ≤ r ≤ 1, i ∈ N}

y := {yji | j ∈ Ni, i ∈ N}

s.t. Pi(v(y)
Aii

)− v(y)
ii + zi(S

(y)
ii )H + S

(y)
ii z

H
i − zi`

(y)
ii z

H
i = 0 i ∈ E (7.8b)

diag

(∑
i∈Ci

Pi(S(y)
ji − zj`

(y)
ji )− S(y)

ii

)
+ s

(y)
ii = 0 i ∈ N (7.8c) v

(x)
i0 S

(x)
i0

(S
(x)
i0 )H `

(x)
i0

 ∈ S+ i ∈ E (7.8d)

(sφi0)(x) ∈ Iφi φ ∈ Φi and i ∈ N (7.8e)

vφi ≤ (vφφi1 )(x) ≤ vφi φ ∈ Φi and i ∈ N (7.8f)

xir − yii = 0 r = 1 and i ∈ N (7.8g)

xi0 − yij = 0 j ∈ Ni and i ∈ N , (7.8h)

where we put superscript (·)(x) and (·)(y) on each variable to denote whether the variable is updated

in the x-update or y-update step. The problem (7.8) falls in the general form of (5.23) with Ri = 1,

where Ki0 and Ki1 are defined in (7.7). Similar to balanced radial networks, each bus i does not

need full information of its neighbor. For each node i, only voltage information v
(y)
Aii

is needed from

its parent Ai and branch power S
(y)
ji and current `

(y)
ji information from its children j ∈ Ci based on
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(7.8). Thus, yij contains only partial information about xi0, i.e.

yij :=


(S

(y)
ii , `

(y)
ii , v

(y)
ii , s

(y)
ii ) j = i

(S
(y)
iAi
, `

(y)
iAi

) j = Ai

(v
(y)
ij ) j ∈ Ci

.

On the other hand, only xi0 needs to hold all the variables and it suffices for xi1 to only have a

duplicate of vi, i.e.

xir :=

(S
(x)
i0 , `

(x)
i0 , v

(x)
i0 , s

(x)
i0 ) r = 0

(v
(x)
i1 ) r = 1

.

As a result, xir, yii in (7.8g) and xi0, yij in (7.8h) do not consist of the same components. Here, we

abuse notations in both (7.8g) and (7.8h), which are composed of components that appear in both

items, i.e.

xi0 − yij :=


(S

(x)
i0 − S

(y)
ii , `

(x)
i0 − `

(y)
ii , v

(x)
i0 − v

(y)
ii , s

(x)
i0 − s

(y)
ii ) j = i

(S
(x)
i0 − S

(y)
iAi
, `

(x)
i0 − `

(y)
iAi

) j = Ai

(v
(x)
i0 − v

(y)
ij ) j ∈ Ci

xir − yii :=

{
(v

(x)
i1 − v

(y)
ii ) r = 1 .

Recall that the local variables to each node i include xir (0 ≤ r ≤ 1), yji j ∈ Ni, and the corre-

sponding multiplier λir, µji. Then the set of local variables Ai (defined in (5.25)) for node i can be

written explicitly as

Ai := {xir, λir | 0 ≤ r ≤ 1} ∪ {yji, µji | j ∈ Ni},

where λ denote the Lagrangian multiplier for (7.8g) and µ the Lagrangian multiplier for (7.8g). The

detailed mapping between variables and those multipliers are illustrated in Table 7.1.

Next, we apply the approach in Chapter 5.2.2 to develop a distributed algorithm that solves the

ROPF problem. To obtain an efficient solution, we will use the generalized augmented Lagrangian
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Table 7.1: Multipliers associated with constraints (7.8g)-(7.8h)

λi1: v
(x)
i1 = v

(y)
ii

µ
(1)
ii : S

(x)
i0 = S

(y)
ii µ

(2)
ii : `

(x)
i0 = `

(y)
ii

µ
(3)
ii : v

(x)
i0 = v

(y)
ii µ

(4)
ii : s

(x)
i0 = s

(y)
ii

µ
(1)
iAi

: S
(x)
iAi

= S
(y)
iAi

µ
(2)
iAi

: `
(x)
i = `

(y)
iAi

µij : v
(x)
i = v

(y)
ij

(5.5), which can be explicitly written as below for our problem.

