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ABSTRACT 

The present work deals with the problem of the interaction of 

the electromagnetic radiation with a statistical distribution of non

magnetic dielectric particles immersed in an infinite homogeneous 

isotropic, non-magnetic medium. The wavelength of the incident 

radiation can be less, equal or greater than the linear dimension of a 

particle. The distance between any two particles is several wave

lengths. A single particle in the a.bsence of the others is assumed to 

scatter like a Rayleigh-Gans particle, i.e. interaction between the 

volume elements (self-interaction) is neglected~ The interaction of the 

particles is taken into account (multiple scattering) and conditions are 

set up for the case of a lossless medium which guarantee that the 

multiple scattering c0ntribution is more important than the self

interaction one. These conditions relate the wavelength A. and the 

linear dimensions of a particle a and of the region occupied by the 

particles D. It is found that fo·r constant A./ a, D is proportional to 

A. and that J .6x I , where .6x is the difference in the dielectric 

susceptibilities between particle and medium, has to lie within a 

certain range. 

The total scattering field is obtained as a series the several 

terms of which represent the corre1>ponding multiple scattering orders. 

The first term is a single scattering term. The ensemble average of 

the total scattering intensity is then obtained as a series which does. 

not involve terms due to products between terms of different orders. 

Thus the waves corresponding to different orders are independent and 
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their Stokes parameters add. 

The second and third order intensity terms are explicitly com

puted. The method used suggests a general approach for computing 

any order. It is found that in general the first order scattering 

intensity pattern {or phase function} peaks in the forward direction 

9 = O. The second order tends to smooth out the pattern giving a 

maximum in the a = 'IT /2 direction and minima in the a = 0 , a = 'IT 

directions. This ceases to be true if ka {where k = 21T/A.) becomes 

large {> 20). For large ka the forward direction is further enhanced. 

Similar features are expected from the higher orders even though the 

critical value of ka may increase with the order. 

The first order polarization of the scattered wave is deter

mined. The ensemble average of the Stokes parameters of the 

scattered wave is explicitly computed for the second order. A similar 

method can be applied for any order. It is found that the polarization 

of the scattered wave depends on the polarization of the incident wave. 

If the latter is elliptically polarized then the first order scattered wave 

is elliptically polarized' but in the a = 'IT/2 direction is linearly polar

ized. If the incident wave is circularly polarized the first order 

scattered wave is elliptically polarized except for the directions 9 = rr/2 

{linearly polarized) and 8 = 0, 'IT {circularly polarized). The handedness 

of the 9 = 0 wave is the same as that of the incident whereas the 

handedness of the a ='IT wave is opposite. If the incident wave is 

linearly polarized the first order scattered wave is also linearly 

polarized. The second order makes the total scattered wave to be 
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elliptically polarized for any 0 no matter what the incident wave is. 

However, the handedness of the total scattered wave is not altered 

by the second order. Higher orders have similar effects as the second 

order. 

If the medium is lossy the general approach employed for the 

lossless case is still valid. Only the algebra increas e s in complexity. 

It is found that the results of the lossless case are ins ensitive in the 

first order of k. D where k. = imaginary part of the wave vector 
im im 

k and D a linear characteristic dimens~on of the region occupied by 

the particles. Thus moderately extended regions and small losses 

make (k. D) 2 << 1 and the lossy character of the medium does not 
im 

alter the results of the lossless case. In general the presence of 

the losses tends to reduce the forward scattering . 
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I . INTRODUCTION 

When one computes the scattered wave, due to the illumination 

of a collection of particles, ignoring the interaction of the particles 

one talks about single scattering. Multiple scattering involves the 

interaction of the particles. 

The first sound attempts to attack the multiple scattering prob

lem are due to Arthur Schuster (1905) who formulated a problem in 

radiative transfer to explain the appearance of absorption and emission 

lines in stellar spectra, and to Karl Schwarzschild (1906) who intro

duced and developed the concept of radiative equilibrium in stellar 

atmospheres. However, a systematic treatment of the multiple scatter

ing problem was first given by W. Hartel (9) in 1941. His method is 

based on determining successive angular intensity distributions for 

each successive order of scattering. His theory is applicable to the 

case of a medium densely packed with scatterers. This approach has 

been recently followed by D. H. Woodward (11) who has assumed that the 

scatterers are Mie spheres with a radius large compared to the wave

length. The theory introduced by Hartel, however, does not involve the 

polarization of the scattered wave. Such a scalar theory is never 

reliable according to Chandrasekhar (8). But Woodward (11) has extended 

Hartel's theory to include polarization effects. 

Another difficulty which also applies to some other theories is 

the following: One usually starts with the law of single scattering by 

individual scatterers. In most of the mathematical theories the deriva

tion of the law of scattering is based upon the concept of the illumi-

nation of the scatterers by a plane electromagnetic wave. Thus one 
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talks about the Mie or Rayleigh etc. laws of scattering. Now in a 

dense medium every point (small region) is a scatterer. The inter

action of the scatterers is by far different from the interaction of a 

plane wave with a single scatterer . We then understand that when 

multiple scattering is taken into account one cannot assume that every 

point scatters according to a specified law based on the illumination 

of a single scatterer by a plane wave. Therefore, the Hartel theory 

cannot use the single scattering theories mentioned above. 

In 1945 S. Chandrasekhar (8) developed in a systematic and 

mathematically rigorous way the problem of Radiative Transfer. His 

equation of transfer is a continuity equation for a 4-dimensional vector 

with components the 4 Stokes parameters of the scattered wave. The 

radiative transfer theories are best suited to problems such as scatter

ing by planetary atmospheres, radiative equilibrium of a stellar 

atmosphere and other related problems. Like the H a rtel theory, the 

Radiative Transfer Theories (R. T. T.) assume a medium densely 

packed with scatterers . Therefore these theories cannot be bas ed 

upon single scattering theories such as Mie's etc. Another frequent 

assumption of the R. T .-T. is that the scatterers behave like small 

dipoles. If higher moments are taken into account (10) or one con

siders particle s of a shape other than spherical the computations get 

pretty complicated. 

The theories mentioned above or relate d ones cannot deal with 

the problem of the interaction of a plane wave with a collection of 

particles not densely packed and whose shape might b e considerably 



-3-

different from spherical. A rigorous theory for such a situation seems 

infinitely complicated. If one introduces the element of randomness 

in the position and orientation of the particles things look brighter. 

Even so an exact treatment is practically impossible. 

The first order scattering or single scattering can be done 

exactly only when one knows how to find the scattering law for a single 

particle of a given shape. This is not known in general. A considerable 

simplification takes place if the single scattering is of the Rayleigh

Gans type, i.e. if the interaction of the volume elements {self-inter

action) is neglected. If one wants to find the effect of the multiple 

scattering for such particles one must make sure that the multiple 

scattering contribution is more important than the self-interaction 

contribution. 

Our theory is an approximate one and deals with the following 

problem. Consider a collection of non-magnetic dielectric particles 

of any shape immersed in a homogeneous isotropic non-magnetic 

medium of infinite extent. We will assume that the particles have 

random position and orientation. The particles are of the Rayleigh

Gans type and are several wavelengths apart. This last assumption is 

made to simplify the computations. 

Consider now a plane wave illuminating the particles. We want 

to compute the scattered field. The scattered field will be characterized 

by the four Stokes parameters. The averaging over the random positions 

and orientations of the particles will be an ensemble average. 

Our aim is to expand the total scattered field into a series th e 
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several terms of which represent the corresponding orders of scatter

ing. Thus the first term is a single scattering or first order scatter

ing. The second term is a multiple scattering of the first order or a 

second order scattering, i.e. the additional current induced within any 

particle is due to currents inside all other particles induced by the 

incident field only. The third order involves current due to the second 

order fields etc. 

The essential part then of this thesis is the computation of the 

several scattering orders. 
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II. FORMULATION OF THE PROBLEM 

2.1. Scattering From a Single Particle 

Consider the scattering of a plane wave by a single dielectric 

particle (see figure 1). The particle has constitutive parameters E , 
p 

which can be complex, and µ. = µ. = magnetic permeability of vacuum. 
p 0 

The surrounding medium is infinite, homogeneous, isotropic with con-

stitutive parameters E , complex in general, and µ. = µ. • If we call 
m m o 

the incident electric field E. and the scattered one E then it can 
-inc -sc 

· be shown (see Appendix A) that: 

Esc(.E) = w~.6xS!:'(.!i_! 1 ) • E(_E') dV' 
c -v 

(2.1.1) 

where E(r) =total field at r = E. (r) + E (r), .6x = X - X = 
- - - -inc - -s c - m p 

E - € E - € . 1 1 ik I r - r ' I 
( m o) ( p o ) e - -- = - ( € - € ) , I'( r; r r) = ( u + -2 'V'V) 4 I t I 

Eo Eo Eo m P =-- = k rr_E-.! 

where u = unit dyadic = e e + .e e + e e , k = wVµ. E • = -~x -y-y -z-z o m 

2. 1. 1 can be solved by an iteration method. Thus the first 

order approximation is obtained by replacing E(r') by E. (r'): 
- - -inc-

(2.1. 2) 

The second order approximation replaces E(_E ') in ( 2. 1. 1) by 

E { r ') = E. ( r ') + E[ 
1

] ( r 1
): 

-- -inc - -sc -
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p 

Em,flo 

I 
> 
> -- ~inc 
-

~ 
Loielectric Particle 

Fig. 1. A dielectric particle illu.rninated by a plane wave 

E. P is the observation point. 
-inc 
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~ 

dV" f dV' 

= E[ 1](r} + E(Z} (r} 
-SC - - SC -

(2.1.3} 

It is now easy to see that in general we must have: 

E[n](r} = E( 1} (r} + E(Z} (r} + ••• + E(n- 1} (r} + E(n} (r} (2. 1. 4} 
-sc- -sc- -sc- -sc - -sc-

with 

E[O] = E. (r} 
-sc -inc -

• {Srcr2;r3 } ••• {Sr er 1 ;r ) • E. (r } dV } = = -n- -n -inc -n n 
v v 

(2.1.5} 

The first order approximation E[i] (r} = E(i}(r} is called the Born 
-sc - -sc -

approximation. From. 2.1. 5 we see that the nth order in the series 

expansion 2. 1. 4 is proportional to (.6x )n. One then might be led to 
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believe that for sufficiently small i .tix I the Born approximation is 

valid. However, this is not true as the following analysis shows: 

Let's compare E(i} to E(Z}, i.e. let's estimate the absolute value 
- SC -SC 

of the fields. We are usually interested in the far zone values (see 

Appendix A} 

= w2. .tix S I'(r;r'} • E. (r'} dV' 2. _ - - -inc -
c -v 

2. s ikr - ike • r 
1 

W e r E 
l.k. r 1 

::::: - .tix (u - e e ) -- e - - • e - dV' 
2. = -r-r 4irr -o 

c v 

"k "k I w2. = - -.tix 2. 

1 r s -1 e • r "k 1 e -r - i • r 
(e Xe XE)-- e e- -
-r -r -o 4irr 

dV' (2.. 1. 6) 
c v 

dV" dV' 

S e iklE'-..!:"1 i·k·. r" 
E dV" dV' • _,,4-ir'""'l_r....,,-_-r ..... "...,.I -o e -

v 

S 
e ik IE' - ..!: II I 

• E 
-o 4 Ir' - r" I v 1T - -

ik• r II 
e- - dV" dV' (2..1.7} 

Now from 2. 1. 6 we get 
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If we assume that k Is -ik~r·E.' ik·r' 
is real then e e - - dV' I< 

v 

S 
-ike • r' . , 

I e -r - e1~· ..!: I dV' = V p = volume of dielectric particle. If k is 

v 
not real then by writing k = k + ik. 

-r -1 
we get I= IS e-ik~r·.E'ei~·..!:' dV' I 

v 

S 
k.e •r' -k.•r' 

< e i-r - e -i - dV'. Assuming that E. 
-inc travels in the z dire ction 

V s ki (~r - ~z) • ..!: ' 
we have I :S e dV'. 

v 
In the present work we deal with lossy media with k . of the order 

l 

1 -1 of (1...;. 
20

)m or less. Therefore in view of the small dimensions of 
k . (e - e ) • r 1 

the particle (< 10 µ) we understand that e 1 -r -z ~ 1 and I ::= V • 

Thus 

Next we estimate I E(
2) j: 

-sc 

2 2 
jE(2) I < (~ jllx 1) 
-sc 2 c l ikr I s -ike • r ' _e__ e -r - (u + _1_ V''V'') 

4rrr = k2 
v 

S 
iklr'-r 11 I . 11 

• E e - - e1~· .E. dV 11 dV' 
-o 4rr l.E' - ..!: II I 

v 

p 

(2. 1. 8) 

2 2 l ikr I s s ik I r 1 

- r" I . 11 
<(~It::. J) _e_ lu+-1 V''V' ' )•E e - - e1~·r dV11jdV' 

2 X 4irr = k2 -o 4irjr 1-r 11 j 
c v v - -
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For estimation purposes we may write \7 1 
,.., _!_ e ' 1· e 

k -r • • • 

(2 ) 2 . 2\ ikr IS Ir ikj_!:'-..!:"l 
IEsc j< (:2 j.6x I) e4irr 21Eoj J e4irl!..'-..!:"I 

v v 
e 1

- • E. dV" dV' "k II I 

To estimate the integral S I r•=r" I dV" we choose a spherical 
v - -

particle of radius a and· we measure ..!:' •..!:" from the center. Then 

the integral is the electric potential of a uniform spherical charge 

distribution with p = 1 in electrostatic units. evaluated at r' lying 

within the sphere. The result is well known: 

and 

Finally 

v 

2 
~Va · 

p 

2 2 I ikr I 
jE(2) I< (w

2 
l.6x 1) IE Iv a 2 ~4 -sc -o p irr 

c 

If we now compare l E ( 
1 

) I given by 2. 1 • 8 and -sc 

2. 1. 9 we understand that 

(2. 1. 9) 

j E(2) I given by 
- sc . 

(2.1.10) 



-11-

Condition 2.1.10 further guarantees that jE~~ j << jE~~- 1 ) j as we 

can show, therefore the Born approximation is valid only if 2. 1. 1 O 

is satisfied. This condition has been discussed and derived in a 

different way by Van de Hulst (2). 

2. 2. Scattering From a Collection of Particles 

If the scattered electric field by the ith particle (E., µ ) is 
l 0 

i called E (r) then the total scattered field is -sc-

N 

Es c (_!:) = l E~c (_!:) 

i=1 

where N is the number of particles that do the scattering. 

where 

If we apply 2. 1.1 for the ith particle we have: 

Ei (r) 
-sc- = w~ 6x.Sr{r;r.)•E{r.) dV. 

c l = - -1 - -1 l 

v. 
l 

N 

E{r.) = E. {r.) + \ Ej {r.) 
- -1 -inc -1 L -sc -1 

j=1 

(2. 2. 1) 

{2. 2. 2) 

To be able to write down a series expansion for the total scattered field 

as we did in section 2. 1 for a single particle we work as follows: 

First we write down the formula for the scattered field by the /h 

. 1 h" h. d . "d h .th . 1 part1c e w ic in uces a current lns1 e t e i partlc e. According 

to 2. 1. 1 we have: 

Ej {r.) 
-sc -1 

= w
2

2 
6x . S T{r. ;r.)•E'{r.) dV. 

J = -1 -J - -J J 
c v. 

J 

{2. 2. 3) 
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E(r .) = E . (r.) 
- -J -inc -J 
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k E (r.) 
-sc -J 

Next we compute Ek (r . ) using 2.1.1 once more. 
-sc -J 

where 

k w2 s E (r .) = - 2 .6xk T(r .;rk)• E(rk) dVk 
-sc -3 c = -J - - -

vk 

E(!k) = Einc(,Ek) + l E!c(!k) 

1 

1 
Again we use 2.1.1 to compute Esc(,Ek) etc. 

(2. 2. 4) 

We are now in a position to obtain the series expansion for 
N 

E (r) = \ E i (r) . The first order term is obt ained from 2. 2. 2 if 
-sc - 6 -sc-

i=! 
we replace E(r.) by E. (r.), i.e. - -i -inc -i 

and 

E[i]i = w
2 

.6X. S I'(r;r.)• E . (r.) dV. = E(i)i(r) 
-sc 2 i - - -i -inc -i i -sc -c -v. 

i 

w
2

2 .6x. S I'(r;r . )• E. (r.) dV. 
c i = - -i -inc -i i 

v. 
i 

The next approximation replaces E(r.) by E . (r . ) + - -i -inc -i 

(2. 2. 5 ) 

N 
\ E(i)j(r.), 
Li -SC -J 
j=1 

i.e. 
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E[ 2] i(r} = w
2

2 
6x .s T(r;r.}o E . (r.) dV. 

-sc - c i =--1 -1nc-1 i 
v. 

l 

2 2 ~ 
+ (w2 ) 6X. S T(r; r.)• { · \ 6X. Sr(r. ;r.) • E. (r .)dV .}dv. 

c l = - -1 !.; . J = -1 -J -inc -J J l 

v . J·=1 v. 
l J 

(2. 2. 6) 
N 

E~~ (E) = l E~~] i(E) 

i= 1 

N 

l [2]° To get the third order order E(r . ) is replaced by E. (r.) + E 1 (r . ) 
- -1 -inc -1 -sc -1 

j= 1 
i .e. 

• E. (rk) dVk ] dV.} dV. -inc - J l 

= E(i)i(r) + E(2)i(r) + E(3)i(r) 
-sc - -sc - .-sc -

(2. 2 . 7) 

N 

E[3] (r) = ) E[3] \r) 
-sc - L.J -sc -

i=i 
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It is clear now how to obtain the 

N 

th 
n order. 

replace E(r.} by E. {r.) + \ E[n- 1] j(r.}. i.e. 
- -1 -inc -1 6 -sc -1 

j=1 

We have to 

2 N 
+~ eix.S r(r;r . >· I E[n.- 1Jj(r.) dV. 

2 l - - -1 -s c -1 l c - . v. J=1 
l 

= E( 1)i(r) + E( 2)i(r) + ••• 
-sc - -sc -

+ E(n-1)i(r) + E(n)i(r) 
-sc - -sc -

The several terms in the series expansion have a simple 

physical explanation which goes as follows: 

(2. 2. 8) 

The first order scattered field E(
1

) (r) is due to currents induced by 
-SC -

the incident field only, i.e. ignoring interaction of the volume elements 

within a particle or of the particles. 

