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ABSTRACT

If B and F are real Banach spaces let Cp’q(E,F)
Osgsps<e, denote those maps from E to F which have p
continuous Frechet derivatives of which the first q de-
rivatives are bounded. A Banach space B is defined to be
¢P*9 gmooth if CP*3(E,R) contains a nonzero function
with bounded support. This generalizes the standard gP

smoothness classification.

If an LP space, p=1l, is c? smooth then it is
also C9*9 smooth so that in particular LP for P an even
integer is ¢®*® smooth and LP for p an odd integer is
cP~1sP-1 chooth. In general, however, a CP smooth B-space
need not be CP*P smooth. B is shown to be a non—CZ’2
smooth B-space although it is known to be c¢® smooth.

It is proved that if B is Cp’l smooth then CO(E) is
Cp"1 smooth and if E has an equivalent c® norm then cO(E)

has an equivalent cP norm.

Various consequences of cP+*9 smoothness are
studied. If f e cP'Yw,F), if F is ¢P'Y smooth and if B
is non-0Ps9 smooth, then the image under f of the boundary
of any bounded open subset U of B is dense in the image
of U. If E is separable then E is cP+9 smooth if and only

if E admits cP»9 partitions of unity;E:ist’psmooth,p<m,if
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and only if every closed subset of E is the zero set

of csome CP function.

f € c%B,F) , Osq<psw, is said to be Cp 3
’

approximable on a subset U of B if for any € >0 there
exists a g€ CP(E,F) satisfying

sup HDkf(x)-Dkg(x)H <€ .
x€U,0<k=qg

It ie shown that if & is separable and ¢P+9 smooth and

if fecY4(E,F) is Cp " approximable on some neighborhood
kB

of every point of E, then F is C approximable on all

P,sqQ
of E.

In general it is unknown whether an arbitrary
function in Cl(f2,R) is 02’1 approximable and an example
of a function in Cl(f2,R) which may not be 02’1 approxima-
ble is given. A weak form of Cm,q, q=2z1l, to functions in
Cq(ﬁg,R) is proved: Let {Ua} be a locally finite cover of
[2 and let {Ta} be a corresponding collection of Hilbert-
Schmidt operators on f2. Then for any fE:Cq(fg,F) with

pr locally uniformly continuous, there exists a g ¢

C®(4°,F) such that for all a

sup [|DX(£(x) - g(x)IIT 0] < 1.
xeua,nhnsl,cskSQ
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INTRODUCTION

The central theme of this dissertation is
the study of Frechet differentiable functions on real Banach
spaces with bounded derivatives. If E and F are real Banach
spaces and Osgs<spsw, a map f from E to F will be said
to be of class Cp’q(E,F) if f has p continuous Frechet
derivatives, the first q of which are bounded. Contrary
to the finite dimensional case, an infinite dimensional
Banach space need not have any nontrivial cP*9 functions.
We define a B-space to be cP*9 smooth if there exists a
nonzero function in CP*9(E,R) with bounded support. This
generalizes the standard concept of cP smoothness and CP’O

smoothness is equivalent to cP smoothness.

In the first chapter we provide the necessary
preliminary material on differential calculus in Banach
spaces. Several of the results of Bonic and Frampton [1]
concerning CP smoothness are valid for CP*Q smoothness.
One property in particular is that a map in CP*9(E,F)
has an "analytic" property if F is cP+*9 smooth and E is
nonCP*% gmooth: the values of F on abounded open subset U
of B are uniquely determined by its values on the boundary

of U. This, and other results, including a summary of the



Z

¢P+9 smoothness of various B-spaces, is contained in
Chapter II. An LP space is shown to be c%9 smooth if it
@

ig €9 smooth so that LP for p an even integer is g™

smooth.

In Chapter III we show that a c¢P swmooth B-space
need not be CP*'P smooth by proving that Co o the C° smooth
B-space of sequences of real numbers converging to zero,
is not 02’2 smooth., In addition we show that if B is Cp"1
smooth, then cO(E),(the B-space of sequences in E converg-
ing to zero), is Cp’l smooth. N.H.Kuiper constructed an
equivalent C® norm for s and we generalize this by proving
that co(E) has an equivalent cP norm if B has an equiva-

lent cP Nnorme.

In Chapter IV the existence of a cP function
with a prescribed zero set is studied. The main result
is that a separable B-space E is Cp’psmooth,p<m,if and only
if every closed subset of E is the zero set of some cP
function, Secondly, if E is only CcP smooth and A is a
closed subset of £, we give a sufficient condition on A

to insure that it is the zero set of some Cp function.

If a B-space £ admits CP partitions of unity,
then CP(E,F) is dense in CO(E,F) for any F, but in general
the existence of CP partitions of unity on E is unknown.
Bonic and Frampton in [1] proved that if B is separable

then E admits CP partitions of unity if and only if B is
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c¢P cmooth., We generalize this by proving in Chapter V
that a separable c¢P+9 smooth B-space admits cP»4 parti-
tions on unity. Along with this we study the cP+9 ness
of sums of the form Z)ai@i(x),where {mi} ig a cPe9

i
partition of unity.

In Chapter VI we examine the problem of smooth

approximation. We cay that a map £ € CU(E,F) is Cp q
,

O<sg<ps=», approximable on a subset U of B if for any

e > O there exists a g€ CP(U,F) such that

sup UDkf(x)-Dkg(X)H < € "
x€U,0<k=q
We say that £ is strongly Cp a approximable on U if it
9

satisfies the above condition with € replaced by an ar-
bitrary positive continuous function e(x). In general the
C approximability of an arbitrary ¢? function on an

Pyq
infinite dimensional Banach space is unsolved. We prove,

however, that i1f a B-space E is cP*9 smooth and separable,

and if fGECq(E,F) is Cp q approximable in some neighbor-
R

hood of every point of E, then f is strongly Cp q approxi-
mable on all of E. In the last part of the chapter we

1

prove a theorem that suggests that the C~ function o(x) =

2 x5 |x;| from ﬂ2 to R might not be C, ; approximable
i L]

on any open subset of ﬂg.
The last chapter is devoted to a weak form of

Co qQ approximation to functions defined on ﬁz. Let {Ua}
3
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be a locally finite cover of £2 and let {Ta} be a collec-
tion of Hilbert-Schmidt operators on £2. Then we show that
for any f € Cq(ﬂa,F), with Def(x) locally uniformly contin-

uous, there exists a g¢€ Cm(fg,F) such that for all a

sup [ID¥(£(x) - eI = 1.
x€U_, lln||<1,0<ksq



CHAPTER I

DIFFERENTIAL CALCULUS

We will define the two most important types
of derivatives on Banach spaces. For the proofs of the
theorems of this section, refer to [5],[8]1,[10], and
{17], From here on all Banach spaces will be assumed to

be real.,

Definition, If E and F are Banach spaces, a continuous

k-multilinear map T from E into F is a continuous map
from E x,..x E into F satisfying T[hl,..,ahi+bh;,..hk]
= aT[hl’.‘hi,..th +bT[hl’..h|j‘_,.'hk] fOI’ all I‘eal a,b

and l=ick,

Definition. If E and F are Banach spaces, Lk(E,F),kzl,
will denote the set of continuous k-multilinear maps
from E into F. We will write L(E,F) for LY(E,F). If T

€ Lk(E,F) then the norm,||T||,is defined as sup ||T[h, ,..h,]|
I ll=1,1isk

LX(E,F) with the above norm ie a Banach space
and from herecnlLk(E,F) will be assumed to have the topol-
ogy induced by the above norm. There is a canonical

isomorphism, ¥, between Lk(E,Lp(E,F)) and Lk+p(E,F)
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given by‘(*T)[hl,..hk+p] = (T[hl,..hk])[hk+l,.,hk+p]
and with this isomorphism we will regard Lk(E,Lp(E,F))

and ILXtP(®,F) as identical.

Remark, If TELk(E,F) then T[h] will be the shorthand
notation for T[h,..h].

Definition. LX(E,F) will denote the set of all contin-

uoug symmetric k-multilinear maps from Ex...xE into F,.

Definition, If f is a map from a Banach space E into a

Banach space F, f is said to have a Gateaux derivative

at x in direction h if GDf(x)Ih] = lim f(x+th)-f(x)
t -0 t

exists.

It is immediate from the definition that
GDf(x)[h] is homogeneous in h(i.e. GDf(x)[{ah] = aGDf(x)[h])
although GDf(x)[h] may be nonlinear in h or may be linear

but unbounded.

Proposition 1.1 If f:E—F and f has a Gateaux derivative

at all points on the segment [x,x+h] in direction h,
then for any we€F*(the dual space of F),{(f(x+h)-f(x),w) =

(GDf(x++h)[h],w) where O< T <1 and T depends on w.

Propogition 1.2 If f:E —-F and f has a Gateaux derivative

at all points on the segment [x,x+h] in direction h,

then  ||f(x+h)-f(x)||s sup ||GDf(x++h)[n]|| .
O<T<]l
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Proof. Pick w in Prop. 1.1 such that |jw||=1 and

I£Ge+h)=£(x)|| = (£(x+n)-£(x),w).

Under certain conditions GDf(x)[h] is a bounded

linear function in h:

Proposition 1.3 Suppose that f:E-F and that GDf(x)[h]

exists for all h and for all x in é neighborhood of Xy
Suppose that for all fixed h, GDf(x)[h] is continuous
at X, as a function of x and that GDf(xo)[h] is contin-
vous in h., Then h—*GDf(XO)[h] is a bounded linear map

from E into F.

Definition, If E and F are B-spaces and f:E—-F, then

f is said to be Frechet differentiable at x€E if there

exists a Df(x)€ L(E,F) such that

: [£(x+h)-FCx)-DE(x)[h]|| _
60 fml=t Tef Y

Df(x) is then said to be the Frechet derivative of f at

If Df(x) exists at x, then clearly Df(x)[h] =

GDf(x)[h] for all h. Df(x) is invariant within the set of

equivalent norms.

Proposition 1.4 If f is Frechet differentiable at x

then f is continuous at x.

