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Abstract

In this work the decoherence formalism of quantum mechanics is explored
and applied to a number of interesting problems in quantum physics. The
boundary between quantum and classical physics is examined, and demon-
stration made that quantum histories corresponding to classical equations of
motion become more probable for a broad class of models, including linear
and nonlinear models of Brownian motion. The link between noise, dissipa-
tion, and decoherence is studied. This work is then applied to systems which
classically exhibit dissipative chaotic dynamics. A theory is explicated for
treating these systems, and the ideas are applied to a particular model of
the forced, damped Duffing oscillator, which is chaotic for certain parameter
values. Differences between classical and quantum chaos are examined, par-
ticularly differences arising in the structure of fractal strange attractors, and
the conceptual difficulties in framing standard notions of chaos in a quantum
system. A brief discussion of previous work on quantum chaos is included,
and the differences between Hamiltonian and dissipative chaos pointed out;
a somewhat different interpretation of quantum chaos from the standard one
is suggested. A class of histories for quantum systems, in phase space rather
than configuration space, is studied. Different ways of representing projec-
tions in phase space are discussed, and expressions for the probability of phase
space histories are derived; conditions for such histories to decohere are also

estimated in the semiclassical limit.
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I. DECOHERENCE

Ever since the discovery of quantum mechanics, questions have arisen about the
physical fneaning and interpretation of quantum theory. The early schisms over the
validity of quantum mechanics and its realm of application are legendary for their
passion and brilliant debate. The consensus ultimately arrived at by Bohr, Dirac,
and many others was successful in quieting the doubts about the validity of quantum
mechanics itself among all but a few; but the resulting theory, enormously successful
as it was, nevertheless remained unsatisfactory in many ways.

The Copenhagen interpretation describes quantum phenomena as seen in a labora-
tory excellently, but has considerable lingering practical and philosophical problems.
The rigorous division of the universe into quantum objects and classical measuring
devices begs the question of how “classical” behavior arises in a system composed
of quantum mechanical constituents. The collapse of the wave function—the magic
trick that we all learn in our introductory QM course, which enables us to calculate
probabilities for quantum events—has many troubling properties. It is instantaneous
and irreversible, introducing a fundamental arrow of time into a system which is oth-
erwise time-symmetric. It is a dramatic departure from the usual form of evolution
for quantum systems. It has no convincing physical description or explanation. It
places an unhealthy emphasis on the necessity of a human, or at any rate intelligent,
observer for wave function collapse. It gives little guidance to studies of the uni-
verse as a whole; a system containing everything in the universe must, perforce, have
nothing outside to “measure” it.

These problems have been tackled piecemeal over the years, but the first real
attempt to alter this picture was Hugh Everett’s “Many-Worlds” interpretation of
quantum mechanics [1]. In Everett’s picture, every quantum event causes the uni-
verse to split into coexisting but noninteracting universes, representing all possible

outcomes of the event. Thus, no collapse of the wavefunction occurs. This is a very
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bold notion, avoiding the practical and philosophical problems of the Copenhagen
interpretation, but having many difficulties of its own. Why couldn’t these different
universes interfere with each other, producing measurable results? Indeed, they must
do so to be consistent with laboratory experiments on interference. And these infinite
coexisting universes are far from a simple picture; such a theory turns the principle
of parsimony on its head.

Nevertheless, the germ of this idea has fertilized more recent attempts to explain
quantum mechanics in a satisfactory way. Instead of many worlds, one has many
histories of a single universe, each with some probability, only one of which is assumed
actually to occur.

The other histories represent alternative possibilities; and as the progress of time
eliminates different possibilities, the histories representing them are also eliminated,
just as in the classical view of probability.

A history of the universe consists of sets of values for the variables used to describe
the universe at successive points in time. The most fine-grained possible description
would be to specify the values of a complete set of variables at every point in time —
for example, the trajectories of all particles for all of time (to take a nonrelativistic
viewpoint). Such a history is simple conceptually, quite close to a classical view of
the world. Since the universe is not classical, however, these fine-grained histories
are unsuitable for actual calculations. They cannot be consistently assigned classical
probabilities, because the histories can interfere with each other, and therefore do not
obey classical probability sum rules.

Instead, we must take a more coarse-grained view. We can coarse-grain our his-
tories by considering only ranges rather than exact values, for only certain variables,
and only at certain discrete points in time. If we coarse-grain a set of histories suffi-
ciently that we can assign them classical probabilities which obey classical probability
sum rules without interference, we call such a set of histories decoherent. If the prob-

abilities also sum to 1, we call this an ezhaustive set of histories. Given an exact



knowledge of the fundamental laws of nature, plus an exact knowledge of the initial
condition of the universe, we could (in principle) enumerate an exhaustive set of de-
coherent histories which would describe all possible evolutions of the universe, and
calculate probabilities for them.

This approach was developed by a number of people, including Griffiths (“Consis-
tent Histories”), Omnés, Zurek (“Environment-Induced Superselection”), and Gell-
Mann and Hartle [2-7]. In the theory of Gell-Mann and Hartle, decoherence is deter-
mined by a decoherence functional. This is a functional on pairs of histories D[h, A'].

If
ReD[h, k') = 0,h # K, (1)

then the set of histories weakly decohere, and their probabilities are given by the

diagonal terms
plh] = D[h, h]. (2)

Later, in the individual chapters, I give the definition of D[h, k'] for standard nonrel-
ativistic quantum mechanics, and examine its behavior for different systems.
Gell-Mann and Hartle have gone on to broaden and explicate this basic concept
[7], emphasizing a much stronger view of decoherence than Griffiths and Omnes. They
have extended the idea of a history, generalized the decoherence functional, and set up
the system as an axiomatic basis for any quantum theory, making an argument that
coarse-grained interacting systems tend to decohere strongly (D[h, k'] ~ 0) due to the
existence of orthogonal generalized records. I, by contrast, have used this formalism
to examine several simple but interesting problems. In the chapters which follow I
have made extensive use of a class of models first treated by Feynman and Vernon and
later by Caldeira and Leggett [8,9]. In these models, a distinguished system, typically
a single particle moving in some potential, interacts with a reservoir containing a large

number of degrees of freedom whose individual motions can be neglected. For a very



simple reservoir, typically a thermal bath of harmonic oscillators, the average effects
of the reservoir on the system can be calculated and summarized in an influence
functional. Caldeira and Leggett used this model to examine Brownian motion. I
have used it similarly, to calculate the decoherence functional for a system simple
enough that the equations remain relatively tractable. All of the chapters are treated
nonrelativistically; they largely concern the rise of classical or quasiclassical behavior
from a fundamentally quantum-mechanical underlying theory. The chapters were
written separatély, and are intended to be read independently, as a series of distinct

papers treating a common theme.

I1. QUASICLASSICAL EQUATIONS OF MOTION FOR NONLINEAR

BROWNIAN SYSTEMS

In this chapter I study Brownian motion for systems similar to those described
above. The main gist of the paper is the study of systems interacting with thermal
reservoirs in both the classical and quantum case. In each I show how the interactions
with the bath produces a stochastic force which acts on the system, as well as an
averaged force which (in the appropriate limit) serves as a source of dissipation or
friction.

This is nothing novel. The rise of such noise and dissipation in models of this sort
has been demonstrated for linear systems both classically (by Zwanzig) and quantum
mechanically (by Caldeira and Leggett) [10,9]. By using the decoherence formalism,
however, I am able to show that noise and dissipation are not the only effects of
this type of coarse-grained system. The same interaction which produces them also
produces decoherence, i.e., the elimination of interference terms between histories of
the system. Noise, dissipation, and decoherence turn out to be intimately linked, in
a relationship similar to (and related to) the fluctuation-dissipation theorem.

One can picture the reservoir as continuously “measuring” the system, eliminating
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interference by preventing superposition, but at the same time resulting in uncertain-
ties in the system’s path. FEach tiny “measurement” is a quantum event with a
probabilistic outcome.

I am also able to show that in the quasiclassical limit, the most probable histories
of the quantum system become centered about the classical path. The quantum me-
chanical uncertainty of the micro-level shades into the more usual classical uncertainty
due to the existence of a stochastic force.

In addition to treating systems interacting linearly with the bath, I also consider
weakly nonlinear interactions. While the path integrals in this case can no longer be
exactly calculated, they can be approximated in perturbation theory. I use pertur-
bation theory to calculate both the decoherence functional and the classical equation
of motion and show that once again the most probable histories center on those that
follow the classical trajectories. In this case as well, interactions lead to decoherence,
and it is possible to show that this is a very general result.

This chapter has been previously published as a paper in Physical Review D,
volume 47, pp. 3383-3393. It is entirely my own work, but appeared as a companion

to a paper by Gell-Mann and Hartle, p. 3345 in the same issue.

I11. QUANTUM DISSIPATIVE CHAOS

Since the formalism developed in the previous paper is so useful for treating quan-
tum mechanical systems with dissipation, I thought it would be interesting to treat a
system with inherent interest, dissipative chaos. While “Quantum Chaos” has been
around for a few years now, almost all of the work in this field concerns Hamiltonian
systems. This is natural enough, in that we have considerable intuitive knowledge of
systems with Hamiltonians. Examining the quantum mechanical equivalents to these
classically chaotic systems is comparatively straightforward.

Systems with dissipation are much more problematic, and little has been done
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in the way of finding quantum equivalents (for some examples, see Chapter II). I
showed how the simple Brownian-motion model could be used to represent a chaos,
by adding dissipation to a nonlinear system. Outlining the general framework for
such a theory, I considered a particular example, and performed explicit calculations
with the forced, damped Duffing oscillator. This is a canonical example of the chaotic
oscillator, and exhibits all of the typical behavior of such systems.

I once again demonstrated that my quantum system had the same quasiclassical
behavior as the classical Duffing oscillator, with the inescapable addition of stochastic
noise. In studies of Hamiltonian quantum chaos, workers have observed that the
chaotic behavior becomes suppressed as one approaches the quantum limit. Somehow,
the uncertainty of chaos becomes less in the quantum case! While this is accurate in
one sense, it neglects the need for decoherence in order to say anything meaningful
about a quantum system. It is only when a system decoheres, i.e., when we can assign
it a probability, when we “measure” it, that we can gain any knowledge of it. When
such a measurement is made, the outcome varies probabilistically, as normal. As
one goes from the classical to the quantum limit, the uncertainty does not decrease,
but rather changes in nature: from the deterministic uncertainty of chaos to the
probabilistic uncertainty of quantum mechanics.

In the case of dissipative systems, there is no such suppression of chaos. Instead,
to the deterministic chaos is added a stochastic term, resulting from the noise of
interaction with a reservoir. While in the classical limit this noise may be tiny, it is
characteristic of chaotic systems that even very small noise is amplified until it can
affect the macroscopic state of the system. Thus, allowing for quantum effects can
only increase uncertainty.

In addition to this, I examined some of the generic traits of dissipative chaos and
showed how they were modified by quantum mechanics. The fractal strange attrac-
tor can no longer be a true fractal with quantum mechanics; the existence of noise

(ultimatedly arising from the uncertainty principle itself) introduces a fundamental
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scale below which the fractal must cease to be self-similar. In a similar way, the usual
definition of chaos—sensitive dependence on initial conditions—becomes somewhat
ambiguous in the quantum case. Since a completely fine-grained trajectory is not a
decoherent history, it makes little sense to speak of starting trajectories arbitrarily
close together and following them for arbitrarily long times. I suggest some possible
alternatives which could lead to a quantum mechanical definition of chaos.

This paper has not yet been submitted for publication in a journal. It appeared
as a Caltech preprint in 1993, and was replaced with a revised version a few months

later. It too is entirely my own work.

IV. THE DECOHERENCE OF PHASE SPACE HISTORIES

In looking at the quasiclassical limit of quantum theories, it sometimes becomes
desirable to frame problems in a more classical way. For example, the strange attrac-
tors of the chaotic systems in the preceding chapter are most suitably described in
phase space. Quantum mechanics is somewhat hampered by the fact that there is no
completely natural way of framing the theory in phase space.

In an effort to improve this slightly, I looked at possible ways of describing phase
space histories—coarse-grained paths in phase space instead of configuration space.
This is made difficult by the fact that there are no very good projection operators
which project onto local cells of phase space. Thanks to the uncertainty principle,
these are not very well-defined. Since the most straightforward definition of the
decoherence functional used projection operators to specify alternatives at a given
time, this lack is rather important.

Nevertheless, there are a few approximations to such operators. In this paper I
consider a couple of such approximations: consecutive projections in z and the p, and
coherent states. The former are unsatisfactory because the two projections do not

commute, and thus one gets different results depending on the order in which they



Xiv

are applied. The latter are true projections, but unfortunately are not orthogonal,
and are overcomplete. Both of these sets of handicaps diminish as one takes cells of
phase space relatively large compared to h.

In this chapter I derive fairly general expressions for the probabilities of a set
of phase space histories, and show that highly disjoint or discontinuous histories
tend to be suppressed. I then make a number of approximations, and examine the
decoherence of phase space histories for the Caldeira and Leggett based models I
have been using. In the semiclassical limit I show that the level of coarse-graining
required for decoherence is much greater than that which would be naively required
by the uncertainty principle alone, i.e., the area AzAp of a cell in phase space must
be considerably larger than #. I also elaborate a method for actually calculating the
probability and decoherence of such systems numerically.

This paper, too, has not yet been submitted for publication. It is my own work,

and will shortly appear as a Caltech preprint.
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Quasiclassical Equations of Motion for Nonlinear Brownian

Systems

Todd A. Brun

California Institute of Technology, Pasadena, CA 91125

Abstract

Following the formalism of Gell-Mann and Hartle, phenomenological equa-
tions of motion are derived from the decoherence functional of quantum me-
chanics, using a path-integral description. This is done explicitly for the case
of a system interacting with a “bath” of harmonic oscillators whose individual
motions are neglected. The results are compared to the equations derived from
the purely classical theory. The case of linear interactions is treated exactly,
and nonlinear interactions are also compared, using classical and quantum

perturbation theory.
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I. INTRODUCTION
A. Decoherence and the quasiclassical limit

Two of the most puzzling aspects of the quantum theory have, until recently,
remained unclear: the proper interpretation of quantum probabilities, and the mech-
anism by which deterministic classical “laws” can arise from a probabilistic underlying
theory. The idea of wave-function collapse, while providing a useful approximate de-
scription of most experimental situations, begs the question of why a system which
otherwise undergoes purely unitary evolution should suddenly and dramatically be
collapsed upon measurement by a scientist. The procedure is highly asymmetric,
instantaneous, and irreversible, and moreover requires the existence of a “classical”
measuring device outside the system being measured. When one considers a closed
system, the idea of wave-functions collapsing becomes highly ambiguous. There is
nothing outside the system to collapse it. The quintessential example of this, of
course, is the universe itself. Clearly, if the fundamental laws of the universe are
quantum mechanical, there can be no separate “classical domain” to explain our
observations. Since the classical realm is itself, presumably, merely a limit of the
underlying quantum reality, the probabilities must arise directly from the quantum
theory itself, without recourse to the deus ex machina of the measurement device.
And somehow, the various potential futures of the universe must collapse themselves
onto the one possibility which we observe. Quantum cosmology requires a solid for-
malism for the treatment of closed systems, and work in this field should have that
as its goal.

