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Abstract 

This thesis develops the theory, algorithms and data structures for adaptive sam­
pling of parametric functions, which can represent the shapes and motions of phys­
ical objects. For the first time, ensured methods are derived for determining colli­
sions and other interactions for a broad class of parametric functions. A new data 
structure, called a surf ace network, is developed for the collision algorithm and for 
other sampling problems in computer graphics. A surface network organizes a set 
of parametric samples into a hierarchy. Surface networks are shown to be good for 
rendering images, for approximating surfaces, and for modeling physical environ­
ments. The basic notion of a surface network is generalized to higher-dimensional 
proble:rns such as collision detection. \Ve may think of a two-dimensional network 
covering a three-dimensional solid, or an n-dimensional network embedded in a 
higher-dimensional space. Surface networks are applied to the problems of adap­
tive sampling of static parametric surfaces, to adaptive sampling of time-dependent 
parametric surfaces, and to a variety of applications in computer graphics, robotics, 
and aviation. 

First we develop the theory for adaptive sampling of static surfaces. We explore 
bounding volumes that enclose static surfaces, subdivision mechanisms that adjust 
the sampling density, and subdivision criteria that determine where samples should 
be placed. 

A new method is developed for creating bounding ellipsoids of parametric sur­
faces using a Lipschitz condition to place bounds on the derivatives of parametric 
functions. The bounding volumes are arranged in a hierarchy based on the hi­
erarchy of the surface network. The method ensures that the bounding volume 
hierarchy contains the parametric surface completely. The bounding volumes are 
useful for computing s.urface intersections. They are potentially useful for ray 
tracing of parametric surfaces. 

We develop and examine a variety of subdivision mechanisms to control the 
sampling process for parametric functions. Some of the methods are shown to 
improve the robustness of adaptive sampling. Algorithms for one mechanism, 
using bintrees of right parametric triangles, are particularly simple and robust. 

A set of empirical subdivision criteria determine where to sample a surface, 
when we have no additional information about the surface. Parametric samples 
are concentrated in regions of high curvature, and along intersection boundaries. 

Once the foundations of adaptive sampling for static surfaces are described, 
we examine time-dependent surfaces. Based on results with the empirical subdi­
vision criteria for static surfaces, we derive ensured criteria for collision determi­
nation. We develop a new set of rectangular bounding volumes, apply a standard 
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k-dimensional subdivision mechanism called k-d trees, and develop criteria for en­
suring that we detect collisions between parametric surfaces. 

We produce rectangular bounding boxes using a "Jacobian" -style matrix of 
Lipschitz conditions on the parametric function. The rectangular method produces 
even tighter bounds on the surface than the ellipsoidal method, and is effective for 
computing collisions between parametric surfaces. 

A new collision determination technique is developed that can detect colli­
sions of parametric functions, based on surface network hierarchies. The technique 
guarantees that the first collision is found, to within the temporal accuracy of 
the computation, for surfaces with bounded parametric derivatives. Alternatively, 
it is possible to guarantee that no collisions occur for the same class of surfaces. 
When a collision is found, the technique reports the location and parameters of 
the collision as well as the time of first collision, 

Finally, we examine several applications of the sampling methods. Surface net­
works are applied to the problem of converting a two-dimensional image, or texture 
map, into a set of triangles that tile the plane. Many polygon-rendering systems 
do not provide the capability of rendering surfaces with textures. The technique 
converts textures to triangles that can be rendered directly by a polygon system. 
In addition, potential applications of the collision determination techniques are 
discussed, including robotics and air-traffic control problems. 
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Nomenclature 

backface culling: The process of removing parts of a surface that face away from 
the viewer. In renderings that eliminate hidden surfaces, we can see only 
those parts of objects that face the viewer. The rendering system overhead 
is reduced by eliminating backfacing polygons before they are drawn. 

bicubic patch: A parametric surface defined' by cubic equations of two parame­
ters, u and v. The isoparametric curves of a bicubic patch are always cubic. 
The general form of the equation is 

➔ 

A 11 u 3v 3 
A12u

3
v

2 ➔ 3 ➔ 3 
P(u, v) + + A13U V + A14U 

+ A21u
2

v
3 + A 22 u 2v 2 + ➔ 2 

A23U V + ➔ 2 
A24U 

➔ 3 ➔ 2 ➔ ➔ 

+ A31UV + A32UV + A33UV + A34U 
➔ 3 ➔ 2 ➔ ➔ 

+ A41V + A42V + A43V + A44. 

bintree: A tree with a branching ratio of two. Each node in a bintree may have 
up to two subnodes. 

biquadratic patch: A parametric surface defined by quadratic equations of two 
parameters, u and v. See bicubic patch. 

biquartic patch: A parametric surface defined by quartic equations of two pa­
rameters, u and v. See bicubic patch. 

bivariate function: A function of two variables, such as a parametric surface. 

Boolean boundary: An intersection curve of two surface manifolds; an intersec­
tion boundary. 

Boolean subdivision criterion: A criterion that controls the subdivision pro­
cess near Boolean intersection boundaries. For instance, subdivision occurs 
where the intersection boundary of two surfaces is curved in screen space. 

XXl 



XXll NOMENCLATURE 

bounding box inequality: A set of inequalities defining the interior region of a 
bounding box. For Cartesian coordinates in three dimensions, we have 

lx-xcl 
IY- Ycl 
lz - zcl 

(0.1) 

where (xc,Yc,zc) is the point at the center of the box, and (~x,~y,~z) are 
the bounding box radii. 

bounding box radii: The half-widths of a bounding box along each of the coor­
dinate axes. 

bounding volume: A volume that completely encloses an object. Algorithms 
based on bounding volumes can confirm that two objects do not intersect. If 
the bounding volumes do not intersect, then neither do the objects. 

C0 continuity ( of a function): Continuity of the zeroth derivative of a function 
or, in other words, continuity of the function itself. 

C1 continuity (of a function): Continuity of the first derivative of a function. 

chopping (triangles): Triangles are clipped by the inside-outside function of in­
tersecting parametric surfaces. Triangle chopping reduces a fringe that may 
occur along the intersection boundary of two surfaces (See Figure 7.A). 

collision: An event where two objects come into contact. See c-collision. 

culling: The process of removing surface elements from consideration that are not 
visible for some reason. For example, backface culling removes polygons fac­
ing away from the viewer, and surface intersection culling removes polygons 
clipped by other surfaces. 

curvature subdivision criterion: A subdivision criterion based on the local 
curvature of the parametric surface. 

deformation: A modeling operation that bends, twists, tapers, or otherwise alters 
the shape of a parametric surface. 

disjoint: Sets are disjoint if they have no elements in common. Point sets are 
disjoint if they have no points in common. Parametric surfaces are disjoint 
if they do not intersect. 

c-collision: A state where the minimum separation between two objects is less 
than or equal to a distance tolerance c. 



XXIV NOMENCLATURE 

Jacobian J is defined by 

8x 8x 8x 
-

8u 8v at 

J(u,v,t)= 8y 8y 8y 
OU av at 
8z oz az 
OU av at 

k-d tree: A k-dimensional binary search tree. Each node in a k-d tree represents 
a box ink dimensions. At each transition from one level to the next, the box 
is split in half along one of the coordinate axes. In this manner, it is possible 
to divide a k-dimensional box into smaller boxes using a binary tree. See 
Figure 4.4 for an example of a two-dimensional tree. 

L-functions: An L-function is a parametric function that satisfies a Lipschitz 
condition. An L-function consists of a parametric function definition, a para­
metric domain over which the definition applies, and a Lipschitz value L that 
bounds the parametric derivatives. For example, we construct an L-function 
for a parabola: 

The value of Lis the maximum slope of the function f(x) over the specified 
domain x E [x0 , x1], 

Lipschitz condition: A parametric function f( it) satisfies a Lipschitz condition 
if and only if 

for some finite value of the Lipschitz constant L ( [ Gear 71]). 

Lipschitz constant: A value L that satisfies a Lipschitz condition for a function 
f(it). The Lipschitz constant places an upper bound on the rate of change 
of the function /( it) over a parametric region R. 

mach bands: Bright or dark lines caused by artifacts of the human visual system 
when viewing a continuous intensity function whose slope is discontinuous. 
Mach bands may be produced at the edges of adjacent, smoothly shaded 
polygons. 



XXVI NOMENCLATURE 

pixel: A picture element; an abstraction of a local intensity on a regular grid of 
intensities. 

planar subdivision A collection of closed line segments that partition the plane 
and intersect only at segment endpoints. Planar subdivisions are useful for 
eliminating cracks in polygonal approximations of parametric surfaces. 

principal directions ( of curvature of a surface): A pair of local coordinate 
axes tangent to a parametric surface that point in the directions of maximum 
and minimum curvature. These axes always lie perpendicular to each other. 

profile solid: The interior region bounded by a profile surface. 

profile surface: A surface formed from two curves: a vertical (or north-south) 
profile, and a horizontal ( or east-west) profile. 

proximity subdivision criterion: A criterion that forces subdivision where sur­
faces potentially intersect. The criterion explores local minima of the abso­
lute value of the inside-outside function. 

quadric surface: A surface defined by an algebraic, second-degree equation. The 
quadric surfaces are the ellipsoids, hyperboloids, and paraboloids. 

quadtree: A tree data structure with a branching ratio of four. Each node in 
a quadtree may have up to four subnodes. In image processing and com­
puter graphics, a quadtree frequently also refers to a square region that is 
subdivided recursively into smaller squares. 

rate matrix: Given a continuous parametric function /(u, v, t), a rate matrix is 
a matrix M that satisfies the condition 

Ix( u, v, t) - x( Uc, Ve, tc) I < 
ly(u,v,t)-y(uc,Vc,tc)I 

Mxu,D,.u + Mxv,D,.v + Mxt,D,.t, 
< Myu,D,.u + Myv,6.v + Myt,D,.t, 
< Mzu,D,.u + Mzv,6.v + Mzt,D,.t, lz( u, v, t) - z( Uc, Ve, tc) I 

over a rectangular region R, where 

in the domain of l( u, v, t). A sufficient value of M for differentiable functions 
is given by 

Mij 2: mjx I Jij I , 

where J is the Jacobian matrix of the function /(u, v, t). 
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square ( of a quad tree): An element of a quad tree. Every element in the quad­
tree hierarchy is a square. 

subdivision criterion: A decision-making algorithm that determines the para­
metric locations on a surface that require additional sampling. 

subdivision mechanism: An algorithm or production rule that determines the 
process for obtaining additional samples in a parametric region. 

summed-area table: A table T representing an image I that stores at each lo­
cation the sum of the intensities of all the pixels that lie in the upper-left 
quadrant relative to that location: 

m n 

Tmn - I:I:Jij• 
i=l j=l 

This representation permits the fast integration of intensities within any 
isothetic rectangle in the image, and is useful for filtering texture maps. 

superellipse: A curve defined parametrically by x = cosP(0), and y = sinP(0), 
where 0 is the parameter, and pis a constant. 

superquadric: A profile surface made from two superellipses. 

surface intersection biasing: A technique of offsetting the inside-outside func­
tion of a surface so that the polygons of the two surfaces do not touch. This 
procedure reduces artifacts associated with finite precision arithmetic. 

surface manifold: A continuous, piecewise differentiable surface that can be em-
bedded in three-dimensional or higher-dimensional space. 

surface network: A network of parametric surface samples arranged in a simple 
hierarchy. 

surface quadtree: A quadtree that spans the parameter space of a surface. Ad­
ditional samples are created by subdividing squares into smaller squares. 

tetrahedral subdivision: A volumetric subdivision whose interior regions con­
sist only of tetrahedra. 

texture map: An image that represents the surface coloration or texture of an 
object. The texture is effectively mapped onto the surface. The boundaries 
of the map usually correspond to isoparametric contours. 
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triangular subdivision: A planar subdivision whose interior regions consist only 
of triangles. 

uniform subdivision criterion: A criterion that forces parametrically uniform 
sampling of a surface. 

unit square: A square defined by the interval [O, 1) in two coordinate directions. 
The domain of the parametric surfaces used in this paper is bounded by the 
unit square in parameter space. 

volumetric subdivision: A collection of closed triangles that partition three­
dimensional space, and that intersect only at triangle edges. 
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Chapter 1 

Introduction 

1.1 Motivation 

Parametric functions are widely used in computer graphics for the modeling of 
complex three-dimensional objects, and for modeling their motions as a function 
of time ([Kajiya and Snyder 88), [Barr 86), [Sederberg and Parry 86)). It is intu­
itively simple to generate and manipulate parametric functions. All that is nec­
essary is to sample the function across its domain, and generate surface elements 
from the samples. The goal is to obtain a good approximation to the shape of a 
surface, using a finite number of parametric samples. 

The basic method is to evaluate the function for a finite set of parametric 
values, and somehow to interpolate the surface between the known points. This 
method is referred to as parametric sampling. 

The simplest approach to representing parametric functions is to cover the do­
main of the function with a parametrically uniform grid of samples, and to generate 
surface elements from adjacent samples. Unfortunately, some parametric regions 
may need to be sampled much more finely than others. Using this technique, either 
one region is undersampled or another is oversampled, resulting in computational 
inefficiency. 

An alternative approach is to concentrate samples where they are needed the 
most. Several issues arise when considering adaptive techniques: What criteria 
should determine the local concentration of samples? What data structures are 
effective at storing samples at variable densities? How do we ensure that we have 
an adequate sampling of the surface? And what applications benefit from an 
adaptive approach? This thesis will address these questions for static and for 
time-dependent parametric functions. 

1 
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Figure 1.1: Parametric spike functions can be made arbitrarily sharp, such that their 
detection is extremely difficult. We need some other information in order to guarantee 
the detection of the spike. 

1.2 Surface Networks 

The standard uniform sampling techniques require only an array to store paramet­
ric samples. Adaptive sampling techniques require more flexible data structures, 
ones that can represent the surface hierarchically at a variety of resolutions. It is 
necessary to adjust the density of samples across a surface, as needed, for various 
sampling criteria. A new data structure, called a surf ace network, hierarchically 
stores surface samples from parametric functions. Algorithms based on surface net­
works can generate surface elements, determine intersections between parametric 
functions, and provide a recursive mechanism for subdivision of surface elements. 
Although it may be easiest to think of surface networks in terms of two-dimensional 
manifolds, the basic data structures extend to parametric functions of n dimen­
sions, including time. This means that we can adaptively sample the position of 
an object as a function of time. 

1.3 Bounding Volumes for Parametric Functions 

There is a fundamental problem with the use of parametric functions in computer 
graphics: If you don't know the accuracy of a surface approximation, how can you 
be sure that the approximation is any good at all? Most of the standard techniques 
in computer graphics ignore the question of accuracy of surface approximations 
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Figure 1.2: The left illustration shows a sharp parametric spike function. The right 
illustration shows the information provided to the sampling algorithm, given only the 
parametric samples, which are drawn as dots. The spike function falls between the 
samples. 

([Foley and Van Dam 82]). The standard method is to sample uniformly across a 
surface, look at an image of the result, and increase the uniform sampling density 
if the image is not satisfactory. As we increase the complexity of geometric models 
in computer animations, we increase the probability of gross sampling errors with 
standard methods. 

As an example, Figure 1.1 illustrates a set of parametric spike functions of var­
ious widths. Each spike is a parametric Gaussian bump with a different horizontal 
scaling. As the parametric width of the spike is reduced, so is the chance of finding 
the spike. Figure 1.2 shows a sharp spike that falls between the samples of the 
parametric function. It is not sufficient to have a finite set of samples from the 
parametric surface. To be sure of finding the spike, we need additional information. 

This thesis develops the theory for guaranteeing, with upper bounds on para­
metric derivatives, that surface approximations are accurate to within an arbitrary, 
finite tolerance. We consider certain types of parametric functions, which we refer 
to as L-functions, that satisfy a Lipschitz condition ([Gear 71 ]). The Lipschitz con­
dition places an upper bound on the parametric rate of change of the function. An 
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£-function consists of a parametric function definition, a parametric domain over 
which the definition applies, and a Lipschitz value L that bounds the parametric 
derivatives. For example, we construct an £-function for a parabola: 

(1.1) 

The value of Lis the maximum slope of the function f ( x) over the specified domain 
x E [xo, x1). The only requirements on an £-function are that it be continuous and 
have a finite rate of change. We must be able to determine a bound on the rate of 
change. 

1.4 Original Results 

The following original results are developed in this thesis: 

• A new data structure is developed for adaptive sampling of parametric sur­
faces, called a surface network. A surface 'network is a hierarchical structure 
of parametric samples distributed across a surface. Surface networks are good 
for rendering, for surface approximations, and for computer modeling. The 
basic notion of a surface network may be generalized to higher-dimensional 
problems such as collision detection. 

• A new method for creating bounding ellipsoids of parametric surfaces and 
sub-regions is developed using a Lipschitz condition on the parametric func­
tions. The Lipschitz condition places a constraint on the parametric deriva­
tives of the surface. 

