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ABSTRACT

A technique is developed for the design of lenses for transi-
tioning TEM waves between conical and/or cylindrical transmission
lines, ideally with no reflection or distortion of the waves. These
lenses utilize isotropic but inhomogeneous media and are based on a
solution of Maxwell's equations instead of just geometrical optiecs.
The technique employs the expression of the constitutive parameters,
e and u , plus Maxwell's equations, in a general orthogonal
curvilinear coordinate system in tensor form, giving what we term as
formal quantities. BSolving the problem for certain types of formal
constitutive parameters, these are transformed to give € and u as
functions of position. Several examples of such lenses are considered

in detail.
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I. INTRODUCTION

One of the techniques used in the solution of electromagnetic
boundary value problems consists in writing Maxwell's equations in
orthogonal curvilinear coordinates and then solving, not for the
physical components of the fields, but for quantities which combine the
physical components with scale factors of the coordinate transformation.
These new quantities are components of tensors and tensor densities
referred to the orthogonal curvilinear coordinate system. Similarly
the constitutive parameters of the medium are combined with the scale
factors in the resulting equations. In making such a transformation

one hopes to simplify the equations and/or boundary conditions in some
way .

One type of problem on which this technique has been used
relates to waveguides (1,2). 1In this case one takes a waveguide filled
with a homogeneous isotropic medium, and transforms to an orthogonal
curvilinear coordinate system in which the boundary walls are more
conveniently expressed. The resulting transformed constitutive
parameters, however, are in general inhomogeneous and anisotropic.
Thus while the boundaries have been simplified, the medium has become
more complicated.

In this report we consider an extension of this technique. We
assume that the formal constitutive parameters, as expressed in some
orthogonal curvilinear coordinate system, are of a particularly simple
form, i.e., homogeneous, at least as they relate to the.allowed field

components. Furthermore, we assume that the constitutive parameters,



before being transformed to the curvilinear system, are those of an
inhomogeneous but isotropic medium. From this we find many cases of
isotropic inhomogeneous media for which certain types of electromag-
netic wave propagation can be simply expressed.

In this approach the medium is made inhomogeneous and perfectly
conducting boundaries are geometrically arranged such that when they
are transformed into the appropriate orthogonal curvilinear coordinates
a simpler problem results which can be solved by more standard tech-
niques. The present approach can then be used to define geometries for
perfectly conducting boundaries and distribution functions for inhomo-
geneous media such that devices built to such designs will transport
electromagnetic waves in certain desirable ways. In particular, we
consider cases which in the curvilinear coordinate system corresponds
to a problem of a TEM plane wave on a cylindrical transmission line.

In the reference cartesian (x,y,z) coordinates the waves are still
TEM, but not necessarily plane. For the examples considered the
particular conductor geometries and media inhomogeneities can be used
to transition waves between two transmission lines, each of which is a
conical or cylindrical transmission line. Furthermore, the transition
is accomplished with neither reflection nor distortion of the wave.
Another application of such examples is for a highly directional high-
fregquency antenna in which the special geometry and medium inhomo-
geneity is used to launch an approximate TEM wave over a cross section

with dimensions much larger than a wavelength.
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The approach followed in this report then represents a design
procedure for a certain kind of electromagnetic lens. The properties
of such a lens, combined with appropriate perfect conductors, are
independent of frequency assuming that the permittivity and permeabi-
1lity of the medium usedare real and frequency independent and that its
conductivity is zero. This result is in contrast to lenses based on a
geometrical optics approximation, such as the well known Luneburg
lens (3), which relies on the frequency being sufficiently high. The
lenses considered here, used with appropriate transmission lines, can
then transmit arbitrary pulse waveforms without distortion.

While the cases considered represent exact solutions to the
vector wave eguation, there are, of course, approximations involved in
the practical realization of such devices. For example, for pulse
applications the permittivity and permeability should be frequency
independent and have certain prescribed values as functions of position.
Such characteristics can only be approximately realized. As another
example, it will turn out that the lenses should, in some cases, have
infinite extent and so will have to be cut off. If, however, the lens
is large encugh the relative magnitude of the fields (as compared to
the magnitude of the fields near the transmission line passing through
the center of the lens) can be small enough that the perturbation is
insignificant. The permittivity and permeability will be required to
be infinite in some places and less than their free-space values in
others, but such positions can be made to be far from any significant
fields so that these requirements can be neglected. For certain trans-

mission lines the conductors restrict the fields to a closed region of
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space so that no lens material at all is needed outside this region.
For a particular application of these lens designs, one should consider
such things as the range of permittivity and permeability required and
the spatial extent of the lens required. In this report we treat the
lenses from an idealized viewpoint.

In outline, this report first considers the definition of what
we call formal electromagnetic fields, vector operators, and constitu-
tive parameters used with orthogonal curvilinear coordinates.
Restricting the forms of the permittivity and permeability the general,
but very restrictive, case with field components in all three coordinate
directions is briefly considered. This is followed by a consideration
of the TEM wave case with electric field components in two coordinate
directions. ©Some general results are obtained for this case and a few
lens types are considered. Finally, the simpler case of two-dimensional

lenses is considered, together with a few examples.
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IT. TFORMAL VECTORS AND OPERATORS

Let us first consider a cartesian coordinate system (x,y,z) with
>
e

-+ -+
e
x’

unit wvectors - ez , and an orthogonal curvilinear coordinate

” u > > -> ., 2
system (ul,ug,uB) with unit vectors e , e,, ey - We restrict both
coordinate systems to be right handed, i.e.
e xe_ = & (2.1)
X N %
and
-> > -+
e, x €, = eg (2.2)
The line element is
- - - - -+ > -
= E = +
dr = e _dx + eydy e dz h,du e, + h,due, + h3du3e3 (2.3)
where the scale factors hi are given for i=1,2,3 as
9 g B ki B g B du, 2 Bu, 2 du, 2 -1
= |— — ) = + + .
= B s+ B = | Tl (2.4)

The hi are taken positive and we exclude singular points where

hi= 0, for any i=1,2,3 from our consideration. The line element is

also often written using the metric tensor (gi.) as

(3a1% = 4% » 42 =

Il b~

g, (du ) (2.5)

i=1

where for orthogonal curvilinear coordinates the metric tensor has the

simple form

o
811 0] 0 hl 0 0]
2
(glj) (gii 5ij) 0 By 0 0 hy 0 ( )
(5]
0 0 0 Q he
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For later use we define some combinations of the hi as

H = hihhy (2.7)
h 0 0
(00 = (8,80 = | 0 by 0 (2.8)
0 0 h3
h2h3 0 0
= H N
(Bij) = (613 hi) = 0 hohy 0 (2.9)
0 0 hlh2
and h2h3
S 0 0
hl
H Bty
(¥, .1 & (8, == 0 —— 0 (2.10)
ij 1 .2 h
h. 2
1 h.h
L2
@ h
3
where 5ij is the Kronecker delta function.

In the u, coordinate system the standard vector operations are

the gradient

ve = %I-%%I e %;—%%; 32 + %g-%gg 33 (2.11)
curl
VxX = % {n [8—3—2— (hX) - 3—3-3— (hX,)1 €
+ [3%—-(hlxl) = —%I-(hBXB)] 32
+ong 5 (X)) - 50— (X)) 2, ) (2.12)



and divergence

du 27371 ou, 172 ou

& y*:%f{_a; (h h.Y.) +—-a-;(h3hY ) +_?’-;(hlhgy3)} (2.13)

The Xi and Yi are referred to as the physical components of the

vectors X and ? which hawve the representations

f = X g + X e + X_e

and

Y=Y +Yeo +7Y.e (2.14)

Other common operations such as the scalar and vector Laplacians are
formed as combinations of the above operations.

Now we define another set of vectors and operators which we call
formal vectors and formal operators and symbolize by the addition of a

prime to the standard symbols. Related to X we define

- o -+ -+
e. + Xle + Xle

o= oy ' 3
% Xl 1 272 373 ij) % (2.15)

1]
—
Q

Thus the components of f' and X are related as

X! = h.X, (2.16)

.

In tensor language the Xi are the covariant components of ¥

Related to ?V we define

L} |+ !+ my o_>-
& * Yle, * Ve, = (Bij) Y (2.17)

> >
Thus the components of Y' and Y are related as
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(2.18)

Y:!ng_i'-’fi
In tensor language the Y; are the components of a relative contra-
variant tensor of weight +1 which can alsc be called & relative con-
travariant tensor density (4). DNote that we have defined the formal
vectors f' and ?' differently because of the different ways that X

5
and Y appear in equations 2.12 and 2.13.

