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ABSTRACT

The present work deals with the problem of the interaction of
the electromagnetic radiation with a statistical distribution of non-
magnetic dielectric particles immersed in an infinite homogeneous
isotropic, non-magnetic medium. The wavelength of the incident
radiation can be less, equal or greater than the linear dimension of a
particle, The distance between any two particles is several wave-
lengths. A single particle in the absence of the others is assumed to
scatter like a Rayleigh-Gans particle, i.e. interaction between the
volume elements (self-interaction) is neglected. The interaction of the
particles is taken into account (multiple scattering) and conditions are
set up for the case of a lossless medium which guarantee that the
multiple scattering contribution is more important than the self-
interaction one. These conditions relate the wavelength N and the
linear dimensions of a particle a and of the region occupied by the
particles D. It is found that for constant \/a, D is proportional to
N and that |Ax |, where AX is the difference in the dielectric
susceptibilities between particle and medium, has to lie within a
certain range.

The total scattering field is obtained as a series the several
terms of which represent the corresponding multiple scattering orders.
The first term is a single scattering term. The ensemble average of
the total scattering intensity is then obtained as a series which does.
not involve terms due to products between terms of different orders.

Thus the waves corresponding to different orders are independent and
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their Stokes parameters add.

The second and third order intensity terms are explicitly com-
puted. The method used suggests a general approach for computing
any order. It is found that in general the first order scattering
intensity pattern (or phase function) peaks in the forward direction
©® = 0. The second order tends to smooth out the pattern giving a
maximum in the © = 7/2 direction and minima inthe =0, 6 = 7
directions. This ceases to be true if ka (where k = 2mw/\) becomes
large (> 20). For large ka the forward direction is further enhanced.
Similar features are expected from the higher orders even though the
critical value of ka may increase with the order.

The first order polarization of the scattered wave is deter-
mined. The ensemble average of the Stokes parameters of the
scattered wave is explicitly computed for the second order. A similar
method can be applied for any order. It is found that the polarization
of the scattered wave depends on the polarization of the incident wave.
If the latter is elliptically polarized then the first order scattered wave
is elliptically polarized, but in the 0 = 7/2 direction is linearly polar-
ized. If the incident wave is circularly polarized the first order
scattered wave is elliptically polarized except for the directions 0 = w/2
(linearly polarized) and © = 0,7 (circularly polarized). The handedness
of the 6 = 0 wave is the same as that of the incident whereas the
handedness of the 6 = w wave is opposite., If the incident wave is
linearly polarized the first order scattered wave is also linearly

polarized. The second order makes the total scattered wave to be



elliptically polarized for any © no matter what the incident wave is.
However, the handedness of the total scattered wave is not altered

by the second order. Higher orders have similar effects as the second
order.

If the medium is lossy the general approach employed for the
lossless case is still valid. Only the algebra increases in complexity.
It is found that the results of the lossless case are insensitive in the
first order of kimD where kim = imaginary part of the wave vector
k and D a linear characteristic dimension of the region occupied by
the particles. Thus moderately extended regions and small losses
make (kimD)Z << 1 and the lossy character of the medium does not
alter the results of the lossless case. In general the presence of

the losses tends to reduce the forward scattering.
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I. INTRODUCTION

When one computes the scattered wave, due to the illumination
of a collection of particles, ignoring the interaction of the particles
one talks about single scattering. Multiple scattering involves the
interaction of the particles.

The first sound attempts to attack the multiple scattering prob-
lem are due to Arthur Schuster (1905) who formulated a problem in
radiative transfer to explain the appearance of absorption and emission
lines in stellar spectra, and to Karl Schwarzschild (1906) who intro-
duced and developed the concept of radiative equilibrium in stellar
atmospheres. However, a systematic treatment of the multiple scatter-
ing problem was first given by W. Hartel (9) in 1941l. His method is
based on determining successive angular intensify distributions for
each successive order of scattering. His theory is applicable to the
case of a medium densely packed with scatterers. This approach has
been recently followed by D. H. Woodward (11) who has assumed that the
scatterers are Mie spheres with a radius large compared to the wave-
length. The theory introduced by Hartel, however, does mnot involve the
polarization of the scattered wave. Such a scalar theory is never
reliable according to Chandrasekhar (8). But Woodward (11) has extended
Hartel's theory to include polarization effects.

Another difficulty which also applies to some other theories is
the following: One usually starts with the law of single scattering by
individual scatterers. In most of the mathematical theories the deriva-

tion of the law of scattering is based upon the concept of the illumi-

nation of the scatterers by a plane electromagnetic wave. Thus one
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talks about the Mie or Rayleigh etc. laws of scattering. Now in a
dense medium every point (small region) is a scatterer. The inter-
action of the scatterers is by far different from the interaction of a
plane wave with a single scatterer., We then understand that when
multiple scattering is taken into account one cannot assume that every
point scatters according to a specified law based on the illumination
of a single scatterer by a plane wave. Therefore, the Hartel theory
cannot use the single scattering theories mentioned above.

In 1945 S. Chandrasekhar (8) developed in a systematic and
mathematically rigorous way the problem of Radiative Transfer. His
equation of transfer is a continuity equation for a 4-dimensional vector
with components the 4 Stokes parameters of the scattered wave. The
radiative transfer theories are best suited to problems such as scatter-
ing by planetary atmospheres, radiative equilibrium of a stellar
atmosphere and other related problems. Like the Hartel theory, the
Radiative Transfer Theories (R.T.T.) assume a medium densely
packed with scatterers. Therefore these theories cannot be based
upon single scattering theories such as Mie's etc. Another frequent
assumption of the R.T.T. is that the scatterers behave like small
dipoles., If higher moments are taken into account (10) or one con-
siders particles of a shape other than spherical the computations get
pretty complicated.

The theories mentioned above or related ones cannot deal with
the problem of the interaction of a plane wave with a collection of

particles not densely packed and whose shape might be considerably
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different from spherical. A rigorous theory for such a situation seems
infinitely complicated. If one introduces the element of randomness

in the position and orientation of the particles things look brighter.
Even so an exact treatment is practically impossible.

The first order scattering or single scattering can be done
exactly only when one knows how to find the scattering law for a single
particle of a given shape. This is not known in general. A considerable
simplification takes place if the single scattering is of the Rayleigh-
Gans type, i.e. if the interaction of the volume elements (self-inter-
action) is neglected. If one wants to find the effect of the multiple
scattering for such particles one must make sure that the multiple
scattering contribution is more important than the self-interaction
contribution.

Our theory is an approximate one and deals with the following
problem. Consider a collection of non-magnetic dielectric particles
of any shape immersed in a homogeneous isotropic non-magnetic
medium of infinite extent. We will assume that the particles have
random position and orientation. The particles are of the Rayleigh-
Gans type and are several wavelengths apart. This last assumption is
made to simplify the computations.

Consider now a plane wave illuminating the particles., We want
to compute the scattered field., The scattered field will be characterized
by the four Stokes parameters. The averaging over the random positions
and orientations of the particles will be an ensemble average.

Our aim is to expand the total scattered field into a series the



several terms of which represent the corresponding orders of scatter-
ing. Thus the first term is a single scattering or first order scatter-
ing., The second term is a multiple scattering of the first order or a
second order scattering, i.e. the additional current induced within any
particle is due to currents inside all other particles induced by the
incident field only. The third order involves current due to the second
order fields etc.

The essential part then of this thesis is the computation of the

several scattering orders.
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II. FORMULATION OF THE PROBLEM

2.1. Scattering From a Single Particle

Consider the scattering of a plane wave by a single dielectric
particle (see figure 1). The particle has constitutive parameters ep,
which can be complex, and p.p = iy = magnetic permeability of vacuum.
The surrounding medium is infinite,homogeneous,isotropic with con-
stitutive parameters € .’ complex in general, and Mo = Bge If we call

the incident electric field Einc and the scattered one —E—sc then it can

be shown (see Appendix A) that:

2
B @ = Sax (T B av (Zuite 1)
¢ v

where E(r) =total fieldat r=E. (r)+E__(r), AX =X - Yy =

J.klr-r |

(m 2) - (—B—»—)~~(e -E),l"(rr')—(u+—-VV)m

where U = unit dyadic = e.e. +EY‘EY +gzg ;s &= wVpOEm .
2.1.1 can be solved by an iteration method. Thus the first
order approximation is obtained by replacing E(r') by _.'@inc(z'):
sl = 24 S‘I‘(r r) - E._ (z) dV' (2.1.2)
—sc = 2 —inc'= e
The second order approximation replaces E(r') in (2.1.1) by

EG) =B, () + B @
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LDieIec’rric Particle

Fig. 1. A dielectric particle illuminated by a plane wave

E. . P is the observation point.
=inc
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It is now easy to see that in general we must have:
[n] .y = g(1) (2) (n-1)_y 4 g(@)
Ec@=E @+E () +t... +E "(x)+E_ (x) (2.1.4)

with

[o] _
Bs = Einc(—r—)

E[i] ~ E(i)(r)
=sc  —sc=

E(;l();(i) - (i’; Ax)ngg(_lz;zi) {S‘ D(zysx,)
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n.}dV3}dV2}dV1}
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- o2 X) =\ T Zee M 1 tee
<

The first order approximation E[:;l(_]i) = _E_(sic):(z) is called the Born

th

approximation. From 2.1.5 we see that the n order in the series

expansion 2.1.4 is proportional to (Ax)n. One then might be led to
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believe that for sufficiently small |AX | the Born approximation is
valid. However, this is not true as the following analysis shows:
Let's compare _E(sig to E(szg , i.e. let's estimate the absolute value
of the fields. We are usually interested in the far zone values (see

Appendix A)

wz ikr -ikf._r-r i !
~ = - 2% & L 1
i c2 s (g Er—r) 4mr Ee av
2 ikr -ike * ! .
= - Sax (e, Xe XE) G ge eI gy (2.1.6)
v
(2) wz \ 2
= {2 P T toomy n n !
2@ = (%2x) ) Dzt - T - B e ave av
v Vv
wZ 2 —ik_ezr-z' 4
== (-—zﬂx) (_@_rXErXS.e (E + —= 7'V
c ¥ =k
ik IEI'EHI ike !
S‘——T—.—H E =X gqv"av'
(ol i M
¥

mZ L2 -ikgr" ) 1
x 171
z-.(—C-ZAx) (_gerrxge (E‘+ ZVV)

v = k
ik'ﬁ"ﬁul g o i
BN T _ IR gyu gy (2.1.7)
—0 4“_]1.1_ r"[
v — -—

Now from 2.1.6 we get
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(1) 2 ikr -ik_e_r-_z' iker!
= A Re L 1
|EL ()] CZI x|le Xe XE_ !S\e e av
=
If we assume that k is real then t S‘e r e= = 4av' ‘ =

ik tx' gep
S‘ |e FT e | av' = Vp = volume of dielectric particle. If k is

“EE X g
not real then by writing k = I_c_r i i_lgi we get I = ‘S‘ e = e= = 4V*'

]
.€ =iK.,* T
= S‘e ¥ T e ™ 7 dV'. Assuming that E,_  travels in the z direction
4

we have I = dav',

- . !
g ki(e.-e )z
€

v

In the present work we deal with lossy media with k.1 of the order

of (1 =+ )m =3 or less. Therefore in view of the small dimensions of

kileymgg) e
the particle (< 10p) we understand that e =1 and I=V

Thus

[y¥]

ikr
e
4dmr

B | =

—SC

p
| <25 lax |12, |

=45 lax|le, xe, XE,|

41}1'
(2.1.8)

Next we estimate |_E_gzc) |2

ik -ike e 1!
=2 < (w | ax 1) (e T L oy
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= 4dv'" av!
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For estimation purposes we may write V'~ %Erl' % B
2 g & . e ik|zr'-z"| .
(2) (&_ e (.e - = ike " 5
|§sc |< 2 |ax I) 47r ZIEOI J Emwle-z"] ¢ T ~ 4V v
¢ v \4 o

w2 | eikr
< (:Z le I) l411'r

1
SZIEQI 5.411.'21_‘3—““' avt av!
A\ v

To estimate the integral S. Fér—nT dV" we choose a spherical
& SR

particle of radius a and we measure r',r" from the center. Then
the integral is the electric potential of a uniform spherical charge
distribution with p =1 in electrostatic units, evaluated at r' lying

within the sphere. The result is well known:

\g A av" = ZTra.Z- —Z-Trr’z
[E = ] 3
v
and
5
2 -J U NG N S 3
Z—;S(Zra 3 T ) dV' = (2wa VP 375 )4_‘]_
5 A
=V a.2 :
b
Finally
2 2 ikr
(2) W ) 2le
[ESC |< (CZ IAX ] l__E_.0|Vpa' 4.".1. (2. 109)

If we now compare I_E_;ic) | given by 2.1.8 and |§gi) | given by

2.1.9 we understand that

2
[E(sic)l>> {_E_(si)l%% IAX[a.2<<1 (2. 1. 100
(4
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Condition 2.1.10 further guarantees that lE(SI::)I << ]E(Sré_i)l as we
can show, therefore the Born approximation is valid only if 2.1.10
is satisfied. This condition has been discussed and derived in a

different way by Van de Hulst (2).

2.2. Scattering From a Collection of Particles

If the scattered electric field by the ith particle (e.l,po) is

called E. (r) then the total scattered field is
N
E c(-E) = (r) (2.2.1)

i=1

where N is the number of particles that do the scattering.

If we apply 2.1.1 for the ith particle we have:

2

i _ W e Ve
(2 = = x| Diziz)- Elx;) 4V, (2.2.2)
c
V.
i
where
N
- J
E(—r-i.) ——E—inc(zi) b Z ESC(EJ.)
j=1

To be able to write down a series expansion for the total scattered field
as we did in section 2.1 for a single particle we work as follows:
First we write down the formula for the scattered field by the jth

th

particle which induces a current inside the i particle. According

to 2.1.1 we have:

EJsc(ﬁl) 2‘2 S‘ D(zx. ok E(r ) av, [2.2.59)
v,



-1~

where

E@x) =E;, G )+Z,_E_k (z.)

—inc=j sC'=j
k

Next we compute _E_?':C(EJ.) using 2.1.1 once more.

2

sc(%) = -C—z Axk‘g‘g(}_‘j;zk)-é(_{k) v,
A

k

where
E(r )= E._( )+ZE£( )
2t = Biwn\Ei Zsc'Ek
£

£
Again we use 2.1.1 to compute -L:sc(—llk) etc.

(2.2.4)

We are now in a position to obtain the series expansion for

sc(f-) = Z E;C(_y_). The first order term is obtained from 2.2, 2 if

i=1
we replace E(Ei) by -Einc(zi)’ i.e.

—SC

Vs
i

N
=y - Z -“iz Sg(zz) E_ (x)av,

1

and

The next approximation replaces E(r. ) by Eln (r )

=

[10i _ o 5“ . - gL
- l_i)—zAXi Dlmz;) By () 4V = E (@)

{2y 2.5}

E(Sic)j(_r_.]) g Ladtoie
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2 - e o Er ;
() == &x; ) Dlmr)-E, () dV,
© Vv,

2) AX. 5 T(z;z,)- {ZAX ‘S‘I‘(r i) By (x)av, }dv

o iy
= i + )

(2.2.6)
B2 (o - Z w2
N
To get the third order order E(_:gi) is replaced by _I*Einc(_z:.l) +Z§[Szgl(_r_i)
=
ieen ’
(311, _ (1)i (2)i 55
Eo @ =B B ¢ (%) ax; ) Dz
© v
N
{z 5_1: (xyix,) - [Z AXRS Dl i)
j=1 - k=1
* Ejnclz) 4V ]dvj } d¥;
- E(i)l( ) + E(Z)l( ) + E(B)l(r)
(2.2.7)
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It is clear now how to obtain the nth order. We have to
N
[n-1]; ’
replace E(_I:i) by Einc(zi) Z Esc (2 ), i.e.
j=1
[n]i _, _ (1)1 z [n-11j
—E—sc (x) = E (x) + 2 EEE Esc (x, ) dV
V j=1

=E) N + B . +ERT G 1 2R 2.

The several terms in the series expansion have a simple
physical explanation which goes as follows:
The.first order scattered field Eéic) (r) is due to currents induced by
the incident field only, i.e. ignoring interaction of the volume elements
within a particle or of the particles,
The second order scattered field Egi)(_z) is due to currents induced by

1)

the first order scattered field Egc (r), i.e. a first order interaction
between volume elements and particles is taken into account. There-
fore, the field Eézg(_g) is due‘to a multiple scattering,

The third order Eéi)(z) is due to currents induced by the second order
E;i)(_z_') etc, All the terms E(sr(l:)(_g) with n > 1 are multiple scattering
termse.

Next the following observation should be made. Consider E(Z)l

for example (see 2.2.6)



-15-

oSl (-—) AX gr(r ) {}: A% ‘)T(r, ‘Bz v, }dv

- (CZ)Z(AX ) S'I'(r ) \gr(rlzi)' E,_ (&) av} av,
l 1
+ (ﬂ;) (&Y . )gr(r,r) {Z AY . S.l"(r r)
= JFi
*Epnelzy) v, }dv (2.2.9)

The first term involves the interaction of the volume elements of the
ith particle which would exist even if all the other particles were
absent, whereas the second term describes an interaction between the
ith particle and all the others.

