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ABSTRACT

This dissertation is written in two parts. Part I deals with the question of
stability of a spherically symmetric, charged black hole against scalar, elec-
tromagnetic, and gravitational perturbations. It consists of two papers written
in collaboration with Igor D. Novikov, Vernon D. Sandberg and A A. Starobinsky.
fn these papers we describe the dynamical evolution of these perturbatiohs on
the interior of a Reissner-Nordstrom black hole. The instability of the hole's
Cauchy horizon is discussed in detail in terms of the energy densities of the test
fields as measured by a freely falling observer approaching the Cauchy horizon.
We conclude that the Cauchy horizon of the analytically extended Reissner-
Nards£rom solution is highly unstable and not a physical feature of a realistic
gravitational collapse. Part II of this dissertation addresses two problems
closely connected with multipole structure of stationary, asymptotically flat
spacetimes, It consists of two papers written in collaboration with Kip 5. Thorne
despite the fact that his name does not appear on one of them. The first one
(Paper 11l in this thesis) shows the equivaience of the moments defined By Kip S.
Thorne and the moments defined by Robert Geroch and Richard Hansen. The
second (Paper IV in this thesis) proves a conjecture by Kip S. Thorne: In the
limit of "slow" motion, general relativistic gravity produces no changes whatso-
ever in the classical Euler equations of rigid body motion. = We prove this con-
jecture by giving an algorithm for generating rigidly rotating sclutions of

Einstein's equations from nonrotating, static sclutions.
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1. Introduction

A Part I: Stability of the Interior of a Charged Black Hole

"Black hole" solutions of Einstein's equations are highly symmetric solu-
tions. For example, the Schwarzschild solution is spherically symmetric, static,
uncﬁarged and asymptotically fiat; the Reissner-Nordstrom solution is again
spherically symmetric, static, charged and asymptotically flat; the Kerr solution
is axisymmetric, stationary, uncharged and asymptotically flat; the Kerr-
Newman solution is axisymmetric, stationary, charged and asymptotically flat.
Each of these black holes has a "surface” called the event horizon outside of
which is supposed to be the "real"” world. What happens inside the event horizon
depends on what kind of a black hole one is falling into. In the case of a
Schwarzschild black hole, anybody who crosses the event horizon is never to be
seen again by the people who live outside the hole. Depending on the size of the
hole, he might have a reasonable amount of time to live before he eventually
gets crushed by tﬁe ever-so-cruel singularity. The other black holes seem to
offer better choices than simply being crushed. An observer (Physicist? Maybe.
In any case, a rather adventurous fellow...) who takes a dive into a charged black
hole in his rocket ship can actually maneuver his ship carefully to avoid hitting
the singularity. What happens to him later is largely a matter of interpfetation:
He either comes back out to the universe he started his journey in, but he has
tﬁe option of coming out at a different point than his starting point; or he ends
up being in an entirely different universe (!). Wait, there is more! An examina-

tion of the "maximally extended"” charged black hole solution reveals that there
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are actually an infinite number of such universes. Furthermore, these trips in
and out of the hole Ltake a very short time as measured by the clocks of the
observer..  Well, what more can one ask? This looks like the stuff dreams
are made out of. This is THE "stargate” all science-fiction writers are after. You
know what 1 am talking aboul: Instead of wasting time in interstellar travel by
conventional means which might take tens of thousands of years to get any-
where, all you have to do is find one of these charged black holes and jurnp into
iti Careful, you might hurt yourself...

By this time you pfobabiy ﬁhink fhis graduate student is lost in darkness
with no hope of recovery. Trust me, all I said is true as long as the solution above
retains its perfect spherical symmetry. Not believing any of this far-out stuff,
one might be inclined to think that keeping perfect spherical symmetry may not
be the right thing to do. This charged black hole solution may be a "singularity”
in the "solution space" which might turn into something else at the slightest pro-
vocation. It is rather unfortunate, but this actually is the case. The following
lines are taken from the General Relativity Primer by Richard Price published in
American Journal of Physics 50. 4 (1982): "If the more general black holes are
primordial features of the universe, however, there are bridges across which
timelike world lines can pass from cne asymptotically flat region to another, It
is perhaps a sign of the good taste built into the mathematical structure of Gen-
eral Relativity Theory that recent research indicates that such bridges are
unstable and cannot exist even for a primordial black hole”. The first part of

this dissertation is a part of the "recent research” quoted above.

~ There are two ways to form black holes. One is through the collapse of a
star which ran out of its fuel. The other kind of black hole forms shortly after
the big bang due to inhomogeneities present in the spacetime, and not surpris-

ingly, they are called primordial black holes., When a black hole is formed
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through the collapse of a star, not all of the "maximally extended” solution is
present in the resultant black hole since the matter inside the star changes the
regions of spacetirne it occupies. Primordial black holes, on the other hand, are
maximally extended, vacuum solutions of Finstein's equations. After the black
hole is formed, these two solutions look identical to an observer located outside
the hole, The difference between the two shows up when the observer decides to
go down the hole and see what is going on.

In the case of SBchwarzschild and Reissner-Nordstrom black holes, there are
solutions of Einstein's equations with matter T‘Nihich will collapse to i:hese black
holes if they start out with the appropriate initial conditions. All of these solu-
tions are spherically symmetric. A natural question to ask is whether the same
spherically symmetric black hole will resuit if the collapsing star is not spheri-
cally symmetric initially. In the case of a primordial black hole, one can ask
whether it is stable to small perturbations of the outside geometry. These per-
turbations can be induced, for example, by shining a small amount of light on
the hole. In the case of Schwarzschild, Reissner-Nordstrom and Kerr black
holes, these questions were answered during the 1970’s. The answer is: The out-
side geometries of these black holes are stable to small perturbations. The
answer is not known for the Kerr-Newrnan Variéty since nobody has managed to

separate the perturbation equations yet.

In early 1978, Igor D. Novikov was visiting Caltech's relativity group. In a
serninar he mentioned that he examined the interior geometry of a
Schwarzschild black hole and found it stable against small perturbations. He
suggested that we should do the same for the interior of a charged black hole
since the geomelry inside a charged black hole is far more interesting than the
geometry inside an uncharged, spherically symmetric hole. We completed the

work in early 1979 with the conclusion that the interior geometry of a
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spherically symmetric, charged black heole is unstable against small perturba-
tions. In what follows, 1 will summarize the highlights of the first two papers
without going into detailed mathematical descriptions. For precise details, the

reader should consult the papers and references quoted there.

The Reissner-Nordstrom geometry is the unique, asymptotically flat, spheri-
cally symmetric solution to the Einstein-Maxwell equations that describes the
spacetirme outside of a spherical collapsing star with charge § and mass M. This
geometry may be analytically extended to an electro-vacuum solution
tepresentmg a black hole for 0 < | @ | <M. A part of the conformal Carter-
Penrose diagram for this type of black hole is shown in Fig. 1. In this diagram,
the coordinates are chosen so that the entire spacetime may be represented by
a finite figure with rotational degrees of freedom suppressed. Since the space-
time is spherically symmetric, all the essential properties of the spacetime can
‘be illustrated without loss of generality. The timeliké‘ coordinate runs along the
long dimension of the paper, and the spacelike coordinate is in the plane of the
paper and perpendicular to the timelike coordinate. In this diagram, the world
lines of radial light rays are at an angle of 45° to the timelike direction (or to the
spacelike direction). The level surfaces of the coordinates ¢ (spatial coordinate
inside the black hole) and 7° (temporal coordinate inside the black hole) shown
by the dashed lines. The coordinates # and v are null coordinates related to ¢
and 7° by v = —r’—t and v = —r"+£. The Cauchy horizon is the null hypersur-
face v = r_ with w = o and v = = on the left and right sides, respectively. The
event horizon for the left exterior region is the null hypersurface r = r, with
@ = —oo, Paths o and b represent timelike world lines beginning in the exterior,
cr;ssing the © = —= event horizon, and crossing the u» =« and v = = parts of
the Cauchy horizon, respectively. While similar to the Schwarzschild black hole

in the exterior region (i.e. outside the event horizon r = r,), the charged black
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hole interior is dramatically different. The curvature singularity (the wavy line
in Fig. 1) is timelike as opposed to the spacelike curvature singularity of a
Schwarzschild black hole. It is this property of the charged black hole which
enables an observer falling into the hole to avoid hitting the curvature singular-
ity. Furthermore, the charged black hole has a Cauchy horizon inside of the
event horizon at 7 = 7_. The Cauchy horizon or {as we will call it} #_ horizon has
the peculiar property of being the boundary in spacetime where the Einstein-
Maxwell equations lose their predictive power to describe the future evolution
from prior data. However, the r_ horizon also has the property of being a null
surface with infinite blue shift. An observer crossing it will see an arbitrarily
large blue-shift of any incoming radiation and entire history of the exterior
region in a finite lapse of his own proper time as he approaches the horizon.
These properties suggest that 7_ horizon will be unstable, small perturbations
will develop into curvature singularities just before it. The future development
then stops at the curvature singularity rather than the Cauchy horizon. The ins-
tability of the r_ horizon gives rise to the conjecture that in describing stellar
collapse the development of a Cauchy horizon is a special feature arising from
the assumption of perfect spherical symmetry. Previous studies suggest that
nonsymmetric perturbations from symrmmetric stellar collapse develop into cur-

vature singularities before the the formation of a Cauchy horizon.

In Part 1 of this dissertation we will consider the evolution of scalar, elec-
tromagnetic and gravitational test fields inside the black hole and the final state
problem for the interior of the black hole left by a charged stellar collapse. Per-
turbation calculations can only show a solution to be stable. The unbounded
growth of a perturbation suggests that (through the Finstein equations) a curva-
ture singularity may develop, but higher-order nonlinear terms must be

included to verify whether a singularity actually does form. For the
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electrovacuum solution we will show that in general massless scalar, electromag-
netic and gravitational fields with arbitrary initial data on the past null infinity
or on the event horizon r =7, will develop an unbounded energy density as
measured by an observer freely falling from rest in the exterior in a neighbor-
hood of the r_ horizon. The evolution of the fields proceed in two steps: First,
the waves propagate in the exterior from the past null infinity to the event hor-
izon at 7 = r,. The detailed evolution of the fields outside the event horizon may
be summarized for our purposes by a main wave traveling from the past null
mﬁmty to the horizon alohg a null ray and a sequenée of waves scattered off of
the background curvature from the main wave and subsequently from the scat-
tered waves. The scattered fields superpose to fall off at late times as a power
law. From earlier work, we know that this power-law falloff is a generic feature
of wave propagation in the exterior. The field along the event horizon can be
characterized by a main wave (which evolved directly from the initial data on
the past null infinity) and a power-law tail. Second, the field on the event hor-
izon evolves through the interior region r_ <7 <7, to a neighborhood of the
Cauchy horizon at ¥ = r_. We analyze in detail the evolution of the fields in the
interior region and show how the data on the event horizon evolve to waves run-

ning along and across the r_ horizon. The waves running along the r_ horizon

are then blue-shifted by an arbitrarily large amount at the r_ horizon.

The formation of power-law tails by waves propagating in the exterior and
the blue-shift of the tails on the interior suggest that almost any perturbation in
the exterior spacetime will grow into an instability on the 7_ horizon. We also
find that perturbations that develop inside the black hole (for example a
moﬁlentary switching on and off of some scalar, electromagnetic or gravitational
fleld on the surface of the star after it has crossed the event horizon) evolve

subsequently to fields that are regular but with still divergent energy densities



at the »_ horizon.

B. Part 1I: Multipole Moments for Staticnary Systems

In this part we deal with two problems: First, we show that two families of
multipole moments defined in rather different ways are actually equivalent to
each other. Second, we prove that in the limit of slow motion, the rigid body
motion is gaverned by the classical Euler equations of rigid body meotion even in

the case of bodies with arbitrarily strong internal gravity.

The basic idea behind the multipole moment formalisms in general rela-
tivity is the same as the one in classical physics: Define quantities which are
called the multipole moments in such a way that given these objects one can
construct the geometry of the spacetime in a well prescribed manner. This is
completely analogous to multipole expansions for mass distributions, charge dis-
tributions, electromagnetic field, ete... It is much harder to define these quanti-
ties in & general spacetime, because the very idea of multipole moment expan-
sions requires the existence of cartesian coordinate systems. Of course, in a
general spacetime such coordinates do not exist. A certain class of spacetimes,
known as asymptotically flat spacetimes, allow such coordinates to exist at
"infinity”. As one pulls away from the sources the effect of the matter on the
spacetime diminishes leaving the spacetime flat at infinity., The spacetime
metric is never exactly flat, but it gets closer and closer to the flat-space metric

as the distance between the sources and the observer increases.

Two very different multipole moment formalisms are widely used in current
research on asymptotically flat, stationary or slowly changing systerns in gen-
eral relativity. The first, which is rather elegant, was developed Ior precisely
static systems by Geroch and was extended to precisely stationary systems by

Hansen. The second, which is considered rather ugly by Kip 3. Thorne but
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nevertheless has much computational power, was developed for slowly changing

systems as well as precisely stationary ones by Thorne himself.

The Geroch-Hansen way of defining multipole moments, like any sophisti-
cated and elegant mathematical theory, looks like magic. A stationary space-
time is invariant under time translations. Given the physical 4-dimensional sta-
tionary‘ spacetime, Geroch and Hansen construct a 3-dimensional manifeld
which has its own metric which is induced by the physical metric of the 4-
dimensional spacetime using the time invariance property of the stationary
spacetime. Loosely speaking, they "factor out” the "time" degree of freedom
which is not doing anything anyway. They then make a “conformal” transforma-
tion which brings the point at infinity to a "finite"” location in this 3-dimensional
manifold where it becornes a single point. They demand that the conformal fac-
tor and the metric of the 3-manifold be smooth at this point in the sense that
there exist coordinates around the point at infinity in which both the conformal
factor and the 3-metric are infinitely differentiable. Beig and Simon proved that
there do exist a conformal factor and a coordinate system with this property for
any stationary spacetime. Geroch and Hansen then define two "magic" scalar
fields called the "mass" potential and the "current” potential on the 3-manifold.
The "mass"” and "current” multipole moments of the original physical spacetime
are then obtained by repeatedly "differentiating” these potentials and evaluating

their "derivatives"” at the point at infinity.

Thorne's way of defining multipole mornents is more on the intuitive side.
His analysis is formulated entirely in the physical spacetime. It is a "'straightior-
ward” extension of the standard procedure of "reading out” the mass A of the
source from the time-time part of the metric, and "reading out” the angular
mommentum J of the source from the time-space part of the metric. Naturally,

any such read out requires the introduction of a coordinate systerm which
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becomes Minkowskii sufficiently rapidly at large radii. This is where the ugliness
in Thorne's formalismm lies: it requires the use of coordinates chosen from a spe-
ciall class called "ACMC" which stands for Asymptotically Cartesian and Mass
Centered. In an ACHC coordinate system for any precisely staticnary, vacuum,

1 where 7 is

asymptotically flat spacetime the metric coeflicients at order 1/7
the familiar radial coordinale, contain only multipcles of order <1, and the
mass dipole vanishes entirely. One simply reads off the "mass” and the

"current” multipoles of the spacetime from the leading terms alt each order in

/7.

Paper 111 in this dissertation shows that these two seemingly different sets
of multipole moments are in fact the same. The proof involves calculating
"magic" Geroch-Hansen potentials in terms of Thorne's moments by choosing
the "right” coordinate system and the "right” conformal factor. Precise details

of the proof are given in the main body of paper IIl.