Now we define formal vector operators by

_ 39' - 90! -+ 90! -~
Vig' = — e. + e, + e (2.19)
ul A Bu2 2 3u3 3
3x! X! ' axX!
ok 5[__3__X2;]g +[fi__’fs_] >
3u2 3u3 1 8u3 aul 2
X! ox!
+[a s - Bul] g3 2,20
' 2
and
oY oY! oY!
V' . %1 = aul G 8u2 + au3 (2.21)
1 2 3

Note that the formal vector operators have precisely the same form in
orthogonal curvilinear coordinates as the standard vector operators
have in cartesian coordinates. These formal operators are related to

the standard ones by

1/h, 0O 0
V6 = (o, )"« V1O = 0 1/m, O |- 9'e (2.22)
0 0 1/h
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where the potential function @' is related to ¢ by

b = o (2.23)
and by
vxX= %'(aij) c (v x X') = (Bij)—l - (v x X') (2.24)
and
> 1 -
VeY = 5 AR (2.25)

Again in tensor language @ 1s an invariant scalar, the components of
V'®' are the covariant components of V¢ , the components of V' x X!
are the components of a relative contravariant tensor of weight +1, and

V - ? is a relative scalar of weight +1.

j) related to (vij) by

Finally we define a formal matrix (vi

5 = « (v « (a -1
(v) = (B) = (v) - (ag)) (2.26)

The Vij are the components of a relative contravariant tensor of
weight +1. This transformation will be used later for the constitutive
parameters in Maxwell's equations. For the special case that (Vi') is

diagonal we have

(vij) = (Yij) . (“ij) (2.27)

It is this latter case which will be of concern to us in this report.
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III. FORMAL ELECTROMAGNETIC QUANTITIES

Now consider Maxwell's equations

T = OB
V x = - -a? (3-1)
= &> aﬁ
v XH=J+§‘: (3.2)
v-D=, (3.3)
and
TV . ﬁ: 0 (3ch)

together with the constitutive relations

i)

(Eij) i (3.5)

{osl2
I

{0 = B (3.6)
and the equation of continuity

d
V-j :-3% (3-7)

Note that p is the "free" charge density and does not include charge
displacement conventionally included in (Eij). In writing the above
equations we have assumed that (eij) and (uij) are real constant matri-
ces, independent of frequency; they may, however, be functions of posi-
tion. If we had written the above equations in the frequency domain,

then (eij) and (uij) could easily have been taken as complex functions

of frequency.
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Equations 3.1 through 3.7 are assumed to be expressed in terms
of the ug coordinates and the gi unit vectors as in Section II. So
now we make some approdriate definitions of formal electromagnetic quan-

tities. Since E and i appear with the curl operator, we define, as

in the case of X .

n
Q
~—
fasl

E‘ = (a,,) - E = ﬁ'

13:.8)

- ->
Since B, 5, and J appear with the divergence operator, we define, as

in the case of Y s

%
I
®
oy
=
1"

1l

3 (Bgyd = s 2 (Byy) = 7 (3.9)

Now p equals a divergence in equation 3.3 so we define

L]

p' = Hp (3.10)

so that p 1is a relative scalar of weight +1. Substituting for E, ﬁ,

B, and D from equations 3.8 and 3.9 into equations 3.5 and 3.6 and

requiring

2y ' ) A = 1 & Ji
D' = (ei ) « B . B (uij) H (3.11)

shows that for the formal constitutive parameter matrices we should

define

(ur.) = (8..) = (o) » (o, )7t (3.12)
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For some problems one might include a conductivity matrix (Oij) S0
that 3 includes a conduction current density (Oij) . ﬁi. Then we
would define

-1
1 . .
(Uij) (Bij) (Gij) (uij) (%.13)
If (Eij)’ (uij)’ and (oij) are required to be diagonal, equations

3.12 and 3.13 reduce to

—
™
~—
i
—_
<
~—
.
—
M
~—
“
—
s
-
~
i
—_
=<
~—
.
—
=
N
v

(51,) = (1;) + (a;,) (3.14)

The formal electromagnetic quantities defined in equations 3.8
through 3.12 can now be substituted into Maxwell's equations, the con-
stitutive relations and the equation of continuity. The curl and di-
vergence operators can be replaced by the formal operators from equa-—
tions 2.24 and 2.25. Equations 3.1 through 3.7 can then be rewritten

as

>

oD’

~ (3.16)

7. Bt = o (3.17)
gt -8 = 0 (3.18)
Bt = (ef,) - B (3.19)

'= (p!,) - H (3.20)

1dJ
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and

..).
1 & P =N i
v of T (3.21)

Note that equations 3.15 through 3.21 are of the same form as
equations 3.1 through 3.7. All electromagnetic quantities and operators
are replaced with primed symbols, except for t which has remained
unchanged. However, the formal curl and divergence operators, using the
u, coordinates, have the same mathematical forms as have the standard
operators, using the x,y,z cartesian coordinates. Suppose that we
formally think of the u, as a cartesian coordinate system and think
of the primed quantities as the electromagnetic fields, constitutive
parameters, etc. Then we can take a known solution of Maxwell's equa-
tions related to cartesian coordinates, directly substitute primed for
unprimed quantities and the u, for the cartesian coordinates, and
thereby construct a solution of the above equations. Transforming the
formal quantities back to the standard ones by equations 3.8 through
3.13, we then have a solution of Maxwell's equations for which (Eij),
(uij), and/or (cij) may be anisotropic and/or inhomogeneous. The idea
is then to pick (Eij)’ (uij), and (Uij) of some particularly convenient
form and also to choose any boundary surfaces to have convenient forms
in the u; coordinate system so that we can obtain a solution in terms
of the formal electromagnetic guantities. Choosing some particular
relationship between the ui coordinates and x, y, and z, the param-
eters (Eij), (uij)’ and (Gij) as well as the geometry of the boundary
surfaces are determined and the solution is applied to the particular

case.
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IV. RESTRICTION OF CONSTITUTIVE PARAMETERS TO SCALARS

In this report we are only concerned with problems related to
inhomogeneous isotropic media. The later examples of lenses will
utilize such media. Thus we restrict the constitutive parameter and

conductivity matrices to be of the forms

(eij) = e(GiJ.) " (uij) B u(éij) s (oij) = 0(613) (4.1)

where e, p, and ¢ are scalar functions of the coordinates. From
equations 3.14 the formal constitutive parameters then have the forms

(efy) = elryy) o (upy) =mlvyy) o (03,) = oly,,) (4.2)
Also, we restrict o =0 and assume that € and u are real and
frequency independent. However € and uw may, in general, depend on
the coordinates. The formal constitutive parameters (Eij) and (pi_)
are now diagonal matrices with the three diagonal terms possibly func-
tions of the coordinates.

Thus we are led to consider some possible forms for diagonal
(Eij) and (uij) which are consistent with equations (L4.2). We would
like (Eij) and (uij) to have rather simple forms so that electromagnetic
waves, as expressed using the formal electromagnetic gquantities and u,
coordinates, have desired forms. A first case to consider is defined
by requiring (e!,) and (pi ) to be expressible as E'(5ij) and

iJ J

u'(dij) with €' and u' independent of the coordinates. In

terms of the formal quantities, this corresponds to a

homogeneous medium problem for which many types of solutions of



-15-

Maxwell's equations are avallable. This first case is considered in
Section V and Appendix A.

It is not necessary, however, for (Eij) and (“ij) to each have
their three diagonal components equal and independent of the uy for
the problem to correspond to one of a homogeneous medium. In particu-
lar, suppose that for each matrix just the first two of the diagonal
components are constrained to be equal and independent of the coordi-
nates. An inhomogeneous TEM wave with formal field components with

only subscripts 1 and 2 has no interaction with Eé3 or ué3, and so

€é3 and “33 are unimportant in the case of such a wave. Such TEM
solutions are used to define lenses to match waves onto cylindrical
and/or conical transmission lines. This second case is considered in
Sections VI and VII and Appendix B.

As a further simplification we consider the two-dimensional
problem in which u3 =z , one of the formal electromagnetic fields has
only a u3 component, and the other formal electromagnetic field has
only a u, component. With appropriate restrictions on the compon-
ents of (Eij) and (uij) this defines a third case considered in

Sections VIII and IX. Solutions for this case are used to define

lenses for launching TEM waves on two parallel perfectly conducting

plates.
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V. GENERAL CASE WITH FIELD COMPONENTS IN ALL THREE
COORDINATE DIRECTIONS

-

Now consider the case in which ®' and ﬁ' are both allowed to
have all three formal components. For this case we constrain the
constitutive parameters to have the forms

(Eij) = e'(éij) s (uij) = u'(dij) (5.1)

where €' > 0 and u' > 0 are both independent of the u; coordi-
nates. In terms of the formal electromagnetic quantities we have a
homogeneous medium problem. One might then apply many known solutions

for homogeneous media to this case.

With (Eij) and (uij) each constrained by both equations 5.1 and

4.2, we have

h2h3
0
hl
Bghy e u'
(YlJ = —;i;— 0 Gl (éij) = Ir_ (6ij) (5.2)
h_h
0 12
h

where € and p are both assumed nonzero at positions of interest.
This implies
" = - ' _u'
T1a ™ T ¥ Ty T (5.3)

From

" o )
YopY33 33¥11 = T11Vep (5.4)

we obtain
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Since the hi are all taken positive, then we have them all equal

which we express as

o= g
I
=
1}
(=
1}
=

1”27 (5.6)

Then from equation 5.3 € and p are given by

¢h = ¢! g pwh = u' [5xT)

so that €h and uph are both independent of the coordinates.

However, we cannot just choose h to be any function of the
coordinates. In Appendix A we show that there are two general forms
for h which satisfy the restriction imposed by equation 5.6. The
first is given by h equals a constant for which the ui form a car-
tesian coordinate system. For this case ¢ and u are constant so
that the medium is homogeneous.

The second form of h , from equations A.2T7 and A.31, gives an

inhomogeneous medium described by

2
a

X +3y +z

B o —H
ot 1

==

where a # 0 is a real constant. This corresponds to a 6-sphere type

of coordinate system. Defining the radius

2 = x® ey B (5.9)

we have
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If one were to attempt to construct such a medium for frequency inde-
pendent € and p , then € and K would be constrained to be at
least as large as their free space values. For fixea €', p', and a2
there is a maximum r for which € and W can be realized. Also, a
neighborhood of r = 0 1is excluded because of the singularity in ¢
and p there. Thus there are restrictions on realizing such a medium.

With the hi restricted as in equation 5.6, the associated class
of inhomogeneocus media is then very restricted, being limited to

spherically stratified media of the form given by equation 5.8. 1In the

next section we loosen somewhat this restriction on the hi
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VI. THREE-DIMENSIONAL TEM WAVES

Now we restrict our attention to waves of a certain form. Consi-
der inhomogeneous TEM plane waves such as propagate on ideal cylindrical
transmission lines, including coaxial cables, strip lines, etec. Such a
structure supports TEM plane waves which propagate parallel to some
fixed direction, say the z axis. It has two or more separate perfect
conductors which form a cross section (in a plane perpendicular to the
Zz axis)which is independent of 2z . Also, let the medium in which the
perfect conductors are placed be homogeneous.

