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ABSTRACT 

A technique is developed for the design of lenses for transi­

tioning TEM waves between conical and/or cylindrical transmission 

lines, ideally with no reflection or distortion of the waves. These 

lenses utilize isotropic but inhomogeneous media and are based on a 

solut i on of Maxwell's equat ions instead of just geometrical optics. 

The technique employs the expression of the constitutive parameters, 

£ and µ , plus Maxwell's equations, in a general orthogonal 

curvilinear coordinate system in tensor form, giving what we term as 

formal quantities. Solving the problem for certain types of formal 

constitutive parameters, these are transformed to gi ve £ and µ as 

functions of position. Several examples of such l enses are considered 

in detail. 
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I. INTRODUCTION 

One of the techniques used in the solution of electromagnetic 

boundary v a lue problems consists in writing Maxwell's equations in 

orthogonal curvilinear coordinates and then solving, not for the 

physical components of the fields, but for quantities which combine the 

physical components with scale factors of the coordinate transformation. 

These new quantities are components of tensors and tensor densities 

r e ferre d to the orthogonal curvilinear coordinate syste m. Similarly 

the constitutive parameters of the medium are combined with the sca l e 

factors in the resulting equations . In making such a transformation 

one h op e s to simplify the equations and/or boundary cond itions in some 

way. 

One type of problem on which this technique has b een used 

relates to waveguides (1,2). I n this case one takes a waveguide fille d 

with a homogeneous isotropic medium, and transforms t o a n orthogonal 

curvilinear coordinate system in which the b ounda ry walls a r e more 

conveniently expressed. The resulting transforme d constitutive 

parameters, however, are in general inhomogen eous a n d anisot ropic . 

Thus while the boundaries have been simpli fied, the medi um h a s become 

mo r e complicated. 

In t his report we consider an exte ns ion of this technique. We 

assume that the formal constitutive parameters , as expressed in some 

orthogonal curvilinear coordinate system , are of a p articul a rly simple 

form, i. e . , homogeneous, at l eas t as they r elat e to the a llowed field 

components. Furth ermore , we assume that the cons titutiv e p a rameters, 
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before being transformed to the curvilinear system, are those of an 

inhomogeneous but isotropic medium. From this we find many cases of 

isotropic inhomogeneous media for which certain types of electromag­

netic wave propagation can be simply expressed. 

In this approach the medium is made inhomogeneous and perfectly 

conducting boundaries are geometrically arranged such that when they 

are transformed into the appropriate orthogonal curvilinear coordinates 

a simpler problem results which can be solved by more standard tech­

niques. The present approach can then be used to define geometries for 

perfectly conducting boundaries and distribution fUnctions for inhomo­

geneous media such that devices built to such designs will transport 

electromagnetic waves in certain desirable ways. In particular, we 

consider cases which in the curvilinear coordinate system corresponds 

to a problem of a TEM plane wave on a cylindrical transmission line. 

In the reference cartesian (x,y,z) coordinates the waves are still 

TEM, but not necessarily plane. For the examples considered the 

particular conductor geometries and media inhomogeneities can be used 

to transition waves between two transmission lines, each of which is a 

conical or cylindrical transmission line . Furthermore , the transition 

is accomplished with neither reflection nor distortion of the wave. 

Another application of such examples is for a highly directional high­

frequency antenna in which the special geometry and medium inhomo­

geneity is us ed to launch an approximate TEM wave over a c ross section 

with dimensions much larger than a wavelength. 
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The approach followed in this report then represents a design 

procedure for a certain kind of electromagnetic lens. The properties 

of such a l ens , combined with appropriate perfect conductors, are 

independent of frequency assuming that the permittivity and permeabi­

lity of the medium used are real and frequency independent and that its 

conductivity is zero. This result is in contrast to lenses based on a 

geometrical opt i cs approximation, such as the well known Luneburg 

lens (3), which relies on the frequency being sufficiently high. The 

lenses considered here, used with appropriate transmission lines, can 

then transmit arbitrary pulse waveforms without distortion. 

While the cases considered represent exact solutions to the 

vector wave equation, there are , of course , approximations involved in 

the practical realization of such devices. For example, for pulse 

applications the permittivity and permeability should be frequency 

independent and have certain prescribed values as functions of position. 

Such characteristics can only be approximately realize d. As another 

example, it will turn out that the lenses should, in some cases, have 

infinite extent and so will have to be cut off. If, however, the lens 

is large e n ough the relative magnitude of the fields (as compared to 

the magnitude of the fields near the tra nsmission line passing through 

the center of the lens) can be small enough that the perturbation is 

insignificant . The permittivity and permeability will be required to 

be infinite in some places and less than their free-space value s in 

others, but such positions can be made to be far from any significant 

fie lds so that these requirements can be neglected. For certain trans­

mission lines the condu ctors restrict the fields to a closed region of 
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space so that no lens material at all is needed outside this region. 

For a particular application of these lens designs, one should consider 

such things as the range of permittivity and permeability required and 

the spatial extent of the lens required . In this report we treat the 

lenses from a n idealized viewpoint. 

In outline, this report first considers the definition of what 

we call formal electromagnetic fields, vector operators, and constitu­

tive parameters used with orthogonal curvilinear coordinates. 

Restricting the forms of the permittivity and permeability the general, 

but very restrictive, case with field components in all three coordinate 

directions is briefly considered. This is followed by a consideration 

of the TEM wave case with electric field components i n two coordinate 

directions . Some general results are obtained f or this case a nd a few 

lens types are considered . Finally, the simpler case of two-dimensional 

lenses i s considere d, together with a few examples. 
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II. FORMAL VECTORS AND OPERATORS 

Let us first consider a cartesian coordinate system (x,y,z) with 

unit vectors ~ ~ , : , and an orthogonal curvilinear coordinate 
x' y z 

We restrict both 

coordinate systems to be right handed, i.e. 

+ + + 
e x e = e 

x y z 

and 
+ + + 
e l x e

2 = e3 

The line element is 

+ + + + + ~ dx ~ dz dr = + e dy + = h
1

du
1

e
1 

+ h
2

du
2

e
2 

+ h
3

du
3

e
3 x y z 

where the scale factors h. a re gi ven for i =l,2 ,3 as 
1 

h~ 
1 

2 2 2 
= (~) + ( ~) + ( ~) 

au. au. au . 
1 1 1 

= 
[ 

au . 2 au. 2 au. 2]-1 
( a~) + ( a~) + ( a~) 

The h . are tal~en positive and we exclude singular points where 
1 

(2.1) 

(2.2) 

(2.3 ) 

( 2 . 4) 

h = 0, 00 for any i=l,2,3 from our consideration. The line element is 
i 

also often written using the metric tensor ( g . . ) as 
1J 

+ + 
dr • dr = 

3 
l 

i=l 

2 
g .. (du.) 

11 l 
(2.5) 

where for orthogonal curvilinear coordinates the metric tensor has the 

s imple form 

{ g .. ) =(g .. Q •• ) = 
1J 11 1J 

0 

0 : ) ( 2 . 6 ) 

h~ 0 0 0 
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For later use we define some combinations of the 

H - hlh2h3 

( 
hl 0 0 

(aij) - (6 .. r . . ) = 0 h2 0 
1.J ::... 

0 0 h3 

h 2h3 0 0 

< sij) 
H 

- (6 . . h) = 0 h3hl 0 
1.J i 

0 0 hlh2 

and 
h2h3 

0 0 
hl 

h3hl 
( y ij) (6ij 

!:!_) 0 0 -
h~ h2 

1. h lh2 
0 0 

h3 

where 6 .. is the Kronecker delta funct i on . 
1. J 

h . as 
1. 

(2 . 7) 

(2. 8) 

(2.9) 

(2.10) 

In the u. coordinate system t h e standard vector operations are 
1. 

the g radient 

1 34> + 1 34> + 1 34> + 
'il<l> = --- e + - -- e + --- e 

hl 3ul 1 h
2 

3u
2 

2 h
3 

au
3 

3 
(2.11) 

curl 

+ 1 
{hl [ 3~2 (h3X 3 ) 

3 + 
'i7 x x = 

H 3u
3 

(h2X2 )] el 

3 3 
(hl3)] 

+ 
+ h 2 [3u

3 
(h1X1) 3u

1 
e2 

3 3 
(hlXl)J 

+ 
+ 113 [ 3u

1 
(h2X2 ) 3u2 e3 (2.12 ) 
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and divergence 

(2.13) 

The X. and Y. are referred to as the physical components of the 
l l 

vectors X and Y which have the representations 

and 

(2.14) 

Other common operations such as the scalar and vector Laplacians are 

formed as combinations of the above operations. 

Now we define another set of vectors and operators which we call 

formal vectors and formal operators and symbolize by the addition of a 

+ 
prime to the standard symbols. Related to X we define 

Thus the components of X' 

In tensor language the 

+ 
Related to Y we define 

X! 
l 

X' 
i 

-+ 
-(a . . ) ·X 

l J 

-+ 
and X are related as 

h .X . 
l l 

+ 
are the covariant components of X 

+ + 
Thus the components of Y' and Y are related as 

(2.15) 

(2.16) 

(2.17) 
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Y! H Y. = 
J. h. J. 

(2.18) 
J. 

In tensor language the Y' 
i 

are the components of a relative contra-

variant tensor of weight +l which can also be called ~ relative con-

travariant tensor density (4). Note t hat we have defined the formal 

+ + ~ 
vectors X' and Y' differently because of the different ways that X 

+ 
and Y appear in equations 2.12 and 2 .13. 

and 

Now we define formal vector operators by 

'JI <f> I 

+ 
'JI • y I 

(2 .19) 

(2.20) 

(2.21) 

Note that the formal vector operators have precisely the same form in 

orthogonal curvilinear coordinates as the standard vector operators 

have in cartesian coordinates. These formal operators are related to 

the standard ones by 

( 
l/hl 0 0 

'V <I> (etij)-1 • 'JI <f> I = 0 l/h,, 0 . 'J I <l> I (2.22) 
c. 

0 0 l/h3 
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where the potential function <1> ' is related to <1> by 

and by 

and 

<1> = <I>' 

-+ 
v • y = 1 

V ' • Y' 
H 

(2.23) 

(2.21+) 

(2.25 ) 

Again in tensor l a n g uage <1> is an invariant scalar, the components of 

V' <1>' are the covariant components of V<t> , the components of 
-~ 

V' x X' 

are the components of a relative contravariant tensor of weight +l, a nd 

-+ 
V • Y is a relative scalar of weight +l. 

