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ABSTRACT

I. Studies of the Spin Distributions in Aromatic Radicals

It is shown that if conventional molecular orbital theory is ex-
tended in such a way as to include electron correlation, according to
the proposal of LBwdin, negative spin density is predicted at un-
starred positions of odd alternant hydrocarbon radicals, However,
it is found that LBwdin's suggested method of alternant orbitals is
not a sufficiently good approximation to the ground state of an even
alternant hydrocarbon ion for the effects of electron correlation on
the 7 electron spin density to be estimated. As a check of the validity
of this approximate wave function for the radicals, the method of
alternant orbitals function for the allyl radical is developed and com-
pared numerically with the results of a n-7m configuration calculation.

Calculation of spin densities by simple valence bond theory is
described for several odd alternant radicals. For the perinaphthenyl
and trivinylmethyl radicals, the secular equation is solved and the
ground étate eigenvector is derived. Normalization gives the coef-
ficieﬁts of the various structures for the benzyl, a-methylnaphthanyl
and P-methylnaphthanyl radicals from the coefficient ratios given by

Pauling and Wheland,



Equations are derived which relate the 7 electron spin density
at an atom in the 7 molecular framework to that hyperfine coupling
constant due to the atom itself. Previously, McConnell and Chesnut
have shown that there is a linear relation between the proton coupling
constant and the 7 electron spin density at the adjacent carbon atom
in 7 molecular radicals. In the case of the coupling constant of the
carbon atom ifself, for instance, it is shown that the relation is also
a linear one, but the spin density at any neighbor atom must be in-
cluded. Itis concluded that negative spin density at a neighbor results
in "donation'' of spin density to the atom in question and to the observa-
tion of an abnormally large coupling constant. Estimation of the nec-
essary constants for C!3 1is carried out semi-empirically in a simple

Wa—y o

II. Electron Resonance Studies of Some Sandwich Compounds

ESR signals from pure polycrystalline nickelocene and cobalt-
ocene are observed at liquid helium temperature. Although little in-
formation of a quantitative nature can be obtained from a powder spec=-
trum, comparison with the predictions of Robertson is made whenever
possible. The ESR spectrum of vanadocene as a substitutional im-
purity in a single crystal of ferrocene at room temperature is mea-

sured. The angular dependence of the absorption peaks is interpreted



using the spin Hamiltonian given by Schulz-Du Bois for the isoelec-
+

tronic ion, Cr 3, This analysis allows the evaluation of the splitting

of the ground quartet which is present in zero magnetic field,

|2D| = 50 Kmc.
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Section 1

STUDIES OF THE SPIN DISTRIBUTIONS IN AROMATIC RADICALS



Introduction

One of the most interesting applications of electron spin re-
sonance has been to the study of the electronic structure of the neutral
radicals and singly charged ions of aromatic hydrocarbons by means
of the hyperfine interaction (1, 2, 3). The unpaired spin (s) can
move over the entirg conjugated network of the carbon atoms, and the
magnetic nuclei serve as probes to measure the density of electron
spin at various positions within the molecule. It has been shown (3)
that the Fermi contact hyperfine interaction Ay between the proton
and electron spins of the radical in solution is directly proportional to
the "unpaired elecfcron spin density,' p , at the carbon atom of the
C-H bond.

Dirac's relativistic theory shows that the spinning electron is

magnetically equivalent to an electric current (4)

ch curl < ’_,‘? *9" i‘?} . (I-1)

2mec

[
1}

Besides the dipole-dipole coupling of the nuclear and electron spins
which averages to zero in a rapidly tumbling molecule in solution,

there will remain the Fermi contact interaction (5)

~ 87 eh , M1 .
7 - 5 eGe) T . 6 (ry -y S Iy (1-2)
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which is proportional to the unpaired electron spin density (3)

plry) = = @*l%f:(rk xS P> (1-3)

Bz
at the nucleus itself.

The discovery of hyperfine interaction from aromatic ring pro-
tons (6) was unexpected because the odd electron of the radical moves
in a 7 molecular orbital with a node in the molecular plane of the
C-H bond. Experiments with deuterated compounds (7) showed that
the observed splitting was not caused by the vibrational bending of the
C-H bond out of the molecular plane, and Bersohn (8) and McConnell
(9) showed that o - 7 electron exchange is responsible.

Figure I-1 represents the side view of an isolated C-H fragment
\’Nith the C atom occurring in sp?’ hybridization. McConnell and Ber-
sohn both used valence bond theory to explain the presence of unpaired
spin on the hydrogen atom. The exchange integral J(c 7 ) mixes the

normal structure 1 with the excited one II, and polarises the C-H

bond, giving spin densities of

. J(rh) - J(cr)

2J(ch) (I-4)

in h and c respectively. Reasonable values of the exchange integrals

lead to

p' = -0,05 (1-5)



Fig. 1=1. Polerization of C-H bond by oe-x exchange interaction,
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in agreement with experiment. Weissman (10) has treated the same
problém with molecular orbital theory. In his theory the two electrons
in the C-H bond occupy the orbital O = \}:—;— (c + h), while the anti-
bonding orbital G;* = T;: {c - h) is empty, The o0 = 7 exchange
integral then mixes the normal state \IJO with the excited doublet con-

figuration ; , again

° | (1-6)

1 * - —_* _ %
Py =——{ZO'U'7T-G‘O‘7T-6‘O‘W]

‘K3
polarising theé spins { 00 = o (1)a (1) O(2)p (2)) McConnell (9) showed
that simple molecular orbital theory predicts a linear relation between
the 7 electron spin density on the carbon atom and the proton hyperfine

interaction due to the bonded hydrogen atom

ag, = Qp . (1-7)

Since simple valence bond and molecular orbital theories give
very similar values for p' , it seems clear that I-7 holds independent
of any approximation in the theoretical treatment of the 7 electrons;
this point was studied using the Dirac vector model (3,11, 12). o -7
exchange interaction was treated as a small perturbation and I-7 was
proved without any restrictive assumptions about the 7 electron wave
function.

A hydrocarbon radical is considered to be an ensemble of



interacﬁng C-H fragments, and it is with the electronic structure of
these radicals that we shall be concerned in this section. In the pages
which follow, predictions of the functions p(rN) from various approxi-
mations to the ground state wave functions, ‘~/’ , are investigated, In
particular the method of alternant orbital molecular orbital thecry
(MAOQ) and the simple valen;:e bond theory (SVB) approximations are
studied. We shall find that both MAO and SVB (3) correctly predict
the presenc‘e of negativé spin density (electron density whose spin
polarization is opposite to the total molecular spin polarization) in
neutral aromatic radicals., Also equations similar to I-7 are developed
which relate the spin density at a particular atom within the 7 frame-
work to the contact hyperfine interaction due to the atom itself (e.g.

1 14
C 3, N, 835, etc. ).



A, Method of Alternant Orbitals

Introduction

An alternant hydrocarbon (13,14) is a conjugated molecule
whose spatial configuration is such that its member carbon atoms may
be separated into two sets, starred atoms and unstarred atoms, such
that ‘no starred atom is bonded to any other starred atom. An example
of an even alternant hydrocarbon is naphthalene, whose atoms may be

separated in the manner,

and perinaphthenyl is an example of an odd alternant radical. If one
adopts the convention that the starring will be carried out such that
there are more starred atoms than unstarred, perinaphthenyl must be

represented as

If the 7 electrons of these molecules are described by LCAO
(linear combination of atomic orbital) molecular orbital theory, the

, set of conditions which leads to a minimum T -electron energy gives
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rise to a secular equation for the coefficients of the sz atomic

orbitals of the n bonded carbon atoms (15)

(yrr-E)C * Z (ﬁrs—‘SrSE) c, =0 r=1,2,..., n (1A-1)

r
s#Tr

where c_ -- coefficient of the 2p_ atomic orbital, X ,
' centered on carbon atom r. &

Hra = (Eplf| %>

ﬂ -- sum of one electron energy operators

Srs o <Xr | 7<s>-

We shall neglect overlap between atomic orbitals and suppose that each

atomic orbital is normalized

S Jrs . (1A -2)

Further the energy of a molecular orbital, an eigenvalue of the de-
terminant of the coefficients of IA-1, will be measured in terms of
its difference from the coulomb integral for a carbon atom which is in
the sp® hybridization, ﬁrr" For hydrocarbons all these integrals

??(rr are equal in value, and we can write the secular equation
-Ec+Zﬁ c =0; r=1,2,..., n (IA-B‘)

ﬁrs" If we now divide the atoms

in which €= E - £/ and B
rr rs
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into those belonging to the two sets, the secular determinant of IA-3

takes the form (16)

"€ 0 LA P, 1 Priz.1 oo Py
0 "€ « 0 Ppi1, 2 Priz, 2 cee P2
0 0 ere "€ "h+l,n ﬁh+2,n °e ﬁn,n
Pl nH By nt e Pooptn € 0 e 0
By, ht2 By nt2 e Pz O -€ ves 0

0 . -
ﬁl,n ‘32,n ﬁn,n 0 €

(1A -4)

in which the atoms of one set are numbered from 1 to h and the atoms
of the other set are numbered from h+l to n, This is equivalent to

writing down two secular equations, one for each set:

n
"€Cr+ Z |3rs CS=0;r=1’ 2, 00 ) h (IA"S)
s=h+l
and
h
-ec_ + B ¢ =0;r =h+tl, ht2, ..., n. (1A -6)
T rs s
s=1

Longuet-Higgins shows that the roots of IA-4 are related in the



manner (16)

10

neven €; <€, < ...<e£< O<€3+<1 oo <€
2 2 (1A -7)
with en-j+l = EJ.
n odd ¢ < €< .,.<e(n_1)<e(2ﬂ) =0<... <€,
2 2 (1A-8)
with en‘—j+l = EJ. °

The coefficient of the atomic orbital r which is a part of the molecular

orbital n-j+l is

n even c ] =-c ,; r=1,2, coo 5, h
— r,n-jtl Tj
@A -9)
= + ’ = + o e 0 9
Cr,n-j+1 er ; ¥ = htl, ht2, n
n odd Cr,n-j+1 =-crj; r=1,2, ..., h
= + 3 = + e o o =
C nojt CLyi T h+l, h+2, , n (1A -10)
Cr,(_r}_-!-_l) =0 ;r=1,2, ..., h.
2

Equations IA-7 - IA-10 show that there is a pairing property both of

the energy and the coefficients of the molecular orbitals in alternant

~

hydrocarbon molecules.

following way

The energy levels can be diagramed in the
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1 1 l t 1 i
2' 2! 2!
’ ’ anti-bonding
’ n' ‘ n' ' n'
R - —
e © 8 © 0 © 6 9 © o ® @ ¢ 8 © 0 © @ 0 ©° 0
0 0 =S g non-bonding
[ROSSEN. . —— [ . — At
o . bonding
2 2 2
—_— —_———— e~
1 1 o 1
negative ion positive ion neutral radical

For both the even and odd alternant hydrocarbons, there is symmetry
about the zero of energy such that for each bonding molecular orbital
there is a corresponding ''conjugate' anti-bonding orbital whose energy
is the negative of that of the bonding orbital, In the case of the odd al-
ternant radical there is a non-bonding orbital with zero energy. The
anti-bonding orbité.ls themselves can be derived from the bonding by
replacing the coefficient of a starred atom by itself and by replacing

the coefficient of the unstarred atom by its negative. Since the non-
bonding orbital of the odd alternant case has no ''conjugate' orbital,

its coefficients on unstarred atoms is zero.

The Hamiltonian of IA-1 is a sum of one electron Hamiltonians,

and electron correlation (re ) is not taken explicitly into account.
i
When this effect is calculated explicitly, excited configurations in which

.

electrons are permuted among all the levels in the energy diagram are
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mixed in with the ground molecular orbital configuration LIJO . For

example LlJO is written for the odd alternant case

b, = [61 ¢1r 2 ¢2 ... ¢0/ (1A-11)

and the mionoexcited functions LIJi are of the form

(61 &) eov b, oo & & | (1A -12)

j J O O

-
1

= |y & .0.4?,...¢K,:..¢OI (1A -13)

i i

=
1

and
etc.
LYwdin (17) has recently proposed another way in which electron
correlation may be introduced into the ground state wave function.
Electrons with the same spin are automatically correlated by the Pauli
principle, but electrons with unlike spins have no similar mechanism
to avoid proximity and a resulting large Coulomb repulsion. LBwdin's
proposal is essentially to place electrons with different spins into dif-
ferent spatial orbitals such that the probability of close approach is re-

duced automatically. Thus, for alternant molecules, the wave function

has the form

To = l (a9, + bo; )(ad, + by 1).. -(a¢n + b¢n')(a$1 - béy1)e. . -(a4—>n— bgn;) l
(1A-14)

where again the bonding molecular orbital of IA-14 is ¢j

-8~
N &
><
+
N
=

with energy €j
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and ¢j' is the conjugate anti-bonding orbital

h n
¢j' . - Z e X, o+ Z iy X, ~with energy -
r=] r=h+l

a and b are parameters which are determined by minimization of the

energy and, since the MO's are normalized, are related by the equation

a? + b% =1 (1A.-15)

from which the single parameter ¢* can be defined by

CcOs Va = a
(1A -16)
sin 'ﬂ = b °

It must be recognized that the one-electron orbitals combined in this

way are no longer normalized.

f(atbi + bq)i,)(acbj - b¢j,) dr = cos zJ&ij . (1A -17)

In the development which will follow we shall be interested in
the paramagnetic neutral odd alternant radicals and the singly charged
ions of the even alternant hydrocarbons, The MAO description of the

first case is written

T = [(ady +bgr1) oo (a0 + Do )¢ (g - ad1?)... (a9 - Do )|
(1A -18)
The wave functions necessary for the even alternant ions will be dis-
cussed later. T is not an eigenfunction of S%, and in following para-

graphs we shall develop a projection operator which when operating on

To produces the proper multiplicity.
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The qualitative aspects of LBwdin's proposal now become clear.
When & = Oo, electrons with a spins tend to accumulate on the starred
set of atoms and electrons with $ spins on the unstarred atoms. When
¢ = 45° (a=b=1), this spin separation is complete, and the picture is
similar to valence bond theory. In molecular orbital theory language,

4 has the effect of mixing the excited configuration with the ground
configuration, which can be seen if To is expanded in powers of a and
b or <.

Simple Hlckel molecular orbital theory has been successfully
applied to the interpretation of the proton hyperfine splittings of the ESR
spectra of single charged ions of even alternant hydrocarbons (18,19, 20).
Within this simple approximation pr‘eviously diagramed, the theoretical
7 electron spin density at carbon atom C is merely the square of the
coefficient of the atomic orbital centered on C in the singly occupied
LCAO MO. In this section we will be concerned primarily with the es-
timation of 7 electron spin densities in neutral odd alternant hydrocarbon
radicals. It was seen that simple Hlckel theory predicts that the odd
electron moves in an orbital which has zero density at the unstarred
atoms. This prediction cannot be correlated with experiment either
qualitatively or quantitatively. The failure of the simple approximation
implies that the calculation must be carried out with an approximate

ground state wave function in which cognizance of electron correlation

has been taken explicitly.



15

McConnell and Chesnut (3) have pointed out that elementary
valence bond theory or molecular orbital theory with 7 -7 configuration
interaction predicts negative signs for the spin density at unstarred
positions. McConnell (21) has carried out the calculation of the spin
densities for the allyl radical using these two types of functions and has
shown that this is indeed the case. Since the total spread of the ESR
spectra of these radicals is a measure of the sum of the absolute values
of the spin densities at the various positions in the molecule to which a
proton is bound, introduction of negative spin density has the effect of
increasing the spread. This result has been borne out by experiment
for the cases of triphenylmethyl (22), dimesitylmethyl (22) and peri-
naphthenyl (23). Hoijtink (59) reports the results of the calculation of
spin densities in the ions and neutral radicals of alternant hydrocarbons
using a wave function obtained by first order 7 -7 configuration inter-
action and finds negative spin densities in the radicals.

We shall carry out this calculatior; using the function proposed
by LBwdin, and we shall find that negative spin densities occur within

this approximation also.

