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ABSTRACT

An investigation was initiated to examine the possibility of
improving the rate of convergence of a geries solution for the deflection
of a swept cantilever plate of uniform thickness, using the Ragleigh-Ritz
method, by applying the solution to low aspect ratio plates instead of
high aspect ratio plates as had been done previously. The Rayleigh-Ritz
deflection funchtions which were used were products of vibration modes of
uniform clamped-free and free-free bars.
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Deflections were computed, using six terums
three different loading conditions at sweep angles of 200, hOO, and 60°.
The results, plotted against experimental data In Filgures 7 to 24, show
that the rate of convergence is satisfactory only for angles of sweep of
20° or less. Since the cases of sweep of 20° or more are of most
interest in the application to swept back aircraft wings, 1t was coucludsd
that the rate of couvergsnce is not sabisfactory.

The possibility of improving the rate of convergeuce of the series
solution by sclving for the difference between the true deflections and
the deflections given by some approximate formula was indicated as the
next step in arriving at a satlsfactory solution. It was pointed out
that the sxperimental data mentionsd above would provide a valuable

guide in the formulation of such an approximate formula.
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TABLE OF NOTATIORS
‘Right-handed rectangular coordinate system.
Skew coordinate gystem in the xy-plane.

Local coordinates at the boundary of a plate in the plane
of the plate. N 1is normal to the boundary and t is
tangential. The sense of rotation from n to t is the

game ag from X tOj or & tO'I’) .

Intensity of distributed lateral load over the surface of

a plate, positive in the same direction as positive w .
Lateral deflection of a plate in the positive =z-direction.

Concentrated lateral load at some point on a plate,

positive in the same direction as positive w .

Lateral shearing force per unit length along the boundary

of a plate, positive in the same direction as pogitive w.

Twisting moment per unit length along the boundary of a
plate. The vector of the moment 1s along the local n-axis,
and the direction is taken so that positive —%—H—‘ﬂt is

S
in the direction of positive w.

Bending moment per unit length along the boundary of a plate.

The vector of the moment is along the local positive t-axis,
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TABLE OF NOTATIONS (Continued)

'so that positive M pubts Into tension the side of the

plate which faces the direction of positive deflection.
Approximate deflection function for a plate.

mth mode of vibration of a uniform bar of length L clamped

at £ =0 and free at & = L. .

nth mode of vibration of a uniform bar of length 2 sc.

free at both ends,

mth mode of vibration of a uniform bar of length L, simply

supported at both ends.

Coefficient of typical‘term 7—::,— 'FM(_E:)ﬂm 67), or
\/_:—_," hM(—E—> ﬁn (’V]) , in series approximation to plate

deflection.
Young's modulus,
Poisson's ratio.

Plate thickness.

- /2(,_7/) Plate stiffness factor,

s8C.

Semi-chord; half the chord of a wing or the corresponding

dimension of & plate of similar planform.

Angles of sweep.
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TABLE OF NOTATIONS (Continued)

Length along the leading or trailing edge of a wing or the

correspouding dimension of a plate of similar planform.

Strain energy of bending in a deformed plate.

Potential energy lost by the sxternal lcads in deforming a

plate,

Total potential energy of a deformed plate,

Modulus of shear.

Moment of inertia of the cross-section of a uniform beam,
about the neutral axis perpendicular to the plane in which

the beam is bent.

Polar moment of insrtia of the cross-section of a uniform

beam about the centroid of the cross-section.
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INTRODUCTION

As an approach to the overall problem of stress and deflection
distribution in swept alrcraft wings of high solidity, the application
of the Rayleigh-Ritz method to the deflectlons of swept cantilever plates
of uniform thickness was initiated by Y. C. Fung of the Guggenhelm
Aeronautical Laboratories, California Institute of Technology, in Air
Force Technical Report 5761 - Part I (February 1949). The detailed
procedure and the numerical application of the method to the case of
large aspect ratio swept plates were presented by the same author in
Part II of the same report in June 1949,

The numerical results of Part II showed that the convergence was
very poor for large aspect ratios, and it was concluded that the
convergence might be improved by applying the method to a plate of small
aspect ratio, because the chordwise and spanwise characterlstics of the
Rayleigh-Ritz deflection functions would then have equal significance 1n
solving for the Rayleigh-Ritz coefficients. Furthermore, the solution
for the small aspect ratioc plate has the advantage of giving a more exact
solution for the critical root section of a large aspect ratio plate when
the effects of the outer portions of the latter are replaced by suitable
loads at the tip section.

This report extends the work into the case of small aspect ratios.
In addition the numerical methods are discussed from a somewhat different
approach which to some readers may appear more lucid. The resulte of the
numerical work and an experimental verification are plotted in Figures
7 to 24, A summary of the properties of the deflection functions and

many related expressions appears in the appendices.



This method is easlly adapted to the problem of the deflection
of skew slabs simply supported omn two opposite odges and free along the
other two edges. This 1s of interest to Civil Engineers engaged in the
design of skew bridges for modern high speed highways. The solution for
this problem is given in Part II, but no numerical work has yet been

done on it.
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PART I

THE RALEIGH-RITZ METEHCD
AND ITIS

APPLICATION TO CANTILEVER SWEPT PLATES

A. The Rayleigh~Ritz Method

The Rayleigh-Ritz method consists of assuming that some desired
deflection pattern can be approximated by a linear cowmbination of
deflection functions; sach of which satiafies the rigid boundery
cenditions of the problem, and then finding the coefficients governing
this linear combination by minimizing the total potential energy of the
deformed body and the externsl forces., Thus, we may assume that the
deflection pattern of a plate whose dimensions, supports, and external
lceds are specified (e.g. Figure 1) can be approximated by a linear
combination of F (X, 4), R0, 4), Fs (X.j), etc. where all the [ 6(,7)
satisfy the rigid boundary conditions of the supperts. The deflection
pattern can immediately be written down in the aymbolic form

wix,y) =5 a: Fi (y). (1-1)
The problem ls now one of finding the most nearly correct values for
the d's, and the criterion we use is that the total potential energy
be minimized.

The total potential energy isvthe sum of the strein energy of
the plate, U , and the potential energy of the externsl loads, -W,
It is convenient to choose the zerc datum for W to correspond to U=0
(unstrained plate). Then W is the sum (cr integral) of the products

of the external forces and moments by their corresponding deflections
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and rotatious. We cen express the total potentlal energy as
V=U-mw (1-2)

Then the value of a; giving the minimm V is found by equating

2V 2T-W) _ 0. (I-3)

24 @ d¢

However, we will find that the expression for U in the
cagse of a plate is suck that substitution of equation (I-1) into
equation (I-2) will give & quadratic expression in the dits. Thus
we are faced with the problem of soclving & set of linesr simultanscus
equations in crder to find a set of A; 's.

The functions chosen for F; will usually be an infinite
cgequence so thet if a sufficient number of d;'s are found, the
deflection can be found to any desired accuracy. On the other hend,
the amount of work invelved in solving for the ai's will go up roughly
ag the square of the number cf A 's because of the need for sclving
the simultaneous equations, So & balance betwesn accuracy and facility
nust be decided upon.

