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Abstract 

This investigation is concerned with various fundamental 

aspects of the linearized dynamical theory for mechanically homo­

geneous and isotropic elastic solids. First, the uniqueness and 

reciprocal theorems of dynamic e lasticity are extended to 

unbounded domains with the aid of a generalized energy identity 

and a lemma on the prolonged quiescence of the far field, which are 

established for this purpose. Next, the basic singular solutions of 

elastodynamics are studied and used to generate systematically 

Love's integral identity' for the displacement field, as well as an 

associated identity for the field of stress. These results, in conjunc­

tion with suitably defined Green's functions, are applied to the 

construction of integral representations for the solution of the first 

and second boundary-initial value problem. Finally, a uniqueness 

theorem for dynamic concentrated-load problems is obtained. 
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Intr eduction 

The linearized dynamical theory of elasticity has long been 

a highly developed and, in large measure, complete discipline. It 

is therefore not surprising that most of the recent publications in 

this area of interest are concerned with the exploration of exact or 

approximative methods for the solution of relevant problem-classes 

and with specific wave-propagation problems. The present 

investigation - although ultimately motivated by physically signifi­

cant applications - can make no such immediate practical claims. 

Our main objective is to study certain general consequences of the 

equations governing classical elastodynamics with limitation to 

mechanically homogeneous and isotropic solids. Some of the 

results presented in what follows aim primarily at a clarification, 

strengthening, and extension of theorems previously available. In 

contrast, the work on Green's functions, integral representations, 

and concentrated loads in dynamic elasticity, would appear to fill a 

gap in the existing literature. 

In Section 1 we dispose of required geometric and notational 

prelirninaries. Here we also cite pertinent properties of Riemann 

convolutions and introduce the notion of an "elastodynamic state", 

which lends economy to subsequent developments. 

In Section 2 we deduce a generalized energy identity and use 

the latter to extend the conventional uniqueness theorem of elasto­

dynamics to unbounded domains in the absence of artificial 
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restrictions upon the behavior of the velocities or stresses at 

infinity. Further, we employ the foregoing energy identity to 

establish sufficient conditions for the prolonged quiescence of the 

far elastodynamic field belonging to a solution that corresponds to 

initial quiescence. This result, in turn, supplies the principal tool 

for a generalization of Graffi' s dynamic reciprocal theorem 1 to 

infinite regions, which concludes Section 2. 

Section 3 is partly expository. Here we first cite Stokes' 

solution for a time-dependent concentrated load at a point of a 

medium occupying the entire space. We then examine relevant 

properties of this solution and of the singular solutions appropriate 

to force-doublets. This material is followed by a systematic deriva-

tion, based on the reciprocal theorem given in Section 2, of Love's 

integral identity for elastodynamic displacement fields. Finally, at 

the end of the section, we deduce an analogous integral identity for 

the associated stresses. 

In Section 4 we take the integral identities of the preceding 

secti on as a point of departure in deriving integral representations 

for the solution to the first and second boundary-initial value prob-

lem of dynamic elasticity. This task is accomplished through the 

introduction of suitable Green 1 s solutions of the first and second kind. 

We also include here some supplementary results on properties of 

1 Detailed references to the literature can be found in the body of 
this investigation. 
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the Green's solutions with a view toward facilitating their actual 

construction. 

Finally, Section 5 is devoted to a uniqueness theorem for the 

second boundary-initial value problem encompassing time-dependent 

concentrated loads with stationary points of application in the 

interior or on the surface of an elastic solid. This theorem is 

proved with the aid of the Green's solutions introduced in 

Section 4. 
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1. Notation and mathematical preliminaries. 

Throughout this investigation, lower-case Latin or Greek 

letters, when not underscored, stand for scalars; lower-case Latin 

letters underscored by a tilde denote vectors, while lower-case 

Greek letters underscored by a tilde designate second-order tensors. 

Upper-case letters are ordinarily reserved for sets; in particular, 

upper- case script letters are used exclusively for sets of functions. 

The letter E is set aside for the entire three-dimensional euclidean 

space, If x is the position vector of a point in E, the symbols 

B
0

(;:) and S0(~) are employed, respectively, for the open spherical 

neighborhood (ball) of radius o about x and for the spherical surface 

of radius o centered at x. Thus, 

B 0<~)=fr lx_EE, lr-~I< 0} (0>0), 

s 6<~) = [x_ I x_E E, Ir,-;::, I= 0} (6> o). 

( 1. 1) 

(1. 2) 

Further, we agree to write B 6 and S 
0 

in place of B 
8
(£) and S 8 <.~)· 

The symbol R, in the absence of any qualifying restrictions, 

will always denote an arbitrary region in E , i.e. an open connected 

set in E together with some, all, or none of its boundary points. The 

interior, the closure, and the boundary of R - in this order - will be 

designated by R, R, and oR. Further, if x ER, we agree to let R 
,..., x 

represent the set obtained from R by deletion of the point ~and write 

R in place of (R) . 
x x 

In particular, we say that R is a regular region if it is open 

and there is a o > 0 such that for every 6 >6
0 

the boundary of Rn B 
0 6 
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consists of a finite number of "closed regular surfac e s", the latter 

term being used in the sense of Kellogg [l J (page 112). Note that a 

regular region, as defined here 1 , . need not be bounded and, if 

unbounded, need not be an exterior region since its boundary may 

extend to infinity. In addition, the boundary of a regular region may 

have edges and corners. If R is a regular region, we designate by 

-·-BR the subset of oR consisting of all "regular boundary points", i.e. 

the set of all points of oR at which its normal is defined. 

CX) 

W e will use the symbol T for the entire real line and T for an 

CX) 

arbitrary (open, closed, or half-open) interval of T. The interior 

0 

and closure of Twill be designated by T and T, respectively. 

Finally, we adopt the notation 

(L 3) 

If a and bare vectors, a · b and al\ bare their scalar and 
,..._, rv """' "" ""' 

vector product, respectively. Standard indicial notation is used in 

connection with the cartesian components of tensors of any order : 

Latin subscripts and superscripts - unless otherwis e specified 

have the range (1, 2, 3 ), summation over repeated indices being 

implied. Also, if e: and 0 are second-order tensors, we write e: • 0 
,.....; ,...,, """ ,....., 

for the fully contracted outer product e: •• 0 . .• 
1J 1J 

Kronecker-delta. 

As usual, 6 .. is the 
lJ 

We will frequently need to deal with scalar-valued and tensor-

valued functions of position and time, having as their domain of 

1 Our definition of a regular region differs from, and is considerably 
broader than, Kellogg's [l J (page 113). 
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definition the cartesian product of a set P in E and a time-interval T. 

If c.p is a scalar-valued function defined on 
1 

P X T, we denote its 

value at <e· t)E PXT by c.p(~, t) and mean by c.p(·, t), the subsidiary 

mapping of P obtained upon holding t fixed. The analogous interpre-

tation applies to c.p(~, . ) and to tensor-valued functions. As for time 

and space-differentiation, we write 

c.p .. k= 
' lJ .••••• -----.......---
(m indices) 

Bx.Bx ..•• 8xk 
1 J 

(m= 1, 2, ..• ) , (1. 4) 

provided the partial derivatives here involved exist. Ordinarily we 

shall write cfi, cp instead of c.p(l >, c.p(Z). Analogous notations will be 

employed for differentiation of tensor-valued functions of non- zero 

order. 

We turn now to notational agreements related to the smooth-

ness of functions. If P is a set in euclidean n- space, we denote by 

C (P) the class of all tensor-valued functions of any order that are 

defined and continuous on P. Next, if a is a positive integer, we say 

that a function belongs to Ca(P) if and only if it is in C(P) and its 

partial derivatives of order up to and including a exist on the interior 

of P and there coincide with functions that are continuous on P. If 

Pis a set in E, Tis a time-interval, and a a non-negative integer, 

we let C(a)(PXT) stand for the set of all functions in C(PXT) having 

continuous partial time-derivatives of order up to and including a. on 

1 
Here and in the sequel we use the conventional notation for the 
cartesian product of two sets. 
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p x T, . provided each of these derivatives 1 coincides on PX T with a 

function continuous on PXT. Finally, qa denotes the class of all 

functions in Ca(T) that vanish on T-. 

The order-of-magnitude symbols 11 0 11 and 11 0 11 are used con-

sistently in their standard mathematical connotation. For example, 

co 
if y ER, v is defined on R X T, and n is a real number, we write ,..., ,..., y 

v (x, • )=O( lx-y In) as x-> y~ uniformly on (-oo, t], if and only if there 
,,...., l"'1J ,...,, ,,.....,; "" """" 

exist real numbers o(t) and m(t) such that x ER n B ~(y) implies ,..., y u,..., ,..., 
lv(x,T)l<mlx-ylnfor every TE(-oo,t]. 

l"'oJ "" ,...., ,...,, 

For future convenience we now recall a version of the 

divergence theorem that is adequate for our purposes. 

Theorem 1. 1. Let R be~ regular region and let ~be the outward 

unit normal of 8R. Suppose 

and assume the set 

[x Ix ER, f (x);t 0} 
,,...,.; "" ,...,, ,...., f"V 

has~ bounded closure, so tha! 1. is of bounded support. Then, 

I \7 ·! dV= J 1.·~dA. (1. 5)
2 

R BR 

provided the volume integral in (1. 5) exists. 

l Observe that the class' of functions C(O)(PXT) is identical with 
C(PXT). 

2 Here \7 is the usual gradient operator. 
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The truth of the preceding theorem follows trivially from the 

strongest form of the divergence theorem considered and proved by 

Kellogg [l ]
1 

(page 119). 

Next, we collect here certain results from the theory of 

Riemann convolutions tha:t will be needed later on. To this end we 

first introduce 

Definition 1. 1. (Convolution). Let P be~ set in E and suppose 

We call the function i} defined ~ 

0 for all(~, t)EPXT 

t (1. 6) 

r o + 
jCfl(~,t-'T)~(~, 'T)dr for all (~,t}EPXT 

0 

the convolution of c.p and ~ . We also write --------

to denote this function and its values. 

Lemma 1.1. (Properties of convolutions). Let P either be an open 

or closed region in E or~ regular surface in E. Let 

1 To avoid confusion we emphasize that Kellogg's "regular region" is 
a closed region, the boundary of which is a single "closed r egular 
surface" (in Kellogg's sense of the latter term). 
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(c) cp>~ (\jl ':' w} = (cp:::' \jl)>:< w = cp;~ 1jl ':' w; 

( d) cp :::<( 1jl + w) = cp :::' \jl + cp ,:, w ; 

(e} cp>:<\jl =O onPXT+implies cp =O onPXT+or "1=0 onPXT+. 

Property (a} is an elementary consequence of Definition 1. 1. 

Proofs of (b}, (c), (d), and (e) may be found in Mikusinski's [2J 1 

book . The following two lemmas are readily inferred from 

Definition 1. 1 and (a) of Lemma 1. 1. 

Lemma 1. 2. (Time-differentiation of convolutions). Let P be as in 

Lemn1.a 1 . 1 and let 

Then: 

(a) 

(b) 
• • 0 + 
'8= cp ,;, 1jl + cp( · , 0) 1jl on P X T ; 

(c) cp(·, 0) = 0 on P implies ??EC(l)(PXT). 

Lemma 1. 3. (Space-differentiation of convolutions). Let R be an 

open or closed region in E and let 

cp E C l (R X T +} , 1jl E c1 (R x T +), ?J = cp ,;, 1jl • 

Then: 

1 
Properties (b}, (c), and (d) are established in Chapter I of [2 J. 
Titchmarsh 1 s theorem (e) is proved in Chapter II. 
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0 + 
iJ . = cp . ,:, 1)t + cp ':' 1jt • on R X T ; 

,1 ,1 ,1-

cp( ·,O)=O.£!:. W(·,O)=O~R implies iJEC
1

(R X'f'). 

As for convolutions of a scalar and a vector-valued function or of a 

scalar and a second-order tensor-valued function , we agree to write 

v = cp ,:, u if and only if v. = cp':' u. , 
,..., ,..., 1 1 

iJ = cp ,:, 1jt if and only if iJ . . = cp >:< 1jt •• - - ~ ~ 

Further, we adopt the notation 

u >:< v = u. >!< y. ' 
"" ff"-.,1 1 1 

1 (1. 7) 

} (I. 8) 

The remainder of this section is devoted to essential pre-

liminaries pertaining to the linearized dynamical theory of homo-

geneous and isotropic elastic solids. For this purpose w e 

introduce 

Definition 1. 2. (States. Elastodynamic states). Let R (not 

necessarily ope n or closed) be~ region in E and let T (open, closed, 

or half-open) be~ time-interval. If ~_and £ are, respectively, ~ 

v ector-valued and a second-order tensor-valued function defined on 

R XT, :!:!.!!! call the ordered pair S= [~,£_]~state onR XT. W e say 

that S = [~, £ J is~ elastodynamic state with the displac e m e nt field 

~ and the stress field£• corresponding to the body-force d e nsity l,, 

the rnass density p, the dilatational ~ speed c 1 , and the shear-

wave speed c 2 , and write 



-11-

provided: 

(a) uEC
2

(RXT)nC
1

(RXT), CTEC(RXT), fEC(RXT), 
rv ,...., ,.._. 

while p, c 
1

, and c 2 are constants subject.!£_ 

2 
p > o, o < /5 c 2 < c 1 ; (1 • 9) 

(b) u, CT,£, p, c
1

, and c 2 ~~ RXT satisfy the equations 
,.._. ,...., ,..., 

a . . +£. = pii. , 
lJ, J 1 1 

(1. 10) 

2 2 2 
CT . . = p(c 1 - 2c2 )6 .. u. k+2pc2 u(. ') . 

lJ lJ K, 1, J 
(1.11l 

If, in parti cular, 

co 
T = T, u = 0 on RX T (1.12) 

we~ that S is an elastodynamic state with~ quiescent past and 

write 

s = [ u, CT J Ee (£, p, c 1 , c 2 ; R > • 
"" r-.J o .~ 

(1.13) 

Equations (1. 10) represent the stress equations of motion -

(1.11) the stress-displacement relations of classical elastodynamics. 

