SOME THEOREMS IN CLASSICAL ELASTODYNAMICS

Thesis by

Lewis T. Wheeler

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California

, 1969
(Submitted June 28, 1968)



-ii-
Acknowledgments

I wish to express my deepest appreciation to Professor
Eli Sternberg, who proposed the subject of this dissertation, for
his generous help and encouragement throughout the work leading
to its completion. I am also most grateful to my friend and
colleague Matias J. Turteltaub for many valuable suggestions and
for his careful reading of the manuscript. The financial assistance
of the National Science Foundation, which made my graduate studies
possible, is gratefully acknowledged.

The support I have received from my family throughout my
university training, although less tangible, has been no less wvital
and is more difficult to acknowledge. I shall never forget the self-
less helpful attitude of my parents, Mr. and Mrs., L. H. Wheeler,
and of my grandparents, Mr. and Mrs. L. H. Turner. Finally, I
owe a lasting debt to my wife Cecile and our children, Michael and
David, who — with varying degrees of patience — have endured
several years which were as depriving to them as they were

profitable for me.



-iji-

Abstract

This investigation is concerned with various fundamental
aspects of the linearized dynamical theory for mechanically homo-
geneous and isotropic elastic solids. First, the uniqueness and
reciprocal theorems of dynamic elasticity are extended to
unbounded domains with the aid of a generalized energy identity
and a lemma on the prolonged quiescence of the far field, which are
established for this purpose. Next, the basic singular solutions of
elastodynamics are studied and used to generate systematically
Love's integral identityifor the displacement field, as well as an
associated identity for the field of stress. These results, in conjunc-
tion with suitably defined Green's functions, are applied to the
construction of integral representations for the solution of the first
and second boundary-initial value problem. Finally, a uniqueness

theorem for dynamic concentrated-load problems is obtained.
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Introduction

The linearized dynamical theory of elasticity has long been
a highly developed and, in large measure, complete discipline. It
is therefore not surprising that most of the recent publications in
this area of interest are concerned with the exploration of exact or
approximative methods for the solution of relevant problem-classes
and with specific wave-propagation problems. The present
investigation — although ultimately motivated by physically signifi-
cant applications — can make no such immediate practical claims.
Our main objective is to study certain general consequences of the
equations governing classical elastodynamics with limitation to
mechanically homogeneous and isotropic solids. Some of the
results presented in what follows aim primarily at a clarification,
strengthening, and extension of theorems previously available. In
contrast, the work on Green's functions, integral representations,
and concentrated loads in dynamic elasticity, would appear to fill a
gap in the existing literature.

In Section 1 we dispose of required geometric and notational
preliminaries. Here we also cit.e pertinent properties of Riemann
convolutions and introduce the notion of an '"elastodynamic state'',
which lends economy to subsequent developments.

In Section 2 we deduce a generalized energy identity and use
the latter to extend the conventional uniqueness theorem of elasto-

dynamics to unbounded domains in the absence of artificial
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restrictions upon the behavior of the velocities or stresses at
infinity. Further, we employ the foregoing energy identity to
establish sufficient conditions for the prolonged quiescence of the
far elastodynamic field belonging to a solution that corresponds to
initial quiescence. This result, in turn, supplies the principal tool
for a generalization of Graffi's dynamic reciprdcal theore:m'1 to
infinite regions, which concludes Section 2,

Section 3 is partly expository. Here we first cite Stokes'
solution for a time-dependent concentrated load at a point of a
medium occupying the entire space. We then examine relevant
properties of this solution and of the singular solutions appropriate
to force-doublets. This material is followed by a systematic deriva-
tion, based on the reciprocal theorem given in Section 2, of Love's
integral identity for elastodynamic displacement fields. Finally, at
the end of the section, we deduce an analogous integral identity for
the associated stresses.

In Section 4 we take the integral identities of the preceding
section as a point of departure in deriving integral representations
for the solution to the first and second boundary-initial value prob-
lem of dynamic elasticity. This task is accomplished through the
introduction of suitable Green's solutions of the first and second kind.

We also include here some supplementary results on properties of

1 Detailed references to the literature can be found in the body of
this investigation.
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the Green's solutions with a view toward facilitating their actual
construction.

Finally, Section 5 is devoted to a uniqueness theorem for the
second boundary-initial value problem encompassing time-dependent
concentrated loads with stationary points of application in the
interior or on the surface of an elastic solid, This theorem is
proved with the aid of the Green's solutions introduced in

Section 4,
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1. Notation and mathematical preliminaries.

Throughout this investigation, lower-case Latin or Greek
letters, when not underscored, stand for scalars; lower-case Latin
letters underscored by a tilde denote vectors, while lower-case
Greek letters underscored by a tilde designate second-order tensors.
Upper-case letters are ordinarily reserved for sets; in particular,
upper- case script letters are used exclusively for sets of functions.
The letter E is set aside for the entire three-dimensional euclidean
space. If x is the position vector of a point in E, the symbols
B(s(f) and Sé(i{) are employed, respectively, for the open spherical
neighborhood (ball) of radius § about x and for the spherical surface

of radius 8§ centered at x, Thus,

By(x)={y |y€eE, |ly-x|<s} (6>0), (1.1)

Syt ={y [y€E, ly-x =8} (8>0). (1.2)

Further, we agree to write Béand S6 in place of Bé(O) and 86(0).
The symbol R, in the absence of any qualifying restrictions,

will always denote an arbitrary region in E , i,e. an open connected

set in E together with some, all, or none of its boundary points. The
interior, the closure, and the boundary of R — in this order — will be

designated by R, R, and 8R. Further, if x € R, we agree to let R__

represent the set obtained from R by deletion of the point x and write

R_in place of (R)X .

In particular, we say that R is a regular region if it is open

and there is a 8, = 0 such that for every §>6, the boundary of RﬂB(S
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consists of a finite number of '"closed regular surfaces'', the latter
term being used in the sense of Kellogg [1] (page 112). Note that a
regular region, as defined herel,_ need not be bounded and, if
unbounded, need not be an exterior region since its boundary may
extend to infinity. In addition, the boundary of a regular region may
have edges and corners. If R is a regular region, we designate by
8R the subset of OR consisting of all '"regular boundary points', i.e.
the set of all points of d9R at which its normal is defined.

We will use the symbol T for the entire real line and T for an
arbitrary (open, closed, or half-open) interval of T. The interior
and closure of T will be designated by T and T, respectively.

Finally, we adopt the notation
T =(-00,0], TT=T[0, ) . (1.3)

If a and ]3 are vectors, a -Rand aAb are their scalar and

vector product, respectively. Standard indicial notation is used in

connection with the cartesian components of tensors of any order:
Latin subscripts and superscripts — unless otherwise specified —
have the range (1,2,3), summation over repeated indices being
implied. Also, if £ and g are second-order tensors, we write e-g
for the fully contracted outer product €;: 05+ As usual, (Sij is the

ij
Kronecker-delta.

We will frequently need to deal with scalar-valued and tensor-

valued functions of position and time, having as their domain of

. Our definition of a regular region differs from, and is considerably
broader than, Kellogg's [1] (page 113).
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definition the cartesian product of a set P in E and a time-interval T.
If ¢ is a scalar-valued function defined on1 P X T, we denote its

value at (x, t)€ PXT by CP(},E,’ t) and mean by o(-,t), the subsidiary
mapping of P obtained upon holding t fixed. The analogous interpre-
tation applies to o(x, -) and to tensor-valued functions. As for time

and space-differentiation, we write

L . S m=1,2 1.4
® =~ % ij... .. kT Ox 0x,...0x (=l &500e)s (1.4)
ot e icinmont i k

(m indices)

provided the partial derivatives here involved exist. Ordinarily we
shall write cf), ¢ instead of cp(l), cp(z). Analogous notations will be
employed for differentiation of tensor-valued functions of non-zero
order.

We turn now to notational agreements related to the smooth-

ness of functions. If P is a set in euclidean n-space, we denote by

C(P) the class of all tensor-valued functions of any order that are
defined and continuous on P. Next, if a is a positive integer, we say
that a function belongs to Ca(P) if and only if it is in C(P) and its
partial derivatives of order up to and including a exist on the interior
of P and there coincide with functions that are continuous on P. If

P is a setin E, T is a time-interval, and o a non-negative integer,
we let C(a)(PXT) stand for the set of all functions in C(PXT) having

continuous partial time-derivatives of order up to and including o on

Here and in the sequel we use the conventional notation for the
cartesian product of two sets.



Tk

PXT, .provided each of these derivati*ves1 coincides on PXT with a
function continuous on PXT. Finally, Qa denotes the class of all
functions in C*(T) that vanish on T~

The order-of-magnitude symbols '"O'" and ""o'"" are used con-

sistently in their standard mathematical connotation. For example,
if,}: ER, v is defined on RY X'°I°‘, and n is a real number, we write
v(x, - ¥=0( I}'s-z 1) as E‘-*th uniformly on (-o0o,t], if and only if there
exist real numbers §(t) and m(t) such that }iéRyﬂst(z) implies
Il’,(f’"r)kmlf”,}fln for every T €(-o0,t]. ~

For future convenience we now recall a version of the

divergence theorem that is adequate for our purposes.

Theorem 1.1. Let R be a regular region and let EE the outward

unit normal of 9R. Suppose

£ ec'R)NCR) ,

ahd assume the set
{x |x€R, £(x)#0}

has a bounded closure, so that f is of bounded support. Then,

[v.gav=[1.naa, | (1.5)%
R 9R

provided the volume integral in (1.5) exists.

A Observe that the class of functions C(O)(P XT) is identical with
C(P XT).

2 Here V is the usual gradient operator.
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The truth of the preceding theorem follows trivially from the
strongest form of the divergence theorem considered and proved by
Kellogg [1 ]1 (page 119).

Next, we collect here certain results from the theory of
Riemann convolutions that will be needed later on. To this end we

first introduce

Definition 1.1. (Convolution). Let P be a set in E and suppose
pec(PxTh), yec@xTh) .

We call the function & defined by

0 for all (x, t)EPXT"
29(}’5‘,1:): £ (1.6)

Jole, =¥, T)aT for all (x, nepx T
0

the convolution of w and . We also write

d=pxy, Hx,t)=[exV](x,1t)

to denote this function and its values.

Lemma 1.1, (Properties of convolutions). Let P either be an open

or closed region in E or a regular surface in E. Let

wecPxT™y, veemxth), weempxth) .

To avoid confusion we emphasize that Kellogg's '"regular region'' is

a closed region, the boundary of which is a single '"closed regular
surface' (in Kellogg's sense of the latter term).



Then:

(@) wxyec(PxT);

(b) xy=1Yxep;

(c) s (Vxw)=(PpxYP)xw=0x ¥ w;
(d) ex(V+w)=px§+oxw;

(e) ®%y=0onPXxT" implies »=0 on PXT* or §=0 on PxT ™.

Property (a) is an elementary consequence of Definition 1.1.
Proofs of (b), (c), (d), and (e) may be found in Mikusinski's [2]1
book. The following two lemmas are readily inferred from

Definition 1.1 and (a) of Lemma 1.1.

Lemma 1.2. (Time-differentiation of convolutions). Let P be as in

Lemma 1.1 and let

pecexr?), yee@xT?), s=psv.

Then:

@) sccBpxrh;
(b) = U+o(-, 0)§ on PXTT ;

() @(-,0)=0 on P implies sec)@x¥F) .

Lemma 1.3. (Space-differentiation of convolutions). Let R be an

open or closed region in E and let

vecl@®xth), vecl@xT™), s=pxu.

Then:

! Properties (b), (c), and (d) are established in Chapter I of [2].
Titchmarsh's theorem (e) is proved in Chapter II.
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a) sect@xTh) ;
(b) & ;=0  xV+oxy . on RxT;

¥ 3

() ®(-,0)=0 or ¥(+,0)=0 on R implies scc' RxF).

