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ABSTRACT 

If E and F are real Banach spaces let cP' q(E, F) 

Os q s p s a:1, denote those maps from E to F which have p 

continuous Frechet derivatives of which the first q de-

rivatives are bounded. A Banach space E is defined to be 

cP,q smooth if Cp'q(E,R) contains a nonzero function 

with bounded support. This generalizes the standard cP 

smoothness classification. 

If an LP space, p ::<: 1, is Cq smooth then it is 

also Cq,q smooth so that in particular LP for p an even 

integer is Ca:1,a:1 smooth and LP for p an odd integer is 

cP-l,p-l smooth. In general, however, a cP smooth B-space 

2 2 need not be cP,P smooth. c
0 

is shown to be a non-C ' 

smooth B-space although it is known to be Ca:1 smooth. 

It is proved that if E is Cp,l smooth then c (E) is 
0 

cP,l smooth and if E has an equivalent cP norm then c (E) 
0 

has an equivalent cP norm. 

Various consequBnces of Cp,q smoothness are 

studied. If f E Cp'q(E,F), if F is Cp,q smooth and if E 

is non-Cp,q smooth, then the image under f of the boundary 

of any bounded open subset U of E is dense in the image 

of U. If E is separable then E is Cp,q smooth if and only 

if E admits Cp,q partitions of unity; Eis cP,Psmooth,p<00 ,if 
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and only if every closed subset of E is the zero set 

of some cP function. 

Osq<psco, is said to be C 
p,q 

approximable on a subset U of E if for any e: > 0 there 

exists a g E. cP(E,F) satisfying 

I k k sup ID f(x) - D g(x)jj 
xEU ,Osksq 

It is shown that if E is separable and Cp,q smooth and 

if f E Cq(E,F) is C approximable on some n eighborhood 
p,q 

of every point of E, then F is C approximable on all p,q . 

of E. 

In 

function in 

of a function 

general it is unknown whether an arbitrary 

c 1 (P 2 ,R) is c 2 1 app.roximable and a n example 
' 

l·n c1 c02 , ·R) l · h t b c · x w11c may no e 2 , 1 approxima-

ble is given. A weak form of C , q~l, to functions in 
co' q 

Cq(.R 2 ,R) is proved: Let [U } be a locally finite cover of a 
p2 and let [T } be a corresponding collection of Hilbert-a. 

Schmidt ope rat ors on P 2 • Then for any f E Cq( j! 2 ,F) with 

Dqf locally uni form ly continuous , there ex i sts a g E 

Cco(P. 2 ,F) such that for all a 

sup llDk(f(x) - g(x))['ra.hJll s 1. 

xEU , II hi\ s;l , Osksq a 
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INTRODUCTION 

The central theme of this dissertation is 

the study of Frechet differentiable functions on real Banach 

spaces with bounded derivatives. If E and Fare real Banach 

spaces and 0 ~ q ~ p :=;;cc, a map f from E to F will be said 

to be of class Cp,q(E,F) if f has p continuous Frechet 

d e rivatives, the first q of which are bounded. Contrary 

to the finite dimensional c a se, an infinite dimensional 

Ba nach space need not have any nontrivial Cp,q functions. 

We define a B-space to be Cp,q smooth if there exists a 

nonzero function in cP,q(E,R) with bounded support. This 

generalizes the standard concept of cP smoothness and Cp,O 

smoothness is equivalent to cP smoothness. 

In the first chapter we provide the necessary 

preliminary material on differential calculus in Banach 

spaces. Several of the results of Bonic and Frampton [l'] 

concerning cP smoothness are valid for cP,q smoothness. 

One property in particular is that a map in Cp,q(E,F) 

has an "analytic" property if F is cP,q smooth and E is 

non Cp,q smooth: the values of Fon a bounded open subset U 

of E are uniquely determined by its values on the boundary 

of U. This, and other results, including a summary of the 
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Cp,q smoothness of various B-spaces, is contained in 

Chapter II. An LP space is shown to be Cq,q smooth if it 

is Cq smooth so that LP for p an even integer is C
00

'

00 

smooth. 

In Chapter III we show that a cP smooth B-space 

need not be cP,P smooth by proving that c
0 

, the C
00 

smuoth 

B-space of sequences of real numbers converging to zero, 
2 2 p,l 

is not C ' smooth. In addition we show that if E is C 

smo oth, then c
0
(E),(the B-space of sequences in E converg­

ing to zero), is Cp,l smooth. N.H.Kuiper constructed an 

equivalent C00 norm for c and we generalize this by proving 
0 

that c
0

(E) has an equivalent cP norm if E has an equiva-

lent cP norm. 

In Chapter IV the existence of a cP function 

with a prescribed zero set is studied. The main . result 

is that a separable B-space ~ is cP'Psmooth,p<oo,if and only 

if every closed subset of E is the zero set of some 

function. Secondly, if E is only cP smooth and A is a 

closed subset of E, we give a sufficient condition on A 

to insure that it is the zero set of some cP function. 

If a B-space E admits cP partitions of unity, 

then cP(E,F) is dense in CO(E,F) for any F, but in g eneral 

the existence of cP partitions of unity on E is unknown. 

Bonic and Frampton in [l] proved that if E i s separable 

then E admits cP partitions of unity if and only if E is 
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cP smooth. We generalize this by proving in Chapter V 

that a separable Cp,q smooth B-space admits Cp,q parti­

tions on unity. Along with this we study the Cp,q_ness 

of sums of the form E ai~i(x),where [~i} is a Cp,q 
i 

partition of unity. 

In Chapter VI we examine the problem of smooth 

approximation. We say that a map f E Cq(E,F) is C , p,q 

0 ~ q < p :!>: 00 , approximable on a subset U of E if for any 

e: > 0 there exists a gECP(U,F) such that 

sup !IDkf (x) - Dkg(x) II < e: 
xEU,O:!>:k~q 

We say that f is strongly C approximable on U if it p,q 

satisfies the above condition with e: replaced by an ar-

bitrary positive continuous function e(x). In general the 

C approximability of an arbitrary Cq function on an p,q 
infinite dimensional Banach space is unsolved. We prove, 

however, that if a B-space E is Cp,q smooth and separable, 

and if f E Cq(E ,F) is C approximable in some neighbor-p, q 

hood of every point of E, then f is strongly C approxi-p,q 
mable on all of E. In the last part of the chapter we 

prove a theorem that suggests that the c1 function cr(x) 

Ex. \x. \ 
. l l 
l 

on any open subset of p2 • 

from P. 2 
to R might not be c2 1 app r oximable 

' 

The last chapter is devoted to a weak form of 

C approximation to functions defjned on R2 • Let [U"} oo,q u. 
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2 
be a l ocally finite cover of f and let (Ta} be a collec-

tion of Hi lbert-Schmidt operators on i 2 • Then we show that 

for any f E Cq( i 2 ,F), with Dqf (x) locally uniformly contin-

co 2 
uous, there exists a gEC (f ,F) such that for all a. 

sup \\Dk(f(x)-g(x))[Ta.hJI\ s; 1. 

xEUa., \I h\\ ~l, Os;ks;q 
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CHAPTER I 

DIFFERENTIAL CALCULUS 

We will define the two most important types 

of derivatives on Banach spaces. For the proofs of the 

theorems of this section, refer to [5],[8],[10], and 

[17]. From here on all Banach spaces will be assumed to 

be real. 

Definition. If E and F are Banach spaces, a continuous 

k-multilinear map T from E into F is a continuous map 

from E x ••• x E into F satisfying T[h1 , •• ,ahi+bhi, •• hk] 

= aT[h1 , •• hi, •• hk] + b'I1[h1 , •• hi, •• hk] for all real a, b 

and l::::isk. 

Definition. If E and F are Banach spaces, Lk(E,F),k~l, 

will denote the set of continuous k-multilinear maps 

from E into F. We will write L(E,F) for L1 (E,F). If T 

E Lk(E,F) then the norm,\\T\\ ,is defined as sup .. \\T[h1 , •• h 1J\\. 
l\hi !lsl,isk 

Lk(E,F) with the above norm is a Banach space 

and from here on Lk(E, F) will be as~co umed to have the topol-

ogy induced by the above norm. There is a canonical 

isomorphism,*, between Lk(E,Lp(E,F)) and Lk+p(E,F) 
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given by (*T)[h1 , •. hk+p] = (T[h1 , .. hk])[hk+l'"'hk+p] 

and with this isomorphism we will regard Lk(E,LP(E,F)) 

and Lk+p(E,F) as identical. 

Rem~rk~ If TELk(E,F) then T[h] will be the shorthand 

not a tion for T[h, •• h]. 

Definition. L~(E,F) will denote the set of all contin­

uous symmetric k -multilinear maps from Ex ••• xE into F. 

Definition. If f is a map from a Bana ch space E into a 

Banach space F, f is said to have a Gateaux derivative 

at x in direction h if GDf(x)[h] = lim 
t -0 

exists. 

f(x+th) -f( x) 
t 

It is immediate from the definition that 

GDf(x)[h] is homoge neous in h(i.e. GDf(x)[ah] aGDf(x)[h]) 

a lthough GDf(x)[h] may be nonlinear in h or may be linear 

but u nbounded. 

Pr oposit io n 1.1 If f:E-F and f h as a Gateaux derivative 

a t all points on the s egment [x,x+h] in direction h, 

then for any wEF*(the dual space of F),(f(x+h)-f(x),w) 

(GDf(x+ Th)[h] ,w) where O< T < l and T depends on w. 

Proposition 1.2 If f:E -F and f bas a Gateaux derivative 

at a ll points on the segment [x,x+h] in direction h, 

then \\ f(x+h)-f(x) \is sup \iGDf(x+Th)[hJ\\ 
O<T<l 
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Proof. Pick w in Prop. 1.1 such that Ii w\\ = 1 and 

l\f (x+h)-f(x)\\ = (f(x+h)-f(x),w). 

Under certain conditions GDf(x)[h] is a bounded 

linear function in h: 

Proposition 1.3 Suppose that f:E~F and that GDf(x)[h] 

exists for all h and for all x in a neighborhood of x • 
0 

Suppose that for all fixed h, GDf(x)[h] is continuous 

at x as a function of x and that GDf(x )[h] is contin-o 0 

uous in h. Then h-GDf(x
0

)[h] is a bounded linear map 

from E into F. 

Definition. If E and F are B-spaces and f:E-F, then 

f is said to be Frechet differentiable at xEE if there 

exists a Df(x)E L(E,F) such that 

lim su lif(x+h)-f~x~-Df(x)[hJU. = O. 
t-0 11hn:s;t h 

Df(x) is then said to be the Frechet derivative of f at x. 

If Df(x) exists at x, then clearly Df(x)[h] = 

GDf(x)[h] for all h. Df(x) is invariant within the set of 

equivalent norms. 

Proposition 1.4 If f is Frechet differentiable at x 

then f is continuous at x . 

Proposition l._2 If f:E-F has a Frechet derivative at 

all points on the segment [x,x+h], then for any wEF* 

I 
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((f(x+h)-f(x),w) = (Df(x+Th)[h],w), where O<T<l and 

T depends on w. 