• A new method is developed for creating rectangular bounding boxes of para­
metric surfaces using the Jacobian matrix of the surface. This method uses 
a type of Lipschitz condition, called the rate condition, and produces even 
tighter bounds on the surface than the ellipsoidal method. 

• A new collision determination technique is developed that can detect colli­
sions of parametric functions. The technique guarantees that the first col­
lision is found, to within the temporal accuracy of the computation, for 
surfaces with a rate condition. Alternatively, it is possible to guarantee that 
no collisions occur for the same class of surfaces. Potential applications to 
robotics and to air traffic control are discussed. 

• Surface networks are applied to the problem of converting a two-dimensional 
image, or texture map, into a set of triangles that tile the plane. Many 
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Figure 1.3: Breakdown of the adaptive sampling problems examined in this thesis for 
parametric surfaces. 

polygon-rendering systems do not provide the capability of rendering surfaces 
with textures. The technique converts textures to triangles that can be 
rendered directly by a polygon system. 

• A series of subdivision mechanisms are developed to control the sampling 
process for parametric functions. These mechanisms improve the robustness 
of adaptive sampling. Algorithms for one mechanism, which uses bintrees of 
right parametric triangles, are relatively simple and robust. 

1.5 Summary 

The headings in Figure 1.3 show the decomposition of the adaptive sampling prob­
lem into distinct subproblems. We examine issues related to the accurate repre­
sentation of static parametric functions, which apply to geometric modeling in 
computer graphics. The results for static surfaces are extended to surfaces that 
move as a function of time. The results for time-dependent surfaces apply to 
collision problems in dynamical simulations. Adaptive sampling techniques are 
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also applied to texture maps for"surface coloration of objects, and to anticollision 
systems in robotics and in aviation. 

Chapter 2 develops the notion of applying surface networks to the problem of 
accurately representing static parametric surfaces. Accuracy is defined in terms of 
the distance from a parametric function to its approximation that uses finite num­
bers of surface elements. We develop the basic theory for applying the Lipschitz 
condition to the problem of creating a set of bounding volumes that are guaranteed 
to enclose the parametric surface completely. The bounding volumes can guarantee 
the accuracy of the surface network. A subdivision mechanism, called restricted 
quadtrees, is shown to be superior to unrestricted quadtrees at adaptive sampling 
of parametric surfaces. A set of empirical subdivision criteria are developed for 
parametric surfaces without Lipschitz conditions; these produce reasonable surface 
approximations in cases where we do not have any information about a parametric 
function other than a finite set of samples. 

In Chapter 3, we take a detailed look at alternative subdivision mechanisms. 
A progression of quadtrees and bintrees are examined and compared. One tech­
nique, using bintrees of right triangles, requires fewer samples than restricted 
quadtrees, yet retains many of its advantages, including the smooth variation 
in sampling frequency across the parametric surface. We generalize the method 
to bintrees of non-right triangles, and extend the results to tetrahedral subdivi­
sions. The surface elements generated from these subdivision mechanisms may be 
planar, such as triangles, or non-planar, such as biquadratic or Steiner patches 
([Sederberg and Anderson 86]). 

In Chapter 4, we develop the theory for parametric functions to guarantee 
the determination of collisions between surfaces for functions with a Lipschitz 
condition. The theory is first developed for interference between static surfaces. A 
rectangular subdivision mechanism called k-d trees is used, which readily extends 
to k parametric dimensions. We extend the results to parametric surfaces that 
move as a function of time. The algorithm finds all E-collisions, where the minimum 
separation between two surfaces is less than a distance tolerance, E. We are able 
to guarantee that we will find an E-collision , if there is one, and that we can find 
the first E-collision to within the temporal accuracy of the computation. 

Chapter 5 discusses applications of surface networks to the problem of gener­
ating a set of polygons that approximate two-dimensional images, or texture. We 
use bintrees of right triangles as a subdivision mechanism, and develop subdivision 
criteria for various types of images. Examples are illustrated using images taken 
from playing cards. The polygonal tilings are used for an animation of dynamic 
consf:raints applied to a house of cards. We also explore potential applications of 
the collision determination theory to the problems of robotic path verification and 
collision prediction for aircraft. 



Chapter 2 

Accurate Sampling of Deformed, 
Intersecting Surfaces t 

2.1 Overview 

In this chapter a quadtree algorithm is developed to triangulate deformed, inter­
secting parametric surfaces. The biggest problem with adaptive sampling is guar­
anteeing that the triangulation is accurate within a given tolerance. A new method 
guarantees the accuracy of the triangulation, given a "Lipschitz" condition on the 
surface definition. The method constructs a hierarchical set of bounding volumes 
for the surface, useful for ray tracing and solid modeling operations. The task of 
adaptively sampling a surface is broken into two parts: a subdivision mechanism 
for recursively sampling a surface, and a set of subdivision criteria for determining 
where to sample the surface. 

An adaptive sampling technique is said to be robust if it accurately represents 
the surface being sampled. A new type of quadtree, called a restricted quadtree, 
is more robust at adaptive sampling of parametric surfaces than is the traditional 
unrestricted quadtree. Each subregion in the quadtree is half the width of the 
previous region. The restricted quadtree requires that adjacent regions be the 
same width within a factor of two, while the traditional quadtree makes no restric­
tion on neighbor width. Restricted surface quadtrees are effective at recursively 
sampling a parametric surface. Quadtree samples are concentrated in regions of 
high curvature and along intersection boundaries, using several subdivision cri­
teria. Silhouette subdivision improves the accuracy of the silhouette boundary 
when a viewing transformation is available at sampling time. The adaptive sam­
pling method is more robust than uniform sampling, and can be more efficient at 

t published in Computer Graphics 21, 4, 1987, pp. 103-112. 

7 
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rendering deformed, intersecting parametric surfaces. 

2.2 Introduction 

2.2.1 Motivation for Studying Surface Sampling Tech-. 
n1ques 

Interesting mathematical formulations for deformed surfaces have been recently 
developed ([Barr 84], [Sederberg and Parry 86]). Robust and efficient algorithms 
for rendering these surfaces, however, do not exist currently. We need to render 
highly curved regions on deformed surfaces correctly. In addition, we must render 
such critical areas as silhouette boundaries and surface intersections accurately. 

The simplest sampling algorithm covers a surface with a parametrically uni­
form grid of samples, and divides the surface into small polygons that are easy 
to render. Frequently, aliasing occurs in highly curved regions, because of the 
constant sampling rate. Regions of low curvature are oversampled, thus wasting 
polygons. 

An alternative approach is to concentrate samples where they are needed the 
most. A quadtree subdivision technique is presented here that concentrates sam­
ples in regions of high curvature and in other critical regions. The technique is 
more robust than uniform sampling of parametric surfaces, and is more efficient 
for the examples given here. 

With uniform sampling of parametric surfaces, a tradeoff must be made between 
image quality and number of polygons. Adaptive sampling can produce better 
images with fewer polygons than can the uniform sampling approach. The uniform 
chain in Figure 2.1 shows an image that took 53 minutes on an IBM 4341 using 
uniform sampling; most of that time was spent on small regions of the image. The 
nearest link is not sampled adequately, as compared with the quadtree image of 
the same object that took 45 minutes to compute, as shown in Figure 2.2. The 
CPU times represent the time required to sample complex bending and twisting 
deformation functions of parametric primitives for nearly 100,000 sample points. 

2.2.2 Background 

Quadtree algorithms have been developed for applications in screen space and in 
parametric space. Quadtrees have been used to rasterize polygons ([Warnock 69]). 
Quadtree subdivision in screen space has been used as an antialiasing technique 
in ray tracing ([Whitted 80]). Bicubic patches have been rendered using recur­
sive subdivision techniques in the parametric space of the surface ([Catmull 75], 
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Figure 2.1: Uniformly sampled chain, 60,000 polygons, sampling time 53 minutes. 

Figure 2.2: Quadtree chain, 50,000 polygons, sampling time 45 minutes. 
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Figure 2.3: An unrestricted quadtree omits the local maximum in a cubic curve. 

[Carlson 82], [Schweitzer and Cobb 82]). Methods have been developed for the dis­
play and intersection of piecewise polynomial surfaces ([Lane and Riesenfeld 80]). 
Recursive techniques have been described for sampling parametric surfaces using 
a curvature subdivision criterion ([Lane and Carpenter 79]). Scan-line techniques 
have been used to render a variety of parametric surfaces ([Blinn 78]). Adaptive 
subdivision has been used to fit surfaces to sampled data ([Schmitt, Barsky, Du 86]). 

When ray-tracing complex surfaces, it is often attractive to break them into 
triangles before rendering ([Barr 86], [Kay and Kajiya 86], [Snyder and Barr 87]). 
The memory required for such a decomposition varies directly with the number 
of triangles. Adaptive subdivision greatly reduces the number of triangles needed 
to describe a surface accurately. In addition, a new application of the Lipschitz 
condition to parametric surfaces can guarantee the accuracy of polygonal approx­
imations. 

A new type of quadtree, the restricted quadtree, is described here for subdi­
viding a surface. Restricted quadtrees differ from unrestricted quadtrees in that 
neighboring squares may differ in width by at most a factor of two. While the un­
restricted quadtree does not reliably follow such features as the local maximum of 
the curve shown in Figure 2.3, the restricted quadtree is much more robust at ad­
equately sampling curves and surfaces (Figure 2.4). An efficient set of subdivision 
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Figure 2.4: The restricted quadtree samples the cubic curve adequately. 

criteria controls the sampling process for rendering deformed, intersecting sur­
faces. Several subdivision criteria are examined, including curvature subdivision, 
intersection subdivision, and potential intersection subdivision. A view-dependent 
subdivision criterion causes subdivision at the silhouette boundary from a given 
viewpoint. Each region is subdivided if any of the subdivision criteria are not met. 
Regions of low curvature are represented with a few relatively large polygons, while 
regions of high curvature are represented with many little polygons. 

2.3 Bounding Volumes for Parametric Surfaces 

Given a continuous parametric surface, we will show how to construct bounding 
volumes that contain the surface. Bounding volumes are useful for intersection 
operations, for collision detection, for ray tracing of parametric surfaces, and for 
accurately triangulating a parametric surface. 

The ideal method guarantees that each part of the surface remains within its 
bounding volume. The task is impossible, however, if we are given a completely 
arbitrary parametric surface and no additional information. We know what the 
function values are at every surface point we have sampled. If the samples are the 
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only information available to us, there is no way to guarantee what the function 
is doing at places we have not sampled. However, with a single additional value, 
called a Lipschitz constant, we can bound the surface. 

2.3.1 The Lipschitz Condition for a Parametric Curve 

First, we define the Lipschitz condition for a parametric curve /(u) over a domain 
0 ~ u ~ l (Figure 2.5) ([Lin and Segel 74]). The Lipschitz condition states that 

(2.1) 

where L is the Lipschitz constant, and u0 and u1 are in the interval 0 ~ ui ~ l. 
The Lipschitz constant bounds the maximum parametric derivative of the function 
/(u), ~amely, ldf/dul ~ L. Consider a valu~ u2 between u = 0 and u = l. We 
have 

i/(u2) - /(O)I < Llu2 - 0I and 

1/(1) - /( u2)I < Lil - u2I-

Adding the equations gives us 

We take the limiting case: 

L, with 

If( u2) - /(O)I and 

1/(1) - /(u2)I-

(2.2) 

(2.3) 

(2.5) 

(2.6) 

(2.7) 

The solution of the equation is an ellipsoid with foci /(0) and /(1) such that the 
sum of the distances from the foci to any point on the ellipsoid is equal to L. 
Basically, we have a string of fixed length that is tied at both ends to the points 
/(o) and /(1). 

2.3.2 The Lipschitz Condition for a Parametric Surface 

Now we extend the result to parametric surfaces of two variables, /( u, v ). The 
Lipschitz condition on a parametric surface f(P) over a domain P (u, v) is 
defined by: 

1/(Pi) - /(Po)I ~ LIPi - Pol, (2.8) 
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d1 + d2 = K = constant. 

/(1) 

/(0) 

Figure 2.5: Bounding ellipsoid for a parametric curve f( u ), 0 s; u s; 1. The length of 
the curve must be less than or equal to L. 

where Po and Pi are any two points in the parametric space of the surface, and 
L is the Lipschitz constant. The constant L determines a maximum distance 
between two points in modeling space, given the distance of the two points in 
parameter space. We use the L2 norm for the Lipschitz equation: II~ 1111 2 = 
✓~x2 + ~y2 + ~z2, 

(2.9) 

The L2 norm represents the Euclidean distance between any two points. In con­
trast, the L1 norm represents the sum of perpendicular distances between any two 
points. The L 1 norm is given by II~ Viii= l~xl + l~YI + l~zl, and we always have 

11~1111 2 :S 11~11111 , since the shortest distance between any two points falls along 
a straight line. Therefore, we can use the L 2 norm in modeling space and the L 1 

norm in parametric space: 

11f(A) - i(-Po)ll2 :S LIIP-i - -Pol'2 :S LIIP-i - -Polli- (2.10) 

The L1 norm is attractive because the distance from P0 to Pi via .P is independent 
of P (Figure 2.6). 
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Po---♦ • ~u • ~u + ~v = d = constant. 

Figure 2.6: L1 distance from Po to Pi via .P. The L1 distance dis independent of P. 

f(P)____.,-

!(Po) 

d1 + d2 = K d = constant. 

Figure 2. 7: Bounding ellipsoid for the parametric surface f( P). 
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We evaluate the Lipschitz condition from Po to P and from P to Pi, where P 
is anywhere in the rectangle formed by opposite corners Po and Pi: 

11/(P) - /(Po)ll2 < LIIP - Poll1, and 

11/(A) - /(P)ll2 < LIIP1 - Pih-

Adding the two equations, 

Taking the limiting case, 

L((u - u0) + (v - vo)) + L((u1 - u) + (v1 - v)) = C, 

C, where 

11/(P) - /(Po)ll2, 
11/(A) - /(P)ll2, and 

L((u1 - uo) + (v1 - vo)). 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

The solution of the equation is an ellipsoid with foci /(Po) and [(Pi) such that 
the sum of the distances from the foci to any point on the ellipsoid is equal to C. 
Again, we have a string of fixed length, tied at both ends to the points f(P0 ) and 
/(Pi) (Figure 2.7). 

We now have a mechanism for enclosing any region or subregion of the para­
metric surface in a bounding ellipsoid. Given a surface quadtree, every region 
of the quadtree has a bounding ellipsoid that encloses it. The same hierarchy 
used in the quadtree may be used to construct a hierarchy of bounding volumes 
([Kay and Kajiya 86]). The hierarchy of bounding volumes is useful for ray trac­
ing, for collision detection, and for guaranteeing the accuracy of a triangulation. 
Each region in a surface quadtree has a maximum error based on its bounding 
ellipsoid. Given a desired error tolerance, we can subdivide the regions until the 
tolerance is reached. We obtain an arbitrarily accurate sampling of the surface. 

2.3.3 Determining the Lipschitz Constant 

The Lipschitz constant may be derived directly from the parametric equation by 
taking the global maximum of the parametric derivatives of the surface. We assume 
that the parametric domain of the surface spans the region R : 0 ::;; u ::;; 1, 
0 ::;; v ::;; 1. If the surface is differentiable, we can use the parametric derivatives to 
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obtain the Lipschitz constant L: 

8/(u, v) 
8v J (2.19) 

This value of L can be shown to be necessary and sufficient to satisfy Eqn. 2.11. 
The condition is necessary from the case where ~vis set to zero, and we solve for 
L. And the equation is sufficient for other cases, from the triangle inequality. 

The technique is feasible for surfaces such as bicubics, superquadrics, and low­
order polynomials, because local maxima are easy to find in the parametric deriva­
tives of these functions. If the surface is piecewise differentiable, then the maximum 
derivative of each of the pieces may be used. If the user does not require a guar­
antee about the bounding volume, then the Lipschitz constant may be estimated 
from samples and path lengths. 

2.4 A Recursive Subdivision Mechanism 

The problem of rendering deformed, intersecting surfaces is split into two subprob­
lems: 1) the subdivision mechanism, determining how to subdivide a surface into 
simple elements; 2) the subdivision criteria, determining where additional sampling 
is necessary. Here we examine the recursive subdivision mechanism for adaptively 
sampling a set of surfaces. 

An ideal recursive subdivision mechanism should smoothly adjust the sam­
pling frequency over the parametric surface while adapting to variable sampling 
requirements. A quadtree technique is one approach for a subdivision mechanism 
( see Figure 2.11). The parametric ( u, v) space of a surface is broken into a set 
of regions. Whenever more accuracy is needed in the surface quadtree, a region 
is divided into four smaller regions. Samples are obtained at the corners of each 
region. 