B. Plates Investigated

In the present work, we are concerned with plates which represent
ideslized aircraft wings (or contrcl surfaces). The planform is in
general a parallelogram and the boundary conditions are one edge clamped
and the other three edges free. (See Figure 2(a).) In particular we
are Interested in swept wings of low aspect ratio, sc that the
parallelogram becomes spproximstely a rhombus. (See Figure 2(b).) The
mathematical treatment of this swept plate is greatly simplified by the
use of skew coordinates (£, 7)) shown in Figure 2(b). The basic planform

d imensious of the plate are the length of the center-line, L. , the semi-
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ckord, sc., and the angle of sweep, & . The term “sc." will heunceforth
be used freely as a unit of length in precisely the same wanner as "in."

or "ft.", but it should be remembered that, for each plate investigated,

one sc. must be evaluated in terms cf Inches, feet, or some cther
standard unit of length. By this device, we can take advantage of the
numericel brevity of reduction to dimenslionless form without losing the
physical significance of the expressions enccuntered.

C. Choice of Deflection Functions

The twc ultimste criteria governing the choice of the deflection
functions F; éiﬁ)are the ease with which a sufficient number of ﬁhe
constants d; may be evaluated and the ease wlth which the deflection at
any point on the plate may finally be computed. Both of these
congiderations call for rapid comvergence, but this is a rather
intangible property which is a consequence of how clogely the agsumed
functions actually represent the desired deflection pattern.

In some cases, an artificial aid to convergence mey be introduced
by adding to the solution an additional term, wo , which is believed to
be a fairly close approximation to the answer sought. In this way, the
remaining terms, %;.dg F& (§,77) , are reduced to the role of correction
terms and may be expected to be significantly smaller and hence to

converge more rapidly. However, the sclution in this form, namely
w(sm) = o (En) s T Fism), (10

will increase the amount of labor involved in evaluating the d;'s,

The amount by which this factor offsets the advantage gained by the

improved convergence should not be overlocked.

A property which greatly reduces the amcunt of labor involved
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in evaluating the dA;'s is orthogonality. This is a general property
of vibration modes and hence makes these mcre desirable than, say,
buckling modes. No solution for the modes of vibration of the family
of plates covered in this work are known to the writer. Furthermore,
it seems reasonable to expect that such a solution, including variation
of esweep angle, would be quite complicated. If, however, we take the
product of the modes of vibration of two bare whose boundary conditionse
match those of the plate in the spanwise ( £ ) and chordwise (%)
directions separately, we will have functions which are reasonably
simple and are not affected by variation of the sweep angle, e .

Consequently, we will say

. Qrany _%. /) I-
where T, (1) is the mth wode of vibration of & bar of length
clamped at E=0 and free at £ =L , and _7'4 (77 is the nth mode of
vibration of a bar of length 2 sc. free at both ends. The factor /—iﬁ

is introduced to simplify some of the subsequent expressions. HNow we

have

W/glr)?):%(g}j])f‘/z%% Aine sy %M/Z?)ﬂn(’ﬂ (1-6)
The value of W, (g,v]) ought to come from some reasonably
similar configuration for which a simple solution is known. For
example, for a similar plate of high aspect ratio, the deflection
and twist of a simple beam were superimposed (with slight modification
to obtain w= O at § =O for any value of & ) to give wo (see
Reference 1). However, the usefulness of this approximation was based

on the fact that the root and tip triangles (Figure 2(a)), which are
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an indication of the variation of the plate from a simple beam, were a
small portion of the total area of the plate. In the present case,
however, this i1s not true (Figure 2(b)). Therefore, we will let
WO(E,W):O7 (1-7)

80 that equation (I-6) becomes

w(50) = e 22 Aon Fon( )5 7). (1-62)
We may note at this polnt that if we take £ (4, and 4. (%)
ag dimensionless quantities, the dimensions of Gw, wmust be (1ength)§é .
Note also that the arguments of fﬁn and 9,1,although not of the same
dimensions, are not necessarily inconsistent, since their‘only function

is to indicate pogition along the length of the bar.

D. BStrain Energy

The strain energy of bending for a flat plate, neglecting

gtraining In the plane of the plate, is
Blw ? W — 'Blb\/ ] xd
U_“‘“‘/{D Bx’- j "2(’ v)| 2 3x3\7> }d 7

for a rectangular coordinate system (Reference 2.) where the double

(1-8)

integration is carried out over the entire surface of the plate. The
transformation from rectangular coordinates to the skew coordinates
of Figure 2(a) is governed by the following equations (see also

Figure 3):

- Feos & }

= vy]-f-gslﬂe (1”98)

)(SZc:ﬁ
—yoxtm O | (1-9v)

=X VY & X
1]
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Substituting equ&tion (I-9a) into (I-8), we get
Ise. 2 2 2
a 22w 2 w)
U= //C0539 i 25“”9957”‘7 Faa

- 2y, |2 (I-10)
_2(1 V)aoszﬁ[’;f‘?——/ e = (9?97) ]} 0/59{17,

E. Potential Energy of the External Loads

Using the notation indicated at the beginning of the report,
the potentlal energy lost by the external loads can be written down

as ,.S'C

W= g(s,n)w(s ) <os 6 dE d] /M (5) 2% (s)ds

Llsc.

(I-11)
+ @) + Btiswes)as + 3 7wl 7)

where the line integrals are taken over the free edges of the plate.

F. Derivation of Simultaneous Equations for the dw.,’S.

Substitution of equations (I-10), (I-11), (I-6a) and (I-2)
into equation(i-S) is a tedious but straightforward procedure which
will not be carried cut here. In the course of deriving the typical
slmiltaneous equations by this process, substitution of the following
properties and defined functions of the vibration modes of the
"clamped-free” and "free-free" bars results in enormous simplification
of the derivation and all the work which follows.

Orthogonality of vibration modes:

\ |
LFM(%)R(%)A(E’):L%@?) Jn (1) = Sun (1-12)

where 3\,““:1 if m= n, dwn=0 1if w #n. ( $van
is the Kronecker delta.) Note that equation (I-12) also

gpecifieg the amplitudes of the vibration modes.
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Defined functions of vibration modes:

o [ B (E) () (E) =
=4l G £ (E)d(B) =5
Yoo =[5 (E) £, (E)el [ E)
Voom [, £ (B} () 4(E)
Ton=[ £ (£) £ (£) 4 (E)

{sc.
aemff I C1) 30 (1) 477 = B

A,,,,,f Gl (1) ICr) A =)

Isc.
Isc.

Homn=] | Gor' (1) (2) ol

SC

Moo=, I "lr) g, (1)d7
ng[, sc.g'", C1)ga (1) d

where the primes indicate differentiation of ﬁ“(%) with
respect to {"— and of g”é',) with respect to 77

expressions in brackets [ ] give the dilmensions of the

functions.

Ky = Rmn=0 if m ¥%n.

