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Abstract

High-order adaptive mesh refinement offers the potential for accurate and efficient resolution

of problems in fluid dynamics and other fields where a wide range of length scales is present.

A critical requirement for the interface closures used with these methods is stability in the

context of hyperbolic systems of partial differential equations.

In this work, a class of energy-stable high-order finite-difference interface closures is

presented for grids with step resolution changes in one dimension. Asymptotic stability

in time for these schemes is achieved by imposing a summation-by-parts condition on the

interface closure, which is thus also nondissipative. Interface closures compatible with

interior fourth- and sixth-order explicit, and fourth-order implicit centered schemes are

presented. Validation tests include linear and nonlinear problems in one dimension and in

two dimensions with tensor-product grid refinement.

A second class of stable high-order interface closures is presented for two-dimensional

cell-centered grids with patch-refinement and step-changes in resolution. For these grids,

coarse and fine nodes are not aligned at the mesh interfaces, resulting in hanging nodes.

Stability is achieved by again imposing a summation-by-parts condition, resulting in non-

dissipative closures, at the cost of accuracy at corner interfaces. Interface stencils for an

explicit fourth-order finite-difference scheme are presented for each geometry. Validation

tests confirm the stability and accuracy of these closures for linear and nonlinear problems.

The Richtmyer-Meshkov instability is investigated using a novel first-order perturbation

of the two-dimensional Navier-Stokes equations about a shock-resolved base flow. The

computational domain is efficiently resolved using the one-dimensional fourth-order interface

scheme. Results are compared to analytic models of the instability, showing agreement with

predicted asymptotic growth rates in the inviscid range, while significant discrepancies are

noted in the transient growth phase. Viscous effects are found to be poorly predicted by

existing models.
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Chapter 1

Introduction

Adaptive mesh refinement (AMR) methods are increasingly being used to simulate problems

in fluid dynamics and other physical systems, as local refinement of the computational grid

allows efficient resolution of the wide range of length scales often present in these problems.

However, for a given truncation error, it has been shown by Jameson (2003) that high-

order uniform methods can be more computationally efficient than standard second-order

AMR, due to the greater simplicity of their data structures. High-order AMR methods are

therefore sought to combine the efficiency of resolution offered by local mesh refinement

with the accuracy of high-order methods, but depend on development of suitable interface

closures. This thesis describes such a class of high-order finite-difference interface schemes,

suitable for systems of hyperbolic partial differential equations where time stability and

numerical dissipation are critical concerns, and demonstrates the potential of high-order

AMR by application to the Richtmyer-Meshkov instability.

1.1 Local Mesh Refinement

A challenge for adaptive mesh refinement methods is proper treatment of interfaces at step-

changes in grid resolution. For problems sensitive to numerical dissipation, like turbulent

flows or wave propagation, stability and accuracy of the interface treatment are critical con-

cerns (Jameson, 2003). Long-time integration of these problems is dependent on the error of

the numerical approximation remaining bounded for the duration of the simulation, while

avoiding excessive artificial dissipation of important solution features (Carpenter et al.,

1994). It is for this reason that centered finite-difference schemes are often preferred for in-

terior regions of the computational domain; the challenge then lies in dealing with boundary
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and interface regions where the grid is nonuniform and standard centered schemes cannot

be applied.

The standard approach to the interface problem has been to utilize interpolation across

grid interfaces, choosing coefficients that satisfy local stability criteria. Recent examples

include the second-order method of Choi et al. (2004), which uses quadratic interpolation to

avoid wave reflection at interfaces, while the second-order finite-volume method of Lötstedt

et al. (2002) and Ferm and Lötstedt (2004) introduces the minimal numerical dissipation

necessary for stability of the interfaces. Higher-order interpolation-based schemes, such as

those of Gerritsen and Olsson (1998) and Sebastian and Shu (2003), preserve stability at

the cost of significant artificial numerical dissipation.

A widely used method for adaptive mesh refinement is that of Berger and Oliger (1984)

and Berger and Colella (1989). This method is characterized by a finite-volume–type hier-

archical partition of the computational domain, using a recursive patch-based algorithm to

iterate across refinement levels. In Berger and Colella, a computationally efficient interpo-

lation/restriction operation transfers information between guard cells at patch boundaries.

In the implementation of this algorithm by Pantano et al. (2007), the second-order accurate

hybrid centered-difference/weighted essentially nonoscillatory (WENO) method of Hill and

Pullin (2004) is used for spatial derivative approximation, relying on the WENO method

to provide sufficient dissipation for stability across grid interfaces. The efficiency of the

Berger and Colella algorithm notwithstanding, in this work only “flat” refinements of the

computational domain are considered, with no sense of an underlying coarse grid remaining

in refined regions.

Stability properties of interface stencils are typically analyzed by an eigenvalue analysis

using the rigorous GKS theory of Gustafsson et al. (1972), examples of which include Ciment

(1971, 1972) and Berger (1985). It was shown by Trefethen (1985) that stability of a single

interface does not guarantee stability of a grid composed of multiple interfaces. Interactions

between multiple interfaces can lead to algebraic, and possibly even exponential, growth of

perturbations even though each individual interface is locally stable. The only rigorous

approach to the development of stable multiple-interface treatments is therefore the use of

a global stability criteria.

Energy-stable methods are desirable as their global stability can often be proven ana-

lytically. Another feature of these methods is their tendency to self-diagnose the resolution
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requirement for the problem under consideration, as numerical reflections are generated

at interfaces as features that are well supported on the fine grid side propagate to an

under-resolved coarse grid. This and other properties of energy-stable methods that are not

overly dissipative were identified by Browning et al. (1973); Vichnevetsky (1987); Cathers

and Bates (1995). An example of an energy-stable second-order accurate interface scheme

is that of Collino et al. (2003).

For ease of analysis, stability is almost invariably discussed in terms of the linear advec-

tion equation. Essential to the resulting stability criteria is directional independence; the

method of Lötstedt et al. (2002), for example, ensures stability in general only for waves

traveling along specific directions, a serious limitation when dealing with systems of partial

differential equations like the compressible Euler equations, which support waves traveling

in multiple directions simultaneously.

1.2 Summation-by-Parts Operators

As first presented by Kreiss and Scherer (1974), a semidiscrete finite-difference approxima-

tion to a partial differential equation (PDE) can be made to satisfy a summation-by-parts

(SBP) rule, analogous to integration by parts for the continuous equation. The original

context of this method was for boundary stencils, which ensured that energy transfer to

and from the computational domain was confined to the boundaries and prohibited energy

growth (or decay) elsewhere in the domain. It was also shown that accuracy must drop at

the boundary by one order compared to the interior scheme, though this does not affect

the convergence rate of the overall scheme as demonstrated by Gustafsson (1975). High-

order boundary closures satisfying the SBP criterion were presented by Strand (1994) and

Carpenter et al. (1994), with the final component for a stable high-order approximation pro-

vided by Carpenter et al. in the simultaneous approximation term (SAT) penalty method

for imposing the boundary condition.

Finite-difference approximations that satisfy the summation-by-parts criterion are easily

shown to be stable in an energy norm, satisfying both the GKS definition of stability and

showing asymptotic stability in time (Carpenter et al., 1994; Abarbanel and Chertock,

2000). Both definitions of stability must be satisfied to prevent nonphysical growth of the

numerical solution in hyperbolic problems (Carpenter et al., 1993). The SBP condition is
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also a global criterion: since it is only the boundaries that influence the energy balance, if

an interface is stable in the summation-by-parts sense, any number of interfaces will also

be stable as each makes no contribution to the global energy balance.

The focus of development of SBP operators has been primarily on boundary schemes.

At grid interfaces, Nordström and Carpenter (1999) propose a high-order method that uses

a penalty-type technique to match the function value and first derivative at a common in-

terface point, analogous to the SAT boundary method. This assumes a vertex-type mesh,

compared to the cell-centered finite-volume–type mesh topology considered in this work

that avoids overlapping nodes under refinement. The penalty method introduces some nu-

merical dissipation, but has been applied successfully to fluid dynamics and electromagnetic

problems where this effect was found to be small (Nordström and Gustafsson, 2003).

In this thesis, customized high-order stencils are designed for the points near grid inter-

faces such that the summation-by-parts criterion is satisfied across the entire computational

domain, thus ensuring stability without introduction of artificial dissipation.

1.3 The Richtmyer-Meshkov Instability

An interesting application of the interface schemes developed in this thesis, demonstrating

the power and efficiency of high-order adaptive mesh refinement, is the Richtmyer-Meshkov

(RM) instability. This instability, named for the foundational work on this problem by

Richtmyer (1960) and Meshkov (1969), occurs when a shock collides with a perturbed

interface between fluids of different density. It is similar to the Rayleigh-Taylor instability

that occurs at the perturbed interface of two fluids of different densities under acceleration

due to gravity. Only the planar reflected-shock case of the RM problem will be considered

here, essentially assuming that the incident shock travels from the light fluid into the heavy

fluid in a two-dimensional Cartesian geometry.

The initial growth of the interface perturbation is driven by vorticity deposited at the

interface by baroclinic torque, a result of the misalignment of the pressure gradient across

the shock with the density gradient across the interface. The focus of this work will be

on the early-time evolution of the RM instability, which exhibits damped oscillation in the

growth rate (e.g., Yang et al., 1994), the result of waves trapped between the reflected and

transmitted shocks. At later times, the perturbation grows larger, distorting the interface
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and leading to formation of “bubbles” and “spikes” that excite secondary instabilities and

eventually result in chaotic mixing of the light and heavy fluids (Zhang and Sohn, 1997;

Collins and Jacobs, 2002; Hill et al., 2006; Herrmann et al., 2008).

The simplest model of the Richtmyer-Meshkov instability is the impulsive model of

Richtmyer (1960). This models the shock impact on the contact discontinuity as an impul-

sive acceleration of a sinusoidally perturbed interface of zero thickness between two inviscid

incompressible fluids. For small amplitude perturbations, this predicts a linear growth rate

in time for the interface amplitude, which was validated by Richtmyer’s own simulations.

This has been shown to agree at least qualitatively with experimental investigations of the

instability, first by Meshkov (1969) and by many authors subsequently for weak shocks (see

for example Brouillette and Sturtevant, 1994; Jones and Jacobs, 1997; Collins and Jacobs,

2002), where the linear growth rate is achieved in an asymptotic sense. For stronger shocks,

however, the assumptions of the impulsive model break down and the growth rate is no

longer accurately predicted.

More advanced models of the instability fall generally into one of two categories. The

first covers analytic improvements to the simple impulsive model, where its various assump-

tions are generalized to improve the growth rate prediction under certain conditions. Those

considered in this study include the effect of a distributed initial interface (Mikaelian, 1991;

Brouillette and Sturtevant, 1994), viscosity (Mikaelian, 1993; and in more advanced form,

Carlès and Popinet, 2001), and finite proximity of the reflected and transmitted shocks

(Lombardini, 2008).

Models in the second category are based on linearization of the Euler equations about the

1-D Riemann solution of the shock-interface problem in the small amplitude approximation.

These obtain estimates for the asymptotic growth rate either (semi-) analytically by series

expansion (Wouchuk and Nishihara, 1997, and Wouchuk, 2001a, are considered here) or by

numerical solution (Yang et al., 1994). It is this latter approach that leads into the method

used for the simulations presented in this work.

A fundamental challenge encountered with simulation of the Richtmyer-Meshkov insta-

bility is the numerical treatment of the shocks in the domain. Since the shock thickness is

on the order of the gas mean free path length, which is two to three orders of magnitude

smaller than the next smallest scale in the simulation, full resolution of the shock structure

has been impossible. Furthermore, because of the weak influence of viscosity in most prob-
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lems of interest, an inviscid fluid assumption is often made. In both cases, shock capturing

or tracking methods are generally used (e.g., Hill et al., 2006; Herrmann et al., 2008), and

so potentially suffer first-order error at the shock (Engquist and Sjögreen, 1998). This is of

relatively little concern for these second-order accurate simulations, however.

Examples of high-order simulation of the Richtmyer-Meshkov instability are limited, in

part for this reason. The recent work of Yee and Sjögreen (2007) uses a sixth-order filter

method in their Navier-Stokes simulation, and as far as the author is aware, no attempt

has been made to resolve the full Navier-Stokes shock structure in the context of an RM

simulation until this work. This is made possible by the high-order grid-interface closures

developed in Chapter 2, which allow efficient resolution of the shock and thin contact region

by multiple levels of local refinement.

1.4 Thesis Outline

This thesis is divided into three main chapters, each covering a major topic: Chapter 2

describes the development of the 1-D finite-difference interface schemes, based on Kramer

et al. (2007), Chapter 3 describes the 2-D interface schemes for patch-refined grids, and

Chapter 4 describes the investigation of the linearized Richtmyer-Meshkov instability con-

ducted using the numerical schemes from Chapter 2.

Chapter 2 introduces the theory of finite-difference schemes and stability, with supple-

mental material provided in Appendix A. This forms a basis for both the 1-D interface

schemes derived in Chapter 2 and for the 2-D theory introduced in Chapter 3. Results of

validation tests are given following presentation of the interface schemes in both chapters,

using similar test problems. Detailed derivations for these test problems are shown in Ap-

pendices E and F. Algorithms for implementation of the interface schemes are described in

Appendix C and matrices for the schemes are available in electronic form with this thesis

from the Caltech Library. Chapter 4 introduces the theory of the Richtmyer-Meshkov in-

stability and describes the numerical method for its simulation before presenting the results

and a discussion of interesting findings in Sections 4.6–4.7. Concluding remarks, including

thoughts on future investigations, are presented in Chapter 5. Each chapter is introduced

with a brief overview of its content.
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Chapter 2

The 1-D Interface Problem

This chapter describes the one-dimensional grid interface problem and its solution. Sec-

tion 2.1 introduces the spatial finite-difference approximation and the interface problem

geometry, which is placed in the context of a hyperbolic partial differential equation in time

in Section 2.2. This presents the stability problem for long-time integration, and the condi-

tions the interface scheme must satisfy to be stable. Sections 2.3–2.4 describe the interface

solutions, followed in Section 2.5 by a discussion of their properties. Finally, Section 2.6

shows the results from a range of validation problems. Appendix C describes briefly an

algorithm for implementation of this scheme.

The content of this chapter largely follows Kramer et al. (2007), but with considerable

extension to the stability theory and analysis in Section 2.2. More detailed convergence

results are also presented in Section 2.6 than appeared in the original paper. Notation has

been updated where necessary for consistency with Chapter 3.

2.1 Domain Discretization

2.1.1 Finite-Difference Schemes

Consider a function u(x), evaluated at discrete points or nodes xj on a computational

domain with u(xj) = uj . The derivative of this function at a particular point xi may be

approximated to order s by the explicit finite-difference scheme

dui
dx

=
1

∆x

i+kR∑
j=i−kL

qiju(xj) +O(∆xs), (2.1.1)
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where ∆x is a discretization scale related to the spacing between the points xj , qij are

weights for each function value, and the stencil has a width of kL + kR points. For a

centered difference scheme of order s, the minimum-width stencil has kL = kR = s/2,

giving a total width s + 1. Alternatively, the derivative at xi may be approximated using

adjacent derivative values also with the implicit (compact) finite-difference scheme

kR∑
j=i−kL

pij
duj
dx

=
1

∆x

i+kR∑
j=i−kL

qiju(xj) +O(∆xs), (2.1.2)

where pij are additional weights for the derivative values. For the classical centered finite-

difference schemes encountered in this work, where nodal spacing is uniform, the simplified

form of equation (2.1.2),

p1
dui−1

dx
+

dui
dx

+ p1
dui+1

dx

=
1

∆x

(
q1(ui+1 − ui−1) + q2(ui+2 − ui−2) + q3(ui+3 − ui−3)

)
,

(2.1.3)

is used with the coefficient values given in Table 2.1 (Lele, 1992).

Scheme p1 q1 q2 q3

Explicit 2nd-order 0 1/2 0 0
Explicit 4th-order 0 2/3 −1/12 0
Implicit 4th-order 1/4 3/4 0 0
Explicit 6th-order 0 3/4 −3/20 1/60

Table 2.1: Coefficients of classical centered finite-difference schemes for equation (2.1.3)

For a domain of N nodes, the function values uj , j = 1, . . . , N , may be expressed as a

vector u of length N , and equation (2.1.2) may be written in matrix form

P
du
dx

=
1

∆x
Qu +O(∆xs), (2.1.4)

where P = {pij} and Q = {qij} are N ×N banded matrices. The matrix Q is generally a

Toeplitz matrix, except at boundaries and grid interfaces. For an explicit scheme, P can be

chosen as the identity matrix.
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2.1.2 Grid Interface Description

For a uniform grid discretization, the schemes of Table 2.1 are adequate to define an accurate

derivative approximation. We are interested here in grids where there are step changes in

resolution, where those schemes cannot be applied.

Consider a spatial domain that has been partitioned into M blocks, each uniformly

discretized into Nm node-centered cells of size ∆xm. The interface between adjacent blocks

m and m+ 1 is characterized by the ratio

rm =
∆xm+1

∆xm
, (2.1.5)

and is identified with the notation 1:rm for the mth interface. For the 1-D case, there is

no restriction for rm to be an integer ratio. This discretization of the domain yields a total

of N =
∑M

m=1Nm nodes at locations xi, with i = 1, . . . , N . Figure 2.1 depicts a portion

of such a domain, where nodes have been numbered locally relative to an origin at the

interface with positions xj given by

xj =


∆x(1

2 + j), j < 0,

r∆x(1
2 + j), j ≥ 0.

(2.1.6)

�
� -∆xr

x−3

r
x−2

r
x−1

r
x0

r
x1

� -r∆xr
x2

-

Figure 2.1: Diagram of the 1-D grid interface geometry: the four-point interface region lies
inside the dashed box, with the resolution change occurring between nodes x−1 and x0. The
node numbering scheme is local relative to the interface region.

The matrix description of the finite difference scheme (2.1.4) may be applied to the

block-refined domain, where now ∆x refers to the smallest discretization across all blocks,

∆x = min
m

∆xm. (2.1.7)
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It is the aim of this work to determine appropriate values of the weights pij and qij for the

nodes near an interface, such that certain stability criteria to be discussed in Section 2.2 are

satsified; away from interfaces, the standard stencils from Table 2.1 may be used because

the grid is locally uniform.

2.1.3 Tensor-Product Grids

The one-dimensional interface formulation may also be applied to certain higher-dimensional

grids, where refinement is designed in such a way that the grid may be represented as a

tensor product of 1-D grids. These grids are essentially one dimensional in character, and are

characterized by grid cells of varying aspect ratio. An example of a 2-D tensor-product grid

is shown in Figure 2.2, along with a two-dimensional patch-refined grid of the type usually

encountered in adaptive mesh refinement schemes. The patch-refined grid is fundamentally

different because under refinement, nodes are no longer aligned on Cartesian lines across

interfaces, resulting in a nonconforming mesh. This problem is discussed in Chapter 3.
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Figure 2.2: Comparison of 2-D grid refinement schemes: for a refined region in the lower-
left quadrant, (a) shows the tensor-product grid that remains essentially one dimensional
in character in each direction, while (b) shows a true 2-D patch-refinement scheme.



11

2.1.4 Accuracy Conditions

In general, the weights pij and qij may be determined by order conditions derived from

Taylor series expansions of the zth-degree polynomial function

fz(x) ≡ xz, (2.1.8)

about the point xi, in terms of its value at neighbouring points xj . For a derivative approx-

imation of order s, the elements pij and qij are chosen to satisfy equation (2.1.1) or (2.1.2)

with u = fz(x) exactly for z = 0, . . . , s, giving equations

z∆x
i+kR∑
j=i−kL

pij(xj − xi)z−1 =
i+kR∑
j=i−kL

qij(xj − xi)z. (2.1.9)

If a centered finite-difference scheme of order s is chosen for uniform regions of the spatial

domain, setting kL = kR with the appropriate accuracy in equation (2.1.9) yields the

schemes presented in Table 2.1.

In boundary and interface regions of the domain, the same accuracy conditions (2.1.9)

apply, but to order σ ≤ s. For reasons of stability discussed in Section 2.2, it is necessary for

at least one node in the interface or boundary region to be one order less accurate than the

interior scheme, for σ = s − 1. This does not degrade the global convergence performance

of the scheme (Gustafsson, 1975), so if fourth-order convergence is desired, a third-order

accurate boundary and/or interface scheme may be used with a fourth-order interior scheme

in uniform regions of the domain. The conditions of Gustafsson’s proof prevent pollution

of the domain by propagation of the lower-order error.

Convergence to the interior order predicted by Gustafsson (1975) is in an asymptotic

sense, however; thus it is expected that the presence of many interface regions could degrade

the convergence rate when compared to that of a uniform grid because of the presence in

the domain of several lower-order points, proportional to the number of interfaces.
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2.2 Stability and Summation-by-Parts Formulation

2.2.1 The Advection Equation

Central to this thesis is the concept of numerical stability for finite-difference schemes. The

starting point for this discussion is the definition of a Cauchy problem for a hyperbolic

PDE, the scalar advection equation:

∂u

∂t
+ c

∂u

∂x
= 0, 0 ≤ x ≤ 1, t ≥ 0, (2.2.1)

where it is chosen that c > 0, with an initial condition

u(x, 0) = h(x), 0 ≤ x ≤ 1, (2.2.2)

and the boundary condition at x = 0,

u(0, t) = g(t), t ≥ 0. (2.2.3)

The solution to this problem is sought numerically on a grid at nodes xj on 0 ≤ x ≤ 1, where

j = 1, . . . , N , and the discretization scale is ∆x but is not necessarily uniform throughout.

The projection of the exact solution u(x, t) is defined as v such that vj = u(xj , t), while the

numerical solution is given by u with uj(t) defined at each xj . A generalized finite-difference

scheme is used to approximate the spatial derivative following equation (2.1.4),

P
du
dx

=
1

∆x
Qu, (2.2.4)

thus giving the semidiscrete form of the advection equation

P
du
dt

= − c

∆x
Qu. (2.2.5)

2.2.2 Stability Theory

The importance of stability is rooted in the Lax Equivalence Theorem, which states that

a numerical scheme is convergent if it is both consistent and stable (Lomax et al., 2001).

Consistency is guaranteed for the schemes described in this work because the numerical
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discretizations in space and time are independent. Stability, by the classical Lax definition,

requires that the solution error at a fixed time T be bounded as the grid size ∆x→ 0. This

is not necessarily true for an arbitrary interface treatment.

On an infinite domain, stability is straightforward to examine by Fourier analysis. The

stability problem on a finite domain is considerably more difficult, so more advanced meth-

ods are required. GKS stability theory (after Gustafsson et al., 1972) provides conditions for

stability based on a normal mode (eigenvalue) analysis of initial-boundary value problems.

It is thus a definition of stability in the Lax sense, and therefore permits (exponential) error

growth in time, provided that it does not get worse with mesh refinement (Carpenter et al.,

1993). Thus for stable long-time integration, asymptotic time stability is also required,

which requires that solution error be bounded for fixed ∆x as T →∞.

These concepts are illustrated by the generalized semidiscrete equation

du
dt

= Au, (2.2.6)

where A is an arbitrary matrix, and u is the numerical solution approximating the projection

v of the exact solution modeled by this equation. Asymptotic stability is obvious: if all

eigenvalues of A have nonpositive real parts (and A is nondefective), then the error e =

|v − u| is bounded with time and the scheme is stable. Naively, this may seem sufficient;

but asymptotic stability does not imply GKS stability, because we expect (and by the Lax

Equivalence theorem, require) that the error should not grow as the grid is refined, and this

is not guaranteed by the eigenvalue restriction alone.

Consider a scheme with multiply degenerate eigenvalues in the left half plane: it is

asymptotically stable but experiences transient algebraic growth. GKS stability prohibits

growth in this form. On the other hand, positive eigenvalues of A are permitted by the

GKS definition, as long as they satisfy certain conditions, because the theory is defined

(as is mathematically usual) in terms of the growth estimate it permits. Time stability is

mathematically unusual in that it is defined by the solutions it permits: stability requires

that no solution have an eigenvalue in the right half of the complex plane. Clearly, then

both definitions must be satisfied for a stable and convergent interface scheme (Carpenter

et al., 1993). For the interested reader, a more detailed description of GKS stability is

presented in Appendix A.1.
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2.2.3 Summation-by-Parts Operators

Analogous to integration by parts for continuous PDEs, the semidiscretized equation (2.2.5)

can be made to satisfy a summation-by-parts (SBP) rule (Kreiss and Scherer, 1974). Physi-

cally, this prevents energy growth (or decay) anywhere in the discrete domain except at the

boundaries, where energy is transfered by the boundary conditions. GKS theory is under-

stood in the same context, and it will be shown in Section 2.2.5 that stability is guaranteed

for finite-difference schemes that are SBP operators.

A great advantage of designing an interface scheme that satisfies a summation-by-parts

condition is that it is a global criterion. This avoids the problem identified by Trefethen

(1985), where multiple interfaces may be unstable even if a single interface is locally stable.

Here, because each interface satisfies the SBP rule, any number of interfaces will also be

stable, as each makes zero contribution to the global energy balance.

Consider a finite-difference approximation of the form (2.2.4), such that the exact solu-

tion to (2.2.1), u(x, t) ∈ Cm, has a projection v(t) onto a grid of N nodes satisfying

P
dv
dx

=
1

∆x
Qv + P t, (2.2.7)

where t is the truncation error, with ‖t‖ = O(∆xm). This approximation is then a

summation-by-parts operator if it satisfies the following conditions (Scherer, 1977; Strand,

1994; Carpenter et al., 1994):

1. There exists a matrix H such that the product HP is symmetric positive definite, i.e.,

for u ∈ R,

hL‖u‖2 ≤ (u, HPu) ≤ hU‖u‖2, (2.2.8)

where hL and hU are positive constants independent of N . The inner product is

defined in the conventional sense,

(u,v) = uTv =
N∑
i=1

uivi, (2.2.9)

with the usual identities (u,v) = (v,u), etc.
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2. The product W = HQ is antisymmetric except at the corners, such that

W +W T = diag(2w11, 0, . . . , 0, 2wNN ), (2.2.10)

where w11 < 0 < wNN .

To illustrate the concept of summation-by-parts operators, first consider the continuous

equation (2.2.1). From the inner product,

(u, u) = ‖u‖2 =
∫ 1

0
u2(x, t)dx,

differentiating in time gives the energy estimate

d
dt
‖u‖2 = −c

[
u2(1, t)− u2(0, t)

]
. (2.2.11)

For the semidiscrete case (2.2.5), define a norm from the discrete inner product

(u, HPu) = ‖u‖H = uTHPu, (2.2.12)

and differentiate to obtain the estimate

d
dt
‖u‖2H = − c

∆x
[
uTQTP−THPu + uTHQu

]
.

Applying the summation-by-parts conditions, the result analogous to equation (2.2.11) is

obtained:
d
dt
‖u‖2H = − c

∆x
(2w11u

2
1 + 2wNNu2

N ). (2.2.13)

2.2.4 Boundary Conditions

Essential to the stability of the finite-difference approximation is appropriate implementa-

tion of the boundary conditions, consistent with the SBP criterion and time stability. The

basic injection method for the boundary condition, where u1 = g(t) is imposed directly,

is not necessarily stable in the SBP sense. Instead, we use the simultaneous approxima-

tion term (SAT) penalty method proposed by Carpenter et al. (1994), which replaces the
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semidiscrete equation (2.2.5) with

P
du
dt

= − c

∆x
Qu +

c

∆x
τs(u1 − g(t)), (2.2.14)

where τ is the SAT parameter, to be defined, and

s = H−1[w11, 0, . . . , 0]T = [q11, 0, . . . , 0]T . (2.2.15)

High-order finite-difference stencils at the boundary that satisfy the SBP conditions

have been developed by Strand (1994) and Carpenter et al. (1994) for different interior

schemes and with different forms for the norm matrix H. Following similar methods, new

boundary stencils have been developed for the interior schemes considered in this work and

are presented in Appendix B.

2.2.5 Demonstration of Stability

Having defined the properties of the finite-difference scheme necessary for it to be a summation-

by-parts operator, we now demonstrate that it is stable and obtain an estimate for the

growth rate of the error norm. This analysis follows that of Carpenter et al. (1994) and

Abarbanel and Chertock (2000).

Starting with equation (2.2.14) and setting g(t) = 0 for convenience, the energy norm

growth rate under the SBP conditions is given by

d
dt
‖u‖2H = −2

c

∆x
[
(1− τ)w11u

2
1 + wNNu

2
N

]
. (2.2.16)

Since the norm ‖u‖2H > 0, if d‖u‖2H/dt ≤ 0 for all time the scheme will be strictly stable.

From the second SBP condition, w11 < 0 < wNN ; therefore for c > 0 we require for stability

(Carpenter et al., 1994)

τ ≥ 1. (2.2.17)

Thus with this additional condition (2.2.17), the scheme is strictly stable. The next step

is to verify that spatial accuracy is preserved and that the solution error is bounded. To do
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so, consider the projection v of the exact solution in the semidiscrete equation:

P
dv
dt

= − c

∆x
Qv +

c

∆x
τs(v1 − g(t)) + P t = − c

∆x
Qv + P t,

since the exact solution has v1 = g(t). Now define an error e(t) = v(t)− u(t), so

P
de
dt

= P
dv
dt
− P du

dt
= − c

∆x
Qe +

c

∆x
τse1 + P t.

As for the energy norm ‖u‖H , consider an error norm (e, HPe). Its time rate of change is

given by

d
dt

(e, HPe) = − c

∆x
eT
[
HQ+ (HQ)T

]
e + 2

c

∆x
τw11e

2
1 + eTHP t + (HP t)Te

= −2
c

∆x
[
(1− τ)w11e

2
1 + wNNe

2
N

]
+ 2(e, HP t).

Since the term in the square brackets is greater than zero by construction, we have

d
dt

(e, HPe) ≤ 2(e, HP t). (2.2.18)

By the Cauchy-Schwarz inequality,

(e, HP t) ≤
√

(e, HPe)
√

(t, HP t), (2.2.19)

thus giving for equation (2.2.18)

d
dt

(e, HPe) ≤ 2
√

(e, HPe)
√

(t, HP t),

or, more simply,
d
dt

√
(e, HPe) ≤

√
(t, HP t). (2.2.20)

Integrating, √
(e, HPe) ≤ sup

0≤s≤t
‖t(s)‖t, (2.2.21)

and then using equation (2.2.12) from the first SBP condition, the error may be bounded
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explicitly by

‖e‖ ≤
√
hU
hL

sup
0≤s≤t

‖t(s)‖t. (2.2.22)

Growth in the error is therefore at most linear in time, so the error is finite for all t < ∞.

Thus the scheme is Lax stable and then, by the Lax Equivalence theorem, convergent.

A better estimate of the error rate may be made if the inequality (2.2.17) is sharpened

to τ > 1 (Abarbanel and Chertock, 2000). To simplify the following algebra, we set H = I

(the identity matrix), and define

Q̃ = Q− τ [s,0, . . . ,0]. (2.2.23)

Then the semidiscrete approximation may be rewritten as

P
du
dt

= − c

∆x
Q̃u− c

∆x
τsg(t), (2.2.24)

and so if we consider g(t) = 0, this reduces to

du
dt

= − c

∆x
P−1Q̃u, (2.2.25)

which has the form of (2.2.6). Immediately it is clear that if all eigenvalues of −P−1Q̃ have

negative real parts, the scheme is asymptotically stable. To show that the error is bounded

for all time, notice that P is symmetric positive definite, and Q̃ is positive definite, because

for any real vector v,

(v, Q̃v) = (v,
1
2

(Q̃+ Q̃T )v) = (1− τ)q11v
2
1 + qNNv

2
N > 0, (2.2.26)

since now τ > 1. This guarantees that the real parts of the eigenvalues of P−1Q̃ are positive.

To see this, notice that

P−1Q̃ = P−1/2
(
P−1/2Q̃P−1/2

)
P 1/2.

Since this has the form of a transformation, the eigenvalues of P−1Q̃ and P−1/2Q̃P−1/2

must be similar, and because P is symmetric positive definite, P 1/2 etc. are well defined.
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Now see that

(
v, (P−1/2Q̃P−1/2)v

)
= (P−1/2v)T Q̃P−1/2v =

(
P−1/2v, Q̃(P−1/2v)

)
,

which by (2.2.26) is positive. Returning to the semidiscrete equation, consider again the

equation for the error e,
de
dt

= − c

∆x
P−1Q̃e + t. (2.2.27)

Multiplying by eT , an equation for the error norm is obtained:

eT
de
dt

= ‖e‖ d
dt
‖e‖ = − c

∆x
eTP−1Q̃e + eT t = − c

∆x
(e, P−1Q̃e) + (e, t). (2.2.28)

From the eigen decomposition of P−1Q̃, having eigenvalues λi and orthonormal eigenvectors

xi, see that

(e, P−1Q̃e) = <(e, P−1Q̃e) = (eixi,
∑
i

λieixi) =
∑
i

e2
i<(λi).

With <(λi) > 0 for asymptotic stability of equation (2.2.25),

(e, P−1Q̃e) > λmin

∑
i

e2
i = λmin(e, e) = λmin‖e‖2,

equation (2.2.28) becomes

‖e‖ d
dt
‖e‖ = λmin‖e‖2 + (e, t). (2.2.29)

Again by the Cauchy-Schwartz inequality, (e, t) ≤ ‖e‖‖t‖, and so we simplify the equation

to obtain
d
dt
‖e‖ ≤ − c

∆x
λmin‖e‖+ ‖t‖. (2.2.30)

By Gronwall’s Lemma, we have the result

‖e‖ ≤ sup
0≤s≤t

‖t(s)‖ ∆x
cλmin

[
1− exp

(
−cλmint

∆x

)]
. (2.2.31)

Thus the error is bounded by the maximum truncation error as t→∞, and so the scheme

is convergent and stable.
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2.2.6 Application to the Interface Problem

This theory is now used to develop high-order finite-difference schemes across interfaces

where there is a step change in grid resolution. By extension of the SBP property, a

scheme that spans the interface will preserve stability of the global scheme if the SBP

conditions remain satisfied across the domain and the boundary conditions are implemented

appropriately. In the interface region, for the projection v(t), the local submatrices P ′ and

Q′ satisfy

P ′
dv
dx

=
1

∆x
Q′v + P ′t, (2.2.32)

where for an interior scheme of order s, ‖t‖ = O(∆xσ) with σ ≤ s. To preserve the global

convergence rate at the interior order, we require σ ≥ s − 1. The general SBP conditions

may then be simplified for the finite-difference scheme in the vicinity of a grid interface:

1′. There exists a matrix H ′ such that the product H ′P ′ is symmetric positive definite.

2′. The product W ′ = H ′Q′ is antisymmetric, such that W ′ +W ′T = 0.

2.3 Explicit Interface Closure

We consider first the interface problem for explicit schemes in the interior of the domain,

where P is the identity matrix except at boundary and interface regions. Interface closures

for both fourth- and sixth-order interior schemes are presented in this section, with the

analytic development following focusing on the former scheme with its smaller stencil. It

is observed that H can be taken as the identity matrix across the entire domain without

consequence in these cases.

2.3.1 Scheme Structure

Consider an n-point interface closure with an explicit centered 5-point interior stencil of the

particular form
dui
dx

=
1

∆x
(
− αui−2 − βui−1 + βui+1 + αui+2

)
, (2.3.1)

where the coefficients for a particular scheme from Table 2.1 are given under the mapping

α→ q2 and β → q1. In the region of the interface between grids of resolution ∆x and r∆x,
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the local parts of the full-domain matrices P and Q have the form

P ′ =


Dp Ap 0

ATp P̂ AT̂p

0 AT̂ Tp rDp

 , Q′=


Dq Aq 0

−ATq Q̂ AT̂q

0 −AT̂ Tq Dq

 , (2.3.2)

where P̂ and Q̂ are square n×n matrices representing the modified interface stencils, Dp = I

is the identity matrix of size k × k (where k = s/2), Dq is the block diagonal interior part

of Q of the same size as Dp, and for the 5-point interior case,

Aq =


0 0 0 . . .

α 0 0 . . .

β α 0 . . .

 ,

which is the overlaping part of Q over the interface stencil and is of size k × n. For the

explicit case, Ap = 0. The superscript T̂ denotes the flip-transpose across the antidiagonal,

in index notation given by

aT̂ij = a(n−j+1)(k−i+1), (2.3.3)

where Aq = {aij}.

The accuracy conditions defined by equation (2.1.9) are applied at the interface in terms

of the elements of P̂ , Q̂ and Aq to order σi for interface nodes i = −n/2, . . . , n/2−1 and for

each z = 0, . . . , σi. The order to which the accuracy conditions are satisfied for node i, σi,

is not necessarily the same for all nodes in the interface. The resulting system of equations

generated by the accuracy conditions is reduced by the symmetry constraints of P̂ and

the antisymmetric constraints of Q̂, but, depending on the size of the particular scheme,

elements may remain unspecified by the accuracy conditions and lead to parametric families

of closures. These parameters can be chosen to reduce the bandwidth of the stencil, and/or

to modify the eigenvalues of P̂ .
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2.3.2 An Explicit Fourth-Order Interface Closure

A fourth-order closure can be constructed by chosing α = −1/12, β = 2/3, and n = 4, such

that the matrices P̂ and Q̂ are given by

P̂ =


p11 p12 p13 p14

p12 p22 p23 p24

p13 p23 p33 p34

p14 p24 p34 p44

 , Q̂=


0 q12 q13 q14

−q12 0 q23 q24

−q13 −q23 0 q34

−q14 −q24 −q34 0

 , (2.3.4)

where the symmetry required by the SBP conditions has already been imposed.

Different closure schemes are identified here by the order of accuracy satisfied at each

point in the interface region. We denote in compact form the order of accuracy of the

interface closure by (σ−2)-(σ−1)-(σ0)-(σ1) for n = 4. The ordering is assumed to be from

left to right where the left side is the finer grid. Thus, a 4-3-3-4 scheme has four points in the

interface closure, the inner two of which satisfy the order conditions to third order, and the

outer two satisfy the conditions to fourth order. All interface closures considered here are

symmetrically distributed about the grid interface, so a four-point scheme has two points

in the coarse block and two in the fine block. The number of points used for a particular

closure depends strongly on the size of the interior stencil. For a standard fourth-order

interior scheme, a minimum of four points are required in the interface region, because the

five-point stencil extends over both blocks for a distance of at least two points on each side.

Similarly, for the sixth-order scheme, the interface extends over at least six points.

To maintain the global convergence rate s of the finite difference scheme used in the

interior of the domain, the order of accuracy at every point in the interface must be σ ≥ s−1.