The second order scattered field E(2)(r) is due to currents induced by 
-sc -

the first order scattered field E{1)(r), i.e. a first order interaction 
-SC -

between volume elements and particles is taken into account. There

fore, the field E( 2) (r) is due to a multiple scattering. 
-sc -

The third order E(3 ) {r) is due to currents induced by the second order 
-SC -

E( 2)(r) etc. All the terms E{n){r) with . n > 1 are multiple scattering 
-sc - -sc -

terms. 

Next the following observation should be made. 

for example (see 2. 2. 6) 

Consider E( 2)i 
-sc 
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E{2)i 
2 . 2 N . 

= ( w2 ) 6 X . S T( r; r.) • { \ 6 X . ST( r.; r.) • E. ( r.) d V. } d V . -sc c 1 = - -1 ,{...; J = -1 -J -inc -J J i 

v. J=i v. 
l J 

= (w~)
2

{6x.) 2 Sr(r;r.)·ST{r.;r!)•E. (r!) dV~ dV. c l = - -1 = -1 -1 -inc -1 i i 
v. v. 

l l 

+ ( w~ ·)2{6x .)sT{r;r.)· { \ 6x . s I'(r.;r.) 
c i = - -1 L J = -1 -J 

v. j=f:i v. 
l J 

• E . {r.) dV. } dV. 
-inc -J J i 

{2. 2. 9) 

The first term involves the interaction of the volume elements of the 

ith particle which would exist even if all the other particles were 

absent, whereas the second term describes an interaction between the 

ith particle and all the others. 

If we recall the results of section 2. 1 we recognize that the 

first term is just E{ 2){r) in 2o 1. 3o This is a self-field because it 
-SC -

involves interaction within the particle itself. As we shall later see 

the second term in 2. 2. 9 will depend on the density of the particles 

whereas the first does not. It is not obvious a priori which term is 

the most important. Of course they are both of order {6X) 
2 

if the 

x. 's are comparable but this is not the whole story as we saw in 
1 

section 2. 1. In the present work we will neglect self fields; therefore, 

we should find out under what conditions the self-field terms are 

negligible compared to terms due to the interaction of the particleso 

We should notice here that we also get "mixed" terms which come 
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from interactions within the particles but depending on the presence 

of the other particles whereas the first term in 2. 2. 9 does not. Su ch 

terms exist in the higher order terms. Consider for example E( 3 )(r). 
-sc -

If we assume for simplicity that N = 2 we can write 2. 2. 7 as: 

• E. (r") dV" ldv' } dV 
-me 1 1 J 1 1 

(2.2.10} 

The first term in 2·. 2.10 would exist even in the absence of particle 

no. 2. It is a pure self-field term belonging to particle no. 1. The 
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second term depends on the presence of particle no. 2. Thus 

w~ t:ix 2 \ !::'<.E.i;.E.2)·Einc(!.2) dV 2 is the first order scattered field due 
c j -

v2 
to particle no. 2. This field induces a current within no. 1. The 

current produces a field which in turn induces a current within no. 1 

again. This last interaction is a self-interaction depending on the 

presence of no. 2. The third term is not of similar nature. Thus 

2 ,... 
W I z t:ix 1 \ .!:'<.E. 2;.E.1)·Einc<.E.1) dV 1 is a first order field due to no. 1. 
c j -

v1 
inducing a current within no. 2. This current produces a field which 

causes a current within no. 1. There is no self-interaction even though 

no. 1 affects itself through no. 2. The fourth term includes such an 

interaction, i.e. the field produced by no. 2 induces a current within 

no. 2 which in turn produces a field acting on no. 1. 

We thus see that E{3) = E(3 ) 1 + E( 3) 2 consists of 2 X 2 X 2 = 8 
-sc -sc -sc 

terms with only two terms without self-interaction. For any N the 

terms without self-interaction are N(N - 1)(N - 1), i.e. l ail bij l cjk 

i j:Fi k:Fj 

whereas the self-interaction terms are N
3 

- N(N - 1) (N - 1) = 

N3 - N(N2 - 2N + 1) = 2N
2 

- N 

For N > 3 

Without: 

With: 

N 3 - 2N2 + N = N out 

2N
2 

- N = N 
w 

N t > N • Thus as N gets high, whereas the volume 
OU W 

within which the particles exist remains constant, we expect the self-

interaction contribution to be less important than the contribution 

from the other terms. Now what we really want is to make the 
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largest self-interaction term, i.e. E( 2) in 2. 1. 3 smaller than any 
-sc 

arbitrary order term E(n) in 2. 2. 8 if we exclude self-interaction 
-sc 

terms. This seems adequate for a theory which neglects self-

interaction but it is not. To see this recall the series expansion 

2. 1. 4 for the scattered field by a single particle in the absence of 

the others. If we want the intensity pattern of the scattered field we 

have to compute the far zone Poynting vector 

Thus 

S = S e r-r 

S ,.., j E 12 = j E( 1) + E(2) + • • • j 2 
r -sc -sc -sc 

The scattering is not incoherent, i.e. 

The terms have been arranged in orde:i,- of magnitude. 

(2. 2 .11) 

Now if we consider the collection of the particles and neglect 

the self-interaction terms we can show (see Appendix D) that 

< 
s >,..,< IE 12>=< l E(1) + E(2) + • • • 12) 

r -sc -sc -sc 

( 2 .2. 12) 

i.e. the several orders add incoherently due to the assumption about 
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randomness in the position and orientation of the particles. 

Therefore what we want is to make sure that any term in 2 . 2 . 12 

is larger than ZN Re E( 1 ) • E(Z) >'.c . The multiplication by N is due to 
-sc -sc 

the assumption of randomness which make the intensities from the 

several particles add. 

We thus have to find the conditions under which 

(IE~~l 2 >1 . >>2NRe(E~~·E~~*). c2.2.13) 
collection single 
of particles particle 

We have already estimated IE~~) I and j E~~ j for the scattering by 

a single particle (see 2. 1. 8 and 2. 1. 9}. Thus we can write 

2NRe /E( 1}.E(2}). 
~SC -SC . l singe 

particle 
(2. 2. 14) 

if loss es are neglected. Notice that due to interference the left-hand 

side is usually much smaller than the right-hand side. 

As we will show later in this work we get the following result 

for the average jE(n} j 2 if losses are neglected: 
-sc 

= I E I 2 ( w 2 j .6 X I) 2n (-1 ) 2 N ( N .)n- 1 (_Q_ .)n- 1 F~ -1 
o c2 47Tr V 327T2 

for n':/: 1 (2. 2. 15a} 

and 

(2 .• z. 15b) 

Expressions 2. 2. 15 have been derived under the assumption of a 
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circularly polarized incident wave. Here V is the volume occupied 

by the particles. D is a linear dimension of V. F 
1 

is a function of 

ka of the order V~ and K 1 • K 2 are given by certain integral ex

pressions which will be later derived. One can see almost by inspec-

tion but numerical results for the special case of a collection of 

spheres also confirm that K
1
,K 2 are approximately one order greater 

than v 2 
if ka is not too large. The maximum value of F(8) is 

p 

If self-interaction is to be neglected then all multiple scattering 

terms should be greater than the dominant sel;f-interaction contribution. 

From 2. 2.14 and 2. 2. 15a we get 

On the other hand the series ( I Esc 1
2
) = l ( IE;~) 12

) must 

n 

"d . h ( I Es(nc-1) 12)/( I Es(nc) 12) << 1. converge rap1 ly, l. e. we must ave 

achieve the corresponding conditions we have to notice the following 

fact. F(8) varies significantly with 8 only when ka is relatively 

large. In general F(8) is obtained through an averaging procedure 

and therefore no zeros exist. For the special case of a collection of 

To 

spheres no averaging takes place and F(e) varies significantly even if 

ka is not large, i.e. ka::::: 1. On the other hand F(8) has a number 

of zeros provided 2 ka > 4. 5. When F(8) = 0 then ( / E~~ J 2) is 

. ( I E(sic) 12) l. s zero, but the multiple scattering is non-zero, l. e. 

greater than (IE~~ 1 2
). In such a case a condition of convergence 
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should really involve terms with n > 2. One should therefore include 

the condition (IE~~ 1 2>/< IE~~ 12
) << 1 only when it makes sense. 

As we said before in general F(S) has no zeros and unless we 

choose ka large F(S) does not vary significantly. For estimation 

purposes we can write F(S) ;S V~ and demand 

(2.2.17) 

as we can easily get from 2. 2. 15a and 2. 2. 1 Sb. 

For the ratios with n > 2 we can easily find that 2. 2. 1 7 must 

be satisfied. 

We can immediately see that 2.2.16 is 11 hostile" to 2.2.17. 

Thus 2. 2. 16 requires high frequencies, high number density whereas 

2. 2.17 requires exactly the opposite. The anomaly gets worse as n 

increases. Usually however the rapid convergence of the series 

( JEsc 1
2

) = L (IE~~) 1
2

) guarantees that even a few terms will give 

n 

an accurate scattering intensity. 

We can summarize the· previous discussion as follows. Con-

dition 2. 2. 16 requires that 

(IE~~) J 2) >> N 2 Re~~~)E~~>~) . 
single 
particle 

whereas 2. 2. 1 7 requires 

We can combine both in one: 
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< 
IE(i) 12) >>(E(2) 12) >> •• • >>( IE(n) 12) >>N2Re (E(1)E(2)>!~) . 
-sc -sc -sc -sc-sc single 

particle 

We thus see that ( IE( 1) 12) >>N2Re(E( 1)E( 2 ) >!'\ . 
1 

or if we recall 
-sc -sc-sc J sing e 

particle 

that( jE(i)l 2) =NIE( 1) 12 . 
-sc -sc single 

we get (1E( 1 ) 12). >>2Re (E(i)E( 2)'!<\ 
-sc s.p. .-SC-SC /s.p. 

particle 

or I E(1 ) I >> I E( 2) I This is, however, condition 2.1. 10. Thus 
-sc s.p. -sc s.p. 

2.1.10 is compatible with the pair 2.2.16 and 2.2.17. As a matter of 

fact we can immediately get 2. 1. 10 if we write 2. 2. 16 for n = 2 and 

combine it with 2. 2. 1 7: 

2 
w2 l.6x I a2 << 1 • 
c 

To see how 2. 2.16 and 2. 2.17 work we transform them as 

follows: The number density ~ can be expressed as 
1 

3 
where 

(a +d) 
d is an average closest distance between two n e ighboring particles . 

This is so because N is approximately equal to N 3 • Here we 
(a +d) 

should notice that 2. 2. 15 has been derived under the assumption that 

the particles are. of such size and so far apart that they only see the 

far zone field of any particle. This means that r >> r 1 and kr >> 1 

in the expression for I'(_E;_E 1
} (see Appendix A). 

= 

21Tr 21Tr 
Now kr=--= -- n 

}... }...o m 

where n m 
is the index of refraction of the medium. Therefore we 

have the following conditions: 

A.o 
r >> 2irn 

m 
r >> r' 
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or 

Ao 
a+ d >> 2'Tl'n 

m 
and a+ d >>a 

If we call a+ d = ma then we m u st require that m >> 1 and 
Ao A Ao 

m>> 2'Tl'n If ~ > 2rra then m>> 21Tn implies m>> 1 • a n a m m m 
Ao A 

i.e . m >> s uffices . If however 2 < 21Ta m >> 1 doe s . 21Tan n m m 

C onsider n ow 2 . 2 . 16 for n = 2 . We will t h erefore assume that 

the self- interaction contribution is smaller than the 2nd order multiple 

scattering term which i s a l so greater than the 3rd order term in 2 . 2. 12. 

T h u s in the present case we will neglect multip l e scat ter ing terms 

· higher than the second and also self-interaction terms. If we assume 

the ratio of two successive terms in 2. 2 . 12 equal to 10 and the ratio of 

the 2nd o r der multiple scattering intensity to the dominant self-inter -

action term in 2 . 2. 11 also equal t o 10 then we make a mistake of the 

o rder of 1%. Under the previ ous assumptions 2.2 . 16 and 2 . 2.17 give: 

2 
w I A I N ~ 10 v2 a-2 > 10 - 2 L}x v 2 
c 321T p · 

If we take into account that V p;:::: a
3

, ~;:::: ; 3 ma 

t r ansformed into the following : 

2 

I I w D a 1 
!::.X c2 3271'2 m3 > 

(2 . 2.16a) 

(2 . 2. 17a) 

our conditions are 
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3 
~<-1_ 

3 - 100 
m 

(
. D )- 1 3 -1 
-- ma 
321T

2 (2.2.16b) 

(2. 2. 17b) 

We now understand that if A 2: B and A :S C then C > B, i.e. from 

2. 2.16b and 2. 2. 17b: 

(2. 2. 18) 

i) Assume 21Ta > A. /n , i.e. a > A. /21Tn • Then we must choose o m o m 

m >> 1. If we set m = 15 then 

a :S 9 X 10'"" 9 D (m = 15) (2.2.1 9 ) 

We usually require A.
0 

to be in the visible range, i.e. 

A.
0 

= 4 X 10-
5 

cm ••• 
-5 7 X 10 cm 

If we write a = nA. /n where n is s ome number greater than 1 /2-rr . o m 

then D must satisfy the following inequality: 

n 4 4 7 4 1 
D > U- ( "9 X 10 cm ••• "9 X 10 cm) (n > 2 ,,., m = 15) 

m 

If for example we choose n/n = 1/4, i. e . a/A. = 1/4 then m o 
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1 4 7 4 
D > { 9 X 1 0 cm • • • 3b X 10 cm) {m = 15) 

or if n/nm = 5, i.e. a/'11.
0 

= 5 then 

D :;:::: { ~ X 10
5 

cm • • • 4 X 10 
5 

cm) {m = 15) 

If we do not specify A
0 

we can easily get: 

a 6 Ao n> 9 10 =p{ka)
18

'ITTl 

m 
{p > 1} {2. 2. 21 a) 

Thus if A
0 

is constant D increases as ka or a/A increases. 

ii) Next asswne 2'lTa < A= A /n • Then we should have m>> A /2iran • 
o m o m 

To comply with case i) we choose m such that ma= 15/k or 

m = 15 /ka. We can now easily get 

or 
7 A 

D=p1.7X10 ___2._ 

{ka) 2 nm 

Thus if a/A
0 

= 1/10 and A
0 

= 4 X 10-
5 

with n ~ 1 we get 
m 

3 
D > 1. 7 X 10 cm = 17 m 

(2. 2. 21 b) 

We observe from 2. 2. 21 b that for A
0 

constant D increases as ka or 

a/A decreases. 

This seems paradoxical since everyone knows that as a/A gets 

very small the self-interaction contribution becomes negligible and 

therefore 11 the multiple scattering should dominate. 11 However, one 

should be careful enough to notice that the self-interaction goes like 
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(a/~) 6 
whereas the 2nd order multiple scattering like (a/~) 8 , i.e. 

goes to zero faster. Thus D has to increase to fortify the multiple 

scattering since N/V is constant for the case a < ~/2rr. We thus 

conclude that the minimum D for constant ~ corresponds to ka = 1. 

Once we specify a and ~o = 2rrc/w or better their ratio, as 

we show below, we can immediately find the range of j .6x I for which 

conditions 2. 2.16 and 2. 2. 17 are satisfied. We start from 2. 2.18, 

i.e. 

D 2 3 -- = p 10 ma 
321/ 

(p > 1) 

and conditions 2. 2.16b and 2. 2.17b give: 

J.6 x I 

J .6 x I 

i.e. 

2 

(· ~o·) 1 -2 1 3 -1 10- 2 
> 2rr -p 10 - 3-m a = -p--

m a . 

2 
n 

m 

(ka)
2 

. ~ 2 1 /2 - 2 2 
< (~·) 1 10-2(_1_ ·) a-3/2m3/2= 10 nm 

2rr -:r7Z 3 =172 (k ) 2 p ma p a 

2 
n 

m 

(ka)
2 (2. 2. 22) 

If ka is large j .6 x J has to be small whereas a small ka can make 

J.6xJ of the order unity or larger. Is 2.2.22 the final range of j.6xJ? 
2 

How about condition w 2 j .6 X J a 
2 << 1 or j .6 X / << n~/(ka) 2 ? 

c 
We have already shown that this condition is compatible with 

2. 2. 16 and 2. 2. 1 7. As a matter of fact if we rewrite 2. 2. 16a and 
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, 2 .) 2 N D 2 2 t ~ J.6x I - - 10 v 
\ c2 V 321T2 p 

2 
w I A · I 2< 1 Z wX a -100 
c 

(2. 2. 23) 

If we recall that p > 1 we understand that 2. 2. 22 is the range for 

j.6x j that satisfies all our conditions. 

Next we examine the range of applicability of the theory if 

2. 2. 16 with n = 3 holds. Then neglecting self-interaction and higher terms 

than the third in 2. 2. 12 introduces a mistake of the order of 1 %0 or 

less. Remembering that N/V ~ (maf
3 

• 2. 2. 16 with n = 3 and 2. 2. 17 

can be written as 

(2. 2. 16c) 

1 1/2 D -1/ 2 

s (100) (
32

1T2) 

3/2 m 
3/2 a 

(2.2.17c) 

Again we can easily see that 

. 1 1/2( D . -1/2 m3/2 -l/3 . D . -2/3 m2 

(100) 
32

1T2) a3/2 2:: (lO) ( 
32

1T2) a4/3 
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or 

3 < 10 -4 D 
ma- --2 

3 21T . 
(2.2.24) 

We can immediately see that the choice of a, A.
0 

will be the same as 

before {when n = 2 in 2. 2. 16 was chosen) provided D is two orders 

of magnitude bigger. Therefore, unless very small wavelengths are used, 

D is too big and the third order is not likely to be practically useful. 

The range of J.6x I is found easily if we set D/32ir2 =pm3ax104 

{p ?.: 1 ) , i. e. 

or 

2 
> 10- 3 nm 

J.6 x I - -:zy3 --2 
p {ka) 

2 
< 10- 3 nm 

l.6 x I - 772 --2 

2 
10- 3 nm < 

p2/3 {ka)2 -

p {ka) 

{p > 1) {2. 2. 25) 

Thus if the third order is taken into account D has to get larger and 

J .6 x / has to become smaller than the corresponding quantities in 

second order. 