Finally we define a formal matrix (vij) related to ( vij) by 

The vj_j 

( v ~ . ) 
lJ 

(2.26 ) 

are the components of a relative contravari ant tensor of 

weight +1. This transformation will be used later for the cons ti tuti ve 

parameters in Maxwell's e~uations. For the special case that 

diagonal we have 

( v . . ) is 
lJ 

(2 . 27) 

It is this latter case which will be of concern to us in this report. 
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III. FORMAL ELECTROMAGNEI'IC QUANTITIES 

Now consider Maxwell ' s equations 

+ 

vxE=--~ at 

v x ii 

v • n = P 

v • n = a 

together with the constitutive relations 

n = ( £ij ) . + 
E 

and 

+ 
B = ( µij) . ii 

and the equation of continuity 

IJ • j 

(3.1) 

(3.2) 

(3.3) 

( 3 . 4) 

( 3. 5) 

(3. 6) 

( 3. 7 ) 

Note that p is the "free" charge density and does not inc] u de charge 

displacement conventionally included in(£ . . ). In writing the above 
lJ 

equations we have assumed that (£ij) and (µij) are real constant matri-

ces, independent of frequency; they may, however, be functions of posi-

tion . If we had written the above equations in the frequency domain, 

then(£ .. ) and(µ . . ) could eas ily have been taken as complex functions 
lJ lJ 

of f r e quency. 
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Equations 3.1 through 3.7 are assumed to be expressed in terms 

+ 
of the u . coordinates and the e. unit vectors as in Section II . So 

l l 

now we make some appro?riate definitions of formal electromagnetic quan-

+ + 
tities. Since E and H appear with t he curl operator, we define, as 

+ 
in the case of X 

->-
E':: (a . . ) 

lJ 

+ + + 

+ 
E 

+ 
H' - (aij) 

+ 
H (3.8) 

Since B, D, and J appear with the divergence operator, we define, as 

in the case of Y , 

B' - ( Bij ) • B , D' - ( Bij ) • D ' 

Now p equals a diver gence in equation 3 . 3 so we define 

p' Hp 

so that p is a relative scalar of weight +l . Substituting for 

(3,9) 

( 3.10 ) 

+ + 
E, H, 

B, and D from e quations 3.8 and 3.9 into e quations 3.5 and 3.6 and 

requiring 

B' =(µ~.)·tt' 
lJ 

(3.11) 

shows that for the formal constitutive parameter matrices we s hould 

define 

( £i_j) - ( B . . ) 
lJ 

( £ .. ) 
lJ 

(aij )-1 

( µi j ) - ( Bij) . ( µij) (aij)-1 ( 3. 1 2 ) 
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For some problems one might include a conductivity matrix (oij) so 

that j includes a conduction current density 
-+ • E Then we 

would define 

(3.13) 

If ( e: . • ) , ( µ .. ) , and ( o . . ) are required to be diagonal, equations 
lJ lJ lJ 

3.12 and 3.13 reduce to 

( 3 .14) 

The formal electromagnetic quantities defined in equations 3.8 

through 3 .12 can now be substituted into Maxwell's equations, the con-

stitutive relations and the equation of continuity. The curl and di-

vergence operators can be replaced by the forma l ope rators from equa-

tions 2.24 and 2.25. Equations 3.1 through 3.7 can the n be rewritten 

as 

I/' x E' ;)B' 
(3.15) - - at 

+ 

\J I x tt' j1 ClD' + --at ( 3 .16 ) 

II' • n' = p I (3.17) 

I/' . B' = 0 (3.18) 

-+ 
( e:j_j ) E' (3.19) D' = . 

-+ 
( )J lj ) -+ 

(3.20) B' = . H' 
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(3.21) 

Note that equations 3.15 through 3.21 are of the same form as 

equations 3.1 through ' 3.7. All electromagnetic quantities and operators 

are replaced with primed symbols, except for t which has remained 

unchanged. However, the formal curl and divergence operators, using the 

u . coordinates, have the same mathematical forms as have the standard 
l. 

operators, using the x,y ,z cartesian coordinates. Suppose that we 

formally think of the u. 
l. 

as a cartesian coordinate system and think 

of the primed quantities as the electromagnetic fields, constitutive 

parameters, etc. Then we can take a known solution of Maxwell's equa-

tions related to cartesian coordinates, directly substitute primed for 

unprimed quantitie s and the u. 
l. 

for the cartesian coordinates, and 

thereby construct a solution of the above equations. Transforming the 

formal quantities back to the standard ones by equations 3.8 through 

3.13, we then have a solution of Maxwell's equations for which(£ .. ), 
l. J 

(µ:.), and/or (o .. ) may be anisotropic and/or inhomogeneous. The idea 
l.J l.J 

is then to pick(£! . ), (µ! .) , a nd (cr! .) of s ome p a rticularly convenient 
l.J l.J l.J 

form and also to choose any boundary surfaces to have convenient forms 

in the u. coordinate system so that we can obtain a solution in terms 
l. 

of the formal electromagnetic quantities . Choosing some particular 

relationship between the u . 
l. 

coordinates and x, y, and z, the par1:llll-

eters (£ij), (µij), and (oij) as well as the geometry of the boundary 

surface s are determi ned and the solution i s applied to the particular 

case . 
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I V. RESTRICTION OF CONSTITUTIVE PARAMETERS TO SCALARS 

In this report we are only concerned with problems related to 

inhomogeneous isotropic media. The l ater examples of lenses will 

utilize such media. Thus we restrict t he constitutive parameter and 

conductivity matrices to be of the forms 

(£. . )=do . . ) , 
lJ l J 

(µ .j ) = µ(6 .. ) 
l lJ 

a( 6 .. ) 
lJ 

(4.1) 

where £, µ, and a are scalar functions of the coordinates . From 

equations 3 .14 the formal constitutive parameters then have the forms 

a( Y •• ) 
lJ 

( 4. 2 ) 

Also, we restrict a ~ 0 and assume that £ and µ are real a nd 

frequency independent . However £ and µ may, in general, depend on 

the coordinates . The formal constitutive parameters ( £ ! . ) a nd(µ!.) 
lJ lJ 

are now diagonal matrices with the three diagonal terms possibly func-

t ions of the coordinates. 

Thus we a r e led to consider some possible forms for diagonal 

( £ ! . ) and ( µ ! . ) which are consistent with equations ( 4 . 2 ) . We would 
l J lJ 

like ( £ !.)and(µ!.) to have rather simple forms so that electromagnetic 
lJ l J 

waves, as expressed using the formal electromagnetic quantities and 

coordinates, have desired forms . A first case to consider is defined 

by requiring (£ij) and (µij) to be expressible as £ ' ( 6 .. ) and 
lJ 

with £ 1 and µ ' independent of the coordinates. In 

terms of the formal quantities, this corresponds to a 

homoge neous me dium problem for which many types of solut ions of 

u. 
l 
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Maxwell ' s equations are available. This first case is considered in 

Section V and Appendix A. 

It is not necessary, however , for (Eij) and (µij) to each have 

their three diagonal components equal and independent of the u. 
J. 

for 

the problem to correspond to one of a homogeneous medium . I n par ticu-

lar, suppose that for each matrix just the first two of the di agonal 

components are constrained to be equal and independent of the coordi-

nates. An inhomogeneous TEM wave with formal field components with 

only subscripts 1 and 2 h as no interaction with £3
3 

or µ3
3

, and so 

£3
3 

and µ3
3 

are unimportant in the case of such a wave . Such TEM 

solutions are used to define lenses to match waves onto cylindrical 

and/or coni cal transmission lines . This second case is considered in 

Sections VI and VII and Appendix B. 

As a fUrther simplification we consider the two- dimensional 

problem in which u
3 

= z , one of the formal e l ectromagnetic fields has 

only a u3 component, and the other formal electromagnetic field has 

only a u2 component . With appropriate restrictions on the comp on-

en ts of ( Ei_j ) and ( µij) this defines a third case considered in 

Sections VIII and IX. Solutions for this case are used to define 

lenses for launching TEM waves on two p arallel per fect ly conducting 

plates . 
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V. GENERAL CASE WITH FIELD COMPONENTS IN ALL THREE 

COORDINATE DIRECTIONS 

-+ -+ 
Now consider the case in which E' and H' are both allowed to 

have all three formal components. For this case we constrain the 

constitutive paramete~s to have the forms 

where E' > 0 and µ' > 0 are both independent of the u. 
}_ 

( 5 .1) 

coordi-

nates. In terms of ~he formal electromagnetic quantities we have a 

homogeneous medium problem. One might then apply many known solutions 

for homogeneous media to this case. 

With (E! . ) and(µ!.) each constrained by both e quations 5 .1 and 
1-J 1-J 

4.2, we have 

h2h3 
0 0 

hl 
h3hl 

( y ij) 0 0 
E ' 

( 6 ij ) 
.!!...'._ 

( cS ij ) ( 5 . 2 ) = = -
h2 E µ 

0 0 
hlh2 

h3 

where E and µ are both assumed nonzero at positions of interest. 

This implies 

= 

From 

we obto.in 

E I 

E 
= .!!...'._ 

µ 
( 5. 3) 
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( 5. 5) 

Since the h. are all taken positive, then we have them all equal 
l 

which we express as 

( 5. 6) 

Then from equation 5.3 E and µ are given by 

Eh µh = µ' ( 5. 7) 

so that Eh and µh are both independent of the coordinates. 

However, we cannot just choose h to be any function of the 

coordinates. In Appendix A we show that there are two general forms 

for h which satisfy the restriction imposed by equati on 5.6. The 

first is given by h equals a constant for which the u. 
l 

form a car-

tesian coordinate system. For this case E and µ are constant so 

that the medium is homogeneous. 

The second form of h , from equations A. 27 and A. 31, gives an 

inhomogeneous medium described by 

2 
x 

2 
a 
2 2 + y + z 

(5. 8 ) 

where a i 0 is a real constant. This corresponds t o a 6-sphe r e type 

of coordinate system. Defining the radius 

we have 

2 
r 

2 2 2 
x + y + z ( 5 . 9 ) 
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£ µ 
"2"" = µT = 

1 
- = 
h 

2 
a 

2 
r 

(5.10) 

If one were to attempt to construct such a medium for frequency inde-

pendent £ and µ , then £ and µ would be constrained to be at 

least as l arge as their free space values. For fixed. £' , µ' , and 2 
a 

there is a maximum r for which £ and µ can be realized . Also, a 

neighborhood of r = 0 is excluded becaus e of the singularity in E 

and µ there . Thus there are restrictions on reali zing such a medium. 

With the h. restricted as in equatio n 5.6, the as s ociate d class 
l 

of inhomogeneous media is then very restricted, being limited to 

spherically stratified media of the form given by equation 5.8. In the 

next section we l oosen somewhat this restriction on the h. 
l 
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VI. THREE-DIMENSIONAL TEM WAVES 

Now we restrict our attention to waves of a certain form. Consi-

der inhomogeneous TEM p lane waves such as propagate on ideal cylindrical 

transmission lines , including coaxial cables, s t r i p l i nes, etc . Such a 

structure supports TEM plane waves which propagate parallel to some 

fixed di r ection , say the z axis. It has two or more separate perfect 

conductors which form a cross section ( i n a plane perpendicular to the 

z axis)which i s independent of z . Also, let the medium in which the 

perfect conductors are placed be homogeneous. 