Proposition l.6(Mean Value Theorem) If f:E-F has a 

Frechet derivative at all x in the segment [x,x+h], then 

l\f(x+h)-f(x)l\ s: sup llDf(X+Th)[hJll. s: sup llDf(X+Th)U ·llhll • 
O<T<l O<T<L 

Proposition 1.7 If f is a map from an open subset U of 

a B-space E into F , if f has a derivative at x and if 

llf(x)-f(y)\I s: M(llx-yl\), then ~\Df(x)I\ s: M. 

Proposition 1.8 Suppose that f:E~F and that GDf(x)[h] 

exists and is bounded and linear in h for all x in a 

neighborhood of some x
0

• If GDf(x)[h], considered as a 

map from E into L(E,F), is continuous at x
0

, then f has 

a Frechet derivative at x
0 

and Df(x
0

)[h] = GDf(x
0

)[h] • 

Definition. If f :E ~F and Df(x) exists in a neighborhood 

of x
0 

and if the map Df(x) from E into L(E,F) is differen­

tiable at x
0

, then we say that f is twice differentiable 

at x and we write D2f(x) = D(Df(x )). Note that D2f(x) 
0 0 0 0 

E L(E,L(E,F)) '.'?' L2 (E,F). Inductively we say that DP exists 

at x
0 

if nP-1 f(x) exists in a neighborhood 

Dp-lf(x) is diff erentiable at x
0

• We write 

D(DP-1 r(x
0
)) and again note that nPf(x

0
) E 

- LP(E,F). 

o f x and if 
0 

nPr(x ) = 
0 

L(E,Lp-l(E,F)) 

The following proposition is a generalization 

a2f a3f 
of the formula axay ay ax 
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Proposition l~ If DPf(x
0
), p~2, exists and nP-1f(x) 

is continuous in a neighborhood of x
0

, then DPf(x
0

) E 

LP(E F) s ' • 

Definition. If O~p<m and if U is an open subset of a 

Banach space E, we will say that f E cP(u,F) if f:U---F 

and DPf(x) exists and is continuous in U. We say that f E 

C
00

(U,F) if f E cP(U,F) for all p. 

Note. From here on the words derivative, differentiation 

etc, will refer to the Frechet derivative unless other-

wise stated. DPf will always denote an el ement of LP(E,F~ 

Proposition 1.10 Let E,F,G be B-spaces and let Ube an open 

subset of E, V an open subset of F. If fECP(U,V) and 

gECP(V,G) then fog E cP(U,G). 

Proposition 1.11 Suppose that fn E c 1 (U,F) where U is an 

open subset of a B-space E and that g:U~F, G:U--7-L(E,F). 

Suppose that for every point x
0

E U there is a neighbor hood 

Nx
0 

of x
0 

contained in U such that fn(x) and Dfn(x) 

converge uniformly to g(x) and G(x) in NXo. Then gEC1 (U,F) 

a nd Dg(x) = G(x) for all x EU. 

Proposition l.12(Taylor's Formula) Let ucE be a convex 

neighborhood of x and suppose that f E cP(U,F). Then 
0 

p-1 
f(x +h) = I; 

o k=O 
+ R ( x ,h) 

p 0 



where 

R (x ,h) 
p 0 

= 

10 

Jl H=Bp-1 
1 

Dpf(x +th)[h]dt 
0 p . 0 • 

For every e>O there is a 6 >O such that if \lhll < 6 then 

\IRP(x
0

,h)\I s: ellh\IP • 

Proposition l.13(Inverse Function Theorem) Let E a nd F 

be Banach spaces and suppose that f E cP(U,F) where U is 

a neighborhood of x E E. Suppose that Df(x ) is an iso-o 0 

morphism from E into F. 1rhen there exists a neighborhood 

V of x
0 

a nd a cP map g from f(V) onto V such that gof and 

fog are the identity maps on V and f(V). 
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CHAPTER II 

SMOOTHNESS CLASSES 

In this chapter we introduce a new smoothness 

classification for Banach spaces. Thi s generalizes the 

usual cP smoothness classes. 

Definition. If E and F are Banach spaces, and U is an open 

subset of E and Osqspsro, then Cp,q(U,F) will denote 

those functions fin cP(U,F) for which sup llDkf(x)li< 00 • 

xEU,Osksq 

Definition. A Banach space E will be said to be Cp,q 

smooth if Cp,q(E,R) contains a non-trivial function with 

bounded support (sometimes called a Cp,q bump function). 

The standqrd concept of cP smoothness places 

no boundedness restrictions on f or its deriv3.tives: 

Definition. A Banach space is said to be cP smooth if 

cP(E,R) contains a non-trivial function with bounded 

support. 

It is easy to check that any fECP(E,R) can 

be composed with a suitable function in C
00

(R,R) to yield 

a function in cP,O(E,R) which has th e same support as f. 

Hence a Banach space is cP smooth if and only if it is 

Cp,O smooth. 
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We will prove in the next chapter that there 

exi s ts a c 2 smooth B-space which is not c2 ' 2 smooth so 

that Cp,q smoothness is more r etrictive than cP smoothness. 

If E is Cp,q smooth then any B-space equival e nt 

to E and any closed subspace of E is again Cp,q smooth. 

Also if p;:>:p' a nd q;:>:q', then Eis cP',q'smooth. 

Several basic theorems proved by Bonic and 

Frampton in [l] concerning cP smoothness are genera lized 

below for Cp,q smoothness. The following basic p roposition 

will be essential in manipulating Cp,q functions: 

Proposition 2.1 If fECp,q(E,F) and g E Cp,q(F,G) , then 

gof E cP,q(E,G). 

Proo~ The proof can be obtained by inducti on 

from the following formula, known as Fas di Bruno 's formula: 

k! (Df) a1. ··(Dkf)ak 
a 1!· ·a1c ! 

i=l a1+ •• +ak= j 
a1 +2a2 + • • kak = k 

Proposition 2.2 A Banach space E is Cp,q smooth if and 

only if the norm topology on E is equivalent to the 

topology induc ed on Eby the functions cP,q(E,R ). 

Proof. The proof i s identica l to the proof 

of Prop. 2 of [l]. 

Proposition 2.3 Suppose that E is a Banach space with 

equiva lent norm a such that a E Cp,q(U-[O},R), where 

U is an open neig hborhood of O. Then E is Cp,q smooth. 



Proof. For some r, U contains the ball 

[xi a.(x)<r}. Construct a g E C
00

'

00

(R,R) with g(t) = 1 if 

t ~ r/2 and g(t) = 0 if r ~ 1. Then by Prop. 2.1,g(a.(x)) 

E Cp'q(E,R). Also, g(a.(O)) = 1 and g(o.(x)) has bounded 

support. Q.E.D. 

Remarks. It is not known whether the converse to Prop. 

2.3 is true, even for q = 0 (i.e. does a cP smooth space 

have an equivalent cP norm?). If o.(x) is an equivalent 

norm for E, then l:x.Cx+h) - a.(x)\ ~ a.(h) ~ Kl\hll forsomeK, so 

by Prop. 1.7 if Da.(x) exists then \IDa.(x)ll ~ K. Also 

Dk(a.(x)) = Dk(a.(~) )r1-k and hence if Dka. is bounded on 

bounded sets it is bounded everywhere. 

Definition. If f E cP(E,F) and q ~ p,then by llfllq ,we 

will denote sup llDkf(x) 11 • 
xEE,O::s;k::s;q 

Proposition 2.4. Suppose that F is Cp,q smooth but that 

E is not Cp,q smooth. Suppose that U is a bounded open 

subset of E and that au and U are the boundary and closure 

of u. Then any f E cP,q(U ,F) and fEc 0 cu ,F) has the property 

that f(aU) is dense in f(U). 

Proo~ The proof uses the same argument as the 

argument in the proof of Prop.4 of [l]. Suppose that f(x) 

is not contained in the closure of f(BU) for some x in u. 

Then by the hypothesis we can find a ~ E Cp,q(F,R) with 

~(f(x)) = 1 and ~(x) = 0 in some neighborhood of f(aU). 
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Let g(y) = ~(f(y)) if y E U and g(y) = 0 otherwise. 

Then g is nonzero, has bounded support and by Prop.2.1 

g E Cp,q(E,R). This contradicts the non-Cp,q smoothness 

of ~. Q.B.D. 

Remarks. It follows that if f 1 , r 2 are two functions 

in Cp,q(E,F) which agree on the boundary of U, then they 

agree on all of U. Thus Cp,q functions on a non-Cp,q 

smooth B-space have a type of"analytic" property: the 

values of the function on a bounded open set are uniquely 

determined by the values on the boundary. rrhe fol1owing 

two problems were posed by Bonic and Frampton for non-

cP smooth B-spaces and they can also be acked for non­

Cp,q smooth B-spaces: suppose that E is non-Cp,q smooth, 

that F is Cp,q smooth and that U is a bounded open subset 

of E, then what continuous functions on au are boundary 

values of functions in Cp,q(E,F)? Also, given f E Cp,q(U,F) 

and f E c0 (U,F) how can f be determined from fl~U? 

The following is a summary of the Cp,q smoothness 

and related properties of various Banach spaces: 

a) All finite dimensional B-spaces are C
00

'

00 

smooth. 

b) Restrepo([l5]) has proved that a separable B-space, 

E, has an equivalent c1 norm on E-[O} if and only 

if E* is separable. By the remarks following 

Prop. 2.3, all Banach spaces with an equivalent 

norm in c1 (E-[O},R) are c1 •1 smooth. Hence a 
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separable B-space with a separable dual is cl,l 

smooth. 

£l Bonic and Reis in [3] have shown that if E has 

a c 2 norm away from zero and the dual norm in E* 

is also of class c 2 away from zero, then E is a 

Hilbert space. 

Ql L2 (S,L:,µ) , where(S,L:,u) is a positive measure 
• o:> o:> 

space, is C ' smooth. It is easy to check that 

D(\lx\1 2 )[h] = 2(x,h), D2 (\\x\\ 2 )[h1 ,h2 ] = 2(h1 ,h2) 

and Dk( \\xi\ 2 ) = 0 for k > 2. Hence \\xii E 

Cro(L2 (S,L:,µ)-(O} ,R) and all the derivat ives of \\xi\ 

are bounded on bounded sets. Hence by Prop. 2.3, 
'J 

LL(S,L:,µ) is Cro,ro smooth. 

tl Bonic and Frampton in [l] have completely 

classified the cP smoothness of LP(s,L:,µ) for 

p ~ 1. Their results are as follows. LP is c00 

smooth if p is an even inte ger. LP i s nr-l smooth 

if p is an odd integer. This means tha t there ex ists 

P-1 a C bump function satisfying II Dp-l f (x+h)-

nP-1 f(x)\\ s O(\\x \\) for all x. If pi s not an integer 

let [p] be the greatest int ege r less than p. Then 

LP is D[p] smooth. This means that there exists p-[p] 

a C[p] bump function sat isfying 

\\D[P]f(x+h) - D[P]f(x) II s O( l\hp-[pl If). If pis an 

od d integer, pP and hence any infinit e dimensional 

LP space is not nP smooth. ThJH mcun s there does 
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not exist a cP-l bump function f such that nPr(x) 

exists for all x. Final ly if p is not an integer 

then f P and any infinite dimensional LP space is 

not C~~EpJ smooth. This means there does not exist a 

c[p] bump function f satisfying UD[p]f(x+h)-D[p]f(x) 

D[p]f(x)\I s; oCilhllp-[p]). By Prop.2.5 below, LP is 

C00
'

00
, cp-l,p-l or C[p],[p] smooth if pis an even 

integer, odd integer or a non-integer respectively. 

f2. We show in the next section that c
0
(E)(i.e. 

the B-space of sequences in E converging to 0 is 

Cp,l smooth if E is cP, 1 smooth, that c
0

(E) has a 

cP norm if E has a cP norm and that c
0
(i.e c

0
(R) ) 

is not c
2

'
2 

smooth. This example shows that a cP 

smooth B-space need not be cP,P smooth. 