Projection Operator

T is degenerate with respect to S% and can be written as a
o
sum of component functions which are proper eigenfunctions of this

operator
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T = Z [k(k+l)]%_(2
k

- (1A -19)
i IA-19 is multiplied by the operator [S%- k(k+l) ] (24), the term

S=k is annihilated from the expansion; so that an operator of the form

254, = [8% - k(k+1) ]/[S(SH) - k(k+l)] (1A-20)

k+#5
II
k
removes from IA-19 all terms save the one for which k=5 and is the
desired projection operator.
Following the notation of Lowdin (25,26), we write the following

functions Tk obtained by k interchanges of the spins of the electrons

among the sets (ad; + bdy1) ... (a¢n + b¢n‘) ¢ abbreviated (a...aa],
and (ad; - bd;1) ... (aJ)n - bénl), abbreviated [B...B). The functions
Tk , composed of ""half'" determinants, make up in all possible ways of

permuting the a's and the B's. For example we write

T
o

{a,..aal Bo,.ﬁf

H
i

{(B...00)+... +(c...pa)+(a...aB)/
(u...6)+,..7+(@...a)]

(1a-21)
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- The total number of electrons, 2n-1, is made up of n a's and n-1

p's.
The projected function can be expanded in terms of the functions
Tk
n-1
ZS+1OTO i} Z Ck Tk ) (1a-22)
k=0

and our problem becomes the determination of the expansion coefficients,

Ck° We bégin by writing S? in the manner of the Dirac vector model
(27)
1 —
2w _ ‘ DY
S5 = 7 N(N-4) + Z Pij (1A -23)
i>j

in which Pi' is the pairwise permutation of the N electrons. The

quantity S2 Tk must now be evaluated, and a counting procedure can be

employed for this task. S? T, is composed of

k
[——l- N(N+4) + Z P ](n-l)(n) = [-(nz - 3n + -5—) + (Zn—l)(n—l)] o
4 ' ijJ\ k /Uk 4
173 n-l) (n)
( k k
determinants. Since IA-23 contains only pairwise permutations, all

T and T The

must belong to Tk-l’ Kk 41

the components of S? Tk

manner in which the "half'' determinants are partitioned among Tk 1
T, and T, . isarrived at by noting that there are (n-1-k)(n-k) ways

of interchanging one more pair of a and B to form a member of Tk+l

but only kek ways of reducing the number of interchanges by one to



18
yield a member of Tk 1° The number of Tk components must arise

from the terms in IA-23 which produce no interchange. Normalization

by the total number of determinants in each group produces the desired

partition:
T, ¢ k? (nk-l) (i) = (n-k)(n-k+1)
oy
T - ~(n? - 3n+ —f:) + (2n-1)(n-1) - k% - (n-k)(n-k-1) =
(n-k)(2k+1) - %
T " (n-k)(n-k-1) (nkd)/;) = (k+1)2 .

n-1\/n ])
k+1/\k+
This results in

S T = (n-k)(n-k+1) T, .t [(n-k)(2k+1) - :1‘-] T+ (1<+1)2 Ty

k
(1A -24)
The equality
s (zs+10 TO) = S(S+1) 2541, T (1A -25)
is true by hypothesis, and it follows from IA-22 that
z C = +1 . -
s? ? . T,) S(s+1) Z Cka (IA-26)
k k

Combination of equations IA-24 and IA-26 produces the recurrence

relation
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+ [(n-k)(2k+1) - 71- - S(s+1)] C, + k% C =0 (IA-27)

(n-k)(n-k-l) C k-1

ktl

We are interested in the doublet projection operator and the first few

terms of IA-27 for this case are

Clﬁ"}-
C n

o

C, . _2
C n(n-1)

Cs; __ 6
C. ~ nf-1)(n-2)

which can be generalized

n -l
_2_15 s (-l)k(k> ‘ (1A -28)

The desired result then has the form
n
ot = L S () T (14-29)

CO is obtained by the direct application of the doublet projection oper-
ator. The procedure which will be described here will make use of
this general result only for a small number of electrons, namely the
cases of three ‘and five electrons. For three electrons C0 has the

value. % and for five electrons the value '%‘ .
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Wave Functions

Before the development of the necessary wave functions, we must
become cognizant of the inherent differences between the odd alternant
radicals and the even alternant ions, One can carry out the division
.of atoms into the two sets uniquely for the odd alternant radicals, but
a similar procedure is impossible for the even alternant ions. Because
of this lack of uniqueness for the selection of the members of the starred
and unstarred sets, we shall proceed here with the discussion of the
neutral radicals and reserve the development of equations for the ions
until the end of this subsection,

The assumption is made that b is a small quantity, and TO is
expanded in a power series in b, The justification for this assumption
will be discussed later. If terms in b? are retained in the development

of T0 one obtains

T = azn,¢1 ¢z»--¢n¢04—>1 Gz oeo l

o n

n
2P 2 {1 G2 eerbyeent b b1 bzeecbinnd |
i=1

101 bz unbioaed b by bzennbyyonb ]
n

2 -
BT 2 {10102 enbyienity et 0 b1z
irj=1

4 aZn-Z

4-’.1“'4-’3 ..,q'>n; - 1o, Pz ey, ...¢J. ceed_d

(1A-30)
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The function IA-30 now contains only Slater determinants made up of
orthogonal molecular orbitals. Retention of terms of order b? in the
wave function leads to a result for the spin density which includes terms
in b up to fourth order. This is equivalent to the assertion, in config-
uration language, that only configurations up to those corresponding to
two-electron excitations contribute significantly to the ground state wave

function.

We now apply the doublet projection operator IA-20 to IA-30

“and note that the determinantal functions |¢; ¢3 .. .¢n¢o<.1->1 c}_>2 oo °$nl

and Z M) ¢J ¢Oc]>1 ¢ | are already eigenfunctions of S, We must

extract the doublet component from the functions in

n
Z { M)i‘ ¢O $i | - H)i q)o ¢i"} which contain three singly filled orbitals

éndfromthefunctions in Z {Ic{: <|> <}> ¢ ¢ | - [¢ cl) ¢ ci-;.d).,l
’ i7j= l

- |9, ¢ (P ¢ ¢ | + | o, q;J ¢o¢1 ,]} which contain five such orbitals.

The result of the application of the doublet projection operator to IA-30

is
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O

n
; _ .2n Jg n-l. 21
O T = a ,¢1eoa¢ooaa$nl + 3 a b igl \)—6 e

n
in-2 2 S T T
TR 2 2 1 20440084,
':1J]-Z | ’

iy ]
tzfoee bl - Lo 00 0.0,
oo b bl + 1o 00 0.1 - 10,00 6,8,
n
L ,2n-2,2 Z l¢x¢3¢0¢1'¢\ . (1A -31)
i=1

However, equation IA-31 is no longer normalized and must be divided

by NN where

. (1A -32)

We now turn to the similar problem for the even alternant ions,
As was mentioned in the introduction to this section, MAO allows @
spin to accumulate on the starred atoms and  spin on the unstarred
atoms., However, for even alternant molecules the two sets of atoms
are physically indistinguishable, Mathematically, this means that the
description of the ground state of the 7 electrons with one determinant,
similar to IA-18, is no longer possible. Let us illustrate this point
for the case of neutral benzene: The proper function before projection
is the symmetrical combination of the two possible ways of arranging

the a and B electrons,
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;7‘12_ [ [(a¢y +bo11)...(ads - bds )| + [(ap, - by Deoo(ads +bds1)]] .

In this function starred and unstarred atdms are treated on the same
basis which is certainly physical reality., The consequence of this
Combination is that all terms linear in the parameter b vanish by can-
cellation, This same type of result is evidence in self-consistent field
theory in which there is no connection between the ground configuration
and singly excited configurations if the basis molecular orbitals are
self-consistent (28).

The array of alternant orbitals which is to be filled singly by

the 7 electrons for even alternant ions is diagramed as follows.,

(a¢y 1+ - boy)
. (agy t + Do)
(a¢il - b¢1) )
| : (26;, + bo,)
(a¢ [ bq)n)
(aq)n + bq) ') llllll ° (a¢n‘ + b¢n)
(a¢_ - bo_,)
(a, + bo, )
(a¢i - b¢ix)
(ad; + boyp1) )
(ady - ooy 1) )
a electrons B electrons

There are then four possible ways of assigning the 2n+l (2n-1) elec-

trons of the negative ion (positive ion) to these orbitals which produce
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. . . 1 . .
configurations for which Sz =5 Thus, we can write for the negative
ion

A= ](ag, b ). (a0, - B )... (2, - bé, Jeo. |
B [...(a0, - bo. ). (a0, - bo )...(ad, +5¢, )ee. |
C = [....,(aq)i +b¢i,)....(a¢n, +b¢n)(,,,.,(,—i<§i - bd. )eonl
D = |...(a¢, - Do )...(ad_, + b0 )...(ad, +bF,)...|

as the configurations which have the lowest energy.
Then, to be general we must take as the approximation to the
ground state function for the negative ion a linear combination of the

various possibilities

T (-) = c,Atec

B+c C+c.D., (1A-33)
(o] C

b d

Consider the energies of the various component determinants which
make up IA-33. If the expectation value of the sum of one electron
Hamiltonians is calculated, A, B, C, and D are exactly degenerate.

2
If

- is explicitly contained in the Hamiltonian and A, B, C, D are
ij

expanded in powers of b, the energy of these determinants is the same

up to terms of order b?. Thus any error made in assuming that these

determinants are exactly degenerate will be small, and we shall proceed

here by making that assumption.
c = c_ =c =d (IA-34)

After performing some simple algebra IA-33 becomes



25
T(-) = (M')"%ﬂ(am too1 ). b (ads - bé1). ..
+ Ka¢1 - bo, ‘)° . °¢n|(a$1 + b‘i;l 0. / JZ . (IA'35)

Expansion and projection of IA-35 gives the proper doublet ground state

_/

i 2n+l - - 12 2n-2
20 T (-) = (M)72 {a nt ’¢1°°°¢n¢n'¢l“°¢n' -5 a ntepz
n
1 - - - -
Z = llege il t 20000 88
iyj=l
n-1 o
_ azn'—z bZ Z /¢i[¢n¢nl¢il¢n/ ° (IA—36)
i=1
Here the normalization factor M is given by the relation
4n+2 4n-2 1
M =3 [a + a b% . (n-l)(—-—z— n-8)] . (1a-37)

McLachlan has shown recently {29) that for alternant hydrocarbon
ions one can regard the motion of the 2n+l electrons of a negative ion
to be the motion of 2n-1 positive holes. This requires that any obser-
vation of the ESR or electronic spectrum of a positive ion be the same
as that of the corr espondingv negative ion. This prediction has indeed

20,63,31,32
( 3 ) For the present calculation

been borne out by experiment,
this means that it is unnecessary for the wave function for the positive

ion to be derived explicitly since the prediction of spin densities from

IA-36 will suffice for both cases.
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We now proceed with evaluation of matrix elements of IA-31

and IA-36 of the spin density operator I-3 .

Matrix Elements of Spin Density Operator

The spin density operator is defined in the introduction

o(r) = si?d - rM) S, (1-3)
M

To avoid unnecessary labor of enumeration, the various com-

ponents of the wave functions IA-31 are abbreviated

I g2 ground molecular orbital configuration

II 2 monoexcited functions

II1 £ diexcited functions with electrons in two different
antibonding orbitals

v 2 diexcited with two electrons in same antibonding orbital.

Similarly for the ions, we define the functions I(-), III(-), and IV(-).
As an example of the procedure for calculation of matrix ele-
ments of I-3 , the quantity <II [ p | III > for the odd alternant radical

will be evaluated.

n n
= L - ] i -
1 plurp = 2 Z (o0, - 00 ¢b50 - 0504)
i= 1 j#i
= - 4 na>l Z D, . IA-38

j:l



27
There arises a non-zero term only from those determinants in III
which contain two electrons in different antibonding orbitals with op-
posite spins. The part of the element coming from any term for which
izk in the double summation vanishes because more than two orthogonal

orbitals are different.

All the matrix elements of I-3 are now listed in matrix form:

lo) 2 V3 5 Jogyl : :
i=1

\

n

J2 2 Jo 0] £ 7 (a10) 2 afe )2 2ieg D -F(n-wa 12 2/¢ y

0 -J—E—(n-l) Z 4,9, 2ol) jy |2 o

3

Matrix elements for the ions are so similar that they need not be listed

here.

Spin Density Relations

Now that matrix elements of the spin density operator are avail-
able, the spin density function p(r) can be evaluated either in terms of
the molecular orbitals ¢. or the atomic orbitals Xr‘ . For the odd

alternant radicals the molecular orbital spin density is found to be



n
AT 4 4 H4n-d
o) = () 1[a n¢o¢o + 7 a b Z ¢. 9.
i=1
i)
1 4n-2 2 S
; s an b Z (4¢i‘¢i' + 4 ¢i¢i - 2¢0¢0)
izl
n
8 4, 4n-3 _3
i=1
. 4n-4
2n? + n 4
(=) b ¢o¢o] ) (14-39)

In IA-39 the molecular orbitals ¢i are functions of the vector r.

In the calculation of the atomic orbital spin density function,
differential overlap is neglected, which means that only diagonal terms
of the spin density matrix‘:('Zl’) are retained. However, this procedure
is likely to lead, in the present case, to spin densities which would be
- calculated using the "atomic orbital delta function' (33), rather than to
the diagonal element of the atomic orbital spin density matrix. This
is because of the nature of the ""atomic orbitals" ipvolved. Pairing of
the molecular orbitals arises either in the Huckel method or in a semi-
émpirical»scheme similar to that proposed by Pariser and Parr (34).

It is likely that the orthogonal orbitals used in these schemes are really
some sort of localized linear combination of non-orthogonal atomic

orbitals similar to that proposed by Lowdin (35). The atomic charge

density can be calculated either by using the non-orthogonal atomic
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orbitals with a definition of the charge density including overlap (36)
or by first expressing the atomic orbitals in terms of the LBwdin orbitals
and then'calculating the charge density from the formula suitable for
orthogonal AO's. These two procedures lead to the same value in the
case of conjugated hydrocarbons (35). The same result should hold
here. Therefore, the diagonal elements of the spin density matrix cal-
culated from orthogonalized atomic orbitals represent in fact the un-
paired spin density caiculated with the inclusion of overlap.

Expressing the density on the starred atoms, Pa> and the density

on the unstarred atoms, PR as a function now of the parameter <* we

arrive at the relations

) -1 2 2 4.2 4nt+2 3 J 2
PA = (N) [COA.Y + 3 tan 2+ + Z)ftan S 4 3 tan> & ;(A(r)

(1A -40)

pB = (N‘)"1 [ -—32- tanVQ + % tanzrxo' - 4n;-2 ta.n%ﬂ'}‘)(é (r)

(1a-41)

in which
2
N' = 1 + égr-l- tanz& + 2’L3i’_§ tan4ﬂ‘
and

2r(19+4 tanzﬂ’ ) 4n(;-2

2
Y =1 - %tan(} - tan3§‘ + 2n3 o tan4& ,

and XA(r) and )CB(r) are atomic orbitals centered on atoms A and

B respectively. In going from the molecular orbital spin density to the
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atomic orbital spin density, advantage has been taken of the fact that
the coefficients of the molecular orbitals obey the relation (13)
n
2 Z CfA + CZ = 1

oA

i=1

When this same procedure is applied to the even alternant ions,

the unfortunate consequence results for the molecular orbital density
: 1
= ! ! = -
p(r) = (M) 6 ¢ (M) = ¢ ¢ (1a-42)

which is the same prediction as that given by simple Hickel theory.
Thus MAO is unsuccessful in introducing the effects of electron corre-
lation on the spin densities of even alternant ions.

Discussion of the causes for the success of this approximation
for th’e odd altérnant radicals but its failure for the ions will be continued

at the conclusion of this section. In the remainder of this section we

shall concern ourselves with the spin densities in the radicals only.

Sign of Tan &

Inspection of IA 41 shows that the sign of the spin density at an
unstarred atom is governed by the sign of tan £ . In order to confirm
the presence of a negative sign of spin density at an unstarred atom,
tan v)’ must be shown to have a positive sign. To carry this out we will
calculate the value of the quantity 2 which is obtaineci by first order

configuration interaction.
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If the function IA-31 is restricted to terms linear in b, it can
be considered as having arisen from a configuration interaction of the

basic molecular orbital determinant, [ ¢j.. ,¢n ¢o 4;1 .o ,{f,n[ = qjo’

with the normalized combinations of excited configurations,
n
—_ 1 - - -

Z o Clepeg ol - Tepo 6l +21¢ 0 ¢,]) = .

i=1

B

By first order perturbation theory, we have

@ groundstate ) kL’o R (IA-43)

in which

xoE - (IA-44)

and g = quO 2Py, dr (1A-45)

o1

where % is the total Hamiltonian for the system and Eo and E,; are
the zeroth order energies corresponding to LIJO and Yy . Itis readily

shown that

- . L (3 5 4io .
4 o TR f; Z £ (1A -46)
i=1
where
io e?
bl ® ff 4’1(1) ¢0(1) -;: ¢i,(2) ¢o(z) drg dr, . (TA-47)

It has further been shown (60) that

3
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since c})o, EEN o

¢ ;2 is the familiar exchange integral Kio , and we can now
apply the general theorem of Roothaan (37) by which all such molecular
exchange integrals arising from orthogonal molecular orbitals are nec-
essarily positive. Therefore %01 is a negative quantity and by equa-
tion IA-44 X has a positive value. A in turn can be identified with
' 3.b : O
(yn - E) S which completes the demonstration of the fact that tan
calculated in this manner is a positive quantity. Furthermore, E,;
represents an average monoexcitation energy. A similar first order
. . . b,2 s
perturbation calculation of the quantity (_a:) would show that it is in-

versely proportional to an average two-electron excitation energy.

Limiting Case: a=b.

Now that spin density relations for the odd alternant radicals
have been developed, the question must be posed: What happens to
these formulae when as much correlation as possible is allowed, namely
when a=b? Recalling the equations for ¢i and ¢i‘ , the equation for an

a electronis

n h

L{Jk(a) = a ¢k + b ¢y 0 = (a+Db) Z_ Crp Xt (a=b) Z Crp Xy
r=htl r=1

which when a=b becomes
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n
b, (e) = 2 Z ¢ X (IA-48)
a=b r=h+tl
and similarly for the B spin
h
WO 2 2 e X, (14-49)

a=b

Thus 7 electrons with‘ a spin are totally localized in molecular orbitals
with amplifude only at the starred set and those with  spin are in
MQ's which vanish everywhere except on the unstarred set. Therefore
it is clea;r that <‘~P ] P | & > will be negative at unstarred and positive at
the starred atoms. However, the question really is whether the projec-
tor operator introduces any mathematical funny business because only
certain doublets are retained.

To answer this question we shall proceed in a slightly different
way from the arguments which have proceeded. Consider a set of
molecular orbitals g1e--8 which have density only at the starred

atoms and f;...f which have amplitude only at the unstarred atoms

n-1
(2n-1 is here the total number of electrons), Further require that the

g's and f's are orthonormal. The starting function (not an eigen-

function of S$%) is

‘ To = A£).. .fn_l(n-l)gl (n)... gn(Zn-l) | (1A-50)

H is the operator for antisymmetrization and renormalization. We

will require a good deal of the notation of the section on the projection
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operator and begin by abbreviating the molecular orbitals g and f

by o and B and in serial order

T = X (ﬁﬁ(n-l)' . .ﬁaa(n)aa) .

o
By equation IA-29 the proper normalized doublet function is given by

-1

n-1
Z <'1)k (E) Ty -
k=0

M

2
2 = e
© To n+1}

The spin density function is

p(r) = <POT_|p | 2OT

n-1 o _ -1
= ;31_ .ZO (1)t (?) (;‘) (Ti | e T, > (1Aa-51)
i,j=

Since the Tk's are constructed from orthogonal orbitals and p is a
one-electron operator, any two electron permutation causes the matrix
element to vanish, so that only the unity operation of K gives a non-
zero result. Recalling now that Ti is constructed from Tj by a product
of two electron permutations from the o (g) set to the B (f) set, the

same argument requires that i=j. Equation IA-51 becomes

_ n-1 2
p(r) = 5%1" J (?> <t lelT,> (1A-52)
i=0

where Ti' is a simple product of the starting sets of MO's.
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The problem of evaluating the matrix elements in IA-52 is
another counting problem similar to the problem of determining the

projection operator, .and the reader should be relieved that only the

result is reported:

<t lelT,) = (n'l)z [ n-2k

.18
a set k n-k ] \ r\

; r = starred
and
n-1 Zk-n+1 2
<Ti' l PJ Ti'> = ( )(k) B lfs, ;s s = unstarred
P set

(1A-53)
for each r and s.