2.4.1 Basic Approach 

The subdivision technique uses the following steps: 

1. The surface is sampled on a uniform parametric grid at some initial resolu­
tion. 

2. Each region is evaluated using several acceptance criteria. 

3. If the region is not acceptable, then it is split into four smaller regions. 
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Figure 2.8: Uniformly sampled sphere. 

lil 
Figure 2.9: Parametric space of the uniform sphere in Figure 2.8. 
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Figure 2.10: Quadtree sphere. 
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Figure 2.11: Parametric space of the quadtree sphere in Figure 2.10. 
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4. Steps 2 and 3 are repeated until the entire surface is adequately sampled. 

5. The regions are broken into triangles. 

6. The triangles are clipped at the intersection with other surfaces, forming a 
smooth boundary. 

7. The triangles are rendered. 

Figure 2.8 shows a uniformly sampled sphere, as determined by the parametric 
function 

( 

cos(21ru) sin( 1rv) ) 
/(u,v) = sin(21ru)sin(1rv) . 

- cos(1rv) 
' , I 

(2.20) 

Lines are drawn on the surface of the sphere to show how it has been broken into 
polygons. The surface has been sampled at the corner of each square. The north 
pole has more samples than necessary. Figure 2.9 shows the parametric space ( u, v) 
of the sphere. 

Figure 2.10 shows a sphere sampled using the quad tree technique. The sampling 
density has been increased along the boundary of the sphere, as seen from the 
point of view in Figure 2.10, and has been reduced in the middle and on the back 
side of the sphere. Figure 2.11 shows the parametric space of the sphere, after 
adaptive sampling. The sinusoidal line of small squares represents the silhouette 
boundary of the sphere, where more samples are needed to reduce visual artifacts 
of the sampling process. The north pole of the sphere has fewer samples than with 
uniform subdivision. 

2.4.2 Data Structure for Quadtrees 

The quadtree consists of pointers to regions arranged in a hierarchy that tessellate 
the parametric space of the surface. Samet describes basic data structures and 
access procedures for quadtrees ([Samet 82), [Samet 84)). We attach a parametric 
sample to the standard quadtree data structure at the corner of each quadtree 
region. Several regions access the same corner sample, so the samples are stored 
in a two-dimensional bucket array for easy access. 

2.4.3 Quadrilaterals vs. Triangles 

Care must be taken in creating a polygon mesh from a quadtree. Adjacent squares 
in a quadtree frequently vary in size. Since the corners of these adjacent squares do 
not always match up, cracks appear in the surface wherever small squares adjoin 
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Figure 2.12: Cracks in a surface quadtree. 

larger squares (see Figure 2.12). To eliminate cracks, it is necessary to construct 
a planar subdivision of the parametric space ([Kirkpatrick 83]). A planar subdi­
vision is a collection of line segments that intersect only at segment endpoints. A 
triangular subdivision (Figure 2.13) is a planar subdivision containing only trian­
gles. Although a quadtree is not a planar subdivision, since corners touch edges, 
a triangular subdivision may be constructed from the quadtree, as shown in the 
next section. 

2.4.4 Restricted Quadtrees 

The adaptive sampling process relies on the limited sampling information available 
to decide whether to obtain additional samples. One indication to subdivide is that 
the neighboring regions have subdivided for some reason. A new type of quadtree, 
called a restricted quadtree, propagates the subdivision information to neighbors. 

The rule about restricted quadtrees is that neighboring regions must have the 
same width to within a factor of two (Figure 2.4). For each subdivision level 
in the quadtree hierarchy, the widths of the squares decrease by a factor of two. 
Therefore, the neighboring regions must be within one level of each other in the 
quadtree hierarchy. Regions that share an edge are considered neighbors. Regions 
that share only a corner are not considered neighbors. The rule prevents sudden 
changes in the sampling rate over a surface. Artifacts associated with the change 
in sampling rate are minimized. Restricted quadtrees concentrate samples near 
important features, making the algorithm more robust. The robustness of curve­
finding algorithms is improved as well. 
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Figure 2.13: Transforming a restricted quadtree into a triangular subdivision. 

Figure 2.3 and Figure 2.4 show the difference between an unrestricted quadtree 
and a restricted quadtree sampling near a cubic curve. The squares subdivide only 
if their corners span the cubic curve. The unrestricted quadtree misses a large 
portion of the curve, but the restricted quadtree is much more robust at exploring 
the complete curve. 

A square in a restricted quadtree is decomposed into triangles using a simple 
rule. Every square is broken into eight triangles, or two triangles per edge, unless 
the edge borders a larger square. In that case, a single triangle is formed along 
the edge (see Figure 2.13). This rule does not create the minimum number of 
triangles per square; but it does cause most of the triangle edges to be parallel 
to the parametric directions u and v. For cases where the principal directions 
of curvature are aligned with the parametric directions, the rule produces sets of 
triangles that represent the surface more accurately. 

2.4.5 Neighbor-Finding Algorithm 

An efficient technique exists for finding neighbors in a quadtree ([Samet 82]). The 
algorithm finds the nearest common ancestor between a square and its neighbor, 
and requires an average of four node traversals of the quadtree, for quadtrees of 
arbitrary size. The algorithm is used to maintain the restricted quadtree, and to 
triangulate the quadtree. Alternatively, the neighbors may be explicitly stored 
with.pointers at each square; this requires additional memory. 

2.4.6 Parametric Space Wrap-Around 

For a closed parametric surface, such as a sphere, the east boundary must match 
the west boundary exactly; otherwise cracks may appear at the "date line." The 
neighbor-finding algorithm may be extended at parametric boundaries. We define 
squares on the west edge of the quadtree to be neighbors of squares on the east 
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Figure 2.14: Uniform sampling without triangle clipping at surface intersections. 

edge of the quadtree. For toroids, the squares on the north edge of the quadtree 
are neighbors of squares on the south edge of the quadtree. The seam at the 
parametric boundary is eliminated by forming a triangular subdivision across the 
boundary. 

2.4. 7 Triangle Clipping 

After the squares of the quadtree are broken into triangles, the triangles are tested 
against inside-outside functions of other surfaces, and are clipped at the inter­
section boundary. The clipping removes the ragged appearance that otherwise 
occurs (Figure 2.14). Figure 2.15 shows the effects of clipping boundary triangles 
and quadtree sampling. The technique dramatically improves the quality of the 
images. 

2.5 Recursive Subdivision Criteria 

A set of recursive subdivision criteria is needed to determine where subdivision 
should occur. The philosophy of the method is to mathematically measure the 
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Figure 2.15: Quadtree sampling with clipping at surface intersections. 

visible artifacts or errors of each part of the surface, and to subdivide until a 
prescribed tolerance is reached. The criteria should include a method to detect 
surface curvature and locate silhouette and surface intersection boundaries. 

We use three coordinate systems here: ( u, v) parametric space, ( x, y, z) mod­
eling space, and (X, Y) screen space. Parametric space spans the domain of the 
parametric surface. The surface is embedded in three-dimensional modeling space. 
Screen space uses a viewing transformation to project modeling space coordinates 
onto the image plane. Screen space is useful for determining the visual size of a 
feature when a model is resampled for each frame of an animation ([Barr 86]). 

The recursive sampling process is started with a coarse initial grid of samples. 
The grid provides basic information about the surface for making decisions about 
further subdivision. The following criteria control the subdivision process: 

2.5.1 "Curvature" Subdivision 

Curvature subdivision estimates the local curvature of an object. Where the cur­
vature is high, a region is subdivided. The subdivision process terminates when 
a region becomes sufficiently planar. Curvature estimation may be performed in 
several ways. [Lane and Carpenter 79] measure the distance from a surface to its 
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Figure 2.16: Bending a rectangle in the plane into a horseshoe shape. The quadrilateral 
is a very poor approximation to the bent shape. 

planar approximation. Alternatively, normal vectors may be computed approxi­
mately or analytically from the equation for the surface. Normal vectors are used 
here, since they are computed for shading computations, anyway. A simple vector 
equation of these normals provides a curvature subdivision criterion. Every adja­
cent pair of normal vectors (.N1 , N2 ) of a region must satisfy (1-.N1 •.N2 ) < E, where 
E is determined empirically by adjusting E until the image quality is satisfactory. 
The normal vectors are normalized to unit length. Subdivision stops if the region 
is smaller than a pixel. The actual curvature k is given by k = ( d0 / dx), where 0 is 
an angle and x is a distance. For small values of 0, the normal vector estimation 
(1 - .N1 • N2 ) computes a term proportional to 02

• 

Tangent vectors must pass the same curvature test, (1-T1 ·T2 ) < E. It is possible 
for all of the normal vectors to point in the same direction, but the tangent vectors 
may point in different directions. Distorting a rectangle into a U-shape is a good 
example (Figure 2.16). The sheet stays in the plane, but its tangent vectors are not 
parallel. Such highly curved regions must be sampled finely. Tangent curvature 
subdivision eliminates the problem (Figure 2.17), improving the robustness of the 
curvature subdivision criterion. 
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Figure 2.17: On the left is a drain without tangent curvature subdivision. The image on 
the right shows a drain with tangent curvature subdivision. Note the additional sampling 
near sharp corners. 

2.5.2 Intersection Subdivision 

A sharp boundary is created where surfaces intersect. The boundaries should be 
finely sampled to avoid aliasing artifacts. One approach is to subdivide boundary 
regions until they are smaller than a pixel. The technique is robust, but expensive, 
in computing the boundary of the surface. An alternative technique is explored 
here that measures the straightness of the boundary. Subdivision occurs until the 
boundary is straight in modeling (x, y, z) space. In regions where the boundary 
forms a sharp corner, subdivision stops if the region is smaller than a pixel. Where 
the boundary is straight, larger triangles can be used. Triangle clipping at the 
boundary produces an accurate boundary if the boundary is straight. 

The test for straightness of a boundary curve across a region uses a'pproximate 
tangent vectors of the boundary curve. Figure 2.18 shows a square with four 
corner vertices connected to a center vertex. Note that any straight line crossing 
the square must intersect the lines of the square in at least three places: Pi, P2 , 

A. The intersection points are found by interpolating between corner samples 
and a center sample on the square until a boundary point is obtained. A variation 
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intersection \~y 
Figure 2.18: Geometry for intersection boundary subdivision. 

Figure 2.19: Subtraction of a deformed surface. 
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of the regula falsi iteration method is effective ([Rao 84]). We approximate the 
boundary by the line segments Ti = A - Pi and Ti = A - .A. The vectors Ti and 
Ti are approximate tangents to the boundary curve. The two tangent vectors are 
normalized and tested with the condition (1-Ti · Ti) < t. The region is subdivided 
until the condition is met, unless the region is smaller than a pixel in screen space. 
Triangle clipping smooths the edges created. 

Several methods exist for telling whether points are inside or outside an inter­
secting object. A hierarchical set of bounding volumes can determine the proxim­
ity of a sample point to the intersecting surface. Alternatively, an inside-outside, 
or implicit, formulation for the surface can classify the sample point ([Barr 83], 
[Sederberg and Parry 86]). Figure 2.19 shows an example of a deformed surface 
subtracted from a mold. 

2.5.3 Silhouette Boundaries 

Given a camera viewpoint, silhouette subdivision concentrates samples along the 
silhouette boundary to minimize local artifacts. The eye is quick to pick up slight 
irregularities at the sharp border of an object, which has high spatial frequencies. 
Polygonal artifacts are easier to see near the silhouette boundary of a surface 
than on the interior. The silhouette criterion is evaluated in a similar manner to 
the intersection subdivision criterion. The sphere in Figure 2.10 and Figure 2.11 
demonstrates the silhouette subdivision process. 

The dot product between the surface normal N and the view vector V deter­
mines whether a sample is front-facing (N · V < 0), back-facing (N · V > 0), or 
on the silhouette boundary (N · V = 0). Subdivision stops when the curvature of 
the silhouette boundary in screen space is less than a threshold value or when the 
region is smaller than a pixel. The second termination condition prevents sharp 
corners from causing infinite recursion. 

2.5.4 Proximity Subdivision 

Proximity subdivision searches for intersection points between surfaces. It is a 
precursor to the intersection criterion, which finds the entire intersection boundary, 
given an intersection point. A surface is subdivided until either an intersection is 
found or a local minimum is found in the inside-outside functions of the other 
surfaces. If an implicit inside-outside function is not available, bounding volumes 
or surface regions may be used to determine the need for additional subdivision. 
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2.5.5 Efficient Combination of Subdivision Criteria 

Each of the subdivision criteria described above is computed for each region. Some­
times it is possible to determine that a region requires further subdivision without 
computing all the criteria. In this case, it makes sense to compute the inexpensive 
criteria first so as possibly to avoid unnecessary computation. When the region 
passes all subdivision criteria once ( or is culled from further consideration), a flag 
is set to indicate that the region should not be reexamined during the next pass 
through the quadtree. Some of the criteria use view-dependent tests, since a view­
ing transformation may be available at sampling time. In addition to the criteria 
mentioned here, the region may be forced to subdivide due to the constraint of re­
stricted quadtrees that neighboring regions remain the same width within a factor 
of two. The following tests are ordered roughly according to increasing computa­
tional cost: 

1. If the square is bigger than the initial sampling grid, then subdivide. 

2. Else, if the square is facing away from the viewer, then stop subdividing. 

3. Else, if the square is small~r than a pixel, then stop subdividing. 

4. Else, if the proximity test reveals a potential intersection, then subdivide. 

5. Else, if the square is culled by a surface intersection, then stop subdividing. 

6. Else, if the square fails the flatness test, then subdivide. 

7. Else, if the square fails the intersection boundary curve straightness test, 
then subdivide. 

8. Else, if the square fails the silhouette boundary curve straightness test, then 
subdivide. 

9. Else, stop subdividing the square. 

2.6 Imaging Results 

The following illustrations show the variety of deformed, intersecting parametric 
surfaces that may be rendered using the adaptive sampling techniques described. 
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Figure 2.20: Triple cluster. 

Figure 2.21: Hex puzzle. 
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Figure 2.22: Bicycle chainwheel. 

2.6.1 Puzzle 

The puzzle is modeled with six identical pieces that fill the volume of the interior 
of the puzzle. An individual piece is formed by taking a superquadric block, and 
subtracting two similar blocks to cut wedges in the piece (Figure 2.15). Three 
pieces may be assembled to form the cluster shown in Figure 2.20. The completed 
puzzle is formed with a left-handed triple cluster and a right-handed triple cluster 
(Figure 2.21). 

2.6.2 Bicycle Chainwheel 

The chainwheel uses the Boolean subtraction operation extensively (Figure 2.22). 
Fifty-two cylinders are subtracted from a disk to form the teeth for the gear. The 
proximity subdivision criterion helps to locate the position of the teeth. Deformed 
cylinders cut holes in the gear to make it lighter. Superquadric cranks and pedals 
are added after the cutting process. 
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Figure 2.23: Nut and bolt. 

2.6.3 Nut and Bolt 

A type of screw thread may be formed by taking a superquadric with a square pro­
file and twisting it for several revolutions (Figure 2.23). The thread is subtracted 
from the nut and merged with the bolt head to form the nut-and-bolt combination. 

2.7 Summary 

Surface quadtrees are an effective way to triangulate deformed, intersecting para­
metric surfaces. The adaptive sampling problem may be decomposed into two 
subproblems: the mechanism for subdivision, and the subdivision criteria. Im­
ages of these parametric surfaces have been created using a robust subdivision 
mechanism and a small set of subdivision criteria. 

Restricted quadtrees are more robust than unrestricted quadtrees in the trian­
gulation of parametric surfaces. Curvature, intersection, proximity and silhouette 
subdivision techniques provide a robust set of criteria for recursively sampling 
parametric surfaces. These techniques are found to be more efficient than uniform 
subdivision at producing triangulations of deformed, intersecting surfaces. 
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Chapter 3 

Subdivision Mechanisms for 
Adaptive Parametric Sampling 

This chapter describes a series of subdivision mechanisms that adaptively sample 
parametric surfaces. The purpose of an adaptive subdivision mechanism is to 
smoothly adjust the sampling frequency across a surface, as required by various 
sampling criteria. It is important that the subdivision mechanism not produce 
cracks or other artifacts in the surface to be represented. It is also desirable to 
have some control over the aspect ratios of surface elements so that sampling may 
be increased along one parametric dimension independent of the other dimension. 
Finally, the results should extend to functions of an arbitrary number of parametric 
variables. 

A variety of subdivision mechanisms are possible that may satisfy the objec­
tives. Here we describe and compare a progression of subdivision mechanisms in 
an effort to refine subdivision techniques. 

3.1 Uniform Sampling 

The simplest way to sample a surface is with uniform sampling (Figure 2.9). The 
samples are not focused on regions of interest, but are distributed uniformly across 
the surface. The complexity of this approach is O(n2 ) samples for linear resolution 
n. 