As for convolutions of a scalar and a vector-valued function or of a

scalar and a second-order tensor-valued function, we agree to write

v.=¢*u if and only if vy EPRY
(1.7)
2:@:}<f1}i if and only if aij =0k wij .
Further, we adopt the notation
UXRV=U. %V, ,
o (1.8)

The remainder of this section is devoted to essential pre-
liminaries pertaining to the linearized dynamical theory of homo-
geneous and isotropic elastic solids. For this purpose we

introduce

Definition 1.2. (States. Elastodynamic states). Let R (not

necessarily open or closed) be a region in E and let T (open, closed,

or half-open) be a time-interval. If u and g are, respectively, a

vector-valued and a second-order tensor-valued function defined on

RXT, we call the ordered pair S=[u, 0] a state on RXT. We say

that S=[u, 0] is an elastodynamic state with the displacement field

u and the stress field 0, corresponding to the body-force density £,

~

the mass density p, the dilatational wave speed Cyo and the shear-

wave speed Cps and write
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S= [u’ O]G&(f, P, C1: Cz;RXT) s

provided:
() wec?@xT)NC RXT), 0€CRXT), £ECRXT) ,

while p, Cl’ and c, are constants subjectt_o_

p>0, O<——-2—- c, <€

7T 2 1 | (1.9)

(b) u,;0,f,0s Cys and c, on RET satisfy the equations

G1j,j+fi: pU; » : (1.10)
_ 2 2 2 1
Gij— p(c1 - 2‘:2 )6ijuk, k+2.pc2 u, g * (1.11)

If, in particular,
(o] =
T:T,u:QJo RXT , (1.12)

we say that S is an elastodynamic state with a quiescent past and

write
S=[u,01€8 (f,p,c;,c,5R) . (1.13)

Equations (1.10) represent the stress equations of motion —
(1.11) the stress-displacement relations of classical elastodynamics.
In view of (1.10) and (1.11), the regularity assumptions under (a),
though mutually consistent, are partly redundant, Note that (1.11)
implies the symmetry of the stress-tensor field o on RXT since g

is continuous on RXT. The wave speeds S and c, are expressed by

If | is a second-order tensor, w(ij) and w[ij] are the components
of the symmetric part and of the skew-symmetric part of |,

respectively.
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201-vp v
&y /(1 ZX)Q p B ,/ (1.14)

in terms of p, the shear modulus u, and Poisson's ratio v of the
elastic solid. Also, the inequalities (1.9) required under (a) of
Definition 1.2 are equivalent to

u>0, -I1<v <z . (1.15)

Moreover, (1.9) assure the positive definiteness of the quadratic

function e that is defined by

_p 2 |
e(vp) = 2 ,:(C Lo )CPu 33 202 cPiijij_l (1.16)

for every symmetric second-order tensor ¢ . If ¢ is the infinitesi-

mal strain tensor associated with u, i.e.
Wpr 4 9 1.17
(i, 3) ( )
then e(e¢) represents the strain-energy density appropriate to the

elastodynamic state S.

If R is a regular region, S= [}3‘,’ g] is a state on RXT, and n
is the unit outward normal vector of 9R, we call the vector-field s
defined by

% 1
= n 0
s; Oijnj cn ORXT , (1.18)

the tractions of S acting on 9R .
We now define equality and addition of states, as well as multi-

plication of a state by a scalar constant. To this end let R be an

: Recall that 8R represents the set of all regular boundary points.
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arbitrary region, suppose S=[u,g] and 8'=[u}, g'] are states on

RXT and let A be a real number. Then,

S‘:S(a)© u.lzuga) . O.'.=0§3.1) on R,X’i‘, (1.19)

and, for fixed k, adopt the notation

1_ |_ 1 _ 3 :
S—S’kﬁui_ui’k, Gij_oij,konRXT’ (1.20)

provided the required time and space-derivatives exist. Finally,
pxS=[oxu, pxg] (1.21)

whenever the underlying convolutions are meaningful.



~14-

2. Extension of the uniqueness and the reciprocal theorem in
elastodynamics to unbounded regions.

The current section serves a dual purpose: here we extend
Neumann's [3 ] uniqueness theorem of classical elastodynamics to
unbounded domains and subsequently generalize Graffi's [4] recip-
rocal identity to a pair of elastodynamic states associated with an
infinite region. The results thus obtained are essential prerequisites
to the determination of integral representations for the two funda-
mental problems of dynamic elasticity carried out later on; at the
same time these results are apt to be of interest in themselves.

The principal tool used to establish the two theorems alluded
to above is supplied by a generalized energy identity, which we state
and prove presently. This lemma is an elastodynamic counterpart of
a result due to Zaremba [5] for the scalar wave equa.‘tion1 . Indeed,
our method of proving the generalized uniqueness theorem is
suggested by the treatment in [5] of uniqueness issues pertaining to

the wave-equation. A lucid account of Zaremba's paper is given by

Fritz John in [6].

Lemma 2.1. (Generalized energy identity). Suppose R is a regular
region and

(a) S:[E’gjeeo(i’ D,Cl,CZ;R):

Zaremba's energy scheme was rediscovered independently by
Rubinowicz [7] and by Friedrichs and Lewy [87. See also Courant
and Hilbert [9] (pages 659-661) where Zaremba's result is extended
and applied to the general second-order hyperbolic equation.
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(b) TECl R) is a given (scalar-valued) function such that the

set
{x |x€R, 7(x)>0]

is bounded. Let ¢ be the (second-order tensor-valued) function

definedhz
- 1[8 g ] for all x GR 2
Cﬂlj(g)—-z 'g}';jui(ﬁa""(}i))+'5;§iuj(§:’r(§)) for all x €R . (2.1)
Then

T(x) T(x)
j J u(x,t)- s(x, t)dtdA+f f U(x,t)- f(x, t)dtdV =
9R 0 R O

J{e@e)+8 860 T [1-c F(97()) T
R

+ 2t T 1P} av 2.2)

where s are the tractions of S acting on O9R and the function e is given

by (1.16).

Proof. For convenience introduce the auxiliary vector-valued func-
tions p and y through
T(x)
— L .
pi:ﬁjoij on RXT, Vi(X):J pi(x,t)dt for all x€R. (2.3)
0
In view of the smoothness of T stipulated in (b), and because of the
regularity properties implied by (a) and Definition 1.2,

vec ®R)NC® . (2.4)

Further, v has bounded support by virtue of hypotheses (a), (b)
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and (1.12). From (2.3), (1.10), (1.11), and (1.17) follows

T(x)
evi= [ {8 G 0 0bs R g [ 1P -8, 0. £6g,0)) at
0
+p(x, T(x))- VT(x) for all x €R , | 2. 51
while (1.11), (1.16) yield
& (x, t)* 0 (%, t)= % e(e(x, t)) for all (x,t)eRxT . (2.6)

Now substitute from (2.6) into (2.5) and use (1.12) to infer

Vev(x)=e(e (x, TE)+p (%, T(x))- VT (x)

T(x)
+ 5866 -[ G 0 £es var @.7)
0

Next, note from (2.1), (1.17) that
B50)= €560, TE+ 3| 860 T GNT GG T 60 |

whence (1.16), (1.11), and the first of (2.3) furnish

e(p(x))=e(g (x, T(x)))+p(x, T(x))- VT(x)

+ 8 (el e ks, T(x)) VT (x) 17
+2 e 2?5, )T TE)

This equation, because of Lagrange's identity
&2 (v 2= - TP HE AT T

may be written as

- Recall that &€-0=8&..0
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2

4
~

(g, 76+ plax, TE) I T()=e (@())- § € L8 (x, T (V7))

+-§ (clz—czz) [i(x, T(X))/\VT(?S)]Z for all ’iER > (2.8)
Combining (2. 8) with (2.7) one has

Ve v(x)=e(@E)+ 587 6, 1)) [1-c 2 (97(x))? ]

T(x)

[ 8 ) £, )t B (e f - o )G, TEINT T 1 (2.9)
0

for all x€R. Froni (2.9), the regularity assumptions contained in
hypotheses (a) and (b), and the boundedness of the support of v, itis
clear that V-Z is properly integrable on R. Thus, integrating both
members of (2.9) over R, one is entitled subsequently to apply the
divergence theorem (Theorem 1.1) to the vector field v since the

latter conforms to (2.4) and is of bounded support. The desired

result (2.2) then follows immediately with the aid of (2.3) and (1.18).

This completes the proof.

Suppose now in particular R in Lemma 2.1 is bounded and

restrict T to be a positive constant, say T=t. In these circumstances

one recovers from (2.2) the classical energy identity of elasto-

dynamics in the form

t t
| Jaeen-se varaat] [aen- £ narav=
9R O RO
[ retets, tn+ 526, 11 av . (2.10)

R
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As will become apparent shortly, the role played by the generalized
energy identity (2.2) in connection with the extended uniqueness
theorem to which we turn now is strictly analogous to that played by

(2.10) in Neumann's [3 ] familiar uniqueness argument for bounded

regions.

Theorem 2.1. (Generalized uniqueness theorem). LetR be a

regular region and let S', S'" be two states with the following

properties:
() s'=[u.g'I€E(E, o, cp, cpRXT ),
st'=[u'",g'" J€E&(f, p, ¢y, <:2;§><T+) ;
(b) w'(+, 0)=u'"(-, 0), Q'(-, 0+)=0'"(:, 0+) on R;

further, suppose either

(c) u'=u'" on orxT T

A~ —

(d) s'=s'' on ESRXT+, where s' and s'' are the respective

tractions of S' and S' acting on 9R.

Then S'=g8" QE-I—{XT+.
Proof, Define the state S on RXT by

S=[w,g]=8'-8" on RXT", u=g=0 on RXT ~. (2.11)

~ ™

From (a), (b), (2.11) and Definition 1.2 one finds without difficulty
that
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= 1
S€€ (0, p, ¢y cy3R) . (2.12)

By (2.11) and (1.18), since either (c) or (d) holds,
EN
4.s=0 on ORXT , (2.13)

where s are the tractions of S acting on 9R. Now fix (?5,’ t)€RX'i‘+ and

define the scalar-valued function T through

T(y)=t- |y-;< |/2cl for all xei ; (2.14)
Then, evidently,
1= = & 1 2
TeC (RX)OC(R), [vr(y) )™= > for all y€RX 5 (2.15)
~ = 4(: ~ ~
1

and because ¢, is positive by (2.12) and Definition 1.2,

{y ly€R, 7(x)>0} is bounded. (2.16)
Choose 5> 0 such ’chat-}_é»6 (X)CR and set
O e
R =R-B(x) (0<8<5) . (2.17)

In view of (2.12), (2.15), (2.16) and Lemma 2.1, one concludes that
(2.2) holds for each member of the family of regular regions defined
in (2.17). Thus, bearing in mind (2.13), the second of (2.15), and

the fact that the body-force field of 3 vanishes identically, one has

Here and in the sequel, we write 0 in place of the body-force argu-
ment of the elastodynamic state unider consideration if the body
forces vanish identically on the appropriate space-time domain,

& Note that the gradient of the function T given by (2.14) has an
(irremovable) finite discontinuity at y.
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(y)

and

dfy,))- s(y.\)drdA=

O

—
& €y A

wn
5

[{eton+ 2262, 7+ L (22 My, ignavrp Pl av  (2.18)

Rs

for every 8€(0, 60), where the functions e and ® are given by (1.16)

and (2.1), while s now stands for the tractions of S acting on 8R6 .

Owing to the continuity of T on R and of 14,0 on RxT,

T(y)
im [ [Tag.)es(ynandaso,
g0 S,() 0

so that passage to the limit as §—0 in (2.18) gives

[leteyn+ 224"

iy, TN+ 2 (e 2 eV Bily, iy AVT() TP fav=o.  (2.19)
R

~ ~

Recall next that the inequalities (1.9), which are implied by (2.12),
are sufficient for the positive definiteness of e, Moreover, (1.9)
assure that all terms in the integrand of (2.19) are non-negative.

Therefore, and since the integrand in (2.19) is continuous on RX,

~

U(y, 7(y))=0 for every y€R_ .