Next appl y thi s type of inhomogeneous TEM wave solution to the 

formal fields discussed in Section III. Let the wave propagate in the 

+u
3 

direction and let the formal constitut ive parameters have the 

forms 

£ I ~. ) 
3 

- ( µ~' ( µij) 

0 0 

µ ' : . ) 
3 

(6.1) 
0 0 

where £' > 0 and µ' > 0 are constants but £ I 
3 

and µ' 
3 

a r e unspeci-

fied . Since we shall only consider waves with no field components 

parallel to the direction, then £ I 
3 

and µ ' 
3 

nowhere enter the 

formal constitutive relations, equations 3.19 and 3.20 . Then the 

dependence of £ ' 
3 

and µ' 
3 

on the coordinates is irrelevant and can 

be ignored. For this TEM wave the medium can then be formally consi-

dered isotropic and homogeneous since only £ 1 a nd µ ' are signifi-

cant. 
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Specifically, cons ider formal f i elds of the form 

E' E ' (~,u2) f( t -
u3 

E ' E' (ul,u2) f(t -
u3 

= ;t) ' = ;t). E' - 0 1 1 2 2 3 
0 0 

(6.2) 

and 

(ul,u2) f(t -
u3 

(ul,u2) f(t -
u~ 

H' H' - ) • H' = H' c ~). H' - 0 
1 1 c' 2 2 3 

0 0 

( 6 . 3) 

where we define 

c ' -
1 1 (6.4) c -

/µ£ 
0 0 

and where we can choose the form of 
u3 

f (t - -) c ' to specify the waveform. 

This is the well-known form of TEM waves on cylindrical transmission 

lines (5). The formal field component s are r elated by 

E' = Z' H' 
1 0 2 

and 

E' = - Z' H' 2 0 1 

where Z' is the formal wave impedance defined by 
0 

Z' - F; 0 
I 

Equations 6 . 5 and 6. 6 express the orthogonality of 

E' · tt ' 0 

-+ 
E' 

( 6. 5) 

(6 . 6) 

(6.7) 

and 
-+ H' , i . e . 

(6.8) 

Also E and H can be derive d from scalar potential functions as 

-·>- u 3 
E ' = f (t - -, ) V' <Ii (u

1
,u,) ) , 

c e . L. 
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(6.9) 

where and ~h both satisf'y the Laplace equation (using the 

v12 = V' • V' operator). These potential functions can be combined 

to form a complex potential ~e + i~h which allows one to use confo rmal 

transform techniques with the complex variable u
1 

+ iu
2 

. All these 

equations, 6.2 through 6.9, are merely the direct application of known 

results for cylindrical transmission lines to their formal e quiva l ents 

using formal field compon.ents and the u . 
l 

coordinates in place of 

physical field components a nd cartesian coordi nates. 

Note, of course, that while the results for cylindrical transmis-

si on lines assume constant £ and µ , the present results using the 

formal quantities assume constant £ 1 and µ' . Likewise the present 

results require that the two or more perfect conductors forming the 

transmission line intersect surfaces of con s tant in such a manner 

that the r epresentation in terms o f and is indepen dent of 

u
3 

. Put simply, t h ese perfectly conducting boundari es can be repre -

sented in t e rms of only their and coordinates. 

The important feature of these TEM waves is that we only need 

restrict the first two diagonal components of the formal constitutive 

parameter matri ces as in equations 6 . 1. We st i ll assume that ( £ .• ) and 
lJ 

(µ ij) correspond to isotropic but inhomogeneous media having the forms 

as in equat ions 4.1 

( £ .. ) = do . . ) 
lJ lJ 

(6 . 10) 

where £ > 0 and µ > 0 may be functions of the coordinate s . 'l'hen a s 
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in equations 4.2 the forma l constitutive parameters have the forms 

(6.11) 

Combining equations 6.1 and 6 .11 t hen gives 

0 0 

0 
(

£

1 

0 0 ) (µ' 
= 1:.. 0 £ 1 0 = 1 0 

£ µ 

0 0 £ 1 0 
3 

0 

0 µ' : ) ( 6.12) 

µ ' 
3 0 0 

0 

This implies 

h2h3 h3hl £ I .!:..'... (6 . 13) = = -= 
hl h2 £ µ 

and 

hlh2 £ ' µ ' 

= -1 -1 (6.14) 
h3 £ µ 

From equation 6. 1 3 we find that the first two scal e factors are equal 

which we express as 

h h = 
1 (6.15) 

Note that h
3 

is not included in this equation. Thi s will a llow u s a 

greater degree of freedom in choosing our 

Now £ and µ are given by 

£ I 

u. 
l 

coordinate s ystems. 

(6 . 16) 
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so that Eh
3 

and µh
3 

are both indepen dent of the coordinates. Then 

the formal wave impedance from equation 6 . 7 is the same as the physical 

wave impedance because 

Since 

Z' 
0 

= f}Z_ = -yE' 

and µ' 
3 

z 
0 

(6 . 17) 

are arbitrary , then any orth ogonal curvi l inear 

coor dinate system which satisfies equation 6 . 15 is acceptable. The 

that results defines E and µ by equati ons 6 .16. Not just any ortho-

gonal system, h owever, satisfies equation 6 .15 . In Appendix B we s h ow 

that surfaces of constant u
3 

can only be planes or spheres (with res­

pect to an x,y,z cartesian coordinate system). Two examples of such 

coordinate systems h ave already appeared in Section V (and Appendix A), 

namely cartesian coordinates and 6-sphere coordinates. In those 

examples all three u. 
l 

surfaces are planes or spheres, since all three 

h. were made equal. 
l 

In the next section several examples of orthogonal curvilinear 

coordinate systems satisfying equation 6.15 are considered. These are 

used to define types of inhomogeneous lenses which are then combined 

with conical and/or cylindrical transmission lines . Some of these 

lenses have rotational symmetry, while the associated u. 
l 

coordinate 

system is not a rotational system. For conve nience in such cases we 

then introduce an additional orthogonal curvilinear coordinate system 

v
1

,v
2

,v
3 

which i s both right handed and rotational. We define the 

cylindrical coordinates p,$ , z with 
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p - ( 2 2 )1/2 x + y (6.18) 

and 

tan(<j>) y/x (6.19) 

where <j> = O is taken from the xz plane for x positive . To make the 

vi coordinate system a rotational system we define 

In order to distinguish the scale factors for the 

system we write them as h , h~, and h 
vl o/ v3 

where 

v. 
1 

(6.20) 

coordinate 

and may be 

replaced by other symbols for a parti cular rotational coo rdinate sys-

tem. There are many well- known rotational coordinate systems for 

which the h are tabulated (6) . 
V. 

1 

To construct the u. coordinate systems we consider a transforma-
1 

ti on from the v . system of the form 
1 

ul = A.(vl ) cos ( <I>) (6.21) 

u2 = A. (vl) sin ( <I>) ( 6. 22 ) 

and 

u3 = ~ (v3) (6. 23 ) 

with A.(v
1

) assumed non- negative. There are several reasons for con-

sidering this type of transformation. Surfaces of constant are 

also surfaces of constant v
3 

which must then also be planes or 

spheres . The functional form ~ (v3 ) gives us some flexibility in 

choosing h
3 

which in turn defines £ and \J 'l'he choice for 

and will make The fUnctional f orm >. (v
1

) is used to 
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gain flexibility in trying to make surfaces of constant ul and sur-

faces of constant orthogonal. As an illustrative example, let 

v
1

,<J>,v
2 

be cylindrical coordinates p,$,z and l et A.(p) = p ' 

t,;(z) = z Then is j ust x,y ,z This corresponds to the 

well-known case of a TEM wave propagating in the +z direction on a 

cylindrical transmission line in a homogeneous medium. 

Surfaces of constant v
1

, v
2 

and v
3 

are mutually orthogonal by 

hypothesis. Then since neither ul nor u2 are f unctions of v3 ' 
while u3 is a function of v3 only, surfaces of constant u 3 are 

orthogonal both to surfaces of constant ul and to surfaces of con-

st ant This leaves the question of the mutual orthogonality of 

surfaces of constant and surfaces of constant For ortho-

gonality of constant and constant surfaces we need 

-+ -+ 
ar ar 

0 aul • = au2 
or 

l -+ 
avl 

-+ J e; avl 
-+ J ar --+ ar 21 

Clv
1 

Clu
2 

+ 
Clr ~ 

av
1 

au
1 <l<J> aul Cl$ au2 

Since the v. surfaces are orthogonal we have 
l. 

-+ 
Clr 
3$ 

so that equation 6 . 25 becomes 

or 

-+ 
3r -- . 
3vl 

3; 3v
1 

3v
1 ------+ 

3vl Clul Clu2 

-+ 
3r - . 
3$ 

0 

0 

(6.24) 

0 (6.25) 

(6.26 ) 

(6.27) 



Using the relations 

we find 

and 

u2 
arc tan(-) 

ul 

~ - sin(<j>) 
au

1 
- - >-

For hcj> we have 

s i n 
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0 

= ( 2 2)1/2 ul + u2 

~ _ cos(cj>) 
au

2 
- >-

p 

Substituting these results in equation 6.28 gives 

or 

Now we have 

(6.28) 

(6 . 29) 

(6.30) 

(6. 31) 

(6. 32 ) 

(6 . 33 ) 

( 6. 34) 
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(~)2]1/2 
av 

1 
(6.35) 

so that h /h~ is independent of ¢ . In Appendix 3 (equation B. 12) 
vl "' 

we find, from the requirement that surfaces of constant v
3 

be spheres 

or planes , that is independent of v
3 Hence h /h~ 

vl "' 
is 

only a function of v
1 

. Then e quation 6 . 34 can be integrated to obtain 

A as only a function of v
1 

. Thus, from an orthogonal system v
1

,¢,v
3 

with surfaces of constant v
3 

spheres or p l anes only, equations 6.21 

through 6 . 23 defin e an orthogonal u . 
1 

system in which surfaces of con-

st ant u3 are sphe r es or planes only. 

Next consider the h . and relate t h e m to the h For 
1 v. 