Lρ(x, y, λ, µ) (7.9a)

=
∑
i∈N

fi(s(x)
i0 ) + 〈λi1, xi1 − yii〉+ 〈µii, xi0 − yii〉+ 〈µiAi , xi0 − yiAi〉+

∑
j∈Ci

〈µij , xi0 − yij〉+

ρ

2

‖xi1 − yii‖22 + ‖xi0 − yii‖2s + ‖xi0 − yiAi‖2n +
∑
j∈Ci

‖xi0 − yij‖22

 , (7.9b)

where

‖xi0 − yii‖2s := (2|Ci|+ 3)‖S(x)
i0 − S

(y)
ii ‖

2
2 + (|Ci|+ 1)‖`(x)

i0 − `
(y)
ii ‖

2
2 + 2‖v(x)

i0 − v
(y)
ii ‖

2
2 + ‖s(x)

i0 − s
(y)
ii ‖

2
2

(7.10a)

‖xi0 − yiAi‖2n := ‖S(x)
i0 − S

(y)
iAi
‖22 + ‖`(x)

i,Ai
− `(z)i ‖

2
2. (7.10b)

Here, the weights in front of each term of (7.10a) are different and the corresponding Lagrangian

(7.9) takes the form of (5.2). We still denote the augmented Lagrangian as Lρ(·) instead of LΛ(·)

since the only parameter that appears in the generalized quadratic penalty term is ρ.

Using the generalized augmented Lagrangian (7.9), we now show how to solve the x-update

subproblem (5.27) using eigen-decomposition under assumption A4. For ease of presentation, we

remove the iteration number k in (5.3) for all the variables, which will be updated accordingly after

each subproblem is solved.

In the x-update, each bus i needs to solve two subproblems (7.11) and (7.12), which update xi0
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and xi1, respectively. The first one that updates xi0 is

min Hi0(xi0) (7.11a)

over xi0 = {v(x)
i0 , `

(x)
i0 , S

(x)
i0 , s

(x)
i0 } (7.11b)

s.t.

 v
(x)
i0 S

(x)
i0

(S
(x)
i0 )H `

(x)
i0

 ∈ S+ (7.11c)

(sφi0)(x) ∈ Iφi φ ∈ Φi, (7.11d)

where Hi0(xi0) is defined in (5.28) and can be written explicitly as

Hi0(xi0) = fi(s
(x)
i0 ) + 〈µii, xi0〉+ 〈µiAi , xi0〉+

∑
j∈Ci

〈µij , xi0〉

+
ρ

2

‖xi0 − yii‖2s + ‖xi0 − yiAi‖2n +
∑
j∈Ci

‖xi0 − yij‖22

 .

The second problem that updates xi1 is

min Hi1(xi1)

over xi1 = {v(x)
i1 } (7.12)

s.t. vφi ≤ (vφφi1 )(x) ≤ vφi φ ∈ Φi,

where

Hi1(xi1) = 〈λi1, xi1〉+
ρ

2

(
‖xi1 − yii‖22

)
.

We first derive an efficient solution for problem (7.11). Note that Hi0(xi0) can be further decomposed

as

Hi0(xi0) = fi(s
(x)
i0 ) + 〈µii, xi0〉+ 〈µiAi , xi0〉+

∑
j∈Ci

〈µij , xi0〉 (7.13)

+
ρ

2

‖xi0 − yii‖2s + ‖xi0 − yiAi‖2n +
∑
j∈Ci

‖xi0 − yij‖22


=

ρ(|Ci|+ 2)

2
H

(1)
i (S

(x)
i0 , `

(x)
i0 , v

(x)
i0 ) +H

(2)
i (s

(x)
i0 ) + constant,
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where

H
(1)
i (S

(x)
i0 , `

(x)
i0 , v

(x)
i0 ) =

∥∥∥∥∥∥
 v

(x)
i0 S

(x)
i0

(S
(x)
i0 )H `

(x)
i0

−
 v̂i Ŝi

ŜHi
ˆ̀
i

∥∥∥∥∥∥
2

2

H
(2)
i (s

(x)
i0 ) = fi(s

(x)
i0 ) +

ρ

2
‖s(x)
i0 − ŝi‖

2
2.