In view of (1. 10) and (1. 11 ), the regularity assumptions under (a), 

though mutually consistent, are partly redundant. Note that (1. 11) 

implies the symmetry of the stress-tensor field z on RXT since o 

is continuous on RX T. The wave speeds c 1 and c 2 are expressed by 

1 
If l!I is a second-order tensor, *c· ')and *c·. J are the components ...... lJ lJ 
of the symmetric part and of the skew- symmetric part of ;J:, , 

respectively. 
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j l(l-v)µ ;µ 
cl= (1-2v)p'cz==..;-p (1. 14) 

in terms of p, the shear modulus µ, and Poisson's ratio v of the 

elastic solid. Also, the inequalities (1. 9) required under (a) of 

Definition 1. 2 are equivalent to 

1 
µ>O, -l <v< 2 . (1.15) 

Moreover, (1. 9) assure the positive definiteness of the quadratic 

function e that is defined by 

p[ 2 2 2 l e(cp) == -2 (c 1 -2c2 )cp .. ~.+2c2 cp .. cp .. I 
,....., 11 JJ lJ lJ -

(1. 16) 

for every symmetric second-order tensor cp • If e: is the infinitesi-,..., 

mal strain tensor associated with;:_, i.e. 

€ ij == u ( i' j) ' ( 1 • 1 7) 

then e(~) represents the strain-energy density appropriate to the 

elastodynamic state S. 

If Risa regular region, S== [;:_,_£]is a state on RXT, and n 

is the unit outward normal vector of oR, we call the vector-field s 

defined by 
,,, 

s. == 0 .. n. on BR X T , 
l lJ J 

the tractions of S acting on BR • 

We now define equality and addition of states, as well as multi-

plication of a state by a scalar constant. To this end l e t R be an 

1 ,,, 
Recall that BR represents the set of all regular boundary points. 
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arbitrary region, suppose S = [u, CJ J and S 1 = [u', CJ
1 J are states on 

f"'V l"W r-.J ("tJ 

RX T and let ;\ be a real number. Then, 

S = S 
1 ~ u = u 1 

, a = a 1 on RX T , 
l".J ~ ""' ,......, 

S + S 
1 = [ u + u', a + a 1 

] on Rx T , 
"""" ""' ""' ,...,,, 

:\ S = [ :\ u , :\ a] on R x T • 
,.., "" 

Next, with reference to (1. 4), we write 

I (a) o 
CJ •• = a.. on Rx T, 
lJ lJ (1. 19) 

and, for fixed k, adopt the notation 

f ' t 0 

S = s, k ~ui =ui, k, oij = oij, k on RXT, (1.20) 

provided the required time and space-derivatives exist. Finally, 

whenever the underlying convolutions are meaningful. 
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2. Extension of the uniqueness and the reciprocal theorem in 
elastodynamics to unbounded regions. 

The current section serves a dual purpose: here we extend 

Neumann 1 s [3 J uniqueness theorem of classical elastodynamics to 

unbounded domains and subsequently generalize Graffi 1 s [ 4 J recip-

rocal identity to a pair of elastodynamic states associated with an 

infinite region. The results thus obtained are essential prerequisites 

to the determination of integral representations for the two funda-

mental problems of dynamic elasticity carried out later on; at the 

same time these results are apt to be of interest in themselves. 

The principal tool used to establish the two theorems alluded 

to above is supplied by a generalized energy identity, which we state 

and prove presently. This lemma is an elastodynamic counterpart of 

a result due to Zaremba [5] for the scalar wave equation
1 

Indeed, 

our method of proving the generalized uniqueness theorem is 

suggested by the treatment in [5 J of uniqueness issues pertaining to 

the wave-equation. A lucid account of Zaremba 1 s paper is given by 

Fritz John in [6 J. 

Lemma 2. I. (Generalized energy identity). Suppose R is a regular 

region and 

(a} S=[u,o]EC'.- (f,p,c 1,c2 ;.R), 
rv ....._, 0 "-' 

1 
Zaremba 1 s energy scheme was rediscovered independently by 
Rubinowicz [7 l and by Friedrichs and Lewy [8 J. See also Courant 
and Hilbert [9 J (pages 6 59-661} where Zaremba 1 s result is extended 
and applied to the general second-order hyperbolic equation. 



-15-

(b) TEC1 (R) is~ given (scalar-valued) function such that the 

set 

[:;'.S I~ ER , T(~)> o} 

is bounded. Let cp be the (second- order tensor-valued) function --,..,---
defined E_y 

l [8 8 ] ' CP. .(x)=.,.,.-,.,-- u.(x,T(x))+~ u.(x,'l'(x)) for all x ER lJ ,..., (.. ox. 1 ,...., ,..., ox. J ,.., ,...., - - ,..., 
J l 

(2. l) 

Then 

'f(x) 'T'(x) 

I I ~(~,t)·~(~;t)dtdA+J J~(~,t)·!_(~,t)dtdV = 

8R 0 R 0 

r{ p .2 2 2 J e(;e(~))+z >!. (~,'T(~)}[l-c 1 (VT(~)) l 
R 

+f (c~-ci)[~(~'f(~))/\VT(~)J2 } dV, (2. 2) 

where ~ ~ the tractions of S acting ~BR and the function e is given 

E.Y ci.16). 

Proof. For convenience introduce the auxiliary vector-valued func-

tions £and x_ through 

- co 
p.=u.o .. on RXT, 

1 J lJ 

'T (x) 

v. (x)=J ;. (x, t)dt for all xER. 
lf'..I l~ rv 

(2. 3) 

0 

In view of the smoothness of 'f stipulated in (b), and because of the 

regularity properties implied by (a) and Definition 1. 2, 

{2. 4) 

Further, v has bounded support by virtue of hypotheses (a), (b) 
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and (1.12). From (2.3), (1.10), (1.11), and (1.17) follows 

T(x) 

v . ~ (~)= J ..., {~ <;:,. t). ,?:<;:,, t) + ~ -k [~~' t)J
2 

-u(x, t). ! (~, t)} dt 

0 

while (1.11 ), (1.16) yield 

~J;::,. t) . .s (~, t)= it e( s<~, t)) for all (~, t) ER x T . 

Now substitute from (2. 6) into (2. 5) and use (1. 12) to infer 

T(x) 

+!t(~,T(~))-J ~(~,t)·_f(~,t)dt. 
0 

Next, note from (2. 1 ), (1 . 1 7) that 

cp .. (x)= € .. (x,T(x))+-
2
1

ru.(x,T(x))T .(x)+u.(x,T(x))T .(x)J, 
i 3 ,...., lJ ,..,,, ,...,, L i ......, ,.., , J ,..., J ....., ,...., , i ""' 

whence (1. 16 ), (1. 11 ), and the first of (2. 3) furnish 

e (cp(x))=e ( € (x, T(x)) )+ p(x, T(x)) · VT(x) 
r'"-lr-.1 1"'¥ ~ "I ""~ ,.....,, ""' 

+ ! (c{-ci)[~(~, T(~))· VT(~) ] 2 

+~ ci~2 (~1 'f(~))(VT(;:,))2 • 

This equation, because of Lagrange 1 s identity 

may be written as 

1 
Recall that E: ·a= E: • . a ... 

~ ,...., lJ lJ 

(2. 6) 

(2. 7) 
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Combining (2. 8) with (2. 7) one has 

'T(x) 

-J ;(~, t)·,£(~; t)dt+ t (cf-ci)[~(~, 'T(~))l\VT(~)]2 
0 

(2 0 8) 

(2. 9) 

for all xER. From (2. 9), the regularity assumptions contained in 

hypotheses (a) and (b), and the boundedness of the support of v, it is ,...., 

clear that V· v i s properly integrable on R. Thus, integrating both ,...., 

members of (2. 9) over R, one is entitled subsequently to apply the 

divergence theorem (Theorem 1. 1) to the vector field :':'.:, since the 

latter conforms to (2. 4) and is of bounded support. The desired 

result (2.2) then follows immediately with the aid of (2.3) and (1.18). 

This completes the proof. 

Suppose now in particular R in Lemma 2. 1 is bounde d and 

restrict 'T to be a positive constant, say 'T=t. In these circumstances 

one recovers from (2.2) the classical energy identity of e lasto-

dynamics in the form 

t t 

s J ~<~.?A)·~(~ A)d).dA+ s I~<~;).)·_£(~ A)d).dV= 

8R 0 R 0 

Jce(~(~,t))+-!~2 (~,t)Jdv. 
R 

(2. 1 0) 
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As will become apparent shortly, the role played by the generalized 

energy identity (2. 2) in connection with the extended uniqueness 

theorem to which we turn now is strictly analogous to that played by 

(2.10) in Neumann's [3 J familiar uniqueness argume nt for bounded 

regions. 

Theorem 2 . 1 . (Generalized uniqueness theorem). L e t R be a 

regular region and let S', S 11 be tw~ states with the following 

properties : 

(a) [ - + S'= u 1,0 1 ]Ee(f, p,c1 ,c2 ;RXT ) , 
"' ,...,, -

- + 
S 11 =[u",cr11 ]Ee(f, p, c 1 , c 2 ;RXT ) ; ,..._, "" ,...., 

(b) u'(·, O)=u"(•, 0), u'( · , O+)=u11
(·, 0+) on R; 

f"Y ,..._, ~ ~ -

further, suppose either 

(c) u'=u" on oRXT+ ,.....-

or 

(d) ~·=~11 ~ ~RXT+, where ;l' and ~11 ~the respective 

tractions of S' and s It acting on oR. 

Then S'=S11 on RXT+. 

Proof. Define the state S on RX' by 

S=[u,cr]=S'-S11 onRXT+, u=cr=O onRXT 
~,,...., ""',.,.,,_,, ~ (2 0 11) 

From (a), (b), (2 .11) and Definition 1. 2 one finds without difficulty 

that 
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By (2. 11) and (1. 18), since either (c) or (d) holds, 

>): ):9. 

u . s = 0 on oR XT , (2. 13) ,...., ,..., 

where s are the tractions of S acting on oR. ·+ Now fix (x, t) ER X T and ,..., 

define the scalar-valued function 'T through 

(2 0 14) 

Then, evidently, 

1 - - [ -,2 1 TE C (R )n C (R), 'il'r(y) _ = -- for all yER , 
x ,,.,, 4 2 ,.,, x 
...., cl ""' 

and because c
1 

is positive by (2.12) and Definition 1.2, 

[x_ lx_ER., 'T (~) > 0} is bounded. (2. 16) 

Choose 0 > 0 such that BS> (x)CR and set 
o uo "" 

(2 0 1 7) 

In view of (2.12), (2.15), (2.16) and Lemma 2.1, one concludes that 

(2. 2) holds for each member of the family of regular regions defined 

in (2.17). Thus, bearing in mind (2.13), the second of (2.15), and 

the fact that the body-force field of S vanishes identically, one has 

1 
Here and in the sequel, we write 0 in place of the body-force argu­
ment of the elastodynamic state under consideration if the body 
forces vanish identically on the appropriate space-time domain. 

2 
Note that the gradient of the function 'T given by (2.14) has an 
(irremovable) finite discontinuity at y. 
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J { e(se,(,l))+ 
3
8P ~2 Cz• T(X))+ ~ (c~ - ci H~Cz· T(,l)}/\17TCz)J

2
} dV 

Ro 

(2. 1 8) 

for every oE (0, o ), where the functions e and cp are given by (1 .16) 
0 ~ 

and (2 .1 ), while ~ now stands for the tractions of S acting on oR 
0

• 

- - co 
OWing to the continuity of T on R and of u,o on RXT, ,...., ,...., 

T(y) 

lim J f iC,z,A.)· !Cx•A.)d7ldA=O, 

0 --+ 0 so(;:_) 0 

so that passage to the limit as o--+0 in (2.18) gives 

I { e <::e<x»+ 3 f i 2 tr· T(y)>+ t ( c~ - ci H~Q'> Tex)) I\ V'T(_y) ]
2

} dV =0 • 

R 

(2. 1 9) 

Recall next that the inequalities (1. 9), which are implied by (2. 12 ), 

are sufficient for the positive definiteness of e. Moreover, (1. 9) 

assure that all terms in the integrand of (2.19) are non-negative. 