Then the molecular orbital spin density for the set of MO's

made up from starred atoms is

n-1 >
e b 7 (n) (i
k=0
nel
;1%_ Z [(n-kzl(n—Zk)]
k=0

+1)(n+
This sum is easily evaluated and is found to be equal to (n_g);g_r_l__z_) )
so that

- n+2
- =Y (1A -54)

By a similar development for the molecular orbitals over the unstarred

atoms, the relation is
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s n n-1

' n-1 ,
R DA e N B (1A-55)
k=0

There is encouragement that no algebraic mistakes were made since

n n

1
bt b=,

s=1

H
i
[

The explicit form of the various molecular orbitals has been left un-
specified since all that was sought was the molecular orbital spin density.
This completes the demonstration that the important equation IA-39

will tend to a reasonable limit (if the expansion is complete) when the

value of b reaches its maximum.

Illustrative Calculations

At least two examples of the experimental determination of the
electron-proton coupling constants in odd alternant hydrocarbon radicals
are available. The ESR spectra of triphenylmethyl (22) and peri-
naphthenyl radicals (23, 38) have been interpreted in terms of negative
spin density at the unstarred carbon atoms. We shall take the values
of the spin density at the unstarred carbons of thése radicals and cal-
culate a value of the parameter & . With this quantity the value of the
spin density at the starred atoms will be computed and compared with
those deduced from experiment.

For ease of numerical computation we assume that b is such a
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small quantity that terms of order b? in equations IA-40 and IA-41

can be neglected. Neglecting all but terms linear in b, we have

2

2
(l-gtanﬂ’) COA

2
+ — tan &

(1A -56)

2 S
pB "3 tan

For the case of triphenylmethyl experiment shows (39) that

[ ps , = lesl = 2]pal with the numbering shown below.
4
5 Vi3
6 Y o o
3 = =
1 R Vs
2 o
| 2
Vi3

Also the values of the AO coefficients of the HUckel non-bonding orbital
are included.

The sum of all the absolute values of the spin density at carbon
atoms linked to a proton has been shown to be 1.57 (40). From a com-

parison of these two results one finds that

24 |[ps) 1. 57

3(2 ]psl + 2 |pal + lps/)

[pal = 0.065

-0, 065

Pa

which enters

oo

‘ : 2
The value of py 1is also the value of the quantity - 3
in the calculation of the positive spin density. Using the coefficients

listed we obtain in this way p3 = ps = 0.137, which is indeed very
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nearly twice the value of pg « The spin density at the methyl carbon is
calculated to be 0. 360.
For the perinaphthenyl radical |p;[is measured as 0.098. Thus
pp = =0.098 from which p, is calculated to be 0.247 which compares

to the experimental value of 0.327.
o

A\

b
Considering that for triphenylmethyl < = 0.097 and for peri-
b
naphthenyl - 0.147, it can be seen that neglect of higher powers of

b e
S in the spin density relations is justified.

Conclusions

It has been shown that if conventional MO theory is extended
in such a way as to include electron correlation, according to the pro-
posal of LBwdin, then negative spin density is predicted at the unstarred
positions of odd alternant hydrocarbon radicals, However, MAO is
-unsuccessful in accounting for the effects of electron correlation in the
even alternant hydrocarbon ions.

MAQO has very special pairing properties, bonding to conjugate
antibonding, from which the approximate ground state wave function is
constructed. It has been shown that the first order mixing of MAO con-
figurations depends on the integrals QZ;, for the radicals, and the

' : ii! ,
similar mixing for the ions depends on the integrals Qﬁ » From
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symmetfy considerations alone this latter integral can be shown to
vanish (if i is a symmetric function, then i' must be antisymmetric
and vice versa). It seems to be the fact that for the radicals mixing is
allowed for this particular pairing scheme, but for the ions i—i' pairing
is much smaller than, for instance, i-j' where j' is any other anti-
bonding orbital other than the one conjugate to i, Thus it must be con-
cluded that the function IA-36 represents poorly the ground state wave
function of the alternant hydrocarbon ions.,

For the radicals the spin densities found are expressible in terms
of the parameter 4  and the coefficients of the non-bonding molecular
orbital, Actual calculation of the spin densities can be carried out in a
semi-empirical way from a procedure firmly based on the molecular
orbital concept. Previously it had been possible to estimate these quan-
tities from simple valence bond theory.

It is shown in the appendix that it is possible to relax the hidden

. . . b . .
assumption of a single correlation parameter by and to introduce a dif-

b,

ferent parameter —L for each pair of conjugate orbitals. The conclusion

of negative spin density at unstarred positions is still preserved in this
more general treatment, but the formulae developed appear to be less
useful for the calculation of spin densities for practical application,

‘In the next section the MAO wave function for the allyl radical
is calculated from first principles in as general a way as possible. Com-

parison of this function to that predicted from a complete 7 -7 configu-

ration interaction treatment is given. The excellence of the agreement
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of these two methods is a good indication that the representation of the
ground state of an odd alternant hydrocarbon radical by equation IA-31

is indeed a good one,



41

B. Comparison of the Methods of 7 -7 Configuration Interaction

and Alternant Orbitals for Allyl.

The 7-7 configuration interaction (CI) problem in the allyl
radical has been treated by several authors (41, 42,43,44), McConnell
(21) has employed the CI wave function given by Chalvet and Daudel
(42) to evaluate the spin density matrix for this compound. We shall .
perform the CI calculation again from scratch here because none of
the previoﬁ.s people explicitly enumerated the values of the necessary
molecular integrals. In order that a meaningful comparison of CI and
MAQO be obtained, the integrals used must be the same for both cases.
Thus, it is very little additional labor to carry out the CI calculation
simultaneously.

The following set of starting functions is chosen for the electron

wave function of allyl:

@1 = '4;1 é1 !
1 - i}

0= 5 Doz b sl - Loy ds 42l] .
IB-1

6, - ',:6.1- 2061 &2 b3l - (61 &5 b2l + [z &y 0]

Ps = 1oz o3 s |

in which
¢ = 0.424544 X, + 0.600395 X, + 0.424544 X,
b, = 0.721262 (X, - X3) . (1B -2)

¢; = 0.610762 (X, + X3) - 0.888297 X, ,
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where again Xr is the sz atomic orbital centered on carbon atom
r. The ¢i's are orthogonal and normalized with the inclusion of over-
lap.

The proper Hamiltonian for the 7 electrons of allyl is

3 3
Zef = Z /g Q(g.re + Z e o (1B-3)
i=l irj=l r..

ij

The core Hamiltonian is given by (45)

H 0 = 1) + Uvfi)_

core
in which T(i) is the kinetic energy of 7 electron i and Uc('ci);e is
the potential energy operator of the electron i in the field of the core.

It is through this core potential that electrons other than 7 electrons

are made manifest. The atomic coulomb integral for atom p is given

by

o= gpSoTe . f X0 H L, X W ar, (1B-4)

P PP )

and the atomic exchange integral between p and g by

= fpeOTe [)(p/(l) # M )(q(l) dr, . (1B-5)

ﬁpq jole} core

" The core potential for the particular 7 electron 1 can be written (34)

ucgge = Ur()l) + 7 Uél) + ZUf(l) (1B -6)
q# P r
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where the atoms q are charged in the core (e.g. the carbon atoms of
benzene) and the atoms r are uncharged in the coreVe.g. the hydrogen
atoms of benzene); ¥ denotes a potential due to an uncharged atom. Uq(l)
can be further expressed in terms of the potential of the uncharged atom
q less an averaged potential due to the electron 2

* 2
v = U - [X @ X[ o (1B-7)

If the atomic orbitals =~ X b are eigenfunctions in the sense

[T@Q) + Up(l)] XP(D = W, )(p(l)

then the atomic coulomb integral, ap , can be expressed as

o, = Wp - 2 [(eplad) + (wpp)] - > (vipp) (1B-8)

q#PpP r
in which the atomic coulomb repulsion integral (ppl qq) is

(pp | qq) =ff%p(2) Xp(l) e X x (2 dryar,  (IB-9)

2

and the coulomb penetration integral between )(p and neutral atoms

g and r is
(wpp) = - (X WU W X en (1B -10)

Considering now the molecular orbital energy, we can write this
quantity in terms of the atomic integrals which have been developed.

The energy of a particular molecular orbital configuration

l ...¢i(i),..¢j(j)... | is
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=
11

({,..qai(i)..,q:j(j)...l [ 50| I...¢i(i).,,q>j(4),..,l>

ore

2 5¢o) 1. G) ] o6 >

A RER ¢J.(j) |

ivj i

| 4@ ¢.()

PR CRION

Lo ..
i7j 1]

& 0>
(1B-11)

or E= 2 Z Ei + 2 Z Jij - Z Kij . In terms of the atomic in-
i ij ij

tegrals these molecular integrals take the form

E =zl fW - Z LG + @] - 2 () f
j

i
q#j T

+ z Cikcij { FN p_]z[ (kjqu + (QJk)]

k#j K
- (rzkj)} (IB-12)
T
ii — .
J.. = .. = c. €. c, c. [rs IB-13
i 5 ya ip ~iq jr js (pq/fxs) ( )
Psg,r, S,
‘ -, i)
KlJ ¢ i ° Z Cip qu i cjs (pqirs) (1B -14)
P-g,T,s

The off-diagonal elements are very similar, and we shall list them for

the case at hand.
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X

260+ €, + Iy, + 27,, -K;,

$,, = -2 (€15 + t1} + ¢33 - % £3%)

%13 "'E élzzz,

.4 = Kis

H22° €0 + & + & + T, + T3 + Jpg ‘%Kzs '%K12+K13
H,s = J—%(Kn - Kz 2)

oo = -V (€15 + 033+ 113 - 5 013)

s = &0+ €, + &5 4 I, + Ts+ Tps - Ky +'21fK12+‘21_‘K23

w

IS

H

1
o wl
e

N -
wiv

ﬁ44 = £, + 285 + 2J353 + T35 -Kpj .

To evaluate these matrix elements numerically with the integrals which
are tabulated in the literature, a table of the integrals { };1 must be
constructed from the tabulated atomic‘integrals (mn|pq) and (mn:p)
and the atomic orbital coefficients of IB-2. The model for allyl which

is taken is depicted below,

H
2
2
\YJ
° W 120°
H H

and the atomic integrals (mn/lpqg) are taken from the benzene CI
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c.é.lculationv of Parr, Craig and Ross (46) and the penetration integrals
involving the hydrogen atoms are computed from the tables of Root-
haan (47). These are listed in table IB-1 and the results of the com-
putation of the integrals L;}l are given in table IB-2. The numerical

values in ev of the matrix elements are

., = 3 W, -29.9746
#., = -0,0404
#. = 3.5346

His = 2.7929

i = 3 W 7192279
#,s = 0.0223
4,4 = 0.02030
Hss = 3V, -18.9004
Hss = -3.5346
Has = 3W, -13.634]

Solution of the secular determinant for its lowest root is carried

out by an iterative process, and the ground state function is found to be

’LPCI=0.9284' &, +0.0069 &, -0.3106 P, - 0.2038 @, (IB-15)

with correlation energy of 1. 7975 ev. This compares very well with the

result of Chalvet and Daudel which is (in our language)

D= 0.9249 &, 4 0.0660 P, -0.3133 F, - 0.2049 8, .

The method of alternant orbitals predicts for allyl a function of

the form
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Table IB-1
Atomic Coulomb and Penetration Integrals

(11111) = 16.930 ev (1:22) = 0.856

(11122) = 9.027 (1:33) = 0.013
(11133) = 5.668 (3:12):: 1.887
(11112) = 3.313 (1:13) = 0. 109
(11123) = 1.870 (1:23) = 0.039
(11113) = 0.376

(12112) = 0.923 (hyf11) = 0,566
(13113) = 0.017  (mf12) =0.074
(12113) = 0.136 (Byf13) = 0,077

0.524

[}

(13122)
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@1 -Jg— tand é_,, - tanZ$ 1454

3 = + (1B-16)
MaQ ¢ +\)—32. tan? 4 + tan?d )?

in which <% is determined by minimization of the energy. The equa-

tion for the energy as a function of & is given by

E(J) = 11 - 2\}—3ET tand # .5+ tan? & ('% W35 - 2%044)

-+ ZE tan34ﬂ‘ %34 + tan4} ?P/ 44

1 + % tanzf} + tanﬁﬂ}’

(1B-17)

Figure IB-1 shows this function, and the minimum in energy occurs at

tan & - 0.4500. This value of the parameter gives

C\‘BMAO = 0.9221 @, -0.3388 @5 -0.1867 P, (IB-18)

and a correlation energy of 1. 7797 ev. The spin density matrix (27)

from IB-18 is

0.6388 -0.1028 -0.2424
p =[-0.1028 -0.2645 -0.1028 . (IB-19)
-0,2424 -.1028 0.6388

The agreement of IB-15 and IB-18 is quite good and shows that
for allyl the pairing scheme of MAO is the dominant one since the co-
efficient of the one configuration @ 2 which is neglected by MAO is
quite small in the CI function. However, as the size of the hydrocarbon

radical increases, MAO will neglect more and more configurations



E(©)

-2.0 | L | |
0.2 0.4 0.6 0.8

tan

Fig. IB=1. Equation (1B=-17) as & function of the correlation

parameter tan <5,
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which have non-zero coefficients in the CI treatment. Itis interesting
to compare the results of MAO for benzene (48) with the CI treatment
(46). Here MAO accounts for 85% of the correlation energy, and
again the configurations neglected by MAO are of very small consequence
in the CI function. That work and the result here for allyl give support
to the validity of a wave function similar to IA-14 or IA-31 beinga
good approximation to the ground state of an odd alternant hydrocarbon

radical.



52

C. SIMPLE VALENCE BOND CALCULATIONS OF SPIN DENSITIES

Theory

Brovetto and Ferroni (49) were the first to apply simple valence
bond theory to the calculation of the ESR spe.ctra of odd-alternant free
radicals, taking for their example triphenylmethyl radical. Their
calculation made possible the interpretation of the complex spectrum
which was bbs erved; however, although it may have been tacitly assumed,
no mention was made of a linear r‘elation between the hyperfine inter-
action of a particular proton and the spin density at the carbon atom to
which that proton is bonded. McConnell (9) and McConnell and Chesnut
(3) have shown the validity of valence bond theory for the derivation of
the linear relation for the case of the C-H fragment.

To derive the spin density function in terms of the spin densities

at the individual carbon atoms we must evaluate the quantity

or) = <Alpld ) (1-3)

@ is the ground state electronic wave function and in the language
of simple valence bond theory is given by the superposition of the
canonical structures, ¢_i, not including long bond (bonds to a non-nearest
neighbor) or ionic structures.

¥osZ G4 (1c-1)

1

McLachlan (30) has proved recently that all the coefficients c. in IC-1
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are nece.ssar'ily positive within the following set of conditions:
1. Neglect of all ionic structures,
2. Exchange integrals between atoms of the same set
(starred or unstarred) are set equal to zero.
3. All the other exchange integrals involved in the calculation
of the ground state wave function are negative.

Thus we can write

plx) =z C Cy o lpl ey (1C-2)
ij ‘
and note that any sign dependence must arise from the matrix element
XALESE
We shall now prove that for an odd-alternant radical the matrix

element in question is given by the equation

1

Zn-m

Chlplay = 0% (16-3)

for which the zero results for all atoms in a '""closed'' island of the

¢, - ¢, superposition diagram, and the + ! (- ! ) results for the
i j ,Amm L on-m

starred (unstarred) atoms in the '"open'' island of the ¢i - ¢j superpo-
sition diagram. In IC-3 n is the number of bonds in any principal re-
sonance structure and m is the number of '"closed' islands in the super-
position diagram. A typical canonical structure which represents bonds

£ ® E I *
between atoms a and b, ¢ andd, ..., p and g, in which a ,C, c0s ,P

are starred atoms and b, d, ..., q are unstarred atoms, is given by

(50).
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¢K=\}’_

1 <, R v w = e
= 2 (-)T RHa*bc*d... p¥q. (1C-4)
2 R

R is the operator which interchanges the spin functions <« and B of
bonded atoms and JZ is the usual antisymmetrization and renormaliza-

tion operator,

H = fﬁl- > e . (IC-5)
P

Equation IC-2 can now be written

o(r) = _Z_i_ S e S -0)%* CRaxb. . g plQ a¥B...q ).
i, R,Q (1C-6)

Since the orbitals a*, b, ..., q are orthogonal and the operator p is a
sum of one-electron operators, both spin and space functions must match,
and any permutation of pairs of electrons in IC-6 will lead to a zero
value for the matrix element. Thus we need only retain the identity
permutation in IC-5. This simplification allows us to factor the func-
tions corresponding to the structures ¢i and cpj into a product of func-

tions representing bonds between pairs of atoms. For example, we can

now write

b = =— 1[a*() B(2) - 37() p(2)] [*(3) d(4) - E7(3) a(4) ]
K \)?1 % % - -%
, o0 INl “(m)° ° ‘[prp@i-}') q(n) - p(n-]‘) q.(n)] }' (IC_7)

Assignment of the spins in the manner illustrated by IC-7 gives the

proper phase to each canonical structure,
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Let I(i) represen‘.t the distribution function for the electrons
associated with those atoms making up a '"closed" island in the super-
position diagram of the structures (bi and ¢j and let d7(i) re-
present the element of volﬁme for these electrons. If we wish to cal-
culate the non-orthogonality integral between two structures, the quantity

can be expressed as
< ¢i)¢j> = ;—i—- fI(l) dm )/I(Z) dt 5 ... [ I(m) ar iy .fI' dr' (IC-8)
and one can easily convince himvself that
S i) dr. = 2

and, I' being the ""open'' island,

/I'd’r‘ = 1,

which yields the well -known result (50)

oy 45 ) = . (1C-9)

The spin density matrix element between the structures ¢i and ¢j can

be written

(o |5 Ser)s (o= Do) Pl > (1IC-10)
k k
~ (electrons) (atoms)

and since we have already observed that only the identity permutation
of IC-5 gives a non-vanishing result, we can associate electron k with

atom k.,
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To derive IC-3 let us first consider the various cases which
arise.