Proposition 2.5 LP(s,L,µ) is C
00

'
00 

smooth, cP-l,p-l 

smooth or C[p],[p]smooth if pis an even integer, odd 

integer or non-integer respectively. 

Proof. Let a.(f) = (llfll 'f =JI f(x) I Pdµ(x). Then 

it can be shown(refer to [l]) that 

J
. 1 k k 
~rlf(x) l p- (sgn f(x)) 

·h1 (x)··hk(x)dµ(x) 

for k < [p] and 

= pt for p an even integer. 

By H8lder's inequality, IDk(a(f(x))[h1 , •• ,hkJI is 



~ ~i \lf\lp-kllh1il • ·llhkll • 

'rherefore Dka. and hence Dkl\x\\ is bounded on bounded sets 

for k < [p] and if p is an even integer, for all k. Hence 

by Prop. 2.3 the result is proved. 

Definition. A family of functions (cpn.} E cP(E ,R+) will be 

called a cP partition of unity if every point of E has a neigh-

borhood on which all but a finite number of cp 's vanish a. 

and ;; co = 1 • tr ' a. 

Definition. A Banach space E will be said to "admit cP 

partitions of unity" if for every open covering [U13} 

E there is a cP partition of unity (cpa.} such that 

support of each cp a. is contained in some U13 • 

Eroposition 2.6~ If E is a separable cP smooth B­

space then E admits cP partitions of unity. 

the 

of 

Remark. Every metric space is paracompact and hence all 

B-spaces admit c0 partitions of unity. It is not known 

if separability can be dropped from Prop.2.6, in parti-

cular, it is not known whether any non-separable Hilbert 

space admits c1 partitions of unity . 

l) Refer to Bonic and Frampton [l]. A stronger version 
of this theorem is contained in Chapter V. 
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Proposition 2.7 Suppose that E and F are B-spaces and 

tha t E a dmi ts cP partitions of unity. Then g iven fECO(E,F) 

and e(x) E c 0 (E,R) with e(x) > O, there exi s ts a gECP(E,F) 

such that II f(x)-g(x) I\ < e(x) for all x in E. 

Proof . For every x in E find nei ghborhoods 

N1 and N2 of x such that inf e(y) ~ e(x)/2 and if yENx2 
x x 

y EN~ 
then \lf(y)-f(x)I\ < e(x)/4~ Now (N~n N~} covers E and by 

the hypothesis we can find a cP partition of unity (cpa.} 

supported by (N~n N~}. Pick, for each a.,an xa. in the 

support of cpa. and define g(x) = ~ f(x
0
)cpa. (x). 'rhen g(x) 

is a n element of cP(E,F) and 

\\f(x)-g(x)\I 

::;; ~ 
(a.lxEsupp 

\I lJ (f(x)-f(x ) ) cp ( x ) I\ 
(a\xEsupp ~a.} a. a. 

E l\f(x)-f(x )\j~ (x) 
(a.\xEsupp ~a.J a. a. 

(iif(x)-f(x~)I\ + \lf(x~) - f(xa. )\\) cpa.(x) 
cp a. J 

where x ' is a point in E such that supp cp c (N1 ,n N2 ,} • a. a. x x 
a. a. 

The last summa tion is ~ E e(x ' )/2 •cpa.(x) 
(a.\xEsupp cpa.} a. 

e(x). Q.E.D. 
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CHAPTER III 

DIFFERENTIABLE FUNCTIONS ON c (E) 
0 

Definition. If E is a Banach space, then c
0

(E) denotes 

the Banach space of all sequences X = (x.} with x. in 
l l 

E and \\xi\\ --- O. The norm on c
0

(E) is defined as 

llX\\ sup 
i 

\\x. \I 
l 

Bonic and Frampton in [l] and [2] proved that 

if E is cP smooth then c
0

(E) is also cP smooth. In this 

chapter we prove several strong er results. We show in 

Theorem 3.2 that if E is cP,l smooth then c
0

(E) is also 

cP,l smooth and in Theorem 3.1 that if E has a cP norm then 

c (E) also has a cP norm. In Theorem 3.3 we show that 
0 

c is 
0 

not c 2 ' 2 smooth. This is the first example of a 

cP smooth Ba nach space which is not also cP,P smooth. 

There is an important class of spaces equiva­

lent to c
0

(E). Suppose that K is a compact subset of Rn 

and that O < o. < 1. If f E c0 (K,E) define 

llflla. = sup 
xly 

II f(x)-f(y) II /( llx-yll )a. 

Let Ca.(K,E) [f E CO(K,E)\ l\f\la< co} and let 

Aa.(K,E) [f E Ca(K,E) \ for any e: > 0 there is a 

6 > 0 such t hat II f(x) - f(y) II ~ e: \I x-yll a.whenever l/x-y//~<5} • 
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Then Bonic, Frampton and Tromba in [4] h ave p roved that 

Aa(K,E) i s equivalent to c
0

(E). 

N.H.Kuiper has shown that c
0 

has a n equiva lent 

c00 

norm(refer to fl]). We give the foll owing genera li-

zation of tha t result: 

Theorem~ Suppose that E has a cP norm, \\ x\\, away 

fr om zero. Then c (E) also has a cP norm away from zero. 
0 

Proof. First construct an h in C
00

(R,R) such 

t hat h is decreasing, h(t) = 1 for t s 1, h(3/2) = 1/2, 

h(t) 0 for t >- 2 and h(t) is concave downwa rd for 

t s 3/2. Now if X 

00 

!f;(X) = TT h(\lx1 \I) 
i=l 

!/J locally depe nds only on a finite number of x. 'sand 
l 

hence !f;E cP(c
0

(E),R). NO}r let G = (X\<J;(X)~Y,, }. We show 

that G i s convex. To do this suppose that !/J(X) and !/J(Y) 

are >- Y,, and s upp ose that \\xi\\s 1 and l\y 1 J\s 1 for i > N 

and t hat O < t < 1. 'rhen 

00 

!/;( tX+( 1-t )Y) TT h( II txi + ( 1-t )y ill) 
i=l 

00 

>- rr h(t\lx1 \I + c1-t)\\:yi\\) 
i=l 

N 
IT h(t\lx. \I + c1-t)\ly. \I) 
i=l l l 

Now \\x1 \\ and \\y1 \i are s 3/2 for a ll i,henc e 

by th e concavity of h the last product is 
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N N 

~ TT ( th ( \ \ x. \I ) + ( 1-t ) h ( 11 y . 11 ) ) = ~. t N - k ( 1-t ) k ak 
i=l 1 1 k=O 

where a = ~ ( Tfh(\lx.11)· Tr h(llY-11)) 
k FE~ iEF 1 i~F 1 

'-k i~N 

and where ~k is the set of all subsets of 1,2, •• N having 

k members. 

a. 
l 

m m l/m 
Now if b. > 0 then ~ b. ~ ( 1T b .\ • Hence 

l i=l l i=l ~ 

~ (Fl[" ( il};,h( llxJ) · ~h( llY 11\))) l{) 

( 
-: N-k (N) N k (N) l/(~) 

(1Ih( I\ xi \I) ) l< k · ( 1Ih( 11 y i I\) ) N k ) 

(N-k)/N k/N 
~ (1/2) .(1/2) 1/2 

N 
Then ~(tX + (1-t)Y) ~ E tN-k(l-t)k•l/2 1/2. Hence 

k=O 
G is convex. Let a.(X) be the Minkowski functional of G. 

Then a.(X) is implicitly determined by the equation 

~~x)) = 1/2. Since a.(X) locally depends on only a finite 

number of variables, we can apply the finite dimensional 

implicit function theorem to conclude that a.(X) E 

cP(c
0

(E),R). Then a.(X) is an equivalent norm because G 

is bounded and contains an open neighborhood of O. 

Corollary 3.1 c
0 

has an equivalent C
00 

norm and therefore 

by Prop. 2.3, c
0 

is C
00

'l smooth. 

Remark. Although a.(x) has a boun::1ed derivative, rjJ itself 
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does not. In fact any function, F(X), of the form 

co 

F(X) = TT ch( 11 x. II ) ) 
1 l 

where h(t) = 1 for \ti s 1, h(t) = 0 for ltl ~ 2 

is not of class cP, 1 (c
0
(E),R). To show this it suffices 

to consider E R. 

Let a be the largest number between 1 and 2 

such that h(a) = 1. For any M choose n such that 

(h(a+l/2M) )n < ~ and let x 
0 

(n a's, O's } and 

x1 = [n (a+l/2M) 1 s, O's }. Then we have F(X
0

) = 1, 

F(X
1

) <~and l\X
0

-X1 \\ l/2M. By Prop. 1.7 

~ s IFCX1 ) -F(X
0

)1 ~ \\X1-X
0
\I· s~p l\DF(X)\I 

l/2M· sup i\DF(X)\\ 
x 

Hence sup \\DF(X)\\ :;::: M , and since M is arbitrary, 
x 

sup\\DF(X)\\ = co • 

x 
It is possible to construct a nontrivial 

c"" ' 1 function on c
0 

without evaluating a Minkowski functional 

as the following exa mple shows. 

Example. Let h E C
00

'

00

(R,R), h(t);:::O, h(t)=O if \t\;:::}1. and 

J
.}1. 

h(t)dt= 1. Define 
-% 

% % l}i. •. • l}i.h(yl). •h(yn)F( (xl +yl' • .xn+yn,xn+l' 

•• })dy1 •.. dy
0 
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where F(X) = inf \IX-YI\. F is continuous because 
l\Y\\:s:l 

\I F(X )-F(Y) ll s: II X-Yll • Suppose that I :xm I s; J4 if m > n(X) • 

Now if \IX' -X\\ :s: )4, llY\\ s: 14 and x' = m x' form :s: n(X), then m 

F(X' +Y) = F(X+Y) • Hence when II Z-X\\ s; }4, Cfln(X) ( Z) depends 

only on the first n(X) coordinates and therefore is C
00

• 

Also llX'-X\\ :s: J4, \\Yll s: J4 and y 1 = •• = .yn = 0 imply that 

:B'(X'+Y) = F(X'). Hence cpm(X') = cpn(X)(X') when m;?: n(X) 

and \IX' -XI\ s; J4 • The above implies tha t 

cp(X) = lim c+>n(X) 
n~ CX> 

exists and is C~ 

J
.}4 r}'{i. 

s; •••. h(y1 ) • ·h(yn)llX-Z\I dy1 •. dyn = \IX-Zll • Hence 
-1'- -14 

lc.p(X) - cp(Z) I :s: l\X-Zll which gives \\Dcp(X)I\ s; 1 for ali X. 