Do we have to worry about condition I .6 x J << n 
2 

/(ka) 
2

? No! 
2 m 

because now 2. 2.16a should read ~ l.6x J N --22._ 10 v 2 a-
2 > 100 and 

c2 V 32ir2 p 

if it is combined with 2.2.17a we can easily get J.6xJ :S 10-
3

n
2 

/{ka)
2

• m 

Thus 2. 2. 25 is O. K. 
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III. FIRST ORDER SCATTERING 

3. 1. Intensity of the Scattered Wave 

We will assume that the particles in general have different 

shapes, random positions and random orientations. They can have 

different susceptibilities but of.the same order of magnitude. Later 

for the sake of obtaining a simple form for the intensity of the scat-

tered wave we will assume that our particles have the same shape, 

dimensions and susceptibilities. 

To each particle we attach a triad which will be characterized 

by three Eulerian angles (see Appendix B) w. r. t. a fixed system of 

orthogonal cartesian coordinates with the z-axis along the wave vector 

~ of the incident wave {see figure 2). The Eulerian angles give the 

orientation of a particle and will be treated as random variables. We 

want to find the far zone scattered field at .! characterized by r, 8,cp 

w.r.t. the fixed system x,y,z. The expression for the far zone I' 

is {see Appendix A) 

ikr - ike • r' e -r -
; = ( ~ - ~~r) 41Tr e 

r 
where e =

-r r 

Therefore we can write for the far zone field given by 2. 2. 5 

= 

w
2 6.x. ikr s -ike •r. 

i e -r -i ( = 
2 

(u - e e ) -
4
- e • E. r . ) dV. 

- -r-r 1Tr -inc -i i 
(3.1. 1) 

Now E. 
-inc 

-icS 

c - v. 
i 

-- E eikz where E h th · · '"o E as e generai :i: rm e -o -o x 

E e Ye i.e. E. is in general elliptically polarized. 
y -y' -inc 

- i cS 
x 

e -x + 
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x 

Einc 

_L 

y' 

Qr (8,<p) 

z' 

--z 

y 

x 
A 

Fig. 2. x 'y'z' is a triad attached to the dielectric particl e . 

xyz is t he fixed coordinate frame. e is a unit 
-r 

v ector pointing in the direction (9.~} . 
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3. 1. 1 can now be rewritten as: 

w
2
6x . ikr s -ike • r . ikz. 

2 
1(e Xe XE ) .::__

4 
e -r - 1 1 d ·V. 

-r -r -o irr e 1 

c v. 
(3. 1 • 2) 

l 

since e X (e XE ) = e e • E - {e • e )E = {e e - u) • E • Notice that -r -r -o -r-r -o -r -r -o -r-r _ -o 

e • E(
1 

)i{r) = 0 as it should. To take into account ~he randomness m 
-r -sc -

position of the particles we split r. as follows (figure 3) 
-1 

Thus we have 

and 

r. = r . + R . -1 -10 -1 

r. • e = r. • e + R .. • e -1 -r -10 -r -1 -r 

z. = r. • e = z. + Z. 
l -1 -z LO l 

Substituting 3. 1. 4 and 3. 1 • 5 into 3. 1. 2 we get 

E (1 )i(r) = 
-sc -

w
2
6x. ikr -ike • r. ikz. 

l {e Xe XE )-4e e -r -1oe 10 
---=2- -r -r -o irr 

c 

-r -1 l S 
-ike •R. ikZ. 

X e e dVi 

v. 
l 

{3.1. 3) 

(3.1.4) 

(3.1. 5) 

{3.1. 6) 

We will temporarily drop the index i. Now we want to evaluate e • R 
-r -

and e • R = Z in terms of the Eulerian angles a 1 (3 1 y the polar angles 
-z -

El ,<p and the coordinates characterizing the shape of the body. If we 

transfer the origin of the fixed system x. y. z and make it coincide 
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er 

-------JC> 

The splitting of r. c r. + R .• 
~ ~o ~ 

r. 
'4..0 

characterizes the random position of a 

dielectric particle, whereas 

izes the random orientation. 

R. 
--'.l. 

character-



-33-

with 0. the center of the ith particle we can view the x'y'z 1 system 
l 

as one obtained from xyz by an appropriate rotation, i.e. 

-1 I R
1
. = (M ) .. R. 

lJ J 
(i, j = 1 , 2, 3; repeated indices are 

summed) 

where i,j are indices signifying the cartesian components of 

R=R.e . =R!e!, 
i-1 J.-l 

-1 
and M is the inverse rotation matrix given by: 

cos -y cos (3 - cos a sin (3 s in y - s in )' cos f3 - cos a sin f3 cos y s in a - s in f3 

M- 1= cos-ysin(3+cosacos(3sin)' -sin)'sin(3+cosacos(3cosy -sinacos(3 

and 

Now 

sinasin-y sinacosy 

We now write: 

-1 I e • R = (e ).R. ' = (e ).(M ) .. x. 
-r - -r l l -r l lJ J 

e • R = Z = x 3 -z -
-1 I = (M )

3
.x. 
J J 

(e ) = (e ) = sin ~ sin e 
-r y -r 2 

(e ) = (e ) = cos e 
-r z -r 3 

cos Ct 

Using the above results and 3. 1. 6 we get the total s cattered field: 
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I 
2 ikr 

E ( 
1

) ( r) = - wz 6 x . ( e Xe XE ) !:__
4 

exp ( - ike • r. + ikz. ) 
-sc - i -r -r -o 1Tr -r -10 lO . c 

l 

S[exp '-ik(e )n(8,<pXM-
1
)n (a.,f3.,-y.)x 1 

\ -r .x. .x.n l i l n 
v. 

l 

To simplify 3. 1. 7 we define 

K . (a .• !3 .• -y.;e ,'/>) 
l l l l 

dx ' dx' 2 3 

(3. 1. 7) 

(3. 1. 8) 

The time-average radiated power per unit solid angle is given by: 

I_ dP = - an 2 1 * r z: Re (E X H • ~r) 

In the far zone of a localized source we have: 

therefore 

2 = 11. IE I e 
V µ.o - -r /Ji 
dP 2 1 2 

I = - = r - Re I E I 
dQ 2 0 -

(3.1. 9) 
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If we substitute 3. 1. 7 into 3. 1. 9 we get 

XI\ w2

2 
6x.exp{-ike ·r. +ikz. )K.{a.,13.,"Y.;e,cp}l

2 

L l -r -10 10 l l l l . c 
{3.1.10} 

l 

To make the computation of 3.1.10 easy to handle we assume that all 

the particles have the same shape, same size, and same susceptibility. 

Then we have: 

K . {a. ,!3 .• "Y.;9,<p) = K{a. ,13. •"Y·;9,<p} 
ll l l l l l 

i.e. we drop the index i from K because the functional form will be 

the same for any particle if all have the same shape and size. 

Next we write k = k + ik. to take into account the losses of 
-r lm 

the medium. If we now call -k e • r. + k z. = <p., 3.1.10 becomes r-r -10 r 10 l 

X I \' e i<p i exp /k. { e - e ) • r. ) K {a. , l3. , "Y.; e , <p) / 
2 

L \'. lm -r -z -10 l l l 
{3.1.11} 

i 

We will no·w treat <p. as a random variable {due to randomness 
l 

of the positions of the particles) which is equally likely to be found 

everywhere between 0 and 2'!T. Under this assumption it is shown in 

Appendix D that the average value of the absolute square of the sum is 

given by: 
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( l \ eicpiexp fk. (e - e }• r . . ) K{a. ,13. ,-y. ;0,cp} / 2) L \ im -r -z -10 1 1 1 

i 

= N Vi S exp { 2k. { e - e ) • a) d V 
\ im-r -z -

v 

1 s21T s 2ir s 1T 2 . X-2 jK{a,13,-y;0,cp)j sinadadl3d-y 
Sir -y=O 13=0 a=O 

{3. 1. 12) 

where a is the radius vector from the origin to any point, N the 

number of particles and V the volume occupied by the particles. 

To estimate the importance of the losses we evaluate 

J= ..!.. S exp /k. (e -e )• ~) dV for an orthogonal parallelopiped 
V \'. im-r -z -

v 
L ,L ,L • x y z 

L L L 
2 _y_ 2 

1 S 2 2k. e x s 2 2k. e y s 2 2k. {e -1)z 
J 

im rx d im ry d im rz 
=v Le x Le Y Le 

_2 _ _y_ _2 
2 2 2 

1 1 
= -V 

3 
sinh {k. L e )sinh (k. L e ) 

k. e e { e _ 1} im x rx im y ry 
im rx ry rz 

X s inh [ k. L { e - 1 } ] 
im z rz 

dz 

{3.1.13) 

Notite that for e =0, i.e. forward scattering , J = 1. If we e xpand 
3 

x 
sinh x = x + TI + we can easily show that 3. 1. 13 g ives: 

J = 1 + O(Lk. ) 
2 

im 
(3.1. 14) 

where L is a linear dimension of V. 
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independent of the loss es, if (k. L) 2 << 1. 
im 

1 -1 
20 

m , therefore a example k. for water can be as low as 
im 

For 

region V with L < 2 m will make (k. L) 2 ::= 1 % 
im 

and J = 1 with an 

error of 1 %. However, our the ory does not allow L to get so sviall 

-5 ifthe wavelength is inthe v is ible range. Thus if A.
0 

= (4X10 ••• 

7X 10-
5

) cm and n = 1. 33 then the min L is obtained for ka = 1, 
m 

i.e. (see 2. 2. 21a) 

A. 
0 

min L = 18 rrn 
m 

5.3 m ••• 9.3m 

If for example min L = 5. 3 m then (k. L)
2 = 7 % and we make an 

im 

error l a rger than the accuracy of the problem if losses are neglected. 

The use of smaller wavelengths can reduce L, also k. = k. (A.) and 
im im 

then loss es can b e neglected. If the medium is not too lossy , i.e. 

1 -1 
kim ;S 

100 
m then we require L ,2: 10 m and losses can be neg-

lec ted for visible wavelengths and ka of t he order unity ~or larger. 

We have not worried about the effect of losses on the integral 

over a, l3, -y for the following reason. If we do the integration we will 

find a function of e, cp and ka. Now k. a will in general be much 
im 

smaller than unity since a i s about the same order as the wavelength . 

For example if the medium i s water kim::::: 1 -+ ~O m-
1 

and for the 

largest k. , k . a ....., 10- 7 if A. is in the visible range , whereas 
im im 

k a....., 1. If losses are taken i nto account we can easily see that they 
r 

tend to reduce the forward scatt ering . 

Suppose now that we neglect the l osses . Then from 3.1.11 and 

3 .1.12 we get: 
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(3. 1. 13) 

where 

F(9) = ~S 2'1TS 2 '1T s'IT IK(a,(3,)' ;9,cp)l
2
sin a da d(3 d)' (3.1.14) 

8'1T -y=O {3=0 a=O 

We have written F(9) and not F(9, cp) because the averaging procedure 

will eliminate the cp dependence no matter what the shape of the 

particles is, provided there are no losses. 

Next we compute l!:rX!:rX E
0

1
2 

for an elliptically polarized 

incident wave. We have 

- e Xe XE = component of E perpendicular to e -r -r -o -o -r 

-io -io 
Now E = E e -o x 

x 
e -x 

+ E e Ye We know that 
y -y 

Thus 

and 

e . e = - sin cp e . e = cos cp 
-x -cp -y -cp 

e . 
!:e = c.os e cos cp e . 

!:e = cos e sin cp 
-x ~y 

-io x -io 
- e X e XE = (- E e sin cp + E · e 
- r -r -o x y 

-io -io 

Y coscp}e 
-cp 

+ (E cos 9 cos cpe x + E e y cos 9 sin cp}!:e 
x y 

(3. 1. 1 5 ) 
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-io -io 
= I -E e x s in <p + E e Y cos <p j

2 
x y 

-io -io 2 
+ I E c 0 s e c 0 s <p e x + E c 0 s e s in <p e y I 

x y 

-i{o -o ) 
= I -E e x Y sin <p + E cos <p I 2 

x y 

-i(o -o) 
+ cos 2ejE e x Y cos<p+E sin<pj

2 
x y 

= (E cos<p-E cos(o -5 )sin<p) 2 +cos 2
9(E sin<p+E cos(o -o )cos<p) 2 

y x xy y x xy 

Two special cases are of interest 

-io 
i) E. linearly p.olarized E. = E e xe -inc -inc o -x 

-io 
ii) E. circularly polarized E. = E 1 e x(e ± ie ). -inc -inc o -x -y 

The plus corresponds to a right-handed and the minus to a left-handed 

wave. 

i) (3.1.16) 

The scattered power per unit solid angle is then 

(1) 2 2 2 2 2 (I ) a: NE~( w2 Jt:.xi) (sin <p +cos 9 cos <p)F{8) 
c 

{3.1.17) 
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and the intensity pattern of the scattered wave is 

1"1") I x x E 12 E'2 I ±iir/2 . + J 2 ~r ~r _ 0 = 0 e s1n <p cos <p 

2 12 = ( 1 +cos 8)E 
0 

I.P. ex: {1 + cos 28)F(8) 

(3.1.18) 

Notice, the intensity pattern is independent of cp as it should be since 

the incident wave is circularly polarized,therefore the time average 

radiated power per unit solid angle cannot depend on <p. This would 

not be true if the collection of the particles exhibited a cp-dependence 

on the average. 

3. 2. Polarization of the Scattered Wave 

Recall equation 3. 1. 7 for the first order total scattered field: 

E(l)(r) 
-sc -

'\"' 6 X . exp ( - ike • r. +ikz . ) K. (a. , 13. , y. ; 8 , <p) 
/, l -r -10 io i i 1 1 

(3.2.1) 
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3. 2. 1 can be rewritten as 

(3. 2. 2) 

where the meaning of jF(9,<p,r) leig(S,<p,r) is obvious. 

The polarization properties of E(i)(r} entirely depend upon 
-sc -

the vector e Xe XE which is independent of the material medium, 
-r -r -o 

the shape, size, orientation and susceptibility of the particles. This 

will cease to be true for higher order scattered fields. 
-io -io 

If E has the form: E e xe + E e Ye then we saw in -o x -x y -y 

section 3. 1 that 

-io -io 
-e Xe XE 
-r -r -o 

=(-Ee xsin<p +Ee Y cos<p)e 
x y -<p 

-io -io 
+(E cos9cos<pe x+E e Yeas 8sin<p}~0 {3.2.3) x y 0 

It is obvious from 3. 2. 3 that the total scattered wave is elliptically 

polarized. However, for e = Tr /2 the polarization is linear s ince 

cos e = o. 

To determine the polarization ellipse it is necessary to cast 

e X e X E into the following form: 
-r -r -o 

-io -io
9 

- e X e x E = E<pe <p ~cp + E 0 e ~a -r -r _o o 
(3.2.4) 

It is shown in Appendix C how one can draw the polarization 

ellipse if E<p,E
9

, o<p, 0
8 

are known. The computation of these param

eters is easy. For example 
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E cos 6 = -E cos 6 sin <p + E cos 6 cos <p 
<p <p x x y y 

E s in 6 = -E s in 6 s in <p + E s in 6 cos <p 
<p <p x x y y 

and 

E 2 E2 . 2 + E2 2 = sin <p cos <p etc. 
<p x y 

The cases of interest are: 

-io 
i) E. linearly polarized, i.e. E. = e x{E e + E e ) 

-inc -inc x-x y-y 
-io 

ii) E. circularly polarized, E. = E' e x{e ± ie ) 
-inc -inc o -x -y 

i) 3. 2. 3 gives: 

-io 
- e X e X E = e x {< -E s in <p + E cos <p) e 
-r -r -o x y -<p 

The scattered wave is obviously linearly polarized. 

ii) 3. 2. 3 gives: 

-io 
E E ' x( . . ) - e X e X = e - s in <p ± i cos <p e -r -r -o o -<p 

-io 
+cos 9 E~e x(cos <p ±sin <p)~8 

-i{ o w> 
I X = E
0 

e {cos 9 e e ± i e ) 
- -<p 

The scattered wave is. elliptically polarized with an inclination angle 

ljJ = O. However, for 9 = rr/2 is linearly polarized which is true in 

general as we saw before. Also for 8 = 0 {forward scattering} or 
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e = 1T (back scattering) the scattered wave is circularly polarized. 

Thus if the incident wave is right-handed circularly polarized 

then 

-e Xe XE 
-r -r -o 

r -i(ox-cp) 
= E e (cos e e

0 
+ i e ) 

0 - -cp 

e = o 
= 

r -i(o +cp) . 
E x l7T( . ) e . e ee- le 

0 - -cp e = 1T 

If we take into account the correspondence {x,y,z)~(9,cp,r) we 

understand that the back-scattered wave is circularly polarized but of 

opposite handedness than the incident wave whereas the forward 

scattered wave is circularly polarized and of the same handedness. 

If the incident wave is left-handed circularly polarized then 

we can easily see that the back-scattered wave is again c.p. but of 

opposite handedness whereas the forward scattered wave is c . p. and 

of the same handedness as the incident wave. 

We can easily understand the above results if we reca ll that 

the observer who decides about the s e nse of rotation of the electric 

vector runs always behind the wave front . 
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IV. SECOND ORDER SCATTERING 

4. 1. Intensity of the Scattered Wave 

Equation 2. 2. 6 gives if the self-interaction terms are neglected: 

= { w 2

2
)
2 

6 X . s I'( r; r .} • { \ 6 X . s I'( r.; r.} • E. ( r.) d V. } d V. 
\ c ly. = - -1 .L. J = -1 -J -inc -J J 1 

1 J#l V. 
J 

(4. 1. 1) 

We have assumed that the interaction between the particles involves far 

zone fields only. Therefore, we can use the simplified form for 

I'(r.;r.} 
= -1-J 

I'(r.;r.} 
= -1-J 

ikr. - ike • r. 
1 -ri -J 

~ (u- e e } _e __ e 
_ -r.-r. 4irr. 
- l l l 

(4.1.2) 

If Ei. for any particle is measured from a common origin, say the 

center of the volume occupied by the particles, then 4. 1. 2 is a bad 

approximation for particles for which r . - e • r . is close to zero. 
1 -r i -J 

There are, however, two reasons for using 4. 1. 2. a) The majority 

of the particles in pairs satisfies 4. 1. 2 to a good degree of accuracy. 

b) Any fine details which would result from an accurate form of 

I'(r . ;r .) will be completely washed out by .the final averaging procedure. 
= -i-J 

The scattered field E( 2}i(r) is a far zone field, therefore 
-SC -

r(r;r.} takes the simplified form 4. 1. 2. 
=--1 

in the following form 

We can now write E( 2) i(r} 
-sc -
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4 ikr s -ike • r. = w 6 e ( ) -r -i. 
4 Xi 4rrr ~- ~~r • e 
c - v. 

l. 

ikr. 
e l. 