For a four-point interface scheme with a fourth-order interior scheme, if each point in the

interface is third order, there are a total of 16 equations in terms of the 16 independent

coefficients of P̂ and Q̂. However, the set of equations is not linearly independent (this

particular system has rank 14); they are insufficient to solve for all 16 variables uniquely.

Therefore, to reduce the total truncation error of the scheme, two points can be solved up

to fourth-order accuracy, giving 18 equations (in a system of rank 16) in the 16 coefficients,

which has a unique solution for each particular arrangement of third- and fourth-order

points across the interface. These solutions satisfy the SBP conditions on both P̂ and Q̂
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and are stable for varying ranges of grid ratio, r. It is not possible for a third point in the

four-point interface to be fourth order, though, as no more coefficients can be added to the

matrices while still maintaining their SBP structure.

For the symmetric 4-3-3-4 interface scheme, applying equation (2.1.9) at each of the four

interface nodes yields the four matrix equations (2.3.5)–(2.3.8),



0 0 0 0

1 1 1 1

0 2 3 + r 3 + 3r

0 3 3(3+r)2

4
27(1+r)2

4

0 4 (3+r)2

2
27(1+r)3

2




p11

p12

p13

p14

 =



1 1 1

1 3+r
2

3+3r
2

1 (3+r)2

4
9(1+r)2

4

1 (3+r)3

8
27(1+r)3

8

1 (3+r)4

16
81(1+r)4

16




q12

q13

q14

+



− 7
12

1
2

−1
3

0
2
3


, (2.3.5)


0 0 0 0

1 1 1 1

−2 0 1 + r 1 + 3r

3 0 3(1+r)2

4
3(1+3r)2

4




p12

p22

p23

p24

 =


1 1 1

−1 1+r
2

1+3r
2

1 (1+r)2

4
(1+3r)2

4

−1 (1+r)3

8
(1+3r)3

8



−q12

q13

q14

+


1
12

−1
6

1
3

−2
3

 , (2.3.6)


0 0 0 0

1 1 1 1

−3− r −1− r 0 2r
3(3+r)2

4
3(1+r)2

4 0 3r2




p13

p23

p33

p34

 =


1 1 1

−3+r
2 −1+r

2 r

(3+r)2

4
(1+r)2

4 r2

− (3+r)3

8 − (1+r)3

8 r3



−q13

−q23

q34

−


1
12

r
6

r2

3

2r3

3

 , (2.3.7)



0 0 0 0

1 1 1 1

−3− 3r −1− 3r −2r 0
27(1+r)2

4
3(1+3r)2

4 3r2 0

−27(1+r)3

2 − (1+3r)2

2 −4r3 0




p14

p24

p34

p44

 = −



1 1 1

−3+3r
2 −1+3r

2 −r
9(1+r)2

4
(1+3r)2

4 r2

−27(1+r)3

8 − (1+3r)3

8 −r3

81(1+r)4

16
(1+3r)4

16 r4




q14

q24

q34

+



7
12

r
2

r2

3

0

−2r4

3


.

(2.3.8)

Solving this system, the expressions (2.3.9) and (2.3.10) are obtained for the elements of P̂
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and Q̂ in terms of the interface ratio r.

p11 =
1271r6 − 418r5 − 479r4 + 28676r3 + 214297r2 + 467870r + 279503

31104(r + 1)(r + 3)2
,

p22 =
1271r6 + 11934r5 + 9761r4 + 7812r3 + 36377r2 + 12510r + 1743

3456(r + 1)(3r + 1)2
,

p33 =
1743r6 + 12510r5 + 36377r4 + 7812r3 + 9761r2 + 11934r + 1271

3456r2(r + 1)(r + 3)2
,

p44 =
279503r6 + 467870r5 + 214297r4 + 28676r3 − 479r2 − 418r + 1271

31104r2(r + 1)(3r + 1)2
,

p12 =
−1271r6 − 5758r5 + 1927r4 + 5372r3 + 11095r2 + 1154r + 1305

10368 (3r3 + 13r2 + 13r + 3)
,

p13 = −819r6 + 7982r5 + 4693r4 + 4388r3 + 1213r2 − 16210r + 1723
10368r(r + 1)(r + 3)2

,

p14 = −−1723r6 + 2642r5 + 7099r4 + 7004r3 + 7099r2 + 2642r − 1723
31104r (3r3 + 13r2 + 13r + 3)

,

p23 =
819r6 − 2242r5 + 1485r4 + 25988r3 + 1485r2 − 2242r + 819

3456r (3r3 + 13r2 + 13r + 3)
,

p24 = −1723r6 − 16210r5 + 1213r4 + 4388r3 + 4693r2 + 7982r + 819
10368r(r + 1)(3r + 1)2

,

p34 =
1305r6 + 1154r5 + 11095r4 + 5372r3 + 1927r2 − 5758r − 1271

10368r2 (3r3 + 13r2 + 13r + 3)
, (2.3.9)

q12 =
545r4 − 120r3 + 2054r2 + 1368r + 377

216 (3r3 + 13r2 + 13r + 3)
,

q13 =
−193r4 + 261r3 − 181r2 + 195r − 34

216r (r2 + 4r + 3)
,

q14 =
17r4 − 63r3 − 4r2 − 63r + 17

108r (3r2 + 10r + 3)
,

q23 =
193r4 − 282r3 + 754r2 − 282r + 193

72r (3r2 + 10r + 3)
,

q24 =
−34r4 + 195r3 − 181r2 + 261r − 193

216r (3r2 + 4r + 1)
,

q34 =
377r4 + 1368r3 + 2054r2 − 120r + 545

216r (3r3 + 13r2 + 13r + 3)
. (2.3.10)

The solution is completed by verifying that these lead to positive definite P̂ , thus satisfying

both SBP conditions at the interface. It has been found numerically for this 4-3-3-4 scheme

that the range of values for r over which the minimum eigenvalue of P̂ is positive is 1/rmax <

r < rmax, where rmax ≈ 4.551.
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If six points are used with a fourth-order interior scheme, there are now up to 36 in-

dependent coefficients of P̂ and Q̂ available, but no more than 30 equations (6 rows, up

to fourth-order accuracy in each). However, the maximum number of fourth-order points

in a six-point interface scheme is five, because it is not possible algebraically to enforce

the order conditions up to fourth order at all points. Moreover, when comparing four-

and six-point fourth-order interface schemes, it is important to note that although formal

accuracy of the six-point scheme may be better (with a 4-4-3-4-4-4 scheme, or a trunca-

tion error-optimized 4-4-3-3-4-4), both are third order at every point when implemented in

an explicit finite-difference method. The formal accuracy at each point in the interface is

correct for the original construction of equation (2.2.32), but when this is implemented by

inverting P , every point in the block is reduced to third-order accuracy as the lower-order

error is spread across the interface by the action of P̂−1. This implies that, if the number

of points in a block is relatively small compared to the number of interface points, then it

is more desirable to minimize the width of the interface than to force fourth-order accuracy

at a maximum number of points. It is for this reason that four-point interface closures for

fourth-order interior schemes have been presented here.

2.3.3 Inverse Grid Ratios

The grid ratio in the derivation thus far has been arbitrary. For r > 1, the solution

corresponds to an interface between a fine grid and a coarse grid (moving from left to

right), and for r < 1 it corresponds to the opposite case. A particular scheme may be

solved for any grid ratio, up to the positive definite limit of P̂ , and, for some closures, it is

possible to derive the corresponding reflected stencil, that for 1/r, directly from the stencil

for r. Writing equation (2.2.32) for an interface 1
r :1, in terms of the matrices P̂ and Q̂ of

the 1:r interface, gives

P̂
du
dx

=
r

∆x
Q̂u,

or, alternatively, (1
r
P̂
)du

dx
=

1
∆x

Q̂u. (2.3.11)

The scheme for the inverse ratio interface 1:1
r may then be obtained, in the form of equa-

tion (2.2.32), by taking the transpose of the flip-transpose of the original matrices P̂ and
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Q̂ to give

P̂ ∗
du
dx

=
1

∆x
Q̂∗u. (2.3.12)

In terms of the elements pij of the original matrix, the elements of the transformed matrix

P̂ ∗ are given by

p∗ij =
1
r
p(n+1−i)(n+1−j), (2.3.13)

and, similarly, the elements of Q̂∗ are given by

q∗ij = −q(n+1−i)(n+1−j), (2.3.14)

where n is the width of the interface. Note that the negative sign is necessary to preserve

the antisymmetry of Q̂∗ after the transformation.

Generally, schemes with symmetrically distributed accuracy (like 4-3-3-4 or 4-4-3-3-4-4),

are preferable to biased schemes (such as 3-3-4-4 or 4-4-4-3-4-4), as the symmetric schemes

behave predictably for both transitions from a fine to a coarse grid, and from a coarse to

a fine grid. If the accuracy conditions are applied symmetrically across the interface for a

particular grid ratio r, then the stability of the inverse-ratio scheme for a grid ratio 1/r

follows that of the parent scheme. If not, stability for a particular grid ratio does not imply

stability of the inverse ratio. For example, the fourth-order 4-3-3-4 scheme is stable for

practical integer grid ratios in the range 1/4 ≤ r ≤ 4, but the biased 3-3-4-4 scheme, which

is stable for r = 8, is unstable for r = 1/8. We suspect that this arises because for r > 1

the third-order points are in the fine block, where the truncation error is O(∆x3), and the

fourth-order points are in the coarse block, with an truncation error of O((r∆x)4). For

large r and small ∆x, the errors on both sides can be comparable in magnitude depending

on u. On the other hand, for a scheme with the third-order points in the coarse block

(i.e., for r < 1), the truncation error there would be much larger than that in the fine

block, adversely affecting stability. Unless a strongly directional refinement is necessary,

symmetric interface closures are preferred in general.

2.3.4 An Explicit Sixth-Order Interface Closure

Presented briefly in this section is the interface closure for a six-point sixth-order interface

scheme. The derivation follows that shown for the fourth-order scheme in Section 2.3.2,
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with correspondingly wider stencils for the sixth-order interior stencil defined in Table 2.1.

For a six-point interface scheme, there are now 36 independent coefficients in P̂ and Q̂ to

satisfy at least 36 equations for a minimum of 5th-order accuracy through the interface.

Degeneracy of the system (it has rank of 33) allows at least two points to be solved to

6th-order accuracy, for the scheme 6-5-5-5-5-6. One free parameter still remains, so q16 was

arbitrarily set to zero to close the system.

p11 =
1652211692389
1639249920000

p12 = − 31083952147
415134720000

p13 =
914794939
4371333120

p14 =
173389799983
596090880000

p15 =
54564029173

1967099904000
p16 = − 425297407

1739612160000

p22 =
162874793821
105131520000

p23 = −3185897141
2372198400

p24 = −126662983969
150958080000

p25 = − 8141729677
71165952000

p26 = − 11386699273
3083857920000

p33 =
7485369407
1873428480

p34 =
5468461423
23843635200

p35 =
4104289571
11240570880

p36 = − 3905305253
97418280960

p44 =
181688660341
216760320000

p45 =
79567478071
715309056000

p46 −
12226504229
632586240000

p55 =
678741184843
337217126400

p56 = − 10527535793
14612742144000

p66 =
180918151344709
90459832320000

Table 2.2: Coefficients of P̂ = {pij} for the sixth-order explicit scheme with r = 2

q12 =
138050423
171072000

q13 = −38453017
79833600

q14 =
48443239
199584000

q15 =
2912183
59875200

q16 = 0 q23 =
535097839
283046400

q24 = −90269753
80870400

q25 = − 29644831
345945600

q26 = − 6039517
404352000

q34 =
1895189
1478400

q35 =
14623
106920

q36 =
1767551

259459200

q45 =
993971819
1916006400

q46 = − 753331379
5930496000

q56 =
1702393253
2264371200

Table 2.3: Coefficients of Q̂ = {qij} for the sixth-order explicit scheme with r = 2

This solution, shown in Tables 2.2–2.3, was found to have positive definite P̂ in the

range 1/rmax < r < rmax for rmax ≈ 2.085. A small improvement on these bounds may

be possible with different q16, but numerical investigation indicates that there is no stable

solution for the 6-5-5-5-5-6 scheme with r = 4.
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2.4 Implicit Interface Closure

For implicit finite difference schemes (also referred to as compact schemes), the first deriva-

tive approximation (2.2.4) leads to a matrix P that is typically tri- or pentadiagonal. This is

advantageous computationally, as it can be solved efficiently using a fast algorithm (Ames,

1977). In order to retain this computationally efficient structure and satisfy the SBP con-

straints in the interface closure, the matrix H must have a nontrivial form and the matrices

V = HP and W = HQ are introduced. Note that while the accuracy conditions are applied

to P and Q as before, the SBP structure is imposed upon V and W instead.

2.4.1 Scheme Structure

Consider again an n-point interface closure, now with the particular implicit interior stencil

of the form

a
dui−1

dx
+ b

dui
dx

+ a
dui+1

dx
=

1
∆x
(
− βui−1 + βui+1

)
. (2.4.1)

The matrices in the region of an interface between grids of spacing ∆x and r∆x have the

form of equation (2.3.2) and the local product matrices are given by

V ′ =


Dv Av 0

ATv V̂ rAT̂v

0 rAT̂ Tv rDv

 , W ′=


Dw Aw 0

−ATw Ŵ AT̂w

0 −AT̂ Tw Dw

 , (2.4.2)

where, in terms of the coefficients of the extended stencil in V -W form,

Av =


0 0 0 . . .

a′ 0 0 . . .

b′ a′ 0 . . .

 , and Aw=


0 0 0 . . .

α′ 0 0 . . .

β′ α′ 0 . . .

 .

The norm matrix H has the local structure

H ′ =


Dh Ah 0

ATh Ĥ AT̂h

0 AT̂ Th Dh

 , with Ah=


0 0 0 . . .

0 0 0 . . .

h1 0 0 . . .

 ,
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where Dv, Dw and Dh represent the block-diagonal interior part of each matrix, V , W and

H, respectively. The interior part of H, Dh, is a Toeplitz tridiagonal matrix of diagonal h0

and subdiagonals h1. The constants h0 and h1 are set by the boundary closure (Carpenter

et al., 1994), and are considered known a priori. In order to recover P and Q, the matrices

that are needed for implementation of the method, we multiply the matrices of (2.3.2) by

H ′ and equate the results to (2.4.2). Introducing the generic A,

A =


0 0 0 . . .

0 0 0 . . .

1 0 0 . . .

 , (2.4.3)

to express Ap = aA, Aq = βA, Ah = h1A, etc., and applying the SBP constraints on the

symmetry of V and W leads to the following relationships

V̂ = ĤP̂ + h1a
(
ATA+ rAT̂AT̂ T

)
, (2.4.4a)

Ŵ = ĤQ̂+ h1β
(
ATA−AT̂AT̂ T

)
, (2.4.4b)

0 = A
(
P̂ − 1

r
P̂ T T̂

)
, (2.4.4c)

0 = A
(
ĤT − Ĥ T̂

)
, (2.4.4d)

0 = A
(
Q̂+ Q̂T T̂

)
, (2.4.4e)

aATDh + h1P̂
TAT = h1A

TDp + aĤAT , (2.4.4f)

βDhA+ h1AQ̂ = −h1D
T
q A+ βAĤT . (2.4.4g)

The last five conditions (c–g) reduce to four equations relating the elements of the first and

last rows of P̂ and Q̂, and the first and last columns of Ĥ:

p1j =
1
h1

(
(h1b− h0a)δ1j + ahj1

)
, j = 1, . . . , n, (2.4.5a)

pnj =
r

h1

(
(h1b− h0a)δnj + ahjn

)
, j = 1, . . . , n, (2.4.5b)

q1j = − 1
h1

(
h0βδ1j − βhj1

)
, j = 1, . . . , n, (2.4.5c)

qnj =
1
h1

(
h0βδnj − βhjn

)
, j = 1, . . . , n, (2.4.5d)
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where δij is the Kronecker Delta. When combined with the accuracy conditions, these

equations imply that for an interface region of n points, the first and last rows of P̂ and Q̂,

and the first and last columns of Ĥ, have the same values as the interior rows and columns,

respectively, of each matrix. In this way, an n-point interface in V̂ and Ŵ is reduced to a

width of n− 2 points in P̂ and Q̂.

2.4.2 An Implicit Fourth-Order Interface Closure

The derivation of the implicit scheme follows that of the explicit scheme, and in this case,

the problem can be solved in the same manner but now in terms of V̂ and Ŵ . For a

fourth-order implicit closure, we consider a 6-point wide interface stencil in V and W of

the type 4-4-3-3-4-4, according to our notation. The symmetry and antisymmetry of the

interface parts V̂ and Ŵ , respectively, is built into the structure of the matrices, and the

interior region of H takes the values h0 = 1 and h1 = −1/8 (see Appendix B and Carpenter

et al., 1994). An equivalent set of equations to (2.3.5)–(2.3.8) is obtained, here in terms of

the elements of V̂ and Ŵ . Relating these to the elements of Ĥ, P̂ and Q̂ are an additional

72 equations that arise when the products in equations (2.4.4a) and (2.4.4b) are expanded.

The resulting quadratic system for the coefficients of V̂ , Ŵ , Ĥ, P̂ and Q̂ appears to be over

determined, but can be solved numerically to arbitrary precision.

As noted, starting with a 6-point stencil for V̂ and Ŵ results in a 4-point stencil for

P̂ and Q̂. Moreover, a tridiagonal structure for P̂ is imposed to limit the computational

cost of an implementation compared to that of the standard compact method. This gives

matrices of the following forms:

Ĥ =



h0 h12 h13 h14 h15 0

h1 h0 h23 h24 h25 0

0 h32 h0 h34 h35 0

0 h42 h43 h0 h45 0

0 h52 h53 h54 h0 h1

0 h62 h63 h64 h65 h0


,



31

P̂ =



b a 0 0 0 0

p21 p22 p23 0 0 0

0 p32 p33 p34 0 0

0 0 p43 p44 p45 0

0 0 0 p54 p55 p56

0 0 0 0 ra rb


, Q̂=



0 β 0 0 0 0

q21 q22 q23 q24 q25 q26

q31 q32 q33 q34 q35 q36

q41 q42 q43 q44 q45 q46

q51 q52 q53 q54 q55 q56

0 0 0 0 −β 0


. (2.4.6)

Reproduced in Tables 2.4–2.6 is a numerical solution for the matrices Ĥ, P̂ and Q̂ (from

which V̂ and Ŵ can be obtained) for a grid ratio of r = 2. Evaluation of V̂ = ĤP̂ confirms

that it is positive definite. Note that this solution is not unique, as even similar numerical

solutions will vary after some significant figures, depending on the distribution of the error

across the solution by the minimization routine.

h12 = −0.1232402484784899710164397916
h13 = −0.0313331527521311132461664460

h14 = 0.8526997198534069471642123989× 10−5

h15 = 0.1186074678550278979243167728× 10−3

h23 = 0.0618790491943648059695025274
h24 = −0.0306582379143300475030344636
h25 = 0.0040803323223721328264783822
h32 = −0.1402855824237987581314203990
h34 = 0.0523925580024450796111532835
h35 = −0.0129693862192012822570192023
h42 = 0.0102043065749984205402236973
h43 = −1.4702252987201355569786227229
h45 = −0.1157524966745825658230467757
h52 = 0.0009201234527565284915243736
h53 = −0.1989659562666639907709629149
h54 = 0.1359533149492311264291241920

h62 = 0.2461537248760731395294044462× 10−3

h63 = 0.0411752307653865095760004609
h64 = −0.0306859565803772423696882572
h65 = −0.1254390170160080423599534078

Table 2.4: Coefficients of Ĥ = {hij} for the fourth-order implicit scheme with r = 2
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p21 = 0.2424978853301560587789396958 p22 = 1.0640904422802678172053899804
p23 = −0.1326286761650141070117363483 p32 = 0.0435112345834630548124110665
p33 = 1.6080204802894215484872562126 p34 = −0.0783478740362225424706274305
p43 = 2.3693277906826704860554383099 p44 = 1.5811943105460698424384038897
p45 = 0.4960717311072315313813018904 p54 = 0.0518856137051890441644675630
p55 = 1.8455666682157422259993738106 p56 = 0.5032714956999991535950428443

Table 2.5: Coefficients of P̂ = {pij} for the fourth-order implicit scheme with r = 2

q21 = −0.7612577699923432994711596550 q22 = 0.1143257794062328234604753202
q23 = 0.8473171572700174665410351197 q24 = −0.2396013252232296836437543025
q25 = 0.0452584966322365741016381874 q26 = −0.0060423380929140887114324681
q31 = 0.0021663489405658970067492337 q32 = −0.8106392981057847846842810024
q33 = 0.1544617054854031383542181672 q34 = 0.7709661357995375997165460529
q35 = −0.1268399717855863009275906973 q36 = 0.0098850796658644744251896719
q41 = 0.0058847563645372666838194635 q42 = −0.9716362587900950195355361978
q43 = −0.6254359473905259584541443387 q44 = 1.0517496144007288832802015216
q45 = 0.5289027150552972270764104422 q46 = 0.0105351203600576993057581472
q51 = 0.0019529371529603868685573564 q52 = −0.0497131047203482777955790797
q53 = 0.2179852910420181601294830740 q54 = −0.7273214030388623889107468022
q55 = −0.1909345570807599556942974209 q56 = 0.7480308366449920765350051948

Table 2.6: Coefficients of Q̂ = {qij} for the fourth-order implicit scheme with r = 2

The interface scheme for the inverse ratio r = 1/2 may be obtained from this solution

by the same procedure described for the explicit scheme. For higher grid ratios, no solution

has been found for r = 4 that satisfies the SBP conditions, but it is possible such a solution

may exist in an unexplored region of the parameter space.

To demonstrate that the matrices P̂ and Q̂ as derived here do indeed lead to a stable

scheme, Figure 2.3 shows the eigenvalue spectrum of the matrix −P−1Q̃ for a domain of 30

points having two blocks of 15 points each, with an interface between them of a grid ratio

r = 2. The boundary closure used is that given in Appendix B for the implicit fourth-order

scheme. The matrix Q̃ is as defined by equation (2.2.23), representing application of an

upstream boundary condition by the SAT method with τ = 2 used for this plot. We observe

that the real part of each eigenvalue is indeed negative, so the scheme is asymptotically
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stable by equation (2.2.25).

!0.20 !0.15 !0.10 !0.05 0.00!2

!1

0

1

2

Real part

Im
ag
in
ar
y
pa
rt

Figure 2.3: Eigenvalues of the matrix −P−1Q̃ for a 30-point domain with an interface of
r = 2. The grid has two blocks of 15 points each, the first block with discretization ∆x and
the second with 2∆x. As desired, all eigenvalues lie in the left half of the complex plane.

2.5 Properties of the Interface Schemes

In this section, the spectral and stability properties of the interface schemes derived in

Sections 2.3 and 2.4 are examined. We are interested in discovering what effect, if any, the

presence of grid interfaces has on the spectral resolution of the grid and its stability when

implemented with familiar time-marching schemes.

2.5.1 Spectral Accuracy Estimate

The standard technique for spectral analysis of finite-difference schemes (see Lomax et al.,

2001, for example) is difficult to adapt to the interface problem, where the discretization

size is nonuniform. A more simple and similarly valuable analysis is provided by Jameson

(2003), which estimates the highest mode a given grid may support.

Consider the Fourier series representation of the field, u(x, t),

u(x, t) =
∑
k

ak(t)eikx, (2.5.1)
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defined on 0 ≤ x < 2π, where k is the wave number. Its exact derivative is given by

∂u

∂x
=
∑
k

ak(t)
d

dx
eikx =

∑
k

ikak(t)eikx, (2.5.2)

which is approximated with a general finite difference scheme of order s,

∂u

∂x
≈ 1

∆x

∑
j

qjf(xj), (2.5.3)

where ∆x = 2π/N . The resulting truncation error of the kth mode will be of order

(∆x)s−1ks. For the test function u(x) = eimx, the derivative approximation has the upper

bound

|max(
du
dx

)| =
∣∣∣∣ 1
∆x

∑
j

qjeimxj

∣∣∣∣ ≤ 1
∆x

∑
j

|qj ||eimxj | =
N

2π

∑
j

|qj |. (2.5.4)

By the Nyquist theorem, the highest discrete Fourier mode that can exist on the interval

0 ≤ x < 2π is N/2, so the spectral limit of equation (2.5.4) is N/2. (Note that a centered

difference scheme will always return zero for this mode.) Table 2.7 shows the maximum

derivative value for some typical schemes.

Spectral 2nd-order 4th-order 6th-order
scheme explicit explicit explicit
N/2 N/2π 3N/4π 11N/12π

Table 2.7: Spectral limits for standard discrete derivative approximations

Since the sum
∑
|qj | is trivial to compute for any explicit scheme, we can investigate

the spectral limit of the interface schemes. For the fourth-order explicit interface scheme

from Section 2.3.2 with r = 2, we find for each of the four interface nodes,

∑
j

|q̂ij | = (1.8035, 1.2107, 1.6860, 0.7572).

This is based on the fine grid resolution ∆x, so the fine grid has a spectral maximum

derivative approximation of N
2π ·

3
2 . The coarse grid has local ∆x = 4π/N , so we obtain the

bound N
2π ·

3
2 = N

2π ·
3
4 . This gives the spectral maximum derivative that can be supported

on the grid: thus we see that the interface does no worse (0.7572 > 0.75) than the coarse

grid, and the scheme does not degrade the overall spectral accuracy of the domain. The

same applies for the inverse refinement ratio.
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For the sixth-order explicit scheme from Section 2.3.4,

∑
j

|q̂ij | = (4.9114, 12.145, 3.2035, 13.943, 1.1264, 0.97337).

By the same argument as for the fourth-order scheme, the limiting coarse grid spectral

maximum is N
2π ·

11
12 , and again the interface is no worse than the coarse grid (0.97337 >

0.9167) so the overall spectral accuracy is not degraded.

2.5.2 Truncation Errors

It was made clear in Sections 2.3 and 2.4 that to find an interface closure that satisfies

the summation-by-parts conditions, the order of accuracy at the interface points must drop

below the interior order of accuracy. Here we examine the truncation errors of each interface

scheme to quantify the error that is introduced by the interface closure. Note that ∆x is

the fine resolution in each of the following examples, as elsewhere in this chapter, and in

each case an interface with r = 2 is considered.

The truncation error is measured by Taylor series expansion of the difference

dui
dx
−
∑
j

d̂ijuj , (2.5.5)

for each node i across the interface, where d̂ij are the elements of D̂ = P̂−1Q̂. For a scheme

accurate to order s, the truncation error is proportional to ∆xs.

2.5.2.1 Explicit Fourth-Order Interface Scheme

For the 4-3-3-4 explicit interface scheme, the formal construction of the finite-difference

approximation by equation (2.2.4) has the inner two interface points third-order accurate.

When evaluating D, however, the third-order truncation error is distributed among the

four interface nodes, but this is the more appropriate form in which to evaluate the explicit

scheme as this is the form in which the interface closure is implemented. Table 2.8 shows the

truncation error for this scheme, with the error of the interior fourth-order explicit scheme

shown for comparison.
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Point Truncation error

Interior (fine)
1
30

∆x5 ≈ 0.03333∆x5

Interface i = 1
4210842691355
20184098559776

∆x4 ≈ 0.2086∆x4

Interface i = 2
1625251526085
20184098559776

∆x4 ≈ 0.08052∆x4

Interface i = 3
4031538798845
5046024639944

∆x4 ≈ 0.7990∆x4

Interface i = 4 − 20349849335
630753079993

∆x4 ≈ −0.03226∆x4

Interior (coarse)
8
15

∆x5 ≈ 0.5333∆x5

Table 2.8: Truncation errors for each point across the interface with the 4-3-3-4 explicit
scheme and r = 2

2.5.2.2 Explicit Sixth-Order Interface Scheme

The sixth-order explicit scheme shown in Section 2.3.4 is formally fifth order at the inner four

of the six interface points. As for the fourth-order scheme, upon evaluating the matrix D for

implementation of the scheme, the fifth-order error is distributed among all six points. The

truncation errors at each point of the r = 2 interface are presented in Table 2.9. Decimal

values for the leading term coefficients are given to simplify comparison; exact rational

values may be determined but are too unwieldy to present here.

Point Truncation error

Interior (fine) − 1
140

∆x7 ≈ −0.00714286∆x7

Interface i = 1 1.25136∆x6

Interface i = 2 −3.16503∆x6

Interface i = 3 −1.09049∆x6

Interface i = 4 −4.38714∆x6

Interface i = 5 0.21892∆x6

Interface i = 6 −0.0698666∆x6

Interior (coarse) −16
35

∆x7 ≈ −0.457143∆x7

Table 2.9: Truncation errors for each point across the interface with the 6-5-5-5-5-6 explicit
scheme and r = 2
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2.5.2.3 Implicit Fourth-Order Interface Scheme

Truncation errors for the fourth-order implicit scheme are determined from the Taylor

expansion of ∑
j

p̂ij
duj
dx
−
∑
j

q̂ijuj , (2.5.6)

because this is the form in which the scheme is implemented. The scheme derived in

Section 2.4.2 is formally fourth-order accurate at the outer two points, and since the error

is not distributed as in the explicit cases, this is preserved in the truncation error values

presented in Table 2.10. Note that these values are subject to some uncertainty due to the

numerical solution, so are valid to only three or four significant figures in general. See also

that although the accuracy conditions were imposed on V̂ and Ŵ in the derivation of the

stencil, P̂ and Q̂ do properly satisfy the same conditions.

Point Truncation error

Interior (fine)
1

120
∆x5 ≈ 0.008333∆x5

Interface i = 1 0.07445∆x5

Interface i = 2 0.2346∆x4

Interface i = 3 0.5403∆x4

Interfcae i = 4 0.2482∆x5

Interior (coarse)
4
15

∆x5 ≈ 0.2667∆x5

Table 2.10: Truncation errors for each point across the interface with the 4-3-3-4 implicit
scheme and r = 2

2.5.3 Time-Marching Stability

In this section we consider the fully discrete version of equation (2.2.1), having chosen a

time-marching scheme for the semidiscrete equation (2.2.25). The stability analysis for

explicit Runge-Kutta methods in the uniform grid case is presented in Appendix A.2, but

here it is generalized to nonuniform discretizations.

First, the semidiscrete equation is written in terms of a generalized difference matrix

D = P−1Q,
du
dx

= −c 1
∆x

Du = Au, (2.5.7)
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the right-hand side of which is in the form of equation (2.2.6). Following Appendix A.2,

the time-marching scheme has the diagonalization of S, where

S = XΛSX−1, (2.5.8)

where ΛS = diag
(
λS
)

= diag
(
σ(λA)

)
. From equation (2.5.7), the eigenvalues of A are

related directly to the eigenvalues of the difference scheme by

λA = − c

∆x
λD. (2.5.9)

Thus stability is directly dependent on the eigenvalues of the difference matrix D, λD. This

gives the discrete stability criteria following equation (A2.5),

|σ(−CλD)| < 1, (2.5.10)

where the time increment has been written in terms of the CFL number

C =
c∆t
∆x

. (2.5.11)

This result gives the discrete stability bound for a given difference matrix D. Note that

any change to the grid will change the form of D and potentially its limiting eigenvalue,

so care is required when defining the stability bound on the CFL number. Also, for a grid

with periodic boundaries and a centered finite-difference scheme, the eigenvalues λD are

purely imaginary. The following sections investigate the discrete stability bounds for the

fourth-order explicit scheme and the corresponding interface solution from Section 2.3.2,

with respect to the third-order RK32 Runge-Kutta time-marching scheme from Butcher

(2003) used for the results in Section 2.6.

2.5.3.1 Stability for Uniform Grids

To put the stability limits for grids with local refinement in a proper context, we first

examine the uniform grid examples shown in Table 2.11. Four grids of 100 points each were

considered, this being enough points for the periodic boundary case to closely approach the

theoretical CFL limit for an explicit fourth-order finite-difference scheme with a third-order
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Runge-Kutta scheme (determined using the spectral analysis presented in Appendix A.2).

The results show that finite boundaries do not affect the CFL stability limit, for values of the

SAT parameter τ small enough. For the τ = 2 case, the spectrum of which is shown scaled

by the limiting CFL in Figure 2.4, all eigenvalues have negative real parts and stability is

limited by the eigenvalues with the largest imaginary part. For larger τ , stability becomes

constrained by the eigenvalue with the largest negative real part, which significantly reduces

the CFL limit compared to the periodic case.

Grid CFL limit
Theoretical, periodic boundaries 1.2622
Finite matrix, periodic boundaries 1.2627
SAT boundaries, τ = 2 1.2630
SAT boundaries, τ = 4 0.3765
SAT boundaries, τ = 6 0.2193

Table 2.11: Stability bounds for a uniform grid with the fourth-order explicit finite-difference
scheme. The theoretical value for a periodic grid is obtained by spectral analysis, and the
remaining values from the minimum eigenvalue of a 100-point domain.
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Figure 2.4: Eigenvalue spectrum for a 100-point uniform grid using the fourth-order explicit
scheme and SAT boundary conditions with τ = 2. Values are scaled by the limiting CFL to
lie within the blue line indicating the stability boundary for the third-order Runge-Kutta
scheme.
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2.5.3.2 Stability for Nonuniform Grids

Two different grids, each of 100 points, are considered to explore the effect of local refinement

on time-marching stability, with results shown in Table 2.12. The first grid has a central

refinement region, the domain being split into three blocks of 30, 40 and 30 points each.

The central block of 40 points has a discretization of ∆x, with the other two blocks having

2∆x, for a refinement scheme 2:1:2. This arrangement permits this grid to have periodic

boundary conditions, in which case the eigenvalues are (as expected) purely imaginary and

the CFL stability limit is noticeably reduced compared to the uniform grid case. With finite

boundaries implemented by the SAT method with τ = 2, shown scaled by the limiting CFL

in Figure 2.5, the spectrum has eigenvalues with nonpositive real parts (some have zero

real parts), but there is no change to the limiting eigenvalue on the imaginary axis and the

stability limit is the same as the periodic case. Using τ = 6 brings a small reduction to the

CFL limit, but the limiting eigenvalue is now on the real axis and is, in fact, the same as

in the uniform grid case. See that 0.4387/2 ≈ 0.2193, the factor of two resulting from the

boundary region having discretization 2∆x in this case compared to ∆x in the uniform grid

case.

The second grid considered has two blocks of 50 points each, the first of discretization ∆x

and the second 2∆x, for a refinement scheme 1:2. This grid cannot have periodic boundary

conditions as the boundaries have inconsistent discretizations, so the SAT boundary imple-

mentation is used instead. With τ = 2, shown scaled by the limiting CFL in Figure 2.6,

there is no stability reduction compared to the uniform case due to the interface, and the

eigenvalues have all negative real parts. The interface again has no effect compared to the

uniform case with τ = 6.

Grid CFL limit
Three-block refinement, periodic boundaries 0.4851
Three-block refinement, SAT boundaries, τ = 2 0.4851
Three-block refinement, SAT boundaries, τ = 6 0.4387
Two-block refinement, SAT boundaries, τ = 2 1.2652
Two-block refinement, SAT boundaries, τ = 6 0.2193

Table 2.12: Stability bounds for various nonuniform grids with the fourth-order explicit
finite-difference scheme. Each limit is calculated from the minimum eigenvalue of a 100-
point domain and based on the smallest discretization. See text for a detailed description
of each grid configuration.
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Figure 2.5: Eigenvalue spectrum for the three-block (2:1:2) 100-point grid, using the fourth-
order explicit scheme and SAT boundary conditions with τ = 2. Values are scaled by the
limiting CFL to lie within the stability boundary of the third-order Runge-Kutta scheme
(blue line). Here, Cmax = 0.4851.
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Figure 2.6: Eigenvalue spectrum for the two-block (1:2) 100-point grid, using the fourth-
order explicit scheme and SAT boundary conditions with τ = 2. Values are scaled by the
limiting CFL to lie within the stability boundary of the third-order Runge-Kutta scheme
(blue line). Here, Cmax = 1.2652.
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The conclusion to be drawn from this investigation is that stability of the discrete prob-

lem with local refinement is strongly dependent on the form of the grid. The presence of

grid interfaces can play a secondary role compared to the implementation of the bound-

ary conditions, but reduction of the CFL limit due to local refinement can be significant

for certain schemes. These results are also dependent on the time-marching scheme used;

for methods other than Runge-Kutta, the presence of refinement may have a more signif-

icant effect or none at all. For the validation problems considered in Section 2.6 and the

Richtmyer-Meshkov problem of Chapter 4, a general rule of thumb was that C . 0.2 for

stability on most grids. Instability due to the CFL number usually manifested itself at the

boundaries first.

2.6 Validation Test Problems

2.6.1 Advecting Wave

For the first validation test, we solve numerically the linear advection equation (2.2.1)

to verify that the expected stability and convergence results are obtained. Results are

presented for the specific advection problem with boundary and initial conditions

u(0, t) = − sin
2πct
L

, t ≥ 0, (2.6.1)

u(x, 0) = sin
2πx
L
, 0 ≤ x ≤ L, (2.6.2)

having the exact solution

u(x, t) = sin
2π
L

(x− ct), 0 ≤ x ≤ L, t ≥ 0. (2.6.3)

The boundary condition, equation (2.6.1), is applied by the SAT method, with τ = 2, at

the first node in the domain. As shown in Figure 2.1, nodes are placed at the center of

elements of width ∆x, so the first node is located at ∆x/2, and the boundary condition is

correspondingly adjusted. Under refinement, the width of each cell (equivalent to the nodal

spacing) is reduced and the number of nodes increased by the factor of refinement such that

the physical location of the interfaces is fixed in space.