1 

have 
-+ -+ -+ -+ dv3 2 

h2 ar ar .£.!:.._ • ar = . -- = (- ) 
3 au

3 
au

3 
av

3 
av

3 
du

3 
( 6 . 36) 

or 

h3 = h ldv31 
v3 du

3 
( 6 . 37) 

For hl we have (using equation 6.26) 

-+ -+ -+ -+ avl 2 -+ -+ 

h 2 .£.!:.._ • ar ar ar ar • .£.!: ( l!.L)2 = = . -- (- ) + 
1 aul aul avl avl aul a cp acp au

1 

2 dvl 2 2 2 2 
hvl (fil) cos (<I>) + .Q_ sin ( ¢) 

A2 
(6.38) 

Substituting for h from equation 6.33 s i mplifies this last result to 
vl 

p = 
); ( 6. 39) 



-28-

For h
2 

we have similarly 

-+ -+ -+ -+ av -+ -+ 
h2 ar ar ~. ar (2 )2 ar !!:. (--1..<E.)2 = 

au2 
= + - • 

2 au2 av
1 

av
1 

au
2 

a 4> aqi a u
2 

dv 
sin2 (qi) 

p2 2 
= h2 (2)2 + 2 cos (ij>) v

1 
d).. ,>.. 

(6.40) 

which, using equation 6.33, simplifies to 

(6.41) 

Thus the form of the u. given by equations 6.21 through 6.23, with 
l 

,>..(v
1

) satisfying equation 6.33, also satisfies the requirement of 

equation 6.15 that We then have an acceptable u. 
l 

system. 

Note that the u. system defined by equations 6.21 through 6.23 
l 

and equation 6 . 33 is based on a rotational system, v
1

,ip,v
3

, with 

propagation in the ±.v
3 

direction where surfaces of constant are 

spheres or planes . This is not the only way to define an acceptable 

u. system. The last example in the next section will construct the 
l 

u . system differently . 
l 



-29-

VII. THREE-DIMENSIONAL TEM LENSES 

In this section we consider some examples of lenses for trans­

porting TEM waves of the form considered in Section VI . These 

inhomogeneous TEM waves propagate on transmission lines with two or 

more independent perfe ctly conducting boundaries desc r ibed in the form 

(7 .1) 

so that the boundaries are independent of u
3 

The simpl est example 

of this case i s g iven by u
1

,u
2

,u
3 

equal to x,y,z respective ly which 

corresponds to a cylindrical transmission l ine with a homogeneous 

medium . We first consider t h e example of conical transmission lines as 

a simple illustration of t he method developed in the last section. This 

is followed by two inhomogeneous lenses based on bispherical and 

toroida l coordinate s ystems. We also show how these can be used t o 

transition TEM waves between conical and/or cylindrical transmission 

lines. The b i spherical lens can be thought of as a converging l e ns 

and t he toroidal l ens as a diverging len s . Finally we con s i der a l ens, 

based on cylindrical coordinates, which can be used to transition TEM 

waves between two different cylindri cal transmission l ines which have 

their propagat ion axes pointing in two different directions. 

A. Modified Spherical Coordinates 

As a fi rst example start with a rota tional orthogonal curvilinear 

coordinate system v
1

,$,v
3 

given by the spherical coordinates G,$,r 

illus trated in Fi gure 1 and defined by 

x - r s in( G) cos ($) (7.2) 
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Fig . 1 . Sph e ri cal Coordinat es 
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(7.3) 

z - z
1 

- r cos(G) (7.4) 

where is a constant we can choose later. Note that surfaces of 

constant v
3 

= r are spheres and we are considering ~ropagation in 

the r direction. '!'he scale factors are 

h = r g h~ = r sin(G) = p h = 1 
r 

(7. 5) 

Next we construct the u. system for which we need A (G) and 
1. 

~(r) for equations 6.21 through 6.23. From equation 6.37 we have 

= 1~:31 (7.6) 

For convenience we choose ~(r) = r + r , where 
0 

r 
0 

is a constant we 

can choose later, giving 

u
3 

= r + r
0 

Now we find a A from integrating equation 6. 34 as 

~ 

I 
2z 

0 

d\' 
A I = 

g 

J 
dG' 

sin(G') 
TT /2 

where z > 0 is a constant for late r use. This gives 
0 

or 

(7.7) 

(7 . 8) 

(7.9) 

(7.10) 
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= 2z 
0 
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= 2z 
0 

tan(~) sin( <I>) 

From equation 6 . 41 the associated scale factor is 

h ~-A - ~r~s_i_n_(~G_)~ = 2~ [ l + cos(G) ] 

( G o 
2z

0 
tan 2) 

( 7 . 12) 

Note that 0 < h < 00 on the +z axis (G = O, r > 0) so that the u. 
l 

coordinate system is well behaved there, even though the v . 
l 

system is 

s i ngular there. We call this u. system modified spherical coordinates . 
l 

The required consti tutive parameter s are given by equation:; 6 . 16 

as 

e: 
£ I 

L 
jJ I 

= 1 (7.13) 

Thus for the present choice of u . 
l 

coordinates the medium is homogene-

ous. For convenience we might choose e:' ,µ ' as e:
0

, µ
0 

making e:,µ 

also e:
0

,µ
0 

so that the medium is free space. The structure defined 

by the perfect conductors satisfying equation ( . 1 i s called a conical 

transmission l ine. The transformations of equations 7 . 7 and 7 . 11, 

giving the ui, are the well-known transformation for finding the TEM 

waves on such a conical structure(() . The present example for the u . is 
l 

then a comparatively simple one and the resulting medium is homogene-

ous. However, this example i l lustrates how to construct the u. 
l 

systems. In addition the conical transmission line is used l a t e r in 

conjunction with inhomogeneous lenses . 
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B. Modified Bispherical Coordinates 

For constructing an example of an inhomogeneous lens, start with 

the rotational system v 1 ,qi,v
3 

given as bispherical coordinates 

ljJ,$,n as illustrated in F'igure 2 and defined by (6) 

x - a sin(~) cos($) 
cosh(n + cos(ijJ) (7 . 14) 

a sin(ljJ) sin($) 
y - cosh(n) + cos ( 1jJ) 

(7.15 ) 

z 
a sinh(n) 

- cosh(n) + cos ( 1jJ) 
(7 .16 ) 

with 0~1jJ0:1T and -00 < n < 00 Surfaces of constant v = n are 
3 

spheres; surfaces of constant v1 = 1jJ intersect plane s of constant <P 

in circles. The scale factors are 

h <P = 
a sin(lj!) = p 

cosh(n) + cos ( 1jJ) (7.17) 

h hljJ 
a p 

= = cosh(n) + cos ( ljJ) 
= sin(ijJ) n 

(7.18) 

Next construct the u. 
l 

system. Firs t we ca lculate I- from 

equation 6.34 as 

;\ ljJ 

f 
d,\' I dljJ' 

( 7 . 19) - - = sin ( lj! 1 ) ,\ ' 
a 1T I 2 

0 

which gives 

I- a tan(~) ('(. 20) 
0 
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Rotate ~ from 0 t o 2 n 

to g ive surfaces of con stan t 

T) .1J! • 

y 

x 

l"ig . ~' . B.isph e ri.cnl Coor dinates 
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so that 

(7.21) 

where a > 0 is a constant we can choose. From equation 6 . 41 the 
0 

associated scale factor is 

hcjl a sin(w) 1 1 + cos(tji) 
h = >:" = ~ tan ( ljJ / 2 ) _c_o_s h--,-( -n .,....) _+_c_o_s__,(,_tji-.-) = 

0 

a 
a 

0 
cosh ( n) + cos ( ljJ) 

which has 0 < h < 00 for -a < z < a on the z axis so that the 

u . system is well behaved the r e . 
l 

From equation 6 . 37 we have 

Now h
3 

i s rel ated to the constitutive parameters by 

For convenience let E:' = E: µ' o' 

µ ~ µ • This impli es the restriction 
0 

1 

and also restrict E: ~ E: 
0 

(·r.22) 

(7 . 23) 

(7 . 24) 

(7 . 25 ) 

Next observe for 0 ~ ljJ < TI and :for fixed n that h., is a monotoni ­
.J 

cally increasing function of qi Then consider some maximtu11 q1 of 

interest and call it q1 with 0 < ljJ < TI 
0 0 

Th en restrict the space 

occupied by the inhomogeneous medium to Then to minimize 
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the magnitudes of £ and µ required , set h3 = l on 1jJ = ljlo This 

gives 

h3 = 
cosh ( n) + cos(ij10 ) 

cosh(n) + cos(v1) 
(7. 26) 

and we choose 

~ = !£ cosh ( n) + cos ( ljJ ) ] 
du

3 
a o (7.27) 

Note that there are many other forms that one could choose for ~ 
du

3 
The present choice is for the sake of convenience a nd definiteness . 

From equation 7 . 27 we then calculate u 3 as (8) 

dn ' 
cosh(n') + cos(ljl ) 

0 

2a n ljlo 
sin(ljl ) arctan [tanh(2) tan(2 )J 

0 

This last result can be verified by first observing that 

(7 . 28 ) 

u = 0 
3 

for 

n = 0 and by second differentiating the result and using the half 

an gle formulas for the trigonometric a nd hyperbolic functions . We now 

have all the u. coordinates which for the present geometry we call 
l 

modified bispherical coordinates . 

Now that the ui coordinates a nd hi scale factors are calcu-

lated, cons ider the combination of this bispherical lens with a 

cylindrical transmission line. On the plane z = 0 , on which n = 0 

and u
3 

= 0 , we h ave from equations 7.14, 7 . 15 and 7 . 21 , and defining 

(7. 29) 
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Let the lens material modifying µ and £ be present only for u
3 

< 0 

(corresponding to n < 0, z < 0). Then for z > 0 let the medium be 

free space with constitutive parameters £
0

,µ
0 

Next let there be two 

or more perfect conductors forming a transmission line described in the 

form 

(7.30) 

Since on the dividing plane we have ~ = x, u2 = y, then the conduc­

tors are continuous through this interface. For z ~ 0 these conduc-

tors form a cylindrical transmission line on which a TEM mode has the 

form (from equations 6.9) 

E = f(t - ~) v~ (x,y) 
c e (7 . 31) 

The potential functions solve 
2 

V ~(x,y) = 0 subject to appropriate 

boundary conditions from equations 7.30. Similarly for z ~ 0 , making 

u
3 
~ O, there is a corresponding TEM mode of the form 

We purposely use ~ 
e and ~h for both z ~ 0 and 

(7.32) 

u ~ 0 because 
3 

they solve the same Lapl ace equation and boundary conditions on bot h 

sides of z = 0 with on one side exchanged for x,y on the 

other. Note that from equations 6.5 and 6.6 the components of 
+ 
E and 

H are related by the wave impedance. Since we want both ~e and ~h 

the same on both sides of the boundary then we must have 
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z 
0 

Z' 
0 

(7,33) 

which we h ave already required . Now right at z = 0 we have h = 1 

and so that 

(7~34) 

Thus tangential E and H are continuous across z = 0 and the two 

TEM waves are exactly matched there. Then a 'rEM wave as in equations 

7.32 in the inhomogeneous lens wi ll propagate into free space in the 

form of equation s 7. 3:L with no reflection . 