~

Finally, invoke the first of (2.15) and the regularity of u on RxT

implied by (2.12), and use (2.14) to confirm that
U(x, t)=t(x, T (x))=0

Consequently, (x,t) having been chosen arbitrarily in RX'i"+,



4=0 on RXT . (2.20)

But (2.20) and (2.12) furnish

The desired conclusion now follows from (2.11).
An extension of Theorem 2.1 to mixed boundary conditions is
entirely elementary, Similarly, the generalization of Lemma 2,1

and Theorem 2.1 to anisotropic and nonhomogeneous solids presents

no difficulties. Next, in the first boundary-initial value problem
(surface displacements prescribed) uniqueness prevails for unbound-
ed domains even if (1.9) is replaced by the weaker requirement that
¢y and c, be real, as can be shown by adapting an argument due to
Gurtin and Sternberg [10] for bounded isotropic elastic bédies, * The
relaxation of the rather stringent smoothness hypotheses involved in
(a) of Definition 1.2, which render Theorem 2.1 inapplicable to
certain physically important problems, is in need of further
attention.

It should be pointed out that an elastodynamic uniqueness
theorem wvalid for infinite regions may alternatively be based on the
classical energy identity (2.10), following Neumann's procedure, if

one introduces suitable restrictions on the orders of magnitude of the

velocity and stress field at infinity. The essential advantage of

I See also Gurtin and Toupin [117],where the result of [10] is
extended to anisotropic media.

In this connection see a recent paper by Knops and Payne [12 ],
which contains a uniqueness theorem for weak solutions in elasto-
dynamics, with limitation to bounded domains.
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Theorem 2.1 stems from the fact that it does not involve such arti-
ficial a priori assumptions. In this connection we recall that the
analogous uniqueness issue in elastostatics, where the governing
equations are elliptic rather than hyperbolic, is considerably more
involved. For exterior unbounded domains elastostatic uniqueness
theorems that avoid extraneous order prescriptions at infinity were
established by Fichera [13], as well as by Gurtin and Sternberg [14].
On the other hand, the uniqueness question associated with boundary-
value problems in the equilibrium theory for general domains whose
boundaries extend to infinity is yet to be disposed of satisfactorily. :
In preparation for a generalization of Graffi's [4] dynamic

reciprocal identity to unbounded regions we now proceed to

Lemma 2.2. (Sufficient conditions for the prolonged quiescence of

the far field). Let R be an unbounded regular region and suppose:

(@) s=[u,gl€€ (f, p,cy,cyiR) 5

£=0 on (R-A(t))X[0,t],

~

and, if 8R is unbounded,

4-3=0 on (BR-A()X (0,17,

ray

where s are the tractions of S acting on 9R..

Then, for each t>0, there is a bounded set Q(t)CR, depend-

ing only on A(t), such that

1 For the special case of the first and second equilibrium problem
appropriate to the half-space this question was settled by
Turteltaub and Sternberg [15].
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u=0=0 on (R-Q(t))x[0,t]. (2.21)

~

Proof. Fix t>0, let §> 0 be such that

a - . .
RUA(t)C B?S if 9R is bounded , 2.22)

A(t)c B _ if 9R is unbounded,

8
and consider the set
Qt)=RNB

sH2c )t (2.23)

Note that Q(t), as defined in (2.23), is a bounded subset of R. With

a view toward shoWing that (2.21) holds, choose
(y s M ER-Q(t)) X (0, t] (2.24)

and regard (y, A\) as fixed. Define the function T by

T(x)=A- |x-y|/2¢c, for all x€R . (2.25)
Evidently,
1 - 21
TeEC(R_INCR), [VT(x)] "= > for all x€R__, (2.26)
b 4 ~ 4c ~ &
1
and since cl>0,
{x |x €R, T(§)>0}:§HB2)\C1('X) o (2.27)

From (2.23) and (2.24) one draws that BZ)\C (y) does not intersect
l ~

EG. Thus, (2.22) and (2.27) imply

{x |x€R, T(x)>0}cR-A(t)UBR if OR is bounded ,
_ _ (2.28)
{?iI?EER’ T(§)>O}CR~A(’£) if OR is unbounded .

Now call on (2.24), (2.25) to arrive at
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T(x)<t for all x€R . (2.29)

Hypothesis (a) requires u to vanish on RXT . This fact, in conjunc-

tion with (2.28), (2.29) and hypothesis (b), justifies

T(x)
j E(}i,n)-i(x,n)dn =0 for all },EE—P-\ ’
v (2.30)
T(x)
j g(}i,n)-i(x,n)dnzo for all x€OR .
0
Next, let €O>O be such 1:ha,’c—]§»g (v)ER and put
ON
R§=R—B§(X) (0< E< 50) . (2.31)

One concludes from (2.26), (2.27), hypothesis (a), and Lemma 2.1
that (2.2) holds for each Rg in (2.31). Thus, (2.30) and the second

of (2.26) yield

()
r. ~
| Jaemrgegmanaas
Sg(x) 0

[{etw o+ 32 &6, ren+ £ (e 22 it TV Te Fav,  (2.32)

Re

for every E€(O0, go), where e and @ are given by (1.16) and (2.1),
while s here denotes the tractions of S acting on BRg. Since T is
continuous on R and 14, g are continuous on RX'(f‘ , the left-hand

member of (2.32) tends to zero as € -0, whence



1.

[{ete e+ 3262 e, 1+ G (e 2- e P Like, 1) AVTE) P fav=0 . (2.33)
R

The inequalities (1.9), which are implied by hypothesis (a),
are sufficient for the positive definiteness of e and ensure that each
of the three terms of the integrand in (2.33) is non-negative.

Accordingly, this integrand being continuous on R__,

40, 7(x))=0 for all x€R .

L

Invoking once again the continuity of T on R and of 4 on RX'cf‘, one

finds that
iy, 0)= 8y, T(=Q

But (X,’)‘) was selected arbitrarily in (R-Q(t))X(0,t]. Hence
§=0 on (R-Q(£)X(0,t],

which, because of the regularity and initial quiescence of u assumed

in hy'ﬁothesis (2), gives

u=0 on (R-Q(t))x[0,t] . (2.34)
By (2.34), and because (1.11) hold on RX’of‘,

9,:2 on (R-Q(NX[0,t]. (2.35)

Recalling that Q(t) is closed, one shows readilyl that the closure of
R-Q(t) contains R-Q(t). Therefore, appealing to the continuity of u

and g on_f{xsf‘, one sees that (2.34), (2.35) imply (2.21). Finally,

1Cf. Exercise 1 (page 37) in [161].
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note that (2.22) and (2.23) imply that Q(t) depends exclusively on A(t).
Since t was chosen arbitrarily, the proof is now complete.

It is essential to recognize that if a state with a quiescent
past is characterized as the solution of a standard boundary-initial
value problem in elastodynamics, the decision whether or not

hypothesis (b) of Lemma 2.2 is met, is immediate from the data.

Theorem 2.2. (Extension of Graffi's reciprocal identity to unbounded

regions). Let R be a regular region and suppose:

. (a) S= [P:’g]eeo(i’ P> Cl’ CZ ;-ﬁ-), Slz[g':g‘ ]E&O(’E‘, D,Cl, CZ;_R) 5

(b) S satisfies hypothesis (b) of Lemma 2.2 if R is un-

bounded.

Then, for every t>0,

[l 1A+ [t g, )av=[ s 'su e, DA+ [TExulis av,  (2.36)"
oR. R OR R

where s and s' are the tractions of Sand ' acting on 9R.

Proof. Itis clear from the present aypotheses and Lemma 2.2 that
the integrals in (2.36) are proper even if R is unbounded. Choose

t >0 and hold t fixed for the remainder of the argument. Define ithe
vector field .4 by

vi(}Q:[Oij>:<u3 Xx, t)- [o{J.:::uJ.](;i, t) for all x€R . (2.37)

In view of hypothesis (a), Definition 1.2, Lemma 1.1, and Lemma 1.3,

1 Recall the notations adopted in (1. 8).

H
1



) -

Xecl (R)NC(R) , (2.38)

= =u! rul .
Vi, i(?f)" [Gij, i"‘uj ](2& t)+[01j>' ng i ](Zi: t)

= ! U, -Lol.xua. .
[of; w16 0)-[opu, ;1 0

for all x€R. Hence hypothesis (a), (1.10), together with symmetry
of 0 and o', furnish
vev(x)=p[Uxu'l(x, £)- [ xu' 1(x, t)+{oxe! 1(x, t)
-p [E ":‘E]}f‘: t)+|:£|*2](}’5’ t)- [g'*E](EE, t) , (2.39)
where
B B0 o Ehm0L. o s
15700, 3) 7 i §)
On the other hand, (1.11), (1.8), and the commutativity of convolu-
tions asserted in (b) of Lemma 1.1, imply
gxg'=0g'x¢ onRXT . (2.40)
Now note from hypothesis (a) and Definition 1.2 that
u(-, 0)=u'(+, 0)=g(+, 0)='(-, 0)=0 on R .
Consequently, two successive applicétions of (b) in Lemma 1.2 give
L dsu'=usi' on RXT T, (2.41)

o N Ay

aku' =ux
~

»
o~ ~ ~

Combine (2.39), (2.40), and (2.41) to obtain
vV ey(x)= L{’*E](iﬁ’ t)- [i*g' J(x, t) for every x €R . (2.42)
Frormn hypotheses (a), (b), Lemma 2.2, and (2.37), one infers
that v has bounded support. This being the case, (2.42) and the
continuity of f'xu and i:::g‘ on Rx% assured by Lemma 1.1 imply

that V. v is properly integrable on R. The preceding observations
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enable one to apply the divergence theorem (Theorem 1.1) to v
on R. In this manner and by recourse to (2.37), (2.42), and (1.18)
one confirms that (2.36) holds. This completes the proof since t
was chosen arbitrarily.

It is worth mentioning that the foregoing argument, in con-
trast to Graffi's [4] proof (which is confined to bounded regions),

avoids the use of the Laplace transform.



-29-

3., Basic singular solutions. Love's integral identity for the
displacements and its counterpart for the stresses.

In this section, which is partly expository, we first cite
the fundamental singular solution of the field equations in elastody-
namics. This solution, due to Stokes [17], corresponds to the
problem of a time-dependent concentrated load at a point of a med-
ium occupying the entire space., We then establish certain relevant
properties of Stokes' solution and of the:associated dynamic doublet
solutions., The foregoing singular states are subsequently used to
establish in an economical manner Love's [18] integral identity for
displacement fields of elastodynamic states with a quiescent past,
as well as an analogous identity for the associated fields of stress.
The results thus obtained, which are applicable also to unbounded
regions, are essential preliminaries to the construction of integral
representations for the solutions of the fundamental boundary-
initial value problems in dynamic elasticity, carried out in
Section 4,

We denote by

S¥(x, tiy @)= [, tiy lg), 0 (x, tiy le) ] (3.1)

for every (x, t)EEyX "f‘, the values at (35, t) of the state whose dis-
placement and stress field is given by Stokes' [17] solution1 appro-
priate to a concentrated load acting at y parallel to the %, -axis.

Here ekg(t) is the load-vector at the instant t, if Sk is a unit vector

! See also Love's [19] treatise (page 305).
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in the xk-direction. Wé assume the "force function'" g twice
continuously differentiable on (-0o0, c©). The notation used in (3.1) is
to convey that the displacements and stresses, for fixed x,t, and y,
are (linear) functionals of g. Since

Sk(}i, ty |g)=Sk(§-z, t;g[g) for all (x, t)GExXT‘ 5 (3.2}
it suffices to quote Stokes' solution explicitly merely for the special

choice y=0: for every (x, t)EEOX’Qf‘ one has

~

k r 3X.Xk 6.k 1/C2
417 pu; (ﬁ,t;glg)ﬂm 13 - 1?] dr Ag(t-Ax)dA
= 1/c1
g(t -x/c)) - 2 g(t- x/cz)]+ g(t -x/c,), (3.3)
e €2 — 2

; 1/c
bx.x.x 6 x +6 X +85. 2
2 ik k k
] 6c2[ Lk L ]J‘ Ag(t-Ax)d)
X x l/C
1
6x.x.x 8 sXq_ +8. x.+6 Cy\2
k k Kk
+2[ = ']5 = =i 13 J [g(t x/cz) ( >g(t x [c )
x x
inx.xk c, 3
= [g(t'X/Cz"(-q) (b-aury )|
2

7550 12(2) Joteonseg £ ey ]

1% H6: =
_—_J_al_. e
[g(t-x/cz)-f S g(t—x/cz)] . (3.4)
Here and in the sequel x stands for |x|, The displacements (3.3) gre

easily seen to agree with the representative displacement field
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(corresponding to a force parallel to the xl-axis) appe.aring in [19]
(page 305). The position-dependence of the integration limits in
Stokes' original formulas has, for convenience, been eliminated
through a change of the ‘integration variable, The stresses (3.4) are
readily found from (3.3) by use of (1.11).