This problem is first solved using an explicit fourth-order finite-difference scheme on a
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three-block 1:4:2 grid, with 20 points in the first block and 10 in each of the subsequent

blocks for the coarsest case. The first interface has r1 = 4 and the second r2 = 1/2, with

closure provided by the four-point 4-3-3-4 interface schemes described in Section 2.3. At the

boundary, the four-point 3-3-4-4 boundary closure given in Appendix B is used. Parameter

values for the results presented here are c = 0.25 and L = 8, and the time-marching scheme

is the third-order Runge-Kutta RK32 method from Butcher (2003). Five steps of global

refinement are performed for the convergence test, the results of which are presented in

Table 2.13. The advertised fourth-order convergence rate clearly has been achieved, in both

an averaged sense and uniformly, as evidenced by the L∞ norm. Figure 2.7 presents the

solution and error compared to the exact solution for ∆x = 1/20, after two wave transitions

through the domain (T = 2L/c).

fine ∆x log10(L2) rate log10(L∞) rate
1/10 −2.696 −2.808
1/20 −3.879 3.93 −4.005 3.98
1/40 −5.074 3.97 −5.212 4.01
1/50 −5.460 3.98 −5.599 3.99
1/80 −6.273 3.99 −6.417 4.01
rate 3.96 4.00

Table 2.13: Convergence results for the explicit scheme solving the 1-D advection equation
on a three-block 1:4:2 grid after 10 wave transition times
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Figure 2.7: Numerical solution and error relative to the exact solution for the 1-D advection
equation solved with the fourth-order explicit finite-difference scheme on a three-block 1:4:2
grid, after two wave transitions with ∆x = 1/20. Dashed lines indicate the locations of the
grid interfaces.
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To test the fourth-order implicit scheme from Section 2.4, a three-block 1:2:1 grid was

used, the interfaces having ratios r1 = 2 and r2 = 1/2, respectively. Each block has a

minimum of 20 points, with five steps of refinement for the convergence test presented in

Table 2.14. Parameter values were as for the explicit test. The advertised fourth-order

convergence rate clearly has again been achieved, in both norms. Figure 2.8 shows the

solution for the case ∆x = 1/20 with the error relative to the exact solution.

fine ∆x log10(L2) rate log10(L∞) rate
1/10 −4.310 −4.470
1/20 −5.513 3.99 −5.675 4.00
1/40 −6.713 3.99 −6.892 4.04
1/50 −7.097 3.96 −7.286 4.07
1/80 −7.896 3.91 −8.123 4.10
rate 3.97 4.04

Table 2.14: Convergence results for the implicit scheme solving the 1-D advection equation
on a three-block 1:2:1 grid after 10 wave transition times
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Figure 2.8: Numerical solution and error relative to the exact solution for the 1-D advection
equation solved with the fourth-order implicit finite-difference scheme on a three-block 1:2:1
grid, after two wave transitions with ∆x = 1/20. Dashed lines indicate the locations of the
grid interfaces.

2.6.2 Navier-Stokes Shock Structure

Having demonstrated stability of the interface schemes with a linear problem, we move on

to examine their stability when applied to a nonlinear problem more relevant to practical

problems in fluid mechanics. Stability is difficult, if not impossible, to prove in general
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for nonlinear problems, but generally follows that of the linear problem. To confirm this,

the one-dimensional compressible Navier-Stokes equations are solved for the flow through a

fully resolved shock. Although not strictly a hyperbolic system of equations, this problem

presents a strong test of stability of the numerical method. To evaluate the viscous terms,

the first derivative is applied twice, at the potential risk of (small magnitude) spurious

oscillation in the numerical solution. The alternative, to use a specific second-derative

stencil, is available only at the boundaries at present (Mattsson and Nordström, 2004); a

second-derivative interface scheme in the SBP context is a topic for future research.

A closed-form analytic solution exists to the Navier-Stokes shock problem for the special

case of a perfect gas with constant viscosity and Prandtl number Pr = 3/4. Applying these

simplifications to the 1-D Navier-Stokes equations, following the nondimensionalization in

Appendix E.1, we define the reference state as the upstream flow conditions ρ0, u0 and p0,

and mean free path length `0. The resulting equations in terms of dimensionless ρ, u and

p are, from (E1.30)–(E1.32),

∂ρ

∂t
+

∂

∂x

(
ρu
)

= 0, (2.6.4)

∂

∂t

(
ρu
)

+
∂

∂x

(
ρu2 +

p

γM2
0

−R′∂u
∂x

)
= 0, (2.6.5)

∂

∂t

(
p

γM2
0

+ βρu2

)
+

∂

∂x

(
βρu3 +

pu

M2
0

−R′(γ − 1)u
∂u

∂x
+

R′

M2
0

∂

∂x

(p
ρ

))
= 0, (2.6.6)

where β = (γ − 1)/2 and R′ is given by

R′ =
4
3

k2√
γM2

0

, (2.6.7)

in terms of the constant

k2 =
5
8

√
π

2
, (2.6.8)

which is derived from kinetic theory. This formulation reduces the parameters of the prob-

lem to the ratio of specific heats, γ, and the Mach number of the shock, M0.

For steady flow with ∂/∂t ≡ 0 in the frame of reference where the shock is stationary,

and uniform upstream and downstream conditions such that u = 1 upstream, we define the

shock position coordinate ξ. From Appendix F.1, based on Whitham (1974), the solution
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to equations (2.6.4)–(2.6.6) for the velocity profile through a shock is

ξ(u) =
1

k3(1− α)M0
log
[(√

α− α1

u− α

)α
u− 1√
α− 1

]
, (2.6.9)

where the velocity ratio α(M0, γ) across the shock is given by the Rankine-Hugoniot relation

α =
2 + (γ − 1)M2

0

(γ + 1)M2
0

, (2.6.10)

and k3 is given by

k3 =
3(γ + 1)

8k1

√
π

8γ
. (2.6.11)

In obtaining equation (2.6.9), the point ξ = 0 is chosen to correspond to the velocity

inflection point, d2u/dξ2 = 0, which fixes the shock in space. For given γ and M0, (2.6.9)

can be solved numerically for u at each position ξ to arbitrary precision; this gives the

velocity profile through the shock, and subsequently the density and pressure profiles. We

now proceed to solve (2.6.4)–(2.6.6) numerically as an initial-boundary-value problem and

consider convergence of the numerical velocity solution to (2.6.9), under the mapping ξ → x.

The numerical problem is solved using a fourth-order finite difference method with the

boundary and interface schemes for both explicit and implicit stencils from Sections 2.3.2

or 2.4.2. Implementation of the boundary conditions is by the SAT method, applied to the

characteristic form of the equations (detailed in Appendix E.5). The third-order Runge-

Kutta time integration scheme from the linear problem is used again, for which, with a

CFL number small enough, a stable numerical solution was obtained with τ = 2. Results

are presented here for a shock with M0 = 2.2 and γ = 1.4.

For the explicit scheme, we consider two grids: a reference uniform grid, and a three-

block 4:1:4 grid with refinement in the vicinity of the shock. For the three-block grid, the

interfaces have grid ratios r1 = 4 and r2 = 1/4, moving from left to right across the domain.

The numerical domain extends upstream of the shock to x = −25 and downstream to x = 10,

at which points the difference between the analytic solution and the Rankine-Hugoniot

conditions is of the order of machine precision (10−16) for the chosen shock parameters.

The initial condition used is the analytic shock solution (2.6.9), evaluated at the nodal

positions.

Convergence of the numerical solution error, shown in Tables 2.15–2.16, demonstrates
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that the expected fourth-order rate is approached for both grids. Near-fourth-order con-

vergence of the L∞ norm confirms that convergence is uniform even in the nonlinear case.

Figure 2.9 compares the numerical solutions and errors obtained from comparable uniform

and three-block grids. In both cases, the smallest discretization is ∆x = 1/16, for a total of

560 points on the uniform grid and 200 on the 4:1:4 three-block grid. With the same time

step ∆t, the computational cost of the three-block grid is approximately half that of the

uniform grid.

∆x log10(L2) rate log10(L∞) rate
1/4 −3.175 −3.143
1/5 −3.887 7.35 −3.720 5.95
1/8 −4.717 4.07 −4.538 4.01
1/10 −5.099 3.95 −4.921 3.95
1/16 −5.909 3.97 −5.736 3.99
rate 4.40 4.22

Table 2.15: Convergence results for the Navier-Stokes shock on a uniform grid with the
explicit scheme

fine ∆x log10(L2) rate log10(L∞) rate
1/4 −2.651 −2.758
1/8 −3.652 3.32 −3.776 3.38
1/16 −4.974 4.39 −5.012 4.11
1/20 −5.342 3.80 −5.324 3.21
1/32 −6.143 3.92 −6.029 3.45
rate 3.93 3.68

Table 2.16: Convergence results for the Navier-Stokes shock on a three-block 4:1:4 grid with
the explicit scheme

The evolution of numerical error in the equations of motion is shown in Figure 2.10

for the same uniform and three-block grid cases. Plotted are the L2 norms of the time

derivatives from each of equations (2.6.4)–(2.6.6), which in this case are all expected to be

zero. Some oscillatory behavior is observed in the solution during the transient phase, but

for long times the solution appears to be converging to a stable state.

The shock problem was also solved on a three-block 2:1:2 grid using the implicit finite

difference scheme described in Section 2.4.2. Results from this test are shown in Table 2.17,

showing again that fourth-order convergence is achieved for the nonlinear problem. Figure

2.11 shows the numerical solution and error at the final time step for a 320-point grid with

fine resolution ∆x = 1/16.
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(a) uniform grid
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(b) three-block grid

Figure 2.9: Numerical Navier-Stokes shock velocity solution and corresponding point-wise
error, for the explicit scheme solved on uniform and three-block 4:1:4 grids. Both solutions
shown here have the same minimum discretization, ∆x = 1/16, for a total of 560 points
and 200 points respectively. Dashed lines indicate the locations of the grid interfaces.

fine ∆x log10(L2) rate log10(L∞) rate
1/4 −4.004 −3.927
1/8 −5.359 4.50 −5.202 4.24
1/16 −6.578 4.05 −6.414 4.02
1/20 −6.965 3.99 −6.799 3.97
1/32 −7.800 4.09 −7.666 4.25
rate 4.18 4.12

Table 2.17: Convergence results for the Navier-Stokes shock on a three-block 2:1:2 grid with
the implicit scheme
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(b) three-block grid

Figure 2.10: Behavior of the numerical error in the time derivatives from each equation of
motion, for the two grids described in Figure 2.9, over 20,000 time steps.
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Figure 2.11: Navier-Stokes shock velocity solution and corresponding error plot, for the
implicit scheme on a three-block 2:1:2 grid with minimum discretization ∆x = 1/16. Dashed
lines indicate the location of the grid interfaces.
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2.6.3 Advecting Wave in 2-D

As described in Section 2.1.3, the 1-D interface scheme may be applied to tensor-product–

type refinements of higher-dimensional grids. Here we consider the linear problem in 2-D.

The two-dimensional scalar advection equation,

∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
= 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, t ≥ 0, (2.6.12)

u(0, y, t) = sin [ω (y/b− 2t)] ,

u(x, 0, t) = sin [ω (x/a− 2t)] ,

u(x, y, 0) = sin [ω (x/a+ y/b)] ,

where a and b represent the advection speeds in the x- and y-directions respectively and ω

is a frequency parameter, has the analytic solution

u(x, y, t) = sin [ω (x/a+ y/b− 2t)] , (2.6.13)

and is solved here by a similar implementation as used for the 1-D advection equation. The

grid is a unit square with each direction identically divided into five blocks, for a total of

25 blocks, with a factor of 2 refinement between each block for an overall 1:2:4:2:1 scheme

(r = 2 for the first two interfaces, r = 1/2 for the next two) in each direction. The first and

last blocks have a minimum of 10 points each, and each of the three remaining blocks has

8 points. The same discretization was used in both x- and y-directions.

Both fourth-order explicit and implicit schemes were tested on this grid. Boundary

conditions were implemented by the SAT method, using the same boundary closures as

before. The test problem uses parameter values a = b = 1/4 and ω = π/2, and was run to

time T = 10. Table 2.18 shows that both average and uniform fourth-order convergence is

achieved, for both explicit and implicit schemes.

2.6.4 Inviscid Compressible Vortex in 2-D

For the final example, a nonlinear problem is solved on a similar tensor product-refined

two-dimensional grid. Here, the dimensionless compressible Euler equations for a perfect
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Explicit scheme Implicit scheme
fine ∆x log10(L2) rate log10(L∞) rate log10(L2) rate log10(L∞) rate
1/120 −3.604 −3.147 −3.166 −2.751
1/180 −4.364 4.32 −3.922 4.40 −3.835 3.80 −3.445 3.95
1/240 −4.803 3.51 −4.320 3.19 −4.322 3.90 −3.928 3.87
1/360 −5.507 4.00 −5.017 3.96 −5.018 3.95 −4.625 3.96
rate 3.96 3.87 3.88 3.93

Table 2.18: Convergence results for the 2-D advection equation solved on a grid with tensor-
product refinement, for explicit and implicit fourth-order schemes

gas (see Appendix E.2), with parameter β = (γ − 1)/2,

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (2.6.14)

∂

∂t
(ρu) +

∂

∂x

(
ρu2 +

p

γM2
0

)
+

∂

∂y
(ρuv) = 0, (2.6.15)

∂

∂t
(ρv) +

∂

∂x
(ρuv) +

∂

∂y

(
ρv2 +

p

γM2
0

)
= 0, (2.6.16)

∂

∂t

(
p

γM2
0

+ βρ
(
u2 + v2

))
+

∂

∂x

(
pu

M2
0

+ βρu
(
u2 + v2

))
+

∂

∂y

(
pv

M2
0

+ βρv
(
u2 + v2

))
= 0, (2.6.17)

are used with a normalization in terms of far-field values, ρ0 and p0, and a velocity scale, u0,

which are incorporated into the Mach number parameter, M0. An analytic solution exists

for a constant-entropy vortex with the tangential velocity profile

uθ
u0

=
r0

r

(
1− e

− r
2

r20

)
, (2.6.18)

where r =
√
x2 + y2, and r0 is the core radius of the vortex. This is the Lamb-Oseen

vortex solution, the details of which are presented in Appendix F.2 along with its density

and pressure distribution. Note that for γ = 1.4, with M0 . 1.35, the flow is subsonic

everywhere (based on local Mach number), and for M0 . 1.9, there is no evacuation at the

core of the vortex. Parameter values of M0 = 1.2 and r0 = 4/25 were used for the results

presented here.

The problem is solved numerically with the explicit fourth-order scheme and the third-

order Runge-Kutta time-marching scheme on a grid similar to that used for the advection

problem of Section 2.6.3, with a domain of side length 4. The same 1:2:4:2:1 refinement
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in each direction is used, now with a minimum of 14 points in the coarse blocks, 16 in

the intermediate blocks and 24 in the most refined central block for an 84 × 84–node grid

at the largest minimum discretization (∆x = 1/50). Five steps of global refinement were

performed for the convergence test, down to ∆x = 1/150 and a 252 × 252–node grid.

Exact boundary conditions are applied on all edges, using the analytic solution based on

equation (2.6.18) to provide solution values as a continuation of the domain, avoiding the

need for boundary stencils.

Results are taken at time t = 2 for both a static vortex located at the center of the

domain and for a vortex convecting across the domain with speed (0.35, 0.55). The initial

condition for the convecting vortex is such that at t = 1, the core is centered in the domain,

and it thus moves from one side of the most refined region to the other during the simula-

tion. This is shown in the vorticity contour plots of Figure 2.12, where the grid interfaces

are indicated by dashed lines. Table 2.19 demonstrates that fourth-order convergence is

obtained for both examples.

Static vortex Convecting vortex
fine ∆x log10(L2) rate log10(L∞) rate log10(L2) rate log10(L∞) rate

1/50 −2.567 −2.261 −2.163 −1.581
1/75 −3.254 3.90 −2.826 3.21 −2.881 4.08 −2.322 4.21
1/100 −3.794 4.32 −3.343 4.15 −3.406 4.20 −2.894 4.58
1/125 −4.215 4.34 −3.760 4.30 −3.791 3.97 −3.192 3.08
1/150 −4.556 4.31 −4.168 5.16 −4.098 3.88 −3.571 4.78
rate 4.18 3.98 4.07 4.14

Table 2.19: Convergence results for the 2-D compressible vortex solved on a grid with
tensor-product refinement, for explicit and implicit fourth-order schemes
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Figure 2.12: Solution for the convecting inviscid compressible vortex: contours of vorticity
showing the initial and final vortex positions. Grid interfaces are indicated by dashed lines
and the color scale is log10(ω).
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Chapter 3

The 2-D Interface Problem

This chapter describes the two-dimensional patch-refined interface problem and its solution,

building on the one-dimensional solution presented in Chapter 2. The unique geometries

encountered in the 2-D problem are described in Section 3.1, with the 2-D extension to the

summation-by-parts theory from Section 2.2 presented in Section 3.2. The interface solu-

tions built on these two components are presented in Section 3.3, and tested in Section 3.4,

which shows results from both linear and nonlinear validation problems. An algorithm for

implementation of the interface schemes is briefly described in Appendix C.

3.1 Patch Refinement in 2-D

3.1.1 Definition of the Grid

To introduce the two-dimensional problem, consider the scalar advection equation

∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
= 0, (x, y) ∈ Ω, t ≥ 0, (3.1.1)

where a square domain Ω = {(x, y) ∈ [0, 1] × [0, 1]} is chosen for simplicity, with initial

condition u(x, y, 0) = u0(x, y) and boundary conditions (for a > 0 and b > 0),

u(0, y, t) = gx(y, t), t ≥ 0, (3.1.2)

u(x, 0, t) = gy(x, t), t ≥ 0. (3.1.3)

The numerical solution to this problem is sought on a node-based finite-volume partition

of the domain, chosen over a vertex-based discretization because of its wide use in adaptive
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mesh refinement methods (Berger and Colella, 1989; Pantano et al., 2007). Certain regions

of this domain are locally refined relative to the original discretization; first, we define the

nature of this refinement.

Consider a uniform discretization of the domain Ω into computational cells of size ∆x×

∆y, with ∆x = 1/N and ∆y = 1/M . Under local refinement, Ω is partitioned into two

subdomains by Ω = Ωf ∪ Ωc, where the fine region is a block of refined cells defined by

Ωf ≡ {(x, y) ∈ [nL∆x, nH∆x]× [mL∆y,mH∆y]},

with 0 < nL < nH < N , 0 < mL < mH < M and (nL, nH ,mL,mH) ∈ N. The fine

region thus occupies an interior part of Ω, with each edge extending over an integer number

of coarse cells. Note that in general, Ωf may include a number of such refined blocks of

cells. Within Ωf , the discretization is refined by ratios rx and ry in the x- and y-directions,

respectively, for computational cells of size (∆x/rx)× (∆y/ry), and it is generally required

that 1 < rx, ry ∈ N. Additional resolution is thus provided for the problem in Ωf . The

remaining coarse region Ωc = Ω \ Ωf , has the original cell dimensions. A sketch of such a

partition is shown in Figure 3.1. Dirichlet boundary conditions (3.1.2)–(3.1.3) are imposed

on ΓD = {(x, y) ∈ ([0, 1]×0)∪(0×[0, 1])}, where ∂Ω = ΓD+ΓN . Note that this partitioning

of the domain does not affect the equations or boundary conditions.
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Figure 3.1: Sketch of the partitioning of the domain Ω into the fine region Ωf (shaded) and
coarse region Ωc.

A numerical method to solve equation (3.1.1) is constructed by approximation of u(x, y, t) =

uc(x, y, t) + uf (x, y, t), where uc and uf are the partitions of u to Ωc and Ωf , respec-
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tively. Locating nodes at the cell centers in each subdomain, u is discretized such that

uc(xI , yJ , t) ≈ ucI,J(t), where xI = ∆x(I − 1/2) and yJ = ∆y(J − 1/2), over the index set

Ic = {(I, J) ∈ [1, N ]× [1,M ] \ [nL + 1, nH ]× [mL + 1,mH ]},

and uf (xi, yj , t) ≈ ufi,j(t), where xi = ∆x(nL+(i−1/2)/rx) and yj = ∆y(mL+(j−1/2)/ry),

over the index set

If = {(i, j) ∈ [1, (nH − nL)rx]× [1, (mH −mL)ry]},

where the complete index set I = Ic ∪ If . Let u = {ucI,J , u
f
i,j} = {uI} denote the discrete

approximation to u at the nodes I; no particular ordering of the index set is implied.

The resulting approximation of equation (3.1.1) yields a system of ordinary differential

equations, which are integrated numerically in time using an appropriate time-integration

method, e.g., Runge-Kutta in our case.

3.1.2 Interface Types

The present objective is to develop an explicit finite-difference scheme of the two-dimensional

domain with a cell-centered mesh. Approximation of the first derivative at interior cells,

away from the interface at ∂Ωf , is accomplished using standard centered finite-difference

techniques. Near ∂Ωf , there are two prevailing approaches to dealing with the irregular node

locations at the interface. The first solves equation (3.1.1) as separate problems on each

subdomain Ωc and Ωf , using a compatibility condition to transfer information between

subdomains. This compatibility condition can be viewed as an addition to the original

problem. Examples of this approach include Nordström and Carpenter (1999); Gerritsen

and Olsson (1998); Sebastian and Shu (2003). The second approach solves (3.1.1) on the

full domain, assuming that a continuous and differentiable function u(x, y, t) exists and is

well defined across the grid interfaces. This leaves the problem of the change in resolution

to be resolved by the numerical method, where special stencils are required to approximate

the spatial derivative in the vicinity of ∂Ωf . This is the approach considered here.

The historical difficulty encountered with this approach is the appearance of “hanging

nodes” at the grid interface, as nodes do not align with Cartesian lines passing through
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the cell centers on each side. This problem has made achieving simultaneous high-order

accuracy and long-time stability of the interface closure difficult, and is addressed here.

A consequence of the hanging-node geometry is a strong dependence of the interface

closure on the refinement ratio. Figure 3.2(a) shows an interface with a refinement factor of

2 in each direction, where an interface stencil for the coarse node would include dependence

on four fine nodes, whereas in Figure 3.2(b), with a factor 4 refinement, the same node

is now dependent on 16 fine nodes in an equivalent area. In general, this means that an

interface stencil cannot have a simple functional dependence on rx or ry in the way that

the one-dimensional scheme could, cf. Chapter 2. We therefore fix the refinement ratios at

rx = ry = 2 from this point forward, but the discussion presented here may be followed for

any integer refinement ratio, though without guarantee that a solution exists.

r
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r
r r

(a) 2× refinement

rr
rr

rr
rr

rr
rr

rr
rr r

(b) 4× refinement

Figure 3.2: Sketch showing the dependence of the interface topology on the refinement
factor: compare (a) refinement factor 2 in each direction, with (b) refinement factor 4 in
each direction.

For a general refined region Ωf , three basic interfaces may be identified, each with a

unique topology. These are sketched in Figure 3.3: (a) shows the edge interface, corre-

sponding to the Cartesian edges of ∂Ωf where the change in discretization is essentially in

one direction only; (b) shows the convex corner interface, where two edges meet at a corner

of ∂Ωf that is convex relative to Ωf ; and (c) shows the concave corner interface, where

the corner is concave relative to the fine region. Other more complex interfaces may be

devised, but these three elements are sufficient to build in a domain any arbitrarily refined

interior region satisfying simple rules regarding its size such that each interface geometry

remains distinct. Multiple levels of refinement, obtained by embedding additionally refined

subdomains within Ωf , present no additional closure problems, as the interface geometries

are logically identical to those shown.
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Figure 3.3: Sketches of the three principal interior interface geometries encountered in 2-D:
(a) edge (shown aligned in the x-direction), (b) convex corner, and (c) concave corner (both
defined relative to the fine region).

3.2 Formulation and Stability

3.2.1 Summation-by-Parts Formulation in 2-D

For equation (3.1.1), the 1-D theory presented in Section 2.2 is extended in a manner

analogous to that described by Abarbanel and Chertock (2000). We define general 2-D

finite-difference approximations to the spatial derivatives on the entire domain Ω,

∂u
∂x

=
1

∆x
Dxu, (3.2.1)

∂u
∂y

=
1

∆y
Dyu, (3.2.2)

such that a projection v of the exact solution u(x, y, t) onto the 2-D grid satisfies

∂v
∂x

=
1

∆x
Dxv + tx, (3.2.3)

∂v
∂y

=
1

∆y
Dyv + ty, (3.2.4)

where tx and ty are the truncation errors in each direction. The discretization spacings

∆x and ∆y now represent the finest length scale in each direction, following the convention

introduced in Chapter 2. In this way, the scaling factor of the discretization for coarse
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regions is incorporated into the coefficients of Dx and Dy. These finite-difference approxi-

mations, with the 2-D SAT boundary implementation from Abarbanel and Chertock, give

a semidiscrete form of equation (3.1.1),

du
dt

= −
(
a

∆x
Dx +

b

∆y
Dy

)
u− a

∆x
gx −

b

∆y
gy, (3.2.5)

where the vectors gx and gy contain the contribution of the boundary conditions. To better

understand the structure of the finite-difference matrices in 2-D, see that on a uniform grid

(Ωf = {}), the matrices Dx and Dy are block diagonal, and may be written explicitly as

Dx =


P−1Q̃

P−1Q̃

. . .

P−1Q̃

 , gx =


P−1τsgx1 (t)

P−1τsgx2 (t)
...

P−1τsgxN (t)

 ,

where P , Q̃, τ and s are all as defined in 1-D (see Section 2.2), and similarly in the y-

direction by the appropriate transformation.

On a patch-refined grid, Dx and Dy will have this block-diagonal structure in uniform

regions, but near interfaces a more general form is required. For a grid with a total of

N = |I| nodes, there will be a subset of nodes, Ii ⊂ I, of length n = |Ii| in the vicinity

of ∂Ωf that require special interface stencils. These stencils depend on a larger subset of

nodes, Id ⊂ I, of length m = |Id| > n (which will be different for each derivative). Thus

Dx and Dy have potentially dense n×m submatrices over the interface nodes Ii×Id, which

we label D̂x and D̂y, respectively.

These matrices are defined as general explicit finite difference approximations

∂uk
∂x

=
1

∆x

∑
j∈Idx

D̂x,kjuj , (3.2.6)

∂uk
∂y

=
1

∆y

∑
j∈Idy

D̂y,kjuj , (3.2.7)

for all k ∈ Ii, where ∆x and ∆y are the discretization scales in the fine region. The formal

order of each approximation is determined by Taylor series expansion of the polynomial test
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function

f(z1,z2)(x, y) = xz1yz2 , (3.2.8)

to degree specified by the index pair (z1, z2), in the combinations shown in Table 3.1. For

either equation (3.2.6) or (3.2.7) to be accurate to a given order, all index pairs up to that

order must be satisfied exactly: for a third-order–accurate x-derivative, (3.2.6) must satisfy

all ten index pairs up to third order. Both directions must be considered for each derivative

because of the off-direction perturbations introduced by the hanging-node geometry of the

grid. Simple algebra will show that this does not result in a cross-dependence on the

discretizations; therefore, the x-derivative is independent of ∆y and vice versa. Note that

in order for the discretization to preserve the global convergence rate of an interior scheme

of order s, it is expected that the interface schemes must be accurate to at least order (s−1)

(Gustafsson, 1975).

Derivative order Index pairs
0th order (0,0)
1st order (1,0); (0,1)
2nd order (2,0); (0,2); (1,1)
3rd order (3,0); (0,3); (2,1); (1,2)
4th order (4,0); (0,4); (3,1); (1,3); (2,2)

Table 3.1: Test polynomial index pairs (z1, z2) for given derivative accuracy

3.2.2 Error Bound and Stability Criteria

The stability of equation (3.2.5) is examined in the context of a positive definite norm

matrix H, such that for u ∈ R,

‖u‖2H = (u, Hu) = uTHu > 0, (3.2.9)

with the equivalence of the norms,

hL‖e‖2 ≤ ‖e‖2H ≤ hU‖e‖2, (3.2.10)

where hL and hU are positive constants, analogous to the 1-D definition (2.2.8).

The error analysis is similar to that of Section 2.2.5 and follows Abarbanel and Chertock

(2000), with some modifications appropriate for the present case. Writing equation (3.2.5)
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for the projection of the exact solution, v,

dv
dt

= −
(
a

∆x
Dx +

b

∆y
Dy

)
v − a

∆x
gx −

b

∆y
gy − atx − bty, (3.2.11)

an equation for the error, e = v − u, may be derived according to

de
dt

= −
(
a

∆x
Dx +

b

∆y
Dy

)
e + t, (3.2.12)

where t = −atx − bty contains the truncation error contributions from both directions.

Taking the norm of this error in the sense just defined gives

d
dt
‖e‖2H = eT

[(
− a

∆x
Dx −

b

∆y
Dy

)T
H +H

(
− a

∆x
Dx −

b

∆y
Dy

)]
e + 2(t, He).

Writing the term in square brackets as

A =
(
a

∆x
Dx +

b

∆y
Dy

)T
H +H

(
a

∆x
Dx +

b

∆y
Dy

)
, (3.2.13)

leads to
d
dt
‖e‖2H = −eTAe + 2(t, He). (3.2.14)

It is assumed that A can be diagonalized according to Axi = λixi, where λi and xi denote

the eigenvalues and normalized eigenvectors of A, respectively. A positive definite matrix

A, such that eTAe > 0 for all e 6= 0, implies Re(λi) > 0. Expressing the error in this basis

gives e =
∑
cixi, where ci denote scalar coefficients, and leads to

− eTAe = −
∑

c2
iλi ≤ −λmin‖e‖2 ≤ −

λmin

hU
‖e‖2H , (3.2.15)

where λmin = min(Re(λi)). Using the Cauchy-Schwarz inequality, (t, He) ≤ ‖e‖H‖t‖H , the

error rate
d
dt
‖e‖2H ≤ −

λmin

hU
‖e‖2H + 2‖e‖H‖t‖H ,

reduces to
d
dt
‖e‖H ≤ −

λmin

2hU
‖e‖H + ‖t‖H , (3.2.16)
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which may be integrated to give the error bound (cf. Abarbanel and Chertock, 2000),

‖e‖H ≤
2hU
λmin

(
sup

0≤s≤t
‖t(s)‖H

)[
1− exp

(
−λmint

2hU

)]
. (3.2.17)

In the case where A is only positive semidefinite, such that eTAe ≥ 0, the error bound is

modified to become

‖e‖H ≤
(

sup
0≤s≤t

‖t(s)‖H
)
t, (3.2.18)

which can be interpreted, with some care, as the limit of equation (3.2.17) when λmin → 0.

This shows that the scheme converges for t < +∞ and suffers at most a linear growth

in error with time owing to truncation error, thus exhibiting Lax (finite time) stability.

To prove asymptotic stability requires a bound on ‖t(s)‖H for all time, which depends, in

general, on the boundary and initial data, as well as on the order of the approximation. A

demonstration of asymptotic stability for two particular grids is shown in Section 3.4.

The stability result depends on the condition

− a

∆x
(
HDx +DT

xH
)
− b

∆y
(
HDy +DT

y H
)
≤ 0. (3.2.19)

Notice that the norm H is as yet undefined, except by the fact that it must be a positive

definite matrix. For the boundaries, Abarbanel and Chertock propose

Hb = P 1/2
x PyP

1/2
x , (3.2.20)

where Hb spans the set of nodes Ib ⊂ Ic in the vicinity of ∂Ω and Dx = P−1
x Qx. This can

be shown to satisfy equation (3.2.19) with a > 0 and b > 0. In a patch-refined domain with

uniform boundary regions, the 1-D boundary scheme from Section 2.2.4 may be used, with

the matrices from Appendix B, and the 2-D matrices Px and Py may be formed directly

from the known P matrix of the 1-D boundary scheme.

At grid interfaces, stability should be independent of the advection velocities so that the

closure may be applied to systems with waves traveling in arbitrary directions. In the case

of a uniform domain, the interior makes no contribution to the stability condition (3.2.19),

and eTAe is dependent only on the boundary closure. For the patch-refined domain, in

order to have the error bound (3.2.17) independent of the interface closure, this should
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remain true. This leads to the stronger conditions

ĤD̂x + D̂T
x Ĥ = 0, (3.2.21)

ĤD̂y + D̂T
y Ĥ = 0, (3.2.22)

for the interface region, where D̂x and D̂y are defined by equations (3.2.6)–(3.2.7). The

positive definite matrix Ĥ spans Ii × Ii, and is common to both conditions. It is to be

determined along with the elements of D̂x and D̂y when constructing the stencil.

We make the following remarks:

1. For symmetric Ĥ, the equations are equivalent to requiring that the products ĤD̂x

and ĤD̂y be antisymmetric matrices.

2. In the domain interior, away from interfaces and boundaries, I \ (Ii∪Ib), Dx and Dy

are naturally antisymmetric by the centered difference scheme, automatically satisfy-

ing equations (3.2.21) and (3.2.22).

3. The full-domain matrix H has Hb in boundary regions, Ĥ in interface regions and

is diagonal in interior regions. Since all interior regions, including the interfaces,

satisfy the stronger conditions (3.2.21)–(3.2.22), equation (3.2.19) holds throughout

the domain and the estimate (3.2.17) is preserved.

4. The criteria (3.2.21)–(3.2.22) are independent of the cell aspect ratio. Although the

refinement factor is fixed for a particular interface closure, any combination of ∆x

and ∆y may be used.

5. The norm matrix Ĥ is not necessary for computational implementation of the scheme,

as it does not appear in equation (3.2.5), but it is critical in the derivation of the in-

terface stencils because it links the x- and y-derivatives in a way that ensures stability.

3.3 Interface Closures

3.3.1 Mapping of Interface Schemes

Before considering the individual interface stencils, it is important to understand how the

interface elements of Figure 3.3 may be used to construct the interface scheme for an
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arbitrary domain. Consider the sketched edge and corner stencils of Figure 3.4, shown in

their default orientation (described relative to the fine region). Throughout this section, it

is more convenient to map the global index set into a new, locally ordered set, I 7→ I ′. This

local numbering is used to indicate the orientation of the stencil and the relative position

of each node. The particular mapping between the global set, I, and these local sets, I ′,

depends on the global domain and constitutes an implementation issue.

1

2

3

4
5

(a) right-hand edge

1

2

3

4
5

6

(b) upper-right corner

Figure 3.4: Cartoon representation of interface stencil elements.

Consider now a simple box refinement on a square grid, where the inner box is refined by

a factor of two in each direction. To define the complete interface scheme for this grid, the

stencils of Figure 3.4 must be mapped to the four edge interfaces and four corner interfaces

of this grid. There are two obvious mapping alternatives: reflection or rotation. In the

former scheme, the upper edge is mapped from the original right-hand edge by reflection in

the line y = x, and the remaining edges are obtained by reflection in y = −x. Examination

of the corners, however, will reveal that the original upper-right corner cannot be simply

mapped to the upper-left or the lower-right corners. Using a counterclockwise rotation

mapping, though, all the geometries may be obtained from the original pair of Figure 3.4,

resulting in the numbering shown in Figure 3.5. The original stencils are shaded and the

transformed orientations are boxed.

The final step is to map the particular x- and y-derivatives to the edges and corners.

For this purpose, consider 90o rotations of a standard 5-point stencil in Figure 3.6. This

sequence generates Table 3.2, which shows how D̂x and D̂y in the original orientation are

mapped to the x- and y-derivatives in each of the other orientations. With this mapping

scheme, one solution for each interface type is sufficient for closure of the interfaces on an

arbitrarily refined grid.
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Figure 3.5: Example of a box-refined grid, showing mapping of interface elements to each
grid location.
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Figure 3.6: Counterclockwise rotations of a stencil about the origin.
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Edge orientation Corner orientation x-derivative y-derivative
Right Upper right D̂x D̂y

Upper Upper left −D̂y D̂x

Left Lower left −D̂x −D̂y

Lower Lower right D̂y −D̂x

Table 3.2: Transformations of the derivative matrices from the default orientation to other
orientations by rotation, following Figure 3.6

3.3.2 Interface Scheme Construction

Construction of the interface schemes has four steps:

1. Define interface matrices.

2. Form the accuracy equations from (3.2.6) and (3.2.7).

3. Form the stability equations (3.2.21) and (3.2.22).

4. Solve the resulting system of equations.

The interface matrices are defined from the interface node set Ii and its dependence set

Id (which includes the interface nodes, and may not be the same for x- and y-derivatives).

Dense n×mx matrix D̂x, n×my matrix D̂y, and n× n matrix Ĥ are assumed, the latter

to contain the influence of the interface within Id. The accuracy conditions are obtained

from equations (3.2.6), (3.2.7) and (3.2.8), resulting in the linear system of equations

∂f(z1,z2)

∂x
(xk, yk) =

1
∆x

∑
j∈Idx

D̂x,kjf(z1,z2)(xj , yj), (3.3.1)

∂f(z1,z2)

∂y
(xk, yk) =

1
∆y

∑
j∈Idy

D̂y,kjf(z1,z2)(xj , yj), (3.3.2)

formed for each k ∈ Ii, where (xk, yk) is the location of the node globally indexed by k.

For third-order accuracy, Table 3.1 shows that there are ten equations for each k for each

derivative. The stability equations are the elements of the m ×m matrices formed by the

left-hand sides of equations (3.2.21) and (3.2.22). These are quadratic equations in the

unknown elements of D̂x, D̂y and Ĥ. The resulting system of quadratic equations is solved

for the elements of the interface matrices, which is done numerically because of its very

large size.
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For a solution to exist at an interface, the norm H must have a specific form in the

interior regions of the domain, where equation (2.1.3) applies. Let Hc define the part of H

that corresponds to coarse interior nodes in Ic \ (Ii ∪ Ib), and similarly let Hf correspond

to the fine interior part If \ Ii. Then, we require

Hc = diag(1) = I, (3.3.3a)

Hf = diag(
1

rxry
) =

1
rxry

I, (3.3.3b)

i.e., H has 1 and 1/rxry on the diagonal in coarse and fine regions, respectively. A physical

intuition exists for this result: the norm, H, is effectively weighting the solution by the area

occupied by each cell; for refinement ratios rx = ry = 2, four fine cells occupy the same area

and have the same weight as one coarse cell. The interface solutions presented next also

fixed the diagonal of Ĥ to follow this scheme, although this is not essential to the existence

of a solution across the interfaces.

For each of the following interface solutions, the particular difference matrices D̂x and

D̂y used in Section 3.4 are too large to print but are available online with this thesis from the

Caltech Library. These matrices are sufficient for implementation of the interface scheme.

Row and column numbering of each matrix follows the local node numbering presented

in Sections 3.3.3–3.3.5. Note that each of the following systems involve many degrees of

freedom and in some cases these solutions are not unique. Optimization of the solution

families may be possible but has not been exhaustively investigated.

3.3.3 Edge Interface

The edge interface is the simplest of the four interface geometries, and the default orientation

is considered here to be that shown in Figure 3.3(a). It is clear that a special difference

stencil is required for the x-derivative across the interface, but examination of the difference

matrix for the y-derivative will show that it cannot satisfy equation (3.2.22) without a special

stencil too. With a five-point interior stencil, the interface region for the x-derivative must

include at least the first two nodes on either side of the change in discretization. It was

found that one additional point in each subrow was also required in the refined region.

Figure 3.7 shows the fourth-order interface stencil thus derived, each interface node being

formally third-order accurate. The dark-colored nodes (numbered above each node 1–8)
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comprise the interface set Ii for this stencil, and the gray nodes (together with the interface

nodes, the full set numbered below each node 1–30 for Dx and 1–24 for Dy) comprise the

dependence set, Id.
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Figure 3.7: Edge interface stencils for the fourth-order explicit scheme. Interface nodes
are numbered 1–8 on each stencil and the dependence sets 1–30 (x-derivative) and 1–24
(y-derivative).