Therefore, and since the integrand in (2 .19) is continuous on R , 
x 

u(y, 'f(y))=O for every yER • 
1".119V f"'o.I """ ro.J x 

co 
Finally, invoke the first of (2.15) and the regularity of~ on RXT 

implied by (2.12), and use (2.14) to confirm that 

u(x, t)=u(x, T (x))= 0 • 
~~ ~~ ""' ~ 

Consequently, (x, t) having been chosen arbitrarily in RX T +, ,.., 

I 
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0 + u =0 on RXT • ,..,, 

- CXI 
u =cr =0 on RX T . 
r..!' r",.I ,....,, 

The desired conclusion now follows from (2.11). 

(2. 2 0) 

An extension of Theorem 2. 1 to mixed boundary conditions is 

entirely elementary. Similarly, the generalization of Lemma 2. 1 

and Theorem 2 .1 to anisotropic and nonhomogeneous solids presents 

no difficulties. Next, in the first boundary-initial value problem 

(surface displacements prescribed) uniqueness prevails for unbound-

ed domains even if (1. 9) is replaced by the weaker requirement that 

c
1 

and c 2 be real, as can be shown by adapting an argument due to 

Gurtin and Sternberg [l 0 J for bounded isotropic elastic bodies. 
1 

The 

relaxation of the rather stringent smoothness hypotheses involved in 

(a) of Definition 1. 2, which render Theorem 2 .1 inapplicable to 

certain physically important problems, is in need of further 

t
. 2 

atten ion. 

It should be pointed out that an elastodynamic uniqueness 

theorem valid for infinite regions may alternatively be based on the 

classical energy identity (2. 10), following Neumann's procedure, if 

one introduces suitable restrictions on the orders of magnitude of the 

velocity and stress field at infinity. The essential advantage of 

1 See also Gurtin and Toupin [11 ], whe~e the result of [l 0 J is 
extended to anisotropic media. 

2 . 
In tlns connection see a recent paper by Knops and Payne [12 ], 
which contains a uniqueness theorem for weak solutions in elasto­
dynamics, with limitation to bounded domains. 
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Theorem 2. 1 stems from the fact that it does not involve such arti-

ficial a priori assumptions. In this connection we recall that the 

analogous uniqueness issue in elastostatics, where the governing 

equations are elliptic rather than hyperbolic, is considerably more 

involved. For exterior unbounded domains elastostatic uniqueness 

theorems that avoid extraneous order prescriptions at infinity were 

established by Fichera [13], as well as by Gurtin and Sternberg [14]. 

On the other hand, the uniqueness question associated with boundary-

value problems in the equilibrium theory for general domains whose 

boundaries extend to infinity is yet to be disposed of satisfactorily. 1 

In preparation for a generalization of Graffi 's [ 4 J dynamic 

reciprocal identity to unbounded regions we now proceed to 

Lemma 2. 2. {Sufficient conditions for the prolonged quiescence of 

the far field). Let R be~ unbounded regular region and suppose: 

{a) S=[u,o]Ee (f,p,c 1,c2 ;R); 
rv,....., o~ 

{b) .i~ every t > 0 there is~ bounded set J\{t)CR such that 

f =0 on {R-/\{t))X [O, t], ,..., ,.,.,-

and, if 8R is unbounded, 

U·S=O on {~R-J\(t))X [0,t], 
,...... ""' 

where ! are the tractions of S acting~ aR. 

Then, for each t > 0, there is a bounded set 0 {t)CR, depend-

1 
For the special case of the first and second equilibrium problem 
appropriate to the half-space this question was settled by 
Turtelti;i.ub and Sternqerg [15] . 
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u = a=O on (R-O(t))X [O, t] . ,..,, ,....,....,_ 

Proof. Fix t>O, let 6> 0 be such that 

oR U l\.(t)c B 
0 

if oR is bounded , 

1\. (t)c B 
0 

if oR is unbounded, 

and consider the set 

(2. 21) 

} (2.22) 

Not e that O(t), as defined in (2. 23 ), is a bounded subset of R. With 

a view toward showing that (2.21) holds, choose 

(y, A.) E(R- O(t)) x (0, t] (2.24) ,.., 

and regard (y, A.) as fixed. Define the function T by ,...,, 

T(~)=A.- I~ -x I /2c 1 for all xER • (2 0 2 5) 

Evidently, 

1 2 1 
'T" EC (Ry )n C (R). [VT(x)] = --2 for all ~ERv , 

"' "' 4c 1 ,.<, 

(2. 26) 

and since c
1
>0, 

[x Ix ER, T(x)> o }=Rn B 2 , (y) . 
~ ~ ~ ACI~ 

(2.27) 

From (2.23) and (2.24) one draws that B 2 , (y) does not intersect 
AC 1 ,.... 

B
0

. Thus, (2.22) and (2.27) imply 

[~ l~ER, T{~)> 0 }cR-1\.(t) if oR is unbounded . 
} (2.2~) 

[x lxER, T{x)>O}CR-1\.(t)UoR if oR is bounded' ,.... ,..,, ,...., 

Now call on (2.24), (2.25) to arrive at 
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T(x)st for all xER • (2.29) ,...., ,...,, 

Hypothesis (a) requires 3t, to vanish on RX T-. This fact, in conjunc-

ti on with (2. 2 8), (2. 2 9) and hypothesis (b), justifies 

'l"(x) 

J ~(~,ri)·£<;:,.ri)dri=O for all ~ER, 
0 

T(x) 

J:(x,ri)·s(x,ri)dri=O for all xE~R. 
r>Jr-...J ,,....,,rv rw 

0 

Next, let S >0 be such that B 1=' (y)c R and put 
o '='o"" 

(2.30) 

(2. 31) 

One concludes from (2. 26), (2. 2 7), hypothesis (a), and Lemma 2. 1 

that (2.2) holds for each RS in (2.31). Thus, (2.30) and the second 

of (2. 26) yield 

T(x) 

I J i<~·ri>· ~<~ri>dridA= 
Si;(x_) 0 

I { e(;e(~))+ 38P ~2 (~,'T"(~))+.,Zcc~-ci)[~(~T(~))/\17'T"(~)J2 }dv' (2.32) 

RS 

for every sE (0, s ), where e and cp are given by (1. 16) and (2. 1 ), 
0 ,..., 

while ~ here denotes the tractions of S acting on oR S. Since 'T' is 

continuous on R and u, a are continuous on RX!f, the left-hand ......, ,..,, 

member of (2.32) tends to zero as S-+0, whence 
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J {e(;£(~})+¥~2 (~,T(~)}+~(c~-c:)[~(~;T(~}l\VT(~)J2}dV=0. (2.33) 

R 

The inequalities (1. 9), which are implied by hypothesis (a), 

are sufficient for the positive definiteness of e and ensure that each 

of the three terms of the integrand in (2.33) is non-negative. 

Accordingly, this integrand being continuous on R , 
:t 

u(:x,T(x))=O for all xER . 
"""'r>J r-.J ,...,,, ,....,,. y ,..., 

CX> 

Invoking once again the continuity of T on R and of u on RX T, one 

finds that 

u(y, J.)= u(y, 'T"(y})==O . 
~,...,, "'""" f'".J · f'"V 

But (y, ;\)was selected arbitrarily in (R-0 (t)) X(O, t]. Hence ,..., 

u=O on (R-O(t))X(O,t], ,..., ,...., 

which, because of the regularity and initial quiescence of u assumed 

in hypothesis (a), gives 

u=O on (R-O(t))X[O,t]. ,...., ,...., (2. 34) 

CX> 

By (2. 34), and because (1.11) hold on RX T, 

a= 0 on (R-O(t))X [O, t]. 
....... - (2. 3 5) 

Recalling that O(t) is closed, one shows readily
1 

that the closure of 

R-O(t) contains R-O(t). Therefore, appealing to the continuity of~ 

- CX> 
and a on R XT, one sees that (2. 34), (2. 3 5) imply (2. 21). Finally, 

1 
Cf. Exercise 1 (page 37) in [16 ]. 
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note that (2. 22) and (2. 23) imply that O(t) depends exclusively on /\(t). 

Since twas chosen arbitrarily, the proof is now complete . 

It is essential to recognize that if a state with a quiescent 

past is characterized as the solution of a standard boundary-initial 

value problem in elastodynamics, the decision whether or not 

hypothesis (b) of Lemma 2. 2 is met, is immediate from the data. 

Theorem 2. 2. (Extension of Graffi1 s reciprocal identity to unbounded 

regions). Let R be~ regular region and suppose: 

(a) S=[u,0]Ee <.£. p, cl' c2;R), S 1=[u1,01 ]Ee (f 1,p,cl, c2;R); 
rotJ,,...,,, o"' ,...._, ""' o ~ 

(b) S satisfies hypothesis (b) of Lemma 2.2 if R is un-

bounded. 

Then, for every t >O, 

I[~>!<~](~, t)dA+ J [>:<~1 J<!· t)dV= I [~1 >:<~)<~· t)dA+ JC£>:<~](~, t)dV, 

oR R 8R R 

where ~ and ~1 are the tractions of Sand S 1 acting .£!1: 8R. 

Proof. It is clear from the present :1.ypotheses and Lemma 2. 2 that 

the integrals in (2. 36) are proper even if R is unbounded. Choose 

t > 0 and hold t fixed for the remainder of the argument. Define the 

vector field v by ,.., 

v. (x)= [0 .. >:<u! ]x, t)- [0~ .>:<u. ](x, t) for all xER . 
l "" lJ J ,.., lJ J ,.... ......, 

(2. 3 7) 

In view of hypothesis (a), Definition 1. 2, Lemma 1. 1, and Lemma 1. 3, 

1 
Recall the notations adopted in (1. 8). 
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vEC
1 

(R)nC(R) ' (2. 3 8) ,..., 

v. . (x\= [ cr ... *u! ](x, t)+[CY .. ,:,u! . ](x, t) 
l.' l. ;::/ l.J' l J ,...., l.J J' l. ,.,,, 

- [CY! . . >:<U. ](x, t)-[CY! .>:<U .. Jlx, t) 
l.J' l. J ,..,. lJ J' l ~ 

for all xER. Hence hypothesis (a), (1.10), together with symmetry 

of CY and CY', furnish 
,..., """ 

(2. 3 9) 

where 

"' -u "'' -u' "'ir (i, j) , "'ir (i, j) • 

On the other hand, (1. 11 ), (1. 8), and the commutativity of convolu-

tions asserted in (b) of Lemma 1.1, imply 

CY>:< i:-' = CY 1 >:<e: on RXT • 
"" N ,...,,, ,....,, 

(2. 40) 

Now note from hypothesis (a) and Definition 1. 2 that 

u(·, O)=u'(·, O)=u(·, O)=u'(·, O)=O on R . 
"" ,...., rv ,....., ~ 

Consequently, two successive applications of (b) in Lemma 1. 2 give 

0 I 0 I •• I ••I 0 + u>:<u =1:1>'.<U , u >:<u =u >:<u on RX T • 
,.....,,,..._,...,row,....,~"'~ 

(2. 41) 

Combine (2. 3 9), (2. 40), and (2. 41) to obtain 

(2. 42) 

From hypotheses (a), (b), Lemma 2. 2, and (2. 3 7), one infers 

that v has bounded support. This being the case, (2. 42) and the ,..., 

continuity of f',:cu and f >:<u' on R.xlf' ass iired by Lemma 1.1 imply 
f'..> ,..,., "' ,...,.,, 

that \/ • x_ is properly integrable on R. The preceding observations 
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enable one to apply the divergence theorem (Theorem 1. 1) to v 
"' 

on R. In this manner and by recourse to (2.37), (2.42), and (1. 18) 

one confirms that (2.36) holds. This completes the proof since t 

was chosen arbitrarily. 

It is worth mentioning that the foregoing argument, in con-

trast to Graffi 1s [4 J proof (which is confined to bounded regions), 

avoids the use of the Laplace transform. 
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3. Basic singular solutions. Love's integral identity for the 
displacements and its counterpart for the stresses. 

In this section, which is partly expository, we first cite 

the fundamental singular solution of the field equations in elastody­

namics. This solution, due to Stokes [l 7 J, corresponds to the 

problem of a time-dependent concentrated load at a point of a med-

ium occupying the entire space. We then establish certain relevant 

properties of Stokes' solution and of the' associated dynamic doublet 

solutions. The foregoing singular states are subsequently used to 

establish in an economical manner Love's [18 J integral identity for 

displacement fields of elastodynamic states with a quiescent past, 

as well as an analogous identity for the associated fields of stress. 

The results thus obtained, which are applicable also to unbounded 

regions, are essential preliminaries to the construction of integral 

representations for the solutions of the fundamental boundary-

initial value problems in dynamic elasticity, carried out in 

Secti on 4. 

We denote by 

(3. 1) 

for every (x,t)EE xlf-, the values at (x,t) of the state whose dis-
~ y . ~ 

placement and st:ess field is given by Stokes' [17 J solution
1 

appro-

priate to a concentrated load acting at ;z parallel to the xk -ax is. 