Next apply this type of inhomogeneous TEM wave solution to the
formal fields discussed in Section III. Let the wave propagate in the

+u3 direction and let the formal constitutive parameters have the

forms

& 0 1 0 0
(El!.,j) = | D e' 0 3 (uij) 5 u' 0 (6.1)
o o g

where €' > 0 and p' > 0 are constants but e! and u! are unspeci-

3 3
fied. BSince we shall only consider waves with no field components
parallel to the ug direction, then Eé and ué nowhere enter the
formal constitutive relations, equations 3.19 and 3.20. Then the
dependence of eé and ué on the coordinates is irrelevant and can
be ignored. TFor this TEM wave the medium can then be formally consi-

dered isotropic and homogeneous since only €' and u' are signifi-

cant.
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Specifically, consider formal fields of the form

u u

| LS 1 _3_ | J— 1 _3 =

E) = Elo(ul,u2) f(t - c,) s B = Ezo(ul,ug) £t - C,), E'3 =0 (6.2)
and

u3 A

1 = 1 — LI ' - = ¥ =

Hy = Hlo(ul,uz) £t o), H) Hzo(ul,ue) £(t =), H3 EOQ (6.3)
where we define

c!' = _._.L__ 5 c = ..__l______. (6.)4)
vu'e! Yu €

and where we can choose the form of f(t - E%O to specify the waveform.
This is the well-known form of TEM waves on cylindrical transmission

lines (5). The formal field components are related by

Bl = 2! H} (6459

and

By =-z! H! (6.6)

where Zé is the formal wave impedance defined by

=

¥ =
Z! = = (6.7)
- -
Equations 6.5 and 6.6 express the orthogonality of ®' and H', i.e.

Br s H' = 0 (6.8)

Also ﬁ and H can be derived from scalar potential functions as

3 u3
E' = £t - c—,) A <be(ul,u2) .
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H' = £(t - —3) v'¢, (u,,u,) (6.9)

where cbe and Qh both satisfy the Laplace equation (using the
V'2 = y' « V' operator). These potential functions can be combined
to form a complex potential @e ® i¢h which allows one to use conformal
transform techniques with the complex variable uy + iu2 . All these
equations, 6.2 through 6.9, are merely the direct application of known
results for cylindrical transmission lines to their formal equivalents
using formal field components and the u, coordinates in place of
physical field components and cartesian coordinates.

Note, of course, that while the results for cylindrical transmis-
sion lines assume constant € and u , the present results using the
formal quantities assume constant €' and p' . Likewise the present

results require that the two or more perfect conductors forming the

transmission line intersect surfaces of constant u in such a manner

3
that the representation in terms of uy and u, is independent of
u3 . Put simply, these perfectly conducting boundaries can be repre-

sented in terms of only their ul and u2 coordinates.

The important feature of these TEM waves is that we only need
restrict the first two diagonal components of the formal constitutive
parameter matrices as in equations 6.1. We still assume that (eij) and

(uij) correspond to isotropic but inhomogeneous media having the forms

as in equations k4.1

(Eij) = s(éij) g (”ij) = u(n?ij) (6.10)

where € > 0 and u > 0 may be functions of the coordinates. Then as
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in equations 4.2 the formal constitutive parameters have the forms

(sij) = E(Yij) . (uij) = u(Yij) {(6.11)

Combining equations 6.1 and 6.11 then gives

h
i 3 0 0
1 e! 0 0 pt 0 0
h_h
” 37 -l . d i _ 1 ;
(Yij) 0 -—h2 0 =l 0 € 0 ” 0 u 0 (6.12)
h.h 0 0 e! 0 0 p!
0 0] —%Tjg 3
3
This implies
o R S O (6.13)
hl h2 € u
and
h.h el u!
172
L2 - _';l = 111 (6.14)
3

From equation 6.13 we find that the first two scale factors are equal

which we eXpress as

h = hy = h, (6.15)

Note that h3 is not included in this equation. This will allow us a
greater degree of freedom in choosing our u, coordinate systems.

Now € and p are given by

eh3 2 et 5 uh3 = ! (6.16)
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so that €h3 and uh3 are both independent of the coordinates. Then
the formal wave impedance from equation 6.7 is the same as the physical

wave impedance because

T [uh
Zé = —‘;T = EE—?—: ‘/% = ZO (6-17)

Since 63 and ué are arbitrary, then any orthogonal curvilinear

coordinate system which satisfies equation 6.15 is acceptable. The h3
that results defines e and u by equations 6.16. Not just any ortho-
gonal system, however, satisfies equation 6.15. In Appendix B we show
that surfaces of constant u3 can only be planes or spheres (with res-
pect to an x,y,z cartesian coordinate system). Two examples of such
coordinate systems have already appeared in Section V (and Appendix A),
namely cartesian coordinates and 6-sphere coordinates. 1In those
examples all three uy surfaces are planes or spheres, since all three
hi were made equal.

In the next section several examples of orthogonal curvilinear
coordinate systems satisfying equation 6.15 are considered. These are
used to define types of inhomogeneous lenses which are then combined
with conical and/or cylindrical transmission lines. Some of these
lenses have rotational symmetry, while the associated uy coordinate
system is not a rotational system. For convenience in such cases we
then introduce an additional orthogonal curvilinear coordinate system

vl,vg,v3 which is both right handed and rotational. We define the

cylindrical coordinates p,¢,Z with
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2 1/2

p = (x= + y2) (6.18)

and

tan(¢) = y/x (6.19)

where ¢ = 0 1is taken from the xz plane for x positive. To make the

vy coordinate system a rotational system we define

v, = ¢ (6.20)

In order to distinguish the scale factors for the A coordinate
system we write them as h_ , h,, and h where v and v, may be
vy 0 v3 1, 3
replaced by other symbols for a particular rotational coordinate sys-
tem. There are many well-known rotational coordinate systems for
which the hv are tabulated (6).
i
To construct the u; coordinate systems we consider a transforma-

tion from the vy system of the form

u = A(vl) cos (¢) (6.21)

u, = A(vl) sin (¢) (6.22)
and

u, = r,(v3) (6.23)

with A(vl) assumed non-negative. There are several reasons for con-

sidering this type of transformation. Surfaces of constant uy are

also surfaces of constant V3 which must then also be planes or

spheres. The functional form g(v3) gives us some flexibility in

choosing h3 which in turn defines € and u . The choice for u

1

and u2 will make hl = h2 . The functional form A(vi) is used to
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gain flexibility in trying to make surfaces of constant uy and sur-

faces of constant u, orthogonal. As an illustrative example, let
vl,q),v2 be cylindrical coordinates p,¢,z2 and let Ap) =p ,

E(z) = z . Then Uy 5, ,Ug is just x,y,z . This corresponds to the
well-known case of a TEM wave propagating in the +z direction on a

cylindrical transmission line in a homogeneous medium.

Surfaces of constant Vi v, and v are mutually orthogonal by

2 3
hypothesis. Then since neither u; nor u, are functions of V3o
while u3 is a function of v3 only, surfaces of constant u3 are
orthogonal both to surfaces of constant uy and to surfaces of con-

stant u, - This leaves the question of the mutual orthogonality of

surfaces of constant uy and surfaces of constant u, - For ortho-
gonality of constant uy and constant u, surfaces we need
8—> a—y
r T
e 22 = 0 (6.24)
Bul au2
or
oF V1 aF 3¢ 2 V1 9% 3¢
av. ow, 3¢ aw.| ~ |ov. 9w, T e au.| - © (6.25)
1 1. jik 1 2 2

Since the Vi surfaces are orthogonal we have

or or
r roo
e 36 - 0 (6.26)
24
so that equation 6.25 becomes
e o MW, o B 3¢ 3¢
v, = B Bu, oa. T 0% " B9 Gu. Bm, = O (6.27)
1 1 9% 9% 1 ¥

or
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v, oV

DA ek T ek ol ——
1 %1 %2 1 %2
Using the relations
e B Bafs
¢ = arc tan(—) . A= (uf + ud) (6.29)
uy 1 2
we find
3¢ _ _ sin(¢) 3¢ _ cos(¢) (6.30)
du A * ou A g
1 2
and
avl _ 2 dvl - cos(s) dv
3ul aul da dx
v, dv dv
1l _ 9A L. . . 1
u,  ou, dx S TH k6.31)
2 2
For h¢ we have
1/2
9x,2 gy_ﬂ
h - — + = 6. 2
. = |ES0+ P . (6.32)
Substituting these results in equation 6.28 gives
dv
Ll - £
b, IdA oA (6.33)
1
or
|da | By h‘fl
A = —p—- ]dvll = ml’-?b—— ldvli (6.34)

Now we have



.

h
1oLy, @2, @22 MP L (a2, @2y2]t?
h¢ o Bvl vy Bvl p avl Bvl
(6.35)
so that hv /h¢ is independent of ¢ . In Appendix 3 (equation B.12)
1
we find, from the requirement that surfaces of constant v3 be spheres
or planes, that h_ /h is independent of v, . Hence h /h is
¥ @ 4 L

only a function of vl . Then equation 6.34 can be integrated to obtain

A as only a function of vl . Thus, from an orthogonal system vl,¢,v3
with surfaces of constant v3 spheres or planes only, equations 6.21

through 6.23 define an orthogonal u, system in which surfaces of con-

stant u are spheres or planes only.