Proposition 1.5 If f:E—F has a Frechet derivative at

all points on the segment [x,x+h], then for any weEFR*
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((£f(x+h) - £f(x),w) = (Df(x+7h)[h],w), where 0<t<1 and

T depends on w.

Proposition 1.6(Mean Value Theorem) If f:E—F has a

Frechet derivative at all x in the segment [x,x+h], then

l£(x+h)-f(x)|| = sup ||Df(x++h)[h]| < sup NIDE(x+7h)|| -[Inf| .
O<Tt<1 O<t<l

Proposition 1.7 If f is a map from an open subset U of

a B-space E into F, if f has a derivative at x and if

I£Cx) = £(I = M(||x=y]|), then |DECx)|| = M.

Proposition 1.8 Suppose that f:E-»F and that GDf(x)[h]

exists and is bounded and linear in h for all x in a
neighborhood of some x . If GDf(x)[h], considered as a
map from E into L(E,F), is continuous at Xy then f has

a Frechet derivative at X, and Df(xo)[h] = GDf(xo)[h] )

Definition. If f:E—-F and Df(x) exists in a neighborhood

of Xq and if the map Df(x) from E into L(E,F) is differen-
tiable at Xgo then we say that f is twice differentiable
at x_ and we write Dgf(xo) = D(Df(xo)). Note that D2f(xo)
€ L(E,L(E,F))SEL2(E,F). Inductively we say that DP exists
at X, if Dp"lf(x) exists in a neighborhood of X, and if
Dp—lf(x) is differentiable at x_. We write Dpf(xo) =
D(Dp‘lf(xo)) and again note that DPf(x ) € L(E,LP 1(&,F))
= LP(E,F).

The following proposition is a generalization

e s

of the formula 3;35— = 3y 9%
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Proposition 1.9 If Dpf(xo), pz2, exists and Dp_lf(x)

is continuous in a neighborhood of Xo then Dpf(xo) €

LE(E,F).

Definition., If Osp<e and if U is an open subset of a

Banach space E, we will say that f € CP(U,F) if £:U—~F
and Dpf(x) exists and is continuous in U. We say that f €

c®(U,F) if f € CP(U,F) for all p.

Note. From here on the words derivative, differentiation
etc, will refer to the Frechet derivative unless other-

wise stated., DPf will always denote an element of LP(E,FL

Proposition 1,10 Let E,F,G be B-spaces and let U be an open

subset of E, V an open subset of F. If f£eCP(U,V) and
gecP(V,G) then fog ¢ CP(U,q).

Proposition 1.11 Suppose that f_ € cl(U,F) where U is an
open subset of a B-space E and that g:U—F, G:U—L(E,F),.
Suppose that for every point xoe U there is a neighborhood
NXo of X contained in U such that fn(x) and Dfn(x)

converge uniformly to g(x) and G(x) in N, . Then geCl(U,F)
0
and Dg(x) = G(x) for all x € U.

Proposition 1.12(Taylor's Formula) ILet U< E be a convex

neighborhood of x_  and suppose that f € cP(U,F). Then

p-1

k
f(x +h) = 2 B f(Xo)[h] + R_(x _,h)
© k=0 K1 p°
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where

1 p-1
_ 1-% P
Rp(Xo,h) = JO %ﬁ%l D f(Xo+th)[h]dt .

For every ¢>0 there is a 6§>0 such that if ||h|| <& then

IR, Gegu Il = ellnll® .

Proposition 1.13(Inverse Function Theorem) Let E and F

be Banach spaces and suppose that f € CP(U,F) where U is
a neighborhood of X, € E. Suppose that Df(xo) ig an iso-
morphism from E into F. Then there exists a neighborhood
V of x  and a cP map g from £f(V) onto V such that gef and

fog are the identity maps on V and f(V).
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CHAPTER II
SMOOTHNESS CLASSES

In this chapter we introduce a new smoothness
classification for Banach spaces. This generalizes the

usual CP smoothness classes.

Definition., If & and F are Banach spaces, and U is an open

subset of E and Os=qs<pse, then CP*3(U,F) will denote

those functions f in CP(U,F) for which sup HDkf(x)H< ©,
x€eU,0=<k=qg

Definition. A Banach space E will be said to be cPrd

emooth if CP*%3(E,R) contains a non-trivial function with

bounded support (sometimes called a cP»d bump function).

The standard concept of cP smoothness places

no boundedness restrictionson f or its derivatives:

Definition. A Banach space is said to be c? smooth if

CP(E,R) contains a non-trivial function with bounded

support.

It is easy to check that any feCP(&E,R) can
be composed with a suitable function in Cm(R,R) to yield
a function in CP’O(E,R) which has the same support as f.
Hence a Banach space is cP smooth if and only if it is

Cp,O smooth.
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We will prove in the next chapter that there

exists a 02

smooth B-space which is not 02’2 smooth so
that CP*3 smoothness is more retrictive than CP smoothness.
If & is CP*% smooth then any B-space equivalent
to B and any closed subspace of B is again ¢P+*9 smooth.
Also if p=p' and g=q', then E is Cp|’q'smooth.
Several basic theorems proved by Bonic and
Frampton in [1] concerning cP smoothness are generalized

below for CP*'? smoothness. The following basic proposition

will be essential in manipulating c¢P+*q functions:

Proposition 2.1 If fECp’q(E,F) and g € Cp’q(F,G), then

gof € CcPrA(E,q).

Proof. The proof can be obtained by induction

from the following formula, known as Fas di Bruno's formula:

k
i !
DX(got) = ZE«Dlg)cf) . E aﬁ¥f§:!(Df)al...(Dkf)ak
i=1 ay +*eetayr= J
a, +2as+..ka,= k

Proposition 2.2 A Banach space E ig cP*9 smooth if and

only if the norm topology on E is equivalent to the
topology induced on E by the functions CP'9(E,R).

Proof,. The proof is identical to the proof
of Prop. 2 of [1].

Proposition 2.3 Suppose that B is a Banach space with

equivalent norm a such that a € cP*3(U-{0},R), where

U is an open neighborhood of O. Then E is c¢P*9 smooth.
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Proof. For some r, U contains the ball
{x| a(x)<r}. Construct a g € c”*®(R,R) with g(t) = 1 if
t < r/2 and g(t) = O if r = 1. Then by Prop. 2.1,g(a(x))
e ¢P'9YE,R). Also, g(a(0)) = 1 and g(a(x)) has bounded

support. Q.E.D.

Remarks. It is not knownwhether the converse to Prop.

2.3 is true, even for g = O (i.e. does a ¢® smooth space
have an equivalent CP norm?). If a(x) is an equivalent

norm for E, then |a(x+h) - a(x)| s a(h) = K||h|| for someK, so
by Prop. 1.7 if Da(x) exists then [|[Da(x)| s K. Also
Dk(a(x)) = Dk(a<%))rl"k and hence if D% is bounded on

bounded sets it is bounded everywhere.

Definition. If f € CP(E,F) and q =< p,then by Hfllq,we

will denote  sup “Dkf(x)n -
x€B ,0<k=q

Proposition 2.4. Suppose that F is cP+9Q smooth but that

E is not CP*? smooth. Suppose that U is a bounded open
subset of E and that 8U and U are the boundary and closure
of U. Then any f € CP*%(U,F) and £ec°(T,F) has the property
that f£(8U) is dense in f£(T).

Proof. The proof uses the same argument as the
argument in the proof of Prop.4 of [1]. Suppose that f(x)
ig not contained in the closure of f(9U) for some x in U.
Then by the hypothesis we can find a ¢ € Cp’q(F,R) with

@(f(x)) = 1 and 9(x) = O in some neighborhood of f(8U).
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Let g(y) = o(f(y)) if y € U and g(y) = O otherwise.
Then g is nonzero, has bounded support and by Prop.2.1

g € Cp’q(E,R). This contradicts the non-cP+4 smoothness

of M. Qeliele

Remarks. It follows that if f, , f, are two functions

in Cp’q(E,F) which agree on the boundary of U, then they
agree on all of U. Thus c¢P*9 functions on a non-cP»4
smooth B-space have a type of"analytic" property: the
valueg of the function on a bounded open set are uniquely
determined by the values on the boundary. The following
two problems were posed by Bonic and Frampton for non-

cP smooth B-spaces and they can also be acked for non-
¢P*? smooth B-spaces: suppose that E is non-c¥»4 smooth,
that F is CP*9 gmooth and that U is a bounded open subset
of &, then what continuous functions on 909U are boundary
values of functions in CP*I(E,F)? Also, given f € cPrd(u,F)

and f € Co(ﬁ,F) how can f be determined from f|~U?

The following is a summary of the cPr»9 smoothness
and related properties of various Banach spaces.
a) All finite dimensional B-spaces are C"°° smooth.
b) Restrepo([15]) has proved that a separable B-space,
B, has an equivalent Cl norm on E-{0O} if and only
if E* is separable. By the remarks following
Prop. 2.5, all Banach spaces with an equivalent

norm in Cl(E-{O},R) are Cl’l smooth. Hence a
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separable B-space with a separable dual is Cl’l

smooth.