The recent work on the decoherence functional formulation avoids the problems of
earlier approaches [1-4]. Physics is described in terms of exhaustive sets of possible
histories, coarse-grained, with the restriction that these histories must be decoherent.

That is, it must be possible to assign probabilities to these histories such that they
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obey the classical laws of probability, with no interference.

Gell-Mann and Hartle have argued that it is possible, in a highly coarse-grained
system, to define the classical equation of motion directly from the decoherence func-
tional itself [5]. I will, in this paper, attempt to show that this definition gives the
exact classical results, at least for the case of systems interacting with baths of oscil-
lators; and further, that these systems are decoherent in the classical limit. Quantum
effects enter as a random, fluctuating force from the effects of neglected degrees of
freedom, even in cases where the classical noise would ordinarily be zero. Fluctua-
tions, dissipation, and decoherence turn out to be intimately interlinked.

The linear case has been treated before by a number of people, both classically
and quantum mechanically, though not in precisely this same way [6-8]. The corre-
spondence of this quantum system to the classical Langevin equation is thus nothing
new. The decoherence of similar systems has also been examined, using a somewhat
different definition of decoherence which for these models generally corresponds to
my definition [9]. However, to my knowledge, no one has considered the classical
correspondence of these sorts of nonlinear systems, nor the relationship between dis-
sipation, noise, and decoherence in these more general cases. Thus, the results herein
are of interest in demonstrating that it is possible to define classical equations of

motion directly from the quantum theory in a broad range of systems.

B. Path-integral description of the decoherence functional

We will not, for the purposes of this model, be using the decoherence functional in
its most general form. Instead, we will consider only one type of history. Suppose that
our system is completely described by a set of generalized coordinates ¢° (collectively
referred to as ¢). The most fine-grained possible family of histories would be just the
set of all possible paths ¢(t). We can coarse-grain this by dividing the range of the ¢

into an exhaustive set of intervals Agi(ti) at a sequence of times ¢1,1,, ..., where the
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a; are an index labeling the intervals. We can then specify one particular history by
which interval was passed through at each time, labeling it by the sequence of indices
a1, g, ..., which I will generally abbreviate as a. Such a history includes all possible
paths which pass through the given set of intervals at the given times.

The decoherence functional is a functional on pairs of histories. The value of this

functional on a pair of histories & and o' is given by

D)= [ 6¢ [ 848(a; - ap)exp{i(Slg(®) - Sla@D/}olab o) (L1)

Here we are integrating over all paths which pass through the specified sequence
of intervals. The functional S[g(¢)] is the fundamental action. If ReD(a/,a) = 0
for o # a, then the system is said to be decoherent, and obeys classical laws of
probability. The diagonal elements D(«, a) are the probabilities of each history «.

The simplest form of this type of history is that where the intervals are completely
fine-grained in certain variables, and completely coarse-grained in others. We divide
the coordinates ¢” into two groups, z° (henceforth known as the system coordinates),
referred to collectively as z, and Q¥ (henceforth known as the reservoir coordinates),
referred to collectively as Q). Our histories will then be complete trajectories () for
the system coordinates, while the reservoir coordinates will be neglected completely.

It is then convenient to break the fundamental action of the system into several

parts:

Sla(t)) = Senlo(®)] + Suul Q) - [ V(a(), Q1) dt, (1.2

where Sgys[z(t)] is the action of the system, Syes[@(t)] is the action of the reservoir, and
there is an interaction potential V(z, Q) between them. The decoherence functional

is then
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DI/ (2),2(1)] = exp{i(Sunle' (0] — Suale(0)/1} [ 62" [ 6Q 6(@'(15) = Q(ts)
x exp{i(8alQ (1)) - SualQ(0)]
_ t:f(V(ac'(t)’ Q'(t)) — V(z(t),Q())) dt)/h}

x p(zg, Qo; To, Qo)- (1.3)

1I. LINEAR CASE

The case of a system interacting linearly with a reservoir is a famous one, and has
been treated by a number of people; quantum mechanically by Feynman and Vernon,
and Caldeira and Leggett, classically by Zwanzig. For convenience, it is customary

to make a number of simplifying assumptions:

1. The reservoir variables Q* are harmonic oscillators, i.e.,

SwlQW]= % [ 3@ -t o (2.1)

2. The initial density matrix factors:

p(z0, Qo5 7o, Qo) = X(20, To) $(Q5, Qo)- (2.2)

A similar assumption classically is to assume that the initial probability distri-
bution of the reservoir coordinates is independent of the initial state of the system

coordinates.

3. The interaction V(z, Q) is bilinear:

V(e,Q) = — 3 naQ" (2.3)
k

I will generally assume that x is a single variable; multivariable systems are a
trivial generalization, where the v, become matrices.
We will relax these assumptions to a certain degree later on, but for now let us

consider this case. The classical case is exactly solvable. In this, the equation of

motion for the reservoir variable QF is
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L9 1) = —a2Q () + (e m)a(0) (24)

This has a solution

Q’;(:o) sin(wi(t — to)) + -TZT’;: t: sinfwg (t — s)]z(s) ds

Q (1) = Q*(to) cos(wi(t — to)) +

(2.5)
We can then use this in the equation of motion for z:
d (0L JL
il e Y
a(G)0= (5o 2wt
2

= (%g) &)+ FE)+ > i /: sinfwi(t — s)]z(s) ds, (2.6)

o Mwg Jt

where F(t) is the Langevin force. In this case, it is clearly

= Zk:'yk (Qk(to) cos(wi(t —to)) + %:O) sin(wy(t — tO))). (2.7)

If we assume that the () have a thermal probability distribution initially,

PQ) =I5 pmeww (~5pp(@ +e10), (28)

which, when averaged over an ensemble, gives

2 kT
<Qk> = Oa <Qk > = —n;;;z’ R (29&)
@)=0, @H="", ., (2.90)
then
(F(t)) =0, (2.10a)
(F()F(s) = 342 ( )Cos(wk(t —4)). (2.10b)
k

Let us compare this to the quantum results. It is interesting to first consider the

system 1n isolation from the reservoir. In this case we would have
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DI/ (1), 2(6)] = exp{i(Sule’ (0] - SunleOD/M) (e, (211
If the action Sgys[z(t)] has the usual form
Swele(®] = [ Lia(t), 4(1)) a1, (2.12)

then we can change variables

X(t)= —é—[x'(t) +2(t)], (2.13a)

{(t)=12'(t) — (1), (2.13b)

and expand the phase in terms of ¢:

Sonl#' (0] — Sonla0]= |7 TE(X(0), KDE) + 2 (X(0), X))+ O(€?) d
= [ (- k@) + g’;‘;< (0, X)) de
oL . . ,
—a—X(Xo,Xo)f(to) +0(£"). (2.14)

So the Euler-Lagrange equation of motion appears in the phase of the decoherence
functional!

One should not put too much weight on this occurrence. This system is not deco-
herent; substantial interference can still occur between different possible trajectories.
There is no particular reason to expect £(t) to be small, so it is not correct to neglect
higher-order terms. This system, on its own, is still essentially quantum-mechanical.
It is not even quasiclassical.

This still leaves the effects of the reservoir variables and interaction unaccounted

for. Let us turn, then, to this portion of the decoherence functional.

Ple(t),2(2)) = [ 5Q" [ 6Q8(Q'(ts) — Qts)) exp{i (Sl @(1)] — Sl Q(1)

ty

- [V 0,Q0) - Vie©),QW) dt) 5 x(Q Qo)

to

_ exp{iW[x'(t), 2(1)] /h}. (2.15)



-8

Flz'(t),2(t)] is termed the influence functional by Feynman and Vernon, and
Wlz'(t),z(t)] is the influence phase [6]. In our simplified model, this is not diffi-
cult to evaluate exactly. It is generally assumed that the initial density matrix is in

a thermal state. We quote the results of Feynman and Vernon:

Wz'(2), 2(t)] = % [ t: ds [2/(t) ~ 2(t)) (Kt = 5)a/(s) + k(¢ ~ s)x(s)), (2.16)

to

where the real and imaginary parts of k(¢ — s) are

kr(t— s)= zkj nﬁk sin(wi(t — s)), (2.17a)
ki(t — s)= ; n;yik coth(hwy /kT') cos(wi(t — s)). (2.17b)

Changing to our variables X and £, we see that

WX, 1) = 3 =25 /tfdt ” ds{?ﬁ(t)X(s)sin(wk(t—s))

& 2mCUk 12 ig

i

+i(1)E(s) coth ( kT) cos(wi(t — s))}. (2.18)

Thus, we have a real term which is proportional to {(¢) and an imaginary term which
is proportional to £(¢)€(s). The imaginary term is a double integral over a symmetric
kernel whose eigenvalues are strictly non-negative; thus, for large ¢ the decoherence
functional will be diminished by a decaying exponential
ts t
exp[— /to dt A ds £(t)E(s) cos(wi(t — 5))]

Since ¢ essentially measures how far you are from the diagonal of the decoherence
functional, the off-diagonal terms tend to vanish and the system becomes decoherent.

Furthermore, since large ¢ is suppressed, it now makes sense to discard terms of
O(€?). Thus we can now say

Soel#' (0] = a0 + WL (1),2(0)] = & [ at [ ds et)kr(t = (s)

to to

+[aewen roE),  (a9)



where

e(t) = —% (%L—(t)) + %(t) - Zk: —n;y—f); t: ds X (s)sin(wg(t — s)). (2.20)

If we compare this to (2.6), we see that
e(t) =0

is identical to the ensemble-averaged classical equation of motion. Note that the bath
of harmonic oscillators acts as a retarded force on the system. In the limit as we go to
a continuum of oscillator frequencies with a high cut-off, this retarded force becomes
a dissipative term, i.e., a frictional force. In this limit, Caldeira and Leggett show

that for a Debye distribution of oscillator frequencies, the influence phase becomes

(8]
WX, €] = /ttf (~21“X§(t) + #Ffz(todt. (2.21)

where T is the usual classical coeficient of friction, defined in terms of v and the
cutoff frequency . See [7,8] for details.
We have seen that the real term of W[X, £] corresponds to the classical retarded or
(in the limit) dissipative force. The imaginary term also has a classical analog. In the
classical case, there is a random stochastic force F'(t) given by (2.7), which ensemble-
averages to zero (F'(t)) = 0. As we see in (2.10b), however, the two-time correlation
function of this force does not vanish. As i — 0, we get coth(hw/2kT) — 2kT /hw.
So the imaginary part of W[X, ¢] has the form
tm WIX(0),6(0)) = [ dt [ ds (FOF(s))E(t)ECs). (2.22)
Here we observe the subtle linkage between noise, dissipation, and decoherence.
In interacting with the many degrees of freedom of the reservoir, the system loses
energy. It also is subject to random jostlings from the reservoir oscillators. But one

last, purely quantum-mechanical effect is that the state of the system is continually
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being “measured,” and thus the various possible trajectories tend to decohere, at least
on a scale large compared to k. Later we will see that even in situations where the
classical noise vanishes, there is still quantum-mechanical noise. This arises essentially
from the zero-point energy of the reservoir oscillators.

We can straightforwardly generalize to the case where the potential is nonlinear

in z, but still linear in ). Suppose that

V(z,Q)=— ; ar(z)QF. (2.23)

Here the influence phase is

Wi (0,20 = 3 [ ar [ ds {(ala'®) ~ an(a(t))
X (an(o'(5))elt — 5) — an(a()EL(E — )} (2.24)
where

kk(t — S) =

[sin(wk(t — 8)) + ¢ coth(hwy [2kT') cos(wi(t — 3))] (2.25)

mwpg

We can again separate the real and imaginary parts, and change to variables X and

£. We then get, to O(€3),
WX, 0] =~ 3 [ [ ds {af(X)au(X()e(O)sin(es(t - )

—i coth (%’&) & (X () (X (s))E(2)E(s) cos(wi(t — s))}. (2.26)

Again, we see that the real term has the same form as the classical retarded force,
which becomes dissipative in the limit of continuous frequencies and high cutoff. The
imaginary term again corresponds to a double integral over the two-time correlation
function of the classical stochastic force. It is strictly non-negative, and exponentially

damps the decoherence functional for large €.

ITI. NONLINEAR EXAMPLES

The problem with potentials nonlinear in @) is that the path integral is no longer

solvable in closed form. Thus, it is difficult to be certain that this correspondence
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with the classical equation of motion which holds in the linear case is truly universal.
We can, however, consider weak couplings, and solve for the equation of motion using
perturbation theory. We can then compare the classical perturbative equation to that

derived from the influence functional.

A. Classical and quantum perturbation theory

Let us consider a system coupled to a bath of harmonic oscillators with a potential

of the form

V(IIZ, Q) = _62%(33 Qk), (31)
k

where Vi(z,Q*) can be nonlinear in z and Q*. In general, such a problem cannot
be solved exactly. However, if the coupling is weak (¢ << 1), then we can make a
perturbation expansion, at least for reasonably well-behaved potentials.

The total Lagrangian is

Lua(e,0,Q) = Lo,2) + £ () ~w(@)) - Wi(.08). (32)

Let’s suppose that the trajectory z(t) is known. Then the equation of motion for the

kth harmonic oscillator is

d2Q* 9 e OV,
= it + 520,09, (33)
If we then write Q* as an expansion
QF(t) = Qs(t) + Q1(1) + €Q5() + . .. (3-4)

and equate equal powers of ¢, we get a series of equations

dQk :
—0 = Q5 (3.5a)

Qb av;
T = Q4 (0, QH) (3.50)
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0%V
0Q?

dQ;

dt (.’L‘(t), Ql(;(t))v (3.50)

= 2%+ —-Qk)

etc., where we’ve Taylor-expanded Vi(z, Q% + Q¥ + - --) in powers of e.
Now we have equations for each Q¥(¢) in terms of the lower order functions.
Notably, the lowest order equation is now a simple harmonic oscillator, and we can

solve for it easily in terms of the initial conditions
QE(t) = Ay cos(wit) + By sin(wyt), (3.6)

where A; = Q*|;, and By, = (1/wi)(dQF/dt)|s,-
The higher-order equations are driven oscillators. We can solve for them exactly,

matching initial conditions:

1 ¢ Vi

Q’f(t) = oo e sin(wg(t — s))—éa(z(s), ng(s)) ds, (3.7a)
ko 1 t 0*V, r r
Qz(t) = oo e sin(wi(t — s)) 90" (2(s), Qo(3))Q1(s) ds, (3.7b)

and so forth.
Having found the motion of the harmonic oscillators in terms of z(t), we can now

turn around and find the equation of motion for z. This is

d 0L oL A k
T35 (1) = 5-(0) + X0 S 2(2(1), Q(1))- (3:8)

k
Q*(t) is the expansion that we solved for above, and it will depend on the earlier be-
havior of z, in general. Note that causality is strictly obeyed. This classical causality
follows as a result of more fundamental quantum causality, as discussed by Gell-Mann
and Hartle [5].
We treat this same problem quantum-mechanically by trying to find the influence
functional F[z'(t),z(t)] as a perturbation expansion. Assume that the reservoir starts

in a definite initial state |a), with wave function ¢,(Q). Then



I-13

o2 = [ 6@ @) - Q) Dep { (Sal@(0)] - Sl

| h ’ (v<x'<t>,c2'(t>> - V(x(w,Q(t») d
(&) / [ (vem,em - vw,em)

(V(w'(s>,cz<)>—v<x< ),Q(s))) ds dt + -] 4u(Q' (1)) 6(Qlto)) 6Q' 6Q
=145 [ (Vaala'®) - vaa(m(t)))

( ) /t:f /to( £))Vha(2'(5))e™52t=5) — Vo (2(t)) Vha(z'(5) )™ balt=2)

—Vaa(2'(t)) Van((s))e™=(") + Viu(a(t ))%b(:v(S))ei”b“(t‘s)) ds dt + -

3 L Vi(X@)ec) de |
_ (.ﬁ-) > [ (R @)V )EOES) cos ot - )

—2%VL (X (1)) Vin(X (5))E(2) sin(wa (t — s))> ds dt + O(%) + O(£%).

