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Abstract

A single crystal plasticity theory for insertion into �nite element simulation is formulated

using sequential laminates to model subgrain dislocation structures. It is known that local

models do not adequately account for latent hardening, as latent hardening is not only a

material property, but a nonlocal property (e.g., grain size and shape). The addition of the

nonlocal energy from the formation of subgrain structure dislocation walls and the boundary

layer mis�ts provide both latent and self hardening of crystal slip. Latent hardening occurs

as the formation of new dislocation walls limit motion of new mobile dislocations, thus

hardening future slip systems. Self hardening is accomplished by evolution of the subgrain

structure length scale. No multiple slip hardening terms are included.

The substructure length scale is computed by minimizing the nonlocal energy. The mini-

mization of the nonlocal energy is a competition between the dislocation wall and boundary

layer energy. The nonlocal terms are also directly minimized within the subgrain model

as they impact deformation response. The geometrical relationship between the dislocation

walls and slip planes a�ecting dislocation mean free path is accounted for giving a �rst-order

approximation to shape e�ects. A coplanar slip model is developed due to requirements when

modeling the subgrain structure. This subgrain structure plasticity model is noteworthy as

all material parameters are experimentally determined rather than �t. The model also has
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an inherit path dependency due to the formation of the subgrain structures. Validation is

accomplished by comparison to single crystal tension test results.



vii

Contents

Dedication iii

Acknowledgments iv

Abstract v

List of Figures x

List of Tables xii

1 Introduction 1

2 Material Model 6

2.1 Constitutive Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Single Crystal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Elastic Deformation Model . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Plastic Deformation Model . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Incremental Deformation Steps . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Elastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Crystal Single Slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.4 Crystal Coplanar Slip . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



viii

3 Laminate Microstructures 21

3.1 Laminate Variable Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Branching Energy Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Slip Plane Selection, α . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Dislocation Wall Normals, N . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.3 Computation of Volume Fraction, λ . . . . . . . . . . . . . . . . . . . 32

3.2.4 Computation of Polarization Vector, a . . . . . . . . . . . . . . . . . . 32

3.2.5 Computation of Laminate Thickness, Lc . . . . . . . . . . . . . . . . . 33

3.3 Nonlocal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Dislocation Wall Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1.1 Laminates with Coplanar Slip . . . . . . . . . . . . . . . . . 43

3.3.2 Boundary Layer Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Equilibration Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Compatibility of Stress and Evolution of the Polarization Vector . . . 48

3.4.2 Evolution of Laminate Thickness . . . . . . . . . . . . . . . . . . . . . 49

3.4.2.1 Laminate Evolution . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2.2 Hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Stress Jumps on Laminate Formation . . . . . . . . . . . . . . . . . . . . . . . 52

4 Results and Discussion 55

4.1 Material Properties of Copper . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Copper Single Crystal Simulations . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Copper Single Crystal Validation . . . . . . . . . . . . . . . . . . . . . 60



ix

4.3 Grain Size E�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Grain Shape E�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Conclusions and Future Work 74

Bibliography 77



x

List of Figures

1.1 Classic subgrain cell structure in high-purity copper . . . . . . . . . . . . . . . 2

1.2 Laminate subgrain structure in copper . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 Labels used on laminate subgrain structures . . . . . . . . . . . . . . . . . . . . 24

3.2 Illustration of a grain with a rank two subgrain laminate structure . . . . . . . 24

3.3 Simple laminate structure variables . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Geometry of slip plane between two dislocation walls . . . . . . . . . . . . . . . 36

3.5 Coordinates and angles on the slip plane . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Plot of h
A vs. B

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Detailed �gure showing boundary layer variables . . . . . . . . . . . . . . . . . 44

3.8 Calculation of the boundary layer volume . . . . . . . . . . . . . . . . . . . . . 46

3.9 Illustration of lack of convergence from a stress jump . . . . . . . . . . . . . . . 53

4.1 Coordinates of �xed grip orientation for tensile Cu specimens . . . . . . . . . . 58

4.2 Comparison of experimental and simulation data for single crystal copper . . . 60

4.3 Subgrain structure of [101] orientation simulation . . . . . . . . . . . . . . . . . 61

4.4 Visualization of [101] simulation subgrain microstructure . . . . . . . . . . . . . 62

4.5 Slip strain on active slip systems for [101] simulation . . . . . . . . . . . . . . . 63

4.6 Subgrain structure of [102] orientation simulation . . . . . . . . . . . . . . . . . 64



xi

4.7 Visualization of [102] simulation subgrain microstructure . . . . . . . . . . . . . 64

4.8 Slip strain on active slip systems for [102] simulation . . . . . . . . . . . . . . . 65

4.9 Subgrain structure of [001] orientation simulation . . . . . . . . . . . . . . . . . 66

4.10 Visualization of [001] simulation subgrain microstructure . . . . . . . . . . . . . 66

4.11 Slip strain on active slip systems for [001] simulation . . . . . . . . . . . . . . . 67

4.12 Laminate thickness evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.13 Grain size variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.14 Hall-Petch e�ect for the [102] copper single crystal . . . . . . . . . . . . . . . . 70

4.15 Grain shape e�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



xii

List of Tables

2.1 FCC slip systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 L/A ratios for generic slip system A6 . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Small angle approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Copper material constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



1

Chapter 1

Introduction

Previous work investigating microstructures and plasticity have uncovered that if a single

crystal deformed by plastic slip has latent hardening and is allowed to form arbitrarily �ne

subgrain microstructure without any energy penalty for the accumulation of dislocations,

then each slip system will appear macroscopically to harden independently [1]. This occurs

because the microstructure forms in such a way to limit interaction between slip systems.

This observation is in con�ict with experimental data demonstrating that two active slip

systems exhibit latent hardening [2]. As research also indicates that latent hardening is not

a material property, but rather depends on the crystal grain in which the material deforms

(e.g., grain shape and size); it is realized that the observed latent hardening is a property of

interactions due to the microstructure. This work attempts to add microstructure hardening

interactions into a constitutive crystal plasticity code for use as a material model in �nite

element calculations.

Figures 1.1 and 1.2 display the formation of typical subgrain structures in two di�erent

copper specimens taken using a transmission electron microscope. The images are courtesy

of Cerreta [3]. Figure 1.1 is a cell structure frequently seen during initial plastic deformation.

The walls between the cells are formed by the accumulation of random dislocations that cause

a very low angle misorientation. These are frequently referred to as incidental dislocation
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Figure 1.1. Classic subgrain cell structure in high-purity copper (Cerreta [3]).

Figure 1.2. Laminate subgrain structure formed by elongation of cell walls in copper (Cerreta [3]).
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boundaries (IDB). Upon further deformation, the cell walls tend to elongate and increase

in misorientation angle to form parallel dislocation walls similar to a laminate structures as

seen in �gure 1.2. The formation of the elongated walls is associated with a strain di�erence

between the sides. These are called geometrically necessary boundaries (GNB). For a full

review of deformation laminate microstructures the reader is referred to the works of Hansen

and Hughes [4, 5, 6]. These works include an analysis of the subgrain microstructures on

which this model is based as well as scaling laws for the structures. The work of Ortiz and

Repetto [7] also contains a comparison between the laminate microstructure model used

in this work and many experimentally observed subgrain structures. Steeds [8] provides a

study of single crystal copper dislocation structures as a function of strain.

Initial investigations into modeling subgrain microstructure development and plastic

deformation were conducted by Repetto and Ortiz [7]. Their work derived the property

that in order to minimize energy, subgrain microstructures should form regions of single

slip. They also compared microstructure con�guration compatibility to commonly observed

experimental microstructures and found good agreement.

The work of Ortiz, Repetto, and Stainier [9] followed in which the ideas of Repetto

and Ortiz were implemented into a �nite deformation constitutive model that explicitly

resolved laminate microstructures. It demonstrated the possibility of capturing grain size

e�ects on deformation and contains the �rst implementation of nonlocal energy into the

laminar microstructures. Comparisons are made between the direct simulation of subgrain

dislocation microstructures to obtain size e�ects and the nature of size e�ects obtained by

the strain gradient method.

The previous work was built upon by Aubrey and Ortiz [10], in which the model was

streamlined for easier energy calculations and in�nite latent hardening. Aubrey and Ortiz
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compared the scaling of the formed microstructures to the scaling law of Hughes et al. [5].

Much of this current work follows directly from the ideas of Aubrey and Ortiz, but varies

greatly in the implementation of those ideas. This work also compares more directly to

experimental measurements.

At this point, the theory of laminate microstrcutures has diverged onto several distinct

paths. The work of Aubrey, Fago, and Ortiz [11] considered the relaxation of martensitic

materials using subgrain microstructure with branching and pruning operations. The work of

Conti, Hauret, and Ortiz [12] considered the application of minimization principles directly

rather than explicitly resolving the microstructure, such that calculations can determine

stress states and the microstructures can be resolved after calculations are complete. This is

being further explored by Gurses [13]. The work of Conti and Ortiz [1] considered linearized

kinematics and the formation of microstructures. Conti and Theil [14] considered single-slip

�nite deformation microstructures in which elastic structures are permitted.

An understanding of traditional plasticity theories is useful for understanding this work,

as many sound principles from those works are used. A selection of models includes Cuitino

and Oritz [15] and Bronkhorst et al. [16]. It should be emphasized that these are local models

which contain latent hardening in multiple slip, but do not attempt to model microstructure

and nonlocal energy.

In this work, the model introduced by Ortiz, Repetto, and Stainier [7, 9] and investigated

by Aubrey and Ortiz [10] is further developed. Di�erences and extensions of the current

methodology are highlighted. The new developments in this work include the evolution of

the subgrain microstructure lengths to treat hardening behavior, a method that accounts

for unique features of coplanar slip systems, e�ects of grain shape and microstructure wall

normal orientation on the mean free path of dislocations, direct incorporation of the nonlocal
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energy in the minimization of deformation energy (rather than as a perturbation), corrections

to the boundary layer energy formulation, and an investigation of the subgrain laminate

wall normal implementation. The discontinuities that develop in the stress and material

tangents when microstructures form are also discussed to allow for use of traction boundary

conditions.

In chapter 2, the general constitutive framework of a single crystal incorporating both

elastic and plastic deformation is presented. Coplanar slip is developed separately. The

general framework is then applied to laminate microstructures which include nonlocal energy

terms in chapter 3. The nonlocal energy terms are derived after the laminate microstructures

as this gives the presentation a more concise �ow, although the reader needs to accept the

nonlocal terms before they are developed. This order prevents the presentation of the model

initially without nonlocal terms and then a second time with the nonlocal terms included.

The equilibration of the microstructure for new deformation states is described afterward.

Signi�cant changes have been added to the nonlocal energy and equilibration. Chapter 3

also includes how stress state discontinuities that arise when a new microstructure forms are

treated numerically. Last, the model is validated by simulating experimental tests of copper

single crystals (chapter 4). Comparisons are made with variations in single crystal stress

response due to crystal orientation, grain size, and grain shape. The subgrain structures are

also compared to traditional single crystal plasticity theories. Conclusions are drawn and

future work is presented in chapter 5.
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Chapter 2

Material Model

The model is concerned with determining the reaction of a crystalline material occupying a

volume Ω when a deformation mapping y[x] : Ω → R3 is applied. The deformation gradient

is de�ned by

F[x] ≡ ∇y[x] , (2.1)

where ∇ is the gradient operator. The brackets [.] are used to display a dependence in this

work, whereas (.) are used to show order of operations or to distinguish superscripts from

exponents.

In anticipation of applying the model at a material integration point within a continuum

scale application any dependence on the position variable x will be dropped. Thus, all

equations apply for a given value of x, e.g., F[x] → F. The value F will be referenced as the

�global� or �macroscopic� deformation. The microstructure at the material point x is being

simulated.