Stokes' solution is deduced by Love [187, [197 through a
limit process based on a family of time-dependent body-force fields
that tends to a conéentrated load, in analogy to the limit treatment
by Kelvin and Tait [20] (page 279) of the corresponding elastostatic

problem.l We now adopt

Definition 3.1. (The Stokes-state). Let y€E, g€ qz, and let p, CysCy

satisfy the inequalities (1.9). We then call the state S<(-, ;v |g)

defined on E,XXT by (3.1) to (3.4) the Stokes-state for a concentrated

load at y parallel to the xk-axis, corresponding to the force func-

tion g and to the material constants p, CysCye

Theorem 3.1. (Properties of the Stokes-state). The Stokes-state

| Sk(-, -3vlg) of Definition 3.1 has the properties:

k
(a‘) S (. [ ’zlg)eao(Q; Ps C].’ CZ;EY) 3

() ux sy le)=o(lx-y [, 0¥ - sy le)=o(x -y %)

as x -»y, uniformly on (- oo, t]f_o_; every t€(-oo, o);

1 See Sternberg and Eubanks [21 ] for an explicit version of this
limit process. Equations (3.3), (3.4) reduce to the solution of
Kelvin's problem if g(t)=1 (-oco<t<oo).
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(c) lim r sk(x, . ;Xlg)dszggk on (-oco, ®) , W
'n--)O wo e ~
S _(y)
Y 1
(3.5)
: k
lim J (x '»X‘)A s (x, 3y 'g)dszg on (-oo, ),
) -

where sk(- , *;v |g) stands for the traction vector of Sk(- y 23y lg) acting

on the side of Sn(y) that faces Y ek denotes the unit base-vector in

the X - direction, and the preceding limits are attained uniformly on

(-o0,t] for every t&(-oo, 0);

(d) if heq®, then

k k
hx3S (-, - ;rglg):g*s (s - ;zlh) on Erxx‘f g

Proof. In view of the translation identity (3.2) it suffices to take
y=0. To verify (a), note first that (3.3), (3.4), together with the
assumed regularity of g, imply that gk(- 5 ;glg) and gk(- y ;glg)
satisfy the smoothness requirements in part (a) of Definition 1.2.
Moreover, since g vanishes on T , one draws from (3.3) that

uk(n, -;0 Ig):O on EOXT' .
To complete the proof of (a) substitute from (3.3), (3.4) into (1.10),

(1.11). Property (b) follows at once from (3.3), (3.4) and the
hypothesis that gEQZ.

1 A subscript attached to an ""element of area' or an '"element of

volume' in a surface or volume integral indicates the appropriate
space variable of integration.
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Consider now part (c). After a brief computation based on

(3.4) and (1.18) one finds that

k 1

- [ftomoleaa =3[ glr-nke))2g(r-nle,)
S ~

n

+- g(T-mle )_,.E.IJ g(T-nle )]ek (3.6)
C‘1 1 CZ 2 ~
for every T&(-00, c0) and every >0, so that

lim s (x T5 Olg)dA g(T)e for every T €(-00, 00) .
n=0g "~
n

The uniformity of this limit follows from the inequality

Irsk(x,v,olg)dA -g(Me® |20 max _|g|

2
~

S';J €2 (-00,t]
n

which holds for every t€(-oo, ) and every 1 >0, provided T€(-o0,t],
by virtue of (3.6) and since g vanishes on (-0, 0] and is continuously
differentiable on (-0, ©). The second of (3.5), for 'X:g, is im-
mediate from (3.4) and (1.18).

Finally, property (d) is readily inferred from (3.2), (3.3),
(3.4), Definition 1.1, (1.21), and the assumption that g and h are

both in QZ. This completes the proof in its entirety.

Definition 3.2. (Dynamic doublet-states). Let y€E, gE(}?’, and

let Sk(- , o5y |g) be the Stokes-state of Definition 3.1. We call the

state defined on Exxsf‘ by



_34-

s k&(

kL %) k 1
osyle)=lu ¢, syle) g s sy l@)]=8 (s e syle) (3.7)

the dynamic doublet-state for the pole y, corresponding to the Xy -

axis and the xﬂ-axis, the force function g, as well as to the material

constants p, Cl’ Cpe
From (3.7), (3.2) follows
Sk&(}i, t;y lg):Sk{’(:i—x, t;0 |g) for every (x, t)EEXX’f‘ . (3.8)

We list next the cartesian components of displacement and stress

belonging to SkL(- v * ;ng), which may be computed from (3.3), (3.4)

by means of (3.7). For every (3'5, t)GEOX'Of‘ one thus obtains

%pu?ié(x,tsgl )=
l/c
Bx,.x, X 8:1.% , +8. Xy +8, %, z
x = 1/c1
[6"1"13% S a8 it Sea®s [ ste-xse - Lgte-xsey)]
_ - _ % | == glt-x Cl——'—zg( e Cz)
x X < <
1 2
iy 3%
k4L .
- = 2[g(t—x/cz)+-ci g(t-X/CZ)]
x"c, 2
X.X, X
K41 & 1 .,
- [ eexie))- A5 pteex/cy)] o
Cl CZ

X Recall the differentiation convention (1.20). For functions of more
than one position vector, the space differentiation so indicated is
always understood to be performed with respect to the coordinates
of the first position vector.
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35x.%x.%, X
ki . - i k4
moist e i lg)=6 [————J———X7

B T i e Vi ke i B S WM e e T
x

1/
2 45x.x.x, X
ik “JI Ag(t- Ax)dA- ZCZ[#—IS—-&

X7
1 /c

8.

+

6 8k»{, “ik 53{,-’.
3

6(6 xkx +8, The xk+8k511x +6kalef:'—6_]»ﬂ Fpct kxjx%)

X

81‘] 6k&+61k63 /f,+6_]k it ] [

3
x

&

g(t- X/CZ)- 12 g(t—x/cl)]
2 €1

+

2 P 0% O X%y 0¥ 0 5 H Oy
c 4
2 x
10x.x.%, X , Gy 3
150 2
' “LJE"J:][g(t'X/Cz) ( )g(t X/Cl)]
X

+[36ﬂ 15y ”Ujk*?](l 2( )][g(t X/Cl)+__g(t ]

3(6. +6 %, )
+[ ik /(,5 1 _ bk J{, Jk 1’&][g(t x/C2)+ g(t x/cz)]

X X

8. X.X , +8., 8, s % X
PRI S () gy

23 o P

2. 3%.%, KX c,\4 -
Ll 't[g(t—x/cz)—(c—j) B(t-x/c))] - (3.10)
2

L& X

We observe that if g(t)=1 (tost<oo), (3.9), (3.10) reduce to the
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corresponding elastostatic double’c—states1 for t= to+x/c2. In analogy
to Theorem 3.1 one has

Theorem 3.2. (Properties of the dynamic doublet-states). The

dynamic doublet-state Sk£(~ 5 ;ylg) of Definition 3.2 has the

EroEerties:

. <k ‘
(a) S (','Q{Ig)E@o(g, Pscys CpE )

&
k -2 ki )
(b) u L(ig, yle)=o(lx-yI7%), o™ (x, « syle)=O(|x-y| ) as x~y.
uniformly on (-0, t] for every t&(-oo, 0);

(c) lim f SM(ﬁ, -5ylg)dA_=0 on (-0, ) ,
n=0g = ~ ~
¥

lim J(x-y)Ask{’(x, . ;ylg):iAX=g€jk&eJ on (-o0o, ) ,
-'0 ™~ ~ ~ ~ = PN Sam——
s

where ik&(- , *5¥|g) are the tractions of Sk*’(- , »3y|lg) acting on the side

~

of ST](Y) that faces y, while J_i_s the unit base-vector in the X

direction, ejk{, denotes the usual alternating symbol, and the preced-

ing limits are attained uniformly on (-oo, t] for every t€(-oo, m);

(d) i__fhéqs, then

hae S, - ;,glg)=g*5k£(‘ » *5y|h) on sz%.

Proof. Property (a) is a direct consequence of Definition 3.2,

Theorem 3.1, and Definition 1.2, Properties (b) and (c) may be

Lt 1217 tpage 180).
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established by the same procedures used to verify their counter-
parts in Theorem 3.1. Finally, (d) may be confirmed directly with
the aid of Definition 3.2, Lemmav 1.3 and part (d) of Theorem 3.1.
A physical interpretation of the dynamic doublet-states is
easily arrived at on the basis of (3.7) and (3.2). In this connection
we refer also to Love's [18] discussion of the singular solutions

under consideration. In preparation for a proof of Love's integral

identity, we introduce next
Lemma 3.1. Let NyGE, a>0,
S= [E-} g]eeo(’{: P, Cl’ CZ;BG,(»X)) )

and suppose Sk(- . *;ylg) is the Stokes-state of Definition 3.1.

Then, for each t&(-oo, 00),

~

() lim [ [sxa®C-, - 5yle) 16 A =0,
S

(b) 1lim j [ik(' s ° EZIg)*E](iE: t)dAX :[g*ukj(p}f’ t) 5
ﬂ—»OSn(,w —

where 3 and sk(o , ;Zlg) are the tractions of S and Sk(- 5 " ;Nylg) acting

on the side of S’ﬂ(Y) that faces y.

Proof. The truth of (a) and (b) for t€(-o0o0, 0] is at once apparent
from Definition 1.1 and (1.8). Thus choose t>0, hold t fixed for the
remainder of the argument, and let B €(0, a). With a view toward

proving (a) for the present choice of t, set
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Ilk(n):f [i>:<2k(- , ;:Xlg)](:i, ‘c)d.AX for every M&(0,p ]
S, (%) ~

and appeal again to Definition 1.1 and (1.8) to see that

t
tXm= [ [ s, t-me 6o miylgrataa .
S{9 0 ~

Therefore, bearing in mind the present hypotheses, one has the

estimate
k 2 k
[1,5(n) [< 4w n"tM | (MM (1) for every ne(0,B ], (3.11)
where

M, (n)=max [, M), (5, 7S (Px[0,¢t],

k & (3.12)
M (n)=max [a” (5, syle)|, (£, 7)€S (y)x [0,¢].

The function M1 is bounded on [0,B ] by virtue of (1.18) and the con-
tinuity of 0 on —Eﬁ (x[0,t], whereas
k -1
M;(n)=0(n ")as n-0

because of (b) in Theorem 3.1. Hence (3.11), (3.12) imply

conclusion (a).

Next, set

LX(n=] [s"(, - iy lg)xultx, 1A for every ne (0,8 ]
8y -

and define an auxiliary function v through

¥, T)=ux, 1)-n(y, ) for all (x,m)€By (y)X [0, o) . (3.13)

Accordingly,
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t
15 (m)- Tesw dg. )l <| [ [ 656 t-miyle)- vig, maraa, |

8,9 ©

t
+| .rEQ’ t-'r)-[f ik(i,T;zlg)dAx—g('r)gk}dT | . (3.14)
0 S’ﬂ('X) ~
The second term in the right-hand member of (3.14) tends to zero
with 1 since this limit may be taken/under the ’c:i.rne-integral1 and

because of (¢) in Theorem 3.1. Consequently,
k Pien i k(
|L,5(n)- [gwwy Xy, )]s 4mn”tM, (MM, (n)+o(1) as n=0 , (3.15)

where

My(n)=max [v(x,T)|, (x,T)€S (y)x[0,t],
' (3.16)
My (n)=max g5, Tiyle) . G)ES, ()X [0,¢]

for every n€(0,B]. From (3.13) and the continuity of u on

}'3'6 (v)x [0,t] follows
Mz(ﬂ)zo(l) as n-0 .
On the other hand, (1.18) and (b) of Theorem 3.1 imply
k -2
M5 (m)=0(n ) as n~0 .
Thus (b) follows from (3.15), (3.16). The proof is now complete.
Theorem 3.3. (Love's integral identity for the displacement field).