Here ekg(t) is the load-vector at the instant t, if ek is a unit vector ,..., 

1 See also Love's [19] treatise (page 305). 
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in the xk-direction. We assume the "force function" g twice 

continuously differentiable on (-oo, oo). The notation used in (3.1) is 

to convey that the displacements and stresses, for fixed~ t, and X, 

are (linear) functionals of g. Since 

Sk(x, t;y jg)=Sk(x-y, t;Olg) for all (x, t)EE X', 
f"'J ,...., ,..,,,,...., f'V ,....,,, ~ 

(3. 2) 

it suffices to quote Stokes' solution explicitly merely for the special 

CX> 

choice x=£.: for every (~,t)EE 0 xT one has 

k r 3xixk 
4TI'pu. (x,t;O jg)=L 3 l ,..,. ,...., 

o l/c2 

ik J I A.g(t- A.x)dA. 
x J x 

l/cl 

(3. 3) 

4TI' o.~(x, t;O jg)= 
lJ - ,..., 

2x.x.xk [ ( c 2 )3 1 

+ 
1

4 J g(t-x/c2 )- c g(t-x/c 1 >J 
X c 2 1 

xk o. . [ ( c 2 )2 JG J -~ 1-2 -;- g(t-x/c )+~g(t-x/c) 
x3 c. 1 1 c 1 1 

o.kx.+o.kx. G J l J J l x . - 3 g(t-x/c2)+c g(t-x/c2 ) • 
x 2 

(3. 4) 

Here ancl in the sequel x stands for jx I· The displacements (3. 3) Ci~ re ,.., 

easily seen to agree with the representative displacement field 



-31-

(corresponding to a force parallel to the x 1 -axis) appearing in [19 J 

(page 305). The position-dependence of the integration limits in 

Stokes' original formulas has, for convenience, been eliminated 

through a change of the integration variable. The stresses (3. 4) are 

readily found from (3.3) by use of (1.11). 

Stokes' solution is deduced by Love [18 ], [19] through a 

limit process based on a family of time-dependent body-force fields 

that tends to a concentrated load, in analogy to the limit treatment 

by Kelvin and Tait [20 J (page 2 79) of the corresponding elastostatic 

l 
problem. We now adopt 

2 
Definition 3. I. (The Stokes-state). Let z-EE, gE Q. , and let p, c 1 , c 2 

satisfy the inequalities (1. 9). We then call the state Sk(-,. ;X lg) 

defined~ E,lx'1 .£1: (3.1) to (3.4) the Stokes-state for a concentrated 

load at ,l parallel to the xk-axis, corresponding to the force func­

tion g and to the material constants p, c 1 , c 2 . 

Theorem 3. I'. (Properties of the Stokes-state). The Stokes-state 

Sk(·, · ;ylg) of Definition 3.1 has the properties: ,.., 

(a) Sk(o,. ;ylg)Ee (0, p, c 1 , c 2 ;E ) ; 
,...., 0...... y 

' ' ,.., 

(b) !(<~: . ;_y lg)=O( I~ -x. i- 1 
), 2k<~: • ;_z I g)=O( I~ -x 1-2

) 

as ~_,x_, uniformly~ (-oo, t]for every tE(-oo, oo); 

1 See Sternberg and Eubanks [21 J for an explicit version of this 
limit process. Equations (3. 3 ), (3. 4) reduce to the solution of 
Kelvin's problem if g(t)=l (-oo<t<oo). 
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J (x -y)t\ sk(x, • ;y lg)d.A =0 _on (-oo, oo), 
r-..1rv ~"""' ~ x,..._,, 

s (y) ~ 
Tl"" 

where !k(., · ;z I g) stands for the traction vector of Sk( ·, · ;XI g) acting 

~the side of sri<z> that faces x' ~k denotes the unit base-vector in 

the xk-direction, ~nd the precedi~ limits~ attained uniformly on 

(-oo, t] for every tE(-oo, oo); 

(d) if hEQ
2

, then 

1· k ~ 
h>:<S "(·, • ;ylg)=g>:<S (•, • ;ylh) on EXT. ,...., ,..., - x 

' 

Proof. In view of the translation identity (3. 2) it suffices to take 

y =0. To verify (a), note first that (3. 3 ), (3. 4), together with the ,.., ,....,, 

assumed regularity of g, imply that uk(·, • ;O lg) and o-k(·, · ;O lg) 
f"'>J ,......, I"'!.,/ ry 

satisfy the smoothness requirements in part (a) of Definition 1. 2. 

Moreover, since g vanishes on T-, one draws from (3.3) that 

k I -u ( · , • ; 0 g) = 0 on E 0 X T • ,.,, ,._, "' 

To complete the proof of (a) substitute from (3. 3 ), (3. 4 ) into (1.10), 

(1.11). Property (b) follows at once from (3.3), (3.4) andthe 

hypothesis that gEq
2

. 

1 
A subscript attached to an "element of area" or an "element of 
volume" in a surface or volume integral indicates the appropriate 
space variable of integration. 
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Consider now part (c). After a brief computation based on 

(3. 4) and (1. 18) one finds that 

J ~k(~ 'f ;~Jg)dAX = ~ [ g( 'f-T)/c l )+2 g( T-T)/c2) 

s 
11 

for every TE(-co, co) and every 11>0, so that 

lim Jsk(x,T;O lg)dA =g(T)ek for every TE (-co, co) . 
O f"'-'~""""" x f'V 11-- ,..., 
S'll 

The uniformity of this limit follows from the inequality 

I
rk . k ~ •

1 J s (x,T;O lg)dA -g(T)e I!> max lg , 
,..... ,.,,, ""' X """' C2 ( tJ s ,.., - co, 

11 

(3. 6) 

which holds for every tE(-co, co) and every 11>0, provided TE(-co,t], 

by virtue of (3. 6) and since g vanishes on (-co, O] and is continuously 

differentiable on (-co, co). The second of (3. 5), for y=O, is im-,..., ,..., 

mediate from (3 .4) and (1.18). 

Finally, property (d) is readily inferred from (3 . 2), (3.3), 

(3.4) , Definition 1.1, (1.21), and the assumption that g and hare 

both in Q.
2

. This completes the proof in its entirety. 

3 
Definition 3.2. (Dynamic doublet-states). Let _zEE, gEQ , and 

k 
let S (·, · ;y jg) be the Stokes-state of Definition 3.1. We call the - ,.., --- --- ------
state defined on E X ~ bv -- - '/., ~ 
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the dynamic doublet-state for the pole :t,• corresponding t,0 the xk­

axis and the x t -axis, the force function g, ~well~ to the material 

constants p, c 1 , c 2 • 

From (3. 7), (3. 2) follows 

skt(x, t;y lg)=Sk'1x-.z, t;O jg) for every (x, t)EE x'f'. 
,....,, ,._ ,....., ""'11 ,...., ~ 

(3. 8) 

We list next the cartesian components of displacement and stress 

belonging to Skt(·, ·;Olg), which may be computed from (3.3), (3.4) ,..., 

by means of (3. 7). 
co 

For every(~; t)EE 0 XT one thus obtains 

"' kt . 
41T pu. (x, t;O I g)= 

1 rw ,.....,, 

(3 0 9) 

1 
Recall the differentiation convention (1. 2 0). For functions of more 
than one position vector, the space differentiation so indicated is 
always understood to be performed with respect to the coordinates 
of .the first position vector. 
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5(6 .. xkx 0 +o . .x.xk+6k 0 x.x. +6.kx.x o +o . .x.xk+6.kx.x o) 
lJ 'V 1-{, J 'V 1 J J 1 'V J-(, 1 1 J 'V 

5 
x 

2 ..;., .. xkx 0 + 6. ox.xk+6kox.x.+o.kx .x 0 +6 . .x.xk+o.kx .x 0 
I ~ lJ -v 1-v J -v 1 J J 1 -v J-{, 1 1 J -v 

+- L: 4 
Cz X 

(3. 1 0) 

We observe that if g(t)=l (t :s;; t< co), (3. 9), (3. 10) reduce to the 
0 
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corresponding elastostatic doublet-states 
1 

for t;=:.: t
0
+x/c2 . In analogy 

to Theorem 3 .1 one has 

Theorem 3. 2. (Properties of the dynamic doublet-states). The 

dynamic doublet-state Skt(., · ;_zjg) of Definition 3.2 has the 

properties: 

(a) 
kt s (· ' . ;ylg)Ee (0, p, cl, c2;E ); 

,...., 0""" :t 

(b) kt I I 
1
-2 kt I I 1-3 ~ (~, . ;,r g)=O( ~ -_z ), £ (~; . ;z g)=O( ~-:t, ) as ~--z, 

uniformly on (-oo, t] for every tE(·-oo, oo); 

(c) lim J skt(x, · ;yl g)d.A =0 on (- oo, oo) , 
0 ,...,, ,.... ,..., x --

ri-- s {y) ,.., 
Tl,..., 

where ~kt(·, · ;_zjg) are the tractions of Skt( ·, · ;,rl g) acting on the side 

of S (y) that faces y, while ej ~s the unit base-vector in the x.-
- Tl,.,,. -- - - ------- --- J 

direction, ejkt denotes the usual alternating symbol, and the preced­

ing limits~ attained uniformly on (-oo, t] for every tE(-oo, oo); 

(d) if hEq.
3

, then 

h*Skt(., . ;y!g)=g>:,Skt( ·, · ;ylh) on E XT. ,..., ,_ -;z 

Proof. Property (a) is a direct consequence of Definition 3. 2, 

Theorem 3 .1, and Defi:p.ition 1. 2. Properties (b) and (c) may be 

1 
Cf. [21] (page 150). 
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established by the same procedures used to verify their counter-

parts in Theorem 3 .1. Finally, (d) may be confirmed directly with 

the aid of Definition 3. 2, Lemma 1. 3 and part (d) of Theorem 3. 1. 

A physical interpretation of the dynamic doublet- states is 

easily arrived at on the basis of (3. 7) and (3. 2). In this connection 

we refer also to Love 1 s [18 J discussion of the singular solutions 

under consideration. In preparation for a proof of Love's integral 

identity, we introduce next 

Lemma 3. 1. Let yEE, a>O, --,...., 

S=[u, o]Ee (f, p, c 1 , c 2 ;Ba(y)), 
"'W ~ a~ """' 

and suppose Sk(-, ·;_:zig) is the Stokes-state of Definition 3.1. 

Then, for each tE(-ro, co), 

(a) 

(b) lim J [sk( ·, · ;yl g}>:<u ](x, t)dA = [g>:'ukl(y, t) , 
Q,...., f",.,I ""'rw X rv 

~ ~~ -
where ! and !k( ·, · ;.zl g) ~ the tractions of S and Sk(., · ;_yl g) acting 

on the side of s~x> that faces x. 

Proof. The truth of (a) and (b) for tE(-ro, 0 J is at once apparent 

from Definition 1.1 and (1. 8). Thus choose t>O, hold t fixed for the 

remainder of the argument, and let 13 E (0, a). With a view toward 

proving (a) for the present choice oft, set 
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and appeal again to Definition 1.1 and (1. 8) to see that 

t 

1;('r1)= J J ~~,t-T}·);t(~,rr;_zlg)d'TdAx. 
s (y) 0 

11""' 

Therefore, bearing in mind the present hypotheses, one has the 

estimate 

(3. 11} 

where 

M 1 (11}=maxls(x,rr}I, (x,T)ES lu\X[O,t], 
~,......, """" riw 

} (3. 12) 

The function M
1 

is bounded on [O, 13 J by virtue of (1. 18) and the con­

tinuity of 5!, on Bl3 <,z> X [O, t ], whereas 

k -1 
M 1 (11)=0(11 ) as 11-- 0 

because of (b) in Theorem 3. 1. Hence (3. 11 ), (3. 12) imply 

conclusion (a). 

Next, set 

r{(n)= J [~k( ·, • ;..z I g)>:<~](~, t)dAx for every riE (0, 13] 
811Cz) -

and define an auxiliary function v through 
1"" 

Accordingly, 

(3. 13) 
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t 

I ~k~· t-T;_zlg)· ~(~, T)dTdAX I 

0 

(3. 14) 

The second term in the right-hand member of (3 .14) tends to zero 

with n since this limit may be taken funder the time-integral 1 and 

because of (c) in Theorem 3 .1. Consequently, 

where 

M 2(ri}=max I~(~, T}I, (~, T) ESriCz> x [O, t] , 

M;(ri)=max l~k(~,T;xlg) ,, (~,T)ESTl(,l)X [O, t] 

for every TJ E (0, 13 J. From (3. 13} and the continuity of ~on 

Bl3 <,y) X [O, t J follows 

On the other hand, (1. 18} and (b) of Theorem 3. 1 imply 

k -2 
M 2 (ri}=O(ri } as ri -a . 

(3 0 1 5) 

} (3. 16) 

Thus (b} follows from (3.15), (3.16). The proof is now complete. 

Theorem 3. 3. (Love 1 s integral identity for the displacement field). 

Let R be~ regular region. Suppose: 

1 
See Mikusinski [2 J (page 143). 
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(a) S=[u,a] Ee (f, p, c
1

, c 2 ;R); 
~-.; o,...., 

(b) 

Further, let Sk(•, ·;_rig) be the Stokes-state of Definition 3.1 for~ 

concentrated load at!, parallel to the xk-axis, corresponding to the 

force function g and to the material constants p, c 1 , c 2 . 