An alternative approach to matching the TEM mode through the 

z = 0 interface is to define one u. coordinate system for both 
l 

positive and negative z . For z ~ 0 let (u
1

, u
2

,u
3

) = (x,y,z) while 

for z ~ 0 let u
1

,u
2

,u
3 

be defined by equations 7 . 21 and 7.28 with 

a - a 
0 

Then h is continuous at z = 0 has a step dis-

continuity there, since for z > 0 we have h = 1 . Note that 

describing the combina tion of the lens with free space by a single u. 
l 

coordinate system automatically poses the restriction of equation 7,33 

in that the ratio µ/ £ must be the same at all positions of interest 

in order to satisfY equations 6.16. In terms of this composite u . 
l 

coordinate system the TEM wave is then described by equations 7.32 . This 

type of lens- t r ansmiss i on-line combination is illustrated in Figure 3 

in which the cylindrical transmission l ine for z ~ 0 is taken as a 

strip line . The lens is stopped a little before the singularity at 

(x,y,z) = (0,0, - a) is reached. 
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x 
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Fig. 3 . Bi spherical Lens with Cylindrical Transmission Line 
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Next intro duce a s econd interface at n = n < 0 Such a sur-
0 

face is a sphere describ ed by (6 ) 

2 2 2 
2 

(z - a 
a 

x + y + coth ( n ) ) = 
0 

sinh
2

(n ) 
0 

(7 . 35) 

This sphere is centered on the z axis at z = a coth( n ) 
0 

and has a 

radius a ls inh(n
0

)! -1
. A cross section of the lens in the zx plane is 

illust rated in Figure 4 and a perspective view with the transmission 

line conductors is illust r a ted in Figure 5 , The region inside the 

sphere n = n
0 

is assumed to be free space and in this region we p l ace 

a conical transmis s i on line with conductors matching to those in the 

lens . 

Recall the conical t r ansmiss i on line discussed in Section VIIA. 

In order to center the apex of the conical line at the center of the 

n = n
0 

sphere we choose z
1 

i n equation 7.4 as 

From equations 7 .11 we h ave fo r the conical line 

= 2z 
0 

while from equations 7 . 21 and a = a we have for the l ens 
0 

We would like and to be cont inuous across the surface 

Thus we need on n 

= 

( 7 . 36) 

( 7 . 37) 

(7 , 38) 

( 7. 39) 



z = a coth ( n ) 
0 
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transmi ssion­
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Fig. 5. Bispherical Lens with Cylindrical and Conical Transmission 
Li nes 
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To do this consider p on For the conical line we have 

P = sin~(n ) sin(Q) 
0 

while for the lens we have 

p 
a sin(lji) = cosh ( n ) + cos ( ljJ) 

0 

The G and ljJ coordinates are then related on this surface by 

sin(G) = - sin(lji) sinh(n0 ) 

cosh ( n ) +cos ( ljJ) 
0 

Then we have 

1 

1 + 

where, after some manipulation, we obtain 

1 + cosh(n ) cos(lji) 
0 

cosh(n ) + cos(lji) 
0 

A 

(7.40) 

(7.42) 

(7.44) 

Substituting from equation 7. 44 into equation 7. 43 and using the half 

angle f ormulas for the trigonometric and hyperbolic functions gives 

2 g n 
tan2 (f) tan (2) = tanh2 (.....£.) 

2 
(7.45) 

or 

g 
tan(2) 

no 
tanh(2) tan( f) (7.46) 

whe r e the minus s i gn is used b e caus e n
0 

< 0 . 'l'heref'o r c we de fin e 
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(7.47) 

so that equations 7.46 and 7.39 are made equivalent. This makes 

and u2 continuous across the spherical surface 

In order to make u3 continuous at n = 

ti on 7.7 that on n = no we have 

- - ~~a_,..~~ + r 
sinh ( n ) o 

0 

while from equation 7.28 we have 

2a no 
arctan[ tanh(2) u = 

3 sin ( tjJ ) 
0 

Equating these results gives 

r 
0 

a 
1 

sinh( n ) 
0 

as our definition of r 
0 

no 

n = no 

we note from equa-

(7.48) 

(7.49) 

(7.50) 

With and continuous across n = n , a surface of 
0 

constant h is automatically continuous there. However, h
3 

has 

a step discontinuity at this surface. Then we have the same conditions 

at as befor e at n = 0, namely the TEM wave passes through this 

surface without reflection and is described by equations 7.32. In sum-

mary, inside the n = n sphere the u. are given by equat i ons 7.7 
0 l 

and 7.11 and the constitutive paramet ers are just 

the lens bounde d by n = n
0 

, n = O and tjJ = tjJ 
0 

E 
0 

and 

the u . 
l 

In 

a re given 

by equations 7.28 and 7 . 38, and the constitutive parameters are given 
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by equations 7.24 and 7.26 with £ 1 =£ 11 1 =11 o' o For z ~ 0 

are x,y ,z and the constitutive parameters are 

The transmission line conductors in all three regions have exactly 

the same description as functions of u
1 

and only as in equation 

From equations 7.24 and 7.26 the constitutive parameters for the 

lens are given by 

= 
cosh(n) + cos(~) 
cosh(n) + cos(~ ) 

0 

('(. 51 ) 

For convenience one might prefer to have this relation expressed in 

terms of p and z To do this we form complex variables from equa-

tions 7.16 and 7.17 as 

p + iz 
a 

so that 

~ + in 
2 

= sin(~) + i sinh(n) 
cos(~) + cosh(n) 

( P + iz) = arctan 
a 

= tan(~ + in) 
2 

kn 1 2aP · 2 ( )2 = 2 + 2 a r ctan[ 2 2 2 ] + ~ Q,n[p2+ z+a 2 ] 
a - p - z p + (z-a) 

( 7. 52) 

(7. 53) 

where k is an integer or zero (9 ) . Separately equating real and 

imaginary parts gives ~ and n as function s of p and z . Then 

we have 

cosh(n) = ~{[p:+ (z+a) : Jl/2 + lp:+ (z+a):_i-1/2 } 
p + (z-a) p + ( z- a ) J 

(7.54) 

and 
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cos ( tjJ) (7.55) 

These can be substitute d in equation 7.51 to find £ and µ as fun c -

tions of p and z for a given value of tjlo Note f rom equation 7.51 

that since 0 ~ tjJ £. tjlo < 1T the maximum £ and µ for any fixe d T1 

occur at tjJ = 0 Si nce cos ( tjJ ) < 
0 

1 the n varying T1 for tjJ = 0 we 

see that the maximum £ and µ occur at the minimum of co sh ( n) 

Assuming n = 0 is in the region of i nterest , the minimum occurs there 

and we have 

The minimum and µ 

2 
_l_+_c_o_s_,.(-tj!~) = 

0 

1 

are, by previous choice, £ 
0 

a n d 

occur on tjJ = tjJ , the maximum tjJ for the region of interest . 
0 

which 

Referri ng to Fi g ures 3 through 5 one can better appreciate the 

approximation involve d in placing a boundary on the lens at ijJ = t/! 
0 

In these fi gures we have used a strip line to illustrate a typical 

cylindrical transmission line. For s uch a transmission line t h e fields 

for the TEM mode extend over the entire cross - section surface , a plane 

of constant z, or more generally a surface of constant u
3 

. However, 

these fie lds fall off in amplitude with distance from the conductors, 

for l arge distances. Thus we require tha t tjl
0 

be chosen l a rge enough 

that the f ields in the TEM mode for tjJ ~ tjJ are insignifi cant compared 
0 

to the fields near the conductors . For certain types of cylindrical 

transmission lines , such as coaxi al lines , the fields are ze ro outside 



-47-

some c l osed outer perfectly conducting boundary. For s uch cases the 

lens material is not needed outside the outer conducting boundary and 

stopping the l ens at some external creates no d i sturbance in 

the fields. 

This lens, based on a bispherical coordinate system, can be 

classified as a converging l ens . Referring to Figure 5, a spherical 

TEM wave launched near the apex of the conical transmission line i s 

converted into a plane TEM wave on the cylindrical transmission l ine . 

C. Modified Toroidal Coordinates 

For an example of an inhomogeneous diverging l ens define the 

rotational system v
1

,$,v
3 

as toroidal coordinates v,~, s a s 

illustrated in Figure 6 and defined by (6) 

x 
a sinh(v) cos($) 

-
cosh( v) + cos(d 

a sinh(v) sin(tl 
y -

cosh( v) + cos( d 

z 
a sin(d 

-
cosh(v) + cos(~) 