3
Next consider the hi and relate them to the hv . For h3 we
3
have
2. 23 3 _ e dv3)2 (6.36)
3 8u3 8u3 Bv3 8v3 du3
or
_ 3
hy= b |52 (6.37)
3
For h, we have (using equation 6.26)
,2_ 3 _8r _ r or (3V1)2+§f_.ar(gg)
1 Bul aul avl Bvl Bul 3¢ 3¢
dv. o 2
= N f—o) eosia] # B sin®ig) (6.38)
Vl dAa A2

Substituting for hv from equation 6.33 simplifies this last result to

h
- P _ ¢
n, = S 3 (6.39)
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For h we have similarly

] -
NCIE I T S TN SN R S - TN
2 au2 3u2 Bvl Bvl 8u2 ¢ o¢ 8u2
dv 2
Be (=232 ain=le) * &= coel4) (6.40)
vl ai AQ

which, using equation 6.33, simplifies to

h
:)\i-_— hl= h (6-’41)

e
1l
>Jo

Thus the form of the u, given by equations 6.21 through 6.23, with

A(vl) satisfying equation 6.33, also satisfies the requirement of

equation 6.15 that hl = h2 . We then have an acceptable u, system.
Note that the wu, system defined by equations 6.21 through 6.23

and equation 6.33 is based on a rotational system, vl,¢,v3, with

propagation in the in direction where surfaces of constant vy are

spheres or planes. This is not the only way to define an acceptable
u, system. The last example in the next section will construct the

uy system differently.
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VII. THREE-DIMENSIONAL TEM LENSES

In this section we consider some examples of lenses for trans-
porting TEM waves of the form considered in Section VI. These
inhomogeneous TEM waves propagate on transmission lines with two or

more independent perfectly conducting boundaries described in the form

f(ul,ug) = 0 (7.5

so that the boundaries are independent of u The simplest example

3
of this case is given by ul,uz,u3 equal to x,y,z respectively which
corresponds to a cylindrical transmission line with a homogeneous
medium. We first consider the example of conical transmission lines as
a simple illustration of the method developed in the last section. This
is followed by two inhomogeneous lenses based on bispherical and
toroidal coordinate systems. We also show how these can be used to
transition TEM waves between conical and/or cylindrical transmission
lines. The bispherical lens can be thought of as a converging lens

and the toroidal lens as a diverging lens. Finally we consider a lens,
based on cylindrical coordinates, which can be used to transition TEM
waves between two different cylindrical transmission lines which have
their propagation axes pointing in two different directions.

A. Modified Spherical Coordinates

As a first example start with a rotational orthogonal curvilinear
coordinate system vl,q:,v3 given by the spherical coordinates 8,¢,r

illustrated in Figure 1 and defined by

x = r sin(8) cos (¢) (7.2)
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F'ig. 1. Spherical Coordinates
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= r sin(6) sin(¢) €T30

«
1"

™
|

N
1l

1 5T cos (@) (7. 4%)

where Zq is a constant we can choose later. Note that surfaces of
constant v3 = r are spheres and we are considering »ropagation in

the r direction. The scale factors are

hy=r 5 h¢=rsin(9)=p s H =1 (7.5)

Next we construct the ui system for which we need A (8) and

E(r) for equations 6.21 through 6.23. From equation 6.37 we have

_ dr dr
h3 - hr du3 du3 (7.6)
For convenience we choose E£(r) = r + Ty s where T, is a constant we
can choose later, giving
up =T tr, o, h3 =1 (7)
Now we find a A from integrating equation 6.3L as
A 4]
dx’' de’'
J AT J sin(e") (7.8)
2z m/2
where zZ, > 0 1is a constant for later use. This gives
Ll o g
ln(gzo) = enf[tan(3)] (7.9)

or

_ e
X = 220 tan(2) {7-10]
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so that
w, = 2z tan(gd cos(4) u, = 2z tan(QJ sin(¢) (T LL)
1. o 2 e o 2 :

2

From equation 6.41 the associated scale factor is

h .
h=qte T sin(0) _ SZ- 1 + cos(0)] (7.12)

o] o
220 tan(g)

Note that O < h < ® on the +z axis (6 = 0, r > 0) so that the uy
coordinate system is well behaved there, even though the vy system is
singular there. We call this uy system modified spherical coordinates.

The required constitutive parameters are given by equations 6.16
as

g _ b - 1 _
o 5 1 (T:13)

Thus for the present choice of uy coordinates the medium is homogene-
ous. For convenience we might choose ¢€',u' as Eo’uo making €,
also Eo’uo so that the medium is free space. The structure defined
by the perfect conductors satisfying equation T.1l is called a conical
transmission line. The transformations of equations 7.7 and T7.11,
giving the u,, are the well-known transformation for finding the TIM
waves on such a conical structure(7). The present example for the u, is
then a comparatively simple one and the resulting medium is homogene-
ous. However, this example illustrates how to construct the ui
systems. In addition the conical transmission line is used later in

conjunction with inhomogeneous lenses.
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B. Modified Bispherical Coordinates

For constructing an example of an inhomogeneous lens, start with
the rotational system vl,da,v3 given as bispherical coordinates

¥,0,n as illustrated in Figure 2 and defined by (6)

. asin(y) cos(¢)

* = Zosh(n) + cos(y) (7T.1k)
_ a sin(¥) sin(¢)

¥ = Cosh(n) + cos(y) (7.15)
_ a sinh(n)

Z = Cosh(m) + cos(y) (7.16)
with 0 € £ 1 and -o < n <o, Surfaces of constant v3 = n are
spheres; surfaces of constant L Y intersect planes of constant ¢
in circles. The scale factors are

- a sin(y) -
Dy = Sosn(n) + cos(y) = P (7.17)
_ - a - P
by =By cosh(n) + cos(y) = sin(W¥) (7.18)

Next construct the uy system. First we calculate A from

equation 6.34 as

A ]

ax' _ ay’
J S = J sin (37 (7.19)
a w/2

which gives

(7.20)

>
1}
o
ct
g
Nt
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P 1

Rotate ¢ from 0O to 27

to give surfaces of constant

Fig. 2. Bispherical Coordinates
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so that

= aotan(%ﬁ cos(¢) : u, = aotan(gJ sin(¢) (7.21)

where a_ > 0 is a constant we can choose. From equation 6.41 the

associated scale factor is

. EQ_: a _sin(¥) 1 _a_ _ 1+ cos(w)
a a tan(y/2) cosh(n) + cos(y) a_ cosh(n) + cos (¥)
{T:20)
which has O < h <« for -a < 2z < a on the z axis so that the
u, system is well behaved there.
From equation 6.37 we have
dn a dn
= —_— = 12
g hnldu3 cosh(n) + cos(y) du3 (7.23)
Now h3 is related to the constitutive parameters by
E |
= = b= (7.24)
3
For convenience let ¢' = €5s u' o= H, and also restrict e > e,
(@]
u = L This implies the restriction
hy £ 1 (7.25)

Next observe for 0 £ § < 7 and for fixed n +that h is a monotoni-

3
cally increasing function of ¢ . Then consider some maximum ¢ of
interest and call it wo with O < wo < m . Then restrict the space

occupied by the inhomogeneous medium to 0 £ y < § . Then to minimize
o
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the magnitudes of ¢ and p required, set h3 =1 on y = by This
gives
5 cosh(n) + cos(y,)
3 - (7.26)
cosh(p) + cos(y)

and we choose

dn__ 1
- ;icosh(n) + cos(wo)] (7.27)
3
Note that there are many other forms that one could choose for %ﬁ— 3
3

The present choice is for the sake of convenience and definiteness.

From equation T.27 we then calculate ug as (8)

n

w, = an’
g == cosh(n") + cos(wo)

0
= 28, arctan [tanh(2) tan(feﬂ] (7.28)
STy 2 z
This last result can be verified by first observing that u, = 0 for

3
n =0 and by second differentiating the result and using the half

angle formulas for the trigonometric and hyperbolic functions. We now
have all the uy coordinates which for the present geometry we call
modified bispherical coordinates.

Now that the ug coordinates and h; scale factors are calcu-
lated, consider the combination of this bispherical lens with a
cylindrical transmission line. On the plane z = 0 , on which n = 0
and u3 = 0 , we have from equations 7.14, 7.15 and 7.21, and defining

g2 = &
& >

U, = X . Uy =¥ (7.29)
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Let the lens material modifying u and € be present only for u3 <0
(corresponding to n < 0, z < 0). Then for 2z > 0 let the medium be

free space with constitutive parameters Eo’uo . Next let there be two

or more perfect conductors forming a transmission line described in the

form

£(x,y) =0 £u; ,u,) =0 (7.30)
z 20 z £0

Since on the dividing plane we have W o= X, uy, =Y, then the conduc-

tors are continuous through this interface. For 2z = 0 these conduc-

tors form a cylindrical transmission line on which a TEM mode has the

form (from equations 6.9)
E=f(t - E—) ve_(x,y) H=rf(t - %) ve, (x,y) (7.31)

The potential functions solve V2¢(x,y) = 0 subject to appropriate
boundary conditions from equations T.30. Similarly for =z £ 0 , making

u3 £ 0, there is a corresponding TEM mode of the form

u, N uy
- 2 ' ¥ - 1
E= f(t - c') v ¢e(ul,u2) , H £t c,) v ¢h(ul,u2) (7.32)

We purposely use ¢e and @h for both z 2 0 and ug £ 0 because
they solve the same Laplace equation and boundary conditions on both

sides of z = 0 with ul,u2 on one side exchanged for x,y on the

other. Note that from equations 6.5 and 6.6 the components of £ and

H are related by the wave impedance. Since we want both @e and ¢h

the same on both sides of the boundary then we must have



L 1
= __O_= B: .U_. = i
Z, = }EO /e }e, = Zo (7.33)

which we have already required. Now right at z = 0 we have h =1

and ul = x, u2 =y so that

=Y

i:-v|z=0_ B §’2=0‘ - {|z=0+ ? +'|

z=0" §|z=0‘ = I—E|z=0'{' (7.34)

Thus tangential ¥ and H are continuous across z 0 and the two
TEM waves are exacfly matched there. Then a TEM wave as in equations
T.32 in the inhomogeneous lens will propagate into free space in the
formof equations T.31 with no reflection.