Let R be a regular region. Suppose:

h See Mikusinski [2] (page 143).
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(a) s= [E:g] € Bo(is P, €1 Cz;ﬁ);
) wec®lorx?), cec?®erxt), rec®)I@®@xD).

Further, let Sk(~ 5 ® ;2|g) be the Stokes-state of Definition 3.1 for a

concentrated load at y parallel to the % -axis, corresponding to the

force function g and to the material constants p, CysCye

Then, for every (y,t)ER X(-o0, ),

3
k k
w, (y, t)=z J[ui (x, tsyls; G, < ))-80 (%, tiyfu, (5, +)) JdA

i=1 R

3

L
+) [l tiylt s Nav, (3.17)
i=l R

where s and sk(- , ;ylg) are the tractions of 5§ and Sk(' 3 ;’Xlg) acting

on 9R.

Proof. Note that the integrands in (3.17) involve Stokes-states with
the respective force functions si(i, <) ui(.}f} <) fi(?f,’ -) and that these
integrands may be written in fully explicit form by making the appro-
priate substitutions for g in (3.3), (3.4) and by recourse to
(3.2), (1.18).

The validity of (3.17) for (,X’ t)ER X (-o00, 0] is evident from the
fact that both S and Sk(- 5 ;Zlg) have quiescent pasts. Choose
(y, t)€R X(0, o0), hold (,X’ t) fixed until further notice, take a> 0 such

that EQQ)CR, and set

RT’I:R_EU(’X) for every n€(0, a) .
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Let hEQZ and assume h does not vanish identically on [0, ®0). From

(3.2), (3.3), (3.4) one then infers

lik(- s ® ;’zlh):gk(- 5t ?,},’lh)i‘l on (E_BCIT(X))X [0,7]for every T> 0,

while (a) of Theorem 3.1 ensures that the body-force field of

Sk(' 3 ;z[h) vanishes on ny’cf“. In view of the preceding observations

~

and hypothesis (a), one is entitled to apply the reciprocal theorem

(Theorem 2.2) to the pair of states S and Sk(- , *3y|h) on Rn. Thus

[toxat-, 5ym T 6 yaa_+ [ Eau'(-, - syI0) 1, 1V, =

OR. TR
n n
J[ik(' 5 ° ;,XIh)*E] (%, t)dA_ for every m€(0, a), (3.18)
R ~
n

where s and sk(- g ;y]h) are the respective tractions acting on 9R

Next, pass to the limit as n= 0 in (3.18) and use Lemma 3.1

to conclude that

[haay Yy )= | [ G, - 3yIh) Js, AV
L 4

[ {lsxC, - gIm 16 0- 850, - syImpules 0 aa . (3.19)
R ~

From (3.19), hypotheses (a), (b), conclusion (d) in Theorem 3.1,

as well as (1.21), (1.8) and (b), (d) in Lemma 1.1, one now draws
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[hey Uy, )= ) [ Do (e, 5yl G, ) 165, 1)V,
i=1 R -

3
) ]G, - iylen N-siCo gl N ods, . (.20
i=1 4R

If R is unbounded, it follows from (3.2), (3.3), and the fact
that S is a state with a quiescent past, that
k
u G, Tyl (%, -+ ))=0 {3.21}
1

T w

for every (X,T)E(ﬁ--BC yNx [0,t]. Similarly, if in addition 9R is
- 1 Il

unbounded,
3
Eu {5, ™ ,_X[s (%, +))= Zsi{(x Txlu (x, +))=0 (3.22)

i=l i=1

for every (}f#T)E(%R“Bclt(},’”X[O’t] . Because of (3.21), (3.22), the
integrands in (3.20) are of bounded support., Interchanging the
orders of the space-integrations and convolutions in (3.20), as is
perrissible in the present circumstancesl, and using again the

distributivity of the convolution ((d) in Lemma 1.1), one arrives at

This reversal is trivially justified for the surface—integrals in
(3.20) because of the regularity of the integrands; in the case of the
improper volume integrals, whose integrands are singular at o
the reversal is easily legitimized by an elementary limit process.
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3

[h*{uk(ﬁl’ -*2 I [“ik(ii’ yle; e - ))’sf(’i’ -3y oy, N 1dA,
i=1 8R -

3
-z fuik( ,-;glfi(:g,-))dvx}](t):o . (3.23)
R o

i=1 ”

 Since (z, t) was chosen arbitrarily in RX(0, o), (3.23) holds for all
Q, t)€ER X(0, 0). The term within braces in (3.23) is readily shown to
be continuous on RX [0, c0), whereas h, by assumption, is continuous
on [0, o) and does not vanish identically. Thus, the desired con-

clusion now follows from (e) in Lemma 1.1. This completes the

proof.

The integral identity (3.17) represents an extension to
elastodynamics of the corresponding formula due to Kirchhoff [22 ]
(1882) for the scalar wave equation., At the same time (3.17) is a
dynamic counterpart of Somiglia;la's 237 (1889) integral identity in
the equilibrium theory.1 A result similar to (3.17), but confined to
two-dimensional elastodynamics, was deduced by Volterra [24]
(1894). Love [18] (1904) sketched a proof of (3.17), applicable to
bounded regions, with the aid of Betti's elastostatic reciprocal
theorem, treating the inertia forces as body forces. A somewhat
more detailed derivation of (3.17) along these lines may be found in
a recent dissertation by DeHoop [257 (1958). Somigliana [26] (1906)

arrived at a closely related integral identity by different means,

taking Kirchhoff's formula as his point of departure.

1 See also Love [197 (page 245).
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A precise statement of Theorem 3.3, which also covers
unbounded domains, is not available in the previous literature, so
far as we are aware. Further, the pfesent proof, which rests on
the dynamic reciprocal theorem, would appear to be more direct
and more explicit than the proofs referred to above. Our next
objective consists in establishing an identity analogous to (3.17), for

the stresses of an elastodynamic state with a quiescent past. To

this end we require
Lemma 3.2, Lety€E, a>0,
s5=[u, 91€ € (£, p, cy5 3B (y)) 5

and suppose Sk&(‘ ) " i}flg) is the dynamic doublet-state of

Definition 3.2 for the pole y, corresponding to the % -axis and the

X*;—ax.is, the force function g, as well as to the material constants

P> CysCpe

Then, for each t€(-o00, co),

(2) lim f [§>:<uk&(-, -yl aa, =
n-0 ~ T =
8 L)

. [g* {(3- 8c2)ui’ By F2(342 cz)u(k, e }] (y:t)

) 1im [[s™, - iylg)eales, Haa, =
n—0 i o~ e %,
Sl

1 2 2
-1—5-[g>:< {(3—8C )ui’ifyk&—(9—4c )u(k’&)}](’X,t)—[g*u[k’&]] (rz,t),
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where c=c, /Cl’ while s and E,k&(' 03y |g) are the tractions of S and

Sk{’(' s U3y Ig) acting on the side of Sﬂ(Y) that faces Y-

Proof. If te(-oo, 0], conclusions (a) and (b) follow at once from
Definition 1.1 and (1.8). Thus fix t€(0, ) for the remainder of the
argument. Bearing in mind that gEQs, one infers from (3.8), (3.9),
(3.10), (1.18), after a tedious computation, that

im [ i, sy |g)n;()aa, =

n-0 Sn(,}f) ~

1

2 2
T [t RARTENALTLLRANS +4)5ik5j,jg on [0,t],  (3.24)
2

; ki

- f(xj‘yj)si (x, -3ylg)da, =

e =
X

1 2 7 1
-1—5—,g3—8c )&13'61(»{‘,'2(6"Cz)ﬁikéj«l’,+(3+zc )61&6jkjg on [0,t], (3.25)
where 4, Bre the components of the inner unit normal of Sﬂ(z), and the

limits in (3.24), (3.25) are attained uniformly on [0,t].

Next, let B€(0, a), set
k1 k
L (n)zj [,sv*}i L(- 5 e ;,Xlg)](}f,’ t)dAX for every m€(0,p 1],
S ~
X
and define ¢ through

®(x, T)=g (%, T)- 0 (3 7) for all (x )€ 'B'ﬁ(z)x[o,ﬂ. (3.26)
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Then Definition 1.1, (1.8), (1.18), and (1.11) enable one to con-

clude that

, :
Un)- 1k [ex{-8cP0; o 2 r2eP)ag ) (g0

=

ki
u. (}i’ T;,},'lg)Cpij(?f,’ t- T)nj(}f)deAX

1

E3

S (y) O

n

+ X<

+[ae-n{ [ o " “o TiylIng (A,
0

s
Y

15pc L(C ~1 5540 k£+€i{,€’jk)+(cz+4)6ik6j&]g(T)} dr.

Equation (3.24) consequently furnishes the estimate

(n)— [g {(3 8c”)u, 38 +2(3+2c2)u(k’“}](z,t)|s

s M (M H (M) +o(1) as n=0 , (3.27)

where

ML (mi=mmassy W, T gl 1), (= 7)ES5, X 10, ],

(3.28)
k»i’, k

M (m=max o, iy [g)], (x, T)€S (¥)X [0, t]
for every m€(0,B]. From (3.26), (3.28), and the continuity of 0 on

Eﬁ (v¥x[0, t]follows

M, (n)=o(1) as M—-0
whereas (3.28) and (b) of Theorem 3.2 imply

My (n)=0(n"%) as n-o0.



L

Thus, combining (3.27) and (3.28),one confirms (a).

To verify (b), let

LYn)=[ 15, - sylg)aulix,t)aa_ for every n€(0,p]. (3.29)
Sp(y) -

From the assumed regularity of u on Ba(z)x (- 00, ©) one draws, for
every (X,T)EBQ(Z)X (- 00, 00),

E(X,T)ZEQ,T)'FE’ iQ:T)(Xi'Yi)+X(§: lT) s (3'30)
where

2 @® 2
vEC (B (y)XT), v(x, -)=O(|x-y|") as x~y, (3.31)

uniformly on [0,t]. On the basis of (3.29), (3.30), the first of (3.31),

Definition 1.1, (1.8), and (b) in Lemma 1.1, one arrives at

IzM(”-)‘ “1‘1’5‘[%*{(3‘8‘:2)“1, iék&_(9'4cz)u(k,{,)} ](X: t”[g*“[k,«';] ](Z’t):

t t
[yt [ e miyleraa ar+| [y, t-m)- 54 my lg)draa
0 ~

S (y) Sy 0
t
o Jui’ sl t- T){ j(xj-yj)slf’(;g, Tyle)da
0 Sy ~

1 2 2 2
-T—S[(S-Sc )Sijék{—z(é'c )(Slkf)j&+(3+2c )Si&ﬁjk]g”)}d’r' (3.32)

The first and third terms in the right-hand member of (3.32) tend to

zero with 1 because of (c) in Theorem 3.2 and (3.25), respectively.

Hence
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- 5[ ex{G-8e%u;, iék&'(9’4°2)“(k,x)}](z’t)*[g*“[k, alwol

sdm ML (MM, {m)+o(1) as n- 0 , (3.33)
where

M, (n)=max [y, )], (o mES (P (0,67,
(3.34)
Mzk&(ﬂ):max likL(}i, T;’X 'g)l’ (i{f T)Esn(z)x [0, E1

for every n€(0,8]. Now invoke (3.31) to see that
M, (n)=0(n’) as -0,

and call on (1.18), as well as (b) in Theorem 3.2 to justify that
led(n):O(n'?’) as n-0 .

Conclusion (b) thus follows from (3.33), (3.34). This completes the

proof.

Theorem 3.4. (Integral identity for the stress field). LetR be a

regular region. Suppose:

(a-) S= [g,g]éeo(i, P, Clicz;ﬁ); .
) uwecClerx®, g cc®orxh, fec®I@®xT)

Further, let Sk&(o sy ]g) be the dynamic doublet-state of

Definition 3.2 for the pole y, corresponding to the Xk-axis and the

x&-axis, the force function g, as well as to the material constants

PsCys €yt Define the state

T, - glg):[ﬁk*’(-, sy lg)s ik&(-, 5yle)]
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through
— ki, ' 2 2, i
5770, s syled=ple -2¢)) 80, < 5yle) 6y,

+2p0225(k&)(',‘;r}‘rlg)£1EyX% 5 (3.35)

~

Then, for every (X’ t)ER X (- 00, 00),

g -k4 , - k4
O 0=y | D87 6, tiylu e, ) - 506 tiyls, G, ) TdA
i=l 9R ~

'ﬁMw

L f*’(x IR (3.36)
1R -

where s and §k£(° ,ylg) are the tractions of Sand Sk& 'Xlg)

acting on 9R.