3.2 Unrestricted Quadtrees 

The quadtree data structure has been extensively explored by [Samet 84]. The 
quadtree uses a basic recursive subdivision process whereby a square is subdivided 

33 
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Figure 3.1: An unrestricted quadtree of a circular region showing squares with a large 
number of neighbors. It is difficult to construct a satisfactory triangular subdivision 
from this structure. 

into four smaller squares. This basic approach is simple, but suffers from several 
deficiencies. The quadtree is subject to abrupt changes in sampling frequency 
across a surface, resulting in frequent omissions of features that are important to 
sample. In Chapter 2, we showed that if corner sampling is used with quadtrees, 
it is common to lose linear features on the scale of the square being sampled 
(Figure 2.3). 

Another problem with quadtree squares is that they are hard to convert into 
suitable triangles. A quadtree square may have an arbitrary number of smaller 
neighbors Figure 3.1. It is difficult to construct a triangular subdivision out of 
this configuration that avoids cracks in the surface, avoids lots of additional sam­
pling across the square, and preserves the aspect ratio of the resulting triangles. 
Other subdivision mechanisms have been shown to have advantages over the basic 
quadtree method [Von Herzen 85]. 
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Figure 3.2: Shading that uses scanline interpolation, such as Gouraud shading, is 
rotation-invariant only for triangles (top row). Gouraud shading with other polygons 
produces serious artifacts (bottom row). 

3.3 Restricted Quadtrees 

Chapter 2 developed the notion of a restricted quadtree as an attractive mechanism 
for the adaptive sampling of parametric surfaces. The_ procedure involves the 
recursive subdivision of parametric space using quadtrees, subject to the restriction 
that neighboring squares in the quadtree may differ in width by at most a factor 
of two (Figure 2.4). If the neighbor size is restricted, then additional subdivision is 
performed near regions with a high concentration of samples, resulting in a smooth 
transition from low spatial sampling frequencies to high ones. Restricted quadtrees 
are much more robust than unrestricted quadtrees at adequately sampling curves 
and surfaces. Figure 2.11 shows a restricted quadtree approximating the silhouette 
of a sphere in parametric space. 
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Figure 3.3: A surface network of right triangles, generated directly from a right trian­
gular subdivision mechanism. 

3.4 Advantages of Triangular Surface Elements 

Restricted quadtrees are converted into triangles because triangular surface el­
ements offer several advantages over other surface elements. Polygon renderers 
usually interpolate shading across the interior of a polygon. Many shading algo­
rithms ([Gouraud 71]) are rotation-invariant only for triangles (Figure 3.2). In 
fact, if interpolation is done horizontally, as for Gouraud shading, the shading pat­
tern becomes discontinuous for polygons that are concave in the vertical dimension 
(See the last quadrilateral in Figure 3.2). We would like to guarantee that all poly­
gons sent to the rendering system are convex. If we use parametric quadrilaterals, 
we have no assurance that the image of the quadrilateral in modeling space will 
remain convex. Triangles are never concave, so the problem never arises if we use 
parametric triangles. 

Triangles are useful in forming a planar subdivision of a restricted quadtree. 
One way to avoid cracks in a surface is to form a planar subdivision of the para­
metric space. A planar subdivision is a collection of line segments that intersect 
only at segment endpoints. A triangular subdivision of the plane may be con­
structed from the restricted surface quadtree (Figure 2.13). 

Triangles are advantageous in the computation of surface normals as well. 
Three non-degenerate vertices are necessary and sufficient to determine the normal 
for the triangle. With four or more vertices, we may not have a unique normal 
vector if all four vertices are not coplanar. This contradiction is not possible for 
triangles; the data structure is correct by construction. 

For these reasons, the work here focuses primarily on triangular surface ele­
ments rather than on more complicated polygonal primitives. 
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Figure 3.4: An image of a silhouetted figure. 

Figure 3.5: A right triangular surface network of an image of a silhouetted figure. 
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Figure 3.6: The bold triangle must be split. We split along the hypotenuse, and must 
split the neighbor as well, to maintain a right triangular subdivision. 

Figure 3. 7: The bold triangle must be split. We move to larger neighbors until we can 
find a pair as in Figure 3.6. 

3.5 Bintrees of Right Triangles 

The restricted quadtree subdivision method recursively subdivides a square para­
metric region until it is sufficiently small, and then converts the region into a set 
of triangles. It may be more efficient to start with triangles in the first place, and 
recursively subdivide them until they reach adequate size. This line of reasoning 
leads to the notion of bintrees of triangles, as opposed to quadtrees of squares. 
Figure 3.3 show a simple subdivision mechanism based on right triangles. The 
hypotenuse is always split, forming two legs of smaller triangles. This recursion 
mechanism has advantages similar to restricted quadtrees, but is more efficient 
than restricted quadtrees in that fewer samples are required to obtain the same 
spatial resolution (See Appendix B.4). Figure 3.5 shows a silhouette figure, sam­
pled using bintrees of right triangles. 

In order to avoid cracks in the surface, the triangular bintree must span the 
parametric region, and must form a triangular subdivision. If we split a single 
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Figure 3.8: A three-step recursion to subdivide the bold triangle. The recursion termi­
nates because we always go to larger triangles. 

triangle without splitting its neighbor, we would destroy the requirement that tri­
angle vertices always touch other vertices, never other triangle edges. If we always 
split pairs of triangles with a common hypotenuse, we preserve the triangular sub­
division (Figure 3.6). If the hypotenuse of the split triangle matches the leg of 
the neighboring triangle, then we must subdivide the neighbor first along the hy­
potenuse, and then along the leg (Figure 3.7). In some cases we must recurse to 
larger and larger triangles to find a pair with a common hypotenuse. Since we 
always proceed from smaller triangles to larger ones in this recursion, either the 
recursion terminates or we reach the largest triangle in the surface network, in 
which case the recursion stops. Edge triangles can split by themselves without 
destroying the triangular subdivision, as long as they aren't connected to other 
surface networks. Figure 3.8 shows a multiple step recursion to subdivide a small 
triangle. 

The implementation of the triangular bintree subdivision process is quite sim­
ple. Only one primitive operation alters the triangular subdivision. The operation 
transforms a pair of triangles with a common hypotenuse into four triangles with 
common legs, as in Figure 3.6. 

In effect, we are allowed to split a triangle only along its longest edge. This 
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Figure 3.9: A scaled triangular surface network of an image of a silhouetted figure. 

preserves the aspect ratio of the triangles as they are split. As long as there is a 
total ordering of all the edges in the subdivision, the algorithm will terminate, since 
the recursion moves exclusively from shorter edges to longer ones. Since there is a 
maximal edge, termination is ensured. The length of each edge serves as the total 
ordering function for the bintrees of right triangles, and thus ensures termination 
of the recursion. 

3.6 Planar Subdivisions with General Triangles 

The previous section dealt with right triangles. It is possible to generalize the 
subdivision mechanism to deal with other types of triangles. We used edge length 
to choose which edge to split with binary right triangles. It is possible to use other 
total orderings to create subdivision schemes using non-right triangles. 



3.6. GENERAL TRIANGULAR SUBDIVISION 41 

3.6.1 Triangular Subdivision with a Scaled Length Metric 

One simple extension of the right triangular subdivision algorithm is to use a 
definition of edge length stretched in one direction, such as 

L 2 = su2 + v2, (3.1) 

where L is length, u and v are parametric dimensions, and s is a scaling for 
the u parametric direction. When s > 1, Eqn. 3.1 forces more subdivision in 
the u direction than the v direction, which is useful when sampling long, skinny 
surfaces, or in any situation where more sampling is needed along one parametric 
direction than along the other. The statue silhouette of Figure 3.4 benefits from 
finer sampling in the u direction in Figure 3.9, because of the vertical alignment 
of its edges. Since the boundary is longer in one parametric direction than in 
the other, this subdivision mechanism results in an improvement in efficiency over 
bintrees of right triangles. 

3.6.2 Adjusting the Aspect Ratio of Triangular Subdivi-. 
SIOnS 

Suppose that we wanted no edge of a triangular surface network to be longer than 
a distance D in modeling space. If some regions of the surface are long and skinny 
in terms of the parametric aspect ratio, (fj,,v//j,,u), then we would like to control 
the aspect ratio of the triangles on the surface so as to make effective use of the 
samples being generated. This can be done by changing the edge-ordering function 
to match the desired property of the subdivision. For example, if we use modeling 
space length instead of parametric length as the edge-ordering function, then all 
edges of length L > D are split before all edges of length L :'.S D. This technique 
uses fewer triangles than in the case of scaled triangular subdivision. 

The binary triangular method will work for any total ordering function that 
operates on the edges of a surface network. The best ordering function to use 
depends on the criteria for subdivision. 

3.6.3 Reorienting Triangular Subdivisions 

You might think that an easy subdivision mechanism would be simply to split an 
edge whenever it crosses a boundary of a region. This should result in short edges 
near boundaries of regions, and in long edges within homogeneous regions. 

Unfortunately, the technique does not work. Figure 3.10 demonstrates that 
the technique fails to traverse the boundary of the silhouetted figure of Figure 3.4 
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Figure 3.10: The failure of a technique that samples by subdividing edges only when 
they cross the boundary of a silhouette. 

successfully. The triangles are unable to force sufficient subdivision of neighbors 
to traverse the complete silhouette. 

The technique in Figure 3.11 is somewhat more successful at sampling the 
boundary of the figure. It is not clear that this approach is really optimal in terms 
of speed, robustness, or number of triangles, but it is representative of the wide 
variety of subdivision mechanisms that are possible. 

3. 7 General Tetrahedral Subdivision for Para­
metric Functions of Three Variables 

The binary subdivision technique described in Section 3.6 can be generalized to 
higher dimensions quite successfully. The same binary subdivision technique will 
work with simplexes of any dimension. For three parametric variables ( u, v, t), we 
must span the parametric solid with a tetrahedral subdivision. 

We will still use the total ordering function for edges to determine which edge 
of the tetrahedron to split. Figure 3.12 shows the geometry for tetrahedral sub­
division. Only one edge of the tetrahedron is split, the one that is maximal with 
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respect to the edge-ordering function. 
All other tetrahedra that touch the maximal edge must be split as well. If they 

must first split in some other direction, then the splitting function is recursively 
called, in a manner analogous to the two-dimensional triangular case. The tetra­
hedral algorithm terminates for the same reasons that the triangular algorithm 
terminates. As long as there is a total ordering of all the edges in the subdivision, 
termination is ensured, since the recursion moves exclusively from shorter edges to 
longer ones. 

This method is useful for higher-dimensional parametric problems, such as 
parametric surfaces moving as a function of time. The same results on avoiding 
cracks in modeling space apply to higher-dimensional subdivisions. The methods 
established here will work with simplexes of any dimension, given a total ordering 
of edges of the subdivision. 

3.8 Non-planar Surface Elements 

An interesting potential future extension of this work would be to consider us­
ing non-planar surface elements instead of triangles to approximate parametric 
surfaces. A difficulty with this approach is that a polygon is the most compli­
cated primitive directly rendered by many rendering systems. One possibility is 
to consider a method that generates simple curved patches, and then to generate 
triangles from the curved patches. 

Steiner patches, which are rational quadratic surfaces, have recently been used 
for surface rendering ([Sederberg and Anderson 86]). These are non-planar trian­
gular patches, with no inflection points on their interior (Figure 3.13). Given three 
arbitrary corner points, a set of four Steiner patches may be sufficient to provide C1 

continuity across the surface. Since Steiner patches are triangular, it is attractive 
to use bintrees of right triangles to generate the surface samples. Since the bintree 
algorithm generates a triangular subdivision ( no triangle edges intersect), we can 
guarantee both C0 and C1 continuity across surface patches. 

Another approach is the use of biquadratic surface elements to model surface 
curvature as well as orientation ([Barr 86, p. 294]). The patches do not exactly 
match at their edges (neither C1 nor C0 continuity), but a new patch is generated 
whenever the displacement of the adjacent edges of two patches exceeds a threshold 
value. In this way it is possible to keep the approximation errors below a level 
perceptible to the human eye. 

Another possible approach in using non-planar surface elements comes from 
research in image analysis in the segmentation of an image into smooth subelements 
([Besl and Jain 88]). The approach is to determine the local Gaussian and mean 
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Figure 3.13: A set of four Steiner patches that forms a triangular non-planar surface 
element. 

curvature of the intensity function of the image at each pixel, and then to grow 
surface patches that are biquadratic, bicubic, or biquartic in complexity, based on 
the geometry of the smooth features in an image. The initial assumption is made 
that the surfaces are as simple as possible, and when that assumption is shown 
to be false, the order of the approximating surface is increased in an attempt to 
obtain a better approximation to the surface. The order of the approximating 
surface is increased until the mean errors drop below a threshold value. 

3.9 Summary 

In this chapter we illustrate a series of subdivision mechanisms that can be used to 
adaptively sample a parametric surface. Triangular surface elements are shown to 
have important benefits over quadrilateral elements. A new method for subdivision 
based on bintrees of right triangles has superior efficiency to standard quadtree 
techniques. Variations on the basic approach using bintrees of right triangles are 
possible. These lead to more general triangular subdivisions, but many of these are 
unsatisfactory for delineating the boundaries of surface regions. Future extensions 
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to non-planar surface elements are discussed. 



Chapter 4 

Collision Determination for 
Parametric Surfaces 

In this chapter we develop a method for computing E-collisions between parametric 
surfaces for which we have bounds on the parametric derivatives of the surfaces. A 
collision may be defined as the loss of separation between objects. The notion of 
an E-collision is developed, whereby a volume of width E contains points from both 
parametric surfaces. An E-collision occurs whenever a volume of width smaller 
than a given distance E is found to contain points from both surfaces. The E­
collision algorithm will find all E-collisions between the two surfaces. We are able 
to guarantee that we will find the first E-collision, if one exists, to within the 
temporal tolerance of the computation. In cases where the parametric surfaces 
are far apart, the E-collision algorithm terminates after a single sample has been 
taken from each surface. It becomes computationally trivial to reject potential 
collisions between distant objects. The closer the two surfaces are to each other, 
the longer it takes to verify that the two objects do not collide. The technique 
applies potentially to problems in robotics and aviation. 

4.1 Introduction 

4.1.1 Problem Statement 

Many problems in spatial computation require the ability to determine collisions 
between objects. Questions of how to quickly and reliably determine collisions 
between complex surfaces apply to robotics, air traffic control, physically-based 
simulation, and modeling. This chapter addresses the problem of determining the 
time and position of first collision between two parametric surfaces that are moving 
as a function of time (Figure 4.1). The parametric surfaces may be considered to 
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t < tmin t = tmin 

~ 

f~(u,v,t) 

Figure 4.1: The collision-determination problem for arbitrary surfaces: to find the time 
and location of the first collision between two moving parametric surfaces. 

be vector functions of three parametric variables: fA( u, v, t) and f~( u, v, t), where 
u and v are parametric variables that span the surfaces, and tis time. For suitable 
types of surfaces, we want to find the earliest time tmin, such that 

( 4.1) 

We also want to find uA, uB, VA, and VB at some point of first collision on each 
surface. We assume that the surfaces are continuous, and that they are embedded 
in three spatial dimensions and one temporal dimension. 

4.1.2 Problems with Arbitrary Surfaces 

The collision problem for parametric surfaces can be made arbitrarily difficult for 
suitably extreme parametric surfaces, such as the spike function of Figure 4.2. For 
suitably sharp spikes, finite sets of samples will probably miss the spikes completely. 
If we do not know where the spikes are, then we cannot know when the surface will 
collide with other surfaces. Finding a narrow spike becomes arbitrarily difficult as 
the parametric width of the spike approaches zero. There must be some additional 
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Figure 4.2: Parametric spike functions can be made arbitrarily sharp, so that their 
detection is extremely difficult. This makes collision detection arbitrarily difficult for 
parametric surfaces. We need some other information in order to guarantee the detection 
of the first intersection. 

constraint on a parametric surface in order to guarantee that the first collision is 
detectable. 

A simplistic approach for collision detection would be to position two surfaces 
at time t1 and see if they intersect, and then move the surfaces to final positions at 
time t2 and see if they intersect. We could then split the time difference and sample 
the two surfaces at time (t 1 +t2)/2, or some other time between t1 and t 2 • Recursing 
in this manner, we would sample the paths of the two surfaces. The problem with 
this technique for any finite number of samples is that we have no information 
about the positions of the surfaces between the sampling times. Without this 
information, we can never be sure that we have not missed an intersection. The 
problem is analogous to the spike problem of Figure 4.2. 

To solve the collision-determination problem, we require a constraint on the 
maximum velocity of any point on the surface. If velocity is unconstrained, then 
the position of a surface may be discontinuous as a function of time, and the 
collision determination problem is insoluble (Appendix A.5). With knowledge of 
the maximum velocity of two surfaces, we can find the first collision of the surfaces. 