The last step in (7.13) is obtained by completing the square and the variables labeled with hat are

some constants for the x-update.

Hence, the objective (7.11a) in (7.11) can be decomposed into two parts, where the first part

H(1)(S
(x)
i0 , `

(x)
i0 , v

(x)
i0 ) involves variables (S

(x)
i0 , `

(x)
i0 , v

(x)
i0 ) and the second part H(2)(s

(x)
i0 ) involves s

(x)
i0 .

Note that the constraint (7.11c)–(7.11d) can also be separated into two independent constraints.

Variables (S
(x)
i0 , `

(x)
i0 , v

(x)
i0 ) only depend on (7.11c) and s

(x)
i0 depends on (7.11d). Then (7.11) can be

decomposed into two subproblems, where the first one (7.14) solves the optimal (S
(x)
i0 , `

(x)
i0 , v

(x)
i0 ) and

the second one (7.15) solves the optimal s
(x)
i0 . The first subproblem can be written explicitly as

min H
(1)
i (S

(x)
i0 , `

(x)
i0 , v

(x)
i0 )

over S
(x)
i0 , `

(x)
i0 , v

(x)
i0 (7.14)

s.t.

 v
(x)
i0 S

(x)
i0

(S
(x)
i0 )H `

(x)
i0

 ∈ S+,

which can be solved using eigen-decomposition of a 6× 6 matrix via the following theorem.

Theorem 7.1. Suppose W ∈ Sn and denote X(W ) := arg minX∈S+ ‖X −W‖22. Then X(W ) =∑
i:λi>0 λiuiu

H
i , where λi, ui are the ith eigenvalue and orthonormal eigenvector of matrix W , re-

spectively.

Proof. The proof is in Appendix 7.A.

Denote

W :=

 v̂i Ŝi

ŜHi
ˆ̀
i

 and X :=

 v
(x)
i0 S

(x)
i0

(S
(x)
i0 )H `

(x)
i0

 .

Then (7.14) can be written compactly as

min
X
‖X −W‖22 s.t. X ∈ S+,

which can be solved efficiently using eigen-decomposition based on Theorem 7.1. The second problem
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is

min fi(s
(x)
i0 ) +

ρ

2
‖s(x)
i0 − ŝi‖

2
2

over s
(x)
i0 (7.15)

s.t. (sφi0)(x) ∈ Iφi φ ∈ Φi.

Recall that if fi(s
(x)
i0 ) =

∑
φ∈Φi

fφi ((sφi0)(x)), then both the objective and constraint are separable for

each phase φ ∈ Φi. Therefore, (7.15) can be further decomposed into |Φi| number of subproblems

as below.

min fφi ((sφi0)(x))

over (sφi0)(x) (7.16)

s.t. (sφi0)(x) ∈ Iφi ,

which takes the same form as of assumption A4 and thus can be solved with closed form solution

based on the assumptions.

For the problem (7.12) that updates xi1, which only has one component v
(x)
i1 , the closed form

solution is given as

(vφ1φ2

i1 )(x) =


[
λ
φ1φ2
i1

ρ + (vφ1φ2

ii )(y)

]vφ1
i

v
φ1
i

φ1 = φ2

λ
φ1φ2
i1

ρ + (vφ1φ2

ii )(y) φ1 6= φ2

.

To summarize, we show that under assumption A4, the problems in the x-update for each bus i either

has a closed form solution or can be solved via eigen-decomposition. Then we have the following

theorem.

Theorem 7.2. Under assumption A4, the subproblems for ROPF in the x-update (5.27) with Ri = 1

can be solved via either closed form solutions or eigen-decomposition of a 6× 6 hermitian matrix.

In the y-update, the subproblem solved by each node i takes the form of (5.30) and can be

written explicitly as

min Gi({yji | j ∈ Ni})

over {yji | j ∈ Ni} (7.17)

s.t. Pi(v(y)
Aii

)− v(y)
ii + zi(S

(y)
ii )H + S

(y)
ii z

H
i − zi`

(y)
ii z

H
i = 0

diag

(∑
i∈Ci

Pi(S(y)
ji − zj`

(y)
ji )− S(y)

ii

)
+ s

(y)
ii = 0,
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which has a closed form solution given in (5.16) and we do not reiterate here.