For the x-derivative, the dependence set includes the natural extensions in the x-

direction of the stencils for nodes 1, 2 and 8. These adjacent noninterface nodes (9–12

and 21–22 of Id) have the interior dependence on nodes 1–4 on the fine side, and nodes 7

and 8 on the coarse side, linking the interface stencil to the interior regions. The y-derivative

does not have a natural dependence on those nodes, and since the accuracy conditions at

the interface may be resolved entirely within the stencil, its stencil has no need to include

them. However, both stencils include dependence on the coarse rows above and below the

row of interest, the x-derivative stencil needing the additional nodes to satisfy the accu-

racy conditions in the y-direction. The y-derivative at nodes 7 and 8 achieves third-order

accuracy with essentially a three-point stencil in that direction.

As the most basic of the interface geometries, the edge stencil is expected to tesselate

along interface edges and to be compatible with corner interfaces, as was assumed in Sec-

tion 3.3.1. An arbitrary edge solution may not do either of these things; of all the edge

solutions that exist, only a subset will have compatible corner solutions and, therefore, be

usable (or useful) in practice. The solution presented here was derived simultaneously with

the convex corner and corresponds to one particular member of the family of solutions. An

alternative formulation for the edge interface is presented in Appendix D.

Alongside this fourth-order solution, variations with different interior schemes were also
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investigated, the critical condition for existence of a solution being that H has the interior

form (3.3.3). A second-order edge solution (first-order at the interface) permits a smaller

interface set comprising only nodes 3–7 of Ii from the fourth-order stencil because of the

smaller three-point interior stencil. Dependence on the adjacent coarse rows is still required.

A rational solution is easily found for this case, as Ĥ has a particularly simple form. Also,

a sixth-order solution exists that is fifth order at the interface, with an appropriately larger

stencil.

3.3.4 Convex Corner Interface

The corner interface turns out to be a more challenging problem in the energy-stable SBP

context. The trade-off for satisfying the stability equations is a significant loss in the

accuracy of the interface stencil compared to the interior accuracy. In lieu of a formal

proof, experimentation with stencil sizes and interior schemes yielded the results shown in

Table 3.3: with a fourth-order interior scheme, the maximum accuracy achievable at every

node in the stencil is just first order, though most nodes can satisfy up to third order.

Interior order Edge order Corner order
second first zeroth
fourth third first
sixth fifth second

Table 3.3: Maximum accuracy achievable at every corner interface node with an SBP
formulation

Parameterization of the interior difference stencils reveals that it is the order of the

interior scheme rather than the particular coefficients that limits accuracy at the cor-

ner interface. For a centered five-point stencil from equation (2.3.1) with coefficients

(−α,−β, 0, β, α), there is a family of at least second-order accurate solutions with β =

1/2 − 2α, and a special case of α = −1/12, β = 2/3 that is fourth order (see Table 2.1).

Leaving α as a parameter when solving the accuracy conditions at the corner, the maxi-

mum accuracy achievable at all interface nodes is zeroth order, except in the special case of

α = −1/12, i.e., fourth order. Similarly with a seven-point interior scheme: from the family

of fourth-order stencils, only the special case of the sixth-order stencil gave a solution that

was at least second order everywhere.

For the fourth-order stencil shown in Figure 3.8, two nodes of Ii (14 and 15) are first
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order, three (8, 12 and 16) are second order, and the remainder are third-order accurate.

The dependence set includes the interface nodes (numbered 1–50). The positions of the low-

order nodes are not unique, but it is preferable to place them in the fine region where the

truncation error is minimized by the smaller ∆x. The most serious consequence of this result

is that average fourth-order convergence can no longer be expected by Gustafsson (1975);

at worst, despite using a fourth-order interior scheme, only second-order convergence could

be seen. Note, however, that since there exists no usable second-order solution (a zeroth-

order–accurate derivative is meaningless), the fourth-order stencil represents the lowest-

order interface solution that satisfies the stability criteria.
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Figure 3.8: Convex corner interface stencils for the fourth-order explicit scheme. Interface
nodes are numbered 1–24 and the dependence set nodes are numbered 1–50.

The extent of the convex corner interface is determined primarily by the extent of the

edge stencil. The inclusion of nodes 1 and 2 in the edge stencil demands that the corner

span at least two coarse rows/columns, so nodes 2–16 of the corner must be included to

avoid any ambiguity in the stencils at those nodes. The differences between the x- and

y-derivatives are limited to extensions of the stencils in the directions of the derivatives.
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Both stencils must be dependent on the adjacent edges for compatibility (both below and

to the left of the interface, nodes 1–8 and 43–50 of Id), but node 1 requires another two

nodes to its left (x) or below (y). The x-derivative stencil includes the interior nodes to the

right of coarse nodes 17–20 on which they are naturally dependent (nodes 33–36); similarly,

for the y-derivative, the coarse nodes above 21–24 are included (nodes 39–42).

The corner stencil has dense 24×50 derivative matrices D̂x and D̂y with many degrees of

freedom, so again a family of solutions exist. With the current edge stencil, the dependence

set may be customized so that all nodes need not be dependent on the full set. For example,

nodes 17–20 need not be dependent on nodes 41–50, etc. The stencils may also be optimized

to reduce the truncation error at the low-order nodes.

It should be noted that there exists a second-order corner interface that is locally first

order, which consequently could be used as a meaningful derivative approximation. Unfor-

tunately, this requires a modified stencil in the interior of the fine region: instead of the

usual three-point second-order central difference scheme, the five-point second-order stencil

with coefficients (−1/4, 0, 0, 0, 1/4) is needed, which has two serious deficiencies. First, the

grid resolution is not truly refined, as this modified stencil is equivalent to a staggered grid

with the double (coarse) refinement, and second, multiple refinement with this scheme is

not possible. Multiple refinement is dependent on any interface appearing locally identical,

regardless of its refinement relative to a global scale. If the fine region requires a special

stencil, then the same interface scheme cannot be used again in a second refinement of that

region, resulting in the loss of proper nesting of the AMR grid hierarchy.

3.3.5 Concave Corner Interface

The concave corner geometry suffers similar difficulties to those of the convex corner. Again,

for a fourth-order interior scheme, the maximum accuracy achievable at all nodes at the

interface is first order. Figure 3.9 shows the stencil derived here, with four first-order nodes

(nodes 5, 6, 17 and 18) and two second-order nodes (11 and 23). Note that for both corners,

these first-order nodes do, in fact, satisfy the accuracy conditions for the second-order cross-

derivative ∂2/∂x∂y in the Taylor series, as it is the second derivatives (∂2/∂x2 and ∂2/∂y2)

that present the closure problem. Further, at the concave corner, node 6 is second-order

accurate in x in the x-derivative, and node 18 in y in the y-derivative. This arrangement of

the low-order nodes was chosen to ensure symmetry of the corner and minimize the error
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at these points as far as is possible.
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Figure 3.9: Concave corner interface stencils for the fourth-order explicit scheme. Interface
nodes are numbered 1–28 and the dependence set nodes are numbered 1–58.

Once again, the extent of the concave corner interface is determined by the edge scheme,

the potential ambiguity here occurring at the coarse nodes 25–28. The dependence set again

includes the adjacent edge row/column (above and to the left of the interface set, nodes

1–8 and 51–58 of Id) and the natural stencil extensions in the x- and y-directions. The

large 28× 58 stencil is a consequence of this geometry being dominated by the fine region,

but optimization and customization of the dependence sets for each individual node of the

stencil can potentially reduce the density of the derivative matrices somewhat.

While the convex corner interface solution was obtained simultaneously with the edge

interface to ensure compatibility, it is not necessary to do the same with the concave corner:

a solution was found using the previously derived edge solution. This keeps each stencil

derivation problem to a size that is feasible to solve on a modern desktop computer.
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3.3.6 Truncation Errors

In Table 3.4, the effect of reduced accuracy at the interfaces on the derivative approximations

is quantified. Shown are the maximum truncation error terms for each interface scheme,

in each derivative direction, and the node in the stencil at which this error occurs. This

analysis assumes that ∆x = ∆y, as different cell aspect ratios will favor certain terms over

others. We see that the largest truncation terms for the edge interface are mixed derivatives,

whereas at the corners the second-order mixed derivative is specifically set to zero so the

greatest error appears in the higher derivatives in the direction of the approximation.

Edge Convex corner Concave corner

Max error, ∂/∂x −1.984∆x3∆y −1.0183∆x2 −3.087∆x2

Location node 3 node 15 node 17

Max error, ∂/∂y −20.129∆x2∆y2 −1.0325∆y2 −2.825∆y2

Location node 6 node 14 node 5

Table 3.4: Maximum absolute truncation errors, and the node at which this occurs, for each
interface geometry assuming ∆x = ∆y

3.3.7 Refinement Region Topology

Having now defined the full set of interior interface stencils, it is clear that there are a few

rules that must be imposed on a refinement scheme such that only these stencils are required

to close the interfaces. The basic principle is to avoid interference between corners caused by

overlapping dependence sets, such that the elements of HD +DTH are the same as those

in equations (3.2.21) and (3.2.22) from the original definitions of the individual stencils.

Thus in a refined region, any two corners must be separated by at least two coarse cells,

and since each corner itself occupies two coarse cells in each direction, the minimum length

of any side of a refinement region is six coarse cells. Similarly, the minimum separation

between two parallel refined regions is eight coarse cells. For multiple levels of refinement,

to preserve the independence of each interface, at least seven intermediate cells are required

between consecutive refinement interfaces.

Near boundaries, the dependence sets of the interface and boundary closures are per-

mitted to overlap, because the contribution of the boundary stencil to equations (3.2.21)–

(3.2.22) will be the same as the interior stencil expected by the interface. For a four-point

boundary stencil with a six-point dependence set, the minimum separation between the
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domain boundary and an interface is eight cells. With periodic boundary conditions, the

interface may extend to the boundary as long as the refinement scheme is periodic also.

3.4 Validation Problems

3.4.1 Advecting Wave

For the first test example, consider the scalar advection equation (3.1.1) with a = b = 1,

given by

∂u

∂t
+
∂u

∂x
+
∂u

∂y
= 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, t ≥ 0, (3.4.1)

u(0, y, t) = sin [ω (y − 2t)] ,

u(x, 0, t) = sin [ω (x− 2t)] ,

u(x, y, 0) = sin [ω (x+ y)] ,

with a frequency parameter ω = 2π. This has an analytic solution

u(x, y, t) = sin [ω (x+ y − 2t)] , (3.4.2)

which is used to evaluate the accuracy of the numerical method.

To show that the interface schemes do possess the claimed stability properties, we ex-

amine the spectrum of the semidiscrete form of equation (3.4.1),

du
dt

=
(
− 1

∆x
Dx −

1
∆y

Dy

)
u− gx

∆x
− gy

∆y
. (3.4.3)

Time stability of this equation (with ∆x = ∆y) demands that the matrix (−Dx−Dy) have

eigenvalues with nonpositive real parts. This matrix has a structure strongly dependent

on the grid and its refinement. Two refinement schemes are considered to demonstrate

by example that the interface schemes are stable. For the first case of a box refinement,

the central third of the domain is refined in each direction by the usual factor of two.

The resulting grid has only edge and convex corner interfaces. The second grid of a cross

refinement, has a “+”-shaped refined region in the center of the domain, which is three-

fifths the width and height of the domain and occupies one-fifth of the total area. It has
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eight convex corner interfaces and four concave, with edges in between, providing a test of

the three interface solutions together. Both are shown schematically in Figure 3.10.

(a) box refinement (b) cross/cross + box refinement

Figure 3.10: Diagrams of the grids used for the validation problems. Shaded regions are
refined by a factor of two in each direction compared to the base grid and dashed lines
indicate the division of the domain into blocks. The darker shaded region on (b) shows the
location of the second level of refinement for the cross + box grid.

For our demonstration, each grid is divided into blocks of eight coarse cells per side.

The box refinement has three blocks in each direction, resulting in a 24 × 24 grid before

refinement. The cross refinement has five blocks and a 40 × 40 coarse grid. With the

refinements described, the grids have 768 and 2560 nodes, respectively. Figure 3.11 shows

the eigenvalues of (−Dx −Dy) in each case, both using the fourth-order explicit boundary

scheme from Appendix E.5 and SAT parameter τ = 2 at the boundary. Note that it is

the presence of boundaries alone that results in the spectra having any nonzero real part;

the equivalent spectra for domains with periodic boundaries are purely imaginary. This is

consistent with the assertion that the interface schemes introduce no additional numerical

dissipation.

Two features of Figure 3.11 stand out. First, there appear to be a significant number

of eigenvalues on or near the vertical axis. Closer inspection reveals that the maximum

real part in each example is very small O(10−13) but clearly nonpositive, so the stability

criteria is satisfied with all eigenvalues indeed lying in the left half plane. Second, the

maximum imaginary part is large relative to the minimum real part, especially compared

to the spectrum for a similar uniform grid. This number affects the stability limit of the
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(a) spectrum for box refinement
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(b) spectrum for cross refinemet

Figure 3.11: Spectra of the matrices (−Dx−Dy) for the test domains, including boundaries
by the SAT scheme with τ = 2.
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time-marching scheme used to implement equation (3.4.1): for a third-order Runge-Kutta

scheme (RK32 from Butcher, 2003) and advection velocities a = b = 1, we find the time

discretization limit (based on the refined scale ∆x)

∆t / 0.16∆x. (3.4.4)

This agrees with the stability limit observed in practice. Note that this limit may be

extended by using a fourth-order Runge-Kutta scheme, and is dependent on the value of τ

at the boundaries.

For the convergence study, a third grid with an additional level of refinement is consid-

ered. The cross + box refinement is based on the cross refinement previously described, but

with the middle quarters of the subblock at the center of the cross refined in each direction

(one quarter of its area), for a total refinement factor of 4 across the grid and demonstrating

the interface scheme across multiple levels of refinement (see Figure 3.10). All simulations

use the fourth-order interface schemes described in Section 3.3. Table 3.5 shows the results

from the convergence study on the cross and cross + box refinements, both run to a time

t = 1 (two periods) with a CFL number of 1/8. The twice-refined grid is stable at this CFL

when based on its finest grid scale.

Cross refinement Cross + box refinement
coarse ∆x log10(L2) rate log10(L∞) rate log10(L2) rate log10(L∞) rate

1/40 −2.004 −1.173 −2.011 −1.060
1/60 −2.489 2.75 −1.584 2.34 −2.518 2.88 −1.314 1.44
1/80 −2.817 2.62 −1.791 1.65 −2.819 2.41 −1.609 2.37
1/120 −3.304 2.76 −2.145 2.01 −3.299 2.72 −2.109 2.84
1/160 −3.642 2.71 −2.350 1.64 −3.641 2.74 −2.403 2.36
rate 2.72 1.94 2.69 2.31

Table 3.5: Convergence results for the advection equation on patch-refined grids

It is immediately clear from these results that a fourth-order convergence rate is not

achieved. Average convergence (in the L2-norm) is approximately third order, but the

point-wise L∞-norm converges at closer to a second-order rate. This could be expected

with the presence of first-order nodes in the domain, but it appears that in the averaged

sense, the rate is a little better. Note that the number of first-order (and second-order)

nodes is fixed, a function of the geometry of the refinement rather than the resolution itself.

In the convergence study on the cross refinement, there are 32 first-order points; at the
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coarse resolution, this represents 1.25% of the grid, while at the finest resolution (coarse

∆x = 1/160) this is just 0.08%.

There is a computational payoff for the ability to refine the grid locally to mitigate the

lost convergence rate and accuracy. A simple comparison was made between the cross +

box grid and a uniform grid of equivalent resolution. For the twice-refined grid, a coarse

discretization of 1/40 gives ∆x = 1/160 in the most refined region and a total of 2752 nodes.

The appropriate comparison is therefore to a uniform grid with that resolution having 25,600

nodes. In testing, without optimization of the interface scheme implementation, the uniform

grid took 10–13 times longer to reach t = 1 with the same time step. This offers some saving

beyond the factor of ∼9.3 reduction in the problem size with the locally refined grid, despite

the cost of the matrix multiplication operations at interfaces.

3.4.2 Inviscid Compressible Vortex

For the second example, a nonlinear problem is considered to demonstrate more generally

the stability of the interface schemes. As in Section 2.6.4, the dimensionless compressible

Euler equations from Appendix E.2, with parameter β = (γ − 1)/2,

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (3.4.5)

∂

∂t
(ρu) +

∂

∂x

(
ρu2 +

p

γM2
0

)
+

∂

∂y
(ρuv) = 0, (3.4.6)

∂

∂t
(ρv) +

∂

∂x
(ρuv) +

∂

∂y

(
ρv2 +

p

γM2
0

)
= 0, (3.4.7)

∂

∂t

(
p

γM2
0

+ βρ
(
u2 + v2

))
+

∂

∂x

(
pu

M2
0

+ βρu
(
u2 + v2

))
+

∂

∂y

(
pv

M2
0

+ βρv
(
u2 + v2

))
= 0, (3.4.8)

are implemented with a normalization in terms of far-field values, ρ0 and p0, and a veloc-

ity scale, u0, which are incorporated into the Mach number parameter, M0. Using again

the constant-entropy (Lamb-Oseen) vortex from Appendix F.2 with the tangential velocity

profile
uθ
u0

=
r0

r

(
1− e

− r
2

r20

)
, (3.4.9)
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and pressure distribution

p

p0
=

1− (γ − 1)M2
0

 r2
0

2r2

(
1− e

− r
2

r20

)2

+ Ei
(
−2

r2

r2
0

)
− Ei

(
−r

2

r2
0

)
γ
γ−1

, (3.4.10)

where r =
√
x2 + y2, and r0 is the core radius of the vortex, results are presented here for

γ = 1.4, M0 = 1.2 and r0 = 4/25.

The Lamb-Oseen vortex is preferred for this work over the more familiar Taylor vortex,

despite having algebraic (1/r) rather than exponential decay of the core strength, because

it is stable to axisymmetric perturbation while the Taylor vortex is not. With the lack

of numerical dissipation in these interface schemes, numerical error can provide sufficient

perturbation to induce this instability. Because of this algebraic decay, in order to keep

the domain to a side length of 4, exact boundary conditions are imposed using the analytic

solution, as in Section 2.6.

Both stationary and convecting vortex cases are considered, the latter having a convec-

tion velocity of (0.2, 0.3) across the domain. In both cases the vortex is initially located

at the center of the domain, as shown in Figure 3.12(a). Figure 3.12(b) shows the final

location of the convecting vortex at time t = 1. Dashed lines indicate the boundaries of

the refined region for the box refinement (a) and the cross + box refinement (b). These

two grids, along with the cross refinement, are as described for the advection problem, but

scaled to the larger domain of this problem.

Table 3.6 shows the results of the convergence study with the convecting vortex. Here, a

CFL number of 1/10 was used for the cross grid and 1/12 for the cross + box grid. For the

nonlinear problem, the same third-order average (L2) convergence is seen, while uniform

convergence is similar or marginally better than the linear problem, nearing third order in

some cases. This confirms the observation that at least one order of convergence is lost

from the interior scheme when corner interfaces are present.

A better convergence result is obtained for the case of the vortex on the box refinement

grid. As shown in Table 3.7, near–fourth-order convergence is seen, at least in the L2-norm.

For comparison, results for the advection problem on the same grid are shown alongside,

where near–third-order L2 convergence is seen as in Table 3.5. Promisingly for future

adaptive use of the interface scheme, the vortex problem on the box refinement grid is the
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Figure 3.12: Contours of vorticity for the convecting Lamb-Oseen vortex, showing initial
and final positions. Color scale is log10(ω). Grid interfaces are indicated by dashed lines,
(a) showing box refinement interfaces, (b) showing cross + box refinement.
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Cross refinement Cross + box refinement
coarse ∆x log10(L2) rate log10(L∞) rate log10(L2) rate log10(L∞) rate

1/10 −1.858 −0.934 −1.750 −0.859
1/15 −2.325 2.65 −1.320 2.19 −2.255 2.87 −1.332 2.69
1/20 −2.680 2.83 −1.678 2.87 −2.618 2.90 −1.678 2.77
1/30 −3.190 2.90 −2.158 2.72 −3.126 2.89 −2.125 2.54
1/40 −3.538 2.78 −2.404 1.97 −3.465 2.72 −2.398 2.18
rate 2.81 2.51 2.86 2.57

Table 3.6: Convergence results for the convecting vortex problem on patch-refined grids

only case where the refinement followed the feature of interest (see the relative positions of

the vortex core and the box in Figure 3.12). The advection examples represent something

of a worst case, where refinement occurs independently of the discretized field. In practice,

regions of refinement would be placed in areas of steepest gradients, thus minimizing the

truncation error at the interfaces and leading to convergence performance that should be

no worse than that seen in these examples.

Advection problem Stationary vortex problem
N log10(L2) rate log10(L∞) rate log10(L2) rate log10(L∞) rate
24 −1.766 −0.957 −1.757 −1.444
30 −2.006 2.48 −1.102 1.49 −2.179 4.35 −1.895 4.65
48 −2.568 2.75 −1.446 1.69 −3.041 4.22 −2.661 3.75
60 −2.808 2.48 −1.595 1.53 −3.427 3.99 −2.910 2.57
120 −3.605 2.65 −2.226 2.10 −4.418 3.29 −3.403 1.64
rate 2.64 1.81 3.82 2.80

Table 3.7: Convergence results for advection and stationary vortex problems on the box-
refined grid
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Chapter 4

Navier-Stokes Simulation of the
Richtmyer-Meshkov Instability

This chapter presents an investigation of the shock-reflected Richtmyer-Meshkov (RM) in-

stability by a linearized Navier-Stokes simulation utilizing the grid refinement schemes of

Chapter 2. Analysis of the instability begins with solution of the Riemann problem for a

shock incident on a density interface in Section 4.1. Existing analytic models of the RM

instability are presented in Section 4.2, to be used for comparison with the simulation re-

sults. The linearized Navier-Stokes equations and the numerical method by which these

are implemented are described in Sections 4.3–4.5. Results of the simulation and discussion

follow in Sections 4.6–4.7.

Note that throughout this chapter, “interface” will refer to the physical contact region

between light and heavy fluids, whether distributed or not. This is not to be confused

with the grid interfaces discussed in the previous chapters, which refer to a property of the

numerical discretization of a physical domain.

4.1 The Riemann Problem

The generalized Riemann problem may be used as an inviscid one-dimensional model of the

base flow for the RM instability. For now, shocks and the density interface are approximated

as strict discontinuities. The x-t diagram for the problem of interest for this study is shown

in Figure 4.1. We restrict our attention to choices of the initial states such that the Riemann

problem for t > 0 has a two-shock solution based on states 1 and 0′. This situation arises

when the incident shock travels from the light fluid into the heavy fluid and γ0 = γ0′ . The
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alternative situation of a reflected rarefaction and transmitted shock is not considered here

(see instead Yang et al., 1994; Wouchuk, 2001b).

x

t

R

I

T

CD

1

0 0!

32

Figure 4.1: The x-t diagram for the Riemann problem in air with MI = 1.21, ρ0′/ρ0 = 4.
The reference frame is such that the interface is stationary for t < 0.

Initially, states 0 and 0′ are quiescent with ρ0 < ρ0′ , and are separated by the contact

discontinuity (CD). Upon impact of the incident shock (I), defined as occurring at time

t = 0, a shock is transmitted (T) and reflected (R) and the contact is set in motion with

a velocity ∆U . From the initial states, the entire solution may be determined in terms of

the incident shock Mach number MI and the isentropic ratios γ0 and γ0′ in each fluid by

solution of the Riemann problem.

Velocities us are defined for each state s in a reference frame such that the interface

is stationary for t < 0. Thus u0 = u0′ = 0, and the impulsive velocity transferred to the

interface upon impact, ∆U = u2 = u3. Uppercase velocities UI, UR and UT refer to the

incident, reflected and transmitted shock velocities in this frame, respectively. The shock

Mach numbers are defined as the ratio of the shock speed, relative to the unprocessed fluid

ahead of the shock, to the sound speed in this fluid:

MI = (UI − u0)/a0 = UI/a0, (4.1.1)

MR = (UR − u1)/a1, (4.1.2)

MT = (UT − u0′)/a0′ = UT/a0′ . (4.1.3)
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This problem is then solved by applying the Rankine-Hugoniot shock jump conditions across

each shock.

4.1.1 Incident Shock Jump Condition

The incident shock is a normal shock moving into a stationary fluid (u0 = 0). Applying the

normal shock jump condition, we obtain

UI − u1 =
2 + (γ0 − 1)M2

I

(γ0 + 1)M2
I

UI,

which may be rearranged for the speed in state 1, u1, to give

u1 = UI

(
1−

2 + (γ0 − 1)M2
I

(γ0 + 1)M2
I

)
. (4.1.4)

Since UI = MIa0, where a0 is the speed of sound in the fully specified state 0, this equation

may be evaluated directly for u1. Density and pressure in state 1 follow simply from the

normal-shock relations:

ρ1 = ρ0
(γ0 + 1)M2

I

2 + (γ0 − 1)M2
I

, (4.1.5)

p1 = p0
2γ0M

2
I − γ0 + 1
γ0 + 1

. (4.1.6)

4.1.2 Transmitted Shock Jump Condition

Like the incident shock, the transmitted shock is moving into a stationary fluid (u0′ = 0),

so UT = MTa0′ , where a0′ is the known speed of sound in the heavy fluid. Applying the

normal shock jump condition,

UT − u3 =
2 + (γ0′ − 1)M2

T

(γ0′ + 1)M2
T

UT,

from which we obtain

u3 = UT

(
1−

2 + (γ0′ − 1)M2
T

(γ0′ + 1)M2
T

)
, (4.1.7)
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ρ3 = ρ0′
(γ0′ + 1)M2

T

2 + (γ0′ − 1)M2
T

, (4.1.8)

p3 = p0
2γ0′M

2
T − γ0′ + 1
γ0′ + 1

. (4.1.9)

Note that from continuity of pressure across the initial (stationary) interface, p0′ = p0, and

in the heavy fluid, the ratio of specific heats is given by γ0′ .

4.1.3 Reflected Shock Jump Condition

For the reflected shock, care is required when applying the jump conditions because the

shock propagates into a moving fluid. In this case,

UR − u2 =
2 + (γ0 − 1)M2

R

(γ0 + 1)M2
R

(UR − u1),

which gives the expression for the velocity in state 2

u2 = UR + (u1 − UR)
2 + (γ0 − 1)M2

R

(γ0 + 1)M2
R

. (4.1.10)

A more useful form, in terms of the unknowns u2 and MR alone, is given by

u2 = u1 + a1MR

(
1−

2 + (γ0 − 1)M2
R

(γ0 + 1)M2
R

)
. (4.1.11)

The density and pressure in region 2 are given by the familiar relations, in terms of the

as-yet unknown reflected shock Mach number MR:

ρ2 = ρ1
(γ0 + 1)M2

R

2 + (γ0 − 1)M2
R

, (4.1.12)

p2 = p1
2γ0M

2
R − γ0 + 1
γ0 + 1

. (4.1.13)

The solution follows by noting that velocity and pressure are continuous across the

interface (CD): i.e., u2 = u3, and p2 = p3. Equating (4.1.11) to (4.1.7) and (4.1.13)

to (4.1.9) with the appropriate substitutions, the following two equations are obtained in

terms of the unknown Mach numbers MR and MT, with only the incident Mach number
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MI as a parameter:

a0′MT

(
2(M2

T − 1)
(γ0′ + 1)M2

T

)
= a0MI

(
2(M2

I − 1)
(γ0 + 1)M2

I

)
+ a1MR

(
2(M2

R − 1)
(γ0 + 1)M2

R

)
, (4.1.14)

2γ0′M
2
T − γ0′ + 1
γ0′ + 1

=
(

2γ0M
2
I − γ0 + 1
γ0 + 1

)(
2γ0M

2
R − γ0 + 1
γ0 + 1

)
, (4.1.15)

where a1 =
√
γ0p1/ρ1 = a1(γ0,MI). This system is straightforward to solve numerically,

and from this solution the entire flow field can be built up.

Solutions for the parameter values chosen for simulation are shown in Table 4.1. The

pre-shock Atwood number, A, and post-shock Atwood number, A+ are defined in terms of

the density solution by

A =
ρ0′ − ρ0

ρ0′ + ρ0
, and A+ =

ρ3 − ρ2

ρ3 + ρ2
.

In all cases, both light and heavy gases are air with γ0 = γ0′ = 1.4. State 0 (the reference

state) is at standard atmospheric conditions having density ρ0 = 1.205 kg/m3 and pressure

p0 = p0′ = 101.3 kPa. Velocities are normalized relative to the incident shock velocity UI.

MI 1.05 1.05 1.21 1.21 2.20 2.20
MT 1.0552 1.0672 1.2333 1.2884 2.3570 2.7493
UT 0.8205 0.5082 0.8322 0.5324 0.8748 0.6248
MR 1.0049 1.0161 1.0183 1.0616 1.0633 1.2232
UR −0.8951 −0.9060 −0.6321 −0.6703 0.002562 −0.09645
ρ0′ 1.5 4.0 1.5 4.0 1.5 4.0
u1 0.07748 0.07748 0.2642 0.2642 0.6612 0.6612
ρ1 1.0840 1.0840 1.3590 1.3590 2.9512 2.9512
p1 1.1196 1.1196 1.5415 1.5415 5.4800 5.4800

∆U 0.06965 0.05166 0.2376 0.1764 0.5978 0.4518
ρ2 1.0928 1.1132 1.4005 1.4999 3.2655 4.0781
p2 1.1323 1.1621 1.6079 1.7699 6.3149 8.6517
ρ3 1.63914 4.4526 2.0992 5.9818 4.7369 14.445
p3 1.1323 1.1621 1.6079 1.7699 6.3149 8.6517
A 0.2 0.6 0.2 0.6 0.2 0.6

A+ 0.19999 0.59998 0.1996 0.5991 0.1839 0.5597

Table 4.1: Riemann solutions for the parameter sets used in the simulations of the
Richtmyer-Meshkov instability. Values shown are normalized by ρ0, p0 and UI, as ap-
propriate.
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4.2 Models of the Instability

4.2.1 Impulsive Model

The simplest model for the Richtmyer-Meshkov instability, proposed originally by Richtmyer

(1960), approximates the problem by an impulsively accelerated perturbed interface of zero

thickness between two inviscid and incompressible fluids. If the interface is assumed to have

small amplitude, the velocity perturbations in each fluid are also small and the problem may

be linearized. From this model, as shown in detail in Appendix G, we obtain the familiar

linear growth in time for the interface perturbation amplitude:

h(t) = h(0) [1 + A∆Ukt] , (4.2.1)

where A is the Atwood number, ∆U is the post-shock speed of the interface, and k is

the wave number of the perturbation. Closer analysis of the impulsive problem and the

experiments of Meshkov (1969) indicate that post-shock values should be used for the

initial amplitude h(0) and the Atwood number. This gives a more precise definition of the

perturbation growth rate as

h(t) = h(0+)
[
1 + A+∆Ukt

]
, (4.2.2)

where h(0+) is the initial post-shock amplitude of the perturbation (taking into account

compression of the interface by the shock), and A+ is the post-shock Atwood number.

The post-linear regime is beyond this study, but nonlinear models do exist (e.g., Zhang

and Sohn, 1997; Herrmann et al., 2008), and experimental evidence points to the growth

becoming nonlinear at late times (Collins and Jacobs, 2002). At this point, the interface has

transitioned from sinusoidal through the appearance of “bubbles and spikes” to the onset

of turbulence. In this work, the focus is on the start-up and early-time linear behavior of

the interface perturbation.

4.2.2 Viscous Model Corrections

Viscous effects on the RM instability have generally been ignored, due to the flow regime

in which the problem is usually studied, with the exception of models by Mikaelian (1993)
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and Carlès and Popinet (2001). In each case, viscosity damps the growth of the instability,

though the models disagree strongly as to the extent of the attenuation. Both models begin

with a linearization of the incompressible viscous Navier-Stokes equations, but use different

approaches to solve the resulting equations. The Mikaelian model assumes the same x-

velocity profile in each fluid as the impulsive model, thus ignoring any contribution from

viscosity in the x-direction, while Carlès and Popinet approximate viscous effects at the

interface analogous to a boundary layer and use matched asymptotic expansions to extend

the solution to the outer inviscid region.

The resulting solutions give the following perturbation amplitude models: for Mikaelian,

h(t) = h(0)
[
1 + A∆U

1
2kν

(
1− e−2k2νt

)]
, (4.2.3)

where the kinematic viscosity is an averaged value

ν = (µ2 + µ3)/(ρ2 + ρ3), (4.2.4)

and for Carlès and Popinet,

h(t) = h(0)
[
(1 + A∆Ukt)− 16

3
√
π

√
ρ1µ1
√
ρ2µ2

(ρ1 + ρ2)(
√
ρ1µ1 +

√
ρ2µ2)

A∆Uk2t3/2
]
, (4.2.5)

where an additional higher-order factor of the second mode (e2iky) has been neglected, as

this cannot be expressed in the linear formulation used in this work. The neglected term is

of order k3t2, so is vanishingly small in the cases considered here. Following the impulsive

model, for both models the initial amplitude h(0) and Atwood number A are taken as the

post-shock values.

Simulations of the impulsive problem with viscous incompressible fluids, performed by

Carlès and Popinet, show that their model predicts the viscous effect significantly better.

This fact notwithstanding, both models are used to compare against the simulations shown

in Section 4.6.

4.2.3 Distributed Interface Effect

Most models of the RM instability assume that the interface is a strict discontinuity, but

the amplitude growth rate may be significantly altered by finite density gradients. Experi-
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mentally, significant attenuation has been seen where the interface thickness is on the order

of 10% of the perturbation wavelength (Jones and Jacobs, 1997; Collins and Jacobs, 2002).

Analytic models for this effect exist, beginning with Mikaelian (1991), where both hyper-

bolic tangent and error function interface approximations were considered, the effect being

similar for profiles of similar thickness. In Brouillette and Sturtevant (1994), a modified

growth rate
dh(t)

dt
=

A∆Uk
ψ

h(0+), (4.2.6)

is proposed, where ψ is an eigenvalue of the Sturm-Liouville boundary value problem

1
ρ

(
ρ

df
dy

)
−
(

1− ψ

kA
1
ρ

dρ
dy

)
k2f = 0, f → 0 as y → ±∞. (4.2.7)

The Jacobs experiments show good agreement with this result.

For the simulations performed here, where k∆C < 0.02 so thickness is no more than

0.3% of the perturbation wavelength, there is no noticeable effect due to the distributed

interface. The Mikaelian (1991) model predicts a growth rate indistinguishable from the

impulsive model, so this effect may be safely neglected in this study.

4.2.4 Characteristic Start-Up Time

In Lombardini (2008), a modified version of the impulsive theory is used to characterize

the start-up process of the RM instability, leaving the asymptotic growth rate, ḣ∞, as a

parameter of the model. The key extension of this model is the imposition of moving plane

boundaries at the trailing edges of each shock, recognizing that in the early growth phase of

the instability, the proximity of the reflected and transmitted shocks will trap waves in the

interface region and alter the initial growth rate. At later times, the effect of these finite

boundaries diminishes as the shocks move further away, and so the model approaches the

infinite-boundary state of the impulsive theory.

The key result is a characteristic time scale τ , during which the proximity of the shocks

affects the interface growth rate. This is defined by

τ =
1
2k

(
1−A+

−(UR − u2)
+

1 + A+

UT − u3

)
, (4.2.8)

where A+ is the post-shock Atwood number, UR is the reflected shock speed, UT is the
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transmitted shock speed, and u2 = u3 is the speed of the interface, all defined as in Sec-

tion 4.1. Note that (UR−u2) < 0 and (UT−u3) > 0 are the shock speeds in the post-impact

frame in which the interface is stationary for t > 0. For time t � τ , the linear asymptotic

growth rate is recovered.

4.2.5 Asymptotic Linear Theory

The final model that will be compared to our numerical results is that of Wouchuk (2001a).

This is an inviscid model that uses a truncated series expansion of the linearized RM

problem, and captures the main physical phenomena driving the instability: the initial

deposition of vorticity on the interface by the incident shock, bulk vorticity generated behind

the reflected and transmitted shocks, and reverberation of sound waves between the shock

fronts. It has been shown to accurately predict asymptotic growth rates (Wouchuk, 2001a;

Herrmann et al., 2008; Lombardini, 2008).

From Wouchuk and Nishihara (1997), the asymptotic growth rate of the perturbation

amplitude is given exactly (in the linear theory) by

ḣ∞ =
−ρ3v3(0+) + ρ2v2(0+)

ρ3 + ρ2
+
ρ3F3 + ρ2F2

ρ3 + ρ2
, (4.2.9)

where the state numbering follows Section 4.1, and v2(0+) and v3(0+) are the tangential

velocities at the interface in each fluid immediately after impact. The functions F2 and F3

are central to the improved prediction of this model, as they represent the sonic interactions

between the shocks and the interface. These functions cannot be calculated analytically, so

are approximated by a truncated series expression.

For weak shocks, the first term of equation (4.2.9) is dominant, the model giving results

similar to the impulsive model (4.2.2). The second term becomes more important as shock

strength increases (or for highly compressible fluids), adding a correction for the vorticity

generated by the shocks upon impact.

To summarize this section, presented in Table 4.2 is a comparison of the asymptotic

growth rate predictions ḣ∞/kh(0−) by equations (4.2.2) and (4.2.9) for each of the param-

eter cases defined in Table 4.1. Also shown is the start-up time scale τ , scaled by wave

number, defined by equation (4.2.8).
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Incident shock MI 1.05 1.05 1.21 1.21 2.20 2.20
Pre-shock A 0.2 0.6 0.2 0.6 0.2 0.6
Post-shock A+ 0.19999 0.59998 0.1996 0.5991 0.1839 0.5597
Impulsive model ḣ∞ 0.01295 0.02934 0.03616 0.08703 0.04421 0.1386
Wouchuk model ḣ∞ 0.01341 0.03010 0.04058 0.09303 0.06030 0.1556
kτ from (4.2.8) 1.2137 1.9612 1.4688 2.4826 2.8224 4.9086

Table 4.2: Predictions for the asymptotic growth rate ḣ∞/kh(0−), using the impulsive model
and Wouchuk (2001a) model, and the characteristic start-up time proposed by Lombardini
(2008), for each case from Table 4.1.