wi th - lT < s ~ lT and 0 £° V<co 

are spheres ; surfaces of constant 

factors are 

h$ = 
a sinh(v) 

~~~~~-------~~ = 
cosh(v) + cos (s) 

p 

Surfaces of constant 

(7. 57) 

(7.58) 

(7 . 59) 

v = s 3 

are toroids . The scale 

(7.60) 
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Rotate ~ f r om 0 to 2n 

to give s urfaces of constant 

[, ' v . 

I;; = 

---

'I'oroidal Coordinates 
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a p 
~~..,.-.,.._~~-.,..---:- = 

cosh(v) + cos(~) sinh(v) 

To construct the u . system f'irst calculate ,, f'rom equation 
l. 

6.34 as 

A. v 

f 
dA I 

f 
dv ' (7 . 62) = sinh(v ' ) A.' 

a 00 

0 

which gives 

A. 
R.n [ t anh ( ~) ] R.n( - ) = 

a 
0 

or 

v 
A. = a tanh(2) 

0 
(7. 64) 

so that 

(7.65) 

where a > 0 is a constant which i s chosen later. We obtain h f'rom 
0 

equation 6.41 as 

sinh(v) l 
v cosh(v) +cos(~) 

tanh(2) 

From equation 6 . 37 we have 

a cosh(v) + l 
;- cosh(v) + cos(~) 

0 

As b ef'ore we set € 1 = £
0

, µ' = µ
0 

and restri ct € ~ € 
0 

(7. 66) 

which together require h
3 

~ l . Observe that f'or v ~ 0 and f'or 
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fixed i; with -TI < i; < TI , h
3 

is a monotonically decreasing function 

of \) Thus for fixed is a maximum for \! = 0 , the z axis. 

Then to minimize the required E and µ set h
3 

= 1 on \! = 0 

This gives 

and we choose 

1 + cos(i;) 
= cosh(\J) + cos(i;) 

.9£._ = 1 [l + cos(i;)] 
du

3 
a 

Again could have many other forms. 

di;' = 
1 + COS (/;I ) 

(7.68) 

Then is calculated as 

(7.70) 

We now have all the u. coordinates and call them modified toroidal 
1 

coordinates. 

Having the u. 
1 

and h. 
1 

for this toroidal lens we now join 

cylindrical and conical transmission lines to the lens. One boundary 

surface for the lens is taken as the plane z = 0 on which i; = 0 , 

= 0 Combining equations 7.57, 7.58, and 7.65 and defining 

a _ a giv es for z = 0 , 
0 

(7.71) 

Let the lens material b e present only for u
3 

> 0 (corresponding to 

i; > 0, z > 0). Let the medium for z < 0 be free space with consti-

tutive parameters and let for z ~ 0 be simply 

x,y,z. The transmission line conductors are constrained by equation 
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7. 1 for all considered. Thus, for z ~ 0 we have a cylindrical 

transmission line, while in the lens the conductors are curved to 

satisf'y equations 7.1 and 7.65 with a = a . 
0 

Note that there is a 

singularity in the u. 
l 

at p = a, z = 0 corresponding to v=-+=. 

Thus for t he toroidal coordinates we confine our interest t o v satis-

f'ying 0 = \I -£ \I < +oo 0 • We let v = v be a boundary for the lens 
0 

material. 

The u., h, and the transmission line conductors are continuous 
l 

through the plane z = O. We have a TEM wave, as before, of the form 

E' f(t -
u3 

'V ' ~ e ( ul 'u2 ) = - ) 
c' 

H' = f(t -
u3 

'V' ~h ( ul 'u2 ) (7.72) - ) 
c' 

Since h is continuous through z = 0 , tangential 
-+ -+ 
E and H are 

continuous through z = 0 as required . Note, however, that h
3
= h = 1 

for z < 0 and that h
3 

has a step discontinuity at 

Introduce another lens s urface at 

This surface is a sphere described by 

x
2 

+ y
2 

+ ( z + a cot ( s ))
2 = 

0 

with 

2 
a 

z = 0 

(7.73 ) 

This sphere is centered on the z axis at z = -a cot(s ) and h as a 
0 

radius ajsin(s ) j-l. Figure 7 illustrates a l ens cross section in 
0 

the zx plane and Figure 8 gives a perspective view with the transmis-

sion line conductors. The r egion outside the sphere described above is 

assumed to be free space and contains a conical transmission line with 
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1 

z=-a cot(s ) 
0 
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- a 
sin(s ) 

0 

free space 

s=O 

Fig. 7. Toroidal Lens 

x 

1 

z 

l ens free s p ace 



x 

Fig . 8. 

cylindrical 
transmission-line 

conductor s 
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conical 
transmis sion- line 

conductors 

Toroidal Lens with Cylindrical and Con i ca l 
Tr ansmission Lines 
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conductors matched to those in the lens. 

Now we match the u. coordinates at s = s using the modified 
l 0 

spherical coordinates of Section VIIA to describe the continuation of 

the u. coordinates past 
l 

line at the center of the 

zl in equation 7.4 as 

s = so . Center the apex 

sphere corresponding to s 

- a cot ( s ) 
0 

For the conical line we have, from equations 7 . 11 

and for the lens 

of the 

= so 

u1 = a tanh(~) cos(cj>) a tanh ( ~) sin ( cj>) 

Thus on we need 

conical 

by choosing 

(7.74) 

(7.7 5) 

(7 . 76) 

(7.77) 

Then considering p on s s
0 

we have for the conical line 

and for the l ens 

a 
P = sin(s ) sin(G) 

0 

a sinh(v) 
p = cosh (v) + cos(s ) 

0 

The Q and v coordinates are then related on this surface by 

sin(Q) = 
sinh(v) sin( s ) 

0 

cosh(v) + cos(s ) 
0 

(7 . 78) 

(7.79) 

(7.80) 



-55-

This has the same form as equation 7.42 if we replace n by v and 
0 

1jJ by - I:; • 
0 

Then from equation 7.46 we have the result 

Therefore we define for this case 

a 
2z 

0 

I; 

tan(;) 

making equations 7.81 and 7. 77 equivalent. 

tinuous across the spherical surface 

From equation 7 .7 we have, on 

a 
sin(z; ) 

0 

+ r 
0 

while from equation 7. 70 we have 

= 

I; = I; , 
0 

Then and 

These results g ive, as a definition of r 
0 

for this case, 

r 
0 

a 
- cot(z; ) 

0 

(7.81) 

(7.82) 

are con-

(7.83) 

(7.84) 

Now and are continuous across so that h is 

also continuous there . However, h
3 

has a step discontinuity there. 

Then the TEM wave described by equations 7. 72 passes through this surface 

without reflection. In sununary, for z ~ 0 we have u
1

,u
2

,u
3 

equal 

to x,y,z and the constitutive parameters are £ and 
0 

j.J • 
0 

In the 

lens, bounded by i:; = 0 , i:; = i:; , and v = v , the u . are given by 
0 0 1 
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equations 7.70 and 7.76; the constitutive parameters are 

tions 7 . 24 and 7.68 with For u ~ a 
3 

equa-

the 

u. are given by equations 7.7 and 7.11 with constitutive parameters 
l 

E
0

,µ
0 

• The transmission line conductors are described by equation 7. 1 

for a ll values of of interest. 

The constitutive parameters for the l ens are given by 

E -= 
E 

0 

.!:!._= L- cosh ( v ) + cos(r,) 
µ

0 
h

3 
- 1 + cos(r,) (7. 86 ) 

To express thi s result in terms of p and z , as in Section VIIB , we 

form a compl ex variable 

z + iP sin(r,) + i sinh(v) --- = 
a cos ( r, ) + cosh (v) 

so that, just as in equations 7. 52 and 7. 53 

r, + iv = 
2 

( z + ip) arctan 
a 

kn 1 2 az 2 + 2 arctan[ 2 2 
a - z -

with k an integer or zero. From thi s we obtain 

{ 

2 2 1/2 2 2 -1/2 
cosh(v) = ~ [z/ (p+a)) + [z2+( p+a)~J } 

z + ( p- a) j z +(p-a) 

and 

c os( r, ) ( ~) ] - 1/2 
± 1 + tan - (l_. ) 

(7. 87) 

(7.88) 

(7 . 89) 

('"(. 90 ) 
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These can be substituted in equat i on 7 . 86 to find E and µ in ter ms 

of p and z . From 

l;, o ccur at \) = \) 

' 0 

varying l;, fo r 0 ~ 

E and µ occur at 

equation 7.86 the maximum E and µ for 

the maximum \) considered for the lens. 

.'.; ~ l;, < 
0 

l;, = so 

1T for \) = \) 

' 
we finC. that 

0 

\) = \) 

' 
for which we h a ve 

0 

cosh( v ) + c o s ( l;, ) 
0 0 

1 + cos( l;, ) 
0 

the 

f ixed 

Then 

maximum 

(7. 91) 

The minimum E and µ were made E
0 

and µ
0 

on the z axis, or 

e quivalently v = 0 

Referrin g to Figures 7 and 8 , note that for this toroidal lens, 

as in the previ ous case , we require tha t the f iel ds in the 'l'EM mode for 

v ~ v be negl igib l e compared to the fi e lds near the conductors so 
0 

that the TEM mode is not s i gnifi cantly distur bed . The pre sent lens, 

based on toroida l coordinates , can be c l assifi ed a s a diverging l e ns. 

Referring to Fi gure 8, a plane wave o n the cylindrical transmission 

line is converted on passing through the l ens ,into an expanding spheri -

cal wave on the conical transmission line. 

D. Modi fied Cylindrical Coordinates 

As a last example we consider a lens which can be u s ed t o tra.ns i -

tion TEM waves between two cylindri cal transmission l ines with different 

propagation directions. Specifically, c h oose the 

drical coordinat e s as 

z 

u . 
l 

based on cyl in-

c·r. 92 ) 
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(x 
2 + y2)1/2 

u 2 - p -

u3 - po<f> tan <P - y/x 

0 ~ <f> < 2n where p > 0 
0 

(7.93) 

( 7 . 94) 

is a constant and <P = 0 

corresponds to y = O, x > 0 Note that the intermediate rotational 

v. coordinate system is not used for this example . Surfaces of con­
J. 

stant u
3 

are planes. The scale factors are 

h - h = h = l (7 . 95 ) l 2 

h3 h<I> ~ = p 
(7. 96 ) = du

3 Po 

Since h
1 

a nd h
2 

are equal we have an acceptable coordinate system 

satisfYing equation 6 .15 . The resulting l ens and transmission lines 

are illustrated in Figure 9. We call the u. modified cylindrical 
). 

coordinates. 

The constitutive parameters are given from equations 6 .16 with 

e:' = E µ ' = µ as 
0 ' 0 

Consider p = Po 

the l e ns to make 

p = pl with 0 

with z2 > 0 

< 

E -= 
E 

0 

one 

E ~ 

pl < 

surface 

E µ 
0 ' 

Po' <P 

'l'he maximwn 

= 

of the 

~ µo 

= 0, <P 

t: a nd 

= ~Jmax LI 
µo max 

(7. 97) 

lens and constrain p ~ Po for 

Fix other lens surfaces as 

= <Po with 0 < ·~ < 2 11 
' 

z = ±z 
0 2 

µ the n oceur for p = pl g .i vi.ng 

Po 
(7 . 98) 

pl 
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z 

x 

cy li ndri cal 
transmi s s i on- line 

condu c tors 

Fig . 9 . Cylindrical Le n s with Cylindrical Tran smission Lines 



-60-

Including the cylindrical transmi ssion l i nes in the 

nate system, we define , for u
3 

£ 0 , as z , x,y 

u. 
l 

coordi-

For 

0 ~ u ~ p cj> the u. are defined by equations 7.92 through 7 .94 . For 
3 0 0 l 

u. 
l 

are defined (from a rotation in the xy plane) by 

- x cos(¢ ) + y sin (cj> ), 
0 0 

- -x sin(¢ ) +y cos(<j> ) +p <j> 
0 0 0 0 

(7.99) 

With these definitions the u. are all continuous across the surfaces 
l 

<I> = 0 and cl> = cl> • 
0 

For outside the lens we have h = h = 1 
3 

so 

that h is continuous across these latter two lens surfaces while h
3 

has step discontinuities there . The transmission line conductors are 