Indices will be used frequently in notation. To keep the meaning of indices clear, they will

always be placed in identical positions. The upper right will be used for modifying quantities,

such as di�erentiating between plastic and elastic values; the lower left for discretization or
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iteration; and the lower right for other enumeration, such as over slip systems or laminate

structures.

discretizationX
modi�er
enumeration

2.1 Constitutive Framework

First, a Helmholtz free energy density φ[F,q] per undeformed unit of volume which depends

upon the deformation gradient F and a set of internal state variables q is considered. No

temperature or strain rate dependence is taken into account in this work. When no viscosity

is present, Coleman's relations give the First Piola-Kircho� stress tensor, P, as

P =
∂φ[F,q]
∂F

. (2.2)

The material tangent is de�ned by

C ≡ ∂P
∂F

. (2.3)

This is required by the iterative solvers of the �nite element method. The general material

formulation for the tangents can be found in Ortiz and Stainier [17].

Following Rice [18], an inelastic potential, ψ, is also introduced along with the corre-

sponding thermodynamic force, Q, conjugate to the internal variables q

Q = −∂φ[F,q]
∂q

, (2.4)

q̇ =
∂ψ[Q,q]
∂Q

, (2.5)
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where a � ˙ � indicates time derivative. All these relations are subject to material frame

indi�erence, see references [9, 17] for consequences.

2.2 Single Crystal Model

The proceeding framework is now applied to a single crystal. The full deformation of a

material point is composed of multiple deformation gradients, an elastic, followed by multiple

plastic.

A multiplicative decomposition of the deformation gradient proposed by Lee [19] is

adopted

F = FeFp , (2.6)

where Fe is an elastic deformation which distorts the crystalline lattice and Fp is the total

plastic deformation caused by dislocation motion. The plastic deformation is assumed to

leave the crystal lattice undistorted, at least at the macroscopic continuum level.

For metallic crystals, it is also reasonable to assume the energy can be split into an

elastic portion, W e; and a plastic, dislocation stored energy, W p.

φ = W e[Fe] +W p[Fp, γα] , (2.7)

with W p being a function only of the plastic internal variables, speci�cally, the slip system

strains, γα, and Fp. Application of (2.2) gives

P =
∂W e[Fe]
∂Fe

(Fp)−T . (2.8)
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The stress tensor

Pe ≡ P(Fp)T (2.9)

is de�ned for later use.

Following the formulation of Ortiz and Repetto [7] the forces conjugate to the internal

variables Fp and γ yields

S ≡ − ∂φ

∂Fp
= (Fe)T ∂W

e

∂Fe
(Fp)−T , (2.10)

which is obviously related to the symmetric second Piola-Kircho� stress tensor, and,

g ≡ ∂φ

∂γ
, (2.11)

with accompanying �ow and hardening rules from (2.5)

Ḟp =
∂ψ

∂S
, (2.12)

γ̇ = −∂ψ
∂g

. (2.13)

Note, γ̇α is the rate of slip strain on slip system α.

2.2.1 Elastic Deformation Model

For the elastic portion of the deformation, a Saint Venant-Kircho� material is used. It is

de�ned by the following equations. Starting with the Green-Lagrange Strain Tensor

Ee =
1
2
((Fe)TFe − I) , (2.14)
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where I is the identity tensor. The second Piola-Kircho� stress tensor follows by assuming

a linear relationship with the crystal's elasticity constants, Cmat,

Ke = Cmat ·Ee . (2.15)

An assumption of linearity here is generally su�cient for the elastic portion of deformation

for metallic materials [15]. Higher-order moduli are available in Teodosiu [20]. The First

Piola-Kircho� stress tensor for an elastic deformation follows as

Pe = FeKe . (2.16)

One needs to note that Pe relates to the overall P by use of equation (2.9)

The elastic energy density is computed

W e =
1
2
Ke ·Ee . (2.17)

The material tangent for elastic deformation is given by indicial notation for ease.

Ce
iJkL =

∂Pe

∂Fe
= δikK

e
JL + 2F e

iMF
e
kNCmat

MJNL , (2.18)

where δab is the Dirac operator de�ned by

δab =


1 if a = b,

0 otherwise .
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2.2.2 Plastic Deformation Model

The shear stress acting on slip system α is resolved geometrically as

τα = P(Fp)T · (Fesα ⊗mα) = S(Fp)T · (sα ⊗mα) ; (2.19)

where the · operator between two higher-order tensors is de�ned as A ·M = A..klMkl.., using

Einsteinian notation to indicate the indices k and l are summed over; mα is the slip plane

normal; and sα is the slip direction of system α. Again following Rice [18], the �ow rule is

given a potential structure by assuming the potential of each slip system can be summed

ψ(S, g;Fp, γ) =
N∑

α=1

ψα(S, gα;Fp, γα) . (2.20)

An application of Schmidt's Rule: ψα = ψα(τα− gα), demonstrates that g is the critical

resolved shear stress, τ c
α, or stress at which slip system α activates.

The �ow rule for plastic deformation is obtained by applying (2.12) and (2.13)

Ḟp = (
N∑

α=1

∂ψα

∂τα
sα ⊗mα)Fp , (2.21)

γ̇α = −∂ψα

∂gα
=
∂ψα

∂τα
. (2.22)

It is apparent that the �ow rule for the plastic deformations is that introduced by Rice [21],

i.e.,

Ḟp = (
N∑

α=1

γ̇αsα ⊗mα)Fp , (2.23)

where α is a summation over all crystallographic slip systems.
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In this work, slip is regarded as irreversible and thus,

γ̇α ≥ 0 . (2.24)

For reference the 12 slip systems of FCC crystals are given in table 2.1. Since the systems

are considered irreversible, there are 24 systems for FCC crystals in this model.

Table 2.1. FCC slip systems

System A2 A3 A6 B2 B4 B5

s ∗
√

2 ±[01̄1] ±[101] ±[110] ±[01̄1] ±[1̄01] ±[1̄10]
m ∗

√
3 (1̄11) (1̄11) (1̄11) (111) (111) (111)

System C1 C3 C5 D1 D4 D6

s ∗
√

2 ±[011] ±[101] ±[1̄10] ±[011] ±[1̄01] ±[110]
m ∗

√
3 (1̄1̄1) (1̄1̄1) (1̄1̄1) (11̄1) (11̄1) (11̄1)

Assuming rate-independent slip and minimizing the deformation energy, it is shown in

[7] that the slip rates and stresses can be restricted to Kuhn-Tucker form [22] as

τα − gα ≤ 0, γ̇α ≥ 0, (τα − gα)γ̇α = 0 (2.25)

These conditions provide an optimization technique and all the traditional constraints for

rate-independent plasticity. Namely, that the material remain elastic, with plastic defor-

mation occurring only when critical resolved shear stresses are reached; and that slip is

irreversible. A strain rate dependent model could be developed by including a strain-rate

dependent evolution of plastic deformation (see e.g. Bronkhorst et al. [16] or Cuitino and

Ortiz [15] as well as others).

It is also noted from (2.11) that

W p =
N∑

α=1

∫ t

t=0
τα[t]γ̇α[t]dt . (2.26)
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The material tangent when a single slip system is active is

Cα
iJkL = Ce

iMkN (F p)−1
JM (F p)−1

LN − C
mixed
iJα Cmixed

kLα

1
∂(τα − τ c

α)/∂γα
, (2.27)

where

Cmixed
ijα = Ce

imabF
e
aqs

α
q (F p)−T

mjm
α
b

+P e
im(F p)−1

jq s
α
qm

α
m , (2.28)

and with the assumptions ∂γα

∂(τα−τc
α) = 1/∂(τα−τc

α)
∂γα

and that s ·m = 0.

2.3 Numerical Implementation

It is easiest to de�ne all tensors in the crystal frame. No equations refer to the lab frame in

this paper. Obviously, the results must be rotated back to the lab frame, and inputs from the

lab frame must be rotated into the crystal frame when this material model is implemented

for multiple crystal orientations. Working in the crystal frame simpli�es many equations

as crystal material properties are easier to express in the crystal frame, such as s, m, and

C. Thus, there are only two frames of reference, the undeformed crystal and the deformed

crystal.

2.3.1 Incremental Deformation Steps

Time discretization is done assuming that boundary conditions will be enforced at discrete

time steps, t0, t1, ..., tn, tn+1, .... The subscript n and n+1 will be used to distinguish values

at speci�c time steps.
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2.3.2 Elastic

The only required input to the elastic model is the elastic deformation gradient, Fe
n+1.

Elastic deformation does not have a path dependency and as there is no time dependence

in the elastic model, the time discretization does not need any discussion.

2.3.3 Crystal Single Slip

First take

∆γ = n+1γα − nγα , (2.29)

then from an exponential mapping of equation (2.23)

n+1Fp = (I +
N∑

α=1

∆γαsα ⊗mα)nFp . (2.30)

Lastly,

nW
p =

N∑
α=1

(nτα)(nγα) , (2.31)

from (2.26).

Single slip is solved by iteration over n+1γβ , and equations (2.30) to solve for n+1Fp and

(2.6) to solve for n+1Fe. The resolved shear stress is computed by passing n+1Fe to the

elastic model to obtain n+1P and using equation (2.19). The value of n+1γβ can be found

by using an iterative method such as a Newton-Raphson until the Kuhn-Tucker conditions

(equations (2.25)) are satis�ed, i.e., the resolved sheer stress equals the critical resolved

shear stress or in the simplest case, only an elastic reaction occurs.

It should be noted that these values are strictly incremental, yielding a path-dependent

nature to the evolution of the material.
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A system of allowing only single slip (in�nite latent hardening) is adopted. An energy

for each possible slip system is determined and the minimum energy system selected, thus

determining the active slip system. Note that once a slip system is activated, it will be the

only slip system active in that spatial portion of material for all future time steps. As will

be introduced in the next chapter, the material can escape this restriction only by forming

microstructures of multiple single slip regions. This convention is due to the work of Ortiz

and Repetto [7] and Conti and Ortiz [1] in which it was shown that when using a slip model

involving discrete crystal slip systems with a strong latent hardening matrix, local single slip

provides energy wells in the energy of deformation. Thus, with this model the lowest energy

available to accommodate a deformation is always a microstructure of single slip volumes.

Assuming a given slip system, the single slip model takes four inputs: the �nal defor-

mation for the deformation step, n+1F; the previous step's plastic deformation, nFp; the

total accumulated slip strain at the end of time step n, nγβ ; and the current mean free

path length of the dislocations, n+1hβ . The mean free paths and how they are obtained are

discussed in section 3.3.1. The total energy density, n+1W , stress state, n+1P, and updated

state variables, n+1Fp and n+1γβ need to be computed. The subscript β is maintained to

designate these equations are for a single slip system. The total discretized energy density

is de�ned as

n+1W = n+1W
e + n+1W

p , (2.32)

which is introduced to replace φ in order to keep the symbols uniform for the discretized

variables. As derived by Aubrey and Ortiz [10], the dislocation wall energy has the e�ect of
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increasing the critical resolved shear stress as

n+1τ
c
β = τ c

o +
T

b n+1hβ
, (2.33)

where T is the dislocation line tension (assumed constant in this work) and b is the Burgers

vector.

Given the value of n+1τ
c
β , the energy can then be computed from equations (2.7), (2.17),

and (2.31) and the stress from (2.9) and (2.16). Obviously the summing operation in (2.31)

for the plastic energy only includes the single active slip system β as all other γα = 0.

2.3.4 Crystal Coplanar Slip

Due to the fact that two coplanar slip systems form a laminate microstructure in which

the two planes of dislocations do not interact and in which the separation between physical

regions of single slip lack dislocation walls which inhibit further slip, it is desirable to cre-

ate a theory which does not distinguish between coplanar slip regions. Otherwise further

hardening falsely occurs when a coplanar laminate microstructure activates further children

systems. In theories which include more traditional work hardening, it is apparent that

coplanar hardening is much closer in magnitude to self hardening than other forms of latent

hardening [23, 2, 24]. To understand the details of the motivation for a coplanar model, it

is required to understand the laminate model that is discussed in the following chapter [cf.

Chapter 3]. The reader is referred to that material for details.