'¢) Bonic and Reis in [3] have shown that if E has
a 02 norm away from zero and the dual norm in E*
is also of class C2 away from zero, then E is a
Hilbert space.

a) L2(S,E,u) , where(S,Z,u) is a positive measure
spage, 1s C”*® smooth. It is easy to check that
D(||x|°)[h] = 2(x,h), D2(||x||2)(nl,n2] = 2¢nl, n?)y
and Dk(HxH2) = 0 for k > 2. Hence ||x| €
Cw(Lg(S,E,u)—{O],R) and all the derivatives of | x||
are bounded on bounded sets. Hence by Prop. 2.3,
LQ(S,E,u) is C”*% smooth.

e) Bonic and Frampton in [1] have completely
classified the CP smoothness of LP(S,z,n) for

p 2 1. Their results are as follows. LP is C”

smooth if p is an even integer. LP is Df'l smooth

if p is an odd integer. This means that there exists
5 gP=L bump function satisfying HDp_lf(x+h)—
Dp_lf(x)u < 0(||x||) for all x. If p is not an integer
let [p] be the greatest integer less than p. Then

LP is D%ggp] smooth. This means that there exists

a C p) bump function satisfying
IpEPIe(x+n) - DEPIe(x) | < o(nP-TPl|). If p is an
odd integer, fp and hence any infinite dimensional

T space 1is not DP smooth. Thig means there does
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not exist a Cp_l bump function f such that DPf(x)
exists for all x. Finally if p is not an integer
then {P and any infinite dimensional LP space is
not C£?8p3 smooth. This means there does not exist a
C[p] bump function f satisfying HD[p]f(x+h)-D[p]f(x)
D[p]f(x)u < o(Hth°[p]). By Prop.2.5 below, LP is
o=y oP-1,p-1 . ;[pl,[p]

5 smooth if p is an even
integer, odd integer or a non-integer respectively.
£f) We show in the next section that cO(E)(i.e.

the B-space of sequences in E converging to O is
cPrl smooth if E is Cp’lsmooth, that cO(E) has a
c¢P norm if E has a CP norm and that co(i.e, cO(R) 3

is not 02’2 smooth. This example shows that a cP

smooth B-space need not be c?'P smooth.,

Proposition 2.5 LP(S,=,u) is C*** smooth, cP~1,P-1

smooth or C[p]’[p]smooth if p is an even integer, odd

integer or non-integer respectively.

Proof. Let a(f) =(HfH f:jlf(x)]pdu(x). Then
it can be shown(refer to [1]) that

D¥(a(£(x))[hy, . .hy]

JBI1£G0) 1P F(sgn £(x))"
'hl(x> S 'hk(X)dU(X)
for k < [p] and

= p! for p an even integer.

By H8lder's inequality, |Dk(a(f(x))[hl,..,hk]|is
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)p/(p"k).(ﬂhl(x) |P)1/p.. (j\hk(x> \p>1/P

< B ([1eco1>

< 212l |n

1“ 2 hk“ .

Therefore D¥a and hence DkHXH is bounded on bounded sets
for k < [p] and if p is an even integer, for all k. Hence

by Prop. 2.% the result is proved.

Definition. A family of functions {w } € cP(E,R") will be

called a CP partition of unity if every point of E has a neigh-
borhood on which all but a finite number of wa's vanish

and é) v, = 1.

Definition., A Banach space E will be said to "admit oF

partitions of unity" if for every open covering {Uﬁ} of
£ there is a CP partition of unity {wa} such that the

support of each ®q, is contained in some Uﬁ.

Proposition 2.6} If B is a separable ¢P smooth B-

3

space then I admits cP partitions of unity.

Remark, Every metric space is paracompact and hence all
B-spaces admit CO partitions of unity. It is not known

if separability can be dropped from Prop.2.6, in parti-
cular, it 1s not known whether any non-separable Hilbert

space admits C1 partitions of unity.

1) Refer to Bonic and Frampton [1]. A stronger version
of this theorem is contained in Chapter V.
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Proposgition 2.7 Supposé that B and F are B-spaces and

that E admits CP partitions of unity. Then given fECO(E,F)
and e(x) € CO(E,R) with e(x) > O, there exists a geCP(E,F)
such that |[f(x)-g(x)|| < e(x) for all x in E,

Proof., For every x in E find neighborhoods
Ni and Ni of x such that infle(y) > e(x)/2 and if yENi

yENX

then ||f(y)-f(x)| < e(x)/4. Now {Niﬂ Ni} covers B and by
the hypothesis we can find a cP partition of unity {@a}
supported by {Nin Ni}. Pick, for each a, an x, in the
support of ¢, and define g(x) = Z)f(xa)ma(x). Then g(x)
is an element of CP(E,F) and >

ltGO-gOll = | D (£(0)-£(x,)) v (x) |

{a|xesupp o}

Z) f -f
) {o]x€supp waq (0)=£(x oy ()

B £(x)-£(x’ £(x') - f
g Ty cpofq D)-£GDI + 120} - £(x ) vy ()

where x& is a point in E such that supp md:{Ni,ﬂ Ni.} .
a a

The last summation is = X2 e(x&)/2 -ma(x)

{a|x€supp ©y

s 2 e(x) wa(x) = e(x). 5 < 0 3 T
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CHAPTER III

DIFFERENTIABLE FUNCTIONS ON CO(E)

Definition, If E is a Banach space, then co(E) denotes

the Banach space of all sequences X = {xi} with x5 in

E and HxiH-—>O. The norm on co(E) is defined as
I = sup x|
i

We write s for co(R).

Bonic and Frampton in [1] and [2] proved that
if £ is CP smooth then co(E) is aleo CP smooth. In this
chapter we prove several stronger results. We show in
Theorem 3.2 that if E is Cp’l smooth then cO(E) is also
Cp’1 smooth and in Theorem 3.1 that if E has a CP norm then
cO(E) also has a C° norm. In Theorem 3.5 we show that
s is not 02’2 smooth. This is the first example of a

CP smooth Banach space which is not also cPsP smooth.

There is an important class of spaces equiva-
lent to cO(E). Suppose that K is a compact subset of R®

and that 0 < a < 1. If f € CO(K,E) define

]

£l sup || £(x)-£() /CUlx=yID* .

XAy

Let C*(K,E) = {f € CUK,E)| ||fll,< =} and let

i

AY(K,B) = {f € C*(K,E)| for any € > O there is a

5 > O such that [|£(x) - £(y)|| = ellx-y||*whenever |x-y| =6} .
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Then Bonic, Frampton and Tromba in [4] have proved that

A%(K,E) is equivalent to cO(E).

N.H.Kuiper has shown that B has an equivalent
C” norm(refer to [1]). We give the following generali-

zation of that result:

Theorem 3.1 Suppose that B has a CP® norm, ||x||, away

from zero. Then cO(E) also has a CP norm away from zero.

Proof. First construct an h in C°(R,R) such
that h is decreasing, h(t) = 1 for t s 1, h(3/2) = 1/2,
h(t) = O for t =2 2 and h(t) is concave downward for

t & 3/2, Now if X = {Xl,Xz,.. } is in cO(E),define
v = TT nlixlD .
i=1

Y locally depends only on a finite number of Xi's and
hence Y€ Cp(co(E),R). Now let G = ({X|w(X)2% }. We show
that G is convex. To do this suppose that ¢(X) and ¢(Y)
are = % and suppose that Hxins 1 and Hyins 1 for i > N

and that O<t<1l. Then

s

Y(tX+(1-1)Y) h(lltx; + (1-t)351D)

Sk
> Qii nCsllxgll + (1-)lyylh)
N
" 3?; h(llx,ll + (-o)llygl) .

Now HXiH and |ly;|l are = 3/2 for all i,hence

by the concavity of h the last product is
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N N
= T (el D + (1_t)h(1|yi\|))=kz_;otN—k(l_t>k -

qi= )

Y & =2_:1‘ h . . h .
waeve - B QUECER PRI SEXEA D)
i<N

and where Ey is the set of all subsets of 1,2,..N having

k memberse.

m m 1/m
Now if b. > O then 2 b, = ( T b, . Hence
i gop & i

ay = (0 ( Tndixgd- i1;£th<nyin>))l/@

FGLk ieF

V()

N N-k (N N k (N
((T{h(llxill) ) T(E) . (‘qh(nyi“) ) N(k))
(N-k)/N k/N
z (1/2) -(1/2) = 1/2 .

N Nk K
Then p(tX + (1-6)Y) = 2. t (1-t)"+1/2 = 1/2. Hence

G is convex., Let a(X) be the Minkowski functional of G.

Then o(X) is implicitly determined by the equation

X » . .
%?(i» = 1/2. Since a(X) locally depends on only a finite
number of variables, we can apply the finite dimensional
implicit function theorem to conclude that oa(X) €
Cp(co(E),R). Then a(X) is an equivalent norm because G

ig bcunded and contains an open neighborhood of O.

Corollary 3.1 S5 has an eguivalent C” norm and therefore

by Prop. 2.5, c  is ¢! smooth.

Remark. Although a(x) has a bounded derivative, ¢ itself



22

does not. In fact any function, F(X), of the form

F(X) - f?‘<h<nxin>>

where h(t) = 1 for |t| = 1, h(t) = O for |t| = 2
is not of class Cp’l(co(E),R). To show this it suffices
to consider B = R.

Let a be the largest number between 1 and 2
such that h(a) = 1. For any M choose n such that
(h(a+1/2M) )2 < % and let X, = {n a's, O's } and
X, = {n (a+1/2M)'s, O's }. Then we have F(XO) = 1,

F(X,) < % and |X_-X;[| = 1/2M. By Prop. 1.7

N

% < |F(Xl) - F(Xo)| < HXl-XOH- s§p IDF(X)||
= 1/2M- I IDECO]

Hence sup ||DF(X)|| = M , and since M is arbitrary,
X
S;PHDF(X)H = ™ 4

It is possible to construct a nontrivial

C°°’l function on cowithoutevaluating51Minkowski functional

as the following example shows.

Example., Let h € C”*7(R,R), h(t)20, h(t)=0 if |t|=k and

J%

h(t)dt= 1. Define
]

o o
0, () = [ ool [T h(3) b (T )F(Ix 4y 5 - X 47 X

=Y =Y

..})dyl...dyn

n+1?
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where F(X) = inf ||X-Y|. F is continuous because
I¥l=2

|F(X)-F(Y)|| = ||X-Y||. Suppose that |x | = % if m > n(X).
Now if [[X'-X[[ =%, ||Y[| =% and x3 = x} for m < n(X), then
F(X'+Y) = F(X+Y). Hence when ||Z-X| s %, @n(x)(z) depends
only on the first n(X) coordinates and therefore is C%.
Also ||IX'-X|| = % , I|Y]l s % and yy=++= ¥, = O imply that
F(X'+Y) = F(X'). Hence mm(X') = wn(x)(X') when m = n(X)
and ||X'-X|| = % . The above implies that

e(X) = 1lim o (X)
n—>o

exists and is C% Now \mn(X)- @n(Z)\ ig

o
S ...i%h(yl)--h(yn)“X—ZH dyy..dy, = I|X-2z|| . Hence
lo(X) - 9(2)| s ||X-Z|| which gives ||Dp(X)|| = 1 for al X.
Finally let r € C”(R,R), Osr(t)=<l, r(t)=1 if t <O and
r(t) = O if % <t. Then r(e(X) € Cm’l(co,R), r(©(0)) = 1

and the support of r(9w(X) is contained in the unit ball.