4.1.3 Solution for Surfaces with Lipschitz Conditions 

In Chapter 2, we applied a Lipschitz condition to parametric surfaces in order to 
create bounding volumes that completely contain the surface. Given a continuous 
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l u 

Parametric Space Modeling Space 

Figure 4.3: Graphical illustration of the Lipschitz inequality for parametric functions 
of three variables. We have D ~ L liu2 - ii1ll-

parametric surface f( u), the Lipschitz condition states that 

( 4.2) 

The Lipschitz condition is implied if the function f( u) has finite partial derivatives 
([Lin and Segel 7 4, p. 58]). The Lipschitz constant L is a generalization of the 
derivative of f( u). We can also find Lipschitz constants for some surfaces that 
are not differentiable (see Section B.3). The Lipschitz condition on a surface is 
sufficient to create sets of bounding volumes that are guaranteed to bound the 
parametric surface. 

It is possible to develop a similar constraint on the temporal aspects of the 
collision-determination problem. We can have a parametric surface f( u), i1 = 
( u, v, t)I', that moves as a function of time. We can construct a set of bounding 
volumes for the moving surface, in a manner analogous to the method for stationary 
surfaces. In this case, L sets an upper bound for the velocity of the parametric 
surface as well as for the other parametric derivatives. This inequality is depicted 
graphically in Figure 4.3. 

Given parametric functions f:_(u) and f~( u), along with their Lipschitz values 
LA, and LB, we will prove a method to determine the first £-collision between 
two surfaces. Alternatively, we can confirm that two objects do not collide. In 
addition, we will generalize the notion of a Lipschitz constant so as to provide 
tighter bounding volumes for £-collision computations. 
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The E-collision algorithm is approximate, in that a distance tolerance E de­
termines the precision of the spatial computation. We will always find the first 
E-collision if there is one. Given a tolerance t:, the algorithm will find points on 
each surface that lie within distance E of each other. The algorithm has an advan­
tage on machines with finite numerical precision, since it already accommodates 
uncertainty in the numerical values. If we had an exact algorithm, we would have 
to accommodate rounding errors by complicating the algorithm. In addition, us­
ing the t:-collision algorithm, we can compute whether two objects ever have a 
minimum separation that is less than a given value. 

4.2 Previous Work 

Previous techniques have used velocity and distance bounds for collision detec­
tion of rigid objects ([Culley and Kempf 86]). Upper bounds on velocity and lower 
bounds on distance can determine minimum time until the next collision between 
objects. There has been some work on determining lower bounds on distance for 
convex polygons and polyhedra ([Schwarz 81], [Cameron and Culley 86]), but rel­
atively little has been done for parametric surfaces more complex than polynomial 
functions ( [Bezier 7 4]). 

The method for E-collision determination presented in Section 4.5 applies to a 
wide class of parametric surfaces. The notion of an upper bound on velocity is 
generalized to parametric dimensions other than time. We can automatically find 
a lower bound to the separation distance between objects, given upper bounds to 
the parametric derivatives of the function. The derivative constraints enable us 
to sparsely sample a parametric function that deforms over time, and determine 
t:-collisions with other objects. 

4.3 Finding Surface Intersections for Station­
ary Parametric Surfaces 

First, we will describe a technique for determining if the surfaces of two stationary 
parametric functions intersect, if we are given Lipschitz constants for the surfaces. 
We construct surface networks for the two surfaces, and form a hierarchy of bound­
ing volumes that completely bound each surface. Since we are not concerned with 
rendering cracks in the surface, it is not necessary to use restricted quadtrees to 
form the network. 
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Figure 4.4: An example of successive subdivision levels of a 2-dimensional k-d tree 
spanning the unit square. The aspect ratio of the rectangles may be adjusted by powers 
of 2. 

4.3.1 k-d Trees in Parametric Space 

A variety of subdivision mechanisms are possible, including quadtrees of squares 
or bintrees of triangles. We choose to use an alternative to the quadtree, which 
generalizes to k dimensions, called the k-d tree (for k-dimensional binary search 
tree [Bentley and Friedman 79)). The reasons for this choice are that we need a 
method that extends easily to k dimensions, we are not concerned about rendering 
cracks, and we want good control over the aspect ratio of the parametric subregions. 
In the k-d tree method, k dimensional space is divided into k-dimensional boxes, 
using planes perpendicular to each of the parametric axes. Each subdivision level 
splits the k-dimensional box along one of the dimensions to form two descendent 
boxes. 

The k-d tree offers more flexibility than the quadtree. We can control the 
aspect ratio of the parametric boxes by splitting the boxes several times in the 
same direction. Algorithms for the k-d tree adapt easily to arbitrary dimension 
since the data structure remains the same: a binary tree. We simply change the 
split direction as needed for the new dimensions. The total number of nodes may 
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Parametric Space Modeling Space 

Figure 4.5: Computing the distance from a point ( u, v) to the center of a rectangular 
subregion ( Uc, vc), A sphere of radius r bounds the parametric surface f( u, v) in the 
region R: ju - ucl S Llu, Iv - vcl S Llv. 

be smaller for the k-d tree, since only two new rectangles are generated for each 
subdivision level, as opposed to four for the quadtree. However, because of the 
lower fanout per level, the hierarchy of a k-d tree may require more subdivision 
levels than the quadtree. 

4.3.2 Spherical Bounds in Modeling Space for Parametric 
Subregions 

We first construct spherical bounding volumes for parametric rectangles and then 
extend the rectangles to higher dimensions. Given the £-function 1( u, v) over a 
rectangular parametric region R: ju - ucl ::; ~u, Iv - vcl ::; ~v, and the Lipschitz 
constant L for the surface, we have 

(4.3) 

We choose different norms for each side of the inequality: 

(4.4) 
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(4.5) 

We can generalize this equation with a separate constant for each parametric term: 

(4.6) 

where Lu and Lv are called the rate constants for the function /( u, v). From 
Eqn. 4.6, we can derive sufficient values for Lu and Lv, assuming that f is differ­
entiable: 

af 
, Lv 2: m}tx av (4.7) 

2 2 

We take the maximum of the parametric derivatives over the parametric region R. 
The rate constants Lu and Lv are generalizations of the partial derivative, and are 
well defined for some non-differentiable surfaces (Appendix B.3). 

We substitute the inequalities for region R to arrive at the bounding sphere 
equation: 

(4.8) 

for all points ( u, v f inside region R. The right side of Eqn. 4.8 represents the radius 
r = Lu~U + Lvl:J..v of a sphere in modeling space centered about f( uc, vc)- Eqn. 4.8 
states that any point of the parametric surface in the rectangular subregion R must 
lie within distance r from the center point f( Uc, vc) of the subregion (Figure 4.5). 

4.3.3 Intersection Computation 

We can now compute the intersection of two parametric functions, to within a 
tolerance f. We are given the parametric functions fA(u,v),J~(u,v), the rate 
constants LuA, LuB, LvA, LvB, and a tolerance, E, for the intersection determination. 
Our goal is to find a point P: on surface fA(u, v) and a point P~ on surface f~(u, v), 
such that JJ P: - P~ JJ 2 :::; f. 

Without loss of generality, we can assume that both surfaces are defined over 
a unit parametric square given by O :::; u :::; 1, and O :::; v :::; 1. Starting with a 
single sample on each surface, ]:(0.5, 0.5), f~(0.5, 0.5), we determine the maximum 
radius of each subregion, using Eqn. 4.8. If the sum of the two radii are less than the 
distance between the two samples, then the two surfaces cannot possibly intersect, 
and we are done with the computation. On the other hand, if there is a potential 
overlap between the two surfaces, then we subdivide the larger region into two 
subregions, using a k-d tree, and compare each subregion with the other surface. 
The procedure recurses until we have checked all the subregions against each other, 
or until we have found a point on each surface in the same location to within E. 
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RECURSIVE INTERSECTION OF Two PARAMETRIC SURFACES 

(defstruct node "Representation for a parametric surface region." 
parameters j ( u, v, t) coordinates of the center of the region. 
position j ( x, y, z) coordinates of the center of the region. 
radius j Maximum radius of the region. 
child1 j Pointer to first subregion of this region. 
child2) j Pointer to second subregion of this region. 

(defun node-intersect (nodeA nodeB fnA fnB LA LB eps) 
"Compares nodes from two surfaces to see if they intersect." 
(cond 

((> (separation-distance nodeA nodeB) 
( + (node-radius nodeA) j If the nodes are separated by 

(node-radius nodeB))) j more than the sum of their radii! 
nil) j return a null intersection. 

j Else if the distance is less than the tolerance! return the collision values. 
((< (separation-distance nodeA nodeB) eps) 
(list 'collision-position (node-position nodeA) 

(node-position nodeB)) 
'tolerance (separation-distance nodeA nodeB) 
'collision-parameters (node-parameters nodeA) 
'collision-parameters (node-parameters nodeB))) 

j Else find the larger node radius! split it in two! and recurse. 
((> (node-radius nodeA) (node-radius nodeB)) 
(node-split nodeA fnA LA) j nodeA is largerj split and recurse. 
(node-intersect (node-child1 nodeA) nodeB fnA fnB LA LB eps) 
(node-intersect (node-child2 nodeA) nodeB fnA fnB LA LB eps)) 

( t j Otherwise nodeB is largerj split and recurse. 
(node-split nodeB fnB LB) 
(node-intersect nodeA (node-child1 nodeB) fnA fnB LA LB eps) 
(node-intersect nodeA (node-child2 nodeB) fnA fnB LA LB eps)) 

))) 

Figure 4.6: An algorithm and data structure written in Common Lisp for recursively 
testing two parametric regions for overlap. The arguments nodeA and nodeB are the 
parametric regions to be intersected. The arguments fnA and fnB are pointers to the 
parametric function definitions. The arguments LA and LB are the rate constants. The 
value eps is the allowed tolerance of the result. 



56 CHAPTER 4. PARAMETRIC COLLISIONS 

In effect, this algorithm implements the proximity subdivision criterion dis­
cussed in Section 2.5.4. In cases where the two surfaces are distant from each 
other, very little subdivision occurs. In regions where the two surfaces are in close 
proximity, many samples are taken in order to determine if the surfaces intersect, 
and if so, to determine where they intersect. 

4.3.4 Intersection Algorithm in Common Lisp 

Figure 4.6 shows the recursive algorithm, written in Common Lisp, that performs 
the intersection. The basic steps are: 

1. Given a sample from each parametric surface, determine the bounding radius 
for each region. 

2. Compare the sum of the two radii to the distance between the points in 
modeling space. 

3. If there is an overlap, subdivide the larger region. 

4. If the distance between the points is less than the tolerance, terminate. 

5. Else recurse using the smaller region and the descendents of the larger region. 

The data structure node represents a rectangular subregion of the parametric sur­
face. The top-level instantiation of node represents the entire parametric surface 
over region R. The children of this node represent halves of the surface, and so on. 
child1 and child2 store pointers to descendent nodes that implement the k-d 
tree hierarchy. The fields parameters and position represent the domain and 
range, respectively, of each node. The field radius stores the maximum distance 
from any point in the region to the center point, based on the rate constants Lu 
and Lv for the function and on Eqn. 4.8. 

The function node-intersect controls the subdivision of parametric regions 
to resolve potential intersections. The arguments nodeA and nodeB are parametric 
regions from surfaces A and B, respectively, that are to be compared against each 
other for potential intersection. The arguments fnA and fnB are pointers to the 
parametric functions that define surfaces fA( u, v) and J~( u, v ). These functions 
take parametric coordinates and return surface positions in modeling space. The 
values LA and LB are the rate values Lu and Lv for surfaces fA(u,v) and hJ(u,v). 
The rate values Lu and Lv may be constants or may be pointers to functions 
(see the next subsection). The functions take nodes as arguments, and return L 
values that are valid for the argument region. Finally, eps represents the allowed 
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tolerance of the intersection values. The intersection computation recurses until 
the desired tolerance is reached. 

The function node-intersect calls several other functions. One of these func­
tions, separation-distance, computes the distance in modeling space between 
the center of nodeA and the center of nodeB. The function node-split takes a 
node and subdivides it along one of the parametric axes, instantiating two new 
nodes, child1 and child2. When a node is split, the parametric axis for the split 
is determined by the largest of (Lul:).u,Lvl:).v). This way we always divide the 
dimension that contributes most to the radius r of the region. 

4.3.5 Extension to Variable L Values over a Surface 

In the preceding analysis, we have treated the Li as constants. Vie can generalize 
Eqn. 4.8 by considering the rate values Lu and Lv to be a function of the parametric 
region R: 

(4.9) 

Two L values can form tighter bounds on the parametric function f( u, v) than one 
L value can. While a constant value of L requires the evaluation of the maximum 
partial derivative over the entire surface, a function L(R) can evaluate the max­
imum partial derivative over smaller regions. The inequalities for Lu and Lv in 
Eqn. 4. 7 are evaluated for each new subregion of R that is created. This approach 
may lead to substantial improvements in efficiency for some types of surfaces with 
dramatic changes in parametric derivatives. 

4.3.6 Sphere Example 

As an example, we derive the L values for a unit parametric sphere. The spherical 
function is given by 

( 

cos(21ru) sin( 1rv) ) 
f( u, v) = sin(21ru) sin( 1rv) . 

- cos(1rv) 
(4.10) 

Substituting into Eqn. 4.7, we obtain rate constants L valid over the entire surface: 

( 4.11) 

If, instead, we generate functions for Lover a parametric region R: ju- ucl S /:).u, 
Iv - vcl S /:).v, we can improve the fit for Lu: 

( 4.12) 
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A derivation of the result for Lu(R) appears in Appendix B.l. Near the polar re­
gions of the parametric sphere, the bounding volumes become considerably smaller 
for the functional definition of Lu(R). 

4.4 Bounding Volumes for Moving Parametric 
Surfaces 

We are now in a position to extend the bounding volume results of Section 4.3 
to the problem of parametric surfaces moving as a function of time. The method 
presented here is general enough to determine collisions of flexible objects whose 
shape changes as a function of time. We still use k-d trees to perform the paramet­
ric subdivision; but now we are dealing with parametric rectangular prisms, rather 
than with rectangles. We must traverse the parametric volumes of two surfaces to 
verify that they do not collide. 

4.4.1 Bounding Spheres Derived from the Rate Condition 

A straightforward way to generate bounding volumes for parametric functions of 
three variables is to use a modification of Eqn. 4.8: 

llf( u, v, t) - f( Uc, Ve, tc) 11
2 

::; Lu(R) lu - Ucl + Lv(R) Iv - Vcl + Lt(R) It - tel, 
( 4.13) 

where tc = (t 1 + t2)/2, and t1 and t2 are the temporal limits of the parametric 
volume of interest. We obtain a sample at the center of the parametric volume 
and then compute a radius in modeling space for a sphere in which the surface 
element must remain during the time interval specified. We redefine region R to 
be 

R={(u,v,tf: lu-ucl:'.SLlu, lv-vcl:'.SLlv, lt-tcl:'.SLlt}. (4.14) 

Initially, we set the region R to be a unit cube 

0 :'.S U :'.S 1, 0 :'.S V :'.S 1, 0 :'.St :'.S 1, ( 4.15) 

that corresponds to the domain of 1:(u, v, t) and f~(u, v, t). Starting with a single 
sample in the center of each parametric cube, f:(0.5, 0.5, 0.5) and J~(0.5, 0.5, 0.5), 
we determine the radius of each bounding sphere according to 

( 4.16) 

If the two spheres overlap, we recursively subdivide the regions until they no longer 
overlap, or until the minimum tolerance E is reached. If the overlapping spheres 
are smaller than t, we report a collision. 
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4.4.2 Bounding Volumes Based on the Jacobian of the 
Parametric Function 

It is possible to improve on the bounding volume results of the previous section. 
The goal is to minimize the size of the bounding volumes, thus reducing the average 
number of interference computations. 

We start with the original definition of the Lipschitz condition for parametric 
functions ([Gear 71]): 

(4.17) 

We choose an L1 norm for the right side of Eqn. 4.17, and we apply the condition 
to each component of f separately: 

Ix( u, v, t) - x( Uc, Ve, tc)I < Lx (lu - Ucl + Iv - Ve!+ !t - tel), 
IY( u, v, t) - y( Uc, Ve, tc)I ~ Ly (lu - Ucl + Iv - Vcl + It - tel), ( 4.18) 
lz( u, v, t) - z( Uc, Ve, tc)I ~ Lz (lu - Ucl + Iv - Vcl + It - tel), 

for some suitable values of Li. We distribute the values Li and rename them to 
arrive at a more general inequality: 

lx(u, v, t) - x( Uc, Ve, tc)I < Mxu lu - Ucl + Mxv Iv - Vcl + Mxt It - tel, 
ly(u,v,t)-y(uc,Vc,tc)I ~ Myulu-ucl+Myvlv-vcl+Mytlt-tcl, (4.19) 
lz(u, v, t) - z( Uc, Ve, tc)I ~ Mzu lu - Ucl + Mzv Iv - Vcl + Mzt It - tel. 