Due to the unique geometric nature of coplanar slip, multiple active coplanar slip systems

can be treated as a single active slip system on a common plane. This is accomplished by



17

de�ning an e�ective slip direction as a combination of the coplanar slip directions.

nŝ ≡
∑

α∈coplanar

nγ̇α

nγ̇T
sα , (2.34)

where nγ̇T ≡
∑

α∈coplanar nγ̇α.

Using this de�nition of ŝ the values of the plastic deformation gradient, stress, and

plastic work energy (and thus, total energy) are equivalent to activating the slip systems

simultaneously. Only the material tangent used in solution iterations needs additional work.

These are shown subsequently.

As the coplanar slip model increases the degrees of freedom in the laminate it creates

new variables for the slip strains on each plane. These are solved by imposing the condition

nτα = nτ
c for all α ∈ coplanar . (2.35)

Solving for the coplanar slip strains, nγα, when this condition is met is simpli�ed by con-

sidering that the minimum energy deformation in FCC crystals allows for a maximum of

two slip systems to be active during a single time step. Activating the third FCC slip sys-

tem drives the combined total deformation down, while increasing slip. Solving for condition

(2.35) requires a sequence of steps to implement as it is unknown which slip systems activate

or if single or multiple slip is active. The solution steps follow:

1. Compute all τα − τ c

2. Activate maximum τα − τ c slip system from step 1 as single slip

3. Recompute all τα − τ c

if all τα − τ c ≤ 0, exit
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else, return max slip system to original slip strain and activate two highest τα −

τ c, exit.

Applying the condition to multiple coplanar slip requires a good initial guess and an

iteration. The initial guess, ŝ0, can be computed using the values of the initial shear stress

on the slip systems and assuming Fe ≈ I

ŝ0 =
(ω1 − ω2d)

(ω1 + ω2)(1− d)
s1 +

(ω2 − ω1d)
(ω1 + ω2)(1− d)

s2 , (2.36)

where

ωα = τα − τ c
α , (2.37)

d = s1 · s2 . (2.38)

Note d = 1/2 for FCC crystal systems.

Due to the approximations, this initial guess does not yield all τα− τ c = 0 for all actives

systems, α, but can further be quickly driven to the exact solution by an iterative algorithm

such as Newton-Raphson. The required derivative for such an algorithm is

∂nτα − nτ
c
α

∂γβ
= −(nFesα ⊗mα) · Ce · (nFesβ ⊗mβ) . (2.39)

Note that �·� above sums over two indices as previously de�ned, hence the left-hand side is

a scalar. The derivation of the above takes advantage of the fact that because m · s = 0,

then (nF
p)(n+1F

p)−1 = I.

Using this de�nition of ŝ (2.34), the plastic work is equivalent to using the total slip
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strain.

∆nW
p =

∑
α

(nτ
c
α)(∆nγα) , (2.40)

where ∆nγα ≡ nγα − n−1γα. Using the fact that all nτ
c
α are identical in a laminate with

coplanar slip

∆nW
p = (nτ

c)(∆nγT ) , (2.41)

which yields the desired result that the plastic work energy is equivalent.

For multiple activated coplanar systems, the plastic deformation gradient can also be

treated with an equivalent slip direction. To signify that the slip in the following equations

is coplanar, the subscript on m is dropped. For multiple simultaneous slip systems

nF
p
l = (I +

∑
α

nγα sα ⊗m)(n−1F
p
l ) . (2.42)

If instead a single slip system is activated with direction ŝ and shear strain γT

nF
p
l = (I + nγT ŝ⊗m)(n−1F

p
l )

= (I + (
∑
α

nγα sα)⊗m)(n−1F
p
l )

= (I + (
∑
α

nγα sα ⊗m))(n−1F
p
l ) . (2.43)

It is also noted that if coplanar slip systems are activated sequentially this is also true

nF
p
l = nF

p
2 nF

p
1(n−1F

p
l )

= (I + nγ2 s2 ⊗m)(I + nγ1 s1 ⊗m)(n−1F
p
l )

= (I + (
∑
α

nγα sα ⊗m))(n−1F
p
l ) , (2.44)
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where the last step in (2.44) is recognizing that all cross terms in (
∑

α nγαsα) ⊗mα and

(I + nγ2s2 ⊗m)(I + nγ1s1 ⊗m) cancel due to s ·m = 0 for coplanar systems.

The stress is una�ected since it is a function only of F and Fp.

The material tangent for active coplanar slip does not conform to the single slip equation

when using ŝ. It is

Ccoplanar
iJkL = Ce

iMkN (F p)−T
MJ(F p)−T

NL −
∑
α

∑
β

Cmixed
iJα Cmixed

kLβ

∂(τβ−τc
β)

∂γα

, (2.45)

where the sum over α and β is for the active slip systems, since by de�nition ∂γα

∂(τβ−τc
β) = 0

if τ c
β > τβ . In practice, it is more tractable to implement the single slip material tangent

(equation (2.27)) using ŝ for the slip direction. Although not exact, it still provides con-

vergence within a reasonable number of iterations without excessive computation of Cmixed

values. It should also be mentioned that if the active slip systems change, then there are

corresponding discontinuities in the material tangent.

The preceding coplanar slip theory allows for the treatment of coplanar slip in a manner

identical to that used for single slip.
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Chapter 3

Laminate Microstructures

Under the assumption of in�nite latent hardening, the only way for a material to activate

multiple slip systems is to divide into spatial volumes with di�erent single slip systems.

Previous work [7, 1] has provided evidence that with strong latent hardening the energy of

single slip is an energy well and is always less than multiple slip in energy considerations.

Following previous work [7, 9, 10] microstructures of single slip regions will be introduced

when the energy of the microstructure is less than the energy of single slip (or purely elastic

deformation). This work deviates from previous works by introducing coplanar slip laminates

and in the calculation of the laminate length scale from the nonlocal energy terms.

Following the previous work of Ortiz, Repetto, and Stainier [9], a formulation of laminate

microstructures is used. These are used due to the inability to resolve minimum energies

for any general microstructure [10], but the work of Ortiz and Repetto [7] show that many

dislocation structures found in experiments can be reproduced using sequential laminate

structures. The theory of sequential laminates used here is covered by Kohn [25] and re-

viewed in other references [10, 7]. A summary will be given here along with extensions to

the nonlocal energy. Speci�cally dislocation mean free path length, evolution of laminate

thickness, and notes on the dislocation wall normals are added to the theory.

Another advantage of using laminate structures is that complex structures can be formed
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by embedding simple laminate structures inside previously formed laminate structure. A

simple laminate is de�ned as a repetitive sequence of two layers of material. As embedded

simple laminate structures look the same at any level, one only needs to describe and analyze

the case of a single simple laminate, which can then be layered into more complicated

structures. These are described as ranks by Kohn. Each set of layers will be referred to as a

�laminate� (the use of node from previous works is changed to avoid future confusion with

�nite element nodes). Note that the term �laminate� is not referring to a single laminate

layer, but to the set of similar layers. (E.g. the set of grey bands in �gure 3.2 are one

laminate.) A laminate which has branched is called a �branch,� and one which has not

branched is called a �leaf.� Each branch will have two �children.� Every laminate except the

rank 0 initial material will have one �sibling� and one �parent.� The following notation for

laminate designation is given in �gure 3.1. The indice l will be used to refer to a unspeci�ed

laminate, with l+ and l− being the children of l and lp being the parent of l. Note that each

branch is identical, having one single slip system active in itself and dividing into a simple

laminate structure with two slip systems. (In this work one of the slip systems is restricted

to being the same as the parent.) Hence, the complex laminate structure can be formed by

an embedded composition of simple laminates. See �gure 3.2 for an illustration of a grain

with a rank two laminate subgrain structure.

Note that each laminate has only one active slip system, and thus the single slip model

is used for individual laminate deformation. Also, since a laminate has only one active slip

system the indice α used in the single slip section can be replaced by l without modifying

the equations.

A branched laminate is de�ned by the slip system active on each side, αl± , combined

laminate thickness Lc
l , the normal to the dislocation wall dividing the two laminates, Nl,
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the volume fraction of each laminate, λl± , and the jump of the deformation across the wall,

al (cf. �gure 3.3). One of the subtleties in the laminate theory is the evolution of the

laminate parameters. These will be further discussed in the evolution section, but for ease

in understanding the full work, those that evolve are given a time subscript n in this section,

namely nL
c
l and nal. The parameters Nl and λl± are not evolved.

Note that the active slip systems within each laminate are not evolved. Thus, once

a laminate forms, it always remains in the microstructure although it can further branch

within itself. This provides the theory with path dependency.

The framework for the laminate structures needs to be presented before nonlocal energy

terms can be understood, but the nonlocal terms will e�ect the laminate framework. Rather

than showing the general equations for the laminates and then modifying them later to

contain the nonlocal terms, the nonlocal terms are included without a full explanation and

derived in the next section. The section ends with a discussion of equilibrating the structure

and accounting for the stress jumps when new laminates form. Equilibration now includes

the laminate thickness providing an accurate form of evolving slip hardening.

3.1 Laminate Variable Properties

As the deformation must be rank one connected

nFl+ − nFl− = nal ⊗Nl , (3.1)

where {nal,Nl} ∈ <3 and as Nl is a unit vector indicating direction, ‖N‖ = 1. The symbol

nal is the polarization vector which varies with the values of the deformation gradient.



24

Figure 3.1. Labels used on laminate subgrain structures

Figure 3.2. Illustration of a grain with a rank two subgrain laminate structure. Shading in tree
structure corresponds to structure shown in grain illustration
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Figure 3.3. Simple laminate structure variables. Illustration is not to scale.

Obviously, the volume fractions, λl ∈ <. Note that λl must obey the rules

λl+ + λl− = 1, λl± ∈ [0, 1] . (3.2)

Given the volume fraction, the average or macroscopic deformation of the laminate

follows as

nFl = (λl−)(nFl−) + (λl+)(nFl+) . (3.3)

From (3.1) and (3.3), the deformation gradient of the children can be written

nFl± = (nFl)± λl∓(nal ⊗Nl) . (3.4)

The references [10, 9, 7, 17] derive the relationship

nPl = (λl−)(nPl−) + (λl+)(nPl+) , (3.5)
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and the material tangent for a branched laminate

nClaminate
l = (λl+)(nCs.s.

l+ ) + (λl−)(nCs.s.
l− ) , (3.6)

where equation (2.27) is used to calculate nCs.s.
l± .

The characteristic width of a laminate's layers is the combined width of the two children's

layers,

nL
c
l ≡ nLl+ + nLl− . (3.7)

Due to the repetitive planar geometry of a laminate structure, the width of a child laminate's

layers is related to its parent layer's width by the volume fraction

nLl± = λl± nL
c
l . (3.8)

A laminate's characteristic width, nL
c
l , is further restricted to be less than the width of

the parent structure

nL
c
l ≤ nLlp . (3.9)

Note that this restriction has been added in this work as it was found that energy minimiza-

tion alone allowed for the non-physical case of children larger than the parent.

When a laminate branches and becomes a parent the plastic deformation that has oc-

curred in the parent during previous time steps is retained as this deformation is permanent

and has already occurred. The children accommodate any remaining deformation. The cur-

rent plastic deformation in the parent (e.g., n−1F
p
l ) will not continue to evolve with further

deformation after the children laminates are formed. The macroscopic deformation, nFl,

will evolve as the laminates continue deforming (cf. equation (3.3)). To account for this
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when a laminate forms its initial plastic deformation is set equal to its parent's previous

plastic deformation

n−1F
p
l+

= n−1F
p
l , (3.10)

so that by equation (2.30)

nF
p
l+

= (I + ∆γl+ ŝl+ ⊗ml+)n−1F
p
l , (3.11)

the correct elastic deformation is given by equation (2.6), nFe
l+ = nF(nF

p
l+

)−1. The slip

strain of the children is set to zero, n−1γl+ = 0, so that the incremental plastic energy is

correctly computed.