Here we’ve defined the functions

=1+

(3.9)

Vaa(2) = (a|V(z

Qla) = [ $.(Q)E:QV (2, Q) dr, (3.10a)

Via(2) = (4IV (2, Q)la) = [ 6u(@)5(Q)V (2,Q) dr (3.10b)

In our case, we assume that the reservoir is a collection of harmonic oscillators

initially in a thermal state. In this case, the states |a) become the ordinary Fock

states |n) and the influence functional is

Fla'(t),2(t)] = Y punFale(2), 2(2)], (3.11)

where

Prn = H(l - exp(—-hwk/kT)> exp(—nihwi/kT). (3.12)
k
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B. Polynomial potentials

We will specifically consider a potential of the form (3.1) where the individual
potentials are polynomials in Q*. We will see that it is convenient to separate the
even and odd terms:

2l

N N
Vi(z, Q%) = ;akz<x><Qk>2‘*‘ + ; bu(2)(Q%)" . (3.13)

The ax(z) and by(z) are arbitrary functions of , only assuming that the potential
as a whole remains relatively well-behaved, integrable, etc. For convenience, I will
drop the index k for the rest of this derivation. It should be understood that the final

result is to be summed over all the oscillators,
Wiz'(t Z Wi[z'(t), z(t)]. (3.14)

From the equation (3.5a), we can write down the equations of motion for a classical
oscillator Q(t) = Qo(t) + €Q1(t) + .... We then plug in the solutions (3.6) and (3.7a)

to get

Q;)(t) = Acos(wt) 4+ Bsin(wt) = fe + f*e 1, (3.15a)

0 §=0

1 t N . N
Qult) = o, snliolt = )] (Z(zwr1>aj(x<s>)Q3J<s>+gzjbj< ()@ 1(3)) ds,

(3.15b)

etc., where 3 = (A — ¢B)/2. The equation of motion for = is then

8- () oo o)

+¢ (Z(QJ' + 1)a;(2(1)Qg’(t) + ZZJb' z(1))Q0’ (¢ )) Qi(t) + O(€%)

=0

(g{;) +en(t) + En(t) + O(d) (3.16)

We are interested in the ensemble-averaged equation. We can make use of the fact

that
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2mw?

(3.17)

So only the even terms contribute to the first-order component of the equation (3.16).
Q32 (t) is readily found then with a binomial expansion of
27

et e = 5 () ey e, (3.15)

=0

N o J
(r(t)) :;%b}(w(t))( kT ) . (3.19)

yielding

2muw?

The second order component is more complicated. Plugging expression (3.15b)

for Q1(¢) into (3.16), doing a binomial expansion for the powers of Qo(t) and Qo(s),

airing €™! and e ™! terms, and ensemble-averaging gives us
b

(12(8)) = 7_71_1; /:{Z S sinf(2k + 1)w(t — 8)|Cin(t, s)

k=01,j=k

N N
= > sin[(2k — Dw(t — 8)]Cije(t, 8)

k=11i,5=k

N N
+ 3 3 sin[2kw(t — )] Dyjilt, s)

k=11,7=k

N N
=30 3 sinl(2k = 2)ult = 9Dl s)} ds, (3.20)

where

c,,.,ca,s):a;(x(t))aj(x(s))(i+j)z<2i+1)(2]-+1>( u )( % )( e )

i—k)\j— k) \2mw?
(3.21a)
: : i1
Dije(t, s) = b(z(t))bi(2(s))(i + j — 1)!4ij (212:13) (i?_“;) (;ﬂ) . (3.21b)

We can collect together and combine those terms with the same sine factor, to get
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1 N N

(ra(t)) = .__/tt{z > sin[(2k + Dw(t — )] Eije(t, s)

mw Jte Lo 1,7=k

N N
+Y D sin[2kw(t — S)]Fijk(t,S)} ds, (3.22)

k=01,7=k

where

Eijr(t,s) = al(x(t))a;(2(s)) (3 +j)!(27];22>i+j(2k +1)GE+7+ 1)(2;33) (zjjkl)

(3.23a)

st = e+ - (o) () (%)

(3.23b)

We are also interested in the correlation function (F(t)F'(s)), where F(t) is the

force due to the interaction with the reservoir. To second order this is

N N
(F(t)F(s)) = 62{; zkzcos[(zk + Dw(t — 5)]|Giji(t, 5)
N N
+ kX—: .Z_kQ cos[2kw(t — 8)|Hyjk(t, s)
+ g: H;jo(t, 5)} + O(€%), (3.24)

Gus(t0) = oo+ + 0o ) (29, s

ot ) = o) (2 )(7) e

We can subtract off the average values to get

(F(2), F(s)) = (F(1)F(s)) — (FQ))F (), (3.26)

where (F(t)) is the first order ensemble averaged force from (3.19).
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We can compare this result to that obtained from our quantum mechanical pro-
cedure. Suppose that the reservoir begins in a definite state |n). Then the influence

functional is given by (3.9),
Fn[X(t)a ’S(t)] =1+ eanl[X(t)7§(t)] + 62an2[X(t), é(t)] +ey (327)

and in the thermal case by (3.11),

FIX(8),6(1)] = 1 + ear[X(2), £(t)] + €[ X (8), (1] + -+ - = D prn Fu[X (2), £(2)],

(3.28)
where
@[ X (1), (1)) = D panani[ X (1), (1)) (3.29)
The influence phase is then
WIX(t),£(t)] = =ik In F[X(2),£(t)]
= —thean[X (1), £(1)]
—ine* (aalX(0)60)) — 53X, E60]) + . (330)

From (3.9), then, we see that we must find an expression for (m|r!|n). This will,
in general, be a polynomial in n, for certain values of m, and zero for the rest. In
comparing to the classical result, we need keep only the highest power of n, since the

lower powers will be higher-order in fiw/kT as we let A — 0. This will be

I B /2

(mirfin) = (k) (m) AP g m = L= 2k, 2k < 1, (3.31)
i 3 l/2

(m|ri|n) = (k) <%) m? 4. om=n—1+2k 2k <1, (3.32)

and zero otherwise.

We can then use the fact that as A — 0,
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annn ~ l'(:T) (3.33)

Thus, from equation (3.9) we get

o [X(2),€(1)] zpmh / D HX W)l m)e(0) d

h/ Zb’ 1))E(t) =L ( kT )jdt, (3.34)

2muw?

which agrees exactly with the first order term in the classical equation of motion
(3.19).

Similarly, we can calculate the second order term to get
aal X (8),£()] = ——-{Z Z [ [ 2eostk 4 pott = ) Guelt 01E() s
+ Z z / 2cos [2kw(t — s)|H;jr(t, s)E(E)E(s) ds dt

‘HZ Z / / sin[(2k + )w(t — )] Eijk(t, $)é(t) ds dt

klzyk

+1 Z Z / / sin[2kw(t — s)] Fiji(t, s)E(t) ds dt

klz]k

3 [ [ Haolt 605 s ). (3.35)

i,j=1
Here we’ve used the same definitions of E;jx, etc., where the classical system variable
z has become the quantum variable X.
We can clearly see from this the exact correspondence with the classical equation
of motion, at least to second order in e. The real part of W[X(t),£(t)] is just an
integral of the classical retarded force, just as in the linear case, and the imaginary

part consists of a double integral

7 [rore) - royren]enees) ds d (3.36)

note that the —(F(¢)}(F(s)) comes from subtracting o?/2 from the second order

term. Again, we note the non-negativity of this imaginary part; the presence of noise
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both makes the behavior unpredictable, and causes different trajectories to decohere.
So we see that in perturbation theory, the nonlinear problem has exactly the same

classical correspondence as the linear problem.

IV. MORE GENERAL CASES

Though the above discussion is fairly general, it leaves unexamined the far broader
range of possible strong, nonlinear interactions, as well as the possibilities of non-
oscillator reservoirs. This is, of course, a product of computational convenience, as
it is very difficult to get analytical answers in other cases. Are there any arguments
that can be made for more general systems?

In any case where the action can be decomposed

S[z(t), Q)] = Seys[z(t)] + Sres[Q(1)] + Sime[z(2), Q(1)], (4.1)

1t is possible formally to write the decoherence functional in the form

?

Dla(t),«'(0)] = exp +{ Suulal)] = Suule’ O + Wla(t), 0]} (42)

If we restrict ourselves, for the moment, to systems in a factorizable pure state,

P, @52, Q) = V() ¥(2)0"(Q)0(Q), (43)

then this influence phase is defined simply by (2.15)
exp (iW[2'(1), a(0)/1} = [ 6Q' [ 6Q8(Q(ts) — Qts)) exp +{ Sual@'(0)] ~ Sl Q1)
+Simle'(8), (1) - Siala(0), QO] [0 (@0)2(Qu). (4.4

By bringing the integral over the final condition @y, @’ to the front, we can re-

write this as a product of two path integrals:

exp {iW[2'(1), 2(O)/1} = [ [ dQdQ58(Q(ts) — Qty)
| [ 8@/ {0 + Sule') Q1))
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<[ 500 {5t - Sulett. Q01 o100)
= [ [ dQsdQ}6(Q'(ts) = Q(t)®2(o (@) =0 (@)
= /(I’;'(t)(Qf)(I)x(t)(Qf)de = (Pur(1)| Por)) s (4.5)

where |®,,)) and |®,(y)) are the states that |®) will evolve into under the influence
of the interaction, given the trajectories z(¢) and ’(t), respectively.

Clearly, (®,/(5)|®s)) < 1, which implies equally clearly that ImW{z'(t), z(¢)] > 0.
So the non-negativity that we séw in the cases I and II above is generally true. This

is also clearly the case for mixed states, since we can represent any mixed state as

p(a',Q52,Q) = sz (2')¥i(2) 27 (Q") 2:(Q), (4.6)

where

> pi=1, pi > 0; (4.7)

T

so if the Fi[z'(t), z(t)] < 1, then clearly

exp {(iW[2'(t), 2(t)]/h} = D _piFilz'(t), 2(1)] < 1 (4.8)

and ImW[2'(t), z(¢)] > 0 still holds. Also, ImW[z'(t), z(¢)] = 0 for 2'(¢) = z(¢). Thus,
without assuming anything about the interaction or the reservoir, we see that there
will be a maximum at £(t) = 0, and that the off-diagonal £(¢) # 0 terms will tend to
be suppressed. This is not surprising, as one expects almost any sort of interaction
with neglected degrees of freedom to result in the loss of phase coherence. However,
it does show how these highly simplified models might actually demonstrate behavior
important to the emergence of classical physics from quantum mechanics in physical
systems.

For example, in considering quantum gravity, decoherence might arise from ne-
glected gravitational degrees of freedom. The usual semi-classical treatment of quan-
tum gravity, which omits the “back action” of mass-energy on the curvature of space-

time, cannot exhibit this effect. The weakness of the gravitational interaction would
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in general make it less important in causing decoherence than stronger forces, such
as electromagnetism; but it might well become important in quantum cosmology.
There are, of course, still questions. All that has been demonstrated is the non-
negativity of ImW{z'(t), z(¢)]. Can there not be zeroes for some choices of £(t) # 07
And how strongly, in general, are the off-diagonal terms suppressed?
There can certainly be zeroes for nonzero £(t) in some cases. Indeed, if we consider

the form of ImW|z'(t), z(¢)] for the linear case

ImW2/(t), (1)) ~ /t’ Y £(1)é(s) coslw(t — )] ds dt (4.9)

to Jto
(for a one-oscillator “reservoir” of frequency w), there are an infinite number of choices
of £(t) which make this zero. Thus, one cannot call this system truly decoherent.
However, as the number of oscillator frequencies is increased, the number of possible
choices of £(t) is further and further restricted, so that as the reservoir becomes infinite
only £(t) = 0 remains. One would expect similar behavior in the more general case.
While it is certainly possible to construct cases where ImW{z'(t),z(¢)] has many
zeroes even for a very large reservoir, in practice one expects ImW[z'(t), z(¢)] > 0 for
z(t) # z'(t), as the degrees of freedom of the reservoir are increased.
Similarly, the strength with which off-diagonal terms will be suppressed depends
on the details of the system. However, one would expect that [®,)) and |®.(y) differ
more in the case of strong interactions than small, and hence that (®g(4)| @) would

be more strongly suppressed, in general.

V. CONCLUSIONS

It is clear that it is possible to define a “classical” equation of motion directly from
the underlying quantum theory, and that, at least in many cases, this corresponds
closely to the equation obtained from the classical theory. While correspondences of
this sort have often been demonstrated in the past, never before has there been a

rigorous, a priori technique for deriving them.
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Using the formalism of Gell-Mann and Hartle, we can now see classical physics
as, very simply, a limit of the underlying quantum theory; and we can systematically
determine, at least in principle, the deviations from strict classical equations due to
quantum effects. Using the decoherence functional as a criterion for determining if
an effect is experimentally observable, we can once and for all avoid the problem of
collapsing the wave function; there is no longer any need for an independent “classical

realm” of measurement.
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Abstract

Using the decoherence formalism of Gell-Mann and Hartle, a quantum sys-
tem is found which is the equivalent of the classical dissipative chaotic Duffing
oscillator. The similarities and differences from the classical oscillator are ex-
amined; in particular, a new concept of quantum maps is introduced, and
alterations in the classical strange attractor due to the presence of scale-
dependent quantum effects are studied. Classical quantities such as the Lya-
punov exponents and fractal dimension are examined, and quantum analogs
are suggested. These results are generalized into a framework for quantum

dissipative chaos, and there is a a brief discussion of other work in this area.



11-2
I. INTRODUCTION

Since classical chaos ﬁrstb began to be studied, a conspicuous puzzle has been how
to reconcile this purely classical phenomenon with an underlying quantum theory. If
we believe, as we must to be consistent, that all of physics is fundamentally quantum
mechanical in nature, then we must further believe that true chaotic systems do not
exist. At some point, at length scales determined by Planck’s constant, the determin-
istic uncertainties of classical chaos must give way to the probabilistic uncertainties
of quantum mechanics.

But tackling these problems is not simple. The nonlinear equations of chaos
are, in general, only solvable with modern high-speed computers, and their quantum
analogs share this limitation. Also, chaos itself encompasses two major types of
behavior: Hamiltonian chaos in which energy is conserved, and dissipative chaos. It
is in principle straightforward to find and solve quantum equivalents to Hamiltonian
systems, if difficult in practice, and considerable progress has been made in recent
years in understanding these systems. Dissipative systems are much more foreign to
quantum mechanics as it is usually studied.