If we recall the results of section 2.1 we recognize that the
first term is just Egzc)(_x:) in 2.,1.3. This is a self-field because it
involves interaction within the particle itself. As we shall later see
the second term in 2, 2.9 will depend on the density of the particles
whereas the first does not. It is not obvious a priori which term is
the most important, Of course they are both of order (A)()2 if the
xi's are comparable but this is not the whole story as we saw in
section 2.1. In the present work we will neglect self fields; therefore,
we should find out under what conditions the self-field terms are
negligible compared to terms due to the interaction of the particles.

We should notice here that we also get "mixed" terms which come
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from interactions within the particles but depending on the presence
of the other particles whereas the first term in 2,2.9 does not, Such
terms exist in the higher order terms. Consider for example E(B)(r)

If we assume for simplicity that N = 2 we can write 2.2.7 as:

" v

E(S3c)1( ) = —AX S‘I“(r r,)e { Zax ‘g Dizysz))e [ ZAxi S‘r(ri’rn)
1 V1 V1

- n 11} N 1
Einclry) avy Jdvi } vy

OJZ 0.)2 mz
oo A0 . . L= o I ..
#+ zAxi\g.I‘(r,rl) {CZAX:lS. I‘(ri,ri) [C A

C

zg Tlz}sz,)

>
vy vy ¥

]
E._ (z,) v, g av} } av,

3 2 2
w e ye d 8 Ve | QO :
+_2'AX15 e ZAXZS Tzyizp) [ zAX1§f(32’51’-
Cc C C —
Vi Vs Vi

E._ (z,)dV, ] av, }dv1

2 .
(O
vV, Vz ¥a
. E; oz avy |av, fav, (2.2.10)

The first term in 2,2.10 would exist even in the absence of particle

no, 2. It is a pure self-field term belonging to particle no. 1. The
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second term depends on the presence of particle no, 2. Thus

wz ' : . :

:Z AYX ZS‘ 2(31;32).Einc(£2) dV2 is the first order scattered field due
¥z

to particle no. 2. This field induces a current within no. 1. The

current produces a field which in turn induces a current within no, 1

again. This last interaction is a self-interaction depending on the

presence of no. 2. The third term is not of similar nature. Thus
o
:Z AX 4 ‘) £(32;£1)'Einc(51) dV, is a first order field due to no. 1.

¥y

inducing a current within no. 2. This current produces a field which

causes a current within no. 1. There is no self-interaction even though

no. 1 affects itself through no. 2. The fourth term includes such an
interaction, i.e. the field produced by no. 2 induces a current within

no. 2 which in turn produces a field acting on no. 1,

(3)2

so consists of 2X 2X 2 =8

We thus see that E(3) = E(3)1 + FE
=sc =—=sc =

terms with only two terms without self-interaction. For any N the

terms without self-interaction are N(N-1){(N-1)}, i.e. Zaiz bij Z cjk
i i K]
whereas the self-interaction terms are N3 - N(N-1){N-1) =

N2 - N(N%- 2N +1) = 2N%- N

Without: N° - 2N + N = N
out

With: 2N? - N =N
W

For N> 3 Nout > Nw' Thus as N gets high, whereas the volume
within which the particles exist remains constant, we expect the self-
interaction contribution to be less important than the contribution

from the other terms. Now what we really want is to make the
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largest self-interaction term, i.e, Eéi) in 2.1.3 smaller than any

)

arbitrary order term ES:: in 2.2.8 if we exclude self-interaction
terms. This seems adequate for a theory which neglects self-
interaction but it is nots To see this recall the series expansion
2.1.4 for the scattered field by a single particle in the absence of

- the others. If we want the intensity pattern of the scattered field we

have to compute the far zone Poynting vector

S=8 e S =-l
- r—r r Z — —scC

Thus

s.~|E_ %= |ED +5@ 4+ |2
r ~—8C

The scattering is not incoherent, i.e.

s.~ |EM2+ @24, +2re EW.EE*
T —sc —sc —SC —=scC

= 2|2 + 2 Re ). E@* 4 5@ 2 4, (2.2.11)
—SC ~SC =—SC -—SC

The terms have been arranged in order of magnitude.

Now if we consider the collection of the particles and neglect

the self-interaction terms we can show (see Appendix D) that

(S B, IB=(E) + 22 4 | B

—SscC
< 1525+ ... (2.2.12)

i.e, the several orders add incoherently due to the assumption about
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randomness in the position and orientation of the particles.
Therefore what we want is to make sure that any term in 2.2.12
is larger than 2N Re Egic)' gfﬁzc)*. The multiplication by N is due to

the assumption of randomness which make the intensities from the

several particles add.

We thus have to find the conditions under which

(n)lz

{ ]_Sc >> 2N Re (E(i) E(Z)#) (2.2.13)

collection —be single

of particles particle

We have already estimated ]Egic)l and IES(':) [ for the scattering by

a single particle (see 2.1.8 and 2.1.9). Thus we can write

(1) (2) i 22 2 1
2NRe (B, -E. <N lax |) |E
)51ngle ( ) l I P (4mr)

particle
(2.2.14)

if losses are neglected. Notice that due to interference the left-hand
side is usually much smaller than the right-hand side.
As we will show later in this work we get the following result

for the average ]Egz:) | 2 iflosses are neglected:

2 v 21 AR, ;s | n-1_n-1
B2 = =125 I )) () vF) (2m) ™
(K, +K,cos?e) for n# 1 (2.2.15a)

and

(EWD = |x, lz("’ |ax |) (4—— *NF(©O)(1 +cos?0) (2.2, 15b)

Expressions 2.2. 15 have been derived under the assumption of a
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circularly polarized incident wave. Here V is the volume occupied
by the particles, D is a linear dimension of V, Fi is a function of
ka of the order V; and K, KZ are given by certain integral ex-
pressions which will be later derived. One can see almost by inspec-
tion but numerical results for the special case of a collection of
spheres also confirm that Ki,Kzare approximately one order greater
than VIZ) if ka is not too large. The maximum value of F(8) is
Ve

If self-interaction is to be neglected then all multiple scattering

terms should be greater than the dominant self-interaction contribution.

From 2.2.14 and 2.2.15a we get
Zn-3 n-1
Zyn-1_-2
1 >> o Bw
( | ax i) (v) ( ) (OVP) & 1 (2.2.16)

On the other hand the series ¢ ]E Z( |E l } must
c =sc

converge rapidly, i.e. we must have ( f_F_;g; 1)[ )/( [__E_)gz)lZ) <<1. To
achieve the corresponding conditions we have to notice the following
fact., F(0) varies significantly with © only when ka is relatively
large. In general F(©) is obtained through an averaging procedure
and therefore no zeros exist. For the special case of a collection of
spheres no averaging takes place and ¥(0) varies significantly even if
ka is not large, i.e. ka = 1. On the other hand F(0) has a number
of zeros provided 2 ka >4.5. When F(0) =0 then ¢ ]E(i) ]2) is
zero,but the multiple scattering is non-zero, i.e. IE(i)] ) is

—sc
greater than ( ILE__SC) ! 2) « In such a case a condition of convergence
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should really involve terms with n = 2, One should therefore include

the condition ( ]Eézg | 2‘)/( lE(slc) | 2) << 1 only when it makes sense.
As we said before in general F(0) has no zeros and unless we

choose ka large F(0) does not vary significantly., For estimation

purposes we can write F(0) < V; and demand

2
W IA I N D 1 2
e X e (10 Y ) ST A (2. 2:1T)
cz ) ¥ 3211'2 P

as we can easily get from 2.2.15a and 2.2,.15b,

For the ratios with n = 2 we can easily find that 2.2.17 must
be satisfied.

We can immediately see that 2.2.16 is "hostile" to 2,2.17..
Thus 2.2.16 requires high frequencies, high number density whereas
2.2.17 requires exactly the opposite. The anomaly gets worse as n

increases, Usually however the rapid convergence of the series
2 (n) 2 : :
¢|B_[5) = (|E |“Y guarantees that even a few terms will give
—sc EEe
n
an accurate scattering intensity.

We can summarize the previous discussion as follows, Con-

dition 2.2.16 requires that

{ IE&EI;) |2 >> NZRe(_E_(i)E(Z)*)

sc—sc .
single

particle

whereas 2.2.17 requires

(ED 12553 25 L. (|51 |2)

We can combine both in one:
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<|_F:(1)| >>>(E(2)| Y 2> >>(]E(n)l » >>N2Re (E(ic)——i;i)w/slngle

particle
1 1 2)% .
We thus see that ( IE( )l )>>N2.Re(E( ) fsc) )single or if we recall
particle
(1)2 g(t) ( (1) 2 ( (1) (2
that ( IE ] )= Nl—sc ISLngle we get IE | )s.p.>>2'Re EEL. )s 5.
particle
(1) w(2) P (s
or |EM/] s [ BV This is, however, condition 2.1.10. Thus
—sc 's.p. —sc 'S.P.

2.1.10 is compatible with the pair 2.2.16 and 2.2.17. As a matter of
fact we can immediately get 2.1.10 if we write 2,2.16 for n= 2 and

combine it with 2,2.17:

N D -2 D 2
IAxl 1ov a “>>1>> |ax | N D v
Vizan® P ( ) Vs P

2
S S5 fax |a%<< 1.

To see how 2.2.16 and 2,2.17 work we transform them as

follows: The number density | can be expressed as - - where
M (a+a)’
d is an average closest distance between two neighboring particles.

This is so because N is approximately equal to ——N—§ . Here we
(a +d)
should notice that 2,2:;15 has been derived under the assumption that

the particles are.of such size and so far apart that they only see the
far zone field of any particle. This means that r >> r' and kr >> 1

in the expression for T'(x;r') (see Appendix A). Now kr--?f—;_-z— -%—?—E n_
= o

where 30 is the index of refraction of the medium. Therefore we

have the following conditions:

A
o

>>
& 2T

r>> 1!
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or

+d > +
at+d >2'rrn and atd>> a

If we call a +d = ma then we must require that m >> 1 and

A A bN
m >> 2 . If —= > 2ma then m >> ——0r implies m >> 1
2T, a n 2mn . a g
m m
}‘o ho
i,e, m >»> —— gsuffices, If however —— < 2ma m >> 1 does.
2man n_

Consider now 2,2.16 for n = 2, We will therefore assume that
the self-interaction contribution is smaller than the 2nd order multiple
scattering term which is also greater than the 3rd order term in 2.2.12.
Thus in the present case we will neglect multiple scattering terms
higher than the second and also self-interaction terms. If we assume
the ratio of two successive terms in 2.2.12 equal to 10 and the ratio of
the 2nd order multiple scattering intensity to the dominant self-inter-
action term in 2.2.11 also equal to 10 then we make a mistake of the

order of 1%. Under the previous assumptions 2,2.16 and 2.2.17 give:

£ | ax I%—Q-ziovza'2> 10 (2.2.16a)
c 32w P
2 g
€0, ‘A l EL 10 VZ < .
X (2. 2:17a)
L2 ) V 32m2 p 10
. w3 N. 1 g
If we take into account that V_= a7, v®—3 3 our conditions are
P m”a
transformed into the following:
2
lax | & 25 25 =1
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A 12(9_2'_ D &’ _ 1
X 2 2 3 — 100
C 327 m

or

. -
D 5 o1
lax| %5 = m~a (2.2.16Db)
cz (3211'2)
e i (32 2\12 372 32
laxt 55 = 5 (55 ) a m (2.2.17b)
C

We now understand that if A= B and A=C then C= B, i.e., from
2.2.16b and 2.2.17b:

s = 1072 R =3 %107 %D
3
32w

(2.2,.48

i) Assume 2ma >\ /n_, i.e. a > )\0/21Tnm. Then we must choose

m >> 1, If we set m = 15 then

a=9x107’D (mm = 15) (2.2.19)

We usually require 7\0 to be in the visible range, i.e.

xo=4x1o'5 . T8 g

If we write a = n)\.o/nm where n is some number greater than 1/2m,

then D must satisfy the following inequality:

Dzn—n—(%xm4 cm...%xw‘} ) .l -21-1; e
m

If for example we choose n/nm =1/4, i.e. a./?\o = 1/4 then
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1 4 7 4
Dz(—g"XiO CINl a6 o —3z><10 cm) (m=15)

or if n/nm = 5, isee a/?s.o = 5 then

5 5

Dz(%xio cm ... 4%X10° cm)  (m = 15)

If we do not specify 7\0 we can easily get:

D Z% 10~ = p(ka.) E‘T'Fr-l:n— 10 (P = 1) (2-2" 213—)

Thus if Ko is constant D increases as ka or a/\ increases.

ii) Next assume 2wa < \ = ?\O/nm. Then we should have m>> ?LO/Z-n-anm.
To comply with case i) we choose m such that ma = 15/k or
m = 15/ka. We can now easily get

A 1.7% 107 M

D=Zm"a or D=p
1072 &a)®

(2.2.21b)

Thus if a/A = 1/10 and A = 4% 107> with n_= 1 we get

D=1.7X10° cm =17 m

We observe from 2,2.21b that for A, constant D increases as ka oOr
a/N decreases.

This seems paradoxical since everyone knows that as a/\ gets
very small the self-interaction contribution becomes negligible and
therefore "the multiple scattering should dominate." However, one

should be careful enough to notice that the self-interaction goes like
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(a/?\)é whereas the 2nd order multiple scattering like (a/)\)8, i.e.
goes to zero faster. Thus D has to increase to fortify the multiple
scattering since N/V is constant for the case a < \/2m. We thus

conclude that the minimum D {for constant A corresponds to ka = 1,

Once we specify a and A, = 2mc/w or better their ratio, as
we show below, we can immediately find the range of |[Ax | for which
conditions 2.2.16 and 2.2.17 are satisfied. We start from 2.2.18,

Le€s

=p 102m3a (p=1)

D
32w2

and conditions 2.2.16b and 2.2.17b give:

N 2 =7 2
lax]= (52) 21072 L-m?at= 10 “m
ew/ P m3a P (ka)'2

2 2

N . -2 n

' 1 -2( 1 -3/2_3/2_10 m
IAXIS - 10 (—— a m = _—
(217) p172 m3a) 1:’172. (ka)z

i.e.
2 2
-2 n -2 In
10 m ] 10 m
—_— s = x| = — (B Bu B2)
P (xa)® /% (a)?

If ka is large [A XI has to be small whereas a small ka can make
|Ax | of the order unity or larger. Is 2.2.22 the final range of |[Ax|?
2
How about condition _w_z | A x]a2<< 1 or |Aax|i<< nrzn/(ka.)2 7
c

We have already shown that this condition is compatible with

2.2.16 and 2.2.17. As a matter of fact if we rewrite 2.2, 16a and
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2.2.17a as follows:

2 .2 L2
N D 2 =P N D 2.2
Slaxlg =5 v =1= (% |ay |) 5 =5 10V
c 32w c 327 ?
we understand that
2
0 ] 2 1
= |ax [a"= 155
C
or
nfn ~Z
lax [= —= 10 (2.2.23)
ka)

If we recall that p >1 we understand that 2. 2. 22 is the range for
|ax | that satisfies all our conditions.

Next we examine the range of applicability of the theory if
2.2.16 with n=3 holds. Then neglecting self-interaction and higher terms
than the third in 2.2.12 introduces a mistake of the order of 1%y or
less. Remembering that N/V & (ma)-3, 2,2.16 with n=3 and 2,2.17

can be written as

2 ) . =2/3 2

x| 25 = (10) 1/3(3?-2) o (2.2.16¢)
C v a
2 1 1/2 D -1/2 _3/2

IAXI i’z = (m) (;;Z) ?57-2— (2.2.17¢)

Again we can easily see that

-1/2 w3/ -2/3 2

: 1/2 _ : ,
w) () BmpEeatf(Rs) g

3Zw2
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or

o 18" . (2.2.24)
327

We can immediately see that the choice of a, )\.O will be the same as
before (when n =2 in 2.2.16 was chosen) provided D is two orders
of magnitude bigger. Therefore,unless very small wavelengths are used,

D is too big and the third order is not likely to be practically useful.

The range of |Ax | is found easily if we set D/32n° = pm-oaX10%
(p=1), i.e.
x| 1 T
Ayl =
273 .2
P (ka)
2
-3 n
10 ™
lax|=
172 2
P (ka)
or
2 L2
-3 n -3 n
107 Pm | 1073 By
— = |ayx]| = : —E (p=1) (2.2.25)
2/ B 72 .2
p?/? (ka) p'/? (ka)

Thus if the third order is taken into account D has to get larger and
[A x] has to become smaller than the corresponding quantities in
second order.

Do we have to worry about condition |AYx]|<< I)L;‘ZJOL/(ka.)Z ? No!

=2

2
because now 2.2.16a should read < |ax| ¥ -2 10 vga > 100 and
C

32w

if it'is combined with 2.2.17a we can easily get IAxl = 10—3nf_"'n/(ka)2.