described by equation 7.1 for all u
3 

of interest . The TEM wave in all 

three regions of u
3 

is described by equations 6.9. Note that if 

cj> > n then one or both cylindrical transmission lines may need to be 
0 

cut short to prevent their intersecting each other. 

Referring to Figure 9 we require for this cyl indrical l e n s that 

the fields in the TEM mode for p ~ pl , for P ~ P
0 

and for lzl ~ z 
2 

(separately) be negli gible compared to the fields near the tra n s mis sion 

line conductors . This lens is neither a converging nor a diverging lens 

but might be better termed a prism or a redirecting l e ns. 
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VIII. TWO- DIMENSIONAL TEM WAVES 

Now consider a restricted f o rm of the u. c oordinates by defining 
l 

u3 - z (8.1) 

which implies 

h3 = 1 (8. 2) 

while and a re t a k en independen t of z . Also l et either the 

formal e l ectri c field or formal magneti c field have only a u .., 
.) 

com-

ponent and let the remaining formal fie ld h ave only a u
2 

component. 

Let the formal field components b e only functions of u
1 

and let the 

wave propagate in the +u
1 

direction . In terms of the u. and the 
l 

formal field components this represents a uniform TEM wave . 

Aga in we assume, f or the constitutive p a rameters , that 

id o . . ) 
lJ 

(8. 3) 

with t h e conductivity zero. Thus the medium is i sotropic but , in 

general, inhomogeneous. The formal constitutive paramet ers are assumed 

to have the forms 

~( 
£' 0 0 

) ( :i 0 0 

) 
1 

( £ ! . ) 0 £I 0 ( µj_j ) µ' 0 (8 .4 ) 
lJ 2 2 

0 0 s ' 0 µ I 
3 3 

We also h ave 

( sj_j ) dY .. ) 
lJ ( µj_j ) = µ ( y ij ) ( 8. 5 ) 
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where, because of equation 8.2, 

(8.6) 

Note in equations 8 . 4 that the diagonal components o:: ( £ ! . ) and ( µ ~ . ) 
lJ lJ 

may be all unequal. However, since the formal electric and magnetic 

fields are each assumed to have only one component, then only one of 

the £ ' and one of the µ ! will be significant. 
i l 

These s i gnificant 

£! and µ ! will be assumed independent of the coordinates so that 
l l 

in terms of the u . coordinates and formal fields the mecli um is effec-
1 

tively homogeneous. 

We have two cases to consider. Call the case with the electric 

field parallel to the z axis Case l; call the case with the magnetic 

field parallel to the z axis Case 2. 

For Case 1 we assume a wave of the form 

+ + 
f(t 

ul ->- + 
f(t 

ul 
(8.7) E' = e3 E' - -) H' = e2 H' - -) 

3 c ' 2 c ' 
0 0 

with 

J' E' 
µ2 

H' c' 
1 (8. 8) 

- £ ; 
= 

30 2 j I I 0 µ £ 
2 3 

where E' and H' a re independent of the coordinates . The n for 
30 2 

0 

Case 1 we assume that µI > 0 and £I > 0 are independent of the u. 2 3 l 

Then from equations 8.4 through 8. 6 we h a ve 
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£ (8.9) 

-+ 
Note for Case 1 that since E is parallel to the z ~<is, perfectly 

conducting planar sheets can be placed perpendicular to the z axis and 

used as boundaries for t h is TEM wave . 

For Case 2 we assume a wave of the form 

with 

E ' = 2 
0 

ul 
f(t - - ) c' 

-+ 
H' 

c ' = 

-+ ul 
e

3 
H ' f(t - - ) 3

0 
c' 

(8.10) 

1 (8 . 11) 

where E' and 
2 

H' 
30 

are independent of the u . . 
l 

For this case we 
0 

then assume that µ' 
3 

also have 

£ = 

-+ 

> 0 and E2 > 0 are independent of the u. 
l 

We 

( 8 . 12) 

For Case 2 since E is perpendicular to surfaces of constant u
2 

, 

perfectly conducting sheets can be placed along these generally curved 

surfaces and used as boundaries for this TEM wave . 

There are many possible ways to choose u
1

(x,y) and u2 (x,y) and 

form an orthogonal curvilinear coordinate system. Then calculating h
1 

and 11
2 

one can find e: and µ from equations 8.9 or 8. 12. For the 

examples in the next section we consider coordinate systems with 

( 8 . 13) 
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Define the compl ex variables 

p E X + iy (8.14) 

Then we h ave for the line element 

( 8 .15) 

Thus i f we are give n a conformal transformatio n o f the f o rm q(p) or 

its inverse, we can calculate an h as 

h = l~I = 1£;1-
1 

(Cl . 16 ) 

The n from q(p) we can also obtain and 

Wi t h the restri ction of equation 8.13 , l ook again a t Ca se 1 . 

Equations 8.9 b e come 

€ = µ µ' 
2 

( 8 .17 ) 

so that µ is h omogeneous fo r Case 1 . Similarly for Case 2 , e quatio ns 

8 . 1 2 b ecome 

€ € ' 
2 

µ ( 8 . 18 ) 

so that E: is homogeneous f o r Cas e 2 . 

For conve ni e n ce we choo se E: ~ = s
0 

, µ ~ = µ
0 

fo r Case 1 , a nd 

E: ' = E: µ ' = µ fo r Ca s e 2 . Then f or each case one o f t h e const i -2 0 ' 3 0 

tut i ve paramet e rs is the same as f o r free spac e . Requi r ing € ~ € 
0 ' 
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µ ~ µ , then for both cases we require h ~ 1 . In the next section 
0 

we choose examples of two-dimensional lenses which might be appropriate 

for l a unching TEM waves between wide perfectly conducting parallel 

sheets. After defining the conformal transformation, giving u
1 

and 

u2 , regions with h > 1 are exclude d from consideration. 
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IX. TWO-DIMENSIONAL TEM LENSES 

As a first example of a coordinate system for a two- dimens i onal 

lens consider the conformal transformation defined by 

9.. -a 

p 
l n-

~n[ e a - l] 
1T 

q 
n-

E. - l ~n[e a+ l] 
a n 

(9.l) 

This is illustrated in Figure 1 0 . This transformation also describes 

the potential distribution around a uniformly charged 1-rire grid (in a 

homogeneous medium) termina ting a uniform electric field for x >> 0 . 

From equations 9.1 we have , for and 

2nx 1TX 

a [ a = 2 1T tn e 2e a cos( ny) + l] 
a 

1TX 

[ 

a . ( ny) 
a e sin --; 

arctan I 
n n x a '!!}[_ 

e cos ( 
a 

] + ak 
) - 1 

(9.2) 

( 9 . 3) 

where k = 0, ±1 . Note that a is just a parame t er which can be used 

to scale the dimensions . 

The scale factor h g iven by equation 8.16 is 

(9.4) 

In terms of x and y this is 

( 9. 5) 

Since only regions with h ~ 1 are of interest we find the contour for 

h = 1 given by 



1 
l 

T \. 5 11 I 1. 5 12 

u/a = 0 \ I . 5 

u 
2 = 0 u2 

y 0 -;--- = ±1 I CD \ I I a ,-+1--1 ____. x / a 

a 

-. 5 

-1 -1 

-1 0 

u
1 

+ i u,_, 
- c:. = 

a 

x 
a 

, 
-'-

1 r :-(x+iy ) 
- ?,n a. 
:r Le 1 1 

.l 

Fig . 10. 2oordinates for ?'irst Exa..rr:ple 

2 

! 
0\ 
--.J 
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-rrx/a 
e (9 . 6) 

which is indicated in Figure 10. In terms of and the scale 

factor has the form 

l 
-= 

- 2rru/a 
+ e (9.7) 

Concentrating our att e ntio n on the region near the positive x axis, we 

s ee from this last equation that if we restrict I u
2

/ a I £ 1/2 , t hen 

this will assure having h f l . For Case 2 (magnetic fi e ld paralle l t o 

the z axis ) one might place perfectly conduct ing boundaries on surfaces 

of constant within t his restriction. From equat ions 8.17 or 8.18 

the maximum E or J.J , as appropriate, is related to the max imum of 

- 2 in the reg ion of interest. Consider h some 

ul of interest. Note that the maximum of h 
- 2 

o n u2 = 0 for which y = 0 Then varying ul 

maximum of h 
- 2 

~2 1 
max 

occurs at ul 
0 

2 
-TfUl /a] 

e o 

Also note that as x ->- oo we have 

h -+ 1 , 

so that 

ul = u l a s the mi nimum 
0 

for fixed ul occurs 

we find that the 

(9.8) 

(9 .9 ) 

On e of the constitutive par:unete r s of the l e ns is the some as free space; 

t h e other t e nds to the free- space value as x - > "' 'l'he n for suffi-

ciently l a r ge x the l e n s ma t erial can be s t opped without s ignificantly 
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distorting the TEM wave. 

As a second example, consider the conformal transformation 

defined by 

.9:.. - ~ R.n[sinh(~ £.)] 
a TI 2 a 

£. = .?arcsinh[eTiq/2a] 
a TI 

(9.10) 

This is illustrate d in Figure 11 . This transformati on also describes 

the potential distribution around a uniformly charged wire grid (in a 

homoge neous medium) terminating uniform, equal but opposite, electric 

fields for x >> 0 and x << 0 Obtaining 

tions 9.10, we have 

2a ( (TI X) TI v = 1T arctan coth 2 a tan(2 ~) J + 2ak 

where k = 0,±1 

The scale factor h is given by 

h = 11 + e-nq/al-1/2 = ltanh(~ £.)I 
2 a 

In terms of x and y this is 

2e-Tix/a TIY - 2Tix/a 
1 - cos(-) + e 

h2 a 

-TIX/a ny - 2Tix/a 
1 + 2e cos(-) + e 

a 

The contour for h = 1 is 

'!... ± 1 
= 

a 2 

and from equa-

( 9.11) 

(9.12) 

(9.13) 

(9.14) 

(9.15) 
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. 5 l 

. 5 

u 2 
-= O 

l c­. ) 

y_ 0,---1ir.--1-~~~~-t~~~~-t~~~~~-+~a~~~~-t-~~~ .. ~ ~ 
a a 

0 

Fig. 11. 

x 
a 

l 

2 ( . (TI x + iy) ) - .'ln s1nh -
TI 2 a 

-. ) 

-1 

Coordinat es for Secon d Example 

2 
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which is indicated in F'igure 11. In terms of and u we h ave 
2 

1 

h4 
= 

-nu
1

/a Tiu2 1 + 2e cos(~-) 
a (9.16) 

Consj_dering the region near the positive x axis, not e that by restri ct -

ing ju
2
/aj ~ 1/2 this will assure having h ~ 1 . For this second 

example consider as the minimum of interest and note that the 

minimum h occurs on u
2 

= 0 (for which y = 0) and at u
1 

u
1 

, so 
0 

that 

-nu1 /a 
= 1 + e 

0 
(9 . 17) 

The maximum E or µ can then be found from equations 8.17 or 8.18. 

Also as x + 00 we have 

h + 1 ' 
2 a in(2) , u1 + x - n (9.18) 

Then, as in the first example, the lens material can be stopped at suf-

ficiently large x without significantly distorting the TEM wave. 

Figure 12 illustrates the present types of two-dimensional lenses 

together with appropriate parallel-plate transmission lines for both 

cases of field polarization discussed in Section VIII. Note that the 

conductors and the inhomogeneous medium are stopped before reaching the 

singularity on the z axis ; sources to launch the TEM wave might be plac ed 

here. The perfectly conducting sheets and the inhomoge neous medium are 

also stopped on surfaces of constant u
2 

. 'rhi s distorts the TEM wuve, 

particularly near the edges of the sheets. However, the sheets are 
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A. Case 1: E par allel to z axis 
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....._ ___ transmi s sion- line 
