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Abstract

Arguably one of the most significant contributions to the field of optimal control
has been the formulation and eventual solution of the H., design problem. Armed
with this mathematical tool, designs which are robust to plant uncertainty and in-
sensitive to plant parameters can be performed in a systematic and rigorous fashion.

The H., methodology, however, typically leads to conservative designs. The rea-
sons are twofold. The first is that the plant uncertainty can only be accounted for in
an approximate manner, with the result that designs are performed for a set of allow-
able systems which is larger than what is being modeled; thus the resulting control
strategy is forced to guard against non-realizable situations, potentially sacrificing
system performance. The second has to do with the physical interpretation of H
optimization: the minimization of a system’s power to power gain. Thus it is implic-
itly assumed in the design process that the worst case disturbance is allowed to be
an arbitrary power signal, such as a sinusoid. This is clearly a poor modeling choice
for many types of physical disturbances, such as sensor or thermal noise, wind gusts,
and impulsive forces.

The main contribution of this dissertation is the extension of H., optimization
to allow for general closed loop design objectives which address the two limitations
outlined above. In particular, non-conservative, computationally tractable, linear ma-
trix inequality based methods for control design are developed for a certain class of
physically motivated uncertain systems. In addition, these new techniques can accom-
modate constraints on the allowable disturbances, excluding unrealistic disturbances
from the design process.

Another contribution of this dissertation is an attempt to view control in the
broader context of system design. Typically, a control algorithm is only sought after
the system to be controlled has already been designed, and the type and location
of the actuators and sensors has been determined. For most applications, however,
the level of performance which can be attained by any control strategy is dictated
by the dynamics of the plant. Thus from a system level, the above methodology is
not optimal, since the control design process is decoupled from the design of the rest
of the system. By adopting the behavioral framework for systems, an optimization
problem where the given system is not treated as an input-output operator, a natural
assumption when considering first principles models, is formulated and solved. The
interpretation of the above extension of H, optimization is that of designing optimal
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systems.

In contrast to the general purpose tools developed in the first part of the dis-
sertation and summarized above, the second part deals with an actual experimental
problem, that of controlling rotating stall using pulsed air injection in a low-speed,
axial flow compressor. By modeling the injection of air as an unsteady shift in the
compressor characteristic, the viability of various air injection orientations are estab-
lished. A control strategy is developed which controls the pulsing of air in front of
the rotor face based on unsteady pressure measurements near the rotor face. Ex-
perimental results show that this technique eliminates the hysteresis loop normally
associated with rotating stall. A parametric study is used to determine the optimal
control parameters for suppression of stall. The resulting control strategy is also
shown to suppress surge when a plenum is present. Using a high fidelity model,
the main features of the experimental results are duplicated via simulations. The
main contributions of this part of the dissertation are a simple control scheme which
has the potential of greatly increasing the operability of compressors, and a low-order
modeling mechanism which captures the essential features of air injection, facilitating
subsequent analyses and control designs which make use of air injectors.
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Chapter 1

Introduction

Recent years have seen the emergence of sophisticated mathematical techniques
for the design and analysis of control systems. There are several factors which have
contributed to this phenomenon. The first is the ever increasing demand for high per-
formance systems, which has driven research into correspondingly high performance
mathematics. A second is the emergence of technologically advanced sensors and ac-
tuators, which have greatly increased the applicability of active control methods and
have allowed control theory to be applied to more complex systems. A third is the
enormous increase in computing power, which has pushed research into areas which
until recently would have been dismissed as impractical.

The initial contribution of these advanced mathematical techniques was limited
to the analysis portion of the control design. The main reason for this is that many
designs require the use of unwritten engineering know-how and rules of thumb, and
rely on past experience, which are hard to formalize. Thus the design process has
typically entailed tuning various parameters and then verifying that the resulting
design meets certain performance specifications.

There are several obvious limitations to this approach. The first is that a control
design can only be performed by a select few with many years of practical experience.
A second is that trial and error design is a losing proposition for large and complex
systems. This has driven research into formal synthesis methods.

A desirable property of any useful synthesis methodology is that the design process
should be automated as much as possible while still allow room for engineering know-
how to enter the design process. For example, H,, and H, design methods are
popular in the control community because the stability of the closed loop system is
ensured while weights may be chosen by the design engineer to tailor the design to
the particular application at hand. The engineering know-how is thus reflected on
the choice of weights. The “mundane” task of ensuring stability is thus automatically
taken care of, and the designer is left to worry about issues of performance and
sensitivity to modeling errors.