Thus 2.2.25 is O. K.
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III. FIRST ORDER SCATTERING

3.1. Intensity of the Scattered Wave

We will assume that the particles in general have different
shapes, random positions and random orientations. They can have
different susceptibilities but of the same order of magnitude. Later
for the sake of obtaining a simple form for the intensity of the scat-
tered wave we will assume that our particles have the same shape,
dimensions and susceptibilities.

To each particle we attach a triad which will be characterized
by three Eulerian angles (see Appendix B) w.r.t. a fixed system of
orthogonal cartesian coordinates with the z-axis along the wave vector
k of the incident wave (see figure 2). The Eulerian angles give the
orientation of a particle and will be treated as random variables. We
want to find the far zone scattered field at r characterized by r,0,¢

w.r.t. the fixed system x,y,z. The expression for the far zone T

is (see Appendix A)

where e_ =
—-r

1AL

Therefore we can write for the far zone field given by 2.2.5

(g, - 0 2% Jllr (¢ -ike x;
ESC (_1;) ) —c_z——(:“'?'rgr) 471 S‘ © .—E—inc(—l:i) dvi (3.1.1)
V.
1
: -i8
Now Einc = lj_oelkz where E _ has the general form Exe x-gx +
-i6
Ee Ye ,i.e. E. _ isin general elliptically polarized.
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A

Particle

Fig. 2. x'y'z' 1s & triad attached to the dielectric particle.
xyz 1is the fixed coordinete frame. e. is a unit

vector pointing in the direction {9, ¢).
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3.1.1 can now be rewritten as:

2

. Ay . ikr ~ike e r. ikz
()i, 5 _ _ = i e —r =i i

Eo @)= Z (e Xe XE ) Z—\e e dv; (3.1.2)
V.

1

since e X(e XE)=g¢c e *E - (e e )E = (e.e.- 1=1) * E . Notice that

1)i . .
)l(r) = 0 as it should. To take into account the randomness in

e -E(

-1

position of the particles we split xr, as follows (figure 3)

BB TRy (3.1.3)
Thus we have
2y Sy =£io' 2 +Bi‘. Sy (3.1.4)
and
2SI 8, =20 T E o L)
Substituting 3.1.4 and 3.1.5 into 3.1.2 we get
ZA . v e :
()i @ TXy lkr -ike *x;, ikz;,
Esc (z) = - c2 (EerrXEO) dnr © =

e dv. (3:1:6)

-ik_f:_r-_B_i ikZi
XS e :

V.
i

We will temporarily drop the index i. Now we want to evaluate gr'B_
and EZ-B = Z in terms of the Eulerian angles «,B,y the polar angles
9,9 and the coordinates characterizing the shape of the body. If we

" transfer the origin of the fixed system x,y,z and make it coincide



Y

.

Fig. 3. The splitting of r. = r. + R,
=t =g =

o characterizes the random position of a
dielectric particle, whereas Bi character-

izes the random orientation.
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Oi the center of the ith particle we can view the x'y'z' system

as one obtained from =xyz by an appropriate rotation, i.e.

where

-1 s
Ri = (M 7)..R! (i,j=1,2,3; repeated indices are
1
summed)

i,j are indices signifying the cartesian components of

R=R.e; = Rig._i, and M™! is the inverse rotation matrix given by:

and

Now

[cos ycos B-cosasinPsiny -sinycosP-cosasinfcosy sin@-sinf]

cos ysinPtcos@cos Bsiny -sinysinPBtcosacosPcosy -sinacosp

sinasiny sina cos vy cos «

We now write:

Er'-E = (Er)iRi\= (—e-r)i(M—

™)

. = = = —1 !
e *R=Z=x,=(M )3jxj

(Er)x = (Er,)i = cos ¢ sin O
(Er)y = (_e_r)z = sin ¢ sin 0
(e,), = (e )5 = cos 0

Using the above results and 3.1.6 we get the total scattered field:
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(1) wZ eikr
—E“SC (-E) - z -Z_ZAX i(ErXErX-E—O) 4nr 25p (-lkgr.zio+lkzio)
i

y[exp (" 11{(21‘)1 (9 ,¢XM_1)£n(ai 3 pi' Yl)x'[ll
V.

1
; =1 '
k(M )y (e, By vy | d) el d (3.1.7)

To simplify 3.1.7 we define

g {exp (—ik(M_i)ﬂn(ai,ﬁi,yi)[ (_g:_r)ﬁ(e,qa) - 6£3]x'n)}dx‘1 dx'z dxé
V.
1

= K(@,,B;,v,i0,9) (3.1.8)

The time-average radiated power per unit solid angle is given by:

_dP _ 21 %
I—m—r zRe(_}:D_XH.Er)

In the far zone of a localized source we have:
M €
E=ﬂ’—9—(H><e ) and H:,a/—ﬁ (e XE)
‘\"‘ € = =g — B —=f —
m o}
therefore

EXH = EXY

(3a1x9)




s 3 Bz
If we substitute 3.1.7 into 3.1.9 we get

Lo [el¥7]2]e x e xE_|?

w . )
¥ 12 -c-;-z A X3 eXP("lkEr-_E-m"i' 1kzio) Ki(ai’pi"yi’e’q’) (3.1.10)
i
To make the computation of 3.1.10 easy to handle we assume that all

the particles have the same shape, same size, and same susceptibility.

Then we have:

Ki(ai,@i,yi;e,qo) = K(ai,ﬁi.*{i;e,@)

i.e. we drop the index i from K because the functional form will be
the same for any particle if all have the same shape and size.
Next we write k = Er + ikim to take into account the losses of

the medium. If we now call ~kr3r° A

i + krzio =@ 3.1.10 becomes

-2k,
im

T 2 wZ \2
I<e e e, XE 1% (%5 [ax |)
C

itpi 2
X ‘Ze exp (kim(§r~gz)'£io)K(ai,ﬁi,vi;e,qo) (3.1.11)
i

We will now treat ¢, as a random variable (due to randomness
of the positions of the particles) which is equally likely to be found
e{rerywhere between 0 and 2w. Under this assumption it is shown in
Appendix D that the average value of the absolute square of the sum is

given by:
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(|2 ¢ toxp liymle,me,) ) Klap 80,00 | )

i

]

1 ¥
N vg exp \Zkim(_gr-_gz)"_a_t_) dv
v
2T
X_S. g ‘g [K(a,B,v;0 ,qo)l sin @ do dp dy {3.1:4%
=0

where a is the radius vector from the origin to any point, N the
number of particles and V the volume occupied by the particles.
To estimate the importance of the losses we evaluate

_1 6 e Fo ;
J = V‘S‘exp kim(sr _gz) a) dV for an orthogonal parallelopiped

A
s P . D
X Ty oz
i T i
X = 2z
1 2 Zkimerxx 2 Zkime ey 2 Zkim(e - )z
J:-,‘—/_SL e deAL e dyS‘L e dz
=X ¥ -2
2 2 2
= —%, . 1 sinh (k,_L_ e )sinh (k,_L e )
ki _e_e_ (e_ -1) y TY
im rx ry rz
"° sinh[kimLZ(erz-i)] {3,143}

Notite that for 6 =0, i.e. forward scattering, J = 1. If we expand
3

3, + ... we can easily show that 3.1.13 gives:

sinh x = x + =

2

=1 + O(Lk, ) (3.1.14)

where L 1is a linear dimension of V.
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Thus J is independent of the losses, if (kimL)Z << 1, For

example k. for water can be as low as .8 m ~, therefore a

im 20
region V with L = 2m will make (k,_1)%=1% and J=1 withan
error of 1%. However, our theory does not allow L to get so small
if the wavelength is in the visible range. Thus if A = (4X107°...
7X10™°) cm and n__ = 1.33 then the min L is obtained for ka = 1,
i.e. (see 2.2.21a)

A
o)

18 mn
m

9

min L = X107 =543 M. ene 93 m

If for example min L. = 5,3 m then (kimL)Z = 7% and we make an
error larger than the accuracy of the problem if losses are neglected.
The use of smaller wavelengths can reduce L ,also kim = kim()\.) and

then losses can be neglected. If the medium is not too lossy, i.e.
- 3 m-l
im ~ 100

lected for visible wavelengths and ka of the order unity.or larger.

then we require L 2 10 m and losses can be neg-

/

We have not worried about the effect of losses on the integral
over «,B,y for the following reason. If we do the integration we will
find a function of 0,¢ and ka. Now kima will in general be much
smaller than unity since a is about the same order as the wavelength,

For example if the medium is water k, & 1 =+ ?16 m™! and for the

7

largest k. , k. a ~ 10°" if A\ is in the visible range, whereas
im’ Tim

kra ~ 1, If losses are taken into account we can easily see that they

tend to reduce the forward scattering.

Suppose now that we neglect the losses. Then from 3.1.11 and

3.1.12 we get:
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Iy = {1 ocN'EEIA |'2| Xe X E_|*F(6
(1) =) (% x|) legXe X E |“F(o) (3.1.13)

where

1 2T p2T T >
F(0) = s g S IK(a,ﬁ,y;e,cp)] sina do dB dy (3.1.14)
8w =0vYB=0¥a=0

We have written F(0) and not F(0,¢) because the averaging procedure
will eliminate the ¢ dependence no matter what the shape of the
particles is, provided there are no losses.

for an elliptically polarized

Next we compute |e Xe XE |
—g g~

incident wave. We have

component of -—E—o perpendicular to e.

-e Xe XE
=r —1r —0

E e le, + B5 B8y

-id -i8
Now E_ =E_ e ¥ +E e Ye . We know that
=0 x v -y

e *e = - sin e *e = CcOs
Zx" Z¢ # 2y 2o “
e *e,=cos0 cos g Ey*ge=cos O sin ¢

Thus
-i.&_x —:'LGY
—grx _e_rX_I§0 =(- Exe sin ¢ + Ey-e cos ga)g¢

-id -ié
+ (Excos 0 cos gpe % 4 Eye Ycos 0 sin qa)_e:e (3.1.15)

and
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-id -i6 >
|-Exe *sin ¢ +E_y_e Yeosg|

il

—iSX '16 2
+ ]EXCOSecoscpe +Eycosesinqae YI

-i(6 -8 ) >
= I-Exe % Yosine +Eyc03ga]

2 "H8,-8y) 2
+ cos GiExe YCOSq:'i-Eysinqol

) i ot B 2 ; ) 2
(Ey_COSqD EXCOS(GX éy)smqo) +cos B(Eys1n¢+EXcos(6X Sy)cosgo)
FE®sin™ 6~ Jsin"p oo SOE sin {5~ oo
x X v X X 'y

Two special cases are of interest

-i6
i) E. linearly polarized E. =Fe e
~—1nc =1 o BE
-ié

i ; < o x §
ii) Einc circularly polarized Einc = Eoe (Ex == 13‘37)'
The plus corresponds to a right-handed and the minus to a left-handed

wave,

2

. B, . B 2 2
i) lg_rx_e:rxgo = Eo(sm ¢ + cos™0 cos ) (3:1.16)

The scattered power per unit solid angle is then

2 .2
(aty « NE2( 25 |ax]) (sin®e + cos® cos®p)F(0)  (3.1.17)
C
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and the intensity pattern of the scattered wave is
i Pu = (sinch + cos?8 coszrp)F(e)

Iz - g'2 Ieiiw/Z

; 2
5 sin ¢ + cos qoi

ii) le Xe X E
-r —r =-—0O

+ E;Z coszeleiin/ZCOS ¢ t sin go]z

E;z ,e:i:igo | 2, E('fcoszeleii“/zeq“i‘” Iz

(1 + cosz'G)E:)2

3 2
(Im} « NE(I,Z (% [Ax l) (1 + cos20)F(6) (3.1.18)
Cc

LP. = (1 + cos?0)F(0)

Notice, the intensity pattern is independent of ¢ as it should be since
the incident wave is circularly polarized,therefore the time average
radiated power per unit solid angle cannot depend on ¢. This would
not be true if the collection of the particles exhibited a ¢-dependence

on the average.

3.2. Polarization of the Scattered Wave

Recall equation-3.1.7 for the first order total scattered field:

£ W = - 5 (o xe XE ) S
—scC L} = CZ -e-r -e-r —o’ 47r

S: AX iexp(-ikgr°_;ioﬁkzio)K.l(ai, pi, Y3 0, ) (3.2.1)
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3.2.1 can be rewritten as
! ig(0,9,
Egg@ =(e Xe XE)|F(0,p,r) ['80:¢:7) (3.2.2)

ig(6,e,r)

where the meaning of |F(0,¢,r) |e is obvious.

The polarization properties of _E_(sic)( ) entirely depend upon

the vector _e_rX_ng_E_o which is independent of the material medium,
the shape, size, orientation and susceptibility of the particles. This
will cease to be true for higher order scattered fields.

-ié -i6

e +E e Ye then we saw in
- y =

If E has the form: E e
—o x
section 3.1 that
-iﬁx -id
~e Xe XE =(-E e singe Tt E e ycoscp)e
=" =r" =0 x v -

-i8 -id
+(Exc039cosqoe X+Eye y’czosesinqa)ge (3.2.3)

It is obvious from 3. 2.3 that the total scattered wave is elliptically

polarized. However for © = w/2 the polarization is linear since

cos 6 = 0.
To determine the polarization ellipse it is necessary to cast
_e_rX ng Eo into the following form:

-iﬁ¢ -ié
_-Erx—e-rXEO=Erpe qu +Eee = (3.2.4)

It is shown in Appendix C how one can draw the polarization
ellipse if Ego’Ee' 6‘?' 56 are known. The computation of these param-

eters is easy. For example



ol P
E‘P cos 6<P = -Excos stin @ + Eycos Sycos @

qu sin 590 = -EX51n Bxsm @ *t Eysln By_COS @

and
2 ol 2 2 2
Eq) = Exsz.n o T EVCOS ¢ etc.

The cases of interest are:

-i§

; : : ? ~ x
i) Einc linearly polarized, i.e. E. =-e (EXEX-%- Eyf._y)

—inc

ii) E.
——10C

. : _at X .
circularly polarized, —E-—inc = Eoe (Ex =+ lEY)

i) 3.2.3 gives:

-i6
2 i & &i ‘
ErXETX_F:‘_O =e {( Exs1n @ + Eycos cp)g¢

+ (EXCOS 0 cos ¢ *+ Eycos 5] singo)_qe}
The scattered wave is obviously linearly polarized.

ii) 3.2.3 gives:
1 —i6x
—ErXErXEO = Eoe (-sin ¢ = icos qp)_eE‘P
; -'16X
+ cos 6 Eoe (cos ¢ % sin ga)gs

, ~i(8, ) .
= Eoe (cos e_ge &£ 1_€_ﬁ¢)

The scattered wave is elliptically polarized with an inclination angle
¢ = 0, However, for 0 = w/2 is linearly polarized which is true in

general as we saw before. Also for © = 0 (forward scattering) or
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0 = m (back scattering) the scattered wave is circularly polarized.

Thus if the incident wave is right-handed circularly polarized

then
=i _-¢) .
-_ngErXEO = E e (cos Beg + 1_&3‘;0)
! —i(Sx—q’) ’
E e (eg +1_g¢) =0
! -1(5X+<p) im :
Eoe e (_e_e— 13¢) 6=m

If we take into account the correspondence (x,y,z)<>(0,¢,r) we
understand that the back-scattered wave is circularly polarized but of
opposite handedness than the incident wave whereas the forward
scattered wave is circularly polarized and of the same handedness.

If the incident wave is left-handed circularly polarized then
we can easily see that the back-scattered wave is again c.p. but of
opposite handedness whereas the forward scattered wave is c.p. and
of the same handedness as the incident wave.

We can easily understand the above results if we recall that
the observer who decides about the sense of rotation of the electric

vector runs always behind the wave front.



-44 -

IV. SECOND ORDER SCATTERING

4.1. Intensity of the Scattered Wave

Equation 2.2.6 gives if the self-interaction terms are neglected:

g 2
()i, ., _ (o g o z 5 e
E @)= (:Z) AxX iy Dlxsz;) { a%s Dl By, (2 4V } q¥;
i 1 v,

(4.1.1)
We have assumed that the interaction between the particles involves far
zone fields only., Therefore, we can use the simplified form for
E(_l;i;_lgj)

ikr. -ike -1
i —r

e (4.1.2)

. ~ _ =
Dzpzy) = (am2y o ) G

I x, for any particle is measured from a common origin, say the
center of the volume occupied by the particles, then 4.1.2 is a bad

approximation for particles for which r.-e * __1_:3. is close to zexo,
i
There are, however, two reasons for using 4.1.2. a) The majority

of the particles in pairs satisfies 4.1.2 to a good degree of accuracy.
b) Any fine details which would result from an accurate form of

l"(_l_‘_i;_:g'_j) will be completely washed out by the final averaging procedure.
= (2)i

The scattered field _I*Q;,C (r) is a far zone field, therefore

I'(r;r.) takes the simplified form 4.1.2. We can now write E(Szc)l
e ]

(x)

in the following form



-45-

: 4 ikr -ike -r.

2 5

—F'—'( )l(—l-'-) o w_4 Axie‘lwr (E-Er—er) .Sle s
V.

i
-ike +*r.tik=z.
_ { -ri -J J
(1_.3 Er.-e—r. Ey 41rr AX de}dV.l
1. T
j#i
(4.1.3)

To take account of the randomness in position of the particles we do the

same splitting as we did in section 3.1, i.e.