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conductors 

Fig. 12. 'I'wo- Dimensional Lenses with •rr ansmission Lines 
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assumed to be much wider than the sheet separation to minimize the 

influence of this distortion. 
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X. CONCLUSION 

In sununary there appear to be many ways of specifying inhomogen­

eous media such that simple electromagnetic waves, such as the TEM waves 

used here, can propagate in the medium. These types of inhomogeneous 

medi a can be used to define lenses for transitioning TEM waves, without 

reflection or distortion, between conical and/or cylindrical transmis­

sion lines. Of course, there are practical limitations in the 

realization of such lenses . For example, in some cases the lens should 

ideally be infinite in extent; limiting the extent of the l e ns can 

introduce perturbations into the desired pure TIM wave, and care will 

have to be taken to insure that these perturbations are small. Another 

limitation lies in the chara cterist i cs of practical materials used to 

realize the desired permittivity and permeability of the inhomogeneous 

medium. The available range of these parameters will be limited and 

their frequency dependence imperfect. Of course, perfect characteristics 

are not really necessary. Elsewhere we have proposed a lens based on 

geometrical optics for transitioning TEM waves b etween conical and 

cylindrical transmission lines (10). The lenses discussed in the 

present r eport, however, have the advantage that, within the limitatio n s 

mentioned above, the TEM wave passes through the l e ns undistorted, 

based on a solution of Maxwell 's equations . 

In this report we only consider isotropic inhomogeneous media for 

the l enses. Within this area we consider a few examples each of three­

dimensional and two-dimensional lenses . •ro extend t he present work 

one might consider several other such examples in order to have 
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avai lable other types of geometries a nd inhomogeneities . For a wider 

extens i on one might allow the medium to be anisotrop ic as well as 

inhomogeneous . This would r emove some of the r estrictions on the coor­

dinate systems which could be used. However, such a~ a nisotropic 

inhomogeneous medium might be more difficult to realize. 
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APPENDIX A: CHARACTERISTICS OF COORDINATE SYSTEMS FOR FIELD 

COMPONENTS IN ALL THREE COORDINATE DIRECTIONS 

In Section V, when considering the case of forma l field com-

ponents in all three coordinate directions, we require that ( £i j) and 

(µ!.)reduce to constant scalars times the identity matrix . Combining 
lJ 

this with the earlier requirement that (£ . . )and(µ .. ) reduce to 
lJ lJ 

scalars time s the identity matrix leads to the result of equation 5.6, 

namely 

(A.l) 

This very restrictive form of the h . 
l 

leads to the natural question of 

what forms of h(x,y,z) or h(u
1

,u
2

,u
3

) are possible. 

Now the u. form an orthogonal curvilinear coordinate system by 
l 

hypothesis. It is then necess a ry and sufficient that the 

the Lame equations, namely 

a
2
h. Clh. Clh. 

1 Clhk Clh i l L _J_ _1_ 0 ----- = au. a~ h . a~ au. hk au. a~t J J J J 

and 

a 1 Clh. a 1 Clh . 1 Clhi Clhj 
(- _J_) + -- ( - __ l) +--- -- = 0 

au. h. au. au. hj Cluj h2 a~ a~ l l l J k 

h. 
l 

satisfy 

(J\.2) 

(A.3) 

where i,j,k is a permutation of 1,2,3 yielding six independent equa-

tions (11). Substituting from equation A.l gives 
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Introduce a change of variable defined by 

v 
1 
h 

0 (A. 5) 

(A.6) 

where any points with v = 0, 00 are excluded from our consideration . 

Equations A. 4 and A. 5 then become, respectively 

and 

1 a2
v ---+ 

v a 2 u. 
l 

1 (~)2 
2 au. 

v l 

Rewrite equati on A. 8 as 

a
2

v = 2 
au. 

l 

1 a2
v ---+ 

v a 2 u. 
J 

3 a
2

v l 2 
i=l auR, 

0 

.L (~)2 + 1
2 

(~v ) 2 = 
2 au. oQ 

V J V K 

1 3 
(~)2 l v auR, i=l 

Since this holds for i=l,2, 3 we deduce 

Cl2v a2 v 
2 2 

au. au. 
l J 

Also, from equation A.7 we have, for i :f j 

0 

0 (A . 8) 

(A. 9) 

(A.10) 

(A.11) 



-78-

Now from equation A.11 av/aui is at most a function of ui . 

But then a2v/au~ i s at most a function of u. . From equation A.10 
l l 

we have a function of u. 
l 

equal to a function of 

are a real constant, say c
1

, i.e. 

= 

Integrating we obtain 

u. 
J 

and thus both 

(A.12) 

(A.13) 

where d. is a real constant, since av/au. i s at most a function of 
l l 

u. Integrating again gives 
l 

v 

2 c
1

u. 
= --1 

+ d u + e (u 1\.) 
2 . . . . ' 

l l l J 

where, as indicated, e . 
l 

is at most a function of u. 
J 

(A.14) 

and for 

i,j,k distinct. Sununing over i (from 1 to 3) on both s ides of equ a -

tion A.9 gives 

2 
3 3 
v l 

R.= l 
(A. 15) 

Substituting in this last equation from equations A.12 and A. 13 gives 

(A.16) 

We now consider two cases . 
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For the first case assume that c
1 

= O. Then from equation A.16 

we have 

which implies for i =l,2,3, 

Thus equation A.14 becomes 

3 
0 = l 

t =l 

d . = 0 
l 

v = e.(u . ,u.) 
l J K 

so that v is independent of u. 
l 

for i=l,2,3. 

i s a constant, and thus h as well, i.e. 

1 2 
h = -.;; = c 2 

(A . 17) 

(A.18) 

(A.19 ) 

This implies that v 

(A.20) 

where c
2 

# 0 is a real constant . Then for this first case the u. 
l 

are just a cartesian coordinate system. This is the trivial case of a 

homogeneous medium in which £ and µ are independent of the coor-

dinates. 

For t he second case assume that c
1 

# 0 . Then from equation 

A.16 we have 

3 
v = l 

t=l 
(A. 21) 

Note that c1 > 0 since v > 0 . Defining new real constants a and 

bt , the general f o rm for h is 



where a 'f. 0 

1 h=-= 
v 

since cl 'f. 
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[ 
3 u 1-l l (....&.+b )2 

R,=l a R. 
(A . 22) 

0 Now by a simple l inear shi:rt of the u R, 

coordinates we make b = 0 giving the simple symmetrical result 
R, 

2 
h a = 2 2 

ul + u2 

From equation 2.5 we can 

Rewrite this as 

So momentarily regarding the 

2 
+ u3 

write the line element as 

u. 
1 

as cartesian coordinates, 

(A.23) 

(A . 24) 

x,y,z 

as the orthogonal curvilinear coordinates, and l/h as the scale fac-

tor, we can repeat the foregoing derivation from the Lame equations and, 

by interchanging the quantities in equation A.22, obtain the result 

1 (A . 26) - = 
h 

where a' and b ' are real constants and a' 'f. 0 . Make a linear 
R, 

shi:rt in the x,y , z coordinates so that b' = 0 
R, 

giving 

(A.27) 
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This type of h in equations A.23 and A. 27 corresponds to 6-

sphere coordinates or the inversion of cartesian coordinates, given 

in one of its forms by (6) 

2 
a u

1 x - - 2 2 2 
ul + u2 + u3 

(A.28) 

2 
a u 2 

y = - 2 2 2 
ul + u2 + u3 (A . 29) 

2 
a u

3 z - - 2 2 2 
ul + u2 + u3 

(A.30) 

We have included minus signs in these equations to make the u. 
l 

coor-

dinate system right handed . The scaling constant 
2 

a is required for 

these equations to be cons i stent with equations A.23 and 2.4. We also 

have 

2 2 
a = a' (A . 31) 

which comes from equating the right sides of equations A.23 and A.27 and 

using equations A . 28 through A.30 to relate x ,y ,z and ul,u2,u3 . 

Thus for this special h given by equation A. l there are two 

types of solutions . The u. form either cartesian or 6-sphere type 
l 

of coordinate systems. 
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APPENDIX B: CHARACTERISTICS OF COORDINATE SYSTEMS FOR FIELD 

COMPONENTS IN TWO COORDINATE DIRECTIONS 

In Section VI we consider the case of formal field components in 

only the and coordinate directions. Imposing appropriate 

requirements on the constitutive parameters and on the formal consti -

tutive parameters (equations 6 .10 and 6. 1, respectively) l eads to the 

result of equation 6 .15, namely 

(B. l) 

In this appendix we consider a restriction which this imposes on the 

orthogonal curvilinear coordinate systems . 

Eisenhart (12) defines the second fundamental form of a surface 

(which we take as defined by any particul ar u
3

) as the quadratic d i f -

ferent ial form 

(B . 2) 

whi ch for an o rthogonal curvilinear system reduces to 

(B . 3) 

with 

D" 
3 

(B.4) 

The first fundamental form of a surface is just the line elemen t 

given by 

(B. 5) 
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However, substituting h _ h
1 

= h
2 

into equations B.4 gives 

D" 
3 

(B. 6) 

The first and second fundamental coefficients are then in proportion, 

i.e. 

(B.7) 

We then apply a result of Eisenhart (12) that these coefficients are 

in proportion if and only if the surface (given by constant in 

this case) is a plane or a sphere. Thus for this restriction on the 

coordinate system, given by equation B.l, surfaces of constant u
3 

can 

only be planes or spheres (with respect to an x,y,z cartesian coordi-

nate system) . 

Also in Section VI another orthogonal curvilinear coordinate 

system with coordinates 

tional with 

tan(<j>) = 
y 

x 

is introduced. This s y s tem is rota-

h = ( 2 2 )1/2 
<P p - x + y (B.8) 

from equations 6 .18 thro ugh 6 . 20 and equation 6.32 . Note that the 

scale factors for the v. system are designated by h Because of 
i vi 

equation 6 . 23 relating u
3 

and v
3

, surfaces of constant v
3 

are also 

planes or spheres . Since surfaces of constant v
3 

are planes or spheres , 

we again invoke the result of Eisenhart that the first and second 

fundamental coeffi cient s for a s urface must be i n proportion, 
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which we express as 

D D" 
v3 

= 
v3 

h2 h2 
vl cp 

where 
h ah 

D 
vl vl 

D" l - - - -
v3 h av

3 v3 h 
v3 v3 

Combi ning equat ions B. 9 and B.10 gives 

a R.n (h 
vl 

) a R,n ( h cp ) 

= av
3 

av
3 

But t hi s impli es 

hvl a R.n(h ) a R.n (h cp ) a R,n ( h <I> ) vl 
= av

3 av3 av3 

or, in other words, h /h~ 
vl "' 

is independent of 

used in const ructing the u. 
l 

from the v . 
l 

(B . 9) 

~ 
av

3 
(B. 10) 

(B.11) 

= 0 (B . 12) 

This result i s 
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