4.3 Linearized Navier-Stokes Equations

For this investigation of the Richtmyer-Meshkov instability, we solve the Navier-Stokes

equations in 2-D, linearized about a fully resolved numerical solution for the base flow, in a

frame of reference in which the interface is stationary for t < 0. Shocks and the interface are

treated as continuous features, and it is assumed that the perturbation amplitude remains

small throughout the simulation. The problem is also simplified to consider a single fluid,

such that γ0 = γ0′ = γ.

Starting with the general compressible Navier-Stokes equations for a Newtonian fluid

with zero bulk viscosity and Fourier heat conduction, we define two-dimensional Cartesian

axes (x, y) where the shocks propagate in the direction parallel to the x-axis. Following the

derivation presented in Appendix E.3, these assumptions yield the system

∂ρ

∂t
+
∂(ρu)
∂x

+
∂(ρv)
∂y

= 0, (4.3.1)

∂(ρu)
∂t

+
∂(ρu2)
∂x

+
∂(ρuv)
∂y

= −∂p
∂x

+ µ

(
4
3
∂2u

∂x2
+

∂2v

∂x∂y
+
∂2u

∂y2

)
, (4.3.2)

∂(ρv)
∂t

+
∂(ρuv)
∂x

+
∂(ρv2)
∂y

= −∂p
∂y

+ µ

(
∂2v

∂x2
+

∂2u

∂x∂y
+

4
3
∂2v

∂y2

)
, (4.3.3)

∂

∂t

(
ρe+

1
2
ρ(u2 + v2)

)
+

∂

∂x

(
ρue+

1
2
ρu(u2 + v2)

)
+

∂

∂y

(
ρve+

1
2
ρv(u2 + v2)

)
= −∂(pu)

∂x
− ∂(pv)

∂y
+ κ
(∂2T

∂x2
+
∂2T

∂y2

)
+ µ

[
4
3
∂

∂x

(
u
∂u

∂x

)
+

∂

∂x

(
v
∂v

∂x
+ v

∂u

∂y

)
+

∂

∂y

(
u
∂v

∂x
+ u

∂u

∂y

)
+

4
3
∂

∂y

(
v
∂v

∂y

)]
. (4.3.4)

It is assumed that µ and κ are constant, an acceptable approximation for weaker shocks

where the change in temperature is small. For the strongest shock considered here, MI =

2.20, the difference in the velocity profiles due to this assumption is no greater than 10%
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(see Figure F.1 for a comparison).

For the equation of state, a perfect gas is specified such that

p = ρRT, (4.3.5)

e = CV T =
1

γ − 1
p

ρ
. (4.3.6)

The latter result allows e to be eliminated from the energy equation. The resulting equations

are then nondimensionalized, as in Appendix E.1, where the reference parameters ρ0 and

p0 are defined at state 0, and the velocity scale is the incident shock velocity, UI, defined in

Section 4.1. A length scale is provided by the mean free path in state 0, `0, given by

`0 = ν0
8
5

√
2

πRT0
, (4.3.7)

where ν0 is the kinematic viscosity of the fluid in state 0. This is then clearly a viscous

length scale. For the parameter values used in these simulations, with state 0 the same for

all cases (Table 4.1), `0 = 6.65 × 10−8 m. Note that physical time is scaled by `0/UI, so

one nondimensional time unit corresponds to O(10−10) seconds, depending on the value of

UI. For expediency, from this point onward throughout this chapter, all variables refer to

nondimensional values, without change in notation, unless otherwise noted.

We now propose a form for the solution to equations (4.3.1)–(4.3.4) that represents a

small sinusoidal perturbation in the y-direction of a 1-D base flow:

u = ū(x, t) + εu′(x, t)eiky, (4.3.8)

v = εv′(x, t)eiky, (4.3.9)

ρ = ρ̄(x, t) + ερ′(x, t)eiky, (4.3.10)

p = p̄(x, t) + εp′(x, t)eiky, (4.3.11)

where the small parameter ε� 1, the overbar indicates the base flow variables that are one

dimensional but generally unsteady, and prime quantities are the first-order perturbation

variables. The wave number k is generally complex. Substituting equations (4.3.8)–(4.3.11)

into the nondimensional form of equations (4.3.1)–(4.3.4), and expanding in powers of ε, at
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order ε0 we obtain for the base flow

∂ρ̄

∂t
= −∂(ρ̄ū)

∂x
, (4.3.12)

∂(ρ̄ū)
∂t

= − ∂

∂x

(
p̄

γM2
I

+ ρ̄ū2 − 4
3

1
Re

∂ū

∂x

)
, (4.3.13)

∂

∂t

(
p̄

γM2
I

+ βρ̄ū2

)
= − ∂

∂x

(
p̄ū

M2
I

+ βρ̄ū3 − 1
PrReM2

I

∂T̄

∂x
− 4

3
γ − 1

Re
ū
∂ū

∂x

)
, (4.3.14)

where β = (γ − 1)/2. These are the familiar (nonlinear) 1-D compressible Navier-Stokes

equations. At order ε, we have

∂ρ′

∂t
= − ∂

∂x

[
ρ̄u′ + ρ′ū

]
− ikρ̄v′, (4.3.15)

∂

∂t

(
ρ̄u′ + ρ′ū

)
= − ∂

∂x

[
p′

γM2
I

+ ρ′ū2 + 2ρ̄ūu′ − 1
Re

(
4
3
∂u′

∂x
+ ikv′

)]
− ikρ̄ūv′ − 1

Re
k2u′, (4.3.16)

∂

∂t

(
ρ̄v′
)

= − ∂

∂x

[
ρ̄ūv′ − 1

Re

(
∂v′

∂x
+ iku′

)]
− ik

p′

γM2
I

− 1
Re

4
3
k2v′, (4.3.17)

∂

∂t

(
p′

γM2
I

+ β
(
ρ′ū2 + 2ρ̄ūu′

))
= − ∂

∂x

[
p′ū+ p̄u′

M2
I

+ β
(
ρ′ū3 + 3ρ̄ū2u′

)
− 1

PrReM2
I

∂T ′

∂x
− 4

3
γ − 1

Re

(
ū
∂u′

∂x
+ u′

∂ū

∂x

)]
− ikv′

(
p̄

M2
I

+ βρ̄ū2

)
− 1

PrRe
k2 T

′

M2
I

+
γ − 1

Re
ū

(
ik
∂v′

∂x
− k2u′

)
. (4.3.18)

These equations (4.3.15)–(4.3.18) for the first-order perturbations form a linear system

of partial differential equations with variable coefficients. A detailed description of the

linearization and nondimensionalization of the full system of equations is provided in Ap-

pendix E.3.

This system is expressed in terms of four parameters: the incident shock Mach number

MI, γ, and the Reynolds and Prandtl numbers, Re and Pr. For consistency with the Navier-

Stokes shock solution, the Reynolds number for these equations is based on the molecular

viscosity derived from kinetic theory (see Appendices E.1 and E.3), such that

Re =

√
γM2

I

k2
, where k2 =

5
8

√
π

2
. (4.3.19)

Similarly, for the Prandtl number we require Pr = 3/4.
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Note that for a real wave number k, provided that the initial perturbed fields ρ′, u′ and

p′ are real and v′ has zero real part, it can be shown that the solution to equations (4.3.12)–

(4.3.18) will evolve to have v′ purely imaginary, and all other fields purely real.

4.4 Implementation

4.4.1 Numerical Method

The implementation of the Navier-Stokes equations (4.3.12)–(4.3.18) to simulate the lin-

earized Richtmyer-Meshkov instability was developed from the original 1-D Navier-Stokes

shock test problem described in Appendix F.1 and is now extended to include the 2-D per-

turbed system. The solution strategy is to solve the base flow equations (4.3.12)–(4.3.14)

and the first-order perturbation equations (4.3.15)–(4.3.18) simultaneously. The numerical

solution obtained for equations (4.3.12)–(4.3.14) is the unsteady 1-D base flow, correspond-

ing to the viscous version of the shock-interface impact problem described in Section 4.1.

The solution to equations (4.3.15)–(4.3.18) proceeds using the (x, t)-dependent coefficients

from the base flow, and describes the first-order perturbation of the RM instability.

The basic numerical method uses a fourth-order explicit finite-difference scheme to ap-

proximate the spatial derivatives, with local refinement (described in detail in Section 4.4.4)

using the 1-D interface schemes from Chapter 2. Interpolation to shift the refined region(s)

of the grid between time steps uses the sixth-order scheme of Fornberg (1988), the higher-

order interpolation minimizing its contribution to the truncation error. Second derivatives

are evaluated by applying the first derivative scheme twice. Time integration is by the

third-order RK32 Runge-Kutta scheme from Butcher (2003), with uniform time stepping.

For generality, the perturbed flow is permitted to be complex, allowing for variation

of the phase of the initial perturbation. This facility has not been utilized in the results

presented here, so as noted previously, with a purely real initial condition, the perturbed

flow will remain real for all time (except v′, which will always be purely imaginary). The

additional computational cost of this provision was found to be negligible.

A full set of validation tests was performed on the implementation of the 2-D system.

The details of these tests, together with comprehensive convergence results verifying that

fourth-order convergence is achieved, are presented in Appendix H.
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4.4.2 Boundary Conditions

Characteristic boundary conditions are implemented using the simultaneous approximation

term (SAT) method (originally from Carpenter et al., 1994 and described in Chapter 2).

The method for the 1-D base-flow equations follows somewhat the method proposed by

Svärd et al. (2007) for the Navier-Stokes equations, while the 2-D first-order equations

are linear with nonconstant coefficients so the implementation of characteristic boundary

conditions is somewhat simpler. Details of the derivation of the boundary conditions for

both nonlinear 1-D and linearized 2-D equation sets are shown in Appendix E.5. For all time,

the boundary state at the left (upstream) end is state 1, and at the right (downstream) end,

state 0′. The computational domain is chosen to be large enough to contain the reflected

and transmitted shocks (including tails) until the end of the simulation. This simplifies the

boundary conditions, as both states are constant throughout the simulation.

In cases where the left-hand boundary is a supersonic inlet, all three characteristics

ū, (ū − ā∗) and (ū + ā∗) are inward facing and should be specified (see Appendix E.4 for

variable definitions). Characteristic speeds for the linearized system are the same, with the

addition of a second variable on ū, so at the left-hand boundary all four linearized perturbed

characteristic variables should be specified. If the left-hand boundary is subsonic, the (ū−ā∗)

characteristic points out of the domain, so an additional boundary condition is required.

This is provided by the temperature gradient, for which ∂T̄ /∂x is set to zero in the base

flow and ∂T ′/∂x is set to zero in the perturbed flow.

On the right-hand boundary, the choice of boundary condition is ambiguous since state

0’ has ū = 0 and hence the ū characteristic is parallel to the boundary in (x, t)-space. While

the (ū− ā∗)-characteristic points into the domain and must be specified, there is a choice for

the second boundary condition. If the ū-characteristic is specified, the system is closed, but

if it is not, the additional boundary condition is provided by setting the velocity gradient

∂ū/∂x to zero. For the perturbed flow, two additional boundary conditions are required

if the ū-characteristic is not specified, and these are ∂u′/∂x = 0 and ∂v′/∂x = 0, as the

outflow is assumed to be quiescent. In practice, it was found that small perturbations could

tip ū slightly negative at the right-hand boundary, of order 10−12 or less, so the choice of

boundary condition was determined by a real-time switching based on the sign of ū.

Stability of the boundary conditions is dependent on the SAT parameter, τSAT (Ap-
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pendix E.5). By Carpenter’s original derivation (Carpenter et al., 1994), the stability crite-

ria is τSAT > 1, which is supported by numerical experiments conducted with this system.

For the results presented, values for τSAT of between 2 and 6 were used. Note from Chapter

2 the resulting stability limits on the CFL number; in practice, typical values for the CFL

(based on the smallest ∆x in the domain) were 0.16–0.18, depending on the discretization.

4.4.3 Initial Condition

Conceptually, the initial condition for the Richtmyer-Meshkov problem is an interface in

the density field with some spatial perturbation of amplitude h0, as shown in the schematic

Figure 4.2. For this analysis, by convention, ρ0′ > ρ0, so the incident shock is moving into

a heavier fluid, with the result that a shock will be reflected upon impact.
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Figure 4.2: Schematic of the reflected-shock Richtmyer-Meshkov problem. The incident
shock hits the interface centerline at t = 0.

The classic form of a discontinuous density interface with a sinusoidal perturbation is

given in terms of an initial amplitude h0 by

ρ(x, y, t = 0) =


ρ0, x < h0 sin(ky),

ρ0′ , x > h0 sin(ky),
(4.4.1)

where the interface is centered at x = 0. Such an initial condition was found to be unsta-

ble in this numerical implementation, as implementation of the step-function discontinuity

introduces Gibbs-type oscillation that cannot be dissipated by the numerical method and

grows with time. The alternative is to model the contact surface more realistically with a
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statically diffusing density interface, using the solution given by Duff et al. (1962),

ρ(x, y, t = 0) =
ρ0′ + ρ0

2
+
ρ0′ − ρ0

2
erf(x+ h0 sin(ky)). (4.4.2)

Closely related is the alternative profile

ρ(x, y, t = 0) =
ρ0′ + ρ0

2
+
ρ0′ − ρ0

2
tanh(x+ h0 sin(ky)), (4.4.3)

which is easier to analyze, and under the appropriate scaling, differs from the error function

profile by less than 3.5% (Mikaelian, 1991).

For our problem described by equations (4.3.12)–(4.3.18), we approximate the perturbed

interface given in equation (4.4.2) within the constraints of the form of the linearization.

Clearly, (4.4.2) is not of the form ρ̄+ ρ′(x, t)eiky. If it is recast slightly more generally as

ρ(x, y, t = 0) =
ρ0′ + ρ0

2
+
ρ0′ − ρ0

2
erf(x+ h0eiky), (4.4.4)

however, we see that the desired form may be approximated by a Taylor expansion about

x for small amplitude h0:

ρ(x, y, t = 0) ≈
[
ρ0′ + ρ0

2
+
ρ0′ − ρ0

2
erf(x)

]
+
[
ρ0′ − ρ0

2
2√
π

e−x
2

]
h0eiky + . . . . (4.4.5)

Generalizing this result for an initial profile of thickness ∆C, we obtain the initial condition

ρ̄(x, t = 0) =
ρ0′ + ρ0

2
+
ρ0′ − ρ0

2
erf(2x/∆C), (4.4.6)

ρ′(x, t = 0) =
ρ0′ − ρ0

2
4h0

∆C
√
π

e−(2x/∆C)2 , (4.4.7)

or, alternatively, for a tanh profile,

ρ̄(x, t = 0) =
ρ0′ + ρ0

2
+
ρ0′ − ρ0

2
tanh(2x/∆C), (4.4.8)

ρ′(x, t = 0) =
ρ0′ − ρ0

2
2h0

∆C
sech2(2x/∆C). (4.4.9)

All other fields are initialized to be constant across the interface region. The thickness ∆C

is treated as a constant parameter here, but is, in fact, a time-varying quantity that will be
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discussed in detail in Section 4.5.

The choice between the error function and hyperbolic tangent initial conditions turns out

to have little consequence on the solution. The computational initial condition is designed

such that the head of the incident shock and the tail of the interface are indistinguishable

from the base state (0) to computational accuracy, so once the simulation begins the shock

moves towards the interface as it begins diffusing. Neither profile (4.4.6) nor (4.4.8) is an

exact steady solution to the Navier-Stokes equations with a zero velocity field, so small

waves are sent out in the velocity and pressure fields once the simulation begins, which

are visible as small ripples in each field but decay quickly. Comparison of solutions started

with each initial condition (Figure 4.3) show that this has little influence on the shocked

interface shape or position (the maximum difference is on the order of 0.1%), so the choice

of equation (4.4.6) or (4.4.8) is of little consequence. Nevertheless, results presented here

use the tanh initial condition, unless otherwise noted.
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Figure 4.3: Demonstration of the weak dependence of the post-impact interface profile on
the initial condition: post-impact, solutions are almost identical despite different initial
approximation functions and thicknesses. Plotted in (b) is the solution for the tanh(x)
initial condition, with the difference (tanh solution − erf solution) (blue line) plotted on
the right-hand y-axis. Note the relative scales; the difference is on the order of 0.1%.

The incident shock is initialized using the Navier-Stokes shock solution (presented in

Appendix F.1) for the given incident Mach number MI. The domain upstream of the shock,

state 1, is uniform and initialized to the Rankine-Hugoniot conditions based on the incident

shock. For the remainder of the computational domain, downstream of the interface and
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shock, the initial condition is the quiescent state 0′.

4.4.4 Refinement Tracking

Local refinement of the computational domain is desirable in the vicinity of the shocks and

the interface to efficiently resolve the full solution. Because one or more flow features are

necessarily in motion relative to the solution reference frame, the local refinement scheme

for the RM problem must be designed to track each feature of interest with time, i.e., an

adaptive mesh refinement scheme is necessary. In the general case, AMR requires com-

plicated solution gradient detection algorithms to ensure that adequate refinement occurs

where it is needed. For the RM problem, however, we adopt a simpler approach, using

the 1-D Riemann solution described in Section 4.1 to give an a priori indication of where

refinement of the solution will be required. Thus the inviscid Euler solution may be used

to design a refinement scheme that tracks the solution features of interest, with a rela-

tively simple algorithm that shifts the refinement regions based on the known locations of

the shocks and interface. This is demonstrated by Figure 4.4, which shows the refinement

scheme in (x, t)-space, overlaying the x-t diagram of the Riemann solution. The extent of

the refinement relative to the continuous solution is shown in Figure 4.5.
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Figure 4.4: A two-level grid refinement scheme for MI = 1.21 and A = 0.2, overlaying the
x-t diagram for this problem. The shaded regions show how the refined regions follow the
flow features based on the Riemann solution.
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Figure 4.5: The refinement scheme from Figure 4.4 shown relative to the continuous solution,
at times t = −140 and t = 360. Refined regions extend across the majority of the width of
each feature, the solution being relatively flat elsewhere.

In general, two levels of refinement were used, each of factor two for an overall refinement

of four times between the finest and coarsest discretizations. This was done both at the

transmitted shock and interface, as these exhibit the steepest gradients, while the much-

weaker reflected shock was often refined just once. Grid shifting occurred at a rate specified

by the speed of each feature as given by the Riemann solution. To preserve the integrity of

the grid, a shift was performed only once the feature had travelled a distance equivalent to

at least one coarse cell, so the refinement advanced in appropriate multiples of the coarse

grid spacing.

For the case of MI = 2.20 and A = 0.6 an additional level of refinement was required

to resolve a very steep gradient that appears during impact of the incident shock with the

interface. If left underresolved, this sharp peak resulted in nonphysical oscillation at the

trailing corner of the transmitted shock for the remainder of the simulation. With a small

region of additional refinement at the transmitted shock, this oscillation disappeared and

the solution remained smooth for all time.

More sophisticated controls on the refinement scheme are imposed once the flow features

have separated fully after impact. For the interface, to ensure that the perturbation remains

properly refined, the refinement region gradually extends while it convects to follow the
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slow diffusion of the interface. Also, to ensure that each feature remains centered in its

refinement region, a check is imposed to stop advancement of the refinement if the feature

drifts too far off-center. This particular problem is due to the round-off error involved in the

approximation of its speed as an integer ratio of time steps to grid cells, and only becomes

apparent at late times in the simulations.

4.5 Amplitude Measurement

4.5.1 Definition

The fundamental quantity of interest for investigation of the Richtmyer-Meshkov instability

is the amplitude of the perturbation on the density interface, h(t). This is relatively easy to

define physically in the discontinuous case from the recovered 2-D density field, as shown

in Figure 4.6.
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Figure 4.6: Definition of the perturbation amplitude h(t) in physical 2-D space. Shown is
the 50% contour between states 2 and 3 at t = 5760, with the dashed line showing the
location of the interface based on the Riemann solution, for MI = 1.21, A = 0.2.

To describe the amplitude of the perturbation in the linearized distributed-interface

problem, we start with the definition used by Lombardini (2008). The position of the

centerline of the perturbation is defined as

xC(y, t) ≡
∫∞
−∞ xψ(1− ψ)dx∫∞
−∞ ψ(1− ψ)dx

, (4.5.1)
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where ψ is a normalized density function with ψ ∈ [0, 1], which may be defined by

ψ(x, y, t) =
ρ(x, y, t)− ρ1

ρ2 − ρ1
. (4.5.2)

The perturbation amplitude is given by

h(t) =
1
2
|xbubble

C − xspike
C |, (4.5.3)

where xbubble
C and xspike

C are the maximum and minimum values of xC in a wavelength.

We will first demonstrate this definition with a tanh interface profile of the form

ψ(x, y, t) =
1
2

[
1 + tanh

(
2(x− xC(y, t))

∆C(t)

)]
, (4.5.4)

where ∆C(t) is the thickness of the interface. Note that this thickness is consistent with

the tangent thickness definition for tanh, the same definition used to estimate the shock

thickness. Evaluating the denominator of equation (4.5.1), we see that

∫ ∞
−∞

ψ(1− ψ)dx =
1
4

∫ ∞
−∞

[
1− tanh2

(
2(x− xc)

∆C

)]
dx

=
1
4

∫ ∞
−∞

sech2

(
2(x− xc)

∆C

)
dx

=
1
4

∆C,

which we will use to define the interface thickness by

∆C(t) = 4
∫ ∞
−∞

ψ(1− ψ)dx. (4.5.5)

Evaluating the numerator of (4.5.1),

∫ ∞
−∞

xψ(1− ψ)dx =
1
4

∫ ∞
−∞

x

[
1− tanh2

(
2(x− xc)

∆C

)]
dx

=
1
4

∫ ∞
−∞

x sech2

(
2(x− xc)

∆C

)
dx

=
1
4
xC∆C,

we recover xC.
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For the linearized problem, we consider a linearization of equation (4.5.4), such that

ψ(x, y, t) =
1
2

[
1 + tanh

(
2x
∆C

)
− 2xC

∆C
sech2

(
2x
∆C

)]
. (4.5.6)

In this case, we find that the denominator of (4.5.1) gives

1
4

∫ ∞
−∞

[
sech2

(
2x
∆C

)
+

4xC

∆C
tanh

(
2x
∆C

)
sech2

(
2x
∆C

)
−
(

2xC

∆C

)2

sech4

(
2x
∆C

)]
dx

=
1
4

∆C −
2
3
x2

C

∆C
,

and the numerator,

1
4

∫ ∞
−∞

x

[
sech2

(
2x
∆C

)
+

4xC

∆C
tanh

(
2x
∆C

)
sech2

(
2x
∆C

)
−
(

2xC

∆C

)2

sech4

(
2x
∆C

)]
dx

=
1
4
xC∆C.

Notice that the thickness estimate defined by equation (4.5.5) is no longer exact in the

linearized case, but may be corrected if xC is known.

The definition of xC by equation (4.5.1) therefore suffers from a significant error in the

linearized case. The linearized perturbation lends itself to a better definition of the interface

amplitude, however. First notice the linearization of ψ from equation (4.5.6),

ψ(x, y, t) = ψ̄(x, t)− ψ′(x, y, t), (4.5.7)

for which the tanh profile gives

ψ̄ =
1
2

[
1 + tanh

(
2x
∆C

)]
, (4.5.8)

ψ′ =
xC

∆C
sech2

(
2x
∆C

)
. (4.5.9)

Now notice that the integral

∫ ∞
−∞

ψ′dx =
∫ ∞
−∞

xC

∆C
sech2

(
2x
∆C

)
dx = xC,

without any error contribution from the linearization. Thus, for the linearized problem,
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this definition of the centerline position is preferred.

An important test of the amplitude definition is the limit as ∆C → 0, i.e., in the limit

of a discontinuous interface. We do so by applying this limit to equation (4.5.4), for

ψ0(x, y, t) = H (x− xC(y, t)) , (4.5.10)

where H(x) is the Heaviside step function. First, see that equation (4.5.5) returns the

correct result, since

∫ ∞
−∞

xψ(1− ψ)dx =
∫ ∞
−∞

xH(x− xC) [1−H(x− xC)] dx = 0.

In the limit ∆C → 0, the original definition (4.5.1) returns xC, as required. To test the

linearized case, consider

ψ = ψ̄ − ψ′ = H(x) + xCδ(x), (4.5.11)

where δ(x) is the Dirac delta function. Then

∫ ∞
−∞

ψ′dx = xC

∫ ∞
−∞

δ(x)dx = xC,

so the linearized definition recovers the correct centerline position.

To relate the centerline position to the perturbation amplitude, note that by the lin-

earization used,

xC = −h(t)eiky, (4.5.12)

so in each case h(t) may be directly recovered from the integral measure, since

1
2
|−h(t)eiπ/2 + h(t)e−iπ/2| = h(t),

as the maximum and minimum locations are known explicitly from the arbitrary phase

term. This gives the definitions of the perturbation amplitude and interface thickness

h(t) = |xC| =
∣∣∣∣∫ ∞
−∞

ψ′dx
∣∣∣∣, (4.5.13)

∆C = 2I∆ + 2

√
I2

∆ +
2
3
x2

C, (4.5.14)
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where

I∆ = 4
∫ ∞
−∞

ψ(1− ψ)dx, (4.5.15)

correcting the thickness measure for the linearization effect.

Finally, a comment should be made regarding the limits of integration. Although defined

here as (−∞,∞), in practice these definitions are applied on finite integration windows,

primarily to avoid influence from the perturbations on the shocks. These windows are

chosen to be large enough such that the perturbed solution is zero (or approximately zero)

at the window ends, and the feature of interest is wholly contained.

4.5.2 Initial Amplitude Ambiguity

The definition of amplitude by equation (4.5.13) causes some difficulty near t = 0, during

interaction of the shock with the interface, when the interface becomes indistinguishable

from the shock(s). This issue is illustrated in Figure 4.7. Shock-interface interaction in

the viscous problem is a distributed process, beginning when the head of the incident

shock reaches the tail of the interface, and continuing until the tails of both reflected and

transmitted shocks separate from the interface. Through this time, an integration window

for equation (4.5.13) cannot be defined that does not also include the shock; thus h(t) is

undetermined near t = 0.

This poses an analytic difficulty when comparing the results from these simulations to

the models of the RM instability described in Section 4.2. The impulsive model, and other

models derived under similar assumptions, base the growth rate estimate on the initial

post-shock perturbation amplitude, h(0+). Because the interface perturbation cannot be

properly calculated until the shock perturbation has separated from it (as in the later time

plots of Figure 4.7), h(0+) cannot be identified until some time after impact.

One possibility is to estimate h(0+) from a simulation with k = 0, which models a

planar perturbation of the interface. This is predicted (and found, in the inviscid limit)

to have zero growth, as the instability is not excited. Figure 4.8 shows h(t) for a zero–

wave number simulation, with the shaded region indicating where the presence of a shock

corrupts the amplitude calculation. Also shown on this plot are external approximations of

pre- and post-shock amplitudes. Diffusion effects are small enough to make the reasonable

approximation h(0−) = h0 = 1, where h0 is the small parameter in the linearization of the
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Figure 4.7: Demonstration of the initial amplitude ambiguity: (left) solution at small time,
where interface and shock are indistinguishable; (right) at later time, where interface and
shocks have separated. The Euler interface location is shown by the red dashed line, shocks
by the grey dashed lines.

perturbed field. Note that the small deviation from this value in Figure 4.8 as the incident

shock enters the integration window is due to the small wavelike perturbations from the

initial condition approximation of the interface washing out of the window.

An estimate for the post-shock amplitude is given by Meshkov (1969), which models the

compression of the perturbation by the incident shock:

h(0+) =
(

1− ∆U
UI

)
h(0−), (4.5.16)

where ∆U = u2 = u3, the post-impact speed of the interface, and UI is the incident

shock speed (both dimensional values). This is in excellent agreement with the asymptotic

value for h(t) obtained from k = 0 simulations with each parameter set, as demonstrated

by Table 4.3 and Figure 4.8. Equation (4.5.16) is used to estimate h(0+) for all results

presented in the following sections.
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Figure 4.8: Plot of perturbation amplitude for k = 0 (MI = 1.21, A = 0.6). The shaded
region indicates the time range in which either the incident or transmitted shock is contained
within the integration window. Once the transmitted shock has passed out of the window,
the amplitude is in agreement with the estimate for h(0+) given by equation (4.5.16).

Parameters h(0+) by (4.5.16) Simulation h(0+)
MI = 1.05, A = 0.2 0.930350 0.930343
MI = 1.05, A = 0.6 0.948345 0.948290
MI = 1.21, A = 0.2 0.762441 0.762353
MI = 1.21, A = 0.6 0.823618 0.823527
MI = 2.20, A = 0.2 0.402234 0.402303
MI = 2.20, A = 0.6 0.548190 0.548037

Table 4.3: Comparison of estimates for h(0+) obtained from k = 0 simulations and the
approximation (4.5.16). To three or four significant figures, the measures are identical.
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4.6 Simulation Results

Throughout this section, results are presented with the perturbation amplitude normalized

by h(0−) = h0, as this is an arbitrary factor of the linearization and is set to unity for

convenience. The time origin t = 0 is defined as the impact time from the inviscid 1-D

Riemann problem, and shock and interface positions are defined likewise where shown. The

interface initial condition is the hyperbolic tangent function defined by equation (4.4.8),

although as shown in Section 4.4.3, this is of little consequence post-impact. Simulation

results are based on the six parameter combinations defined in Table 4.1.

4.6.1 Form of the Solution

Before analyzing the simulation results, it is instructive to consider briefly the full numerical

solution. An example of this is shown in Figure 4.9. Before impact, the unperturbed incident

shock is seen approaching the interface, which is slowly diffusing. Small ripples visible on

either side of the interface are due to the initial condition not being an exact solution to

the Navier-Stokes equations. Some time post-impact, the reflected and transmitted shocks

have separated from the interface, and each now carries a perturbation of its own. The

peak magnitude of the interface perturbation is in fact smaller post-impact in this case,

due to the compressive effect of the incident shock. Note also the relative steepness of each

shocks: predictions of the shock thickness are 12, 20 and 130 mean free path lengths for the

incident, transmitted and reflected shocks, respectively.

4.6.2 Approaching the Inviscid Limit

To characterize the viscous RM problem, we identify relevant length scales as the incident

shock thickness ∆I, the interface thickness ∆C, the interface wavelength λ = 2π/k′ (in

terms of the dimensional wave number k′), and the mean free path in the state-0 fluid

`0 = ν/ã, where ν is the averaged kinematic viscosity as defined in equation (4.2.4), and ã

is a characteristic sound speed. Note that ∆I ∼ `0, and is a known function of the incident

shock Mach number. The interface thickness ∆C is a controllable parameter of the initial

condition.
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Figure 4.9: Form of the numerical solution, before and after shock impact with the interface.
Case for MI = 1.21, A = 0.2 shown, with dashed lines indicating positions of interface and
shocks determined from the Riemann solution (Figure 4.1).
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A Reynolds number at the interface is defined (in terms of dimensional quantities) by

ReI ≡
∆Uλ
ν

, (4.6.1)

where ∆U is the interface velocity, defined in Section 4.1. By this definition, we expect that

as ReI increases, we approach the inviscid limit and the simulation results will approach

the inviscid model predictions. Noting that from equation (4.3.7) we may write ν = ã`0 for

a characteristic sound speed ã, see that

ReI =
(

∆U
ã

)
2π
k
, (4.6.2)

where k is now the nondimensional wave number. The term of equation (4.6.2) in paren-

theses is determined by the initial conditions of the incident shock, while the second term

is a free parameter of the simulation and controlled by the choice of nondimensional wave

number k for a given initial condition. We also define the dimensionless length scales

η ≡ k∆C, and ζ ≡ ∆C/∆I.

The first of these controls the relative diffusiveness of the interface, so is held constant as

the Reynolds number is varied. Thus for each parameter case from Table 4.1, a sequence

of simulations is performed of decreasing k and increasing ∆C such that η is held constant,

which corresponds to increasing ReI. This necessarily means that ζ then increases with ReI

in each sequence of simulations. Note that decreasing k also increases the timescale for the

start-up of the instability by equation (4.2.8), so simulations with smaller k must be run

to longer times to ensure that the linear regime has been reached. In the following results,

plots are labelled by ReI.

4.6.3 Weak Shock, MI = 1.05

We consider first the weak shock case, where the impulsive model is expected to accurately

predict the growth rate of the perturbation. The following results have η = k∆C = 0.01,

and correspond to a range of wave numbers from k = 0.0032 to k = 0.0005. Not all cases are

shown on all plots, for clarity. Figure 4.10 shows the growth profiles for pre-shock Atwood

numbers of 0.2 and 0.6 for a range of Reynolds numbers, plotted against nondimensional
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time t (defined in Section 4.3 and independent of k). The primary feature of these plots

is the decrease in growth rate with decreasing k (increasing ReI). Some oscillation in the

growth of the lowest-ReI cases is also visible.

The effect of wave number is scaled out in Figure 4.11, where the normalized amplitude

h(t)/h(0+)−1 is plotted against a time axis scaled by A+∆Uk. Here, collapse of the curves

for most wave numbers is observed, to the extent that the wavelength and amplitude of

oscillations in the growth are similar. Growth also tends to asymptote toward the slope

predicted by the impulsive model. The lowest Reynolds number cases, ReI = 296 for

A = 0.2 and ReI = 445 for A = 0.6, however, do not collapse in the same way, displaying

significantly different behavior. Growth appears to be significantly attenuated by viscosity

for these cases.

The oscillatory effects are shown more clearly in Figure 4.12, where growth rate, scaled

by k, is plotted against scaled time kt. At both Atwood numbers, the higher two ReI cases

have similar growth rate profiles over the available history, and oscillate about an average

growth rate near the impulsive model prediction. Lower ReI cases show larger amplitude

oscillations, centered about lower average growth rates. Note that Wouchuk (2001a) predicts

a higher growth rate in the inviscid limit compared to the impulsive model.

The start-up time prediction given in equation (4.2.8) is examined in Figure 4.13. Here,

the perturbation growth is plotted against time scaled by the characteristic time τ . Collapse

of the curves is expected again as τ scales directly with k, but of interest here is that τ

appears to be a good estimate of the time before growth enters the linear phase. For t > τ ,

growth follows the impulsive model rate prediction very closely.

4.6.4 Intermediate Shock, MI = 1.21

Results for the intermediate-strength shock are broadly similar to those for the weak shock

case. Results are presented for Atwood numbers A = 0.2 and A = 0.6, with η = 0.01

covering a range of wave numbers from k = 0.0064 to k = 0.0004. Figure 4.14 shows

amplitude histories for varying k for each Atwood number. Again, ripples in the growth

curves are evident, particularly for the lower-ReI cases. Plotting normalized amplitude

h(t)/h(0+)− 1 against scaled time A+∆Uk in Figure 4.15 shows collapse of the amplitude

histories for Reynolds numbers in the inviscid range. At lower ReI, and the case ReI = 746

with A = 0.2 in particular, collapse is less convincing as there is noticeable attenuation of
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the growth rate compared to the impulsive model prediction.

Similar collapse is seen for Figure 4.16, with the time axis scaled by the start-up time

scale τ of equation (4.2.8). As in the weak shock case, the growth rate asymptotes closely

toward the impulsive model for t > τ . Plots of the amplitude growth rates, shown in Fig-

ure 4.17, indicate that for both Atwood numbers considered, the impulsive model makes

a better prediction of the asymptotic growth rate than Wouchuk (2001a), as oscillation

appears to be centered closer to the impulsive rate. Behavior is otherwise similar to that

observed in the weak shock case, with the lower-ReI cases having larger-amplitude oscilla-

tion. In the case of ReI = 1492, A = 0.2, gradual decay of the growth rate is also apparent.

For the A = 0.2 cases with ReI = 746 and ReI = 1492, attenuation of the growth rate by

viscosity is clear from Figure 4.18. Comparison of the growth rates with the viscous model

of Carlès and Popinet (2001) show that the decay envelope is captured with reasonable

accuracy, particularly for ReI = 1492 where the oscillation in the growth rate is quite

closely centered on the model’s prediction. Note that since the model makes no attempt to

estimate effects due to proximity of the shocks, it cannot be expected to capture oscillation

in the growth rate.

Figure 4.19 shows results for MI = 1.21, A = 0.2 and η = 0.02, with particular focus on

the low-ReI cases. These show significant viscous attenuation of the perturbation amplitude

growth, to the extent that the lowest case shown decays (and so is, in fact, stable). Also

plotted are the amplitude predictions by the Carlès and Popinet model with equation (4.2.5)

for each case. Because this model is based on similar assumptions to the impulsive model,

it should be considered more as an asymptotic growth prediction than as a time-accurate

growth prediction. Nevertheless, it predicts the decay of the ReI = 239 case within a similar

time frame, notable as the Mikaelian (1993) model (not shown) does not.

4.6.5 Strong Shock, MI = 2.20

For the final sequence of simulations, we consider a stronger shock of MI = 2.20, with

η = 0.01 and over a range of wave numbers k = 1/100 to k = 1/1600. At this Mach number,

the impulsive model is expected to not predict the asymptotic growth rate as successfully

as it had at the lower-MI examples. Figure 4.20 shows the perturbation amplitude histories

for Atwood numbers A = 0.2 and A = 0.6. Also plotted are the asymptotic growth rates

predicted by the Wouchuk (2001a) model (dashed lines), offset from the time origin to
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partially account for the start-up process of the instability. The case ReI = 4994, A = 0.2

shows similar behavior to low-ReI cases at lower Mach numbers, with noticeable oscillations

in amplitude growth and a reduced asymptotic growth rate compared to higher-ReI cases.

Examination of the growth rates in Figure 4.21 supports this, showing the greater am-

plitude of oscillation and slight downward trend of the ReI = 4994 case. In general, the

amplitude of oscillation in the scaled growth rate ḣ(t)/kh(0+) is seen to decrease with k.

Other features of the growth rate profile are relatively consistent, with the frequency of

oscillation in particular scaling well by kt. Excepting again the case with ReI = 4994, for

both Atwood numbers asymptotic growth appears to be better predicted by Wouchuk’s

model than the impulsive model.

Figure 4.22 confirms that the start-up timescale τ is still a useful measure in the strong-

shock case. For A = 0.6, however, growth appears to have entered the linear phase before

t = τ , so the characteristic time may be slightly overestimated in this case. Collapse of

the growth curves is still observed, as with the weaker shock cases, though here growth

asymptotes toward the prediction of Wouchuk’s model instead of the impulsive model.