An alternative approach to matching the TEM mode through the
z = 0 interface is to define one u, coordinate system for both
positive and negative z . For 2z =2 0 let (ul,ug,u3) = (x,y,z) while
for z £ 0 let ul,ug,u3 be defined by equations 7.21 and T.28 with
a, Z=a . Then h is continuous at 2z = 0 while h3 has a step dis-

continuity there, since for 2z > 0 we have h = h3 = 1 .

describing the combination of the lens with free space by a single uy

Note that

coordinate system automatically poses the restriction of equation T7.33
in that the ratio u/e must be the same at all positions of interest

in order to satisfy equations 6.16. In terms of this composite ui
coordinate system the TEM wave is then described by equations T.32. This
type of lens-transmission-line combination is illustrated in Figure 3
in which the cylindrical transmission line for =z = 0 is taken as a
strip line. The lens is stopped a little before the singularity at

(x,y,z) = (0,0,-a) is reached.
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cylindrical
transmission-line
conductors

Fig. 3. Bispherical Lens with Cylindrical Transmission Line
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Next introduce a second interface at n=n < 0 . Such a sur-

face is a sphere described by (6)
2
a

S (7.35)
sinh (no)

% 87 + (5w a coth(no))2 =
This sphere is centered on the z axis at 2z = a coth(no) and has a
radius a|sinh(no)lﬂl. A cross section of the lens in the zx plane is
illustrated in Figure L4 and a perspective view with the transmission
line conductors is illustrated in Figure 5. The region inside the
sphere n = L is assumed to be free space and in this region we place

a conical transmission line with conductors matching to those in the

lens.

Recall the conical transmission line discussed in Section VIIA.
In order to center the apex of the conical line at the center of the

n=ng sphere we choose zq in equation T.L4 as

z, = a coth(no) (7.36)

From equations 7.1l we have for the conical line

w, =2z tan(—g-) cos(¢) u, = 2z tan(g-) sin(¢) (7.37)

while from equations T7.21 and ao = a we have for the lens

uw =a tan(gﬁ cos(¢) > U, = a tan(gﬁ sin(¢) (7.38)

We would like uy and u2 to be continuous across the surface

n = no " Thus we need on n = n

a tan(¥) = 2z tan(2) (7.39)
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free space

— ¢

u,= const.

free space

Fig. L.

Bispherical Lens
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Fig. 5. Bispherical Lens with Cylindrical and Conical Transmission
Lines
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To do this consider p on n = nO . For the conical line we have

=g

p = — sin(0) (7.40)
51nhinoi
while for the lens we have

_ _a sin(V¥)
- cosh(n:)‘kcos(w) (7.L41)

The © and Y coordinates are then related on this surface by

- sin(y) sinh(ng)

sin(8) = A (7T.42)

cosh(no)-kcos(w)

Then we have

9y . L= Vi | (7.43)
2 L4 L = &F )

where, after some manipulation, we obtain

tang(g

5 1+ cosh(no) cos ()

1—A" = (7.44)
cosh(no) + cos(y)

Substituting from equation T7.44 into equation T.L43 and using the half

angle formulas for the trigonometric and hyperbolic functions gives

tang(gﬁ

n
tanh®(-2) tan® (%) (7.45)

or

n
tan(%) - tanh(—g') tan('g-) (7.46)

where the minus sign is used because Yy < 0 . Therefore we define
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T]O
2—2—(; = - tanh(—é") (T_u"()

so that equaticns T.46 and 7.39 are made equivalent. This makes iy

and ug continuous across the spherical surface n = no

In order to make u continuous at n = no we note from equa-

3
tion 7.7 that on n = Ny we have

P - ¥
e sinh(no) T, (7.48)
while from equation 7.28 we have
n L]
u, = ~—§E;-arctan[tanh(—90 tan(=2)] (7.49)
3 : 2 2
sin(y )
o)
Equating these results gives
r n ]
g - 1 2 -l e
= sinh(no) + Sin(wo) arctan[tanh( 2) tan(2 )] (T.50.)

as our definition of ro .

With ul and u2 continuous across n = no , & surface of
constant u, , h 1is automatically continuous there. However, h has

3 3

a step discontinuity at this surface. Then we have the same conditions
at n = n as before at n = 0, namely the TEM wave passes through this

surface without reflection and is described by equations T7.32. In sum-

mary, inside the n = no sphere the u, are given by equations 7.7
and 7.11 and the constitutive parameters are just & and v, o In
the lens bounded by n = i, & W= 0 and ¢ = wo , the u; are given

by equations 7.28 and T.38, and the constitutive parameters are given
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by equations T7.2h and 7.26 with €' = ¢ , u' =p . For z =0

ul,ug,u3 are X,y,Z and the constitutive parameters are ¢ My

The transmission line conductors in all three regions have exactly

the same description as functions of u, and u, only as in equation

Tmils

From equations T.24 and 7.26 the constitutive parameters for the

lens are given by

_ v __ 1 _ cosh(n) + cos(y)

U h cosh(n) + cos(wo) (7.51)

E_
€
o o) 3

For convenience one might prefer to have this relation expressed in

terms of p and 2z . To do this we form complex variables from equa-

tions T7.16 and T7.17 as

p + iz _ sin(¥) + i sinh(n) _ P+ in
a ~ cos(w) + cosh(n) = tan( B ) (7.52)
so that
BEAR o reban(BLA8)
2
g 2 2
+ +
=BT L) eten[—228 Lot (zra) o sy
2 2 2 2 2
a - p - z p“+ (z-a)
where k is an integer or zero (9). Separately equating real and
imaginary parts gives Y and n as functions of p and =z . Then
we have
2 241/2 2 2.-1/2
1 + (z+a + (z+
cosh(n) = E{jP%?—i*——lE] + P%;—J;-EJEJ }' (7.5u)
o+ (z-a) p“+ (z-a)

and
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2 2 2
_ 2 -1/2 _ _a - p" - =
cos(p) = *[1 + tan"(¢)] T2 o B9es nBR T (7.55)

These can be substituted in equation T7.51 to find € and p as func-
tions of p and 2z for a given value of wo . DNote from equation T.51
that since 0 £ y £ wo < 1 the maximum € and u for any fixed n
occur at Y = 0 . Since cos(wo) < 1 then varying n for ¢ =0 we

see that the maximum € and p occur at the minimum of cosh(n) .

Assuming n = 0 1is in the region of interest, the minimum occurs there

and we have

H

max UO max

2 1
2

TV e~ o (7.56)
2

o]

The minimum € and W are, by previous choice, B and M which
occur on Y = wo , the maximum ¢ for the region of interest.
Referring to Figures 3 through 5 one can better appreciate the
approximation involved in placing a boundary on the lens at ¢ = ¢ .
In these figures we have used a strip line to illustrate a typical
cylindrical transmission line. For such a transmission line the fields
for the TEM mode extend over the entire cross-section surface, a plane
of constant 2z, or more generally a surface of constant u3 .  However,
these fields fall off in amplitude with distance from the conductors,
for large distances. Thus we require that wo be chosen large enough
that the fields in the TEM mode for 1§ = wo are insignificant compared

to the fields near the conductors. For certain types of cylindrical

transmission lines, such as coaxial lines, the fields are zero outside
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some closed outer perfectly conducting boundary. For such cases the
lens material is not needed outside the outer conducting boundary and
stopping the lens at some external 1 = wo creates no disturbance in
the fields.

This lens, based on a bispherical coordinate system, can be
classified as a converging lens. Referring to Figure 5, a spherical
TEM wave launched near the apex of the conical transmission line is

converted into a plane TEM wave on the cylindrical transmission line.

C. Modified Toroidal Coordinates

For an example of an inhomogeneous diverging lens define the

rotational system vl,¢,v as toroidal coordinates wv,¢,L as

3
illustrated in Figure 6 and defined by (6)

5 = B sinh(v) cos(¢) (7.57)

cosh(v) + cos(zg)

_ a sinh(v) sin(¢)

¥ E (T-58)
cosh(v) + cos(t)
a sin
. (2) (7.59)
cosh(v) + cos(z)
with -m <77 and 0 £ V<o |, Surfaces of constant vy = 4
are spheres; surfaces of constant v, = v are toroids. The scale

1

factors are

Bo= a sinh(v) - (7.60)
¢ cosh(v) + cos(t)
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Rotate ¢ from 0O to 2n

’N

to give surfaces of constant

GgV

Fig. 6.

Toroidal Coordinates
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a _ o
v t  cosh(v) + cos(z) = sinh(v)

(7.61)

To construct the uy system first calculate 7+ from eguation

6.34 as
A v
ar'  _ dv'
I Xt T J sinh(v') CT=he)
a o0
o
which gives
m(;—o> = ¢n[tann(3)] (7.63)
or
_ A
X = a_ tanh(2) (7.64)
so that
u, = aotanh(g) cos(o) u, = aotanh(gd sin(¢) (7.65)

where ao > 0 1is a constant which is chosen later. We obtain h from

equation 6.41 as

A a_ tanh(%) cosh(v) + cos(tg) a_ cosh(v) + cos(z)
From equation 6.37 we have
- dg = a dg
By hc |du3‘ cosh(v) + cos(z) }du3\ AT-67)
| S | G : Y e %
As before we set €' = Eo’ u'o= Uo and restrict ¢ = Eo , U = ”o

which together require h3 £ 1 . Observe that for v 2 0 and for
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fixed T with -m <7 <1, h3 is a monotonically decreasing function

of v . Thus for fixed ¢ , h3 is a maximum for v =0

Then to minimize the required € and u set h3 =1 on v=20

, the z axis.

This gives

- 1 + cos(Z)
B3 = Tosnlv) + cos(Z) (7.68)
and we choose
ac_ _ 1
ey [1 + cos(zg)] (7.69)
3
Again %ﬁ— could have many other forms. Then uy is calculated as
3
4
- ag' . 2
Hgo = J 1+ cos(zg'y) 2 tan(2) (7.70)
0

We now have all the uy coordinates and call them modified toroidal
coordinates.