4 ikr -ike °*r
(2)1 e Zr Zio
() = 5 O3y galu-g 08 Joe ipee, =)
C = - 1 1
V.
L
elk - 'Ri -Lk_gr T +1szO
"Zo 4wy, © {Z X_]e
JFi
'1kEr1'.BJ ikZ.
‘S‘e e Jdvj} (4.1.4)
N
J

When we do the integration over the volume of the ith particle

we can replace - by its average value e . The reason is the
i io
following. L points along the line joining the origin (lying somewhere
i
in the center of the volume occupied by the particles) with a volume

element within the ith particle. Because of the assumption of a far

zone field interaction between the particles we understand that if a
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particle is situated near the origin then any other particle lies at a
distance much greater than a wavelength. On the other hand the linear
dimensions of the particles are of the order of a wavelength, therefore

the change in the direction of &. over the volume of the ith particle

is really negligible for all the pa;ticles but the one situated near the

origin. However the error we make by ignoring the particle near the

origh_mkis really negligible if N is large. Next we will replace elkri/r.l
ikr

by e io/rio which again is O.K. for all the particles away from the

center.

We can now write 4.1.4 as follows:

et I @ A e—ﬂ(:-( e Jeamn feiks, "2 ]
Zge T & Xi Znr ‘2T EpE)7 OXP —=r —io
eikrio
Eo"amr UEXP (-ike, - R)) aV; }
v,
i
{E ijexp(-ikgrio-£j0+ 1kzjo)§exp(—1kgr

! V.
JFi j

(u-e. 8. )
% io "io

-R.+ikZ.) dV, }
- i

(4.1.5)

If we now recall definition 3.1.8 and use 4.1.5 we get for the total

scattered field:

4 ikr
e

(2)y o @ ] Z .
Esc (x) = 4 4ur (}__1 E:1:*-(?-r) - i(g M B )
i

=1,
C 10 10

ikr.
. - 10 {Z &
-E_exp(-ike -r. ) T Lo{e,B»v;i0,0) { X5
J

exp (-ikgrio-_r_jo+ ikzjo)Kj(oej,pj,yj;eio,qaio) } (4.1.6)
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where we have defined

Li(ai,ﬁi,yi;e,go) = S‘eXP(_ikEr.B-i) dVi

(4.1.6a)
V.
i
To make 4.1.6 look simpler we define
Ay . -1 cr, +ika, Ao, ,B.,v.;:0. ,0. )= .
.>_/ Ry BRI 1k§rio Ziot iz o) Kol Boavii®amy ) = Ay (800, )
j#i
(4.1.7)
Next we drop the index o as redundant and 4.1.6 becomes
4 ikr
(2)y =8 & -
ESC(E) - oI 4mr (l:.' .8
i.k:r:.1
e
i
L (2;.8,,v;30, 004, (6;,0,) } (4.1.8)

It is shown in Appendix D that if Es

E(i E(Z) + ... then
=sc —sc

* 1) (1)* 2) (2)*
(B, En )y = (B gy o (g glB% o

(ry = (it + 1By 4

The above relations say that the fields of the several orders are
"orthogonal' to each other when the appropriate averaging is done.

Thus it makes sense to compute (Eézc) _(SZ(':)) ‘x<1(2)> because
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in that way we get (I) up to the second order by simply adding (I(i))

to (I(Z)) + We now multiply 4.1.8 by its complex conjugate to get:

(2.) (2)a< 11{1‘ 'Z
Esc —scC ( 2) 4wr Xi (u- r)
]
.(l_l_—-gr Sr ).EO 7 eXP(-ikEr.-El)L1(al' pi»\’i;eﬂp)
2
Ay(05.9) | (4.1.9)

As we did in section 3.1 we will again assume that all the
particles have the same shape, size and susceptibility. Thus Axi =
ij = AX and we should drop the index from Ki" Then according to

the rules set up in Appendix D we have:

% 1kr im®
v

—SC —sC mr

(4 a)

[(a-ee ) (u-e e )1E |%|A0,,0)]% av
_LZ‘S'S'X | L(e,B,v:0,0) ]2 sin @ da dp dy (4.1.10)

where M E/a = (Gi,qoi) and a is the radius vector from the origin
i
to any point within the volume V occupied by the particles. Also

1 g .
= — o >
A(Gi,rpi) e Ai(Gi,rpi). If we recall definition 4 7,we can write

2 :'|.kz;i
lA(ei»?i) ‘ =IZEXP('1k_G_ri'.£j)e K(ai’pi'yi;ej'qoj)
j#Fi
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£(2), p(2)*

EocELL ) we replace

To get an approximate expression for (

IA(Gi,cpi) IZ by its average, i.e.
(| A(® )|2>:N-1~S‘e (2%, (e, -e,)-a") av'
it % v *P i.rn—r.1 —z! =
1 2 .
x-—z-ggg ]K(a,p,y;ei,goi)l sin @ de dB dy (4.1.11)
8w

where a' is the radius vector from the origin to any point within the

volume V occupied by the particles.

If we now use definition 3.1.14, i.e.

{ 2T [oTm T >
FO) = — ‘) g |K(@,B,v;0,9) | “sin a da dB dy
8 =0vB=0

and 4.1.11 we get from 4.1.10

-2k
2 20 2
(252 = (2lax]2)'s prras @
Zk me
{S‘exp(Zk (e - ) a) 5 I(u—grgr)-(u-gaga)-_E_o [2
(4ma) = =
[S‘exp (2, te, -2, ) a') av' [F(8,) av | (4.1.12)
Notice that we have defined
1 2
Fi(G)Ew-“ZSlS‘S !L(a,@,y;e,rp) sin @ da 4B dy (4.1.123a)
81

We will now show that Fi(e) is independent of 8. Recall that
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L(Q’,ﬁa\’;e:éﬂ) = Se@ (—iksr'—l-{-i) dvl

7
P

If we call T the angle between B—i and e, we have Er.-B-i: Ri cos T,
Now L. is a fixed direction in space and L will depend on the orienta-
tion of the particle w.r.t. the fixed direction. However when we
average over «,B3,vy all the possible orientations of the particle are
included and F1 cannot possibly depend on the fixed direction _e_:r(e,qa).
The situation with F(0) is different because K = S eXP('ik(Er'EZ)°RJdVi

v
P

depends on the orientation of the particle w,r.t. the fixed direction

. This last dependence

e_- e, butalsoonthe magnitude of }Er—“e_z
makes F{0) to be 0 dependent. (The ¢ dependence is smeared out
because 8.=E, rotates about z.)

We now go back to 4.1.12. Notice that we have slightly changed
the notation, i.e. we have set f’-r.E B, = unit vector in the direction
ei,qoi. Again the losses have an elffect i+ O(kimL)z. If we neglect the
losses 4,1.12 becomes

4 " " 2
(2} (2)* _(w 2 1 N
<Esc:'»E-sc ) = :ZIAXI ) (471‘1' N+ By

XS‘ I(E_Ersr). (:— Eaga).*ﬁE*O l ZF(ei) dvi (4.1.13)
v

It is shown in Appendix E-i that for an incident wave circularly

polarized (no matter whether right or left-handed) we find
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@222 = (% 16x1%) (k) WY 25 £, {p,#8,000%0)
(4.1.14)

where R 1is the radius of the region occupied by the particles and

B B are defined as follows:

1,
B1 = .]'1 +J3 +4-;r(.'.r1 - 3'3)
(4.1.15)
B2 = .T1 +J3 B 411'(3'1 - .T3)
and
i W
J1 = Ego F(©) sin © d6
(4.1.16)
1 {E 4, .
J3 2 5 F(0) cos "0 sin 0 d©
o
If the incident wave is linearly polarized the result is:
(2), 5(2)% 2 ) N_R
(Esc Es ( ))A l ) (41rr L5 2 Fi
™
(A sin’p + Azsinzga cos?e + A3c032'9 tA)  (4.1.17)
where

T T 4 2 5
A =§ [E(i +cos ~0) - 2wcos BJF(G) sin © d&
o

>
I

T
T . Bw 2 .
" -go (—i +-—2—-cos 9) F(6) sin 6 d6
(4.1.18)

A = (3"4- ~—cos 6 T Ccos esm B)FQG) sin © d©



S
(" [0 rcorter s roos?

= l_z(i +cos“8) + wcos BJF(G) sin 6 d6
o

Ag

4,2. Polarization of the Scattered Wave

Recall the expression 4,1,.,8 for the second order scattered
field if the particles have the same shape, size and susceptibility and

there are no losses.

4 2 _ikr
(2), .y _w (AX)" e
:E-sc(r) B C4 T (u. —r—r) {Z(u =" .— i)
'ik_e,’,r'Ei eikri
‘Ee LBy, 0,900, 9) | (4.2.1)

We want to cast 4.2.1 into the following form

-15 -i8

(2)(1,)_ EIN +E e Pe (4.2.2)

and then apply the method developed in Appendix D for the computation

of the polarization properties of Eé?;). We first compute

1
(3-.e)(ume, o, ) Egm e X {ex[e, Xle, XE ) [}=e.x(e.x4)

-id
Ele x(gxi'igy). Then as we saw in section 3.2,

1

Now assume that —E—o
page 40 we have:

—i(ﬁxﬂoi_)
-e._ Xe XE =E'e (cos B.e, *ie )
gy e =0 o 1—91 =9,

and according to Appendix E-i we get:
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e X{e X[e X (e XE):H»
—-r T —r;" —r =0

-1(d_xo.)
' X 1 3 ® L]
Eoe {[i l(qui Ee) + cos Bi(Eei Ee)]_e_e

+|:i:1(e i-e)+c039 -e)]_q)}

iNk.
2 2 z ™M
‘[(qui'—e-e) + cos Gi(_gei-_qe) e ‘eq

1

B e-l(ax:l:qpi) {
o

i,
+ {(e e )2 +c0828.(e e )2 e ‘e }
5, %0 il%0." 2 %

1

Here the simplifying assumption will be made that li and s which
are functions of the random wvariables qoi,ei represent the same ran-

dom variable with a constant probability density 1/2w over the interval

(0:217)-
io‘i
We can also write L(a ,ﬁ 2 Y33 0,9)= IL(O: ,B )Y :0,0)|e 7,
i,
A(ei,¢i) = [A(ei,go.l) ]e i with the same assumption about o, and TS
as for Ki,pi.
Finally we get from 4.2.1
1K
(2) te V2 2 . &2
E ( } & ]Axl 4 — 150 L ige) + cos Gi(_?_ei _e_e)

1
PNCHERY Tr, IL(wi,ﬁi,vi;e,qo)l]

iK.
i . 2 2 . 2
+E¢[ze {(E‘pi _e_qo) + cos Bi(eefL _c_a__qﬁ)
i

i :
[A(ei’qai)—-fi;;; IL(Qi’ﬁi’yi;e’q’)I] } y o€
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-id 4 E' — -iK.
_ 0 _ w 2 o i . 2 2 . 2
Tg = Hgo =z |ax] sz © ‘J(Egoi Byl F wbs ei(ggai &g
i
1 A ii{i
IA(ei’goi)JéTrri ,L(ai’@i"yi;e'w)] =Z, e Ai (4.2, 3)
i
-i§ 4 E!
= P_ w 2 o
€, = E e = = |ax]

-~ ik,
i 2 Z 2
4171‘2 e @@i gy Feosle g,
i,

{ 1K,
A0, 00 | g 114y, B,,v;50,0) [ = ) e 'B,  (4.2.4)
' i
According to Appendix D we have to compute:
2 2
<Ai> ’ <Bi> : <A1Bi>
We have
2
4 2 E! ¥ e
2 A 1 2 2 21
(A = (%]AXJ ) — T/'S l_(3g0.°-98) e ele, 2Byl |
c (47r) v i i
20 ( 1 Y 1 ( 2
AL o) [ Y (g ) dVX— | L(e,8,v: 8,0)| sin @ do ap ay
1’71 47r. 8 2
i T
2
2 E!
Z w 2 o 1 r 2 2 2
(B;) = (—Z,EAX] ) 2 '\7§L(2¢.‘E¢) *wos ei(EG.'—e—qo) ]
c (4wr) v i i

2
<laog.en | () av -éi—zng [ L(e,8,vi0,9) | *sin da dp dy
™
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lZ

(amp = (% lex1?) —2

N[!-—‘

2]
o

L0 Mo voiPrcone.te. ro2 e, o 12+00s%0 f0n -6 12 ]
XVSI{ L(E¢i EG) + cos 6.1(-(3(#i __e_e) _][(Eg,,i E‘P) +cos Gi(ge.1 & j

Vv

g 2
( ]A(ei"‘”i) 12'}( 47:1._ ) dvxs_l"zgg_g‘ !L(a’,ﬁn{;e,rp) !zsinada dp dvy
1 m

where dV = r.Z dr. sin 0, dB8. d¢. and r. (r.,0.¢.) is the radius vector
i & L E =i it

from the origin to any point within the volume V occupied by the

particles.

We can now find the Stokes parameters:

wn
1l

o= N[(ad) +(BDH ] s =n[(ad - (B ]

145]
1

N(AB.) 5

N(A B>

One can easily see that even if 6 = 0,m the second order
scattered wave is no larger circularly but eliptically polarized and
Y
sc —sc

ey
S

Eoo- If the incident wave is

consequently so is the total field = E However the handedness
is preserved because of the domination of
linearly polarized we can make analogous computations to find that the

second order scattered wave is elliptically polarized and so is the total

scattered field.
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V. THIRD ORDER SCATTERING

5.1. Intensity of the Scattered Wave

The third order scattered field is given by 2.2.7 and has the

following form if self-interaction terms are neglected

£y 3)i
—E-sc( x) = ;E-(sc)l(—l—')
i
where
Ey) = (——) Ax; g T(sz)-{ ) 8, ) T 2.
JFi
[Z Axkgz(fj;ﬁk)'ginc(ﬁk) 4V ]dvj}dvi ¢ 3
k#j Vk_

Under the assumption of a far zone interaction between the particles
and a far zone scattered field E( )(r), all the I''s will be written in
their approximate form. Again the splitting Xy =1y o+ —82 will be
made to take into account the randomness in the position (through -Eﬂ_o)

and the shape, size and orientation (through Eﬂ) of the particles.

We rewrite now 5.1.1 as

lkr -ike -1,
(3)i . . =r =io
B = ) Axl T {u-e.e)e

-1k_§r°_l?_l_l elkri _lk-e—rl.—{jo
g {e 4:1rri (E-—r e ) z AXJe
Vi j#Fi

-ike < R. ikr,
- i e E A ik +ikz, )
J [e 4rrr. (E-Er r.)° —o0 XkeXp(_l Erj Eko lizko
V. J 3

J (relation continued)
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S exp (—lkErj'-Bk +1ka) de ] dVJ. }dVi (5:1:2)
Vi
As we did with the second order field again we replace e by e s
ikr, ikr, 0, E: “Fio
e /4171' by e 4Tr, , (u-g e ) by (u-e e ) (see justi-
& for 'z ~ryvr, = “Tys o
fication in section 4. 1).
Now recall the following definitions:
-1 . +1 = .
S‘exp( ike R, tikZ ) dV, Kk(ak’ﬁk’yk’GjO’q’jO)
v, Jo

e -ike *R.) dV.= L. («.,B.,v.;:0. ,0.
SA xp - ey "‘J) J J( J ﬁJ YJ i0 9010)
V3

SEXP('ikEr‘_B_i) dvl = Ll(alsplayl;e ,SD)
V.

1

Z AX kexp("ik_e_rjo'_gko‘i- lkzko)K(ak’pk’yk;ejo’q)jo) = Ai(ejo’qgjo)
k#j

In view of the above definitions 5.1.2 becomes:

(3)i 4 wZ Z eikr -ik_@_r-_:gio
—E-sc (x) =(:Z> AXi 4rr (E_Exfr)'e (2"9— .10-?-1'10)

ikr,
= io ;\

¢ ————L.(a.,B.,v.;9, AY.e -ike er. - e
4"rio 1( 1 £3:L Yy ga).__{ X_} #pl-i —Tis -I-‘_]o)(;l Erjo—rjo)

JFL

ikr,
e J°

“mr AR Borpi®s e ) g (0 pa ME (5.1.3)

In what follows we will drop the index © as redundant. We now
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define

Ezi(ei,qpi) (5.1.4)

In view of 5.1.3 and 5.1.4 the total third order scattered field can be

written as:

1kr -ike -7,
B0 - () S Paxe T e lune &)

1
e

To compute the average Egc _@gi) we again assume that all

the particles have the same shape, size and susceptibility. We define
1 1

T= T, and A= X A . Now we compute the average accord-
(Ax)
ing to the rules of Appendix D to find:
-2k, im ¥
2 2
(222 - () 0|
(47r)”

% {S‘GXPKZklm(Er_EZ).E,)](L_J'—Er:c-r). (E—Ea'e )-T( :QD ) !2

8
-2k. a'

o im V1 f*

— gV 3 ]L(a’ B,v;0 ,90)| sinedadf dy
(411'3.')2 811'

(5.1.6)

where a'(a',0',¢') is the radius vector from the origin to any point

within the volume V occupied by the particles. As we see from 5.1.6
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we have to compute |(1=1—_e_r2r)- (g_gargar).z(e',go') !2‘ According to
previous calculations
-(u-e, e, - T(0%9) = T e ; + Tgieq:

and

(E'EI‘SIT(lzl-gaxgau)'_'_l‘_(e',sﬂr) = [,T(PI(E(P'.EQD) +Te|(_§er"_§¢)]_§qo

[
+ LTQD[(EQD'.—e'e) + TGI(EBI:EB)]EG
Therefore we get:

A

|(a-e e ) (ame e )- (8,0 | ®

ITg)'(qu'.Eq)) +Te;(_qe.-_e_¢) I 2t qu,.(gq,l eg) TTgilegiegg) | z

T, 2 lepire )t (e i eg)® ] 1T P (egire )P4 (egim2g)” |
" e + . r + —‘
(Tq)lTel lqﬁlTel)L(Eqpl'_?e)(Eex‘Ee) (ggpu'Ego)(ge-'Ew)J

What we will do next is to replace IT(p, | 2, ITB' I 2 and

(T T + T  T.) by their averages. Recall the definition of T:
. o' Te) PY z

ikr.