Proof. Since the following argument is quite similar to the one used
in proving Theorem 3.3, it may be summarized in condensed form.
If (z, t)ERX(-00, 0], (3.36) is a consequence of the fact that S and
-gk&(. L. ;,X[g)bhave quiescent pasts. Hence choose (.X’ t)ER X (0, 00) and
hold (z, t) fixed until further notice. Take o> 0 such that EQ(X)CR and
set

RﬂzR—Eﬂ(x) for every n€(0,a) .

Leth G(}3 and assume h does not vanish identically on [0, oo).
Observe from (3.8), (3.9), (3.10), and (a) of Theorem 3.2 that, for

ki

every ne&(0, a), S (-, - ;ylh) qualifies as a candidate for the state S

of Theorem 2.2 on Rﬂ . Thus, in view of the present hypothesis (a),

the reciprocal theorem (Theorem 2.2) is applicable to the present



-50-

pair of states S and Sk*’(- g 8 ;’_y|h) on Rn. On passing to the limit as

n- 0 in the resulting identity, and using Lemma 3.2, one arrives at

- kL,
Ty Xy 0= - ] L+, sy 16 wav,
R

gl nea . (3.37)

~

+J {[ik'ﬁ( , ;Zlh)*}f,] (},i’ t)- [’Sv*uk{'(
oR

From (3.37), hypotheses (a) and (b), conclusion (d) in

Theorem 3.2, and (b), (d) in Lemma 1.1, one now draws

3
e g 0= =) [ Do ylty e 006 DAV,
f=i R -

3
kL ke
B [ e fsf e, iylugs D= o, ylsie NI vaa . (3.38)
i=1 9R *
After permissible reversals of the space-integrations and convolu-

tions involved in (3.38), one finds that

3
[roefuy o )-), JTei e sylogs 0w, - syls; e -0 Jaa,

= |
k4, ‘
2 [, syl onav, ] w=o . (3.39)
i=1 R ~
Since (y,t) was chosen arbitrarily in R X(0, o), equation (3.39) holds
for all (y, t)€RX(0, o). But the term within braces in (3.39) is con-

tinuous on RX [0, o), while h is continuous on [0, c0) and does not
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vanish identically, so that (3.39) and (e) of Lemma 1.1 furnish

3
w0y [ Teite tiylu G - D-u tiyle; e, ) Taa

X
izl 0R
3
kt
S Jektes eyt - nav, (3.40)
i=zl1 R

for every (y, t)eRX (0, o). The desired conclusion now follows from
(3.35), (3.40) and (1.11). This completes the proof.

It is clear that (3.40) may be obtained formally from Love's
identity (3.17) by differentiating the latter under the integral signs

and by making use of the relations
0 k . _ ke )
By, i (5 tiyleg)= —u; x, tiyle)

gaﬁil; (x, t;ylg)= _0113&(’,5’“2"*%) .

which hold for every (},f,’ t)EE’XX'Of‘ because of (3.2) and (3.7). A
rigorous proof of Theorem 3.4 based on this alternative procedure
is, however, quite cumbersome.

Finally, we rerriari( that (3.40) enables one to write down
immediatelyv formulas analogous to (3.17) and (3.36) for the dilatation
and rotation fields of an elastodynamic state with a quiescent past.
The linear combinations of doublet-states entering the formulas just
alluded to are those characteristic of a dynamic center of dilatation
and a dynamic center of rotat:ion. Closely related integral identities

for the dilatation and rotation were obtained by Tedone [27].
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4, Green's states. Integral representations for the solutions to the
fundamental boundary-initial value problems of elastodynamics.

In the present section we aim at integral representations for
the displacements and stresses of the solutions to the first and second
fundamental boundary-initial value problems in classical elasto-
dynamics. The appropriate boundary data consist of the surface dis-
placements in the first problem and of the surface tractions in the
second problem. Further, we confine our attention at present to
elastodynamic states with a quiescent past. 1

The integral identities (3.17) and (3.36) involve both the
surface displacements and the surface tractions on the boundary of
the region at hand. In order to arrive at the desired representations,
we need to eliminate from the integrands in (3.17), (3.36) the surface
tractions in connection with the first problem and the surface dis-
placements in connection with the second problem. This purpose
may be accomplished by means of suitable elastodynamic Green's

states. With a view toward the first boundary-initial value problem

we introduce

Definition 4.1. (Green's states of the first kind). Let R be a regular
region, y€R, and let gEQ3. We call

ak sl ~k

ST, syle)=[8 . - 5yle), s - iyle) ]

the displacement Green's states of the first kind and

i See the end of Section 4 for a relaxation of this restriction upon the
initial conditions.
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S*, - yle)=ta 0, - yle) 8%, - ylen

the stress Green's states of the first kind for the region R and the

pole y, corresponding to the force function g and to the material

constants p, CysCps Erovidﬁzd:

(@) &%5,- ;y|g>—sk<-, yl@)+35C, - iyle) on R xF,
«\k& on

) S @
3 ,Vlg)S cyle)+8TCL sylg) on R XT,

2*4

where Sk(- , *3y|g) and gk&(' ;" ;y|g) respectively denote the Stokes-

state _c_)_f Definition 3.1 and the linear combina,tion_gf doublet-

states (3.35);

(b) S7(, syle)=[T7C, - syle). S (. - syle)I€ € (0, s ¢y, ) iR),

o syle)=[8 .- syle &7 (s syle)]€e (0, b, cqu ey iR),

R

550, sylerec®erx T, g%, - iylg e (or xT);
~ k o)

(c) T(-, sylg)=-u (-, ;ylg) on BRXT,

(5 *5yle)= —}Ek&(', “;ylg) on R XT .

The regular parts gk(' )" ;Zlg) and gk{,(‘ 5 ® ;’ylg) of the displace-
ment and stress Green's states of the first kind are each evidently
defined through requirements (b), (c) as the solution to a first
boundary-initial value problem for R. Moreover, they are uniquely
determined by these conditions because of Theorem 2.1. In
contrast, the existence of these regular states, and hence of the

corresponding Green's states, is contingent upon the existence of a

solution to the first problem for the region under consideration in the
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presence of sufficiently smooth boundary data. Before proceeding

with our immediate task it is convenient to have available

Lemma 4.1. Let R be a regular region, YER, gEQS, hEQS, and let

gk(. , . ;.-Xlg)’ ’§k&(- o ;zlg) be the regular parts of the Green's states of

the first kind introduced in Definition 4.1.

Then:

(a) h>:<§k(. , ;z[g):g*gk

k4 ~ki =, @
(b) hx¥77(-, -sylg)=gxS (-, - 5y/h) on RXT.

(-, ~;z|h)9__r3—R><’°f‘;

Proof. Consider first (a). From Definition 1.2 and (b) in
Definition 4.1 one obtains after two successive applications of
Lemma 1.2 and Lemma 1.3,

~k R
h:}:S (': * :,X'g)ego(g’ Ps Cl’ CZ;R)’

_ (4.1)
x5, - ;zlh)e €.,(0, p,cy,c55R) &
Next, call on (c) in Definition 4.1 and (d) of Theorem 3.1 to see that
~ Kk k
h:}:E (. 5 ,'Xlg): -h:k'li (' g ,’Xlg)

= -g::uik(- 72 ;Zlh):gﬂﬁk(- - ;zlh) on 8RXT . (4.2)

Conclusion (2) now follows from (4.1), (4.2) and the uniqueness
theorem (Theorem 2.1). The pfoof of (b) is strictly analogous.

We are now in a position to turn to

Theorem 4.1. (Integral representation for the solution of the first

boundary-initial value problem). Let R be a regular region.

Suppose:
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(2) S=[E:g]€80(£’ P Cl’ Czs-ﬁ-);
(b) wec®ErxD), gec®orxT), sec®@®=T) .
“

Farther, let ék(- g " ;zlg) and §k _— ;zlg) be the Green's states of

the first kind of Definition 4.1 for the region R and the pole y corre-

sponding to the force function g and to the material constants p, CsCpe

If these Green's states exist for all y€R and all g€ C}B, then for every

(v, t)ER XT,

3
w 0=y [ [656s tylie, Nav_- [656s tiyluy6e - naa_ ], (4.3)
=l B ~ R ~
3
oy 0=y [ [ 8 e tiyls 6o o nav - [656, tiylu, e, - naa_ |, 4.4)
i=1 R ~ 8R ~

where ’é;k(° y® ;’Xlg) and 's:k/f'(- - ;’}Jrlg) are the tractions of ék(—, . ;y[g) and

o

S L(- , *5ylg) acting on oR.

Proof. If (y,t)€ERXT , (4.3) and (4.4) follow trivially from (1.18),
Definition 4.1, and hypotheses (a) and (b). Define a function h by
setting

P (4.5)
t /4! for every t€ (0, o)

0 for every t€(-oo, 0]
h(t)=
and observe that hé€ q3. Choose YE€R and note from (4.5), (c) in
1
Definition 4.1, (3.2), (3.3) that if 9R is unbounded,

:lzl: k(- gy, §,X|h):9_, on (aR—EC t(’X))X [0,t] for every t>0. (4.6)
1
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From (4.6) and (b) in Definition 4.1 one concludes that gk(- - 5~Ylh)
satisfies the conditions imposed on the state S of Theorem 2.2 in
hypotheses (a) and (b) of that theorem. Thus, and because of the
present hypothesis (a), one may apply the reciprocal theorem
(Theorem 2.2) to the pair of states S, gk(' 5 ;’th) on R. Accord-

ingly, and by virtue of (c) in Definition 4.1,

k o ek
j[fﬁg (+5° ;glh)](:i,t)dAx=J &0, - 5ylm)e, tav,
R ~ R ~
- j[%“k(- 5 ;ylh)*g](x, 'c)dAX for every t€(0, o) . (4.7)
9R. ~

From hypotheses (a) and (b), (3.2), (3.3), (4.5), (b) of

Lemma 1.1, and Lemma 1.2 there follows

k
0 73 (- sylmec®erx?) | (4. 8)
Furthermore, hypotheses (a) and (b), Lemma 1.2, (b) of
Lemma 1.1, and (b) in Definition 4.1 imply

>::Gk(. 3 ,’X|h)EC(5)(§X%) §

~

=h

(4.9)

e

aij(‘ i ;’th)*uje C(5)(3RX%) .

Let t0>0. If R is unbounded, then (4.6), (b) of Definition 4.1, and
IL.emma 2.2 ensure that there is a bounded set Q(tO)CT{ such that

T5C, - iyIm=8 0, - sylh)=0 on ®-0re ))x[0, ¢ 7. (4.10)

On the other hand, (3.2), (3.3), and (4.5) furnish
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k

u(~, -g]h?zg on (E-Bclto(z))x[o,toj. (4.11)
Assertions (4.8) to (4.11), together with (1.18), justify five succes-
sive time-differentiations of (4.7) under the integral signs on the

interval (O, to). Since t  was chosen arbitrarily in (0, co), one thus

has

~

[rawdc, - yIm T, naa = [ 1148, - iy P g trav,
8R R ~
_dr[’f‘,:k(. , - ?,th)*l&](5)(§’ t)dAx for every t€ (0, o0) . (4.12)
R ~

Next, appeal to hypotheses (a) and (b), (1.18), (d) in

Theorem 3.1, and (a) in Lemma 4.1 to see that

3
K K )
[sxu™(-, - 5y|h)](x, t)=§ 1 A O A LI IR I [E'R9
i=1
for every ()é,t)EgRX%‘ 5
3
~k, ~k
30, sy )G t)=) [hall(, - syl€ (- DI, b)
u =L 2 ~ > (4.13)
i=1
— (o]
for every (:si,t)ERXT y
3
[5C, «sylmsales, t1=) a8, - syl -6,
Ci=1
for every (x, t)EgRX'? s /

Now note that for IJJEC(T+) equation (4.5) and Lemma 1.2 imply
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[hey13)=¢ on (0, o) .