3.2 Branching Energy Computation

To establish a simple laminate structure's energy, the minimum possible energy for the

laminate structure should be found in order to make comparisons to the single slip and

elastic energies. Thus, one �nds the solution to

nWl[nFl] ≡ min
αl± ,al,Nl,λl± ,Lc

l(
λl− nWl− + λl+ nWl+ +

(
(n−1)τl

) (
(n−1)γl

)
+ 2Υ nL

c
l

n−1Ll
nW

BL
l

)
, (3.12)

Υ is the depth of the boundary layer, reference section 3.3.2 for details. This minimum

is the energy density of laminate l branching and becoming the two leaves l+ and l−. If

this energy is less than the single slip (or elastic) energy, the laminate forms. The �rst

term is the energy from the laminate l−, both the elastic W e and plastic W p. The second

term is likewise the energy from laminate l+. The third term is the plastic energy that the
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possibly branching laminate l has already stored by single slip; it is included in the branched

energy in order to make accurate comparisons to the energy of single slip. Note the energy

accumulated in this term has already been completed in the previous deformation step, and

due to the assumed irreversibility does not evolve further; thus, it can be removed from this

minimization as a constant. The fourth term is the boundary layer energy caused by the

mis�t between the laminates and the boundaries of the parent system; it will be discussed

in section 3.3.2.

Note that the previous work of Aubrey and Ortiz [10] treated the nonlocal energy terms

of the boundary layer and the dislocation walls as perturbations of the energy, so were not

directly included in the minimization (eqn. (3.12)). When the nonlocal energy is introduced

later, it will be estimated to show that it should not be treated as a perturbation, but

minimized directly.

3.2.1 Slip Plane Selection, α

The possible slip planes will be iterated over to �nd a minimum deformation energy with

respect to αl± . This reduces the required solution to eqn. (3.12) to �nding

nWl[nFl]α∗
l±

=
(
(n−1)τl

) (
(n−1)γl

)
+

min
al,Nl,λl± ,Lc

l

(
λl− nWl− + λl+ nWl+ + 2Υ nL

c
l

n−1Ll
nW

BL
l

)
, (3.13)

for a given set of two slip planes α∗l+ and α∗l− using the given restrictions.

3.2.2 Dislocation Wall Normals, N

The complexity of calculating the wall normal when only single slip is active can be reduced

by referring to work done by Ortiz and Repetto [7], although care must be taken in how
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these are implemented. Ortiz and Repetto tabulated wall normals using rank one compat-

ibility of deformation assuming only plastic single slip on each side of a rank one laminate

with no elastic deformation for FCC crystal systems. Under the plausible assumption that

near the dislocation wall the majority of deformation is plastic, as little distance exists for

elastic deformation, these derived plastic deformation wall normals can be assumed a good

approximation. However, two details must be considered when implementing these directly

from the reference. First, they were derived in the Eulerian reference frame and second,

the length evolution of the wall normal degenerate cases, i.e., those cases for which the slip

system normals or slip system directions are identical. Note that in the derivation of the wall

normals there is also a restriction placed on the ratio γ̇+/γ̇−, which is not directly applied

in this work. This again relates to the assumption that all the deformation contained in the

compatible wall is plastic, while elsewhere, elastic deformation eases any restriction.

Although the conversion of the Lagrangian reference frame normal N to the Eulerian

reference frame normal n is given in the reference,

n =
(Fl+)−TNl

‖(Fl+)−TNl‖
, (3.14)

some explanation is bene�cial. A similar expression with F− can be derived following the

same steps, yielding

Nl =
(Fl+)Tnl

‖(Fl+)Tnl‖
=

(Fl−)Tnl

‖(Fl−)Tnl‖
. (3.15)

Although it appears that two di�erent deformations, Fl+ and Fl− , are applied to the same

wall normal nl to yield Nl; a better understanding is gained by applying polar decomposition

to the deformation gradients. By polar decomposition F can be split multiplicatively into a
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symmetric stretch tensor U =
√

FTF and an orthogonal rotation R = FU−1

Nl =
Ul+(Rl+)Tnl

‖Ul+(Rl+)Tnl‖
=

Ul−(Rl−)Tnl

‖Ul−(Rl−)Tnl‖
, (3.16)

since
∥∥(R±)Tn

∥∥ = 1 and U is a symmetric tensor (and thus diagonalizable by choice of

reference frame)

Nl = (Rl+)Tnl = (Rl−)Tnl =
(Fl)Tnl

‖(Fl)Tnl‖
. (3.17)

Thus, the conversion between n and N is only the rotation involved in the deformation and

must be equal for both sides as well as at the global level for compatibility of the deformation

at the dislocation wall.

From Ortiz and Repetto [7], the branched laminate composed of the two slip systems

αl+ and αl− has only two possible wall normal orientations if the slip systems are not

degenerate, i.e., the slip directions are not identical or the slip planes are not identical.

These two possibilities for wall normal direction can then be iterated over and only the

lower energy taken.

For the degenerate case in which the slip directions are equal it can be shown that

nl =
γ̇l+ml+ − γ̇l−ml−

‖γ̇l+ml+ − γ̇l−ml−‖
. (3.18)

Thus, the normal belongs to a 2D unit circle which contains ml+ and ml− . This unit circle

is iterated over by taking a set angle interval. The normal with the lowest energy is selected.

Note since the opposite of the normal gives an identical wall orientation, only half of the

circle needs to be checked. (If Nl → −Nl , then al → −al, and the calculations are not
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a�ected.) Also, the system slip directions, m+ and m− may be excluded as those directions

are identical to only a single slip system activated.

For the degenerate cases in which the slip plane normals are identical,

nl = ml+ = ml− . (3.19)

Due to the parallel slip planes the dislocations of these two systems will not interact and

will not form a dislocation wall. This and other considerations for the wall normal in this

section were noted by Ortiz and Repetto [7], but were not considered in the initial theory

of Aubrey and Ortiz [10]. Coplanar slip systems were already discussed in section 2.3.4.

Unfortunately, these conditions only hold for single slip. In considering the formation of

laminates in which more than one slip system is activated on each side of the wall normal

(e.g., two coplanar slip systems), there is presently no alternative but to search the unit

sphere of all wall normals for the lowest energy wall normal.

As described, the set of all possible Nl can now be iterated over, thus reducing the

minimization of (3.13) to �nding

nWl[nFl]α∗
l±

,N∗
l

=
(
(n−1)τl

) (
(n−1)γl

)
+ min

al,λl± ,Lc
l

(
λl− nWl− + λl+ nWl+ + 2Υ nL

c
l

n−1Ll
nW

BL
l

)
. (3.20)

When considering single slip activation, the set of possible wall normals considered is reduced

using compatibility.
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3.2.3 Computation of Volume Fraction, λ

As there are strict bounds limiting λ to the domain λ ∈ [0, 1], a discrete minimization of

λ can be conducted. Note the endpoints of the domain can be avoided as they pertain to

single slip. Using an accuracy of 0.1, λl is given the possible set of values

λl ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} .

All that is lost in this approach of solving for λ is accuracy in the volume fraction of the

laminate.

It is possible a more computationally e�cient solution would simultaneously solve for λ,

a, and Lc, but the discrete optimization is much more timely to implement.

The minimization equation 3.20 is now reduced to

nWl[nFl]α∗
l±

,N∗
l ,λ∗

l±
=
(
(n−1)τl

) (
(n−1)γl

)
+ min

al,L
c
l

(
λl− nWl− + λl+ nWl+ + 2Υ nL

c
l

n−1Ll
nW

BL
l

)
. (3.21)

3.2.4 Computation of Polarization Vector, a

Minimization of (3.21) excluding the boundary layer energy with respect to al gives the

condition that tractions must be compatible across dislocation walls:

(nPl+ − nPl−)Nl = 0 . (3.22)

This is solved directly using a Newton-Raphson iteration for the value of al. It will be shown

that generally WBL
l is small compared to the total plastic energy.
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This minimization ideally should be done concurrently with the minimization of Lc
l as

both e�ect the plastic energy, but currently a loop over the solutions of al and L
c
l is performed

until convergence is reached. Convergence could be more e�cient by the introduction of a

minimization solution over al and L
c
l simultaneously. This analysis is di�cult as the iteration

in solving for γl± prevents an analytical equation.

3.2.5 Computation of Laminate Thickness, Lc

With a given value for α±l , λl, and Nl and the last iterative solution for a, the solution for

Lc
l is a simple analytical minimization. The value Lc

l only appears in the nonlocal terms as

the addition to the critical resolved shear stress in the plastic energy and in the boundary

layer energy. (The nonlocal energy is explained subsequently, but the minimization solution

is placed here to be included with the other laminate parameter calculations.) The length

scale of the laminates is derived through a competition between the two nonlocal energies.

Speci�cally, using WDW as the dislocation wall energy density and WBL as the boundary

layer energy density and WNL as the total nonlocal energy density

nWl[nFl]α∗
l±

,N∗
l ,λ∗

l±
,a∗l

=
(
(n−1)τl

) (
(n−1)γl

)
+ min

Lc
l

(
λl− nWl− + λl+ nWl+ + 2Υ nL

c
l

n−1Ll
nW

BL
l

)
=

(
(n−1)τl

) (
(n−1)γl

)
+min

Lc
l

(
λl− (τ c

0)(nγl−) + λl+ (τ c
0)(nγl+) + nW

DW
l + 2Υ nL

c
l

n−1Ll
nW

BL
l

)
=

(
(n−1)τl

) (
(n−1)γl

)
+ λl− (τ c

0)(nγl−) + λl+ (τ c
0)(nγl+)

+ min
Lc

l

(
nW

DW
l + 2Υ nL

c
l

n−1Ll
nW

BL
l

)
. (3.23)
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Thus the minimization with respect to nL
c
l is only over the nonlocal energy, nW

NL
l . Sub-

stituting for the dislocation wall energy (equation (3.47))

nW
NL
l =

T

b nLc
l

(
nγl−

ζl−

√
1− (ml− ·Nl)2 + nγl+

ζl+

√
1− (ml+ ·Nl)2

)
+ 2Υ nL

c
l

n−1Ll
nW

BL
l , (3.24)

ζl is the ratio of the dislocation mean free path length to the width of the laminate; it will

be introduced in section 3.3.1.

The minimization with respect to nL
c
l then follows as

nL
c
l =

√
T n−1Ll

2Υb nWBL
l

(
nγl−

ζl−

√
1− (ml− ·Nl)2 + nγl+

ζl+

√
1− (ml+ ·Nl)2

)
, (3.25)

the symbol n−1Ll is used rather than nLl as this value will change in the equilibration if a

laminate is formed. Before the time step calculations are completed, the laminate thickness

will be calculated using an updated

nLl

in equilibration. The value of n−1Ll will not change if no laminates branch. See section 3.4

for full details; a note is left here to maintain comprehension of the above equation.

Adding in the constraint that the children �t inside the parent

nL
c
l =


equation (3.25), if (equation (3.25))< n−1Ll

n−1Ll , otherwise

(3.26)

The previous work of Aubrey and Ortiz [10] treated the nonlocal energy as a perturbation

to the total energy. This work minimizes it directly, as it is shown in section 3.3.1 that the
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dislocation wall energy will eventually be comparable in magnitude to the plastic deformation

energy giving a strong interaction between Lc
l and al.

3.3 Nonlocal Energy

Following the ideas of Aubrey and Ortiz [10], two terms of nonlocal energy will be included

due to the formation of laminate structures: the dislocation wall energy and the boundary

layer energy.

3.3.1 Dislocation Wall Energy

When a laminate branches into two laminates with di�erent slip planes, a dislocation wall

forms between them. The new dislocation walls impede dislocation motion and, thus,

shorten the mean free path of the mobile dislocations. As derived in Aubrey and Ortiz

using Orowan's relation [10], shortening the mean free path causes plastic energy for a given

deformation to increase. This increase of the plastic deformation energy corresponds to an

increase in critical resolved shear stress. Hence formation of dislocation walls increases the

energy necessary for further plastic deformation for the individual laminate's slip system,

but due to the gained freedom in active slip systems to release stored elastic energy the

laminate formation may lower the global deformation energy.