The main contribution of this dissertation is the development of formal synthesis
methods which lead to designs that are robust to modeling errors. Tools are developed
which automate the design process and allow the incorporation of as much a priori
information as possible without becoming computationally intractable.
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By their very nature, however, the above techniques have limited scope. Because
of the maturity of optimal control in the context of general purpose design methods,
these techniques are only justified when a modest increase in performance is an ac-
ceptable objective. Another contribution of this dissertation is an attempt to view
control in the broader context of system design. Thus while the gains to be made by
designing better controllers appears to be marginal for most applications and be sub-
ject to diminishing returns, a mathematical framework for designing better systems
has the potential of being widely applicable and of being a significant contribution.

In contrast to the general purpose tools developed in the first part of the dis-
sertation and summarized above, the second part deals with an actual experimental
problem, that of controlling rotating stall using pulsed air injection in a low-speed,
axial flow compressor. By modeling the injection of air as an unsteady shift in the
compressor characteristic, the viability of various air injection orientations are estab-
lished. Based on unsteady pressure measurements near the rotor face, pulses of air
are injected in front of the rotor face. Experimental results show that this technique
eliminates the hysteresis loop normally associated with rotating stall. A parametric
study is used to determine the optimal control parameters for suppression of stall.
The resulting control strategy is also shown to suppress surge when a plenum is
present. Using a high fidelity model, the main features of the experimental results
are duplicated via simulations. The main contributions of this part of the disserta-
tion are a simple control scheme which has the potential of greatly increasing the
operability of compressors, and a low-order modeling mechanism which captures the
essential features of air injection, facilitating subsequent analyses and control designs
which make use of air injectors.

1.1 Organization of Dissertation

The dissertation is divided into two parts. The first part, which consists of Chap-
ters 2 through 7, deals with various extensions of H, control and their applications.
This first part can itself be divided into two relatively non-overlapping components:
Chapters 3 through 5 deal with input-output systems, while Chapters 6 and 7 are
concerned with systems described as sets of allowable trajectories; Chapter 2 serves
as the common thread between these two topics. The second part, Chapters 8 and 9,
contains results on the control of rotating stall using pulsed air injection in an axial
flow compressor.

1.1.1 Generalizations of #,, Optimization

Chapter 2 contains the background material relevant to the first part of the disser-
tation. The notation is introduced, and the various problems which are encountered
in this part of the dissertation are motivated.

In Chapter 3, a framework for optimal controller design with generalized [, objec-
tives is presented. This framework is used to solve various open problems in robust
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and optimal control in Chapter 4. These include synthesis for independently norm
bounded disturbances, robust stability with “element by element” bounded struc-
tured uncertainty, and certain classes of robust performance problems. In addition,
recent results on the design of gain scheduled controllers are extended to the above
cases.

In Chapter 5, the results in the previous chapter are extended to allow for deter-
ministic noise disturbances. This extension is also used to provide a solution to the
so-called Mixed Hs — Ho problem, and allows one to extend the iterative schemes
developed for robust controller synthesis to the case of white noise disturbances.

Chapters 6 and 7 contain results in the area of behavioral systems. State-space
descriptions of behavioral systems are introduced in Chapter 6, and are extended
to include uncertainty. An optimal control problem for continuous time, linear time
invariant systems described by behavioral equations is formulated and solved in Chap-
ter 7. This general formulation, which includes standard H, optimization as a special
case, provides added freedom in the design of sub-optimal compensators, and can in
fact be viewed as a means of designing optimal systems. In particular, the formulation
presented allows for singular interconnections, which naturally occur when intercon-
necting first principles models.

1.1.2 Control of Rotating Stall in an Axial Flow Compressor

Chapter 8 contains the background material relevant to this part of the disser-
tation. The issue of rotating stall in compressors is addressed, and the objective of
rotating stall suppression is motivated. The main experimental and theoretical results
are found in Chapter 9.
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Chapter 2

Preliminaries

This chapter contains the essential background material for the first part of the
dissertation. The notation is introduced, and the motivation for the various problems
which will be addressed in this first part is provided.

2.1 Background and Notation

The set of integers is denoted Z, the set of real numbers is denoted R; Z™ and
R* denote the respective non-negative subsets. The set of complex numbers is de-
noted C; the subset consisting of those elements with non-negative real component
is denoted C*, while C~ is used to denote the subset whose elements have negative
real component. The space of m x m symmetric matrices is denoted RJ**™; RI»*™
denotes the space of positive semi-definite symmetric matrices.

Given a real valued function f(e), f(¢) < O (e) denotes f(e) < Ce for some C' € R*
and for all € > 0. '

Given two sets V and W, where W C V, the complement of W in V is denoted
V—W, and is defined as

V-W:={veV:ivgW}. (2.1)

When V is clear from context, V—W is denoted —W.

The maximum singular value of matrix A is denoted 7@ (A4), the minimum singular
value is denoted g (A).