Having the u, and hi for this toroidal lens we now join
cylindrical and conical transmission lines to the lens. One boundary

surface for the lens is taken as the plane =z

0 on which ¢ =0

2

u3 0 . Combining equations T7.57, 7.58, and 7.65 and defining

a, =z a gives for z =0 ,

u, = x " u, =y (7. T1)

Let the lens material be present only for u3 > 0 (corresponding to
£ >0, z >0). Let the medium for 2z < O be free space with consti-

tutive parameters €M, and let ul,u2,u3 for z £ 0 be simply

X,¥,Z. The transmission line conductors are constrained by equation
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T.1 for all u3 considered. Thus, for z £ 0 we have a cylindrical
transmission line, while in the lens the conductors are curved to
satisfy equations 7.1 and T7.65 with a =a. Note that there is a
singularity in the uy at p=a, z =0 corresponding to VvV = 4w

Thus for the toroidal coordinates we confine our interest to v satis-
fying 0 £ v = vy, < te . We let v = v be a boundary for the lens
material.

The u,, h, and the transmission line conductors are continuous

through the plane =z = 0. We have a TEM wave, as before, of the form

Y3
B = £t - = s la )
> u3
H' = £(t - ETJ V'@h(ul,ug) (7.72)

Since h is continuous through =z = 0 , tangential E and ﬁ are

continuous through =z = 0 as required. Note, however, that h.=h = 1

3

for z < 0 and that h3 has a step discontinuity at z =0

Introduce another lens surface at ¢

n

Co with O < Co < m

This surface is a sphere described by

2
2 2 2 a
xX“ +y" + (z +a cot(Co)) = e (1.73)
sin” (¢ )
This sphere is centered on the z axis at z = -a cot(co) and has a
radius a]sin(;o)|_1 . Figure T illustrates a lens cross section in

the zx plane and Figure 8 gives a perspective view with the transmis-
sion line conductors. The region outside the sphere described above is

assumed to be free space and contains a conical transmission line with
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Fig. 7. Toroidal Lens
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Fig. 8. Toroidal Lens with Cylindrical and Conical
Transmission Lines



—5h-

conductors matched to those in the lens.

Now we match the uy coordinates at ¢ = QO using the modified
spherical coordinates of Section VIIA to describe the continuation of
the ui coordinates past ¢ = Co . Center the apex of the conical
line at the center of the sphere corresponding to ¢ = Co by choosing

z, in equation 7.4 as
z) = -a cot(co) (7.74)

For the conical line we have, from equations T.1l1l

Wy @ 2% tan(%) cos() u, 2zo tan(gd sin(¢) (7.75)

and for the lens

uw =a tanh(%J cos(¢) s U, = & tanh(%) sin(¢) (7.76)

Thus on ¢ = Co we need

8]
a tanh(%) = EZO tan(EJ {T:TT)

Then considering p on ¢ = Co we have for the conical line

° = SEm(gy SO (7.78)
and for the lens
_a sinh(v)
P = Cosh(v) + cog(go) (7.79)

The © and v coordinates are then related on this surface by

sinh(v) sin(;o)
cosh(v) + cos(goy (7.80)

sin(9)
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This has the same form as equation T.42 if we replace no by Vv and

v by -C_ . Then from equation T7.L6 we have the result
o
9 v Co 81
— F — e - m— 5 l
tan(e) tanh(2) tan(2 ) (7 )

Therefore we define for this case
. - e .82
5 = tan( 2) (7.82)

making equations T.81 and T7.77 equivalent. Then ul and u2 are con-

tinuous across the spherical surface ¢ = Lo

From equation 7.7 we have, on . =128

o 2

a

= 8
u3 sinECoj * Y (7.83)
while from equation T.T70 we have

£
ug = a tan(zg) (7.84%)

These results give, as a definition of r, for this case,

r G
] ) 1.
2 = —) - — = - cot -85)
. tan( > ) ———ysm((;o (zo) (7
Now ul and u2 are continuous across ¢ = go so that h is

also continuous there. However, h3 has a step discontinuity there.

Then the TEM wave described by equations T-72 passes through this surface

without reflection. In summary, for z < 0 we have ul,uq,u equal
=

3
to x,y,Zz and the constitutive parameters are B and ¥ . In the

lens, bounded by ¢ =0, ¢ = Co , and v = Vo o the u; are given by
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equations 7.70 and 7.T6; the constitutive parameters are given by equa-

[
For u, 2 a tan(zfﬂ the

tions T7.24 and 7.68 with € ¥ o 5

n
™
.
2
n
=

ui are given by equations 7.7 and T.11l with constitutive parameters

€ ,u . The transmission line conductors are described by equation 7.1
o’ o

for all values of u of interest.

3

The constitutive parameters for the lens are given by

u . cosh(v) + cos(z)
u h 1 + cos(z)

(7.86)

To express this result in terms of p and =z , as in Section VIIB, we

form a complex variable

z + ip _ sin(z) + i sinh(v) _ L+ iv
a  cos(g) + cosh(v) = tan( ) ) (7.87)

so that, just as in equations T7.52 and T.53

z + ip
o arctan(—*:r‘“—)

]

k 1 2 i 2%+ (p+2)”
LS ;~arctan[—§—§£————§]4~% Qn[é———g—a—ﬁg] (7.88)

2 2 2 2 2
a -z —-p z°+ (p-2z)

with Kk an integer or zero. From this we obtain

1/2 -1/2

2 2 2 2
coshly) = l{ 2o+ (pra)®] |, [eS+(pra)® } (7.85)
’ 2 [zg+ (p—a.)2J [22+(o-a)2]
and
2 2 2

= [ =4
a - 7Z - p

(Al o] o N o o 1 /0
[(a"= 2"= p“)"+ ha' z"]l/g

cos(g) = i[l-i-taug(t,)]_l/2 = (7.90)
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These can be substituted in equation 7.86 to find € and ¥ in terms
of p and z . From equation T7.86 the maximum € and u for fixed
 occur at v = vo

, the maximum Vv considered for the lens. Then

varying ¢ for 0 £ 7 £ <m for Vv=v

" o ° we find that the maximum

e and u occur at ¢ = Eo s V= vo , for which we hsave
+
e e i cosh(vo) cos(Co) (7.91)
e u 1 + cos(c ) -
o [max O imax o]

The minimum € and up were made Eo and uo on the z axis, or
equivalently v = 0 .

Referring to Figures 7 and 8, note that for this toroidal lens,
as in the previous case, we require that the fields in the TIEM mode for
v 2 v, be negligible compared to the fields near the conductors so
that the TEM mode is not significantly disturbed. The present lens,
based on toroidal coordinates, can be classified as a diverging lens.
Referring to Figure 8, a plane wave on the cylindrical transmission

line is converted on passing through the lens,into an expanding spheri-

cal wave on the conical transmission line.

D. Modified Cylindrical Coordinates

As a last example we consider a lens which can be used to transi-
tion TEM waves between two cylindrical transmission lines with different
propagation directions. Specifically, choose the u, based on cylin-

drical coordinates as

u, = oz (1.92)
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2

. S P 2 (x 1/2

+y9) (7.93)

u; = e b, tan ¢ = y/x (7.94)

with 0 £p <o , 0% ¢ <21 where Py > 0 is a constant and ¢ = 0
corresponds to y = 0, x > 0 . DNote that the intermediate rotational
vi coordinate system is not used for this example. Surfaces of con-

stant u3 are planes. The scale factors are

hEh =h,= 1 (7.95)
= 4 _ P
By =By qu; = oo (7.96)

Since h1 and h2 are equal we have an acceptable coordinate system
satisfying equation 6.15. The resulting lens and transmission lines
are illustrated in Figure 9. We call the uy modified cylindrical

cocordinates.

The constitutive parameters are given from equations 6.16 with

¥ = = S
€ €y o M “o a
P
€ M 1 [e)
o o] !
Consider p = P, onme surface of the lens and constrain p = P for
the lens to make € = Eo , M = uo . Fix other lens surfaces as
p = pl with 0 < Py < P> ¢ = 0, ¢ = ¢O with O < ¢O £ 2w 4, @ = iz?
with Z, > 0O . The maximum € and u then occur for p = oH giving
p
o
= = ﬁ—1 = £ (7.98)
max o max 1
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Fig. 9. Cylindrical Lens with Cylindrical Transmission Lines
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Including the cylindrical transmission lines in the uy coordi-

3
0 £ U £ po¢o the u., are defined by equations T7.92 through T7.94. For

nate system, we define, for u, £ O, Uy, Uy, u3 as Z,Xx,y . For

ug = p ¢ the u, are defined (from a rotation in the xy plane) by

c
I

152 ,u, =X cos(¢o) + ¥ sin(¢o),

uy = -x Sin(¢0)+y COS(%) +p,9, (7.99)

With these definitions the ui are all continuous across the surfaces

¢ =0 and ¢ = ¢o « For u3 outside the lens we have h = h3 =1 so

that h 1is continuous across these latter two lens surfaces while h3

has step discontinuities there. The transmission line conductors are

described by equation T.1l for all u3 of interest. The TEM wave in all

three regions of u3 is described by equations 6.9. Note that if
¢O > m then one or both cylindrical transmission lines may need to be

cut short to prevent their intersecting each other.

Referring to Figure 9 we require for this cylindrical lens that

the fields in the TEM mode for p %

for p =2 P, » and for |z] 2 2

2
(separately) be negligible compared to the fields near the transmission

line conductors. This lens is neither a converging nor a diverging lens

but might be better termed a prism or a redirecting lens.
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VIITI. TWO-DIMENSIONAL TEM WAVES

Now consider a restricted form of the u, coordinates by defining

u, =z (8.1)
which implies
hy = 1 (8.2

while u and u are taken independent of =z

1 o . Also let either the

formal electric field or formal magnetic field have only a u., com-

ponent and let the remaining formal field have only a u2 component .
Let the formal field components be only functions of uy and let the
wave propagate in the +ul direction. In terms of the u, and the

formal field components this represents a uniform TEM wave.