CaseI. K is in the closed island I(k).

a) K is a starred atom (electron),

. ‘ _ 1 ‘ :
Coilegep = —= J b WK AT, [10) a7, ... [Tar

1

e 1C-1
2n—‘m+l fpk Ik di (C 1

Let us write the integral kai'(K) ar K in the following form

T ={u¥uy - u¥ ¥ 0. - uX o T -
fpk k) d K (uk u - u¥u | Py [uk uj u uj ) f k.l (IC-12)
pairs P
of bonded atoms z k,1

% - T * 4 - u¥
B Yot 5 up+1) q:ﬁlk j(uq u.q_l_1 uq uq+l; drT

dl'rk

Carrying out the operation of Pl and rewriting, we obtain

2 - - T - -
= uk - I (% - wk . IC-1
fpk I(K) d'Tk uk _/'(ui ay - uj) b (up ) U-p U-p+1) ( 3)
T (u* a - uk daT
g (q qtl  q qtl ) 3T
k

In the expanded form of the integral above there are only two terms

which d~o not vanish by orthogonality of the spin function, namely

- - - - a-3(- -
fuf‘uz.,.u..”u.,.ou* u d7 and (-1) /u*uz.,..u.,”u,.“u aTr

i J n-l n —— 1 i j n —

. a7, dr,

where @ is the number of pairs of bonded atoms in the superposition
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diagram. Since o is even, these two integrals have the same value

and we arrive at the result

- l 2
(p7 = on-mil ay (1 -1)

n
(o]
°

(I1C-14)

b) K unstarred
I =:Zf’*'*_ % 1% o % 4 - a1k % Tk arT
f py k)7, = uf (0] uf - ufuk) pro(w¥e g-uke ¥ k) =

(IC-15)

By exactly the same type of argument which held for the starred case
we find that the two integrals have the same value and cancel each other

1

<Pk> R ——— uli(l-l) = 0 . (IC-16)
2

Case II. K is in the open island I'.

a) K starred

Following equations IC-11 and IC-12 we are led to

n-mm

[.,.fpklldv' = —— [ rar’ f1C-17)

When IC-17 is rewritten in a form similar to IC-13 we find

1 - - i - - .
1'aT'= : f IT uk(u* -u*u M{u* - u¥ * dT
J Pr n-m uy(upupﬂ P p+1) ( q g+l uquqﬂ) "z aT

ptk, L,y q k,j,z . k

<uf:ﬁL - ufug lpk)uf; u, - aﬁ w, >
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2
uﬁ :
= a.u. - I (u*u _-u* (u¥u  -u* %k
s f (u.Luj uLuj) (up up+l upup+l) (uquq+1 uquq+l)uy uk dz
P, q (:1'7'k
(1C-18)
For this case we observe that the only term which does not vanish by
spin orthogonality is ~f(u.*)z (1_12 )2 (u)(u)? ... (uH)? (u)2 ., (ﬁn)2 dr
1 L J A y enm—
dr
k
which gives the result
.2
(ololey = + == (1c-19)
b) K unstarred
By a completely analogous procedure we obtain
i
z % uk- ik wk *u  _-uk *u  _-uk
<¢ilpk\¢j> — f(uLuj uLuj) mn (u.pup_‘_l upupﬂ)uy(uquqﬂ uquq+1)uz dr
2 P, q d 'rk
(1C-20)
and we recognize this integral as being the negative of IC-18, leading
finally to
o
Coledey = - =in -2
which completes our derivation of IC-3.
The matrix of the Hamiltonian { 74 ij SijE I is constructed
using the usual rules of valence bond theory (50). For our purposes a
simplification can be made by observing the following relations:
., =5.Q + h.oa (1c-22)
ij ij ij

E=Q 4+ c€a

The matrix which we wish to solve for its lowest eigenvector takes the

form hij - Sij € l

°
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Perinaphthenyl

Sogo, Nakazaki and Calvin (23) observed that, upon standing for
several hours, a solution of perinaphthene in carbon tetrachloride began
to show a yellow color and the previously well resolved NMR spectrum
of this solution lost its resolution. The ESR of the colored solution
yielded a spectrum consisting of seven lines (intensity 1:6:15:20:15:6:1)
each of which was further split into a quartet (intensity 1:3:3:1). This

spectrum is interpreted as arising from the perinaphthenyl radical (I).

(1)

This molecule seemed to be a good example to test the predictions of
valence bond theory for the width of the ESR spectrum indicated the
presence of negative spin densities.

We must calculate the ground state electronic wave function, so
we proceed to solve the secular equation arising from IC-22. Itis as-
sumed that I) has D3h' symmetry. Since long-bond and ionic struc-
tures have been neglected, all of the principal structurgs can be gener-

ated from the four classes of structures:
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Py ‘ b2

NP 4 Z i Py

NN N R

From the four ¢i we generate four totally symmetrical functions as

follows:

3
1
b= o Z CJ_ (1 +R) ¢; - (IC-23)

i j=1
In IC-23 Ni is a normalization factor, and C;, C,, C; are operators

producing rotation of the structures c})i of O, -Zéf , and =~ ? about
the axis perpendicular to the plane of the molecule and passing through
atom 13. R is the operation of rotation by 7 about an axis passing
through atoms 1, 13, and 7,

Much of the labor involved in the calculation of the various matrix

elements can be avoided by noting that, if M is an operator having the
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symmetry properties of the molecule, any matrix element of that

operator can be written

SALAI, N—:N;(Z CL (L +R)g,[M | C Ll +R), >
: ‘ L K

1 —_—
= 55 2 (G Cp+C/RC +C C R +C RC_R)

NiN' K K
')og,L
(1C-24)
(oMo,
We now recall that
CR - RC, =0 j =1, 2, 3. (1C-25)
and R - R = 1,
and further that Z CLCk = 3 ZCL (1C-26)
LK L

since the operators C form a complete subset. Thus equation IC-24

becomes

comiy> = B8 ey (1-27)

1

The secular determinant which we must solve for the ground

state wave function is
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Solution of the resulting polynomial for its lowest root gives

€ 4.3757

or E Q + 4.37574,

Relative to structure ¢; , this represents a resonance energy of 2,8757d,
This energy is also 1. 0054« greater than the sum of the resonance

energies of naphthalene and allyl:

naphthalene = 1.3703 a
+  allyl = 0.5000a
1. 8703 a

Solution for the ratio of the coefficients of the ground state func-

tion gives:

L2 - 09,7827
Cy

<3 - 0.8788
Cy

4 = 0.3804 .
Cy

The normalization equation gives us the values of these coefficients

. > I _k s (IC-29)

1
Ct ik C, C,

Finally the ground state electronic wave function is found to be

P . 0.3999 Uy +0.3130 Yz + 0.3434 45 +0.1521 0 . {FC-30)

In order to use IC-29 for the development of the matrix of the

spin density operator, one must select linear combinations of the p's
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which exhibit the molecular symmetry, Those chosen are listed below:

P1_t ps t+ pg
“1\*?7 < ¢, l 3 | LPJ. > (1IC-31)
j

Cilpil ¥

6 P2 *pa tps tpg tppte

6
S LAY ﬁ;<¢ilp3+p37 +p“l¢j> (IC-33)

Use of these relations leads to the following spin density function for
the perinaphthenyl radical

p(r) = (-.176)(u% + u§ + u29) + (.321)(11% +uf +uf 4+ u’é

(1C-34)
+ ufy +ufy) +(-.220)(uf +ud +ud) +(.262)uf

in which u:,L is the atomic orbital centered on carbon atom i. The fol-

lowing diagram demonstrates the prediction of simple valence bond

theory for the spin distribution of the perinéphthenyl radical.
-, 1n6

The absolute values of the observed hyperfine coupling constants
due to protons 1 and 2 of (I) are found tobe [a;| =2.2, |a,] = 7.3
gauss (23). If one employs the linear relation between spin density and
proton coupling constant (3) with the value of the proporti‘onality constant

-22.5 gauss, the spin densities derived in this work lead to coupling
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constants a; = -4.0, a; = +7.3 gauss. The total spread of the spec-

trum is given by
S = 6(7.3) +4(2.0) = 55.8 gauss

which is to be compared with the experimental value of 50.4 gauss.
Simple molecular orbital theory without configuration interaction pre-

dicts the spin distribution which is displayed on the following diagram.

o)
16T

Benzyl

Pauling and Wheland (51) have treated the benzyl radical with
simple valence bond theory and develop the necessary secular equation

from the following set of canonical structures:

5 0. .
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These authors make the as sumption that the ground state function is of

the form
Y= aler +¢;) +blds + bu+ ¢5) (1C-34)

and report the ratio of coefficients a = 1.0279. Making use of the nor-
b

malization equation IC-29 we obtain for the ground state function
P = 0.3000(¢; +bz) + 0.2919 (b5 + ds + b5 ) (IC-35)

Evaluating the matrix of the spin density operator leads to the diagram

of the spin distribution for the benzyl radical
530

-. 306
, 393

- 22l

H 35

This can be compared to that predicted by simple molecular orbital

theory (52) 571

o
LI43

No experimental observation of the proton coupling constants in
the molecule have been reported. However, we can get some idea of

the ring proton couplings from the ESR of the nitrobenzene negative

ion (67) in which ag = 3.7 and a; = L
’ a3 0.65 asg
a-Methylnaphthanyl

Again using the results of Pauling and Wheland (51) we obtain

for this molecule
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1o

Y = 0.2685 ¢; + 0.2370 (65 + b3) + 0.1589 > o, (IC-36)
i=4

in which the canonical structures are

$10
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Evaluation of the spin density function leads to the spin distribution

diagram

SH2

- 368

-, 204

200 354

which is to be compared with that predicted by simple molecular orbital

theory (52) 450

.200

. 050 .00

There are no experimental results for this molecule at all.

B-Methylnaphthanyl

The canonical structures here are quite similar to those of a-
methylnaphthanyl and will not be enumerated. From the ratio of co-
efficients reported by Pauling and Wheland (51) we determine the ground

state function to be
, 9
P = 0.2969 ¢, +0.2609 (¢, + d3) + 0.1620 > 4 (IC-39)

i=4

The spin distribution diagram which is obtained with this function is



,608
-~. 103

209

- 133 _121

and that obtained with the use of simple molecular orbital theory (52) is

060 235 529

. 0bo

Again there are no experimental results available at this time.

Trivinylmethyl

Symmetry requires that the ground state wave function be of the

form

P s oagr 4 blor +ds +a) (1C-38)

in which the principal structures ¢i are

=N
v F

¢y | ¢z LJ? P3 Py

The secular determinant is developed using the usual rules of valence

bond theory and is found to be

1 53
- € z "2

= 0 (1C-39)

|

1
W

m

I

i
[3¥] Ne)

m
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whose solutions are
1
e = (1 +106) .
The lowest root corresponds to the energy

E = Q +1.8826a

for which the eigenvector is

¥ = 0.3531 ¢; +0.3381 (¢, + 5 + dg) .

With IC-42 we obtain the spin distribution

C C .349
.659 .~

i -.235

|
@

(1C-40)

(1C-41)

(IC-42)

"For this molecule simple molecular orbital theory (52) results in the

diagram

.25
.

(0]
C._.25
\clz/C
!
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Discussion

As very little experimental data is available concerning spin
densities in odd-alternant free radicals, we are unable to give a de-
tailed comparison of the predictions of this work with experiment.
However, it does seem pertinent to mention some of the limitations
which are inherent in the use of simple valence bond theorjr for estima-
tion of proton coupling constants in these compounds.

Valence bond theory without the inclusion of long-bond or ionic
structures is known to over-estimate the effect of electron correlation.,
LUwdin (26) has shown that there is a tendency for electrons of a spin
to accumulate on certain atoms accompanied by the accumulation of
electrons with $ spin on their neighboring atoms in alternant hydro-
carbons. However, simple valence bond theory assumes that this pre-
cess is complete. Thus we can see qualitatively that this method will
overestimate spin densities. Introduction of ionic structures into the
ground state wave function will have the effect of placing two electrons
with opposing spin on one atom and no electrons on its neighbor; neither
of these effects produces net spin density at either atom. Unfortunately,
the labor involved in the enumeration of all the ionic structures and cal-
culation of the necessary matrix elements is prohibitive.

Also it has been shown that as the size of an aromatic hydro-
carbon increases the contribution of the ionic structure;s to the ground
state wave function becomes more and more important. The diagram
in figure IC-1 i; taken from the work of Pullman (52) and illustrates this

effect.
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While these arguments tend to make the quantitative predictions
of spin densities obtained from simple valence bond theory suspect,
the conclusion that negative spin densities are a real phenomenon is
not affected. Polar structures merely reduce the absolute amount of
spin magnetization at a given position but can never cause the sign to

change,

D. Relation between C! Hyperfine Interaction and 7-Electron

Spin Density

Previously it was mentioned that proton hyperfine splittings of
the ESR of w-electron radicals have provided a useful means for ob-
taining valuable information about the electronic structure of these
molecules. McConnell (21) has shown that a particular proton coupling

constant, a in these molecules is linearly related to the diagonal

H,
element of the spin density matrix, PN by the following approximate

equality,

ay ~ QPNN o

This relation affords a sensitive test of the accuracy of the ground
state molecular wave function employed to describe the particular free
radical, when a comparison of calculated and observed coupling constant
is made.

Hyperfine splittings in these radicals due to magnetic nuclei
other than protons are now becoming available experimentally. Adam

and Weissman (40) have observed the splittings in the triphenylmethyl
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radicals due to C' in the methyl position. Cole et al. (54) have
obtained the coupling constant of the cB methyl radical, and Tuttle
and Weissman (55) have determined the coupling constant of a -C!3
naphthalene negative ion. With spectrometers of increased sensitivity
the C! hyperfine coupling constants can be observed from that small
amount of this isotope which is present in natural abundance. Recently
McConnell and Fessenden (.56) have measured the C! éplittings in X~
irradiated malonic acid from natural abundance. Thus it is most desir-
able to have a theory by which these interactions can be related to the
electronic structure of 7 -electron radicals. Especially is it desirable
to be able to use splittings due to isotopes such as C¥, N!* or N?P°
and S3® as probes for the determination of the = -electron spin density
at a position to which no proton is bonded.

In this section we shall present a theory which relates the coupling
constant of a magnetic nucleus within the 7 -molecuiar framework itself
to the = -spin density distribution. The relation will be shown to be a
linear one if the spin densities at each neighbor are included. The
necessary proportionality constants for C® are evaluated semi-
empirically, Numerical calculation of the coupling constant of the tri-

. phenylmethyl radical with C! in the methyl pﬁsition is carried out and
comparison with experiment is made. The splittings due to C® in
benzene negative ion and in the § and & positions c;f naphthalene

negative ions and in the p-benzosemiquinones are predicted.
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Calculation of Spin Density in the Molecular Plane

The usual description of a planar conjugated w-electron radical
is in terms of 7 and o orbitals, for which the 7 orbitals are anti-
symmetrical and the ¢ symmetrical upon reflectipn in the plane of
the molecule., The simplest molecular orbital wave function which em-

ploys this description is the Slater determinant

= |6, Cyeeea O T Tyeeadd T T .
qu ll'l rcyr11 nnol

The r doubly occupied o bonding orbitals and the corresponding r
unoccupied o¥ antibonding orbitals are localized on the various single
bonds in the molecule. That this restriction of localized orbitals is not
a serious one is shown by the work of Lennard-Jones (57) and Aono
(58). For the cases of the singly charged ions of even alternant hydro-
carbons there will be n bonding and n antibonding LCAO 7 orbitals
extending over the entire molecule, 2n being the number of atoms mak-
ing up the molecular framework, There are n bonding, n antibonding
and one non-bonding delocalized 7 orbitals for the neutral radical.
The manner in which the 7 orbitals are filled with electrons has been
given for these various cases in section A.

Inspection of LIJO reveals that this function cannot contribute
spin. density in kthev molecular plane. It can be shown that the doubly
occupied orbitals form a closed shell and make no contribution to the

unpaired sl;in density at all, and 7 itself is made up of sz atomic
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orbita.ls‘which mave a node in the molecular plane., Therefore, in con-
structing the ground state wave function, excited configurations must be
introduced which will allow spin magnetization to be realized in the
molecular plane. In the Introduction the proper excited c-onfigu_rations
for the isolated C-H bond were enumerated. In the present work a
generalization of the procedure for the isolated fragment is carried out,
taking into account the imr esence of neighboring atoms from which the
entire molecule is cons;tructed. First order perturbation theory is used
to treat the configuration interaction problem.

For the determination of the spin density at the protons, McConnell
and Chesnut (3) propose two alternative methods for carrying out the
perturbation calculation; one in which the series is thrown into closed
form and the other in which enumeration of the most important excited
states occurring in the expansion is carried out. We shall employ this
latter alternative which is described in section VI of that paper.

LlJO will not be taken as the zeroth order function in the pertur-
bation procedure, but, instead, we will take the function @ o’ a function
which includes some w-7 configuration interaction butno o -7 or
o -0  excited states. Hoijtink (59) has recently studied the 7 elec-
tron spin density problem with a 7-7 CI calculation which is similar
in its conclusions to those of section A. The function QSO used here
is quite similar to the function which is obtained by Hoﬁjtink. If é_s o
is a reasonable starting function (in the sense of reference (3)) the

ground state wave function to first order is given by
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@o ﬁP $;>
/J'/ground state - é Z ( @i (ID-1)

O

in which the @ i's are excited configurations of the o and =7 electrons
simultaneously, and # is the total Hamiltonian.
The spin density operator, p , is defined by I-3 , and the ex-

pectation value of this operator to first order is

(ID-2)

o) = (B el > -2 (@o‘f\”ig.i{(fi/fléo

1

If we wish to calculate p(r) in the plane of ’Fhe molecule, we note first
that the zercfh order matrix element, (@0] p 4_50> , Vvanishes every-
where in this plane. Since all 7 configurations making up @o are
constructed from atomic ZpZ orbitals which have nodes in this plane,
there can be no contribution to the density in the plane from any pure =
excited configuration.