(I-13a)

(I-13p)

(1-13c)

(I-134)

(I-13e)

(I-13f)

(I-13g)

(I-13h)

(I-131)

(1-133)

(I-14)

Proof of equations (I-lk) and further evaluation of equations

(I-13) will be discussed in Appendix I.
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Ise. r L
ad " “/_‘ Bdmn ——69594“/ [E'V)Fmé)%/ﬁ)a’gd?]

f_f/t//n—a,—a[-%g-)ds —]ZQM

This expression includes all the terms in equation (I-3) that

Mé)’c““ In ds (1-15)

do not contain a factor of one of the dmn's. Hence, it is
(except for a comstan® factor) the constant term for the
typical simultaneous squation. (If an approximate deflection,

We , is used, /L

of terms which contain W, . For this complete form of

contains an additional series

/L, Qdm" , ses Eq. 4.,2:21, Referencs 1.)
The typical simultaneous equation, derived through the procedure

outlined above is

2 3 . . '
00T - ay ol i -veos )i

(5/}7 28+ Vcos 25)(')/ #nj mc'/'(‘/'”) (I-16)

“25“09{1_' (‘()Dcm “'J +’)bml. JH)+L(rM 7:"': 77‘7")

EA'A
A _ L? cosﬁ o
‘Famn[cj_lzm + L‘ Ean[=— D 2 Any
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PART I

APPLICATION TO THE PROBLEM CF A SKEW HIGHWAY BRIDGE

A, The Skew Highway Bridge

A problem of increasing interest to Civil Engineers,in the design
of modern high speed highways, ig that of the deflections (and gtresses)
of skew highway bridges. These structures may be ideallized into skew
slabs simply supported along two edges and free along the other two
edges. Thus we have essentially the same problem as the built-in flat
plate discussed above with two of the boundary conditions changed. It
will be convenient to translate the origin of the skew coordinates to
the center of the plate. (See Figure 4.) In addition it is not
| uncommon to have curbing parallel to the free edges of the span, and
we will add a term to the energy expression to account for this.

B. Deflesction Functlons

In this case, we replace the modes of vibration of a clamped-

free bar by those of a bar which 1s simply supported at both ends,

B

Actually thess modes are purs sinuscidal in form, but we will call th
h““(%) for the purpose of sywbolic notation, With w, (§;’7)

W(§ 17) L. ,"Zh A h“"(%)qh("/]). (IT-1)

C. Btrain Energy and Potential Energy

We will say
U—: U-, + UZ (II-Q)
where 17; is the strain energy of the plate, and 'tZé is the

strain energy of the curbing. In this case,
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Isc. Lé‘~ o
L _b 22w 9 w
g :Zf«x.[g“’”@ gé’? b5y T oy
_2(/-7,)c0529 g—;—% "; ‘;:z - —3537)]}6‘%0(17 (II-3)

which, except for the limits of integration, is ideuntical to U for
the cantilever plate (equation (I-10) ). Treating the curbing by

the classical beam theory, we have

0 = £ [w)a(lg) - T4 (aew) o0
3

where the line integral is taken along whatever curbing exlsts,
and fv1é$ and 'T(é) are the bending momeant and twistling moment,

regpectively, experisnced by the curbing. Substituting

M[E) ~EI() ;;‘Z (1I-5a)

and T(¢)= 6\7(5)%(77’?0}_’_) (1I-5b)

we obtain

v, =# [ ()73 '+ 2 () 4

The potential energy of the external loads is the same as

(11-6)

before, except for the change in the limits of the surface integral
as typified in Equation {II-3). With this change, equation (I-II)
may be usged here.

D. Derivation of Simultaneous Equations for the Amn's.

The process of obtaining the typical simultaneous equation --
by substituting equations (II-2), (II-3), (II-6), (I-11), and (I-2)

into (I-3) -- can again be simplified by the use of the properties and
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Defined functions of the vibration modes. We introduce the following
new properties and expressions;

Orthogonality:

[l (E)(E) =5~

where O, =1 if wm=n, Sonn = O F m# .

Defined functions:

= (] (B4 (E)= 8o L1
€ v =[f%m' (£)n,(£)d(E)=2un 1] (11-8b)
Ton =] jhm”( E)ha(E) A(E) (1] (11-80)
Bon=[ [ 0 (8]0, ()2 (£) 1] (1150
wu [ (b, (E)aLE) (1] (zz.60

where the primes indicate differentiation with respect to

% , and the expressions in brackets [ J indicate

the dimensions of the expression.

Amn =& =T, =0 F om#Any
Ak w0 a1 (7[‘ (II-Q)
Qﬂmn:w“"”:or dmj m, 1.

Proof of equations (II-9) and further evaluation of eguations

(I1-8) will be discussed in Appendix I.

oVs CXZa
/Ezdmn =-JL 9%;, = sams as equation (I-15) with (II-10)

limits of integration changed. [F j

This is true for we= o only.
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The term corresponding to U, in the typical equation is
similar to the term given for U in equation (I-16). Retracing the
derivation of eguation (I-16), it is seen that the functions given in
equations (I-13 a,b,c,d,e) are replaced by the corresponding onss in

equations (II-8a,b,c,d,e) resulting in

L %cos 35 20,
D Ddurn

= Auy [————Mﬁ“ + Lzaenm]
+ % Ao, J'[Z { |+ 51038 —Vcosr & ) S )\nJ‘ﬁ-éli:zﬁWGos‘@ﬁm erv.“(fﬁjj)
)
The brief form of this expression is dus to the vanishing of ssveral
functions as indicated in equation (II-9).
The term corresponding to U, will be derived here since
this has not been dons previously and because the derivation will
be illustrative of the way in which equations (I-16) and (II-11) were
obtained,
From squations (II-6) and (II-1),
_ L f EI(S)(m;aq%é—x(g)%(‘?)) 4%
27/2) (FZag?—@M) A%
7

caslé9

2 _ fgm) 1 2ol g )= 2 15
Tuen Jg

L*2(x)"

c78) 1 ) k() 29.49) Ua@g@&,

cost L L
ﬂ & (%) 2

If the curbing is taken in the form of any number of uniform
beams, parallel to the free edges (i.e., parallel to the 7)-axls, we

may say
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ET(5)= const TFor 7 =%
G T () = const For 2 =

where 77k ig the value of 77 locating the k t curb. (For the special
cage of curbing along both free edges ouly, 77,= -1.0 sc.,7g~= 1.0 sc.,
and K = 1,2 only.)

Then

2 =2 . Mk)Zdu%(’ﬂ)f b W) (E)
zrz[;%%(’%)z"% ’Mf/, (L (2 )A/E).