Then, for every (y, t)ERX(-oo, oo}, 
~~- -~ "" 

3 

uk(y' t)= \ . J [u~(x, t;yl s. (x, • ))- s~(x, t;vlu. (x, ·)) J dA ~- L 1 _.., ,...,, 1 ~ i l".I ~ i "'"-! x 
i=l BR ,....., 

3 

+ \ Ju~(x, t;ylf. (x, · })dV , L 1.....,,...., 1- x (3 • 1 7) 

i=l R 

where~ and ~k(·, · ;z-lg) are the tractions of S and Sk(·, · ;_rjg) acting 

on BR. 

Proof. Note that the integrands in (3. I 7) involve Stokes-states with 

the respective force functions s. (x, · }, u. (x, · ), f.(x, ·) and that these 
1 ""' 1 ....... 1 ,._, 

integrands may be written in fully explicit form by making the appro-

priate substitutions for gin (3.3), (3.4) and by recourse to 

(3.2), (l.18). 

The validity of (3 o 1 7) for (y, t) ER X (- oo, OJ is evident from the ,..., 

fact that both S and Sk( ·, · ;ylg) have quiescent pasts. Choose ,.,,, 

(X. t)ER X(O, oo), hold <,z. t) fixed until further notice, take a.> 0 such 

that Ba.(y)CR, and set 

R =R-B'n(y) for every T) E (O~ a.) • 
T) ' I ,.._. 



-41-

Let hEQ
2 

and assume h does not vanish identically on [O, oo). From 

(3.2), (3.3), (3.4) one then infers 

uk(·, • ;yjh)=ok(·, · ;yjh)=O on (E-B (v))X [0,'T"]for every 'T" > 0, 
,.., ,..., "" ....., ,....., Cl'T"K.. 

while (a) of Theorem 3. 1 ensures that the body-force field of 

S k(·, • ;_zlh) vanishes on E X T. In view of the preceding observations 
x 

and hypothesis (a), one is entitled to apply the reciprocal theorem 

(Theorem 2 . 2) to the pair of states Sand Sk( •, · ;yjh) on R . Thus ,...., Ti 

I [sk( ·, · ;v!h)>!<U. J (x, t)dA for every Tj E (0, a) , 
~ 'r(.,, ~"J x 

aR 
Ti 

(3 • 1 8) 

where s and sk( ·, · ;y!h) are the respective tractions acting on aR . ,...,. ,....., ,...., Ti 

Next, pass to the limit as Ti_, 0 in (3 .18) and use Lemma 3. 1 

to conclude that 

[h,:,uk ](y, t)= J [f>:<uk( ·, · ;v!h) ](x, t)dV 
,..,.,,, -.,. ,._ 'rl.; ,....,. x 

R 

+ J fl [s>:<uk( ·, · ;vjh) J (x, t)- [sk( ·, · ;ylh)>:<u ](x, t)f dA 
,,..._,,,,..... ',,..{., ~ ('.J ,....., ,....., A..,/ ) x (3. 1 9) 

aR 

From (3. 19), hypotheses (a), (b), conclusion (d) in Theorem 3. 1, 

as well as (1. 21 ), (1. 8) and (b), (d) in Lemma 1. 1, one now draws 
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3 

[h>:<uk](y, t)= \ J [h>:<u.k( 0 , • ;y!f. (x, ·)) ](x, t)dV 
,~ L i ,..., i - "' x 

i=l R 

3 

+\ J [h,:<fu~(-, · ;y!s.(x, 0 ))-s~(., · ;y.lu.(x, ·))}] (x,t)dA . L i - i....., i ,...., i,.,., "' x 
(3. 2 0) 

i=l 8R ""' 

If R is unbounded, it follows from (3. 2 ), (3. 3 ), and the fact 

that S is a state with a quiescent past, that 

3 

) u~(x,T;y!f.(x, · ))=0 
L...Jl~ ~lf" 

i=l 

for every (~,T)E(R --Bc 1t(X))X [0,t]. Similarly, if in addition 8R is 

unbounded, 

3 3 

\ u~(x,T;vls.(x, • ))= \ s~(x,T;vlu.(x, 0 ))=0 L, i,..., ,.<, i- l...J i- !<, i-
(3. 22) 

i=l i=l 

for every (x,T)E(~R-B t(.y))X[O,t]. Because of (3.21), (3.22), the 
,..., cl 

integrands in (3. 2 0) are of bounded support. Interchanging the 

orders of the space-integrations and convolutions in (3. 2 0), as is 

perrnissible in the present circumstances 
1

, and using again the 

distributivity of the convolution ( (d) in Lemma 1. 1 ), one ar:t;ives at 

1 
This reversal is trivially justified for the surface-integrals in 
(3. 2 0) because of the regularity of the integrands; in the case of the 
improper "\'olume integrals, whose integrands are singular at y, 
the reversal is easily legitimized by an elementary limit process. 
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3 

rh,:,{uk(y •. >- \ I cu.k(x, • ;y1 s. ex •. »- s~(x, . ;v 1u.(x, ·» J dA L ·- L i ,..., ,..., 1 ,..., 1 ,.... ,.(., 1- x 
i=l oR ,..., 

3 

-l J uik(~, · ;_zlfi (~;. ))dVx} J (t)=O • (3. 23) 

i=l R 

Since (y, t) was chosen arbitrarily in RX(O, oo), (3. 23) holds for all ,...., 

Q;,t)ERX(O, oo). The term within braces in (3.23) is readily shown to 

be continuous on RX [O, oo), whereas h, by assumption, is continuous 

on [0, oo) and does not vanish identically. Thus, the desired con-

clusion now follows from (e) in Lemma 1. 1. This completes the 

proof. 

The integral identity (3. 1 7) represents an extension to 

elastodynamics of the corresponding formula due to Kirchhoff [22 J 

(1882) for the scalar wave equation. At the same time (3. 1 7) is a 

dynamic counterpart of Somigliana's [23] (1889) integral identity in 

the equilibrium theory. 
1 

A result similar to (3. 1 7), but confined to 

two-dimensional elastodynamics, was deduced by Volterra [24 J 

(1894). Love [18] (1904) sketched a proof of (3 .17), applicable to 

bounded regions, with the aid of Betti's elastostatic reciprocal 

theorem, treating the inertia forces as body forces. A somewhat 

n1ore detailed derivation of (3. 1 7) along these lines may be found in 

a recent dissertation by DeHoop [25 J (1958). Somigliana [26] (1906) 

arrived at a closely related integral identity by different means, 

taking Kirchhoff's formula as his point of departure. 

1 
See also Love [191 (page 245). 
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A precise statement of Theorem 3. 3, which also covers 

unbounded domains, is not available in the previous literature, so 

far as we are aware. Further, the present proof, which rests on 

the dynamic reciprocal theorem, ,would appear to be more direct 

and more explicit than the proofs referred to above. Our next 

objective consists in establishing an identity analogous to (3. 1 7), for 

the stresses of an elastodynamic state with a quiescent past. To 

this end we require 

Lemma 3.2. LetyEE, a>O, --,.... 

S=[u, o]Ee (f, p, c
1

, c 2 ;B (v)), 
,..., ,..., 0'""' a,;<, 

and suppose Skt( ·, · ;_zig) is the iYnamic doublet- state of 

Definition 3. 2 for the pole X, corresponding to the xk-axis and the 

x t -axis, the force function g, as well as to the material constants 

(a) 

(b) lim J [skt(,, · ;yjg)':'u ](x, t)dA = 
Q _..v rv rv""' X 

Tj-+ s (y) "' 
ri-
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where c=c2 Ic 1 , while ~ and ~kt(·, · ;_z I g) are the tractions of S and 

skt(·, · ;_z lg) acting~ the side of STJ<_z) that faces ,Z· 

Proo!. If tE(- oo, 0 ], conclusions (a) and (b) follow at once from 

Definition 1.1 and (1. 8). Thus fix tE{O, oo) for the remainder of the 

argument. Bearing in mind that gEQ
3

, one infers from (3. 8), (3. 9), 

(3 .1 0), (1. 18), after a tedious computation, that 

(3. 24) 

lim J (x.-y-)s~t(x,. ;y!g)dA = 
0 J Jl,..,,,..,, x 

ri- s (y) ,..,, 
T] ..... 

(3. 2 5) 

where nj are the components of the inner unit normal of Srf..z» and the 

limits in (3.24), (3.25) are attained uniformly on [0,t]. 

Next, let 13 E(O, a.), set 

and define se through 

(3. 26) 
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Then Definition 1.1, (1. 8), (1. 18), and (1. 11) enable one to con-

elude that 

t 

I r kt I 
I u. (x, T ;y g )cp .. {x, t- T)n. (x)d Td.A 

' l ...., ,._, lJ ,..,, J ,...., x 
s (y) 0 ....... 

1l....., 

Equation (3. 24) consequently furnishes the estimate 

2 kt 
4rr 1l tM 1 {T])M1 {TJ)+o(l) as 1l -+O , (3. 2 7) 

where 

kt I kt I I M 1 (T])=max u (x,T;v g), (x,T)ES fu)X[O,t] 
~ ~ ~ ~ ~~ 

} (3. 28) 

for every T]E(O, f3 ]. From (3. 26 ), (3. 2 8), and the continuity of a on ,..., 

Bf3 <z> X [O, t] follows 

M
1 

(T])=o{l) as T]-+0 , 

whereas (3,28) and (b) of Theorem 3.2 imply 

kt -2 
M 1 (TJ)=O(T] ) as 'Jl-+O. 
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Thus, combining (3.27) and (3.28),one confirms (a). 

To verify (b), let 

(3. 2 9) 

From the assumed regularity of u on B (y)X (-co, co) one draws, for ,..,, a ..... 

every (x,T)EB (y) X(-co, co) , 
,.., a. "' 

u(x, T)=u(v, T)+u . (y, r){x. -y. )+v(x, T) , 
,.,.., ,...,,, ,......,~ ,.....,,1/ltY l 1 ,..._, "' 

(3. 3 0) 

where 

(3 • 31 ) 

uniformly on [O, t] . On the basis of (3.29), (3.30), the first of (3.31), 

Definition 1. 1, (1. 8), and (b) in Lemma 1. 1, one arrives at 

t 

t 

J "'!:_(~, t- T). ~k-t(~. "'X, I g)d TdAX 

0 

+Ju. . (y, t- T){ J (x . -y. )s~,f,(x, T;vl g)dA 
1, J ,..., J J 1 ""' ,<,, x 

0 s {y) ,..., 
Tl,.., 

(3. 32) 

The first and third terms in the right-hand member of (3. 32) tend to 

zero with Tl because of (c) in Theorem 3. 2 and (3. 2 5), respectively. 

Hence 
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where 

M
2

(ri)=max!v(x,'r)I, (x,T)ES (y)x[O,t], 
""'~ "' T)l"'V 

for every riE(0,13] . Now invoke (3.31) to see that 

2 
M 2 (n)=O(ri ) as ri - O , 

(3 • 3 3) 

} (3.34) 

and call on (1 . 18), as well as (b) in Theorem 3. 2 to justify that 

k-t -3 
M 2 (ri)=O(ri ) as fl-+O . 

Conclusion (b) thus follows from (3.33), (3.34). This completes the 

proof. 

Theorem 3.4. (Integral identity for the stress field). Let R be a 

regular region. Suppose: 

(a) S=[u,0] Ee (f, p, c 1 , c 2 ;R); 
~ !""-' o~ 

Further' let sk-t(.' . ;x I g) be the dynamic doublet-state of 

Definition 3.2 for the pole X• corresponding to the xk-axis and the 

x t -axis, the force function g, as well as to the material constants 

p, C 1' C2 • Define the state 

-kt I c-kt I -kt I s < • • · ;z g > = ~ < · • • ;;i g > • £- < • • · ;z g > J 
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through 

-kt I · 2 2 ii I s (·, · ;x g)=p(c 1 -2c2 ) s (·, · ;_z g)okt 

(3. 3 5) 

Then, for every (.y, t)ERX (-oo, oo), 

3 

"I I [-kt I -kt I J a kP _(y,t)= s. (x,t;yu. (x,·))-u. (x,t;ys.(x,·)) _ dA 
'!,,·- l """" ....., l - l ,..., - l"""" x 

i=l oR "' 

3 

l J-'kt I - u. (x, t;v £. (x, · ))dV , 
l ,.., ,,<., l""' x 

(3 . 36) 

i=l R ,...., 

-kt I -kt I where ~ and ! ( ·, · ;_:r g) are the tractions of Sand S ( ·, · ;X g) 

acting on oR. 

Proof. Since the following argument is quite similar to the one used 

in proving Theorem 3. 3, it may be summarized in condensed form. 

If (y,t)ERX(-oo, O], (3.36) is a consequence of the fact that Sand 
"""" 

-kt I S ( · , · ;X g) have quiescent pasts. Hence choose (_y. t)E R X (0, oo) and 

hold (y, t) fixed unt il further notice. Take a> 0 such that B (y)cR and ,..., a~ 

set 

R = R- B (VI for every ri E (0, a) . 
Tl Tj ',(,' 

3 ' 
Leth E Q and assume h does not vanish identically on [O, co). 