Finally let r E CCX>(R,R), Os;r(t):s:l, r(t)=l if ts; 0 and 

r(t) = 0 if }4s:t. Then r(cp(X) E CCX>' 1 (c
0

,R), r(cp(O)) = 1 

and the support of r(cp(X) is contained in the unit ball. 

Theo e rm 3.2 If Eis Cp,l smooth then so is c
0
(E). 

Proof. First find an f in cP' 1 (E,R) such that 

f(x) = 1 if \lxll :s: 1, f(x) = 0 if 2 :s: \\xi\ and 0 s; f(x) s; 1. 

Define a map T from c (E) into c as follows: If X = 
0 0 

(x1 ,x2 , ••• } E c
0

(E) let T(X) = (l-f(x1 ),l-f(x2 ), •• ,J. 

Then since T locally depend s on a finite number of coor-

dinates, T E cP(c
0

(E) ,c
0
). Also \IT(X) - T(Y)\\ 
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= s~p\f(xi) - f(yi)I 
l 

$ sup\\Df(x)j\ • suplx.-y. \ = l\fi\ 1 ·l\X-Y!i • 
. l l 

x l 

Hence T E cP,l(co(E),co). By Cor. 3 . 1 we can 

find g in Cco,l(co,R) with g(O) = 1 and g(X) = 0 i f 

\\ X\\ ".?: 1 . 'l'hen g(T(X)) E cP' 1 (c (E),R) 
0 

and g(T(O)) = 1 

and g(T(X)) = 0 if i\ X\\ >- 2. Q.E.D. 

The following theorem will imply t ha t a C2 ' 2 

bump function cannot be found for c
0

• We a ctually prove 

a slightly stronger result. 

Theo r e m 3.3 Le t f E c1 (c ,R) with Df(X) uniformly 
0 

continuous . Then th e support of f i s unbounded. 

Proof. If not, then there would exist an f 

in c1 (c
0

,R) such that f(O) = 1, f(X) o if \\x\\ ".?: i 

and Df is uniformly contj_nuous. Pick N such that \\ HH sl/N 

implies llDf(X+H) - DF'(X) \\ $ 1/2. Now if \\H\\ s l/N then 

by Prop.1.5 there is a T with O<T<l such tha t 

f(X+H) - f(X) = Df(X+TH) [HJ so that 

\f(X+H) - f(X) - Df(X)[H] I= \Df(X+TH)[H] - Df(X)[H] I 

s Y,,\\H\I • 

Let A be the set of all X in c such that 2N-l of the first 
0 

2N components of X have absolute value l/N, the r emaining 
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component of the first 2N components has absolute value 

less than or equal to l/N and all the other components 

are zero. Since A is connected and even, for all 

X in c
0 

there exists a Y in A such that Df(X)[Y] = O. 

IJ.1herefore we can pick inductivel;y H1 , •• HN E A such that 

Df(H1 +···+Hk-l)[Hk] = 0 and such that H1 +•••+ Hk has 

N-k I at lea st 2 components equal to k N. But then 

\\H1 + ••• + HNI\= 1 and \f(H1 +••+HN) - f(O)\ s 

N 
6 lf(H1 +••+Hk) - f(H1 +··+Hk_1 ) - Df(H1 +··+Hk-l)[Hk]\ 

k=l 
N 

s 6 72\IHkll = Y,, which is a contradiction. 
k=l 

2 2 Corollary 3.2 c
0 

and c
0

(E) are not C ' smooth. 

Q.E.D. 

2 2 Proof. Any function in C • (c
0

,R) has a uniform-

ly continuous first deriv3tive. 

Corollary 3.3 Suppose that U is a bounded open subset 

of c
0 

and that f E c0 cu ,R), f E c1 (u ,R) and Df(X) is uniform­

ly continuous on u. Then f(aU) is dense in f(D). 
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CHAPTER IV 

ZERO SETS OF cP FUNCTIONS 

In this chapter we consider the problem of 

finding a cP function with a prescribed zero set. It 

will be shown that for separable Banach spaces, cP,P 

smoothness is a necessary and sufficient condition 

that every closed set be the locus of zeros of a cP 

function. If a B-space is cP smooth but not Cp,p smooth 

it will be shown that the probl em can still be solved 

for a special class of closed sets. 

Theorem 4.1 Let E be a separable cP,P smooth Banach 

space. Then every closed subset ,A, of Eis the zero set 

of some cP,P function. 

Proof. First construct an h E cP,P(E,R) such 

that 0 s h(x)s 1, h(x) = 1 if \lxll s 1 and h(x) = 0 if 

2 s llxll • Let x. be a dense countable subset of the com­
l 

plement of A and let 

to A. Define f.(x) 
l 

d(x. ,A) denote the distance from x. 
l l 

h( x-xi ) and let 
2d{x. ,A) 

l 

= sup\IDkf. (x) \I 
xEE 1 

and N 
p max M.k 

. k l l, Sp 

1rhen define 

if n > m > k 

gn(x) 

then 
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n ( s 6 sup 
p=m+l xEE 

Hence the Dkg (x) 's converfi.; e uniformly to conti nuous n 

functions g(k)(x). Repeated appl icatio n of Prop. 1.11 

give s Dg(k)(x) = g(k+l)(x). He nce g(O)(x) E cP(E,R). 

That g(O) i s a lso in cP,P(E,R) foll ows easily. If xEA 

then f.(x) = 0 for all i and he nce g (O)(x) =O . If x¢A 
l 

then find a n xi such that d(x,xi) < ~d(x1 ,A). Then 

f. (x) > 0 which implies g(O)(x) > O. Q.E.D. 
l 

Corollary 4.1 Let A and B be disjoint closed sub sets 

of a cP,P smooth separable Ba n a ch space. Then there 

exists a cP function F such tha t 0 s F(x) s 1 and 

F(x) = 0 or 1 if and only if x E A or B. 

Proof. By Urysohn' s Lemma there i ~ a n f 

i n CO ( E , R ) sat i s f y i ng 0 s f ( x ) s 1 and f ( A) = 0 , f ( B ) = 1 • 

Apply Prop. 2 .7 to obtain an fl E cP(E,R) wi th \f(x)-f1 (x)\ 

< 1/3. By t he t heorem there exist s g i(x) E cP(E,R),i=l,2, 

with gi(x) ~ 0 and gi(x) 0 if and only if x E A or B 

for i = 1 or 2. Now find a ~ E C
00

'

00

(R,R) with Os~(t)sl, 

~((x\xsO}) = 0 and ~((x\x~l}) = 1. Then r 2 (x) 

~(3( f 1 (x)-l/ 3 )) has values betwee n 0 a nd 1 and has 

v a lue 0 on A and 1 on B. We can th e n take F(x) to equa l 
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Q.E.D. 

Theorem 4.2 Let Ebe a B~nach space which is not cP,P,p<oo, 

smooth. Then there exists a closed subset of E which is 

not the zero set of any cP function. 

Proof. Le t Bi be a sequence of disjoint op e n 

b al ls in E of radii l/i converg ing to some point x in 
0 

E such t hat distanc e( B. ,B.) > 0 if i I j • Let A =E -U B. 
l ,1 • l 

l 

and suppose that f E cP(E,R) with f(x) 0 if and only 

if x EA. Then letting g.(x) = f(x) when x E B. and g(x) 
l l 

= 0 when x ¢ B. , we have that the g. (x) 's are of clas s 
l l 

cP a nd have bounded supports. By the non cP,P smoothness 

of E, sup llDPgi (x) II = 00 • It then follows that Dpf(x) is 
xEB. 

J. 

not continuous at x
0 

which is a contradiction. Q.E.D. 

Corollary 4. 2 There exists a closed subset o f c
0 

which 

2 is not the zero set of any C function. 

Proof. c
0 

is not c 2 ' 2 smooth by Cor . 3.2 • 

By Theorem 4.1 and 4.2 a separabl e Banach spac e , 

E, is cP,P smooth if a nd only if every closed subset of 

E is the zero set of a cP function. Theore m 4 .1 may be 

true for nonseparable B-spa ce s but t his appears to b e 

a difficult problem . Indeed, if every clo sed subset of a 

nonsepar ab l e Hilbert space H wa s th e zero set of a cP 



29 

function, then H would admit cP partitions of unity. 

To see this let [U } be any locally finite cover of H. a. 

By assumption we can find fa. E cP(H,R) such that fa.(x) 

~ O and fa.(x) > 0 if and only if x E Ua.. The n ~a.(x) = 

f (x)/ 6f (x) is a cP partition of unity refining [Ua.} . a. a. a. 

Another question t ha t we can pose is: Given 

disjoint subset s A and B of a B-space E with distance(A,B) 

> O, does there exist a Cp,q function f such that f(A)=O 

and f(B)=l ? An equivalent question is: Given a subset A 

of E and a o> O, does there exist a Cp,q function f with 

f(A)=l and f(x) = 0 if distance(X,A)~ o? If A is convex 

and t he space i s uniformly convex the answer is yes for 

p=q=l as we show in the corollary to the next theorem. 

'rheorem 4.3 Suppose that E is a uniformly convex B-space 

and that \\x\I E c1 (E-(O} ,R). 'rhen if A is a closed convex 

subset of E, d(x) = distance(x ,A) E c1 (E-A,R). 

Proof. A well known consequence of uniform 

convexity is th a t there exists a unique closest point p(x) 

in A to xEE and that p(x) is continuous. Now suppose that 

xf_A. Since the norm is c1 , llx-(p(x )+h)\I= llx-p(x)\\-Dl\x -

p(x)\\[h] + o(\ih\\). For all h with p(x)+h EA we have,by 

the definition of p(x), that II x-( p(x) +h) II ~II x-p(x) JI , hence 

D\\x-p(x)\\ [h]s;O. The hyperplane L = [y\D\\x-p(x)\I (y-p(x) )=0} 

is therefore a supporting hyperplane for A at p(x). Hence 

for all \\h i\ <p(x), d(x+h,L)s;d(x+h)s;d(x+h,p(x)). Thi s gives 
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II x-p(x) II +Dll x-p(x) II [ h] s;d(x+h) s;\I x-p(x) II +Dllx-p(x) II [ h] +o( II hll). 

Hence ld(x+h) - d(x) - Dllx-p(x)li[h] I s; o(\ihll) so that Dd(x) 

= Dllx-p(x)ll • Since p(x) is continuous,Dd(x) is continuous. 

Remark. Uniform convexity implies tha t E is re flexive and 

hence by statement b) of ChapterII,if E is separable and 

uniformly convex then llxll E c1 (E - (O} ,R). 

Corollary 4.3 If A is a convex subset of a uniformly 

convex B-space E and if 6> O, there exists an f E C1 ' 1 (E,R) 

with f(A) = 1 and f(x) = 0 if distance(x,A) :<! 6 . 