Therefore, and by (4.12), (4.13),

3 3
Y [ iyl e, - Naa =) &%, tiylt 6, - Nav,
i e SR x i S YV x
i=19R ~i=1R
3
Z 's‘ik(x, tiylu, G, -))dA_ for every t€(0, ) . (4.14)
i=l 8R .

Finally, combine (4.14) with (3.17) and use (a) of Defini-
tion 4.1 to conclude that (4.3) holds for every (,X’ t)ERX'Of‘. The
verification of (4.4) is easily carried out in a strictly analogous
manner with the aid of the reciprocal theorem (Theorem 2.2) and
the integral identity (3.36).

Turning to the second boundary-initial value problem, we

adopt

Definition 4.2. (Green's states of the second kind). LetR be a

regular region, y€R, and let g€q3. We call

S5, - iyle)=L2C, syl 55, - yle)]

the displacement Green's states of the second kind and

ék&(-, . ;,zlg)-—‘[tik{(', “syle)s ék&(-, -5yle)]

the stress Green's states of the second kind for the region R and the

pole y, corresponding to the force function g and to the material

constants p, CysCps provided:
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~ k k — o
(a) Sk(': .;,Xlg):S (°, .;'Xlg)+g (‘, °”X|g)_21} RYXT,

A —k Nk{/ — o
§%M, - yle)=T L syle+ VL - syle) on R XT,

(sl

where Sk(- o ;y|g) and E‘,k*’(- i ® ;ylg) respectively denote the Stokes-

state of Definition 3.1 and the linear combination_o_lf doublet-

states (3.35);
(b) T, sylg)=[T (-, “syle), T (-, *5yle)1€ € (0, p, cp5 cpR),

o~ k ~ =
Sk&(' )" ,ﬁylg)=[ﬁ‘: ,f(' P "Zlg), gkl(. :';,Xlg)]eao(g: P> Cqo CZ;R«) 5

~k k sk ©
(c) s (.";.-.Yig): _i (‘,’Q'lg)gg ORXT,

kd, ki S
{(-,';,zlg)= -5 7(*5 ;ylg) on ORXT,

S
~

where §'k(- ,® ;y|g) etc. denote the tractions of gk(', . ;,Xlg) etc. acting

on 9R.

The regular parts of the displacement and stress Green's
states of the second kind are uniquely characterized, in view of (b),
(c), and the uniqueness theorem (Theorem 2.1), as solutions to
second boundary-initial value problems for R. The existence of the
Green's states of the second kind evidently depends on the solva-
bility of the second dynamic problem on R for sufficiently regular
surface tractions., The following lemma is a counterpart of, and

may be proved in the same way as, Lemma 4.1.

Lemma 4.2. Let R be a regular region, y€R, gé(f, hECﬁ, and let

'gk(' s *3v]8)s gk&(‘ > ;,ylg) be the regular parts of the Green's states

of the second kind in’croduced_i_n Definition 4.2.
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Then: :
~ k — (o)
(a) Bs§C, “syle)=gx87 (-, - sylh) on RXT;

— oo
RXT.

=]

(b) h*gkt(' s * ;,X'g):g*gk&(' )" ’,}flh) 2

Theorem 4.2. (Integral representation for the solution of the second

boundary-initial value problem). Let R be a regular region.

Suppose: v
(a) S= [Ea g]eeo(i: Ps Cl’ Cz;-ﬁ-) 5
) wec®(erx®), cec®@rxT), tec®@®xT) .

Further, let ék(' s " ;zlg) and ék&(' .~ ;Ilg) be the Green's states of the

second kind of Definition 4.2 for the region R and the pole y, corre-

sponding to the force function g and to the material constants p, CysCope

If these Green's states exist for all y€R and all geq3, then for

every (z, t)ERX'gIo‘,

3
ety =) [ 856 syl s - Nav,+ [5G tiyls; e - naa |, (4.15)
i=1 R ~ R ~
3
i=1 R ~ OR ~

where s are the tractions of S acting on 9R.

The truth of this theorem may be confirmed with the aid of
Lemma 4.2 by an argument parallel to that employed in the proof of
Theorem 4.1. The smoothness restrictions imposed under (b) of
Theorem 4.1 and Theorem 4.2 may‘ be relaxed somewhat at the

expense of more elaborate regularity hypotheses. As will become
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clear at the end of this section, the foregoing two theorems may be
used to generate representations of the solution to the first and
second elastodynamic problem in the absence of a quiescent past.
Finally, integral representations for the solution of mixed boundary-
initial value problems in elastodynamics, similar to those contained
in Theorem 4.1 and Theorem 4.2, are easily established by means
of suitable generalizations of the Green's states of the first and
second kind,

Equations (4.3), (4.4) in Theorem 4.1 and (4.15), (4.16) in
Theorem 4.2, for a il._X_E‘E choice of the pole ’z, involve elements of
the relevant Green's states corresponding to an infinite family of
force functions (depending on the position parameter x). Accordingly,
the representation at a single point of the given region of the solution
to either fundamental problem of elastodynamics would seem to
require that one solve an infinity of boundary-initial value problems
in order to determine the requisite families of displacement and
stress Green's states, We show next that this apparent difficulty is
easily overcome, and in this connection consider first the represen-
tation of states whose body forces and surface displacements or
surface tractions are separable functions of position and time.

Thus, suppose the state S in Theorem 4.1 is such that

u(x, t)=u(x)p(t) for every (x, t)€ BRXT,
-~ Y . (4.17)
£(x, t)=f (x)q(t) for every (=, !:)ER %,
Then, as is clear from (3.3), (3.4), Definition 4.1, and

Theorem 2.1, Equations (4.3), (4.4) give way to
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3 t\k- o '\k
uy (y, =] £69- 8 56, tiyla)av, - [ 8698 “Gx, tiy|p)aa_,
R

(4.18)
/\k’t o Ak'{/
0y 7o0)= - [£69- 8 M tiylayav, + [ 869 80, tiylpran .
R ~ R -
Similarly, if the state S in Theorem 4.2 has the separable data
s(x, t)=s(x)p(t) for every (x, t)€ AR X T s
- © (4.19)
i(x, t):g (x)q(t) for every (x,t)eRXT,
then (4.15), (4.16) may be replaced by
° l\k Ak
w (y, t)= | £(x)- 47 (e, tiyla)dV+ | S(x)- 47k tiylp)dA_,
R ~ B8R ~
(4.20)

k4,

B l\k{l o -~
04y 0= - [ L0 6 tiyla)av, - [§ (- 8 e, tiyloraa,

R TOR
In order to facilitate the construction of integral representa-
tions for states whose data are not necessarily separable we

insert here

Theorem 4.3. (Standardization of the force function in the construc-

tion of Green's states). Let R be a regular region, and let y€R.

Further, let §k(- . * ;’Xlg) and ék’f’b g ;’}Jrlg) be the Green's states of the

first kind of Definition 4.1 or the Green's states of the second kind

of Definition 4.2, and let h be the function defined by

0 for every t€(-oo, 0]
h(t)= ¢, (4.21)
t* /4! for every t€(0, o) .
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Then:

(., 'Qflh)](s) ggiyx(O, o) ;

ki

(b) ékf/(. , ;X'g):[g*g (- ,® ;zlh)](S) ﬂiy_x (0, CD) .

~

Proof. If ék(- 5 ;y|g) and ék&(-, C ;ylg) are Green's states of the first
kind, then (1.21), (d) in Theorem 3.1, (d) in Lemma 1.1, Lemma 4.l,

and Definition 4.1 yield

~k Ak —_ @
hxg (- ,* ;’X'g):g*s (- , ”th) on R’XX .
(4.22)
h:::ék&('

"k{/ — @
»5yle)=g+8" (-, +5y|h) on R xT.

On the other hand, (4.22) hold true also for Green's states of the
second kind by virtue of (1.21), (d) in Theorem 3.2, (3.35), (d) in
Lemma 1.1, Lemma 4.2, and Definition 4,2. Fwurther, note from
Lemma 1.2 that for the present choice of h, every function 11r€C(T+)
obeys the identity

tb:[h:::\h](S) on (0, oo).
Thus, conclusions (a) and (b) follow from (1.21), (4.22), (1.19), and
the regularity properties of the Green's states of the first and second

kind implied by Definition 4.1 and Definition 4.2. This completes

the proof.

Theorem 4.3 enables one to generate directly the Green's
states of the first and second kind for a given region and a fixed pole,
corresponding to an arbitrary (sufficiently smooth) force function

from those corresponding to the standard force function h given by

(4.21). Tor example, (4.3) may now be written as
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uk(,}:’ t):J‘ [i*g P :’th)]( )(’}5’ t)dVX— J' [E*,SV ("> ;zlh)]( )(iﬁ t)dAX'
R ~ R ~
Additional properties of the Green's states are supplied by

Theorem 4.4. (Symmetry of the Green's states). ILet R be a regular

region, let x and y be distinct points in R, and let g€Q3. Further,

let ék(‘ ;® ;glg), ék&(‘ s ° ;’Xlg) be the Green's states of the first kind

of Definition 4. 1-_9_1_‘ the Green's states of the second kind of

Definition 4.2,

Then, for every te 't 5

K . akd aij
(2) ui(ﬁ,t;glg)mﬁ(g,t;ilg), {B) o (f,t;,ylg)=01?{(,y,t;§lg).

Proof. It will be sufficient to illustrate the proof of this theorem by
demonstrating merely (a) for the case in which ék(- 5 ;’Xlg) is a
Green's state of the first kind for the region R and the pole y. I

t€T ™, (a) is immediate from Definition 4.1. Also, (a) holds
trivially for every tE'ofE‘ if g=0 on [0, ). Hence, assume that g fails
to vanish identically on [0, ®). Now choose o> 0 such that

_B—a(}f)cR’ _B-G.(Z)CR’ while _Ea(}i)ﬂfa(z) is empty. Then, for each

n €(0, &), the region

R =R 'En("ﬁ) -B

i (y)

nw
is regular and, by hypothesis and Definition 4.1,

Ak . '—-
S0, - syle) €€, (0, p, cps xR )

g _ (4.23)
S'(- = 5x]@)€€ (0, Py cqs xR )



e

Further, (a) and (c) in Definition 4.1 imply

A

Ek(', = ;y]g):g on 8RXT ,

so that the state gk(a, . ;ylg) conforms to condition (b) imposed on S
in Lemma 2.2, Accordingly, Theorem 2.2 may be applied to the

pair of states in (4.23), whence

[t8', sylredic .- sx] @1z, 00aa + [ 185C, - syl .- sla(z, tyaa
S 7S, ~

A. l\k l\. Ak
=[x L syl@lz paa + [tac, - sxlg#a™c - ylolz taa
S (3 TS (x ~
X ()
for every t>0., Next, pass to the limit as n~0 in this equation,

bearing in mind Lemma 3.1 and Definition 4.1, to arrive at
ol . 1.
[exty (-, *5x|e) Uy, t)=Laxt; (-, - 5y[g) 1x, 1)

for every t >0, Conclusion (a), for the displacement Green's states
of the first kind now follows from (e) in Lemma 1.1. Conclusion (b)
for the stress Green's states of the firs‘t kind, as well as both con-
clusions for the Green's states of the second kind, may be reached
in a strictly analogous manner.

Theorem 4.1 and Theorem 4.2 presuppose that the state to
be represented has a quiescent past and possesses regularity
properties beyond those introduced in the definition of an elasto-

dynamic state with a quiescent past (see Definition 1.2). We

conclude this section with a theorem permitting one to obtain from
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the results established already representations of states that are

free of the restrictions just mentioned.

Theorem 4.5. (Regularization of elastodynamic states). Let R be

a regular region and let

i +
S:[E‘, g]egg’ Py Cls CZ;RXT ) .

Let n>2 be an integer and let ¢ be the function defined by

0 for every t€(-oo, 0]
ot=9 4
t /n! for every t€ (0, o).