The last paper in this thesis tackles the problem of rigid-body motion in
general relativity. We show that in the limit of slow rotation general relativistic
gravity produces no changes whatsoever in the classical Euler equations of
motion. Since this paper is written in a language accessible to people who know
only a little relativity, the reader is urged to read the main body of the paper
itself. An Appendix at the end of the paper justifies some of the assertions in the
proof by giving an algorithm for generating rigidly rotating solutions of

Einstein's equations from nonrotating solutions.
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Evolution of scalar perturbations near the Cauchy horizon of a charged black hole

Yekta Giirsel and Vernon D. Sandberg
W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125

Igor D. Novikov
Space Research Institute Academy of Science, Profsoyuznaja 88, Moscow, 117810, Union of Soviet Socialist Republics

A. A. Starobinsky
The Landau Institute for Theoretical Physics, Academy of Sciences of the USSR, Moscow, Union of Soviet Socialist Republics
(Received 9 October 1978)

We describe the evolution of a scalar test field on the interior of a Reissner-Nordstrom black hole. For a
wide variety of initial field configurations the energy density in the scalar field is shown to develop
singularities in a neighborhood of the geometry’s Cauchy horizon, suggesting that for a stellar collapse
curvature singularities will develop prior to encountering the Cauchy horizon. The extension to the interior of
stationary perturbations due to exterior sources is shown not to disrupt the Cauchy horizon.

§. INTRCDUCTION

The Reissner~Nordstrém geometry® is the uni-
que,? asymptotically flat, spherically symmetric
solution to the Einstein-Maxwell equations that
describes the spacetime outside of a spherical

==
a1y

Exterior
rory

FIG. 1. Part of the conformal Carter-Penrose diagram
for a Reissner-Nordstrém solution with [@[<M. The
level surfaces of the coordinates ¢ and »* are shown by
the dashed lines, The coordinates ¥ and v are null co-
ordinates related tot and r* byu=—r*—t and v =~r*
+t. The Cauchy horizon is the null hypersurface r=v_
with # = and v == on the left and right sides, respec-
tively. The event horizon for the left exterior region
is the null hypersurface r=», withu =~«, Pathsa and
b represent timelike world lines beginning in the ex-
terior, crossing the u = — < eventhorizon, and crossing the
u=2 and v == parts of the Cauchy horizon, respectively.
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star with charge @ and mass M. This geometry
may be analytically extended to an electrovacuum
solution representing a black hole for 0< |@|<M
(Ref. 3). While similar to the Schwarzschild black
hole in the exterior region (i.e., outside of the
event horizon » =v,), the charged-black-hole in-
terior (i.e., inside of the event horizon) is dram-
atically different. The Carter-Penrose diagram
in Fig. 1 illustrates two distinguishing features:
the timelike character of the curvature singularity
(cf. the spacelike curvature singularity of a
Schwarzschild black hole) and the Cauchy horizon
inside of the event horizon at » =»_. (See Hawking
and Ellis® for the definitions of the global proper-
ties and Graves and Brill* for details on the ana-
lytic structure, coordinate systems, etc., for
Reissner-Nordstrém black holes.)

The Cauchy horizon or (as we will call it) the »_
horizon has the peculiar global property of being
the boundary in spacetime where the Einstein-
Maxwell equations (or any other physical theory
based on partial differential equations) lose their
predictive power to describe the future evolution
irom prior data. However, the »_ horizon also
has the property of being a null surface of infinite
blue-shift. An observer crossing it will see an
arbitrarily large blue-shift of any incoming radia-
tion and the entire history of the exterior region
ina finite lapse of her own proper time as she
approaches the horizon. These properties sug-
gested to Penrose® that the »_ horizon will be un-
stable, small perturbations will develop into
curvature singularities just before it. The future
development then stops at a curvature singularity
rather than the Cauchy horizon.

The instability of the » _ horizon gives rise to

©1979 The American Physical Society
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the conjecture that in describing stellar collapse
the development of a Cauchy horizon®"® is a special
feature arising from the assumption of spherical
symmetry. Previous studies®'!° suggest that non-
symmetric perturbations from symmetric stellar
collapse develop into curvature singularities be-
fore the formation of a Cauchy horizon.

Penrose and Simpson® have investigated num-
erically the evolution of a test massless vector
field on a charged-black~hole background for a
variety of initial field configurations. They found
a general divergence of the field energy density as
the evolution approached » =v_ and they concluded
that this divergence was a generic feature for this
background geometry. McNamara'® has demon-
strated the existence of initial data for perturba-
tions by a test scalar field which are bounded by
power laws on 9 and evolve to have unbounded
energy densities on» =»_, In this paper we also
consider the evolution of test scalar fields, dis-
cuss their detailed evolution inside of the black
hole, and consider the implications for charged
stellar collapse. In a sequel® we will discuss the
evolution of the coupled electromagnetic and
gravitational perturbations on and the final-state
problem for the interior black hole left by a
charged stellar collapse.

Perturbation calculations can only show a solu-
tion to be stable. The unbounded growth of a per-
turbation suggests that (through the Einstein equa-
tions) a curvature singularity may develop, but
higher-order nonlinear terms must be included
to provide sufficient conditions for instability.
(The exterior of a Reissner-Nordstrém black hole
has been shown to be stable to linear perturba-
tions by Bi¢4k,*” Sibgatullin and Alekseev,'* Mon-
crief,* and Zerilli.'®) As McNamara'® has done,
we will consider the unbounded growth of linear
perturbations to be indications of possible instab-
ilities and will use the term “instability” in this
sense.

For the electrovacuum solution we will show
that in general a massless scalar test field ¢ with
arbitrary initial data on §” or on the event horizon
r =7, will develop an unbounded energy density as
measured by an observer freely falling from rest
in the exterior (a “freely falling observer,” FFQO)
in a neighborhood of the »_ horizon. The evolution
of the field ¢ proceeds in two steps: First the
wave propagates in the exterior from g9~ to the
event horizon » =»,. The detailed evolution of ¢
outside the event horizon may be summarized for
our purposes by a main wave traveling from 4~ to
the horizon along a null ray and a sequence of
waves scattered off of the background curvature
from the main wave and subsequently scattered
waves. The scattered fields superpose to fall off

at late times as a pwer law ™7, From the work
of Price’® and BiZ4k™ we know that this power-law
falloff is a generic feature of wave propagation in
the exterior. The field along the event horizon
can be characterized by a main wave (which
evolved directly along a null ray from dataon §7)
and a power-law tail. Second the field on the
event horizon evolves through to the interior
region ¥ _<r<r, to a neighborhood of the Cauchy
horizon v =v_. We analyze in detail the evolution
of ¢ in the interior region and show how the data

on the event horizon evolves to waves running
along and across the »_ horizon. The waves run-

ning along the »_ horizon are then blue-shifted by
an arbitrarily large amount at the »_ horizon.

The formation of power-law tails by waves pro-
pagating in the exterior and the blue-shift of the
tails on the interior suggest that almost any per-
turbation in the exterior spacetime will grow into
an instability on the »_ horizon. We also find that
perturbations that develop inside the black hole
(for example a momentary switching on and off
of some scalar charge on the surface of a collap-
sing star after it has crossed the event horizon)
evolve subsequently to fields that are regular but
with still divergent energy densities at the »_
horizon.

In accord with Israel’s theorem,? investigations
of spherically symmetric collapsing shells of
charge®'® and dust” have Reissner-Nordstrém geo-
metries as their exterior solutions. Therefore,
we may use the previous considerations supple-
mented with appropriate boundary conditions at
the surface of the star to discuss the evolution of
a charged collapse. Figure 1 shows two possible
world lines for the surfaces of collapsing stars.
These lines are to be interpreted as the boundar-
ies of the stars, with the Reissner-Nordstrém
solutions attached smoothly on the right and the
stellar interior geometries (not shown in the fig-
ure) attached on the left. The development of cur-
vature singularities along the »_ horizon then
follows as in the previous case. (We note that
McNamara's' analysis of instability depended
upon the two-sphere P, the singularity in the
Killing vector field. The collapse described by
the world line to the right in Fig. 1 does not con-
tain P in that spacetime and so his proof is not
applicable to that case. Our discussion will show,
however, that this section of the ». horizon in
that geometry is also unstable.)

In Sec. II we write the wave equation we will use
for the propagation of the field ¢ on the Reissner-
Nordstrédm background, define the condition for
stability at the »_ horizon, define the appropriate
boundary conditions, and set up the characteristic
initial-value problem to evolve data in the interior.
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In Sec. III we solve for the evolved behavior of the
field ¢ at the »_ horizon and present the result of
a numerical integration. In Sec. IV we discuss the
perturbations from exterior stationary sources.
In Sec. V we summarize our results and briefly
consider the effects of quantum-mechanical pro-
cesses on our conclusions.

II. THE WAVE EQUATION

The Reissner-Nordstrém black-hole interior
for ¥ _<r<v, is described by the metric

_ 72 ,=7r)r-r)
dsz'(r‘—r)(r—r_) dr? - > df?
- 72(d6* +sin?8dg?) , @.1)

where 7, =M+ (M? - @)%, 7 is a temporal coor-
dinate, and ! is a spatial coordinate (see Fig. 1).
Tt is convenient to define a “tortoise” coordinate
r* by the equation

r*=-r—-Klln(r*-1') +£—-ln(r-r_), (2.2)
where Kk, = (r,—7r_)/r? are the surface gravities at
the two null surfaces. We will regard » as an im-
plicit function of »* with the asymptotic limits
given by » ~r, as v* - x>, and define the null co-
ordinates u and v by the equations « =-7* ~{ and
v=-~r*+t. These definitions for u and v are the
natural extensions to the interior of Price’s'® ex-
terior null coordinates. The event horizon is the
null hypersurface u =~ and the left and right »_
horizons are the null hypersurfaces u == and v =,
respectively.

The propagation of the scalar test field on this
background is taken to be governed by the scalar
wave equation

‘b:a:egaszo' (2‘3)

To exploit the symmetries of the background we
capaiiu @ L0 sphnerical harmonics and Fourier
transform in £ to obtain

b 1
¢’(7*-,"@-,(P)=Zf dke““Y,m(B,gp);’- ‘*I)Imh(r*)'
om Y-

(2.4)

Substituting this expression for ¢, the wave equa-
ticn is reduced to an ordinary differential equation
in » * for the modes ¢, ,, and given by

J

5 —

0
«
=
SN Sk
o~
=
<

-0k 1

Q=0.9M

r*/2M
FIG. 2. The potential of the separated wave equation.

) .

G+l =Vl ) =0, 2.5)
where the scattering “potential” V,(r*) is given by
the equation
_=r,=7)r=-r.)

Vir*) = =

x[__—’(’*l)+w_3@]. 2.6)

7 ot

The potential V,(r*) (shown in Fig. 2) is sharply
localized in r* and falls to zero exponentially with
the asymptotic forms given by

Vi(r*)~exp(Fk,7*) as r*—iw, 2.7

The solutions to Eq. (2.5) as »*— —=» have the
asymptotic forms given by

-iky

€
e—{kt%mk(r*),,[euu }[I*O(e““—'*)] . 2.8)

Near the r_ horizon these solutions may be des-
cribed as left-going (e”***) and right-going (e***)
waves with exponentially vanishing corrections in
¥*. Similar expressions hold for ¢ near the r,
horizon.

The energy density in the ¢ field (we are not con-
sidering the conformally invariant scalar field so
the #R term is absent) as measured by our FFO is
a quadratic function of the quantity ¢ U’ where
177 is the FFQ’s four-velocity. A FFO falling
from rest in the exterior towards the left u =
horizon has a four-velocity given by

b | S [ (222 )

rt (ro=r)r=r )\’
-{-(r‘-r)(r—r-) [1+(1+ I )

i

) . 2.9)

1B
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At u =~ the FFO will measure a ¢ ,I/* given by

3 k. wew 3¢
&y ~== e"-¥*¥12 4 (con S U~
¢V ~ 5, (const) " as

(2.10)

Similarly a FFO falling to the right v = horizon
will measure a ¢ ./ given by
8 . 3
¢>‘(,U(",z)~—E exbrullz, (const)é—? as v-®.
“®

av
(2.11)

Hence, for the FFO’s to measure physically non-
singular fields near the r_ horizon, the appropriate
derivatives of the field times the exponential
blue-shift factor must be bound. [The condition
Eq. (2.11) is identical with McNamara’'s*® condi-
tion derived by an exponential boost to a nonsingu-
lar coordinate system at v =]

The higher-order terms in the solutions in Eq.
(2.8) all fall off as fast or faster than ¢*-"* as
r*~ - and the physical features described by
these solutions are dominated by the leading terms
~e”* and Y~ e™*. From Egs. (2.11) and (2.10)
we see that the ¢ ** waves are singular along the
right (v =) r_ horizon and the e*** waves are
singular along the left (u ==) r _ horizon.

The development of ¢ in the interior region from
data on the r, horizon is most naturally stated as
a characteristic initial-value probiem. Since we
are basically concerned with the history of a
stellar collapse we take ¢ to be O on the left (v
=-) 7, horizon and take ¢ to be some initial-
value function k(z) on the right (u =-<) , hori-
zon—the event horizon for the collapsing star.

In the interior (»_<v<v,) r* is a timelike coor-
dinate (as r* goes from « to —» time increases

in a positive sense) and Eq. (2.5) describes the
temporal evolution between the horizons. In this
respect the calculation is more like a cosmological
proplem than a scattering problem (cf. scattering
in the exterior). The final evolution of ¢ is given
by its values on the ¥ = and v =« r_ horizons.

II. EVOLUTION OF THE SCALAR FIELD

To impose the initial conditions on v* =+ it is
convenient to write for a particular [, m-spherical
harmonic mode the expression

¢>,m(r*,t)=/ dke"“y,m(k‘;%gﬂ:j,k(r*), 3.1

where {7 (r*) is the solution to Eq. (2.5) with the
asymptotic form at the r, horizons given by

Tyl r¥)~e ™ as r¥-w. (3.2)

[The absence of the conjugate function ¢{? ,(r*),
which has the asymptotic behavior e* as 7*~ =,
in Eq. (3.1) is due to the initial condition ¢ =0 on
the null surface v =—w.] At the »_ horizon ¢{7,(»*)
has the asymptotic form given by

e Y ¥~ A (R)e ™+ B (Rt as y¥~ —x

(3.3)

where
(A (B)E = 1B (R)F=1, (3.4)

which follows from the Wronskian condition. In
the sequel' we will show that A, (k) and B, (k)

are analytic in % in a neighborhood of £ =0, take
the values at 2=0 given by

Ak =o>=<:2_1)_' <:_ +:_) y

_1y
Bk =0)=- 1 (;— -;-)

(3.5)

and as k-, [A,, (k) -1] and B, (k) decay expon-
entially. [A strict proof of the regularity of A, (k)
and B, (k) at all intermediate points for real % has
been given by McNamara.]