Let us now enumerate explicitly those excited configurations
which are included in the following treatment. 7-7 configuration inter-
action leavds to the function Q_SO which is made up of four types of one-
electron excited configurations which are to be mixed with the basic
function t!JO . The configurations are diagrammatically

j antibonding

i  bonding o
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which corresponds to the Slater determinant I7ri ;ri wol . Here the
orbital T is the orbital occupied by the unpaired electron in the basic
Slater determinant. One must keep in mind the particular form of this
orbital for the individual case: neutral radical, positive ion or negative
ion. We shall include the doublet functions arising from one electron

excitations which are represented by

o
’ | = o
—_— . 2 L‘}I I7Ti T 7Tol
i
-—————*—————
LIJII - {W1 n WJI
< J
o
i
and the two doublets arising from
J 1
e x_© Vit T ['ﬁi”o”j”'”i”o”j”
i
—

1 - _ }
Yy S Lol - la 7 71+ 'Z‘”i"o”j’ 1.

Here again the convention is adopted of deleting from all Slater determin-

ants those orbitals which are doubly occupied and form a closed shell.

o Ty MyeeeMoee® T T T / is
T

For example L]JIF-'[G‘I T1...0 20070

r

abbreviated /7r.7r ™ ] .
1 O O

If the individual ﬁk‘s are self consistent, it has been shown

7(59,60) that the matrix elements of the Hamiltonian connecting .410 with
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the configurations LIJI, LPII and qJIII vanish as a result of the definition

of self-consistency., Therefore the 7n-7 CI problem in first order

gives the function

Séo = ¢+ Z .. LIJ," where qjij is the function LPIV"

There are several criteria which dictate the selection of ¢ -7
excited func‘;ions _@ i ° (a) equation ID-2 requires that for a particular
@— i to contribute to the spin density (to order X), it must have matrix
elements of the Hamiltonian and the spin density operator which are si-
multaneously different from zero; (b) the corresponding energy Ei
must not be so large as to obviate its contribution to the perturbation
expansion. With this restriction in mind we choose the members of
the set of @i's to be the following:

1. Doublets arising from excitation of an electron from a

particular O bonding to the correspon‘ding g * anti-

bonding orbital. There are two such doublets

= F Lo 5% - |&7 %]

Io- \/‘E P o p }O’b o°-p

~and

Go = = la*n & |- o7, T4 + 2|07 ox|]
110 g po’p p o p' po p

2. Doublets arising from the simultaneous excitation of a
particular g Dbonding to the corresponding O‘;;" anti-
P
bonding and of one electron from a . bonding to a TTj

antibonding orbital. From five electrons in five different
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orbitals five linearly independent orthonormalized doublets
can be generated. Denoting the members of this group by

{)_5 t];{w the following set of doubléts is chosen

1. L [ I-I+V-2VI+ VII-IX+X]
T V10

[I-I1-V+VII+IX-X ]

1
2 = —
@O"ﬂ - \Fé"

3
o

x4
@ or

5

[ II - II - V + VII + VIII - IX ]

[I-2HI+IV+VI-2VI+X]

]

[ 3I42I1-51IV -2V -VI-2VII+ 2IX+ 3X ]

aT
where
I = ‘7?1 Epﬂo 5"72‘3\
II = ly'ri gp?ro ok,
o = | o, T, T
v = | LR 0—;’;7?3.;
M = c’—p_O %ng
VI = \ﬂi 5P7TO _:’SWJ]
Vi = |7 C_’p”o "1:;7?3'1
VII = |7 o "O 5%;773.1
X = |7 O-p%o &;;ﬂj l
X = | ; 0—p7ro UI;;TJ .

We exclude in both these cases the excitation of one electron
from a O—p orbital localized between atoms p and g toa d‘i‘ anti-

bonding orbital localized between atoms r and s. Of the two doublets
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‘of type 1 only @Ho_contributes to the spin density to order A . Also
it can be shown that of the doublets of type 2, only é o’jr satisfies
both criterion (a) and (b). We then are able to omit the superfluous
superscripts and subscripts of the two contributing doublets, merely
writing @0. (p) and @ Gw(ijp)' Functions which will emanate from
excitation of an electron from either Q‘P to 7rj or Gil) to . need
not be included. Matrix elements of the Hamiltonian between these states
and éo ‘vanish Wheﬁ the component molecular orbitals are self-
consistent.

With these configurations now at hand, we can evaluate the va-

rious matrix elements of the Hamiltonian and the spin density operator

(in the molecular plane) which occur in equation ID-2.

N i o
(e 121D (p)> NR o ;,%
g | (®> =-2ic
< EN #! @WP }1 O‘g
Sool3) §,,6> = 2§ 7P

(ID-3)

oy lel B> =2 o o
oy 1018w =-F ol o

. = 0
G L | Wy >
Substitution of these matric elements into equation ID-2 leads to the

spin density in the molecular plane. Since the point in the plane is
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completeiy arbitrary at this point, it can be specified to be the nucleus
itself. Following the notation of McConnell and Chesnut (3) where 8(N)

is the spin density at the nucleus N, we have

&(N) = Z(AE e‘ Z-U(N o—*(N)[.?o % g 2)‘13'

P i3
i < i g
(15 ok + T j O"I; )] - (ID-4)

Neglect of excitations O—P =0, results in additivity of the spin density
at the nucleus with respect to the index p. According to the hypothesis
of the localized éharacter of the O orbitals, it is necessary to retain

in the summation over p in equation ID-4 only those & orbitals which
link a particular nucleus to its neighbors. Thus, when N is a proton,
there will be only one term, but when N is a carbon atom in sp? hy-

bridization, we must retain three such terms,

Special Cases

Equation ID-4 will now be specialized for evaluation of the
coupling constants due to in-plane protons and to C?. To aid in the
development of a relation with which these cases can be treated simul-

taneously, let us consider a fragment made up of six atoms
K! Ll
\K—-— e
KH/ \LH

in which the various atoms, K...L'", can be either carbon or hydrogen.
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7 orbitals can extend over all these six atofns if the coefficient of such
an orbital is equated to zero at the position of a hydrogen. The contri-
butions to the two-electron integrals in ID-4 from thése six atoms are
retained. Thus these integrals can be decomposed into the component

atomic orbitals as follows

Jook . =

* = *
o} €om Son (m G‘ lno‘ )
m,n
(ID-5)
- . 0_7\‘ —
i i
) P = . P = C. m n o %
jJ O‘ig jjo'p 2 im Jn( G“ )
m,n
where < b is the coefficient of the sz carbon orbital centered on atom

b which belongs to the LCAO MO T and the other quantities have been
previously defined. Then for atom K, that contribution to 6P(K) re-

sulting from just that O bond connecting atoms K and L, (yp, is

= -1 * c? *
BP(K) = - Z(AEave P) oi)(K) :rp(K) {[ ZK 2 SPIK @p ) +

(Lo lLok)+ e e g [La¥)+ (Lo |KaH) ]

2
CoL
2
famct . ES %
+J; Z‘ zxij [e.p Sk (KGP\KSPHCL L(LG‘p\LO'p)

tog ey (Ko JLOE) + oy ey (L O"PlKo*;)]}
(iD-6)

Of course, similar contributions from the other o bonds between K

and its neighbors must be included in the final determination of &§(K),
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In the final equa‘tioh for the spin density at an atom, atomic integrals
/
of the type (Ko |Lo*), (Lo |L' *) and (Lo [L'Ox%)are
ype (Ko o3 pl p” (Lo [LTE)
neglected because of the large distance between centers.
Equation ID-6 can be further simplified by employing Mulliken's

approximation (61) for integrals of the type (K Gp\ L O'E;) and (L o"p | Kcr;-;)

1
Ko Lq«~ — Kg | Kox)+ (Lo |Lgt* ID-7
( l ) = ZKL[( pl p)( Pl p)] ( )
in which S = {K|Ly, If
o = '_iwi,f.l.:_l
p [2(+8 )]z
O
X 'kt
O ° T %

P28

in which tK is the atomic orbital centered on atom K and tL on atom

L which make up the sigma bond and the overlap integral S0 is

<tK\ tL> , it can be further shown that

(LafLo®=-(Ko [KoH. (ID-8)

We shall be concerned both with sigma bonds between carbon and hydrogen

and between carbon and carbon; one will be designated \:T'CH and the
other GCC’ and} the average excitation energies are AEave CH and
E .
ave CC

Making use of the Mulliken approximation equa‘tién ID-6 becomes
5(K) = - 2(aE._ )7 o (K) o (K) (Ko | Kao# {[D K
ave P P P P 00

2 K L p) L

z B} B A ( _

+2J/ 12; XijDij] [D_ +23 Z . ijDij] (ID-9)
1,: i,]
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in which

DK= 1S

+ = +
57 Sk Sk T3 Sk Gk oL

°5K cp) -
The guantit DK +ZJZ Z A DK represents the %electronic
AuAnElY Yoo 3 ij ij " °P :
i, ]

spin density at atom K, denoted now by pkK , and the corresponding

quantity with superscript L, the spin density at its neighbor, pLL .

Now that equations are available for the spin densities in the

plane, we make use of equation 4 of McConnell and Chesnut (3),

a,, = 8wgP 8(K) to calculate the coupling constant for the various
3h
cases which are now enumerated.

0 ° Qp; 1 (ID-10)

p (mogy (mogy)

kS
2

b
0= (28 1s(e)|2 (D) (aE__ o)

(tD-11)

2
(l—SoC'E)

Q is the proton coupling constant of the hypothetical C-H fragment

(see equation 34 of reference 3) and has the experimental value of

-23 gauss (38).

Case II. K = CB;, K' = K" = LL = H.
ac F Q7P (ID-12)
M 13 (T~ | 705 )
§] -
Q= 45 () fso)r (—) ———F (AR )
3 3h I (1-82 )5 ave CH
oCH
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A comparison of ID-10 and ID-11 yields

Q' 1 %c® 400
Q 3 ey 502

Q' ~ + 18 gauss
a3 has been evaluated using the Hartree-Fock 2s orbital for carbon

determined by Torrance (62). However, a direct experimental evaluation

of Q' is obtained from the isotropic splittings of the ESR of the C*

methyl radical (54).

a+5

~ 14 gauss .

CaseIll. K = CB, K' = K

; = H; LL = C.
2o = 2Q! PRK - Q" (PkK“ PLL) (ID-14)
sk
o =__}_(°87rgﬁ) 125(0)]? 2 (AR )_1 (10 1 7966 )
3 " 3h I ave CC (1-8 )—12—
oCC

“({ID-15)

Comparing equations ID-13 and ID-15 we have

1
-52 2
o AEave CH ! SoCH
gr = " AEiecc 1-82 oot (1p-16)

oCC

If the assumption is made that the quantities in ID-16 are all the same
in magnitudg (i.e. a C-C 0 bondis very much the same as a C-H o

bond), then the calculated value of Q' is - 18 gauss, from Torrance's
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wave function.. Experimental estimates of this quantity depend on ac~-
curate knowledge of the 7 electron spin densities. However, in the
spirit of the assumption about the similarity .of a C-C and a C-H
bond, we can take as an experimental value for Q' one-third of the

coupling constant of C'? ~-methyl radical, - 14 gauss.

Case IV, K = Cl3;. K'=K'"=C; L=H,.
a =Q'p! - Q" (2p' - p' ) (ID-17)

When the experimental coupling constant for the a position of naphthalene
negative ion (aC13 = 7.1 gauss (55)) is combined with the spin densities
deduced from experiment (63), equation ID-17 can be used to estimate

Q". The spin densities, assuming Q = -23 gauss, are I 0.193,

pﬁ 20,072 and pv = -0,030 which with Q' =14 gauss give the value
QM e =13 ga,u.s.s,a

Case V, K =C'3;, K' =K" = L = C.

- 1" 1 At _

Numerical Calculations

Having made a rather incomplete empirical estimate of Q' and
Q", we can now compare the results of this theory with the experimental
coupling constaﬁt in triphenylmethyl and make some predictions for
cases which seem likely to have experimental data within the near future.

Experimental spin densities for the triphenylmethyl radical are
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unavailable, but we can compare the results given by various theoretical

treatments. We summarize these spin densities below

Method Methyl Carbon Neighbor cB Reference
Simple MO 0.307 0.00 12,6 Section A
Valence Bond 0.564 -0.230 33 (40)
Valence Bond 0.616 -0,226 34.5 (40)

(with twist)

MAO 0.360 -0.065 17.9 Section A
Hartree-Fock 0.413 -0, 045 19.2 (64)
Anisotropic 0.68 0.00 28.6 (40)
Coupling

Experimental 26 (40)

Calculated coupling constants were arrived at assuming that Q' = -Q'' =14

gauss, Since both theoretical spin densities and the values of the nec-

essary constants are uncertain, the comparison above only shows that

the predicted coupling constants are of the correct order of magnitude.
Predictions for interesting cases for which experimental data

should soon be available are
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Naphthalene negative ion, B position . . . . . +0.4 gauss
Naphthalene negative ion, d position . o . . -6.6 gauss
Benzene negative ion . . . . . . . . . +2.1 gauss
p-Benzosemiquinone (C=0), . . . . . . . -0.6 gauss *
p—Benzosemiquinone (C-H). . . . . . . . +0.5 gauss *

*Calculated spin densities from the work of Bersohn (8)

Discussion

Equations have been derived in a simple way which emphasize
the importance of the 7 electron spin density at a neighboring atom for
the coupling constant of the atom itself. Thus if the spin density at the
neighbor,is negative in sign, the coupling constant which is measured is
increased. The analysis of the diagonal component of the nuclear coupling
tensor between C!? and the odd electron in malonic acid radical by
McConnell and Fessenden (56) shows clearly that the sign of Q' is posi-
tive. Electronic theory of ¢ bonds gives much support to the assign~
ment of a negative Q'., Analysis of the anisotropic coupling of the proton
and electron in X-irradiated malonic acid single crystals (65) shows
that the sign of Q (proton constant) is negative, and there should not
be such a difference between a C-H bond anda C-C 0 bond as to
cause an opposite sign for Q'.

There 'are several approximations in this present theory which

have been made unnecessary by the recent work of McLachlan et al. (66),



90
who havé developed equations which give the same conclusions as this
work, but the calculation is performed in a much more general way.
The exact form of the excited wave function was not required, nor was
it necessary tb invoke any approximate method for evaltiating the molec-
ular integrals.

Numerical calculations and predictions have been included here
for the purpose of illustrating the way the theoretical formulae can be
used. We want to emphasize that the numerical values of the necessary
constants are not to be taken as final. Experimental data is still rather
sparse, but accurate determination of these constants will make it pos-
sible to evaluate the 7 electron spin density at positions where no proton
is bonded. Further, it is probably a bad assumption that the sigma
bonds c;)nnecting an atom to its neighbors are independent, and a complete

theory, when enough experimental data is at hand, must account for

interactions between these bonds.
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APPENDIX TO SECTION IA
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Relaxation of the assumption of a single splitting parameter
leads to the more general form of TO
T, = ’(3—1 ¢ + b1y ). °(an¢n + bn¢n')¢o
(A1A-1)

(314-;1 - blzl;l e »o(anq—’n - bn$n')l

Application of the same procedure described in the text has the effect
of leading to different coefficients for the various functions which arise
from the expansion and projection of Toa

The molecular orbital spin density now takes on the form

i 1
p(x) = (N") 1{¢o¢0 TSk 40t g Z(bi\?/ |
i _é.:— i ;

(4,6, + 40,8, - 20 81+ c > m( )( ) 8,9,

4 2 4 3 4
* 3 Z (bi (3_}_) + 3 ( ) ¢i¢i' ¥ Z{E‘:.:) ci)od)o }
wital \a, it a, ila;
(A1A-2)
2

2 4 2 4
i i a1t = b — b, .
in which N 3 Z( 1'.> + 3 > 1')(b3 + > bi' .
i\ a, izjra./ \ a. ila,
i i ] _ i

The formulae for the atomic orbital spin density which corre-

spond to equations IA-40 and IA-41 are



) d
a. i#j\l a a
1 J
2 2 4 8 2
+ (b) oA + Z CiA[-é-(bi)+ g(bi)
i\ a, i a. a,
i i i
8 2 4 3 2
+ = s ,b + = /b -
g i
a, izj \a,. a,:
i j i

and

a a. a.
i i i
8 2 2
- = b -
i%j \a./| a.
i
To determine the sign of bi the same type of argument as pro-
a,
i
posed in the text can be applied,
n
= + >
:‘EGS Lpo kk Lle
k=1
where
4 Wok
T E-E_ (ALA-5)
k o

_ 3 ko
and jipok = -J; o (AIA-6)
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hk, thus b}* , 1s a positive quantity because of the positive value of
ko ®k
ko °

Inclusion of different parameters has the effect of weighting
the different configurations differently, which is certainly the more
reasonable case. We note that the conclusion of negative spin density

at the unstarred atom is still valid in this more general treatment.
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Section II

ELECTRON RESONANCE STUDIES OF SOME SANDWICH COMPOUNDS
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Introduction

The unusual structure and bonding of the ''sandwich" compounds
have stimulated a large nﬁmber of experimental and theoretical studies
of the behavior of the various transition metal ion analogues of ferro=~
ceﬁe (1). The vast majority of the previous experimental investigations
has been concerned with the preparation and characterization of these
substances. In this section the results of ESR experiments with pure
nickelocene (powder), pure cobaltocene (powder) and vanadocene dis-
solved in ferrocene (dilute single crystal) will be déscribed, Only
qgualitative conclusions about the '"spin Hamiltonian'' for the po§vders
can be made, but the single crystal experiments with vanadocene allow
a more detailed analysis of the ground electronic state of this compound
to be made, This information, coupled with the solution ESR spectra
obtained by Porterfield (2), permits the evaluation of the zero-field
splitting parameter of V+2 in the cylindrical electric field of the
c;yclopentadienyl rings.