We can solve for each Mij by choosing appropriate values of ( u, v, t). We illustrate 
with Mxu= 

lx(u,v,t) - x(uc,v, t)I ~ Mxu lu - ucl, (4.20) 

or 

l

x(u,v,t)-x(uc,v,t) M _J_ 
~ xu, U t Uc. 

U-Uc 
( 4.21) 

Assuming that x( u, v, t) is differentiable, a sufficient value of Mxu is 

M _ 

1

ax(u, v, t) I 
XU= max a • 

R U 
( 4.22) 

The parametric derivative is a lower bound on the maximum value of Mxu over 
the region R. In general, a sufficient value of the rate matrix is: 

mi" I:: I m,f' I:: I rrwx I: I 
M - mJtxl!:I mNx1:~1 mJtxl!~I (4.23) 

IDJtX I :: I m,x I :: I illJtX I !; I 
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Just as the Lipschitz value L is a generalization of the derivative, so the rate matrix 
M is a generalization of the Jacobian matrix for parametric vector functions of 
several variables. The matrix M consists of upper bounds on all the parametric 
derivatives of all the components of vector function f M is just a generalization 
of the Jacobian J of the parametric function f(u, v, t) [Lin and Segel 74, p. 355]: 

ax ax ax 
au av at 

J(u,v,t)-
ay ay ay 

( 4.24) 
au av at 

az az az 
au av at 

We define parametric coordinates ( Uc, Ve, tc) at the center of region R, and modeling 
space coordinates Xe x( Uc, Ve, tc), Ye y( Uc, Ve, tc), and Zc z( Uc, Ve, tc)-' We also 
define ~u lu2 - ucl, ~v - lv2 - vcl, and ~t lt2 - tel- The distance from the 
center point ( uc, Ve, tc) to any other point in R cannot be greater than the half­
widths of each dimension of the bounding box (see Figure 4.5): 

lu - ucl :'.S ~u, 
Iv - vcl :'.S ~v, 
It - tel :S ~t. 

Substituting into Eqn. 4.19, we have the rate condition: 

Ix( u, v, t) - x( Uc, Ve, tc) I < Mxu~U + Mxv~V + Mxt~t, 
ly(u,v,t) -y(uc,Vc,tc)I :'.S Myu~U + Myv~V + Myt~t, 
lz( u, v, t) - z( Uc, Ve, tc) I :'.S Mzu~U + Mzv~V + Mzt~t. 

We define the bounding box radii to be 

~X Mxu~U + Mxv~V + Mxt~t, 
~Y - Myu~U + Myv~V + Myt~t, 
~Z - Mzu~U + Mzv~V + Mzt~t. 

( 4.25) 

( 4.26) 

( 4.27) 

Now we can construct a bounding volume from the bounding box radii. We 
form a rectangular prism that is aligned with the x, y, and z axes, centered about 
parametric point ( Uc, Ve, tc), and centered about modeling coordinates (xc, Ye, zc)­
Combining Eqn. 4.27 with Eqn. 4.26, we get the bounding box inequality: 

Ix - Xcl < ~x 
IY - Ycl < ~Y 
lz - zcl < ~z. 

( 4.28) 
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Such a rectangular region is called an isothetic rectangle, a rectangle whose sides 
are parallel to coordinate axes [Lee and Preparata 84). The set of points satisfying 
Eqn. 4.28 form a bounding box containing the parametric region. We now have an 
efficient bounding box useful for computing collisions between moving parametric 
surfaces. We are free to compute the Jacobian maxima over the entire surface, 
thereby computing with a single-valued constant matrix across the surface. Al­
ternatively, we may compute the Jacobians over subregions in order to tailor the 
bounding volumes more closely to particular variations in the surface. These boxes 
frequently produce tighter bounds on the parametric functions than do the spheres 
of Section 4.4. 

4.5 Algorithm for Collision Determination 

This section deals with the computation of collisions from the bounding box infor­
mation of the previous section. We are given the parametric functions fA(u, v, t) 
and f~(u,v,t). We are also given a function that returns a value greater than or 
equal to the maximum of the absolute value of each element of the Jacobian matrix 
for the parametric function over a rectangular range of parameters, which is called 
the rate matrix M. We require that 

Mxu 2 m;tx 1:: I Mxv 2 m;tx 1:: I Mxt 2 m;tx I~; I 

Myu 2 m;txl!~I Myv 2 m;tx 1:~1 Myt 2 m;tx l~~I ( 4.29) 

Mzu > max 
- R 

azl 
OU Mzv > max 

- R 
azl 
8v Mzt 2 m;tx azl at · 

The task is to compute whether two objects collide, as determined by the loss 
of separation of the two parametric surfaces. We assume initially that the two 
objects are disjoint. We are given a threshold distance tolerance, E, below which 
we should report the loss of separation, and the time at which separation was lost. 
We should also report the parametric locations of the contact point. The method 
will guarantee that the first collision between the surfaces occurs within the time 
interval returned as the collision time. 

4.5.1 Collision Algorithm Approach 

The basic method is similar to that of Figure 4.6, but there are some important 
differences. We need not only to detect a collision between surfaces, but also to 
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detect the first collision between surfaces. This implies that we should traverse the 
nodes of the k-d trees in forward-time order rather than the depth-first recursive 
order of Figure 4.6. In particular, we schedule pairs of nodes (one from each 
surface) to be compared against each other according to the earliest time that 
the two surfaces could possibly collide. This is determined from the minima of 
the time bounds of the parametric subregions. We compute the intersection of 
the time intervals of the two nodes. The two parametric regions cannot collide 
until they both have come into existence. So the maximum of the two starting 
times represents the earliest possible collision time. In other words, given the time 
interval tA ± tltA of node A, and the time interval t8 ± tlt8 of node B, we sort 
the node pairs according to the earliest possible intersection time tmin: 

( 4.30) 

We maintain a heap data structure [Knuth 69] of pairs of nodes to be compared, 
sorted in ascending order, using tmin as the sort key. Each record stores a pointer 
to a node from the first parametric surface, and a pointer to a node from the 
second surface against which the first surface is evaluated. We successively pop 
node pairs off the heap for comparison, in ascending order, according to tmin. If 
the node comparison generates new node pairs to be evaluated, they are pushed 
onto the heap, and are sorted as necessary to ensure forward-time traversal of 
the parametric space. This method guarantees that we will find the first collision 
between the surfaces. 

4.5.2 Common Lisp Implementation 

Figure 4. 7 shows an algorithm written in Common Lisp for computing the col­
lision between two parametric surfaces. The node data structure is similar to 
the node representation for intersection detection of parametric surfaces. The 
surface-collision function computes ant-sphere that contains points from both 
surfaces, or else confirms that the two surfaces do not collide. 

Several functions are called by the surface-collision function. The function 
setup-initial-node computes an initial node for the surface at parametric loca­
tion (0.5, 0.5, 0.5). The function schedule-node-pair takes a pair of nodes, sees 
if they overlap in time and in space, computes the tmin value, and pushes them 
onto the heap to be scheduled for evaluation. The operation heap-pop pops a 
pair of nodes off the heap for evaluation. The function collision-information 
returns the collision parameters if an t-collision took place. Finally, the func­
tion node-split subdivides a node into two smaller nodes along the parametric 
dimension with the greatest contribution to the bounding box size. 
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COLLISION DETERMINATION FOR Two PARAMETRIC SURFACES 

(defstruct node "Representation for a parametric surface region." 
parameters ; ( u, v, t) coordinates. 
position ; (x, y, z) coordinates in modeling space. 
radii ; Bounding box radii in x, y, and z. 
child! ; Pointer to first subregion of this region. 
child2) ; Pointer to second subregion of this region. 

(defun surface-collision (fnA fnB MA MB tolerance) 
"Compares nodes from two surfaces to see if they collide." 
(let ((heap (make-heap 'compare-node-pairs))) 

; Push the initial node pair on the heap for evaluation. 
(schedule-node-pair (setup-initial-node fnA MA) 

(setup-initial-node fnB MB) heap) 
(catch 'heap-empty ; If the heap is ever empty, terminate. 

(loop ; Get the next pair off the heap, and test them. 
(multiple-value-bind (nodeA nodeB) (heap-pop heap) 

(cond ; If the tolerance is reached, terminate. 
((enough-precision nodeA nodeB tolerance) 
(return (collision-information nodeA nodeB))) 

( (> (max (node-radii nodeA)) ; Split the largest node. 
(max (node-radii nodeB))) ; Put pairs on the heap. 

(node-split nodeA fnA MA) 
(schedule-node-pair (node-child! nodeA) nodeB heap) 
(schedule-node-pair (node-child2 nodeA) nodeB heap)) 

(t ; If nodeB is bigger than nodeA, split nodeB. 
(node-split nodeB fnB MB) 
(schedule-node-pair nodeA (node-child! nodeB) heap) 
(schedule-node-pair nodeA (node-child2 nodeB) heap)) 

)))))) 

Figure 4.7: An algorithm and data structure for testing for the collision of two para­
metric surfaces moving as a function of time. The arguments fnA and fnB are pointers 
to the parametric function definitions. The arguments MA and MB are rate matrices for 
the surfaces A and B. The value tolerance is the allowed separation uncertainty of any 
collisions. 
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4.5.3 Termination Condition 

The function enough-precision determines whether an t:-sphere contains both 
surfaces. For termination, we compute the smallest isothetic rectangle that con­
tains the two bounding boxes. If the largest dimension of the isothetic rectangle is 
smaller than the separation tolerance, we report the loss of separation of the two 
surfaces, down to the tolerance specified. Expressed mathematically, for bound­
ing boxes (xA, YA, ZA) ± (~xA, ~YA, ~zA) and (xB, YB, zB) ± (~xB, ~YB, ~zB), and 
tolerance t:, we require 

( 4.31) 

See Appendix A.1 for the definition of outer diameter d0 for a pair of boxes. This 
criterion causes the recursion to terminate for any t:-collisions between surface A 
and surface B (see Appendix A.4). 

The collision algorithm has an important property: Parametric surfaces that 
are far apart will be shown not to collide, using a single sample from each surface. 
This computation is extremely fast, making it computationally trivial to reject 
collisions between distant objects. The closer the approach of the two surfaces, 
the longer it takes to determine that the two objects do not collide, because more 
of the bounding boxes overlap. 

4.5.4 Complexity Analysis for Colliding Spheres 

We would expect that as the separation distance decreases between two spheres, 
the number of bounding box comparisons should increase. In particular, if the 
separation distance drops by a factor of two, we will have to create bounding boxes 
twice as small to confirm that the surfaces do not intersect. For the parametric k-d 
tree hierarchy, every halving of the separation distance requires a constant number 
of additional subdivision levels. Assuming that CPU time should be proportional 
to the number of parametric nodes created, the CPU time t should scale as 

t (X log2 ( ( r + S) / S) , ( 4.32) 

where r is the radius of each sphere, and S is the separation distance between 
spheres. The argument to the logarithm is always greater than 1, for positive r 
and S, so that the CPU time t is always positive. Let us see if this principle is 
confirmed experimentally. 
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Figure 4.8: Collision experiment between two spheres of radius r. The CPU time for 
collision determination is measured as a function of separation distance S. 

4.5.5 Experimental Results for Colliding Spheres 

As an illustration of the relationship between computation time and separation 
distance S, Figure 4.8 shows the setup for a series of collision experiments, using 
two objects that pass each other at successively shorter distances. The total com­
putation time is a function of the minimum separation distance between the two 
objects. The graph in Figure 4.9 shows the computation time for each run in the 
series. For an object of radius r and minimum separation distance 2r, we require 
only a few samples to be taken from each surface. As the minimum separation dis­
tance decreases, we notice an increase in CPU time proportional to the negative 
logarithm of the separation distance. 

4.5.6 Experimental Results for Other Objects 

As a demonstration of results for surfaces more complicated than polynomials or 
quadrics, the collision method is demonstrated for two parametric spike illustrated 
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CPU Time t <X log2 ((r + S)/S) 
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Figure 4.9: Example of typical CPU time as a function of log S, where Sis the minimum 
separation between the two objects of Figure 4.8. 

in Figure 4.10. The parametric equation for the spike function is 

( 

r( u, v) cos(2?ru) sin( ?rV) ) 
f( u, v) = r( u, v) sin(27ru) sin( ?rV) , 

-r( u, v) cos( ?rV) 
( 4.33) 

where the radius is given by 

i<n 
r( u, V) = ro + r1 I: e-((u-u;)2+(v-v;)2)/w5. ( 4.34) 

i=O 

The value n is the number of spikes on the sphere, ( ui, vi) is the parametric location 
of the i-th spike, and w0 determines the radius of the spikes. 

Without knowing something about the parametric derivatives of the spike func­
tion, it would be very difficult to solve the collision problem for two moving spike 
functions. As it is, we are able to construct a set of bounding volumes as the 
computation requires, in order to verify the paths of the two objects. 

Figure 4.11 shows the results of a collision computation between two spherical 
spike functions. In Figure 4.10, we see two spherical spike functions approaching 
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Figure 4.10: A pair of spherical spike functions before a collision. 

Figure 4.11: A pair of spherical spike functions during a collision. 



68 CHAPTER 4. PARAMETRIC COLLISIONS 

Figure 4.12: A pair of spherical spike functions after a collision. 

each other. In Figure 4.11, the algorithm computes a collision between two of the 
spikes, causing the two objects to recoil, as shown in Figure 4.12. This collision 
computation would have been very difficult to solve without knowing the rate ma­
trices for the spherical spike function. With this information, we can solve difficult 
collision problems, using a straightforward application of the collision algorithm of 
Figure 4.7. 

4.6 Determining Constraints on the Jacobian of 
a Parametric Function 

For the collision technique to be useful, we need to determine constraints on the 
Jacobian of the parametric functions. We may have only a global maximum of any 
component of the Jacobian, or we may be able to determine an analytic equation 
for each component of the Jacobian, and for the Jacobian maximum over any 
region. 
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4.6.1 Global Maximum of all the Components 

The simplest approach is to compute the maximum of any component of the Ja­
cobian over the entire surface, and then to set each entry of the rate matrix M 
equal to the maximum value. This does not provide particularly tight bounds on 
the parametric surface, but is sufficient to compute collisions. 

4.6.2 Global Maximum for each Parametric Variable 

An intermediate solution is to have separate maxima for velocity and for spatial 
extent. It is common for the time derivatives, such as ax/at, to have separate 
scaling from the spatial parametric derivatives, such as ax I au and ax I av. It is 
also common for the u and v derivatives to have separate scalings. If we define 

w, - n~ (1::1' 1:~1' 1::1)' 
w, m,tx (I:: I, I:~ I, 1::1), 
Wt mjx (I!: I , I !~ I , I !: I) ' 

( 4.35) 

where R is the domain of the entire parametric function, then the following matrix 
constrains the Jacobian of the parametric surface: 

( 4.36) 

Each column of M has a separate entry: either a constant for the whole surface, or 
a function of subregion R. We obtain a set of bounding volumes tighter than with 
the single constant approach, but without the analytical complexity of separate 
entries for each component of M. 

4.6.3 Global Maximum of each Component 

We may carry the process one step further and simply compute maxima for each 
component of the Jacobian over the entire surface. This approach is a direct 
application of Eqn. 4.23 to the parametric functions of interest. We simply compute 
an upper bound on each component of the Jacobian for each surface, and assemble 
these to form a rate matrix of constants for each parametric function: 

( 4.37) 
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where R represents the domain of the entire surface over the complete time interval 
of the motion. This method avoids a function call to the rate-matrix function 
each time the bounding radii of subregions are computed, since the rate matrix 
is constant for all subregions. Yet this approach has the flexibility that each 
component of the Jacobian has a distinct upper bound that may be significantly 
different from one component to another. 

4.6.4 Local Maximum of each Component 

Perhaps the most general and flexible way to compute constraints on the Jacobian 
matrix is to create a special function that computes maxima of the parametric 
derivatives of each parametric function. If we can find an analytical solution to 
the Jacobian of the parametric function, and a function for the maximum of ev­
ery component in the Jacobian over an arbitrary parametric range, then we can 
produce very tight bounds around a surface. In some cases, we may be able to 
provide an exact analytic solution to the M function. At other times, we may need 
to use approximation rules to the various components. We must satisfy only the 
condition that 

( 4.38) 

In this case, R may be any subregion of the parametric domain of the function. 

4.6.5 Identities for Computing the Maxima of Functions 
over a Domain 

We can use several identities to compute the maxima of a function. Given functions 
/(R) and g(R) defined over a parametric domain R, we can use the following 
identities to reduce the complexity of computation of maxima over regions: 

mJtx 1/(R) + g(R)I ~ m;x lf(R)I + mJtx l§(R)I, 

m;x 1/(R) - g(R)I ~ mJtx lf(R)I + m;x l§(R)I, 

max lf(R)g(R)I < max lf(R)I max l§(R)I, 
R - R R 

➔ m;xl/(R)I 
m;x lf(R)/g(R)I ~ min l§(R)I, 

R 

for all /(R) and g(R). 