EML
Recalling that A,.,=&,., =0 ¥ m =% , this

reduces to

DU — A5 EL(n) g, (k) 27 i 9 W

D Anmn

Coslé % GI{V&] 70'(’7;&}2 duy 9/ /7;(-)
rinally, L'ce’® 20 S SR kZE I )9 (i )677 Ay (%)

D DAmn LJ

¢ Eun 5B 5 G Ty 0/ () 3y i - (11-22)

The symbol % means that only those meuwbers of the
i

set of ij's for which i= m are included. From equations (II-1l) and

(II-12) it may be noted that in the typical equation for the a s
2T

Onn
have coefficients which are # O . This will give, for example, four

corresponding to only those d,,; 's for which i = m will
’ J

sets of four simultaneous equations sach in place of one set of
gixteen simultanecus eguations, which reduces the computational

labor considerably.
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Finally, we have for the typical equation

2. .3 2_ .3 20530 DU £
Lcos38 DT, +L s°0 2T _L:C’@___‘-—’-[L.J

D Odumrn D Ddmn D lXe PO (11-13)

where the partial derivatives are evaluated by means of egquations

(II-11), (II-12), and (II-10) respectively.
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PART IIT

COMPUTATIONAL PRCCEDURES AND RESULTS

A, Simplification of ths Computations

The numerical application of this method involves a rather
extensive program of computing. However, the writer has found it possible
to arrange and subdivide the operations in such s way that the amount of
labor involved is materially reduced and so that the reasoning required
during most of the operatiocons is at a minimum., This latter circumstancs
makes 1t possible to have the work done, for the most part, by computers
who are entirely unfamiliar either with the problem itself or with the
methods of matrix algebra (which are used to advantage in this process).
The techniques arrived at will be described here for the purpose of
facilitating similar work.

B. Linear Combinations of Matrices

Twice in the spplication of this method it is necessary to obtailn
linear combinations of matrices. Therefore, a process by which this can
easily bs done will be described in general terms.

I E4] ’{:5]7 -+ represent a sequence of matrices, the sum

may be written symbolically as

{S] - ]:A] +[B] LA (IT1-1)

A linear combirnation of the same matrices is a generalization of

addition, namely

{N] = a[/?] +b[B]+ C (ITI-2)

where a, b, * - - are constants.
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In either of these operations, it 1is necessary that the positions
of the terms in the different matrices be deséribed by the same
coordinate system. For addition, all the terms (one for each matrix)
whose positions are described by some two coordinates may be added and
the sum taken as the term corregponding to the sams two coordinates in
the sum matrix [ﬁﬂ:} . The linear combination may be found by
multiplying each term of each matrix by the corresponding constant and
adding the resulting matrices by the procedure indicated above. A
slightly different way of viewing this process 1is simply to sum the
matrices, multiplying each term by its corresponding constant before
adding it in.

If, for example, any term of the matrix E4:} is represented
symbolically by /qui where p and gq are the two coordinates of
the position associated with this term, the term of the sum matrix

aggociated with the coordinates p amd ¢ 1is

— -i—- .l._ .« e
Spq A Pq bra (I11-3)
and the term of the linear combination of the mstrices associated with

p and gq is

Npq_:aAP?l FbBpg + - (1II-4)

It is customary for the first subscript, p , to indicate the row and
for the second subscript, q , to indicate the columm.

In the numerical calculation of a linear combination of matrices,
the following steps should be carried out:

1. Write each matrix on a separate gheet of some standard

tabulating form (uniform columms and uniform rows). Leave a
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blank line between rows and a blank column between columns.
Every term (one for each matrix, and some terms may be zero!l)
corresponding to some particular pair of coordinates should be
entered in exactly the same gpace in its own matrix sheet s 80
that when the sheets are stacksed neatly these terms will be
directly above and below one another.

2. Prepare a blank matrix sheet (columns and rows labeled)
according to the same scheme.

3. On another sheet of the same type, write the factors of
the varilous matrices(a, b, ...) in order in a single horizontal
row with & blank column betwesen adjoining factors. Make &
horizontal fold in this sheet in the middle of the blank line
above the row of factors, folding the upper portion under.

L. To find, for example, the value of Nlj (where p = 1
indicates the 1lst row and q = j indicates the jth column)

(a) Fold esch matrix sheet vertically in the middle of the
blank column between the (j-1)th and jth columms, folding
the left portions under.

(b) Stack them vertically with the [/4] sheet at the
tottom, the [B] above it, and so on.

{c) Starting with all the folded edges together, move sach
sheet twe columns to the right with respect tc the ons
immedistely below it, thereby sxposing the Jjth coluum of
each matrix, arranged in order with AFJ at the left,
B/b./ next to it, and so om.

(d) Place the sheet containing the factors below the first

b

rowv of the arrangement in (c) so that d is below /4/J' ,



(=) 1 may now be computed according to equation

on with a Friden (or similar

e

(III-4) in 2 single operat
type) desk calculator and the result entered in the
correspond ing space on the blank matrix sheeh,

%. Move the sheet containing the factors down two lines so
that a4 1is below /4ZJ- , etc., and repeat step L(e) above for
,ﬂ/éj- . The column may be completed in this way. TFigure 5
shows the arrangenment of these gheets for the cowputation of
/Vé, when four square matrices of nine terms each are being
combined.

6. Repeat steps 4 and 5 above for each other column in *+urn,
comopleting +the linear combination of the matrices.

7. I more than one linear coumbination is to be made, the
factore corresponding So the other combinations may bhe entered
below a, b, ... on the sheet mentioned in step 3 above, with a blank
line between sets of factors, and the sheet folded iIn the middle of
the Dblank line above the row of fachtors being uged.

Setting Up ths Coefficient Matrices

<2

Looking at equations (I-16) and II-13), in which all +the terms on
the left contain one of the d@dwm, 'a and 211 the terms on *the right are
el

congtants, one can sse that the complete coefficient matrices for these

sets of simultanecus equations can be cbtained by linear combinations of

frd

matrices whose typical terms are§&m4kv>,(?ﬁw/QJ~+7L;/AJn) , etc. where

the pair of subgcripts m and n identify *the row and the pair 1 and Jj iden-

tify the coluvmm with which any term is assoclated. Ths factors of these
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matrices are Z2(/+ s ~v cos 36, (s + v 505"5), ete.
respectively. Matrices whose terma ars of *hs type Cﬁm/hg +7%¢/UUM)
can Tirst be formed by adding two matrices whose typical terms are
( Vew puy ) and ( 7aw Mju ) respectively.

The constant terms on the right side do not invelve metrix

methode, and are evaluated merely by performing the Indicated operations,

Formulas for some functlons which mey be nesded in the foregoing process

are given in Appendices II and ITT.

D. BSolution of the Egquatious

Since the coefficient matrices zare functions of the plste and
not of the extermal loads on the plats, 1t ig deairable tc sclve the
equetions by the metrix inversion methcod. Once the matrix is Inverted
the sclution for sny leading condibtion may be obtained by evaluating
the constant terms for that loading aund postmultiplylng the inverse
matrix by the column metrix of the consgtant terms,

In standard metrix algebrs unotation, this process is described
symbolicelly as follows:

The entire set of simultansous equations ls written

[A/(”'")("J')]g acq)} = {wuw)} . (T11-5)

-1
By definitlon, the inverse matrix [-PJU““MU)] hes the

oroperty

[N('MM)(L‘J')]ﬁl.[N(mn)(L-J)] - [ l] (T71-

vhere [ 1] 1z & unit matrix.
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hence,

-|
{d(LJ) } = N(\M h)((_!) m(m n) (II1I-7)

The matrix inversion may be accomplished by the most coanvenient
means available. (The straightforward check afforded by equation
(III-6) emphasizes this fact.) TIn addition to the standard method
(Reference 3), analogue and digital computing methods are available in
many industrial and research centers. For this report, the inversion
was done by a modified Crout method (Reference 4) contained in a private
communication from the Consolidated Engineering Corporation, Pasadena,
California.