Observe from (3. 8), (3. 9), (3. 1 0), and (a) of Theorem 3. 2 that, for 

every riE(O, a), Skt( ·, · ;_ylh) qualifies as a candidate for the state S 

of Theorem 2. 2 on R'l"j. Thus, in v '._ew of the present hypothesis (a), 

the reciprocal theorem (Theorem 2. 2) is applicable to the present 
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kt 
pair of states Sand S (·, · ;yih) on R . On passing to the limit as ...... 11 

11-+ 0 in the resulting identity, and using Lemma 3. 2, one arrives at 

From (3. 3 7), hypotheses (a) and (b), conclusion (d) in 

Theorem 3. 2, and (b), (d) in Lemma 1. 1, one now draws 

3 

[h>:<uk, ,e,J <.z, t)= - I J [h~,u~,f, ( ·, · ;,rlfi (~, · ))](~, t)dV x 

i=l R 

3 

l I k-e.. I kt I + [h,:c[s. (-, · ;y u.(x, · ))- u . (-, · ;y s.(x, · ))} ](x, t)dA . 
1 ...... l""' l ...... i...... ,.., x 

i=l 8R ,...:' 

(3. 3 7) 

(3. 3 8) 

After permissible reversals of the space-integrations and convolu-

tions involved in (3. 3 8), one finds that 

3 

I { l I k{, k{. 
Lh':' uk P(v,·)- [s. (x,-;vlu.(x,·))-u. (x,·;vls.(x,·))]dA 

' ,'UK- l ,...., ,c., l""' l ,...., (<, 1....., x 
i=l oR 

I 

J u~{,(x, · ;ylf. (x, · ))~V } J (t)=O 
1......, ,...,, 1-.. x (3. 3 9) 

i=l R 

Since CX• t) was chosen arbitrarily in R X(O, oo), equation (3. 3 9) holds 

for all <.z,t)ERX(O, oo). But the term within braces in (3.39) is con­

tinuous on RX [O, oo), while h is continuous on [O, oo) and does not 
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vanish identically, so that (3. 3 9) and (e} of Lemma 1. 1 furnish 

3 

uk. -e,(z· t>=I 

i=l 
I k-t I k-t I [s. (x , t;y u. (x, · }}-u. (x, t;y s

1
. (x, ·}} ]dA 

1 /"¥ l'V lr-..1 1 l"V ~ f'J x 
oR ,..., 

3 

-I I u~-t(x, t ;vjf. (x .. • }}dV 
1,..., ~l .... x 

i=l R ~ 

(3. 40} 

for every (_z, t}ERX (0, oo}. The desired conclusion now follows from 

(3 .3 5), (3 . 40} and (1.11). This completes the proof. 

It is clear that (3 . 40) may be obtained formally from Love 1 s 

identity (3. 1 7) by differentiating the latter under the integral signs 

and by making use of the relations 

a k kt 
-;or- u. (x, t;yl g}= -u. (x, t;y!g) , oy -t 1 ~ ,..,, 1 ..., ,..., 

a k k-t 
-
0

- 0 .. (x, t;yj g}= - 0 .. (x, t;yl g} 
y -t lJ ,.... ,..., lJ ,..,, ,..,, 

co 
which hold for every (x,t}EE XT because of (3 . 2) and (3.7). A ,..,, x 
rigorous proof of Theorem 3. 4 based on this alternative procedure 

is, however, quite cumbersome. 

Finally, we remark that (3. 40) enables one to write down 

immediately formulas analogous to (:3. 1 7) and (3. 36) for the dilatation 

and rotation fields of an elastodynamic state with a quiescent past. 

The linear combinations of doublet- states entering the formulas just 

alluded to are those characteristic of a dynamic center of dilatation 

and a dynamic center of rotation. Closely related integral identities 

for the dilatation and rotation were obtained by Ted one [2 7 J. 
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4. Green's states. Integral representations for the solutions to the 
fundamental boundary-initial value problems of elastodynamics. 

In the present section we aim at integral representations for 

the displacements and stresses of the solutions to the first and second 

fundamental boundary-initial value problems in classical elasto-

dynamics. The appropriate boundary data consist of the surface dis-

placements in the first problem and of the surface tractions in the 

second problem. Further, we confine our attention at present to 

elastodynamic states with a quiescent past. 
1 

The integral identities (3 '. 1 7) and (3. 36) involve both the 

surface displacements and the surface tractions on the boundary of 

the region at hand. In order to arrive at the desired representations, 

we need to eliminate from the integrands in (3. 1 7), (3. 36) the surface 

tractions in connection with the first problem and the surface dis-

placements in connection with the second problem. This purpose 

may be accomplished by means of suitable elastodynamic Green's 

states. With a view toward the first boundary-initial value problem 

we introduce 

Definition 4.1. {Green's states of the first kind). Let R be~ regular 

3 
region, ,lER, and let gEQ . We call 

the displacement Green's states of the first kind and 

1 See the end of Section 4 for a relaxation of this restriction upon the 
initial conditions. 
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the stress Green's states of the first kind for the region Rand the 

~ '/.,• corresponding to the force function g and to the material 

constants p, c 1 , c 2 , provid~d: 

(a) ,.. k I k I o;>tk I - "' S ( · , · ; y g) = S ( · , · ; v g) + <:> ( • , • ; y g) on R X T, 
,..., ! ;,.<,, ,...., - :t, 

,.. k,f, I -kt I .,...k,e, I - "' S (-, · ;y g)=S (-, · ;v g)+ <:> (", • ;y g) on R X T, ,..., ~ ,..., - y ,..., 

k I - k,f, I where S ( ·, · ;y g) and S ( ·, · ;y g) respectively denote the Stokes -
,.., -- -

state of Definition 3. 1 and the linear combination of doublet-

states (3.35) ; 

-k I c-k I -k I . -(b) S (-, · ;_yg)= ~ (-,·;_yg),£ (·,·;:1,g)]Ee
0
(Q,p,c 1,c2 ;R), 

r:rk,f,(- '. ;..zl g)= [}!k-1 ·' . ;..zl g), £k,f,{- '. ;..zl g)]Ee o<.2.: p, cl' Cz ;R), 

,,_,k I (2) "' -k,f, I c1) "' £ (- , · ;_y g) EC { 8R X T), £ ( · , · ;_y g) EC ( 8R XT); 

(c) uk("' . ;yl g)= -uk(.' . ;y,g) on 8R x T' 
"" "'-i rv ,,....,, -

....... k,f, I -k,f, I "' ~ ( • , • ;:1, g) = -~ ( • , · ;X g) ~ 8R x T . 

-;¥k ,_ -k,e, I 
The regular parts <:> (-, • ;..zil'!>) and S ( · , · ;,y g) of the displace-

ment and stress Green's states of the first kind are each evidently 

defined through requirements (b), {c) as the solution to a first 

boundary-initial value problem for R . Moreover, they are uniquely 

determined by these conditions because of Theorem 2. 1. In 

contrast, the existence of these regular states, and henc e of the 

corresponding Green's states, is contingent upon the existence of a 

solution to the first problem for the region under consideration in the 
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presence of sufficiently smooth boundary data. Before proceeding 

with our immediate task it is convenient to have available 

. ,3 3 
Lemma 4.1. Let R be~ regular region, xER, gE Q , hE Q , and let 

~k I -kt I u (·, · ;X g), S (·, · ;Xg) be the regular parts of the Green's states of 

the first kind introduced in Definition 4. 1. 

Then: 

(a) 

(b) 

.,,,.k I ,...,k 1i.. _ oo 
h>:<u (·, · ;yg)=g>:<S (·, · ;y111) on RXT; ,...,, ,..,,, -

k t I ..... kt I - oo h >:<'S' ( · , · ;y g)=g>:<S (·, · ;y h) on RXT. ,..., ,...., --

Proof. Consider first (a) . From Definition I. 2 and (b) in 

Definition 4 . 1 one obtains after two successive applications of 

Lemma 1.2 and Lemma 1.3, 

,...,k I -g >:<S {-,·;yh)Ee (O,p,c 1,c
2

;R) 
,..,, 0""' 

}(4.1) 
Nex t, call on (c) in Definition 4. I and (d) of Theorem 3. I to see that 

k J 00 

= -g>:<u (', · ;ylh)=g>:<u (-, · ;ylh) on oR X T . 
~ ~ r..J ,,..., 

Conclusion (a) now follows from (4. 1 ), (4. 2) and the uniqueness 

theorem (Theorem 2. I). The p~oof of (b) is strictly anal ogous. 

We are now in a position to turn to 

(4. 2) 

Theorem 4. 1 . (Integral representation for the solution of the first 

boundary-initial value problem). Let R be~ regular r e gion. 

Suppose: 
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(a) s = [ u , a J E e ( f, p, c 
1 

, c 2 ;R); 
""' rtJ 0,....,,, 

--k "kt I Further, let S (·,·;.zig) and .S (·, • ;X g) be the Green's states of 

the first kind of Definition 4. 1 for the region R and the pole X corre-

sponding to the force function g and to the material constants p, c
1 
,c

2 
• 

..!!_these Green's states exist for all ,iER and all gE q.3 , then fo r every 

co 
(y, t)ER XT, ..., 

3 

uk(y, t)=\ [ fu~(x,t;y~.(x, ·))dV -Js~(x,t;vlu.(x, .))dA J, (4.3) ,....,, L .... i ,....,, r-.J 1,...,,,.. x i "' ~ i ""' x 
i=l R ,.., BR ,.., 

3 

au(y,t)= _\ [Ju~,f"'(x,t;ylf.(x, • ))dV - Js~t(x, t;ylu.(x, · ))dA J, (4. 4 ) 
K"-'"' L 1 ,..., ,.,, 1 ,.,, x 1 ,..., ,..., 1 ,..., x 

i=l R "" BR 

h --kc I > .-kt I . s"k I w ere ~ ·, · ;X g and ~ ( ·, · ;X g) ~ the tractions of ( ·, · ;_y g) and 

--kt I S (·, · ;2~ g) acting ~ BR. 

Proof. If (y,t)ERXT-, (4.3) and (4.4) follow trivially from (1.18), ,..., 

Definition 4. 1, and hypotheses (a) and (b). Define a function h by 

setting 

{

O for every tE(-oo, 0] 
h(t)= 4 

t /4~ for every tE (0, oo) 

3 
and observe that hE q . Choose ;zER and note from (4. 5), (c) in 

Definition 4. 1, (3. 2), (3. 3) that if BR is unbounded, 

"'k I 3:, (-, • ;;z h)=Q on (BR-Bc t(,Z))X [0,t] for every t > O. 
1 

(4. 5) 

(4. 6) 
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Fron~ (4. 6) and (b) in Definition 4. 1 one concludes that Sk(-, · ;yjh) ,...., 

satisfies the conditions imposed on the state S of Theorem 2. 2 in 

hypotheses (a) and (b) of that theorem. Thus, and because of the 

present hypothesis (a), one may apply the reciprocal theorem 

"'k (Theorem 2. 2) to the pair of states S, S (-, · ;,rjh) on R. Accord-

ingly, and by virtue of (c) in Definition 4. 1, 

-J [~k( ·, · ;zlh}>:<~](~, t)dAx for every tE(O, oo) . 

oR -
(4. 7) 

From hypotheses (a) and (b), (3.2), (3.3), (4. 5), (b) of 

Lemma 1 . 1, and Lemma 1 • 2 there follows 

k (5) co 
a . . >:<u. (-'. ;y,h)EC (oRXT) lJ 1 ,..,, (4. 8) 

Furthermore, hypotheses (a) and (b), Lemma 1. 2, (b) of 

Lemma 1.1, and (b) in Definition 4 . 1 imply 

...,k . I (5) co o .. (.,·,yh)>:<u.EC (oRXT). 
lJ ,...., J 

} (4. 9) 

...... k I (5)- co f>:<u (·,.;yh)EC (RXT), 
~ ,.....,, "' 

Let t > 0. If R is unbounded, then (4. 6 ), (b) of Definition 4. 1, and 
0 

Lemma 2. 2 ensure that there is a bounded set O(t )cR such that 
0 

...... k I .....,k I -u (·, · ;y h)=o (·, · ;y h)=O on (R-O(t ))X[O, t ]. 
"""' ~ __, ,-....; ,....,, 0 0 

(4. 1 O} 

On the other hand, (3.2}, (3.3}, and (4. 5} furnish 
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uk(·, · ;yjh)=O on (E-B t (X))X[O, t ] . 
,..., ,...., , ....., cl o o 

I 

(4.11) 

Assertions (4. 8) to (4. 11 ), together with (1. 18), justify five succes-

sive time-differentiations of (4. 7) under the integral signs on the 

interval (0, t ). Since t was chosen arbitrarily in (0, oo) , one thus 
0 0 

has 

- r [sk(., · ;y!h)>:<u]( 5 )(x, t)dA for every tE (0, oo). 
tJ "" ,..._,, rv """' X 

(4.12) 

oR 

Next, appeal to hypotheses (a) and (b), (1. 18), (d) in 

Theorem 3. 1, and (a) in Lemma 4. 1 to see that 

3 

[s,:,uk(·, · ;y!h)](x, t)=\ [h>:<u~(·, · ;ylsi(x, · ))](x,t) ~AJ l"'o..I ,......,, L 1 ,...., ,...., '*"""' 

i=l 
,,:, co 

for every (~,t)EoRXT, 

3 

(4.13) 
[f ,:<u k{·, · ;y!h)](x,t)=\[h,:,U'~(·, · ;y!f.(x, · ))](x,t) "' ,....., ,,.._. ,.....,, /_J 1 ,,.._. 1 r..J ,-..,; 

i=l 

- co 
for every (~,t)ER>:T, 

3 

[sk(·, · ;y!h)>:,u](x, t)=\ [h>:<s~(·, · ;yju.(x, · ))](x, t) 
,...., rw ~ ~ L~ 1 "" i,....,,, ,....., 

i=l 

'-!' CX) 

for every (:~,. t) E oR x T . 