Here the ideas of Aubrey and Ortiz [10] are expanded to not just using the width of the

laminate as the mean free path for dislocations, but to include the angle between the path

of the dislocation and the dislocation wall. This allows a �rst estimate of morphology in

the structure to be included. The inclusion of the dislocation path geometry means �ner

laminates will form if the slip plane (and thus the dislocation paths) is near parallel to the

dislocation wall. This change signi�cantly lowered the boundary layer energy and often
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Figure 3.4. Geometry of slip plane between two dislocation walls

changed the lowest energy (active) system in simulations. This is particularly important

for the special cases where the dislocation path normals in sibling laminate structures are

identical and thus, no dislocation walls form to impede further dislocation slip [7].

For a given slip system β, dislocations are assumed to move until encountering the

boundary of the laminate. Note that all dislocation paths reside on the slip plane regardless

of the type of dislocation, thus one needs to consider the general case of computing the

mean free path of dislocations on the slip plane of laminate l which is between two parallel

dislocation walls, reference Figure 3.4. The width between the parallel dislocation walls

Ll, is de�ned by the computation of Lc
lp

and λl from equation (3.8). The length of the

dislocation walls is approximated as the width of the parent laminate: Llp . Note that this

approximation is a minimum, the true length may be much longer depending on the angle

the parent laminate makes with its parent and grandparent and so on. This is not of concern

though as a separation of scales is assumed, e.g., Llp � Lc
lp
. As this assumption will be used

for simpli�cation, it is not of any consequence if Llp is underestimated. The normal to the

dislocation walls is Nlp and the normal to the slip plane is ml.
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Table 3.1. L/A ratios for generic slip system A6

System n(not normalized) LA6
AA6

A2 (1̄11) 0

A3 (1̄11) 0

A6 (1̄11) 0

B2 (113̄) 2
√

2
11

(211) 1

B4 (011) 1√
3

(111̄) 2
3

√
2

B5 (100)
√

2
3

(001̄)
√

2
3

C1 (101̄) 1√
3

(111) 2
3

√
2

C3 (121̄) 1

(113) 2
√

2
11

C5 (001)
√

2
3

(01̄0)
√

2
3

D1 (1̄12) 1
3

(311) 4
√

2
33

D4 (131̄) 4
√

2
33

(131̄) 1
3

D6 ∈ plane containing ∈ (0, 1)
mD6 and mA6

The slip plane is approximated as a rectangle de�ned by two lengths, call the lengths A

and B de�ned by

A =
Ll√

1− (ml ·Nlp)2
, (3.27)

B = Llp . (3.28)

Table 3.1 lists the ratios L/A for the slip system A6 given the sibling slip system for single

slip using all possible wall normals as calculated by Ortiz and Repetto [7]. Due to symmetries

of the slip systems it does not matter which system was chosen, A6 is a completely generic

choice. Note microstructures involving only the same slip system (i.e., A6 and A6 in this

example) are indistinguishable in this theory. The value of L/A ranges from a maximum of
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1 (slip plane perpendicular to laminate wall normal) to a minimum of 1
3 , excluding the same

slip plane laminates. The same slip plane laminates (i.e., A slip systems in this example),

are parallel with the dislocation wall normal and thus do not interact with it. These are

discussed in section 3.3.1.1 subsequently.

The mean free path of dislocations on the slip plane, hl, is de�ned by

hl ≡
∑

paths

#paths
, (3.29)

using #paths to mean the count of all paths. It is assumed that dislocations are generated

uniformly at all locations in the plane. Noting that all dislocations (edge and screw) move

in the slip plane and that various dislocations mixed between edge and screw may move in

any direction to provide the appropriate slip, it is also assumed that the direction of motion

of the dislocations is uniformly distributed. The number of paths can be computed

#paths =
∫

Ω

∫ α=2π

α=0
dα dx̄ = 2πAB , (3.30)

where x̄ is the location coordinate on the slip plane and Ω is the area of the slip plane.

De�ne p[α, x̄] as the path length of the dislocation starting at x̄ and moving at the angle

α. Thus, ∑
paths =

∫
Ω

∫ α=2π

α=0
p[α, x̄]dα dx̄ . (3.31)
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Referencing �gure 3.5

θ1 = arccos[
B − x√

(B − x)2 + y2
] , (3.32)

θ2 = arccos[
B − x√

(B − x)2 + (A− y)2
] , (3.33)

θ3 = arccos[
x√

x2 + (A− y)2
] , (3.34)

θ4 = arccos[
x√

x2 + y2
] , (3.35)

α1 = −θ1 , (3.36)

α2 = θ2 , (3.37)

α3 = π − θ3 , (3.38)

α4 = π + θ4 . (3.39)

This gives

p[α, x̄] =



B−x
cos α if α1 ≤ α < α2 ,

A−y
sin α if α2 ≤ α < α3 ,

x
cos α if α3 ≤ α < α4 ,

−y
sin α if α4 ≤ α < α1 .

(3.40)

B � A allows for the small angle approximations given in table 3.2. These approxima-

Table 3.2. Small angle approximations

cosα1 ≈ 1 sin α1
2 ≈ − θ1

2 cos α1
2 ≈ 1

cosα2 ≈ 1 sin α2
2 ≈ θ2

2 cos α2
2 ≈ 1

cosα3 ≈ −1 sin α3
2 ≈ 1 cos α3

2 ≈ − θ3
2

cosα4 ≈ −1 sin α4
2 ≈ 1 cos α4

2 ≈ θ4
2

θ1 ≈ y
B−x θ2 ≈ A−y

B−x θ3 ≈ A−y
x θ4 ≈ y

x

tions are good so long as the point x̄ is far from the edges of length A, but that area is quite
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Figure 3.5. Coordinates and angles on the slip plane

small (again due to B � A). Integrating p over α and then applying these approximations

yields

∫ 2π

α=0
pdα ≈ 2A− y

(
ln
[
− y

4(B − x)

]
+ ln

[y
x

])
+ (y −A)

(
ln
[

A− y
4(B − x)

]
+ ln

[
y −A
x

])
. (3.41)

Then integrating over the domain of the slip plane, and taking only the real part

∫
Ω

∫ 2π

α=0
pdα dx̄ = A2B(1 + 2 ln[

2B
A

]) (3.42)

yields the mean free path by equation (3.29)

hl =
Al(1 + 2 ln[2Bl

Al
])

2π
. (3.43)

It is desired to remove the parameter B from the computation of the mean free path as

its value is not readily available. The value of hl will be approximated as a linear function

of Al using the separation of length scales inherit in laminate structures (B � A). The

value of ζ ≡ nhl/Al is investigated. A plot of ζ vs. B
A is given in �gure 3.6. For the range
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Figure 3.6. Plot of h
A vs. B

A

(B/A) ∈ [100, 1000], ζ ∈ [1.846, 2.579]. Due to the small variation of ζ in a domain of

reasonable values, the extra computation is warranted as excessive and the parameter ζ is

approximated as a constant. For this work ζl = 2 is chosen.

This gives a value for the dislocation mean free path

nhl = ζlAl =
ζl nLl√

1− (ml ·Nlp)2
, (3.44)

and by equation (3.8)

nhl =
ζlλl nL

c
lp√

1− (ml ·Nlp)2
. (3.45)

Note although the angle between ml and Nlp may change during plastic slip, the length A

will remain constant. This is true because plastic slip is purely a shear deformation and thus

will not cause the material to stretch along the shear direction. A shear deformation would

cause the angle between ml and Nlp to change, but this would correspond to a change in the

perpendicular length measured nLl that would compensate to keep the value of A constant.

Assuming elastic stretch deformation to be negligible, the mean free path calculations can

thus be done in the reference (undeformed) con�guration accounting only for changes in the

length nLl and treating
√

1− (ml ·Nlp)2 as a constant.
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As was derived by Aubrey and Ortiz [10] using Orowan's relation, the e�ect of the

dislocation walls shortening the mean free path increases the critical resolved shear stress of

the material:

nτ
c
l = τ c

0 +
T

b nhl
, (3.46)

where τ c
0 is the material-dependent initial critical resolved shear stress, T is dislocation line

tension, and b is the Burgers vector. This increase of the critical resolved shear stress with

re�nement of the subgrain dislocation structures causes several forms of hardening in this

model.

The added nonlocal energy of the dislocation wall including the increase in τ c to both

children (i.e., l is the branch in the following equation instead of a leaf) can be inferred as

nW
DW
l =

T

b
(nγl−λl−

nhl−
+ nγl+λl+

nhl+
)

=
T

b nLc
l

(
nγl−

ζl−

√
1− (ml− ·Nl)2 + nγl+

ζl+

√
1− (ml+ ·Nl)2

)
. (3.47)

To obtain the equations that are in Aubrey and Ortiz [10], apply the conversion hl± → Ll±

and assume (ml± ·Nl) = 0.

The dislocation wall energy is in general not a perturbation of the total plastic deforma-

tion energy, as can be seen by an estimation of values for a single leaf l at time n. Previous

work has treated it as a perturbation [10]. The plastic energy is nW
p
l = (nτ

c
l )(nγl), while

the dislocation wall energy is nW
DW
l = T (nγl)

b(nhl)
. Thus,

NW
p
l

nWDW
l

=
b(nhl)(nτ

c
l )

T
. (3.48)

Generally for metallic materials the order of T ≈ 10−10 N, b ≈ 10−10 m, and τ ≈ 106 N/m2;
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yielding
W p

l

W BL
l

≈ hl ∗ 106 1/m. Using these estimates, only for laminates larger than ap-

proximately 10−4 m may WDW be treated as a perturbation; although, any laminate this

large should �nd forming �ner laminates energetically favorable and eventually invalidate

this assumption. Thus, the dislocation wall energy,WDW , is never treated as a perturbation

in this work.

3.3.1.1 Laminates with Coplanar Slip

The special case of branched laminates with active coplanar slip systems have the children's

slip planes parallel to the dislocation wall predicted to form between the children. In this

case, the two children's dislocations move in parallel directions and no dislocation wall

forms [7]. Note in this model, once the angle of the slip plane to the wall normal is taken

into account, hl → ∞, appropriately giving a dislocation wall energy of zero. If there is

no dislocation wall energy, the laminate will be able to form at an in�nitesimal width and

negate any boundary layer energy as well. This gives a total nonlocal energy of zero, meaning

branches with identical slip planes on either side are zero energy structures. Zero-energy

structures are obviously problematic. In reality, the value of hl for two coplanar laminates

should be the length of the parent structure containing them.

There is a second problem with coplanar laminates. If no dislocation walls form, then

there is nothing to prevent the dislocations in the children of the coplanar laminate from

slipping across these boundaries, and thus forming at the length scale of the parent. As

this change in length scale is not accounted for in the theory, the children of laminates with

coplanar siblings would form at lower length scales and thus harden too much. The two

problems caused by the lack of dislocation walls is the reason a coplanar slip approach is

needed and was already discussed in section 2.3.4.
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Figure 3.7. Detailed �gure showing boundary layer variables

Although these coplanar systems should not only self harden but harden each other [2],

the results of Franciosi [26] and analysis of Bronkhorst [23] and Havner [24] suggest coplanar

slip systems should exhibit much less latent hardening than other systems. This work treats

coplanar systems as mutually self hardening (i.e., the slip on two active coplanar slip systems

is added and treated as a single slip system which self hardens). This di�ers from traditional

multislip theories in which the hardening of these systems is often approximated identical

to all other systems [16, 15].