Finally, we specify the initialization and stopping criteria for the algorithm. Similar to the

algorithm for balanced networks, a good initialization usually reduces the number of iterations for

convergence. We use the following initialization suggested by our empirical results. We first initialize

the auxiliary variables {Vi | i ∈ N} and {Ii | i ∈ E}, which represent the complex nodal voltage

and branch current, respectively. Then we use these auxiliary variables to initialize the variables

in (7.8). Intuitively, the above initialization procedure can be interpreted as finding a solution to

the bus injection model (3.10), assuming zero impedance on all the lines. The procedure is formally

stated in Algorithm 7.1.

Algorithm 7.1 Initialization of the Algorithm

1: V ai = 1, V bi = e−
2
3π, V ci = e

2
3π for i ∈ N

2: Initialize sφi using any point in the injection region Iφi for i ∈ N
3: Initialize {Iφi | φ ∈ Φi i ∈ N} by calling DFS(0,φ) for φ ∈ Φi

4: v
(x)
i0 = ViV

H
i , `

(x)
i0 = IiI

H
i , S

(x)
i0 = ViI

H
i and s

(x)
i0 = si for i ∈ N

5: yij = xi0 for j ∈ Ni and i ∈ N
6: xi1 = xi0 for i ∈ N

7: function DFS(i,φ)

8: Iφi = (
sφi
V φi

)∗

9: for j ∈ Ci do
10: Iφi + = DFS(j, φ)
11: end for
12: return Iφi
13: end function

We use the same stopping criteria as the one used for balanced networks in Chapter 6, i.e. both

the primal residual rk and dual residual sk are below 10−4
√
|N |. The pseudo code for the complete

algorithm is summarized in Algorithm 7.2.

Algorithm 7.2 Distributed OPF algorithm on Unbalanced Radial Networks

1: Input:network G(N , E), power injection region Ii, voltage region (vi, vi), line impedance zi for
i ∈ N .

2: Output:voltage v, power injection s

3: Initialize the x and y variables using Algorithm 7.1.
4: while rk > 10−4

√
|N | or sk > 10−4

√
|N | do

5: In the x-update, each agent i solves both (7.11) and (7.12) to update xi0 and xi1.
6: In the y-update, each agent i solves (7.17) to update yji for j ∈ Ni.
7: In the multiplier update, update λ, µ by (5.3c).
8: end while
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Table 7.1: Statistics of different networks

Network Diameter Iteration Total Time(s) Avg time(s)
IEEE 13Bus 6 289 17.11 1.32
IEEE 34Bus 20 547 78.34 2.30
IEEE 37Bus 16 440 75.67 2.05
IEEE 123Bus 30 608 306.3 2.49

7.3 Case Study

In this section, we first demonstrate the scalability of the distributed algorithm proposed in section

7.2 by testing it on the standard IEEE test feeders [48]. To show the efficiency of the proposed

algorithm, we also compare the computation time of solving the subproblems in both the x and y-

update with off-the-shelf solver (SDPT3 [85]). Second, we run the proposed algorithm on networks

of different topology to understand the factors that affect the convergence rate. The algorithm is

implemented in Python and run on a Macbook pro 2014 with i5 dual core processor.

7.3.1 Simulations on IEEE test feeders

We test the proposed algorithm on the IEEE 13, 34, 37, 123 bus distribution systems. All the

networks have unbalanced three phase. The substation is modeled as a fixed voltage bus (1 p.u.)

with infinite power injection capability. The other buses are modeled as load buses whose voltage

magnitude at each phase can vary within [0.95, 1.05] p.u. and power injections are specified in

the test feeder. There is no controllable device in the original IEEE test feeders, and hence the

OPF problem degenerates to a power flow problem, which is easy to solve. To demonstrate the

effectiveness of the algorithm, we replace all the capacitors with inverters, whose reactive power

injection ranges from 0 to the maximum ratings specified by the original capacitors. The objective

is to minimize power loss across the network, namely fφi (sφi ) = pφi for φ ∈ Φi and i ∈ N .

We mainly focus on the time of convergence (ToC) for the proposed distributed algorithm. The

algorithm is run on a single machine. To roughly estimate the ToC (excluding communication

overhead) if the algorithm is run on multiple machines in a distributed manner, we divide the total

time by the number of buses.