The function H, (k) is determined from the initial
data #,,(v) on the right (u=~=) r, horizon [here
h,n(v) are the multipole moments of the initial
value data #(1}, ie., R(L} =33 (0¥, (0, @)
Evaluating Eq. (3.1) as u - —», with the help of
Eq. (3.2) and using the Fourier inversion theorem
we may write

1 [ .
H,m(k)=§; f hy (v)e* du. (3.6)

The general structure of the solution in a neigh-
borhood of the v . horizon has the form

G1m ) == [y @) + 911m0) + B2l +0G =7 )],

3.7

where

@)= [ dreH, (AL ®-1],  (3.8)

b2 () = f :dk ety (R) B, (k). 3.9)

[Note that the integrals in Egs. (3.8) and (3.9) are
convergent for a wide class of data H, (k) due to
the exponential fall off of the A,,(k) -1 and B, (k)
coefficients.] [A formal mathematical proof that
the fourth term in Eq. (3.7) is O(r - r_) has also
been given by McNamara.'?]

If H, (k) is regular on the real k axis, then
since A, (k) and B, (k) havenoirregular pointsin
a neighborhood of the real % axis the contour of
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integration in Eq. (3.8) may be deformed into the Imk

lower half k plane in the case v~, and in Eq.

(3.9) the contour may be deformed into the upper

half plane in the case u- », Hence we obtain that

¢ m(v) and @,,,,(u) decay exponentially as v and

u- o, respectively. > Rek
We now specialize to an h,,,,(v) as a sum of a - j \ -

6-function burst and a power-law tail after the

burst, viz.,

hym(2) =X0(v = v,) + b (v = v)v™Y a>1 (3.10)
where A, 4, o, and v, are all constants character- FIG. 3. Complex k-plane contour for integrating Eq.

izing the initial data. Substituting into Eq. (3.6) i‘i%fi’af";a‘i‘; 3‘;‘;?1”;;:’;‘;{‘;‘:;’r‘inpf}’lwert‘f‘a“’ tail of the
- . Ch cu rom

L s

we find H, (k) to be give
1mlR) given by k=0to k=i in the lower half plane along the imagin-
_— 1 . [ f-o piha . ary k axis.
(k) =5—ettol ) 4 - 1
im 2 “ / (z+v°)a dz] . (3.11[

(a) mag 30X (b) mag 10 x

FIC. 4. These figures summarize the results of a numerical integration of the equation ¢; ,*,*~d; 4=V;0r*)¢;. The
results presented are for the particular case @=0.9M and I =2; however, additional integrations with alternative para-
meters support the qualitative features illustrated here. Figures 4(a) and 4(b) show ¢; and ¢; , in relief as functions of
¥* and t. The #* coordinate ranges from 50M (near the event horizon) to ~60M (near the Cauchy horizon) and t ranges
from —-50M to 50M. The separation between lines of constant v* is 2M for Fig. 4(a) and 1.6M for Fig. 4(b). The ini-
tial-wave form is taken to be a Gaussian of unit amplitude. These are shown in the inserts magnified 30 x for ¢ and
10x for ¢,,. The asymptotic exponential falloff of the derivatives of ¢ near the Cauchy horizon are shown in Figs. 4(c)
and 4(d). Figure 4(c) shows the exponential behavior of ¢,, at sonstant » in the neighborhood of the right-hand side of
the % horizon. Figure 4(d) shows the analogous behavior of ¢,, at constant ¥ near the left-hand side of the 7. horizon.
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In this case H, (k) is not analytic at the point £=0.
The nonanalytic part of H,,(k) is proportional to
ko' if v is nonintegral and 2*”!Ink if o is an inte-
ger. In either case H,,(k) has a cut in the complex
k plane and we shall place this cut along the im-
aginary & axis in the lower half plane in the case
of Eq. (3.6) and in the upper half plane in the case
of Eq. (3.9). '

We now consider the contribution to ¢,,,,(v) and
®; mitt) from the power-law tail [second term in
Eq. (3.11)]. Due to the cut, the main contribution
to ¢y a(v) and ¢,, .(u) for large values of their
arguments comes from the integration in the vicin-
ity of the origin. The general form of the contour
for Eq. (3.8) is shown in Fig. 3. Owing to the
analyticity of A, ,(k) and B, (k) at k=0 we can sub-
stitute for them their values at k=0 [Egs. (3.5)]
in Egs. (3.8) and (3.9) and we obtain

(3.12)
(3.13)

G11m(0) =10 (A ,(0) = 1] a5 v,

5’21;"(“) =pu”“8,,(0) as u—- =,
where the tilde means these are the contributions
from the second term in Eq. (3.11). Therefore,

in the case of a power-law tail ¢ is bounded at the
r_ horizon and vanishes at the point P (u~ =, v~ <),

T H T T T
-2 Q=0.9M
o £:2 1
slope =2.738
1073 5 e 2.7395....
lopd =
o5 v/2M=65
o |
:).
1078 =
g \
107 -
10781 _
107% 4
10719 E
i 1 L 1 i
-45  -4% -4 -33 -37

FIG. 4.

but the invariants in Eqs. (2.10) and (2.11) diverge
according to the equation

U-(au) v
K_
(el ]}
on the respective horizons. Hence, the r_ horizon
is unstable against scalar perturbations with
power-law initial data at all points along the hori-
zon except the point B (u ==, v=w=). (The proper-
ties and behavior of perturbations at the point B
will be discussed in the subsequent paper.'?)

It is interesting to note that the 6-function part
of #,,(v) [i.e., the first term in Eq. (3.11)] also
gives rise to singularities along the »_ horizon.
Inthis case H,,(v) = (1/21)e* 0and hence itis analytic
in the whole complex plane. Therefore the contour
in Egs. (3.8) and (3.9) can be deformed into the
lower and upper half planes, respectively, until
the contour intersects the nearest nonanalytic
point of A, (k) or B, (k). Then we obtain the re-
sult that 9,;,(v) and ¢, () [the corresponding
contribution to ¢, ,(¢) and ¢,; ) from the first
term in Eq. (3.11)] decay exponentially for large
values of their arguments. An estimate of the
index y for the exponential decay depends upon the

(3.14)

i T li T T T
Q=0.9M
0! L £2=? .
siope =0.4228
0 iR fe=f-
10°F 7 7~ 0422828, 4
107+ -
u/2M:=65
102 .
>—
=073 4
N
1074k .
071 8
1076 -
1077+ -
i i L L — 4
-50 -40 -30 -20 =10 0
v/2M
1d)
(Continued)
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imaginary value of the point where A, (k) or B, (k)
becomes nonanalytic. Numerical computations of
the evolution of a Gaussian wave packet are shown
and described in Fig. 4. These computations indi-
cate numerically that

Fum(®) =™ a5 v,
= 3.15
Doy mu) ~ e 4% as y- o, (3.15)
We have not yet obtained an analytical proof of
this result. Since «,<«_ the invariants in Egs.
(2.11) and (2.10) diverge at the v =« horizon.

IV. STATIONARY EXTERNAL SOURCES

In this section we consider the nonradiative
fields ¢ which are connected with external sources
outside of the », horizon. We assume that these
sources are at rest in the exterior with respect to
the charged black hole. This means that in the
exterior part of the black-hole geometry (»>7,)
wne fieid ¢ is independent of the exterior time and
is well behaved at the », horizon (its behavior at
¥ == is unimportant for this discussion). To ex~
tend this field inside (» <7,) we must solve Eq.
(2.3) for the case that ¢ is independent of { on
v =7,. This means finding the solutions to Eq.
(2.5) for k=0.

The k=0 solutions to Eq. (2.5) can be written in
closed form as

6,0 =P, (‘_"’L;'%E_:”_-) ) (4.1)
¢ r) =@, (27‘7— f_;—_r_) , (4.2)

where P, is the Legendre polynomial and @, is the
Legendre function of the second kind.'® Of these
two independent solutions only P, is regular at r,
and hence describes the extension inside the hole
ul fleias aue w external sources. With this solu-
tion we see that near the »_ horizon the ¢ field
behaves as P,(-1) and the energy density as mea-
sured by one of our FFO is proportional to the ex-
pression

3P,
ar*

r

ef-

p.U~ *+(const)~%€l +(const) .

which is finite.

V. CONCLUSION

This work has described the dynamical develop-
ment of a test scalar field with the aim of demon-
strating that for a wide class of physically reason-
able initial conditions (really, for all the conditions

we considered) the energy density in the field
grows singular along the Reissner-Nordstrém
geometry’s Cauchy horizon. Such behavior sug-
gests that for the real collapse of a charged star
curvature singularities will develop in the in-
terior of the forming black hole before the Cauchy
horizon and timelike singularity of the Reissner-~
Nordstrém black hole are encountered by the
developing spacetime geometiry of the collapse.
These conclusions for the development of perturba-
tions that began in the exterior are in agreement
with the results of Penrose and Simpson® and
McNamara.'® An interesting feature of the present
calculation is that even a d-function initial dis-
tribution on the outer horizon leads to the un-
bounded growth in the energy density of the scalar
field at the inner horizon.

In this paper we have restricted our attention to
classical fields. To examine the physical evolu-
tion of a more realistic stellar collapse we must
take into consideration quantum mechanical effects:
viz., pair creation by the gravitational field (all
particles are created, including massless par-
ticles) and the creation of charged particle pairs
by the electromagnetic field. The former process
takes place for all values of M and @, the latter
process is possible if |e@!>4GmM. If [eQ| > G*mM'ni
then the creation of charged pairs by the electro-
magnetic field is much more rapid than the crea-
tion of pairs by the gravitational field. We expect
these and associated processes to drive perturba-
tions that also disrupt the Cauchy horizon, but
their contribution to the total energy-momentum
tensor will be proportional to Planck’s constant
and in general small as compared to the classical
perturbations. Work on these problems is cur-
rently underway.
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We describe the dynamical evolution of scalar, electromagnetic, and gravitational test fields on the interior
of a Reissner-Nordstrom (spherically symmetric and electrically charged) black hole. The instability of the
hole’s Cauchy horizon is discussed in detail in terms of the divergences of the energy densities of the test
fields as measured by a freely falling observer approaching the Cauchy horizon. The late-time development of
the fields is discussed and a picture of the final state for the interior (in terms of classical fields) is
developed. We conclude that the Cauchy horizon of the analytically extended Reissner-Nordstrom solution is
highly unstable and not a physical feature of a realistic gravitational collapse.

I. INTRODUCTION

The Reissner-Nordstrom black hole represents
the unique static exterior of a collapsed spherical-
ly symmetric distribution of charge and mass.
However, the interior of the analytically extended
solution possesses a Cauchy horizon prohibiting
any deterministic future based on the hyperbolic
Einstein field equations. In a previous paper’
(hereafter referred to as I) we discussed the be-
havior of a test scalar field near the hole’s Cauchy
horizon where the field’s energy density was shown
to develop singularities and suggested a disruption
of the horizon (e.g., through the back reaction of
the singular energy density on the curvature).

In this paper we continue the scalar field analy-
sis, extend the development to include electro-
magnetic and gravitational perturbations, and in-
vestigate the problem of the final state of the evolu-
tion of the interior of a charged black hole for
late times.

We assume that a nearly spherical star with a
net electric charge has undergone a gravitational
collapse with small deviations {rom spherical
symmetry in the matter density and charge density
at the moment when the surface of the star crossed
the event horizon. All the perturbations from
spherical symmetry are assumed to be weak
enough so that we can neglect their back reaction on
the spacetime metric at the moment of crossing.
Mashhoon® has recently investigated the spherical
charged collapse of a perfect fluid and found that
while the exterior geometry was necessarily Reis-

20

sner-Nordstrom type, the interior geometry col-
lapsed behind an apparent horizon to a spacelike
curvature singularity. Doroshkevich and Novikov®
have investigated the final-state problem for per-
turbations inside a Schwarzschild black hole,
where the evolution in time of a perturbation cea-
ses at the spacelike curvature singularity. The
geometry at the Cauchy horizon inside the Rei-
ssner-Nordstrom black hole is smooth and regular
and gives rise to dramatically different features
not found in the Schwarzschild interior (cf. paper
.

In Sec. I we solve the scalar wave equation for
small wave number and use this solution to discuss
the behavior of the scalar field in a “neighborhood”
of the intersection of future timelike infinity, the
event horizon, the Cauchy horizon, and the curva-
ture singularity on the Carter-Penrose diagram
of an analytically extended Reissner-Nordstrom
black hole (point B in Fig. 1 of paper I). As will
be shown approaching B along a spacelike hyper-
surface » =const (for »_<» <), i.e., as { - = for
v held fixed, a perturbation of multiple index !/
will decay as {-?!-* and the field between the », and
r_horizons (i.e., the interior as we have called it)
does not develop any pathologies. However, if we
approach B or the »_horizon along the world line
of a freely falling observer then the energy density
as measured by the observer is blue-shifted and
diverges exponentially in »* [or as (v - » )-'] near
the »_horizon. This suggests that a curvature
singularity develops, topologically similar to that
of the Schwarzschild black-hole interior.

© 1979 The American Physical éocie(y
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In Sec. OI we formulate and discuss the electro-
magnetic and gravitational perturbation problems.
Using a Regge-Wheeler-type formalism*=7 com-
bined with the techniques developed previously to
analyze the scalar case, we extend the above con-
clusions on instability.

In Sec. IV we consider the features of perturba-
tions arising from stationary sources in the ex-
terior region. As an example, we present the
astrophysically interesting case of a hole ina
uniform magnetic field and demonstrate that the
“stationary” field which threads through the inter-

ior does not disrupt the »_horizon (as also was the
case with the stationary scalar field discussed in
paper I).

In Sec. V we discuss our conclusions reached by
treating the perturbations as classical fields. By
a classical field we mean that the smallest values
of our field amplitudes are still much larger than
the corresponding quantum amplitudes. We do not
consider quantum-mechanical processes here.
While these processes undoubtedly influence the
structure of the evolving singularity (see, e.g.,
Ref. 8), they do not alter our main conclusions.

II. SCALAR FIELD

In this section we conclude the scalar field analysis begun in paper I and compute the asymptotic behavior
of the scalar test field in a neighborhood of the point B (cf. Fig. 1 of paper I) for the final-state analysis.
We match the field to a power law on the », horizon which had developed from the late-time field in the ex-
terior due to the backscatter of radiation. Using a small-wave-number approximate solution, we evolve
this field through the interior up to the _horizon. With this solution we investigate the asymptotic form
of the field as point B is approached in a spacelike direction (» =const, { —) and in a null direction along

the 7_ horizon (u =w, v =),

Using the notation of paper I, we write the scalar field solution as

- ipe 1
¢(t,v,9,¢)=’2Y,m(e,w)f dk R 0,0,
ym -o

where ¥,,,(r) satisfies the evolution equation
e
dr*2

s > %

2

and r* and » are related (on the interior) by the
equation
rr=—r-tln (1_1\)+3- m(l-1>, 3)
K. r./] K. v

with «, =(r, - 7_)/r 2. We will also use the null
coordinates u =—7*~1f and v = ~r*+1.

Let 4,(r) be the left-going solution to Eq. (2) de-
fined by

D(r)~etf T ag y* ~w (ie., a5 ¥—7,).

Then $¥(r) is a second linearly independent solu-
tion. A general solution (for each set of multipole
indices I, which we suppress for brevity) may
be written in the form

ngnzjmdkw”%Mkwgﬂ+waQWH. )

The coefficients a(k) and b(k) are to be determined
from the initial conditions on the », horizon and
the conditions on the collapsing star.