Theoerm 3.2 If B is CP*! smooth then so is c (E).

Proof. First find an £ in CP*1(E,R) such that
f(x) =1 if |Ixll =1, £(x) = 0 if 2=|x|| and 0 =< f(x) = 1.

Define a map T from cO(E) into ¢ as follows: If X =

]

{xl,x2,... } € cO(E) let T(X) [1—f(xl),1—f(x2),..,}.
Then since T locally depende on a finite number of coor-—

dinates, T € Cp(co(E),co). Also ||T(X) - T(Y)||
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= sup|f(x;) - £(yp|
i I8

< sup||DECG|| . suplx;-y;1=Iflly -
x i

| X-yi .

Hence T € Cp’l(co(E),co). By Cor. 3.1 we can
find g in 6™*1(c_,R) with g(0) = 1 and g(X) = O if
X = 1 . Then g(T(X)) € cPr(c _(E),R) and g(T(0)) = 1
and g(T(X)) = O if ||X|| = 2. Q.E.D.

The following theorem will imply that a 02’8
bump function cannot be found for Cqye We actually prove

a slightly stronger result.,

Theorem 3.3 Let f € Cl(co,R) with Df(X) uniformly

continuous. Then the support of f is unbounded.

Proof, If not, then there would exist an f
in ¢*(c,,R) such that £(0) = 1, £(X) = 0 if ||X| = 1
and Df is uniformly continuous. Pick N such that ||H||s1/N
implies |Df(X+H) - DF(X)|| = 1/2. Now if ||H|| = 1/N then
by Prop.l.5 there is a 7 with O<7<1 such that
f(X+H) - £f(X) = Df(X+7H)[H] so that

| £(X+H) - £(X) - DFf(X)[H]| = |DE(X+7H)[H] - DF(X)[H]|
< #lH[| .

Let A be the set of all X in s such that 2N—l of the first

2N components of X have absolute value 1/N, the remaining
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component of the first 2N components has absolute value
less than or equal to 1/N and all the other components
are zero, Since A is connected and even, for all

X in c, there exists a Y in A such that Df(X)[Y] = 0.
Therefore we can pick inductively Hl"‘HN € A such that
Df(H1+--~+Hk_l)[Hk] = 0 and such that H1+...+ Hk has

at least 2N—k components equal to k/N. But then

WH 9 6nd HNH = 1 and lf(Hl+--+HN) - £(0)| =

1S
N
Qfl\f(Hl+"+Hk) - f(Hl+~~+Hk_1) - Df(H1+-~+Hk_l)[Hk]|
N
< 2 #|HJ| = % which is a contradiction. QBT
k=1

Corollary 3.2 c, and cO(E) are not 02’2 smooth.

Proof. Any function in 02’2(CO,R) has a uniform-

ly continucus first derivative,

Corollary 3.5 Suppose that U is a bounded open subset

of c_ and that f€c°(T,R), £e€cl(U,R) and Df(X) is uniform-

1y continuous on U. Then f(0U) is dense in £(T).
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CHAPTER IV

7ERO SETS OF CP FUNCTIONS

In this chapter we consider the problem of
finding a cP function with a prescribed zero set. 1t
will be shown that for separable Banach spaces, cP»P
smoothness is a necessary and sufficient condition
that every closed set be the locus of zeros of a cP
function. If a B-space is cP smooth but not C¢P*P smooth
it will be shown that the problem can still be solved

for a special class of closed sets.

Theorem 4.1 Let E be a separable cP*P smooth Banach

space. Then every closed subset,A, of Eis the zero set
of some CP*P function.,
Proof. TFirst construct an h € CP'P(E,R) such
that O £ h(x)s< 1, h(x) =1 if ||xl|s 1 and h(x) = 0 if
2 < ||x|| . Let Xy be a dense countable subset of the com-

plement of A and let d(xi,A) denote the distance from X

to A. Define f.(x) = h(_f_xi ) and let
- Edzxi,A5
Miy = supHDkfi(x)H and  N_ = max M., .
x€E P § ksp *
X (£ (%) Ap
Then define gn(x) = 2 ( D //é~Np) and observe that
p=1

if n>m>% then
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n k
D™ f
supHDkgn(x)-Dkgm(x)n < 2 sup E(X)
X€ER p=m+1\x€E S
25N
e
n M n
SN = NERE S e A
p=m+1' 2 Np p=m+1 2PN 2

P

Hence the Dkgn(x)'s converge uniformly to continuous

functions g(k)(x). Repeated application of Prop. 1.11
gives Dg(k)(x) = g(k+1)(x). Hence g(o)(x) € CP(E,R).

That g(o) ig alss in Cp’p(E,R) follows easily. If x€A
then fi(x) = O for all i and hence g(o)(x):o. If xgA

then find an x; such that d(x,xi) < %d(xi,A). Then

fi(x) > 0 which implies g(o)(x) » Qs Q«B.D,

Corollary 4.1 ILet A and B be disjoint closed subsets

of a CP'P smooth separable Banach space. Then there
exists a CP function F such that O = F(x) < 1 and
F(x) = O or 1 if and only if x € A or B.
Proof. By Urysohn's Lemma there ig an f
in CO(E,R) satisfying Osf(x)s<1 and £(4) = 0, £(B) = 1.
Apply Prop.2.7 to obtain an f1 ¢ ¢P(8B,R) with \f(x)—fl(x)[
< 1/3. By the theorem there exicts gi(x) € Cp(E,R),i=l,2,
with gi(x) = 0 and gi(x) = 0 if and only if x € A or B
for i = 1 or 2. Now find a ¢ € C”*7(R,R) with Osp(t)sl,

¢({x|x<0}) = 0 and o({x|x=1}) = 1. Then £ (x)

fi

m(ﬁ(fl(x)—l/B)) has values between O and 1 and has

value O on A and 1 on B. We can then take F(x) to equal
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( 1+W(1;g2(x))). % (£,(x)+g,(x)) Q.5.D.

Theorem 4.2 Let E be a Banach space which is not Cp’p,p<m

k]

smooth., Then there exists a closed subset of B which is
not the zero set of any cP function.

Proof. Let B.l be a sequence of disjoint open
balle in B of radii 1/i converging to some point X in

B such that distance(Bi,Bj) >0if 1 #j . Let A =E —LjBi
¢ i

and suppose that f € CP(E,R) with f(x) = O if and only
if x € A. Then letting gi(x) = f(x) when x ¢ Bi and g(x)
= 0 when x € Bi’ we have that the gi(x)'s are of class

cP and have bounded supports. By the non cP*? cmoothness

of E, sup Hngi(X)H = » . It then follows that DPf(x) is
xeB.
i
not continuous at X, which is a contradiction. Q.&.D.

Corollary 4.2 There exists a closed subset of - which

is not the zero set of any C2 function.

Proof. c¢, is not c212 smooth by Cor. 3.2

By Theorem 4.1 and 4.2 a separable Banach space,
B, is CP'P smooth if and only if every closed subset of
£ is the zero set of a CP function. Theorem 4.1 may be
true for nonseparable B-spaces but this appears to be
a difficult problem. Indeed,if every closed subset of a

nonseparable Hilbert space H was the zero set of a cP
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function, then H would admit cP partitions of unity.
To see this let {Ua} be any locally finite cover of H.

By assumption we can find fa € Cp(H,R) such that fa(x)

> 0 and fa(x) > 0 if and only if x € U . Then ma(x) =

fa(x)/ Z)fq(x) is a CP partition of unity refining {Ua}.
a

Another question that we can pose is: Given
disjoint subsets A and B of a B-space E with distance(A,B)
> O,.does there exist a Cp,q function f such that f(A)=0
and f(B)=1] ? An equivalent question is: Given a subset A
of E and a 6> O, does there exist a c¢P*9 function £ with
f(A)=1 and f(x) = O if distance(X,A)=6 7 If A is convex
and the space is uniformly convex the answer is yes for

p=g=1 as we show in the corollary to the next theorem.

Theorem 4.3 Suppose that E is a uniformly convex B-gpace

and that ||x||€ C1(E-{O},R). Then if A is a closed convex
subset of B, d(x) = distance(x,A) € Cl(E—A,R).
Proof. A well known consequence of uniform

convexity is that there exists a unique closest point p(x)
in A to x€E and that p(x) is continuous. Now suppose that
x¢A. Since the norm is Cl, Nx-(p(x)+h)||= ||x-p(x)||-Dllx -
p(x)|[[h] + o(||hl]). For all h with p(x)+h € A we have,by
the definition of p(x),that |[|x-(p(x)+h)|z|x-p(x)|, hence
Dljx-p(x)||[h]=0. The hyperplane L = {y|D|x-p(x)|(y-p(x))=0]}
is therefore a supporting hyperplane for A at p(x). Hence

for all ||h|l<p(x), d(x+h,L)=d(x+h)sd(x+h,p(x)). This gives
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| x-p () || +D||x-p(x) || [hIsd (x+h) s[|x-p() | +D]|x-p(x) || [hI+o([|n]) .
Hence |d(x+h) - d(x) - Dlix-p(x)||[[Rh]| = o(]|h||) so that DA(x)
= D||x-p(x)

. Since p(x) is continuous,Dd(x) is continuous.

rRemark. Uniform convexity implies that & is reflexive and
hence by statement b) of ChapterII,if B is separable and

uniformly convex then ||x|| € Cl(E-{O},R).