Again we assume, for the constitutive parameters, that

(Eij) = E(ﬁij) s (uij) = U(Gij) (8:38)

with the conductivity zero. Thus the medium is isotropic but, in

general, inhomogeneous. The formal constitutive parameters are assumed

to have the forms

Ei 0 0 ui 0 0
(Eij) =l 0 e) 0O 5 (“ij) =1{ 0 u, 0 (8.4)
1 1]
0 0 53 0 0 u3
We also have
' = [ - -
(eij) e(Yij) s (uij) u(Yij) (8.5)
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where, because of equation 8.2,

h2/hl 0 0
(Yij) = 0 hl/h2 0 (8.6)
0 0 h h,

Note in equations 8.4 that the diagonal components of (Eij) and (ui.)
may be all unequal. However, since the formal electric and magnetic
fields are each assumed to have only one component, then only one of

the Ei and one of the ui will be significant. These significant

e£ and ui will be assumed independent of the coordinates so that
in terms of the ui coordinates and formal fields the medium is effec-

tively homogeneous.
We have two cases to consider. C(Call the case with the electric

field parallel to the z axis Case 1; call the case with the magnetic

field parallel to the z axis Case 2.

For Case 1 we assume a wave of the form

B =2, B et - =) U P S (8.7)
= S R T oe! 2 - L -1
o o
with R
i
1 — ' 1 = l
B =- [—2 m L (8.8)
3 2 ] ]
o E3 ] u €
2 3
where Eé and Hé are independent of the coordinates. Then for
(o]
Case 1 we assume that ué > 0 and Eé > 0 are independent of the u; -

Then from equations 8.4 through 8.6 we have
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hy
e = " B~ fl == (8.9)
hyhy 2 By

_>.
Note for Case 1 that since E 1s parallel to the z axis, perfectly
conducting planar sheets can be placed perpendicular to the z axis and
used as boundaries for this TEM wave.

For Case 2 we assume a wave of the form

u
—)~| - -> 3 _ _1_ —>' = -> i _ __1_
E e, B, - C,) . H ey Hy £t C,) (8.10)
o o
with
e
my - \/?'S"Hé , o e (8.11)
1 ]
o 2 ¢} u3 62
where Eé and Hé are independent of the u, . For this case we
then assume that ué > 0 and eé > 0 are independent of the u, . We
also have
h p!
2 3
e = pl es . U = (8.12)
2 hl hlh2

For Case 2 since E is perpendicular to surfaces of constant u2 o
perfectly conducting sheets can be placed along these generally curved
surfaces and used as boundaries for this TEM wave.

There are many possible ways to choose ul(x,y) and uz(x,y) and
form an orthogonal curvilinear coordinate system. Then calculating hl

and h2 one can find € and u from equations 8.9 or 8.12. For the

examples in the next section we consider coordinate systems with

H = hl = h2 (8.13)
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Define the complex variables

p =X+ iy ) q = u, +iu, (8.14)

Then we have for the line element

e . 2 2 D 2 2 2
lap|© = (ax)° + (ay)© = hl(dul) + he(due)
2 2 2 2 2
= n°[(au))® + (au,)®] = n°|aq] (8.15)
Thus if we are given a conformal transformation of the form q(p) or
its inverse, we can calculate an h as
dp aq|™
h = ’dq = 'dp (8.16)

Then from q(p) we can also obtain w and u,

With the restriction of equation 8.13, look again at Case 1.
Equations 8.9 become

e!
e = _g_ s u =p'2 (8.17)

o

so that p 1is homogeneous for Case 1. Similarly for Case 2, equations

8.12 become
1
- i |
€ = € 4 n o= (8.18)
2 2
h
so that ¢ 1is homogeneous for Case 2.
For convenience we choose Eé =€, > ué =ug for Case 1, and
eé =B ué = for Case 2. Then for each case one of the consti-

tutive parameters is the same as for free space. Requiring e =2 €, »
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n &

Hy > then for both cases we require h £ 1 . 1In the next section
we choose examples of two-dimensional lenses which might be appropriate
for launching TEM waves between wide perfectly conducting parallel
sheets. After defining the conformal transformation, giving uy and

U, regions with h > 1 are excluded from consideration.
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IX. TWO-DIMENSIONAL TEM LENSES

As a first example of a coordinate system for a two-dimensional

lens consider the conformal transformation defined by

q i ﬂ% b L “%
~ &= fofe ~ = 1] 5 o =7 tnle "+ 1] Sl

This is illustrated in Figure 10. This transformation also describes
the potential distribution around a uniformly charged wire grid (in a
homogeneous medium) terminating a uniform electric field for x >> O

-

From equations 9.1 we have, for u and u

1 2
2nx X
a a a Ty
= — - ) +
W, = nle 2e © cos( a) 1] (9.2)
Bx.
{ e ® min(™N)
u, = — arctan + ak (9.3)
2
ewx/a cos(B ) -1
where k = 0,1 . Note that a 1is just a parameter which can be used

to scale the dimensions.

The scale factor h given by equation 8.16 is

-Wq/a‘-l -mp/a
h=1+e = |1- /e (9.1)
In terms of x and y this is

B = 1 - ge /e cos () + o g (9.5)

Since only regions with h £ 1 are of interest we find the contour for

h =1 given by
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Fig. 10. JClocrdinates for First Example

_Lg._
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2 cos(%fﬂ = e—nx/a (9.6)
which is indicated in Figure 10. In terms of uy and u, the scale
factor has the form

1 -mu, /a T —2wul/a
—=1+2e cos ( ) + e (9.7)
h2 a

Concentrating our attention on the region near the positive x axis, we
see from this last equation that if we restrict lue/a| £ 1/2 , then
this will assure having h £ 1 . For Case 2 (magnetic field parallel to
the z axis) one might place perfectly conducting boundaries on surfaces
of constant wu, within this restriction. From equations 8.17 or 8.18

the maximum € or u , as appropriate, is related to the maximum of

-2

h in the region of interest. Consider some u, =y as the minimum
0
ul of interest. Note that the maximum of h-2 for fixed ul occurs
on u, = O for which y = 0 . Then varying u, we find that the
maximum of h_ occurs at ul so that
o
-Tuy /a i
1 - 1o
5 = |1+e (9.8)
h
max
Also note that as x> o we have
ha 1, u > X, u, >y (9.9)

One of the constitutive parameters of the lens is the same as free space;
the other tends to the free-space value as x * ® . Then for suffi-

ciently large x the lens material can be stopped without significantly
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distorting the TEM wave.

As a second example, consider the conformal transformation

defined by

I

a.-2 inh (LR <} mq/2a
ke B = Zn[smh(2 a)] 5 ]

2 :
Zarcsinh[e
a T

This is illustrated in Figure 11. This transformation also describes
the potential distribution around a uniformly charged wire grid (in a
homogeneous medium) terminating uniform, equal but opposite, electric

fields for x »> 0 and x << 0 . Obtaining u and u

1 o from equa-

tions 9.10, we have

- & inhe (L X 2my 2 Xy s @Y
gy == gn[sinh (2 a) cos (2 a) + cosh (2 a) sin (2 a)] (9.11)
- 28 T X Ty
iy = = arctan[coth(2 a) ta.n(2 a)] + 2ak (9.12)
where k = 0,*1 .
The scale factor h 1is given by
-mq/a,"1/2 TDp
h=|1+e | = [tenh(z )| (9.13)
In terms of x and y this is
= 1 = 2e_ﬂx/a cos(%%ﬁ + -2mx/a
h® = (9.1k4)
1+ ze—wx/a cos(ﬂgﬂ + e-2ﬂx/a
The contour for h =1 is
y = & L
- > (9.15)

(9.10)
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Fig. 11. Coordinates for Second Example
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which is indicated in Figure 11. In terms of uy and u_ we have

1 -mu. /a ! —2Wul/a

hh = 1+ 2e cos ( 5 ) + e (9.16)

Considering the region near the positive x axis, note that by restrict-

ing |u2/a| £ 1/2 +this will assure having h £ 1 . For this second
example consider u, as the minimum uy of interest and note that the
o
minimun h occurs on u, = 0 (for which y = 0) and at u, =u , so
o
that
-muq /a
1 ]
= =3+m (9.17)
h™ |max

The maximum € or u can then be found from equations 8.17 or 8.18.

Also as x -+ © we have

2a
h>1, ul-rx--—n-ﬂ.n(E), u, >y (9.18)

Then, as in the first example, the lens material can be stopped at suf-
ficiently large x without significantly distorting the TEM wave.

Figure 12 illustrates the present types of two-dimensional lenses
together with appropriate parallel-plate transmission lines for both
cases of field polarization discussed in Section VIII. Note that the
conductors and the inhomogeneous medium are stopped before reaching the
singularity on the z axis; sources to launch the TEM wave might be placed
here. The perfectly conducting sheets and the inhomogeneous medium are

also stopped on surfaces of constant u This distorts the TEM wave,

5

particularly near the edges of the sheets. However, the sheets are
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transmission-line conductors

A, Case 1: ﬁ parallel to =z axis

X

transmission-line
conductors

B. Case 2: ’ parallel to z axis

Flg. 12 Two-Dimensional Lenses with Transmission Lines
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assumed to be much wider than the sheet separation to minimize the

influence of this distortion.
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£ CONCLUSION

In summary there appear to be many ways of specifying inhomogen-
eous media such that simple electromagnetic waves, such as the TEM waves
used here, can propagate in the medium. These types of inhomogenecus
media can be used to define lenses for transitioning TEM waves, without
reflection or distortion, between conical and/or cylindrical transmis-
sion lines. Of course, there are practical limitations in the
realization of such lenses. TIFor example, in some cases the lens should
ideally be infinite in extent; limiting the extent of the lens can
introduce perturbations into the desired pure TEM wave, and care will
have to be taken to insure that these perturbations are small. Another
limitation lies in the characteristics of practical materials used to
realize the desired permittivity and permeability of the inhomogeneous
medium. The available range of these parameters will be limited and
their frequency dependence imperfect. Of course, perfect characteristics
are not really necessary. FElsewhere we have proposed a lens based on
geometrical optics for transitioning TEM waves between conical and
cylindrical transmission lines (10). The lenses discussed in the
present report, however, have the advantage that, within the limitations
mentioned above, the TEM wave passes through the lens undistorted,
based on a solution of Maxwell's equations.