Proof. Find a g E Cm'm(R,R) with g(t) = 1 if 

t s; 6 /3 and g(t) = 0 if t ~ 2 ~ /3 . Then god(x,A)EC1 ' 1 (E,R) 

and satisfies the boundary c onditions. 

If a separable B-space is cP smooth but not cP,P 

smooth, the n cert ai n closed subsets may still be t he 

zero sets of cP functions. 

Definition. A subset A of a B-space E will be said to 

have a cylindrical boundary if for all x E aA there exists 

a neighborhood Nx of x such that 

of A) is weakly open in Nx (i.e. 

weakly open W). 

0 0 

An Nx (A is the interior 
0 

An Nx Nxn W for some 

Theorem 4 . 4 Let Ebe a cP smooth s eparable B- s pace. 

'rhe n any closed sub s et A whos e compl ement has a cylind­

rical bou!ldary is the zero set of some cP function. 
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Lemma 4.1 Let A be a weakly open subset of a separable 

B-space. Then the complement of A is the zero set of a 

c"" function. 

w. 
l 

Proof. We can write A 

n. 
l n {x\ \yi(k)(x) \<l} 

k=l 

=n w. 
i l 

where 

E E* • 

Let CJ EC
00

(R,R) with a(t) = 0 if \t\ ~ 1 and O<a(t)s:l 
n. 

if It I < 1. Define g. (x) 
l 111 a( Yi(k) (x)) • Then 

k=l 

g.(x) E C
00

'
00 (E,R) and g.(x) > 0 if 

l l 

Let MJ.k sup\\Dkg .(x)ll and let N 
xEE ,J P 

and onl;y if x E W .• 
l 

sup M.k • Define 
j,ks;p J 

f(x) 
CD 

"'""" 1 g (x) • We 1 t 1 th d · = u can app y De same me . o as in 
p=l 2PN p 

p 

the proof of Theorem 4.1 to show that the derivatives of 

all the partial sums converge uniformly. Prop. 1.11 gives 

that f E C
00

'

00

(E,R). Clearly f(x) > 0 if and only if xEA. 

Q.E .D. 

Proof of Theorem 4.4 For each x in E fjnd an 

N such that N n cl is weakly open in N • By Prop. 2.6 x x x 

there exists a cP partition of unity {~i} refining {Nx}. 

Then CA fl supp ~ i = supp ~in W i for some weakly open set 

Wi. Using Lemma 4.1 we find fi(x) E C00 (E,R) such that 

f.(x) ~ 0 and f.(x) 
l l 

> 0 if and only if x E W .• Defining 
l . 

F(x) =6f.(x)~.(x), we 
i l l 

if and only if x E A. 

have th~t F E cP(E,R) and F(x)=O 

Q.E.D. 
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Remarks. a) An example in p2 of an open set with cylin-

drical boundary which is not itself weakly open is 

C = [x\ \xii < 1, for all i}. For any y E R2 suppose 

that \y. I <~for i > n(y). Then if Bis the open 
l 

ball of radius~· about y, Bn C = Bn £xi \xi\<l,i~n(y)}. 

Hence C has a cylindrical boundary. Since C cont a ins 

no linear subspace it is not weakly open. 

b) Open sets with cylindrical boundaries are 

closed under finite intersections and finite unions 

but not under countable unions. Again consider R2 

and let en 

By a) each Cn has a cylindrical boundary but we show 

that Ucn does not. Let U be any neighborhood of zero 

and suppose that U contains the open ball of radius r. 

Find n such that l/n < r/2 and suppose t hat W is any 

weak neighborhood of e 1/n,([ei} is the orthonornal 

basis). Then W contains a set of the form 

N [x\(yj,(x-e1/n)) < l}, j=l, ••• m • 

Find k such that \y~\ < 2n/3. Then the point 

e 1/n + 3ek/2n lies in both N and U but is not contained 

in UC • Hence UC does not have a cylindrical n n 

boundary at 0. 

c) We pose the following question: Suppose that 

E is cP smooth but not cP,P smooth. Then if A is the 

zero set of some cP function, is a(CA) cylindrical? 
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CHAP'l'ER V 

Cp,q PARTITIONS OF' UNITY 

frn } will be called a Cp,q partition of unity l 'f' ex. 

on a Banach space E if [cpa.} is a partition of unity and 

cpcx. E cP,q(E,R) for each ex.. 

Definitiog..!. A B-space E will be said to "admit Cp,q parti­

tions of unity" if for every open cover [U
13

} of E there 

exists a Cp,q partition of unity [cp} supported by [UR}• 
a. ' t-' 

We show in this chapter that a separable cP,q 

smooth B-space admits Cp,q partitions of unity. We also 

show that while [cpi} may be a c 2 partition of unity for 

P. 2 , there exists a bounded sequence of real numbers [a.} 
l 

such that ~ a.cp.(x) ¢ C2 ' 2 (P. 2 ,R). We begin with a lemma. 
. l l 
l 

Lemma 5.1 Let E be a separable cP,q smooth B-space and 

suppose that [Ucx.} is an open cover of E. Then there exists 

four countable locally finite open covers [V~}, [V?} , 
l l 

[V{} and [V{l of E and maps gi E Cp,q(E,R) such that: 

1) vi c:: vi ' vi c= v ~ ' v~ c v~ 'i ~ 1 • 

2) [V~} refines (U } and is locally finite. 
l a. 

3) 0::;; gi (x)::;; 1, gi (Vf) == l and gi (GV~) == O. 

4) If q ~ 1 then dist(v0 ,cv0+1 ) > o for j == 1,2,3. 
l l 
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Proof. Using the Cp,q smoothness, find for 

every x E: E a cpx E: cP' q(E ,R) such that 0 s cpx s 1, cpx(x) =l 

and support cpx is contained in some Ua. Let A = x 

lylcpx(y) > ~}. Then (Ax} covers E and since E is Lindelof, 

we can extract a countable subset of (Ax} which also 

covers E. Denote the elements of this subset by A. = 
l 

fy\cp. (y)>Y,d. Now we can find f. E: C
00

'""(R,R), j ?:2, such that 
l J 

f .(tl, •.• ,t .) 
J J 

1 if 1 1 
t . ?: ~ and t . s 2 + -J. , i < j , 

,) l ' 

0 if t 11 dt 12 .. 
js 2 -J ,an i>-'2+-j,i<J. 

Now let it1 (x) = cp 1 (x) and 

for j ?: 2. Define 

v~ (x\ it. (x) 
l l 

v? (x\ ':Iti(x) 
l 

v~ (x\ ':It. (x) 
l l 

v~ (x\ ':It. (x) 
l l 

':{t.(x) = f.(cp 1 (x), •• ,cp.(x)) 
J J J 

> 14} 

> ~} 

> }4} 

> O} 

Property 1) follows from the definition . Since V~c supp 
l 

(V1) refines (Ua}. To show that (Vi} covers E suppose 

that x EE and that i(x) is the first integer for which 

cpi , 

cp.(x) >-~.Such an integer exists because the A. 's cover E. 
l l 

Then 'l'i(x) = 1 and hence x E vi(x) so (Vi} covers E. Now 

again suppose that x EE and find an integer n(x) such 

that cpn(x)(x) > ~. Then there exists,by the continuity 

of cpn(x)' a neighbohood Nx of x and an ax >~ such that 
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inf 
YEN 

cp ( )(y) ~a • Pick k large enour-;h so tltat 2/k< a -Yr:. n x x - x 
' x 

l 2 
Then cpn(x)(y) > '2 + k for y E Nx and hence 'l'j(y) = 0 for yENx 

and j ?:'. k. 1rherefore N () v1: = 0 for <j ~ k so th;:it [V~} is 
x J l 

locally finite. Finally take some h E C
00

(R,R) with h(t) = o 

if ts;}'{., h(t) = l if t:21{. and Osh(t)s;l. Defining gi(x) 

h('lt. (x)) we have that g. E Cp'q(E,R) and that property 3) 
l l 

holds. Property 4) follows from Prop. 1.5. Q.E.D. 

Theorem 5.1 A separable Cp,q smooth Banach space admits 

cp,q partitions of unity. 

Proo~ Let [Ua.} be any open cover of E and use 

Lemma 5.1 to get four locally finite covers [V~},j =1,2,3,4 
l 

refining [Ua.} and maps gi E Cp'q(E,R) satisfying the condi-

tions of the lemma. Let f 1 (x) = g 1 (x) and fi(x) 

gi(x)(l-g1 (x))···(l-gi-l(x)) for i>l. Then fi E Cp'q(E,R) 

and supp f. (x) c: supp g. (x) c V~ , hence every point of E 
l .. l l 

has a neighborhood on which all but a finite number of 

f. Is vanish. Now since [xlg. (x) = l}:;) v?, and cv?} covers 
l l l l 

E, for every x, 

n 
1T(l-g. (x)) 
i=l l 

O, for some n. 

"" n 
Hence 6 f.(x) = 1 - lim TT (1 - g.(x)) = 1 and [f.(x)} 

i=l l n-Ho i=l l l 

is a Cp,q partition of unity refining [Ua.l Q.E.D. 
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If E is Cp,q smooth and separable then by the 

above theorem we can find a Cp,q partition of unity [ cµ. } 
l 

such that diam.(supp qi.) are uniformly bounded. We ask the 
l 

question: Does there exist a Cp,q partition 0£ unity (cpi} 

such that 

(5.1) 6 a.cp.(x) E cP,q(E,R) for all bounded real a.? 
. l l l 
l 

If E = Rn the answer is yes: 

Theorem 5 .2 Suppose that d > 0. Then there exists a C
00 

'

00 

partition of unity (qi
1

} on Rn such that diam(supp 

and for every bounded sequence a. ER, E a.cp.(x) E 

cp.) <d 
l 

l i l l 

Ceo ,oo(Rn ,R) • 

Proof. Find hE Cco(R,R) with h(t) > 0 if \ti< 1 

and h(t) = 0 if It\ :2: 1. Write x = [x1 , ... ,xn} and let L 

be the lattice of points [dk1/2 n, ••• ,dkn/2 n} where k 1 , •• kn 

are integers. Label these points by xi, i = 1,2, ••• and 

define n 
TT h(x. 
j=l J 

Then the supports of the f. 's cover Rn, f. E Cco'co(Rn,R) 
l l 

and diam(supp fi) = d for all i. Finally let ~i(x) = 
CX> - • • 

f.(x)/ 6 f.(x). Then cp.(x) =cp.(x+xJ-x1
) so tL.at there 

l l 1 1 J 

exists an Mk such that s~p\\Dkcpi (x)\\ <Mk< co for all i. 

Now any point of Rn is covered by the supports of at 

most (2n+l) cp'.s. Hence if la. l~M, \\Dk6a.cp.(x)\ls 
1 1 l l 

Q.E.D. 
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When E is infinite dimensional then no such 

canonical construction is possible. In fact if the sup-

ports of the partition functions have uniformly bounded 

diameters then by Lebesque's Covering Theorem for any N 

there a re points of E at which more than N of the parti-

tion funct i ons are non-zero. This seems to suggest that 

the answer to the question is false for q ~ 1. We show 

below that this is the case for E =i2 and q = 2. The first 

theorem i s of interest in itself. We consider the contin­

uous map CJ: f 2-7f 2 defined by CJ(x) = L: Ix . le . ,where e 
i l l i 

is the orthonormal basis, and show that CJ(x) i s not 

unifo rmly approximable by a C2 ' 2 function . We will look 

at CJ(x) a gain in the next chapter when we study cP appro -

ximations. 