Corollary 4.5 If A is a convex subset of a uniformly

convex B-space B and if 6> O, there exists an f € Cl’l(E,R)
with f(A) = 1 and f(x) = O if distance(x,A) 26 .

Proof, Find a g € C**"(R,R) with g(t) = 1 if
t £ 68/3% and g(t) = 0 if t = 2&/3 . Then god(x,A)ECl’l(E,R)

and catisfies the boundary conditions.

If a separable B-space is cP smooth but not CPsP
smooth, then certain closed subsets may still be the

zero sets of CP functions.

Definition. A subset A of a B-cspace B will be said to

have a cylindrical boundary if for all x € 9A there exists
a neighborhood N_ of x such that ﬁr?NX (A is the interior
of A) is weakly open in N_ (i.e. AK)NX = NN W for some

weakly open W),

Theorem 4.4 TLet B be a CP smooth separable B-space.

Then any closed subset A whose complement has a cylind-

rical boundary is the zero set of some cP function.
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Lemma 4.1 Let A be a weakly open subset of a separable
B-space. Then the complement of A is the zero set of a

¢”® function.

Proof. We can write A =() Wi where
i
!
Wi = QI{X‘ ‘yi(k)(X)‘<l} ’ yi(k) € E* .

Let o0 €CT(R,R) with o(t) = O if |t| = 1 and O<o(t)sl

n.
. . _ i
if |t] < 1. Define gi(x) = 77 (;(yi(k)(x)>. Then

k=1
gi(x) € ¢”*»“(E,R) and g;(x) > 0 if and only if x € W .
Let Mg, = supHDkg.(X)u and let N = sup M. . Define

J& - xeg Y P §,kep ¥

f(x) = 2 1 g (x) . We can apply the same method as in
p=1 2Pn_"P
1Y
the proof of Theorem 4.1 to show that the derivatives of
all the partial sums converge uniformly. Prop. 1.11 gives
that £ € C**(E,R). Clearly f(x) > O if and only if x€A.
.E.D.

Proof of Theorem 4.4 For each x in B find an

lesuch that an CE is weakly open in NX. By Prop. 2.6
there exists a CP partition of unity {mi} refining {NX}.
Then CAn supp %; = Supp wir)Wi for some weakly open set
W,. Using Lemma 4.1 we find fi(x) € C®(E,R) such that
fi(x) =2 0 and fi(x) > 0 if and only if x € W;. Defining
Mx) = %?fi(x)mi(x), we have that F € CP(E,R) and F(x)=0

if and only if x € A. Q.8.D.



352

Remarks. a) An example in ¢° of an open set with cylin-
drical boundary which is not itself weakly open is
C = {x\‘xil < 1, for all i}. For any y € fg suppose
that |yi| < % for i > n(y). Then if B is the open
ball of radius % about y, BNC = Bf7{xl|xi|<l,iSn(y)}.
Hence C has a cylindrical boundary. Since C contains
no linear subspace it 1s not weakly open.

b) Open sets with cylindrical boundaries are
cloged under finite intersections and finite unions
but not under countable unions. Again consider £2
and let C_ = {xl|X1-1/n|<1/5n,\xi|<l/5n for i=2}.

By a) each C, has a cylindrical boundary but we show
that l)Cn does not. Let U be any neighborhood of zero
and suppose that U contains the open ball of radius r.
Find n such that 1/n < r/2 and suppose that W is any
weak neighborhood of el/n,({ei} is the orthonornal

basis). Then W contains a set of the form

N = {xl(yj,(x—el/n)> € 1ts Jelysssm 5

Find k such that \yil < 2n/3. Then the point
el/n + Bek/En lies in both N and U but is not contained
in L}Cn. Hence UCn does not have a cylindrical
boundary at O.

c) We pose the following guestion: Suppose that
E is CP smooth but not CP*P smooth. Then if A is the

zero set of some CP function, is 9(CA) cylindrical?
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CHAPTER V

cP*9 PARTITIONS OF UNITY

Definition. {®,} will be called a cP*9 partition of unity

on a Banach space E if {@,} is a partition of unity and

v, € CPr9(8E,R) for each a.

o

Definition. A B-space E will be said to "admit CP*9? parti-

tions of unity" if for every open cover {UB} of E there

exists a CP*9 partition of unity {ma} supported by {UB}'

We show in this chapter that a separable CP»9
smooth B-space admits Vst partitions of unity. We also

show that while {mi} may be a 02 partition of unity for
ﬁ2, there exists a bounded sequence of real numbers {ai}

such that Z)aiwi(x) 4 C2’2(£2,R). We begin with a lemma.
1.

Lemma 5.1 Let E be a separable cP*9 cmooth B-space and
suppose that {Ua} is an open cover of K. Then there exists

four countable locally finite open covers {V%}, {V?} "

{VE} and {Vi} of E and maps g; € cP'9(E,R) such that:
1) ViC: V? V2

m
1% "3 i

V2, Ve v
1 ik 1

s 2 1,
2) {Vi} refines [Ua} and is locally finite.
3) Osg;(x)<1, g,(V2) = 1 and g, (CV?) = O.

4) If q=1 then dist(V{,cvi*1) >0 for j-1,2,3.
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Proof., Using the cP»d smoothness, find for
every x € E a @ € cPr9(E,R) such that O=sep,s1, ch(X)=l

and support Py is contained in some Ua‘ Let AX —

{ylcox(‘y) > %}. Then {A } covers E and since E is Lindelof,
we can extract a countable subset of {AX} which also
covers E. Denote the elements of this subset by Ai =

{7 le; (7)>%} . Now we can find fJGECm’m(R,R),;jz2, such that

fj(tl,...,t.) = 1 if tjz% and tis%+% o1 g

dJd
B . i 4 1.2 5 .
= 0 if tjsg 3 ,and tiz-2+5.-,1<g.
for j=z2. Define
Vi - (x| V. (x) > #)
. A i
vf = {x]| v, (x) > %}
5 _
vi= (x| v (x) > %)
&
vy o= {x]| wi(x) > 0} &

FProperty 1) follows from the definition. Since VL;C SUupp @, ,
{VZ;} refines {Ua}‘ To show that {V].i} covers E suppose

that x € E and that i(x) is the first integer for which
cpi(x) > %. Such an integer exists because the Ai's cover B.
Then s fay = 1 and hence xEV%(X) g0 {V%} covers E. Now
again suppose that x€E and find an integer n(x) such
that Cpn(x)(x) > %. Then there exists,by the continuity

of cpn(x)’ a neighbohood NX of x and an a, > % such that



;gﬁ wn(x)(y)z a . Pick k large enough so that 2/k<:ax-%.
5 p 4

1 2 .
Then wn(x)(y):>2—+E for y € N, and hence wj(y):=0 for yel,

and j=k. Therefore N_N Vg

= @ for jzk so that {Vg} is
locally finite. Finally take some hGECm(R,R) with h(t) = O
if t<%, h(t) = 1 if t 2% and Osh(t)<1. Defining gi(x)
h(wi(x)) we have that giEECp’q(E,R) and that property 3)

holds. Property 4) follows from Prop. 1.5. Q.E.D.

Theorem 5.1 A separable cP*9 cmooth Banach space admits

cP»q partitions of unity.

Proof. Let {U,} be any open cover of & and use
Lemma 5,1 to get four locally finite covers {Vg},j =1,2,3,4
refining {Ua} and maps g; € Cp’q(E,R) satisfying the condi-
tions of the lemma. Let fl(x) = gl(x) and fi(x) =
gi(x)(l—gl(x))o-o(l—gi_l(x)) for 1 >1. Then f. € cPr(E,R)
and supp fi(x)c supp gi(x)C'Vf , hence every point of B
has a neighborhood on which all but a finite number of
fi's vanish. Now gince {x\gi(x)=:1}:>V§,and {V?} covers

B, for every x,

n
TT(l—gi(x)) = 0, for some n.
i=1

[oe]

n
Hence Z)fi(x) =1 - 1im TT (1 - gi(x)) =1 and {f.(x)}
i=1 nse i=1 -

is a ¢P*? partition of unity refining {Ua] P I
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If E is CP*? smooth and separable then by the
above theorem we can find a CP*9 partition of unity {wi}
such that diam.(supp wi) are uniformly boundéd. We ask the
question: Does there exist a cP*9 partition of unity {mi}
such that
{ Gol ) Z)aiwi(x) ¢ ¢cPr»9(E,R) for all bounded real a;?

i

If & = R™ the answer is yes:

Theorem 5.2 Suppose that d >0, Then there exists a c”o®

partition of unity {wi} on R® such that diam(supp mi) <d
and for every bounded sequence a, € R, Z}aimi(x) €
c®**(R™,R). ;

Proof. Find he€ C"(R,R) with h(t) >0 if |t]| <1
and h(t) = O if |t| =1, Write x = {x75...5x,} and let L

be the lattice of points {dk,/2n,...,dk,/2 n} where k; ,..k,

are integers. Label these points by xl, 1 = 1,2440+ and
define % '

F.lx) = 1T h(x. - x5)

1 J‘—“l J J .

Then the supports of the fi's cover Rn, fi € Cw’w(Rn,R)
and diam(supp fi) = d for all i. Finally 1let wi(x) =
fi(x)/ Z)fi(x). Then mi(x)==wj(x+i3—xl) so that there

1

exists an M such that supHkai(x)H<:Mk<im for all i.
: x

Now any point of R™ is covered by the supports of at
L ]
most (2n+1) ¢;s. Hence if Iai|sM, HDkZDaiwi(x)Hs

(2n+1)Mk-M < o, Q.H.D.
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When B is infinite dimensional then no such
canonical construction is possible. In fact if the sup-
ports of the partition functions have uniformly bounded
diameters then by Lebesque's Covering Theorem for any N
there are points of E at which more than N of the parti-
tion functions are non-zero. This seems to suggest that
the answer to the question is false for gz 1. We show
below that this is the case for E =£2 and q = 2., The first
theorem is of interest in itself. We consider the contin-
uous map o: f2—+£2 defined by o(x) = Z}lxilei,where e:'L
is the orthonormal basis, and show thatlo(x) is not
uniformly approximable by a C2’2 function. We will look
at o(x) again in tae next chapter when we study cP appro=-

ximations.