B 2 ’
-zj)(t___l—gre )

T= Z A Xjexp(-lk_e_ar
J

) B VB AR
1 J o J J

Then (Erj e Eau 3 Eri_* Eal):



~E0 -
-2k, a'
im

* N ' n n n
vV

[(E_-l -Ea"-?-a ")‘Eo]k I:(g —Ea"Ea") .EO ]k dav"

—= ygg |L(a,B,v;0',0") [*sin @ da df ay

and
- Zk a"

(TkawLT = %X = ~—————exp (2k, e L102")( |A(0", o' )l2>
v

3%

{ [(g —Ea"ga")'-};—o] k [(E”Eania"'ﬁo]z
5 [(2 -Ea"’ea")'—@o]i [(:_Ea"fan)'go]j} av"

f-zﬁy |L(a,B,v:0 ',go')[z sin @ da dB dy
™

or in view of 4,1.12a

e sk _ N 7
(T Ty + T Ty) = v[Gkﬂ+G£kjF1 (5.1.8)
where
- n
. Z.kima Zkimﬁar‘é" 3
G =\ =———— e (A0, 0™ | )
v (4wa')
—\:k

_l 1
[:(E-Ea"ga")‘-?-O_lkBE"Ea"Ea")_Jll dv (5.1.9)
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Note also that

(IA(G",GDH) |2> . %5 s (Zkim(f’-a"-gz)'gi) dvi
VvV

X = zgS‘S‘ |K(a,B,v;0",0") Izsin @ de dp dy
8w

= _Il.I & . . n
= 3 S‘ exp (2k,_ (e n-e,) 31) dv, F(e") (5.1.10)
%
: (9 A% . :
We can now write (Esc . -lE-sc ) in the following form
(3) (3y% _ 7w 3‘2eu2kimr N N N .2
Eg B ) =(Z Ix°) =—= 5 3 7 ¥
c {(47r)

E{qurqo, [(§¢.-3¢)2+(gqar'ge)z]+Ge,er[(ge.'g¢)2

-
+egin2g)? | (G gt Goiyi [ (e e ) egine,)

-2k, a'
1 Lexpize s i dav!
+ (e _ep)lesr=8s) }ep . e -a
o' <0\ =" 20’ | b=y = (4-rra')2'

-2k. r
im

. 33 2

(@ 3\’ e NNNLL2

_(( 2) lel) — % v v Fi M(0,9) (5.1.11)
¢ (4mr)

Now we can easily find that:

(e --sqp)z = cos? (¢ - ")

@

(e ,* e )2 = COSZG sinz(qo—rp')
Eo'" Sp
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(egre Eqa)z = cos®0' sin’(p - ¢ ')
. 2 _ ] ' . .
(-e-e' Ee) =[cos 0 cos 6" cos (¢ - ¢') + sin 6 sin 8']

Next we assume that the incident wave is circularly polarized,
-i6
i,e. E =E e
—o

*(e_+ie ). We also assume that losses are negli~
—o0 e

gible; i.e. (kimL)z << 1. In the absence of losses we have from

5.1.10

< IA(@",QD") |2> = F(e")

and from 5.1.9

2 ¥
1 . i ) "
Gpe™ 5(4 -) F@"| (e ue, X, | B‘:'Ea"ga""gojg +

vV ma k

Therefore we have:

-~

2
_ 1 3\ i ,2{ 2 24 i . 2 o
oo’ —§(4va-,) FOMEL (e, ne,) +cos 0 (egnre 0%} av
)

2
Ge'e' = S‘( : u) F(Q")Eé}z {(e¢".29')2+ COSZG"(EG"'EB')Z} av"
41ma
v

oot = g ( 4miau )ZF(-BH)EJDZ [ii(gqo".gsﬂ')

+ cos G"(Ee"'fiq,'):l|::Fi(.‘i¢=r'.§¢l) +cos 0 "(_5_3_ G"--e—qp')] av"

and
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el S‘ (4.“_& ) F(e")EIZ {(e u* & 1)(3 1 ee)
+ Cosze - (Eell'_gqpl)(__e_ell'_gel)} av"

Now we can easily find that

0

2 2
(Sqall. E(pl) + cos @' (een Ly

cos (0"~ 0") + cos20"cos%0"sin?(p"- ‘?')(390"-'6‘9')
+ cos%e" 4

2
e[l e)

G 'sina(qo"— ¢') + cos20"cos%0"cos %0 'cosz(qo"~go')

2 2

+ cos28"sin%0"sin%0" + 2c0s°0"sin 8"cos 8’ sin 8' cos (p"-0")

(e u°9_¢n)(g¢u'-ge.) + cosze”(_eg e.|'§¢.)(gesr'ge)
= cos (p"-¢')cos 0'sin (¢"-¢")
+ cos?8"cos 8" sin (¢'- ¢")cos 8" cos 0" cos (p'-¢")
+ cos20" cos 0 ' sin (¢' - @™ sin@ " sin 6"’
Recall now that
av™ = a"® da" sin 0" de" de"

We want to compute the Gkﬂ 's. If we now perform the ¢"
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integration first the only ¢" dependent terms are the products of the

unit vectors computed before and we get:

2T
S\ |:(e(pu'_‘§§ol)2+ COSZG"(EGII'E¢|)2] de" = -15 +1 cos?e" cos?e
o

[\

2
S [(gq,..'ge.)Z*' cosze"(geu-ge;)z:l de"
(o]

=
=2

cosze' +-% cosze'cosée" + 27 cosze" sinze" sinze'

2t
2
S.o E(Eqpn'ﬁqpr)(ﬁcpn‘gel) + cos e"(Eell.E(Pl)(Ee"'Eel)] do" = 0

Therefore,doing the a" integration also, we find

2
1
REO o 1 n 2 2an . " n
G..=——2- EF(6)1+cosecose sin 6" d©
¢ 16 o
2
RE'“ A _
o OS‘ F(G")ip l(1 +cos49") cos%0'
6’0 1611"2' o L2
+ 21 cos?9" sin0" sin?‘e'] sin 6" do"
G(Plel .+ Gelqal =0

where R is the radius of the region occupied by the particles.

Next we define (see also 4.1.16)

1(‘“ " oapn
- n s 1
J'i— Zqu(e ) sin ©" 406

vl

B 2
J'2 = S F(0")cos 0" sin 6" dO"
o

(6112}
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L 4

3, = Eg F(0") cos 0" sin 6" do"
(0]

and we can write the G's in the form

RE'
= S 02‘(.}‘ + cos?0' J }
e 16w
12
G = o I(J +J )COSZG' +4n(T,-J,) sinze'.l
o'e! { Loy 2. & 3 2 3 J

Recall now equation 5.1.11. We have
1 2 2 " 2
- < - ° =
M § LG(P"fP' [(E‘P' EQD) +(E§0' _e_e) :\-" Gelel]_(Eet E¢)
Vv
27 1 \?
= — 1
+legreg” |} (gr) av
We have
(2,72, 5% (e imeg)® = cos®(p-¢") +cos®0 sin’(p- o)
(29"E¢)2+ (Ee,-_e_e)z = cos 20! sin2(¢-qo') & cosze cos ' cosz(qo-go')
+ sinze sinze' + 2 sin 6 cos 8 cos 6'sin 8' cos (¢ - ')

We can then do the ¢' and a' integrations to get

M = ( )E’zg ‘L(.T — Jz)( -—cosze)

l:(J +J. )COb 9 +4'rr(.]' —.T ysin G‘lkzcos 0" + 2cos Gcos 2g1

¥ S 5in8 sinze') } sin 8' 4@'
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If we finally do the ©' integration we get

2020 = 52 (5 1) () M) (R, r0ye0s%
(5.1.14)
where
(10 15)J +(3 128W)J (% 128" )J
Cy= (3-88), + (82 - 1880 )5, 4 (4- Lz 128075,
or
01 = 2.3755 ‘Ti + 86,2294 JZ - 84.0206 J'3

C, =-0.8422 Ji =~ 82.2118 J'Z +81.2029 .]'3

If the incident wave is linearly polarized the calculation goes
along the same lines., We can now easily predict the form of the nth

order if the incident wave is circularly polarized.
(1’1)" IZ w lA [ ( e D Al
(Esc —=sc ) = ( Z ) (41rr) V) (32 2.)
T
Yk, + K, cos?e) (5.1.15)
1 i 2 e

will be of the form z aiJi’ Z (31‘1'1 respectively, where
i=1 i=1

where K1 ’KZ

%, Bi numerical constants.
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VI. SPECIAL EXAMPLES

All the following examples assume a lossless medium.

6.1, First Order

We have found (equation 3.1.17 and equation 3.1.18) that in

first order and in the absence of losses:

2 L2
(T_(i)> S NEi(% |Ax I) (sinzga +c0529 coszgo)F(e) (6.1.1)
o

if the incident wave is linearly polarized,and

p 2
2 2 Z
(2B = NE (%l/—\x |) (1 +cos“e)F(e) (6.1.2)
if the incident wave is circularly polarized. F(0) is defined by

F(a) =8_i2‘5§\§ IK(Q:B:Y;GJ‘P)IZ sin @ do d|6 d'\{
™
(6= 1:3)

K(e B0 ,9) = gexp (—ik_c—;r'_131+ ikZi) dVi

e
P

We can immediately see that if 0 = 0, i,e. forward scattering, then

e =& and ~tke *B. ¥%2,. =0, l.e. B=Y_ aod FO) = V5. We
—_7 —_ ] ] 1 p p

easily see that

' § eXP('ikEr‘Bi‘i' ikZ .1) .dVi ‘ < g

VP B

exp(-ike +R.+ikZ, | dV,
S sl 1 1

=VP=K(9=0)
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(x}: ylazl)

Pig. 4.

The rays at P radiated from any two volume elements

are not in phase except in the forward direction.
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Therefore K (6 = 0) = maximum and F(0) = maximum.

The physical reason for that is the following. Consider two
elements inside a particle (see figure 4). As the plane wave travels
inside the volume of the particle the two elements radiate with phases
kzi and kz2 respectively. Thus the phase of element 2 is by
k(zz— Zi) greater than the phase of 1.

If we now consider the rays from the elements in the forward
direction toward an observation point P we see that ray 1 travels by
(zz- zi) more, i.e. when the rays reach point P they are in phase
and the corresponding fields add constructively. For any other
direction the phase difference is not zero, therefore the fields add
destructively in general. In view of expressions 6.1.1 and 6.1.2 we

understand that the intensity pattern will peak in the forward direction.

6.1.1. Our first example is very primitive. However, F(0O)
retains all the essential features of any F(0). Consider the arrange-
ments in figure 5a and figure 5b. In figure 5a the two points 1 and 2
get excited by a plane wave passing by. The phase difference between

the points is then 2ka. The points radiate and

ikb

E(0) ~ e + eik(li‘.a +b - 2acos 0)

eik(b +a-acos G)ﬂi’e—ik(a - acos B)+ eik(a - acos 6)1’r
[

ei.k(b +a - acos 6)

= 2 cos [ ka(l - cos 0)]

5 2 (6.1.4)

o

F(B)~ 4 COSZ(Zka sin
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VYV VvV

Fig. S5a. Diagram for the two point scatterers 1 and 2 lying

in the direction of propagation of the incident wave.

| ¢
- \
al
- \ 6 _
. % =7
- a
2 ¢

Fig. 5b. Diagram for the two point scatterers with the line

Joining them normal to the direction of propagation

of the incident wave.



w2

Next we consider figure 5b.

ikb ik(b - 2a sin 0)

E(0) ~ e + e
" eikb - ika sine(eika sin © e—ika. sin 9)
= Zelk(b TR e)cos (ka sin 0)
2 .
F(0) ~ 4 cos“(ka sin 9) (6.1.5)

We will later see that 6.,1.4 and 6.1.5 are pretty close to patterns

corresponding to more realistic situations.

6.1.2. Our next example has to do with a collection of spheres
of equal radius. This of course is an extreme case but the scattering
pattern for particles of any other shape and random orientations will
not be too different because of the averaging over orientation. In the
present case no averaging w.r.t. the Eulerian angles has to be done
because no matter how we rotate a sphere it appears the same.

Let us now compute the K function defined by 6.1.3. It will
not of course depend on any Eulerian angles, i.e. F(0) = IK]Z We
will refer the components of L. and R to the fixed x,y,z system,

1.685

(sin © cos ¢, sin © sin ¢, cos 0)

|
1

(R sin Bi cos ¢., R sin ei sin o;, R cos E)i)

and K becomes:



«7P =

2w T ~a .
K =§ S. 5 exp(—ichos (cp.1~qo)sin 0.8in 9 tikRcos ei(l-cos 9))
goir-O 0 i:O R=0 R

R2 dR sin 6. dO. de.
T S |

As it is shown in Appendix E-ii the integral can be computed in closed

form:

K(0) = — T —— [sin (2ka sind) - 2ka sin 5 cos (2ka sin%)]
2(k sinz

(6.1.6)
F(6) = K2(6)

First we check whether K(0) = Vp = %wa3. We have

= r (Zkasin-g-)
Kle_’():—-—.———g-——?)—'\L[ZkaSln‘z_ 31 T v ]
2(1(81171'2)

(2ka sin o

.8 7! 7
-Zka51n-z[1-'———2—'!————+..o J}

’ (2kasin-§-)3 6.5
= L 5 3 +O(kasin—2) }
Z(ksin-z)
- %na3 =V _ O.K.

If we now recall that the spherical Bessel function of the first

kind and of order one is given by:

j‘i(u) = -—1—?: (sin u - u cos u)



=
we understand that

4Tra3

K(0) = — 12—
(2 ka sin E)

. .8
j;(2kasin ) (6.1.7)

It is easy to show that for 6 and k constant the max KZ(G) occurs

for

sin(Zkasing-)=0 i.e. a = ———— T~ L,

If we compute max KZ(S) we find
max KZ(O) = (411'33/(n7r) 2)2
whereas KZ(O) = (4wa3/3)2

max KZ(G) - <1
2 T 4 4
K~(0) T n

The zeros of KZ(G) are the zeros of ji(u). From reference 6 we

find that
jim=0 UW=4.5, 7.74, o0s
l. €,
Zkasin-g—=4.5, 7.74, ... (6 # 0)

If k is constant and a increases then the zero occurs at smaller and
smaller ©, whereas 0 = 0 always remains a maximum. Thus for a
large a, say ka = 50, we get a maximum at 0 =0 and many zeros

(or minima) close to © =0,



P

Next we draw some diagrams to get some idea about the intensity

pattern.

i) ka =*§ or a =% which corresponds to max K (6 = m with n=1.

We can easily find:

2 T 2 T 2
FO) = V_; F(-)=0.744 V_ , F(s)=0.34V" ,
(0) = V3 (3 . () <

F(%) = 0.14 v; , F(m) = 0.092 v;

Notice that no zero occurs since 2ka < 4.5.