-ike •r.+ikz. 

{l S -ri -J 
(u-e e )•E -
- -r.-r. -o 4rrr. 
- l. l. l. 

j:;Ci 

J 
.6 X· e 

J 
v. 

J 

dV. }dV. 
J l. 

(4. 1. 3) 

To take account of the randomness in position of the particles we do the 

same splitting as we did in section 3. 1, i.e. 

r. = R. + r. -i. -i. -i.o 

whereupon 4. 1. 3 becomes 

r . = R. + r. 
-J -J -JO 

4 ikr - ike • r. r 
= ~.6.x.-e--(u-e e )·e -r -i.oj(u-e 

4 i. 4rrr _ -r-r _ -r. 
c - - l v. 

l 

-ike r. +ikz . 

e ) 
-r. 

l 

. ikri -ike • R. {l e -r -1 ·E --e x.e 
J 

-rcJo JO 

-o 4rrr. 
l j:;Ci 

-ike • R . "kZ s e -ri -J / j dVj} 

v. 
J 

(4. 1. 4) 

When we do the integration over the volume of the ith particle 

we can replace e by its average value e • The reason is the 
-r. -r. 

following. e 
-r. 

l 

l. 10 

points along the line joining the origin (lying somewhere 

in the center of the volume occupied by the particles) with a volume 

element within the ith particle. Because of the assumption of a far 

zone field interaction between the particles we understand that if a 
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particle is situated near the origin then any other particle lies at a 

distance much greater than a wavelength. On the other hand the linear 

dimensions of the particles are of the order of a wavelength, therefore 

the change in the direction of e over the volume of the ith particle 
-r . 

l 

is really negligible for all the particles but the one situated near the 

origin. However the error we make by ignoring the particle near the 
ikr. 

origin is really negligible if N is large. Next we w ill replace e 
ikr. 

l/r . 
l 

by e 10 /r. which again is O. K. for all the particle s away from the 
10 

center. 

We can now write 4. 1. 4 as follows: 

(u-e e )•E 
- -r . -r. -o 
- 10 lO 

e 
ikr. 

lO 

4-rrr . 
10 

{s exp (-ike • R.) 
-r -1 

v. 
l 

{ "\:"' 6x.exp(-ike •r . +ikz. )Sexp(-ike ·R.+ikZ .) dVJ. } .!.._; J -r. -JO JO -r. -J J 
.=/:. 10 V lO 
J l j 

(4.1. 5) 

If we now recall definition 3. 1. 8 and use 4.1. 5 we get for the total 

scattered field: 

4 ikr I = ~ _e __ (u - e e )· 6X . {u - e e ) 
4 4-rrr - -r-r l _ -r . -r . c - . - 10 10 

l 

ikr. 
10 

• E exp(-ike • r. ) e4 L.(a. ,13 . ,'f.; 9 ,<p) -o -r -10 rrr. l l l l lO 
{l 

j 

exp ( - ike • r. + ikz. ) K. (a. , 13. , 'Y. ; 9 . , <p. ) } 
-rio -JO JO J J J J lO lO . 

(4. 1. 6) 
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where we have defined 

L.(a.,13.,y.~8,<p) = Sexp(-ike •R.) dV. 
l i l l -r -1 i 

v. 
i 

To make 4. 1. 6 look simpler we define 

(4.1.6a) 

)~ .cix . exp(-ike ·r. +ikz. )K.(a.,!3.,y.;8. ,<p. )= A
1

(8 . ,<p.) 
LI J -r

1
.

0 
-JO JO J J J J lO lO lO lO 

j:i"i 

Next we drop the index o as redundant and 4. 1. 6 becomes 

4 ikr 
E(Z)(r) = w _e __ (u - e e ) 
-sc - r 4lTr = -r-r c 

ikr. 

• { \ .6 X. ( u - e e ) • E exp ( - ike • r.) e 
1 

~ i = -ri-ri -o -r -1 4lTri 
l 

L . (a.,!3 . ,y. ;8,cp)A
1

(8.,cp . )l 
l l l l l lJ 

It is shown in Appendix D that if E = E(i) + E(Z) + • • • then 
-sc -sc -sc 

* 
<

E ·E•!<) = (E(i).E( 1)) + (E(Z).E(z)•!<) + ••• 
-sc -sc -sc -sc -sc -sc 

i.e. 

(4. 1. 7) 

(4.1.8) 

The above relations say that the fields of the several orders are 

"orthogonal" to each other when the appropriate averaging is done. 

Thus it makes sense to compute ( E(Z) • E( 2)) o::( I( 2)) because 
-sc -sc 
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in that way we get (I) up to the second order by simply adding (I( 1 )) 

to ( I( 2
)). We now multiply 4. 1. 8 by its complex conjugate to get: 

(2) (2)~< (w4. 21eikr 12 ll...., 
E • E = -) -- X (u • e e ) 
-sc -sc c2 41i'r . i = -r-r 

1 

ikr. 
1 e 

•(u- e e )·E -
4
-- exp(-ike •r.)L.(a.,(3.,y;9~cp) 

- -r .-r. -o r. -r -1 1 1 1 1 
- 1 l 1 

(4.1.9) 

As we did in section 3. 1 we will again assume that all the 

particles have the same shape, size and susceptibility. Thus ~x. = 
1 

.6 X. = .6 X and we should drop the index from K.. Then according to 
J 1 

the rules set up in Appendix D we have: 

~s s s IL(a,(31y;9,cp) 1
2 

sin a da d(3 dy 
8lT 

(4.1.10) 

where e = a/a = (9., cp .} and a is the radius vector from the origin 
-r. - i i -

1 

to any point within the volume V occupied by the particles. Also 

1 
A(9. ,cp.} = -;:- A

1
(9. , cp .). If we recall definition 4. 1. 7,we can write 

i i Llx . i i 

2 II . ikz . . 12 lA(9 . ,cp.) J = exp(-1ke •r.)e JK(a.,(3.1y.;9.,cp.} 
i i -r. -J l 1 1 J J 

j:f:i l 
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(2) {2) * To get an approximate expression for ( E • E ) we replace 
-sc -sc 

jA(8 . ,<p .) 1
2 

by its average, i.e. 
l l 

2 1 5· . . 
<IA(8.,<p.)I )=Nv- exp,2k. (e -e )·a')dv' 

l i \ im -r. -z -
v l 

where ~· is the radius vector from the origin to any point within the 

volume V occupied by the particles . 

If we now use definition 3. 1. 14, i.e. 

1 s 21T r 21T s IT 2 
F ( 8) = -2 j l K (a • f3 • 'Y; 8 '<p) I sin a da df3 d 'Y 

81T y=O p=O a=O 

and 4.1.11 we get from 4.1.10 

4 2 -2k. r . 2 

<E(2).E(2)*) (w jt:. 12) e im (N) F (8) 
-s c -s c = 2 x 2 v 1 

c (41Tr) 

-2k. a {s ( · im 2 
exp 2k. (e -e )·a)e 

2 
j(u-e e )•(u-e e )·E j 

im -r -z - -r-r - -a-a -o 
V (41Ta) = -

[s exp (2k. (e -e ) •a') dV']F(8 . ) dV } im -a -z · i 
( 4 .1. 1 2) 

v 

Notice that we have defined 

(4.1.12a) 

We will now show that F 
1 

(8) is independent of 8. Recall that 
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-S exp (-ike • R.) -r -1 

v 
p 

dV. 
l 

If we call r the angle between R. and e we have e • R. = R . cos 'T. 
-1 -r -r -1 l 

Now e is a fixed direction in space and L will depend on the orienta
-r 

tion of the particle w. r. t. the fixed direction. However when we 

average over a,~,)' all the possible orientations of the particle are 

included and F 1 cannot possibly depend on the fixed direction e (9, <p). 
-r 

The situation with F(9) is different because K = S exp(-ik(e -e )·R.\dV. 
-r -z i) l 

VP 
depends on the orientation of the particle w. r. t. the fixed direction 

e - e but also on the magnitude of J e - e J This last dependence 
-r -z -r -z • 

makes F(0) to be e dependent. (Th~ <p dependence is smeared out 

because e - e rotates about z.) 
-r -z 

We now go back to 4. 1. 12. Notice that we have slightly changed 

the notation, i.e. we have set e = e =unit vector in the dire ction -r. -a 
l 2 

e. ,<p •• Again the losses have an effect 1 + O(k. L} • If we neglect the 
i i im 

losses 4.1.12 becomes 

< 
E(2} • E(2)*) 
-sc -sc 

xjl J (u- e e }· (u- e e )· E J 2F(8.) dV. = -r-r = -a-a -o l i 
(4. 1. 13) 

v 

It is shown in Appendix E-i that for an incident wave circularly 

polarized (no matter whether right or left-handed) we find 
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< 
E(2). E(2) >:C) 
-sc -sc 

(4.1. 14) 

where R is the radius of the region occupied by the particles and 

B
1 

,B
2 

are defined as follows: 

and 

where 

J 1 = 4 S Tr F ( e} sin e de 
0 

1 STr 4 J 3 = 2 F(S) cos e sine d9 
0 

If the incident wave is linearly polarized the result is: 

S
Tr( n- 5rr 2 ·) . A2 = - 2 + T cos e F(9) sm e d9 

0 

(4.1.15) 

(4.1.16) 

( 4. 1. 1 7) 

(4.1.18) 
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r1T [- 4 2 J A 4 = \ ~ ( 1 + cos e) + 1T cos e F ( e) sin e de 
Jo 

4. 2. Polarization of the Scattered Wave 

Recall the expression 4. 1. 8 for the second order scattered 

field if the partides have the same shape , size and susceptibility and 

there are no losses. 

w4(L\x)2 ikr {L 
= 4 - ~(u-e e )• (u 

c "±1Tr = -r-r = 
i 

- e e ) -r.-r. 
l l 

·E e -o 

-ike • r. ikri 
-r -1 e } -4--L(a .• 13 • • "If • • e ,<p)A(e .• cp.) 

1Tr. i i i i i 
l 

We want to cast 4. 2. 1 into the following form 

(4.2.1} 

(4. 2. 2} 

and then apply the method developed in Appendix D for the computation 

of the polarization properties of E(
2
). We first compute 

-sc 

-io 
Now assume that E = E'e x (e ±ie ). Then as w e saw in sect ion 3.2, -o 0 - x -y 

p age 40 we h a ve: 

-i ( 0 =F 'J) . } 

- e Xe XE = E' e x 1 (co s 9 .e
9 

± ie } 
-ri -ri -o o i- i - <p i 

and according to Appendix E-i we get: 
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-i(6 :i=<fJ.){ r: 
=E'e xi ~i(e •e9)+cos9i(~9 . ·~9)J~9 

0 -<pi - l 

+Lr± i{e ·e) +cos 9.(e
9 

·e )]e } 
-<pi -<p l - i -<p -<p 

-4 2 2 2 iµ. } + (e • e ) + cos 9. (e9 • e ) e le 
-<pi -<p l - i -<p -<p 

Here the simplifying assumption will be made that A.. and µ. which 
l l 

are functions of the random variables <p., 9. represent the same ran-
1 l 

dom variable with a constant probability density 1/27r over the interval 

{0,27T). 
i<J. 

We can also write L(a.,f).,)'.;9,<p)= jL(a.,[3.,-y.;9,rp)je 
1 

l l l ' l l l iT. 
A(9., <p.) = jA{9., <p.) le 1 with the same assumption about 

l l l l 

as for A..,µ .• 
l l 

Finally we get from 4. 2. 1 

CT. and 
l 

( ) 4 2 EI { [ l iK. ~ 2 2 2 
E 2 {r) = w4 j.6xj 4 o e9 . e i (~n.°~e) +cos 9i{~9.°~e) 
-sc - c 7Tr - . '1 l 

l 

jA.{9.,<p.) j -
4

1 
jL(a.,f3.,-y. ;6,<p) I] 

i i 7Tr. l i i 
l 

[l iK. ~ 2 2 +e e 1 {e •e)2+cos6.(e9 ·e) 
-<p -<p. -<p l --qJ 

• l.. i 
l 

IA(O.,<p.)-
4

1 jL(a.,{3.,)'.;9,<p) !] } , i.e. 
i i 7Tr. i i i 

l 

T. 
l 
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- i 0 8 4 2 EI l -i K. ~ 2 2 2 e8 = E 8e = w2 j6xj 4 ° e 1 (e ·e
8

) +cos 8.(e •e
8

) 
7Tr -cp. - i -cp . -c . l l 

l 

l iKi 
jA(S.,cp.)j-4

1 
IL(a.,13.7y.;8,cp)i = e A. l l 7Tr. l l l i 

l 
i 

- i 0 w 4 2 EI l iK. ~ 2 2 2 e = E e cp= -4 I 6 x I 4 ° e l (e • e } +cos 8.(e 8. e ) cp cp 7Tr cp. -cp i - . -cp c . l l 
l 

~-. iK. 
jA(e.,cp.) 1-

4
1 

jL(a.,f3.,-y.;8,cp) I = \. e 1B
1
. l l '!Tr. l l l /_; 

l 
i 

According to Appendix D we have to compute: 

2 2 (A.), (B.) 
l l 

(A.B . ) 
l l 

We have 

( 
4 2)2 E' 2 1 (' ,... 2 2 2 ·1 

= w4 J6x j o 2 V j u~ ."~8) +cos Si(~ _-~a) J 
c (41Tr) V cpl cpl 

(B~) 
l 

E
,2 

( 
4 

2)
2 

0 1 s [ 2 2 2] = w 4 I 6 x I 2 v <~ : ~ > + cos s i (~s: ~ > 
c ' (4'!Tr) · · cpl cp l cp v 

(4. 2. 3) 

(4.2.4) 
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<A.B.) 
l l 

, 4 2 2 
= (w4 l.6xl) 

c 

l 

1 S{r 2 2 2'[ 2 2 2"""' ' 2 X-V · 'L(e ·ea) +cos a.(e ·ea) J (e ·e) +cos a.{ea ·e) JI~ -<p. - l -<p. - -<p. -<p l - . -<p J 
l l l l 

v 

. 1 2 1 SSS ( /A(ai,<pi)/
2
)\ 4 rrr.) dVX-

8 
2 - /L(a,f3,'{;a,<p)/ 2 sinadadf3dy 

l Tr 

where dV = r~ dr. sin a. da. d<p. and r . {r., a.<p . ) is the radius vector 
l l l l l -1 l l l 

from the origin to any point within the volume V occupied by the 

particles. 

We can now find the Stokes parameters: 

S = N[(A~) - (B~)] 1 l . l 

s2 = N( A .B.) 
l l 

One can easily see that even if 8 = 0, rr the second order 

scattered wave is no larger circularly but eliptically polarized and 

consequently so is the total field= E(i) + E( 2 ). However the handedness 
-sc -sc 

is preserved because of the domination of E(i). If the incident wave is -sc 

linearly polarized we can make analogous computations to find that the 

second order scattered wave is elliptically polarized and so is the total 

scattered field. 
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V. THIRD ORDER SCATTERING 

5. 1. Intensity of the Scattered Wave 

The third order scattered field is given by 2. 2. 7 and has the · 

following form if self-interaction terms are neglected 

E~~ (_E) = l E~3J i(r) 

i 

where 

= { w
2

2 
)

3 
6x. s I'(r;r.)• { '\' 6 X· s I'(r.;r.) 

' l = - -1 L J = -1 -J 
c v. j=Fi v. 

l J 

(5.1.1) 

Under the assumption of a far zone interaction between the particles 

and a far zone scattered field E(
3

) (r), all the I''s will be written in 
-sc -

their approximate form. Again the splitting .E.P. = .E.P. 
0 

+ R 1 will be 

made to take into account the randomness in the position (through .E_fo) 

and the shape, size and orientation (through R 1 ) of the particles. 

We rewrite now 5. 1. 1 as 

2 3 ikr - ike • r. 
w ) e -r -10 = \2 6 Xi 41Tr C::--~~r)·e 
c -

.k R ikr. -ike • r. 

S 
-1 e • . l L -ri -JO 

{ e -r -l \ ( u- e e ) · 6 X . e 
1Tr. - -r.-r. J 

l - l l ._,_ . v. J~l 
l 

- ike • R . ikr . 
r -r. -J J I 
\ ·[e 1 _e __ (u-e e )· E6Xkexp(-ike •r

1 
+ikzk) 

j 41Tr. _ -r .-r. -o -r. - co o 
v. J - J J k=Fj J 

J (relation continued) 



-57-

(5.1.2) 

As we did with the second order field again we r e place e by e , 
ikr

1 
ikr

1 
-ri. -rlo 

e /4rrr 1 by e 
0

/4rrr1 , (u - e e ) by (u - e e ) (see justi-
o = -r1-r1 = -r10r 10 

fication in section 4. 1). 

Now recall the following definitions: 

S exp(-ik~r . • Rk +ikZk) dVk=Kk(ak,13k.-yk;ejo'<pj
0

) 

V JO 
k 

Sexp{-ike • R.) dV. = L.(a. ,13 . ,y . ;9. ,q> . ) 
-r. -J J J J J J 10 lO 

V. lO 

J 

S exp ( - ike • R.) d V . = L . (a . , 13 . , 'Y.; 0 , <p) 
-r -1 l i l 1 1 

v. 
l 

\ '6X 1 exp(-ike • rk +ikzk )K(ak,13k,-yk;e. ,<p. ) = A
1

(e. ,<p. ) L c -r. - o o JO JO JO JO 
k#j JO 

In view of the above definitions 5. 1. 2 becomes: 

. 2 2 ikr - ike • r . 
E(3 )i{r) = { w

2
) .6x. ~4 {u- e e ) • e -r -io(u - e e ) 

-sc - \ 1 rrr - -r-r - -r. -r . 
C - - lO lO 

ikr. 

~ 
10 

L.(a. ,f3.,-y.;0,q>) "'\"' '6x.exp(-ike •r. )(u-e e ) 
rrr. l l l l /...; J -r. -JO - -r. -r. 

lO -~ · lO JO JO 
J"t"""l 

ikr. 
JO 

~ L(a.,13 .• -y . ;9 . ,<p. )A
1
{e. ,<p. )E {5.1.3) 

rrr . J J J lO lO JO J0-0 
JO 

In what follows we will drop the index o as redundant. We now 
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define 

-ike • r . ikr. 

'\ .6X .e -ri -J{u- e e )·E ~4 J A
1
{S.,cp.)L.(a ., f3.,y.;9. ,<p .) 6 J = -rJ.-rJ. -o rrrJ. J J J J J J i i 

j:foi 

= T
1 
(9., <p.) 