Theorem 5,5 Suppose that B is a ball of radius 4 and

center z, that f € C2(£2,£2) and that sup|f(x)-o(x)||

x€eB

< a < dN3/6. Then supUsz(x)H = o,
x€B

Proof. Since a C° function with supHsz(x)H<:m
xX€B
has a uniformly continuous derivative on B, the theorem

will follow from the following lemmas

Lemma 5.2 Let B be the closed ball in fg of radius d
and center z. Suppose that fEECl(ﬂg,Qg) and that Df is

uniformly continuous on B. Then sup||f(x)-o(x)|| =zd~3/6.
XEB
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Proof. Let Xy and fi(x) denote (x,ei> and

(f(x),ei) where {ei} is an orthonormal basis. For an

arbitrary 1>e¢ >0 choose k such that Z)z,2 < € and pick

o

+
6 < ¢ such that x,y € B and ||x-y| <é implies
IDf(x) - Df(y)|l < €. Let N be the greatest integer less

than or equal to (d2--€2)/62 so that d2-~2e2<:62N<:d2--e2
k

Denote 2 z
i=1

sional box {y‘ |yi-zi|s 6 for i=k+l,..,k+N and

e by z'., Then if we let F be the N dimen-

ivi

y: -2!| = O otherwise} we will have F< B, By the mean
o

value theorem(Prop.l.5) if y € F and yk+1"’§i"’yk+N are

fixed then

fi(y) = a + byi + e(yi) )
where a = fi(y-yiei) s b = (Df(y-—yiei)[ei],ei) and
e(y;) = ((Df(y -yye; +6;(3;)y;) - DE(y -y,e4) )[7;],e5)
for some O<:ei(yi)<11.
Since |y;l<seé ‘e(yi)l SQ\in. Now a simple calculation
shows that

5
J((Sa+byi +e(yy) - \yil)zdyi > 55(% - 46) .

2
Hence J‘an(Y) e 0(3’)“ dyk+l’ .. ’dyk+N

k+N

2 ;
= i§k+l jF(fi(Y> - ‘yi‘) dyk+l’."dyk+N

> N(26)N—163<%-4% . Therefore sg§ Hf(x)-—c(x)ug
x
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> N6° (1_12_. 23) > (d2_2g2>(1_12_ 25) . Hence sug“f(x) -o(x)|.
xXE€

=z sup||£f(x) - a(x)|| >\/(d2—2e2>(l!‘2- 26) . Since € is arbi-
x€F
trary, sup||f(x)-o(x)|| = da/2v3 . Q.E.D.
x€B
Now suppose that {cpi} is a 02 partition of unity
for £2 and that diam(supp cpi)< d for all i. If we pick

points x* € supp ®; and let b, = o(xl) then

12 o305 G0 = oGOl - nzi:(aui)cpi(x) - o), (1)) ||

< Zu_xi—xllcpi(x) < d. Hence by Theorem 5.3 if B is a
i

ball of radius r > 243 d,then

(5.2) sup HDgz)bicp.l(x)H .
x€B i

Let a; = b; if supp cpiﬂB # @ and a; = O otherwise,

1 - ‘53
Then the a;'s are bounded and 213 aicpi(x) = Ei_:bicpi(x)
when x € B and therefore

(5.3 D2 T a. o, = -
5.3) iggll : a;e0; GOl

The next theorem will show that (5.3) also

holds when the ai's are a suitable bounded real sequence,

Theorem 5.4 Let {cpi} be a Cp,pz 2, partition of unity on
fg and suppose that diam ( supp cpi)< d for all i. Then there
exists a sequence {ai} of bounded real numbers such that

sup DX © a0, (x)|| = = for 2sk < p .
X i
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Proof. Choose b; = o(x9) and r > 243 4 as above and let

B. = {x| |lx-2re.|| =sr}. Then sup HDZZ b.p.(x)|| = » so we
J J xeB, i *+*
J
can pick yj EBJ. and hd €42 with ilhall = 1 such that
3 < 1200%, (yHInd,nd1 | . Tet By - (1] v3(3%) > 01,
i
Then if j;!j',F].ﬂ Fj‘ = @ . Now define
a, = sign(D%, (y9)[nd,nd1) i 1 € F,
= 0 if iEFJ. for any J .
2 > 2
Then sup [[D° 2 a 0, ()|l = sup [|Za;D%, (x|l
x <3r i - :»cEBj i
2 g 2 Jyrud pd
2 H? a; D%, (yl Zli?g a; D, (y9)(n?,nd]|

¥
dJ

- |D2cpi(yj)fhj,hj]‘- Since “bl“ < 3r the last expression
i€F .,
J

. 1 2 dyrpd 3.0
> 52} ?F Hbichpi(y‘j)[hj,thll > /5 .
i «
q
Since j is arbitrary,u}s(hlgarnpz 21-3 a;0; (x)|| = = and by

Frop. 1.6 the Theorem follows. Q.E.D.
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CHAPTER VI

SMOOTH APPROXIMATION

Definition. Suppose that © and F are Banach spaces,
that U is an open subset of E and that f € C3(U,F). Then if
Osqg<p=x we will say that f is Cp q approximable on U if

b

given € >0 there exists a géECp(U,F) such that

sup HDkf(X)-Dkg(X)H'<€ . We will say that f is

xeU,0<sk=qg

strongly Cp q approximable on U if given any e(x) €
9

CO(U,R+) there exists a gGECp(U,F) such that for x in U,

sup HDkf(x)-—Dkg(x)H < e(x). In both cases the functions
O=sks=qg

g will be called Cp 8 approximations.
9

It is well known that if B is finite dimensional
then every f € CY(E,F),( q=1), is strongly Cp,q approxi-
mable on k. When B is infinite dimensional but separable,
Prop. 2.7 implies that every f € CO(E,F) is strongly Cp,O
approximable if and only if E is ¢P smooth. However when
q>0 it is not known whether there exist any infinite
dimensional Banach spaces such that every c? function
is Cp,q approximable. In particular, it is not known

whether every Cl function on separable Hilbert cpace is

Gy approximable,
L_,l )
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The theorem below will show that if a C% function

on a separable c¢Pr9 smooth B-space is locally Cp q approxi-
]

mable, then it is strongly approximable on the whole space.
This would be an essential theorem in constructing Cp q

9
approximations on manifolds modeled on ¢P»9 smooth Banach

spaces.

Theorem 6.1 Let B be a separablecp’q smooth B-space and

let F be another B-space. Let f € CH(E,F) and suppose that
for every x in E there is a neighborhood NX of x such that
f is C approximable on Nx' Then f is strongly Cp

P.q
approximable,

5!

Proof., If e(x) >0,let {Ua} be an open cover of £ refining

[NX} and such that inf e(x) > 0. Apply Lemma 5.1 to get four
xeU
a

locally finite subcovers {Vg} refining {Ua} and functions
g; € cPr9(E,R) satisfying the conditions of the lemma. Let

¢y = inf4 e(x) and let Mi==H(l-gl(x))-~~(1—gi_l(X))gi(x)Hq-
XEV.,
i

By the hypothesis, there exists an hi(x)ficp’q(vg,F) with

(6.1) sup ID%£(x) - ¥, GOl < e, /(29 M)
4 i
x€eV,,0=k=q
Now define fo(x) = f(x) and fi(x) = f(x)(l—gl(x))---
(1-g,(x)) + hy(x)g;(x) + hy(X)gs(x)(1-g(x)) + ...
+ by (x)g; (x)(1-g1(x))+--(1-g; _;(x)) for i>1,

If x € ViL)...LJVi then (1l-g(x))--:(1-g;(x)) = O,hence
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(6.2) £,(x) € cPrA(VIU ... UVI,F) , iz 1.

Also if xvaiL then gi(x) = 0 so that

{6.:%) fi(X) = fi_l(x) when xﬂVL; .

Now using (6.2) and (6.3%) and the fact that
{V%} and {Vg} cover B, for every x there is a neighborhood
UX, of x and an integer k_ such that fi+l(y) = fi(y)
: 1Y
for y€ U, and i>k,  and fi(y) € C (UX,F). Hence

h(x) = 1lim fi(x) exists and h(x) € Cp(E,F) . Now
i—>ew
£.(x) = £, _1(0) = (B, (x) = £(x)) (1= gy (x)) + -+ (1-g; _; (30D ()

k

k : k

and hence }s{zsq\lD (£, (x) = £, 1N = j}jo(j)}scg‘?g“l)l?hi(x) »
z

£ (x|l - s2$4unk(<1-gl<x>>..<1-gi~1<x>>gi<x>)n <
X y
i i}

k : .
2 (?)61/2Q+1Mi . Mi < ei/2l for ks q. Using this and
3=0

(6.3) we have for Osksq , \l_‘Dkf(x)—th(x)ll = HDkf(X)-—Dka(X)“

for some N, and this is s 2 u HDk(fj(x)—f._l(x))H
{3|xevy, g=N} : e

N :
< e(x). 2 1/29 < e(x). Hence f(x) is strongly C
j=1 PyQ

approximable., Q.E.D.

Consider separable Hilbert space, £2 , wWith
orthonormal basis {ei} . Write x = 2 x;e, and define o(x)
i

= ) . 3 . ; . " ) m
= Z; |x;|le; as in Chapter V and X(x) 2; x; |x;|. Then
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lo(x) = o( = x-3ll and | Ge+yy)lx vy - S x|, |
v i 1

- (20(x),y>l < |23y§| = HyH2. Hence DZ(x) = 20(x) and
1

z(x) € Cl(f‘g,R). We observe that o(x) is nowhere differ-
entiable « To show this let x6[2 and suppose that o
is differentiable at x. Then there exists a 6 such that
when ||y]| < 6 ,l|o(x+y) - o(x) =Da(x)[y]ll < |lyll /8 . Choose
n such that lxnl <6/4 and let y=4ée . Then

| o(x+y) + o(x-y) = 20(|| = | |xp+y | + Ix -yl =21, |
> 36/4 + 36/4 - 26/4 = 6/2. On the other hand

| o(x+y) + o(x-y) - 20(x)|| = llo(x+y) - o(x) = Da(x)[y] + o(x-y)
- o(x) = Do(X)[-y1|| = lo(x+y) = o(x) =-Do()[yIll + |l o(x-¥)
- o(x) =Do(x)[-y1ll = 6/4, contradiction.