Now note that for ljTEC(T+) equation (4. 5) and Lemma 1.2 imply 
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Therefore, and by (4.12), (4.13), 

3 3 

\ Ju~(x, t;yjs.(x, · ))dA =\ Ju~(x, t ;yjf.(x,. })dV L 1,...,,...,1 ....... xL 1,...., ,.,,, 1,.,., x 
i=l oR ,.... i=l R 

3 

-I I s.k(x, t;y!u. (x, . })dA for every tE (0, co) . 
1 f"V rY l"" x 

(4. 14) 

i=l 8R ~ 

Finally, combine (4.14) with (3. 1 7) and use (a) of Defini -

CXl 

tion 4,1 to conclude that (4,3) holds for every (y,t)ERXT. The ,..,, 

verification of (4.4) is easily carried out in a strictly analogous 

manner with the aid of the reciprocal theorem (Theorem 2. 2) and 

the integral identity (3. 36) . 

Turning to the second boundary-initial value problem, we 

adopt 

Definition 4.2. (Green's states of the second kind). Let R be a 

3 
regular region, x_ER, and let gEq. . We call 

,_ 

the displacement Green's states of the second kind and 

the stress Green's states of the second kind for the region Rand the 

pole :i• corresponding to the force function g and to the material 

constants p, c
1

, c 2 , provided: 
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(a) ... k k I ?\'k I - co S (·,·;ylg)=S (o,·;yg)+u (·,•;vg) onR XT, 
- - ~ - y ,...., 

... kt I -kt I ,..., kt I - co S ( ·, • ;y g)= S ( ·, • ;v g)+ S ( •, • ;y g) on R X T, ,..., ~ ~ - y 
"' 

where Sk(·, · ;y,g) and Skt(·, • ;y!g) respectively denote the Stokes-- -- ,..., 

state of Definition 3. 1 and the linear combination of doublet----------- ----
states (3.35); 

(b) 

skt(· ,· ;_zlg>=@:k~. ,·;_zig), ~k~. ,•;_zlg)]Eeo(.2_, p, cl' Cz;R); 

( c ) 
k k >!< co s (·, · ;y,g)= -s (·, · ;y!g) on oRXT, 

,...., "" •""""' f'k'V -

M U * co s '(·,·;ylg)=-s (·,·;y!g)onoRXT, 
r-..1 ,...- ~ f"'iJ -

....,k I . ....k< I > where ~ ( ·, • ;,r g) etc. denote the tractions of S ·, • ;X g etc. acting 

on oR. 

The regular parts of the displacement and stress Green's 

states of the second kind are uniquely characterized, in view of (b), 

(c}, and the uniqueness theorem (Theorem 2. 1 ), as solutions to 

second boundary-initial value problems for R. The existence of the 

Green1 s states of the second kind evidently depends on the solva-

bility of the second dynamic problem on R for sufficiently regular 

surface tractions. The following lemma is a counterpart of, and 

may be proved in the same way as, Lemma 4.1. 

Lemma 4. 2. Let R be~ regular region, _zER, gE q.3 , hE q.3 , and let 

~k I ,..,kt I 
L> ( ·, • ;,r g), S { ·, • ;X g) be the regular parts of the Green1 s states 

of the second kind introduced in Definition 4. 2. 
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Then: 
~- -k I ~k I - oo (a) h>:<S (·,·;yg)=g>:<u (·,•;yh) onRXT; 

~ - -

i 

Theorem 4. 2. (Integral representation for the solution of the second 

boundary-initial value problem). Let R be~ regular region. 

Suppose: 

(a) S=[u, a]Ee. (f, p, c 1 , c 2 ;R) 
'"""" """OJ 0"' 

(b) 

"k I "k-t I Further, let S (·, • ;X g) and S (·, · ;X g) be the Green's states of the 

second kind of Definition 4. 2 for the region R and the pole 1,• corre­

sponding to ~he force function g and to the material constants p, c 1 , c 2 • 

If these Green's states exist for all yER and all gEQ
3

, then for 
..____ -- -- ""' -- -- --- --

co 
every Q", t) E R X T, 

3 

uk(v, t)=\ [ Ju~(x, t;ylf.(x, • ))dV +Ju ~(x, t;yls
1
.(x, • ))dA ], :.<. L 1,..,,....1,...,, x 1,..,,,.,.,,...,, x (4.15) 

i=l R ""' oR ""' 

3 

CTkp(v,t)=S' [J..fc-t(x,t;ylf.(x, • ))dV + r u~'1x,t;yls.(x,• ))dA ], -v:.<. L 1 ,.., ,.,,, 1 ,...,, x ,I 1 ,..., ,...,, 1 ,..., x (4.16) 

i=l R "' oR ""' 

where ~~the tractions of S acting on oR. 

The truth of this theorem may be confirmed with the aid of 

Lemma 4. 2 by an argument parallel to that employed in the proof of 

Theorem 4.1. The smoothness restrictions imposed under (b) of 

Theorem 4.1 and Theorem 4. 2 may be relaxed somewhat at the 

expense of more elaborate regularity hypotheses. As will become 
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clear at the end of this section, the foregoing two theorems may be 

used to generate representations of the solution to the first and 

second elastodynamic problem in the absence of a quiescent pasto 

Finally, integral representations for the solution of mixed boundary-

initial value problems in elastodynamics, similar to those contained 

in Theorem 4. 1 and Theorem 4. 2, are easily established by means 

of suitable generalizations of the Green's states of the first and 

second kind. 

Equations (4.3), (4.4) in Theorem 4.1 and (4.15), (4.16) in 

The or em 4. 2, for a fixed choice of the pole y, involve elements of 
~~- ~ 

the relevant Green's states corresponding to an infinite family of 

force functions (depending on the position parameter x). Accordingly, ,..., 

the representation at a single point of the given region of the solution 

to either fundamental problem of elastodynamics would seem to 

require that one solve an infinity of boundary-initial value problems 

in order to determine the requisite families of displacement and 

stress Green's states. We show next that this apparent difficulty is 

easily overcome, and in this connection consider first the represen-

tation of states whose body forces and surface displacements or 

surface tractions are separable functions o~ position and time. 

Thus, suppose the state S in Theorem 4. 1 is such that 

co 
~(~; t}=~(~)p(t} for every (:~,' t} E 8R X T , 

f (x, t}=f (x)q(t) for eve ry (x, t}ER X T. 
,....., ,......, f'V ,....., ,...._ \. 

}(4.17) 
Then, as is clear from (3.3), (3.4}, Definition 4.1, and 

Theorem 2. 1, Equations (4. 3 ), (4. 4) give way to 
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(4.18) 

Similarly, if the state S in Theorem 4. 2 has the separable data 

-·-
s(x, t)=s(x)p(t) for every (x, t)E ElRX T, 
,-...I""' ~""""" "" 

f(x, t)=f(x)q(t) for every (x, t)ERXT, 
f"-.,1,,......,, """"~ ,.._, 

1(4.19) 
then (4.15), (4.16) may be replaced by 

(4. 2 0) 

o-k-e.e,y, t)= - I£<~)·£. kt<~, t;xlq)dvx- Ii<~>·~ kt<~, t;_y!P)dAx . 
R ~BR 

In order to facilitate the construction of integral representa-

tions for states whose data are not necessarily separable we 

insert here 

Theorem 4. 3. (Standardization of the force function in the construe-

tion of Green's states). Let R be~ regular region, and let,,yER. 

"k I "kt I Further, let S (-, • ;,,i g) and S (·, · ;,:z- g) be the Green's states of the 

first kind of Definition 4.1 or the Green's states of the second kind 

of Definition 4. 2, and let h be the function defined _£y 

{ 

0 for every tE (-oo, OJ 
h(t)= 

t
4 /4~ for every tE (0, oo) . 

-) (4.21) 
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Then: 

(a) ... k I ... k I (5) -S (·, · ;y g)=[g>:<S (·, ~ ;y h)J on R X(O , oo) ; ,._. ,..., - y ,...., 

(b) ... k-t I ... k.e. I cs> -S ( · ,·;yg)=[g>:<S (·, · ;yh)] onR X(O, oo). ...., ,..., - y ,._, 

Proof. If Sk(·'. ;y,g) and sk-t(·'. ;y,g) a r e Gre en's states of the first ,..., ,..,, 

kind, then (1. 21 ), (d} in Theorem 3. 1, (d) in Lemma 1. 1, Lemma 4 .1, 

and Definition 4 . 1 yield 

1 (4. 22) 

On the othe r hand, (4. 22) hold true also for Green's states of the 

second kind by virtue of (1.21), (d) in Theorem 3.2, (3.35), (d) in 

Lem1na 1. 1, Lemma 4. 2, and Definition 4. 2. Further, note from 

Lemn1a 1. 2 that for the pre sent choice of h, every func tion w EC (T +) 

obeys the identity 

Thus, conclusions (a) and (b) follow from (l.21), (4.22), (l.19), and 

the regularity properties of the Green's states of the first and second 

kind implied by Definition 4.1 and Definition 4. 2. This comple tes 

the proof. 

Theorem 4. 3 enables one to generate directly the Green's 

states of the first and second kind for a given region and a fixed pole, 

corresponding to an arbitrary (sufficiently smooth) force function 

from those corresponding to the standard force function h give n by 

(4 . 21). For e xample , (4.3) may now b e written as 
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Additional properties of the Green's states a re supplie d by 

Theorem 4.4. (Symmetry of the G r een's states). Let R be~ regular 

region, let~ and X be distinct point s in R, and let gE q. 3 . Further, 

"k "kt : I let S ( · ,· ;_rig), S ( •, • ;z g) be the Green's states of the first kind 

of Definition 4. 1 or t he Green's states of the second kind of 

Definition 4. 2. 

00 
Then, for every tE T, 

P r oof. It will be sufficient to illustrate the proof of this theorem by 

demonstrating merely (a) for the case in which S k( ·, · ;zl g) is a 

Green's state of the first kind for the region R and the pole X. If 

tE T-, (a) is immediate from Definition 4. 1. Also, (a) holds 

00 

trivially for every tET if g=O on [O, oo). H e nce, assume that g fails 

to vanish identically on [O, oo). Now choose a> 0 such that 

B (x)cR, B (y)cR, while B (x)n B (y) is empty. Then, for each arv a~ a,...., arv 

IJ E(O, a), the region 

R =R-B {x)-B (y) 
IJ IJ ,..., IJ l'V 

is regular and, by hypothesis and Definitio:p. 4. 1, 

"k I -S (·, • ;y g)EE (0, p, c 1 , c 2 ;R ) , 
,...., 0 ,.,,,. IJ }(4.23) 

"i I -S (·,•;xg)EE (O,p,c 1,c2 ;R). 
,...., 0 ,...., IJ 
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Further, (a) and (c) in Definition 4. I imply 

,...k I .::. °" u (·, • ;y g)=O on uR X T , 
~ ,....,; """" 

so that the state Sk( ·, • ;y!g) conforms to condition (b) imposed on S ..... 

in Lemma 2. 2. Accordingly, Theorem 2. 2 may be applied to the 

pair of states in (4. 23 ), whence 

for every t> O. Next, pass to the limit as ri .-.o in this equation, 

bearing in mind Lemma 3. I and Definition 4. 1, to arrive at 

[g>:diki(·, • ;x!g) ](y, t)= [g,nl.~(·, · ;y!g) J(x, t) 
rw ~ l r--.J ,..,,; 

for every t >O. Conclusion (a), for the displacement Green's states 

of the first kind now follows from (e) in Lemma I. I. Conclusion (b) 

for the stress Green's states of the first kind, as well as both con-

clusions for the Green's states of the second kind, may be reached 

in a strictly analogous manner. 

Theorem 4. I and Theorem 4. 2 presuppose that the state to 

be represented has a quiescent past and possesses regularity 

properties beyond those introduced in the defi11-ition of an elasto-

dynamic state with a quiescent past (see Definition I .2). We 

conclude this section with a theorem permitting one to obtain from 
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the results established already representations of states that are 

free of the restrictions just mentioned. 

Theorem 4. 5. (Regularization of elastodynamic states). Let R be 

~ regular region and let 

Let n~ 2 be ~ integer and let cp be the function defined~ 

Suppose further 

Then: 

cp(t)= 
{ 

0 for every tE(-oo, OJ 

tn/n~ for every tE (0, oo). 

1 [ - 00 S = u 1 ,0 1 ]=cp>:,s on RXT. 
"' ,...., -

(a) s1Ee
0
(,f. p, c 1 , c 2 ;R), where, for every (~,t)ERXT, 

f 
1 
(x, t)= [cp':'f] (x, t)+ pc:o (t)u(x, O+)+ pc.fi (t)u(x, 0); 

~ ,..._,, ~ "" ' ""~ ,....,~ 

(b) 

(c) 

1 1(n+l) -
S=S on RX (0, oo) . 