4.6.6 Interface Thickness

To complete this investigation of the Richtmyer-Meshkov instability, we consider the time

evolution of the interface thickness and, in the following section, the perturbations on the

reflected and transmitted shocks. The interface thickness, defined by equation (4.5.14),

evolves along with the amplitude as a description of the perturbed density field. The

interface diffuses slowly before impact, is compressed by the shock, then continues diffusing

with time as the interface between the post-shock states. Plots of interface thickness for a

selection of the cases described in the previous section are shown in Figure 4.23. Of note in

these plots is the very weak influence of initial (pre-shock) interface thickness (proportional

to 1/k in each case) on the subsequent thickness history: the thickness histories collapse

for all but the thickest initial condition, particularly for stronger shocks. The origin of

this phenomenon is difficult to identify as the thickness also suffers from the perturbation

ambiguity during impact, but it is clear that compression by the shock has a dominant

effect on the post-shock interface thickness.
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Since evolution of the interface is primarily a diffusive process, we expect

∆C ∼
√
νt. (4.6.3)

Figure 4.24 shows that this is indeed the case, showing agreement of the measured interface

thickness with a profile
√
νt, and linear growth in ∆2

C with time.

4.6.7 Shock Perturbations

Upon interaction with the interface perturbation, the reflected and transmitted shocks de-

velop perturbations of their own. These perturbations are stable (Landau and Lifshitz,

1959; Erpenbeck, 1962), unlike the interface perturbation, and are expected to decay with

time. This is confirmed by the simulation results, which show that the perturbation am-

plitude oscillates within a decaying envelope at both the reflected and transmitted shocks.

Also notable is that the amplitude perturbation passes through zero multiple times as it

decays, and that the reflected shock amplitude is initially of opposite sign to the transmitted

shock amplitude.

The collapse of the interface perturbation amplitude curves when plotted against time

scaled by the perturbation wave number (kt) suggests that a similar scaling may apply to

the shock perturbations. For the transmitted shock perturbation, this is generally true,

illustrated by the examples in Figure 4.25, where collapse is very good except for some of

the lowest Reynolds number cases. On the other hand, the reflected shock perturbation does

not appear to collapse at all when plotted against kt (Figure 4.26). The spatial frequency

of the reflected shock perturbation is necessarily k by the form of the linearization, so it is

speculated that collapse may occur for a different scaling of the form kαtβ. The reason for

a higher-order dependence on k and/or t for the reflected shock and not the transmitted

shock is unclear.
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Figure 4.10: Plots of perturbation amplitude h(t)/h(0+) for MI = 1.05 with varying wave
number.
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Figure 4.11: Plots of normalized perturbation amplitude h(t)/h(0+)−1 against scaled time
A+∆Ukt for MI = 1.05, with the dashed line showing asymptotic impulsive model growth.
The time axis scaling is chosen such that the impulsive model has unity slope.
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Figure 4.12: Plots of perturbation amplitude growth rate ḣ(t)/kh(0+) against scaled time
kt for MI = 1.05, with the dashed line showing asymptotic impulsive model growth in each
case. Very early time values (kt < 1) are erratic due to the initial ampltiude ambiguity
discussed in Section 4.5.2.
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Figure 4.13: Plots of normalized perturbation amplitude h(t)/h(0+)−1 against time scaled
by the start-up time τ from Lombardini (2008), for MI = 1.05. The dashed line shows
asymptotic impulsive model growth shifted to begin at t = τ .
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Figure 4.14: Plots of perturbation amplitude h(t)/h(0+) for MI = 1.21 with varying wave
number.
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Figure 4.15: Plots of normalized perturbation amplitude h(t)/h(0+)−1 against scaled time
A+∆Ukt for MI = 1.21, with the dashed line showing asymptotic impulsive model growth.
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Figure 4.16: Plots of normalized perturbation amplitude h(t)/h(0+)−1 against time scaled
by the start-up time τ from Lombardini (2008), for MI = 1.21. The dashed line shows
asymptotic impulsive model growth shifted to begin at t = τ .
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Figure 4.17: Plots of perturbation amplitude growth rate ḣ(t)/kh(0+) against scaled time
kt for MI = 1.21. The dashed and dot-dashed lines show asymptotic growth rates predicted
by the impulsive and Wouchuk (2001a) models, respectively.
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Figure 4.18: Plots of perturbation amplitude growth rate ḣ(t)/kh(0+) against scaled time
kt for MI = 1.21 and A = 0.2, for low-ReI cases affected by viscosity. Dashed lines show
the growth rate predictions of the Carlès and Popinet (2001) model, and the dot-dashed
line shows the impulsive model prediction for reference.
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Figure 4.19: Plots of perturbation amplitude for MI = 1.21 and η = 0.02, showing Reynolds
number effects. Dashed lines show the predictions of the Carlès and Popinet (2001) model for
each case. At low ReI, viscosity attenuates growth significantly compared to the impulsive
model.



124

0 2000 4000 6000 8000 10000
0

0.5

1.0

1.5

2.0

2.5

3.0

t

am
pl

itu
de

 h
(t)

/h
(0
− )

 

 

Re = 4994, ! = 0.49
Re = 9988, ! = 0.97
Re = 19976, ! = 1.9
Re = 79904, ! = 7.8

(a) A = 0.2

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

6

t

am
pl

itu
de

 h
(t)

/h
(0
− )

 

 

Re = 8737, ! = 0.49
Re = 17474, ! = 0.97
Re = 34948, ! = 1.9
Re = 69896, ! = 3.9

(b) A = 0.6

Figure 4.20: Plots of perturbation amplitude h(t)/h(0+) for MI = 2.20 with varying wave
number. Dashed lines show the asymptotic growth predicted by the asymptotic model of
Wouchuk (2001a) for each case.
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Figure 4.21: Plots of perturbation amplitude growth rate ḣ(t)/kh(0+) against scaled time
kt for MI = 2.20, with the dashed and dot-dashed lines showing asymptotic growth rates
for the impulsive and Wouchuk (2001a) models in each case, respectively.
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Figure 4.22: Plots of normalized perturbation amplitude h(t)/h(0+)−1 against time scaled
by the start-up time τ from Lombardini (2008), for MI = 2.20. The dashed line shows
asymptotic impulsive model growth shifted to begin at t = τ , and the dot-dashed line the
asymptotic prediction of Wouchuk (2001a).
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Figure 4.23: Plots of interface perturbation thickness for a range of initial problem param-
eters. The weak influence of pre-shock thickness (indicated by ζ) is clear for all cases; note
for plot (b) that the ratio of thickest to thinnest initial thickness is 64.
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Figure 4.24: Plots of interface thickness for the case MI = 1.05, A = 0.6 with the diffusion
model for comparison. A linear fit for ∆2

C plotted against time indicates that the diffusive
model is appropriate.
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Figure 4.25: Transmitted shock perturbation amplitude plotted against scaled time kt,
showing collapse of the curves across Reynolds number.
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Figure 4.26: Reflected shock perturbation amplitude plotted against scaled time kt, showing
that collapse does not occur with this scaling.



131

4.7 Discussion of the Results

We conclude this chapter with a closer analysis of the results obtained in the simulations

presented in the previous section. The focus is on three cases: the weak shock MI = 1.05

with A = 0.6, the intermediate shock MI = 1.21 with A = 0.6, and the strong shock

MI = 2.20 and A = 0.2. Plots of interface perturbation amplitude growth rate ḣ(t)/h(0+)

are shown for three particular Reynolds numbers in Figures 4.27–4.29. Wave numbers

quoted are nondimensional values.
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Figure 4.27: Plot of amplitude growth rate ḣ(t)/h(0+), for MI = 1.05, A = 0.6, k = 0.0004,
with asymptotic growth rate predictions shown for impulsive and Wouchuk (2001a) models.
Overlaid also is the time history predicted by Wouchuk’s theory.

The intermediate-strength shock case with pre-shock Atwood number A = 0.6 is in-

tended to approximate the experiments of Collins and Jacobs (2002) of similar parameters.

The two principal differences between those experiments and these simulations are that the

physical case was achieved with an air/SF6 interface and that the pre-shock interface is

considerably more diffuse in the experimental setup. The effect on the perturbation growth

rate of the two-fluid physical problem compared to the single-fluid simulation is to reduce

the interface speed (∆U), though this change is of a similar order of magnitude to the dif-

ference between the predicted and measured speeds in the shock tube. The diffuse interface

attenuates the growth rate in the manner described in Section 4.2.3; Collins and Jacobs use
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Figure 4.28: Plot of amplitude growth rate ḣ(t)/h(0+), for MI = 1.21, A = 0.6, k = 0.0016,
with asymptotic growth rate predictions shown for impulsive and Wouchuk (2001a) models.
Overlaid also is the time history predicted by Wouchuk’s theory.

the correction from Brouillette and Sturtevant (1994) with ψ = 1.07 (post-shock), while the

interface thickness in the simulated case is so small (on the order of the shock thickness)

that it has no measurable effect.

4.7.1 Comparisons with Analytic Models

Beginning with the weak shock case, Figures 4.12–4.13 suggest that the impulsive model is a

good approximation of the asymptotic growth rate of the instability under these conditions.

Figure 4.27, plotting a longer time history, confirms this. The average nondimensional

growth rate from the simulation, after the initial transient, is 1.244 × 10−5, compared to

1.240× 10−5 for the impulsive model prediction. The simulation agrees quite well with the

Wouchuk (2001a) model, sharing many of the features of the time history. Asymptotically,

however, the simulation tracks a little lower than the model; it is possible that this is due

to a small attenuating viscous effect.

For the intermediate case shown in Figure 4.28(b), the long-term growth rate is cen-

tered very closely on the impulsive model prediction, a conclusion supported by the good

agreement shown by this model in Figures 4.16–4.17 for all but the lowest Reynolds number

cases. Upon correcting for diffuse interface effects, the experiments of Collins and Jacobs
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Figure 4.29: Amplitude and growth rate plots for MI = 2.20, A = 0.2, k = 0.0025, compared
to the Wouchuk (2001a) model prediction. Also shown for reference are asymptotic growth
rate predictions from this and the impulsive model.
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(2002) come to a similar conclusion (for the linear regime). In this case, Wouchuk’s model

appears to slightly overestimate the asymptotic growth rate. It is notable also that the

model underpredicts the amplitude of the first peak in the growth rate calculated from the

simulation, for both this case and MI = 1.05. Further, after this peak, there appears to be

a phase difference between our results and the model, which we speculate may be due to

very early start-up effects detected only with full resolution of the shock and interface.

Some evidence for this theory may come from the simulations of Herrmann et al. (2008),

Figure 4 in particular. This compares the result of a 2-D Navier-Stokes simulation of the

instability at MI = 1.21 (at a Reynolds number in the inviscid range) with Wouchuk’s

model, to excellent agreement. Their simulation uses a shock capturing/tracking method

and treats the interface as a level set scalar, so it is discontinuous for all time and does

not suffer from the amplitude measurement difficulties we encounter. This implies that the

fundamental assumptions of the Herrmann et al. simulations are more similar to Wouchuk’s

inviscid model than these results at the early growth stages of the instability, so neither can

capture the early time effects observed in the present simulations.

Returning to the asymptotic behavior of the instability, based on Figures 4.13 and 4.16

for the weak and intermediate shock cases, a simple model for amplitude growth rate that

accounts for start-up of the instability is proposed:

ḣ(t)
h(0+)

=


0, t ≤ τ,

A+∆Uk, t > τ.

(4.7.1)

This has the form of a shifted time origin for the impulsive model, and appears to closely

approximate the simulated growth profiles in the inviscid limit. For stronger shocks, the

impulsive model growth rate assumption may be inappropriate (compare Figure 4.22), but

it is clearly demonstrated that the start-up process for the instability is well characterized by

τ . In general, this result also supports the scaling of oscillations in the instability growth

by kt, as τ is directly related to 1/k (4.2.8). Note that for most physical problems, the

start-up time scale is very small; here τ ∼ 10−7 seconds.

For the strong shock, results from the simulations point unambiguously to Wouchuk’s

model being the best estimate of the asymptotic growth rate. Figure 4.29 confirms this,

with the plot of growth rate showing oscillation about the Wouchuk prediction, well clear
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of the impulsive model. However, comparison of the time histories shows that the model

considerably underpredicts the magnitude of oscillation in the growth rate. This implies

that the amount of acoustic energy trapped between the shocks in the interface region is

underestimated by the model, caused by the numerical difficulty involved with calculating

the contribution from the transmitted shock. The simulation results confirm that this is

a significant effect under these conditions: comparison of the amplitude curves shows that

although early-time agreement is good, the effect of the oscillations in growth rate contribute

to an overprediction of the amplitude by the model at later times.

4.7.2 Influence of Viscosity

Based on these results, we can conclude that contact with the inviscid limit has been made.

The primary Reynolds number effect that has been observed is due simply to the dependence

of ReI on the wave number k; this is confirmed by the majority of results and the collapse

of amplitude histories when the effect of k has been scaled out. In the cases where viscous

effects are seen, the result is attenuation of the growth rate compared to the inviscid models

and transient oscillation of greater amplitude. In the most extreme cases, the attenuation

is large enough to cause decay of the interface perturbation, in which case the instability is

suppressed. Existing viscous models do not model the observed growth very well, though

the Carlès and Popinet (2001) model does display similar gross behavior in those cases

where viscous effects are significant. It does not, however, predict very well which those

cases are.

Comparison of the viscosity-influenced cases suggests some bounds on the Reynolds

numbers at which viscous effects are significant. Based on these simulations, for ReI <

1000, viscosity has a significant attenuating influence on the amplitude growth rate. In the

range 1000 < ReI < 5000, there may be a small effect due to viscosity, but attenuation

is small enough that the inviscid models are an acceptable approximation. Beyond this,

the asymptotic behavior of the interface amplitude is essentially indistinguishable from the

inviscid approximation.
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Chapter 5

Conclusion

This thesis has presented stable high-order finite-difference interface schemes for both one-

dimensional refinement and two-dimensional patch-refined grids with step changes in reso-

lution. By satisfying the summation-by-parts criterion at the interface for each geometry,

numerical stability of the interface schemes was enforced without resort to numerical dissipa-

tion. Demonstrating the value of high-order mesh refinement using these interface schemes,

the Richtmyer-Meshkov instability was investigated with a shock-resolved Navier-Stokes

simulation.

5.1 The 1-D Interface Scheme

Extending the concepts of stability and summation-by-parts operators to generalized stencils

at a step-change in grid resolution, a class of stable high-order finite-difference interface

closures has been developed. Stability has been demonstrated analytically for the linear

advection problem. Further, the interface treatment is numerically nondissipative as the

summation-by-parts formulation ensures no contribution is made to the energy norm. The

global convergence rate of the interior scheme, s, is maintained by enforcing accuracy at the

interface to order σ ≥ s − 1. Interface closures have been presented for fourth- and sixth-

order explicit and fourth-order implicit interior schemes. Explicit closures are available for

arbitrary refinement ratios, within limits for stability. The implicit closure maintains the

efficient tridiagonal structure of the interior scheme through the interface.

Numerical tests of these schemes have verified the claims of stability and convergence

rate with refinement of the spatial discretization, for both the linear advection problem and

the nonlinear one-dimensional Navier-Stokes shock structure problem. The one-dimensional
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interface scheme may also be applied on two-dimensional grids with local refinement such

that the grid may be represented as the tensor product of 1-D grids. Stability and conver-

gence on grids of this type were confirmed by numerical testing with the linear 2-D advection

problem and the nonlinear Euler equations solving a compressible vortex problem.

5.2 The 2-D Interface Scheme for Patch Refinement

Patch refinement on two-dimensional grids results in hanging nodes across grid interfaces,

with three distinct geometries identified at the edges and corners of the refined regions.

Extension of the summation-by-parts criterion in two dimensions has been used to design

stable high-order finite-difference closures for these interfaces. This has been shown to

guarantee stability of the semidiscrete form of the partial differential equation in the linear

case, without introducing numerical dissipation at the interfaces. The cost of achieving this

stability is the presence of first- and second-order–accurate nodes in the corner interface

stencils with an explicit fourth-order finite-difference interior scheme, reducing the formal

convergence rate of the spatial discretization. In the course of this investigation it was

also found that there exists no second-order scheme that satisfies the summation-by-parts

conditions, as these demand zeroth-order–accurate nodes at the corners that render the

derivative approximation meaningless.

Validation testing of the interface closure on three different grids has shown that the

presence of low-order interface points reduces the convergence rate by at least one order

compared to the truncation error of the interior scheme. The numerical tests were con-

ducted using the same linear advection and nonlinear Euler vortex problems as for the

one-dimensional interface scheme. The latter test also demonstrates that careful design of

the refinement scheme relative to regions of interest in the solution may mitigate the effects

of reduced accuracy at the interfaces.

5.3 Comments on Future Interface Schemes

The schemes described in this thesis represent an attempt at resolving an important and

long-standing problem in the field of computational physics, and there remains room for

extension and development of these interface treatments to widen their applicability and
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improve their computational efficiency. Thus far, only Cartesian grids have been considered,

but there is scope for similar interface schemes to be developed for cylindrical or polar

geometries. The focus of these schemes has also been limited to hyperbolic problems, and

thus compressible flows. For incompressible problems, the system of equations is parabolic

and involves solution of a Poisson equation, where the numerical stability problem is quite

different and a new formulation of the stability criteria is required.

Regarding implementation of these interface schemes, the 2-D problem in particular is

complex and difficult to implement for a general grid refinement geometry. Though beyond

the scope of this work, there is potential for improvement in this regard with advanced

computational data structures that deal efficiently with the flat grid topology of this scheme.

Alternatively, high-order nondissipative interface schemes for hierarchical grids (like those

efficiently implemented by the method of Berger and Colella, 1989) could be investigated.

The ultimate goal of this effort is to develop a stable interface treatment for fully three-

dimensional patch-refined grids. On one hand, the conceptual leap from 2-D to 3-D is

considerably smaller than that from 1-D to 2-D, as the hanging-node problem has already

been solved. The 3-D patch-refined grid is topologically similar to that in 2-D, and may be

approached in a similar manner: in place of the edge and corner interfaces identified in 2-D,

there will be three-dimensional faces, edges and corners. The same principles of accuracy,

stability and consistency with neighboring interfaces will continue to apply. On the other

hand, the 3-D problem will be computationally demanding, involving likely hundreds of

nodes in the vicinity of each interface, and may even be too cumbersome and inefficient to

be usefully implemented. Also, we speculate that additional reductions in the maximum

order of accuracy achievable at 3-D edges and corners may result, further increasing the

computational cost and complexity of the method. Ultimately, a solution to the 3-D problem

may exist, but it may be so unwieldy as to be of only academic interest.

5.4 The Richtmyer-Meshkov Instability

The start-up and linear growth phases of the Richtmyer-Meshkov instability have been in-

vestigated using a novel shock-resolved Navier-Stokes simulation. By assuming a linearized

form for the solution with a perturbed interface, where the base flow is the solution to

the nonlinear 1-D Navier-Stokes equations for a shock incident on a density interface, the
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problem could be reduced to a 1-D computational domain. To efficiently resolve the full

structure of the shocks, the interface closures of Chapter 2 were employed in a refinement

scheme that tracked the solution features based on the inviscid Riemann solution. A full

set of validation tests for the explicit fourth-order code has shown that the method is time

stable and converges at the expected fourth-order rate.

Results from the simulations show that for weak and intermediate strength shocks, the

impulsive model is adequate for prediction of the asymptotic growth rate of the perturbation.

For strong shocks, the model from Wouchuk (2001a) accurately predicts the asymptotic

growth rate. Transient growth shows general agreement with Wouchuk’s model for weaker

shocks, while for stronger shocks the same model significantly underestimates the amplitude

of oscillation in the growth rate. The characteristic start-up time proposed by Lombardini

(2008) is verified as a good estimate of the time for the instability to enter the linear growth

regime. The extent of the influence of viscosity is predicted by a Reynolds number based on

the perturbation wave number. Existing models of viscous attenuation are found to poorly

predict the growth rate of the instability in most cases.

Further investigation within the current formulation may begin with a broader explo-

ration of the parameter space, primarily in MI and Atwood number. Of great interest

would be fully resolved simulations of high-MI shocks, as the existing theory and body of

simulation results is somewhat limited in this area. The greatest hurdle for these problems

is the resolution requirements, as discovered for the MI = 2.20, A = 0.6 case, where suc-

cessively greater refinements are required to resolve the very steep gradients encountered

during impact of the shock with the interface. Computational cost may also be reduced

with more sophisticated time-stepping routines, where the stability boundaries permit larger

CFL numbers for the locally refined grids.

Extension of the present approach should begin with an implementation of the two-

species gas mixture case, which is of interest because the relative values of γ0 and γ0′ have a

strong influence on the transient growth of the solution. Comparison to experimental results

would be improved, as each fluid could be modeled more accurately. Further work may

also be done to progressively weaken the approximations made in the current formulation,

depending on the particular focus of the future investigation.
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Appendix A

Analysis of Finite-Difference
Schemes

A.1 GKS Stability Theory

Stability of a discrete approximation to a linear hyperbolic partial differential equation may

be analyzed for the Cauchy problem on an infinite domain using standard Fourier techniques

(e.g., Lomax et al., 2001, §7.7), but on finite domains with imposed boundary values, this

analysis is not appropriate and GKS stability theory, after Gustafsson et al. (1972), must be

used. This discussion largely follows that of Carpenter et al. (1993), and is presented here

as the precursor to the introduction of summation-by-parts operators, which are themselves

shown to be GKS stable in Section 2.2.5.

The power of the GKS theory is that it allows separation of the stability problem

into an infinite-domain Cauchy problem and two boundary problems. A necessary and

sufficient condition for stability then requires that each problem have no eigensolution.

This is formulated for the discrete problem (here following Berger, 1985) by assuming a

normal mode form for the solution vector

u(j∆x, n∆t) ≈ unj = znφj , (A1.1)

where φj is the solution to the resolvent equation for the finite difference scheme (this form

comes from a discrete Laplace transform in time that underpins the GKS analysis). Upon

assuming a form φj = φ0κ
j , the resolvent equation will give a polynomial in κj that has
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multiple roots κjk, so we can write down the general form

φj =
∑
|κs|≤1

p(j, s)κjs(z), (A1.2)

where p is the polynomial coefficient in j of order one less than the multiplicity of the root

κs. Stability, in the sense that the solution (A1.1) is bounded, then requires that there be

no solutions for φj with

1. |z| > 1 and |κ| < 1, or

2. |z| = 1 and |κ| ≤ 1.

These conditions bound φj by excluding terms from the summation equation (A1.2) that

could cause growth: (1), where |z| > 1, or (2), in the degenerate case where |z| = 1. The

remaining combinations of |z| and |κ| leave equation (A1.1) bounded in space and time.

The GKS theory may also be extended to the semidiscrete problem if a Runge-Kutta

time-marching scheme is used with a discretization that is inside the stability region. The

results look similar, but it is useful to cast the problem in the semidiscrete form to com-

pare the resulting stability conditions to those required for asymptotic stability. Following

Carpenter et al. (1993), we assume a normal-mode solution to the semidiscrete problem

described by (2.2.6)

uj(t) = eGtφj , (A1.3)

where G = diag(λA) are the eigenvalues of A. Again we assume a form for φj

φj = φ0κ
j . (A1.4)

An eigensolution to the initial-boundary value problem (2.2.6) is then defined as a nontrivial

function with <(G) ≥ 0 that satisfies

1. for <(G) > 0, |κ| < 1 (so a GKS-eigenvalue exists), or

2. for <(G) = 0 and |κ| = 1, a perturbation to |κ| = 1 − ε with ε > 0 generates an

eigenvalue <(G) > δ, where δ > 0 (i.e., a generalized GKS eigenvalue exists).

The condition for stability is then that there exists no such eigensolution; see that (1)

allows a solution bounded in x that would grow exponentially in time, and that (2) covers
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the limiting case. For a given scheme, stability is determined by assuming a solution of the

normal mode form (A1.3) and showing that the resulting κ is not a GKS eigenvalue.

To demonstrate the resolvent condition and the form of the roots κ, we use an example

from Carpenter et al. (1993) and start with the generalized eigenvalue equation derived

from equation (2.2.6):

Guj = Auj . (A1.5)

The resolvent equation follows upon substitution of equation (A1.3); for the fourth-order

implicit scheme, this has the form

(
1
4
φj−1 + φj +

1
4
φj+1

)
G =

3
4

(φj+1 − φj−1) . (A1.6)

Substituting for φj by (A1.4), we obtain a quadratic equation in κ

(
1
κ

+ 4 + κ

)
G = 3

(
κ− 1

κ

)
. (A1.7)

The first root (κ1 = κ) is obvious, but to find the second, substitute a function f(κ) such

that (
f2 + 4f + 1

)
G = 3(f2 − 1), (A1.8)

where f2 + 4f + 1 = (κ2 + 4κ + 1)g(κ) and f2 − 1 = (κ2 − 1)g(κ), for some amplitude

function g(κ). Doing the algebra, we find a quadratic in f(κ) with the two roots we seek,

κ1 = κ and κ2 =
−κ− 2
2κ+ 1

,

so φj has the general form

φj = C1κ
j
1 + C2κ

j
2, (A1.9)

where C1 and C2 are constants determined from the boundary treatment. Note that |κ1| ≥ 1

implies |κ2| ≤ 1 here; Gustafsson et al. (1972) shows that in the discrete case with |z| > 1,

there will be Nl linearly independent solutions with |κ| < 1 and Nr with |κ| > 1 for a

difference stencil with l points to the left and r to the right (N is the size of the system,

which is clearly assumed to be uniform).

A final quirk of Lax/GKS stability is that the eigenvalues of the spatial finite-difference
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scheme must satisfy

<(λj) ≤ ω, ω ≥ 0

as a necessary condition. This means that the eigenvalues asymptotically approach a bound

in the right-hand complex plane as N →∞. This may appear somewhat alarming at first

glance for time stability, but notice that the eigenvalues of a centered difference scheme on

an infinite domain (as approached in the limit N → ∞) have zero real part; the key is to

keep ω = 0 as the limit when finite boundaries are present.

Regarding GKS stability at the interfaces, it is prohibitively difficult to perform this

analysis directly on stencils as large and complex as those used in the interface schemes, so

instead we rely on the summation-by-parts property to guarantee GKS stability.

A.2 Time-Marching Stability Theory

Having demonstrated stability for the semidiscrete problem, further analysis is necessary to

ensure that a given time discretization preserves those stability properties. Our primary in-

terest here is in one-step explicit time-marching methods like Runge-Kutta, but the analysis

may be adapted to investigate other schemes.

For a one-step time-marching method, equation (2.2.6) is discretized to obtain for the

solution at time step n,

un+1 = Sun = Sn+1u0, (A2.1)

where S is a function of the general matrix A. Diagonalizing the discrete system, this may

be written in terms of the eigenvalues of S,

wn+1
j = σ(λAj ∆t)wnj = [σ(λAj ∆t)]nw0

j , (A2.2)

where w = X−1u, expressed in terms of the right eigenvectors X and eigenvalues λAj of A.

For an sth-order Runge-Kutta scheme, S and its eigenvalues may be expressed directly in

terms of A and λAj :

S = I + ∆tA+
∆t2

2
A2 + · · ·+ ∆ts

s!
As, (A2.3)

σ(z) = 1 + z +
1
2
z2 + · · ·+ 1

s!
zs, (A2.4)
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where z = λAj ∆t. For the solution (A2.2) to be asymptotically stable, we simply require

max
j
|σ(λAj ∆t)| < 1. (A2.5)

This is the von Neumann stability condition. For general A, the eigenvalues λAj may be

complex, so σ(z) is in general a complex-valued function. The stability boundaries are

visualized by plotting contours of |σ(z)| = 1, shown in Figure A.1 for the third- and fourth-

order Runge-Kutta schemes (with coefficients from Butcher, 2003).

!4 !3 !2 !1 0 1
!4

!2

0

2

4

Re!z"

Im
!z"

Figure A.1: Stability boundaries of the third-order (blue) and fourth-order (green) Runge-
Kutta time-marching schemes, defined by |σ(z)| < 1. Values of z = λAj ∆t inside each
contour are stable.

For the advection equation (2.2.1) solved on a uniform grid with periodic boundary

conditions, spectral analysis of the finite-difference scheme allows precise bounds for discrete

stability to be defined. In this case, the eigenvalues of A may be represented in terms of

the modified wave number, k′:

λA = −ick′, (A2.6)

where k′ is determined by Fourier analysis of the finite-difference scheme used (e.g., Lomax

et al., 2001, §3.5). Defining the CFL number as C = c∆t/∆x, substituting equation (A2.6)

into (A2.5), we have

|σ(−iCk′∆x)| < 1. (A2.7)
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Thus the stability limit on C can be found directly from the spectrum of the finite difference

scheme (which defines k′) and the spectrum of the time-marching scheme (which defines

the function σ(z)). From this follows some observations:

1. For centered finite difference schemes, k′ is real so z = −iCk′∆x is purely imagi-

nary. Thus stability is limited by the intersection of the contour |σ(z)| = 1 with the

imaginary axis.

2. Generally, for a centered scheme with c1 = max(k′∆x) and a time-marching scheme

having an intersection of |σ(z)| = 1 with the imaginary axis at λA∆t = c2, the bound

on stability is given by

C < c1/c2. (A2.8)

For the centered fourth-order explicit finite-difference scheme with a third-order Runge-

Kutta time-marching scheme, c1 = 1.732 and c2 = 1.372, giving the stability criterion

C < 1.262.
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Appendix B

Stable Boundary Schemes

B.1 Explicit Fourth-Order Boundary Closure

The boundary closure derivation follows the theory of Strand (1994), but is applied here

in a form analogous to that used for the interface schemes. Four points are sufficient to

close the boundary problem to third order at the outer two points and fourth order at the

inner two points in the fourth-order explicit case, without free parameters. The scheme is

described here as 3-3-4-4, following the naming convention given to the interface schemes,

where the numbers refer to the order of accuracy at each point, and the domain end being

at the left-hand side. Given here in equations (B.1)–(B.2) are the first six rows and columns

of the P and Q matrices of this boundary scheme.

P =



2429
10368

469
3456 − 113

1152
277

10368 0 0
469
3456

4871
3456 − 721

3456
205
3456 0 0

− 113
1152 − 721

3456
3623
3456 − 43

3456 0 0
277

10368
205
3456 − 43

3456
10397
10368 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(B.1)
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Q =



−1
2

167
216 −149

432
31
432 0 0

−167
216 0 133

144 − 65
432 0 0

149
432 −133

144 0 143
216 − 1

12 0

− 31
432

65
432 −143

216 0 2
3 − 1

12

0 0 1
12 −2

3 0 2
3

0 0 0 1
12 −2

3 0


(B.2)

The right-hand boundary is obtained from the left by the transpose/flip-transpose trans-

formation. The summation-by-parts constraints are met by the boundary closure when

combined with the SAT method for application of the boundary conditions.

B.2 Explicit Sixth-Order Boundary Closure

The sixth-order explicit boundary closure is derived similarly to the fourth-order explicit

scheme. Six points are sufficient to close the boundary problem to at least fifth-order

accuracy, the scheme shown here in equations (B.3)–(B.4) being 5-5-5-6-6-6. Shown here

are the left-hand boundary regions of P and Q. The right-hand boundary is obtained by

the same transformation described for the fourth-order case.

P =



53464067
279936000

13030159
55987200 −1016513

5598720
3695851
27993600 − 2695189

55987200
2072623

279936000

13030159
55987200

78554551
55987200 −14216029

27993600
275275
1119744 − 916649

11197440
612203

55987200

−1016513
5598720 −14216029

27993600
24866869
13996800 − 6005707

13996800
972023
5598720 − 163537

5598720

3695851
27993600

275275
1119744 − 6005707

13996800
16373749
13996800 − 1774429

27993600
288059

27993600

− 2695189
55987200 − 916649

11197440
972023
5598720 − 1774429

27993600
57248311
55987200 − 199409

55987200

2072623
279936000

612203
55987200 − 163537

5598720
288059

27993600 − 199409
55987200

280091267
279936000


(B.3)

Q =



−1
2

20701
24300 − 985667

1555200
621509
1555200 − 216053

1555200
32947

1555200

−20701
24300 0 2251333

1555200 −144251
172800

440579
1555200 − 68789

1555200

985667
1555200 −2251333

1555200 0 33791
32400 −138353

518400
58757

1555200

− 621509
1555200

144251
172800 −33791

32400 0 1149253
1555200 − 45991

311040

216053
1555200 − 440579

1555200
138353
518400 −1149253

1555200 0 911
1215

− 32947
1555200

68789
1555200 − 58757

1555200
45991
311040 − 911

1215 0


(B.4)
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B.3 Implicit Fourth-Order Boundary Closure

The four-point implicit boundary closure used in this work is that developed in Carpenter

et al. (1994), and is presented here for completeness. This scheme has third-order accuracy

at each of the four points of the boundary region, and has P tridiagonal, so preserves the

efficient structure of the interior scheme. Reproduced in equations (B.5)–(B.6) are the four

rows and columns of the boundary part of the matrices H, P and Q from Carpenter et al.

(1994).

H =


70282007653
7658388480 −9426299

2268480 − 192913
1067520 0

−55530689643
2552796160

8051589
756160

149823
355840 0

63842626133
2552796160 −9153739

756160 − 4433
355840 −1

8

−71498870443
7658388480

10110149
2268480

102703
1067520 1

 , (B.5)

P =


211
429 1 0 0

1 3563
1688 −1

8 0

0 43
17

1893
1054

139
186

0 0 1
4 1

 , Q=


−289

234
279
286

75
286 − 7

2574

−8635
3376

6987
3376

1851
3376 − 203

3376

−15043
18972 −4089

2108
147
124

29353
18972

0 0 −3
4 0

 . (B.6)

As for the explicit schemes, the right-hand boundary scheme is obtained by transformation

of the above left-hand side matrices.
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Appendix C

Interface Scheme Implementation

This section briefly describes the implementation of the 1-D and 2-D interface schemes used

for the validation tests and the Richtmyer-Meshkov instability study. This implementation

is by no means unique, nor necessarily the most efficient computationally, but it illustrates

a potential methodology for using these schemes in a practical computation.

C.1 Implementation of the 1-D Scheme

A domain is defined by a discretization ∆x and two vectors, each of length M for a domain

of M blocks (as defined in Section 2.1): n = {nm}, containing the number of nodes in

each block, and r = {rm}, containing the multiple of ∆x that defines the discretization of

that block, rm∆x. The following algorithm calculates the derivative approximation Du of

a discrete vector u:

for m = 1,..., M:

if m = M,

calculate the derivative at the RH boundary

else

calculate the derivative across the interface

end

for each interior node of the block, calculate the derivative

if m = 1, calculate the derivative at the LH boundary

In this way, the derivatives for the nodes on both sides of the interface between blocks m

and m+ 1 are calculated in a single matrix multiplication using D = P̂−1Q, where for the
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fourth-order explicit scheme,

Q =


−α −β 0 q12 q13 q14 0 0

0 −α −q12 0 q23 q24 0 0

0 0 −q13 −q23 0 q34 α 0

0 0 −q14 −q24 −q34 0 β α

 ,

so the full dependence set of the interface nodes is included. All quantities are as defined

in Section 2.3. The same applies for the boundaries, such that both ends of each block are

calculated by these matrix operations. Derivative values for the remaining interior elements

of the block are calculated using the standard stencil.

This algorithm was implemented for the validation problems described in Section 2.6.

For the 2-D tensor-product grids, the same algorithm was applied in each direction to

calculate the respective derivatives, now with separate block description vectors n and r for

the x and y directions. The algorithm was used again for the investigation of the Richtmyer-

Meshkov stability in Chapter 4, but where n and r are now time-varying quantities (in both

value and length, as the number of blocks can change).

For the implicit scheme, the P and Q matrices were built up in a similar way for the

entire domain, then inverted to calculate the derivative. Due to the tridiagonal structure of

P , maintained through the interface regions, this is a relatively fast operation. Note that

H is not required to calculate any derivatives.

C.2 Implementation of the 2-D Scheme

The implementation in 2-D for patch refinement follows a similar algorithm to the 1-D

scheme, though the details are an order magnitude more complicated. The domain is now

divided into rectangular blocks, so the vectors n and r become matrices. The algorithm

calculates the right-hand and upper ends of each block, using the 1-D boundary matrix for

each row or column or the appropriate interface matrix. Determining the appropriate inter-

face matrix requires detailed logic based on the refinement in the current and neighboring

blocks. Once the interface type is identified, the interface node sets Ii and Id are collected

and ordered to follow the numbering of Section 3.3. A single matrix multiplication using

the difference matrix D̂x or D̂y calculates the derivative for the interface nodes of each set.
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This complexity notwithstanding, the method can be broken down to three steps to be

performed for each block:

1. if the block has a boundary, calculate the derivatives using the boundary stencil,

2. if the block has an interface on its right or upper edge,

(a) identify the interface node set(s), Ii and Id,

(b) calculate the derivatives for the full interface set(s),

3. calculate the derivatives for the remaining interior nodes using the standard stencil.

Here, the most difficult steps are the those needed to identify the interface sets, which must

be properly ordered in each of the four orientations possible for each interface, and for both

derivatives. Note that not all blocks have interfaces with a change in resolution, in which

case data values from the adjacent block are required. A companion data structure for the

solution vector may be an efficient way to identify interface nodes more quickly, and certain

node-numbering/ordering schemes may prove more efficient than others.

The six derivative matrices (D̂x and D̂y for each of the three interface geometries)

provided online with this thesis are for the default orientations defined in Section 3.3.

These are transformed to the other possible orientations following Table 3.2.
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Appendix D

Alternative 2-D Edge Interface
Formulation

For the edge interface, an alternative formulation to that shown in Section 3.3.3 is available.

Consider solving equation (3.1.1) now on a grid of infinite extent with an interface at x = 0,

such that the left half plane is refined by ratios rx and ry in the x- and y-directions,

respectively, relative to the right half plane. Thus Ωf = {(x, y) ∈ x < 0}, and Ωc =

{(x, y) ∈ x > 0}, and a grid is obtained that contains only the edge interface geometry

from Figure 3.3. Note that each cell row of the grid is identical in this case, so nodes may

be identified by a global index pair (i, j), where i ∈ N identifies the node position in the

coarse row j, with the indexing chosen such that (0, j) is the coarse node closest to the

interface at x = 0. A convenient choice for the numbering within the fine part of each

row is the “N”-counting scheme, shown in Figure D.1. With the familiar refinement ratios

rx = ry = 2, the node locations (x, y)i,j are given by

(x, y)i,j =


([i/2]∆x, [2j + 1/2]∆y), if i < 0 and odd,

([i/2 + 1/2]∆x, [2j − 1/2]∆y), if i < 0 and even,

([2i+ 1]∆x, 2j∆y), i ≥ 0,

(D.1)

where ∆x and ∆y are the refined grid discretizations.