- l l 
{5. 1. 4) 

In view of 5. 1. 3 and 5. 1. 4 the total third order scattered field can be 

written as: 

2 3 ikr 
E ( 3) ( r) = ( wz .) e 
-sc - 4rrr 

c 

ikr . 
l 

e 
·T 1{S.,cp.)-

4
-- L . (a . ,f3.,-y . ;9,cp) 

- i i rrr . l i i i 
l 

{5.1. 5) 

(3) (3)>:< 
To compute the average E • E we again assume that all -sc -sc 

the particles have the same shape, size and susceptibility. We define 

T = (.6~) 2 T 1 and A .= ~ X A 1 • Now we compute the average accord

ing to the rules of Appendix D to find: 

2 3 2 -2k. r 

I ( w z) (6x >3 j e i~ 
c (4rrr) 

V
N { \exp l 2k. (e -e )·a')l<u- e e )·(u-e ,e ,).T(S',cp'} 1

2 
J \ im -r -z - = -~r = -a - a -
v 

-Zk. a' 
e im I,. 1 s s r 2 ----dV'J-Z j jL(a,f3,-y;9,cp)j sinada df3dy 

{ 4rra 1) 
2 8 rr 

(5.1. 6 ) 

where ~I (a J , 9I,<p 1
} is the radius vector from the Origin tO any point 

within the volume V occupied by the particles. As we see from 5.1. 6 
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we have to compute I(~- ~r~)· (~-~a'~a 1 )· T(8 1 ,cp') 1
2

• According to 

previous calculations 

-(u-e 1e 1)· T(8 1 ,cp 1) = T ,e 1 + T 8 1_e8 1 = -a -a - cp - cp 

and 

(u-e e )•(u-e ,e 1)•T(e 1,cp 1) = 1T ,(e ,·e )+T 81 (e81 ·e )Je = -r-r = -a -a - L cp -cp -cp - -cp -cp 

Therefore we get: 

= /T 1(e ,·e )+T8 ,(e 8 ,·e )/
2+ IT ,(e 1•e8 )+T8 ,(e8 ,.e

8
)/ 2 

cp -cp -cp - -cp cp -cp - - -

=IT ,/2[(e i•e )2+(e ,·ee)2] + 1Te,/2[(ee,·e )2+(ee,·ee)2] cp -cp -cp -cp - -cp - -

+(Tcp 1T
8
'\ +T':\T81 )rL(e ,•e

8
)(e

8
,·e

8
) +(e ,•e )(e 81 °e >l 

cp -cp - - - -cp -cp - -cp .J 

What we will do next is to replace IT cp' 1
2

, IT e, 1
2 

and 

* ~i: (Tcp 1T 8
, + Tcp 1T 8 ) by their averages. Recall the definition of T: 

ikr. 

T = \ .C:.x.exp(-ike •r.)(u- e e )·E ~ J A(S.,cp.) 
- /....; J -r. -J - -r .-r. -o TI'r. J J 

j l - J J J 

Then ( e - e 11 , e - e 1): -r. -a -r. -a 
J l 



and 
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-2k. a 11 

N (' e im exp (2ki·m~a'· ~11)( IA(011 ,<p11) 12) 
= v ·t ( 4 ira II) 2 

>'< 

[ (u - e 11 e 11 ) • E ] i(u - e 11 e 11 ) • E ] , dV" 
- -a -a -o ~ - -a -a -o - k - k 

~ SSS I L(a, f3, y; 8' ,<p 1
) I 2sin a da df3 dy 

Bir 

-2k. a" 
* >): NS e im 2 

(TkTi. + TkTn) = V exp (2ki·m~a'·~") ( IACe" ,<p") I ) 
.f. {4ira") 2 

v 

{ [ ( u - e II e II) • E J [ ( u - e II e II • E J >!< 
- -a -a -o - -a -a -o - k - i. 

+ Lr{u - e 11 e 11 ) • E ]* [<u - e rre 11) • E J } dV." = -a -a -o k = -a -a -o i. 

~SSS IL(a,f3,y;8',<p')l
2 

sin a da df3 dy 
Bir 

or in view of 4. 1. 12a 

where 

-2k. a" 

S 
im 2k. e , • a" 

Gk.R. = e e im-a - ( IA(e11 ,<p") 12) 
( 4ira 11

) 
2 

v 

* 8u-e 11 e 11)·E
1J ~(u-e 11 e 11)...,j

1 dV 11 
- -a -a -o - -a -a - k - i. 

( 5. 1. 7} 

(5.1. B) 

(5.1. 9) 
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Note also that 

2 N,.. ( . 
( jA(e " ,<p") I ) = VJ exp ZkimC.~a"- ~z)• ~1 ) dV1 

v 

x ~s SS jK(a,(3,y;e",<,0 11
) 1

2
sin a da d(3 dy 

8rr 

=NV 5' exp {zk. {e .. -e )·a
1
.)dv

1
F{e") 

' im-a -z -
v 

We can now write ( E~~ • E~~ *) in the following form 

2 2 
- 2k. r 

( Es(3c). Es(3c) >:~) = .( wz I .6x 13) e im N N N F2 
c ( 4 rrr) 2 V V V 1 

(' - ; 2 2] [ 2 \ { G I I I ( e I. e ) + ( e I. e e) + Ge I e I ( e e,. e ) j <p <p L-<p -<p -<p - - -:<p 
v 

+ ( e e, · e e) 
2 

-J· + { G I e I+ Ge I I) I ( e I. e ){ e e I. e ) 
- - <p <p L -<p -<p - -<p 

Now we can easily find that: 

2 2 (e ,•e) =cos (<p - <p 1
) 

-<p -<p 

(5.1.10) 

dV' 

(5.1.11) 
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(~8 ,· ~8) 2 = [cos 8 cos 8'· cos (<p - <p') +sin 8 sin 8'] 
2 

Next we assume that the incident wave is circularly polarized, 
-io 

i.e. E = E' e x(e ± ie ) • We also assume that losses are negli--o -o -x -y 
2 gible, i.e. (k. L) << 1. In the absence of losses we have from 

im 

5.1.10 

( jA(8 11 ,cp 11 ) !2
) = F(8'') 

and from 5. 1. 9 

2 * 
Gk1 = S'-1 -) F(8

11 )[(u- ~ "~ rr)•E 
1
j l(u- ~ 11~ 11 )•E 

1J. dV 11 
\ 4 11 _ a a o k~ _ a a o 1 V 1Ta - -

Therefore we have: 

S , 1 \ 
2 

2 { ' 2 2 2.., = ( __ } F ( 8 11 ) E ' ( e 11 • e 1) + cos 8 11 ( e 
8 

11 • e , ) ~ 
\ 41Ta II 0 -<p -<p - -<p j 

v 
dV" 

dV 11 

G<p'8 I 

+cos 8 11 (e811 ·e ,)J[:i:i(e 11 •e ,) +cos 8 11 (e 811·e ,)] dV 11 
- -<p -<p -<p - -<p 

and 
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( A==-r.4
1 

, ·)
2
F(S")E' 2 {(e 11 •e ,)(e 11·e

6
,) 

rra o cp -cp -cp -

Now we can easily find that 

(e ... e ,)
2 

+ cos
2e11 (ee1r·e ,)

2 
-cp -cp - -cp 

+ cos 29"sin2 e"sin2e' + Zcos 3 e 11 sin6 11 cos 6' sine' cos (cp"-cp') 

and 

: COS (cp 11
- cp 1

)C0S e I sin {cp 11
- cp 1

) 

+cos 2 e11 cos 9"sin (cp'-cp")cos e"cos e• cos (cp'-cp") 

+cos 2 0 11 cos8' sin (cp'- cp") sin8" sin8' 

Recall now that 

dV" = a 112 da" sine" de" dcp" 

We want to compute the Gk£ 's. If we now perform the cp" 
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integration first the only <p 11 dependent terms are the products of the 

unit vectors computed before and we get: 

SZrr[ 2 2 2] (e 11•e ,) +cos e"(eeu•e ,) 
0 <p -<p - -<p 

d<p II 

S
2

rr[ <e 11 •e ,)(e 11 ·e8
,) + cos

2
8 11 (e

8 
.. · e ,)( e

8
11 ·e

8
,)] dcp" = 0 

0 -<p -<p -<p - - -<p - -

Therefore, doing the a" integration also, we find 

RE' 2 

G<p'cp .' = --0 Srr .!. F(S "){ 1 
16rr

2 
o 

2 
2 2 } +cos e cos e 11 Sin e II d8 II 

where R is the radius of the region occupied by the particles. 

Next we define (s ee also 4 •. 1.16) 

1 (''IT 
J = - ' F(8") sin 8

11 
d8" 

1 2.., 0 

1 STT 2 J = - F{8")cos 8 11 sin 8 11 d8 11 

2 2 0 
(5. 1. 12} 
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1 STI" 4 J = - F(S 11
) cos 8 11 s in 8 11 d8 11 

3 2 0 

and we can write the G's in the form 

RE 12 

G,,,•m, = -·- 0
- ~ J +cos 

2e' J 2 } 
..,. ..,. 16rr2 l 1 

Recall now equation 5. 1.11. We have 

M = r -<Lr G I I [(e ,·e )
2

+(e ,•ee}
2 J + Ge•e•[(ee,·e >

2 
j <p <p -<p -<p -<p - - -<p 

v 
2]} ( 1 . 2 

+(~e··~e) 4rra•) dV' 

We have 

+ sin2 e sin2 e• + 2 sine cos e cos 8 1 sine' cos (<p - <p 1
) 

We can then do the <p 1 and a' integrations to get 

( 
R . 2 r2STI" ( 2 1 1 2 

M = --2 ) E
0 

l_(J1 +cos 8 1J 2Hz: +z: cos 8) 
1671" 0 

+ 271" sin2e sin2e•)} sine' d8' 
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If we finally do the 8 1 integration we get 

Z ( Z 
6 

( i ) Z N Z( R Z Z Z 
= E~ :z l.6xl) 4 1Tr N(v) i 6 1T~Fi(Ci+Czcos 9) 

(5.1. i4) 

where 

c = (2.. + 81T) J + ( ..!. + 81!' + i Z8 'TJ'z). J + ( ..!. - i Z81Tz) J 
i iO i5 i 3 i5 i5 2 5 i5 3 

c = (.?.- 81J')J + 1.!. + 81!' - i281J'
2
)J + (..!.- i61J' + iZ87Tz)J 

z 6 i5 i \ 3 i5 i5 2 3 i5 i5 3 

or 

Ci= Z.3755 Ji+ 86.ZZ94 JZ - 84.0Z06 J 3 

CZ= -0.8422 Ji - 82.2ii8 Jz + 8i.20Z9 J 3 

If the incident w ave is linearly polarized the calculation g oes 

along the same lines. We can now easily predict the form of the nth 

orde r if the incident wave is circularly polarized. 

2 Zn 2 n- i n- i 

( E(n) • E{n)"'•) = E' 2 ( ~ I 6x I) (-1 ) · N( N) ( _12_) 
-sc -sc o cz 41J'r V 3211'z 

n-i 2 
F 1 (K1 + Kz cos 9) (5.1.15) 

3 3 

will be of the form l aiJi, l ~.J. respectively, where 
l l 

a., [3. numerical constants. 
l l 

i= 1 i=i 
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VI. SPECIAL EXAMPLES 

All the following examples assume a lossless medium. 

6. 1. First Order 

We have found (equation 3.1. 17 and equation 3.1. 18) that in 

first order and in the absence of losses: 

(1) 2 2 . 2 2 2 2 
(I ) ,.., NE

0
( w2 /.6x/) (sin cp+cos 8 cos cp)F(8) 

c 
(6.1.1} 

if the incident wave is linearly polarized,and 

(6.1.2) 

if the incident wave is circularly polarized. F(8) is defined by 

F(8) =~SSS /K(a,l3,y;8,cp) /
2 

sin a da dl3 dy 
8rr 

K(a,l3,y;8,<p) = S exp 

VP 

(-ike • R. + ikZ.) dV. 
-r -1 l l 

(6.1. 3) 

We can immediately see that if 8 = 0, i.e. forward scattering, then 

e = e and -ike •R. + ikZ. = 0, i.e. K = V and F(O) = v 2
• We 

-r -z -r -1 l p p 

eas ily see that 

IS exp(-ike • R.+ikZ.) 
-r -1 l 

d V · I < S I exp ( - ike • R. + ikZ . / 
l -r -1 l 

VP v 
p 

= V = K(8 = O) 
p 

dV. 
l 
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-----------------~'""> z 

Fi g . 4. The rays at P radiated from any two volume elements 

are not i n phase except in the forward direction. 
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Therefore K (8 = 0) = maximum and F(O} = maximum. 

The physical reason for that is the following. Consider two 

elements inside a particle (see figure 4). As the plane wave travels 

inside the volume of the particle the two elements radiate with phases 

kz 1 and kz 2 respectively. Thus the phase of element 2 is by 

k(z
2

- z
1

} greater than the phase of 1. 

If we now consider the rays from the elements in the forward 

direction toward an observation point P we see that ray 1 travels by 

(z
2

- z
1

) more, i.e. when the rays reach point P they are in phase 

and the corresponding fields add constructively. For any other 

direction the phase difference is not zero, therefore the fields add 

destructively in general. In view of e xpressions 6.1.1 and 6.1. 2 we 

understand that the intensity pattern will peak in the forward direction. 

6. 1. 1. Our first example is very primitive. However, F(8) 

retains all the essential features of any F(8). Consider the arrange-

ments in figure Sa and figure Sb. In figure Sa the two points 1 and 2 

get excited by a plane wave passing by. The phase difference between 

the points is then 2ka. The points radiate and 

E(8} ,.., eikb + eik(2a +b - 2a cos 8) 

ik(b +a - a cos 8) r -ik{a - a cos 8) + ik{a - a cos 8)} = e ~e e 
.... 

= 2eik{b +a - a cos 8) cos [ ka(1 - cos 8)] 

F(8),.., 4 cos 
2

(2 ka sin
2 % ) (6.1. 4) 
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--i-1--:::> 
__ ,_ ,__,> 
--.-1--;t:;:> 

2a 

Fig. 5a. Diagram for the two point scatterers 1 and 2 lying 

I -
> 
-
> 

in the direction of propagation of the i n cident 1·rave . 

a 

a 
2 

Fig. 5b. Di agram for the two point scatterers with the line 

joining them norma l to the direction of propagation 

of the incident wave. 
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Next we consider figure Sb. 

E(6 ) ,., e ikb + eik(b - 2a sin 6) 

= eikb - ika sin 6 (eika sin 6 + e -ika sin 6) 

2 ik(b - a sin 6) (k . 6) = e cos as1n 

F(6) ,., 4 cos 2 (ka sin 6) (6.1.5) 

We will later see that 6. 1. 4 and 6. 1. 5 are pretty close to patterns 

corresponding to more realistic situations. 

6. 1. 2. Our · next example has to do with a collection of spheres 

of equal radius . This of course is an extreme case but the scattering 

pattern for particles of any other shape and random orientations w ill 

not be too different because of the averaging over orientation. In the 

present case no averaging w. r. t. the Eulerian angles has to be done 

because no matter how we rotate a sphere it appears the same. 

Let us now compute the · K function defined by 6. 1. 3. It will 

not of course depend on any Eulerian angles, i.e. F(9) = IKJ2
• We 

will refer the components of e and R to the fixed x,y,z system, 
-r -

i.e. 

e = (sin 6 c 0 s cp ' s in 6 sin cp , c 0 s 6) 
-r 

R = (R sin 9. cos cp1., R sin 9. sin cp. , R cos 9.) 
l l l . l 

and K becomes: 
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S 2TT l TT na . 
K = \ exp(-ikRcos (<pi-<p) sin8. sin8 +ikRcos 8i(1-cos 8)) 

<p.=0 8 .=OJ R=O 1 
l l 

R
2 

dR sin 8. d8. d<p. 
l l l 

As it is shown in Appendix E-ii the integral can be computed in closed 

form: 

K { 8) = ~ e 3 [ s in ( 2ka sin~ ) - 2ka sin ~ cos ( 2ka sin~ ) ] 
2{k sm Z) 

4 3 
First we check whether K(O) = V p = 3 TTa • 

( 2 ka sin .§.
2 

) 3 

I rr r [ 2k . e 
K 8-0 = . 8 3 l a sm Z - 3 ! 

2(k sm-z) 

(2 ka sin~) 2 

- 2ka s in ~ [ 1 - 2 ! + • • • ] } 

We have 

+ ••• J 

~ ( 2 ka sin ~ ) 3 

= TT t 3 + 0 (ka sin ~ ) 5 
} 

2(k sin~ ) 3 

4 3 = 3 TTa = v 
p 

O.K. 

(6.1.6) 

If we now recall that the spherical Bessel function of the first 

kind and of order one is given by: 

1 = 2 (sin u - u cos u) 
u 
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we understand that 

K(9) 
47ra3 

=-----=-
(2 ka sin~) 

(6.1.7) 

2 It is easy to show that for 9 and k constant the max K (8) occurs 

for 

s in ( 2ka sin ~ ) = 0 i. e. a= 
n7T 

n=i,2, ••• 
2 ksin ~ 

If we compute max K 2 (8) we find 

2 
The zeros of K (9) are the zeros of j

1 
(u). From reference 6 we 

find that 

j 1 {u) = 0 u=4.5, 7.74, • .•• 

i.e. 

2 ka sin ~ = 4. 5 , 7. 7 4 , ••• (8 * 0) 

If k is constant and a increases then the zero occurs at smaller and 

smaller 8, whereas 8 = 0 always remains a maximum. Thus for a 

large a, say ka . = 50, we get a maximum at 8 = 0 and many z eros 

{or minima) close to 8 = o. 
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Next we draw some diagrams to get some idea about the intensity 

pattern. 

i) ka = ~ A. 
or a = 4 which corresponds to max K (8 = ir) with n = 1. 

We can easily find: 

2 
F(O) = v I 

p 

F( 3ir) = 
4 

o. 14 v 2 
p 

( 
1T 2 

F 4) = 0. 744 v p I 

2 F(n:) = O. 092 V 
p 

Notice that no zero occurs since 2ka < 4. 5. 

If the incident wave is circularly polarized then the actual 

intensity pattern is given by ~(1 + cos
2
8)F(8), i.e. 

2 
I(O) = v I 

p 

I( 3TT}=0.10V2 , 
4 p 

I(.!!) - 0 56 V 2 
4 - • p 

2 I(rr) = O. 092 V 
p 

The drawings appear in figure 6. 