Theorem 5.3 Suppose that B i s a ball of radius d and 

center z, t hat f E c2 ( i 2 , i 2 ) and that sup\\f(x)-CJ(x)\\ 
xEB 

~ a < d~3/6. 'rhen sup\\D 2f(x)I\ = Cl). 

xEB 

Proof. Since a c2 function with sup\\D 2f(x)\\ < oo 

x EB 
has a uniformly continuous deriva tive on B, the theorem 

will fol J ow from the following lemma; 

Lemma 5.2 Let B be the cl osed ball in p2 of radius d 

and center z. Suppose that f E c1 U 2 ,£ 2 ) and that Df is 

uniformly cont i nuous on B. Then sup\\f(x)-CJ(x)\\ 2! d "1?/6. 
xEB 
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Proof. Let x
1
. and f.(x) denote (x,e.) and 

. 1 1 

(f(x),e.) where (e.} is an orth onormal b asis . For an 
1 1 

()) 2 
a rbitra ry 1 > e: > 0 choose k such that 6 z. < e: and pick 

k+l l 

6 < e: s uch th a t x,y E B and l\x - y\\ < 6 implie s 

l\Df(x) - Df(y)\I < e:. Let N be the g rea test integer les s 

than or e qual to (d2 - e: 2 )/o 2 so that d 2 - 2e: 2 
< o2N < d 2 - e: 2 • 

k 
Denote 6 

i=l 
sional box 

ziei by z ' . Then if we let F be the N dimen­

(yl IY· - z! I s 6 for i = k+l, •• ,k+N and 
l l 

\y. - z! I = 0 otherwise} we will have F c B. By the mean 
l l 

value theorem(Prop.1.5) if yEF and Yk+l'"'yi' " 'Yk+N are 

fixed then 

f
1
.(y ) =a +by.+ e(y.) 

l l 

where a = f . ( y - y . e . ) , b = ( D f ( y - y . e . ) [ e . ] , e . ) and 
l 11 1 1 l l 

((Df(y-y.e. + e.(y.)y.) - Df(y-y.e.) )[y.J,e.) 
11 l 11 11 1 1 

for some 0< e. (y.) < 1. 
l l 

Since IY· I< 6 l 
~ \e(yi)I s e:lyij. Now a simple calculation 

shows that 

£~a+ byi + e(yi) - !Yi I )2
dyi > o3 (~ - '>e) , 

Hence JFl\f(y) - u(y)\1
2
dyk+l' .• ,dyk+N 

> • Therefore sup \l:f(x) - u(x) 11
2 

xEF 
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> (d 2 - 2€ 2 )(1~ - 2€) • Hence sup[I f (x) - cr (x) II. 
xEB 

:2: sup\lf(x) - cr(x)\\ 
xEF 

> J (d2 
- 2€

2 )( 1~ - 2€) • Since € is arbi-

trary, supl\f(x) - cr(x)\\ 
xEB 

<!: d/2"13 • Q.E.D. 

Now suppose that (c.pi} is a c2 partition of unity 

for p2 and that diam(supp cp. )< d for all i. If we pick 
l 

. i 
points xlEsupp c.p. and let b. = cr(x) then 

l l 

\ltJ b.cp. (x) - cr(x)\\ = 
i 1 1 

II~ (cr(xi )cpi (x) - <J(x)cpi (x)) II 
l 

s: ~Uxi - xllc.pi (x) s: d. Hence by Theor~m 5. 3 if B is a 
l 

ball of radius r > 2~ d,then 

(5.2) 

Let a i ::: bi if 

Then the a. IS 
1 

when xEB and 

(5.3) 

sup l\D2 ~b.cp. (x)ll = 
xEB i l l 

CD o 

supp cpi n B ~ 0 

are bounded and 

therefore 

sup\\D 2 ~ a.cp. (x)ll 
xEB i 1 1 

I 

and a. l 
::: 0 

~ a.q:i. (x) = 
i l 1 

CD • 

o °!J herwise, 

2J b.cp. (x) 
. 1 1 
1 

The next theorem will show that (5.3) also 

holds when the ai's are a suitable bounded real sequence. 

Theorem 5 .4 Let {cpi) be a cP, p <!: 2, partition of unity on 

p 2 and suppose th a t diam ( supp cpi) < d for al 1 i. Then there 

exists a sequence (ai} of bounded real numbers such that 

sup \\Dk 2J a .cp. (x)\\ == CD for 2 s: k s: p • 
x i 1 1 
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Proof. Choose bi = a(xj) and r > 2/3 d as above and let 

BJ.= [x\ l\x-2reJ.llsr}. Then sup \ID2
2Jb.cp.(x)\I = oo so we 

xEB. i 1 1 

J 

can pick yj E Bj and hj E P2 with llhj\I = 1 such that 

j < I ;G b. D2cp. (yj )[hj ,hj] I . Let F. = [i I cp. (yj) > O}. 
. 1 1 J 1 
1 

Then if j I j I ,F. n F. I = 0 • Now define 
,J J 

2 . . . 
a. = sign(D cp. (yJ)[hJ ,hJ]) if i E F. 

1 1 J 

= 0 if i ~ F j for any j • 

Then 

3
1r ~ llb.D 2cp.(yj)[hj,hjJll > j/3r. 

'EF 1 1 
1 j 

Since j is arbitrary, sup \ID 2 6 a.cp. (x)ll = oo and by 
llxll s;3r i 

1 1 

Frop. 1.6 the Theorem follows. Q.E.D. 
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CHAPTER VI 

SMOOTH APPROXIMATION 

Definition. Suppose that E and F are Banach spaces, 

t h at U is an open subset of E and t hat f E Cq(U ,F). 1.I1hen if 

Osq<ps;oo we will say tha t f is C ap~roximable on U if . p' q . I ' 

given E: > 0 there exi.sts a g E cP(u ,F) such that 

sup llDkf(x) - Dkg(x)ll < e: • We will say that f is 
xEU,Os:ksq 

strongly C approximable on U if given any e(x) E p,q 
c 0 (u ,R+) there exists a g E cP(u ,F) such that for x in U, 

sup llDkf(x) - Dkg(x)ll < e(x). In both cases the functions 
Osks:q 

g will be called C approximations. p,q 

It is well known that if E is finite dimensional 

then every f E Cq(E,F) ,( g "2: 1), is strongly C approxi-p,q 

mable on E. When E is infinite dimensional but separable, 

Prop. 2.7 implies that every f E c0 (E,F) is strongly C p,O 
approximable if and only if E is cP smooth. However when 

q > 0 it is not known whether there exist any infinite 

dimensional Banach spaces such that every Cg function 

is C approximable. In particul a r, it is not known p,q 

whether every c1 function on ~> c parable fhlbert ~: pace i~3 

c2,l approximable. 
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The theorem below will show that if a Cq function 

on a separable Cp,q smooth B-space is locally cp,q approxi­

mable, then it is strongly approximable on the whole space. 

This would be an essential theorem in constructing C p,q 

approximations on manifolds modeled on Cp,q smooth Banach 

spaces. 

Theorem 6.1 Let Ebe a separableCp,q smooth B-space and 

let F be another B-spa ce. Let f E Cq(E,F) and s uppose that 

for every x in E there is a neighborho od Nx of x such that 

f is C approximable on Nx. Then f is strongly C p,q p,q 

approximable. 

Proof. If e(x) > O,let {U } be an open cover of E refining 
a. 

[N } and such that inf e ( x) > 0. Apply Lemm a 5 .1 to get four 
x xEU 

a. 

locally finite subcovers [V~} refining [Ua.} and functions 

g. E cP,q(E,R) satisfying the conditions of the lemma. Let 
l 

e:l. inf e(x) and let M. = llC1-g1 (x))···(l-g. 1 (x))g.(x)I\ • 
4 l l- l q 

xEV. 
l 

By the hypothesis, there ex ist s an h. (x) E cP,q(V~ ,F) with 
l l 

(6.1) sup \\Dkf(x) - Dkh. (x)\I < e:. /(2q+iM.) • 
4 l l l 

xEV. ,O::;;k::;;q 
l 

Now define r 0 (x) = f(x) and fi(x) = f(x)(l-g1(x))··· 

(1-gi(x)) + h 1 (x)g1 (x) + h 2 (x)g2 (x)(l-g1 (x)) + ••• 

+ hi(x)gi(x)(l-g1 (x))•••(l-gi_1 (x)) for i>l. 

2 2 
If x E v1 U •.• UVi then (l-g1 (x)) · · ·(1-gi(x)) O,hence 
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(6.2) fi(x) E p,q( 1 1 ) c v 1 u ... uvi,F 
' 

i ~ 1. 

4 
gi(x) 0 that Also if x %. vi then = so 

(6.3) fi(x) fi-l(x) when 
4 

= x~ v. • l 

Now using (6.2) and (6.3) and the fact that 

[V~} and tv{l cover E, for every x there is a neighborhood 

U of x and an integer kx such that f. 1 (y) = f.(y) x l+ l 

for y E ux and i > kx and f i (y) E cP(ux ,F). Hence 

h(x) = lirn f.(x) exists and h(x) E cP(E,F) • Now 
. l 
l~CD 

fi (x) - fi-l (x) = (hi (x) - f(x)) ·(1- g 1 (x)) • · ·(1-gi-l (x))gi (x) 

and hence sup \IDk(f. (x) - f. 1 (x) )II s ~ (~) sup4 llD1\h. (x) -
4 1 i- j=O J xEV. 1 

xEVi i 

f(x~ll· suvp4 11Dk(C1-g1 (x)) •• (l-gi_1 (x))gi(x))ll s 
xE . 

l 

~ (~)€./2q+iM. • M. s €
1
./2i for ksq. Using this and 

j=O J i l i 

( 6. 3) we have for Qsksq , \tDkf(x)-Dkh(x) II = l\Dkf(x)-DkfN(x) II 
for some N, and this is s E 4 \\Dk( f .(x)-f. 

1 
(x))ll 

[j\xEV.,jsN} J J-
N J 

< e(x). E l/2j < e(x). Hence f(x) is strongly C 
j=l p,q 

approxirnable. Q.E.D. 