This node-numbering scheme leads naturally to a formulation of the interface problem

in terms of fourth-order tensors. Here, using the difference tensor Dx,ijkl as an example,

the first pair of indices relate to the rows of the matrix Dx (the independent indices), and

the second pair to the columns of Dx (the dependent indices). Within each index pair, the
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Figure D.1: The “N”-counting scheme for refined regions of an infinite grid with an interface
at x = 0, for a row j.

first index refers to the node number (i) and the second to the row (j). This can be done

only because each row of this grid is identical; for any refinement where ∂Ωf has corners,

there is implicitly a change in the form of the rows and this formulation cannot be used.

For the interface scheme from Section 3.3.3, for a given grid row j of the edge-interface

grid, the dependence set extends only to rows {j − 1, j, j + 1}. Consequently, the matrices

for the interface stencil may be written as

D̂x,ijkl = D̂−1
x,ikδj−1,l + D̂0

x,ikδj,l + D̂+1
x,ikδj+1,l, (D.2)

D̂y,ijkl = D̂−1
y,ikδj−1,l + D̂0

y,ikδj,l + D̂+1
y,ikδj+1,l, (D.3)

Ĥijkl = Ĥ0
ikδj,l, (D.4)

where δj,l is the Kronecker delta, and each of D̂−1
x , D̂0

x, D̂+1
x , D̂−1

y , D̂0
y, D̂

+1
y and Ĥ0 are

second-order matrices of finite extent. In the case of the stencil from Figure 3.7, all are

8 × 8 matrices, except D̂0
x, which is 8 × 14. The accuracy conditions (3.3.1)–(3.3.2) are

constructed as before, in this case over the full matrices D̂x and D̂y, and the stability

conditions (3.2.21)–(3.2.22) expand to

Ĥ0
imD̂

−1
x,mk + Ĥ0

mkD̂
+1
x,mi = 0, (D.5)

Ĥ0
imD̂

0
x,mk + Ĥ0

mkD̂
0
x,mi = 0, (D.6)

Ĥ0
imD̂

+1
x,mk + Ĥ0

mkD̂
−1
x,mi = 0, (D.7)

in x, and similarly in y. The resulting edge solution is identical to that of Section 3.3.3. The

advantage of this formulation is that the matrices D̂−1, D̂0 and D̂+1 have a particularly

simple structure, but this formulation cannot be applied at the corners where the grid

changes structure in two directions.
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Appendix E

Manipulations of the Navier-Stokes
Equations

E.1 Nondimensional Form

The Navier-Stokes equations for a general compressible fluid are

∂ρ

∂t
+ uj

∂ρ

∂xj
+ ρ

∂uj
∂xj

= 0, (E1.1)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

, (E1.2)

ρ
∂

∂t

(
e+

1
2
ukuk

)
+ ρuj

∂

∂xj

(
e+

1
2
ukuk

)
= −∂(puj)

∂xj
+
∂(ukτkj)
∂xj

− ∂qj
∂xj

, (E1.3)

where τij is the deviatoric stress tensor and qj is the heat transfer vector (which is zero if

the flow is adiabatic). For a general Newtonian fluid, the deviatoric stress is given by

τij = λSkkδij + 2µSij , (E1.4)

where

Sij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

For the problems considered in this thesis, we assume zero bulk viscosity,

µv = λ+
2
3
µ = 0, (E1.5)
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so the deviatoric stress may be expressed in terms of the dynamic viscosity alone to obtain

τij = −2
3
µSkk + 2µSij . (E1.6)

Further assuming Fourier heat conduction,

qi = −κ ∂T
∂xi

. (E1.7)

At this point, we confine the analysis to the 1-D Navier-Stokes equations, reducing the

system (E1.1)–(E1.3) to

∂ρ

∂t
+
∂(ρu)
∂x

= 0,

ρ
∂u

∂t
+ ρu

∂u

∂x
= −∂p

∂x
+
∂τ

∂x
,

ρ
∂

∂t

(
e+

1
2
u2
)

+ ρu
∂

∂x

(
e+

1
2
u2
)

= −∂(pu)
∂x

+
∂(τu)
∂x

− ∂q

∂x
.

Applying the stress and heat conduction assumptions, and writing the system in conserva-

tive form, we have

∂ρ

∂t
+
∂(ρu)
∂x

= 0, (E1.8)

∂(ρu)
∂t

+
∂(ρu2)
∂x

= −∂p
∂x

+
4
3
∂

∂x

(
µ
∂u

∂x

)
, (E1.9)

∂

∂t

(
ρe+

1
2
ρu2
)

+
∂

∂x

(
ρeu+

1
2
ρu3
)

= −∂(pu)
∂x

+
4
3
∂

∂x

(
µu
∂u

∂x

)
+

∂

∂x

(
κ
∂T

∂x

)
. (E1.10)

In general, viscosity and heat conduction are functions of x and t, but in this work we will

assume constant µ and κ for

∂ρ

∂t
+
∂(ρu)
∂x

= 0, (E1.11)

∂(ρu)
∂t

+
∂(ρu2)
∂x

= −∂p
∂x

+
4
3
µ
∂2u

∂x2
, (E1.12)

∂

∂t

(
ρe+

1
2
ρu2
)

+
∂

∂x

(
ρeu+

1
2
ρu3
)

= −∂(pu)
∂x

+
4
3
µ
∂

∂x

(
u
∂u

∂x

)
+ κ

∂2T

∂x2
. (E1.13)

We now specify a perfect gas, so p = ρRT and e = CvT , where R is the specific

gas constant and Cv is the specific heat capacity at constant volume. This allows both
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temperature and internal energy to be expressed in terms of pressure and density:

T =
1
R

p

ρ
, (E1.14)

e = CvT =
Cv
R

p

ρ
=

1
γ − 1

p

ρ
, (E1.15)

which gives a conserved energy term

ρe+
1
2
ρu2 =

p

γ − 1
+

1
2
ρu2. (E1.16)

Applying this to the system, after a little simplification we have the system

∂ρ

∂t
= −∂(ρu)

∂x
, (E1.17)

∂(ρu)
∂t

= − ∂

∂x

(
ρu2 + p− 4

3
µ
∂u

∂x

)
, (E1.18)

∂

∂t

(
p

γ − 1
+

1
2
ρu2

)
= − ∂

∂x

(
γ

γ − 1
pu+

1
2
ρu3 − 4

3
µu
∂u

∂x
− κ

R

∂

∂x

(p
ρ

))
. (E1.19)

To nondimensionalize these equations, we define reference states ρ0, u0 and p0. Further,

since we are interested in problems at the scale of thickness of a shock, the length scale is

a reference mean free path length, `0. Thus we define the dimensionless variables, denoted

by a hat,

x̂ =
x

`0
, ρ̂ =

ρ

ρ0
, û =

u

u0
, p̂ =

p

p0
, t̂ =

tu0

`0
.

For the derived quantities, note that T̂ = ê = p̂/ρ̂. Thus we obtain the nondimensional

version of (E1.17)–(E1.19),

∂ρ̂

∂t̂
= − ∂

∂x̂
(ρ̂û) ,

∂(ρ̂û)
∂t̂

= − ∂

∂x̂

(
ρ̂û2 +

p0

ρ0u2
0

p̂− 4
3

µ

ρ0u0`0

∂û

∂x̂

)
,

∂

∂t̂

(
p0

ρ0u2
0

p̂

γ − 1
+

1
2
ρ̂û2

)
= − ∂

∂x̂

(
γ

γ − 1
p0

ρ0u2
0

p̂û+
1
2
ρ̂û3 − 4

3
µ

ρ0u0`0
û
∂û

∂x̂
− κp0

ρ2
0u

3
0`0R

∂T̂

∂x̂

)
.
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Three dimensionless groups are common to these equations:

p0

ρ0u2
0

=
1
γ

1
u2

0

γp0

ρ0
=

1
γM2

0

, (E1.20)

µ0

ρ0u0`0
=

1
Re
, (E1.21)

κp0

ρ2
0u

3
0`0R

=
Cp
R

κ

µCp

µ

ρ0u0`0

p0

ρ0u2
0

=
1

(γ − 1)PrReM2
0

. (E1.22)

where the Mach number M0 = u0/a0 is defined with respect to the reference sound speed,

and we have defined a Reynolds number, Re, and a Prandtl number, Pr = µCp/κ, in terms

of the reference states. This reduces the problem to four nondimensional parameters: γ,

M0, Re and Pr, giving

∂ρ̂

∂t̂
= − ∂

∂x̂
(ρ̂û) , (E1.23)

∂(ρ̂û)
∂t̂

= − ∂

∂x̂

(
ρ̂û2 +

p̂

γM2
0

− 4
3

1
Re

∂û

∂x̂

)
, (E1.24)

∂

∂t̂

(
p̂

γM2
0

+ βρ̂û2

)
= − ∂

∂x̂

(
p̂û

M2
0

+ βρ̂û3 − 4
3
γ − 1

Re
û
∂û

∂x̂
− 1

PrReM2
0

∂T̂

∂x̂

)
, (E1.25)

where β = (γ − 1)/2.

For the Navier-Stokes shock solution, two further simplifications are made. First, the

Prandtl number is set to Pr = 3/4 for analytic expediency (see Appendix F.1), though this

is only a small deviation from the standard value for air (Pr = 0.72). Second, since we have

used the mean free path `0 as our length scale, we use kinetic theory to define the Reynolds

number in terms of γ and M0. Dynamic viscosity, based on a hard-sphere molecular model,

is given by

µ = ρ0k1`0v̄, (E1.26)

where the constant k1 = 5π/32, and the mean molecular speed v̄ is given by

v̄ =

√
8RT0

π
=
√

8p0

πρ0
= a0

√
8
πγ
. (E1.27)

Substituting this result into the expression for the Reynolds number,

Re =
ρ0u0`0
µ

=
u0

a0

1
k1

√
πγ

8
=

√
γM2

0

k2
, (E1.28)
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where

k2 =
5
8

√
π

2
. (E1.29)

Thus we have the nondimensional system of equations

∂ρ̂

∂t̂
= − ∂

∂x̂
(ρ̂û) , (E1.30)

∂(ρ̂û)
∂t̂

= − ∂

∂x̂

(
ρ̂û2 +

p̂

γM2
0

−R′∂û
∂x̂

)
, (E1.31)

∂

∂t̂

(
p̂

γM2
0

+ βρ̂û2

)
= − ∂

∂x̂

(
p̂û

M2
0

+ βρ̂û3 −R′(γ − 1)û
∂û

∂x̂
− R′

M2
0

∂T̂

∂x̂

)
, (E1.32)

where

R′ =
4
3

k2√
γM2

0

, (E1.33)

the system now defined entirely by the two parameters γ and M0.

E.2 Nondimensional Form of the Euler Equations

The general compressible Euler equations, expressed in conservative form, are

∂ρ

∂t
+
∂(ρuj)
∂xj

= 0, (E2.1)

∂(ρui)
∂t

+
∂(ρuiuj)
∂xj

+
∂p

∂xi
= 0, (E2.2)

∂

∂t

(
ρe+

1
2
ρukuk

)
+

∂

∂xj

(
ρeuj +

1
2
ρukukuj

)
+
∂(puj)
∂xj

= 0. (E2.3)

In 2-D, these reduce to the continuity, x- and y-momentum and energy equations

∂ρ

∂t
+
∂(ρu)
∂x

+
∂(ρv)
∂y

= 0, (E2.4)

∂(ρu)
∂t

+
∂(ρu2)
∂x

+
∂(ρuv)
∂y

+
∂p

∂x
= 0, (E2.5)

∂(ρv)
∂t

+
∂(ρuv)
∂x

+
∂(ρv2)
∂y

+
∂p

∂y
= 0, (E2.6)

∂

∂t

(
ρe+

1
2
ρ(u2 + v2)

)
+

∂

∂x

(
ρue+

1
2
ρu(u2 + v2) + pu

)
+

∂

∂y

(
ρve+

1
2
ρv(u2 + v2) + pv

)
= 0. (E2.7)
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Assuming a perfect gas, so p = ρRT and e = CvT , the internal energy may be expressed in

terms of pressure, simplifying the conserved energy term by

ρe+
1
2
ρ(u2 + v2) =

p

γ − 1
+

1
2
ρ(u2 + v2). (E2.8)

Nondimensionalizing the equations, we define reference far-field density, velocity and

pressure values ρ0, u0 and p0, to give dimensionless variables

ρ̂ =
ρ

ρ0
, û =

u

u0
, p̂ =

p

p0
.

The length scale is not important in this scaling of the Euler equations, so may be defined

arbitrarily. Upon substitution of the dimensionless variables, as with the 1-D Navier-Stokes

equations in Appendix E.1, the pressure terms are scaled by the parameter group

ρ0u
2
0

p0
= γ

ρ0

γp0
u2

0 = γ
u2

0

a2
0

= γM2
0 , (E2.9)

and the system may therefore be written in terms of the two parameters, γ and Mach

number M0. Thus we obtain the nondimensional equations

∂ρ̂

∂t̂
+

∂

∂x̂
(ρ̂û) +

∂

∂ŷ
(ρ̂v̂) = 0, (E2.10)

∂

∂t̂
(ρ̂û) +

∂

∂x̂

(
ρ̂û2 +

p̂

γM2
0

)
+

∂

∂ŷ
(ρ̂ûv̂) = 0, (E2.11)

∂

∂t̂
(ρ̂v̂) +

∂

∂x̂
(ρ̂ûv̂) +

∂

∂ŷ

(
ρ̂v̂2 +

p̂

γM2
0

)
= 0, (E2.12)

∂

∂t̂

(
p̂

γM2
0

+ βρ̂
(
û2 + v̂2

))
+

∂

∂x̂

(
p̂û

M2
0

+ βρ̂û
(
û2 + v̂2

))
+

∂

∂ŷ

(
p̂v̂

M2
0

+ βρ̂v̂
(
û2 + v̂2

))
= 0, (E2.13)

where β = (γ − 1)/2.

To preserve numerical stability, we now write these equations in the skew-symmetric

form suggested by Honein and Moin (2004). This replaces the convective terms in the

general dimensional form of the momentum and energy equations with

∂

∂xj
(ρuiuj) 7→

1
2
∂

∂xj
(ρuiuj) +

1
2
ρuj

∂ui
∂xj

+
1
2
ui
∂(ρuj)
∂xj

, (E2.14)
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∂

∂xj

(
ρeuj +

1
2
ρukukuj + puj

)
7→1

2
∂(ρeuj)
∂xj

+
1
2
ρuj

∂e

∂xj
+

1
2
e
∂(ρuj)
∂xj

+
1
2
uk
∂(ρujuk)
∂xj

+
1
2
ρujuk

∂uk
∂xj

+ p
∂uj
∂xj

+ uj
∂p

∂xj
.

(E2.15)

(from Hill et al., 2006). Applying the perfect gas assumption and the nondimensionalization,

we obtain the full skew-symmetric form of the equations (the hats have been dropped from

the variables in these nondimensional equations for simplicity):

∂ρ

∂t
+
∂(ρu)
∂x

+
∂(ρv)
∂y

= 0, (E2.16)

∂(ρu)
∂t

+
1
2

[
∂

∂x

(
ρu2 +

2p
γM2

0

)
+
∂(ρuv)
∂y

+ ρu
∂u

∂x
+ ρv

∂u

∂y
+ u

∂(ρu)
∂x

+ u
∂(ρv)
∂y

]
= 0,

(E2.17)

∂(ρv)
∂t

+
1
2

[
∂(ρuv)
∂x

+
∂

∂y

(
ρv2 +

2p
γM2

0

)
+ ρu

∂v

∂x
+ ρv

∂v

∂y
+ v

∂(ρu)
∂x

+ v
∂(ρv)
∂y

]
= 0,

(E2.18)

∂

∂t

(
p

γM2
0

+ βρ(u2 + v2)
)

+ β

[
u
∂(ρu2)
∂x

+ u
∂(ρuv)
∂y

+ v
∂(ρuv)
∂x

+ v
∂(ρv2)
∂y

+ ρu2∂u

∂x
+ ρuv

∂u

∂y
+ ρuv

∂v

∂x
+ ρv2∂v

∂y

]
+

1
2γM2

0

[
∂(pu)
∂x

+
∂(pv)
∂y

+ ρu
∂

∂x

(p
ρ

)
+ ρv

∂

∂y

(p
ρ

)
+
p

ρ

∂(ρu)
∂x

+
p

ρ

∂(ρv)
∂y

]
+

(γ − 1)
γM2

0

[
p
∂u

∂x
+ p

∂v

∂y
+ u

∂p

∂x
+ v

∂p

∂y

]
= 0. (E2.19)

E.3 The Linearized Navier-Stokes Equations

Starting once again with the Navier-Stokes equations for a general compressible fluid,

∂ρ

∂t
+ uj

∂ρ

∂xj
+ ρ

∂uj
∂xj

= 0, (E3.1)

ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

, (E3.2)

ρ
∂

∂t

(
e+

1
2
ukuk

)
+ ρuj

∂

∂xj

(
e+

1
2
ukuk

)
= −∂(puj)

∂xj
+
∂(ukτkj)
∂xj

− ∂qj
∂xj

, (E3.3)
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where for a Newtonian fluid with zero bulk viscosity the deviatoric stress tensor is given by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
∂uk
∂xk

δij

)
, (E3.4)

and with Fourier heat conduction,

qi = −κ ∂T
∂xi

. (E3.5)

As in Section 4.3, we will assume constant µ and κ.

For the Richtmyer-Meshkov problem, we begin by reducing the general system to 2-D.

Evaluating the stress tensor, for the case of constant viscosity, we have for the momentum

equations

∂τij
∂xj

= µ

4
3
∂2u
∂x2 + ∂2v

∂x∂y + ∂2u
∂y2

∂2v
∂x2 + ∂2u

∂x∂y + 4
3
∂2v
∂y2

 ,
and for the energy equation

∂(ukτkj)
∂xj

= µ

[
4
3
∂

∂x

(
u
∂u

∂x

)
+

∂

∂x

(
v
∂v

∂x
+ v

∂u

∂y

)
+

∂

∂y

(
u
∂v

∂x
+ u

∂u

∂y

)
+

4
3
∂

∂y

(
v
∂v

∂y

)]
.

Substituting these, and making the other simplifications, we have the system

∂ρ

∂t
+
∂(ρu)
∂x

+
∂(ρv)
∂y

= 0, (E3.6)

∂(ρu)
∂t

+
∂(ρu2)
∂x

+
∂(ρuv)
∂y

= −∂p
∂x

+ µ

(
4
3
∂2u

∂x2
+

∂2v

∂x∂y
+
∂2u

∂y2

)
, (E3.7)

∂(ρv)
∂t

+
∂(ρuv)
∂x

+
∂(ρv2)
∂y

= −∂p
∂y

+ µ

(
∂2v

∂x2
+

∂2u

∂x∂y
+

4
3
∂2v

∂y2

)
, (E3.8)

∂

∂t

(
ρe+

1
2
ρ(u2 + v2)

)
+

∂

∂x

(
ρue+

1
2
ρu(u2 + v2)

)
+

∂

∂y

(
ρve+

1
2
ρv(u2 + v2)

)
= −∂(pu)

∂x
− ∂(pv)

∂y
+ κ
(∂2T

∂x2
+
∂2T

∂y2

)
+ µ

[
4
3
∂

∂x

(
u
∂u

∂x

)
+

∂

∂x

(
v
∂v

∂x
+ v

∂u

∂y

)
+

∂

∂y

(
u
∂v

∂x
+ u

∂u

∂y

)
+

4
3
∂

∂y

(
v
∂v

∂y

)]
. (E3.9)

We propose a form for the solution to this system that represents a small sinusoidal

perturbation in the y-direction of a 1-D base flow in (x, t),

u = ū(x, t) + εu′(x, t)eiky, (E3.10)

v = v̄(x, t) + εv′(x, t)eiky, (E3.11)
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ρ = ρ̄(x, t) + ερ′(x, t)eiky, (E3.12)

p = p̄(x, t) + εp′(x, t)eiky. (E3.13)

where we specify v̄ = 0 so the averaged flow is one-dimensional. Substituting the linear

forms (E3.10)–(E3.13) into each equation, we find for continuity

∂ρ

∂t
+
∂(ρu)
∂x

+
∂(ρv)
∂y

7→
[
∂ρ̄

∂t
+
∂(ρ̄ū)
∂x

]
+ ε

[
∂ρ′

∂t
+

∂

∂x

(
ρ̄u′ + ρ′ū

)
+ ikρ̄v′

]
eiky +O(ε2),

for x-momentum,

∂(ρu)
∂t

+
∂

∂x

(
p+ ρu2

)
+
∂(ρuv)
∂y

− µ
(

4
3
∂2u

∂x2
+

∂2v

∂x∂y
+
∂2u

∂y2

)
7→
[
∂(ρ̄ū)
∂t

+
∂

∂x

(
p̄+ ρ̄ū2

)
− 4

3
µ
∂2ū

∂x2

]
+ ε

[
∂

∂t

(
ρ̄u′ + rho′ū

)
+ ikρ̄ūv′

+
∂

∂x

(
p′ + 2ρ̄ūu′ + ρ′ū2

)
− µ

(
4
3
∂2u′

∂x2
+ ik

∂v′

∂x
− k2u′

)]
eiky +O(ε2),

for y-momentum,

∂(ρv)
∂t

+
∂(ρuv)
∂x

+
∂

∂y

(
p+ ρv2

)
− µ

(
∂2v

∂x2
+

∂2u

∂x∂y
+

4
3
∂2v

∂y2

)
7→ ε

[
∂

∂t

(
ρ̄v′
)

+
∂

∂x

(
ρ̄ūv′

)
+ ikp′ − µ

(
∂2v′

∂x2
+ ik

∂u′

∂x
− 4

3
k2v′

)]
eiky +O(ε2),

and energy, first for the convective terms,

∂

∂t

(
ρe+

1
2
ρ(u2 + v2)

)
+

∂

∂x

(
ρue+

1
2
ρu(u2 + v2) + pu

)
+

∂

∂y

(
ρve+

1
2
ρv(u2 + v2) + pv

)
7→
[
∂

∂t

(
ρ̄ē+

1
2
ρ̄ū2
)

+
∂

∂x

(
ρ̄ūē+

1
2
ρ̄ū3 + p̄ū

)]
+ ε

[
∂

∂t

(
ρ̄e′ + ρ′ē+ ρ̄ūu′ +

1
2
ρ′ū2

)
+ ik

(
ρ̄ēv′ +

1
2
ρ̄ū2v′ + p̄v′

)
+
∂

∂x

(
ρ̄ūe′ + ρ̄u′ē+ ρ′ūē+

3
2
ρ̄ū2u′ +

1
2
ρ′ū3 + p̄u′ + p′ū

)]
eiky +O(ε2),

for the heat conduction terms,

κ
(∂2T

∂x2
+
∂2T

∂y2

)
7→
[
κ
∂2T̄

∂x2

]
+ ε

[
κ

(
∂2T ′

∂x2
− k2T ′

)]
eiky +O(ε2),
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and finally for the dissipative terms

4
3
∂

∂x

(
u
∂u

∂x

)
+

∂

∂x

(
v
∂v

∂x
+ v

∂u

∂y

)
+

∂

∂y

(
u
∂v

∂x
+ u

∂u

∂y

)
+

4
3
∂

∂y

(
v
∂v

∂y

)
7→
[

4
3
∂

∂x

(
ū
∂ū

∂x

)]
+ ε

[
4
3
∂

∂x

(
ū
∂u′

∂x
+ u′

∂ū

∂x

)
+ ikū

∂v′

∂x
− k2ūu′

]
eiky +O(ε2).

Putting the pieces together, we recover from the order ε0 terms the familiar 1-D Navier-

Stokes equations for the base flow:

∂ρ̄

∂t
+
∂(ρ̄ū)
∂x

= 0, (E3.14)

∂(ρ̄ū)
∂t

+
∂

∂x

(
ρ̄ū2 + p̄− 4

3
µ̄
∂ū

∂x

)
= 0, (E3.15)

∂

∂t

(
ρ̄ē+

1
2
ρ̄ū2
)

+
∂

∂x

(
ρ̄ūē+

1
2
ρ̄ū3 + p̄ū− κ∂T̄

∂x
− 4

3
µū
∂ū

∂x

)
= 0. (E3.16)

From the order ε terms, we obtain

∂ρ′

∂t
+

∂

∂x

(
ρ′ū+ ρ̄u′

)
+ ikρ̄v′ = 0, (E3.17)

∂

∂t

(
ρ̄u′ + ρ′ū

)
+

∂

∂x

(
p′ + ρ′ū2 + 2ρ̄ūu′

)
+ ikρ̄ūv′

= µ

(
4
3
∂2u′

∂x2
+ ik

∂v′

∂x
− k2u′

)
, (E3.18)

∂

∂t

(
ρ̄v′
)

+
∂

∂x

(
ρ̄ūv′

)
+ ikp′ = µ

(
∂2v′

∂x2
+ ik

∂u′

∂x
− 4

3
k2v′

)
, (E3.19)

∂

∂t

(
ρ̄e′ + ρ′ē+ ρ̄ūu′ +

1
2
ρ′ū2

)
+

∂

∂x

(
ρ̄ūe′ + ρ̄u′ē+ ρ′ūē+

3
2
ρ̄ū2u′ +

1
2
ρ′ū3

)
+

∂

∂x

(
p̄u′ + p′ū

)
+ ik

(
ρ̄ēv′ +

1
2
ρ̄ū2v′ + p̄v′

)
= κ

(
∂2T ′

∂x2
− k2T ′

)
+ µ

[
4
3
∂

∂x

(
ū
∂u′

∂x
+ u′

∂ū

∂x

)
+ ikū

∂v′

∂x
− k2ūu′

]
. (E3.20)

To make further progress, we specify a perfect gas, where

e = CV T =
1

γ − 1
p

ρ
. (E3.21)
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This allows e to be eliminated from the energy equation, simplifying the convective term to

∂

∂t

(
p+ βρ(u2 + v2)

)
+

∂

∂x

(
γpu+ βρu(u2 + v2)

)
+

∂

∂y

(
γpv + βρv(u2 + v2)

)
7→
[
∂

∂t

(
p̄+ βρ̄ū2

)
+

∂

∂x

(
γp̄ū+ βρ̄ū3

)]
+ ε

[
∂

∂t

(
p′ + 2βρ̄ūu′ + βρ′ū2

)
+
∂

∂x

(
γ(p̄u′ + p′ū) + 3βρ̄ū2u′ + βρ′ū3

)
+ ik

(
γp̄v′ + βρ̄ū2v′

)]
eiky +O(ε2),

where β = (γ − 1)/2. Nondimensionalization of the equations follows Appendix E.1, using

reference parameters ρ0, p0 and UI and the mean free path `0 for the length scale. For the

Richtmyer-Meshkov problem, these correspond to state 0 and the incident shock speed, so

the resulting Mach number is therefore that of the incident shock, MI. Since the Navier-

Stokes shock solution from Appendix F.1 is used, for consistency we define Pr = 3/4 and

the Reynolds number from kinetic theory

Re =

√
γM2

I

k2
, where k2 =

5
8

√
π

2
. (E3.22)

We write the nondimensional equations using the same variables as before to avoid a pro-

liferation of symbols, noting from the context that the variables are now in dimensionless

form. For the base flow, we have

∂ρ̄

∂t
+
∂(ρ̄ū)
∂x

= 0, (E3.23)

∂(ρ̄ū)
∂t

+
∂

∂x

(
p̄

γM2
I

+ ρ̄ū2

)
=

4
3

1
Re

∂2ū

∂x2
, (E3.24)

∂

∂t

(
p̄

γM2
I

+ βρ̄ū2

)
+

∂

∂x

(
p̄ū

M2
I

+ βρ̄ū3

)
=

1
PrReM2

I

∂2T̄

∂x2
+

4
3
γ − 1

Re
∂

∂x

(
ū
∂ū

∂x

)
, (E3.25)

and for the first-order perturbation equations,

∂ρ′

∂t
+

∂

∂x

(
ρ̄u′ + ρ′ū

)
+ ikρ̄v′ = 0, (E3.26)

∂

∂t

(
ρ̄u′ + ρ′ū

)
+

∂

∂x

(
p′

γM2
I

+ ρ′ū2 + 2ρ̄ūu′
)

+ ikρ̄ūv′

=
1

Re

(
4
3
∂2u′

∂x2
+ ik

∂v′

∂x
− k2u′

)
, (E3.27)

∂

∂t

(
ρ̄v′
)

+
∂

∂x

(
ρ̄ūv′

)
+ ik

p′

γM2
I

=
1

Re

(
∂2v′

∂x2
+ ik

∂u′

∂x
− 4

3
k2v′

)
, (E3.28)
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∂

∂t

(
p′

γM2
I

+ β
(
ρ′ū2 + 2ρ̄ūu′

))
+

∂

∂x

(
p′ū+ p̄u′

M2
I

+ β
(
ρ′ū3 + 3ρ̄ū2u′

))
+ ik

(
p̄v′

M2
I

+ βρ̄ū2v′
)

=
1

PrReM2
I

(
∂2T ′

∂x2
− k2T ′

)
+
γ − 1

Re

[
4
3
∂

∂x

(
ū
∂u′

∂x
+ u′

∂ū

∂x

)
+ ikū

∂v′

∂x
− k2ūu′

]
.

(E3.29)

Finally, note that to evaluate the (nondimensional) temperature variables T̄ and T ′, we

refer to the Taylor expansion

T (p, ρ) =
p

ρ
=
p̄

ρ̄
+ ε

p′

ρ̄
− ε p̄ρ

′

ρ̄2
+O(ε2), (E3.30)

thus clearly

T̄ =
p̄

ρ̄
, T ′ = T̄

(
p′

p̄
− ρ′

ρ̄

)
.

E.4 Characteristic Form

For compressible flows, boundary conditions for the Navier-Stokes equations are usually

implemented in characteristic form. This is to ensure that the problem is well posed, so

information is specified only on those characteristics that point into the computational

domain. For the types of problems considered in this work, the flow is typically smooth

near the boundary with minimal contribution from the viscous terms, so the characteristic

analysis may be performed on the Euler equations. We begin with the 1-D equations in

nondimensional form from equations (E1.30)–(E1.32), and consider the first-order pertur-

bation equations (E3.26)–(E3.29) separately.

E.4.1 Characteristic Form of the 1-D Equations

Starting with equations (E1.30)–(E1.32), we discard the viscous terms and write the system

in the form
∂U

∂t
+
∂F (U)
∂x

= 0, (E4.1)
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in terms of the conserved variable vector and flux vector given by

U =


ρ

ρu

γ−1
2 ρu2 + p

γM2
0

 , and F (U) =


ρu

ρu2 + p
γM2

0

γ−1
2 ρu3 + pu

M2
0

 .

By the chain rule,
∂F

∂x
=
∂F

∂U

∂U

∂x
= A

∂U

∂x
,

which gives the linearized equation

∂U

∂t
+A

∂U

∂x
= 0. (E4.2)

This equation is transformed to the primitive variable vector V = [ρ, u, p]T by defining

M =
∂U

∂V
, (E4.3)

to give the primitive equation
∂V

∂t
+ Ã

∂V

∂x
= 0, (E4.4)

where

Ã = M−1AM =


u ρ 0

0 u 1
γM2

0 ρ

0 γp u

 .
To obtain the final characteristic form of the equations, we diagonalize the matrix Ã =

R̃ΛR̃−1, where Λ is the matrix of characteristic speeds

Λ =


u 0 0

0 u− a
M0

0

0 0 u+ a
M0

 , (E4.5)

in terms of the nondimensional speed of sound defined by a ≡
√
p/ρ, such that

∂C

∂t
+ Λ

∂C

∂x
= 0. (E4.6)
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The characteristic variables are defined by the transformation dC = R̃−1dV , so we choose

a particular scaling of the eigenvector matrices such that

R̃ =


− ργ

γa2 − ρ
2a∗

ρ
2a∗

0 1
2

1
2

0 −1
2aγρ

1
2aγρ

 , and R̃−1 =


−γa2ρ−γ 0 ρ−γ

0 1 − 1
aγM0ρ

0 1 1
aγM0ρ

 ,

where the scaled sound speed is a∗ = a/M0, to give

dC =


−γa2ρ−γdρ+ ρ−γdp

du− 1
aγM0ρ

dp

du+ 1
aγM0ρ

dp

 . (E4.7)

The first characteristic variable may be obtained directly by integration; thus pρ−γ = const

on the characteristics dx/dt = u. To make further progress, we must assume that pρ−γ is

constant everywhere (i.e., the flow is isentropic), in which case the characteristic variable

vector

C =


pρ−γ

u− 2
γ−1a

∗

u+ 2
γ−1a

∗

 , (E4.8)

is obtained. Note that differentiating C gives dC as defined in equation (E4.7) directly.

Also, a similar result may be obtained by direct diagonalization of the matrix A, such that

A = RΛR−1, but it is far more convenient to work in terms of the primitive variables, as

above, and obtain R = MR̃. For Chapter 4, the results shown apply to the 1-D base-flow

equations, where all variables are the base flow quantities.

E.4.2 Characteristic Form of the 2-D Linearized Equations

Starting with the first-order perturbation equations (E3.26)–(E3.29), we again discard the

viscous terms and write the system in the form

∂U ′

∂t
+
∂F (U ′)
∂x

= 0, (E4.9)
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where the conserved vector and flux vector are given by

U ′ =


ρ′

ρ̄u′ + ρ′ū

ρ̄v′

p′

γM2
0

+ γ−1
2

(
ρ′ū2 + 2ρ̄ūu′

)

 , and F (U ′) =


ρ̄u′ + ρ′ū

p′

γM2
0

+ ρ′ū2 + 2ρ̄ūu′

ρ̄ūv′

p̄u′+p′ū
M2

0
+ γ−1

2

(
ρ′ū3 + 3ρ̄ū2u′

)

 .

Note that the reference Mach number M0 is the incident shock Mach number in the

Richtmyer-Meshkov problem. The corresponding primitive vector is

V ′ =
[
ρ′, u′, v′, p′

]T
. (E4.10)

Note that this system, unlike that of the 1-D equations, is linear in the primitive variables.

Performing the diagonalization as in the previous section, we find the matrix of charac-

teristic speeds

Λ′ =


ū 0 0 0

0 ū 0 0

0 0 ū− ā∗ 0

0 0 0 ū+ ā∗

 , (E4.11)

where ā =
√
p̄/ρ̄ and ā∗ = ā/M0, and the characteristic vector differential

dC ′ =


−γā2ρ̄−γdv′

−γā2ρ̄−γdρ′ + ρ̄−γdp′

du′ − 1
ā∗γM2

0 ρ̄
dp′

du′ + 1
ā∗γM2

0 ρ̄
dp′

 . (E4.12)

Integration in this case is straightforward, because each differential is linear in terms of the

perturbed quantity, giving

C ′ =


−γā2ρ̄−γv′

ρ̄−γ(p′ − γā2ρ′)

u′ − p′

γM2
0

1
ρ̄ā∗

u′ + p′

γM2
0

1
ρ̄ā∗

 , (E4.13)

where each is constant on its respective characteristic.
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E.5 Implementation of Boundary Conditions

Implementation of characteristic boundary conditions for linear systems of equations by the

simultaneous approximation term (SAT) method is straightforward, and demonstrated in

the original paper by Carpenter et al. (1994). For the nonlinear Navier-Stokes equations,

however, care must be taken to properly formulate the boundary terms. The recent work by

Svärd et al. (2007) provides a formulation of the far-field Navier-Stokes boundary conditions

using the SAT method, and demonstrates stability under certain (quite strict) assumptions.

It is not necessary to delve into the details of this proof here, but the following 1-D formu-

lation, used for both the Navier-Stokes shock in Section 2.6.2 and the Richtmyer-Meshkov

problem in Chapter 4, appears to be consistent with this proof and was found to be stable

in practice.

E.5.1 SAT Boundary Terms

Following Appendix E.4, we may write for the characteristic form of the 1-D Navier-Stokes

equations (E1.30)–(E1.32), excluding the viscous terms,

∂C

∂t
+ Λ

∂C

∂x
= 0. (E5.1)

To define boundary conditions for this equation, we consider only the components that

point into the domain and so split Λ = Λ+ + Λ− into positive and negative eigenvalues at

each boundary. The boundary conditions are then,

at x = L, α(Λ+ + Λ′L)C = gL(t), (E5.2)

at x = R, α(Λ− + Λ′R)C = gR(t), (E5.3)

where the additional matrices Λ′L and Λ′R are zero except for the case of a subsonic outflow,

in which case (Λ′L)3,2 = −(u+a∗) (if at the left-hand boundary) and (Λ′R)2,3 = −(u−a∗) (at

the right-hand boundary). Implementing these by the SAT method, we have the following

semidiscrete approximation to equation (E5.1):

dC
dt

= −DΛC + sLτ
[
(Λ+ + Λ′L)(CL − gL)

]
+ sRτ

[
(Λ− + Λ′R)(CR − gR)

]
, (E5.4)
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where D is the usual finite-difference approximation of the first derivative, τ is the SAT

parameter, and

sL = P−1[q11, 0, . . . , 0]T , (E5.5)

sR = P−1[0, . . . , 0, qNN ]T . (E5.6)

Multiplying this equation by R and transforming from C back to the conserved vector U

except for the boundary terms, we obtain

dU
dt

= −DAU + sLτBL(CL − gL) + sRτBR(CR − gR). (E5.7)

We thus define the boundary matrices BL = R(Λ+ + Λ′L) and BR = R(Λ− + Λ′R), whose

structure depends on the signs of the characteristic speeds at each boundary. Note that for

stability, we still require τ > 1 (Svärd et al., 2007).

Finally, the viscous terms may be reintroduced. Defining a splitting of the flux vector

F = F I + F V = AU + F V , for

F V = −
[
0,

1
Re

∂2u

∂x2
,
γ − 1

Re
∂

∂x

(
u
∂u

∂x

)
+

1
RePrM2

0

∂2T

∂x2

]T
, (E5.8)

we have for the semidiscrete form of the 1-D Navier-Stokes equations,

dU
dt

= −DF + sLτBL(CL − gL) + sRτBR(CR − gR)

− 2sL(FV
L − gVL )− 2sR(FV

R − gVR). (E5.9)

The factor of −2 in front of the viscous boundary terms is required for stability (Svärd et al.,

2007). For the 2-D first-order perturbation equations, a very similar result is obtained:

dU′

dt
= −DF′ + sLτB′L(C′L − g′L) + sRτB′R(C′R − g′R)

− 2sL(F′VL − g′VL )− 2sR(F′VR − g′VR ). (E5.10)

In each case, the flow conditions at the boundary (supersonic/subsonic, inlet/outlet) deter-

mine which of the boundary terms are implemented. For the 1-D Navier-Stokes equations,

a total of five boundary conditions are required for a well-posed problem, while seven are
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required for the 2-D first-order perturbation equations.