Since this series of molecules is relatively new and unusual,

a short review of the current ideas about their structure and bonding

"sandwich'

seems appropriate, The first real confirmation of the
configuration of the rings with the metal ion as filling followed from the

X-ray crystallographic determination of the structure of ferrocene by



101
Dunitz and Orgél (3) The molecular structure which they found is

shown below,

Any explication of the bonding of the sandwich compounds must
account for their relative stability, the aromaticity of the rings and the
magnetic suscepﬁbility of each cogener. Dunitz and Orgel (3) made the
proposal that these properties are consistent with bonds involving the =
orbitals of the rings and 3s, 3p and 3d atomic orbitals of the transition
metal ion. In the neutral mqlecule the metal is present as the dipositive
ion, and two covalent bonds connect it to the T molecular orbital sys=
tem of the rings. Overlap occurs Between the highest bonding orbital of
the rings and the 3d+1 atomic orbital of the n‘neta.lo Thus for ferrocene

.

one may assign the electrons as follows:
(4) () (B)* (m)* (D)*

where
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A - argon core of metal
C - core of filled molecular orbitals of rings

B - bonding orbital between de

(metal) and cpe,
(rings) g

lg

H - hybrid between metal 3s and 3do

D other 3d orbitals of the metal,

i

The electronic configuration of any other metal sandwich compound
can be derived by adding or removing electrons and by making allow~
ance for Hund's rule of maximum multiplicity, While this picture is
quite qualitative, it does account for the aromaticity of the rings and
the multiplicity (magnetic susceptibility) of most of these compounds.
Robertson (1) has considered the theory of the magnetic be-
havior of the sandwich compounds as it relates to ESR experiments.
We shall review his predictions and make comparison to the experi~

mental situation when possible in a later section,

Experimental

Materials

Nickelocene and coBaltocene were prepared by the method of
Wilkinson (4), and no pa;:ticular modification of the procedure was nece
essary. Reagent grade starting materials were used and at all times
the cyclopentadiene was freshly distilled, In both these cases the pro-

duct was purified by extensive sublimation (until no residue remained),
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but no analysis was carriéd out. Nickelocene is a dark green crys-
talline substance which acquires a white film of oxidation product upon
prolonged contact with air. Cobaltocene is a similar material almost
black in crystalline form but dissolving in benzene to give a blue color
in dilute solution,

Wilkinson's method for the preparation of vanadocene was also
employed (5), but since the details given are at most sketchy and the
preparation itself far from trivial, the technique which finally proved
successful will be recorded, The overall course of the reaction is
VCl; + Na(Cs Hs ), —> V(Cs Hjz ), + NaCl + oxidation products
and the VCl; is obtained by the thermal decomposition of VCl, (6)0

Reagent grade V, Oz was intimately mixed with an equal weight
of carbon and placed in a glass tube (30 mm; 2 ft) adapted as a furnace
with wrapped Nichrome wire and asbestos tape. Inlets for both chlor~
ine and nitrogen were provided and at the exit a liquid air trap was at-
tached by means of a ball joint. - After preliminary heating and flushing
with tank nitrpger; to rid the mixture of adsorbed water, tank chlorine
was introduced., At the temperature used, 300°C, the products distilled

into the trap which was maintained at 0°C:
8C +15Cl, +2V,05 22VCl, +2VOCl; + 8COCl, .,

Separation of VCl; and VOCIl; was unnecessary because at the tem=
perature of the subsequent thermal decomposition of VCl,, the VOCI,

volatilized from the reaction., This mixture was refluxed under a stream
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of dry nitrogen at 150°C for approximately 48 hours, and the result-
ing VCl; was used without further purification. 2 VCl, — 2 VCl,
‘ A
rci, t.

The solvent for the final reaction was dimethoxyethane, Every
care must be taken to avoid the presence of water in the reaction; so
that the solvent was used immediately after its distillation from LiAlH,,
Freshly distilled cyclopentadiene was introduced in two fold excess to
finely chopped sodium, After stirring for several hours to complete
the formation of the salt; VCl; was added and the reaction allowed to
proceed under nitrogen for 3-4 hours, It was found expedient to use a
two fold excess of Na(Cs Hz ), » After completion of the reaction, the
mixture was pumped to dryness and the product separated by immediate
vacuum sublimation from the original reaction vessel at 75° C at a pres-
sure of 1()““4 mm Hg.,

Vanadocene is a lustrous deep pﬁrple solid which decomposes
instantly on contact with air to a dark brom;n material. The purified

product was sealed under vacuum to be opened and handled in a nitrogen

filled dry box.

Crystal Growth

In order to achieve a spectrum of vanadocene whose fine struc-
ture is not obscured by intermolecular exchange effects, the molecule
must be incorporated into a host lattice as a substitutional impurity.

Requirements for a host lattice include diamagnetism, a known crystal
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structure‘ and a molecular structure similar eﬁough to the impurity to
allow substitution in regular lattice sites., After unsuccessfully at-
tempting to substitute sandwich compounds into such materials as durene
or naphthalene, it was decided to use as the diamagnetic host ferrocene
itself. Since the great sensitivity of vanadocene to water and air were
well known to us at this time, coprecipitation was not attempted, and
the crystals were grown by slow cosublimation from a constant temper-
ature bath maintained at.37°C. The crystals which were obtained had

fairly well developed faces but often appeared to be twinned.,

ESR Spectra

Neither nickelocene nor cobaltocene give a measurable ESR
signal at room temperature or liquid nitrogen temperature., A cavity
which operated at liquid helium temperature was constructed. Although
the design of this cavity is rather esoteric because it was originally
designed for single crystal experiments at helium temperatures, it was
not used for this purpose and the modifications necessary for crystal
reorientation are superfluous for this discussion; so this equipment will
not be described in detail. The cylindricai cavity operated at X-band
.wavelengths (9.4 Kmc), and detection was effected with the usual Varian
equipment using 400 cps magnetic field modulation. The dewar system
was designed and built by Dr. T. Cole and its description is to be found
in his thesis (7). For the vanadocene spectra which was obtained at

room temperature, a k-band spectrometer (22.5 Kmc) of conventional
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design éonstructed by Dr. R, W, Fessenden was employed. The
cylindrical cavity was detachable so that crystals could be mounted in
the dry box, and precaution was taken to avoid the leaking of air into
the cavity., Varian equipment was used to phase-sensitive-detect the
signal, and magnetic field modulation was again at 400 cps. After a
crystal was mounted in the d.ry box in the desired orientation by eye,
the angle between the magnetic field vector and the perpendicular crystal
axis was measuréd on the vernier of the rotatable magnet, |

Figure II-1 shows the spectrum of nickelocene powder at 4.2° K
and figure II-2 that of cobaltocene powder at the same temperature,
Calibration was carried out externally by measuring the separation be~
tween hyperfine peaks of a dilute MnSO, solution and internally with the
free radical, dizheayl picryl hydrazyl (DPPH), In figure II-3 illustrative
spectra of vanadocene in ferrocene at various angles of the magnetic
field and some vector in the (100) crystal face, when this face is oriented
parallel to the floor of the laboratory (plane of rotation of Ho) are re-
presented., In figure II-4 the magnetic field at vs;hich a line occurs is
plotted versus the angle which the magnetic field vector makes with the
vector described above., The angular variation for the orientation of
the crystal with its (100) face perpendicular to the laboratory floor is
depicted in figu.re II-5, The relative intensities of the lines from the
first orientations is given in table II-1. It should be emphasized that

these crystal orientations are very approximate due to the great diffi-

culty of handling the crystals with the heavy rubber gloves of the dry box.
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| | | | | !

2.7 29 3.1 : 3.3 3.5 3.7
Ho ( Kgauss)

Fig. ll-1. Powder spectrum of nickelocene at 4,2°K, Frequency

of incident radiation 9.k Kmc. # = 20.



380 ¢

| | | | |

2.8 3.0 3.2 3.4 3.6
Ho (Kgouss)

Fig. 11-2. Powder spectrum of cobaltocene at 4,2°K, Frequency

(19]

of incident radiation 9.4 Kmc, a T,
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& =50°

8 = 90°
| | l | ]
4 5 ' 6 7 8
Ho ( Kgauss)
Fig. 11=3. Illustrative spectra of vanadocene dissclved in &

crystal of ferrocene. 9 measures the angle between Hp and & vector in
the (100) plane. (100) is coplanar with the plane of rotation of Hy.

Freguency of Incldent radiation 22.5 Kmc, % = |0,
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Table II-1

Nlustrative Resonances When (100) Is Coplanar with Plane of Ho

H B
res Intensity*
0° 7550 gauss 4
6825 4
4275 14
10° ‘ ‘ 7550 5
6825 7
4350 17
30° 6330 5
5925 7
4825 10
40° 6650 8
6360 12
6225 4
60° 6475 5
6100 7
4750 15
80° 7475 6
6930 3
4350 , 21
120° 5700 12
4675 17
150° 5550 8 (broad)
4500 13

*Peak heights in cm.,
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Also optical goniometry was completely impossible because the contact
with air would have decomposed the sample. The faces were assigned
using the crystallographic information given by Pfab and Fischer (8).
Magnetic field calibration was carried out with a Sensitive Research

Instruments fluxmeter (Model F'S) and the internal marker DPPH,

Theoretical Background

Spin Hamiltonian

Expérimental results of ESR are usually reported in terms of
the parameters which occur in the so-called '"'spin Hamiltonian''. We
shall sketch the development of this method for representing the energy
and eigenfunctions of magnetic electrons in an ion situated in a crystal-
line electric fiela and show its form necessary for the compounds we
are concerned with,

Abragan and Pryce (9) express the different factors which con-

tribute to the total energy of an ion in a crystal as follows:

H %F+ WCF+ Lt ;,?/H+ )Z/SS+ Hg ™ e H- L (U-1)

-+

ﬁ= ﬁF WCF t ﬂﬂi (an)

where VF‘ - - energy of the free ion
| %CF - - energy of interaction with the crystal field
MLS - - spin-orbit interaction, X L-S
# H - - interaction with the external field, (L + 25)- H

%SS - = electron-spin electron-spin interaction,



114

T B 3(rjk°sj)(rjk'sk)]

. 3 5
js k rjk rjk
%N - - interaction (magnetic and quadrupole) of nucleus with

field due to electron

Y ﬁnH - I - - direct interaction of nuclear moment with field.

The perturbation Hamiltonian /' will be reduced to the form
;fr”' . =S+ D°*S+ Heg*8+ S*T°I+ 1Pl (11-3)
spin

-yp H-I- p°H. vl - H

in which D, g, T, P, and J are tensors and the eigenvalues of II-3
are determined by spin variables alone. Experimental data is to be
expressed in terms of the principal values of these tensors, This is
the most general form of the energy , and for our purposes it will

be necessary to retain only the spin-orbit and Zeeman terms of II-1
/
H = xL-s+p(L+25)-H. (11-4)

We now restrict ourselves to states arising from the ground term
(lowest eigenstate of %F) and to a ground state (lowest eigenstate of
# CF) which is an orbital singlet. The first restriction as sureé us
that we are deaiing with eigenstates of L and S, and the latter allows
the energy to be computed without the necessity of resorting to a secu-
lar equation with the various possibilities of orbital degeneracy. These

two assumptions are plausible since the separation of various terms is
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of the order of 1O+5 cmm1 and the ""quenching of orbital angular momen=
tum" by crystalline fields is a familiar phenomencn in the first row
transition metal ions. It will be found that these conditions are indeed
fulfilled for the cases of nickelocene and vanadocene, but that the
ground state of coﬁaltocene is probably nearly degenerate.

The whole advantage of a spin Hamiltonian is that the energy of
the system can be computed from matrix elements involving spin vari-
ables alone., Thus we ‘will "integrate out' the orbital momenta variables
which occur in the set of states |07 , ..., [ny . The energy to

first order is given by

'W"1

Lol ' | oy

2BH - S (11-5)

1]

since by hypothesis <olL| 0y = 0, To second order the energy is

WZ

- > o|B(L+25) H+L-S[npmn|p(L+25)-H+ L:Slo>

E -E
n+o n o

(11-6)

- > ' Z‘ <o]Liln7<n [Lj |0y (xsj+ gSHj)(hSi+ BHL)

n¥o 1i,j] EnuEO

;Xz%i‘ Q.[Im?)

Making the substitution

AIJ = Z <O‘Liln>(n! leo> = -/L

ji
n¥o E -E
n o

and combining the first order energy, the desired resultis



= 2 2
4 5 2 2pH, S, - > /Lij()tsistF,e H, H,

spin
isx,v,z i,j=x,V,2
+ 2ABH, sj) (11-8)
which is equivalenf to
2 = PBHe.g+*S+ SeD.5+ p2HY o H , (11-9)

spin

A ij is a symmetric dyadic since {o|L\nY is imaginary and

equal to the negative of (n|L\lo) and can thus be diagonalized. Fol-

lowing Robertson (1), the zero field splitting term can be written

S?2 L 2 s% = Se(s+1
A + /A 8P+ A (/LXX+JLyy+JLZZ) (s +1)

XX X VY Y ZZ Z

1 2 _ g2
+ 3 (W V(S - 87)

g (A A ] 8% -5 s(s + )]
(11-10)

The spin Hamiltonian now has taken on its familiar form

1
= H + + 2 .=38(s+1
%spin gzB zsz g BHXSX gyﬁHySy * D[Sz 3 S( )]

®x

2 2
+ E(sX - sy) . (11-11)

and for a crystalline field of axial symmetry is given by

1
= + 5 +H S5 ) o+ z .=
;E/spin g“ﬁHZsz g, F(HXSX = D[sZ 3 s(s+1)] .

Y

(11-12)
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A bit of discussion of the various quantities which are introduced
by this method seems warranted. Spin-orbit coupling vanishes in first
order, but the term A° /\,i_ S.i Sj is the manifestation of this effect in

J

second order and gives rise to the zero-field splitting as
1
D = - A2 - + . I~
M, Ut A )] (11-13)

There will also be a contribution to the zero field splitting from the
electron-spin electronmlspin interaction in II-1, However, this quantity
is rather difficult to evaluate and is claimed to be usually small com=
pared to the spin-orbit interaction (9); so it will be neglected here. The

anisotropy of the g-factor is also determined by the tensor

g = 2(1 - x /\/ii) i = x,v,2; (11-14)

so that for the Hamiltonian II-4, D and g, are related by the equation
_ A

D = -~ > (g, -g.)- (11-15)

The spin independent term B2 /\,ij Hi Hj gives rise to temperature
independent paramagnetism,

It should be mentioned here that, for the case of a near-degenerate
orbital ground state (cobaltocene), formulae resembling those which have
just been developed can be written in terms of a fictitious spin, We
shall ﬁot dwell on this possibility.

In a recent paper Schulz-DuBois reports the results of a calcu-

lation of the eigenvalues and eigenvectors of II-12 for Cr-lr3 (10). This
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e . . . +2 .
ion is isoelectronic with V so that these results may be used directly
in the interpretation of the vanadocene spectra. The Hamiltonian II-12
"is referred to a coordinate system determined by the internal field,
and it is convenient to transform this equation to a coordinate system
which has for its z-axis the magnetic field vector., The result of this
transformation to a spherical system in which the angle & is mea-

sured from Ho to the axial crystalline field vector is given by
4 - 2,0 . 2,0 2,0 1 . 20
= (g“ cos + g, sin )ﬁHSZ + D(cos - sin ) e
2 1 1 Saint \
[s? -3 S(s +1)] + D= cose’sin [(szs++ s+sz)4—(szs_+ sgszn
+ D sin?d (s2 +5%). (11-16)

The solution of the fourth order secular equation

{(n/y.-wlm>/ = 0 (11-17)

1

.3 3
o = s o 2

NI)—-

9

is carried out numerically, and the eigenvalues and eigenvectors are
.2
(g” cos?d + g, sin B )BH
D

plotted as a function of the parameter

at < intervals of 10° . In figures II-6 and II-7 the plots of these
oy JL o o .
quantities at = 0 and < = 90  are reproduced from this paper.

Eigenvalues are described in terms of fictitious quantum numbers

labels

o]

s such that at any magnetic field strength

o
ofwi
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Fig. 11-6 Energy levels of (11-16) as & function of magnetic fleld

at O = 0°, Reproduced from reference (10). The sign of D is taken

negative,
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Fig. 11-T Energy levels of (11-16) @s a function of magnetic
tield et -9 = 90°, Reproduced from reference (10). The é!gn of D

is taken to be negative.
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the highesf level and - % labels the lowest. Naturally, these are not
pure states, in general, but are given in terms of the high field eigen~
states |[m > Dby the equation

[a > ': a(n; m) |m > (11-18)

"% Mmiw

3
2

The selection rules for the absorption of emission of radiation are
ASm = 0, +1 butnot AS; = 0, +1l. We shall make a good deal of

use of these results in the interpretation of the vanadocene spectra,

Crystal Field Theory

Robertson (1) has discussed the crystal field theory of the sand-
wich compounds and can account for the observed magnetic susceptibility
(of all except Ti(CsHs), and Mn(Cgs Hg ), by strong crystal field
theory. Under the perturbation of the cylindrical electric field of the
rings, the 3d levels of the transition metal ion are initially split as

follows

dy
3d
de

free ion

The multiplicity of the ground state can be arrived at by putting the
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appropriaté number of d electrons into this scheme, treating the dy
and de€ levels as individual groups for the application of Hund's rule,
+2 . . .
For examples V = in vanadocene has its ground state schematically

represented by

vlw

V(Cs Hs ), L= 0

and, after inverting the level diagram to consider two positive holes

as equivalent to 3d®, nickelocene is given by

S

Ni(Cs Hg )

Of course, the two degenerate subgroups will subsequently be further
split by the crystalline field, spin-orbit, etc. Since the 3d orbitals
of the metal ion are involved with bonding with the rings, the dY and
d € are no longer pure atomic orbitals but include the effects of inter-

action with the rings.
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Interpretation of Spectra

Nickelocene

The important experimental facts which are derived from the
powder spectrum of nickelocene can be summarized as follows:

1., There is only one line,

2. No signal is found at room temperature either in
the powder or in dilute liquid solution or in a
diluted single crystal,

3. The line is only slightly anisotropic,

4, The effective g-factor is 2.13.