I(.!!) = 0. 1 7 v 2 
2 p 

ii) ka = Tz for which K
2 

( 8 = ~) is a maximum. Again 2ka < 4 . 5 

and there is no zero. 

F(O) = 1 I 

and 

We can easily find {set V = 1): 
p 

F(.!!) = 0.546 
4 

TT - 2 
F(z:}=9.2X10 I 

F(rr) = 5. 61 X 10-5 
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goo 

180° 

90° 

180° 

90° 

Fig. 6. Drawings of' F(9) (above) and I(9) (below) f'or 

spheres with 2ka = ~ . 
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I(O) = 1, I(~)=0.41 , 

3rr -3 -5 
I( -) = 3. 2 X 10 , I( rr) = 5. 61 X 10 

4 

The drawings appear in figure 7. 

1(2!:) 
2 

-2 
=4.6X10 , 

Notice that 2ka has increased and so has the forward scatter-

ing whereas the intensity for all other angles has gone down. 

iii) When 2 ka sin~ = 4. 5, i.e. j 1 (u) = 0, then the smallest 2ka 

corresponds to 8 = rr. Let us choose 2 ka sin~ = 4. 5 with 8 = ~rr , 

i.e. 2 ka = 4.87. No other zeros occur since the next zero is 7. 74 and 

2ka. < 7. 74. We have 

F(O) = 1 , F(~} = .0.48, 
-2 = 4. 82 x 10 , 

F( ~rr) = 0 , F(rr) = 2.07 X 10- 3 

and 

I(O) = 1 , I(~) = 0. 36 , 
-2 = 2.41 X10 , 

I( ~rr) = 0 , I(rr) = 2.07X 10-3 

The drawings appear in figure 8. 

Finally we examine the case where we have more zeros. For 

example if we choose 2 ka sin~ = 4. 5 with e =:I then 2 ka = 11. 7 and 

we get two more zeros: 

11. 7 
e 

7.74 sin - = 2 

11. 7 
e = 10. 95 sin -
2 
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90° 

180° 

90° 

90° 

180° 

90° 

Fig. 7. Drawings of F(S) (above) and I(9) (be low) for 

spheres with 2ka = ir/2 . 
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90° 

180° 

90° 

90° 

180° 

Fig. 8. Drawings of F(0) (above) and I(G) (below) for 

spheres with 2ka = 4.87 for which I(l35°) = 0 • 
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We thus have three zeros at 8 = ~· 8 = 82°36 I' 8 = 138°30 I. We also 

have: 

F(O) = 1, F(i) = 0 . 322, F(66°) -3 
=4.9X10 , 

and 

F (2!:) 
2 

-4 
=5.14X10 , 

F( 37T ) 
4 

-6 =5.8X10, 

F(116°) -4 
=7.9X10 , 

F(7r) = 2. 44 x 10-4 

I(O) = 1, 7T -1 
I( 8) = 2. 98 X 10 , I( 66 °) -3 

=2.9X10 , 

I(116°) = 7 X 10-4 , 

I(7r} = 2. 44 X 1 o- 4 

The intensity pattern is shown in figure 9. 

6. 1. 3. We will now conside r a collection of needle-like 

particles. The axis of a needle will be characterized by the two polar 

angles 8.,cp. w.r.t. the fixed system xyz. The averaging then will 
l l 

be done over them. We have to compute K(8., cp., 8 ,cp) where 
l l 

K(O . ,cp.;8,cp) = Sexp(-ike ·R. + ikZ.) dV. 
i l -r -1 i i 

v 
p 

Notice that R. = (R,8.,cp.) for half of the needle and R.= (R,7T-8.,7T+cp.) 
-1 l l --1 l l 

for the rest of the needle (see figure 10). 

If A is the cross section of the needle then we can write 
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R· -1 

O· 2L 

___ ) 

0 

Fi g . 1 0 . Needle-like parti c l e . The axis of the needle 

points i n the ( random) direction e. . <p. • 
l. l. 
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nL 
K ( 9 . , cp . ; 9 , cp) :::: A \ exp { - ik[ cos ( cp - cp . ) s in 9 . s in 9 + cos 9 . (cos 9 - 1 ) J R} d R 

i i j
0 

i i i 

+A ("'L exp {ik[ cos (cp-cp.)sin 8.sin 8 +cos 8.(cos 8 - 1)] R} dR J
0 

l i i 

=ASL exp{-ik[cos(cp-cp.)sin9.sin9+cos9.(cos9-1)]x} dx 
-L l i l 

= ZA sin kI'.L 
kI'. l 

(6.1. 8) 
l 

where r. =cos (cp-cp . ) sin 9.sin 9 +cos 9.(cos 9 - 1). We can easily 
l l l l 

see that as 9 - 0, sin kI'.L/kI'. - L and K - 2AL = V as it should. 
l l p 

Next we must compute F(9) given by: 

F(9) = -
4
1 

\ (' I K ( 9. , cp . ; 9 , <p > I 2 dn. 
7TJJ l l l 

= _1_ 4Azsz,,.Srr{sin{kL[cos(cp- cpi)s in9isin8+cos 8i(cos 8-1)] }./ 

4'IT k2 cos (cp-cp .)sin 8.sin 8 +cos 8.{cos 8 - 1) .J 
0 0 l l l 

It is shown in Appendix E-iii that 

2V
2 

F(9) =--~-
2kL0sin ~ 

{ cos ( 2kL 0 s in ~ ) 
2kL0 sin ~ 

- 1 

sin 9. d8 . d<p. • 
l l . l 

(6.1. 9) 

where V is the volume of a particle, L = 2L = total length of the 
p 0 

needle-like particle and s. (x) is the s ine integral defined as 
l 

s.{x) = sx sin u du 
l 0 u 
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2 Again we can check whether F(9=0) = V • We have 
p 

I -_z_v........._
2 
__ { _1 _-_1_~2_k_L __ s_i_n_~_L_2 __ 1_+ __ 2 0 2 - ••• 

F(9) = 
9-0 2kL

0
sin 1 2kL

0 
sin 1 

2kL
0

sin ~ 
+ 

2kL
0
sin 1 + ••• } I = 

e-o 
v2 

p 
O.K. 

One can easily see that F(9) has no zeros, i.e. the averaging pro-

cedure has eliminated the sharp behavior of just one of the needles. 

Next we draw some diagrams for the intensity pattern if the 

incident wave is circularly polarized. 

l
.) L A. . o=4,i.e. 

One can find in reference 6 the values of si(x) for given x. 

Thus we get (V
2 = 1) 
p 

F(O) = 1 

F(.~rr ) = 

and 

I(O) = 1 

0.795 

I(~rr) = 0.60 

F( ..'.'.:) = 
4 

0.96 

I(~)=0.72 

F(~)=0.865 

0.70 

I(~) = 0. 43 

I(rr) = 0.70 

The diagrams appear in figure 11. 
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90° 

180° 

90° 

180° 

90° 

Fig . 11. Drawing or F (8) ( above ) and r (e ) (below) ror 

needles with 2kL = 1T • 
0 
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ii} L 
0 = 2 A., 2kL 

0 = 41T 

F(O} = 1 F(.2!) = 0.31 F( .2::) = 0.16 4 2 

F( 31T ) = 0.13 F(1T) = 0.12 
4 

and 

I(O) = 1 I( .2::) = 0. 23 I(.2!) = 0.08 
4 2 

I( 31T} = 0.10 I( 1T} = o. 24 4 

The diagrams appear in figure 12. 

As L
0 

gets bigger the forward scattering gets more pronounced; 

a tendency which has been observed for the spheres too. However,we 

should notice that the peaking in the forward direction was much more 

dramatic for the spheres rather than the needles. This is not sur-

prising because the spheres scatter the same way no matter how we 

rotate them, but the needles do not. Thus for a needle perpendicular to 

the axis of propagation the forward scattering is equal to the back 

scattering whereas for a needle parallel to the axis of propagation the 

maximum occurs in the forward direction. When we average over 

e. , <fJ· we get a pattern which lies in between the extreme cases con-
1 l 

sidered above. Of course the forward scattering is still a maximum. 

6. 1. 4. As our final example we consider a collection of 

particles possessing an azimuthal symmetry about a certain axis, say 

z 1
• Here we need the full formalism of the Eulerian angles because 

R . does not coincide with the z 1 axis. However because of the 
-1 
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9 0° 

90° 

180° 

90° 

Fig. 12. Drawing of F (El) ( abov~) and 1(9) (below) for 

needles with 2kL = 4n • 
0 
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azimuthal symmetry we can get rid of one of the Eulerian angles. This is 

evident because all we have to care for is the direction of z' which 

can be characterized by the two polar angles 8 ',cp'. Thus if we choose 

the x' axis in the fixed xy plane we can get '( = O. (As it is shown 

in Appendix B we have 8' = a and cp' = - ~ + [3.) The matrix M-i 

becomes 

r cos f3 -cos a sin f3 s in a s in f3 

sin f3 cos a cos f3 - s in a c o s f3 

0 sin a cos a 

We then find that 

K(a,f3;9,cp) =SSS exp[-ik(Apcosr+Bpsinr+Cz ')] p dp dr dz' (6.1.10) 

where p, r, z ' are cylindrical coordinates in the attached to the particle 

system x'y'z 1 • The surface of the particle is given by p = p(z '). One 

can easily find that 

A =sin 8 cos (cp-f3) 

B = sin 8 cos a sm (cp-13) +cos 8 sin a - sin a 

c = sine sin a sin (f3-cp) +(cos e - i)cos a 

We can immediately do the 'T integration. As it is shown m 

Appendix E- iv we find that: 

S Zrr exp (- ik(A cos 'T + B sin r) p) dr 
0 
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i.e. 

We can also do the p integration (see Appendix E-iv) to find: 

-ikCz 1 d 1 e z 

211" = k 

(6.1.11) 

Next we check whether 6. 1. 11 gives the right answer. for needle-

like particles, i.e. equation 6.1.8. We have p = O ••• a, i.e. 

K(a,13; 8,<p) = ~A2+B2)e-ikCz' dz' 

Now we write 

J 1 (x) 
x.- 1x 2 I 

= 2 L1 - 2 ~) + ••• J 

i. e. 

and 

J 
1 

{ka ~A 2 + B 
2 

) 

~A2+B2 ka--0 

= ka 
2 

+ ••• 

( 6. 1. 12) 
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K (a , f3; a, cp) 27Ta 2 2A 
= kC sin kLC = kC sin kLC 

Now 

c = sin a sin Cl:' sin ([3-cp) +(cos a - 1)cos Cl:' 

or in view of the equality 9. = a, . cp. = - .!
2 

+ [3 {see Appendix B) we get 
l l 

c =sin a sin a.cos (<p.- cp) +(cos a - 1)cos a . 
l l l 

which is identical with the I'. of 6. 1. 8. Therefore, 6. 1. 11 gives the 
l 

right answer for the needles as it should. Now we compute F(9) from 

or 

where 

F(9) = ~rrS S jK(a,[3;9,<p) j
2 

sin a da d[3 

2 z2 Z2 

=(if)S s p(z')p(z") 
z1 z 1 

{s zrrSrr J1(kp'D)J1 (kp"D)eik(z'-z")c 
-------------- sin Cl:' da d[3 } dz 1 dz 11 

o o D 

D = ~A2+B2 = D(a,[3;9,cp) C=(a,[3; 9,cp) p'=p(z') p" = p(z") 

I have not been able to compute the integral w. r. t. a and {3 in closed 
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form. Of course F(8) is independent of <p because D and C are 

functions of cos (cp-f3) and a change <p - f3 = f3 1 eliminates <p since f3 

runs from 0 to 21T. 

6. 2. Second Order 

We have found that in the absence of losses equatio:o. 4.1.14 

holds: 

(E(2). E(2)) =E'2(w4 jL:ixjz)· 2(_1_)2NN ~F {B +B cos28} 
-SC -SC 0 \ 4 4 V l 6 2 1 1 2 

C 1Tr 1T 

where 

and 

L(a.,(3 . ,)'.;8,<P) 
l l l S 

-ike • R . 
-r -1 

= e dVi 

v. 
l 

Next we consider the collection of the spheres as our example. 

Then L is independent of a.,(3 . ,)'. and F 1 (8) = jLJ 2
• Now 

l l l 

S 
-ike • R. 

L = e -r -l dVi 

VP 

Ii we pick e as the polar axis then e • R . = R.cos 8 . and 
-r -r -1 l l 

Sa 2 r1T -ikR.cos 8' Sa 2 2 sin kRi 
L = 21T Ri dRJ_ e 

1 
sin 8' d8' = 21T Ri dRi kR. 

0 0 0 l 

41T = k (sin ka - ka cos ka) independent of 8 . 
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Of course we get the same result if we choose z as the polar axis 

and write 

e =(sin 8 cos cp, sin 8 sin cp, cos 8) 
-r 

R. = (sin 8. cos cp., sin 8. sin cp., cos 8.) 
-1 l l 1 l l 

It is not of course true that L is independent of 8 for any 

particle. It is only the spherical symmetry of a sphere that renders 

L independent of 8. However Fi is always independent of 8. We 

thus have 

We now understand thatthe zeros of Fi' i.e. the zeros of j
1

(ka), 

except the first one ka = 0, make the second order contribution vanish. 

This is of course only approximately true and it is due to the approxi -

mations made when the second order correction was derived. As a 

matter of fact the method of deriving the sever al orders is such that 

for a collection of spheres all the orders higher than the first vanish 

for ji (ka) = 0 with ka:f: O. Our theory does not give good results for 

the non-zero values of ka that make j 1 {ka) = 0 for a collection of 

spheres of equal radius. In general, however, the averaging procedure 

will wash out the zeros and F 1 will be non-zero. 

Next we have to compute the coefficients Bi and B 2 • We have 

the following definitions: 
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where 

Ji = {S7T F(e) sin e de 
0 

J3 
i r7T 

= - J F(O) 
2 0 

cos4 e sin e de 

Recall now that F(O) > 0 always and sin 9 > 0 in the region (O, rr). We 

thus understand that Ji and J 3 are positive numbers. We also ob

serve that: 

1 s'!'r 4 1 s7T J 3 = 2 F(9) cos 9 sin 9 d9 < z F(9) sin 9 de = J 
1 

0 0 

since 0 ::;; cos4 e:;;; i. 

Thus Ji > J 3 and Bi > O. What about B 2 ? B
2 

is negative if 

4TI- i 
Ji + J 3 - 4TI(Ji- J 3 ) < 0 or J 3 < 4 TI+i Ji~ 0.85 Ji. We know that 

max F(9) = F(O) = v 2 • Therefore: 
p 

v 2 rr 
v2 max Ji = _p s sine d9 = 

2 0 p 

2 v2 v ('Tr 4 
max J 3 = --[- j cos e sin e d9 = _E 

5 
0 

and 

Max J 3 = O. 2 max Ji 

Now in general F{9} has no zeros and does not vary significantly 

with 9 as long as ka is small. It is understood that the maximum 

variation of F{9} occurs for a collection of spheres. In this case B
2 
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is negative up to Zka::::: 1 7 where Za is the diameter of the spheres. 

In general we expect B
2 

to stay negative for ka larger than 1 7 where 

a is the linear characteristic dimension of the particle. We thus con-

elude that if ka is not too large F(0) varies smoothly and 

4'1T-1 
J

3 
< 4 '1T+1 J

1
, i.e. B

2 
< O. The consequence of B

1 
> 0, B

2 
< O is 

that the second order intensity pattern has its maximum at e = ~ and 

its minima at 9 = 0, 'IT. This means that the multiple scattering tends 

to smooth out the forward peaking of the first order intensity pattern. 

This ceases to be true if ka becomes very l arge, in which case 

B
1 

+ B
2
cos 2e with B

1 
,B

2 
> 0 has its maximum at e = O,iT and its 

. . e 'IT m1n1mum at = z:· Thus for very large ka the multiple scattering 

makes the forward scattering even more pronounced. This is expected 

to be true for all the orders. However the critical value of ka may 

increase with the order. 

The ratio of the intensity in the 9 direction to the forward 

direction is R(9) = (B
1 

+B
2
cos 2 9)/(B

1 
+B

2
). We can easily see that 

1 1 B
1

...., -:-6 B~ (ka) and B
2

...., :-b Bz(ka); we thus understand that R(9) 
k k 

will only depend on ka but not on k (or A..) alone. This is also true 

for the first order scattering intensity pattern and it i s true for all 

the orders. 

We now return to the example of the collection of the spheres. 

Recall that: 

F(e) 
3 

_ ( 4'1Ta 
- e 

Zka sin 2 

2 
.) .. z(Zk . e ) 

Ji a sm z: 

If we call 2 ka sin~ = x then we have to evaluate the following 
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integrals: 

J _ Tr
2 

1 s 2
ka 1 .2 2 2 4 

3 - ---r --4 - J 1 (x) [ (2ka) - 2x ] dx 
32k0 (ka) o x 

One can easily find: 

2 4 
J 

1 
= ~ (2ka) I(5) 

2k 

- 32(2ka) 2I(-1) + 161(-3)} 

where 

r2ka . 2 
I(m)=j (smx-r:cosx) dx 

0 x 

One finds (see Appendix E-v) (µ = 2ka) 

where 

I( 5) 1 ( . ) 2 1 = - ~ sin u - u cos u - 4 
4u 

. 2 sin u 
2 

u 
+ .! 

4 

1(3) = _.!_!...(sinu-ucosu) 2 -.!sin2u+.!{c+ln2u- ci(2u)} 
2 2 2 2 

u 

c = o •. 577215 ••• 

ci(u) =Su 
00 

cos x dx 
x 
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2 
I ( 1 ) = 1 [ C + ln 2 u - c i { 2 u) ] + ~ + u s ln 2 u + ~ (cos 2 u - 1 ) 

2 
I( 1) u ( . ) 2+ 1 4 . 2 - = T sin u - u cos u 4 u sin u 

- 3 { ~ 
4 

- ( ~
3 

-
3
8 U) Sin 2 U - ( 3 ~ 

2 
- ( 6 ) COS 2 U - ti } 

6 
I( 3) 1 4 ( . ) 2 + 1 6 . 2 u - =4u sinu-ucosu 4u sin u-6 

1 4 2 1 5 3 . 15 
+3{10u -30u +15)cos2u+ 4 {2u -10u +15)sm2u- 8 

If we compute the ratio R{8) = (B
1 

+ B
2
cos 28)/(B

1 
+B

2
) we find 

that for a fixed 8, R(8) decreases as 2ka increases with R(S) > 1 

for 2ka < 1 7 and R{S) < 1 for 2ka > 1 7. For a fixed 2ka R(S) = R (rr-8) 

0 0 
and R(8) increases as 8 increases from 0 to 90 • Below we give 

R(S) for the values of 2ka which we have used in the first order, i.e. 