Recently, Murray Gell-Mann and James Hartle have used the decoherence func-
tional formalism of quantum mechanics to show how quasiclassical laws can arise
from an underlying quantum theory [1-3]. I applied this approach to the problem of
Brownian motion, demonstrating how their scheme reproduces exactly the classical
Langevin equation in a fairly broad class of systems [4].

‘A natural next step is to apply this to systems with interesting classical behavior.
Since dissipation is easily and indeed naturally included in such systems, an obvious
candidate for study is dissipative chaos. Once a quantum system is found whose
limiting behavior is equivalent to a classical chaotic system, we can study how the
residual quantum mechanical effects alter the system, and what difference this makes

to the classical behavior.
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In section II we briefly examine the family of quantum systems from which we will
draw our model and derive the quasiclassical equations of motion for them. We then
go to the limit of an infinite reservoir of oscillators with a continuum of frequencies,
and specialize to the case of a forced, damped nonlinear oscillator.

In section III we examine the classical behavior of one such system, the damped,
driven Duffing oscillator. There is a brief discussion of dissipative chaos, the structure
of the strange attractor, and the bifurcations leading to chaos. Several quantities
useful for characterizing the chaotic behavior are defined: the fractal dimension and
Lyapunov exponents, and their relationships are examined.

In section IV we look at the decoherence functional and define the idea of a
quantum map. The system is examined as a Wigner distribution, and we see how the
invariant measure of the strange attractor goes over to the quantum case. Problems
of coarse-graining and decoherence are discussed. Then we look at the system from
a master equation point of view and compare this description to the decoherence
functional approach. In section V we see how the various classical quantities used
to characterize chaotic behavior can be reinterpreted for our quantum system, by
treating it as a classical system with noise for sufficiently coarse length scales.

A few other treatments of quantum dissipative chaos are mentioned in section
VI, and the differences between Hamiltonian and dissipative chaos are pointed out.
Finally, in section VII a case is made for a general theory of quantum dissipative

chaos.

II. DAMPED DRIVEN QUANTUM SYSTEMS
A. The quantum systems

Picking a good set of candidate systems requires some thought. Many widely

studied sets of chaotic equations have only a loose connection to actual physical sys-
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tems; many others are extreme coarse grainings of very complicated systems with
many degrees of freedom, e.g., fluid dynamics. It is much better to deal with compar-
atively simple systems, whose decoherence functionals can be calculated easily. For
this reason, I have elected to study damped driven nonlinear oscillators, which can
be easily modelled as particles moving in a potential well, intéracting with a reservoir
of simple linear oscillators. In particular, I will concentrate on one such system, the
damped, driven Duffing oscillator.

Earlier work has chiefly considered systems with reservoirs in a thermal state.
For the purpose of this model, I wish to consider instead a system whose reservoir is
initially in a coherent state.

Consider a system of N harmonic oscillators. We assume them to be in a state
[{v}), where {v} represents a set of N complex numbers v;. If G; is the annihilation
operator for the ith oscillator, then &;|{v}) = v;|{r}).

As shown in earlier papers [3,4], the decoherence functional for a system interact-

ing with a reservoir is

DI (1), 2(2)) = exp{i(Sul' ()] — Swale (/1 } [ 6Q6Q 8(Q1(e1) — Q(ty)
< exp{i( Sl Q(0)] - 5ulQ(1)
- [TV 0,Qw) - Ve, Qu)d/m)
x p(2'0, Q'0; To, Qo)
= exp{ i(Suele' (1)) = Sl ()] + WI'(0), 2O /0 }i(e'oi o). (21)
Here Syy[z(t)] is the action of the system for a given trajectory z(t), Sees|@(¢)] is
the action of the reservoir for a given trajectory Q(), and V(z, Q) is the interaction

potential between the system and reservoir variables. We will assume this to be a

bilinear potential of the form

V(z,Q)= - nzQ", (2.2)
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where QF is the coordinate of the kth oscillator in the resevoir. We will shortly
allow the number of oscillators to go to infinity, and assume a continuum of oscillator
frequencies, but for now let us deal with the discrete case.

We will also assume that the density matrix factors:
p(z'0, Q'y; o, Qo) = x(z'o; 20)$(Q'o; Qo) (2.3)

where ¢(Q'o; Qo) = (@'o|{v}) ({v}|Qo) is the pure coherent state described above.

We can readily calculate the influence functional for this system. It is just

exp{iWla'(t), s/} = [ [ [ dQsdQudQoKz(Qu Qo) Ko @13 Qo)6(@ s Qo)
= ({W}Shy Sl {}), (2.4)

where K;;)(Qy; Qo) is the transition amplitude from Qo to @y of the reservoir and
S’m(t) is the time evolution operator of a forced harmonic oscillator driven by the time-
dependant interaction V(z(t),Q) given in (2.2). This is a well-known problem [3].

For a single oscillator of frequency w, the operator is

Sx(t) = exp [a&T - a*d] = D(a), (2.5)
where
T [ giery(s)d (2.6)
o= e“*z(s)ds, .
2mwh Jt
and
D(@)|v) = |v + e, (2.7)

For v = 0 this just reduces to the usual form of the influence functional for an

oscillator initially in the ground state:

exp{iﬂ’[m'(t), z(i)]/h} = exp %{Jr Ly dt tf ds cos(w(t—s))(a'(t)—z(1))(2'(s)—z(s))

dmw Jig to

2

_ /” dt [ ds sin(w(t—s))(:c'(t)—a:(t))(:c'(s)+:z:(s))}. (2.8)

2mw Jitg to
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For non-zero v we get an additional exponent of the form
t
Im(2va™ + 2v*¢/ \/ ! dt(Rev cos(wt) + Imv sin(wt))(z(t) — 2'(t)). (2.9)

Generalizing this to many oscillators, we get the influence phase

W (0,2(0)) = 2 o [t [ dscosnt = 9)(a'0) - s0)(&'e) — 2(6)

4mwk

" I dssin(wi(t — 5))(2/(t) — 2(8))(2'(s) + 2(5))

2mwy, Ji

Yey /%Z—k /t:f dt(Revy, cos(wit) + Imuy sin(wit))(z'(2) — z(2)). (2.10)

For practical purposes, we generally assume that the interaction began at ¢, = 0

and continued up until some final time ¢4, so as to avoid having infinite limits in the

integrals.

We will now assume that the action of the system variables is of the usual form

Suyez()] = /tt’ L(2(t), #(t))dt. (2.11)

We can then change variables to

1
X = §(x +2'), (2.12a)

E=z—2 (2.12Db)

and write the decoherence functional in terms of the new variables. This is easily

shown to be

DLX (0,0 = exp {3 [ at 0[5 (55 X0, X0) + X)X ()

2h
(Revg cos(wi(t)) + Imuy sin{wi () 7]“

/dssm(wk(t—s)) ()}

—Yk
mwy.

+4::fuk / dt , ds cos(wi(t — s))E(1)E(s)
_go_g_f?( Xo, Xo) + O(€%) bx(a'; 20) (2.13)
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Note that the real part of the phase includes the Euler-Lagrange equation of motion
for the system, with the addition of a retarded force due to the interaction with the
reservoir. The imaginary part is strictly non-negative, with a minimum at {(t) = 0,
and hence tends to suppress D[z'(t),z(t)] for large £&. This makes our expansion
in terms of £(t) seem reasonable, and also causes the system to decohere, at least
approximately, since £(t) # 0 corresponds to off-diagonal terms. The & term occurs

because of an integration by parts.

B. The classical equivalent

We can now look at the classical system equivalent to the above quantum system,
i.e., with the same action functional and distribution of oscillators. A coherent state
is often characterized as a more “classical” state of an oscillator than the usual Fock
states; it can be thought of as the state of an oscillator begun at a given initial position
and momentum, within the limits imposed by the uncertainty principle.

We will begin by assuming knowledge of the trajectory of the system variable z(t),
and ask what the behavior of the reservoir of harmonic oscillators will be [6]. Assume
that we start the oscillators in a definite state Q*(t = to) = ¢*, Q*(t = to) = v*. The
interaction potential is linear, so we can treat the trajectory of the system variable
z(t) as a simple driving force, giving us an equation of motion for the kth oscillator

d2Qk

T = —wiQ" + (ye/m)a(t). (2.14)

The solution to this equation is simply

Qk(t) =q" cos(wi(t — to)) + (vk/wk) sin(wg(t — to))

4k /t sin(wg(t — s))z(s)ds. (2.15)

mwi Jtg

If the system is described by a Lagrangian L(z, &), then we can write down the

Euler-Lagrange equation
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d 3L . oL .
o 0:#0) — g E.H0) + Dk (2.16)

We can clearly substitute the above expression (2.15) for Q*(¢) in the Euler-Lagrange

equation to get

;ltaaL(x(t) (1)) - 8X(ar:() (1)) + Xk:’)’k(chos(wk(t_to))+(vk/wk)sin(wk(t_to))

¢
e sin(wk(t—s))x(s)ds> = 0. (2.17)
mwy Jto

This expression is clearly closely related to the real part of the phase in the decoher-

ence functional, if we make the identity

1/ —Zh—Rez/,c = ¢*, (2.18a)
mwy

QEwk
m

Imy, = vF. (2.18b)

If we write the above classical equation as e(t) = 0, then the real part of the phase

is just

/t:’ £(t)e(t)dt

How do we interpret the imaginary part of the phase, however? In treating reser-
voirs in an initial thermal state, we identified this term as the effect of a stochastic
force F(t) arising due to thermal noise. However, in this system, there is no noise
classically. The persistence of this term indicates a fundamental difference between
the quantum and classical systems. As Gell-Mann and Hartle point out [3], in the
quantum system there is always noise from zero-point oscillations, unlike classical
oscillators. So the actual equation of motion derived from the quantum theory is

d 0L 8L

0= a5 @0,2(t) - 55 (=), 2(t) - (1)

t

+> (qk cos(wi(t — to)) + (vF/wi) sin(wi(t — t0)) — LA sin(wg(t — s)):c(s)ds).

k mwyg Jig

(2.19)
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where F(t) is a stochastic force with (F(t)) = 0, and a two-time correlation function

(F(t)F(s)) = b cos(wi(t — 3)). (2.20)

C. The continuum limit

In order to consider the sorts of classical systems we are concerned with, we must
go to the limit of a continuum of oscillator frequencies, both classically and quantum
mechanically. In doing this, we replace our sums over oscillators with integrals over a
distribution function g(w). The usual choice for such a g(w) is the Debye distribution

[6,7]:
9(w) = nw® exp(~w/Q), (2.21)

where Q is a cutoff frequency. The reservoir degrees of freedom will become a con-
tinuum, Q*(¢t) — Q(w,1), and the eigenvalues v; will become a continuous complex
function v(w). In general, @ must be taken to be fairly large. More precisely, we
want > 1/(t; — o), so that the relaxation time of the reservoir is much less than
the time-scale of the problem.

Let’s consider now the various components of W[X (%), £(t)] one at a time. In the

continuum limit, we have

Y T [ G sin(wi(t — )X (s) = — o [ dsI) Gt — ) X(5). (222)

o MW Jto m Jo to w

We can invert the order of integration and do the w integral, substituting (2.21) for
g(w):

1 rt Q g(w) . n [t 0 .

— dw P gin(w(t - =1 [as - -

~ /;0 dS/o W= sin(w(t — $))X(s) ol LA dw wsin(w(t — s)) exp(—w/Q) X (s)

=1 tds X(s);%/ooodw cos(w(t — s)) exp(—w/Q)

m Jt,
_n i( o )
 mJy ds X(S)ds 14+ Q2%(t—s)?

- %nQ-X(t) 1 t: ds X(s)<1 n st(zt — 8)2> + 0(1/9). (2.23)

m
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Now we use the fact that  is large. The second term becomes highly peaked
about s = ¢, and the expression goes to

—/to o, @t 2D inufs — ) X(6) m TEX() = JEX(W) + 007 (220

m

The second term has the form of a dissipation with constant 2I' = 75/2mM. The
first term is a linear force. With ) taken to be large, one might expect this term
to diverge. This issue is discussed in detail by Caldeira and Leggett [7]. In essence,
it is possible to take this term as an (admittedly large) modification to the system
potential without actually being infinite. If the system were a harmonic oscillator,
this would cause a shift in the oscillator frequency. More generally, we can absorb

this term into the system action as an additional potential:

RLLIRTY (2.25)

o 2m

SsyS[w(t)] - Ssysl[x(t)] = Ssys{x(t)] +

If our Lagrangian is the usual L(z,¢) = 3 M2? —U(z), then we effectively have a new

Lagrangian
L(z,3) — L'(2,) = %M:a-? _U'(z), (2.26)
where
! - . U‘Q 2 9
U'(z) =U(z) 5L (2.27)

In subsequent analysis, it will be U’(z) that we are interested in, as the effective
potential.

The imaginary part of W[X, €] is also of interest. Here we have

ds cos(wi(t —9))E(t)é(s) — 1 /oo dw t:f dsg(zdw—) cos(w(t —38))E()E(s),

4m Jo

Z

4mwk

Y g / dus wexp(—w/Q) cos(w(l — 5))ELE(s),

" 4m

= L [ ds elt)e() s [ dw exa(—uo/R) sin(u(t - ),

4m
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S —
4m to dS

i ty . d Qz(t _ S)
4 (1 +Q2(t_3)2>§(t)5(3),

which in the limit as £ becomes large is

no[Yy £(t)E(s) (2.28)

~ im to S(t—s)z'

This, as Gell-Mann and Hartle argue [3], should be identified as the kernel of a
two-time correlation function of the noise arising from the reservoir. Note that it
is highly non-local in time. This is because the reservoir is essentially at absolute
zero. At this low termperature, extremely long time correlations can be maintained,
a quantum mechanical effect with no real classical analog. Classically, all noise would
vanish.

Unfortunately, from a computational point of view, this is not very convenient.
The non-local time correlation precludes any simple kind of differential formulation
of this theory, i.e., no master equations. While some type of retarded equation might
be introduced to model this system, to my knowledge this has not been done [8], and
in any case such equations would almost certainly be unsolvable.

A slightly different reservoir initial condition can be introduced which is compu-
tationally somewhat more tractable, though perhaps not quite so interesting. This is

the displaced thermal state,
por = D(v)pr D(v)1, (2.29)

where D(v) is the coherent state displacement function defined before in (2.7) and T
is the temperature of the thermal state pr. The real part of W[z'(t), z(¢)] is the same
with this initial condition as in the coherent state, but the imaginary part becomes

very simple in the high temperature limit:
t
ImW(z'(t), 2(t)] = iK / "at ey, (2.30)
to

where K = 4MTkgT/h. The derivation of this is carried out by Caldeira and Leggett,

among others [7]. For convenience, I will use this initial condition for the rest of the

paper.
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Finally, we have the terms arising from the initial condition of the reservoir vari-
ables. When we go to the continuum limit here, the discrete sum in (2.10) becomes

an integral. If we choose v(w) ~ §(w — wp), then we get

nyk -n%;(Rer cos(wyt) + Imyy sin(wit))€(t) — Mg cos(wot + ¢o)é(t), (2.31)
k

where ¢ can be set arbitrarily by adjusting the amplitude of Rev(w). This term has
the form of a periodic driving force. We can set the phase ¢y to zero by making
Imy(w) = 0. Physically, the presence of this term is equivalent to the system being
driven by a plane wave at the frequency wy.