5, The line width at 4,2°K is 110 gauss,

6. A violent phase transition slightly above liquid
nitrogen temperatures insures a truly polycrys-
talline sample,

It must be realized at the cutset that very little quantitative in=
formation can be realized from a powder spectrum., What follows is
an attempt to enumerate the factors which influence the powder spec-
trum of nickelocene and to construct various plausible sets of these
factors which can explain the observed facts,

First a brief review of the results of previous ESR experiments
with Ni-iiz in various salts is given. The zero field splitting parameter,
D, varies from =3.5 cm™ in NiSO, ° 7TH, O to =0.5 cm"l in NiSiFge 6H, O,

The g-factors of salts which have been studied are isotropic and lie in
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the rangve 2,14 - 2030. In several compounds the rhombic component
of the crystal field must be included, and E is generally of the order
0,1 -1.0 /cm“1 when it was necessary., Resonance absorption was ob-
servable at room temperature in all the cases reported by Bowers and
Owen (11) and by Ingram (12), An interesting observation is made for
the case of NiéiF(,f- 6H, O that the parameter D decreases with de=
creasing temperature, being reduced in magnitude by a factor of four
on going from room terﬁperature to 14°K (13).

The eigenvalues of the spin Hamiltonian II-12 for which S =1

are given by the roots of

W3 + 2D W2 + (4D? - g?2B2H?) W - 2D g2 g% H? sin2 = 0,  (11-19)

To derive II-19 from the equations of reference (13) we have made the
assumption that the g-factor is isotropic., II-19 is not factorable for a
general angle between HO and the axial crystalline field vector; howe

ever, for F= 0° and <%= 90° factorization is possible, yielding

the roots
He oo W, = 0
W, = gBH-D : (11-20)
W; = -gBH-D
deg9oe  w, = -D
W, = - —2];- [ D - (D? + 4g? p2H? )%] | (11-21)
W, = - e [ D+ (D? + 4g? @ZH?‘)%] o

The variation of these eigenvalues with Ho is depicted in figure II-8,
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With this background we can now investigate the following pos-~

sible effects on the powder spectrum of nickelocene.

Anisotropic g-factor

At room temperature in a powder this effect could lead to a
very kbroad signal (of width (g” - g, )BH) which may be obscured by
electronic 1'1oi;e, Since the - ¢4 of a particular crystallite is random,
a distribution of individual lines would make up the single broad ab-
sorption seen by the spectrometer. In dilute benzene solution, the spin-
lattice relaxation time, Tle’ must be shorter than the time for molecular
tumbling ( 10”11 sec) in order that a g-factor anisotropy be operative
(14,1%). Typical values of Tle lie between 10--8 and 10‘“10 sec for transi-
tion metal ions in solution., Assuming for the moment that this condition
is satisfied, transitions in a diluted and pure single crystal should be
observable at room temperature, and, in fact, they were not found,

Further, the temperature effect of nickelocene could be explained
by assuming low lying orbital states which become depopulated at helium
temperature, However, in octahedrally complexed Ni+2 the nearest
orbital state lies about 104‘cm"1 above the ground singlet (11). The
fact that previous ESR experiments have found a finite zero field
splitting but an isotropic g-factor may seem mutually excluded by equa~
tion II-15 . However, for Ni+2 D is probably determined more by
the electron-spin electron~spin interaction than by the second order

spin-orbit coupling (9), and in the derivation of II-15 this effect was

neglected,
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It now seems safe to conclude that an anisotropic g-factor alone
cannot explain our results and, based on previous experimental and

theoretical conclusions, is quite an unattractive possibility,

Zero Field Splitting

In order to use the level diagram in figure II-8 for discussion
of a powder spectrum, the reader must attempt to visualize the gross ef-
fects of averaging this scheme over angle. A series of guesses of what
the powder spectrum of nickelocene would look like at various magni-

D . . . o

tudes of the parameter o v in which hv is the energy of the incident
radiation follows. For simplicity we shall assume that the g-factor is iso-
tropic and that the broadening effect$ of the dipole-dipole and isotropic

exchange interactions are small,

is — =0

Only one line will be observed for this case because the levels
in figure II-8 are completely symmetrical., This possibility accounts
for the occurrence of only one line, but it cannot explain the absence of
absorption at room and liquid nitrogen temperatures.

.. D
ii, v > 0

At small values of this parameter (0.1 - 0.5) two lines will be
seen sepaI;a‘ted in field by approximately the value of the splitting pa-

rameter expressed in gauss, but as this ratio increases in value the
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high field vcomponent of this doublet will be unattainable at the mag=~
netic field available for our experiment ( 7500 gauss),

iiie —2 >2 01

hv

For this case the spin will be too tightly coupled to the internal
crystal field reciuiring very large magnetic fields to split the Zeeman
levels sufficiently to allow resonance absorption. Of course these
transitions are allowed 'but will not be seen at the magnetic fields

attainable with the magnet which was used.

Isotropic Exchange Interaction

Pryce and Stevens (16) have shown that for non-equivalent ions

in a crystal the term Z Aij Si*‘Sj should produce a broadening of
' i,]

the ESR absorption line, This will be in addition to the '"natural'’ line
width caused by the dipole-dipole interaction and the averaging of the
spectra from various g 's in a powder sample. Itis difficult to
imagine that Aij is a strong function of temperature unless the phase
transition which Ni(Cgs Hz ), undergoes in some way causes the various
Niﬂi-2 ions to come into closer proximity with one another at low tem-
perature, Even if this is the case, the effect is working in the wrong
direction to explain the absence of an absorption at room temperature
and its presence at 4. 2°K.

The fact that the line width is only 110 gauss indicates that this

effect is very small, (Ni(NH,),Br, has a polycrystalline line width
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at room temperature of 1200 gauss (17)). Actuall’y, it is attractive to
invoke the '"exchange narrowing'' concept of the Van Vleck theory for
nuclear resonance (18)., Pryce and Stevens do believe that there will
be an effect on the fourth moment of a spectrum from isotropic ex-
change between non-equivalent ions but are unable to estimate its mag-
nitude., At any r.ate, the broadening of the second moment is clear and
mus t be taken here in the absence of a more complete theory to be the
dominant process, This 'all leads us to conclude that the intermolecular
exchange parameter is probably quite small for nickelocene and that no
important features of the powder spectrum have been obscured.

There are other effects such as rhombic components to the crys-
tal field which will not be discussed because the data certainly does not

warrant such detail,

Conclusions

The most attractive set of assumptions which account for the
experimental facts enumerated at the beginning of this discussion are:
1. The g-fac‘tor is isotropic,
2, At room temperature D is larger than the incident
radiation, but D decreases with decreasing tem-
‘perature; so that at helium temperature it is of the
same magnitude as the microwave radiation, i.e,
(D] z 0.3cm™

3. Isotropic exchange broadening is small,
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We certainly have not proved that this model for nickelocene is superior
to that of a low lying orbital state, but our choice is prompted by pre-
vious theory and experibments and by the fact that the room temperature
magnetic susceptibility yields a '"'spin-only' magnetic moment (19),
Proof of this model would come from experiments at room temperature

at a higher frequency.

* Cobaltocene
| : . +2
Ingram (12) gives as the energy level diagram for Co in a
crystal the following.
free ion cubic field fields of AL®S
lower
symmetry

The ground state is nearly orbitally degenerate,

The data for cobaltocene substantiatestheconclusion that for
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this co:fnpound there are orbital states lying close to the ground state.
The situation for cobaltocene is further complicated by the fact that the
g-factor is probably very anisotropic (1), Our powder spectrum is con-
sistent with low lying orbital states and an anisotropic g-factor, since
the Width even at low temperatures is great, and no signal was found at

room temperature,

Vanadocene
The experimental facts which are most important to any inter -
pretation are summarized below:
1. The angular dependence and intensities of the vari-
ous resonance lines given in figures II-4 and II-5
and in table II-1, -
2. No more than four lines were ever observed at any
angle with the magnetic fields available.
3. No lines appear at high fields (geff< 2).
4. ESR of vanadocene in dilute benzene solution oc-
curs at g = 2.0,
We shall again employ the procedure of enumerating the various pos-
sibilities and choosing the one which best fits the data,
Previous ESR results for V-l_‘2 and Cr+3 can be summarized
as follows (11,12):
1. ID( is of the order 0,1 - 1.0 cm—l.,'

2. g, and g, differ by about 1% or less and are in

value slightly less than 2,00.
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3. Rhombic components of the crystal field are
usually unnecessary.
. . . 3
For example, the spin Hamiltonian parameters for Cr in ruby at

room temperature are (10):

D = -0,916 ——
gy = 1.9840
g, =1.9867

+
and for Cr 3 in emerald also at room temperature (20),

D =-0.895 cm "
g, =1.973
g, =1.970 .

In both these cases‘no rhombic component of the crystal field was found.
The discussion of the vanadocene spectra which will follow is
based initially on three assumptions,
. . +2
() The ESR spectra which are observed arise from V
. 3
for which S =E o
(b) The vanadocene molecule is oriented in the host lattice in
the same manner as the ferrocene itself,
(c) The g-factor is approximately isotropic and has the value
2,00,
Assumption (a) essentially requires that the ground state (S =% from

the magnetic susceptibility (21)) is not appreciably altered when the

vanadocene molecule is placed into a crystal of ferrocene. Assumption
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(c) is based on thé results of previous experiments with the same and
isoelectronic ions and is necessary because experiments at only one
frequency were performed.
Assumption (b) has a good deal of experimental justification,
Weiss and Fischer (22) have performed the crystal structure determina~
tion of vanadocene and find a structure similar in all respects to that of

ferrocene (3,23), The unit cell dimensions are compared below.

a=5.95A =5.88 A
=7.59 A b=8.02A
c=10.56 A c=10.82 A

8 =121° B =121.3°
Vol. = 202 A3 Vol. =218 A3

The unit cell of ferrocene is depicted in figure II-9 and is taken from

the paper by Pfab and Fischer (8). The five-fold axis lies approximately
on the b-c diagonal [011 ]; so that when the (100) plane is coplanar with
the plane of rotation of Ho, we expect the angular variation of the spectra
of one molecule in the unit cell to be about 90° of phase with that of the
other. When the (100) plane is perpendicular to the plane of rotation of
HO, the molecules will be magnetically equivalent when HO is per-
pendicular to (100), but at other angles the spectra of the two molecules

will again be out of phase.

Zero Field Splitting

The reader should now recall figures II-6 and II-7 in which
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Fig. [1=9, Unit cell of ferrocene., Cut parallel to (100).

Reproduced from reference (2h),
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the energy levels for the spin Hamiltonian II-16 are sketched for

F=0° anda 4= 90°. Inspection of these plots reveals that for

2 < 1 three transitions are allowed at < = 0° and six are possible

hv
and (} = 90° (for each molecule). Clearly this case is not a possibility

D
for vanadocene purely from the number of lines expected, For — 2 1

_ hv
and at 4 = 0°, the allowed transitions are (nél- - %) at geff = 2 and
1.3 f
(-2- > %) at ge f = % (bu‘t this latter transition occurs at a higher mag-

netic field than was attainable in our experiment). At ta 90° (% > —’?)2—)

3 1
and (- % - -E-) are possible; so that for this range of the zero field

splitting parameter a reasonable number of lines is predicted, and this
case must be examined in careful detail.

The case in point is illustrated by the angular variation in figure
II-10 of the spectra arising from Cr+3 in ruby for which o C 1.1.
The scales of the plot given in Schulz-DuBois' paper (10) have been mul-
tiplied by the appropriate factor such that this diagram may be compared
directly to our experiment. The computed inteﬁsities of each transition
are given in table II-2 at angle intervals of 10°.

The most conspicuous difference between this plot and the ex-
perimental curve in figure II-4 is the absence of strong lines at high
fields (10-15 K gauss) in our experiment. Due to mounting uncertainties
the magnetic fie‘ld probably never attained a configuration parallel to
the molecular figure axis, i.e., SO 0°. Suppose that the b-c plane

made an angle a with the plane of rotation of H . Then the real angle
o

& ' between Ho and the figure axis is given in terms of the apparent
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Table II-2

Calculated Relative Intensities

e =

(43>+3) (343 (-3 > +3) (-3 »-2)

0° 1000 1000 0 0
10° 750 250 10 1
20° 450 0 90 5
30° 425 0 80 10
40° 400 0 5 25
50° 380 0 1 50
60° 360 0 0 100
70° 350 0 0 300
80° 345 0 0 900
90° 340 0 0 1000
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angle #  read on the vernier by the equation
cos ' = cosacosd . (11-22)

Equation II-22 shows that the angle &4 ' must attain a 90° value during

any rotation by 7 of Ho° Thus, the absence of the strong absorptions

eff eff

i3 :
(?—7%) at g < 2 andat g = 2 is not surprising, but nonoccur-

‘rence of lines which have the intensity or angular behavior of the
3 1

(- —25 > -=-Z) transition must be taken as evidence that for vanadocene
D
B 7

There is a definite similarity of the various continuous curves

i 3

of the figure II-4 to that of the (-E *?%) transition both in relative in-
tensities and angular dependence. Geusic et al, (20) find a single an=-
: - 1.3 +3 . N
isotropic line, (—2-—> > ), for Cr in emerald at the incident frequency
of 9.3 Kmc. For this system the zero field splitting is quite large
( JZD[ = 52 Kmc), and the other allowed transitions occur at too high
a magnetic field to see in their experiment (24). These authors give

the perturbation formula for the effective g-factor of the observed ab=

~ D
sorption when — > 1

hv
£f , 1 8 PH
g = lgd +(4gl -gf )sin®d P 1o (—S5—)F(P)]
(I1-23)
where
3 sin? ¢ (sin?<* --3£)
F(&) =

sin?‘} + -%
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Specialization of II-23 to 0° andto 90° results in the equations

£,
g (0°) = g, (11-24)

and

geﬁ (90°) = 2g, [1 ~-§; (Bs PH )2 1. (11-25)

2D

From figure II-4 all the continuous curves have the same minimum in

P . s eff o .
magnetic field of 4250 gauss, yielding the value g (90°) = 3.85. Figure
II-11 shows the comparison of the calculated spectral angular dependence
and the experimental points when equation II-23 is used. The angle a
necessary to account for the maximum in magnetic field of each continu-
ous curve is reported., Itis felt that the agreement is satisfactory both
in angular variation and relative intensities (comparing tables II-1 and

. . eff o . .

I1-2), Substituting the experimental value of g (90°) and invoking as-
sumption (c), the parameter lD[ can be computed and is found to be:
|\D] = 25 Kmc.

If one supposes for the moment that all the lines which are ob-

: 1.3 L L :
served arise from the ("E —?-z) transition, the question is immediately
raised: How can there possibly be a maximum of four lines when there
are only magnetically two non-equivalent molecules in the unit cell?

The answer to this question cannot be unequivocably proven from this
work, but there is a distinct possibility that the crystal studied was not
single. As was mentioned in the experimental section, ‘many of the

crystals which resulted from the growth by sublimation appeared dis-

tinctly to be twinned. However, one cannot say with certainty that the
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particular ci‘ystal chosen for the experiments was twinned or not, If the
crystal was a twin, then the one member was probably so oriented that
its (100) plane makes the angle 30° (or 10°) with the (100) plane of the
other.

Some support to the supposition that the crystal was a twin is
provided in figure II-5 in which the spectral angular variation from the
same crystal reoriented such that the (100) face is perpendicular to the
plane of rotation is recciazr'ded0 The important aspects of this plot are:

1. The variou:s maxima occur at much lower field.

2. The distance between maxima (in angular units) has markedly

decreased.

3. The magnetic field at which minima occur has not changed

from that of figure II-4, within experimental error,
The first of these experimental features suggests that the reorientation
has indeed been such as to increase the angle o between the plane of
intersection of the molecular axes of the two molecules and the plane of
. eff .

rotation of Ho° Thus the approach of g to gy is less than the
previous orientation, It is shown in the appendix that the second ob-
servation is what would be expected as (100) becomes mor e nearly per-
pendicular to thg plane of Hoo It is shown that, if the angular distance
between maxima is I', I increases from 0° when the two planes
are perpendicular to a maximum cos I = = cos X vwhen the two

are coplanar; X is the angle between the figure axes of two molecules.
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The third experimental aspect strengthens the assertion that all the

=

1 3 C
lines come from the (-Zf' -> -z-) transition,
. . . . . +2
Since the vast majority of previous experimental studies of V
and isocelectronic ions have found it unnecessary to include components
of the crystal field lower than tetragonal and since the sandwich molecule

has a natural cylindrical symmetry (1), we shall not explore the possibil-

ity of rhombic components to II-12,

Conclusions

At least one subsidiary assumption has been made to make co-

herence from the ESR of vanadocene,

(d) Two of the continuous ''curves'' of figure II-5 are associated with

1
the (Eﬁ %) transition, one from each non-equivalent molecule.

At this point there are several possibilities to account for the other two
"curves'',

1. Somehow they originate from the (- -Zi - -:;-) transitions of
the two molecules.

2. The crystal is twinned such that £ (100):(100)' = 30° (or 10°),
and the experimental plot in figure II-4 is made up of the spectral an-
gular dependence of the (-—2%- —)%) transition of four non-equivalent
molecu}e& |

It is important to point out that the reported value of the splitting

parameter, IDI , does not depend on these latter two possibilities,

only on assumption (d), which itself is implied by assumption (a). Itis
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felt that the agreefnent of the calculated and experimental spectra is
sufficien’gly excellent to be good evidence for the correctness of assump-
tion (d) and that the behavior of the spectra on reorientation of the Crys-

tal makes the latter possibility much more attractive than the former,
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APPENDIX TO SECTION 11
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Suppose that the vectors m and n are perpendicular to
the molecular axes a and b and that they both lie in the xy plane.
I" is the angle between m and n in the xy plane and X is the
angle between a and b. a makes the angle & and b the angle
Z ' with the z-axis. We then desire I' as a function of & and &,

¢ and ¢' are the azimuthal angles of a and b, and a and a' mea-

sure the angles between m and n and the z-axis.

a = a(kcos<d? +isinf sing + jsind? cos¢) (AII-1)
b = b (kcos ¢’ - isin I 'sin¢' + j sin ¢! cos¢) (AII-2)
m = m (-isina + j cosa ) : (AII-3)

n = n/(isina‘ + jcosa') (AII-4)
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men = mncos (a + a') = mncos I (AII-5)
acm = amsind cos(a+¢) = 0 (A11-6)
T
or a + ¢ = 3 (AII-7)
ben = bnsin J'cos (a'+¢') = 0 (AI1-8)
or atl = (AIL-9)
2

Combining AII-7 and AII-9 we find
¢ + ¢' = 7~ T (AII-10)
a*b = ab [cos £ cosd ' - sin & sin F ' cos (¢ +¢Y)]. (AIL-11)
which is equivalent to
cos X = cos ¢ cos Flsindsin dicos T . {AII-12)
I is a maximum when } = Hos -g- and is given by
cos I' = -cos X . (AII-13)

I is a minimum when ¢+ 1 = X  which from AII-10 gives

the value I = 0° .
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PROPOSITIONS

1. On the basis of the method of alternant orbitals described in
Section I-A of this thesis, spin densities in linear polyene radicals
tend to be nearly uniform on unstarred atoms, thus supporting the

assumption of Hanna and McConnell (1),

From the molecular orbital treatment of these molecules (2)

the energies and atomic orbitals are given by

ej = 2/3 Cos (i—n;)

M+ 12
r .
C, = J.2 rirm
b A v X
iz ( LC

where j refers to the molecular orbital, r the serial number of the
carbon atom and M + 1 is the total number of carbon atoms, hence

the number of molecular orbitals,

If the approximate formula (IA-56) is used to estimate spin den-

sities, we find

2 MK
~PFI=M+:I[’+ ?]

which says that the spin density on all starred atoms is the same and

positive and the spin density at unstarred atoms is uniform and negative
!

in sign., The constant K is M/

6 2 o(f]
I=
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If one uses the more general formulas of the Appendix to Section
I, the spin densities are no longer uniform on the two sets of atoms,

but there is a slight build-up of spin at the ends of the radical.