2ka = rr, rr../2, 4.87, 11.70. The drawings appear on pages 97 , 98. 
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TABLE 1 

2ka e (rad) R(S) 

1T 1T/8 1 .49 

rrf2 1T/8 1.40 

4.87 1T/8 1. 33 

11. 70 1T/8 1.04 

1T 1T/4 2.69 

rrf2 1T/4 2.29 

4.87 1T/4 2. 14 

11. 70 1T/4 1.13 

1T 3n/8 3.88 

1T..f2 3rr/8 3. 21 

4.87 31T/8 2.95 

11. 70 31T/8 1. 23 

1T 1T/2 4.37 

rrf2 rr/2 3.59 

4.87 1T/2 3.28 

11. 70 rr/2 1.27 
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Fig. 13. Drawing of R(G) for spheres with 2ka = rr 

(above) and 2ka = rr/2 ·(below). 
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90° 

135° 45° 

90° 

Fig. 14. Drawing of R(9) for spheres with 2ka = 4.87 (above) 

and 2ka = ll. 70 (below). 
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Next we want to compare the first order to the second order 

intensity using data which satisfy our conditions developed in 

section II. In this way we can check the validity of the conditions 

with the results of our specific example. Recall that 

I(2) o::(E{2).E(2)*) 
- sc -sc 

Thus 

Whenever F(8) = 0 the ratio blows up. In such a case I(2) > I( 1). 

( 2) 
However, away from the zeros of F(8) we expect I to be one to two 

orders smaller than I(i). Our theory is not good wherever j(ka) = 0, 

i. e. ka = 4. 5 , 7. 7 4, 10. 9 5 , ••• 

or 

Recall now that according to 2. 2. 21a 

A. 
0 

D ;::::: (2ka) 18 iT n 
m 

(a - 2a for a s phere) 

A. 9 D = p(2ka) 18 iT 10 where 
"-o 

A.=n 
m 

p;::::: 1 

Also from 2. 2. 22 we get 
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We may choose p = 1, i.e. 

D = ( 2ka) 
1 
~ 'TT 10 9 

2 
n 

/.6xl= m 2 10-2 
(2ka) 

We can now rewrite the ratio 1( 2)/l(l) as 

4 
1(

2
) ( 271")

4 
nm -4 1 

l(l) = A.o (2ka)410 _m_3_(-2a_)_3 

2 
4 1 1 -4 1 1 1 " -9F1(B1+B2cos 8) = (21T) - 10 - -- -- (2ka) -/\. X 10 

A.
4 

{2ka)
4 

153 (2a) 3 3211"2 8 71" F(8)(1 +cos 2 8) 

6 I 6 I 6 I 
Recall now that F

1 
- A. F

1
(ka), B

1 
- A. B

1
(2ka), B

2
-A. B

2
(2ka). 

Also notice that 2a = (2ak)A./27r. Therefore,the ratio 1(2 ) /l(l) only 

depends on ka. The same is true for l(n) /l{n- l). 

We have computed the ratio 1( 2 ) /1(1) for several values of 2ka. 

For 2ka such that j 
1 

(ka) = 0 the ratio is zero and the theory fails to 

describe the second order multiple scattering. For 2ka and e such 

that F{8) = 0 the intensity pattern is solely given by the second order. 

One can see from table 2 that l(Z) /I(i) is smallest for e = 0 and has 

an average value of 1 % for e and 2ka different from those making 

F(8) vanish. According to our conditions set up in section II one would 

expect a ratio 1( 2 )/I(l) larger than 1 %. This discrepancy along with 

other peculiarities should be attributed to the specific example of the 

spheres. Thus F{El) varies rather wildly even for small 2ka and 

B1, B2 are of the Order v~ instead of 10 v~ that was assumed in 
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section II. In general, however, F{8) has no zeros, does not vary 

significantly for 2ka not large and B 1 , B 2 are indeed approximately 

2 equal to 10 V • 
p 

Some of the computed values of the ratio I( 2) /I(!} are given 

in Table 2. As we can see in table 2 the value 2ka = 9 gives 

1< 2> /I{!} = 0 since j
1 

{ka} = O. Thus our theory is not good near 2ak = 9. 

Notice also that I( 2) /I{!} for 9 = Tr/2, 2ka = 6 is large due to the fact 

that F(Tr/2} = 0 for 2ka = 6.38. The sarre occurs for e = Tr, 2ka = 4 

or 2ka = 5 since F(Tr} = 0 for 2ka = 4. 5. 
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TABLE 2 

2ka e (rad) I( 2) LI( 1) 

1 0 5. 90 x 1 o- 3 

2 0 3. 59 x 10-3 

3 0 1.87X10-3 

4 0 7.6 x 10-4 

5 0 3.17X10-4 

6 0 1.14X10-4 

7 0 3.12X10- 5 

8 0 4.5 x 10- 6 

9 0 0 

10 0 1.32 x 10- 6 

1 rr/2 5. 63 x 10- 2 

2 rr/2 4.93X10- 2 

3 rr/2 4. 16 x 10- 2 

4 rr/2 3. 84 x 10- 2 

5 rr/2 5. 27 x 10- 2 

6 rr/2 3.65X10- 1 

7 rr/2 4. 96 x 10- 2 

8 rr/2 2. 34 x 10- 3 

9 rr/2 0 

10 rr/2 2.98x10- 3 

1 Tr 6. 66 x 10- 3 

2 Tr 8. 24 x 1 o- 3 

3 ,,. 10 50 x 10- 2 

4 Tr 1.03 x 10- 1 

5 Tr 9. 70 x 10- 2 

6 Tr 1.62x10- 2 

7 Tr 1.91X10- 2 

8 'TT 2.83 x 10- 2 

9 Tr 0 

10 Tr 2. 38 x 10- 3 
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VII. CONCLUSIONS 

The main conclusions of this work are the following: 

a} The linear dimension D of the region occupied by the particles is 

related to the wavelength A. and the linear dimension of a particle a. 

It is found that D is minimum when ka = 1. The minimum D is 

proportional to the wavelength A.. For a constant ka, D is prop or-

tional to /.... When ka > 1 and /... is constant D is proportional to ka 

but if ka ::S 1 and /... is constant D is proportional to 1/(ka) 2 • Thus 

by making ka very small, i.e. a much smaller than /..., we can not 

get rid of the self-interaction contribution unless D gets large to 

make the multiple scattering more important than the self-interaction. 

b} j .6 X / should not satisfy the inequality j .6 XI << 1 as one intuitively 

expects but it has to lie within a certain range. The end limits of this 

range depend on ka, the index of refraction n of the surrounding 
m 

medium, and the size of the re$ion occupied by the particles. The 

range narrows down when ka increases but it gets wider as ka 

decreases. 

c) The ratio of the multiple scattering intensity to the single scattering 

intensity depends on ka but not on the wavelenth A.. Thus no matter 

what the wavelength .is, the relative effect of the multiple scattering to 

the single scattering will be the same provided ka and D stay constant. 

Also the ratio of the forward scattering intensity to the scattering 

intensity at any e does not depend on /.... 
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d) The effect of the multiple scattering on the single scattering 

intensity and polarization has been explained in the abstract. Also, 

the effect of the losses on the intensity pattern is discussed in 

the abstract. 
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APPENDIX A 

THE INTEGRAL EQUATION OF THE SCATTERING PROBLEM 

We assume that the constitutive parameters of the medium a:re 

Em,µ
0

• We can consider the system of the medium plus the particle 

as a new medium with constitutive parameters E ,µ
0

• The dielectric 

permittivity E is equal to E within the region occupied by the 
p 

particle and E outside. If a wave is generated in the medium a 
m 

scattered wave will be produced due to the dielectric dis continuity. 

Consider now the Maxwell equations: 

'V XE= iwµ H 
0-

'V X H = -iwEE 

(A-1) 

where the time dependence 
-iwt 

e has been assumed. From A-1 one 

can easily get: 

2 'V X 'V X E - w µ EE = 0 o-

A-2 can be rewritten as: 

'V X 'V X E(_!:.) 
2 

w µ E E(r) 
0 m--

2 'V X 'V X E(r) - w µ E E(r) 
-- 0 p--

The second equation can be rewritten as: 

which can be combined with A-3 to give: 

0, v = r outside - p 

0. inside v = r - p 

= w2
µ (E - E (E)r) o p m--

(A-2) 

(A-3) 

(A-4) 
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(A-5) 

where J(r) = 0 outside V • 
-- p 

If a plane wave falls upon the particle it produces a scattered 

field E (r). Now the homogeneous solution of A-5 is just the incident 
-sc -

plane wave E. (r) whereas the particular solution is the scattered -1nc-

field E (r). The total field is E = E. + E satisfying equation -sc - - -1nc -sc 

A-5. It can now be shown (1) that: 

i.e. 

where 

E(_::) = Einc + iwµ 0s ~(2:;2:')·~(r') dV' 

v 
p 

Esc(2:) = iwµoS ~(2:;2:')·~(2:i) dV' 

v 
p 

Now u is the unit dyadic l 2 2 
= 0 . . e .. e. and k = w µ

0
Em. 

lJ-1-J = 
ij 

If we recall that l: = -iw6EE(2:)= -iwE
0

6xE(2:) then 

E (r) = w
2
2 6xS r(r;r')· (E. + E ) dV' -sc - = - - -1nc -sc 

c v 

whe re 6 
1 = - (E - E ) is assumed to be independent of r. 

Eo p m 

{A-6) 

(A -7) 
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We could have derived A-7 by using less algebra but more 

physical reasoning. The incident wave induces a current inside the 

volume V p of the particle which is given by I= -iwP where P is 

the relative (to the surrounding medium) polarization given by 

E t:ix E {r). Therefore: 
0 --

J = -iwP = -iwE t:ix E{r). 
0 --

Now the scattered wave is entirely due to I• therefore A-6 is true 

and A- 7 follows. 

Suppose now we are interested in the far zone scattered field, 

i.e. at r such that kr >> 1 and r >> r'. Under these conditions 

one can show ( 1 ) that 

ikr -ike • r' 
e -r -

;<.~;_E ') :::: (~ - ~~r) 41Tr e 

and A-6 becomes 

E ( r ) = iwµ ( u- e e ) • 
-sc - o = -:t'-r 

ikr s -ike • r' 
_e__ e -r - J(r') 
41Tr - -

v 
p 

dV' {A-8) 
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APPENDIX B 

THE EULER ANGLES 

Consider two Cartesian orthogonal systems xyz and x'y'z' 

(see figure B-i). We bring xyz into coincidence with x'y'z' by 

three successive rotations. The angles about the corresponding 

axes are the Euler angles. This is accomplished as follows. First 

rotate xyz about z counterclockwise by an angle [3. The new 

system is labelled xi y i z i (figure B- 2). Next rotate xi y i z i about 

xi counterclockwise by an angle a. The new system is calle d . x
2

y 
2

z 
2 

(figure B-3). Finally we rotate system x
2
y 

2
z 

2 
about z 

2 
by an 

angle 'I again counterclockwise to get x'y'z 1 • 

If M is the rotation matrix then the components of a true vector 

A w. r. t. xyz and x'y'z 1 are related in the following way: 

A~= M .. A . 
l lJ J 

(repeated indices must be summed) (i, j = i, 2, 3) 

-i I -1 and A. = (M ) . . A.. One can show (4) that M = M = M transposed. 
l lJ J 

We can also find that 

cosy c os [3-cosa sinf3 siny -sin'( cosf3-cosa sinf3cos 'I sina sinf3 

-i 
M = cos'( sinf3+cosa cosf3 sin'( -sin'( sinf3+cosa cosf3 cos'( -sina cosf3 

sina siny s ina cos 'I cos a 

The relation between the polar angles chara cterizing z 1 in 

the system xyz and the Euleria n angles can be found as follows: 

We have A = A.e . = A.e ~ 
l-1 -.r-J or ( -i) I : M .. A.e. 

lJ J-1 
A~e!, 

.J-J 
i. e. 

-i 
(M ) .. e. = e ! 

lj-l -J 
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--YI ' / \. // ---- ~/ 
I Yi A' ;:?'! ~\ /3 I 
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Fi g . B . Successive rotations through the Euler angles 
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,, Y2 
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I 
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since A can be any vector. ' -1 We thus understand that e. • e. = (M ) .. • 
-l -J lJ 

We now have: 

e ' • e = (M-1) = sin 9' COS </)I 
-z - x xz 

e ' • e = (M-1) = sin 9' Sin </)I 
- z -y yz 

e ' •e = (M-1) = cos 9' -z -z zz 

i.e. 

sin a sin 13 = sin 9' cos cp' 

- s in a cos 13 = s in 9 ' cos cp' 

cos a= cos 9' 

We. can easily show that 9 ' = a , cp ' = TT 
13 - 2 (0 <9',a<TT, 

0 ::= cp' , 13 ::= 2TT). 

Assumethat A=f(a , 13,y) . Ifwewantthe ave rageof A over 

a, 13 , y we write 

(A) = ~sZTT SZTT s TT f(a,13,y) sin a da dl3 dy 
8TT y=O 13=0 a =O 

The relation above becomes clear if we recall that if we keep y 

constant and aver age over a , 13 is like averaging over 9, <p , i . e . over 

all the possible directions of an axis: 
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If we finally vary 'i, i.e. take into account rotations about our z' 

axis (0 < 'i S 2rr} we obtain 

~rr irr SSS' f sin a da df3 d'{ =(A) 



-112-

APPENDIX C 

POLARIZATION ELLIPSE. STOKES PARAMETERS 

Consider the scattered field in the far zone 

-io e 
E = E

9
e e

9
+ E e 

- - <p 
enee + e e 

17-" <p -<p 
(C-1) 

The far zone field is a TEM wave and behaves like a plane wave in 

the vicinity of a given direction. 

When the phase difference o9 - o<p is zero or a multiple of 7T 

the wave is linearly polarized. In general C-1 represents an ellipti-

cally polarized wave. One is interested in the size, orientation and 

handedness of the polarization ellipse. 

One can show ( 1) that the ellipse is specified as follows: 

The semiaxes a and b can be found from 

where x is given by 

sin zx = 

b 
±-=tan X a 

7T 7T ) (--<x <-4 4 

The (+) sign corresponds to left-handed polarization and the ( - ) sign 

to right~handed polarization. The sense of rotation is to be specified 

by an observer who sees the wave receding from him. 

The inclination angle l!J {see figure C) is given by 
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2E8 

Fi g . C. The Pol arization Ellipse 
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2E9 E 
<p 

tan 24i = --
2
---'--

2 
cos 

Ee - E<P 

A circularly polarized wave is such that 

Ee = E <P and o e - o <P = ± ~ 

The (+) is for left-handed and (-) for right-handed polarization. 

Another way to specify the polarization is to give the Stokes 

parameters : 

s 
0 = E2 + E2 

e <P • Si = E2 -
e 

E2 
<P. s2 = 2E9E<Pcos (o<P-o9 ) 

s -3 - 2E9 E<Psin (o<P- a9 ) 

or 

Si = s cos 2X cos 24i, s2 = s cos 2x sin 24i. s3 = S sin 2x 
0 0 0 

The properties of the Stokes parameters are described in reference ( i). 
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APPENDIX D 

RANDOM SUMS 

We are given the sum: 

N 

s = l 
i=1 

i<p. 
l a.e 

l 

where <p . ,a. are independent random variables. We assume that the 
l l 

<p. 's are equally likely to be found anywhere between 0 and 27T, i.e. 
l 27T 

the probability density is P{cp) = i1T such that. S P(cp) dcp = 1. We 
0 

also assume that all the a.'s have the same probability distribution. 
l 

We write 

= s +is. 
r l 

The average of S is by definition: 

( S) =SS P{S ,S.)(S +iS.) dS dS. r i r l r l 

or if we treat S and S. as independent random variables 
r l 

( S) =SS p (S )P . (S . )(S +iS.) dS dS. rr ii r i r i 

= s P (S )S dS r r r r +is P . (S.)S. dS . 
l l l l 

= ( s > + i( s. ) r l 

(D-1) 

(D-2) 
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We know that if we have A = '\""' x. and x. are independent random · L l l 

variables with the same probability distribution, then 

2 2 2 
N var x. = Nrr rr A = var A = ( (A - (A)) ) = 

l x . 
l 

Using D-3 in D-2 we get 

( S) = N( a.cos cp.) + i( a . sin cp .) N 
l l l l 

= N( a.) (cos cp.) + iN( a.) (sin cp.) 
l l l l 

=0+0=0 since (cos cp) = (sin cp) = 0 

:::< 
Next we compute (SS ) 

<ss"'<) =SSP (s )P.(s.)(s2 +s~) ds ds. rr ll r l r l 

(D-3) 

(D-4) 

= ( s2
) + ( S~) =var S +var S. since ( S ) = ( S.) = 0 r l r l r l 

If we apply D-4 we find: 

where 

2 
var S = Nrr , 

r r 
2 

var S. = Nrr. 
l l 

2 2 
rr = ((a.cos cp. - (a. cos cp.)) ) 

r i i i i 

2 2 2 2 
= (a. cos cp.) = (a.) (cos cp .) 

l l l l 
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CJ~=< (a.sin <p . - <a. sin <p.) )2
) 

1 1 1 1 1 

var S. 
1 

* 2 (SS ) = var Sr +var Si = N( a) (D-5) 

Assume now that a. is a function of the independent random 
1 

variables u,w,v, i.e. 

Then 

a . = f(u,w,v) 
1 

=SSS f
2

(u, w, v)P w(w)P u (u)P v(v) du dw dv 

The last result can be shown as follows. We know that if f = f{u,w,v) 

then 

P{a) = -1 S e -ika cp{k) dk 
21T 

where cp(k) is the characteristic function defined by 

(D-6) 
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cj>(k) = S eikf(u,w,v)p (u)P (w)P (v) du dw dv 
u w v 

(D-7) 

P(u,w,v) 

Thus we can write D-6 as 

P (a) = i Tr SS e - ika e ikf ( u ' w 'v) P ( u • w • v) du d w d v dk 

1 f"' s00 
"k(f ) = 2 Tr J P(u,w,v) du dw dv d
1 

-a dk 
-00 

= S P ( u , w • v) du d w d v 6 (a - £) 

Thus 

2 ,.. 2 s 2 (a) = J P a(a)a da = f (u,w,v)P(u,w,v) du dw dv Q.E.D. 