A comparison of the asymptotic form of Eq. (4)
near the », horizon with the late-time field in the

(1)

;")"""4»{ P+ r=nlr=r) [l(l+ 1)+_2£_2_Q_2]} Dyme=0, (2)

exterior suggests (cf. Ref. 3) that we choose
a(k)=b(k)[-1+B(k)], (5)

where [B(k)-1]is the reflection coefficient of a
wave scattering off the static potential in the ex-
terior of the black hole.® [The Fourier coefficients
based on the (,7) coordinates in the interior and
exterior regions can be equated across the », hori-
zon for infalling waves only. This may be seen by
comparing the (f,»)-based transforms with a trans-
form based on, e.g., Eddington-Finkelstein co-
ordinates (v, ) which are nonsingular at the »,
horizon.] The form of B(k) is such as to repre-
sent a power-law-type trail on the », horizon for
large values of {. The function h(k) is determined
by the details of the collapse as the star crosses
the », horizon (which we take to be at v =0). In
what follows, all we will need are a few details
on the analytic properties of B(k) and b(k). {For
an analysis in the exterior, see Sibgatullin and
Alekseev.?)

The existence of power-law tails in the exterior
region implies that B(k) has, at least, a branch
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point at k=0, (This follows from a Weiner-Hopf-
type analysis of the asymptotic behavior of Four-
ier transforms. Sibgatullin and Alekseev® have
further demonstrated that the branch point has
the character of a logarithmic branch point.) Us-
ing time dilation arguments, Price has shown that
in the exterior the field on the surface of the star
as the star crosses the », horizon has the asym-
ptotic form

5 “azg /27,
ext) Teonst xXe s

o ~const X 8(r
which when Fourier transformed implies that b{k)
has a simple pole at k=0.

As t -« (i.e., a neighborhood of point B), the
dominant contribution to #(+,?) in Eq. (4) comes
from the modes in a neighborhood of 2 =0 and we
may expect the solution for |k} | <1 to Eq. (2) to
apply. We use the now common technique!®'s of
matching the leading terms in k of the wavelike
solutions at » =», with the low-k solutions on the
interior. This technique matches only the domin-
ant terms and ignores, e.g., the logarithmic sin-
gularities which are of higher order in k. The
k=0 solutions can be written in closed form and
are given by

2V =¥, =¥
Do) =07 P, (“‘;’?;‘)
2y =¥, —¥
+B7‘Q1(—r—ﬁ——'> ; (6)

where P, is the Legendre polynomial, @, is the
Legendre function of the second kind, and o and 8
are constants.

Near the r, horizon, #,(r) has the form of an
ingoing wave of unit amplitude, viz., #,(»)=e**,
For [krr*|<«< 1 we may neglect the k* term in Eq.
(2) and match the leading terms in ¢,(r) in the re-
gion ~1/k << v* <<~ M with the !, solution and we
find to O(k?)

St Qr—v,—-7_
=Llp [l
L) ),L l( v.o—7. )

.

1 2vr—7, - 7.
+2Zk7(t Qt(—*—‘—“‘y Zr )]

+

1 -
=[l-ik-—- 1n<y——”;>}as r—7,. (7
K, ¥, =7
Near the »_horizon, #,(r) evolves to a solution of
Eq. (2) with the asymptotic form given by
()= ARYe* ™ +B(k)e ™" as r—r_. (8)

The Wronskian for two solutions of Eq. (2) is in-
dependent of » and for },(r) and J¥(») it has the
value given by

Woaliy, U )= =21k . (9

This in turn implies that |A(k}[>- [B(k)|?=1 for
all k., Comparing Eqgs. (7) and (8) in the region
M<«<r*<<1/k, we {find for [RM| <« 1 the scattering
amplitudes A and B are given by

A(k)=(—:%—}-l (£:+§:>+o(k), (10)

g(k)=_.£ﬂ(;-'_£:>+o(k). (11)

|Owing to the exponential decay of the potential
in EqQ. {2) as |v*| —= (see paper 1), the coefficients
A and B are, in fact, analytic at k=0.]

We now consider Eq. (4) with the Fourier coef-

PR FE-Y
1

icients related by Eq. (5), viz.,

W, t) =fxe"*‘l)(le)[(B(k)- )i (r) + 220 k. (12)

We take the branch cut [to define B(k)] to run from
k=0 to k=—i along the negative imaginary axis
and deform the contour of integration into the lower
half of the complex k plane. The pole of b(k) at
k=0 produces a cancellation between the second
and third terms (=7,+ 42) [cf. Egs. (10) and (11)].
Any additional poles of b(k) below the real axis
will give terms that exponentially damp as t -,
There remains the integral along the cut from
k=0to k=-ix. As previously discussed, the re-
flection coefficient B(k) is chosen to reproduce

the power-law tail on the », horizon (expected
from the late-time development of a collapse)
with the asymptotic form given by

_const  const

W, 1) e -U“_V;W for u— =, > A1,

(13)
At intermediate times (r =constant) using the
[k | <« 1 solutions given in Eq. (7), we find

Kr=const,t)=constx [ dk e M2, (v)

"]
const 2V -y, -7
- XVP ( : ‘)
2142 H .
12 V.=V,

x[1+0< X[:’)] as [ =~ , (14)

Near the »_horizon approaching the point B (i.e.,
for 1 -~ with u<0) using Eq. (8), the Fourier
synthesis gives the result

W, 1) ':[ dk *1HA(0) e* + B(0) o*¥]

o

=constx[%g—g+§§g]. (15)
Recalling that near the », horizon
f=const x p~(22 (16)
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we see that Egs. (14)~(16) present the complete
structure of the scalar field near the point B.
(N.B. The regions in which each of these expres-
sions are applicable overlap.)

In paper I we considered what a freely falling ob-
server (with a four-velocity U?) crossing the »_
horizon would observe for the energy density in
the scalar field and demonstrated that the energy
density was a function of ¢ _U*. For an observer
crossing v =« this is given by

o =2

ap
(k. /2)(usv) X -
Ja B +const -—eu as e, (17)

If the point B is approached along a surface of con-
stant », then since u+1 =-2r* we find using Egs.
(14) and (17) that

o, U ~const/f?* as { ~=.

Hence, there is no pathological behavior of ¢ ap-
proaching the point B in this direction. However,
if the point B is approached aiong the »_ horizon,
then using Egs. (15) and (17) we find that

&, %~ (const/1?1¥) e*-/?¥ a5 ¢ = 0,

Hence, approaching the point B by running along
the »_horizon (i.e., by taking the order of the
limits as ¢ =, then u = —~ « in the previous ex-
pression) indicates that a singularity may develop
near the Cauchy horizon in an arbitrarily small
neighborhood of the point B. These conclusions
when combined with the analysis in paper 1 indi-
cate that the entire Cauchy horizon is unstable

to perturbation produced by a scalar test field.

III. ELECTROMAGNETIC AND GRAVITATIONAL
PERTURBATIONS

In this section we augment the previous analysis
and extend our considerations to include electro-
magnetic and gravitational perturbations of the
interior. Owing to the presence of the background
electric field, the situation is mathematically
more difficult. Electromagnetic and gravitational

perturbations are described by coupled sets of
|

3M 4Q?

SN P

A

I8
Noo

/e
FIG. 1. The potential of the separated wave equation
for electromagnetic and gravitational perturbations. The
particular case @ =0.9M and [ =2 is shown. The poten-
tials have the same overall features for cther values of
the parameters @ and [, as in the scalar case.

wave equations which correspond physically to the
conversion of electromagnetic perturbations into
gravitational perturbations and vice versa by the
catalytic action of the background fields. How-
ever, owing to the efforts of Zerilli,> Moncrief %7
Sibgatullin and Alekseev,® and Chandrasekhar,'®'!7
it is possible to obtain decoupled equations which
upon separation satisfy potential-like equations
similar to Eq. (2) (see Fig. 1).

Following Moncrief and Zerilli, we expand the
electromagnetic vector potential, the electromag-
netic field tensor, and the metric perturbations of
the Reissner-Nordstrom background in terms of
the Regge-Wheeler spherical harmonics.*!®* The
Einstein-Maxwell equations for the perturbed
quantities have been decoupled by Moncrief®” into
two second-order wave equations for the even-
parity and odd-parity cases. Chandrasekhar,'®
using an approach based on the Newman-Penrose
formalism,'*!® has shown how to derive solutions
of the even-parity Moncrief equations from the
solutions of the much simpler odd-parity Moncrief
equations. Hence it is sufficient to consider only
the odd-parity Moncrief equations given by Ref.
20:

@, A 7\ A 3M 2Q[I-1)1+2)F72\ (%,
{W*k‘?[l(l”)‘T*?]}(ﬁ,) ‘;s"(zQ{u_n(uz)}w —3M >( ) (18)

Ty

where A =(¥ - » )(» - »_) and where Moncrief’s variables 7, and 7, are related to Zerilli’s electromagnetic
field f,; and metric perturbation #, (in the Regge-Wheeler odd-parity gauge although the variables 7, and 7,

have gauge-invariant significance) by

. 2lu-D+2)p?
ETTTIuLD

. A, o7
77,-(1--1)(1-1-2)mhl—l(1+1 .

fzg :[(l" 1)(1‘}'2)}!/2#/1
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This system is decoupled by the linear transformation that diagonalizes the right-hand side of Eq. (18) (see
Matzner®° for details) and the resulting combinations here called R, satisfy the equations

d*R s r=r)r-r)[II+1) 3M C 4@ _
;1?%“{’? - 72 = —E At |((R=0, (19)
I
where we find
C=[aA2 +40Q2(] - 1)1 +2) 72, (20) C4 (0 IR
SRR = Ry =, w<0)=D,| e +oaia | (25)

The electromagnetic and gravitational perturba-
tions are then extracted from the R, solutions by
the relations

#,=cos{R,-sinlR_, (21)
i, =sinyR +COSIR _, (22)
where

(23)

cinzy) -2 QI=DUR P
5 :

The decoupled perturbation equations for R, [Eq.
1%¢ are very similar to Eq. (2) for the scalar
field and the general qualitative features of the
evolution of the scalar field aiso hold for R,. For
brevity we outline only the essential details since
the scalar case was carried out in such detail.
Near either horizon Eq. (19) has solutions of the
form R ~e*'**, For the case {kM|<« 1 we can
match the leading terms of these wave solutions
from the », horizon to the »_horizon through the
use of the k=0 solution as was done with the scalar
case, and obtain analytical expressions for the
low-frequency fields between the horizon. The
k =0 solutions are discussed in detail in the Ap-
pendix. Here we note that the solutions are gen-
eralizations of Eq. (6), one being a polynomial
in » and one being a polynomial times a logarithm
that diverges on either horizon [cf. Eq. (A7) (in
the Appendix)|.

We start with initially infalling waves (R*"e“""‘)
on the », horizon. According to Sibgatullin and
Alekseev’s'? analysis in the exterior region
(r>7r,), the power-lawtails, reflection coefficients,
and general analytical features for the Fourier
coefficients defined (as in the scalar field case)
by expansions of the R, fields on the v, horizon
are qualitatively similar to the scalar field case.
Following a similar analysis that leads from Eq.
(12) to Egs. (14) and (15), we obtain the following
picture for the development of gravitational and
electromagnetic perturbations inside the black
hole: On the spacelike surface » =const for ¢ »> M
we find

D [
R*(r:const,1»>1’tl)~-t-2-7{5 1+0 —-— )| (24)

and near the »_horizon approaching the point B

where the D, are constants. From Egs. (21) and
(22) it follows that the electromagnetic and metric
perturbations have similar power-law develop-
ments near the »_horizon. [The complete per-
turbed Maxwell field and the perturbed metric
follow from a knowledge of 7, and 7, (see Moncrief
and Zerilli for details).] Consequently, the ener-
gv density in the electromagnetic field and the
energy density in the Landau-Lifshitz pseudotensor
describing the energy density in the perturbed
gravitational field will have similar power-law
falloff relative to the frame stationary in {»,/)
coordinates. Therefore, exactly as in the scalar
field case, when the fields and the energy tensors
are referred to a frame carried by a freely falling
observer (cf. Gursel ef al., paper I) the power-law
falloff of the fields and energy densities are over-
come by the exponential blue-shift factor [cf. Eq.
(17)] of the observer’s frame as she approaches
the horizon.

IV. STATIONARY EXTERNAL SOURCES

For the special case of perturbations that are
independent of / (i.e., stationary in the exterior
and homogeneous in the interior), the Moncrief
variable 7, is not well defined and the derivation
that leads to Eq. (18) breaks down. However, it
is possible to still obtain an appropriate set of
decoupled equations. Using Zerilli’s® notation in
the odd-parity Regge-Wheeler gauge (i.e., h,=0)
Maxwell’s equations for the {-independent case
are given by

d
l(l+1)f12 =7{;/f23 3 (26)
d (a4 1 d .
- <7;12> - h = (g nﬁ> , @7
f02 =0, (28)

and the relevant Einstein equations are given by
d*h, 2 I{I+1)-2 (y2 4Q
e AR | (= T
40 d .
TR0 A (29)

h, =0, (30)
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where avoided and the decoupling of Egs. (29) and (31)
Voo accomplished by considering Zerilli’s Egs. (14)

?~1-;+% and (16);
Solving Eqgs. (4.1) and (4.2) for /,,, we find 0+ Do = =iy (34)
Co2iv A 4Q f, a (h,
d(ady\ 1+l ( ‘______>; 29 Sy 2 4 __c_>.
ar (—,2 éi,) the )fzs“l(l"'l)‘—('g‘ho) . (31) e nE w hEE l(l+1) 4 d;’(rz (3>5)

The problem is how to deal with A, and f,; in Egs.
(29) and (31). As Moncrief has pointed out,® Zer-
illi’s odd-parity (what he calls “magnetic”) equa~
tions for the functions

N
R{R ==, (32)
and
1
m)
fi I+ 1 fas (33)

may be decoupled by a linear transformation;
however, for the /-independent case (i.e., k= w=0)
the variable h; vanishes. This difficulty may be

J

{rﬂd‘i (:; dd) [Z(l+1)”+iqf}}<f:’£)> - (—g’u 8\Q

It is interesting to note that when Eq. (38) is de-
coupled, the resulting equations are identical to
Eq. (19) with £ =0.

We shall illustrate the case of an electromagnet-
ic perturbation arising from a source current in
the exterior that is at rest with respect to the
black hole by the example of a charged black hole
in a uniform static magnetic field. This situation
is mathematically similar to the scalar case
treated in paper I. The problem is to extend the
field to the interior and solve for the behavior of
the field near the »_horizon.

To match onto a uniform field at » =« we keep
only the /=1 dipole term in the multipole expansion
and align the external magnetic field along the 2
axis. For this case the Maxwell equations decouple
from the gravitational perturbation and we find the
solution that matches onto a uniform field for
large 7 is given by

2
=A(1ujg,;}j (39)

where A is a constant determined by the magnitude
of the external field. From Eq. (26) we deduce
for f,, the value

Jr= —Ar/Q%, (40)

and with these values the field two-form is given by

Taking the w —0 limit, we find

o o
lim [zn (—; ’-“-)] =1im 20 (ﬁw-)
w ) w

w=0 w=0
d [h 4Q .
=38 e [ D) {m)
(%) -2, we

Upon substitution of the new variable 7, defined
by

m=r g (3) -2 37

in Egs. (29) and (31), we find a pair of suitable
equations to describe the /-independent case, viz.,

>(f‘""> : ®8)

r

2\1 Q‘z riz . H ]
F=- - fw" A w’
B(l g ?> sinfw" A w

+B 3+—~ cosfuf A w? (41)
—75
where B =(3/41)'/24/Q? and [w'] is the orthonormal
frame given by
(JA !)1 /2

wi=22 "ar . Wf=rds
s

N r 5 .
wr=wd7, w’ =rsingdy .