E. Final Solution

After finding the (d.n's,the deflections are found from equation

(I-6a) or (II-1), in matrix form, by a linear combination of matrices

whogse typlcal terms are ¥;‘(%%>f?“(?7g) and whose corresponding
factors are ff%: . D and q are the coordinates of the matrices

and EP and 77q are the corresponding values of the coordinates of
the plate. The method of linear combinations of matrices has been
deascribed below.

F. Particular Cases Computed

Only the case of the small aspect ratio cantilever plate was
solved numerically. At sweep angles of 20 degrees, 40 degrees,and 60
degrees, three types of loading were used. They were (1) uniform surface
loading, (2) uniform shear along the tip section & =L, and (3) torsion

at the tip section. (See Figure 6.) This choice was based on the belief

that most loads experienced by the root section of a swept wing (or a
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swept coutrol surface) could be approximeted by some combination of
these three types. Sets of six coefficients ( dwn 's) were found in
each case.

G. Experimental Program

The numerical values uged in the calculations were those
applicable to a set of plates which were tested under the writer's
supervision by the GAICIT 57 Experimental Section at the California
Tnstitute of Technology. The dimensions of these plates were LL=18 in.,
sc. = 9 in., t = 1/k in., and of course €=20°, 4LO°, and 60°
respectively. The material was Alcoa Spec.-24ST-4  AN-A-12 whose
elastic properties are E = 10.2 x lO6 psi. and ¥ =,32, The
experimental results are accurate to within 0.003 inches. Figures 7 to
€y inclusive give cross-plots of both the experimental and calculated
results. Agreement between the two sets of data was good for &= 20° put
dropped off alarmingly as € increased. %urther discussion of these
results and thelr implications appears later.

H. Method of Approximating Continuous Shear Loadings

Figures 25, 26, and 27 are photographs of typical test set-ups
for each type of loading. These pictures show the way in which the
shear loadings along the tip were approximasted with modified whiffletrees.

The tip section was divided into ten equal segments and a load
was applied at the center of each segment equal to the total load which
that segment would sustain under the continuocus loading conditions being
approximated. The geometry éf the whiffletrees was worked out to give

the desired distribution of the total deadwelight lcading. The calcula-
ticns were then made to agree with thils condition by using only the last

term in equation (I-11) with one value of the index "1" corresponding
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to each concentrated load.
f (2

The values of m | Ly used in substituting equation (I-ba)
into equation (1I-11) were also modified to account for the distance
(along a line of N = const.) from the application of the load to the
tip section itself. The perpendicular digstance from the center of the
holes to the tip of the plate was in all cases 0.06 inches. Therefore
A% = -(0.06 in.) sec € or A(%): -0.00333 sec & .

£ (E) tor 2
Uging the values of the first derivatives of m \ B/ Tor [ :/-0,
g‘(' — ! - <:§")

#M<‘[_"‘) - 'Fm0}+fm 6) A 1y .

Numerical tables of all the major steps in the computing are
contained in Reference 5.

In Flgure &b, Fg and [ are concentrated loads with the
dimensions [FJ . They are related to the continucus loadings of
Figure 6& by the following squations.

Q- (2se)=10Fg

Fe = 5 Q== (I1I-8)
Qo 5([0.2564 — b . 25¢. . . _ 9F. {_0.25(:.
K= M T 0. s 0.3se o, 9sc.
o= L se2
k T 50 S (ITI-9)

It 1s worth noting that the total shear abt the tip sectlon equals

/O FQ and the total torgque equals 2[(6/(/5«: + /3/—2)(35(;}
+(5F/;)C‘5_5c. + éﬂ){7$¢) + (9}:;‘)( 95‘6‘)] = 33 IE,; sc.
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PART IV

DISCUSSION AND CONCLUSIONS

This investigation was an attempt to predict by a general
theoretical method the deflections under load of the root section of a
swept-back wing idealized into a flat plate of uniform thickness. The
choice of a plate of small aspect ratio was made in order to conceutrate
the spanwise characteristics of the Rayleigh-Ritz deflection functions
into the region of the root, in the hope of improving the convergence of
the solution, replacing the outer portion of the wing by suitable loads
at the tip section of the small aspect ratio plate.

The type of deflection functions chosen, having suitable properties
of crthogonality, could surely be depended upon to converge directly to
any known deflection pattern satisfying the same rigid boundary conditions
and to glve results to any desired accuracy if sufficient bterms were
taken. The dy,'s found in this way would msrely be the Fourier
coefficients of the expangion of M/(gf’a/ in a series of terms of the
type'ﬁ%~¥;M(%9 701@7). However, when the deflection pattern itself is
the unknown and the cosfficients of the various terms asre evaluated by
some additional criterion (the minimization of the total potential energy)
we have no assurance that the series of terms in the answer will counverge
where we want it to, namely, at the true deflection pattern. Cowmparison
of the calculated and experimental results in Figures 7 to 24 indicates
that the process converges to satisfactory values at 20° sweep (and
probably less sweep) but that there is an alarming drift from the true
deflection values as the sweep increases. Since the structural

congiderations of aircraft wings are affected most significantly by swesp
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if the angle of sweep is greater than 200, it muet be concluded that the
convergence 1s unsatisfactory.

In the presence of this situation, it becomes apparent that an
approximate deflection function, W, , which was discarded earlier, has
an indispensible role in a satisfactory solution. An empirical function,
which is nowhere more than say 5% or 10% in error at any point on the
plate for any angle of sweep would reduce the remaining terms
(7'—‘,: - TN Fm 7,,, } to correction terms which would then converge much
more quickly to the actual deflection pattern. Using the results of
the experimental program conducted for this series of plates, the
possibility of formulating a satisfactory empirical function is greatly
increased. While the time limitations under which this report was
prepared did not permit of pursulng this possibility, this next step
toward & satisfactory solution of the problem is clearly indicated.

It is to be noted that t;e addition of W, does not alter the
coefficient matrices or their inversions. Reference 1 gives a group of
functions of Wo to be ggggg to the constant terms Whwe already found.
When the Olmn 's are found from these new constant terms, the deflections

themselves are found from equation (I-6) rather than (I-6a).
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APPENDIX I - PROPERTIES OF VIBRATION MODES OF UNIFORM BARS

A. General Forme of Solution

The classical treatise on the lateral vibration of bars is to be
found in Reference 6. In the present work, we will present some of the
basic equations and the special form in which they were utilized both
for numerical computation and for evaluating the defined functions of
the modes.

Neglecting the contribution to the kinetic energy of a vibrating
bar due to the rotational motion of the sections of the bar, assuming a
harmonic dependence of the deflections upon time, and separating the
variable of time from that of position along the bar, the fundamental

differential equation for the vibration modes of a uniform bar is

d4u . Wﬁ{J
Ax*+ 14 (AI-1)

where U 1s the value of the mode at coordinate X along the bar,
v 1s an abstract number, and [ 1is the length of the bar.