2 2 .
$a = Ma+2 l‘- L+ 5K
£, . A d
B = M
My .
2 arm
L= S e ( vrz
J= Cos (4T )
M+z
2o The ultraviolet and visible spectra of various alkali metal cyclo-

pentadienides in ether solution should be studied, and special care should
be taken to determine if the intense violet color is due to a charge trans-
fer transition of an ion pair.

The reason why these ions are interesting is that from the simple
molecular orbital point of view they are isoelectronic with benzene which
is known to absorb in the uv. Admittedly simple molecular orbital
theory is unreliable in prediction of the position of spectral transitions,
but the more general method of Pariser and Parr (3), which works well
for benzene, is inconclusive. It is not understood how basic integrals
for benzene should be changed for the charged cyclopentadienide ion
since there are more than one electron per atomic orbital,

It is then at least possible that the spectral transition has been

shifted to longer wave lengths by absorption via charge transfer in an



151
ion pair. Although no spectra for this species have been reported in
the literature, a dilute ( ~ 10~3M) solution is not translucent. This
is evidence of a very intense transition which is a characteristic of a
charge transfer transition (4).

These observations and ideas are consistent with the color and
intensity of a c.ha,rge transfer absorption, They can be checked experi-
mentally by looking for a deviation from Beer's Law in diluted samples,
Also one would expect a change in the C-H stretching frequency due to
ion pair formation, and this would again be observed in dilution experi-
ments. There would probably be a lack of vibrational fine structure if

the transition arises from an ion pair.

3. The proton magnetic resonance shifts in nickelocene have been
interpreted in terms of a mechanism by which the unpaired electron on
the nickel jumps out on to the rings and interacts with the proton via
o -7 exchange (5). An alternate explanation could be that the inter-
action is a direct one with non-vanishing 3d electron density at the proton
position, I propose that this alternate mechanism is about 10-”3 too
small to account for the observed shift,

Slater orbitals (6) are known to give a poor description of the
electronic wave function close to the nucleus but are often used for
problems in which the behavior of the wave function far from the origin

is important. I have evaluated the amplitude of the appropriate 3d
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Slater type atomic orbital at the coordinates and find that the resulting

shift in the proton resonance is much too small,

4, Recently Kim and Sugawara (7) reported the proton resonance of
the waters in the compound NiCl, *6H, O from room temperature to
liquid. helium temperatures. At about 6°K they note the complete dis-
appearance of the signal from their polycrystalline sample. I believe
that this disappearance of signal is due to a transition of the salt from
the paramagnetic to the antiferromagnetic state,

The exchange field at the proton in the antiferromagnetic state
is much larger than the dipolar field in the paramagnetic state. Thus
in a powder sample absorption will take place over a very wide range of
the applied magnetic field and could easily be obscured by electronic
noise. To test this hypothesis the experiment should be repeated with
a single crystal, and the electronics should be geared to allow the wide
sweeps necessary to follow the large shift near and through the trans-
ition. Analysis of the anisotropy of the proton resonance in the anti-
ferromagnetic state might lead to‘ the determination of the proton posi-

\

tions (8).

5. In their rush to carry out ESR experiments with transition metal
ions in various crystalline fields, physicists have often neglected ions

. . . . . ++
which are of considerable chemical interest. Such a case is Ag .

This ion is probably of the configuration d’ (the magnetic susceptibility

of many complexes is very similar to the corresponding compounds of
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Cu++), and the moments of many complexes are only slightly higher than
those given by the spin-only formula for one uni:)aired electron, Al-
though many compounds of this ion are quite unstable with respect to
reduction, most of the complexes with things like nitrogen bases are
qliite stable (9). The trouble with doing ESR experiments with these
compounds is that the availability of diamagnetic host crystals with a
known crystal structure is limited. However, the crystals of nickel
bis—salicylaldehyde=imine and palladium bis-acetylacetonate are known
(10,11). It is proposed that the corresponding Ag(II) compounds be
made and their ESR spectra as substitional impurities be observed.
Hyperfine splittings due to H' and N'* are to be expected, and perhaps

one can see the interactions of the Ag!®" and Ag'" isotopes.

6. It is proposed that the 370;-300 my, band in solutions containing
cupric nitrate and thiocyanate ion has been incorrectly assigned by
Tanaka and Takamura (12). These authors maintain that the 300 mp.
band in a solution containing only Cu(NO;), is characteristic of the
free Cu++ ion. However, in the careful survey of the aqueous absorp-
tion of various cupric salts Bjerrum _g_‘i:_j:g_,v(l?:) report no band that
occurs at this low wave length. It seems almost certain that this ab-
sorption is due to the nitrate ion (14).

| When SCN is added to the solution another very strong band
appears to grow from the nitrate peak, but this is interpreted as an

enhancement of a cupric absorption via interaction with the thiocyanate.,
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I believe that the opposite interpretation of enhancement and shifting
of the uv absorption of the thiocyanate by the cbpper is correct. This
behavior has been observed in nickel and cobalt thiocyanate solutions
for instance (15).

It was this peak which was employed to determine the stability
constants of the various complexes, Cu(SCN)i“’rl » These numbers
should remain valid in this alternatg interpretation. However, the re-
ported decrease of € in going from the complex with n = 3 to

max

n = 4 should be reinvestigated.

7o The zero field transition in peroxylamine disulfonate in solution
should be relatively easy to observe, The transition in zero applied

magnetic field is between the F = 2 and the F = state, and the

2 2
expected transition frequency is a éimple matter to deduce. For an ion
in solution the Hami}[tonian in zero field is a AI/' § , in which a is the
isotropic electron-nuclear coupling constant, Neither I nc-)r S is a
good quantum number, but their sum, the total angular momentum F,
is, Performing the usual trick, the eigenvalues of the Hamiltonian are

given by

al$ = % [F(F+1) - I(I+1) - S(S+1) ]

and for the case of one electron and a nucleus of spin 1 are -a and

a . The transition frequency is the three-halves the isotropic hyperfine

e

2
interaction which is 36 Mc. The value 54 Mc is in good agreement
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with the number obtained by extrapolation of resonances at finite fields

(16, 17).

8. It is proposed that experiments be carried out to determine the
presence or absence of a diamagnetic dimer of Cl10, . The recent es-
tablishment of the equilibrium in the isoelectronic system ZSO; = S, 04.:
(18) makes the possibility of dimerization in chlorine dioxide quite at-
tractive, The bonding can be rationalized on the same grounds (19),
and the Cl-Cl bond may be even stronger than the S-S bond, sin.ce
the coulombic repulsion of two negative charges is not present in (ClO, ), .
When the literature on ClO, is reviewed, several experimental
facts appear to substantiate the postulated equilibrium. The magnetic
susceptibility in CCl, solution {at the one concentration studied) cor-
responds to a moment due to less than one unpaired electron (20). Any
orbital contribution would increase the observed moment, Further,
there is a low frequency band in the infra red (22) which could not be
assigned (every other transition was accounted for). Since this peak
was observed in various samples prepared in different ways, it was
not attributed to impurity.
Several experiments might be useful in this study. Of course,
observation of the chlorine NMR would be ideal because the rate of
exchange might be estimated. However, the quadrupolé broadening

would probably cbviate this experiment. A concentration study of the
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mé,gnetic susceptibility would permit the evaluation of the equilibrium
constant, Also, a study of the excess sound absorption necessary to

break up the dimer might make an ultrasonics experiment feasible (22).

9. The Ol>7 chemical shift of the nitrite ion with respect to the
nitrate ion is 260 ppm and in the paramagnetic direction (23). The
direction and order of magnitude of this shift can be accounted for in
terms of the energies of the n—» 7 transitions of these two ions.

The chemical shift of an atom in two different molecules is made
up of two parts. The difference of electron density near the atom is
called the diamagnetic contribution and the second is a paramagnetic
term which arises from the hindrance to Larmor precession of electrons
due to there being more than one positive attracting center in a molecule
(24).

We can write the cﬂemical shift of O!'7 between nitrite and

nitrate as

First I argue that the difference in electron density at the oxygens is
not too great in the two ions. As an example of the order of magnitude
of this effect, the much bigger increase in electron density at the
fluorine in going from F, to F gives a diamagnetic contribution to

the chemical shift of only about 10 ppm (25). Since the change in density
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in our case is certainly less than the fluorine, I believe that it is reason-
able to neglect the diamagnetic contribution to the shift,

For our purposes the paramagnetic part can be written

aey- ¢ Z g% - 2 2}

where M is a matrix element between the ground and excited states
which will contain the average value of <—=I=}-§-> and of angular momentum
operators,' I now assume that the n -7 transition involving the lone
pair oxygen orbitals make the most important contributions to the sums.
7T —7 transitions are not effective since the matrix elements vanish
when the ground and excited atomic orbitals are the same, Itis further
argued that the matrix elements themselves will differ only in coefficients
of atomic orbitals since the pertinent gi'ound and excited AO's in ‘nitrate
and nitrite are the same for both ions (nonbonding o and antibonding

7). With these assumptions we write the equation
- ¢ 1
A O"P = ¢ MNa { ( ) ( noy” ) L —
AE m - Cro, Al—'w-

The values of the energy denominators are taken from spectroscopic
data available in the literature, Sidman (26) assigns the 3500 A band
in nitrite to the transition which we need. McConnell (27) assigns the
3000 A band of hitrate to the n-»7 transition, but recently Sayre (28)
claims that this is a 7 —»7 transition. The next band in nitrate comes

in at 2100 A. To make the calculation as bad as possible let us take
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the lower energy to be the necessary n—>T frequency. At any rate,
it seems clear thatnitrate absorbs at a higher energy than nitrite , and
the direction of the chemical shift is accounted for.
To get a rough order of magnitude of this shift we proceed by
assuming that the AO coefficient ratio does not differ much from unity.
The necessary matrix elements between an sz and an 2p_ atomic

orbital have been evaluated by Saika and Slichter (29), and we compare

‘ 1
our case to theirs by making estimates of( > for oxygen, Unfortun-
3

ately, the number which we want has not bezn explicitly evaluated, but
by comparing the numbers which are available for various first row
elements (30,31), it is observed that these quantities vary approximately
with the cube of Z (this is generous in the wrong direction), When all

the numbers are plugged in, the magnitude of the chemical shift comes

out 150 ppm and in the paramagnetic direction,

10. There are at least two very fast electron exchange reactions
which should be studied with the NMR technique (32),

MnO; & MnO, has a half time of about 3 sec under conditions
of very low total manganese concentration ( NIOES) and low base strength
(~ 0.15) (33). When either of these two conditions is altered to greater
concep‘tration, the reaction becomes immeasurably fast with standard
techniques, Itis proposed that by upping the concentrations (‘,one would

have to have a lot more Mn to see NMR anyway) there is a good chance
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that the broadening of the NMR of MnO, -would be of sufficient magnitude
to permit estimation of the lifetime of the two species. MnO, exhibits
a temperature independent paramagnetism, but I believe that the broad-
ening in absence of MnO, could be subtracted out with all the other unknown
contributions to T, .

The other case is the Co++;:? Co+++ exchange in acid solution,
This reaction is slow enough under certain conditions to allow analysis
by the usual iso‘tope methods (34) (total concentration Co ~ 10-3M, 1M
in HC1O, ; half time ~ 4.5 min). Se it is seen that the rate must be greatly
increased in order that the NMR technique would be feasible. Giuliano
and McConnell (35) find that the exchange reaction between vanadium (IV)
and (V) is too slow at relatively low acid concentration to allow analysis.
However, when {H+] is about 7F, the broadening of the NMR is sufficient.
Since it would be of interest to see if there are other similar reactions
with this big H+ catalysis, it seems to me that the Co experimentis
worth a try. There may be another problem in this business which is

the oxidation of water. The only hope is that the rate of this reaction

is very much slower than the exchange reaction.

11. In Section I-D of this thesis formulas for the spin density at

a C!2 nucleusbin afimolecular radical are derived assuming that the
o - ™ exchange interaction mixes in excited triplet components of the
o bond. It might be imagined that the process involving the excitation

of a carbon ls electron to the antibonding level might be as effective
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since while the eﬁergy denominator is miuch greater so is the density of

“a ls ‘electron at the nucleus, From the following calculation it is

proposed that this process is at least an order of magnitude smaller

than the usual 2s polarization.

Calling the proportionality constant for this latter process Q''!,

the ratio of this to the quantity Q' (given in equation ID-13) is

Q" : | 15¢s) 256 \ (1 is To*) ]
&- = BE  yor

2 | 25 @] * (1 o )ru‘*)}

ALy 5g*

We take the Hartree 1s function for carbon in the sp? hybridization
and the value of the energy gap between 1ls and 2s from thé calculation
of Torrance (36). The exchange integrals in the ratio can be partially
estimated from the tables of Roothaan (37). When these numbers are

plugged in, we find the ratio to be

Q/// 0 ey 5o 0.0187 — J.ISO" _l_, ~ 0. 05
RS Vo35 . '
Q boo ev 32 0.21% - I, (es)™



10,

11.

12,

13&}

14,

15.

16.

17,

161

References to Propositions

M. Hanna and H, M. McConnell, (to be published).

C. A. Coulson and R. Daudel, Dictionary of Molecular
Constants, Vol. III,

R. Pariser and R, G. Parr, J. Chem. Phys. 21, 466, 767 (1953).

S. P. McGlyan, Chem, Revs, 58, 1113 (1958).

H. M. McConnell and C. H. Holm, J, Chem. Phys.
(1957).

7, 314

J. C. Slater, Phys. Rev. 36, 57 (1930).

P. H. Kim and T. Sugawara, J. Phys. Soc. Japan 13, 968 (1958).

N. J. Poulis and G.E,G, Hardeman, Physica 19, 391 (1953).

Je Kl‘ein'berg, Unfamiliar Oxidation States and Their Stabilization,
U. of Kansas Press, Lawrence, Kansas (1950) pp 61-73.

Koyama, Saito and Kuroya, J. Inst. Polytech. Osaka City Univ,
C4, 43 (1953).

Referred to in A, H. Maki and B, R. McGarvey, J, Chem. Phys,
29, 31 (1958).

N, Tanaka and T. Takamura, J. Inorg. and Nuc, Chem., 9, 16
(1959).

J., Bjerrum, C, J. Ballhausen and C, K. Jorgensen, Acta Chem.,
Scand. 8, 1275 (1954).

L, I. Katzin, J, Chem. Phys. 18, 789 (1950).

L. I. Katzin, J, Chem. Phys. 20, 1165 (1952),

G. E. Pake, J, Townsend and S, I, Weissman, Phys, Rev. 85,
682 (1952). '

J. Townsend, S, I. Weissman and G, E. Pake, Phys. Rev. 89,
606 (1953).



18.

19,
20,
21.
22,

23,

24,

25,

26,

27.

28,

29.

30.

31.

32,

33,

34,

350

36.

370

162

"R, G, Rinker, T. P, Gordon, P. M. Mason and W. H, Corcoran,

J. Phys. Chem. 63, 302 (1959).
J. D. Dunitz, Acta Cryst. 9, 579 (1956).

N. W. Taylor, J, Amer. Chem. Soc. 48, 855 (1925).

A. H, Nielsen and J.P,H, Woltz, J. Chem, Phys. 20, 1878 (1952),

E. Freedman, J, Chem. Phys, 21, 1784 (1953),

H. E, Weaver, B. M, Tolbert and R. C, Laforce, J. Chem, Phys,

23, 1956 (1955).

Pople, Schneider and Bernstein, High-Resolution Nuclear Magnetic

Resonance, McGraw-Hill Book Co., New York (1959), p. 168,

H. S. Gutowsky and C. J, Hoffman, J, Chem. Phys, 19, 1259
(1951).

J. W, Sidman, J, Amér., Chem. Soc. 78, 2911 (1956),

H. M. McConnell, J, Chem. Phys. 20, 700 (1952).

E. V. Sayre, J, Chem, Phys. 31, 73 (1959).

. Saika and C. P. Slichter, J. Chem, Phys. 22, 26 (1954).

A
R. Sternheimer, Phys. Rev. 80, 102 (1950).
R

. Sternheimer, Phys. Rev. 84, 244 (1952),

"H. M. McConnell and S, B, Berger, J. Chem, Phys, 27, 230

(19:57).

J. C, Sheppard and A, C, Wahl, J. Amer, Chem, Soc, 75, 5134
(1953).

N, A, Bonner and J, P, Hunt, J, Amer, Chem. Soc, 74, 1866
(1952).

C. R, Giuliano and H. M. McConnell, J, Inorg, and Nuc, Chem,
9, 171 (1959). '

C. C. Torrance, Phys. Rev, 46, 388 (1934),

C.C.J. Roothaan, ONR Report, Univ. of Chicago (1955).