Notice that the field between »_ and », contains

an electric part (F;;) due to the fact that the ortho-
normal frame we have chosen is not stationary in
this region.

This solution is finite at either horizon and like
the scalar case (cf. paper I) does not disrupt the
v_horizon. The field does not depend on the time
of an external observer, hence any observer falling
into the hole from the outside at any time will al-
ways see the same electromagnetic field.

V. CONCLUSION

We have calculated the evolution of scalar,
electromagnetic, and gravitational test fields in
the interior of the Reissner-Nordstrom geontetry
near the “intersection” of the event horizon
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FIG. 2.
The results presented here are for the particular case @ =0, 9M and I = 2; however, additional integrati
tive parameters support the qualitative features illustrated here. (a)—(d) show R, , R‘z and R_, R. , respectively,
in relief as functions of »* and t. The 7* coordinate ranges {rom 50M (near event lhor\'zc'm) to-483 (near Cauchy hori-
zon) and t ranges from-50M (o 50M. The separation between lines of constant * is 2M for {a) and (¢) and 1.6 M for (b
The initial wave form is taken to be a Gaussian of unit amplitude. These are shown on or below the figures,
(e) and

and (d).
The asymptotic exponential falloff of the derivatives of R, and R_ near the Cauchy horizon is shown in (e}~ (h}.

(f) show the exponential behavior of R, , and R_ ,,, respectively, at constantv in the neighborhood of the right-hand side
of the . horizon. (g) and (hj show the analogous behavior of R, , and R_ ,, respectively, at constant v near the left-

hand side of the 7. horizon.
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FIG. 2. (Continued)

(¥ =,) and the Cauchy horizon (»=v_) from initial
data appropriate for long times after the formation
of the charged black hole. The behavior of the
fields in this region is qualitatively independent
of details of the collapse process. In particular,
the results are independent of whether the sur-
face of the collapsing body approaches the left or
right part of the »_horizon (Fig. 2).

In this sense these results are universal and
may be extended to the final stage of the evolution
of a charged black hole} not just a collapsing
body. The general picture is that at fixed times

(» =constant) from the event horizon all perturba-
tions damp according to a power-law-type behav-
ior as we move away from the surface of a col-
lapsing body (i.e., as t —«). The metric becomes
increasingly spherically symmetric, similar to
the behavior of perturbations inside a Schwarz-
schild black hole (Ref. 3). However, freely falling
observers will see an infinitely blue-shifted energy
density or an infinite tidal shear as they appreach
the »_horizon. This in turn suggests an instability
in the geometry developing within the »_horizon
and its possible transformation into a spacelike
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curvature singularity.

We have not taken into account the quantum-
mechanical process of ﬁair creation by the clas-
sical electromagnetic and gravitational fields.

In the exterior region (»>r,) the Hawking process
takes place on a characteristic time scale
G2MP/lic*. The background electric charge @ may
discharge itself by means of e*— ¢~ pair creation
in the outer region via electromagnetic interac-
tions in a characteristic time GM/c? (e®/Fc)5/? if
eQ > Ghn 2M?/Kc, but for smaller values of @ the
process proceeds much more slowly (and even
stops completely if eQ <4Gm M). The Hawking
effect will then dominate only long after the forma-
tion of the tails, Preliminary considerations® in-
dicate that these effects alsoc lead to a disruption

[
<

of the »_horizon. We hope to return to this ques-
tion elsewhere.
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APPENDIX: ZERO-FREQUENCY, ODD-PARITY SOLUTIONS OF THE ELECTROMAGNETIC AND GRAVITATIONAL
PERTURBATION EQUATIONS

The electromagnetic-gravitational perturbations in the small-wave-number limit satisfy Eq. (19) with
k=0. [Also, see Sec.IV Eqg. (38).] Setting #=0 and changing the dependent variable by

Gtert
and using a dimensionless independent variable x =v/2M, Eq. (19) becomes
&G (—4 1 1 \dG, —(l—l)(l+2)x+C”—3]
gt | —— G,=0 1
o T\ % +x-—7”+x-—‘rj) dx * x(x —r)x —7r7) £ 70 (A1)

where 7! =v,/2M, v'=v_/2M, and
c., =§ﬁ{3M_ ()[907 + 4Q2(1 = 1)1+ 2) } /2} .

Notice that
C,(C,,-3)=~4a%[2-1(1+1)], (A2)

where a =Q/2M.
This equation is of the form

P Sy 8 ,*f._)_;v:{_ﬂ..iéﬁi.:f.] -0
dg* ' \3 ¢-1"3=a)dq" [gla-Dig-a) >~

(A3)

if we set g=x/r/, a=r)/v!, p==(C,,~3)/7),
y==4,6=1, €=1, n==(1+2), and B=(l - 1). 7,
B, v, 5, and € satisfy the relation

N+B8-y—-0-€+1=0.

Such an equation is called Heun’s equation?®' and
represents a Fuchsian equation® of the second
order with four singularities at x =0, 1, @, and
<. The constant p is called the accessory param-
eter whose presence is due to the fact that the
solution to a Fuchsian equation of second order
with four or more singularities is not completely

[

determined by the positions of the singularities
and the exponents at those singularities.®

Equation (A3) [or its equivalent Eq. (Al)] is
known to admit polynomial solutions if both of the
following conditions hold:**

(i) 7 or 8 should be a negative integer.
(ii) The accessory parameter should have one
of its special values called the eigenvalues.

Condition (i) is clearly satisfied, but at this point
one is not sure about (ii). In what follows, we will
examine the solutions and the nature of the sing-
ularities of Eq. (Al). We will drop the + subscript
on G, and C,, with the understanding that one takes
the appropriate root of (A2) for the case one has.
Set

G=Y ax"™. (A4)

One then obtains the indicial equation
s(s=5)=0ors, =5ands,=0.

We will try to obtain the solutions of (A1) by the
method of Frobenius.?

In this method, one chooses the smaller root of
the indicial equation, namely s,=0. Taking a, a
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[
constant different from zero, we find a, =((C, - 3)/
40?) a, and the remaining coefficients are given
by the recursion relation

a¥(n+2)(n-3)a,,+[n2-n)+C la,,
+(n=1-2)n+1-1)a,=0. (A5)

When n=3, Eq. (A5) implies a consistency re-
lation between a, and a, which were calculated
before. This is a fifth-degree equation in C, and
is of the form

{c,(C,-3)+4a%[2-1(1+1)]}{a cubic in C}=0. (A6)

Equation (A2) implies that this is always satisfied.
[Incidentally, the cubic shares no common roots
with Eq. (A2).] Since Eq. (A6) is always satisfied,
the coefficient a, is left totally arbitrary. Two
linearly independent solutions of Eq. (A1) can be
obtained by setting a,=1, a;=0 and q,=0, a;=1.
Call these solutions G, and G,. From Eq. (A4) it
follows that both G, and G, are regular at x =0,
i.e., the point x =0 is an “apparent” singular point
of {(A1). [An apparent singular point of the differ-
ential equation y”+2{x)y’+Q(x)y =0 is the one at
which the coefficients P(x) and @(x) blow up but
the solutions do not.}

The following tests®® can be made to show that
x =0 is an apparent singularity:

(i) Write the equation as 7+ P(x)y’+Q(x)y =0.

(ii) Set P(x) =p(x)/x; p(0) should be a negative
integer (-4 in our case).

(iii) Calculate s, — s,. It should be a nonzero
integer (5 in our case).

(iv) Finally, the case withtwo arbitrary constants
{as in the case of G, and G, above) should result.

If any of these fail, the singularity is real.

We will use these tests to show that the sing-
ularities at x=»! and x =7’ are real [i.e., one of
the solutions at x =7, and x =¥’ contains In(»] - x)
and In(x — '), respectively]. Consider now the
recursion relation (A5). Notice that whenn=7+2,
the coefficient multiplying a, vanishes. This fact
can be used to generate a polynomial solution to
Eq. (Al). The prescription is the following:

(i) Set a, =1, leave a, arbitrary.

(ii) Calculate a,,,. Choose a; so that a,,;=0.
(This is always possible since a,,,=0 is a linear
equation in a;.)

Then a,,, will be zero because of Eq. (A5) and
so will a,,;, ... . Hence the series will terminate
and one will obtain a polynomial of order [+2 as
a solution. This procedure corresponds to taking
the right linear combination of G; and G, above to
get a polynomial.

The first few of the solutions are given below:

1=1: (special case)

3 6
C=l-g@* g™

1=2:

C,-3 C, -3 1
G=1+—3—1&—2——x-—41?— S xt
1=3:

C,-3 C,-3 ., 5 , 30 s

RRR T P S S (e Pl

. 21C,-15) . 84 1 .
2a°(C,-6-60°)" @ (C,-6-6a7)

The region of interest in our case is ¥ /< x< ¥/,
But since the solutions above are polynomials,
they will serve as well as any other regular solu-
tion of Eq. (Al) between »’ and »!. (Indeed, these
are the solutions that match to the waves outside
properly.) We should now determine the solution
of Eq. (Al) which is not regular at ] or »/. The
singularities at these points are real. This can
be seen as follows. (We will take »/ asanexample;
the results are identical for »].)

Try an expansion of the form

G=3 b,xm,
id

where x’=x — v/, One obtains the indicial equation
s?=0, i.e., s,=s,=0. Write the equation as
Y+P'(x")W+Q'(x")y =0, where the single overdot
denotes differentiation with respect to x’.

Now set P'(x")=p’(x’)/x’, then p’(0)=1. Using
the method of Frobenius® does not lead to the case
with two arbitrary constants. It is clear that all
of the tests mentioned before give negative re-
sults. Hence the solution at »’ will contain
In(x’) =1ln(x — »’). If G’ is the polynomial found
above, then the irregular solution at x =+ is of
the form

G"=AG'In(x - rj)+;b,,x"‘, (AD)

where A is a constant and the b,’s can be deter-
mined by the method of undetermined coefficients.
The precise form of the b,’s is not important in
the calculations we do in the main portion of the
paper.

From the expressions written above, it follows
that for the regular solution

G! RlAr,)

¥
P (-1)n e
R, v’ R;(r_i (-1) v’
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Let us normalize this solution so that R/(»,) =1,
then

’ +] 7/l'-
RIr)=(-1)" 5=
If R denotes the irregular solution normalized in
such a manner that

/5
RIas y=r)= ln(

-\
- +¢const
/

then
v

RMas r—7)=A 1n< ;r} +const

The constant A can be determined by the Wronsk-
ian of Eq. (Al),

dR/ dRr;
N O A - T
W P R/ o R =const,

near the points v* -~ and y* -+, We obtain

A=RIr)=(-111.
Tv
From this one can determine the zero-k behavior
of the coefficients A(k) and B(k) defined in the
main portion of the paper. The answer has the
same form as in the scalar case.
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Multipole Moments for Stationary Systems :
The Equivalence of the Gercch-Hansen Formulation
and
the Thorne Formulation*

Yekta (Rirsel

W. K Kellogg Radiation Laboratory
California Institute of Technology, Pasadena, California 91125

ABSTRACT

It is proved that the multipole moments of a statiocnary, asymptotically
flat system in general relativity theory as defined by Thorne are identical,
aside from normalization, to those defined by Geroch and Hansen:

- 1 . _ (L+1) g
!.Q!lv.....uz - m fﬂal ...... o (%1 ...... o 2 (Zl __1)” Cygonn @y
Here Q%l ,,,,,, g is Thorne’s mass moment of order i; JZ ay...q I8 the
Geroch-Hansen mass morment; ,% L
order £, and

o is Thorne's current moment of

ay.....q; is Hansen’s current moment.

The mathematical technigues of Thorne are combined with those of
Geroch and Hansen to prove several new theorems about multipole
moments, and to give new proofs to scme of the old theorems.

*Supported in part by the National Science Foundation [AST 79-22012]
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§(1). Introduction and Summary

Two very different multipole moment formalisms are widely used in current
research on asymptotically flat, stationary or slowly changing systems in gen-
eral relativity. The first, which is beautifully elegant, was developed for precisely
static systems by Geroch [1] and was exteﬁded to precisely stationary systems
by Hansen [2]. The second, which is rather ugly but nevertheless has much
computational power, was developed for slowly changing systems as well as pre-

cisely stationary ones by Thorne [3].

A The Gerocch-Hansen Formalism

The Geroch-Hansen analysis [1,2] is formulated in terms of the 3-
dimensional manifold ;ﬁﬁ of time-translation Killing vector trajectories. A 3-

metric kg, is induced on ﬂaby the spacetime metric g4
hog = — gzgap+fafﬁ . E = Killing vector; (1a)

Rab = — oo Jap + Jou Yoo  in coordinates (£,z%) where £ = —E%—- (1b)

(Here and below the notational conventions of MTW [4] and of Thorne [3] are
used, including "geometrized units" with ¢ = G = 1). Geroch and Hansen confor-

mally transform j’ﬂ to obtain a new 3-manifold mmth metric

iLuab = Qg haa ' (Za)

{) = (conformal factor) & iz— at large r, (b)
T

where 7 is the distance from the gravitating source. This conformal transforma-
tion brings the spatial infinity of physical spacetime and of m inte a "finite"

location in j%q, where it becomes a single point A. Geroch and Hansen demand
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that the conformal factor ) and the metric i'i:w be smooth at A in the sense that
there exist coordinates zZ there, in which Q and f':a% are infinitely differentiable
at A Beig and Simon [5] and independently Kundu [6] have proved that for any
stationary spacetime, there do exist ((,2%) with this smoothness property, and
that I'?a'; and ) can even be made analytic at A. Geroch and Hansen introduce

into m scalar fields

.
By =028, ‘I’Jz=(;_,;1‘)\“)(>~2+wz"1)- (3a)

-1
2

g; =0 ‘I’J . q)":(élf) W, (Bb)

where A and w are scalar fields given by
A=§ (3¢)
Vo = *EAdE) . (3d)

Here *@/\ d.g) is the fwist of § written in the notation of exterior calculus,

They then define symmetric, trace-free (" STF ") tensor fields P¥, o and
PJ@:1 ...... oy O1 ﬁ%by
PA=34 (4a)
[ STF
Ploain = | DogsiPapon = (P @D Ry Py | (40)

where ﬁa is the covariant derivative on j]%’[, F?'ab is the Ricci tensor of ﬁl and
the superscript " STF " means "take the symmetric, trace-free part” (cf. equa-

tion (2.2) of Thorne [3]). Geroch and Hansen then define the mass Il-pole
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J/ Q... = Pﬂal,..,..a‘(A) s (5'3)

T oo =Pl o (5b)

The general idea of this formalism was invented by Geroch [1], and he gave
a precise formulation for static spacetimes, which differs in some details from
the above, but which yields precisely the same mass moments as the

above. The above version of the formalism is due to Hansen [2].

The beauty of this formalism lies in its "general covariance”, i.e. in the fact
that it does not rely on any special choice of coordinate system. This beauty
carries with itself considerable power for proving general theorems: Xantho-
static if and only if all its current moments vanish, and also that an asymptoti-
cally flat, vacuum, static spacetime is flat if and only if all of its mass moments
vanish. Beig and Simon [5] have proved that the multipole moments given byv
Geroch and Hansen are unique up to isometries, and that any stationary, axially
symmetric, asymptotically flat, vacuum solution of Einstein's equations

approaches the Kerr solution at infinity [8].

