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Figure 4.12. Evolution of laminate thickness scaled by the square root of grain size,
√
L0, against

von Mises strain for the three copper simulations: [101], [102], and [001]

Figure 4.12 is a plot of the change in the laminate thickness with deformation. It is scaled

by the square root of the grain size to remove the e�ects of grain size on laminate size (cf.

equation (3.54)). Note it con�rms that the laminates re�ne with increased slip strain causing

parabolic hardening. With the e�ects of grain size removed, all laminates of all orientations

evolve uniformly with increasing strain. The end result can be �t by Lc
√

L0
= 0.00023ε

− 1
2

vM ,

as seen in the �gure. This relationship can be derived directly from the equation for Lc
l

(equation (3.54)) and assuming WBL
l ≈ 1

2µδ
2
l where µ is the shear modulus. Note that δ

is a measure of the plastic strain and since the children do not exist, their boundary layer

energy is zero. This yields the approximation that Lc
√

L0
∝ δ−

1
2 .

Hughes et al. [5] measured in aluminum that the average distance between incidental

dislocation boundaries (IDB) increases as ε
− 1

2
vM and the average distance between geomet-

rically necessary boundaries (GNB) increases as ε
− 2

3
vM . Generally, the laminate model �ts
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Figure 4.13. Grain size variation for [102] direction copper single crystals

GNBs. The di�erence may be due to uncertainties in the boundary layer energy formula-

tion. Changing the form of the boundary layer energy (equation (3.50)) would produce a

di�erent exponent. This is an area that requires further work.

The von Mises strain measure was used in this section as it was used by Hughes et al.

for cold rolled samples. The conversion is

εvM = − 2√
3

ln(2− F33) . (4.8)

4.3 Grain Size E�ects

Figure 4.13 displays the e�ect of varying the initial grain size using the [102] orientation.

The stress increases at a given strain as the initial grain size decreases.
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Figure 4.14. Graph of yield strength at various o�-strains vs. 1√
Lo

for the [102] oriented copper

single crystal displaying the Hall-Petch e�ect.

The increase in critical resolved shear stress due to the formation of dislocation walls

varies inversely with the square root of the grain size (i.e., ∆τ c
l ∝

1√
L0
). This is seen by

substituting the laminate length, equation (3.25), into the equation for the mean free path,

equation (3.45), and then considering equation (3.46). This promises the Hall-Petch e�ect

[31, 32]: σy = σo + K
d0.5 where σy is yield stress, d is initial grain size, and σo is the initial

yield stress parameter. The Hall-Petch E�ect may be checked directly on the single crystal

simulations. This work develops the Hall-Petch e�ect by modeling of dislocation cell walls.

For a review of how a developing dislocation structure yields a Hall-Petch e�ects see Hansen

[33].

Figure 4.14 shows the yield strength of the [102] crystal response against the inverse

square root of the initial grain size computed at various o�set strains to the linear elastic
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deformation. The Hall-Petch relationship holds as the plots are linear. This relationship

should hold as long as a single layer of laminate forms, as the case was in all experiments

run here. It should also hold for higher-order laminate structures except during the time

steps in which the new laminates form.

Uchic et al. [34] and Greer et al. [35] have recent work on the deformation response of

micron sized columns of single crystals. This work displayed that single crystals exhibit a

Hall-Petch relationship, despite Hall-Petch having been found for polycrystals. The theory

presented here shows the Hall-Petch e�ect due to the formation of dislocation subgrain

structure with a grain size dependency, hence it provides an explanation for the Hall-Petch

e�ect for both single crystals and polycrystals. Both Uchic et al. [34] and Greer et al. [35]

also predicted a transition as sample size decreased to a �breakaway �ow� behavior. This

theory would predict that transition as the length scale at which the deformation process

no longer favors the formation of dislocation structures, but instead activation of a single

slip system. The Uchic et al. experimental data is on a Ni3Al-Ta alloy and the Greer et al.

data is on gold, so no direct comparison is possible. The theory presented here would follow

the same trends discovered on the length scale of micron-sized single crystals.

4.4 Grain Shape E�ects

All simulations to this point have assumed spherical grains. The grain shape will also a�ect

the deformation response as it changes the ratio of boundary layer to total volume and the

initial length parameter will depend on the wall normal of the �rst laminate formed. The

e�ect of grain shape is explored by assuming three di�erent grain shapes; all with the [101]

crystal axis aligned to the tensile axis. The grain shapes simulated are one sphere and two

ellipses with one axis, a, twice that of the other two axes. One ellipse has the longer axis
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aligned to the [101] crystal axis (and thus aligned to the tensile axis); the other has the

longer axis aligned to the [010] crystal direction (perpendicular to the tensile axis). To get

an accurate comparison, the elliptical grains' volumes are set equal to the spherical grain

volume. This yields a = 3
√

4Lo where Lo is the diameter of the spherical grain. The simulated

spherical grain has a diameter of 3 mm, yielding a = 4.76 mm for the elliptical grains. Due

to increased surface area the elliptical grains have 5% more boundary layer volume. This

condition is arrived at by taking Υ = 0.5 and assuming Lc � Lo, then comparing surface

area volume of a sphere and equal area ellipse with one axis twice the other axes. The

boundary layer increase is modeled by setting the parameter Υ to 0.525 for the elliptical

grain simulations.