Proof. Observe that the function cp has the properties 

n-1 oo + (n) (n+l) cp EQ nc (T ), cp (O+)=l, cp =0 on (0, oo). 

( 4. 24) 

(4.25f 

The first of (4.25), in conjunction with the conditions imposed on S 

l We write wECco(T} if wECm(T} for ev~ry positive integer m. 
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in Definition 1. 2 and the properties of convolutions given in 

Lemmas 1. 1, 1. 2, 1. 3, enable one to reach conclusion (a) without 

difficulty. 

Next, appeal to the first of (4. 2 5) and the continuous differ­

entiability of~ on RX T+ to see that 

• (n-2 )n:; oo 
cpu(-,O+)+cpu(·,O)EC \RXT). ,...., ,..., 

Thus (b) follows from the first of (4. 25), the above definition of!_ 1 , 

the continuity of u, a, and f on RX T+, and Lemma 1. 2. Finally, 
........... """' ~ 

(c) is a consequence of (4.25), the continuity of~ and;::, on RxT+, 

as well as Lemma 1. 2. This completes the proof. 

The preceding theorem owes its usefulness to the fact that, 

while the state S is not assumed to conform to hypotheses (a) and 

(b) in Theorems 4.1, 4. 2, it is conveniently recoverable in the 

manner of (4. 24) from a state that does meet these hypotheses, 

provided n~ 6. 
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5. A uniqueness theorem for concentrated-load problems in 
elastodynamics. 

As a further application of the Green's states introduced in 

Section 4 we treat in this section a uniqueness issue associated with 

the second boundary-initial value problem of elastodynamics in the 

presence of concentrated loads acting at fixed material (interior or 

boundary) points of the body. The uniqueness theorem arrived at 

here asserts the completeness of a direct formulation of concentrated-

load problems that rests on prescribing - in addition to the body 

forces, regular surface tractions, and initial conditions - the orders 

of the displacement and stress singularities at the load points, as 

well as the stress resultants of the latter singularities. This 

formulation of the singular class of problems with which we are con-

cerned clearly lies beyond the scope of ordinary uniqueness theorems 

in dynamic elasticity, such as Neumann's theorem or Theorem 2.1 in 

the current investigation. The uniqueness theorem constituting our 

present objective is a dynamic analogue of a recent elastostatic result 

due to Turteltaub and Sternberg [28 l (see Theorem 5 . 2 of [28] ) and 

will be proved by parallel means. 

With a view toward clarifying the relevance of the theorem 

presented in what follows, we emphasize that the idealization of a 

11 concentrated load 11 in elasticity theory derives its physical signifi-

cance from a limit definition of the solution to problems involving 

such loads. Accordingly, the solution to the singular problem under 

consideration would have to be defined as the limit of a sequence of 
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regular solutions, corresponding to distributed body forc e s and 

surface tractions that tend to the given concentrated loads o 

A program aimed at confirming the equivalence of the direct 

and the limit-formulation of concentrated-load problems may be 

pursued in three stages. First, one would seek to demonstrate the 
i 

existence of the limit solution by proving the appropriate convergence 
j 

of the sequence of a pproximating :i:; egular solutions. Next one would 

e x ami ne the limit solution and attempt to verify that it possesses the 

properties uriderlying the direct formulation of the proble m; in 

particular, one would have to determine the orders and stress 

resultants of the singularities inherent in the limit solution at points 

of application of concentrated loads. Finally, one would aim at 

showing that these properties suffice to characterize the limit solu-

tion uniquely. The direct formulation of the singular problem at hand 

has the advantage of obviating the need for a limit proce ss that is apt 

to be highly cumbersome in actual applicationso 

The program outlined above was proposed in [21 J for the 

equilibrium theory and was carried out rigorously in [28 J with 

limitation of the first two stages to concentrated surface loads acting 

on finite bodies with sufficiently smooth boundaries o The limit 

treatment of inte rnal concentrated loads in elastostatics is in e ssence 

disposed of by the derivation due to Kelvin and Tait [20 J (page 279) 

1 
of the solution to Kelvin's problem . Further, the requisite 

1 
For an explicit version of the underlying limit process see [21]. 
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properties of Kelvin's solution, which is in elementary form, are 

trivially inferred. Similarly, Love's [19 J (page 3 04) derivation 

through a limit process of the Stokes-state verifies its physical 

significance. Moreover, conclusions (a), (b), (c) in our 

Theorem 3. 1 furni sh the pertinent properties of Stokes' solution. 

In contrast, a limit treatment of concentrated surface loads in 

dynamic elasticity - even unde:r very stringent restrictions upon the 

body geometry - represents an extremely difficult task with which 

we do not propose to cope at present. Thus, we rely solely on 

Stokes 1 solution as a motivation for the a priori assumptions regard-

ing t h e order of the singularities at the points of application of 

concentrated load s introduced in 

Theorem 5.1. (A uniqueness theorem for elastodynamic problems 

involving concentrated internal and surface loads). Let R be a 

regular region and assume that for each yER there is at least one -- --------,..., -------
gEq3, not identically zero on (-co, oo}, such that the displacement 

Green's states of the second kind exist for the region R and the pole X• 

corresponding to the force function g and to given material constants 

be~ set consisting of n distinct points in R. Further, let s', s" be 

two ~<>tates with the following properties: 
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I I ,-1 I ) I 1-2 ~ (~ . )=O( ~-,ek ), 5::, (~; • =O( ~-~k ) , 

II 1· 1-l II I 1-2 2 (~ . )=O( ~-~k ), £ (~, 0 )=O( ~-~k ), 

uniformly~ [O, t] for every t> 0; 

(c) lim I s'cx .•• )dA=-t,_, lim Js
11
(x,.)dA=-t,_ on [O, oo)(k=l, .. o,n), 

J/".,I ~ ,..,.,J:'\. ,...,,..,,, '""'J:\..-

Yj-> 0 /l.k( YJ) Yj-> 0 /l.k( T)) 

where ±.k (k=l, o •• , n) ~ given vector-valued functions of the time, 

while ~', ~11 are the tractions of s', S
11 

acting on the side of /l.k(T)) 

that faces the point ,ek, and the preceding limits~ attained 

uniformly~ [O, t] for every t>O; 

(d) I ( O) o •I ( 0 ) o 11 ( O) o • II ( 0 ) o -u ·, =u, u ·, + =v, u ·, =u, u ·, + =v on R- P, 
f"'o,,I ,....;"I r>,.#,....,, ,....,,("'-.,,I ,-.,.J-

t II * ~ =e· ~ =~on (oR-P) x[o, oo), 

provided SI, S II here denote the SUrface tractions Of S
1

, S 11 Whereas ,..., ,..,, -- --

u, v, and p are functions prescribed on their respective domains of 
,..,, '""--""'--

definitiono 

S
1

='=S
11 
~ (R-P) X [O, oo). 

Proof. Choose 2'.°ER and hold :t, fixed. Let 
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be the displacement Green's states of the second kind for Randy, 
"'"" 

corresponding to g, p, c 1 , and c 2 , wher~ gE q3 
and fails to vanish 

identically. It is clear from Definition 4. 2 and conclusion (a) in 

Theorem 3o1 that 

} (S.1) 

if s1
(·, 0 ;yjg) are the tractions of Si(~,· ;yjg) acting ' on oR. 

#*t..J ......,,, ("V 

- co 
N ext, define the state S=[u, o]on (R-P)XT through 

""' ,..., ' 

S=S 1-S11 on (R-P)X(O, oo) , u=o=O on {R-P)X(-oo, O]. ,... ,...., ,.._, (5.2) 

Then, by hypotheses (a), (b), {c), {d), and Definition 1. 2, 

s E e 
0 

{ ~1 p, c 1 , c 2 ;R -P) , ( 5 • 3 ) 

£(~; · )=O( l~-!ki- 1 ), ~ (~, • )=O{ t-_ekl-
2

> as ~--~k (k=l, .•. , n), (5. 4) 

uniformly on [O, tJ for every t>O , 

lim Js{x, · )d.A=O on [O, oo) {k=l, •• o, n), 
Y)-> 0 /\k( 'r)) "' ,..., 

( 5. 5) 

this limit being attained uniformly on [O, t J for every t > 0, and 

-·-.. ,.. co 
s =0 on (oR-P)XT' ,..., ,..., (5 0 6) 

where s are the appropriate surface tractions of S. 

Take ri >0 such that any two spheres (balls) of radius fl 
0 0 

centered at distinct points of P are disjoint and do not intersect 

B (y), while, for every fl E (0, fl ), B (y)cR and the region 
'rlo"" 0 fl"' 
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is a regular region. Evidently, (5.1) and (5. 3) now permit an appli-

cation of the reciprocal theorem (Theorem 2. 2) to the pair of states 

Si(·, · ;ylg), S on R . Because of (5. 6), the second of (5.1 ), and the 
....., Tl 

vanishing of the body forces of Si(·,· ;ylg) and S, one finds in this ,...., 

manner that 

n 

I J ~>:cQ_i(•, • ;_y!g)](~; t)d.AX + I [~>:cQ.\•, • ;_zlg)](~bt)dAX = 

k=l A.k(n) "' s (y) ,..., 
n~ 

n 

l J [~ i< • • · ;xi g)>:<3::] <~: t)d.Ax + J Cf i< · • · ;xi g)*~J (~, t)d.Ax 

k=l A.k( ri) ...... s Tl(.y;) 

for every riE (0, Tl ) and for all tE (0, oo). 
0 

( 5. 7) 

At this stage hold t>O fixed and invoke (5. 5), bearing in mind 

the uniformity on [O, t] of the limit in (5 •• 5), to see that for k=l, ..• , n, 

I [s;{<U i(-, · ;yl g) ](x, t)d.A = 
""'~ rv ,......, X 

A.~n> ,...., 

t 

I Js(x,t-T)· [ui(x,T;ylg)-ui(a
1 

,T;ylg)]dTd.A +o(l) as 
rv,.....,, ,....,, rw "" ~ ,.....,,:C "' X 

0 

Hence (5. 4) and the continuity of u i( ·, • ;y!g) on R X T yield ,.,., ,...., ::t 

(5. 8) 
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On the other hand, (5.4) and the continuity of 0-i(-, · ;ylg} on ,..., ,..., 
co 

R XT furnish 
y ,..., 

(5. 9} 

Now pass to the limit as 11-+0 in (5. 7) and appeal to (5. 8), 

(5. 9), together with Lemma 3. 1 and Definition 4. 2, to arrive at 

But t >0 was chosen arbitrarily, so that 

[g,:<u] (y, • )=0 on (0, oo) . ,..., ,..., ....., (5.10) 

Since, by hypothesis, g does not vanish identically on [O, oo), one 

infers from (5. I 0) and (e) in Lemma I. I that 

u (y, · )=0 on [O, oo) . 
A.I~ ,...., 

Recalling that y was chosen arbitrarily in R-P, one draws ,..., 

u=O on (R-P) X [O, oo) • (5.11) 
"' "" 

Moreover, (5. I I), (I.11) imply that a vanishes on (R-P) x[ O, oo). ,..., 

The desired conclusion now follows from the continuity of u, a on 
....., """ 

(R-P)X [O, oo) assured by (5.3) and from (5.2). 

The preceding theorem is at once broader and more restric-

tive than Theorem 2 .1. While Theorem 5. 1 encompasses a class of 

singular elastodynamic states, not covered by Theorem 2 .1, it 

presupposes the existence of the displacement Green's states of the 

second kind - and hence the solva.biltty of a class of regular second 
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boundary-initial value problems, for the region at hand. No such 

existence hypothesis is involved in Theorem 2. 1. 

It follows from Theorem 5. 1 , in particular, that the Stokes-

state is uniquely characterized by (a), (b), and the first of (c) in 

Theorem 3. 1. On the other hand, (a) together with both of (c) in 

Theorem 3. 1 fail to characterize the Stokes- state uniquely. To see 

this, consider the state 
k .. 

s <- • · ; y I g > + s11 c · , · ; y I h > , (5.12) 
....., "' 

where Sk(-, 0 ;y,g) is the Stokes-state of Definition 3.1, hEQ3 and is ,..., 

not identically zero, while Sii(", • ;.zl g) is the linear combination of 

doublet-states (appropriate to a dynamic center of dilatation) 

accounted for through Definition 3. 2. The state defined by (5. 12 ), in 

view of Theorem 3. 2, evidently conforms to (a) and (c) in 

Theorem 3 .1 but is distinct from the Stokes-state; it possesses, 

however, displacement and stress singularities at y of a higher ,..., 

order than those inherent in Sk(-, · ;yjg). This example makes clear 
"" 

t hat hypothesis (b) in Theorem 5. 1 cannot be omitted; nor can it be 

relinquished in favor of the weaker requirement t hat, uniformly on 

[O, t J for every t > 0, 

li~ J (~-~k)/\!1 (~, • )dA=2_ on [O, oo) (k=l, ••• , n} , 

11..... 1k_( n) 

lim J (x-ak)/\ s 
11 

(x, • )dA=O on [O, oo) (k= 1, •.• , n) , 0 "'-I,,.._, ~ ,...,,,,,, ~ 

11 _, Ak( 11) 
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without invalidating the conclusion. An analogous counter-example 

related to a concentrated surface load on the boundary of an elastic 

half-space is easily constructed. 
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