B. Thorne's Formalism

Thorne's analysis [3] is formulated entirely in the physical spacetime. It is
a stfaightforward extension of the standard procedure of "reading out” the
mass M of a source from the time-time part of the metric, and "reading out”

the angular momentum J from the time-space part of the metric.

0
gocz—ll—g,ff—"'a(%g‘) ; (6a)

i

zt 1
goj = —R i ;‘5"4" 0 { -?'_8—) ) (6b)
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_ 1
Gj = 05 + O ( ;_“) , (6c)

1
where r = [(:c‘)2 + (2?)* + (:r:s)z]2 (ct. equation (19.13) of MTW [4]). Of course,

any such read oul requires the introduction of a coordinate system which
becomes Minkowskii sufficiently rapidly at large radii. Herein lies the ugliness of
the Thorne’'s formalism: it requires the use of coordinates chosen from a special
class, called "ACMC" ( Asymptotically Cartesian and Mass Centered ). De

Donder coordinates are in this class.

In an ACHMC coordinate systemn for any precisely stationary. vacuum,
asymptotically flat spacetime the metric coefficients at 0 ( 1/7'*!) contain only

multipoles of order < I, and the mass dipole vanishes entirely:

M SR 2(RL-1)1!
Goo=—1+ T+ tgﬂlﬂ [ ( 7] ) egq‘ Ny, +’»5"z—1} ; (72)

Fa=0, | (7b)

- [
_ 1 4 (RL—1)N
gﬂj - IZ:I 7.!.+1 i - (l‘l’l)’ Sjka; Q%A‘_q NAI + S£-1 } s (70)
_ oy 1
Gie = 0 + LZQTHI S - (7d)

Here S, is a symbol denoting a quantity which is independent of » and has angu-
lar dependence with spherical harmonics of order 1,1 —1,....,0; also the subscript

4 is shorthand for o;...... a;; Ny, is shorthand for ng, ... Ny, Where n, = z%/ T ey

is the flat space Levi-Civita tensor, and there is here and below an implied sum-

mation over repealted Latin indices. The quantities 4= % — and
Q%g = %1 ...... q Are the source's mass moment and the source’s current

moment of order 1.
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Thorne’s formalism has a number of properties which make it powerful for
astrophysical calculations: First, it is a specialization to the stationary case of
Thorne's multipole moment formalism for asymptotically flat systems which

change dynamicaﬂy on time scaies T > L = (size of the source) , where

IT;I (8)

( See § TIX; i.e. § IX of Thorne's paper [3].) Such "slow motion" sources radiate
gravitational waves, and the multipole moments which one reads off the near
zone form (7) of the metric are identical to those which characterize the gravi-

tational radiation field in the "local wave zone" (§ T.IV ):

T 1 B
b = g_-:.'a?‘ (L+1)! (t)cgjicAi_,z(t r) Ny, (9)
7
w1 8l '
+§27 (i) oPal O Fya (t—) ng Ny,

(Here " TT " means "take the transverse, traceless part”,

tF

" (t—r)" means "evaluated at the retarded time f—r ", and a prefix super-
script (I) means "take L time derivatives".) Second, there exists an explicit
prescription for computing from j 4, and %z the metric coeflicients g,z in
de Donder gauge to any desired order in 1/7 { § § T.IX and T.X; also see Appen-

dix). Third, for any source whose non-vacuum interior can be covered by de

Donder coordinates, the moments j 4 and y 4, can be computed from

integrals over the source { § T.V). In the precisely stationary case, the source

integrals in the de Donder coordinates are:

STF
A‘ = {f‘r‘m XA{ d,sx ]

, (10a)
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STF
%‘ = {faagpq zP 7% X,  d%z . (10b)
where 7°° and 7 are the "effective” energy density and momentum density of
the de Donder formalism ( equations T,5.3 ), and X = z",... z™. For weakly
gravitating sources 7°° becomes the mass density and qg,;‘ is its I'th moment

as usually defined in flat space, while g4, 2P 7%  becomes

>

" p# X7 " = (angular momentum density) and % is its (I -1)'th moment.

Recent astrophysical applications of the slow motion version of Thorne's
formalism include analyses of g-mode pulsations of neutron stars [9], torsional
oscillations of neutron star crusts [10], the precession of a slowly, rigidly rotat-
ing system with arbitrary shape and arbitrarily strong internal gravity [11], and

the gravitationally forced precession of a rapidly rotating black hole [12].

C. The New Results in this Paper

The main objective of this paper is to show that for precisely stationary sys-
termms, the moments of Thorne are equivalent to those of Geroch and Hansen;

more precisely, that

11

Ma= @D P (11a)

[
Fn= [ (zi)

@-1) (11b)

The proof is given in §(2). This equivalence is then used in §(3) to prove new
theorems about multipole moments. In this section we also review and sketch
new broofs to several old theorems and pose an important conjecture about

multipole moments in general relativity.
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§(2): Equivalence of Geroch-Hansen and Thorne Moments

In this section we prove the equivalence of the Geroch-Hansen moments and
the Thorne moments; i.e. we derive equations (11).As underpinnings of our proof

we first present, in the next two paragraphs, two mathematical lemmas:

A Mathemalical Lermmas

Lemma 1: Let {h“b .x“} be a metric and a coordinate system which are

i
harmonic on a 3-dimensional manifold, ie. |[(R)® R® |, =0 where
h =det|| hy || . Let w be a conformal factor and z¥ be a new coordinate system

so that

;;ag = &)2 hcd

oz¥ 62:3'
. 12
0zt ox¢ (12)

where i?ag is the conformally transformed metric in the tilded coordinates. Then

'l— ol ~
{E‘E;- , z& ] are harmonic, that is to say | (B)® 2% | . = 0, if and only if z¥(2®) are
solutions of the differential equation
Dy [G)Db xE]=O , (13)

where D, is the covariant derivative with respect to hy, , and z?% is regarded as a

scalar function of z®. This equation can be written as

8 9z® | _
h@b e W 5‘;5“] =0 (14)

since {hw,x“ } are harmonic. Proof: Denote 8z%/8x? = X%, Then,
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fand ~ ~ "2
A =det | by || =det| w?he X5 X% || =R {det I| X% |{} , (15)

where h = det || hg ||. Then

1

Kﬁ‘?}_g = () het [0 X7, XP, [aet |, |1 ]5 , (16)

N]v—a

[
Q)

One can show that

X%, = 1 [aet | X7y || 65 305 x5 (17)
This leads to

{ il L !’ 1 ~

o~ i R)? 1 L 4 8zf
[(h)2 Rab | = — w (R)* R° ] , (18)
v det | X%, || (h)éL 3z¢ |4

which gives

oy L »

l(}?)z}?m’ 5= ———@l—r———Db [G)D° xE] . (19)

det [| X% ||
[ o1

So, in general, l(i?)z Re® g = 0 if and only if D, [wDb z% ] = 0. QED.

Lemma 2: Let {h“b , % } be a positive definite metric and a coordinate sys-

tem on a 3-dimensional manifold, with A% harmonic and analytic functions of z®
in some neighborhood of a point A, and with Ag, (A) = 6. Let © be a conformal
factor which is an analytic function of the z% with w(A) = 1, and introduce new
coordinates z% in which the conformally transformed metric

g 0z% ozb
R = of pet 22 (20)
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is harmonic, and which have the form
z% = x% + O] (z°)®] nearA. (R1)

Then the new coordinates z% are analytic functions of the old ones z%; and R
and w are analytic functions of z% in some neighborhood of A. Proof: By Lemma
1 z%(z®) must satisfy the differential equation (15). This differential equation is
elliptic in some neighborhood of A since h® and w are nonzero at A. The analyti-
city of h% and of w together with Morrey's theorem [13] then implies that =%
are analytic functions of z%; and this, with definition {20) of P immplies that o

and ffzﬁ are analytic functions of =%, QFD.

B. Proof of Equivalence

We now turn from mathematical lemmas to the proof of the equivalence of
the Geroch-Hansen moments and the Thorne moments. Our proof begins by
introducing into the physical spacetime manifold % the stationary, de Donder
coordinate system ( z°, z® )of Thorne's formalism. Because 8/ 8z° is the Killing
vector, the de Donder spatial coordinates z® of % are constant on Killing tra-

jectories and thus can be used as coordinates for the manifold m of Killing tra-
jectories. Theorem: When this is done, the resulting {hab ,x“} are harmonic.

Proof: £ = 8/ 80 is the Killing vector. So,

£ =6% , 0% = Kronecker § , (22)
and;

£ = Joa - (23)

A= %’2: E“ga: 900 - (24')
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Hence,
hay = =900 b + Goa Joo (5)
hob = g% , (=6)
—Hoo
h = det || has || = (~goo)® [-det l ga ] - (&7)

The de Donder gauge condition is:
o) o]
(~9) g% lg=0 , (28)
where g = det || gap ||. Equations (26), (27), (28) imply
LwyF e | |
(R)2R® |, =0 (29)

QED.
The metric hy, of ﬂa and Hansen's potentials &5 and $; are easily com-

puted from Thorne's spacetime metric (7). By combining (7) with equations

(25), (26) and (3) we obtain

o 1
hoy = 0gp + Z}a sl SN (30)
S
R = 5% 4 izz ;_'{T,.TSL—I R (31)
_M S
A= gogg=-—1+ T-i- ¥+ Z ',;TITSl—I ; (32&)

where

= 1 22— g
¥=) o (u Yo G, N, (32b)
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Equations (3c), £€* = 6%, and the spacetime metric (7) imply that

=0, (33)

. g :
©; = eoige 9% 9™ |Gorm — ;!Z’;n o ] (34)

oo f 4 { Y l
— _AL(RI-1 1 i 1
- lgl (T+1) Eije Ejmay ym"{-x i PR NAi Ik + Fi2 S
where £gi5 is the curved-spacetime Levi-Civita tensor, while g;; and Ejma, BTE flat

space antisymmetric symbols. From this expression, w, = w,, and the fact that

all the tensors 50‘4‘ are symmetric and trace free, it follows that

- i
1 AL(2L -1 ;
©= !gl St ]'- ((z+1)g)' e)(ﬂA; Ny + S£~11 . (35)

Equations (32) and (35) give

M, 1 -y

Gy = g}z orEs l T yA, Ny + 3:—1] - (38)
& 1 | ety

¢y = El s I -+ ,QA‘ NAZ + Sz~1} . (37)

We must now choose a conformmal factor (I to take us from m to m {egs. R

above). One attractive choice might be that of Beig and Simon {.5};

!\1‘»—-

Ops = (1/2B% | (1 + 435° + 40,7)

- 1} . (38)
B = constant chosen to make 'ﬁu ﬁb Q= 21{{@ at A,

which has the beautiful property that, if z%pg are coordinates in which

Na»;gs = F hg is harmonic, then (Opg, ??55135 , '5;4;33 , and 3;55 are all analytic
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functions of z%5g; see Appendix. Lemma 2 enables us to generate other attrac-
tive choices: We just multiply OQps by any analytic function © of z% 5o with
w(A) = 1kto obtain our new Q = w Qpg, and then change to coordinates z% in
which the new hgy = 0% hyy = o® hgg® is harmonic; Lemma 2 guarantees that the
resulting }Tﬁ.g, Q, ?{3'1@. and %J will all be analytic functions of the new coordinates
z%, One such choice is that of Kundu [6]:

_ ‘I’Hg'i" ‘177,;2

Qx = T J is the current monopole , (39)

which is related to Qg by Qx = © Qg with

B o p? q,gz + @Jz _ %MBSZ + ’('1‘5.,882
YT MR TR 7 (40)
(14495 +4%,2)° -1

which is an analytic function of z& gg. Another such choice is that of Geroch [1]:
O =04%/ M2, (41)

which is related to Qggs by Qg = w Qpg with

B 52 ¢’H2 B gEBsz
(1+ 4857 +48,2)° —1

which again is an analytic function of z%zg. Because () is the simplest of the

three, we tentatively select it. Equation (38) for ¢4 implies that

Qg = ;1?:-{1 + ;22 ;lr{ Y 5, Ny, + Si-s ]} : (43a)

where

%, - HE- { zg& ]+ (43b)

Ll
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¢ 2(em—1)1 2(em 1)y N —
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and m + m' =1, The coordinates zZ in which f';ab = Q¢? hy, is harmonic and ana-
lytic are related to the harmonic coordinates z® of mby the differential equa-

tion {14) of Lemma 1

[ i
aw O Oz
h =
Fy lQG Py ] o, (44:)

which can be solved analytically using the ansatz

~—xaf had 1
xa._.-;—z—»ll-}-lg:z;?eﬂ{A{NA‘

o L
* ;sz i+ { %aAH Ny, + S| . (4D)

By combining equations (30}, (43), (44), and (45) one can obtain explicit expres-

sions for the STF constants (ﬂ{ 4 and (% 4 of this ansatz in terms of
Thorne’s moments f 4, and y 4. Fortunately, we shall not need these com-
plicated expressions.

To simplify subsequent steps of the calculation we shall now modify our con-

formal factor slightly. In place of Qg we use

Q’=ng,wsl+i %A‘XK‘ , (4—6)
i=2

where %A‘ are STF constants to be fixed below and w is obviously an analytic

function of z%. We also modify slightly our coordinates by means of an analytic

transformation:

x“’:xail—i-i @AIX&

=2

+ i Sy, xhape (47)
i=2
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We choose the three families of STF constants %Az, @A‘. and (D@A; in

such a way that (43), (45), and (47) combine to give

. ¢ 1 & S
.'Ea = L e . 4_8
A :Z;g Tt (48)

1 I e, Sy ]
O=wl==11+), i (49)
wiig r l ;2;;2 7t ] VEd)
Then the conformally transformed metric (eqgs. 30, 48, 49) is
Bl = B hyy (82°/08z% ) (9z%/ 8z ) (50a)
= o® Py (8257 8z%) (823 / 8z®")
=8y + 2,7 St
1=2
and the transforrmed fields &5 and &, (egs. 36, 37, and 49) are
~ ”'l“ “LN
‘I"}J=Q 2@M=GZ¢H (50b)
o [ (o7 1yt
=M+2{ 2ll’1 , jA"XAg +7"£Sl—1}
i=2
~s "1_ —'I:_N
oy =10 2@;‘—‘&) 2@; (500)‘

= (I+1)

_ 5—3{ AED @ S;-l} |

Moreover, because w©, z%, ffaz-;, %E, %J are all analytic functions of z% near A,
equations (50)-(52) guarantee that 2’y 'y, and &' are all analytic functions of

14
%,
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The computation of the Geroch-Hansen moments from equations (4), (5),
and (50) is then straightforward. Because the 7" part of 2’y involves spherical
harmonics only of order 1 -1, I-2,....... , 0 (eq. 50a), the connection coeflicients of
ﬁ’an and the Ricci tensor terrns contribute nothing to the moments. And
because of the analyticity the unknown terms in (50) denoted S;_; never give

any problems in the computation. The result of the computation is

A 4, = 1'th mass multipole of Hansen = {21 ~1)!! jf’z (51)
—7 : _ 2l
g& = I'th current multipole of Hansen = m—)——(m—l)if gﬂA‘ . (8R)

§(8). Theorems and Conjectures About Multipole Momenis of Stationary,

Asymptotically Flat Systems

In their pioneering work Geroch [1] and Hansen [2] posed several conjec-"
tures about multipole moments of stationary, asymptotically flat systems.
Some of those conjectures have been proved by Xanthopoulos [7], Kundu [6],
and Beig and Simon [5] using the Geroch-Hansen formalism. Others of those con-
jectures have evaded proof by Geroch-Hansen methods but are trivial and obvi-
ous in Thorne's formalism. Now that the equivalence of the two formalisms is
known, we can combine their associated theorems thereby fleshing out our
understanding of multipole moments in general relativity. Below we list the
various theorems and conjectures and briefly describe the status of their proofs.
Note that in Theorems (i)-(v) we tacitly restrict attention to spacetimes for
which the multipole expansion of the metric converges; while in conjectures (vi)

and (vii) we address the issue of convergence.
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Theorem: A stationary spacetime is stalic if and only if all of its current
moments vanish. Proofs: Xanthopoulos [7] has given an elegant proof using
Geroch-Hansen methods that if the current moments vanish, than the
spacetime is sta’iic; and the proof of this would be difficult in Thorne's for-
malism. That a static spacetime has vanishing current moments is trivial
to prove in both formalisrus.