In Table 7.1, we record the number of iterations to converge, total computation time required

to run on a single machine and the average time required for each node if the algorithm is run on

multiple machines excluding communication overhead. From the simulation results, the proposed

algorithm converges within 2.5 second for all the standard IEEE test networks if the algorithm is

run in a distributed manner.

Moreover, we show the advantage of using the proposed algorithm by comparing the computa-
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(a) Line network (b) Fat tree network

Figure 7.1: Topologies for line and fat tree networks.

Table 7.2: Statistics of line and fat tree networks

Size # of iterations (Line) # of iterations (Fat tree)
5 57 61
10 253 111
15 414 156
20 579 197
25 646 238
30 821 272
35 1353 304
40 2032 337
45 2026 358
50 6061 389

tion time of solving the subproblems between off-the-shelf solver (SDPT3) and our algorithm. In

particular, we compare the average computation time of solving the subproblem in both the x and

y update. In the x-update, the average time required to solve the subproblem (7.17) is 9.8× 10−5s

for our algorithm but 0.13s for SDPT3. In the y-update, the average time required to solve the sub-

problems (7.11)–(7.12) are 3.7× 10−3s for our algorithm but 0.45s for SDPT3. Thus, each ADMM

iteration takes about 3.8× 10−3s for our algorithm but 5.8× 10−1s for using iterative algorithm, a

more than 100x speedup.

7.3.2 Rate of convergence

In section 7.3.1, we demonstrate that the proposed distributed algorithm can dramatically reduce

the computation time within each iteration. The time of convergence (ToC) is determined by both

the computation time required within each iteration and the number of iterations. In this subsection,

we study the number of iterations, namely rate of convergence.

Rate of convergence is determined by many different factors. Here, we only consider two factors,

network size N , and diameter D, i.e. given the termination criteria in Algorithm 7.2, the impact of

network size and diameter on the number of iterations. The impact from other factors, e.g. form of

objective function and constraints, is beyond the scope of this thesis.
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Similar to the method used for balanced networks in Chapter 6, we simulate the algorithm on

two extreme cases: 1) Line network in Fig. 7.1a, whose diameter is the largest given the network

size, and 2) Fat tree network in Fig. 7.1b, whose diameter is the smallest given the network size. In

Table 7.2, we record the number of iterations for both line and fat tree network of different sizes.

For the line network, the number of iterations increases notably as the size increases. For the fat

tree network, the trend is much less prominent compared to the line network. It means that network

diameter has a stronger impact than network size on the rate of convergence.

7.4 Conclusion

In this chapter, we have developed a distributed algorithm for OPF problem on unbalanced radial

distribution networks based on ADMM. We show that the optimization subproblems for each node

reduce to either a closed form solution or an eigenvalue problem whose size remains constant. We

have tested the algorithm on standard IEEE test networks, and the optimization subproblems in

each ADMM iteration are solved 100x faster than using generic iterative optimization solver.
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Appendix

7.A Proof of Theorem 7.1

Let ΛW :=diag(λi, 1 ≤ i ≤ n) denote the diagonal matrix consisting of the eigenvalues of matrix W .

Let U := (ui, 1 ≤ i ≤ n) denote the unitary matrix. Since W ∈ Hn, U−1 = UH and W = UΛWU
H .

Then

‖X −W‖22 = tr((X −W )H(X −W ))

= tr((X −W )(X −W ))

= tr(UH(X −W )UUH(X −W )U)

= tr((UHXU − ΛW )(UHXU − ΛW )).

Denote X̂ := UHXU = (x̂i,j , i, j ∈ [1, n]), note that X̂ ∈ S+ since X ∈ S+. Then

‖X −W‖22 =

n∑
i=1

(x̂ii − λi)2 +
∑
i6=j

|x̂ij |2 (7.18)

≥
n∑
i=1

(x̂ii − λi)2 (7.19)

≥
∑
i:λi≤0

λ2
i , (7.20)

where the last inequality follows from x̂ii > 0 because X̂ ∈ S+. The equality in (7.20) can be

obtained by letting

x̂ij :=

 λi i = j, λi > 0,

0 otherwise
,

which means X(W ) = UX̂UH =
∑
i:λi>0 λiuiu

H
i .
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