The general solution to this equation is of the form

u:Awsmffﬁshm%-/-Ccos/)Mf+DS/""A/’W§L- (AI-2)

The four arbitrary constants may be solved for by substituting two
boundary conditions for each end of the bar in question into equation
(AI-2). However, since the boundary conditions are homogeneous (of
the type i%%%%- = ¢ ), the equations for A, B, C, and D will be
homogeneous linear simultaneous equations (mo constant terms). In
this case, we equate the determinant of the coefficients to zero and
solve the resulting equation for v . This equation is called the

characteristic equation and the set of discrete values of M gatisfying
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it are the characteristic values or eigenvalues. Substituting any of
the characteristic values of m1 into the simultaneous equations, we can
obtain only the ratios between A, B, C, and D, indicating that the

amplitudes of the modes are arbitrary.

B. Particular Cases Used in the Present Work U\‘
/
1. Clamped-Free Bar of Length |, : Jo
B X
The boundary conditions are
. du
u{de{’lechmn = 2 (slope)=0 at x=0
) = G etop (A1-3)
a%u ) _d3u )~ a -
W(m&menf =53 (Shed" =0 at x=L
giving the characteristic equation

where ID is the notation we will assign to the mth characteristic
value corresponding to a clamped-free bar. If equation (AI-k4) is

written in the form

casb P = — sec pm (AI-ka)

and plotted graphically, it can be seen that p,,, may be

written in the form

/ﬁm =(2m‘/)~27l + (—/)m+é<m

(AI-5)
where ,, is a small positive number. In reference 6, the
,Dm 's are evaluated via this approach. A useful relationship
derived in the process is presented here:
<
co t -—--2”" = e/”", (AI-6)
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The solution is

b (1) = = cos X+ costs P
+ T, (smﬂ%i — sk #"fl) (AI-7a)

Pu(£) = 3 {-FeoslPEm =3+ )

X ~ X
i [ty e (- 2) o1 ”5%} e

where
T = 05 pe * cost, e (AI-8a)
SN?FM-+SMH pom
. W)'/'/ ‘ o
and Ve = COsZpa +(-)7 s, (AI-8b)

The replacement of U by ‘p,n indicates that the function has been

normalized according to equation (I-12) and the additional criterion

L= E (0/ 0

Equation (AI-7a) is counvenient for evaluating functions such as those
in equation (I-13), while equetion (AT-7b) is useful for numerical

corputation of the modes themselves.

»—

2. Free-Free Bar of Length 2 sc. : S -] —_—

le—s¢—fe—scr]

The boundary conditions are

dhu & -
T dag =0 At y==lse

giving the characteristic equation

(AI-10)

cos 24, cosh 29, = | (AI-118)



which ig identically equal to

(7"&7 nh g, -1n 4, )(f’amk g, *+ fqng,ﬂ) =0 (AT-111)

where 2 9. replaces m 1n the notation for the nth characteristic

valve for a free-free bar. In this case,

g =(2n-1)F+ ()7 (AI-12)

where ﬁ,, ie & small positive number. Similar to equation (AI-6),

there exlgsts a relationship

— 29

(Tt should be noted that the 2 g, and 2/,, used here correspond to
m andﬁ in Reference € if the index is reduced one interger, e.g.
2 dun. = Mn| .) Disregarding for the time being the cases

=0, | ,vwhen n is even, the second factor in equation (AI-11b)

equale zero, i.e.

tanh g, + tan g,, = O (AI-11c)

giving the normalized soclutions

N D cosgicosh g, +eosha, o TuFE
g-(4) = €V /2 cos gn cosh g,

(AI-1ka)
— _ﬂi_ﬂiwsh 9, + cosh g, cos P2
= : n>o even
Veosh*q, +cos g ( ’ ) (AI-14D)

{
S 9an
Tremaa LF .

_'_[_/)%ﬁg_éﬂ,(e‘i“‘(";%) +e§gh(’+$€))i? (AI-1kc)

tanh g, - tan q,, =0

When n is odd,

(AT-114)



giving

n=l - N : ’

" (y = () Z Sin q!..S‘/h/) gz,.g% *"Sln/;.q,,, 5117 @ \
7 ) ¢ ) Esuo gdn sinh g, (AT-15a)
— 3inq,sinh g, # rsinhg, sin 4, &

Jsrnh *ga~sinza,, ?(Y\>|,0doo

(AI-15b)

) ,
= ez i 3k

ne o (- -2,/
+ (_,) %.&%éﬁ__éih(li)—e 2. )j} (AT-15¢)

Equations (AI-1k, 15 a,b) are convenient for evaluating functions of

the mcdes while equations (AI-14, 15¢) are useful for numerical
computation of the modes themselves.
The soluticns for n=0,| correspond tc the so-called rigid

modes and are given by

/
% (y)= 7 > (£I-16)
/3" Y.
9. (4) = /2 sc . (A1-17)
. Simply Supported Bar of Length L, : T %
3 ply Pp & %;rg (o] — z
The boundary conditions are 2 I 2
_ o diu at z =+ L
Us=s 4zz=09 Z (AI-18)

It can be verified directly that these conditions are satisfied by the

normalized solutions

lE) = [Feos o= [Feos im0 odd

= /2 510 mr & :/g"m’a r,;,% , m even (AI-19)
which indicates that the characteristic values are

Fon = m 77, (AT-20)
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C. Evaluation of Defined Functions of the Modes

Looking at equation (AI-l), we see that any order derivative of
U also satisfies the differential equetion. (If we let primes indicate

differentiation with respect tc m¥X uU'v= ¢ ; hence, for example,

)
yvt= gy which is the seme as AH)/V: /L///) .) Thus, any order
derivative of U4 whose boundary conditions are physically possible is
the vibration mode for a ber with these same boundary conditions. For
example, at a clamped end, we have 4 = «’/ = & which is the same es
U= u'=0Oor @'9”:[“ ")”/= O and at a free end, U= u"= 0 oy
[u”):[b{’y /—'=a Thus the second derivative of say the third mode of a
“clamped -free” bar is the third mode of a "free-clamped™ bar. The
orthogonality property for any solution of the differential equation
which satisfies physically possible boundary conditions is established
by the general Sturm-Liouville theorem of eigenfunctions. Consequently,
we may deduce the validity of equetion (I-14) and the first two parts of
equation (II-9). (It should be noted in regard to equation (II-9) that
the boundary conditions ‘= u’= O are thysically possible although
experimentally impractical.)

Tonyy = O for »m % »n follows from the fact that, except
for & constant, hmé) = h,,,,” 7%—) Prary = @y, = O for any m,n
resulte from the integration of the product of an 0dd and even function

over an interval whose center is the origin, or from orthogonality.

The values of the remaining functions in equetion (II-8) are

A = Fm4:m477'4 (AI‘Q]‘)
2 _ 2

Emm == = m T*= (A1-22)

T = _Y;HZ- =-m? 77'2, (AT-23)
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The evaluation of the functions in equation (I-13) is typified
by the derivation for ’l//my. which follows:
From equation (AI-1):

-ﬁm g /D“" * 7Cm (where 1(,4,, = dﬁw etc.)