3.3.2 Boundary Layer Energy

The boundary layer energy is computed from the elastic deformation that maps the under-

lying parent material to the two children's deformations. By referencing �gure 3.7 note that

the outside wall of the laminate is at the parent's deformation, nFl, while the bulk volume

of the children are at their respective deformations, nFl± . The boundary layer's state of de-

formation must transition from the parent deformation to the child's deformation. A linear
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transition is assumed giving the average deformation of the boundary layer as

nFBL
l± =

1
2
(nFl + nFl±) . (3.49)

Taking the boundary layer deformation to be elastic yields an energy for the boundary

layer

nW
BL
l = λl+

(
W e[(FBL

l+ )(nFl)−1]− nWl+
)

+ λl−
(
W e[(FBL

l− )(nFl)−1]− nWl−
)

, (3.50)

where the terms nWl± are subtracted as a correction to the total energy since the energy

of the boundary layer volume was assumed to have the child's deformation in previous

calculations. Note the boundary layer energies will remain positive as the energy of the

child deformation subtracted involves a low energy plastic deformation, while the energy

of the boundary layer is elastic in nature. Recall the de�nition of nWl± is the plastic and

elastic energy in the individual leaf and does not include the previous plastic deformation in

laminate l and other ancestors of the leaf; thus, the value of WBL
l is actually the di�erence

between the energy in the boundary layer volume and the average bulk deformation energy

of the branched laminate. It acts as an energy penalty.

The formulation given here di�ers from the work of Aubrey and Ortiz [10] in the cor-

rection of the additional elastic deformation to be (FBL
l+ )(nFl)−1 rather than (FBL

l+ ) only.

This change is due to the boundary layer accommodating the deformation from the initial

parent material to the child's deformation rather than from an initial undeformed state to

the child's deformation.

Note that this is an energy density for the boundary layer, and as such must be added

only for the portion of material which is in the boundary layer. The contribution to the total



46

Figure 3.8. Calculation of the boundary layer volume. Illustration not to scale.

energy density is scaled by the fraction of the boundary volume to the total volume of the

simple laminate. Reference �gure 3.8, assuming the dislocation wall parallel toNlp is circular,

the total volume of one layer of the branched laminate Ll is
π
2LlL

2
lp
. The corresponding

boundary area is πL2
lp
, neglecting the small contribution 2πLlLlp justi�ed by Llp � Ll. Note

the geometric assumption of a circular area cancels in the ratio of the total volume to volume

of boundary layer, and thus the geometric assumption of circular domain has little in�uence

on this calculation. Taking the combined children's laminate lengths, Lc
l = Ll+ + Ll− , the

total nonlocal energy density scales as

WNL
l = WDW

l + 2Υ
Lc

l

Ll
WBL

l , (3.51)

where Υ is a scaling factor determining the depth the boundary layer penetrates in the

laminate in multiples of Lc.

In the work of Ortiz, Repetto, and Stainier [9] showing boundary layers composed of

re�ning laminate structures, the boundary layer penetration is on the order of Lc. Thus, it

can be assumed Υ should be somewhere on the order of 1. Aubrey and Ortiz [10] indirectly

assign Υ as 1
2 .
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As the boundary layer term is scaled by
Lc

l
Ll

and it is assumed Lc
l � Ll, the boundary layer

contribution to the total energy can be assumed small. Due to the minimal contribution, it

appears justi�ed to treat it as a perturbation when solving for a.

3.4 Equilibration Updates

As the macroscopic deformation, nF, increments with each time step, it is necessary to

update the values of the polarization vectors, nal, in order to keep the stress compatible

across the dislocation walls. The values of the laminate thicknesses, nL
c
l , are also updated

as it provides a hardening behavior, and mathematically the thickness depends on variables

that are being updated, nW
BL
l and nγl. If the thicknesses were not updated, but rather

formed at a single step and held constant afterward, the values of the thicknesses would

depend on such things as step size. This is not a desired behavior.

It is desirable to allow multiple rank structures to form within the same time step, e.g.,

a leaf may branch into two children, then at the same time step those children may further

branch into children and so on. This feature was added into the theory in this work, previous

works allowed only for one branching step to occur at each deformation step. The addition of

equilibrating the laminate thicknesses for the entire structure described in this section allows

multiple branches to form in the same time step. If the thicknesses are not equilibrated as

an entire structure, having a laminate with γ = 0, would cause instabilities with WBL when

computing thickness for the children of this laminate. When multiple rank branches form

at the same time step, the γ = 0 parents with no plastic deformation themselves essentially

become space holders for the children.

It should be noted that a complete optimization of the laminate structure would require

the equilibration be done simultaneously with the formation of new branches. Essentially,
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when checking if a new branch forms the structure should be equilibrated, as well as checking

every possible combination of other new branches in the tree and equilibrating each combi-

nation. Obviously, this problem quickly becomes non-tractable. To avoid this the structure

from the previous time step is equilibrated at the beginning of each deformation step for

the new deformation gradient, nF, and then each leaf is checked individually to see if it

branches. This process of equilibration and branching is repeated until no new leaves form.

To remove elastic leaves, a minimum limit should be set on the slip strain, γl, for a

branch to form. Without this restriction leaves may form which after equilibration, only

deform elastically. Since the laminates in this theory are based on the formation of subgrain

dislocation structures, if a leaf is only reacting elastically, it should not have been formed. To

avoid dependence on the size of the time steps, a small numerical restriction of γl ≥ 1∗10−14

is chosen. This restriction is small enough to remove only leaves with energy bene�ts on the

order of computational error. Elastic leaves did not form in any of the simulations presented

in this paper.

From this point on, the subscript designating step discretization n will be left o�. As

the following calculations in this section show the equilibration for a single time step, it is

understood all values have the same n. The reader is referred to previous sections for an

understanding of which values are changing over time steps.

3.4.1 Compatibility of Stress and Evolution of the Polarization Vector

As each new macroscopic deformation step, F, is introduced, the equilibration of the stresses

across the dislocation walls needs to be updated. Equation (3.22) must be satis�ed for each

branch simultaneously. The value of the deformation jump a is recomputed for branches

in the microstructure using the new global F. This was shown and implemented by Ortiz,
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Repetto, and Stainier [9]. Note that only the leaves in the microstructure are active and

free to evolve new values of slip strain γ, so only the leaves obtain new slip strain values to

accomplish this equilibration.

Noting the optimization of the deformation jump, al, and the laminate thicknesses, Lc
l ,

are interrelated, an iteration similar to that used in solving for individual branches is used.

The al are solved for using the previous values of Lc
l , after which Lc

l is optimized for the

new values of al. This is repeated until the change in Lc
l reaches a speci�ed tolerance.

3.4.2 Evolution of Laminate Thickness

Previously, the method for obtaining the optimal laminate thickness when a single laminate

bifurcates into two laminates was given (cf. section 3.2.5). This section deals with optimizing

the thicknesses of an entire laminate microstructure. This is done as part of equilibration.

3.4.2.1 Laminate Evolution

In this theory, the dislocation walls form at an instant, whereas in real materials the dislo-

cation wall will form slowly as more dislocations entangle and form dislocation walls. The

evolution of the thickness over time is considered to approximate the formation of the walls

over time and re�nement of the length scale as new dislocations form between existing

dislocation walls.

If the laminates are formed and not updated, the thickness of the laminates is dependent

upon the deformation step size because the values used to calculate the thickness (WBL and

γ) evolve through the deformation steps. Branching occurs when the energy of the laminate

deformation mechanism is less than the energy of a single slip deformation, but due to

discretization of deformation steps, the magnitude where these two energies are equal is
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generally overshot. The evolution of the thicknesses allows for a value to be converged on

with further deformation and provides a self hardening behavior.

The laminate thickness should have changes not just in the leaves but also in the entire

tree structure. This is particularly true if more than one layer of laminate is to form

within the same time step. Previous laminate theories to date have only allowed one layer of

laminate to form at each time step, thus restricting the reasonable magnitude of deformation

step that can be taken. Under this theory, it is possible to form any rank of laminate where

only the leaves have non-zero slip strain, γ. A γ = 0 branch is essentially a place holder

for the volume of its descendants. It is also assumed that the dislocation walls of previous

branches which have further branched have a degree of mobility. At this time no limits to

the mobility of the dislocation walls is used, the length is based on energy optimization.

The minimization of the nonlocal energy with respect to all Lc
l is

min
{Lc

l | l=1,...,Z}

Z∑
l′=1

WNL
l′ , (3.52)

where Z is the number of laminates in the microstructure. Noting that the only lengths

that in�uence the nonlocal energy of a particular laminate l are Lc
l and Lc

lp
(see equation

(3.24)), the minimization of the total nonlocal energy with respect to a speci�c Lc
l is

∂
∑Z

l′=1W
NL
l′

∂Lc
l

=
∂WNL

l−

∂Lc
l

+
∂WNL

l+

∂Lc
l

+
∂WNL

l

∂Lc
l

= 0 , (3.53)

which yields

Lc
l =

√√√√(Lc
l+
WBL

l+

λl+
+
Lc

l−W
BL
l−

λl−
+

δl
2Υ

)
λl

WBL
l

Lc
lp

, (3.54)
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where use has been made of equation (3.8): Ll = λlL
c
lp
and

δl ≡
T

b
(
γl+

ζl+

√
1− (ml− ·Nl)2 +

γl−

ζl−

√
1− (ml− ·Nl)2) . (3.55)

Note that each Ll depends on its parent and children, thus each parent depends on each

of its descendant's lengths and each child's length also depends on each of its ancestor's

lengths. This in�nite loop of dependencies is overcome by starting with the known length

of the rank 0 laminate, L0, which is a required input. As an initial starting condition, set

Lc
0 = L0 and λ0 = 1, then a direct iteration by decreasing rank of the structure is possible.

To avoid ambiguity in the above calculations, if l± is a leaf, WBL
l± = 0. Note in this case

equation (3.25) is returned.

3.4.2.2 Hardening

Both traditional mechanisms of hardening, self hardening and latent hardening, are re-

produced by the laminate size evolution. As the slip strain within a laminate increases

with deformation, the boundary layer energy increases. The simplest approximation for the

boundary layer energy density is WBL = µγ2, where µ is the shear modulus. Considering

equation (3.25), the laminate size will decrease with increasing strain. Due to equation (3.46)

this causes a form of self hardening. When a new slip system is activated, the material must

branch, and thus both the new laminate and the existing one will decrease in size, causing

a form of latent hardening.

It is also interesting to note that the magnitude of latent hardening is dependent upon

the systems that are activated. The changes in magnitude of hardening are caused by the

variance in the mean free path of the systems (cf. table 3.1). The results of the mean free
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path calculations display a similar relationship for coplanar, colinear, and other forms of

hardening in multiple slip as described by Franciosi and Zauoi [2] and Havner [24].

3.5 Stress Jumps on Laminate Formation

It is shown that when a laminate forms there is a discontinuity in the stress state. This is

important as any �nite element method generally uses iterative solutions to apply traction

boundary conditions and to obtain equilibration between elements. A discontinuity in the

stress may cause the iterative changes in the deformation gradient used to obtain a speci�ed

traction to fail to converge. Although this can happen in more dimensions and was often

observed in two, the concept can be illustrated simply in onedimension, see �gure 3.9.

If the target value P ∗ falls in the stress discontinuity, when the point F1 is reached

the derivative ∂P
∂F of microstructure 1 will provide the new input value F2, which in turn

will provide F1. This cycle occurs if P ∗ falls anywhere between P [F1] and P [F2]. This

illustration is a simpli�cation for demonstration only; the derivative ∂P
∂F is not constant for

a given microstructure, nor generally are the traction boundary conditions only applied to

one component of the nine-component tensor.

The stress discontinuity must be eliminated to guarantee convergence of applied traction

boundary conditions. As they are due to oscillations between two or more microstructures,

the solution is to prescribe a single microstructure. With only one prescribed microstructure,

there are no discontinuities in the stress, and the traction boundary conditions can be met by

iteration. The proper criteria for selecting which microstructure should be used is debatable.

An obvious choice would be to select the least developed microstructure, thus allowing the

material to select a more complicated microstructure at the next deformation step, but this

requires tracking and storing all microstructures that occur. Another option would be to
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Figure 3.9. Illustration of lack of convergence from a stress jump

investigate the energy of �xing each possible microstructure and selecting the lowest. This

would involve long computations for many structures.