Consider separable Hilbert space, p2 , with 

orthonormal basis [e.} • Write x = ~ x.e. and define cr(x) 
l i l l 

= E \x. \e. as in Chapter V and ~(x) = L). x. \x. j. 'I'hen 
i l l i l l 
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II cr(x) - cr(y)IJ s: \Ix - y\\ and 16 (x. +y.) Ix. +y. I- 6 x. Ix. I 
. l l l l . l l 
l l 

- (2cr(x),y>I s I~ y?I = [ly\\ 2 • Hence DL:(x) = 2cr(x) and 
. l 
l 

L(x ) E c1 (P 2 ,R). We observe that cr(x) is nowhere differ-

entiable • To show this let x E p2 and suppose tha t cr 

is differentiable at x. Then there exists a 6 such that 

when l\y\\ < 6 ,\lcr(x+y) - cr(x) - Dcr(x)[yJ\l < l!Yll /8. Choose 

n such tha.t I xn I < 6/4 and let y = 6en • Then 

:1!: 36/4 + 36/4 - 26/4 = 6/2. On the other hand 

II cr(x+y) + cr(x-y) - 2cr(x)\J = II cr(x+y) - o-(x) - Du(x)[y] + cr(x-y) 

- cr(x) - Dcr(x)[-yJ\J s; l\cr(x+y) - cr(x) - Dcr(x)[yJ\I +II cr(x-y) 

- cr(x) - Dcr(x)[-yJ\I s: 6/4, contradiction. 

We pose the question: Is there any b e tter c2 l 
' 

approximation to L(x) on the unit ball than a constant 

function? From Theorem 5. 2 it follows that L:(x) is not 

c2 l approximable by C2 ' 2 functions on any ball. The 
' 

following theorem shows that if\IL:(x)-g(x)\\
1 

< R/2 on 

a ball of radius R, where g E c2 ce 2 ,R), then g can not have 

a decomposition of the form g(x) 

Theorem 6.2 Suppose that G(x) E 

- 6 g.(x.). 
i l l 

c1 ce 2 'P 2
) and that 

G(x) = ~ h.(x.)e .• Then if Bis a ball of radius R, 
i l l l 

supl\ G(x) - cr(x) \I ~ R/2. 
xEB 
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Let B have center a and suppose t hat 
n 

R > e: > 0. P ick n s uch 
00 2 

that 6 a. < 
,i =n+l J 

e: and l e t b = ~ a.e .• 
1 J t! 

Now find 6 such th a t \Ix - b\\ < o implies \\ G( x ) - G(b) 

-DG(b)[x-bJ\I ~ e\lx-bl\ /R. Thus when \x. - b. \ < o , 
1 1 

(6.4) jh.(x.)-h.(b.)- dhi(b . )(x.-b.)j < ~lxi-bil. 
i 1 1 1 dx. 1 i i 

1 

Choose N larg e enough so that < 6 and let z = 

n+N 
:0 

j=n+l 
R - e e .• The n l\zl\ = R - e: so that (b ± z) EB. 

N J 

By applying (6.4) with i = n+l, •• ,n+N we obtain 

(6.5) 
l!G(b+z) + G(b-z) - 2G(b)ll ~ l\G(b+z) - G(b) - DG(b)[zJ\I. 

+ l\G(b-z) - G(b) -DG(b)[-z) II~ 2el\zl\/R < 2e • 

Since a(b+z) = a(b-z) we have llG(b+z) - cr(b+z)ll + 

l\G(b-z) - cr(b - z)ll + 2\!G(b) - cr(b)\I ?-'. llG(b+z) + G(b-z) 

- 2cr(b+z)!l + 21\G(b) - cr(b)ll , which by (6.5) is :2: 

ll2G(b) - 2cr(b+z)I\ - 2e + 2llG(b) - cr(b)I\ :2: 21\cr(b+z) - cr(b)\\ 

- 2e = 2llz\\ - 2e: = 2R ·- 4e. Therefore either llG(b+z) 

- cr(b+z)\\, \IG(b-z) - cr(b-z)il or \lG(b) - cr(b)I\ is :2: ~ - e. 

Hence sup \\G(x) - a(x)\I :2: ~- e. Since e is arbitrary , the 
xEB 

theorem is proved. 
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CHAPTER VII 

WEAK C APPROXIMATION ON £2 
p,q 

As stated in Chapter VI, it is unknown whether 

every c1 function on £2 is c2 1 approximable. In this 
' 

chapte r we show that C approximation can be performed - p,q . . 

on £2 provided we use a weaker approximation condition 

on the derivatives. The approximation is first done 
00> co 2 

local ly and then the C ' smoothness of R is used to 

build up a global approximation. 

We first point out that the usual finite dimen­

sional technique of convoluting a cP function with a C00 

function having a small bounded support(i.e. letting 

f(x) = Jf(x+y)cp(y)dµ(y)) to obtain a C approximation, 
co' p Rn 

fails on £2 • There is of course no translation invariant 

borel measure on £2 but we might hope that given f E 

Cq(R 2 ,F) there would exists a probability measureµ on 

P2 such that f(x) = Jf(x+y)dµ(y) is of class cP, p>q. 

This , however,is not the case and we sket ch a proof 

for q = 1. Define 

where x 

co 
(1-cos~nx) n ----· n 

~ xnen. Then it is not hard to show that 
n 
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F1 (x) E c1 (p 2 ,R) and that F1 (x) is nowhere second differ­

entiable. Suppose now that µ is a probabilty me asure on 

p2 with bounded support and define i 1 (x) = JF1 (x+y)dµ(y). 

Then 

where 

and 

Now 

c = J ~ ( 1 - co spfi y n) In d µ ( y ) < °" 

= 

Os:a s:2 n 

( Jc o srn: y n d µ c y ) ) 
2 

+ ( Is i rum y n d µ c y) ) 
2 

( f sinmy dµ(y) \ 

\ :r cosfti y:dµ(y) ) 
• 

~ Jcosmyndµ(y) ~ Jc1-ny~/2)dµ(y) 
CX> 

~ 1 - n y /2 where y = 
n n Jy~dµ(y). From/~ 'Yn 

n 

JllYl\ 2dµ(y) <°"follows lim inf nyn = 0 which gives 

lim sup an 1. Since the an's do not approach O, the same 

method of proving F1 (x) is nowhere second differentiable 

can be used to show that F1 (x) is nowhere second differ­

entiable. 

This can be generalized. Define 

FP(x) = iS (1 - cosVri xn)/ n(p+l)/2 • 
n=l 

Then FP E cP(p
2 ,R) and FP(x) is nowhere p+l differentiable. 

If µ is any probability measure on 12 and if we define 

F (x) = J F (x+y)dµ(y), then F is nowhere p+l differentiable. 
p p p 
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In the constructions to follow we will need 

two propositions about measures on Banach spaces. The 

first proposition is well known. We recall that a proba-

bili ty measure u on E is a positive regular Borel 

measure satisfying µ(E) = 1. 

Proposition 7.1 Let µ be a probability measure on a 

complete metric space Q . Then for every e: > 0 there 

exists a compact subset K of Q such that µ(K )~l - e. e: e: 

Lemma 2·1 Let f E CO(E,F) where E and F are Banach 

and let K be a compact subset of E. Then 

lim 
t~o 

sup l\ f(y+h) - f(h) II = 0 • 
hEK, llYll ~t 

spaces 

Proof. Suppose e: > O. For every h EK find Rh such that 

liy-hl[ <Rh implies l\f(y)-f(h)ll < r./2. Let {B(hi ,Rh.)} be a 
1 

finite subcover of the cover {B(h,Rh)}, where B(h,Rh) is 

the ball with center hand radius Rh. Let 6 be the Lebesque 

number of {B(hi ,Rh.)}. Then for every h E K and y E: E with 
l 

\\yl\ ~ 6 we have h,y+h E B(h. ,Rh ) for some i. Hence lif(h+y) -
l . 

1 
f(h)\I ~ lif(h+y) - f(hi)il + \\f(h) - f(hi)ll ~ e:/2+e/2 = e:. Q.E.D. 

Proposition 2 .2 Suppose that µ is a probability measure 

on a B-space E with compact support K and suppose that 

f E cP(U,F), p;;? O, where U is an open subset of E. Then if 

V is an open subset of U such that the algebraic sum V+K 

is contained in u, g(x) = Jf(x+y)dµ(y) E cP(v,F) and 

Dkg(x) = JDkf(x+y)dµ(y) for 0 ~ k ~ p • 
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Proof. Suppose x EV and e: > O. By Lemma 7 .1 

there is a 6 > 0 such that ll zll < 6 implies 

supllf(x+y+z) - f(x+y)\I < e:. 
yEK 

But then JJzll < 6 implies l~ g (x+z) - g(x)\I 

s Ji\f(x+y+z) - f(x+y)\Jdµ.(y) s e: • Hence g E c0 (v ,F). 

Assume that g(x) E Cq(V ,F) for q < p and Dkg(x) 

JDkf(x+y)dµ(y) for 0 s ks q. We show that g(x) E Cq+l(V ,F) 

and Dq+lg (x) = Jnq +lf(x+y)dµ(y). For any x in V, 

lim sup \i(Dqf(x+ty+z)-Dqf(x+z;) - Dq+lf(x+z) [ty] )/tlJ 
t-o \ly\l=l,zEK 

= lim sup ((Dqf(x+ty+z) - Dqf(x+z) - Dq+lf(x+z)[ty])/t ,w). 
t-'>O lly\\ =l, zEK 

wEF*, !lw\I sl 

Now by Prop. 1.5, (Dqf(x+ty+z) - Dqf(x+z) ,w) 

= (Dq+lf(x+z+Ty)[ty] ,w) for some O < T < t so the las t 

limit is 

:.,;; lim 
t-o 

SUJ? ((Dq+lf(x+z+Ty) - Dq+lf(x+z) )[y] ,w) 
II Yll = 1, zEK, wEF*, I\ wll sl 

O<T<t 

= lim 
t-o 

sur \l(Dq +lf ( x+z+ Ty) - Dq+l f (x+z ))Cy] II 
iiY ll =l, zEK,O<T<t 

0 by Lemma 7.1. Hence 

lim SUJ? II Dqg(x+tyf - Dqg(x) - (Jnq+lf(x+z)dµ(z)) [yJ\I = O, 
t-o llYll=l 

so that Dq+lg(x) exists and equals JDq+lf(x+z)dµ(z) . Q. E.D . 
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Corollary 7 .2 Let µ be any probability measure on a 

B-space E and suppose that f(x) E cP,P(E,F). Then 

g(x) = Jf(x+y)dµ(y) E cP,P(E,F) and Dkg(x) = 

J Dkf(x+y )dµ(y) for k :s; p. 

Proof. By Prop. 7.1 there exists compact sets 

Ke with µ(Ke) ~ 1- e • Define ge(x) = JKf(x+y)dµ(y). 'rhen 

€ 

by Prop.7.1 , for ks p, Dkge(x) = JKDkf(x+y)dµ(y) and this 
€ 

implies that Dkge (x) converges uniformly as e-+ 0 to 

J
. k . k 
D f(x+y)dµ(y) forks p. So by Prop. 1.11, D g(x) exists 

and Dkg(x) = JDkf(x+y)dµ(y). g(x) is in cP,P(E,F) because 

llDkg(x)!I ~ Jl!Dkf(x+y)lldµ(y). Q.E.D. 