E.5.2 Boundary Matrices for the 1-D Equations

At a supersonic inlet, u − a∗ > 0, so all three characteristics point into the domain. Thus

three independent boundary conditions are specified and no viscous boundary condition is

required. The matrix BL for this case is given by

BL =


−ργu
γa2 − ρ

2a∗ (u− a
∗) ρ

2a∗ (u+ a∗)

−ργu2

γa2 − ρ
2a∗ (u− a

∗)2 ρ
2a∗ (u+ a∗)2

−β ρ
γu3

γa2 − ρ
2a∗ (u− a

∗)
(
a∗2 + βu(u− 2a∗)

) ρ
2a∗ (u+ a∗)

(
a∗2 + βu(u+ 2a∗)

)
 .

For a subsonic inlet, u > 0 but u − a∗ < 0, so two characteristics point into the domain.

This gives for BL

BL =


−ργu
γa2 0 ρ

2a∗ (u+ a∗)

−ργu2

γa2 0 ρ
2a∗ (u+ a∗)2

−β ρ
γu3

γa2 0 ρ
2a∗ (u+ a∗)

(
a∗2 + βu(u+ 2a∗)

)
 .

An additional boundary condition for this case is provided by imposing ∂T/∂x = 0. For a

subsonic outlet with u < 0, two characteristics point into the domain, for

BR =


− ργ

γa2u − ρ
a∗ (u− a

∗) 0

− ργ

γa2u
2 − ρ

a∗u(u− a∗) 0

− ργ

γa2βu
3 − ρ

a∗ (u− a
∗)(a∗2 + βu2) 0

 .

These two conditions are sufficient for an outlet boundary. For a subsonic outlet with

u > 0, the first column of BR is zero, and the final boundary condition is given by imposing

∂u/∂x = 0. For all these results, as elsewhere, β = (γ − 1)/2 and a∗ = a/M0, where M0

is the reference Mach number. For the base flow of the Richtmyer-Meshkov problem in

Chapter 4, all quantities in these matrices have an overbar and M0 →MI.

E.5.3 Boundary Matrices for the 2-D Linearized Equations

The characteristics for the first-order perturbation equations are functions of the base flow,

so the boundary coefficient matrices follow a very similar form. For a supersonic inlet, all
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four characteristics point into the domain, giving

B′L =


0 − ρ̄γ ū

γā2 − ρ̄
2ā∗ (ū− ā

∗) ρ̄
2ā∗ (ū+ ā∗)

0 − ρ̄γ ū2

γā2 − ρ̄
2ā∗ (ū− ā

∗)2 ρ̄
2ā∗ (ū+ ā∗)2

− ρ̄γ+1ū
γā2 0 0 0

0 −βρ̄γ ū3

γā2 − ρ̄(ū−ā∗)
2ā∗

(
ā∗2 + βū(ū− 2ā∗)

) ρ̄(ū+ā∗)
2ā∗

(
ā∗2 + βū(ū+ 2ā∗)

)

 .

For a subsonic inlet, ū−ā∗ < 0, so boundary conditions on three characteristics are specified:

B′L =


0 − ρ̄γ ū

γā2 0 ρ̄
2ā∗ (ū+ ā∗)

0 − ρ̄γ ū2

γā2 0 ρ̄
2ā∗ (ū+ ā∗)2

− ρ̄γ+1ū
γā2 0 0 0

0 −βρ̄γ ū3

γā2 0 ρ̄
2ā∗ (ū+ ā∗)

(
ā∗2 + βū(ū+ 2ā∗)

)

 .

The additional boundary condition is given by imposing ∂T ′/∂x = 0. For a subsonic outlet

with ū < 0, three characteristics point into the domain, for

B′R =


0 − ρ̄γ

γā2 ū − ρ̄
ā∗ (ū− ā

∗) 0

0 − ρ̄γ

γā2 ū
2 − ρ̄

ā∗ ū(ū− ā∗) 0

− ρ̄γ+1ū
γā2 0 0 0

0 − ρ̄γ

γā2βū
3 − ρ̄

ā∗ (ū− ā
∗)(ā∗2 + βū2) 0

 .

These three conditions are sufficient, but if ū > 0, only the ū − ā∗ characteristic points

into the domain so the first two columns of B′R are zero. The additional two boundary

conditions are then given by ∂u′/∂x = 0 and ∂v′/∂x = 0.
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Appendix F

Solutions of the Navier-Stokes
Equations

F.1 Navier-Stokes Shock Solution

F.1.1 Shock Solution Derivation

Under a specific set of assumptions, the 1-D Navier-Stokes equations may be solved analyt-

ically for the flow through a (continuous) shock, following the analysis of Whitham (1974).

Starting with the 1-D equations with zero bulk viscosity, from (E1.8)–(E1.10), we assume

steady flow (∂/∂t ≡ 0) and a perfect gas to obtain the system

d(ρu)
dx

= 0, (F1.1)

ρu
du
dx

+
dp
dx
− 4

3
d

dx

(
µ

du
dx

)
= 0, (F1.2)

ρu
de
dx

+ p
du
dx
− 4

3
µ

(
du
dx

)2

− d
dx

(
κ

dT
dx

)
= 0, (F1.3)

p = ρRT. (F1.4)

Immediately, the continuity equation may be integrated to find

ρu = ρ0u0, (F1.5)

where ρ0 and u0 are the upstream density and velocity. Next, substituting this result into

the gas law

p =
ρ0u0

u
RT, (F1.6)
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and differentiating with respect to x, an expression for dp/dx is obtained:

dp
dx

=
ρ0u0

u
R

dT
dx
− p

u

du
dx
. (F1.7)

Now substituting this result into the momentum and energy equations, and using e = CvT

and R = Cp − Cv, where Cv and Cp are the specific heat capacities of the gas, we have

p

ρ0u0

du
dx

= u
du
dx

+R
dT
dx
− 4

3
µ

ρ0u0

d
dx

(
µ

du
dx

)
, (F1.8)

Cp
dT
dx

+ u
du
dx
− 4

3
1

ρ0u0

d
dx

(
µu

du
dx

)
− 1
ρ0u0

d
dx

(
κ

dT
dx

)
= 0. (F1.9)

The energy equation (F1.9) may be immediately integrated, to obtain

CpT +
1
2
u2 − κ

Cpρ0u0

(
4
3
µCp
κ
u

du
dx

+ Cp
dT
dx

)
= C1 = const.

The Prandtl number Pr = µCp/κ has the value 0.72 in air, but to make further progress,

we approximate it as 3/4 to obtain from the last result

1
2
u2 + CpT −

κ

Cpρ0u0

d
dx

(
1
2
u2 + CpT

)
= C1. (F1.10)

Integrating again,

1
2
u2 + CpT = C1 + C2 exp

(
Cpρ0u0

∫
dx

κ(T (x))

)
. (F1.11)

Since the flow is uniform at x→∞, C2 = 0, giving

1
2
u2 + CpT = C1. (F1.12)

Now integrating the momentum equation (F1.9),

ρ0u0u+ p− 4
3
µ

du
dx

= C3. (F1.13)

From the boundary condition that du/dx → 0 at x → −∞, clearly C3 = ρ0u
2
0 + p0. Then

combining this with the result from the energy equation, we can write down an ODE in
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terms of u alone:
4
3

µ

ρ0u0
u

du
dx
− γ + 1

2γ
u2 +

C3

ρ0u0
u =

γ − 1
γ

C1. (F1.14)

To complete the analysis, we nondimensionalize the equation using the upstream mean

free path and velocity, defining dimensionless variables

ξ =
x

`0
and V =

u

u0
.

From kinetic theory, viscosity can be written as a function of temperature by

µ

µ0
=
(
T

T0

)n
, (F1.15)

where for air, n = 0.76. Thus we have

(
T

T0

)n
V

dV
dξ
− k3M0(V − 1)(V − α) = 0, (F1.16)

where the constants k3, and α are given by

k3 =
3

8k1
(γ + 1)

√
π

8γ
, with k1 =

5π
32
,

α =
γ − 1
γ + 1

+
2

γ + 1
1
M2

0

.

Note that α is the velocity ratio across a normal shock as given by the Rankine-Hugoniot

relations. From

C1 =
1
2
u2 + CpT =

1
2
u2

0 + CpT0, (F1.17)

temperature may be expressed in terms of velocity by

T

T0
= 1 +

γ − 1
2

M2
0 (1− V 2), (F1.18)

and so an ODE for V (ξ) is obtained:

V

[
1 +

γ − 1
2

M2
0 (1− V 2)

]n dV
dξ
− k3M0(V − 1)(V − α) = 0. (F1.19)

At this point, if n = 0.76 is to be used, the equation must be integrated numerically. If

the viscosity is assumed constant with n = 0, however, the ODE may be integrated directly
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to obtain an implicit equation for V :

ξ(V ) =
1

(1− α)k3M0
log
[(√

α− α
V − α

)α 1− V
1−
√
α

]
, (F1.20)

where the constant of integration has been chosen such that the origin is at the inflection

point of the shock, i.e., such that ξ = 0 at d2V/dξ2 = 0. From this solution, the velocity at

a given x coordinate may be found by numerical solution to arbitrary precision, and from it,

any of the other solution variables. Figure F.1 shows the velocity profile through the shock,

both by numerical integration of the variable-viscosity equation (F1.19) with n = 0.76 and

by the analytic solution with constant viscosity given by equation (F1.20). Note that the

constant-viscosity profile has a steeper slope.

!4 !2 0 2

0.4

0.5

0.6

0.7

0.8

0.9

1

Α

Α

Ξ

V

Figure F.1: Navier-Stokes shock velocity profiles for M0 = 2.2: the variable viscosity solu-
tion is shown in green, the constant viscosity solution in blue.

Finally, note that by integrating the entropy equation,

[ρus]∞−∞ =
∫ ∞
−∞

1
T

[
4
3
µ

(
du
dx

)2

+ κ

(
dT
dx

)2
]

dx > 0, (F1.21)

i.e., entropy increases across the shock, as expected.
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F.1.2 Shock Thickness

An estimate for the thickness of a shock may be calculated from this solution. The simplest

(and most conservative) thickness estimate is the tangent thickness, which is the distance

between the points where the upstream and downstream states intersect a tangent line to

the shock through the point of inflection (where ξ = 0 by choice of the origin). From this

analysis, we obtain an estimate for the thickness ∆,

∆
`0

=
1

k3M0

1 +
√
α

1−
√
α
, (F1.22)

which, for weak shocks with ε = M0 − 1� 1, may be approximated by

∆
`0
≈ γ + 1
M0 − 1

, (F1.23)

since k3 ≈ 1. It turns out that this is an excellent approximation to the shock thickness, up

to at least M = 1.5. The mean free path may be estimated from the kinematic viscosity of

the gas, by the following formula:

`0 = ν
8
5

√
2

πRT0
. (F1.24)

F.1.3 Reference Frames

While the Euler and Navier-Stokes equations are frame invariant, the solution presented here

is clearly in a shock-stationary frame (where the solution is steady). To obtain the solution

in a stationary frame (the lab frame), consider the general form of the transformation for a

steady shock traveling at speed U = M0a0:

xL = Ut− xS , (F1.25)

uL = U − uS , (F1.26)

where subscripts L refer to the lab frame and S to the shock frame (the time variable is the

same in both frames). Applying this transformation to the shock solution, in the lab frame

VL(ξL) = 1− V (Ut− ξ), (F1.27)
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ρ(ξL) =
1

V (Ut− ξ)
, (F1.28)

p(ξL) =
1

V (Ut− ξ)

[
1 +

γ − 1
2

M2
0

(
1− [V (Ut− ξ)]2

)]
, (F1.29)

where V and ξ are the shock-frame velocity and spatial coordinate, respectively, defined by

equation (F1.20).

F.2 Lamb-Oseen Vortex Solution

The tangential velocity distribution for the Lamb-Oseen vortex (defined a priori) is

uθ
u0

=
r0

r

(
1− e

− r
2

r20

)
, (F2.1)

where u0 = Γ0/2πr0 is a velocity scale, and r0 is the vortex core radius. Substituting

into the compressible Euler equations in polar coordinates with ur = 0, the continuity

and θ-momentum equations reduce to show that ρ = ρ(r) and p = p(r). The remaining

r-momentum equation gives
1
ρ

dp
dr

=
u2
θ

r
. (F2.2)

To proceed, we assume an isentropic perfect gas such that p/p0 = (ρ/ρ0)γ , where p0 and ρ0

are the far-field pressure and density, respectively. Substituting and rearranging, we obtain

(
p

p0

)−1/γ

dp =
ρ0u

2
0

p0

r2
0

r3

(
1− e

− r
2

r20

)2

dr, (F2.3)

which may be integrated to obtain the pressure distribution,

p

p0
=
(

1− (γ − 1)M2
0

[
1

2η2

(
1− e−η

2
)2

+ Ei
(
−2η2

)
− Ei

(
−η2

)]) γ
γ−1

, (F2.4)

expressed in terms of the exponential integral function Ei(z), the normalized radius η = r/r0

and the reference Mach number, M2
0 = ρu2

0/γp0. The density profile is then

ρ

ρ0
=
(

1− (γ − 1)M2
0

[
1

2η2

(
1− e−η

2
)2

+ Ei
(
−2η2

)
− Ei

(
−η2

)]) 1
γ−1

. (F2.5)

Velocity and pressure profiles for this vortex are shown in Figure F.2.



179

The vortex flow has three regimes, determined by the value of M0. With γ = 1.4, for

M0 < 1.35, flow is subsonic everywhere based on the local Mach number, M = uθ
√
ρ/γp.

This limiting value is determined numerically by finding M0 such that the maximum value of

the local Mach number is 1. In the range 1.35 < M0 < 1.9, flow is supersonic in an annulus,

and subsonic elsewhere. The upper Mach number limit is also determined numerically, at

the M0 such that pressure and density are zero at the origin.

Hydrodynamic stability of the vortex is determined by the Rayleigh Discrminant (Drazin

and Reid, 2004),

Φ(r) =
1
r3

d
dr

(ruθ)
2 =

1
4π2r3

d
dr
(
Γ2
)
, (F2.6)

which, if negative, indicates that a flow is unstable to axisymmetric perturbation. For the

Lamb-Oseen vortex,

Φ(r) =
4
η2
e−η

2
(

1− e−η
2
)
, (F2.7)

which is positive for all r; thus this flow is stable.
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Figure F.2: Velocity (blue line) and pressure (green line) profiles of the Lamb-Oseen vortex,
for a reference Mach number M0 = 1.2.
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Appendix G

Impulsive Model of the
Richtmyer-Meshkov Instability

The original model of the acceleration of a perturbed interface by a shock was developed

by Richtmyer (1960), who modeled the problem with an impulsively accelerated interface.

Figure G.1 shows the problem in the stationary (lab) frame (cf. Figure 4.2), and the mapping

to an impulsively accelerating frame. The interface is defined by ξ = ξ(y, z, t).

1 2 3 0!

MR MT!U

R CD T

(a) stationary frame

2 3

u = 0

CD

u = 0
g(t)

(b) accelerating interface frame

Figure G.1: The Richtmyer-Meshkov problem, mapped to an impulsively accelerated frame
in which the flow is assumed to be potential.

By assuming incompressible flow in this frame, the flow is potential, so

∇2φ2 = 0, x < ξ, (G.1)

∇2φ3 = 0, x > ξ, (G.2)

with the boundary condition ∇φi → 0 at |ξ| → ∞. Note that this assumes that the shocks

have no effect on the growth of the interface. The kinematic boundary condition at the
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interface is given by

∂φi
∂x

=
Dξ
Dt

∣∣∣∣
x=ξ

=
(
∂ξ

∂t
+
∂φi
∂y

∂ξ

∂y
+
∂φi
∂z

∂ξ

∂z

) ∣∣∣∣
x=ξ

, (G.3)

for i = 2, 3. Bernoulli gives

pi + ρig(t)x+
1
2
ρi(∇2φi)2 + ρi

∂φi
∂t

= ρiCi, (G.4)

where Ci is a constant. This has the boundary condition that pressure be matched across

the interface, so evaluating at x = ξ, we have

ρ2

[
C2 −

1
2

(∇2φ2)2 − ∂φ2

∂t
− gξ

]
= ρ3

[
C3 −

1
2

(∇2φ3)2 − ∂φ3

∂t
− gξ

]
, (G.5)

and from the unperturbed interface, ρ2C2 = ρ3C3.

Now we linearize, such that

φi = εφ′i, and ξ = εξ′,

where ε � 1. The perturbed flow remains potential, with the same radiation boundary

condition, but the kinematic boundary condition (G.3) reduces to

∂φi
∂x

=
∂ξ

∂t
. (G.6)

Applying the linearization to equation (G.4),

ρ2

(
∂φ2

∂t
+ g(t)ξ

)
= ρ3

(
∂φ3

∂t
+ g(t)ξ

)
. (G.7)

We now define the impulsive acceleration as g(t) = ∆Uδ(t), where ∆U is the speed of the

interface given by the solution of the Riemann problem. Assuming functions of the form

φ′2 = φ̂2(x)f2(t)ei(`y+mz), (G.8)

φ′3 = φ̂3(x)f3(t)ei(`y+mz), (G.9)

ξ′ = h(t)ei(`y+mz), (G.10)
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with initial conditions f2(0−) = f3(0−) = 0, and h(0) given, the problem may be solved.

The solution has

h(t) = h(0) (1 + kA∆Ut) , (G.11)

which provides the interface growth rate (in the linear regime)

dh
dt

= kA∆Uh(0), (G.12)

where k =
√
`2 +m2, and the Atwood number is given by

A =
ρ3 − ρ2

ρ3 + ρ2
. (G.13)

More advanced models, discussed in Section 4.2, make various generalizations of these

assumptions.
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Appendix H

Validation Tests for the
Richtmyer-Meshkov Simulation

Before solving the Richtmyer-Meshkov problem described in Section 4.4, a set of validation

tests was performed on the implementation of the 2-D linearized problem. For the 1-D base

flow, this had already been done using the analytic Navier-Stokes shock solution, but no

such convenient test exists for the 2-D perturbation problem. Lacking any existing analytic

solution, we generated our own by the method of manufactured solutions.

H.1 Manufactured Solutions

For the method of manufactured solutions, we begin with the full set of equations (4.3.12)–

(4.3.18), adding a source term to each, as shown:

∂ρ̄

∂t
= −∂(ρ̄ū)

∂x
+ Q̄1, (H1.1)

∂(ρ̄ū)
∂t

= − ∂

∂x

(
p̄

γM2
I

+ ρ̄ū2 − 4
3

1
Re

∂ū

∂x

)
+ Q̄2, (H1.2)

∂

∂t

(
p̄

γM2
I

+ βρ̄ū2

)
= − ∂

∂x

(
p̄ū

M2
I

+ βρ̄ū3 − 1
PrReM2

I

∂T̄

∂x
− 4

3
γ − 1

Re
ū
∂ū

∂x

)
+ Q̄3, (H1.3)

∂ρ′

∂t
= − ∂

∂x

[
ρ̄u′ + ρ′ū

]
− ikρ̄v′ +Q′1, (H1.4)

∂

∂t

(
ρ̄u′ + ρ′ū

)
= − ∂

∂x

[
p′

γM2
I

+ ρ′ū2 + 2ρ̄ūu′ − 1
Re

(
4
3
∂u′

∂x
+ ikv′

)]
− ikρ̄ūv′ − 1

Re
k2u′ +Q′2, (H1.5)

∂

∂t

(
ρ̄v′
)

= − ∂

∂x

[
ρ̄ūv′ − 1

Re

(
∂v′

∂x
+ iku′

)]
− ik

p′

γM2
I

− 4
3

1
Re
k2v′ +Q′3, (H1.6)
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∂

∂t

(
p′

γM2
I

+ β
(
ρ′ū2 + 2ρ̄ūu′

))
= − ∂

∂x

[
p′ū+ p̄u′

M2
I

+ β
(
ρ′ū3 + 3ρ̄ū2u′

)
− 1

PrReM2
I

∂T ′

∂x
− 4

3
γ − 1

Re

(
ū
∂u′

∂x
+ u′

∂ū

∂x

)]
− ikv′

(
p̄

M2
I

+ βρ̄ū2

)
− 1

PrRe
k2 T

′

M2
I

+
γ − 1

Re
ū

(
ik
∂v′

∂x
− k2u′

)
+Q′4. (H1.7)

H.1.1 Manufactured Solution I

The 1-D compressible Navier-Stokes equations of the base flow have only derivative terms, so

admit a constant solution with zero source terms. This reduces the 2-D linearized equations

in the perturbed quantities to a system of linear partial differential equations with constant

coefficients. Thus we choose a base flow

ρ̄ = ρ̄0 = 1, p̄ = p̄0 = 1, ū = ū0.

The value of ū0 may be chosen to give either subsonic or supersonic boundary conditions.

Since the code is currently set up to deal with both sub- and supersonic cases at the inlet, but

only subsonic at the outlet, we choose ū0 < 1/MI such that both boundaries are subsonic.

For testing, we choose ū0 = 0.3 with ρ̄0 = p̄0 = 1, for a subsonic base flow.

For the perturbed quantities, we first consider a solution with the velocity components

set to zero, i.e., u′ = v′ = 0. With the constant-valued base flow as described, the equations

(H1.4)–(H1.7) reduce to

∂ρ′

∂t
= −ū0

∂ρ′

∂x
+Q′1, (H1.8)

ū0
∂ρ′

∂t
= − ∂

∂x

(
p′

γM2
I

+ ρ′ū2
0

)
+Q′2, (H1.9)

0 = −ik
p′

γM2
I

+Q′3, (H1.10)

∂

∂t

(
p′

γM2
I

+ βρ′ū2
0

)
= − ∂

∂x

(
p′ū0

M2
I

+ βρ′ū3
0 −

1
PrReM2

I

∂T ′

∂x

)
− 1

PrRe
k2 T

′

M2
I

+Q′4.

(H1.11)

From equation (H1.10), it is clear that for Q′3 = 0, p′ = 0, which in turn implies

p′ = ρ′T̄ + ρ̄T ′ = 0,
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so only ρ′ and T ′ are nonzero perturbed quantities. With some additional algebra, we have

the three simple equations (after setting Q′1 = 0)

∂ρ′

∂t
+ ū0

∂ρ′

∂x
= 0, (H1.12)

∂2T ′

∂x2
− k2T ′ = Q′4, (H1.13)

T ′ = −ρ′, (H1.14)

using that T̄0 = ρ̄0 = 1. From (H1.12), it is clear that ρ′ = f(x − ū0t). The solution to

(H1.13) is of the form

T ′(x) = C1ekx + C2e−kx, (H1.15)

but this cannot satisfy a radiation boundary condition (i.e., it does not have a solution of

compact support) for a given value of k. Instead, we choose a compact function for ρ′, and

add a source term to the energy equation (H1.11) to satisify (H1.13).

For the following example, we choose a Gaussian for ρ′, such that:

ρ′(x, t) = h0e−k
2(x−ū0t)2 , (H1.16)

T ′(x, t) = −h0e−k
2(x−ū0t)2 , (H1.17)

where h0 is an amplitude parameter. The required source term for the energy equation is

then

Q′4 = −h0
k2

PrReM2
I

(3− 4k2(x− ū0t)2)e−k
2(x−ū0t)2 . (H1.18)

Since this solution has compact support, zero boundary conditions are sufficient for the

perturbed fields as long as the solution does not approach the boundaries too closely.

H.1.2 Manufactured Solution II

Having assumed zero velocity and pressure perturbations for the first manufactured solution,

we seek a second solution that exercises the remaining terms of the linearized equations.

For now, we continue to assume that the base flow is constant, and use the same subsonic

conditions as before.
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We now choose nonzero u′ and v′ and assume that ρ′ = 0 to find

p′ = ρ̄T ′ = T ′. (H1.19)

Substituting this ansatz into the linearized equations, we first see from continuity that

∂u′

∂x
= −ikv′, (H1.20)

where we set Q′1 = 0. Using this, and after a little algebra, we obtain from the remaining

equations of motion the equations

∂u′

∂t
+ ū0

∂u′

∂x
=

1
Re

(
1
3
∂2u′

∂x2
− k2u′

)
− 1
γM2

I

∂p′

∂x
+Q′2, (H1.21)

∂v′

∂t
+ ū0

∂v′

∂x
=

1
Re

(
∂2v′

∂x2
− 1

3
k2v′

)
− ik

p′

γM2
I

+Q′3, (H1.22)

∂p′

∂t
+ ū0

∂p′

∂x
=

γ

PrRe

(
∂2p′

∂x2
− k2p′

)
+Q′p. (H1.23)

The left-hand sides of (H1.21)–(H1.23) support convecting solutions, of the form

u′(x, t) = u′(x− ū0t), etc., (H1.24)

while the right-hand sides suggest a solution somewhat similar to equation (H1.15). Since

we once again seek a solution of compact support (so perturbations are zero at the domain

boundaries), the simplest answer is to specify a Gaussian solution and balance each equation

with the source term. Starting with

u′ = h0e−k
2(x−ū0t), (H1.25)

p′ = γM2
I h0e−k

2(x−ū0t), (H1.26)

we obtain from equation (H1.20),

v′ = −2ik(x− ū0t)h0e−k
2(x−ū0t), (H1.27)

where h0 is again an amplitude parameter. Substituting these solutions into the equations
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(H1.21)–(H1.23), we find corresponding source terms

Q′2 = −
[
2(x− ū0t)−

1
3Re

(
5− 4k2(x− ū0t)2

)]
k2h0e−k

2(x−ū0t), (H1.28)

Q′3 =
[
1− 2k2

Re

(
19
3
− 4k2(x− ū0t)2

)
(x− ū0t)

]
ikh0e−k

2(x−ū0t), (H1.29)

Q′p =
γ

PrRe
(
3− 4k2(x− ū0t)2

)
k2h0e−k

2(x−ū0t). (H1.30)

For the full energy equation, the source term is given by

Q′4 = ū0(γ − 1)Q′1 +Q′p, (H1.31)

following the derivation of equation (H1.23).

H.1.3 Manufactured Solution III

For the final test, we impose a nonconstant base flow that mimics the Navier-Stokes shock

solution with a smoothed-step function. The Navier-Stokes shock solution itself is not used,

because while an analytic solution exists in 1-D, the flow field is known only as an implicit

function of the spatial coordinate. For simplicity in the perturbed flow, only u′ is chosen to

be nonzero.

We begin by assuming a general solution for the velocity in a “shock”-fixed frame, V (ξ),

similar to the shock solution of Appendix F.1. Translating this into a stationary frame by

ξ = t− x, the flow feature moves across the domain with a convection velocity of 1, giving

the base flow solution

ρ̄(x, t) =
1

V (t− x)
, (H1.32)

ū = 1− V (t− x), (H1.33)

p̄ =
1

V (t− x)

[
1 +

γ − 1
2

M2
I (1− V (t− x)2)

]
. (H1.34)

If V (ξ) is the Navier-Stokes shock solution, the equations for the base flow are satisfied
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exactly, but in general, we have the source terms for (H1.1)–(H1.3):

Q̄1 = 0, (H1.35)

Q̄2 =
γ + 1

2γ

( α
V 2
− 1
) dV

dξ
+

4
3

1
Re

d2V

dξ2
, (H1.36)

Q̄3 = (γ − 1)Q̄2, (H1.37)

where

α =
2 + (γ − 1)M2

I

(γ + 1)M2
I

,

from the Rankine-Hugoniot relations for the velocity ratio across a shock MI, and we have

assumed that Pr = 3/4, as in the analytic shock solution.

For the perturbed solution, we choose to set all perturbed quantities but u′ to zero for

all time, and use the familiar Gaussian form for the velocity perturbation, i.e.,

u′ = h0e−k
2(x−ū0t). (H1.38)

Substituting this with the manufactured base flow into the linearized equations, we find

Q′1 =
(

1
V

+ 2k2(t− x)
)
u′

V
, (H1.39)

Q′2 =
[

1
V 2

∂V

∂ξ
+ 2k2(t− x)

(
1
V
− 2
)

+
k2

3Re
(
11− 16k2(t− x)2

)]
u′, (H1.40)

Q′3 = − 2i
Re
k3(t− x)u′, (H1.41)

Q′4 =
[
α(γ + 1)

V

(
k2(t− x) +

1
2V

∂V

∂ξ

)
+
γ − 1
V

(
(1− 4V + 2V 2)k2(t− x) +

1− 2V 2

2V
∂V

∂ξ

)
−γ − 1

3Re

(
k2(V − 1)(11− 16k2(t− x)2) + 16k2(t− x)

∂V

∂ξ
− 4

∂2V

∂ξ2

)]
u′.

(H1.42)

All that remains is to specify the base flow function V (ξ). For the convergence results

shown in tables H.3 and H.4, an error function of the form

V (ξ) =
1 + α

2
− 1− α

2
erf(ξ) (H1.43)

was used, with corresponding derivatives, to fully specify the source terms. The boundary
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conditions are the same as those for the Navier-Stokes shock, with supersonic upstream and

subsonic downstream flows.

With these three tests problems, the discrete implementation of every term in the full

set of equations (4.3.12)–(4.3.18) has been tested and verified.

H.2 Convergence Testing

Tables H.1–H.4 show convergence results from each of the manufactured solutions. In each

case, the grid is uniform and results are gathered at time t = 400, such that the pulse

has travelled a distance equal to its width. For manufactured solutions I and II, perfect

fourth-order convergence is obtained, the first-order perturbation equations being linear

with constant coefficients in these cases. For solution III, near-fourth order convergence is

obtained for both base and perturbed solutions.

Additionally, convergence results for the unperturbed Navier-Stokes shock are presented

in Tables H.5 and H.6. This is the problem described in Section 2.6.2, and is solved here

on similar grids with the same parameter values (γ = 1.4, MI = 2.20). Convergence of this

problem verifies the base flow calculation on both uniform and locally refined grids. The

locally refined grid in this case has three blocks, with a factor four refinement in the block

centered on the shock inflection point. In both cases, fourth-order convergence is observed.

Finally, convergence results based on the Richtmyer-Meshkov problem follow in Tables

H.7 and H.8. The problem solved was that with MI = 2.20 and A = 0.2, described in

Table 4.1. Because no analytic solution exists in this case, comparison is made to a more

refined numerical solution, in this case at resolution ∆x = 1/16. The grid is uniform for each

case. At the coarsest resolution tested, the transmitted shock extends over only 5–6 nodes,

which causes nonphysical oscillation in the solution at its trailing edge. This is detrimental

to the convergence rate of the solution, but at higher resolutions the oscillation disappears,

and if the nodes covering the transmitted shock are excluded, the proper fourth-order rate

is recovered in the average slope (see Figure H.1). All results are shown for a solution at

time t = 1000. Some reduction in the CFL number at high resolution was found to be

necessary for stability.
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Error based on ρ′ Error based on u′

∆x log10(L2) rate log10(L∞) rate log10(L2) rate log10(L∞) rate
8/25 −6.095 −6.618 −7.147 −7.634
1/4 −6.524 4.00 −7.046 4.00 −7.576 4.00 −8.063 4.00
4/25 −7.299 4.00 −7.821 4.00 −8.351 4.00 −8.838 4.00
1/8 −7.727 4.00 −8.250 4.00 −8.780 4.00 −9.267 4.00
2/25 −8.502 4.00 −9.025 4.00 −9.555 4.00 −10.04 4.00
rate 4.00 4.00 4.00 4.00

Table H.1: Convergence results for manufactured solution I

Error based on ρ′ Error based on u′

∆x log10(L2) rate log10(L∞) rate log10(L2) rate log10(L∞) rate
8/25 −5.513 −6.053 −5.792 −6.328
1/4 −5.942 4.00 −6.482 4.00 −6.221 4.00 −6.757 4.00
4/25 −6.717 4.00 −7.257 4.00 −6.996 4.00 −7.532 4.00
1/8 −7.146 4.00 −7.686 4.00 −7.424 4.00 −7.960 4.00
2/25 −7.921 4.00 −8.461 4.00 −8.200 4.00 −8.735 4.00
rate 4.00 4.00 4.00 4.00

Table H.2: Convergence results for manufactured solution II

Error based on ρ̄ Error based on ū
∆x log10(L2) rate log10(L∞) rate log10(L2) rate log10(L∞) rate

8/25 −2.094 −2.076 −2.849 −2.838
1/4 −2.495 3.75 −2.412 3.14 −3.263 3.86 −3.221 3.58
4/25 −3.243 3.86 −3.147 3.79 −4.021 3.91 −3.966 3.84
1/8 −3.665 3.93 −3.549 3.75 −4.444 3.95 −4.374 3.80
2/25 −4.433 3.97 −4.316 3.96 −5.214 3.97 −5.140 3.95
rate 3.89 3.74 3.93 3.83

Table H.3: Convergence results for the base flow from manufactured solution III

Error based on ρ′ Error based on u′

∆x log10(L2) rate log10(L∞) rate log10(L2) rate log10(L∞) rate
8/25 −2.349 −2.347 −2.890 −2.854
1/4 −2.748 3.73 −2.705 3.34 −3.309 3.91 −3.266 3.84
4/25 −3.487 3.81 −3.436 3.77 −4.066 3.91 −3.985 3.71
1/8 −3.907 3.91 −3.845 3.82 −4.489 3.94 −4.403 3.90
2/25 −4.674 3.96 −4.593 3.86 −5.258 3.97 −5.165 3.93
rate 3.86 3.75 3.93 3.83

Table H.4: Convergence results for the perturbed flow from manufactured solution III
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Error based on ρ̄ Error based on ū
∆x log10(L2) rate log10(L∞) rate log10(L2) rate log10(L∞) rate
1/4 −2.219 −2.085 −3.005 −2.923
1/5 −2.571 3.63 −2.428 3.54 −3.377 3.83 −3.309 3.98
1/8 −3.343 3.78 −3.138 3.48 −4.173 3.90 −4.071 3.73
1/10 −3.715 3.84 −3.510 3.84 −4.549 3.88 −4.428 3.69
1/16 −4.526 3.97 −4.316 3.95 −5.366 4.00 −5.238 3.97
rate 3.83 3.69 3.92 3.82

Table H.5: Convergence results for the constant-viscosity Navier-Stokes shock of MI = 2.20
on a uniform grid

Error based on ρ̄ Error based on ū
∆x log10(L2) rate log10(L∞) rate log10(L2) rate log10(L∞) rate
1/2 −2.898 −3.158 −3.408 −3.754
1/3 −3.583 3.89 −3.826 3.79 −4.100 3.93 −4.437 3.88
1/4 −4.070 3.90 −4.318 3.94 −4.589 3.91 −4.926 3.91
1/6 −4.747 3.84 −4.985 3.79 −5.263 3.83 −5.595 3.80
1/8 −5.225 3.83 −5.472 3.89 −5.745 3.86 −6.079 3.87
rate 3.87 3.84 3.88 3.86

Table H.6: Convergence results for the constant-viscosity Navier-Stokes shock of MI = 2.20
on a three-block refined grid. ∆x is the coarse grid scale.

Error based on ρ̄ Error based on ū
∆x log10(L2) rate log10(L∞) rate log10(L2) rate log10(L∞) rate
1/2 −0.667 −0.730 −1.682 −1.736
1/4 −1.527 2.86 −1.378 2.15 −2.571 2.95 −2.467 2.43
1/8 −2.614 3.61 −2.350 3.23 −3.726 3.84 −3.538 3.56
1/12 −3.424 4.60 −3.143 4.50 −4.554 4.70 −4.370 4.72
rate 3.52 3.07 3.67 3.36

Table H.7: Convergence results for the Richtmyer-Meshkov base flow, where the reference
solution is the numerical solution on a grid of ∆x = 1/16

Error based on ρ′ Error based on u′

∆x log10(L2) rate log10(L∞) rate log10(L2) rate log10(L∞) rate
1/2 −1.965 −2.083 −2.815 −2.881
1/4 −2.588 2.07 −2.507 1.41 −3.445 2.09 −3.343 1.53
1/8 −3.578 3.29 −3.324 2.71 −4.433 3.28 −4.183 2.79
1/12 −4.365 4.47 −4.086 4.33 −5.221 4.48 −4.954 4.38
rate 3.06 2.53 3.07 2.62

Table H.8: Convergence results for the Richtmyer-Meshkov perturbed flow, where the ref-
erence solution is the numerical solution on a grid of ∆x = 1/16
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Figure H.1: Comparison of convergence of the RM-problem based on the full-field solution
(FF), and on the solution excluding the transmitted shock (XT) which is underresolved at
the coarsest grid resolutions. Between 5 and 25 nodes are removed from the solution for
the XT case.
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solution of hyperbolic equations with space-time adaptivity. BIT, 42(1):134–158.

Mattsson, K. and Nordström, J., 2004. Summation by parts operators for finite difference

approximations of second derivatives. J. Comput. Phys., 199:503–540.

Meshkov, E. E., 1969. Instability of the interfce of two gases accelerated by a shock wave.

Soviet Fluid Dyn., 4(5):151–157.

Mikaelian, K. O., 1991. Density gradient stabilization of the Richtmyer-Meshkov instability.

Phys. Fluids A, 3(11):2638–2643.

Mikaelian, K. O., 1993. Effect of viscosity on Rayliegh-Taylor and Richtmyer-Meshkov

instabilities. Phys. Rev. E, 47:375–383.

Nordström, J. and Carpenter, M. H., 1999. Boundary and interface conditions for high-order

finite-difference methods applied to the Euler and Navier-Stokes equations. J. Comput.

Phys., 148:621–645.

Nordström, J. and Gustafsson, R., 2003. High order finite difference approximations of elec-

tromagnetic wave propagation close to material discontinuities. J. Sci. Comp., 18(2):215–

234.

Pantano, C., Deiterding, R., Hill, D. J., and Pullin, D. I., 2007. A low numerical dissipation

patch-based adaptive mesh refinement method for large-eddy simulation of compressible

flows. J. Comput. Phys., 221(1):63–87.

Richtmyer, R. D., 1960. Taylor instability in shock acceleration of compressible fluids.

Comm. Pure Appl. Math., 13:297–319.



197

Scherer, G., 1977. On energy estimates for difference approximations to hyperbolic par-

tial differential equations. Ph.D. thesis, Department of Scientific Computing, Uppsala

University.

Sebastian, K. and Shu, C.-W., 2003. Multidomain WENO finite difference method with

interpolation at subdomain interfaces. J. Sci. Comp., 19(1):405–438.

Strand, B., 1994. Summation by parts for finite difference approximations for d/dx. J.

Comput. Phys., 110(1):47–67.
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