If for example the u,w,v are the cartesian coordinates xyz 

1 
and x. (i = 1,2,3) has a probability density P (x.) = -

2
L 

l x. l 
l x. 

l 

(-L <x.<L) then 
xi i xi 

( a 2> = S· £2 _1_ 1 1 
2L z:r- 2L 

x y z 
dx dy dz 

a result which agrees with common intuition. If the independent vari-

ables are the Euler angles then 

sin a 
P(a, i3) = 4:rr- since S S P (a , ~) da d~ = 1 
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1 
and P(y) = 2 7T , i.e. 

= s s s £2 
(Ct , f3 , 'Y) 

sin et 
47T 

1 
27T det df3 d 'Y 

which of course agrees with the r esult obtained in Appendix B. 

Suppose now that we have two random sums: 

icp. 
l a.e 

l 

We assume that cp. and 9. have probability densities 
l l 

1 ptm ) = 
\'r 27T , 

1 
P(9) = 

27T 

~!c 

We want to compute ( s1 s2 ) • 

Now 

l 
i(cp.-9.) 

a.b.e 1 J 
l J 

ij 

= \ a. b . c 0 s ( cp. - e . ) + i \ a. b . sin ( cp. - e . ) 
LiJ lJ L1J lJ 
ij ij 

= \ a.b.cos cp.sin e. + \ a .b.sin <p-sin ·e. 
LiJ i J L iJ i J 
ij ij 

+ i{l aib/in cpiCOS 9j - :l aibjCOS cpi Sin 9j } 

ij ij 
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Thus 

We have 

'"""' 
= < ) a.sin <p . b .cos e.) '-1 l l J J 

ij 

= ( l aicos <p.) b.cos e.) 
l~ J J 

i j 

<I ai cos 
'\ e.) = cp.) ( /....; b.cos 

l J J 
i j 

= 0 

Similarly ( A 2) = (A) = (At) = 0. 

For three s urns 

Same for more sums. 

Now if we recall that E = E(i) + E(Z) + • • • and that each 
--SC -SC -SC 

field can be expressed as a random sum 

N 
i<p. 

E(n) \ 

2 
in 

= a. e 
-SC -in 

we under-

i=1 

stand that in computing * <E • E ) 
-SC -SC 

all the cross terms will give 

CX) 

>'< 
zeroand(E •E ' ) 

-sc -sc 
= \ ' (E(n) .E(n)'!<) • L -SC -sc Thus the fields corresponding 

n=1 

to the several orders are orthogonal upon averaging. 

Next we consider the polarization properties of 

~> i<p. I i<p . 
E = e A.e 1 + e B.e i 
- -xL..J i -y i 

(D-8) 

i i 

If we consider E as an electric field then its polarization properties 
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are completely determined if we know the corresponding Stokes 

parameters (see Appendix C). We have 

and 

E =Ee 
x 

-io -io 
xe + E e Ye 
-x y -y 

s2 = 2E E cos ( o - o ) x y y x 

s3 = 2 E E sin ( o - o ) x y y x 

From D-8 and D-9 we understand that 

-io l i<p, x l e = E e = A.e x x l 

i 

-io l i<p. 
e = E e y= B.e 1 

y y l 

i 

We can now write the Stokes parameters as follows: 

s
2 

= 2E cos o E cos o + 2E sin o E sin o 
x x y y- x x y y 

s
3 

= 2 E cos o E sin o - 2E sin o E cos o 
x xy y x xy y 

(D-9) 

(D-10) 

(D,-11) 

(D-12) 

The sums in D-11 are random sums. We therefore want to find the 

average values of the Stokes parameters: 
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2(E cose E cose) +2(E sine E sine) 
x xy y x xy y 

(S3) = 2(E cos e E sine) - 2(E sine E cos e) x xy y x xy y 

;\< >' .. 

We have already computed averages like <exex) and (eye;). 

We now compute ( s
2
) and ( s3). We have 

(E cos e E cos e '> =(\A.cos cp . \ B. cos cp.) 
x x y Y' L i iL J J 

i j 

= () A.B.cos cp.cos cp.) 
LI i J i J 
ij 

= ( \ A.B.cos 2cp . + \ A.B.cos <p:cos cp.) L ii iL lJ i J 
i=j i:;t:j 

N N 
= (A.B.)-2 + 0 = -2 (A.B.) 

l l l l 

Similarly 

< E s in e E s in e ) x x y y 

( E cos e E sine ) = ( .\ A.B.cos cp.sin cp.) +( \ A.B.cos <p . sin<p.) 
x xy y L; ii i i LiJ i J 

i=j i::foj 

=0+0=0 

( E sin e E cos e ) = 0 
x x y y 

In view of the above partial results we find: 
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(so) = N( A~) + N( Bf} 

(Si) = N( Af) - N( B~) 

( S2) = N(AiB) 

( S3) = N(A.B.) 
l l 

If D-8 represents the nth order scattered field, i.e. 

(D-i 3} 

E(n} 
-SC 

then it does make sense to compute the Stokes par ameters D- i 3 for 

this order . This is so because the several orders are independent 

waves, therefore the average Stokes parameter of the composite waves 

say S. ( i = 0 , i , 2, 3 ) is just the sum of the Stokes parameters S . 
l l 

for the several orders. i . e. ( S) = I ( sij». This is a well known 

j 

theorem which can be easily shown in our case . We have already 

shown the above property for S
0 

and Si (pp. ii 9 - i 20). 
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APPENDIX E 

ALGEBRAIC AND INTEGRAL COMPUTATIONS 

i) Computation of 

S
2~ 2 

I = I ( u - e e ) • ( u - e e ) • E I dcp. 
- -r-r - -a-a -o l 

0 -
(E-1) 

where e = (6 ,cp), e = (6. ,cp.). -r -a i i 

We have 

-e X (e X E ) = component of E perpendicular to e -a -a -o -o -a 

= (E • e )e + (E •e )e -o -cp. -cp. -o -e. -6. 
l l l l 

If E
0 

is circuiarly polarized then 

-io 
E = E 

1 
e x(e ± ie ) 

-o 0 -x -y 

and 

-io 
-e X(e XE) =E'e x l

1
(e ±ie )•e e +(e ±ie )·e

8
e

8 
-J 

-a -a -o o -x -y -cpC<f\ -x -y - c i 

- io r: J ±icp. 
=E'e xrie +cos6. e 6 e 1 =A 

0 ~i ~i -

Next 

-~rX(~rXA) = (A·~cp)~cp + (A·~0>~0 

= [A cp . (~<p : ~<) + A 6. (~ 6 .• ~cp) J~cp 
l l l l 



-12 5 -

i ( - 0 ±icp.) ( ..., 
= E'e x 

1 
i[±i(e · e ) + cos8.( e

8 
·e )j e 

0 l -cp . -cp 1 - . -cp -cp 
1 1 

Now 

s= j(u- e e )•(u- e e )•E J
2 

= -r-r = -a-a -o 
(E-2) 

or 

S=E 12 {ji(e •e )+cos8 . (e
9

• e ) j2 
0 ... -cp. -cp 1 - . -cp 

1 1 

2 { 2 2 2 = EI (e • e ) + cos e. (e e • e ) 
0 -cp i -cp 1 - i -cp 

We can easily show that 

e • e = cos {cp - cp . ) 
- cpi -cp l 

e • e =cosesin(cp-cp. ) 
-cp. -9 l 

l 

~e. ·~e = cos e cos e. cos (cp - cp.) + sin e sine. 
l l l 

l 

e • e =cos e . sin (cp - cp.) -e. - cp i i 
1 

and from E-2 
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2{ 2 2 2 . 2 2 2 S = E' cos (cp - cp.) +cos 9.cos 9. sm (cp.- cp) +cos 9 sin (cp -cp .) 
0 l l l l l 

2 [ ~J 2,, 
+cos e. cos e cos e. cos (cp - cp.) +sin e sin e. r 

l l l l ) 

If we now do the cp . integration E-1 gives 
l 

S2,,. {1 2 4 
l = S dcpi = -z(1 +cos 8)(1 +cos Si) 

0 

If the incident wave is linearly polarized the computation goes 

along the same lines. 

ii) Next we h a v e to compute the following integral: 

l = s ex p { - ikR [ c 0 s ( cp- cp . ) sin e s in e . + c OS e . ( c 0 s e - 1 ) ] } d v . 
l l l l 

VP (E-3) 

where dV. = R 2dR sin 8. d0 . dcp .• 
l l l l 

First we d o the cp. integration: 
l 

,2,,. 
1

1 
=j exp[-ikR c os(cp - cp .)sin0 s in8.] dcp . = 27TJ (kR s in8. s in8) 

l l l 0 l 
0 

Nex t we do the 8. integration 
l 

1
2 

= 27Ts,,.J (kR s in8.sin8)exp[ ikR sos e.(1 - cos 8)] sin 9. d8. 
0 l l l l 

0 

= 2,,.S+
1 

J (kR s in 8 p )exp [ ik (1 - c o s 9 ) Rp.] d p. 
-1 0 
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Now 

S+
1 

J (a W)eif3µ dµ = S+1 
J (a~ 1-µ 2 ) cos {3µ dµ 

-1 0 -1 0 

S+1 _r-z 
+ i J (a t.J 1 -µ-}sin 13 µ dµ 

-1 0 

The imaginary part is zero because the integrand is an odd function of 

µ. Finally 

It can be shown (5) that 

sin(~ cc
2

+{3 2) 

~a2 + 13 2 
(E-4 } 

Now a-
2+ {3

2 
= k

2
R 

2
sin

2
8 + k 2

R 
2

(1 - cos 8) 2 = (2kR sin~ }2 • Finally we 

get 

and from E-3 

2 sin (2kR sin~} 

2kR sin~ 

sin (2kR sin~} 

2kR sin~ 

2ka sin ~2 2'!T n 

= 4(k sin l)3 Jo 

R
2 

dR 

x sin x dx 

I= 'TT 
8 3 [sin (2ka sin~} - 2ka sin~ cos (2ka sin~) J 

2(k sin-z) 
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iii) 

2 

1_s2
iT SiT { sin {kL[ cos(<p-a)sin ~sin e+cos ~<cos e-1 )J}} sin~ d~ da 

- a=O ~=O cos(<p-a)sin~cos8+cos~(cos8-1) 

First we observe that if we make the substitution a-<p = a 1 

then a 1 varies from - <p to -<p + 2iT. Because of the periodicity of 

the integrand (= f{cos a')) we can replace the limits by 0 and 2iT. 

Therefore I becomes independent of the azimuthal angle <p. We now 

call a' = a and we first do the a integration 

where a
1 

= sin~ sin 8 • a
2 

=cos ~(cos 8 - 1). x = kL. We observe 

that 

I = dI1 = \2iT 2sin[(a1cosa+a2)x] cos[(a1cosa+a 2}x] da 

2 dx j 
0 

a 1 cos a +a 2 

and 
2 

d r1 s2iT 
= --

2
- = 2 cos [ 2x(a 1 cos a +a2)] 

dx o 
da 

5
·21T 

= 2cos {2xa
2

) cos [ {2x cos a)a1)] da 
0 
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Now observe that 1
2

(0) = 0, i.e. 

('X 
1

2
(x) = 47T j J

0
(2a1 A.

1
) cos (2A.

1
a

2
) dA.

1 
0 

Next l 
1 

( 0 ) = 0 , i. e • 

and 

11 (x) = sx 12 (A.2) dA.2 
0 

If E-4 is recalled: 

where 

and 

bi + b~ = (2A.1 sin 9)
2 + (2A.1 (1 - c os 9) )

2 

9 2 
= (4A.1 sin 2) 
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1 

4 . e 
sm 2 

sin z 
z 

4X.2sin ~ 
= 2rr rx dX. 5· sin z dz . e J 2 z 

Sln Z 0 0 

sin z 
z dz = s. (1.} = sine integral 

l 

2rr 
I = . e 

smz: 

If we integrate by parts we obtain: 

I = 2rr 
. e 

smz: 

dz 

= _21Te{xsi(4xsin~}+ 1 e<cos(4xsin~}-1} 
sm 2 4 sinz: 

= Zrr 
. e 

s1nz: 

I = ZrrkL 
. e 

smz: 

{ kL i(4kL sin~}+ 1 e [cos (4kL sin~) - 1 ] } 
4 sin Z 

{ cos (4kL sin~ -

4kL sin~ 

1) 
+ si ( 4 kL sin ~} } 

Thus if we call 2L = L 
0 

2 
and V = 2LA we get p 

zv2 
cos (2kL 0 sin ~} - 1 . e } 

e {-----.,,,.8---- + s.(ZkL smz:) 
(2kL

0
sin Z) 2kL

0
sin Z 1 0 

where si (x} = Sx 
0 

sin z 
z 

dz • 
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iv) Consider 

r21Trz2 rp{z') 
K = 1 .) J exp[ -ik{Ap cos 7+Bp sin'T+Cz'] 

'T=O z=z 
1 

p=O 

We can first do the 'T integration: 

czrr 
I= J exp [ -ik{Ap cos 'T + Bp sin T)] dT 

0 

We cast Ap cos 'T + Bp sin T into the form : 

Ap cos T + Bp sin T = p ~A z + B z sin (T - T 
0

) 

A 
where tan T 

0 
= B • Thus 

f"\Z1T ~ 2 2 
I = \ exp [ - ikp A + B sin ( T - 'T ) J d T 

vo 0 

Next we do the p integration 

d z 'p dp d'T 

(E-6) 

= 2 ~rr 2 xJ 1 {x} 
k (A +B ) 

I kp(z ')~A 2 +B 
2 
= 

0 

J 1{kp{z'} ~A 2 +B 2) 
k ~JA2+B 2 

Finally 
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2rr K=-----

k ~A2+B2 

v} We must compute the integrals 

I(n) 
2 

(s in x - xcos x) dx 
n 

x 
for n= 5,3,1,-1,-3 

The integrand is finite at x = 0 since 

5 
x 

_ ( sin x - x cos x ')
2 

- 3 x 
x 

x-0 

( . x)2 sin x - x cos 

x-0 

3 2 x x 2 
1 x-31+ ••• -x(1-T+ ••• ) 

= ~ . 3 ) x 
x 

= 0 

x-0 

We start with n = 5 as an indefinite integral 

Now 

r·(s) =S {sinx- x5cosx)2dx = - _1_{sinx-xcosx)2 
x 4x

4 

+ iS ~ 2(sinx - x cos x)(cos x - cos x +x sin x) dx 
x 

1 ( ' )2 +-1 r (sinx-xcosx) sinx = - -- Slil X - X COS X \ dx 
4x4 2.J x3 

~ s (sinx- xc;sx) sinx dx = ~s 
x 

. 2 
Slil X 

3 
x 

1 r 
dx - - \ 2J 

cos x sin x 
2 

x 
dx 



and 

Now 

and 

-1 33 -

= ..!. \ 
2 

- ..!. \ d 
2 

sin x 
dx 

sin x 
2,; 3 4J 2 

x x 

iS 
2 1 2 

- ..!. ) 
2 

sin xd sin x sin x dx = 3 x -4 2 2, 3 x x x 

1 
2 

sin x 
= -4 2 

x 

I(S) =Sa (sinx - ; cos x)Z dx = - _1_ (sin a - a cos a}Z 
o x 4a4 

1 
- 4 

. 2 
sin a 

2 
a 

1 
+ 4 

a 

Sa (s in x - x cos x ) 
2 

[ 1 1 . 2 1 . 2 J 
I(3} = 3 dx = _ - 2 Z (s mx - x cos x ) -z: sm x 

0 
0 x x 

. 2 
sin x 

x 

. 2, d 1 x sin x n -
a 

· 2 1x \lx . 2.d = sin x n a - J n a sin x x 

Sa . 2 la ea s in x dx __ . 2 1 x 1 1 x . 
s in x n a - j n a s in Zx dx 

0 x 0 0 

dx 

= - S\n ~ sin Zx dx = -a S 11n u sin 2.ua du 
0 0 

(E-7) 
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It can be shown (5) that 

1 r 1 ... ] J ln u sin 2au du = - Za LC + ln 2a - ci( 2a) a > O 
0 

where C:;: 0.577215 ••• 

Thus 

. 2 
sin x 

x 

'"'X 

ci{x) = J 
00 

cos u 
u 

du 

dx = ~ [ C + ln 2a - ci {2a)] 

and from E-7 

I( 3 ) 1 1 ( . ) 2 1 . 2 = - 2 -z sin a - a cos a - Z sin a 
a 

1 + 2 [ C + ln 2a - ci(2a)] 

I( 1 ) =Sa (sinx - x cos x)
2 
dx 

0 x 

sin x Sa . 2 Sa 2 Sa 
= x dx + x cos x dx - 2 sinx cos x dx 

0 0 0 

2 
= _21 [ C +ln 2a - ci(2a)] +~ + a s in2a + 5 ( 2 1) 

4 4 S cos a -

Sa 2 
I(-1} = (sinx-xcosx) x dx 

0 

a a 
=i;x2 (sin x -xcosx}

2 j - S x 2
(sinx-xcosx)xsinxdx 

0 0 

2 
( . )2 x = sin x - x cos x T I a 1 4 2 I a Sa 3 2 + 2 x sin x - 3 x sin x dx 

0 0 0 



Now 

and 
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2 4 3 
a ( . )2 + 1 4 . 2 3 ra (a 3a") . 2 =y sma-acosa 2 a sm a- LS - T - 8 sm a 

Sa 3 2 
I(-3} = x (sinx - x cos x) dx 

0 

1 4 . 21 a Sa 1 4 . . =4x (sinx-xcosx) - 2x (sinx-xcosx)xsinxdx 
0 0 

1 4 . 2 1 Sa 5 . 2 1 Sa 6 . = 4 a (sina-acosa) -2 x sin xdx+
2 

x sinxcosxdx 
0 0 

a 
1 ra 6 . 1 6 . 2 I 
2 j x sin x cos x dx = '4 x sin x 

3 ('a 5 . 2 
- - \ x sin x d x 2j 

0 0 0 

1 4 . 2 1 6 . 2 ~a 5 . 2 I(-3) =4a {sina-acosa) +4a sin a- 2 x sm xdx 
'o 

6 
1 4( . ) 2 + 1 6 . 2 a = 4 a sin a - a cos a 4 a s m a - T 

+.!.(10a4 - 30a2 + 15)cos 2a 
8 

+ i ( 2a 
5 

- 1Oa
3 

+ 15) sin 2a -
1
8
5 
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