We pose the question: Is there any better 02 1
?

approximation to =(x) on the unit ball than a constant

function? From Theorem 5.2 it follows that 2(x) is not
2

N

02 1 approximable by C™°~ functions on any ball. The
9
following theorem shows that if || Z(x) -g(x)||, < R/2 on
a ball of radius R, where g¢€ 02(12,R), then g can not have

a decomposition of the form g(x) = 23 gi(xi).
A

Theorem 6.2 Suppose that G(x) € Cl(f2,£2) and that

G(x) = Z hi(x;)e;. Then if B is a ball of radius R,
1

sup||G(x) - o(x)|| = R/2.
x€B
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Proof, Let B have center a and suppose that
© n
R>¢e¢ >0, Pick n such that 2 aa < € and let b = 27 a.e..
j=n+1 9 1 Jd

Now find 6 such that ||x-Db|| <6 implies [||G(x) - G(b)
-DG(b)[x-bl]] = el|x-b|| /R . Thus when \Xi-bi\ <d g

(6.4)  |hy(x;) -hy () = ()G b) | < Elxg - by

dx. %
i
Choose N large enough so that 36%5 <6 and let z =
n+N R
= ~€ e. . Then ||z]] = R-¢ so that (b +z) €B.
J=n+1 N J

By applying (6.4) with i = n+l,..,n+N we obtain

lG(b+z) + G(b-z) - 2G(b)|| s ||G(b+2z) - G(b) - DG(b)[z]|
+ ||G(b=2) = G(b) =DG(b)[-2z] || = 2¢||z||/R < 2¢ .

Since o(b+z) = o(b-z) we have ||G(b+z) - o(b+z)| +

lG(b-2) - o(b - 2)|| + 2|G(b) - o(b)|| = |[[G(b+2z) +G(b-2)

- 20(b+z)|| + 2|/|G(b) - o(®)|| , which by (6.5) is =

126(0) - 20(b+2z)|| - 2¢ + 2[|G(b) - o(b)|| = 2||o(b+z) - a(b)]|

(6.5)

- 2¢ = 2||z|]| - 2¢ = 2R-4e. Therefore either ||G(b+z)
- o(b+z)|l, [|G(b=2z) = o(b-2)|| or ||G(b) -oa(b)| is = %-—e.
Hence sug 1G(x) = o(x)|| = %-—e. Since € is arbitrary, the

e
theorem is proved.
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CHAPTER VII

WEAK Cp q APPROXIMATION ON [2

’

As stated in Chapter VI, it is unknown whether
every C1 function on [2 is C2,1 approximable., In this
chapter we show that Cp,q approximation can be performed
on £2 provided we use a weaker approximation condition
on the derivatives. The approximation is first done

\ )
locally and then the c®*® smoothness of f° is used to

build up a global approximation.

We first point out that the usual finite dimen-
sional technique of convoluting a ¢P function with a C”
function having a small bounded support(i.e. letting

ka) = jf(x+y)m(y)du(y)) to obtain a C_ 5 approximation,
B ’

fails on £2. There is of course no translation invariant

borel measure on ﬂ2 but we might hope that given f €

Cq(ﬁg,F) there would exists a probability measure u on

02 such that F(x) = Jr(x+y)au(y) is of class cP, p>q.

This , however,is not the case and we sketch a proof

for g=1. Define

Fl(x) - 5 (l—cos\/hxn)
n=1 n

where x = Z)xnen. Then it is not hard to show that
n
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Fl(x) € Cl(fg,R) and that Fl(x) is nowhere second differ-
entiable. Suppose now that u is a probabilty measure on

12 with bounded support and define Fl(x) = JFl(x+y)du(y).

Then
%‘/l(x) = ¢ + % an(cosfﬁ d)n - cosfﬁ(xn+ d)n) )
where c¢ = J Z)(l-—cosﬂiy )/n du(y) < =
n
2 2
a ( cog yndu(y)) + (Isinﬁiyndu(y))
and

b - ) J51nﬁiyndu(y)

Toowt 7gants)

Now 052%152 and a, = Jcosﬁfyndu(y) = J(l—nyi/2)du(y)

2 4

> l-nyn/2 where 2= Iyndu(y). From %TYH =
j“yn2du(y) < = follows 1lim inf ny, = O which gives

lim sup a, = 1. Since the an's do not approach O, the same
method of proving Fl(x) is nowhere second differentiable

can be used to show that ﬁl(x) is nowhere csecond differ-

entiable.

This can be generalized. Define
F(x) = Z2(l-cosmx.)/ n(p+l)/2,
p n=1 -

Then Fp € CP(QZ,R) and Fp(x) is nowhere p+l1l differentiable.
If u is any probability measure on ﬁa and if we define

ﬁp(x)==jFp(x+y)du(y), then ﬁp is nowhere p+l differentiable.
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In the constructions to follow we will need
two propositions about measures on Banach spaces. The
first proposition is well known. We recall that a proba-
bility measure uwon E is a positive regular Borel
measure satisfying w(E) = 1.

Proposition 7.1 Let u be a probability measure on a

complete metric space {2 . Then for every € >0 there
exists a compact subset Ke of  such that u(Ke)zl— €.
Lemma 7.1 Let f € CO(E,F) where E and F are Banach spaces
and let K be a compact subset of E. Then

lim sup l£(y+h) - £(h)|| = O .

t—>0  heK,|yllst
Proof. Suppose € >0. For every he€K find Rh such that
|ly—h[[<Rh implies ||[f(y)-f(h)|l <e/2. Let {B(hi’Rh.)} be a
finite subcover of the cover {B(h,Rh)}, where B(;,Rh) is
the ball with center h and radius Rh. Let 6 be the Lebesque
number of {B(hi’Rh.)}' Then for every h € K and y€E with
lyll =6 we have h,yihEB(hi,Rh.) for some i. Hence ||f(h+y) -
(il = Hf(h+y)-f(hi)H-+Hf(h§-f(hi)naze/2+e/2 = €. Q.E.D.

Proposition 7.2 Suppose that u is a probability measure

on a B-space E with compact support K and suppose that
fe CP(U,F), p= 0, where U is an open subset of E. Then if
V is an open subset of U such that the algebraic sum V+K
is contained in U, g(x) = Jf(x+y)du(y) € ¢cP(V,F) and
Dkg(x) = kaf(x+y)du(y) for O<k=<p .



45

Proof, Suppose x€V and € >0. By Lemma 7.1

there is a 6 >0 such that ||z|| < ¢ implies

sup||f(x+y+z) - f(x+y)|| < €.
yeK

But then ||zl < 6 implies |lg(x+2) - g(x)||
< JHf(x+y+z)-—f(x+y)Hdu(y) < ¢ . Hence gEECO(V,F).
Assume that g(x) € CU¥(V,F) for q<p and Dkg(x)
= [p¥e(x+y)du(y) for 0Osksq. We show that g(x) € cq"H(V,F)
and Dq+lg(x) = IDq+lf(x+y)du(y). For any x in V,

lim sup Wqu(X+ty+z)—qu(x+z)-—DQ+1f(x+z)[ty])/tH
t—=>0 HYU=1,Z€K

= 1lim sup ((qu(x+ty+z)-qu(x+z)-—Dq+lf(x+z)[ty])/t,w%
t—=>0 |lyll=1,2€K

weF* | |lw|| <1

Now by Prop. 1.5, (qu(x+ty+z)-qu(x+z),w)

g+l

(D f(x+z+7y)[tyl,w) for some O<7 <+t so the last

limit is

< lim su ((Dq+lf(x+z+7y)-Dq+lf(X+Z))[Y],W>
t—0 Hyﬁ:l,zEK,wéF*,Hstl
O<7<t
= lim su H@q+1f(x+z+7y)-Dq+lf(x+z»[yjn

t =0 ||lyll=1,2€K,0<7<t

= 0 , by Lemma 7.1. Hence

Lin 5 Jqug(X+ty%"Dqg(x) - (JDQ+lf(X+Z)du(2))[y]H = 0,
— y:

so that Dq+lg(x) exists and equals JDQ+1f(x+z)du(z). Q.BEB.D.
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Corollary 7.2 Let  be any probability measure on a

B-space E and suppose that f(x) € CP*P(E,F). Then
g(x) = ff(my)du(y) ¢ ¢P'P(E,F) and DXg(x) =
JDkf(x+y)du(y) for ks np.

Proof. By Prop. 7.1 there exists compact sets

K_with w(K,)) = 1-¢ . Define g (x) = fo(x+y)dp(y). Then
€
by Prop.7.1 , for k=<p, Dkge(X) = JKDkf(xw)du(y) and this
€
implies that Dkge(x) converges uniformly as e—0 to

[p*e(x+y)an(y)  for k=p. S0 by Prop. 1.11, D¥e(x) exists

and Dkg(x) = JDkf(x+y)dp(y). g(x) is in Cp’p(E,F) because

ID¥eGOll = [ID* e Cery)llapy). Q.E.D.

Consider now separable Hilbert space £2 and let
{ei} be an orthonormal basis. We will define for each
nonnegative sequence {ai}, with Z)a§2< © , a probability
measure uA o B = {ai}. Let n(t) be a fixed function in

C®(R,R) satisfying n(t) = O if |t|=1 and [n(t)at = 1.