Thus, our decoherence functional becomes

D[X (%), ()] = exp %{ /tt’ dt (—MX(t) _ fg(I(X(t)) — 2MTX (1) + Mg cos(wot)>§(t)
_MXobo + iK /tt’ dt €2(t) + 0(53)} x(@'; 20). (2.32)

which gives us a quasiclassical equation of motion

..+LdU’
v M dz

(z) + 2I'z = g cos(wet) + F(t)/M, (2.33)

where F(t) is a stochastic force with (F(t)) = 0 and (F'(¢)F(s)) = AKé(t —s). In a
completely classical derivation, of course, this stochastic force would be absent. Thus,
we have found a quantum system equivalent (in the appropriate limits) to a classical
nonlinear oscillator with a periodic driving force and dissipation. All that remains

now is to specialize to a chaotic example.

IT11I. THE DAMPED, DRIVEN DUFFING OSCILLATOR

The quasiclassical equation of motion (2.33) is a fairly general expression for a
one-dimensional damped, driven system. Many such systems exist which exhibit
chaotic behavior for some values of the constants I' and ¢. The ordinary pendulum

is an example of such a system, where U'(z) = —cos(z). We will be examining
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another system: the damped, driven Duffing oscillator. This nonlinear oscillator has

a polynomial potential
1 1
%U'(:c) = 7o'~ 52 (3.1)

We choose units to set M = 1. This system has the advantage of having been thor-
oughly studied and examined in the past and, also, since the potential is a polynomial,
of not having an infinite number of nonzero derivatives. We will later see that this is
convenient, though not vital.

The equation of motion is now
& + 2Tz + (2 — z) = gcos(wot) + F(¢). (3.2)

The potential is double-welled (see fig. 1). For some values of the constants, the
oscillator undergoes periodic motion. By adjusting the frequency, one causes the
system to undergo a series of bifurcations until eventually it enters into a region of
chaotic behavior, typified by the presence of a strange attractor (see fig. 2). If one
adjusts the driving force further and further, the chaotic region is eventually left, and
periodic motion returns [9].

It is convenient to look at the long-term chaotic behavior in terms of a constant
phase map or surface of section. That is, we consider the position z and momentum
p at the discrete times ¢; = 27i/wo. By then plotting the values z; and p;, we make
the fractal structure of the strange attractor very clear (see fig. 3). We are also able
to bring the mathematical toolbox of discrete dynamical system theory to bear on
the problem. Formally, we define the constant phase map z; — z;41 = folzi, pi),
pi — pis1 = fp(i, pi), where f is an operator which evolves the point (z;, p;) in phase
space forward in time by 27 /we.

We can now define a probability measure P(z,p) on our phase space. In this

discrete dynamics, it evolves according to the equation

Pii(z,p) = /dm'/dp'&(:c — fo(&',p)6(p — fo(2',p"))Pi(z', p'), (3.3)
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It is very useful then to consider an invariant measure, which gives a probability

distribution on the strange attractor. This is defined by the equation

Pi+1($7p) = P,'(JJ,p) = Pinv(m’p)' (34)

For a chaotic system such as the Duffing oscillator, Py, will not be an analytic
function; rather, it will be a generalized function. Also, it will not in general be unique;
there are many invariant measures, most corresponding to unstable solutions, fixed
points or periodic points. It has been shown that the inclusion of a small amount of
noise removes both of these objections, eliminating the unstable solutions and making
the function analytic [10]. The inclusion of noise effectively broadens the é-functions
in (3.3), making it impossible for probability measure to remain poised on an unstable
fixed-point solution or periodic orbit, leaving only the strange attractor as a stable
set. One can therefore define the classical Py, as the limit of this unique P, as the
noise goes to zero; it will still be a generalized function with a fractal structure, but
now unique. Note that in the quantum system, the noise is always non-zero; we will
see how this modifies our definitions in sections IV and V.

The structure of the strange attractor arises as a limit of repeated stretching and
folding of phase space. As we look closer and closer at the component points of the
attractor, we see repeated layers of substructure at every scale (see fig. 4). Such
infinite substructure is commonly characterized by its fractal dimension. There are a
number of ways of defining dimension, each of which has slightly different properties.

One common definition is that of the capacity or Kolmogorov dimension, Dc. This
is calculated by means of a box-counting algorithm. Phase space is divided into small
cells of linear size ¢, and one counts the number of cells N(e) which contain points of

the attractor. The dimension is then

) In N(e _
D¢ = llj’l&— lni ) (3.5)

Though this definition is fairly easy to calculate numerically, it does not reflect

the fact that an orbit may visit regions of the attractor with varying frequency. To
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take this into account, one may instead use the information dimension, D;. Again,
phase space is divided into cells of linear dimension e. The probability that a given
point will fall in the sth cell is p;. Dy is then
>pilnp;
Dy =lim *—. (3.6)

e—0 Ine

If p; is equal for all cells that are visited, then D; = D¢; otherwise Dy < Dc.

If one examines a small cell of phase space evolve according to our equation, it will
tend to be stretched along one dimension. The overall phase space volume, however,
will contract, due to the effects of dissipation. This stretching is what provides
the well known signature of chaotic systems, sensitivity to initial conditions. The
contraction, together with the more global process of folding, is what leads to the
fractal structure of the attractor. One can average these two effects over the entire
attractor to calculate the Lyapunov exponents. In our two-dimensional phase space,
this will be a pair of numbers A; and Ay, with A; > 0 characterizing the stretching
and )\, < 0 characterizing the contraction. Since overall phase space volume is shrunk
by this system, clearly A; + A2 < 0. If our phase space were n dimensional, there
would clearly be n characteristic exponents.

Lyapunov exponents are calculated by considering the time evolution of an in-
finitesimal frame of basis vectors in phase space. One can perform a Gram-Schmidt or-
thogonalization, separating out the most rapidly increasing direction from less rapidly
increasing directions repeatedly until one has n orthogonal vectors. One then takes
the logarithm of the rate of change in each of those directions. Allowing the frame
to evolve for many driving cycles lets one follow a phase space cell as it samples all
parts of an attractor. In this way one calculates the average values of the exponents.
The values of the A; are global quantities, characterizing the attractor as a whole, or
equivalently, the long-term behavior of orbits throughout the attractor.

Calculating the highest exponent, Ay, is not very difficult. Finding values for a

full spectrum of exponents, however, is rather tricky, and requires a subtle touch. I
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refer those interested to the papers of Wolf et al. and Brown et al. for details [10,11].
These definitions for fractal dimension and Lyapunov exponents run into trouble in
the quantum case, where taking limits as € — 0 is not very well-defined. We will
see in section V how one might adjust these definitions appropriately for a quantum

system.

IV. QUANTUM MAPS AND STRANGE ATTRACTORS
A. Quantum maps

In the classical case we went from continuous to discrete dynamics by going to the
constant phase map of the Duffing oscillator. In considering a quantum equivalent, it
is convenient to coarse-grain our selected trajectories z(¢) and z’(t) by considering only
their values at the times ¢; = 27i/wp of constant phase. The decoherence functional

then becomes
Dlfa} {w)= [ 8o [ 6'Dla(0),2'0)], (4.1)

where the decoherence functional on continuous trajectories D[z(t), z(t)] is given by
(2.32). The path integrals are over all paths of z(¢) and z'(t) which pass through the
points z; and z’; respectively at times ¢;.

Such a coarse-graining is discussed by Gell-Mann and Hartle [3]. In general, in
order for such a system to be sufficiently decoherent, we must also coarse-grain on
the positions {z;} and {z';}. Instead of specifying the positions exactly, we instead
require just that the positions fall in one of a group of short intervals Afli at the times
t;. A history is then given by specifying the sequence of o;’s. We’ll use the shorthand
notation «a for this sequence.

We can estimate the minimum length d of such intervals by requiring that the off-

diagonal terms of the decoherence functional be strongly suppressed for |z; — z';| =
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|&i| > d. As Gell-Mann and Hartle show, this depends on the separation between

times t;, the strength of the coupling, and so forth. A rough estimate gives

2 1[_16__] (4.2)
TI2MET At )

When we are considering gaps of size At = 27 /wy, it is clear that the intervals can
be taken to be extremely tiny. For a pollen grain of mass 107® this would give an
interval of size ~ 107!7 c¢m, much smaller than the actual length scale characterizing
the noise.

Since equation (2.32) is expressed in terms of the variables X(t) and {(t), it might
be useful to change variables in our coarse-grained systems. As the decoherence
functional is supressed for large £, we can treat our integrand as being quadratic in

£(t) and carry out the £ integration. This gives us

Q7 1 tf
p(a) = ”f (o) 60X exp{—ﬁ o eZ(t)dt}w(Xo,po), (43)

where e(t) = 0 is the classical equation of motion as given above in (2.33) and
w(Xo, po) is the initial Wigner distribution, obtained by the integral over .

We see that if the {X;} do not lie along a classical trajectory e(t) = 0, then the
functional will be supressed. So the most probable histories are those which lie along
the classical trajectory. The X path integral cannot be done exactly in most cases,
but one can see that in general the {X;} must lie near the {z;} for some classical
problem for the probability to be of reasonable magnitude.

The Wigner distribution w(X,p) (not to be confused with the influence phase
W[X(t),£(t)], which is a functional!) is given by

w(Xop) = = [ I +¢/2, X — €/2)d, (4.4)

where we see that X and ¢ are our usual variables, and p has units of momentum.
w(X, p) is somewhat analogous to a probability distribution on phase space. It is
real and integrates to a total of 1; its primary difference from a classical phase space

distribution is that it is not strictly non-negative.
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If we want to advance w(X,p) in time, we can define a transition matrix T such

that w(ty) = Tw(to). More explicitly this is

w(X;,ps) = [ dXo [ dpo T(X1,ps3 Xo, po)(Xo, o) (45)
where T (X, pys; Xo, po) is defined
T(Xs>ps3 Xo, po) = %/dﬁodﬁfei(ﬁfp’—§°p°)/ﬁT(Xf +&5/2, X5 — &5/25 Xo + 0/2, Xo — &0/2),

(4.6a)

2

H{ Sl () = Senle' O]+ Wie(t). #(0]}. - (46b)

T(zg,2's;20,2'0) = /6z6:c'exp

If we let t; — to = 2m/wo then time advancement can be performed by repeated

applications of T. This is a sort of quantum map,
W; — Wiy = Twi. (47)

We can ask if repeated applications of T will tend to converge to some invariant
Wigner distribution wiyy = Twiny, analogous to the invariant measure Py, of sec-
tion III. Preliminary numerical calculations seem to show that this is the case [12].
This winy appears unique, and should be analytic, thanks to the “blurring” effect of
quantum noise.

To make closer contact with the classical system, we might wish instead to consider
histories in which a trajectory passes through small cells in phase space, rather than
just intervals in X. We can write such a history by considering projections onto
intervals in X followed very briefly by projections onto intervals in p. Histories of this
type have been considered by Gell-Mann and Hartle, and by Halliwell, who wrote
down an explicit equation for such a history [3,13].

One cannot in general specify both the momentum and position of a particle at
the same instant. One can, however, consider a measurement of position followed by
a measurement of momentum, and let the time between them go to zero. Halliwell

calculated the probability of such a history using approximate projections
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1 S ((I) — 7)?

Pf - 71‘1/205 -0 d:L‘exp[___ o2 ) ]’a))(a:‘, (4.8&)
_ L e (p— ﬁ)z]

B = T1/2g, /_ - dPeXP[ T2 p){pl- (4.8b)

These are approximate projections into intervals Az of width oz and Aﬁ of width o5,
centered on Z and p, respectively. Halliwell shows [13] that for an initial Wigner distri-
bution w(X,p), the probability of finding a particle in the phase-space cell delimited

by the two above projections is
p(Az,Ap) = /dXdp w(X,p)exp[—a(p — p)* — b(X — z)?], (4.9)

where

- % b= 2 (4.10)
TR (1/4)020Y T 5 '

when the X projection preceeds the p projection, and

2 % (4.11)
o " 2[W’ + (1/4)020] '

a =

when the p projection preceeds the X projection. There is a restriction on these

projections that

1
0<ab< == oiol > K (4.12)

To calculate the probabilities of an orbit passing through a series of such cells
(A, A,) at times t;, we make use of the transition matrix T. Let us assume that the

X projection comes first. Then it turns out that

({8, A} = [ d{X}d{p}u(Xo,po)
2 _ 2 a a% o2
X eXP[—(‘T‘g(Pl — po)? — U—%(Xo — ) — '2‘;{5(190 —p) - ‘2%%()(0 - X1)Y
XT (X2, p2; X1,p1)
/ = s = 32" \ 0-2 -
X eXp[*J—%\ps - ]’1)2 - gg(z‘\z - $1)2 - 55‘5(])2 - 273)2 — 5{%(% — Xs)z]

XT'( X4, pa; X3, p3)

.. (4.13)
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where the interval A; is centered on Z; and A; on p;- The final projection at time
tn will be of the form (4.9). The case where the p projection precedes the z is very
similar to the above.

There are other ways of considering phase space projections, using coherent states
or Gaussian combinations of coherent states. Phase space histories and their deco-

herence deserve a fuller discussion elsewhere [14].

B. The master equation

Another common method of studying systems such as this is by means of a master
equation formalism. Caldeira and Leggett derive such an equation in the case of a
harmonic oscillator interacting with a thermal bath at relatively high temperature

[7]. Their result is readily adapted to the present case, yielding the equation

8~ / K N2~ ) / ~ ] ny~
(@2 = —5(a = @) + 3z — o) cos(wot)i — (V (&) = V()7
~(Op O ih (0% 82,3>
T2l —c )<5m’ B -8_:8) * 3m (83:2 rre (4.14)

In examining this equation, the meanings of the different terms are highly intuitive.
The K/h term is a diffusive effect resulting from the quantum noise; the I' term
includes the effects of dissipation; the ¢ cos(wgt) is the driving force.

Changing to the variables X and £, the master equation becomes

ap . . Lt .
5166 = —(UK/R)E 5 + (2ig/h)E cos(wot)p — +(V(X +€/2) = V(X —£/2))p
op  th 0%
_4F£8_§+%8£8X' (4.15)
If £ is small, then we can expand the potential term to give us
av £’V

X -V —_ ~ (X > e 5

VIX+6/2) ~ V(X =€/ m () + S 50 4 (4.16)

For the Duffing potential, of course, the higher-order terms vanish. This is a conve-

nient benefit of dealing with a polynomial potential.
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Transforming this equation by (4.4) gives us a new equation for the evolution of

the Wigner distribution itself:

ow d*w ow 9OV, _ dw
57 (Xp) = hKa—pg - qCOS(wot)b; +ox (X5

ROV _ 8w 0 p Ow

This is almost exactly the form of the Fokker-Planck equation for the classical equa-
tion of motion (2.33), with the diffusive AK term representing the effects of the
random fluctuations on the “probability” distribution and the third-derivative term
being a purely quantum-mechanical addition, enabling w(X,p) to become negative
in limited regions of phase space. To interpret this distribution as a probability, we
must coarse-grain by averaging it over small volumes of phase space, producing the
sort of “smeared” Wigner distribution discussed by Halliwell [13].