Theorem: A static spacetime is flat if and only if all of its mass moments
vanish. Proofs: Xanthopoulos [7] has given an elegant proof by Geroch-
Hansen methods. The proof in Thorne's formalism foﬂows trivially from
equations {7) for the moments in terms of the metric and from Thorne’s [3]
unique and precise algorithm ( see Appendix ) for generating the metric in

de Donder coordinates from its multipole moments.

(iii) Theorem: A stationary spacetime is axisymmetric if and only if all of its

(iv)

moments are axisymmetric. Proof: Again the proof in Thorne's formalism
follows trivially from equation (7) for the moments in terms of the metric

and from Thorne’s algorithm for the metric in terms of the moments.

Theorem: Two spacetimes with the same multipole moments have the same
spacetime geometry at large radii, where the multipole expansion of the
metric converges. Proofs: Beig-Simon [56] and Kundu [8] proved this
theorem using Geroch-Hansen methods. Again the proof in Thorne's formal-
ism follows easily from equation (7) for the moments in terms of the metric

and from Thorne's algorithm for the metric in terms of the moments.

(v) Theorem: Any stationary, axially symmetric, asymptotically flat solution of

- Einstein’s equations approaches the Kerr solution near infinity. Proofs: This

was proved by Beig and Simon using Geroch-Hansen methods and expanding
the gravitational field to quadratic order in 1/7. This follows trivially from

the explicit form (7) of the metric in Thorne's formalism; cf. §XI.D of Thorne
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[3]
(vi) Conjecture: Given any two sets { F 4 &OA; } of symmetric, trace-free

1
tensors satisfying l F 4, Ny, ) < (é‘fﬁ{%ﬁs’ and

(t+1) MLt
! ngA‘ Ny, ]< 2 (BL—1) for all Ny and for some constants M and L,

the metric generated as an infinite series by Thorne’s algorithm will con-
verge;, and consequently, there exists a unique spacetime geometry with
these moments. Status of Proof: It is not difficult to verify that allthe

pieces 7,° of Thorne's metric (as defined in his §X of [3]) individually con-

verge; a proof that the series [, = zyaﬁp converges has not yet been
P

found.

(vil) Conjecture: Given any stationary, asymptotically flat, vacuum solution of
Einstein's equations, the moments computed by Thorne's method Wﬂl
satisfy the conditions in (vi) for some # ( the mass of the "source”) and L (
its characteristic "size” ). The moments calculated by the Geroch-Hansen
method will satisfy a similar relationship as determined by egs. 51-52.

Status of Proof; A proof has not yet been attempted.
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Appendix

Analyticity of the Beig-Simon Metric irf&g
and

Explicit Form of Thorne's Metric g,

In their proof for the analyticity of the metric Nag. Beig and Simon [5]
require that hz be a C+® metric on j%{ (A function is said to be of class C™® if
and only if its n-th derivatives exist and are Holder-continuous with exponent
0<a<1) In this Appendix we will show that this condition is satisfied by
Thorne's metric by explicitly calculating the first few terms (up to order (1/7°))

of Thorne's metric.

A Algorithm for calculating the metsic to any desired order

The foundation for the computation is
g“ﬁ = 7]0‘18 — heB = 77“3 — i ,),pa,& (Al)
=1

where Q¥ =(-g)g® (—g)=(-det]g®| )" g is Thorne's metric and

p is a "nonlinearity parameter”. Define ¥ = },7,%. One raises and lowers
p=1
indices on 7, “® with 745 which is the flat space metric. The linear terms 7,* are

(see §T.X)

4t e azi-1yn Fa s
7lgo = 7,90 = - +122 (Bl—1) L A

= - e (A.2)

4l(2t—1)1 Eirg & PA_y

1 = 0= N

7
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P =717 =0 (A.4)

One then calculates next order 7},“3‘5 by integrating the differential equations
7o = Wp®f (A.5)

where W_,{,“'3 is made entirely oul of lower p 7" s than the one in question and is

given by

Wpaﬁ = {"%‘ g“ﬁ gl\p '})W.p 7pﬂ,v + g“" gy.v 7ﬁv.p 7’up,)\ (A'e)
+ g Bu 7o 72— Ban B% 700\.11 7“6#@

+

[2 82 gov g g][2 By B B B ]rarm

O:]r—'

p-order part
- 78\#.31 yﬁu# + 7a’8.pv 7”‘,}

Here Qo is the matrix inverse of ¢,
Bog = Mapg T Yapg + Ve Yup 7V Vg + . , (A.7)

and all the differentiation indices in equation {(A.8) must be spatial 'in order to
give a non-zero result. Equations (A.1) through (A7) are all that is needed to
calculate § °f to any desired order. One convenient way of keeping track of
orders is to associate ( or just multiply ) 7% with a parameter A which will be
set ;to 1 when the calculation is finished. Then 7,*® will involve only the terms
witl%x M2, 73%8 will involve only the terms with AS, ... etc. One starts with ¥,°f and
goes up the chain one order at a time. This algorithm can easily be imple-

mented on an algebraic manipulator. The hardest part to get through is the
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integration step, equation (A.5), but all the integrations are reasonably simple.
The author was able, with little difficulty, to implement the algorithm described
on the algebraic manipulator MACSYMA with its indicial tensor manipulation

package.

B. Lxplicit form of Thorne's metric
Here we list most of the relevant functions up to order (1/7*). We will also
give a complete list of 7},'“‘5 which will enable the reader te calculate all these

functions up to order (1/7°).

ooy _ AM _wM* B ﬂuﬂanb~8M3+01)
g™ = r 7R 73 73 ('r‘*
. REi y;c 7y M 4 Ejp y}cm 7 Ty 1
goJI——J‘-;‘é—"—*’—l+T+ 2 78 +0(4)
. . MR 1
ng = 53k - ;?-nj e + O(F
_ al om? . 1612 . 6 Fup i my 1
gog = —1 + - — e + o + o 2 + 0(;‘;)
g____zsf"‘ c%'m 1+3M e e%cmﬂa%+0 1
% T T 73 (7‘4)
_ MR 1
B = 0j + o e+ 00)
_ 2M 2 M2 M3 3 ab Mo My 1
oo = —1+ r | 72 | 43 + 73 * 0(;’;>
g _ Ré&ju e% k2] e M % k2] 4 €1 %m 7 i, 1
9oj =~ 2 + 3 - 3 + O(—
7 T T 7

2M MR 2MB
Gjx = 5jk [1 + T} + ;—2‘”{6;(!:: +’flj 77'}:] + —:;s'“*nj The
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3 ﬂm n 'n,b 1
+ 5 - 63}, + O(F)
g0 = i RH _2ME_2H° 3 Fab e M s ol
T r? 73 7S r4

o — 2 &kl i m, _Rem M K L, AEm S, T4 T +0(_1_
g7 = T 73 73 7‘4)
Y 2 M MR ; M3 .
g’kwé‘l"[l—r— +F[éJk—ﬂjﬂk}——;—5-[4531‘—27Ljnk}
3 :
- Jabsna %ot 4 0(2)
T r
A =goo
2 6 Femem 0
=gt -3 +0()
_ 2 Q%nk o 1
w=-———p—+ 0(F)
H #,3 Faram 1
@y—;—~+r3+-§— -5 +0(4)
f%cnk 1
= + =
®s ) 0(,.3
1 21> B Py e 1
Qe = |1+ 73 e T oGE)
0 :_L1+2M2+3e¢aananb+ ‘%‘%%%4—0(3——)
T re Hr? P 73

M| MR 1
::5 —_ ] e + —
hap = 0gp \1 p A Ty Ty 0(74)
2 | 2
ab _ sab M M 1
h® =¢ ‘l+';:—2—J —;—2—‘?’Lan9+0('73')
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Here we list all the ¥'s up to O( —-1—;).
T

aM + 6 ab g T ¥ 10 e%bc Ng Ny N 1
i, 8 o ; + o)
T

0 _
7,9 =
75

._Zs-ﬁyn ;
59 = ] - kT 4 g5 %mnkﬂm . 16 Zm ykmnnknm'n’n 1
T 2 v +0(:r?)
7% =0
_ MR RLM
5,90 = — jzb%nb+7€%€%nan'b_4$% 1
7 rt rt +O(;?)
. RBEia M
g = Bt M Fpmg | 16 Mgy Fpamamg 01
r 3 ) +0(T)
T
.__M2 ‘
7ZJ’°_-;—’2—njnk+-12—5—M j@ﬂinbﬂjnk —B_MT egaj%nk
7 7
3H - |
_ {aznaﬂg +_1_M yab?lanbfsjzc +M !gjk
> Py
T r
v L Loy
-z ( T: i k__zgc‘}e%_‘_‘é_ﬁjk om0 Sy
T 2 rt
L L ny
+ Jrfnqk+t%%nqnj+_5_6jkt%c%
r 2 r?
9 .
+_2_ !% z%?%n]nk_ggktmﬁjpbt%%nmnb 1
7 74 +0(?T)
oo _ BMS 1
73 73 +0(;__§~)
. 2P epm
4 0 — _ jrmen m Tin 1
73 4 +0(;5—)
ys* = 0+ O( =
7'5)
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oo _ M* 1
T4 = r* +0(7'5)
0j — (1
Va *0+0\T5)

74 = 0+ 0(1)
T

C. Prool of continuity
Given the explicit form of the metric, the proof that iTag is at least C*?is

straightforward if not tedious. Rather than going into the details, we will outline

the calculation below.

The first step is to solve

fzx*

0
Q
BS Grb

da®

o

up to the desired order. We use the ansatz (45) terminated at the desired order
to determine the form of z%. Then the equation above will give the S7TF con-
stants in z% since everything else in that equation is explicitly known. Once the

new coordinate system is determined up to the desired order, we then use
o = Qps® hay
to determine I'Z,b from the known explicit forms of (gs and hy,. We use

ozt Bzt
oz% az®

}?"‘z'{;cd

to calculate the form of Ay in the Beig-Simon coordinates up to the desired
order. The final step in the proof is simply looking at the result to see whether it

is differentiable the desired number of times.
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We have (believe it or not) calculated everything above up to order (1/79)
and determined that }';ag is at least C° With this result, all the requirements of
the Beig-Simon analyticity theorem are satisfied. Their result is then applicable
to our case. A final remark: The algorithm described in Thorne[B} to trans’fer
metrics to ACMC—N coordinate systems can also be implemented on an alge-
braic manipulator. This coupled with the aigorithm above makes Thorne's for-
malism a little easier to deal with and in the author’s opinion, a little less ugly.

This view is not shared by Thorne (private communication).
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The Free Precession of Slowly Rotating Neutron Stars:
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ABSTRACT

This paper discusses the free precession of slowly rotating neutron stars,
idealized as rigidly rotating, fully general relativistic bodies. It is shown
that, in the limit of slow rotation, general relativistic gravity produces na
changes whatsaever in the classical Euler equations of rigid body
motion. The proof is sketched in the body of the paper in language
accessible to people who know only a little general relativity. An appendix
justifies some assertions in the procf by giving an algorithm for generating
slowly and rigidly rotating solutions of Einstein’s equations from nonrotat-
ing, static solutions.
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The free precession of neutron stars has played a role of some importance
in theories of temporal fluctuations of pulsar periods (see, e.g. Pandharipande,
Pines, and Smith 1978), though as yet no free precessional motion has been
identified definitely in any pulsar timing data. While radio astronomers continue
their observational search for free precession, physicists are designing "third
generation’” gravitational wave detectors which have some hope of seeing gravity
waves from pulsars (see, e.g. Drever et. al. 1982), gravity waves whose "line"
spectrum would carry detailed information about the precession (Zimmmermann
and Szedenits 1979, Zimmermann 1980). In anticipation of the day when free
precession is seen by one method or the other, we ask the question: What
effects, if any, will general relativistic gravity have on the precessicn? We are
not prepared to discuss this question in general; but for the idealized case of a

slowly and rigidly rotating star this paper will give the answer.

Consider a rigidly rotating, general relativistic ’body. "Rigid rotation”
means, physically and mathematically, that the distance between every pair of
neighboring points in the body is forever fixed (in the jargon of relativists, the
"rate of expansion” © and "rate of shear" oj; of the body's matter vanish). This
definition is due to Max Born (1909, 1910), who (along with Ehrenfest 1909)
pointed out that a rigidly rotating body so defined can never change its angular
velocity - and thus can never precess - because such changes would alter the
Lorentz contractions of the distances between neighboring peints and thereby
would deform the body. However, Born's Lorentz-contraction deformations have
magnitudes §1/1 ~ ( QL/ ¢ )*x where [ is the body's angular velocity, L is its
]ingar size, ¢ is the speed of light, and « is the precession angle or the fractional
change of (). For a slowly rotating body ( 1L/ ¢ << 1) these deformations can be
negligible, and ( to first order in 0L/ c) the precessing body can rotate rigidly.

We shall confine attention to this case.
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The space around our slowly and rigidly rotating body consists of three

regions:
the "wave zone': radii T 2c/Q0
the "weak-field near zone™: radii c¢/Q>7 > L ~GM/c?>=HM. , (1)

the "strong-field region: radii r gL ~M. .

Here M is the body's mass; and because the body is presumed to be relativistic,
its size L is not much bigger than (e.z. not 30 times bigger than ) its "gravita-
tional radius" 2GM/ c® = 2M.. In the strong-field region gravity is relativistically
strong, i.e. spacetime is highly curved. In the weak-field near zone gravily is
weak (spacetime is nearly flat), and the gravitational field is quasistationary
(retardation is negligible). In the wave zone gravity is weak, but retardation is
important and the quadrupole and higher multipole parts of the gravitational
field are carried by gravitational waves. For further discussion see §1lI of Thorne

(1980) [cited henceforth as "RMP"].