A(E)’

'Fm v = qu 16,,,'
. )Cmv, —:FM47CW,”
Rewriting: y , .
pt =
AR

Subtracting and integrating: ,
m4_f,h4)f'1cmu ][; ' é)E(Pmt;gphar)ﬁl,mn - L(fn'ﬁ" Vi fm”ﬁ V)d/—%)

Integrating by parts:

R U A R A [ S o
o W,)d()
Recalling that ° o

Fo = P * L
me:PM47£M/
for =t =0 @t £ =0
A =m0 at £ =

_ et £ 06 ) —hy O F '©)
Yo = A '

For m=mn, a limiting process must be usged In which m=n + d
1s substituted and the limit found as d n approaches zero.
The terminal values of the functions may be substituted to give
simpler expressions. They are
1C‘m (l) = (” ') MHZ (AI-2ka)
£,./0) = )2 ., P (AI-24b)
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£."0) = Z2pm®
f"'G) = -2 T Joun” 3
for u even (except n = O ):
gullsc) = g (~1s¢)=C1) 57
70 ‘(15c) = -4, Lyse)=(-1) )2 pn 2 5.

for n odd (except n= [ ):

9n (lsc)= ~jm (“/sc) = £1) %’/E

9w ///56./ =9n (/‘/Sc‘./‘—“él// »42:1/2_,/” G se ™

The finel values of the functions are

for n # m:
L = O
L))t 4 2 1,2 B
/mn — 4 Ll) /Vn/bn/% /b,?{;ﬁ,ﬂ"f )*,h« o /V;/bn “”Tﬁ&)’
2 _ - min 2 2
v = A e G o)) p 7]
m ! /Dm 9-N/pn’4-

,\‘PMM = O\MPM V;[DM 7MMV\

S P NG M Pl

Mmn Pm4—F”+

for n= m:
Lo = P *
Boam =2 Tonpart O ™
Yy = & Tog prr— T “om™
Vg =2 Tm™ P

Tom = 3

(AT-2kc)

(AT-2k3)

(AI-2ke)

(AI-2Lf)

(AI-2kg)

(AI-2kh)

(AT-25a)

(AI-25b)

(AI-25¢)

(AT-254)

(AI-25¢)

(AT-251)
(AI-25¢)
(AI-25h)
(AI-259)

(AT-253)
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2 pn =0 (AT-268)
AMW::O for (m+n) odd ( )
X p B AT-26b

M = () 274 BLI L2 D st 5r (min) oven

o = L for (m+mn) odd
rat - _ (AI-26c)

Memn =(-1) 4?»«4 WSC- 'for (w+n) even

T = for (m+n) even
mn L (AI-264)

T = /Om QM/Q, 9n gmy,é'c" for (m+mn) odd

Comn = O ~ for (m+n) even
™ B _(_I)mz 4qu_ (AT -26¢)

LCmn™ ¥ -4 for {(m+n) odd;

form =m =2

XIMW\ = q_""4 sc. 3 (AI-Eéf)
Namg = (P Qs + 3 q,,) 5.7 (aT-26g)
Pomm = (O Qua o™ %) S/ (AT-26n)
T = O (AT-261)
Comm = 0. (AT-263)

If nor m=0or 1, a "rigid" mode is involved, and equations
(AI-26), which were based on equation (AI-1), are not applicable. With
the aid of the expressions presented in Appendix II, the following

formulas for these cases can be verified.

Epmn=0 for m=0, 1 or 0 =0,1. (AI-27a)



A = O
>\\l = 350!

for m = 2

Ay = Ap =

ml Am

fmn = O

for m = 2:

Mo = 6() %12/0,,4 gm S€. =/

= O

Pmi = (‘1) %;/Z‘/?édm QM“/)S‘C.‘/

= O

for m = 2

Tl =(‘l) %2/,—3—'/,” G 11 se.”®

Evan =0

Lo =/3

for m = 2:

Cwmo = ("/) '—”2;_12

Et =(-) 25

—

- \) Z%1[2 [3_15@"1

=0

for m =0 or n= O)

for m

for m even. ]

odd

for m = 0,1;

for m

fer m

for m

for m

even

odd

odd

even.

\

$ (AT-27b)

? (AI-27c)

for m= 0,1, or n =0;

for m

for m

for m

for m

for m

for m

for m

20

even

odd.

AT-278)

= 0,1 (except )

=1,0)

odd

even

even

odd.

? (AI-27e)
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APPENDIX II - FORMULAE FOR SOME INTEGRALS INVOLVING

£ (E) s 9n )

The following integrals occur frequently in the evaluation of
the constant terms, vWn,,. , whether or not an approximate deflecticn
function, w, , is used. They are presented without proof, but their
derivations are not in general difficult. The latter can be accomplished
by one or a combination of the following methods.

a. Direct substitution of the functions, followed by integrationm.

b. Integration in symbolic notation, e.g.

[rwax = 467 =l (@)

c. Integration by parts followed by a. and/or b.
d. Substituting & lower derivative of a vibration mode of a bar

with complementary boundary conditions, based on the first

|
paragraph of Section AI-C, e.g. ﬁ (E) 60 owuf 0___
In these equations, the primes indicate differentiation of ‘EM(EQ

with ressect to £ and of (i) with respect to7)
feE)a(E)=
()
[FEAE=E)" " Zompr (411-3)
fo, B¢ = (ATI-1)
LE) 4MI(%>d(1§;>:Z["’)M”“ B (ATI-5)
[ &) E)AE) =)™ 2 pun) (4T1-6)

PO

(AT1-1)

1

(, I)MHZ (AITI-2)
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Isc. o ifn=o0 (ATT-T)
J:S?n(’yl)dﬂﬁ {/EJC, IF")?-{O
Ise. NELD B if n is odd
9n' () dn = { (O') z (ATI-8)
-lsc. if n ig even
=l
» ,)z ZJ—'/ gn s¢. if n is even ATI.9)
’3" (?7) d"7 { if n is cdd (
Ise. 2 ;.2 if n=1
7 9n(n) d ={ /o; il ; (ATI-10)
~lse. if n#1
n is odd
o w7
! ATT-11)
J 7 7"[?7) d'q (;)22/—' sc. if n is even (
~lsc. and ) O
Ise. cyE . —1) if 0 is odd
1 94" (%) d = {( )F 22 (/M‘Z ) cee (AIT-12)
)se. 0 if n is even

Higher order expressions of the same type may alsoc be evaluated

if necessary.
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APPENDIX III - FORMULAE FOR THE CONSTANT TERMS OF THE

SIMULTANEOUS EQUATIONS FOR SOME LOADING CONDITIONS

If no approximate deflection function is used (i.e. Wp=0)

the constant term of the typical simultaneous equation isg

L*cos38 2Ve
mmh = - D admn

2

(AITI-1)

The following formulae apply when q is the uniform surface loading,

and @, k, FQ , and F_ are as defined in Figure 6.
P opsd
22 g2 cos*6 T
q—: Mpryy, = l/—'qD F"" sc. fn=0
=0 iIfn#0
m+l % 3
Q: mwm:ﬁz Z/E;C?L, cos38 sec. a—o
=0 1If n#90
ki m, = ED72E kL oo sez
: o = =
=0 if n#1
. ,
Fo: m, = (e L7 cs30 WCM(E) «gj"(%)
Q- mn D
102
Fu: Mo, = 106 L™ eos%0 #Mgf)zg/m 90 ()
* mn

Dse.