This is not, of course, the full story. In order to correctly describe this system, we
need not only the time evolution of the Wigner distribution, but also to specify a set
of decoherent histories, as discussed in the previous section. Without those histories,
it is impossible to assign classical probabilities in a consistent manner. These two
approaches can be made to complement each other, however, as the master equation
can be solved to yield the transfer matrix T, defined in the previous section as a
path integral. In the case of chaos, one can in general only solve these equations
numerically, and the master equation formalism then has a computational advantage

over the path integral form.

V. INTERPRETATION OF CLASSICAL QUANTITIES

From the previous section, we see that the behavior of a system such as we are
examining can be evaluated on many levels:
1. The Classical level. In the previous section we saw that all histories which

deviate too far from the classical solution have their probabilities highly suppressed.
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If a system is large enough in scale, with enough inertia that the quantum effects
are lost in other sources of uncertainty, we can treat it as approximately classical.
Clearly, in a chaotic system this quantum noise does cause large alterations in the
overall behavior of the system over time, but it is often impossible to separate this
from other sources of error, such as imprecision in measuring the initial conditions.

2. The Quasiclassical level. Here we again treat the system as essentially classical,
but now explicitly include the noise arising from quantum effects, which is large
enough to be noticed on the scale of the system; this is the system as described by
equation (2.33). From a practical point of view, this is the level at which quantum
effects are most easily calculated. This also overlaps the considerable work that has
been done on dynamical systems with noise [10,15-17].

3. The Quantum level. Fundamentally, we can consider the system in terms of
coarse-grainings and decoherent histories. Instead of treating a system as basically
classical with added noise, we consider all possible histories and compute expectation
values for classical quantities from the probabilities of those histories.

We’ve already discussed the classical (level 1) definitions of the Lyapunov expo-
nents and fractal dimensions used to characterize chaotic systems and strange at-
tractors in section III. As pointed out, these quantities are usually defined at least
formally by calculating a quantity for the system at different levels of coarse-graining
(i.e., different box sizes €), and taking the limit as we go to finer and finer scales.
While this has great mathematical power and consistency, in actual physical systems
it inevitably breaks down. As Benoit Mandelbrot wrote on the problem of measuring
coastlines with seemingly infinite levels of detail [18],

“To obtain a [fractal] Koch curve, the cascade of smaller and smaller new promon-
tories is pushed to infinity, but in Nature every cascade must stop or change character.
While endless promontories may exist, the notion that they are self-similar can apply
only between certain limits. Below the lower limit, the concept of coastline ceases to

belong to geography.
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“It is therefore reasonable to view the real coastline as involving two cutoff scales.
Its outer cutoff Q might be the diameter of the smallest circle encompassing an is-
land, or perhaps a continent, and the inner cutoff ¢ might be the twenty meters
mentioned. .. Actual numerical values are hard to pinpoint, but the need for cutoffs
is unquestionable.”

As we shall see, in the case of chaotic strange attractors, the underlying quantum

physics effectively provides that lower cutoff.

A. Lyapunov exponents

Classically, the Lyapunov exponents characterize the rate at which nearby tra-
jectories diverge as they evolve according to the equations of motion. In a chaotic
system, one expects any two trajectories, no matter how close they start, to eventu-
ally move on the strange attractor completely independently of each other. This is
measured in the classical case by taking the limit as points start arbitrarily near each
other and evolve for arbitrarily long lengths of time.

When we allow for the presence of quantum effects, however, this definition is no
longer meaningful. As points begin closer and closer to each other, the effects of noise
become larger and larger; one would expect the largest exponent to diverge in the
limit as € — 0. As we saw in section IV, the phase space cells in a decoherent history
cannot be smaller than a certain size. This limit provides the lower cutoff mentioned
above.

For most systems it is impossible to calculate the values of Lyapunov exponents
exactly. Instead, one performs a numerical calculation. It is easiest to calculate
the highest exponent; lower exponents are more difficult, as their effects tend to be
swamped by A;. In a numerical calculation small errors are unavoidable; each such
error will add a small admixture of the most rapidly growing component, which will

quickly drown out other effects.
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Because of this, we’ll first consider only the value of A;. A simple way of estimating
Ay is to numerically integrate equation (2.33) for a longer period of time, to generate
a large number of points {z;,p;} in phase space. One can then locate nearby points,
closer than a certain cutoff ¢, and trace their trajectories until they diverge further
than an upper cutoff A. One then calculates the logarithm of the average divergence
rate and averages it over many such pairs of points.

I have calculated this quantity in the quasiclassical case (see fig. 4). It turns out
that the result one calculates is not very sensitive to the upper cutoff A, but is highly
sensitive to the lower cutoff €. In figure 4 we see the measured value of A, as a function
of € for several different relative strengths of the quantum noise A K. Notice how, for
hK > 0, A\; diverges as € — 0.

Because of dissipation, the overall phase-space volume of an initial distribution
tends to decrease with time. This indicates that, classically, A\; + A2 < 0. At very
small length scales, however, the effects of noise counteract the effects of dissipation,
causing phase-space volume to grow rather than shrink. Thus, at small length scales
we expect to see the sum A; + ), become positive, and eventually approach Ay /A, = 1;
the dimension at that length scales should also approach an integer (2 in this case).

We can try to define a quantum-mechanical analog of A;. While I am not sure
exactly what form such a definition should take, I can make a conjecture. Suppose
that we start from the invariant Wigner distribution wi,, at ¢t = to. We divide phase
space into small cells {¢;}, centered on average positions {v;} in phase space. These
cells have a characteristic size ¢ (or area €?). Let d;; be the distance between the
centers of the ith and jth cells. We can define p; to be the probability that the
system is in cell ¢; at time ¢y, using equation (4.9), and p;; to be the probability that

the system is in ¢; at time #; and ¢; at time ¢, as shown in (4.13). Clearly

Zpi =1, sz‘j = pi.
i b

The probability of the system being in ¢; at time ¢, given that it was in ¢; at ¢; is
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p(jli) = == (5.1)
Di
A rough estimate of the rate of spreading is then given by

3 2 piipindy
;

1 :
M€)qm = 5 2 pilog | ——5—

_— (5.2)

It isn’t clear whether this will agree with the usual definition of A; in the limit.
This is much more a rate of expansion averaged over the attractor, whereas A; is
usually defined as the rate at which nearby solutions diverge when followed for a
long period of time. This latter definition has serious problems in the quantum case,
where it is impossible to start solutions arbitrarily close together, and hence equally
impossible to follow them for arbitrarily long periods of time without global processes
(such as folding) becoming important. When quantum effects are very small, one can
approach this long-orbit definition, but in that case one is really doing a quasiclassical
calculation (like the one above in figure 4), where the system can be treated as a
classical stochastic equation.

Numerical experiments might serve to explore the connections, if any, between
these classical and quantum ideas of Lyapunov exponents. I hope to do more such
exploration soon. Also, it is not clear to me exactly what form quantum equivalents
to lower Lyapunov exponents might take, nor even if such a concept is useful. These

questions will soon, I hope, have at least tentative answers.

B. Information dimension

The information dimension is, as we saw in section IV, another number used to
characterize strange attractors. It is usually defined by a box-counting algorithm of
the type given in (3.6). As mentioned before, when one takes quantum mechanics
into account, allowing the size of a box to go to zero no longer makes much sense.

Instead, let us consider the information dimension D as a function of box-size:
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ZP:’ In p;

Dile) = (5.3)

Ine

The probability p; is defined as before. For non-zero €, the exact value of Dy(e)
will vary slightly depending on how the boxes are chosen. This ambiguity can be
eliminated by taking Dj(e) to be the minimum possible value over all possible ar-
rangements of boxes. In practice, this makes little difference. The usual classical
limit is then just the limit of Dy(e) as € — 0.

Figure 5 shows the calculated values of D;(¢) for different values of AK. As we see,
at large length scales the fractal nature of the attractor is not readily apparent; as we
shrink our scale, the dimension decreases, until when dropping below the lower cutoff
given by the quantum effects it abruptly turns upward again. This was calculated
quasiclassically, using a long orbit with associated noise.

One can also do an analogous calculation using the complete quantum theory.
Consider the invariant Wigner distribution win, (X, p), defined in section IV. We can
define the information dimension D(€)qm using the same definition (5.3). We divide
phase space into evenly-sized cells {¢;} of size €, just as in the discussion of A(€)qm
above, and use the expression (4.9) for the probability p; of being in the cell ;.
Again, we can eliminate ambiguity by minimizing Dy(€)qm over all possible divisions
into cells. Clearly such a dimension will not even be well defined for cells of volume
less than &, and will in general depend on the scale of the coarse-graining, just as in
the quasiclassical treatment.

Needless to say, it is much easier to extend the information dimension Dj to a
probabilistic theory than it is to find an analogy for the capacity dimension Dg. The
presence of noise will give a small but non-zero probability of finding a point in any
cell, even if it is far from the classical strange attractor. So, for quantum dissipative

chaos at any rate, D seems to be the more useful quantity.
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VI. QUANTUM CHAOS

Since thé discovery of chaos in the 1970’s, there have been numerous attempts to
look for the existence of chaos in quantum mechanical systems. Almost all of these
have concentrated on quantized versions of non-integrable Hamiltonian systems. A
seeming paradox was at the heart of the debate: chaos, as a classical phenomenon,
depended entirely on the existence of nonlinear terms in the equations of motion; yet
quantum systems are by their nature completely linear.

In fact, this argument is clearly invalid. While it is true that the linearity of the
Schrédinger equation and its relativistic generalizations implies that one would not
expect chaotic behavior in the wave function itself, this has little bearing on what
one would actually see if one observed such a system. One does not measure wave
functions; one measures particles.

An analogous classical treatment would be to consider probability distributions in
phase space rather than values of position and momentum. One can then go from a
set of nonlinear ordinary differential equations to a Fokker-Planck partial differential
equation. The P.D.E. is completely linear. Does this then imply that chaos cannot
exist in classical mechanics? Such a conclusion would be absurd.

Of course, wave functions are not probability distributions, so the comparison
is a bit misleading. A sufficiently coarse-grained Wigner distribution, however, can
be made to look very much like a probability distribution, and its master equation
closely resembles the Fokker-Planck equation, as we have seen, so comparing the two
is not completely inappropriate.

In fact, certain quantum models can exhibit chaos [19], but they are exceptional.
Most systems which occupy a bounded volume in phase space do eventually exhibit
quantum recurrence in which the expectation values of quantities such as energy are
almost periodic [20-23]. A simple information-theory argument can be made for why

this should be: a bounded volume in phase space V represents a finite number of
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possible states N ~ V/k, so one would expect the long-term behavior to be periodic
or quasiperiodic. According to Ehrenfest’s theorem, a narrow wave packet will tend
to follow the classical chaotic trajectory for a time ¢z until it has spread out to a size
comparable to the phase space volume. Thus, it is argued, one should observe a long
chaotic “transient,” ending ultimately in periodic or almost periodic motion. As the
system becomes more “macroscopic,” the phase space volume becomes larger with
respect to i and tg becomes longer.

Chirikov, Izrailev and Shepelyansky describe the usual approach to quantum chaos
[19]. They separate the problem into two parts, the dynamics of the undisturbed wave
function and the effects of measurement and wave function collapse. Obviously, this
periodic behavior of expectation values says nothing about what an experimenter
would actually observe upon measuring the system. They compare the former with
deterministic behavior and the latter with randomness and “noise.” Clearly, an actual
series of measurements would not be periodic at all, but would instead resemble a
random chaotic trajectory. They further dismiss the study of dissipative chaos as a
mere phenomenological approximation to an underlying Hamiltonian system, e.g., in
our case including both the system and reservoir degrees of freedom.

If the work of Gell-Mann, Hartle, and others is to be believed, we should consider
only decoherent histories. Since Hamiltonian systems almost by definition do not in-
teract with outside degrees of freedom, one cannot really talk of “measuring” them. If
measurements are taken, the system is disturbed; if measurements are not taken, the
system evolves undisturbed, but detailed histories of the motion will not decohere.
In dissipative systems, by contrast, the chaotic system is interacting continually with
the neglected degrees of freedom of the reservoir. These serve to provide a continual
“measurement” of the system, in addition to causing dissipation and noise, so that
histories of the system variables do decohere, as we have seen. Thus, considering these
dissipative systems from a decoherence functional point of view is entirely appropri-

ate. Also, any description of real macroscopic systems must allow for coarse-graining
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over the many degrees of freedom of which we are ignorant. As one goes from the
classical to the quantum realms, deterministic uncertainty or randomness is replaced
by probabilistic uncertainty.

In the Duffing oscillator model studied here, an arbitary initial distribution wq
will tend to converge onto the invariant distribution, ’}Lrgo T "we — Wiy [12]. This
invariant distribution is periodic, with period 27 /wp, so that Twi,y = Winy. This
resembles the idea of a long chaotic “transient” leading to a non-chaotic, periodic
behavior.

This is not, however, very different from the behavior of classical systems evolving
according to the Fokker-Planck equation. Most initial distributions Fy of non-zero
width evolve into the invariant probability measure P,y in much the same way that w
evolves into wiy,, in the quantum case (see fig. 6). The classical case is complicated by
the non-analyticity and non-uniqueness of Py, so that there can be a finite probability
of sitting on top of some unstable equilibrium or periodic point. An initial distribution
with non-zero width will never actually become the invariant measure, of course,
always itself remaining an analytic function if it begins as one, but the difference
rapidly becomes too small to measure. These difficulties do not exist in the quantum
case, due to the presence of noise. This difference, plus the necessity for coarse-
graining (and the requirement that an initial distribution have non-zero width, thanks
to the uncertainty principle), is what distinguishes the classical and quantum cases,
not the periodicity of the solution per se. The important idea is not the behavior
of wy,,, but rather the probabilities of different possible histories of the system as
described in (4.13).

Other authors have concentrated on the rate of expansion of uncertainty in quan-
tum chaotic systems, and on how chaos leads to a form of “dissipation” in the quantum
wave function itself [24-26].

A very interesting suggestion arose in work by Weinberg on possible nonlinear gen-

eralizations of quantum mechanics [27,28]. With true nonlinearity, chaos on the level
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of the wave function could exist. Weinberg points out, however, that any nonlinearity
in the theory must be very small to be consistent with experiment, and chaos is rare
in such nearly-integrable systems. While such a generalization of quantum theory is
certainly not ruled out by experiment, it poses a number of troubling problems. As
pointed out by Polchinski [29], either faster-than-light transmission of information
via an EPR-type experiment becomes possible, or different branches of histories can
continue to interact with each other, effectively making decoherence impossible. Both
of these, while certainly not impossible, have absolutely no basis in experimental ev-
idence; indeed, the latter would imply that even classical probabilities could undergo
a sort of “interference” with each other.

A few papers have been published on quantum dissipative chaos [30-34]. David-
son and Santhanam treat the problem by including a phenomenological term in the
Schrodinger equation to model dissipation. Norenberg and Milek treat a particular
model in nuclear physics, while Savage considers a quantum optical system by numeri-
cally solving a master equation. The papers by Graham and Dittrich and Graham are
particularly interesting; many ideas similar to those developed here are used (e.g., the
study of systems as Wigner distributions, the importance of quantum noise). None,
however, has the generality of the decoherence approach, in my opinion. While there
is a fair bit of other work on the phenomenon of quantum dissipation itself [7,35-37],
little of it has been applied to chaotic systems, as far as I am aware, and very little
has been from the decoherence point of view.