In this report we only consider isotropic inhomogeneous media for
the lenses. Within this area we consider a few examples each of three-
dimensional and two-dimensional lenses. To extend the present work

one might consider several other such examples in order to have
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available other types of geometries and inhomogeneities. TFor a wider
extension one might allow the medium to be anisotropic as well as
inhomogeneous. This would remove some of the restrictions on the coor-
dinate systems which could be used. However, such an anisotropic

inhomogeneous medium might be more difficult to realize.
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APPENDIX A: CHARACTERISTICS OF COORDINATE SYSTEMS FOR FIELD
COMPONENTS IN ALL THREE COORDINATE DIRECTIONS

In Section V, when considering the case of formal field com-
ponents in all three coordinate directions, we require that (s' ) and
(“ij) reduce to constant scalars times the identity matrix. Combining
this with the earlier requirement that (Eij) and (uij) reduce to
scalars times the identity matrix leads to the result of equation 5.6,

namely

h=zh =h,=h (A.1)

This very restrictive form of the hi leads to the natural question of

what forms of h(x,y,z) or h(u u,, u3) are possible.
Now the us form an orthogonal curvilinear coordinate system by

hypothesis. It is then necessary and sufficient that the hi satisfy

the Lamé equations, namely

2

3°h. dh. 9h, 3h, ah,
i B i i 1 1 k i
du. du_ _ h. du odu. h_odu. 9 = B (a.2)
;3 Yk 3 By 2Yy i OBy T
and
ah
g i W, 5 1 Ty j
ou (E_-au ) i Ju (h Ju ) = G (A'3)
i 3 k "k A,

where 1i,j,k 1is a permutation of 1,2,3 yielding six independent equa-

tions (11). Substituting from equation A.l gives

32h

Bujauk

23 dh _
- o = 0 (A L)

e



and

1 dh

T

9 1 3dh d
dou, h au.) * Ju
3 i J

h 9du,
J

) +

1

pe oo

dh

2

)

Introduce a change of variable defined by

., = L
~ h

where any points with v = 0,

(A.5)

(A.6)

are excluded from our consideration.

Equations A.l4 and A.5 then become, respectively

2%
Bujauk
and
_ lABEV % ;__(Bv 2 ;_Bev
v 2 2 ‘3u, v 2
ou, v i ou,
1 dJ
Rewrite equation A.8 as
E?EY__%__Q_V_
2 2
ou. 2=1 9du
i L

Since this holds for

1

L

i

(av 2
ou,

J v
3 IV 2
Z (au
=1 2

i=1,2,3 we deduce

Also, from equation A.T we have, for

82v
du. ou
i

J

1 ¢

5 (

oV

oy

)2 =

(A.8)

(A.10)

(A.11)
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Now from equation A.11l av/aui is at most a function of u,
But then Bgv/auf is at most a function of u, . From equation A.10
we have a function of ui equal to a function of uj and thus both

are a real constant., say cl, i.e.

— = ey = = (A.12)
ou, du,
i dJ

Integrating we obtain

— = c_u, + d. (A.13)
i i

where di is a real constant, since Bv/Bui is at most a function of

ui . Integrating again gives
clui
= — + + .
v 5 diui ei(uj,uk) CA.h)

where, as indicated, e, is at most a function of uj and w for
i,j,k distinct. Summing over i (from 1 to 3) on both sides of equa-

tion A.9 gives

3 2 3
2 9
2 ] =27 297 (A.15)
=1 2 =1 J &
Bug

Substituting in this last equation from equations A.12 and A.1l3 gives

2c.v= ) (cou, +d )2

(A.16)
or LA 2

We now consider two cases.



T

For the first case assume that c, = 0. Then from equation A.16

we have
3 2
o= ) 4 (A.17)
=1
which implies for 1i=1,2,3,
d, = 0 (A.18)

Thus equation A.14 becomes

<
I

ei(uj,uk) (A.19)

so that v is independent of uy for 1i=1,2,3. This implies that v

is a constant, and thus h as well, i.e.
i
b= 2= e, (A.20)

where c5 # 0 1is a real constant. Then for this first case the u,
are just a cartesian coordinate system. This is the trivial case of a
homogeneous medium in which € and W are independent of the coor-

dinates.

For the second case assume that c¢, # O . Then from equation

1
A.16 we have
3 (equy + dz)g
v= % e (A.21)
=1 i |
Note that ¢y >0 since v > 0 . Defining new real constants a and

bE ,» the general form for h is
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o

I
4=

]

3 u -1
2 2

=1

where a # 0 since ¢y # 0 . Now by a simple linear shift of the u,

coordinates we make b 0 giving the simple symmetrical result

- e + 'L‘L2 + 1 (A.23)
| 2

From equation 2.5 we can write the line element as

(as)% = (@)? + (@)® + (a2)® = n°[(au))% (auy)®+ (au )®]
(A.24)
Rewrite this as
(au;)? + (auy)? + (auy)® = }11—2 [(ax)%+ (ay)%+ (a2)%]
(A.25)

So momentarily regarding the u, as cartesian coordinates, x,y,z
as the orthogonal curvilinear coordinates, and 1/h as the scale fac-
tor, we can repeat the foregoing derivation from the Lamé equations and,

by interchanging the quantities in equation A.22, obtain the result

-1
g'—l= [(ET- + bi)2+ (%— + bé)2+ (Z—'— + bé)z] (A.26)

where a' and b;z are real constants and a' # O . Make a linear

shift in the x,y,z coordinates so that b' = 0 giving

h = —1—2- [x2+ y2+ z2]
af

(A.27)



i

This type of h in equations A.23 and A.27 corresponds to 6-

sphere coordinates or the inversion of cartesian coordinates, given

in one of its forms by (6)

2
a. ul
L = - u2 N u2 N u2 (A.28)
A 2 3
8.211
¥ = 2
> 2 2 )
up +uy +oug (A.29)
2
a u3
= =_u2+ > 2 (A.30)
7+ U

We have included minus signs in these equations to make the u, coor-

dinate system right handed. The scaling constant a2 is required for

these

have

which

using

types

equations to be consistent with equations A.23 and 2.L4. We also

(A.31)

comes from equating the right sides of equations A.23 and A.27 and
equations A.28 through A.30 to relate x,y,z and ul,ug,u3 .
Thus for this special h given by equation A.1l there are two

of solutions. The uy form either cartesian or 6-sphere type

of coordinate systems.
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APPENDTX B: CHARACTERISTICS OF COORDINATE SYSTEMS FOR FIELD
COMPONENTS IN TWO COORDINATE DIRECTIONS

In Section VI we consider the case of formal field components in
only the uy and u, coordinate directions. Imposing appropriate
requirements on the constitutive parameters and on the formal consti-

tutive parameters (equations 6.10 and 6.1, respectively) leads to the

result of equation 6.15, namely
h=h =h (B.1)

In this appendix we consider a restriction which this imposes on the
orthogonal curvilinear coordinate systems.

Eisenhart (12) defines the second fundamental form of a surface
(which we take as defined by any particular u3) as the quadratic dif-

ferential form

- 2 1 n 2
o = D3(dul) + 2Didu,du, + D3(du2) (B.2)
which for an orthogonal curvilinear system reduces to
- 2 " 2
& = D3(dul) + D3(du2) {B.3)
with
hl ahl . h2 8h2
3= - % ®m, ° P37 " h, fu, e
3 3 3 3

The first fundamental form of a u surface is just the line element

3
given by

(as)® = hi(dul)2 + hg(due)2 (B.5)
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However, substituting h = h. = h into equations B.k4 gives
h
= "= o —_——
D, = D . (B.6)

The first and second fundamental coefficients are then in proportion,

i.e.

o
=k

|

1l 3h
= - - (B.7)
hh3 Bu3

=3

jng
H Njw
n

We then apply a result of Eisenhart (12) that these coefficients are

in proportion if and only if the surface (given by constant u in

.

this case) is a plane or a sphere. Thus for this restriction on the

coordinate system, given by equation B.1l, surfaces of constant u3 can

only be planes or spheres (with respect to an x,y,z cartesian coordi-

nate system).

Also in Section VI another orthogonal curvilinear coordinate

system with coordinates v1,¢,v3 is introduced. This system is rota-

tional with

2 )1/2

vy2 ¢, ten(p) = L, n o=p= (F4yP (B.8)

from equations 6.18 through 6.20 and equation 6.32. Note that the
scale factors for the vy system are designated by hv . Because of
af

equation 6.23 relating u3 and v3, surfaces of constant v3 are also

planes or spheres. Since surfaces of constant vy are planes or spheres,

we again invoke the result of Eisenhart that the first and second

fundamental coefficients for a v surface must be in proportion,

3



—8l-

which we express as

3 o 3
2w
1
vhere hv 3hv h oh
D S fm— s D s &
v3 hv 8v3 v3 hv Bv3
3 3
Combining equations B.9 and B.1l0 gives
L
3 n(hv ) 32n(h¢)
l —3
8v3 8v3
But this implies
Bviy 3saln. ) 3 an(n)
3 on({) v )
- A 1 -
v - oV - v = P
3 3 3

or, in other words, hv /h is independent of v

l ¢

used in constructing the uy from the Ty

3

(B.9)

(B.10)

{B,11)

(B.12)

This result is



10.

11.

12.
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