( 4.39) 

( 4.40) 

( 4.41) 

( 4.42) 
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The maximum of a function over a two-dimensional region must occur either 
within the interior of the region, or along the edges of the region, or at the corners 
of the region. We can use results from differential geometry to compute local 
maxima in these three cases, and to obtain a global maximum for the region. 

4.6.6 Matrix Computation for a Parametric Sphere 

For the case of a unit sphere moving with non-constant velocity s = (sx, sy, Sz), 
we have 

M(R) = 

( 

21r max Jsin 21ruJ max Jsin 1rvJ 
R R 

21r max Jcos 21ruj max jsin 1rvj 
R R 

0 

1r max J cos 21ru I max J cos 1rv I 
R R 

1r max jsin 21ruj max Jcos 1rvJ 
R R 

1r max I sin 1rv I 
R 

The derivation of this result may be found in Appendix B.2. 
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Chapter 5 

Applications of Adaptive 
Sampling with Surface Networks 

This chapter discusses several applications for surface networks. First we consider 
the problem of reducing a texture map to a set of linearly shaded polygons that 
approximate the texture map. The technique can help to produce shaded images 
that contain texture maps, using polygon renderers. Then we consider applica­
tions of the theory for collision determination developed in Chapter 4. Potential 
applications to robotics and aviation are discussed. 

5.1 Triangulation of Texture Maps 

5.1.1 Conversion of Texture Maps into Polygon Tilings 

In this section, the sampling techniques developed so far are applied to the prob­
lem of converting texture maps into sets of polygons that approximate surface 
patterns and coloration. A texture map is defined typically as an array of pixels in 
a rectangle that represents a two-dimensional image. Many rendering systems can 
accommodate polygons with colored vertices ([Swanson and Thayer 86]), but can­
not accommodate texture maps as an array of colors positioned across a surface. 
The technique presented here permits the adaptive transformation of a texture map 
into a set of polygons that can be rendered using conventional polygon renderers. 

Another potential benefit is to compress the coloring information into a more 
concise form. Usually a texture map is stored as an array of pixels in a map at 
some given resolution. Adaptive techniques promise to reduce the data required 
to approximate surface coloration. Because the tolerance is adjustable, coarse col­
oration may be provided for previewing, and detailed texturing may be performed 
for final images. 

73 
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Figure 5.1: A texture map of a playing card. The left image shows the original texture 
map of the jack of hearts. The right image shows a triangulation of the same texture 
map using bintrees of right triangles. 

A third benefit is the improvement in rendering speed for animation of textures. 
With current polygon rendering systems, it is possible to render over 20,000 poly­
gons in less than a second ([Swanson and Thayer 86]). Current texture mapping 
techniques frequently require much longer times to filter and to render the same 
texture. 

The polygonal tiling of a textured image must be able to approximate the 
shading discontinuities that occur across the boundaries of objects. It should also 
represent concisely the smooth shading variations that are due to surface curvature. 
The technique we propose satisfies both of these requirements. All of the distinct 
features of the texture map should be accurately represented. 

In this paper we discuss the application of surface networks to the problem of 
texture map triangulation. The basic conversion method is fast and simple, at the 
cost of lossy compression of the data. The ability of bintrees of right triangles to 
find most of the features in texture maps that have high spatial derivatives speaks 
for the robustness of the sampling technique. (Compare the texture map with the 
triangulation in Figure 5 .1). 
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Figure 5.2: A triangular surface network of the jack of hearts. 

5.1.2 Previous Work 

Several representations have been used previously to compute images with texture 
maps. Summed area tables [Crow 84] store at each pixel location, not the color of 
the pixel, but the sum T of the intensity I at each pixel in a rectangle from one 
corner of the image to that pixel: 

m n 

Tmn LL Jij• (5.1) 
i=l j=l 

It is possible to determine the average color of any rectangular region across the 
surface of an image with one addition and two subtractions. This technique is 
good for low-pass filtering of texture maps, useful when a texture map covers a 
small apparent region in an image. But the technique does not address methods 
of rendering a texture, using a polygon renderer. 

Another texture-mapping technique involves the use of mip maps, in which a 
single texture is represented in a map at a multitude of resolutions ([Williams 83]). 
A particular representation is selected based on the desired spatial frequency com­
ponents of the map. Interpolation is performed between maps to provide a smooth 
transition from one resolution to another as the image scale varies. This technique 



76 CHAPTER 5. APPLICATIONS 

can be slow on machines optimized for polygon rendering. 
A third approach is discussed in [Besl and Jain 88], in which the local Gaussian 

and mean curvature of the intensity values of the texture map are computed at 
each pixel. The regions are grown by merging pixels of similar curvature of the 
intensity surface into polynomial approximations of second-, third-, or fourth-order 
polynomial functions. The technique segments an image into smooth pieces sepa­
rated by discontinuities. It is also necessary to convert the polynomial functions 
into sets of polygons for rendering on a polygon renderer. 

We propose to convert a texture map into sets of polygons, using a binary 
triangular subdivision mechanism that recursively subdivides the parametric plane. 
The subdivision criterion is based on the color difference between the vertices of 
a triangle. If the difference is too large, the triangle is subdivided until some 
limiting resolution is reached. Triangles may be either flat-shaded or Gouraud­
shaded to produce the image. The object is to tile the parametric plane with 
a triangular subdivision such that the plane is fully covered and no overlapping 
occurs. A triangular subdivision will guarantee that no cracks appear in the surface 
(Section 2.4). Low-pass :filtering is accomplished by limiting the minimum size of 
each polygon in the tiling. Since each polygon is linearly shaded across its surface, 
this limits the spatial frequencies of the texture map. 

5.1.3 Subdivision Mechanism Using Right Triangular Sub-
divisions of the Plane 

A trivial method of converting a texture map into a set of polygons is to make a 
polygon for each pixel in the texture map, and to render each polygon individually. 
The problem with this method is that we may end up with a million polygons. We 
would like to reduce the number of polygons by a factor of ten or more without 
seriously degrading the quality of the map. . 

We use bintrees of right triangles to control the subdivision process. The sub­
division mechanism for bintrees of right triangles is shown in Section 3.5. For 
simplicity, we transform the image onto a unit parametric square for adaptive 
sampling. The unit square is initially spanned by two right triangles, as shown 
in Figure 5.3. The subdivision mechanism always splits the triangles along their 
longest edge. If two right triangles share a common hypotenuse, then subdivision 
may occur immediately (Figure 3.6); otherwise, subdivision must propagate to 
larger triangles until we can :find a pair that do share the hypotenuse. A triangle 
with a hypotenuse along the edge of the sampling region can always be immedi­
ately subdivided, since it has no neighbor. It is possible to prove that the recursion 
will always terminate, since it must proceed from small triangles to larger ones, 
and there is a limit to the maximum size of the triangles. In this way, we create a 



5.1. TEXTURE TRIANGULATION 77 

u .. 

Figure 5.3: Subdivision mechanism for textures using bintrees of right triangles. The 
parametric region on the left shows the initial configuration of triangles on the unit para­
metric square. The middle figure demonstrates the splitting process, where subdivision 
is allowed only by splitting the hypotenuse of the triangles. The right figure shows the 
network after the third uniform subdivision. 

triangular subdivision in which vertices always touch vertices, never edges, thereby 
maintaining C0 continuity across the intensity surface. 

5.1.4 Subdivision Criterion 

The subdivision criterion used is to subdivide a triangle whenever the color dif­
ference between the vertices exceeds some specified value. The criterion forces 
additional sampling near features with high contrast, with lower sampling rates in 
regions of low contrast. The nature of the subdivision is such that there is a smooth 
transition from small triangles to large ones, which improves the robustness of the 
algorithm by exploring in the vicinity of regions of high contrast. 
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Figure 5.4: The image on the left shows a triangulation of a texture map. On the right 
is the same triangulation after merging the triangles into larger polygons. The texture 
on the right has three times fewer polygons, and takes half as much time to render as 
the triangular version on the left. 

5.1.5 Merging Step 

Once we have created a set of triangles representing the texture map, we perform a 
merging operation to further optimize the number of polygons. We take advantage 
of the fact that for some textures, such as the numerical playing cards of Figure 5.6 
and Figure 5.4, much of the texture is covered by regions of constant shade that 
are punctuated by smaller regions of other constant shades. Gouraud shading may 
be rotation-invariant only for triangles, but flat shading will work fine for large, 
concave polygons. The algorithm is to merge these large regions of constant shade 
into a few large polygons that will render much more quickly than the large set 
of triangles. Figure 5.5 shows a set of polygons for a texture before and after the 
merging process. 



5.1. TEXTURE TRIANGULATION 79 

Figure 5.5: The image on the left shows the outlines of the triangles for the three of 
diamonds. On the right we see the outlines of the merged polygons. In regions of constant 
shading, the merging algorithm greatly reduces the number of polygons required. 

5.1.6 Polygons Represented as Circular Lists 

We choose a representation for polygons as circular lists of edges around the perime­
ter of the polygon to facilitate the merging operation. [Knuth 69] describes a cir­
cular list, or ring, as a list whose last element points back to the first element. 
The merging of two adjacent polygons is done by splicing together the two rings 
representing the polygons, and removing adjacent edges that are identical ( a null 
circuit). The merging process is analogous to computing a line integral around a 
region by summing the line integrals of each subregion making up the region (Fig­
ure 5.9). Figure 5.7 shows a triangle represented as a ring of edges A, B, and C. 
Figure 5.8 shows a pair of triangles made up of edges ( A, B, C) and ( C, D, E). In 
order to merge these two polygons, we find a common edge between the two poly­
gons, in this case edge C, and merge the two rings of edges at that point, forming 
(A, B, C, C, D, E). An invariant under line integrals and rings is to remove opposite 
edge traversals that are adjacent to each other: (A, B, C, C, D, E) = (A, B, D, E). 
Once we have simplified the expression, we have a new list of edges that make 
up the perimeter of the merged polygon. In this way, it is possible to build up 
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Figure 5.6: The left image shows a texture map of the eight of clubs. The right image 
shows a triangulation of the same texture map. 

E···· 
' \ ., 

Figure 5. 7: A triangle can be represented as a circular list of edges around the perimeter 
of the polygon. This structure is useful for polygon-merging operations. We refer to the 
circular list of edges as ( A, B, C). 
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D 

Figure 5.8: Illustration of the merging process for two triangles. Triangles with edges 
ABC and CDE, on the left, are represented as circular lists (A,B,C) and (C,D,E). In 
the middle figure, the triangle lists are merged into a single structure representing the 
path (A, B, C, C, D, E). As a final step, the redundant elements of the path are removed, 
in the figure at right, leaving path (A,B,D,E) . 

• 

Figure 5.9: Illustration that the line integral of a perimeter is equal to the sum of line 
integrals of small finite elements. 
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Figure 5.10: Triangulations of the suit of clubs. 

homogeneous polygons with hundreds of vertices from triangular surface networks. 
This has the effect of speeding up the rendering of texture maps such as playing 
cards. Figure 5.4 shows two versions of a playing card, with and without polygon 
merging in the flat-shaded regions. The texture without triangle merging uses 4981 
triangles, while the texture with merging uses 1527 triangles. The rendering time 
on an HP9000/350 SRX system is 1.5 seconds for triangles only, and 0.7 seconds 
for triangles with merging in the flat-shaded regions. 

5.1. 7 Imaging Results and Applications 

The texture conversion algorithms have been tested on a set of texture maps repre­
senting the 52 playing cards in a standard deck, plus a texture map of the back of 
the playing cards. Figure 5.1 shows a texture map and its triangulation. Figure 5.2 
shows a surface network of the texture map made up of right triangles. 

We have converted a complete suit of cards into polygons to illustrate the 
technique (Figure 5.10). The number of polygons, and the rendering time, are 
roughly proportional to the perimeter of the distinct regions in the image. The 
face cards require significantly greater time, since the summed perimeter is much 
greater for these patterns. 
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Figure 5.11: Frame from an animation using triangulated texture maps. 

These images of playing cards were used for an animation illustrating con­
strained, rigid-body dynamics ([Barzel and Barr 88]). A frame from the animation 
is shown in Figure 5.11. The animation is roughly one minute long, animated at a 
rate of 30 frames per second. Rendering speed is critical for animation purposes, 
since typical animation sequences require thousands of frames. The animation 
would have been extremely slow on the available workstations without the capabil­
ity of converting textures into polygons. Adaptive sampling together with polygon 
merging resulted in significantly faster animation of the dynamic constraints. 

5.2 Potential E-Collision Applications 

In this section we apply the results of Chapter 4 to time-dependent problems such 
as collisions. We examine several potential applications of the collision theory to 
robotics and air-traffic control. These examples are meant to illustrate the general 
fields in which the €-collision theory may apply. 
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Figure 5.12: Path of a robot navigating a cluttered environment. We must determine 
if the robot will collide with any objects. 

5.2.1 Robotic Path Verification 

The rate matrix method for collision detection can potentially verify the path of 
a robotic system through a complex environment. The problem may be set up 
as follows: Given a parametric description of a robot, its motion as a function of 
time, and a surrounding dynamic environment, determine if the robot collides with 
its environment. The robot and the environment can be made up of a large set of 
parametric surfaces. 

The solution to this problem is useful for robotic path planning, using a generate­
and-test paradigm. Trial paths are generated and then tested using the collision­
determination procedure described in Chapter 4. If the trial path results in a 
collision, the path is modified to avoid the collision and is retested. In this man­
ner, it may be possible to do automatic path planning for robots. 

Since the method using Jacobians is quite general, it is not particularly difficult 
to accommodate a moving environment as opposed to a static one. For simplicity 
we illustrate a spherical robot navigating a static array of boxes, as shown in 
Figure 5.12. 

The technique used is to start with a single sample from each parametric func-
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tion, and to take additional samples as necessary to verify the path of the robot. 
The average computation time is only weakly proportional to the number of ob­
jects, since most surfaces are far away from the robot at any given point in time. 
Only when the robot and an obstacle are near each other do we have to do sub­
stantial subsampling in order to verify the robot path. 

5.2.2 Collision Prediction for Aircraft 

An important problem in metropolitan areas is the increasing congestion of air 
traffic near major airports. Recent articles have talked of the possibility of grid­
lock in the nation's air transportation system ([New York Times, June 19, 1988]) 
because of aging airport facilities and the major expansion of air-traffic over the 
last decade. Air transportation currently has a market of $57 billion per year, or 
1.5 percent of the gross national product of the United States. Airlines also pro­
vide 92 percent of the public transportation between cities in the United States. 
Techniques for air-traffic control have not kept pace with the growth in aviation. 

One of the major problems with increased air traffic is the coordination of 
arriving and departing traffic in major metropolitan areas. Controllers have the 
major responsibility of preventing collisions between aircraft near major airports, 
yet increased traffic is making it difficult to use manual methods of air-traffic 
control. 

It is important to address potential solutions to the problem of recognizing 
potential collisions between aircraft before they occur. The FAA currently has a 
set of regulations governing minimum aircraft separation between aircraft flying 
under instrument flight rules. It would be useful to have a system that predicts 
the time when the loss in legal separation between aircraft occurs. The separation 
requirements may vary as a function of altitude of the aircraft. For instance, 
current FAA guidelines stipulate a horizontal separation of three nautical miles 
between aircraft on instruments below 10,000 feet (Figure 5.13). Above 10,000 
feet, a separation of five miles is required. The required vertical separation between 
these aircraft is 1000 feet. 

The separation volume for an aircraft can be modeled as a cylindrical volume 
centered about the aircraft, with a minimum lateral radius and a minimum altitude 
difference between aircraft. We can model this volume as a parametric cylinder 
moving as a function of time. Figure 5.14 shows an example set of five bounding 
volumes of aircraft within controlled airspace that must be monitored for potential 
loss of separation. In general, the aircraft may be ascending or descending, and 
may be moving at airspeeds ranging from 100 to 400 knots. Aircraft are restricted 
to less than 250 knots below 10,000 feet. The E-collision system can determine 
potentially if and when a loss of separation will occur between aircraft, given the 
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3 nautical miles 

-E-' Aircraft 

1000 feet 

Figure 5.13: Scale illustration of the separation volume about a commercial airliner. We 
require that the separation volumes about aircraft do not collide, in order to maintain 
separation requirements mandated by the FAA. In general, the separation diameter of 
the volume is a function of the airspeed and altitude of the aircraft. 

current trajectories and flight paths of the aircraft involved. 
The rate constants for the aircraft collision problem are given by the maximum 

airspeed of each aircraft, and by the maximum rate at which the aircraft can ascend 
or descend. A parametric cylinder C( u, v, t) centered about the origin, of height h 
and radius r, may be defined as 

( 

3vr cos 21ru ) 
3vr sin 21ru 

-h/2 
if V < 1/3 

C(u,v,t)= 
( 

r cos 21ru ) 
r sin21ru 

3h(v-1/2) 
if 1/3 ~ V ~ 2/3 (5.2) 

( 

3 ( 1 - V) r COS 2 7rU ) 

3(1 - v )r sin 21ru 
h/2 

if V > 2/3. 