I cannot do a broad survey of an extremely active field here. A number of good

books now exist on quantum Hamiltonian chaos [38,39).

VII. CONCLUSIONS

In this paper, I have only treated a single model in depth: the forced, damped

Duffing oscillator. It is clear, though, that the techniques used are easily applied to
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any nonlinear oscillator problem. I believe that, in general, the formalism of Gell-
Mann and Hartle provides a rigorous method for treating any classical chaotic system.

For some systems, of course, such a treatment may be inappropriate. Dissipative
chaos was first discovered in attempts to model fluid dynamics; while in principle
such problems could be treated in this way, any quantum effects are likely to be so
small as to be irrelevant. For nonlinear oscillators, though, the application is quite
reasonable, and it is possible that experiments could be done in quantum optical or
electronic systems which would correspond to classically chaotic systems of this sort.

What is more, using this formalism provides a link between a quantum system
and its “classical limit” which lets one define the idea of quantum chaos in a rigorous
way. And such systems can be treated not only semi-classically, but with the full
quantum laws as well.

Equally important, in this quasiclassical treatment we can see how chaotic systems
can serve to amplify the effects of small quantum fluctuations. Sensitive dependence
on initial conditions — the hallmark of chaos — is an important idea in understanding
measurement situations, in which minor quantum effects can become correlated with
a change in macroscopic variables. In complex systems with many degrees of free-
dom, sensitive dependence on initial conditions is probably the rule rather than the
exception.

A great deal remains to be done. This formalism can readily be applied to a
number of other systems besides the Duffing oscillator. Also, it would be valuable
to develop numerical programs for solving the master equation, and calculating the
quantities characterizing the attractor in the full quantum system as well as the
quasiclassical limit. Some work on this has already been done [12], but it is still in a
rather crude state. But the basic outlines of the theory are clear. Using the theory
of Gell-Mann and Hartle, a rigorous treatment of quantum dissipative chaos is finally

possible.
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Duffing Oscillator Potential

Fig. 1
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Evolution of Damped, Driven Duffing Oscillator

Fig. 6a t = 0
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Evolution of Damped, Driven Duffing Oscillator

Fig. 6b t = 2 Pi
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Evolution of Damped, Driven Duffing Oscillator
Fig. 6¢ t = 4 Pi
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Evolution of Damped, Driven Duffing Oscillator

Fig. 6d t = 20 Pi
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Chapter II1

The Decoherence of Phase Space Histories
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The Decoherence of Phase Space Histories

Todd A. Brun
Department of Physics, Caltech, Pasadena, CA 91125

(April 27, 1994)

Abstract

In choosing a family of histories for a system, it is often convenient to choose
a succession of locations in phase space, rather than configuration space, for
comparison to classical histories. Although there are no good projections onto
phase space, several approximate projections have been used in the past; three
of these are examined in this paper. Expressions are derived for the probabil-
ities of histories containing arbitrary numbers of projections into phase space,

and the conditions for the decoherence of these histories are studied.
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I. INTRODUCTION

A great deal of work has been done recently on the use of the decoherence formal-
ism to describe quantum mechanical systems [1-8]. These systems can be described
in terms of decoherent histories, which can be assigned probabilities obeying classical
probability sum rules. While, in principle, a history could be described in terms of
any set of variables, most of the work has focussed on histories of particles in config-
uration space. The simplest and most fine-grained such history is just the classical
trajectory of a particle, specifying its exact position at every moment in time. Such
histories do not decohere, however. Instead, one must consider considerably coarse-
grained histories, in which a position is given only at certain discrete times, and only
within certain finite intervals. A history can then be specified by a string of indices
«;, stating which interval the particle is in at time ;.

Another important class of histories, though, would be descriptions of a system as
being in cells of phase space at successive points in time. A small amount of work has

been done on this subject [9-13], but they have not been tackled in full generality.

A. The decoherence functional

The decoherence functional is a functional on pairs of histories of a quantum
mechanical system. One simple description of the functional (though not the most

general) has the form:

Dloof) = Tef P2, (ta) - P, (41)0P (1) -+« P2, (t2) . (L1)

In this expression, p is the initial density matrix of the system. The P. (t;) are
Heisenberg projection operators onto Hilbert space. At each time ¢; these projection
operators represent different alternatives for the system. In terms of Schrédinger
GiHU/R po—iHt/h

projections P, these time dependent projections can be written P(¢) =

An exhaustive set of histories has an exhaustive set of alternatives at each time,
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STPL(t) =1 (1.2)

A particular choice of the {o;} represents one particular history, which we will denote
o for brevity. Thus, saying that a given history a occurs implies that alternative oy
occurs at time t;, a9 at time tq, and so forth.

The probability of a given history occuring is just given by the diagonal elements

of D]a,d']:
p(a) = D[e, af. (1.3)

In order for these histories to obey the classical probability sum rules, we must require
that the set of histories decoheres. The usual requirement for this is that the off-

diagonal terms of the decoherence function vanish,
Dla,d'] =0, a#d. (1.4)

This is actually a sufficient, but not a necessary condition for decoherence. All that is
truly required is that the real parts of the off-diagonal terms vanish. Most physically
decoherent systems, however, display this stronger form of decoherence; we will see

this in the cases that we consider.

B. The Transition Matrix

The most common type of problem treated at present is that in which the variables
are divided into a system and a reservoir, or environment. In this case one traces over
the reservoir variables and is left with a reduced density matrix on only the system
variables. Instead of the simple time evolution operator e /% the system evolves
according to a somewhat more complicated transz'tio;z matriz or propagator T. In

terms of path integrals, this is

T(as, o)t a0 v ti) = [ Sa6a’ exp %{S[m(t)] — S[e'(1)] + Wi (t), :c’(t)]}, (1.5)
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where the integral is over all paths z(¢) and z'(t) from ¢; to ¢; which begin at z; and
z} and end at z and z';, respectively. S[z(t)] is the action of the system variables in-
dependent of the reservoir, and W{z(t), z'(t)] is the Feynman-Vernon influence phase
arising due to the interactions with the reservoir [14]. The model most commonly
considered is one that was developed in the study of Brownian motion [15], in which
a one-dimensional particle described by a single variable z interacts with an infi-
nite bath of harmonic oscillators via a linear or weakly nonlinear potential, but this
formalism is quite general.

The reduced density matrix p(z; ') evolves straightforwardly:

p(z; '), = /d-’vidl’ﬁ T(zg, 2%, 55 zi xi t) p(x5 20) |- (1.6)

Thus, the decoherence functional can now be written

Dla, o] = Trx{P;LnT(- TP pPL) )P } (1.7)

(27

With the projections P being onto intervals of coordinate space, it is very easy
to write the decoherence functional as a constrained path integral over z and z’. For
phase-space projections, the form of the decoherence function is more complicated,
as we shall see. While there are no true projectors onto cells of phase space (as there
are for intervals of coordinate space), there are a number of approximate projectors,
and we shall consider these one at a time.

In dealing with phase space, it is natural to consider other representations of the

density matrix, most obviously the Wigner distribution:

w(X,p) = = [ dE 2 p(X 1 £/2: X — £[2). (1.8)

This distribution acts in many ways like a probability distribution in phase space,
with the major exception that it can be negative in localized regions. The time

evolution of w(X,p) is also described by a transition matrix:

w( Xy, ps)le, = //dXidpi Tow(Xg,pssts; Xo, pis ti)w(Xi, pi) |- (1.9)
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Tu(X5,p1t53 Xeypist)= [ [ degdts 0s6=ne/t

xT'( Xy + & Xy — g—f,tf;Xi+

, & Xi—é
2

= t:), .

where this T is the same transition matrix defined above (1.5). We shall see that the
expressions for the probabilities of phase space histories are described very naturally

in terms of Wigner distributions.

II. PROBABILITIES OF PHASE SPACE HISTORIES

As mentioned above, there are no true projections onto cells of phase space [10].
This is essentially a side-effect of the uncertainty principle, which prevents both z
and p from being localized simultaneously. However, for cells larger in area than h,

we can approximate projections reasonably well.

In making these calculations, we will find that it is useful to work in terms of

w(X, P) and Ty. For this we use the inverses of (1.8) and (1.10), namely
p(z;z) = /dp e Ry ((z + 2) /2, p) (2.1)
and

1 7). . ! ;. 1
T(zg, 2ty 20, Ty )= ;//dpidpf e'Pileime)—ips(es—ry)

XTw((xf +xlf>/2’pf’tf;(xi +‘r2)/27piati)' (22)

A. Consecutive X and P projections

While there are no good projections onto phase space cells, projections onto inter-
vals in coordinate or momentum space are perfectly well-defined and straightforward.

They are just

P zi+Az/2

I': d Y .
=), de (2:30)
P P;+AP/2d

”"“/p,-_ap/z P |p){pl- (2.3b)
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We can imagine using a projection to determine which interval of z the system is
in, followed a short time later by a projection onto an interval of p. If we let the time

between these two “measurements” go to zero, we can make use of the relation
(z|p) = e/, (2.4)

This is unsatisfactory in a number of ways. The most obvious is that z and p are
non-commuting variables, so that P, and P, are also non-commuting. The order in
which one makes these measurements matters, particularly if the intervals are fairly
small (compared to k). If we are interested in fairly large cells in phase space, this is
of less importance; for classical and quasiclassical systems, this is often the case.

Measurements of this type were treated by Halliwell [10]. He also considered
another type of two-projection measurement: a pair of successive position measure-
ments, separated by a small time interval At, with the momentum determined by the
time of flight between z; and z2. I have not considered this type of measurement,
as it is ill-defined as At — 0, and therefore requires non-trivial consideration of the
system’s time evolution between the two position projections. For a system with
complex dynamics, this is difficult.

The exact projections (2.3) used above are less convenient for the purposes of cal-
culation, though they are certainly more correct. For ease of computation, therefore,

it is customary to use approximate Gaussian projections,

1 o 7:)2 /A2

Po= s | de eI g ) (2.5)
1 0 (512

Bpi= m/_oo dp = ®=P /A7 p) (p]. (2.5b)

Using these projections, the probabilities just reduce to a product of Gaussian
integrals, which can, with a little algebra, be easily solved. Using the expressions

(2.1) and (2.2) for a history with N measurements of cells of phase space centered on

(531,}51)7 (Iiz,ﬁz), R (jNaﬁN)a we get
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Po = rangy | 406z k) A Al

W(XO,P0)5( 21 — (Xo 4 &/2))6(2 — (Xo — &0/2))

y exp[_ (21— il)l;(z{ —71) (k- )A-;2(k; —5)?

+%((kizi — kz1) + X1 (ks — B) + &(py — b /2 — K} /2) — gopoﬂ
xT(X2, 2, t2; X1, p1, 1) (2.6)
oo

The integrals over z, ', k, k', and ¢ are all simple, and yield

Paz @%‘ﬁ:/d{Xi}d{pi}w(XO’pO)

[ 2 _ 2 _ Ax2 Ap2
X eXp _-A—pg(pl - p1)2 - F(Xo - .’E1)2 — 5%7(170 —Pl)2 — W(XO _ X1)2
xT(Xz, p2, ta; X1, p1,t1)

[ 2 B 2 ~ Axz? Ap2
X exp __Zz‘)g(pB - PZ)2 - 'A';E(Xz - 332)2 — W(P:z —P3)2 — W(Xg — X3)2
XT(X4,p4,t3;X3,p3,t2)
N

2 Az?*(pan-2 — PN )?

I |

8 eXp[ Re? Kav-2 = EN) = oo TR (2.7)

Note that the expression for the probability behaves very reasonably, i.e., the
evolution after a “measurement” continues to be centered about the measured values
of X and p, with a spread determined by the size of the phase space cell.

A measurement of p followed by a measurement of X produces an expression very
similar to the above, and is readily evaluated by the same methods. The differences

are chiefly notable when the cell size is small compared to h.

B. Coherent state projections

The closest thing to a true projection onto a cell in phase space is probably

the coherent state projection |p,z)(p, | centered on (p,z). While these are true
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projections, they are not orthogonal:
(3, 215, &) * = expl~(z — &')?/20 — o(p — )2 /207, (2.8)

Also, these states are overcomplete. Thus, phase space histories built from coherent
states cannot be truly decoherent, and can only be even approximately decoherent
if a discrete sample of them (e.g., the states corresponding to a lattice of points in

phase space) is taken. In a coordinate basis we can represent a coherent state as

: (=—2) B (2.9)

—— ol Z =2
wlp, ) (ro)/A° p[ %0 T h
This expression is useful in evaluating the probability of a coherent state history.
When we consider a history of N “measurements” in phase space using coherent

state projections, we get an expression analogous to (2.7), which can (again) be solved

for the probability:

N

Pa= o [ dX:}d{pi} w(Xo, po)

(Xo—71)) (Xi—21)> (po—p1)’c  (pr— }31)20]
o o K B2

XT(Xg,pz,t2; leplatl)

X exp [—

X oo

X T(XzN—2~, PaN-2,tN; XoN-_3,P2N=3; tN——l)

(Xon-2 — ZN)? _ (pon-2 — ﬁN)ZU]
c K2 )

X exp|— (2.10)

The general behavior of the probabilities is very similar to that in the first case
we considered, but even cleaner and easier to see. Coherent states are an excellent
way of representing phase space histories.

There is one other kind of approximate projection that we could consider. It is
not, in my opinion, a very attractive one, but it has been used in the literature, and

so might as well be treated here. Consider approximate “projections” of the form

1

P = ———— / dpd ~ (=P /AP ~(e=2) (B2 (1) 4|
02 = T ApAg ) P lp, z)e (p, | (2.11)
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If we consider N measurements of this form, the probability becomes

droApAx
o= v otap ¢ AT s ApPAT? J dx3dlpi} w(Xo,p0)
_(XO —Z1)? + (Xy — 1,)? _ G(PO —p1)? +(p1 — p1)?
o+ Az? K2 + o Ap?
(Xo — X1)* (pPo — p1)? )]
20(c + Az?)  2(h% + o Ap?)

X exp[

—(0?Ap?* /K% + Az? + o Ap*Az?/ ﬁz)(
XT(Xz,Pz,tZ;thl’tl)
X ...

XT(XaN-2, PaN=2,tN; XaN-3, PaN-3,EN-1)
20(0 + Az?)(panv-2 — pn)* + (B + o Ap?*)(Xon—2 — ZN)°

2.12
20h? + 02Ap? + Az?h® + o Ap2Ax? (2.12)

X exp [-—

Again, the same sort of qualitative behavior, but a much uglier expression.

III. DECOHERENCE OF PHASE SPACE HISTORIES

While the above expressions are highly intuitive in their qualitative behavior, we
have (in a sense) been putting the cart before the horse. It is meaningless to assign a
probability to a history without first being assured that the set of histories described
is decoherent. There is nothing in the expressions above to prevent one from choosing
extremely tiny cells in phase space, with areas small compared to &; yet such histories
are certainly not decoherent, as they flagrantly violate the uncertainty principle.

Unfortunately, while we can write ezpressions for the probabilities without having
to know much about the physics of the system (i.e., the actual behavior of the transi-
tion matrix T), in order to actually calculate them, or to say much about decoherence,
we need to know something about the path integrals.