(AITI-2)

(AITI-3)

(AIII-k)

(AITI-5)

(AIII-6)
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UNIFORMLY LOADED OVER REGION I,

CONCENTRATED LATERAL LOADS Py, P,, P3, AND
P., AS SHOWN,

SIMPLY SUPPORTED AT A, B, C,

THICKNESS AND MATERIAL PROPERTIES AS
SPECIFIED.
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= ANGLE OF SWEEP,

(a)

AMOONVNNNANNNN Y

S

AANANA

)

(b)

(&)

<O

~

FIGURE 2

AIRCRAFT WINGS IDEALIZED TO FLAT PLATES,



L6

X
6
\ T
' 5
X =& COS 6
Y=p+5 SING
& = X SEC 6
Y. 7= Y - X TANG
FIGURE 3

RELATION EETWEEN RECTANGULAR AND
SKEW COORDINATE SYSTEMS,



b7

FREE EDGE
/

SIMPLY
SUPPORTED
EDGE

FREE EDGE

FIGURE 4

SKEW HIGHWAY BRIDGE IDEALIZED TO A
FLAT PLATE,

,—//

c?ffggb?

SIMPLY
SUPPORTED -
EDGE - —



L8

‘SEDIYIVIN

A0 NOILVNIGWOD dVIENIT NI d3sn INIWIDNVIELEV 40 HODIIIS

S TdNOIA

% Il
mm@ me }
£ zeg ”
m,\q N\Q ‘_H
!
£ z 1B
\
'\

\

LAET LV SYTEWAN INIT FSOdXHT OL HYHEH QAO,WZD,}D;IIV



49

DNIAVOT dIL 40 SAJAL

9 ANDIA
DNIAVOT SAONANIINOD OL SNOILVWIXOdddV
(a)
A, Y
4'Vﬂhﬂ’
o J«.»fd |
*‘ Y Aq/
1 NOISYOL

DNIAVOT SNONNILNOD
(=)

mfﬁ@ TYV I JO SNOISNIWIA

NOISYO.L

A%MHO
VA\\j
gl

el A i 1

1 H )

\_\—\

J

O -
(Tvordxr)Pua —

b A | W S W \ _7

L 4

L
- |

T

-
1

-
H

1
)|

fid
-
-
1
-

HYVHIHS WHOJINN

maq& TYV O 40 SNOISNAWIA

HYVHIHS WHOJINN

INVISNOD =D —

L, .




sdrion|curyEs

EPBACK,

,,,,,,,

|

wxqwnwm
L |20T SWE

INIF ORM SURF ACE LOADIN(G,

N 8

_isBA







EAR|=1001bs, |

BN
.

8

@;._.34@_@5355;;1;:




"_\?Jsc:')‘ R :

IGURE 16— | - -

bt cemeponn ot s vt
i




[inchbc)







SHFO

IMENTAL| ——
JRETICAL | -

Ka HASE IOOSSESEEE £8 o

he
=

V
o DIVG HRT RN U I W

o
u:X_J: 3

IEXPER

GE 1
PBAC

L
Y

YRR H SN 16
SIS AR LA
HEFLECTIC

S SWES




FLEC

VES FOR

OADE

S R S

’

{ I
'
i X
I R “
RN :
§ 3 : H
i { Lol
! i
h H

DUV SN

T

5 A

o} b

i

TION CUR

i
i

EEPDACK.

HE

3
Pt
=
TET
SHORe
Ry
R
of b

e

PRI ONR A A L CEA T R A T T
CUN LI OR O ACT 1

m RS I : ;
B, SEOOAOURE VY o0 SO o 6 Ll i
(I8 i \D < : i H
; BES] <t , ; !
: oy Trr y
i ; e oo !
i = [ ISR SN
H T >
a | |
e = ;
A I S
: C I
: 1 ; :
3
i

FIGURE'1

i

2

et
'
‘

o *
; i !
S S :
i H i
M H

i ;

| -
f i
H 1

H
3



RE 100 fibs.

I TQTAL TIP SHE:

S ) N
S|FIGURE 15] -

Fa

U

NS
NSNS
S A

01256 |

.
AN
AR
A
P!
e
e

-

| UNIFORM|TIP SHEAR| | |
1 W=+0.6s

"”O 3213‘ IREES R DU

: +

. SPANWISE DEFLEQTION|CURVES FOR.




................................

e »&cﬁevi%ﬁm\,m rjsmmpc&*‘iom Cifswﬁzs?;j?}@g%? e
bl | UNIFORM TIPISHEAR L L o
V“ACK SEEEETEE! FERN NN MEFTEES ER I

,,,,, i '

z

I |
TJRiIViﬁ; . :







.......

[ L T I O T ST IR

| TORSIONAT.TIPSEQTION, | .1 .«

.....

,,,,,,,




SR R A  SPANWISE. DEFLEGTION CURVES FOR

UNIFORM SURFACE LOADING,

HIFRP e T A RN WG Ao S
B S A W.ﬂaﬂx.&" L}Ab-g\o !

EXPERIMENTAL I

ho
N
H

7 : FIGURE 13,
H : ! : H R
: { ‘




CHORDWISE DEFLECTION CURVES HOR. |

MR | UNIFORM SURFACZ|LOADING
11| GO SWEEPBACK. |

hem)

1
e

(T

.....




joef

.......

(o EuRVES/dR
R,

L=

LEC

ERIMENTAR

HORETICA;

‘‘‘‘‘

ik
- ol

WISE DEE

ol
ANWISE. DEFLECT
| UNIFORM I

AN

SR RE (b v ¢

P

BRI

.....




NLOCITRYN
hedth 3

oo
LSRNt B

D SHEAR]

]

TIC

HG
"ORM| Tl
W

ERL

i
IMENT AL,
IMENT AL

ISE 1]
1] UNI

by
i

ai T
AR EURDE SESEH # 54

TH]

PBWISE::

- *“Q’Tj‘ﬂ‘
SN

_lilicHo
IRERRRRRE T2 ¥ 3 =t 3




SaE—

kN

i 45
R ELE) >R




£ NEELEG

AR

,,,,,,,,,,

5).

w_(inche

‘‘‘‘‘

AAAAA




Fig. 25

Experimental Set-Up for Finding
Deflections Due to Uniform Surface
Loading at 20° Sweepback.



Fig. 26

Experimental Set-Up for Finding
Deflection Due to Uniform Tip Shear
at 40° Sweepback .
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Fig. 27

Experimental Set-Up for Finding
Deflection Due to Torsionm at Tip Section
at 20° Sweepback .,