Consider now separable Hilbert space £ 2 and let 

(e.} be an orthonormal basis. We will define for each 
l 

2 nonnegative sequence (a
1
. } , with L) a. < oo , a probability 

. l 
l 

measure µA , A= (ai}. Let 7J(t) be a fixed function in 
00 

C
00

(H,R) satisfying 77(t) = 0 if !ti~ 1 and J11(t)dt = 1. 
-co 

Define for each positive integer n an integral on c0 , 0 ci 2 ,R) 

as follows: 

A!( f ( x) ) = fr' ( ~.) J fr' 7J (~ ~) f ( . ~, y i e i) dµ~ ( y) 
i=l i H'l=l i i=l 

n 
where H' is the space spanned by 

n 
e. , µ." is 

(ill~i~n,a.>0] n 
l 

the standard Lebesque measure on H~ and Tf' and L)' denote 

the product and summation over only those i's for which 
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a. > o. Let K denote the compact Hilbert cube K = 
l 

(x \ I xi I s; ai}. For any f E c0 
'
0 ce 2 ,R) find o such that 

z,y EK and \\z.-y\l<o implies \f(z)-f(y)\ <e. Then if 
CD 

we take N such that E a .2 < 6 2 we have for m <!: n <!: N, 
. N 1 1 
l= + 

I AA( f(x)) - AA( f(x)) I s; I rrm'/1 )l rrm ry(~i) f ( E'y. e. )dµ' (y) 
m n ~a. H' a. i l m 

i= 1'. m i 

s; TT' - 1f17-1 lf(Ey.e.)-f(:Ey.e.)\dµ'(y) m (l ) t m, (y ") m, n, 
. 

1 
a. , a. . i i i i m 

l= 1'. l m 

= € • 

Hence lim A~(f(x)) exists and we define this limit to 
n-+CD 

be AA(f(x)). The functiona l AA is clearly linear, bounded 

positive a nd satisfies AA(l) = 1. Since supp AA c K and 

K is c ompact, AA is an integral. By the Riesz Representa-

tion Theorem there is a unique probability measure A µ on 

12 such that Jr(x)dµA(x) AA(f(x)) for all f E C0,0(.~ 2 ~H). 

In the proof of the next theorem we will use the 

measures µA to mollify cP functions on 1 2 • We recall that 

a Hilbert-Schmidt operator T on 12 is an element of L(J. 2 ,1 2 ) 

satisfying 
CD 

E 
i,j=l 

(Te. , Te.) < 
l J 

CD • 
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Theorem 7.1 Suppose that f E cP'P(U,F),l5:p<oo, where U 

is an open subset of i 2 , that Dpf(x) is uniformly contin­

uous on U, that Vis an open subset of U with dist(V,CU)>O, 

and that T is a Hilbert-Schmidt operator on 12 • Then 

there exists a g(x) E C
00

(V,F) satisfying 

SUJ? \IDk(f(x) - g(x))[Th]\I ~ 1. 
xEV, II hi\ 5:1, O~k~p 

Proof. Let T = SW be a polar decomposition 

for T, where S = VTT• and W is a partial isometry. Then 

S is positive definite self-adjoint Hilbert-Schmidt and if 

we denote the unit ball by B, then 

(7.1) T ( B ) c SW ( B ) c::: S ( B ) 

Assume that the orthonormal basis [e.} is a set 
l 

of eigenvectors for Sand that Se = a.
1
.e

1 
.• Then a. ~ 0 

i l 

and ~ a. .2 < °". Now Dkf(x) is uniformily continuous on U 
i l 

for k 5: p so we can find o > 0 such that o < dist(V,CU) and 

(7 .2) sup \\Dkf(x) - Dkf(y)I\ ~ 1/2\IT\\. 
x ,yEU, \lx-yll < o, O~k~p 

Let t = min(l, o/22Jo..2), a. =ta.., A = fa.} and define 
i l l l l 

µA as above. Letting K be tbe compact set (x\ \x. I 5: a.} , 
l l 

A we have diam K < o , supp µ c K and V + K c U. Now let 

1 k 
M = sup J l~kTJ(t) \dt and use Prop. 2.? to obtain g(x) E 

k~p -1 dt 

C
00

(f
2 ,F) such that 
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( 7. 3) supllf(x) - g(x)ll s tq/2Mq 
x 

Let f (x) J f(x+y)dµA(y) and g(x) = J g(x+y)dµA(y), then 

by Frop.7.2, f E cP(V,F) and gEC
0

\V,:B'). (7.2) gives 

Suppose now that x EV, that i 1 , •• ik, k :s:; p, are 

integers with a. > 0 for jsk and N = max(i 1 , ••• ik).Then 
lj 

II ax. • • ax. (f(x) - g(x)) H 
11 lit 

n ( 1 ) J n , (Y . [ n, IT' - TfYJ :..J.) f(x + E y .e . ) 
·-1 a. H' a. J J J- ,1 n J 

(7.5) n, J - g(x + E y .e.) 
J J 

dµ' Cy) II n 

:s:; lim 
n- a> 

n k ( n y.) n 
lT' l 0 1T' :..J. II C "'"""'' ) 1J f x+ LJy.e . ._ 1 (a.)JH,ay ... ay .. _1 (a .) J J 
J- ,J n 11 i k J- J 

(which by (7.3) is) 

N , ( 1 ) J 8k ( N, (~)) s 1T - Tf Tf • tq/2Mq dµN' (y) 
. 1 a . H' ay. • • ay. a. 
J= J n 11 i" J 

k 
• M • 
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It follows now from (7.1) and (7.5) that 

k N N k ~ ,._,. 
sup !ID (f(x) - g(x))[Th]\I s: sup llD (f(x)-g(x))[ShJll 

xEV, II hll s:l xEV, 11 h s:l 

co 

s: sup II "E/ 
l\h\\s:l ii-. i1c=l 

y,,. 

Combining this with ( 7 .4), we obtain for 0 s: ks: p, 

sup llDk(f(x) - g(x))[ThJll s: sup II Dk( f (x) - f(x)) [Th] II 

xEV, II hll s:1 xEV, II hll s:1 

+ 
k N ~ k ~ 

sup llD (f(x) - g(x))[ThJ\I s: supllD (f(x)-f(x))\l ·llTll + Y,, 

xEV, II hll s:l xEV 

s:Y,,+Y,, =l. Q.E.D. 

Remark. Suppose that the f in Theorem 7.1 has the 

p roperty that for any e > O there exists a ge: E c°",Pcv ,F) 

such that \\f(x) - g (x)\l 0 s:e: and l\g II s: M, where M is e: e: p 

independent of e:. Then the conclusion of the theorem 

would be true if the operator •r were only assumed to be 

~ompact. To show this assume T compact and find Pin 

L(f 2 ,£ 2 ) with finite dimensional ran~e and such that 
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11 '11 
- P\\ < 1/2( \1 f\[ p + M) • Apply the theorem to . get a 

g E cmce 2 , F) wi th supl\Dk(f(x)-g(x))[2PhJll < 1. Since 

xEV, \I hll sl, ksp 

g(x) Jg(x+y)dµA(y) where g is a Cm O approximation , 
to f and since by assumption we can take l\g\\ ~ M, it 

p 

follows t hat we can assume l\gll s M . Therefore p 

sup\\Dk(f(x) - g(x))[ThJ\1 s sup\\Dk(f(x) -g(x))[(T-~h) II 

+ s upllDk(f(x)-g(x))[PhJ[l s ( lifll +M)\IT-Pll +~ s 1. p 
xEV, II hll sl , ksp 

We now give a global formul a tion of Theorem 7.1. 

The proof is similar to the pro of of Theorem 6.1 in which 

Lemma 5.1 played a key role. 

Theorem 7.2 Let f E cP(£ 2 ,F),l~p<=, and suppose that 

DPf(x) is uniformly continuous in some neighborhood of 

every point of £2 • Then for any locally finite cover 

(Uo.} of £2 and collection (Ta.) of Hilbert-Schmidt opera­

tors on £2 there exists a g(x) E Cm(£ 2 ,F) such that 

sup 
a. 

sup llDk(f(x) - g(x) )[Ta.hJU 

xEUa.,llhl\sl,Osksp 

1 • 

Proof. As in the proof of Theorem 7.1,let 

= VT T* a. a. so that Sa. is self-ad,joint positive definite 

Hilbert-Schmidt and Ta. (B) c Sa. (B), whe re B is the unit ball. 
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For every x in 12 find a ball B(x,R ) of radius R a bout x x x 

such that B(x,R ) intersects only a finite nur~er of U 's 
x a. 

and DPf(x) is uniformly continuous on B(x,Rx). Now since 

12 is Co:>'o:> smooth, we can apply Lemma 5.1 to the cover 

(B(x,Rx/2)} to obtain covers (Vr}, j=l,2,3,4, and functions 
o:> o:> 2 

g.(x) EC ' (f ,R) such that 
l 

1) dist( v~,cv~+l) > o, j = 1,2,3 
l l 

2) (V~} covers p2 
l 

3) (V~} is locally finite and refines (B(x,R /2)} 
. l x 

4) o ~ g. ( x) ~ 1, g. ( x) ( v?) = 1 and g. ( x) (CV;;) = o. 
l l l l l 

Now define cp (x) = g 1 (x), cpi (x) = ( l-g1 (x)) • • • (1-gi-l (x))g;i (x) 

if i > 1 and M . = I\ cp . \I • If we 1 et 
l l p 

s.. = 
l 

z; so. 
ta. I u J1 v{ 1 01 

(note that the sum is over a finite number of a.' s) then S. is 
l 

positive definite self-adjoint Hilbert-Schmidt and S (B) c a. 
S.(B). Set 

l 

s~ 2P+iM .(max( 1, II s. !I) fs. 
l l l l 

and use Theorem 7.1 , observing tha t f(x) E cP,P(B(x,Rx),F) 

and dist(V~ ,B(x,Rx) ) > O, to obtain functions h. E Ca:J(V~ ,F) 
l l l 

satisfying 

(7.6) sup l\Dk(f(x) - hi (x))[S~hJll ~ 1. 
4 

xEV i, II hi\ ~1, k$;p 

Define r 0 (x) = f(x), •.• , fi(x) f ( x) ( 1-p;l ( x) ) •.. ( 1-rr,. ( x) ) + 
l 
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Also 

(7.8) 
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4 f.(x) = f. 
1

(x) when x¢V . 
l 1- 1 

For every x E 12 there is a neighborhood N of x and an x 
1 1 integer n such that N c v
1
u • . . uv 

x n 
and N nV~ = 0 for i>n. 

x 1 

Hence by (7.7) and (7.8) we can define 

g(x) ::: lim 
i_,..co 

Now f i (x) - f i-l (x) = (hi (x) - f (x) )cpi (x), hence 

k 
sup l\D (fi(x)-fi_1 (x))[Sih]\\ 

(7 .9) x,\lh\lsl ,ksp 

s ~ (k) supl[Dn(h.(x)-f(x) )[S.hJI\ . supl\Dk-nq:i.(x)[S.h]\I 
n-O n 1 1 1 1 

- x' II hll sl 'ksp x ' II hil ~ l ' ks;p 

$ ~ (k) l/(2p+iM . llS. \\P) • M. 11s. t1k-n s; l/2p+i s; l/2i 
O

n 1 i i i · n= 

by (7.6) and (7.8). Therefore if x E Uu 

supl\Dk(f(x) - g(x) )[TuhJI\ 

\I h\\ sl, ksp 

s supllDk(f(x) - g(x))[SuhJll 

\\h\I s:l ,ksp 
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