The origin of this parametric cylinder is centered about the aircraft as it moves 
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Figure 5.14: Overhead view of the aircraft separation problem. We need to preserve 
the separation between aircraft moving at a range of speeds and altitudes. A parametric 
cylinder serves as a good model for the airspace separation requirements mandated by 
the FAA. The paths of the aircraft are given as a function of time, and the predicted 
separation distance is determined by the parametric collision system. 

along its planned trajectory. 
In order to implement this system, we would compute each of the parametric 

derivatives for Eqn. 5.2. This would give us the Jacobian matrix for the function. 
Taking the maxima of the Jacobian over subregions would produce sufficient values 
for the rate matrix M. We would then apply the collision algorithm of Figure 4.7 
to compute the separation distance between aircraft. 
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Appendix A 

Theorems for E-Collisions 

Here we reiterate some of the commonly used definitions in the theorems. 

Definition A.1 ( t-collision) Given two parametric functions f( il, t) 1 and§( il, t) 1 

and a distance tolerance t 1 an t-collision is defined by the condition 

for some time t01 some value ofi11 in the domain of f(i1,t) 1 and some value ofi19 

in the domain of §(il, t). 

Definition A.2 (rate matrix) Given a continuous parametric1 three-dimensional 

vector function f( u, v, t) 1 and a rectangular region R about ( Uc, Ve, tcf with half­
widths ~u, ~v1 and ~t: 

in the domain off( u, v, t); a rate matrix is a matrix M that satisfies for any two 
points (u1,v1,t1f and (u2,v2,t2f in region R: 

lx(u1,v1, t1) - x(u2, V2, t2)I < Mxu lu1 - u2I + Mxv lv1 - v2I + Mxt lt1 - t2I, 
ly(u1,v1,t1)-y(u2,v2,i2)I < Myu lu1 -u2I + Myv lv1 -v2I + Myt lt1 -t2I, 
lz(u1, V1, i1) - z( u2, V2, i2)I < Mzu lu1 - u2I + Mzv lv1 - v2I + Mzt !ti - i2I, 

(A.l) 
where (x, y, zf are the components off 

Definition A.3 (bounding box) Given the conditions of Definition A.21 and a 

rate matrix M 1 we define a bounding box b1 of a function f(u,v,t) = (x,y,zf 

89 
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over a region R to be 

u lu - UcJI < ~UJ, 
V Iv - VcJI < ~VJ, 

b1 = 
t It - tc11 < ~tf, 
X Ix - XcJI < ~Xj, 

y IY - YcJI < ~YJ, 
z lz-ZcJI < ~ZJ 

where 

and 
~Xj Mxu~UJ + Mxv~VJ + Mxt~tf, 
~YJ Myu~UJ + Myv~VJ + Myt~tf, 
~ZJ Mzu~UJ + Mzv~VJ + Mzt~tf. 

The value Xcf is the x-coordinate of the center of box b1, and ~x f is the half-width 
of box b1 in the x-dimension. The values for the other dimensions have analogous 
interpretations. 

A.I Finding E-Collisions 

Theorem A.1 (t-collision Theorem) Given two time-dependent, continuous, 

three-dimensional vector Junctions f( u, v, t) and g( u, v, t), two parametric domains 

for these functions R1, R 9 , two rate matrices M1, M 9 off and g, and a distance 
tolerance tj and given two finite sets of bounding boxes, B1 and B 9 , that completely 

contain surfaces f and g, with the dimensions of each box b1 E B 1 and b9 E B 9 

smaller than a given width 8; then it is possible to construct a set oft-collisions 
between surfaces f and g, and/or construct a set of ( t + 28)-collisions between 

surfaces f and g, or else confirm that no t-collision occurs. All t-collisions are 
found, either as t-collisions or as ( t + 28)-collisions.1 

Proof: We pair every box b1 E B 1 with every box b9 E B 9 • If there is no time 
overlap between b1 and b9 , then there cannot be ant-collision between those boxes. 

1There is a region of uncertainty between confirming an £-collision and confirming the lack of 
an £-collision. We can make the region of uncertainty suitably small by choosing 6 to be small 
enough. If we choose 6 < £2 , then the largest region of uncertainty lies between f and f + 2£2 , 

which is a vanishingly small difference. 
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Condition 1 Condition 2 Condition 3 

Xcf ±Llx( 
I I 

Xcg ± Llxl 
I I I <8 I I <8 I 

I r I 

r ~ <,, Lio b1 
d; > f 

1 I 

b1 

I 
bu bu 

do f < d0 < f + 28 do< f 

Figure A.1: Partitioning of the €-collision theorem into three cases. 

No time overlap exists if the earliest time of b9 is later than the latest time of b1, 
This condition exists when 

In other words, when the central time difference of the two boxes exceeds the 
half-durations of the two boxes, there can be no time overlap. 

We define an inner diameter di and an outer diameter d0 for a pair of boxes 
{bf, b9 } (see Figure A.l): 

( 

lxcf - Xc9 I - D..xf - D..x9 , ) 

di = max IYcJ - Ycul - D..yf - D..yg, , 
lzcf - Zcg I - D..z f - D..z9 

( 

lxcf-Xc9 l+!:::..x1+D..x9 ,) 

do max IYcf - Ycul + D..yf + D..yg, · 
lzcf - Zcul + D..z1 + D..z9 

(A.2) 

(A.3) 

Note that di :S d0 for all pairs of boxes (Figure A.1 ), since every term of Eqn. A.2 
is smaller than the corresponding term of Eqn. A.3. 

Exactly one of three conditions holds for each pair { bf, b9 }: 

1.) (, ::; 
2.) di < 
3.) di :S 

( confirm no f-collision) 
(recurse) 
( confirm f-collision) 

Figure A.1 shows the three possible cases graphically. 

(A.4) 

1. If the first condition holds, then every point in box b1 lies at least distance 
f away from every point in box b9 , so there cannot be an f-collision between 
b1 and b9 • 
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2. If the second condition holds, the inner diameter di is less than E, and we 
also know that the maximum width of each box is less than 8. So the outer 
diameter d0 is less than E + 28. If there is a time overlap, then we confirm 
an ( E + 28)-collision. 

3. If the third condition holds, then every point in box b1 lies within distance 
E from every point in box b9 • If there is a time overlap between b1 and b9 , 

then we confirm an E-collision between b1 and b9 • 

We evaluate the conditions in Eqn. A.4 for every unique pair of boxes {bi, b9 } 

from the two surfaces. If the first condition holds for all pairs, then we confirm 
that the two surfaces do not collide. Otherwise, we report the E-collisions from the 
two surfaces. By sorting the E-collisions according to max(tcf - /j,,tf, tc9 -/j,,t9 ), we 
can find the earliest possible collision time and location of the two surfaces. □ 

A.2 Making Bounding Boxes 

Theorem A.2 (Bounding Box Construction) Given a time-dependent) con­
tinuous) three-dimensional vector Junction /( u, v, t) j and given a maximum box 
half-width 8/2; and given a parametric domain R1: lu - ucl < /j,,u) Iv - vcl < /j,,v) 
It - tel < /j,,t) for /(u, v, t); and given a rate matrix M of/,· then it is possible to 
construct a finite set of bounding boxes B1 that completely contain the range of the 

function f over R1) with the dimensions of each box b1 E B1 smaller than 8. 

Proof: We define the image (xc, Ye, zcf of the central point ( Uc, Ve, tcf: 

The coordinates (xc, Ye, zcf form the center of a bounding box enclosing the func­
tion f over the entire region R1, Let the half-widths (/j,,x, /j,,y, /j,,z)I' of the bounding 
box be given by the rate matrix M: 

/j,,x Mxu/j,_U + Mxv/j,_V + Mxt/j,,t, 
/j,,y = Myu/j,_U + Myv/j,_V + Myt/j,,t, 
/j,_z = Mzu/j,_U + Mzv/j,_V + Mzt/j,,t. 

If the maximum width of the bounding box is less than 8, i.e. 

max(/j,,x, /j,,y, /j,,z) < 8/2, 

then we have satisfied the conditions of the theorem. 

(A.5) 
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Otherwise, we subdivide the parametric region R1 into two smaller parametric 
regions, using the k-d tree algorithm of Section 4.3.1. We choose the parametric 
axis for the split according to the largest value of Du, Dv, or Dt: 

Du (Mxu + Myu + Mzu)flu 

Dv (Mxv + Myv + Mzv)flv 

Dt (Mxt + Myt + Mzt)flt. 

This determines the parametric dimension that is contributing most to the size 
of the bounding box in modeling space. This process is recursively invoked over 
smaller and smaller regions, until all the bounding boxes have widths less than 8. 

We can guarantee that the recursion terminates, by examining the sum flx + 
fly+ flz. Since each term is non-negative, .6.x + .6.y + .6.z < 8 /2 implies that each 
term separately is less than 8/2. So it is sufficient to subdivide until the sum of 
the bounding box radii are less than 8/2. 

But we also have another formula for the sum of the bounding box radii: 

flx +fly+ flz = (Mxu + Myu + Mzu)flu + 
(Mxv + Myv + Mzv)flv + 
(Mxt + Myt + Mzt)flt 

Du+ Dv + Dt, 

Is is sufficient to consider the Mij to be constant. The sum of the half-widths of 
the bounding box is now a function of three terms: 

The recursive procedure bisects the maximum of Du, Dv, Dt, to produce a smaller 
bounding box. It is easy to show2 that if we recurse three times using this method, 
then the sum Du+Dv+Dt must decrease by at least a factor of two, for non-negative 
Du, Dv, Dt, This implies that for every three recursions, the sum flx +fly+ flz 
decreases by at least a factor of two. 

Starting with an initial box size of flx + fly + flz, the recursive algorithm 
terminates when the box sizes are reduced to 8 /2. The ratio S of initial box size 
to final box size is given by 

S 
= flx + fly + flz 
- 8/2 . 

2If D,,, Dv, and Dt differ from each other by less than a factor of two, then each term is 
bisected once, and the sum is reduced by exactly a factor of two. If the terms differ by more 
than a factor of two, then the sum is reduced by more than a factor of two. 
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The recursion level N is bounded by 

This guarantees that the set of boxes of width smaller than b will be finite; and 
the rate matrix M guarantees that each bounding box will bound its parametric 
subregion. Since we span all of parametric region R1, the set of bounding boxes 
completely bounds the function f over R1. □ 

A.3 Finding E-Collisions Efficiently 

We can combine the results of Appendix A.1 and Appendix A.2, to arrive at a 
more efficient approach to finding l-collisions. As we construct the sets of bounding 
boxes through parametric subdivision, we can compare the boxes of surface f to 
the boxes of surface §. If condition 1 of Eqn. A.4 is satisfied, then we know that 
the two parametric regions are disjoint and separated by at least distance L It is 
not necessary to subdivide these pairs of boxes further, since they do not collide. 
In this manner, it is possible to hierarchically examine the subregions of the two 
surfaces, and quickly determine if an l-collision occurs. See Figure 4. 7 for more 
details on the hierarchical algorithm. 

A.4 Termination of the E-Collision Algorithm 

Lemma A.1 ( l-Collision Termination) Given the conditions of Theorem A.1! 
l-collision determination for two parametric surfaces terminates in a finite number 
of steps. 

Sketch of Proof: By the theorem in Appendix A.2, finite sets of bounding 
boxes can be constructed in a finite number of steps that completely bound L­
functions. The procedure for determining l-collisions does a comparison of all 
pairs of bounding boxes between the two surfaces. Since the sets of boxes are 
finite, so is the set of all unique pairs of bounding boxes. The algorithm goes 
through all the pairs and then terminates. Therefore, the algorithm terminates in 
a finite number of steps. D 
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A.5 Example of an Insoluble Collision Without 
the Lipschitz Condition 

Lemma A.2 Given only a finite number of parametric samples from a surface, 
with no additional information, it is not possible, in general, to solve the collision 
problem between arbitrary parametric surfaces. 

Sketch of Proof: Given object A, a unit sphere centered at the origin, and object 
B, a unit sphere centered at the point P, we define object A to be motionless, 
and object B to be motionless, except at time t1 , when it moves to the origin. 
Then objects A and B collide at time t1 . With a finite set of samples across 
the time domain, it is impossible to find t1 , when t1 is arbitrary. Therefore, it 
is impossible to determine if there is a collision, for arbitrary t1 . Therefore, the 
collision-determination problem is insoluble for arbitrary parametric functions. 
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Appendix B 

Derivations for Adaptive 
Sampling 

B.1 Derivation of Upper Bounds on Parametric 
Derivatives for a Sphere 

We wish to find a sufficient function Lu(R) that satisfies Eqn. 4.6 for a parametric 
sphere (Section 4.3.5). The parametric sphere is given by 

( 

cos(21ru) sin( 1rv) ) 
f(u,v) = sin(21ru)sin(1rv) . 

- cos(1rv) 

The condition on Lu is 

af Lu> max 
- R au 

2 

The partial derivatives with respect to u for f( u, v) are 

:: = -21rsin(21ru)sin(1rv), 

;~ = 21r cos ( 21ru) sin( 1rv), 

az 
au= o. 

We substitute into the equation for Lu: 

af 
max 

R au 
2 
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(B.1) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 
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m_Nx jj(21rsin 21ru sin 1rv, 21r cos 21ru sin 1rv, ofjj
2 

m.Nx jj21r sin(1rv) (sin 21ru, cos 21ru, oft 

max l21r sin 1rvl 
R 

max l21r cos 1r( v - 1/2)1 
R 

21r cos ( 7r ~n Iv - 1/21) 

21r cos (1r max (0, Ive - 1/21 - ~v)) . □ 

(B.7) 

(B.8) 

(B.9) 

(B.10) 

(B.11) 

(B.12) 

B.2 Derivation of the Jacobian Matrix for a 
Parametric Sphere 

Given a parametric sphere/( u, v, t), 

( 

cos(21ru) sin(1rv) ) 
f( u, v) = sin(21ru) sin( 1rv) , 

- cos( 1rv) 
(B.13) 

moving with non-constant velocity s = (sx, sy, sz), find the rate matrix M defined 
to be 

( 

m;xlax/aul m1xlax/avl m;xlax/atl) 
M= m;xlay/aul m;xloy/avl m1xlay/atl . 

max 1az/aul max loz/avl max 1az/otl 
R R R 

(B.14) 

First, we compute the Jacobian of the function /(u, v, t), defined by 

ox ox ox 
-

OU ov at 

J(u,v,t) = oy oy oy 
(B.15) 

OU ov ot 
az oz oz 
OU ov at 

Note that ox/ot = Sx, oy/at = Sy, and oz/ot = Sz. Substituting, 

(

-21r sin(21ru) sin( 1rv) 1r cos(21ru) cos( 1rv) sx( u, v, t) ) 
J(u,v,t) = 21rcos(21r

0
u)sin(1rv) 1rsin(21ru)cos(1rv) sy(u,v,t) . 

7r sin( 1rv) sz( u, v, t) 
(B.16) 
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The rate matrix M is just the maximum over region R of the absolute value of 
each component of the Jacobian: 

( 

max l8x/8ul max l8x/8vl max l8x/8tl ) R R R 
M = m;x l8y/8ul mix l8y/8vl m;x l8y/8tl . 

max l8z/8ul max l8z/8vl max l8z/8t1 
R R R 

(B.17) 

Distributing the maxima and absolute value operations: 

M(R) = 

( 

21r max !sin 21rul max !sin 1rvl 
R R 

21r max !cos 21rul max !sin 1rvl 
R R 

0 

7r max !cos 21rul max !cos 1rvl max lsxl ) R R R 
1r mjx !sin 21rul mjx !cos 1rvl mjx lsyl . 

7r max !sin 1rvl max lszl 
R R 

B.3 Non-differentiable Surfaces with Lipschitz 
Constants 

As an example, we examine the function diagramed in Figure B.l: 

f ( u) = lim h l u / h J . 
h->O 

(B.18) 

This function is not differentiable anywhere, yet it satisfies the Lipschitz condition: 

(B.19) 

for a value of L = 1. 

B.4 Binary Right Triangles vs. Restricted Quad­
trees 

Figure B.2 illustrates the difference in efficiency between restricted quadtrees of 
squares vs. bintrees of right triangles. We subdivide the lower left corner of the 
parametric square in a recursive manner. For this example, the restricted quadtree 
requires exactly 3.5 times as many triangles as bintrees of right triangles, for the 
case of infinite recursion. 
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f(u) 

u 

Figure B.1: Plot of f(u) = limh_,ohlu/hj, for a finite value of h. 

Figure B.2: Comparison of restricted quad trees of squares ( on the left) to bintrees of 
right triangles ( on the right), for the case where we subdivide the lower left corners of the 
squares. Note that fewer corner samples are required for the bintree of right triangles. 
Yet we preserve the smooth variation in sampling frequency across the surface. 
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