If the incident wave is circularly polarized then the actual

intensity pattern is given by —1—(1 + cosZG)F(e), f.e,
24 g 2

2 ™ 2 ™ 2
I(0) = V_, I{-) =0.56V_, s)=0.17V_,
(0) = v2 &) - ) z

3T & 2 e 2
() =0.10 Vp, I(w) = 0.092 Vp

The drawings appear in figure 6.

ii) ka = 7& for which K (0 =) is a maximum. Again 2ka < 4.5

and there is no zero., We can easily find (set Vp =i l)E

F(7)=0.546 , F(Z)=9.2x107%,

FO)=1, 3

F(%T—T) = 4.3X 1073, P} = §.61 % 16™°

and



-75-

20°

45°

L

45°

90°

Fig. 6. Drawings of F(9) (above) and I(p) (below) for
spheres with 2ka = 7 .
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2

10) = 1, I(F) = 0.4, 1(3) =4.6x 1072

3 5

1(%) = 3,2 %4072, Ta) = 5. 60 % 10"

The drawings appear in figure 7.
Notice that 2ka has increased and so has the forward scatter-

ing whereas the intensity for all other angles has gone down.

iii) When 2ka sin-g =4,5, i.e. ji(u) = 0, then the smallest 2ka

corresponds to O = w. Let us choose 2ka sin-9 =4,5 with 6 = iy

2 4 °

i.e., 2ka=4.87. No other zeros occur since the next zero is 7. 74 and

2ka < 7.74. We have

FO) =1, F(Z) =0.48 , F(Z) = 4.82 X 102,
F(3T) =0, F(m = 2.07 X 107>

and
10) = 1 , (%) =0.36, 1(%)=2.41x1o'2,
K3 =o0, () = 2,07X 1073

The drawings appear in figure 8.
Finally we examine the case where we have more zeros. For
example if we choose Zkasin% = 4.5 with © =7 then 2ka =11.7 and

we get two more zeros:

11.7 sin—g— = 7.74

11.7 sin-% =10.95



1352

180°

135°

Fig. 7. Drawings of T(©) (above) and I(8) (below) for
spheres with 2ka = w2 .



i

180°

135°

180°

Fig. 8. Drawings of F(0) (above) and I(€) (below) for
spheres with 2ka = 4.87 for which 1I(135°) =0 .
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We thus have three zeros at 0 = -E, 0= 82036l, 6 = 1380301. We also

have:
FO)=1, F(§)=0, F(Z)=0.322, F(66% =4.9x10>,
F(g):5.14x10‘4, F(116%) = 7.9 x 1074,
F(3T)=5.8%107°, F(r)=2.44x107%

and

Koy =1, ) =o, () = 2.98 X 1071, 1(66% = 2.9x 1073

2

4

K3) =2.57X107%,  1(116°) = 7 X 10”4

2

6

I(%E) =4.39%X10°°, I(m) =2.44%x10°%

The intensity pattern is shown in figure 9.

6.1.3. We will now consider a collection of needle-like
particles. The axis of a needle will be characterized by the two polar

angles Gi,go.l w.r.t. the fixed system xyz. The averaging then will

be done over them. We have to compute K(G.l,cp.l,e,qo) where

K(Gi,soiie,qo) = S\exp(-lk_qr’_lii‘i' :.kZi) dVi

K%
P

Notice that R; = (R,Bi,cpi) for half of the needle and R;= (R,?T'"ei,'rr‘l'q)i)
for the rest of the needle (see figure 10},

If A is the cross section of the needle then we can write
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0= (ST)I ueTUA LOoF OL°TT

BIHS

" 0= (LOEQET)T ¢ 0 = (,9E,28)I
(@)1 Jo Sutmmiq °6 *I1d

y3fn ssasyds 102

9¢.28 .06



Fig. 10.

« 8 =

Needle-like particle. The axis of the needle

P

points in the (random) direction ei’ i



B P
~L

K(Bi,rpi;e L) = A) exp {-ik[ cos (cp—:pi)sin Gisin 0 +cos ei(cos 8-1)]R} dR
o

~L
+AS exp {ik[ cos (¢-¢,)sin6.sin O + cos 0,(cos @ - 1)] R} dR
o

L
AS expq{-ik[ cos (qo-qoi)sin BisinB +cos Bi(cos 6-1)]x} dx
-L

2A ;
l?f'_i— sin kTiL (6:1.8)

]

where I‘i = cos (ga—qoi) sin Gisin 6 + cos ei(cos 6 - 1). We can easily
see that as 6 — 0, sin kI".lL/kI"i ~ 3, and K-~ 2AL = Vp as it should.

Next we must compute F(0) given by:

> »

F(0) ;}1—”55 IK(e.L,qo.l;e,cp)lZ df2,

1 4A 2w sin{kL[cos{¢ ¢;)sin 0.sin 0+ cos 6, (cos 0- 1)]}
= S\{coscpcp)smesm9+c10s6(cose-1) f

sin Gi dE)i dqo.l

It is shown in Appendix E-iii that

Ty cos (2kL_sin 5) - 1 &
F(0) = e { + s,(2kL sin )} (6.1.9)
. b . © i o 2
ZkLos in > ZkL051n >

where VP is the volume of a particle, LO = 2L = total length of the

needle-like particle and si(x) is the sine integral defined as

X - u
5. (x) =S sl g

o
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Again we can check whether F(0=0) = V; . We have

ZVZ 1-1(2kL sin§)2~1+...
= P 2 o} 2
F(6) = 0 6
o—0 ZkLOSLn-z ZkLO sxnz
ZkLosin-g 0 >
TP . ZkLosin—é-i-...}l =¥ O.K.
ZkLOsin-—z— 0—0 P

One can easily see that F(0) has no zeros, i.e. the averaging pro-
cedure has eliminated the sharp behavior of just one of the needles.
Next we draw some diagrams for the intensity pattern if the

incident wave is circularly polarized.

; T _
i) LO—Z’ i.e. ZkLO-'rr
One can find in reference 6 the values of sj{x) for given x.

Thus we get (Vs =1)

F(0) = 1 F(g) = 0.96 F(%) = 0.865
F(3T) = 0.795 F(n) = 0.70

and
1(0) = 1 1(2):0.72 I(%) = 0,43
13T) = 0.60 L) = 0,70

The diagrams appear in figure 11.



Fig. 11. Drawing of F(0) (above) and I(0) (below) for
needles with EkLo =T .
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ii) Lo = 2N\, ZkLo = 4w

F(0) = 1 F(F) = 0.84 F(3) =0.16
F(%I)=O.13 F(m) = 0.12

and
1(0) = 1 1(2) = 0,23 I(g) =0.08
1(%3) = 0.10 I(m) = 0.24

The diagrams appear in figure 12.

As LO gets bigger the forward scattering gets more pronounced;
a tendency which has been observed for the spheres too. However,we
should notice that the peaking in the forward direction was much more
dramatic for the spheres rather than the needles. This is not sur-
prising because the spheres scatter the same way no matter how we
rotate them,but the needles do not. Thus for a needle perpendicular to
the axis of propagation the forward scattering is equal to the back
scattering whereas for a needle parallel to the axis of propagation the
maximum occurs in the forward direction. When we average over
ei,q;i we get a pattern which lies in between the extreme cases con-

sidered above. Of course the forward scattering is still a maximum.

6.1.4. As our final example we consider a collection of
particles possessing an azimuthal symmetry about a certain axis, say
z', Here we need the full formalism of the Eulerian angles because

R.l does not coincide with the z' axis. However because of the
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oQ°
135°

7

180° 1<
e

135°
135°
180° P

135

%

90°

Fig. 12. Drawing of F(©) (sbove) and I(8) (below) for
needles with 2kLO = hw .
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azimuthal symmetry we canget rid of one of the Eulerianangles. This is
evident because all we have to care for is the direction of z' which
1

can be characterized by the two polar angles ©',¢'. Thus if we choose

the x' axis in the fixed xy plane we can get y = 0. (As it is shown

in Appendix B we have 0'= @ and ¢'=- 2 +B.) The matrix M
becomes
i _ ) ]
cos P -cosasin f3 sinasinp
I\/I-1 & sin B cosacosfB -sinacos B
0 sin @ cos « _j

We then find that

K(a,B; 9,¢) =§§§exp[—ik(Ap cosT +BpsinT +Cz")] p dp d7 dz' (6.1.10)

where p,T,z' are cylindrical coordinates in the attached to the particle
system x'y'z'. The surface of the particle is given by p = p(z'). One

can easily find that

A = sin 0 cos (¢-B)
B = sin 6 cos @ sin (¢-B) + cos 0 sin @ - sin «
C = sin © sin « sin (B-¢) + {cos 0 - {)cos «

We can immediately do the T integration. As it is shown in

Appendix E-iv we find that:

e NaPrre
5 exp(—ik(A cosT+B sin'r)p) dT = ?‘"Jo(kp A+ B“)
o}



~8R=

“2 . 1 p(z")
K(a,B;0,¢) :g o~ 02 dz"g. 2uJ _(kp(a') ‘fAzﬂsz)p dp

zy p=0

We can also do the p integration (see Appendix E-iv) to find:

= 3, (kp(=") Q!A2‘+B2)

S‘ ZZWP(Z')

zy k ¢ A

-ikCz'
e

dz'

[0}

K(«,B;0,¢)

e

zZ
2 o
=21£E ”—“,—71——25 p(z")J, (kp(z") m)e ikCz' .
A+ B zy
(6. La11]

Next we check whether 6.1.11 gives the right answer for needle-

like particles, i.e. equation 6.1.8. We have p =0...a, i.e.

%, ey
ox ———1—-5‘ aJ, (ka VA2+B2)e kG dz'
& "R R

A +B

K(«,B; 9,9)

.- T 27 (ka \{AZ-!-BZ) sin kL C (6.1.12)
& V‘A2+B2
Now we write
%

= 5[0~ $@)% oo ]
i.e.

2 2
‘}A +B
Ji(ka ) ka B

A2+B2 ka—0

and
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2
K(a,B; 8,¢) = %— sin kKLC = sin KLC

H‘IN
Ql»

Now

C = sin © sin @ sin (B-¢) + (cos 0 -1)cos «
or in view of the equality 9.1 =Wy Py = F 1_2r +f (see Appendix B) we get

C = sin © sin eicos (cpi- @) + (cos 6 - 1)cos Gi

which is identical with the I‘.l of 6.1.8. Therefore,6.1.11 gives the

right answer for the needles as it should. Now we compute F(8) from

F(0) =-4f—wS’S‘ |K(2,B;0,9) |2 sin @ da dp

or

F(e)—(“)y 502“3;1“55 § plz"p(a" T (kB(=") y 42425
7, (kp(2") [2Z:m2) oikClz"-2") 4, g,
2p%2p%2
= (&) Szij;i p(zp(a")

2mem T (kp'D)J, (kp"D)e K2 72" C
(e

sino da dB } dz' dz"

where

D = YATEB = D(2,B;6,9) C=(a,B;0,¢) p'=p(z") p" = p(z")

I have not been able to compute the integral w.r.t. @ and B in closed
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form. Of course F(0) is independent of ¢ because D and C are
functions of cos (¢-B) and a change ¢ -3 = B' eliminates ¢ since PB

runs from 0 to 2.

6.2. Second Order

We have found that in the absence of losses equation 4.1.14

holds:

cos 9}

—=sc —sc 2

(E(Z)oE(z))=E;2(9§ |ax ) (——) N —~——F (B +B

where
i 2
F, =— |L(@,B,v;0,0) |“sin @ do dB dy
8w
and

V.

1

Next we consider the collection of the spheres as our example.

Then L is independent of @ ,B.,y, and F,(0) = |L|%. Now

-ike - R,
: =g e o av,

v
P

If we pick e. as the polar axis then EI_“_B_i = R.lCOS Bi and

a , T -ikR.cos 0! a , 2 sin kR.

L=2r\ R°dR.\ e * sin@' d8' = 27\ RY 4R, ————1
i 1 i kR.
(o] (o] (o] 1

= -‘%{E (sin ka - ka cos ka) independent of ©.
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Of course we get the same result if we choose z as the polar axis

and write

o
1l

(sin © cos ¢, sin 0 sin ¢, cos 0)

sin 0. cos ¢., sin 0. sin o. o !
( i 991’ 5 991: cOs 91)

It is not of course true that L is independent of © for any
particle. It is only the spherical symmetry of a sphere that renders
L independent of 6. However F1 is always independent of 6. We

thus have
2 3 Y
(AT e ; 2 _ [ Ama” .
F1(9) = (k3) (sin ka - ka cos ka)” = [ s Jl(ka) J

We now understand that the zeros of Fi , l.e. the zeros of jl(ka),
except the first one ka = 0, make the second order contribution vanish.
This is of course only approximately true and it is due to the approxi-
mations made when the second order correction was derived. As a
matter of fact the method of der¥iving the several orders is such that
for a collection of spheres all the orders higher than the first vanish
for ji(ka) = 0 with ka# 0. Our theory does not give good results for
the non-zero values of ka that make ji(ka) = 0 for a collection of |

spheres of equal radius. In general, however, the averaging procedure

will wash out the zeros and F will be non-zero,

1

Next we have to compute the coefficients B1 and BZ‘ We have

the following definitions:

= + -
B J +J3 4'“'(J1 J

1 1 3)



P

B, =J, +J, - 4n(J, - I,)

where

1 ™
J =—Z‘S‘ F(6) sin 6 d6
o
w
Jd,, = lg F(0) cos*0 sin 6 do
2J g

Recall now that F(0)> 0 always and sin 0 > 0 in the region (0,7). We
thus understand that J1 and J3 are positive numbers. We also ob-

serve that:
1 (T L. . 1" .
J3 =3 F(0) cos™@ sin 6 d6 <-2- F(0) sin 6 do = Ji
o) o

since 0 = cos4 D=1,

Thus Ji > 33 and B1 > 0. What about BZ? BZ is negative if

4m-1 -
31+J3-41’r(31-33)<0 or J3<mJi~ 0.85 Ji' We know that
2

max F(6) = F(0) = Vpo Therefore:

V2 am ,
max J =—P‘§ sin 6d6 =V
1 2 o P
V2 pm 4 V2
max J, = —-E‘) cos™0 sin 6 d6 = -B
3 2 o 5

and

MaxJ3=0°2 max 3'1

Now in general F(0) has no zeros and does not vary significantly
with © as long as ka is small. It is understood that the maximum

variation of F(0) occurs for a collection of spheres. In this case B2
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is negative up to 2ka = 17 where 2a is the diameter of the spheres.
In general we expect B2 to stay negative for ka larger than 17 where
a 1is the linear characteristic dimension of the particle. We thus con-

clude that if ka is not too large F(0) wvaries smoothly and

4m-1 . -
J3 <——4'n'+1 Ji g de S B2 < 0., The consequence of B1 > 0, B2 <0 is
that the second order intensity pattern has its maximum at 0 = I"i and

its minima at © = 0,wm., This means that the multiple scattering tends
to smooth out the forward peaking of the first order intensity pattern.
This ceases to be true if ka becomes very large, in which case

B +B2c0s26 with Bi’B > 0 has its maximum at 0 = 0,7 and its

1 2
minimum at 0 = -l;. Thus for very large ka the multiple scattering
makes the forward scattering even more pronounced. This is expected
to be true for all the orders. However the critical value of ka may
increase with the order.

The ratio of the intensity in the © direction to the forward

direction is R(®) = (B, +B cosze)/(B1+B2). We can easily see that

2
4l ; ~ 1 i .
B1 —1:6 Bi(ka) and Bz ;5 BZ(ka), we thus understand that R(0)

will only depend on ka but not on k (or \) alone. This is also true
for the first order scattering intensity pattern and it is true for all
the orders.,

We now return to the example of the collection of the spheres.

Recall that:

2

3 :
s 4 .2 . B
F(9)=(-——"'Tra 5 ) Ji(Zka SLn-Z-)

2ka sin 3

If we call 2 ka sin-—g- = x then we have to evaluate the following
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integrals:

. 2
7, =8 (25 {70 L 20 o
o]

2 2ka

1 1.2 2 2.4

I "‘“’"g = i%=x) [ (2ka)“- 2x“]" ax
37 328 gay¥de %M

One can easily find:
2

T =l {2t 155
(-

- -4 8 6 4
3, =T (2ka) ™" {(2ka) *1(5) - 8(2ka)®1(3) + 24(2ka)*1(1)
2k

- 32(2ka)21(-1) + 161(-3)}

where

~2ka , . 2
I(mm) =5 (sin x - x cos x) dx

m
(o] X

One finds {see Appendix E-v) (u = 2ka)

I({5) = - vié(sinu - 1 cos u)z—% Sir21‘ Y +-1§
4u i
i(3) = - % _12(Sin u-ucos u)’- %Sinzu +%{c +1n 2u - ci(2u)}
u

where

C=0,577215...,

Y co
ci(u) =S\ £°E X S
oo

X



G5 =

2 ;
I(1) =-12[C+ln 2u - ci(2u) ] +-‘;— +“%E‘i +% (cos 2u-1)

2
I(-1) = 5~ (sinu-ucos u)2+:1£u4sin2u

4 3 2
-gq 2 (n_ 3uy,, {28, 2, 3
3{8 (4 8)stu 5 16)cosZu-~i~6—}

B
I(-3) =-}Iu4(sinu-uCOS u)2 +%uésin2u- %
+—é-(1o u®- 30 u®+15)cos 2u + £(2u°- 10u> +15)sin 2u - 42

8

If we compute the ratio R(0) = (B1+ Bzcosze)/(Bi+B2) we find

that for a fixed 0, R(6) decreases as 2ka increases with R(6) = 1

for 2ka <17 and R(0) <1 for 2ka > 17. For a fixed 2ka R(8)=R(mw-0)

and R(O) Increases as 0 increases from 0° to 90°. Below we give

R(0) for the values of 2ka which we have used in the first order, i.e.

2ka = w, mfZ, 4,87, 11,70, The drawings appear on pages 97, 98 .



2ka

4.87

11.70

4,87

11,70

WVE
4,87

11,70

4.87

11- 70

=

TABLE 1
6 (rad)
/8
w/8
/8
w/8

w/4
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Fig. 13. Drawing of R(0O) for spheres with 2ka = =
(ebove) and 2ka = wv2 (below).