Define for each posgitive integer n an integral on CO’O(£2,R)

as follows:

n_, n, Y n, ,
Aoy - T1(3) JI;,iT;rln(-a-z)fciglyiei>dun<y>

where H is the space spanned by e. 5 “h is
e {illsi%n,ai>0}
the standard Lebesque measure on Hh and Tr'and ¥ denote

the product and summation over only those i's for which
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a; > O. Let K denote the compact Hilbert cube K =

{x\ \xi\-sai}. For any fGECO’O(lz,R) find 6 such that
z,y € K and ||z-y|| <6 implies |f(2z) -f(y)|<e . Then if
we take N such that £ a°< 6° we have for m= n=N,

i=N+1

| AR(£(x)) - AR(EG)) | =

T2 7Tn( ) 2 (Zyiepat)

1% )L Tl )f<by e5)au, (¥)

=l

I

< T )LI'{TTI( WIS EAREROAARILERES
i=

< T%J( )i{ TTWK )- e dw (y) = €

=1

Hence 1lim Ag(f(x)) exists and we define this limit to
n—o

be AA(f(x)). The functional AA is clearly linear, bounded
positive and satisfies AA(l) = 1. Since supp M e X oana
K is compact, AA is an integral. By the Riesz Representa-
tion Theorem there is a unique probability measure uA on

[2 such that ff(x)duA(x) = AA(f(x)) for all fEECO’O(£2,R).

In the proof of the next theorem we will use the

measures uA to mollify cP functions on £2. We recall that

a Hilbert-Schmidt operator T on”fzisenlelement of L(£2,£2)

satisfying 2 (Te

'l‘e.)< o ,
’
i,j=1 & J
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Theorem 7.1 Suppose that f € CP'P(U,F),1<p<e, where U
is an open subset of £2, that Dpf(x) is uniformly contin-
uous on U, that V is an open subset of U with dist(V,CU)>0,
and that T is a Hilbert-Schmidt operator on [2. Then
there exists a g(x) € C”(V,F) satisfying
su IDE(£(x) - gGOITRI| < 1.
xEV,ﬁhHsl,OSKSp
Proof. Let T = SW be a polar decomposition
for T, where S = VIT* and W is a partial isometry. Then
S 1is positive definite self-adjoint Hilbert-Schmidt and if

we denote the unit ball by B, then

(7.1) T(B) = 8SW(B) <= 5(B)

Assume that the orthonormal basis {ei} is a set
of eigenvectors for S and that Se:,L =a.e. . Then a, = 0
and Z)afz< ». Now DEf(x) is uniformily continuous on U

i
for k< p so we can find 6 > O such that &6< dist(V,CU) and

(7.2) sup 0% (x) - DXe(3)|l = 1/2T
x,¥€U,|lx-yll<6,0sksp

Let t = min(1,6/223a;§, a;=ta;, A = {a;} and define
i
ut as above. Letting K be the compact set {x\ |xi‘s a; ¥,

we have diam K < 6 , supp uAc: K and V+ K< U. Now let

1 .k
M = sup J lg—kn(t)%dt and use Prop. 2.7 to obtain g(x)e
k<p -1 dt

C=(42,F) such that



(7:3) sup|| £(x) - g(x)|| = t9/2m2 .
x

Let f(x) = J\f(x+y)duA(y) and g(x) = jg(x+y)duA(y), then

by Prop.’?.é, f e cP(V,F) and € C™(V,F). (7.2) gives
(7.4) I0%eG0) - DFE@O =[£G - Gy llant(v) < 172017

Suppose now that x€V, that i, ,.. ix,k=<p, are

integers with a; > O for jsk and N = max(i, ,... i,).Then
3
oK

| e
axi1 . axik

(£(x) -g(x)) |

N n, . n,\y.: n,
Mg 1 TR [T [rocs Byge

iy .. %4 noe g=1 23 s J

nl
(7.5) -glx+ ZDy.e.)

je50 ] Al

| S—

k ;
< lim ﬁl( )J —-——a-——-—( .n'n(gq-))uf(x+ §'yjej)

n-e §=1 2 TH i i ge1 f

o

nl
- g(x+ Eyjej)ll dw: ()

(which by (7.3) is)

1 o* (N ‘(24 ) A /ond quy
TT = ——— - t3/2M7 4
s le (aJ) jH;layll - W ayiJT (aa) / HN(ZY)

s = .1 Lk 91l
. a. & %
ll lk ll lk

Q-
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It follows now from (7.1) and (7.5) that

sup ID%(F(x) - 8(x))ITh]|| = sup |ID¥(£(x)-8(x))[Sh]]
x€V,||hl|s1 x€V,|lh|ls1
© ak_ - »
= sup | 2 =1—-___5X11 — axi(f(x)‘g(x))“iflil' cazh; |

x€V,||hl|s1 Ay g wedie *

(=]

— 1 1
s sup || z % Zeeez a.h, eeca.h, |
Ihllsl  ii.. ie=1 Gy, %1, 1 T dle
< sup_ % [In)* = %

linlj=1

Combining this with (7.4), we obtain for Osk < p,

sup IDK(£(x) - 8G))ITh|| s sup [|DX(£(x) - F(x))[Th]|
x€V,||h|| =<1 x€V, | hl| <1

v+ sup [[DF(F(x) - gG))IThI|| = supl|DECECx)-F(x))|| -[IT|| + %
x€V, ||hl| <1 XeV

S%"’% =1 . Q,.E.Do

Remark, Suppose that the f in Theorem 7.1 has the
property that for any € > O there exists a gEEECm’p(V,F)
such that [[f(x) - g (x)|| yse and ng“p < M, where M is
independent of e€. Then the conclusion of the theorem
would be true if the operator T were only assumed to be
compact. To show this assume T compact and find P in

L(ﬁ2,£2) with finite dimensional range and such that



55

W - B = 1/2(Hfﬂp+—M). Apply the theorem to get a
& € C®(4°2,F) with supl|DX(£(x) - E(x))[2Ph]|| < 1. Since
x€ev, thsl s K<D

g(x) = Jg(x+y)duA(y) where g is a C_ , approximation

to f and since by assumption we can take Hng < M, it

follows that we can assume ugnp < M. Therefore

sup|| DX (£(x) - E(x)NIThlll = suplD(£(x) - E(x))(@-Bh] |
x€V,|lh||s1,ksp x€V,||h][=1,ksp

+ sup|DX(£(x) - B(x))[Pn]| = Cigll, +wliz-P| +% < 1.
x€V,[|hll<1,k=p

We now give a global formulation of Theorem 7.1.
The proof is similar to the proof of Theorem 6.1 in which

Lemma 5.1 played a key role.

Theorem 7.2 Let f € Cp(fz,F),lsP<w, and suppose that
Dpf(x) is uniformly continuous in some neighborhood of
every point of £2. Then for any locally finite cover
{Ua} of 12 and collection {Ta} of Hilbert-Schmidt opera-

tors on £2 there exists a g(x) € Cm(i2,F) such that

sup sup HDk(f(x)-g(x))[Tah]u € 1 .
% xeu_,linll=1,0sksp

Proof. As in the proof of Theorem 7.1l,let
Sa = VTaTa so that SOL ig self-adjoint positive definite

Hilbert-Schmidt and Ta(B)C: Sa(B), where B is the unit ball.
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For every x in £2 find a ball B(X,RX) of radius RX about x
such that B(x,RX) intersects only a finite number of Ua's
and DPf(x) isuniformly continuous on B(X,RX). Now since

fz is ¢™»°% smooth, we can apply Lemma 5.1 to the cover

{B(X,RX/2)} to obtain covers {Vg}, j=1,2,3,4, and functions
gi(x) € Cw’m(£2,R) such that

1) dist( vCJ VJ+1) >0, j=1,2,53

2) {Vi} covers f

3) {Vg} is locally finite and refines {B(X,Rx/2)}
4) 0sgy(x) =1, g(x)(VE) =1 and g, (x)(CV3)

Now define o (x) = gl(x), Cpi(.x) = (1"%1(}{))‘"(l"gi_l(x)ki(x)

if i>1 and M; = [lcpiup . If we let
S, = L 8,
{aannV # ¢}

(note that the sum is over a finite number of a's) then$S. is
positive definite self-adjoint Hilbert-Schmidt and Sa<B) &
Si(B). Set

8, = 2p+iMi(max(l,|lSilD)pSi
and use Theorem 7.1 , observing that f(x) € Cp’p(B(x,RX),F)
and dist(Vi,B(X,RX)) > O, to obtain functions hiEECm(Vi,F)
satisfying

(7+8) sup HD (£(x) - h, (x))rs’ h]“ < 1.
x€ev (o llnfls1 k<p

Define fo(x) = PURYyusosy fi(x) = f(x)(l—gl(x))--~(1—gi(x))+



o7

hy ()  (x) + - -+ 1 (x)p, (x). When x € VEUL L 0VE, (1-gy () -

(1-—-gi(x)) = 0, hence

(7.7) £,(x) € C™(VIu...uVi,F) .
Also
(7.8) fi(x) = fi__l(x) when xﬂVLil'

For every x € 12 there is a neighborhood Nx of x and an

L 1
lU. L] .UVn

Hence by (7.7) and (7.8) we can define

integer n such that NXC Vv and N th.: = @ for i>n.
X

g(x) = lim f, (x) and g(x) € ¢% (l B )
i

Now f. (x) - £ l(x) (h (%] = %) )cp (x),hence

sup [|D¥(£;(x) - £;_1(x))[8;h]]|
(7.9)  x,|lhls1,k=p

k

< T (g supl|DP(h, (x) - £(x) )[8;h]|| . sup|D* e, (x)[S;h]]|
2=0" ., Injl =1, %=p x,||nll<1,ksp
k R .

< Zb(> 1/(2p+1m Is; 1%y - Minsiuk‘n z 1/2P% = 1/2*
n=

by (7.6) and (7.8). Therefore if x € U,

supl| D¥(£(x) - g(x)IT R = sup|D(£(x) - g(x))[8,h]]|

Inll<1,k=p |hll<1,ksp

z supl| (£, ()-,_ (xSRI < Z
< {J\U nV #ﬁ} Inll<1, kS% {J\Uapvg¥?}
supl| D (£ 5(x) - £5_3 G850l = y 12 & 1. gB.
bl <1, kSp {J\ NV 579
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