It was assumed each grain forms the same laminate substructure as was seen for the

initial spherical [101] simulation (cf. �gure 4.3). Since the elliptical grain aligned to the

[101] tensile axis forms with dislocation wall normals parallel to the longer ellipse axis, a,

it has an initial length of a in which to form laminates. The elliptical grain aligned to the

[010] direction for the same reasons has an initial length of a/2. Thus, the elliptical grain

aligned to the [010] axis has a higher stress than a spherical grain, and the [101] elliptical

grain has a lower stress than a spherical grain.

The results of these simulations are shown in �gure 4.15. As this grain shape e�ect is due

to the formation of subgrain structures inside the single crystal rather than compatibility

constraints within a polycrystalline sample, comparison would need to be made to similar-

shaped single crystal tests. As of yet, no information is apparent for comparisons.
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Figure 4.15. Grain shape e�ects showing two ellipsoidal grains and one spherical grain for the
[101] crystal axis
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Chapter 5

Conclusions and Future Work

A recon�guration of the laminate model for subgrain dislocation structures has been pre-

sented. The model has been modi�ed to include calculation of the mean free path of disloca-

tions incorporating the geometry of the slip plane and the dislocation walls, evolution of the

subgrain dislocation laminate length scale over time to capture plastic slip plane hardening,

an adjusted boundary layer energy and wall normal implementation, direct minimization of

the nonlocal energy terms, and resilience to discontinuities in the stress and material tan-

gent. A method for treating the unique case of coplanar slip laminate structures as a single

slip system was also developed to get an appropriate hardening behavior for single crystals.

Addition of dislocation mean free path adjusted for the angle of the slip plane within the

microstructure provides for a �rst approximation of shape e�ects from interactions within

the subgrain laminate structure. The inclusion of dislocation mean free paths calculations

drastically a�ects the selection of activated slip systems and the hardening behavior of slip

systems.

Evolution of the width between dislocation wall subgrain structures provides hardening

mechanisms akin to those of self and latent hardening. The dimensions of the subgrain

structure are determined by minimizing the nonlocal energy. The widths are equilibrated

at each deformation step. Self hardening occurs as the laminate width decreases due to in-
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creasing boundary layer energy of the laminate microstructure with increased deformation.

The crystal bifurcating into separate regions to accommodate activation of new slip systems

causes latent hardening to occur. The hardening behavior was validated against experimen-

tal tests of single crystal copper. The Hall-Petch e�ect is returned by the formation of the

dislocation subgrain structure. Grain shape e�ects due to the subgrain structure formation

were shown.

The model contains only seven material parameters. All material parameters were mea-

sured directly by independent experimentation. It is remarkable that the stress strain re-

sponse can be predicted so well by the model with no �tting parameters.

Future work also needs to consider the evolution of the volume fraction of laminates, λl,

to capture the behavior of non-symmetric systems. When structures appear with λ 6= 1
2 , it

generally means a slip system was activated at a later time during the deformation. This less

active slip system then forms with a very small volume fraction, but would increase at each

new deformation step. This implies that the volume fraction of the newly formed system

would need to increase. If λl is not evolved, then the structure has no way of increasing the

volume fraction of the system other than continuing to laminate. As this lamination always

involves a decrease in the length scale by an order of magnitude, the material will harden

too quickly.

The model should exhibit deformation path dependencies due to the formation of dis-

location substructure. The path dependency may make it possible to reproduce the stress

response to non-monotonic deformation paths. Before these could be implemented the re-

quirement of irreversible plastic slip would need to be relaxed. Rather than using 24 irre-

versible slip systems, the model needs to be educated with the ability to reverse slip on the
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highest rank laminate. Another possibility is to explicitly inform the material model when

the deformation path changes occur and allow for slip to change direction.

Further work should consider single crystal experiments that attempt to determine the

active slip systems within the microstructure. Further experimental information regard-

ing explicit single crystal size, deformation path, orientation, and microstructure would be

useful. Care should be taken to obtain precise boundary conditions as single crystals in uni-

axial stress generally do not plastically deform without signi�cant shear strains developing.

This would provide further evidence for comparisons between the traditional single crystal

plasticity models and this model of subgrain microstructure formation.

Another interesting approach that may be considered for future work is to explicitly map

the microstructures that form. Since the microstructure calculations are done in the crystal

reference frame, the only inputs to the microstructure model are the material properties,

the initial grain length scale, and the deformation gradient. It may be possible to scale the

deformation gradient with respect to the material parameters and eliminate those as inputs.

If cubic crystals are assumed, it is also possible to place symmetries on the deformation gra-

dient and reduce the space further. The magnitude of the deformation gradient can also be

limited for the calculations, as a small discrete time step could be assumed as the maximum

F input to microstructures. This tabulation would provide data for look up as opposed to

computing all possible microstructure parameters (i.e., λl, Nl, al, L
c
l ) at each deformation

step. These calculations would not only provide a table for fast future calculations, but

would also be interesting in themselves for the map of low energy microstructures.
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