Fig. 1k. Drawing of R(®) for spheres with 2ka = L4.87 (above)
and 2ka = 11.70 (below).
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Next we want to compare the first order to the second order
intensity using data which satisfy our conditions developed in
section II. In this way we can check the wvalidity of the conditions

with the results of our specific example. Recall that

£ 2 o .
() = (5080 « (4 1 x1) ") s reosorri@rm?

. 2 4 \ 2
(D (@ @2 - (2 1ax]) M) ¥R w105, 48,c00%)

scC —scC V32'rr2
Thus
2
I(Z) ) (_C_OE IAX [)Z—N- D Fi(Bi+BZCOS 0)
N2 V32n® F(8)(1 + cos?e)

Whenever F(0) = 0 the ratio blows up. In such a case I(Z) > 1(1).

)

2
However, away fromthe zeros of F(0) we expect I( to be one to two

orders smaller than I(i). Qur theory is not good wherever j(ka) = 0,
i.e. ka=4,5, 7,74, 10,95, ...

Recall now that according to 2.2.21a

)‘o 9

D = (2ka) T K 10 (a — 2a for a sphere)
m

or

A
D = p(2ka) 75—10° where A=—>- p=1

m
Also from 2.2.22 we get

1075 |ax = L —25 10

1 2
P (2ka) p? (2ka)?




-100-

We may choose p=1, i.e.

_ A g
D = (2ka) ;g 10
nZ
|ax |=—2— 1072
{2ka)
We can now rewrite the ratio I(Z)/I(i) as
(2) & ot F,(B,+B COSZS)
I ¢ 2w m -4 1 1 A 9 TP E
Fritad Y W 710 3. 3 > (2ka) g 10 Z
I o’ (2ka) m~(2a)” 32w F(6)(1 +cos™8)
F,(B,+B.cos20)
_ 4 1 1 -4 1 1 i A -9~ 1 1 2
= (2m) ~z 4 10 3 3 5 {2ka) —8—1-'1_)( 10 5
N (2ka) 157 (2a)” 32w F(0)(1 +cos™0)
- 6 ! o 61 ~ 61
Recall now that Fi A Fi(ka), B1 A Bi(Zka), BZ N BZ(Zka).

Also notice that 2a = (2ak)\/2w, Therefore,the ratio I(Z)/I(i) only

() /yln-1)

depends on ka. The same is true for I

We have computed the ratio I(Z)/I(i) for several values of 2ka.
For 2ka such that ji(ka) = 0 the ratio is zero and the theory fails to
describe the second order multiple scattering, For 2ka and 6 such
that F(0) = 0 the intensity pattern is solely given by the second order.

(1)

One can see from table 2 that I(Z)/I is smallest for 6 = 0 and has
an average value of 1% for © and 2ka different from those making
F(0) wvanish. According to our conditions set up in section II one would
expect a ratio I(Z)/I(l) larger than 1%. This discrepancy along with
other peculiarities should be attributed to the specific example of the

spheres. Thus F(0) varies rather wildly even for small 2ka and

31 . B2 are of the order V; instead of 10 V; that was assumed in
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section II. In general, however, F(0) has no zeros, does not vary
significantly for 2ka not large and .'E’:1 ,B2 are indeed approximately
equal to 10 VIZ).

Some of the computed values of the ratio 1(2)/1(1) are given
in Table 2. As we can see in table 2 the value 2ka = 9 gives
1(2)/1(1) = 0 since ji(ka) = 0, Thus our theory is not good near 2ak=9,
Notice also that 1(2)/1(1) for 9 =w/2, 2ka = 6 is large due to the fact
that F(w/2) =0 for 2ka = 6.38. The same occurs for 0 = m, 2ka = 4

or 2ka =5 since F(w) =0 for 2ka = 4.5,
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TABLE 2

2ka 0 (rad) 1(2) s7(1)

1 0 5.90 x 107>
2 0 3,59 X 107>
3 0 1,87 % 107>
4 0 7.6 x107%
5 0 3.17x 1072
6 0 1.14x 1074
7 0 3,12 X 107°
8 0 4.5 x10°°
9 0 0

10 0 1.32x 10
1 /2 5.63 X 1072
2 /2 4.93 % 1072
3 /2 4,16 % 1072
4 /2 3.84 x 10°2
5 w/2 5.27x 1072
6 /2 3,65% 101
7 /2 4,96 x 1072
8 /2 2.34 x 1073
9 /2 0

10 w/2 2.98 x 1073
1 'n' 6,66 X 1073
2 m 8.24 X 1077
3 m 1,50 X 1072
4 ™ 1,03 x 1071
5 w 9.70 X 10”2
6 m 1.62x 1072
7 'n' 1,91 X 1072
8 " 2.83 x 1072
9 T 0

10 ™ 2.38 x 107
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VII. CONCLUSIONS
The main conclusions of this work are the following:

a) The linear dimension D of the region occupied by the particles is
related to the wavelength A and the linear dimension of a particle a.
It is found that D is minimum when ka = 1. The minimum D is
proportional to the wavelength A. For a constant ka, D is propor-
tional to A. When ka =1 and AN is constant D is proportional to ka
but if ka =1 and X\ is constant D is proportional to i/(ka)z. Thus
by making ka very small, i.e. a much smaller than \, we can not
get rid of the self-interaction contribution unless D gets large to

make the multiple scattering more impozrtant than the self-interaction,

b) |AX]| should not satisfy the inequality |[|AX| << ! as one intuitively
expects but it has to lie within a certain range. The end limits of this
range depend on ka, the index of refraction n_ of the surrounding
medium, and the size of the region occupied by the particles. The
range narrows down when ka increases but it gets wider as ka

decreases.

c) The ratio of the multiple scattering intensity to the single scattering
intensity depends on ka but not on the wavelenth A. Thus no matter
what the wavelength is, the relative effect of the multiple scattering to
the single scattering will be the same provided ka and D stay constant.
Also the ratio of the forward scattering intensity to the scattering

intensity at any € does not depend on A.



-104-

d) The effect of the multiple scattering on the single scattering
intensity and polarization has been explained in the abstract. Also,
the effect of the losses on the intensity pattern is discussed in

the abstract.
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APPENDIX A

THE INTEGRAL EQUATION OF THE SCATTERING PROBLEM

We assume that the constitutive parameters of the medium are

€ 1 obg

as a new medium with constitutive parameters ¢ M-

We can consider the system of the medium plus the particle

The dielectric

permittivity € is equal to ep within the region occupied by the

particle and . outside. If a wave is generated in the medium a

scattered wave will be produced due to the dielectric discontinuity.

Consider now the Maxwell equations:

VXE=iw0_I__I

VXH-= —iweE

-iwt
where the time dependence e has been assumed.

can easily get:

VXV XE - wp_€E =0

A-2 can be rewritten as:

(A-1)

From A-1 one

2 _ .
VXV XE()-w Bo€ E(r) = 0, r outside Vp (A-3)

V XV X E(x) - wzpoep_E_(z) =0, r inside Vp (A-4)

The second equation can be rewritten as:

VXV XE([x) - wZHOGm_E(_l;) = Wy (e - ¢

L >

which can be combined with A-3 to give:

(E)xr)

I —
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VXV X E(r) - wzpoem_l'*z(_lj) = icopo{—iwAdE;(_:g)}
{&4~5)

1

iwp J(r)

where J(r) =0 outside Vp.

If a plane wave falls upon the particle it produces a scattered
field ESC(E). Now the homogeneous solution of A-5 is just the incident
plane wave Einc(—z) whereas the particular solution is the scattered
field _ESC(_I_'). The total field is E =E, ~+E__ satisfying equation

A-5, It can now be shown (1) that:

= s ety 1 1
Ex=E__* leoS D(zsz)-I(x") aV
v
P
l.€.
- 3 st . 1 1 -
Eoo )= muog I(z;x")- J(x") aV (A-6)
v
P
where
1 eiklf.—_l_'ll
e} — —
Dlesz) = (2 + -5 W) Smiz=T
N is the unit dyadi —25 nd k%= wlp e
ow 1=l 18 € uni yaalic = 1'.391—9:3 a. = |~LO .

ij
If we recall that J = -iwAeE(r)= -inoAXE(E) then

+E_ ) av' (A-T)

2
W 1
E == Axg__l:‘(y_{ E8 £2 T

¢ v

where A = Ei— (Ep- Em) is assumed to be independent of r.
o
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We could have derived A-7 by using less algebra but more
pPhysical reasoning. The incident wave induces a current inside the
volume Vp of the particle which is given by J = -iwP where P is
the relative (to the surrounding medium) polarization given by

EOA)(E_(E_). Therefore:

J=-iwP = -inOAXE(_I:).

Now the scattered wave is entirely due to J, therefore A-6 is true

and A-7 follows.
Suppose now we are interested in the far zone scattered field,

i.e. at r suchthat kr >> 1 and r >> r', Under these conditions

one can show (1) that

eikr —ikgr-ﬁ'
' ~ -
D= u-2.8) a0
and A-6 becomes
eikr -iker-r'
— 18 - . ST ! 1 -
B o) = ianglu-e,e) S e dzd av =)

v

p
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APPENDIX B

THE EULER ANGLES

Consider two cartesian orthogonal systems xyz and x'y'z'
(see figure B-1). We bring xyz into coincidence with x'y'z' by
three successive rotations. The angles about the corresponding
axes are the Euler angles. This is accomplished as follows. First
rotate xyz about z counterclockwise by an angle . The new
system is labelled X,Y41%4 (figure B-2). Next rotate X4Y{%4 about

x, counterclockwise by an angle @, The new system is called x

1 24 3%3

(figure B-3). Finally we rotate system X5V 2%, about z, by an

angle vy again counterclockwise to get x'y'z'.

If M is the rotation matrix then the components of atrue vector

A w.r.t. xyz and x'y'z' are related in the following way:

A{ = MijAj (repeated indices must be summed) (i,j=1,2,3)

and Ai = (M—i)ijA:}. One can show (4) that I\/I'_1 =M=M transposed.
We can also find that

cosy coOs B-cosa sinP siny -sinycosP-cosasinfcosy sina sinﬁ_

M "= | cosysinPtcosacosP siny -sinysinBtcosacosP cosy -sina cosf

sina sinvy sino cosvy cosa |

The relation between the polar angles characterizing z' in
the system xyz and the Eulerian angles can be found as follows:

=4 . -
h. A=Ae =Ae! o M LAle, = Ale!l, f.e. M ..e. = e
We have A N —JEJ r ( )13 8¢ 584 ( )
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Fig. B.

bring xyz
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22 Z
N\
P 2
//
\
X /,//
i y
o
3 4 !
X2
gt /
% a /y
N, r
\‘< #
N\ /f/
7
\f y
l\
\
B
L.
X l \x/
X2

Successive rotations through the Euler angles

into coincidence with x'y'z' .
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since A can be any vector. We thus understand that Ei.Ej = (M_i)

We now have:

(- i i o t 1
g "8, " (M )xz = sin 0' cos ¢
fog =M™ = sin 0 sin o
i vz
T -1 !
. = (M 7) = cos O
=z —z zZz

i.e.
sin @ sin B = sin 8' cos ¢'
-sin @ cos B = sin 8' cos o'
cos @ = cos O
We. can easily show that 0'=a, ¢'=p - -g (0= 9',a =%,

0=¢', B=27).

Assume that A = f(¢,B,y). If we want the average of A over

a,B,y we write

(A) 5 S‘ f(o,B,y) sin @ do 4P dy
81T a=0

The relation above becomes clear if we recall that if we keep vy
constant and average over «,B is like averaging over 06,¢, i.e. over

all the possible directions of an axis:

1 _ 1 "
Z;Sfdﬂ— 4FS“S‘fS-1nQdadﬁ
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If we finally vary v, i.e. take into account rotations about our =z'

axis (0 = vy = 27) we obtain

11 " ¥ _
= -Z-T—TS'S'S fsinadadpfdy=(A)
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APPENDIX C

POLARIZATION ELLIPSE. STOKES PARAMETERS

Consider the scattered field in the far zone
= (C-1)

The far zone field is a TEM wave and behaves like a plane wave in
the vicinity of a given direction.

When the phase difference 66 - 5<p is zero or a multiple of =«
the wave is linearly polarized. In general C-1 represents an ellipti-
cally polarized wave. One is interested in the size,orientation and
handedness of the polarization ellipse.

One can show (1) that the ellipse is specified as follows:

The semiaxes a and b can be found from

a® +b2=EZ + B2, 22=tany
® a
where ¥ 1is given by
2EgE,, - -
sin 2X = —5—2%5 sin (6 - &,) (-=<x <=)
ES+E; ¢ 0 < =

The (+) sign corresponds to left-handed polarization and the (-) sign
to right-handed polarization. The sense of rotation is to be specified
by an observer who sees the wave receding from him.

The inclination angle y (see figure C) is given by
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Fig. C. The Polarization Ellipse
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ZEGE(P
tan 2y = ——2——2(105 (59 - SQD)

EG—E(p

A circularly polarized wave is such that

= - = —_
Ee Eqp and Se & gz >

The () is for left-handed and (-) for right-handed polarization.

Another way to specify the polarization is to give the Stokes

parameters:
. 2 _ e _ w2 _
So = EG + E‘P 5 S1 = Ee Eqp, SZ. = ZEGE¢COS (6¢-— 68)
83 = ZEeEqpmn (6¢ - 69)
or

S1 = Socos 2x cos 24y, S2 = Socos 2% sin 2y, 83 = Sosin 2%

The properties of the Stokes parameters are described in reference (1).
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APPENDIX D

RANDOM SUMS

We are given the sum:

N

D, s
= a.e
i
i=1

where ¢, ,a; are independent random variables. We assume that the

qo.l's are equally likely to be found anywhere between 0 and 2w, i.e.
2w

the probability density is P(¢) = -21—1-1_ such that P(¢) dop = 1. We
o

also assume thatall the ai‘s have the same probability distribution.

We write

S = Zai cos qoi-l- iz a, sin ¢,

=S5S_+i85,
1 i

(D-1)

The average of S is by definition:
(8) = S:Sﬁ P(Sr,Si)(Sr-l-iSi) ds, dS.l
or if we treat Sr and Si. as independent random variables
(8) = gS‘ P_(S,)P,(S;)(s, +i5,) dS_ ds;
=S\P (S.)S_ds +15.P.(S.)S. ds.
b k: & r r 1 1 1 1

=<Sr> +i(Si> (D-2)
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We know that if we have A = S‘Xi and Xi are independent random
dasd.

variables with the same probability distribution, then
(A) = N(x,) (D-3)
2 _ _ - 2
G'A—varA—((A-(A>)>—Nvarxi=Ncrx (D-4)
i

Using D-3 in D-2 we get

i

(S)

N( a,cos qpi) + i{ a, sin cp].) N

]

N( a.l} (cos goi) + iN( ai) ( sin qo.l)

0+0=0 since (cos gai) =<sinqoi) =0
Next we compute (SS*>
{ 55%) =§PP (S_)P.(s.)(52+5%) dS_ ds
‘) o1t v E L i i
= (SZ>+(SZ) =var S_tvar$S. since (S ) =(S.) =0
# i r i r i
If we apply D-4 we find:
var S = No‘2 3 var S. = Ncr.2
¥ 7 i i

where

2 2
o = <(aic03 P; - (ai cos qa.l>) >

2 2 2 2
(aj cos go.l} i~ (a.l)(c:os go.l)

1
— -2- (af}



=117~

and
2 i = 2
o, = ((aism ?; - (a.lsm qai)) )
2 . 2 1 2
= (a.l sin goi) = —z—(ai)
Thus
i 2
var Sr = Nz(ai>
1 2
var Si = NE<ai>
and
& 4 2
(SS') =var §, *var §, = N¢ar) (D-5)

Assume now that a; is a function of the independent random

variables u,w,v, i.e.
a, = flu,w,v)
Then
(ai2> :5 Pa(ai)aiZ da,
=Sg(‘ £2(a,w,9)P_(w)P_(WP_(v) du dw dv
J w u v

The last result can be shown as follows. We know that if f = f(u,w,v)

then
Bla) = %S\e"ikacp(k) dk (D-6)

where &(k) is the characteristic function defined by
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Mk) = geikf(u'W’V)Pu(u)PW(W)PV(v) du dw dv (D-7)

P(u,w,v)

Thus we can write D-6 as

P(a)

%55 eulkaelkf(u’w'v)P(u,w,v) du dw dv dk

f‘b

e

S\ P(u,w,v) du dw dv &(a-1)

(o @] -
Bla, w5 du dw de. giklf-a) g5
-0

1

Thus

20 _ O 2. (.2
(a.l) —5 Pa(a)a da —S‘f (u,w,v)P(u,w,v) dudw dv Q.E.D.

If for example the u,w,v are the cartesian coordinates xyz

. . . o
and X, (i=1,2,3) has a probability density Pxi(xi) =

(-L_ <x. <1_ ) then
o % Ay

(4% =

I
s
b.-h
S
\¥]
' a
(W]
Y~
W)
r
0.
]
o
<
0,
N

+ g £2(x,y,2) AV
a result which agrees with common intuition, If the independent vari-
ables are the Euler angles then

sin &

P(e,B) = since gg P(e,B) da dp = 1
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(3% = (( Plapm s L aeapay
-E-ZS‘SS fZ(a,ﬁ,v) sin @ da df dy

which of course agrees with the result obtained in Appendix B.