Suppose further

S':[g‘,g']ch:::s_g_r}—RXO'f ’

Then:

(a) g'e 80(3', ST Cz;—ﬁ,), where, for every (x,t)Eﬁx%,

£, )=[p%£ 1 (x, t)+ poo (£)ix, 04)+ pp (t)u(x, 0) 5
) uwecP Derx®, occ Derx), rec@mxT);

() wecPTD@ExTH), gec@mxTH,

5=5'2*1) o0 R x(0, ) . (4.24)

Proof. Observe that the function ¢ has the properties

pe™ nc®(rh), o™ (0n=1, ™)=0 on (0, 00) . (4.25)

The first of (4.25), in conjunction with the conditions imposed on S

1 We write d;ECm(T) if wECm(T) for evary positive integer m.



BT

in Definition 1.2 and the propertiés of convolutions given in
Lemmas 1.1, 1.2, 1.3, enable one to reach conclusion (a) without
difficulty.

Next, appeal to the first of (4.25) and the continuous differ-

entiability of u on RXTT to see that
i (-, 04)+6u (-, 0)ec (MA@ .

Thus (b) follows from the first of (4.25), the above definition of f',
the continuity of u, o, and f on R XTT, and Lemma 1.2. Finally,
(c) is 2 consequence of (4.25), the continuity of u and ¢ on RXTT,

as well as Lemma 1.2. This completes the proof,

The preceding theorem owes its usefulness to the fact that,
while the state S is not assumed to conform to hypotheses (a) and
(b) in Theorems 4.1, 4.2, itis conveniently recoverable in the
manner of (4,24) from a state that does meet these hypotheses,

provided n>6.
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5. A uniqueness theorem for concentrated-load problems in
elastodynamics.

As a further application of the Green's states introduced in
Section 4 we treat in this section a uniqueness issue associated with
the second boundary-initial value problem of elastodynamics in the
presence of concentrated loads acting at fixed material (interior or
boundary) points of the body., The uniqueness theorem arrived at
here asserts the completeness of a direct formulation of concentrated-
load problems that rests on prescribing — in addition to the body
forces, regular surface tractions, and initial conditions — the orders
of the displacement and stress singularities at the load points, as
well as the stress resultants of the latter singularities. This
formulation of the singular class of problems with which we are con-
cerned clearly lies beyond the scope of ordinary uniqueness theorems
in dynamic elasticity, such as Neumann's theorem or Theorem 2.1 in
the current investigation. The uniqueness theorem constituting our
present objective is a dynamic analogue of a recent elastostatic result
due to Turteltaub and Sternberg [287 (see Theorem 5.2 of [287 ) and
will be proved by parallel means.

With a view toward clarifying the relevance of the theorem
presented in what follows, we emphasize that the idealization of a
""concentrated load' in elasticity theory derives its physical signifi-
cance from a limit definition of the solution to problems involving
such loads. Accordingly, the solution to the singular problem under

consideration would have to be defined as the limit of a sequence of
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regular solutions, corresponding to distributed body forces and
surface tractions that tend to the given concentrated loads.

A program aimed at confirming the equivalence of the direct
and the limit-formulation of concentrated-load problems may be
pursued in three stages. First, one would seek to demonstrate the
existence of the limit solution by prox;ing the appropriate convergence
of the sequence of approximating regular solutions. Next one would
examine the limit solution and attempt to verify that it possesses the
properties uniderlying the direct formulation of the problem; in
particular, one would have to determine the orders and stress
resultants of the singularities inherent in the limit solution at points
of application of concentrated loads. Finally, one would aim at
showing that these properties suffice to characterize the limit solu-
tion uniquely., The direct formulation of the singular problem at hand
has the advantage of obviating the need for a limit process that is apt
to be highly cumbersome in actual applications,

The program outlined above was proposed in [21 ] for the
equilibrium theory and was carried out rigorously in [28] with
limitation of the first two stages to concentrated surface loads acting
on finite bodies with sufficiently smooth boundaries, The limit
treatment of internal concentrated loads in elastostatics is in essence
disposed of by the derivation due to Kelvin and Tait [20](page 279)

of the solution to Kelvin's problern1 . Further, the requisite

For an explicit version of the underlying limit process see [21].
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properties of Kelvin's solution, which is in elementary form, are
trivially inferred. Similarly, Love's [19] (page 304) derivation
through a limit process of the Stokes-state verifies its physical
significance. ‘Moreoverl, conclusions (a), (b), (c) in our

Theorem 3.1 furnish the pertinent properties of Stokes' solution.

In contrast, a limit treatment of concentrated surface loads in
dynamic elasticity — even under very stringent restrictions upon the
body geometry — represents an extremely difficult task with which
we do not propose to cope at present. Thus, we rely solely on
Stokes' solution as a motivation for the a priori assumptions regard-

ing the order of the singularities at the points of application of

concentrated loads introduced in

Theorem 5.1. (A uniqueness theorem for elastodynamic problems
involving concentrated internal and surface loads). LetR be a

regular region and assume that for each y€R there is at least one

gEQ3, not identically zero on (-oo, oo}, such that the displacement

Green's states of the second kind exist for the region R and the pole vy,

corresponding to the force function g and to given material constants

P> CysCpoe Let
P={a;,...,a_}

be a set consisting of n distinct points il—ﬁ. » JFurther, let s', s" be

two states with the following properties:

(a) S':[u_-'s gtjea(i:p, Cl: CZ;(_R'P)XT+)’

~

Sn:[gn, gn]E 8(5, 0, Cl’ CZ;(E.,TP)XT‘I“) ;



.

(b) EEX—-'a.k(k:I, oeesl),

u', +)=0( -2, |71), o'(x, -)=0(]x-a , |

)s

' (x, -)=0(|x-2, =1, 5" (x, « )=0( lgi—ikrz),

uniformly on [0, t] for every t>0;

(c) lim [ (x,-)dA=L, , lim J‘s”(x,-)dA::{’\,‘k_(_)_rj [0, oo)(k=1, . . .,1),
’n_)o R ) ~) ']’]—’0 o~ O
A1) A (M)

where o (k=1, ...,n) are given vector-valued functions of the time,

M (M=RNS, (a}) (k=1, ..., n),

while i,’ 2” are the tractions of S', s

acting on the side of Ak(n)

that faces the point 2 and the preceding limits are attained

uniformly on [0, t] for every t>0;
(d) }3;'(' ) 0)=ﬁ9 1,3;'(' s 0+):Y:: }l”(' s 0)::%, E“(' ) 0+):i’,£ —R—P H
s'=p, s''=p on (9R-P)x[0, 00},

provided s', 8" here denote the surface tractions of s', g whereas

o o

u, v, and p are functions prescribed on their respective domains of
~ ~ Y ——.

~

definition.
Then,
s'zs" on (R-P)x [0, o).

Proof. Choose y€R and hold y fixed. Let

S'(-5 - 5yle)=[87 (-, +syle), ', ~s5yle)]
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be the displacement Green's states of the second kind for R and L

corresponding to g, p, Cys and Cos where ge C}3 and fails to vanish

identically. It is clear from Definition 4.2 and conclusion (a) in

Theorem 3.1 that

8, syleree (0,0, cp ez iRy)
(5.1}

t\i sk ©
s (-, -;z!g)zg on 9RXT,

if é:i(- 5 @ ;'}Jrlg) are the tractions of éi(t i ;rzlg) acting‘ on 9R.,

Next, define the state S=[‘lﬁ.1;, g] on (—R—P)x'cf‘ through
S=8'-8" on (R-P)X (0, o), u=0=0 on (R-P)X(-0, 0] . (5.2)

Then, by hypotheses (a), (b), (c), (d), and Definition 1.2,

S€E(0; ps cp, ¢ R-P) (5.3)

1

wix, )=0( -2, [ 1), o, +)=0Cb-2, %) as x-a) (=1, ...,m),  (5.4)

uniformly on [0, t] for every t>0,

lim ji(}i’ +)dA=0 on [0, o©) (k=1, ..., 1), (5.5)
=0, ¢ ~
Ay(n)

this limit being attained uniformly on [0, t] for every t>0, and

b ©
8=0 on (OR-P)XT, (5.6)

~

where s are the appropriate surface tractions of S.
Take no>0 such that any two spheres (balls) of radius Mg
centered at distinct points of P are disjoint and do not intersect

B”r] (y), while, for every n€(0,n_), Bn(y)CR and the region
ON ~
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n —
R, =R kUan(ak) -By)

is a regular region., Ewvidently, (5.1) and (5.3) now permit an appli-
cation of the reciprocal theorem (Theorem 2.2) to the pair of states
§i(-, * ;zlg), S on Rn. Because of (5.6), the second of (5.1), and the
vanishing of the body forces of éi(-, e ;zlg) and S, one finds in this

manner that

Z j[g:a:f(-, yle)l(x, t)dA + j[g*ﬁi(-, syle)le tda =

k=1 Ay (m) - S {¥)

n

) [ ylemaieonas s JIRC ylomalenas,  (5.1)
k=1 A (n) S5

for every n€(0, ’l’]o) and for all t€ (0, o).
At this stage hold t>0 fixed and invoke (5.5), bearing in mind

the uniformity on [0, t] of the limit in (5.5), to see that for k=1,...,n,

f [Sju ( s ’Ylg)](X: t)dA- =
Ay (n)
t - -
I Jg(}i.t— T) [ﬁl(zg,'r;glg)—ﬁl(gk,T;g!g)]deAXﬂ-O(l) as n-0 .
A (m) © -

Hence (5.4) and the continuity of 1;5:1(- , *3vlg) on ﬁryx’o]?‘ yield

im [ [sxd(c,  syle) G 6)4A, =0 (k=1,...,n). (5. 8)
170 p ()
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On the other hand, (5.4) and the continuity of él(- g ;ylg) on
—RY XT furnish

~

lim j (8-, *sylg)ul (g, )dA_ =0 (k=l,...,n). (5.9)
’rT—»O ~ ~

Ay ()
Now pass to the limit as -0 in (5.7) and appeal to (5. 8),

(5.9), together with Lemma 3.1 and Definition 4.2, to arrive at

lexul(y, t)=0 .
But t >0 was chosen arbitrarily, so that

lgxul(y, +)=0 on (0, o) . (5.10)

Since, by hypothesis, g does not vanish identically on [0, c0), one
infers from (5.10) and (e) in Lemma 1.1 that

g(z, . )29, on [0, o©) .
Recalling thatz was chosen arbitrarily in R-P, one draws

E:O on (R-P)X [0, o0). (5.11)

Moreover, (5.11), (1.11) imply that g vanishes on (R-P)X[0, co).
The desired conclusion now follows from the continuity of u, g on
(R-P)x [0, o) assured by (5.3) and from (5.2). |

The preceding theorem is at once broader and more restric-
tive than Theorem 2.1. While Theorem 5.1 encompasses a class of
singular elastodynamic states, not covered by Theorem 2.1, it
presupposes the existence of the displacement Green's states of the

second kind — and hence the solvability of a class of regular second
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boundary-initial value problems, for the region at hand. No such
existence hypothesis is involved in Theorem 2.1.

it follows from Theorem 5.1, in particular, that the Stokes-
state is uniquely characterized by (a), (b), and the first of (c) in
Theorem 3.1. On the other hand, (a) together with both of (c) in

Theorem 3.1 fail to characterize the Stokes-state uniquely. To see

this, consider the state

(-, syl s, syln) (5.12)

where Sk(' L ;Z[g) is the Stokes-state of Definition 3.1, h€ (;3 and is
not identically zero, while Sii(' 5 ;'Xlg) is the linear combination of
doublet-states (appropriate to a dynamic center of dilatation)
accounted for through Definition 3.2. The state defined by (5.12), in
view of Theorem 3.2, evidently conforms to (a) and (c) in

Theorem 3.1 but is distinct from the Stokes-state; it possesses,
however, displacement and stress singularities at y of a higher
order than those inherent in Sk(', . ;Zlg). This example makes clear
that hypothesis (b) in Theorem 5.1 cannot be omitted; nor can it be

relinquished in favor of the weaker requirement that, uniformly on

[0, t]for every t> 0,

lim (X—ak)/\s'(x, <)dA=0 on [0, 00) (k=1,...,1n),

lim f(;g-ak)/\s”(x, .)dA=0 on [0, o0) (k=1,...,n),
n
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without invalidating the conclusion. An analogous counter-example
related to a concentrated surface load on the boundary of an elastic

half-space is easily constructed. j
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