Except in the case of quadratic systems, these integrals are not exactly solvable.
Limited treatments of this case have been considered elsewhere [13,16]. Most in-
teresting systems, however, include nonlinearities. This can be handled in one of

three ways: numerically; in perturbation theory; or in the semiclassical limit, where
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solutions are peaked about the “classical trajectory.” The first approach is robust,
but does not lend itself to general arguments. While almost any approach will even-
tually have to be treated numerically to calculate actual values for probabilities or
decoherence functional elements, one would hope to get a rough idea as to a systems
behavior before invoking that numerical machinery. The second approach, pertur-
bation theory, is the most commonly adopted. When the nonlinearities are weak,
the path integrals can be approximated with considerable precision. Unfortunately,
many interesting cases (e.g., chaotic systems) cannot be treated in this fashion; for
them, their nonlinearities are intrinsically important. The last approach is limited to
systems with sufficient mass and inertia to resist quantum fluctuations [3]. This is
useful in considering either the classical limit of quantum systems, or in estimating
quantum effects in otherwise classical systems, and is the approach we will adopt
here.

Earlier work has concentrated on distinguished systems interacting with a large
reservoir or environment whose degrees of freedom can be negleéted. As has been
shown, such systems give rise to decoherence functionals with probabilities peaked
about classical trajectories. The transition matrix for such a system has the form (in

the limit of a large thermal reservoir)

T(X1,&,t1; Xo, €0, t0) =

[ 5x6¢ exp %{_ /tt (ME(0) + dV/aX (X(0) + 2Mr X (1) - (1)) ett)at
+iM;kT /t " 2(0)dt + MK, — MeoXo + 0(53)}, (3.1)

where X and ¢ are variables defined by

X= ~;—(ac + z), (3.2a)
=z -1, (3.2b)

and the reservoir temperature is 7. This is basically a toy system, consisting of a

single one-dimensional particle of mass M moving in an arbitrary potential V(X).
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The interaction with the reservoir provides the dissipative term and a thermal noise;
it is this noise which causes the system to decohere. |[{| is a measure of how far
“off-diagonal” the decoherence functional is; for large |¢| it will clearly be strongly
suppressed.

Since large ¢ is suppressed, we can neglect the higher order terms in ¢ with good
accuracy. This makes the ¢ path integral purely quadratic, and therefore solvable.

Doing this integral yields

T(Xy,é1,t1; Xo, o, to) =

\I s [ 85 el =g [ (M%) + avpax ) + 2maX(@) - g10)) @

+(i/R)M(&X: — €oX0)}, (3.3)

which is clearly peaked about the solution to the classical equation of motion

MX(t)+ dV/dX(X(t)) + 2M~yX (t) = g(2), (3.4)

more and more strongly in the limit of large M.
Let Xa(t) be the solution to the above classical equation with the boundary

conditions Xq(to) = Xo and X(t;) = X;. We can then define a new variable 5(t)

n(t) = X(t) — Xa(?). (3.5)

Clearly 7(t) has boundary conditions n(¢1) = n(to) = 0. As M becomes large, we can

treat n(t) as a small deviation, and approximate the path integral as

T(Xla 517 tl? X07 607 t()) =

.l o fkT [sn exp{— lekT : (Mﬁ(t)+d2V/dX2(Xcl(t))n(t)+2M~m(t)>2dt

/B (& = Eio) +(/1)M(6 Xa(t) — & Xa(t) ). (3.6

This path integral is quadratic in 7 and therefore solvable, at least in principle.

This principle runs into a few problems in practice. It assumes that you know X(t)
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as a function of the boundary conditions. This is true only in very simple cases.
In chaotic cases, it may be difficult to determine this function even numerically.
Also, this integral contains (in essence) 4th derivatives of 5, which complicate the
calculation in some ways. Still, by making a few assumptions about the behavior of
Xa(t), we can still extract some useful information from this expression.

Since for the purposes of determining decoherence we are really only interested in

the ¢ dependence of T, it is straightforward, albeit tedious, to show that

T'( X1, 61,115 Xo, o, to) =

ML (088 + hafos + Mg HIMM (6 Kalt) — boXalto) ). (3.7

h2

K exp{—

Note that A; = (X1, Xo,t1,%) and K = K (X1, Xo,t1,%). These functions are not
especially easy to calculate, but can be computed numerically if necessary. Simple
calculations along those lines seem to show that X;/(t; — o) is relatively constant for
(t1—1to) short compared to the dynamical time of the system and long compared to the
decoherence time, at least for high-probability paths. For longer times, comparable to
the dynamic timescale of the system in question, the A; vary enormously in magnitude;
numerical results showed a variability of more than four orders of magnitude, though
most results for A;/(¢; — to) and Az/(t1 — to) clustered around certain values, and
never became negligibly small. A\;£Z + Apboé1 + A3€% is, in any case, always a strictly
non-negative quantity. For details of these calculations, see the Appendix.

If we make the (admittedly highly questionable) assumption that the A; are
roughly constant for constant (t; — ¢), then we can estimate the level of decoher-
ence achievable with phase-space projections. For simplicity, we will only look at the

projections at a single time:

Tef TP ()T ) Ply(1)) (33)
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A. Consecutive X and P Projections

Using the approximate X and P projections described in (2.5b) above, we can
examine decoherence by looking at the off-diagonal elements, where the projections
are centered on (Z,p) and (Z', ') respectively. A single pair of projections at time ¢;

will multiply the decoherence functional by a factor

/dX1dX2d€1d§2deP'T(X3,53,ti+1; X3, 62, 1)

x {_(X1 +&/2-2)° (XN-&/2-3) (-p)* (¢ -p)
P Az? Az? Ap? Ap?

+i(p—p) (X2 — X1) + %(P +p') (& — §1)}

XT(lefl,ti;XO’é.Oati—l) (39)

~ /XmngK%xp{_((Xl —2)’+ (X -2 Zifp%w?/?hQ)(Xz - X1)2>
(8REMAKT X + K2 Ap?)(z — 7')?
+ <2A:c2(87i2M'ykT)\ + h2Ap? 4+ 16(MykT A2 Az? + 4M'ykT/\Ap2Aa:2)>
( (B + 2MykTAA?)[(p2 — §)* + (p2 — P)’] )
8h2M7kT)\ + h2Ap? + 16(MyEkT))2Az? + AM~KTAAp?Az?
< (2MAETAAZ?)[(p1 — §)* + (pr — P)*] )
<

SHEMAKT X + h2Ap? + 16(MAkTA)2Az? + AMykTAAp? Az?
(h? + 4MAETAAZ)(p — F)* — Ap*(p2 — p1)? )
2(8h*M~kT X + h*Ap? + 16(MykTA)?Ax? + 4MyETAAp? Az?)
(4hMAETA)(Z — 2")(p + P’ — 2p1)
8RZM~kT X + B2Ap? + 16(M~kT )2 Az? + 4M'ykT)\Ap2A:c2>

il P)a = X))

-+

—1

) (3.10)

where p; and p, are M X4 for boundary conditions {X(ti-1) = Xo, X(t;) = X3} and
{X(t;) = X3, X(tiy1) = X3} respectively.

A formidable expression indeed! One can, with difficulty, see that in general this
factor will be suppressed for off-diagonal terms. If we simplify matters by taking
the semiclassical, high-temperature limit, an examination of the real terms of the

exponent show that for |z — z'|> ~ §z? this expression is suppressed by a minimum

factor of
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bz? /1 h?
eXp{_ZEE(E B m) }

A similar examination of the real p terms gives no similar comfort, for we find
that there the minimum level of suppression is none at all! This doesn’t mean that
histories with differing p’s do not decohere; the last imaginary term in the exponent
oscillates extremely rapidly, and will tend to suppress all off-diagonal terms as X; and
X, are integrated over. This will work, in general, if |p— §'|* ~ 6p® is large compared
to Ap? and A®/Az?. To suppress the off-diagonal terms of the decoherence functional

by a factor €, where ¢ < 1, we must have

622 > —Az’lne,
ép? > —Ap®lne,

Az?Ap* > B (3.11)

B. Coherent state projections

The results from coherent state projections are similar, but somewhat cleaner and

easier to see. In this case the factor from the projections at one time %; goes as

_ =) Y _ )2 _ 3\2
/XmdXngexP{—CXl JIRCShnt) 2—|—(X2 2+ (X = 7) )
ag
+( h2(.i' _ :E/)Q )
2h%0 + 8hM~kT Ao?
_ ((p1 =P+ =)+ =)+ (2 —F)— (P~ ﬁ’)2>

257 /o + 8hM~kTA
ih(z —3)(p2 —p) | P —P)(Xa — X1)
Wt AMARTAe 7 } (3.12)

Here again, we see that in the semiclassical limit this reduces to a minimal level

of suppression

(5 samersa)
expy ——\| = — —————
P o \2 8M~kTIo

for the z terms, and that §p? must be large compared to Ap? > #?/o.
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IV. CONCLUSIONS

While no set of approximate phase space projections treated in this paper is
completely satisfactory, they do serve to illustrate certain traits that phase space
histories should possess. Highly discontinuous trajectories are suppressed, and as
one goes to the semiclassical limit, the probabilities of histories become peaked about
the classical solutions. While precise statements about decoherence are hard to make,
given the difficulty of solving the problem for highly general systems, rough arguments
indicate that the size of phase space cells needed for decoherence is much larger than

that naively indicated by the uncertainty principle (AzAp ~ h).
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APPENDIX: PATH INTEGRAL FOR THE TRANSITION MATRIX

The path integral in (3.6) is somewhat unusual in that it has only two boundary
conditions (n(to) = n(t1) = 0) for an integrand with four derivatives! Thus, the usual
prescription for solving quadratic path integrals is not immediately applicable.

This procedure can still be used, however, by the simple expedient of imposing two
more boundary conditions, 7(fy) = vy and 75({1) = v1, and solving the path integral,
then integrating the result over all values of vg and v;.

The path integral to be solved is then
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/577 exp{S[ﬂ(t)] + i(M/R)(é1vr — €ovo)} _

Ft, to) xp{Sa + i(M/R) o ~ Eovo)}, (A1)
where
SEn(0] = ~ 37 . <0 (A2)
o(t) = MG+ 27i + f(thn), (43)
(0 = 2T (Xa0), (A%)

and F'(t1,%o) is an undetermined multiplier independent of the boundary conditions of
n. (Of course, since f(¢) is defined in terms of Xy(t), this whole solution is dependent
on Xo and X;. This dependence is complicated, as we will see.)

The classical action Sq is the action of the path n(¢) that obeys the classical

equation of motion. For
tl . .
S = /t L(n, 1, 1)dt

the Euler-Lagrange equation is

d* (0L d (0L oL

— =] -=I|= — 1 =0. A5

= (5) - (7) + (5) "
Plugging in our definitions for S[n(¢)] and ¢(¢), we get the equations

7+ 297 + f(t)n=e(t)/M, (A6a)

& — 7€ + f(t)e= 0. (A6b)

The first of these follows from the definition (A3), the second from (A5).

The solution to the first equation is
e(t) = Me"*(Aay(t) + Baa(t)), (A7)

where a, and a, are two independent solutions of the equation
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i= (7" - f(t))a. (A8)

This equation is not easily solved analytically in most cases. For slowly varying f(t)

one can approximate the solution

a(t) ~ exp{:t /tt JA = f(s)ds}; (A9)

in any case, (A8) is readily solvable numerically. While any independent boundary

conditions will work for a; and as, a convenient choice is

a1(0) = 1,d;(0) = 0;

a2(0) = 0,d3(0) = 1. (A10)
This is then plugged into the equation for 5 to give the solution

§(®) = € (Car(t) + Das(t)
e ) /t(al(t)ag(s) — az(t)a;i(s) >5(3)6273d3- (Al1)

to \d1(s)az(s) — d2(s)ai(s)

Imposing the boundary conditions on 7 then gives us a set of equations involving A,

B, C, and D:
C=0, (Al2a)
D= Vo, (A12b)
'U()ag(tl) + A(al(tl)IQ - ag(tl)]1)+B(a1(t1)Ig - ag(tl)IQ) = 0, (AIQC)
voda(t1) + A(dr(t1) Iy — dy(t1) 1)+ B(dr(t1) s — da(t) o) = v1€™, (Al2d)
where
. 1 al(t)2e27"dt
b= /t o) — ()’ (AL3)
ot ag(t)ag(t)e?dt
l>= /t ) — B a ()’ (Al4)

as(t)%e?dt

fa= /t a1 (t)as(t) — do(t)ar (1)’

(A15)
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Again, these integrals are usually only solvable numerically.
Solving for A and B then yields
ai(t)az(t1) — ar(t)as(t1)) Isve + € (a1 (1) Is — az(t1)2)vs

(a1(t1)aa(ts) — ax(t1)as(ts))(I3 — Ls)
= ono -+ Alvl, (A16)

4

o —lia(t)as(t) = ax(t)ia(t2)) T — € (ax ()], — as(ty) )
(a1(t1)az(t) — ax(t)as(th)) (I3 — Ll3)
= Bo’l)o + Bl'l)l. (Al?)

Plugging these results back into the definitions of ¢(¢) and S[n(t)] gives a value for

the path integral

eXP{Scl'F(iM/h)(flm - fo’vo)} =

exp{—%mm +2ABIs + B*Is) + i(M/h)(éyvy — fovo)}, (A18)

where
L= [ " ()2, (A19)
1= [ * ay(D)as(t)eMdL, (A20)
In= [ % aa(t) 2P, (A21)

Clearly, the exponent is quadratic in vy and v;. Integrating over these two bound-

ary conditions, we perform two gaussian integrals and arrive at our final result

[ doodvn [ én exp{ SO+ Evon — Eovo) ) =

M~KT
K exp{—— T (ngd o+ kot + A3§f)}. (A22)
where
A1, + 24, B, I + B2l
/\ — 1 1 .
"7 4(AoBr — ALBo)(IE — IIg)’ (A23a)
A = AgAily + (A1Bo + AoBy)Is + Bo Byl (A23b)

Q(AoBl - AlBO)Z(Ig - 1416) ’
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A2I, + 2A0Bols + B2l
Ay = —20 , A
37 4(AoB; — A1Bo)2(IZ — Lls) (A23¢)

nvkT

K =
M\/(AlBo — AoB1)* (1416 — I2)

F(ty, to). (A23d)

Clearly, these quantities are dependent on X, and Xi: A; = A;(Xo, X1,%0,t1)
and K = K(Xo,X1,%0,t1). In principle, K can be calculated, but in practice it is
not necessary to do so in order to make arguments about decoherence. It would be
necessary to do so in order to actually compute the probability of a history.

The derivations in this section, tedious as they are, can nevertheless be readily
automated. Once one determines the classical trajectory X which corresponds to the
boundary conditions X, and X, determining the A; numerically is straightforward. I
have used this technique to examine the values of the A; for the forced, damped Duffing
oscillator model. For long times (¢; — to) the ); varied enormously in magnitude as
a function of Xy and X;. For times short compared to the dynamical time of the
system, however, the ); were nearly linear: A/(¢; — to) ~ 0.085. For some boundary
conditions they might become considerably larger, but in what was, admittedly, not

an exhaustive sampling, none got much smaller.
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