1

Suppose now that we have two random sums:

= ifpi | ie1
Si=z a.e , SZ=Zbie
i=1 i=1

We assume that P and Gi have probability densities

P@a):-éi?, P(6)=-211; 0= ¢= 2y, 0=06=12n).

We want to compute (S, S;) .
Now

S s2 S a. b e J
L

ij

Za b.cos (gﬁ -0. )+ 1Zaibjsin (qoi-ej)

I

ij

a. b cos sin O. +za.b.sin .si .
GD j P t3"15:.1'1 GJ
1j ij

1
+1{Zabsmq>lcose Zabcosrp sz.ne J
ij

= A tA, ti{A- A

1 2 4)
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Thus
<S1S;§> = <A1> +(A2) +i(A3) - i(A4)

We have

(A) —(Zasan) b.cos 6)
—(ZaCOSgo ?bCOS 9}

(z a; cos qo.l)( ijcos E)J.}
i J

Similarly <AZ> = <A3> = <A4) =

sk sk R,
For three sums 818253 we have (SiSZSS>—O and <818253> = 0,

Same for more sums.

Now if we recall that E__ = E(i) + E(Z) + ... and that each
—sc +—sc
N .
(n) in
field can be expressed as a random sum E a;.e we under-
i=1

stand that in computing (E 'E!Z) all the cross terms will give

zero and (E_ -E ) = (E(n)-E(n)*). Thus the fields corresponding
sC —s8C —8C ==gc

to the several orders are orthogonal upon averaging.

Next we consider the polarization properties of

A i(pi ifpi
E=ze ) Ae "+e_ ) Be (D-8)
— '—X./_/ 1 =V L 1

i i

If we consider E as an electric field then its polarization properties
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are completely determined if we know the corresponding Stokes

parameters (see Appendix C). We have

-16x -iGy

= + -

E Exe B Eye EY (D-9)
and

S_ = Ez = EZ . 2. B Ez - EZ

o x v 1 X v
S2 = ZEXEchS (6y_- SX) (D-10)
S3 = ZExEy sin (SY - &)

From D-8 and D-9 we understand that

xX

-i&x icpi -ié ig.
g = Exe :Z A.le . gyz Eye y:z Bie : (D-11)
i -

1

We can now write the Stokes parameters as follows:

§ =BE4+ES , 8 =E°-~E"
o x 1 x v

S. =2E cos § E cos § +2E siné E sin & (D-12)
2 X X'y v X Xy v

S, =2E cos6 E sind - 2E sind E cos b
x Xy b X Xy ¥

The sums in D-11 are random sums. We therefore want to find the

average values of the Stokes parameters:
(5, =(EL +ED) =(e,e.) +(e.e)
o x v XX vy

() = (B - B2 =(e,e - (g6
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(S,

2{ Excos (SXEchS cSy) + 2 Exs in SXEysin 6y>

1]

(S3)

2( Excos 6XEys in 6y> - 2 Exs in (SXEy_cos 6y>

We have already computed averages like (g g.) and (8y5;> .

We now compute (Sz> and (S3> . We have

E cos 6 E o) = Z A \_‘B

(XcsxchS y)-( icosqaiZchosgoj)
i J

= (Z AiBjCOS ¢;cos cpj)

ij

0y 2

= Z AiBiCOS gai+z AiBJ.COS ¢,COs cpj)
=] i#]

- N - N
={ABYZ T0= F (48

Similarly

. 5 1
{ Exs in GXEys ind Y> 5 ( AiB i> N

I

(Excos SXEys in 6y> ( Z A;B.cos ¢.sin qo.l) +4 2 AiBjcos @;sin goj}
= i#]

i

0+0=0
- = O
(EXsm SXEycos 5y>

In view of the above partial results we find:
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N( A%y + N(BD)

(Sg)

N(AZ) - N(BZ)

1

(Sy)

(D-13)

(S,) = N(A,By)

(S3)

N(AB.)

If D-8 represents the nth order scattered field, i.e. E(n)

—sc *

then it does make sense to compute the Stokes parameters D-13 for
this order. This is so because the several orders are independent
waves,therefore the average Stokes parameter of the composite waves

say S. (1=0,1,2,3) is just the sum of the Stokes parameters S.
i i

for the several orders, i.e. <Si> = Z (ng)) . This is a well known
J

theorem which can be easily shown in our case. We have already

shown the above property for So and S, (pp. 119- 120).
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APPENDIX E

ALGEBRAIC AND INTEGRAL COMPUTATIONS

i) Computation of

de. (E-1)

where e = (6,9), e, = (8,,0.).

We have

1l

-_gax (gaX_E_?_O) component of _@0 perpendicular to e,

I

(E,te,le, T (E ceq)e
o goi gai o) ei ei

If E  1is circularly polarized then

. -ib
5= Hg® TiE, HIE )
and
-16_r -
- = E! ; . . .
e} (e} E ) = e Tlle,Fie ) e, o, FleFie ) eg e |
~-ié xip
=E'e Xd:i_e_ + cos G'ES :le 1Efx_
i ¥y
Next
g% le HA) = (Ame Je, * b ggleg
=[A (e e ) +A, (e e)]e
P =P —@ ;=0 @
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(-5 ic.
_ E'el( 6x 1991) e
T 7o JL

.
: . . |
[tl(_gq)i _e_¢) + cOsGi(ge'l Ecp)JEqa

1

* [tite, e) + 08 0y(eq “eq) o }
1

Now

(E-2)

or

|
=
© 48]
—
lo
S
lo
.ev
+
's)
(o]
w
o
D
)
[ap)
o
™~

. 2 2 2}
+(E‘/’i EG) + cos ei(EGi'EQ)

We can easily show that

(¢]
L]
1}

cos (¢ - qai)

e *e, =cos 0O sin (¢ - cpi)

_e_ei'_ge = cos O cos 6.1 cos (¢ -<pi) + sin © sulei

0]

L]
o
1l

cos ei sin (@ - <p.l)

and from E-2
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S = E")Z {COSZ(rp - cpi) + COSZGicoszeisinz(gai- @) + cos28 sinz(go -qoi)

ot B s,
+ c:c:~s2(§)i [cos © cos eiCOS (go—cpi) + sin O sin e.l_j kr

P

If we now do the ¢, integration E-1 gives
2w
L= g S do, ={-1-2(1 + cos SO + cose)
o]

+ 27 sinze sinze. cosze. }E'z
i i e}

If the incident wave is linearly polarized the computation goes

along the same lines.

ii) Next we have to compute the following integral:

I= S‘ exp {-ikR [cos (qa—qoi)sine sin6.+cos ei(cos 6-1)]} av,

Vo (E-3)

where dV, = R“dR sin 0, d0, dg,.

First we do the ?; integration:

2T
I, = ‘)o exp| -ikR cos (ga-qoi)sa.ne sin ei] de; = 2mJ (kR sin 0,sin o)

Next we do the 6.1 integration

I

™
> ZTrSO JO(kR sin eisz.n 0)exp| ikR sos ei(1 - cos 0)] sin Gi de.l

+
ng J (kR sin® Y1 - 2 Yexp[ ikiL - cos B)Ra] dp
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Now

+1 : +1 .
S. Jo(a' 1-p.2)elﬁp dp =§ JO(QQ 1-—p.2) cos B dp

=1 -1

+1 >
+iS. Jo(a 1-pn7)sin B dp
-1

The imaginary part is zero because the integrand is an odd function of

B Finally

+1 : rl
. : 2 ! Z;
S‘ Jo(oz 1-p. )dllle- dp = 2‘)0 Jo(aV1-p ) cos Bp dp

It can be shown (5) that

~1 e W2 2
5 J‘O(Q’% 1“}-L2) cOs [3|._L, dl‘l‘ = SH2) ( b, {2 +ﬁ ) (E—4)
O

Now @2+B% = k®R%sin20 + L°B2(1 ~cos B)° = (2R sin 2 ) Finally we
get

2 sin (2kR sin 5 )

IZEZTr

2kR sin%

and from E-3

R™ dR

a sin (2kR sin-q)
S‘ 2! 2
4T

o) 2kR sin—g

Zka sin %

= 3 x sin x dx
-’-l-(k sin = 9 3

W] lo)

)

!

Ir —F [sin (2ka sinﬁ) - 2ka sin-e— cos (2ka sin
s DD 2 2
2(k 51n—2-)
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iii)

2
I_X S‘ { sin {kL[ cos(¢-a)sinP sin 8+cos B(cos 0-1)]} r sinP df da
=0

cos(¢-a)sin cos 8 +cos B(cos 6-1)

First we observe that if we make the substitution a-¢ = &'
then @' varies from =-¢ to -¢ +2w. Because of the periodicity of
the integrand (= f(cos @')) we can replace the limits by 0 and 2.
Therefore I becomes independent of the azimuthal angle ¢. We now

call a' = a and we first do the @ integration

yZTrl:sm (af cos a +uw )x o

cos @ Tt _\ de
2
where oy = sin B sin 0O, @, = cos B(cos 6 - 1), x=kL. We observe
that
dI 27 2sin[ (a,cosa ta )x] cos[ (o, cosa +a )x]
i e =S‘ 1 " 1 TN
2 dx - @ cos a +a2
and
2
dIZ d Ii 21
13 W e i Zgo cos | ZX(OJiCOsa'i'az)] de

“ 2T
2cos (ZxozZ)S cos [ (2x cos a)ozl)] da
o

2T
- 2 sin (2xa )g\ sin [ (2x cos a)a,] da
') 1

]

2m
2 cos (Zxaz)g cos [Zxai cos a] da
o

41 cos (Zxaz)J'o(Zxai)
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Now observe that IZ(O) =0, i.e.

x
Iz(x) = 4'rr§0.]'0(2a17k1) cos (27\1a2) d}\i

Next Ii(O) = 0 1.€4

x
Ii(x) = S‘o IZ(?\.Z) d?\z

Xn)\
i 2 )
= 41-;(’ ) JO(Zozi)\i) cos (2}\1&2) dx, dhz

+1
I=41TC YS‘ T (2h;sin 6 Y1-p )cos[n (1-cos 6)r] d\, dX, dp
...1‘

X 2 +1
[ 2
4#5‘0 dxzfc d)\iS._i :ro(b1 §1-p7) cos (byp) du

If E-4 is recalled:
A

% 2 i szﬂo2
T = 4"~S‘od)\2§ d)s. 2

where

+b

(2Asin g)% + (21, (1 - cos ©) y2

(4?\ sin -)
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. O

4}\2s1n—2 ) '

81'r(‘ d?\zj‘ 5 Fll2 dz
JO (o] < sinE o

—
1

v, B
47\25111-2

277 = dx : sin z
. O 2 z dz
sin 5 o} o)

£ .
Call now g -S—’-l-I-Zl—-‘—Z—- dz = si(ﬂ) = sine integral
o

. 8
C d)\, (47\2 s:.n—i)

sin =

If we integrate by parts we obtain:

om [ 0 x x sin(4hzsin% ) 0 1
1= 5 1 s.l(é)\.zsin-z)hz -§ hN 4 sin—z— d)\z r
sinTZ- o o] 47xzsin-2- ?
= {xs (4x sin = ) + —Lé(cos (4x sin = ) -1 }
SLn-E 4 Sln-i
- 1 . 0
= {kL .(4kL sin 5 ) +-—-———-—@— [cos (4kL s:.ni) -1 :l}
Sln-é- 4 sin-z

. 0
cos (4kL sin 5 - 1)
is ZT’kIe“ . & + ol KL sin—ez) }
sin-z— 4k1L, sin-z-: 2

Thus if we call 2L = Lo and VIZ) = 2LA we get

o 2v2 cos (ZKL _sin 92-) -1 .
K=1I== P 5 { = +s.(2kL_sin —2)}
mk“  (2kL_sin =) 2kL sin 1

WX ¥
where o) ={ 22 g5,
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iv) Consider

2w P22 plz")
K= y Y g exp| -ik(Ap cos T+Bp sinT+Cz'] dz'p dp dr
Yr=0" z=2 p=0

(E-6)
We can first do the T integration:
~ 2T
I=‘S exp[ -ik(Apcos 7 + Bp sinT)] dT
o
We cast Apcos7T + Bpsin T into the form:
. 2 2 .
Ap cos T +BpsinT=p YA +B" sin ('r—'ro)
here tanT_ = % ., Th
where tan T = 3 . us
2T
L= \ exp[ -ikp Q-JAZ*FBZ sin ('r—'ro)] dr
(v
o
Zm
25 exp| +ikp Y A%4B? sin 7] d7 = 2T _(kp Y £%+B%)
o
Next we do the p integration
p(z") >3
I = erg T (kp ‘JA +B7) p dp
o
kp(z") VJAZ-{-BZ
_ 2T
- —Z——Z—-—Z—E (el de
k“(A®+B") Yo
2 kp(z')%‘A2+B2 Ji(kp(z') Q{AZ-I-BZ)
= xJ, (%) =3 ZTI'p(Z')
kXaZ+% 1 g kyA%+B2

Finally
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z

2 _ 1
Ke—20 g dz' p(z')e % 1 (kp(z") YAZ+BY)
Kk VA2+BZ Zy

v) We must compute the integrals

Na . _ 2
I(n):j (smxnxcosx) dx for n=5,3,1,-1,-3
o]

X

The integrand is finite at x = 0 since

. 2 . s
(sin x - x cOs x) _(smx-xcosx)
x

E =
X X

x—0 x—0

We start with n =5 as an indefinite integral

. 2
I'(5) =S. (31nx—x5cosx) dx = - 14(sinx-xcos x)2
® 4x

+%S‘ _.1.4 2(sinx -xcosx)(cosx~-cosx +xsin x) dx

dx

- 14(sinx-XCOsx)2 +l(: (sinx -xcos x) sinx dx
4x 2. x
Now
3 ; . B .
1 (sinx -xcos x)sinx _1\{ sin"x 1 " cos x sin x
77;§ 3 dx"zg g s = ) z

xX X X
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:%(‘ sn;)xd _%(‘ds?x
J x J %
i sinxd _isinx__i_(sinxd
= 3 22 2) 3 -
X
~ _ 1 sin x
-4 2
and
a'(sinx—xcosx)z 1 2
I(5) = = dx = - 4(sin a-acosa)
o) b4 4a
tsinfa 1
4 2 4
I(3) = a“(S:‘LnxnXCOSX)Zd “[-EL(S'nx-XCOS )2--1— in? ]a
= 3 x = 5 > (sl x 5 sin"x
o} X X
asinzx
+§ — dx (E-7)
x
o
Now
sinZX sinzx x 2 bd
g—-—;{——-dx=§ ';7;— dE:S‘ sSin xdln-g.
= sinzx InZ = C In = sin 2x dx
a J a
and
a
a s 2 ra
g EMEE d% = s:'.nlenE —“J In = sin 2x dx
o] = e (o] o B

I

a 1
—S‘ ln-}j:sin 2xdx=-a5‘ In u sin 2ua du
o o
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It can be shown (5) that

1

" r

‘) In u sin 2au du = - -2L|C+1n2.a- ci(?_a):l a>0
o B L

where C = 0.577215.--

e

* o
ci(x) =5 SRR
oo

Thus
- sinzx 1
S\ s dx = -Z‘[C+1I1 2a - Ci(Za.)]
(e}

and from E-7

£ 4

I(3)=--Z-—Z(si.na—a.cosa)?‘-1 2
&

= sin"a
2

+%[ C +1n 2a - ci(2a)]

= g 2
I(i):S' (51nx—>;:{cosx) i
o

2 sin’x . 2 =
=§ —— dx +§ X cO0s x dx - ZS‘ sinx cos x dx
o o o

2 ;
=%[C+1n 2a - ci(2a)] 42 4 asinZa

5
+2 -
v 1 8(cos 2a - 1)

= 2
I(-1) =S. (sinx-xcos x) "x dx
o

a a
=—1zx2(sinx-xcos x)2 —5 xz(sinx-xcosx)xsinxdx
o o
2% 2.1 4 5 |® g 3
= (sinx - x cOs x) e +—Zx sin"x —33 x sin"x dx
o

o] O
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2 4 3 .
= B Fos - 2,1 4.2 3fa _(a’ _3a)_;
== (sina - acos a) +2a sin"a-3 g (4 8)sm 2a
2 .
3a 3 g L
(=% - 16) cos 22 - 7% |
d 3 2
I(-3) =§ x (sinx -xcos x) "dx
o
a pa
-j‘IxLL(SLnx xc:Osx)2 —5‘ -%xé(sinx—XCOSx)xsinxdx
o
a
=71- a4(sina - acos a)z- %f xssinzxdx-i-%‘g' xésinx cosx dx
o)
Now
a
1 0% 6, 1. 6.2 3(% 5.2
-—‘) x sinxcosxdx == x%x sin' x = x7sin x dx
4 a5 2.)
and

a
I(-3) =—1—a4(sina.—acos a.)2 ia sm a- ZC x sin xdx
o

6 6

4. . 2 i b ; a
a (sina-acosa) +Za sin"a - 7=

N

]

+%(10a4- SGaP+ 155008 28

+-£1I(2a5- 10a3+ 15)sin 2a - %
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