Since it is also di�cult to detect when an oscillation between microstructures has oc-

curred, this work uses an e�cient random selection of microstructure. When convergence to

a traction boundary condition fails after a given number of iterations, the microstructure is

prescribed as the last microstructure developed. The deformation is then equilibrated with

only this microstructure. Note the deformation is still evolved, but the microstructure and

slip systems are �xed.

The following shows the magnitude of the minimum jump in stress. The calculations

are purely academic as it would be easier to compute the jump directly, but this proves the

existence of the jump and gives the starting point for the possibility of removing the jump

in later work.

The energy of laminate l deforming by single slip is

W ss
l = W e

l +W p
l = W e

l + τ c
l n+1γl . (3.56)
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The energy of the laminate l branching and forming the two laminates l+ and l− is

W lam
l = λl+W

ss
l+ + λl−W

ss
l− + τ c

l nγl +
2ΥLc

l

Ll
WBL

l . (3.57)

A laminate forms when the energy of single slip is equal to the energy of the laminate (not

accounting for discrete time steps)

W ss
l = W lam

l . (3.58)

Taking the derivative of this equality with respect to F

∂W ss
l

∂F
=

∂W lam
l

∂F

= λl+
∂Wl+

∂F
+ λl−

∂Wl−

∂F
+

2ΥLc
l

Ll

∂WBL
l

∂F
. (3.59)

Using equation (2.2) for the stress

Pss
l = λl+Plam

l+ + λl−Plam
l− +

2ΥLc
l

Ll

∂WBL
l

∂F
. (3.60)

Noting from equation (3.5) the average stress of the laminate yields

Pss
l −Plam

l =
2ΥLc

l

Ll

∂WBL
l

∂F
. (3.61)

The value of
∂W BL

l
∂F can be further evaluated for dependence on λ,F,a, and N.



55

Chapter 4

Results and Discussion

Validation of this theory is accomplished by comparison to single crystal tests on copper.

Material constants are given in section 4.1. Note these property values are taken from

published experimental data and are not �t. Simulations of the theory using a single copper

material point and these constants are compared against various crystal alignment tension

tests. It is found that the stress response of the symmetric microstructure orientations can

be captured (i.e., orientations 001, 101, and 102). The activated slip systems are compared

to previous single crystal models. The a�ects of grain size and shape on the deformation

response are also presented.

4.1 Material Properties of Copper

A signi�cant feature of the laminate subgrain model is the small number of material constants

required by the model, all of which are obtained directly from independent experimental data

rather than from numerical �tting. The material constants used for the copper simulations

along with references are listed in table 4.1.
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Table 4.1. Copper material constants

Constant Value Ref.

Elastic Const. (C11) 168.4 GPa [27]

Elastic Const. (C12) 121.4 GPa [27]

Elastic Const. (C44) 75.4 GPa [27]

Crit. Shear Stress (τ c) 1.0 MPa [28]

Burgers Vector (b) 2.56 ∗ 10−10 m [29]

Line Tension (T ) 18.3 ∗ 10−10 N [29]

Dislocation line tension, T , is approximated using the method given in Kocks et al. [29]:

Tscrew ≈ µb2

2
,

Tedge

Tscrew
= 1.76 ,

T =
√
TscrewTedge ,

where Tscrew, Tedge are the line tension for a screw and edge dislocation and µ is the shear

modulus given in Kocks et al. [29] as 42.1 GPa.

The width of the boundary layer in units of Lc, Υ, is set to 1/2 for these simulations.

This is the same value as used in Aubrey and Ortiz [10].

The initial size of the single crystal specimens used in the experiments of Franciosi and

Zaoui [26, 2] is not known for model validation. As the size directly a�ects the hardening

behavior, the sizes are approximated based upon the stress-strain data. Further details are

given in the discussion.

4.2 Copper Single Crystal Simulations

Validation of the stress response of copper single crystals can be accomplished by comparison

to the experimental data of Franciosi and Zaoui [26, 2]. Unfortunately, the �rst reference
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cites the second as the source of the test data given, but the data does not appear in the

second reference. This leaves some speculation on how the tests were conducted. Franciosi

[26] states single crystal copper specimens were tested; each with a di�erent crystal direction

aligned to the tensile axis. The crystal directions were [001], [101], [102], [111], [112], [122],

and [135].

The simulated stress normal to the tensile axis and that measured experimentally for

selected orientations is presented. The evolution of the subgrain dislocation structure is also

shown. A consistent deformation step of 10−3 is used for all simulations. All deformations

with this model are assumed quasistatic as no rate dependencies are incorporated yet. Dis-

cussion of the salient structure formed and comparison of these tests follows. Afterward,

the same test conditions are employed to make comparisons of grain size e�ects against a

traditional Hall-Petch e�ect and to demonstrate the a�ect of grain shape.

4.2.1 Boundary Conditions

The boundary conditions employed cannot be taken directly from publications. Following

the assumption of �xed grips seems to produce appropriate results. Note that for single

crystals the choice of boundary conditions is paramount, as the deformation response is far

from axisymmetric.

With nine components in the deformation gradient, F, and nine components in the

stress, P, each component must either be speci�ed as a displacement boundary condition

(for components of F) or as a traction boundary condition (for components of P). Figure

4.1 gives a coordinate system and visualization for the grips. Since the test is uniaxial, F33

is speci�ed as an input. P11 = 0 and P22 = 0 as these surfaces are free with no applied

forces. P33 is the output to be solved. Additionally, it was assumed that the bottom grip



58

Figure 4.1. Coordinates of �xed grip orientation for tensile Cu specimens

did not move, and the top grip moved only in the 3 direction with no displacement in the 1

or 2 directions.

Obviously, if con�ned in the grips the material cannot rotate about the 1 or 2 axes.

Additionally assuming the grips do not move in these directions, it follows that

F[0, 0, 1]T = [0, 0, F33]T ⇒ F13 = F23 = 0 . (4.1)

Next, assume the material does not slip within the grips in the 3 direction, yielding

F[1, 0, 0]T = [F11, F21, 0]T ⇒ F31 = 0 , (4.2)
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and

F[0, 1, 0]T = [F12, F22, 0]T ⇒ F32 = 0 . (4.3)

Next, assume the �xed grips do not rotate about the 3 axis, yielding

F[1, 0, 0]T = [F11, 0, 0]T ⇒ F21 = 0 , (4.4)

and

F[0, 1, 0]T = [0, F22, 0]T ⇒ F12 = 0 . (4.5)

This gives �nal boundary conditions of

F =


F11 0 0

0 F22 0

0 0 F33

 , (4.6)

P =


0 P12 P13

P21 0 P23

P31 P32 P33

 , (4.7)

where non-zero values are either an input (F33) or are to be solved; directly from the material

model if a component of P, or if an F component, through iteration to get the speci�ed P

component as is typical in �nite element calculations.

It should be noted that these conditions leave the possibility for signi�cant shear stresses

to form. These shear stresses would be supported by the grips. The shear stress components

would not have been measured.
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Figure 4.2. Comparison of experimental and simulation data for single crystal copper

4.2.2 Copper Single Crystal Validation

Figure 4.2 shows a comparison between simulated and experimental stress-strain curves for

copper single crystals. Three di�erent crystal alignments are shown: [001], [101], and [102].

The crystal direction is aligned to the tensile axis. The single points are the experimental

data from Franciosi [26]; the lines are computer simulations using the laminate hardening

model. Note that there are two sets of experimental data for each crystal orientation. The

simulations provide good validation for the hardening mechanisms of the model for these

highly symmetric crystal orientations.

Unfortunately, the size of the samples is not known. Knowing the size and orientation

of each sample would de�ne the initial grain size parameter in the simulations. As they

are unknown; the sizes are adjusted to resemble the experimental data. Sizes used for
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Figure 4.3. Subgrain structure of [101] orientation simulation showing activated slip planes, wall
normal, tensile direction, and e�ective slip directions

the numerical samples are: [001], 0.1 mm; [101], 3.0 mm; [102], 0.5 mm. This size is the

initial length perpendicular to the dislocation wall formed and not the sample diameter, and

thus could vary by sample even if the sample shapes are identical. Although this amount

of variation on the samples is reasonable for an experimental setup, it is also important

to note that the initial grain size parameter and the boundary layer energy are coupled.

From equation (3.25), the length scale of the rank one laminates varies as
√

Lo

ΥW BL . Hence

doubling the boundary layer energy depth or magnitude is equivalent to halving the initial

grain size, and so forth. In conclusion, although the initial grain size has been varied in

the single crystal simulations, it is equivalent to varying the boundary layer. It would not

be unreasonable that di�erent subgrain structures would have varying boundary energy

depths, i.e., varying Υ. These two unknowns are thus coupled. The number of slip systems

activated (for example, by changes in the assumed boundary conditions) would also a�ect

these results.

The subgrain structure formed during the [101] simulation and the active slip systems

in the crystallographic coordinates is given in �gure 4.3. The [101] orientation forms a

simple laminate involving the B2 and B5 slip systems and the D1 and D6 slip systems.
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Figure 4.4. Visualization of [101] simulation subgrain microstructure

The dislocation wall normal, N , is parallel to the tensile axis, T , meaning the laminates

form perpendicular to the tensile direction. A visualization of this structure in the crystal

coordinates is given in �gure 4.4 with color representing the regions in which the two di�erent

slip planes are active. The black planes within the colored regions show the orientation of

the active slip plane. The tensile axis, T , is included for reference.

All four active slip systems have the same strain level as seen in �gure 4.5. The stress

state of the sample has no shear stresses that would provide driving force for activation of

further slip systems. The only non-zero stress in the simulation is the P33 component.

Calculation of the Schmidt factor for the [101] orientation con�rms the four predicted slip

systems have the highest Schmidt factor (
√

6
6 ) and should activate �rst. This is in agreement

with the work of Kalidindi and Anand [30], in which a traditional single crystal model was

compared to a [101] copper single crystal deformed in compression. They also predicted

the same four slip systems would activate with equal strains. The deformation involves a

shortening of the 2 direction, while the 3 direction is elongated, and the 1 direction does

not change. This same pattern of deformation is also seen in the work of Kalidindi and
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Figure 4.5. Slip strain on active slip systems for [101] simulation

Anand [30] with the experimental copper [101]-oriented compression sample. The trends

are reversed due to the sample being in compression instead of tension (i.e, the 2 direction

lengthens, while the 3 direction is compressed, and the 1 direction does not change in length).

The agreement with deformed shape provides further evidence that the slip systems are

correctly predicted. The stress response, activated slip planes, and deformed shape are in

excellent agreement with experimental data.

The subgrain structure formed during the [102] simulation is given in �gure 4.6. The

[102] orientation forms the same simple laminate involving the B slip plane and the D slip

plane as orientation [101], but a di�erent wall normal. A visualization of the structure is

given in �gure 4.7.

The stress state of the sample has high P13 shear stresses that may provide driving force

for activation of further slip systems, but none were activated at the 15% strain level of
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Figure 4.6. Subgrain structure of [102] orientation simulation showing activated slip planes, wall
normal, tensile direction, and e�ective slip directions

Figure 4.7. Visualization of [102] simulation subgrain microstructure

the simulations. Note from the plots of the activated slip strain, �gure 4.8 and 4.5, that

although [101] and [102] activate the same slip systems, all slip systems do not have the

same slip strain in the [102] simulation.

The highest Schmidt factors for the [102] orientation are
√

6
25 for systems B2 and D1.

The second highest are systems A3, B4, B5, C3, D4, and D6 at
√

3
50 . This would match the

prediction from the laminate model that slip systems B2 and D1 have the highest slip strain.

The systems B5 and D6 are oriented to relieve the stresses that are not aligned for the simple
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Figure 4.8. Slip strain on active slip systems for [102] simulation

shear on the B2 and D1 systems. No published data from traditional models is available for

comparison. The stress-strain output is in excellent agreement with experimental data.