As discussed in §IX of RMP, the body's multipole moments are flat-space-
type tensors which reside in the weak-field near zone, and which can be moved
about with mathematical impurity there (no significant changes due to "parallel
transport around closed curves,” because spacetime is very nearly flat in the
weak-field near zone). The body has two families of multipole moments {analogs

of electric and magnetic moments of electromagnetism):

mass moments j @j......0

current moments  Pa...a } I=012..., (2)

which are symmetric and trace-free on all pairs of indices. Among these are the

mass dipole ﬂj which vanishes identically, and the mass quadrupole j s and
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the current dipole (% (= angular momentum ) which for a nonrelativistic body
would be expressible as volurne integrals over the mass density p and velocity ¢

-

y=f(i’><pﬁ)dsx,
ﬂjk:fp(xjxk—g—ﬁjkrz)dax,

but which for a relativistic body cannot be so expressed. The mass and current
moments are fully determined by and fully determine the metric (i.e. spacetime
curvature) outside the body. For example, in a wide class of coordinate systems

(t ., z; ) the metric in the weak-field near zone has the form

2 3

[ 2H. 3
ds®=|—-1+ + o Za T | const + const + 0 —1—) c? dt?
T rs 7? 73 T4
48 51 % x 1
— | =+ O =) | dt dz; (3)
T T
M. M2 1
+ |0j% + const ——+ const =t O( ;—3——) dz; dzy, |

where the constants "const" depend on the precise choice of coordinates, &y is

the Kronecker delta, £;; is the completely antisymmetric symbol which pro-

N]’—-

duces a vector cross product, r = {xlz + z° + 247 |°, and there is an implicit

summation over repeated indices. As here, so in general, the mass moments

ﬂal.,.._,az can be 'read off of’ the metric coeflicients ggp. and the current

moments 5& g, CaN be read off of gg;.

The angular velocity vector (J; of a rigidly rotating body, like the multipole
moments, is a flat-space-type object which resides in the weak-fleld near zone.

The time units used in defining (J; are those of an observer at rest in the weak-
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field near zone (no "gravitational redshift” effects). It seems intuitively obvious,
and we prove mathematically in the Appendix, that the body’s mass mornents all

rotate, in the weak-field near zone, with angular velocity Q;:

d Y
dtJ = &jpg Up qu + 2eg Op t¢:’q ) (4)

(vector cross product of () with each index of ﬂ ). By contrast, the angular
momentum {current dipole moment) & ; is conserved, aside from
gravitational-wave losses which are negligible on the timescales of rotation and
precession
d P,
—ar=o | o)
It also seems intuitively-obvious, and we prove mathematically in the

Appendix, that the body's angular momentum and other current moments are

linear functions of its angular velocity
y i~ ik Qe . (5b)

Since ,% and (. are flat-space-type vectors residing in the weak-field near
zone, I is a flat-space-type tensor also residing there. Again, it seems intui-
tively obvious and we prove in the Appendix that the moment of inertia tensor
rotates with angular velocity (), just as do the the mass multipole moments:

dlj
dt

= Ejng Op gk * Fipg Op Iy (5c)

For a classical, nonrotaling body the moment of inertia tensor Iy is
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symmetric in its two indices. The following thought experiment proves that gen-

eral relativity does not break this symmetry:
Iy = Irj . (5d)

[This thought experiment is a variant of an argument which was introduced into
general relativity by Zel dovich, via private discussions with Thorne in Moscow in
1969, and has subsequently been a powerful tool for research on relativistic
stars and black holes; see, e.g. Carter (1973)]. Insert into the rotating body a
long, rigid pole with your end in the weak-field near zone and the other end at
the body's center, For a short time 6t < 1/ apply a force Fto your end of the
pole and thereby, through the associated torque, change the body's angular

momentum and total mass-energy by
= -
§F=#xFéot, : (6a)

M c?=(0x7) - Foét=0-(#xFot)=0 6. (6b)

Here 7 is the location on the pole where you apply the force; 0 x 7 is the velocity
with which the pole is moving at that location; the mathematical expressions
# x F' 5t and ( 0 x# B F' 6t are the angular momentum and the energy you put
into the pole; and the conservation laws of general relativity {e.g. chapters 19
and 20 of Misner, Thorne, and Wheeler (1973), cited below as MTW) guarantee
that this energy and angular momentum, when transmitted down the pole and
into the body, show up as changes of the gravitationally defined § and M (equa-
tion 3). Now, it seemns intuitively obvious and we shall prove in the Appendix that
the;body’s mass-energy M differs from that of a nonrotating body with the same
rigid form by an amount quadratic in the angular velocity

o 1
M e® = Mppnror €% + §‘ng O s K = Ky (7)
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y
By combining this #—{ relation with ,% =I5 O and §M ¢ =y 6 j;{z we see

that
K Q5 60 = I Q5 6O
for all (;, 60 - which in turn means that
L = Kje s (8

and since Kj is symmetric, I must be symmetric. QED.

Equations {Ba,b,c,d) are precisely equivalent to the Euler equations which
govern the precession of a rigidly rotating, nongravitating body (e.g. Goldstein
1980 ). They guarantee that our relativistic body will undergo a free precession
which is identical to that of a nongravitating body with the same moment of iner-
tia Iy and angular momenturm ‘SQJ The only influence of general relativity will
be through its effects on the values of the components of the moment of inertia

tensor I;; cf. Hartle (1973).

As the body rotates and precesses, it will emit gravitational waves which are -
predominantly quadrupolar. §XII of RMP proves that the gravitational waves are
governed by the body's time changing quadrupole moment through formulas
which are independent of whether the body has strong internal gravity or weak.
For example, the transverse-traceless gravitational wave field has the standard
guadrupole-moment form

2 d?

R = == It ~7) (9

where "TT" means ""take the transverse-lraceless part in the manner of Box 35.1

of MTW". Since the time evolution of the gquadrupole moment is produced by

rotation in the same manner as for a nonrelativistic body (equation 4), it might
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appear that no gravitational-wave observations of a rigidly rotating body can
reveal whether the body has strong internal gravity or weak. However, for
weakly gravitating bodies there is a key relation between the quadrupole

moment and the moment of inertia:

Qﬁ,—,c =TIy — rlq—éjk I; for weakly gravitating bodies. (10)
We suspect, but have not proved, that this relation is violated by strongly gravi-
tating bodies and that in principle its violation could be detected by gravita-
tional wave observations and be used to determine whether the gravitational-

wave source has strong internal gravity or weak.

Unfortunately, most observed neutron stars are iikely to deviate
significantly {rom rigid-body rotation as they precess, bzacause of a noninfinite
shear modulus and a superfluid mantle or core. Those deviations will modify
substantially the conclusions of this paper. However, it may well turn out
that, as for rigid rotation, so also in the nonrigid case general relativity intro-

duces no qualitatively new  effects except the Dbreakdown in
_ 1
i = I — 3 G -

Acknowledgements: At one stage of this research we thought the moment of
inertia tensor I might have an antisymmetric part. When we mentioned this to
Martin Rees he raised objections which triggered us to find the energy-angular-

mormentum argument by which we here prove symmetry. We thank him.
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APPENDIX

ALGORITHM FOR GENERATING SLOWLY AND RIGIDLY ROTATING SCLUTIONS OF

EINSTEIN'S EQUATIONS FROM MONROTATING, STATIC SCLUTIONS

In this Appendix we take the solution of Einstein's equations for a static
(nonrotating) body, set it into slow and rigid rotation, and give an algorithm for
computing all rotation-induced changes in the static solution at first order in
the angular velocity (2. From our algorithm we deduce the "intuitively obvious”
claims made in the text.[Note that our analysis ignores deviations from the
static solution not only of order {0L/c)? but also of order
B(GH/L3Y ' =( L/ M. ){Q/Lc )% for example, the ratio of centrifugally
induced stress to the stresses in the staltic body could be this large and are

ignored.]

Our analysis is carried out in de Donder (harmonic) coordinates where the

gauge conditions and Einstein's equations, expressed in terms of the metric den-

1
sity Q= (-9 )? g are

gaﬁ'ﬁ =0 (A.1a)

["( 5%“)2 VR g =16 (—g ) (T + W), (A.1b)
WeB = toB 4 [1611'( ~-g ) ]‘1 { g% 8%ut B%.( g -7) |, (Alc)
16w (g ) 1F= o B Gy BV, B+ G §¥ B9, 85,

—( B B, B, G¥+ B g B, §¥)) (A.1d)

+ 5 (2 B B - 0% B¥)(2 B, Bo- B S) B7a G
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see, e.g. §11 of Kovacs and Thorne (1975) and §100 of Landau and Lifshitz (1962).

L
Here [, is the matrix inverse of g%, ie. B=(-g) *

Gap: T°F is the

material stress-energy tensor; t%f is the "Landau-lifshitz pseudotensor”; V? is

the flat-space Laplacian; we set the speed of light to unity; and other notational

conventions are those of MTW { or of Landau and Lifshitz 1982 with Greek and
tin indices interchanged).

We begin with an arbitrary, static ( time independent with {% = 7% =0)
solution of equations {A.1a) describing an isolated, nonrotating body. Our coor-
dinates are "mass centered”, so the mass dipole moment vanishes and the
metric g,z in the weak-field near zone has the form (3) with &'9] =0 [or, in

more full detail, equation (10.6) of RMP with go; =0 and all . =0]. We

denote this static solution by an index {0) and we denote the static de Donder

coordinates by primes:
T (=), B (z7), BOu(=l"). (A.2)

We then, as a tool in our algorithm, rotate our spatial de Donder coordinates

through an infinitesimal angle - ¢ to obtain new static coordinates
t :t',xj =xj'+8jk¢@kxi'. (AS)

Here gj,; is the flat-space Levi-Civita tensor; and although the space is highly
curved, this rotation is perforrned mathernatically as though space were flat and
the de Donder coordinates were Cartesian. Because the de Donder gauge condi-
tions (A.1a) involve a flat space divergence which is invariant under flat-space-
type rotations, the new z® coordinates, like the old z% ones, are de Donder. Our
static solution in the rotated coordinates, and linearized in 0% , we shall denote

by
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Teo)P(=i, 0% ), B*(zi, 0°), ete (A.4a)
For example,
Bz, 0% )= Bz =zf —g 08 z) (A.4Db)
= B’ (z7)- B %27 )em O =t

Note the absence of any time dependence and also note that because the solu-

tion is static
T =0, B¥=0, GOy=0, Wu¥ =0, txY =0. (A.4c)

Now make the rotation dynamical and rigid, let the primed coordinates
rotate with the body, and keep the unprimed coordinates de Donder and at rest
relative to distant inertial frames. At time ¢t = 0 and for infinitesimal time f
thereafter the rigid angular velocity is (¥, the rotation angleis ® = £, and a

zero-order solution of the gauge conditions and field equations is

T(O)Olﬁ( zi , OFt ), g(o)aﬂ< zi | OFt ), ete. (A.5)

We seek first-order corrections [corrections linear in (*, and denoted by sub-

seripts (1)] to this zero-order solution. Our full solution
T = T+ Ty*?, G*¥= BuP+ B (A.8)

must not only satisfy the gauge conditions and field equations (A.1) to first order
in }; it must also have vanishing momentum density as measured by observers
who rotate with the body ( dz?/dt = £j;, OF x! ) - which means that the momen-

turmn density in the nonrotating, unprimed coordinate frame must be

Ty = Ty g5 & 2t + T By ( B — B0 enn O™ 2™ ) (A7)
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Once the solution (A.8) for infinitesimal times ¢ is known and from it we have
learned the time derivative of (*, the solution for all times can be obtained by
"e-folding".

Lemma 1: There are no first-order corrections to quantities with time-time

or space-space indices :
T(l)oﬁ = T(I)J'k = tmoo - t(l)jic = W(I)oo — ijk - g (1)00 — g’(l)j)‘c =0 (A.B)

Proof. The gauge condition (A.12) at first order will be satisfied as a result of the
structure of ()% to be discussed in Lemma 2 below, so they do not constrain
B or @y*. In the field equations (A.1b) the second time derivative is

O{ (R ) and can be ignored, so at first order the field equations say

VB =—16m(—g ) ( TP+ Wy*F). (A.9)

The quantities W)’ and W(,y’*, as computed from (A.1c,d), must be linear in

gu® Bu* ByuY, g(g)m_g, g 0¥ ¢ and their spatial derivatives [the
time derivatives in [ (y*® coming from the dependence on (0t in (A5)]. All
other contributors to W% and #()** must be B 5% B (™ and their spatial
derivatives. But W(;,°® and W(;y’* have an even number of temporal indices ( 2
and O respectively ); and because of th% way that indices must "line up” in equa-
tions {A.1c,d) this means that each of the terms that are added together to
make up W(;)°° and W™ must have an even number of temporal indices; and
this in turn means that B %, B¢ and § g ¢ with their odd temporal
indices must be absent from #;)%° and #(;’*; and this in turn means that every
term on the right hand side of ¥ § ()% and V¥ § ()y* in (A.9) contains as a fac-
tor T(y®, Ty, B @ or B (y*.  Thus, the "00” and "jk" field equations
are satisfled by T(y?° = T(y®* = B = B () = 0 which in turn implies that

ty)? = t(y* = W™ = Wy* = 0. We must also verify that the resulting solution
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salisfles Born's criterion for rigid rotation to first order in (). Indeed, it does:
infinitesimal distances between neighboring points in the body are preserved to
first order in Q by the rotational motion dz?/dt = g4y OF z! when the metric
density is g% = 0@ =(eq AB) B%= @ y%=(eq AB),
g% = O y¥ = (anything of order (). QED.
lemma 2. The first-order correction to § Y% is determined by the two

equations
V2 g(l)cj =AM, F+B, § (1)% + O Bm‘”“,: + D% g (1)05,;;; . (A.10a)
FwY;= B em Fz, (A.10D)

which are compatible because the right hand side of (A.10b) has vanishing Lapla-
cian. Here A7,, B7,, €7}, and D¥ are functions of z* determined by the nonro-

tating solution (i.e. by T, B0 aad GO,z with O set to zero).

Proof: Equation (A.10b) is the gauge condition % ; = — (%o where the
time dependence in § (% comes from equation (A.4b) with 6% = O¥f. The
other gauge condition, @)% o=— B =0 is automatically satisfied to
first order in Q by solutions of (A.10). Equation (A.10a) is the "0j" field equation
(A1b). The T(y¥ term in (A.1b) contributes to A7, &% and to Bx B )% (cf.
equation A.7).  Every term in W% of (A.1lc,d) must include an odd number of
temporal indices and must thus be proportional to g {O)GO'Q or B (0)5"’ o [which
give terms of the form A7, 0¥ in (A.10a)], or to ()% and its spatial deriva-
tives, or to B (), which in turn is proportional to §,®. This dictates the

form of the right hand side of (A.10a). QED.

The solution of the equations (A.10) will be linear in (F:

0% =g, OF (A.11)
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with z* dependent coeflicients £, which, like [§® and T(p* from which they
come, are time independent in the "body-centered” coordinates z7 - i.e. they
rotate with the body. Comparison with B % =—gg; =2&5 (7° 2'/7% in the
weak-field near zone (equatioh 3) reveals that (_@Z = I; Q; where Ij; is time-
independent in the body-centered coordinates and thus rotates with the body;

7
and similarly for all the other current moments &*9 PR which one also "reads
ofi" of [{%. This verifies two "intuitively obvious" assertions made in the text:
equations (5b,c) and associated  discussion. Because B%= [ % rotates

with the body an(i the mass multipole momenis ﬂa ;... Can be read off of

@ in the weak-field near zone in a manner analogous to equation (3) (see
RMP), those moments must also rotate with the body. This verifies another of
the text's "intuitively obvious" assertions: equation (4). The total mass-energy

of the rotating body can be computed as the volume integral
M= f(—g)(T%°+1t%)d3% (A.12)

(§100 of Landau and Lifshitz 1962), To first order in Q and at time ¢ = 0 the
energy density (—g ) ( 7%+ t%) = ( —g ) ( T(® + £()°° ) is equal to that in the
nonrotating body , and thus M ¢® = Moo ¢? Changes in the mass-energy M c?®
must Vthus be second order in’ (1, which verifies the text's last "intuitively obvi-

ous" assertion: equation (7).
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