The [001] oriented sample activated the slip systems B2, B4, C1, and C3 with identical

amounts of slip strain on each system activated as seen in �gures 4.9 and 4.11. Note the

[001] simulation activated slip on only one set of two slip planes, namely B and C, but there

is an equivalent second set of slip planes, A and D. The fact that only one set of slip planes

is activated means that activating all four slip planes is a higher energy con�guration. The

[001] orientation exhibits no shear stresses, as the [101] sample, the only non-zero stress

component is P33.

The highest Schmidt factor for the [001] orientation is
√

6
6 on systems A2, A3, B2, B4,

C1, C3, D1, and D4. The traditional model of Cuitino and Ortiz [15] predicts that all eight

systems would activate to the same slip strain. If the deformed shape of the sample were
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Figure 4.9. Subgrain structure of [001] orientation simulation showing activated slip planes, wall
normal, tensile direction, and e�ective slip directions

Figure 4.10. Visualization of [001] simulation subgrain microstructure
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Figure 4.11. Slip strain on active slip systems for [001] simulation

available, whether all eight slip systems were activated could be determined by the �nal

shape of the sample. If the �nal deformed shape is axisymmetric, then all eight slip systems

were likely activated as predicted by the Schmidt factor; but if it forms an asymmetric shape,

then likely only two slip planes (with four slip systems) activated.

It should also be stated that the rotation of the [001] sample about the 3 axis is substan-

tially in�uenced by the boundary conditions. To activate the minimum energy deformation

patterns displayed, it was necessary to run the sample with the [100] crystal direction paral-

lel to the the [110] sample direction. This is evidence again of the importance of boundary

conditions. The small sample size for the [001] simulation may be caused by unknown

boundary conditions in the experiments which are not being matched. As the experimental

clamping mechanism and the exact orientation of the [001] sample used are unknown, this

is impossible to investigate without further experiments.
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Figure 4.12. Evolution of laminate thickness scaled by the square root of grain size,
√
L0, against

von Mises strain for the three copper simulations: [101], [102], and [001]

Figure 4.12 is a plot of the change in the laminate thickness with deformation. It is scaled

by the square root of the grain size to remove the e�ects of grain size on laminate size (cf.

equation (3.54)). Note it con�rms that the laminates re�ne with increased slip strain causing

parabolic hardening. With the e�ects of grain size removed, all laminates of all orientations

evolve uniformly with increasing strain. The end result can be �t by Lc
√

L0
= 0.00023ε

− 1
2

vM ,

as seen in the �gure. This relationship can be derived directly from the equation for Lc
l

(equation (3.54)) and assuming WBL
l ≈ 1

2µδ
2
l where µ is the shear modulus. Note that δ

is a measure of the plastic strain and since the children do not exist, their boundary layer

energy is zero. This yields the approximation that Lc
√

L0
∝ δ−

1
2 .

Hughes et al. [5] measured in aluminum that the average distance between incidental

dislocation boundaries (IDB) increases as ε
− 1

2
vM and the average distance between geomet-

rically necessary boundaries (GNB) increases as ε
− 2

3
vM . Generally, the laminate model �ts
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Figure 4.13. Grain size variation for [102] direction copper single crystals

GNBs. The di�erence may be due to uncertainties in the boundary layer energy formula-

tion. Changing the form of the boundary layer energy (equation (3.50)) would produce a

di�erent exponent. This is an area that requires further work.

The von Mises strain measure was used in this section as it was used by Hughes et al.

for cold rolled samples. The conversion is

εvM = − 2√
3

ln(2− F33) . (4.8)

4.3 Grain Size E�ects

Figure 4.13 displays the e�ect of varying the initial grain size using the [102] orientation.

The stress increases at a given strain as the initial grain size decreases.
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Figure 4.14. Graph of yield strength at various o�-strains vs. 1√
Lo

for the [102] oriented copper

single crystal displaying the Hall-Petch e�ect.

The increase in critical resolved shear stress due to the formation of dislocation walls

varies inversely with the square root of the grain size (i.e., ∆τ c
l ∝

1√
L0
). This is seen by

substituting the laminate length, equation (3.25), into the equation for the mean free path,

equation (3.45), and then considering equation (3.46). This promises the Hall-Petch e�ect

[31, 32]: σy = σo + K
d0.5 where σy is yield stress, d is initial grain size, and σo is the initial

yield stress parameter. The Hall-Petch E�ect may be checked directly on the single crystal

simulations. This work develops the Hall-Petch e�ect by modeling of dislocation cell walls.

For a review of how a developing dislocation structure yields a Hall-Petch e�ects see Hansen

[33].

Figure 4.14 shows the yield strength of the [102] crystal response against the inverse

square root of the initial grain size computed at various o�set strains to the linear elastic
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deformation. The Hall-Petch relationship holds as the plots are linear. This relationship

should hold as long as a single layer of laminate forms, as the case was in all experiments

run here. It should also hold for higher-order laminate structures except during the time

steps in which the new laminates form.

Uchic et al. [34] and Greer et al. [35] have recent work on the deformation response of

micron sized columns of single crystals. This work displayed that single crystals exhibit a

Hall-Petch relationship, despite Hall-Petch having been found for polycrystals. The theory

presented here shows the Hall-Petch e�ect due to the formation of dislocation subgrain

structure with a grain size dependency, hence it provides an explanation for the Hall-Petch

e�ect for both single crystals and polycrystals. Both Uchic et al. [34] and Greer et al. [35]

also predicted a transition as sample size decreased to a �breakaway �ow� behavior. This

theory would predict that transition as the length scale at which the deformation process

no longer favors the formation of dislocation structures, but instead activation of a single

slip system. The Uchic et al. experimental data is on a Ni3Al-Ta alloy and the Greer et al.

data is on gold, so no direct comparison is possible. The theory presented here would follow

the same trends discovered on the length scale of micron-sized single crystals.

4.4 Grain Shape E�ects

All simulations to this point have assumed spherical grains. The grain shape will also a�ect

the deformation response as it changes the ratio of boundary layer to total volume and the

initial length parameter will depend on the wall normal of the �rst laminate formed. The

e�ect of grain shape is explored by assuming three di�erent grain shapes; all with the [101]

crystal axis aligned to the tensile axis. The grain shapes simulated are one sphere and two

ellipses with one axis, a, twice that of the other two axes. One ellipse has the longer axis
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aligned to the [101] crystal axis (and thus aligned to the tensile axis); the other has the

longer axis aligned to the [010] crystal direction (perpendicular to the tensile axis). To get

an accurate comparison, the elliptical grains' volumes are set equal to the spherical grain

volume. This yields a = 3
√

4Lo where Lo is the diameter of the spherical grain. The simulated

spherical grain has a diameter of 3 mm, yielding a = 4.76 mm for the elliptical grains. Due

to increased surface area the elliptical grains have 5% more boundary layer volume. This

condition is arrived at by taking Υ = 0.5 and assuming Lc � Lo, then comparing surface

area volume of a sphere and equal area ellipse with one axis twice the other axes. The

boundary layer increase is modeled by setting the parameter Υ to 0.525 for the elliptical

grain simulations.

It was assumed each grain forms the same laminate substructure as was seen for the

initial spherical [101] simulation (cf. �gure 4.3). Since the elliptical grain aligned to the

[101] tensile axis forms with dislocation wall normals parallel to the longer ellipse axis, a,

it has an initial length of a in which to form laminates. The elliptical grain aligned to the

[010] direction for the same reasons has an initial length of a/2. Thus, the elliptical grain

aligned to the [010] axis has a higher stress than a spherical grain, and the [101] elliptical

grain has a lower stress than a spherical grain.

The results of these simulations are shown in �gure 4.15. As this grain shape e�ect is due

to the formation of subgrain structures inside the single crystal rather than compatibility

constraints within a polycrystalline sample, comparison would need to be made to similar-

shaped single crystal tests. As of yet, no information is apparent for comparisons.
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Figure 4.15. Grain shape e�ects showing two ellipsoidal grains and one spherical grain for the
[101] crystal axis
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Chapter 5

Conclusions and Future Work

A recon�guration of the laminate model for subgrain dislocation structures has been pre-

sented. The model has been modi�ed to include calculation of the mean free path of disloca-

tions incorporating the geometry of the slip plane and the dislocation walls, evolution of the

subgrain dislocation laminate length scale over time to capture plastic slip plane hardening,

an adjusted boundary layer energy and wall normal implementation, direct minimization of

the nonlocal energy terms, and resilience to discontinuities in the stress and material tan-

gent. A method for treating the unique case of coplanar slip laminate structures as a single

slip system was also developed to get an appropriate hardening behavior for single crystals.

Addition of dislocation mean free path adjusted for the angle of the slip plane within the

microstructure provides for a �rst approximation of shape e�ects from interactions within

the subgrain laminate structure. The inclusion of dislocation mean free paths calculations

drastically a�ects the selection of activated slip systems and the hardening behavior of slip

systems.

Evolution of the width between dislocation wall subgrain structures provides hardening

mechanisms akin to those of self and latent hardening. The dimensions of the subgrain

structure are determined by minimizing the nonlocal energy. The widths are equilibrated

at each deformation step. Self hardening occurs as the laminate width decreases due to in-



75

creasing boundary layer energy of the laminate microstructure with increased deformation.

The crystal bifurcating into separate regions to accommodate activation of new slip systems

causes latent hardening to occur. The hardening behavior was validated against experimen-

tal tests of single crystal copper. The Hall-Petch e�ect is returned by the formation of the

dislocation subgrain structure. Grain shape e�ects due to the subgrain structure formation

were shown.

The model contains only seven material parameters. All material parameters were mea-

sured directly by independent experimentation. It is remarkable that the stress strain re-

sponse can be predicted so well by the model with no �tting parameters.

Future work also needs to consider the evolution of the volume fraction of laminates, λl,

to capture the behavior of non-symmetric systems. When structures appear with λ 6= 1
2 , it

generally means a slip system was activated at a later time during the deformation. This less

active slip system then forms with a very small volume fraction, but would increase at each

new deformation step. This implies that the volume fraction of the newly formed system

would need to increase. If λl is not evolved, then the structure has no way of increasing the

volume fraction of the system other than continuing to laminate. As this lamination always

involves a decrease in the length scale by an order of magnitude, the material will harden

too quickly.

The model should exhibit deformation path dependencies due to the formation of dis-

location substructure. The path dependency may make it possible to reproduce the stress

response to non-monotonic deformation paths. Before these could be implemented the re-

quirement of irreversible plastic slip would need to be relaxed. Rather than using 24 irre-

versible slip systems, the model needs to be educated with the ability to reverse slip on the
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highest rank laminate. Another possibility is to explicitly inform the material model when

the deformation path changes occur and allow for slip to change direction.

Further work should consider single crystal experiments that attempt to determine the

active slip systems within the microstructure. Further experimental information regard-

ing explicit single crystal size, deformation path, orientation, and microstructure would be

useful. Care should be taken to obtain precise boundary conditions as single crystals in uni-

axial stress generally do not plastically deform without signi�cant shear strains developing.

This would provide further evidence for comparisons between the traditional single crystal

plasticity models and this model of subgrain microstructure formation.

Another interesting approach that may be considered for future work is to explicitly map

the microstructures that form. Since the microstructure calculations are done in the crystal

reference frame, the only inputs to the microstructure model are the material properties,

the initial grain length scale, and the deformation gradient. It may be possible to scale the

deformation gradient with respect to the material parameters and eliminate those as inputs.

If cubic crystals are assumed, it is also possible to place symmetries on the deformation gra-

dient and reduce the space further. The magnitude of the deformation gradient can also be

limited for the calculations, as a small discrete time step could be assumed as the maximum

F input to microstructures. This tabulation would provide data for look up as opposed to

computing all possible microstructure parameters (i.e., λl, Nl, al, L
c
l ) at each deformation

step. These calculations would not only provide a table for fast future calculations, but

would also be interesting in themselves for the map of low energy microstructures.
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