An affine matrix inequality (AMI), often referred to in the literature as a linear
matrix inequality (LMI), is a matrix inequality of the form

D wpAp+ Ay <0, (2.2)
k

where the Ay are constant matrices of fixed dimension and the z; are the scalar deci-
sion variables. Many problems in this dissertation will be converted to solving an AMI
for the decision variables, which is a convex feasibility problem [Boyd et al., 1994,
Nesterov and Nemirovsky, 1994].



2.1.1 Discrete Time Signals and Operators

A signal is a vector valued sequence which may be represented in either column
form

Uy
v=| 1t |, (2.3)

or in n-tuple form
,U:(Ula'” 7Un)7 (24)

i.e., each v; is a scalar valued sequence. Both will be used interchangeably.
The Hilbert space of square summable n-valued sequences over Z is denoted 17,
with inner product

0

(u, vy := Z u* (t)v(t), (2.5)

t=—00

where * denotes conjugate transpose. When the spatial structure is either clear from
context or not crucial to the argument being presented, I; will also be referred to as
l3. The norm of a signal v € [, is denoted ||v||:

llv]] :== v/ (v, v). (2.6)

The outer product of u,v € I§ is defined as

oo

Alu,v) = Y ut)v"(t) € RP*™. (2.7)
t=—00
Abbreviation A(v) is used to denote A(v,v).

Given two subsets of l5, S; and S;, the maximum distance between S; and S, is
defined as

d (51, S2) := max (sup inf ||s; — sof|, sup inf1 Ilso — 31H> . (2.8)

51€8) $2€52 $2€85, S1€5

For T' € Z, the truncation operator Py is defined as

o(t) t<T

PT(U).—_{ A (2.9)

Operators on [y are maps from I, to ly. An operator H on [, is causal if PrHPy =
PrH for all T'; operator H is bounded if there exists a finite v such that ||[Hv|| < ~ [|v]]
for all v € ly; operator H is linear if H(au + fv) = oHu + SHu for all o, € R,
u,v e 12.



Figure 2.1: Lower LEFT

B

Figure 2.2: Upper LFT

The lower linear fractional transformation (LET) of two operators A and B is
denoted A x B, and is defined as:

AxB:= AH -+ AlgB(I — AQQB)‘IAQl, (210)

where

A Ap ]
A= ,
[ Ag Ay

when the inverse of (I — Ay,B) is well defined. It corresponds to the feedback inter-
connection of Figure 2.1.

The upper LFT of two operators A and B is also denoted A x B, and is defined
as:

A xB =By, + By A(I-B;;A) !By, (2.11)

where

B By }
B= ,
l B21 B22

when the inverse of (I — Bj;A) is well defined. It can be captured by the feedback
interconnection of Figure 2.2. Note that the same notation is used for the lower and
upper LFT, since it will be clear from context which operation is being performed
(i.e., it can be determined solely on the relative sizes of A and B).
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The set of linear, bounded operators H : 1" — [} is denoted L(I3%,15), or L(I2).
The ly-induced norm of H € L(l5) is denoted

H) = sup 201 (212)
liv]|£0 vl
Given H e L(l;), H>0(>0) if
(v,Hv) > 0 (> 0) (2.13)

for all v € Iy, ||v]| # 0. The adjoint of operator H € L(ly) is denoted H* and is the
unique operator in £(ly) which satisfies

(u, Hv) = (H"u, v) (2.14)

for all u,v € ls.
An operator H is linear, time invariant (LTI) if HX = AH, where X is the unit
delay operator:

(Av)(t) = v(t—1). (2.15)

An LTI operator can equivalently be described by a convolution kernel h(¢)
(Kailath, 1980]:

(Hv)(t) = > h(t —7)v(r). (2.16)

T=—00

2.1.2 Continuous Time Definitions

Although most of the notation previously introduced can trivially be extended
to the continuous time case by replacing summations with integrals, most of the
results in this dissertation which make use of the previously defined concepts are for
the discrete time case. In continuous time, signals are taken to be vector valued
functions. The space of square integrable functions over R is denoted Ly; L7 is the
subset of L, functions over R™. £%°¢ is defined to be the space of vector valued, locally
absolutely integrable functions over R, and C™ the space of vector valued, infinitely
differentiable functions over R.

2.1.3 Input-Output Systems and Performance

An input-output (I/O) system is simply taken to be an operator between signals,
as described in Section 2.1.1. Thus a system maps one set of signals, referred to as
the input, to another set of signals, referred to as the output. A bounded system will
be referred to as a stable system. A finite dimensional LTI system G is one that can
be expressed in the following state-space form:

(oz)(t) = Az(t) + Bu(t) (2.17)
y(t) = Cux(t) + Du(t)



K

Figure 2.3: General Plant-Controller feedback interconnection

where A, B, C, D are constant matrices, u is the input, y is the output, x is the internal
state, and o is the unit advance operator ™! in discrete time and the differentiation
operator 1n continuous time; the notation

A|B
Cc\|D
is used to define system G as per equation (2.17). In this section, only finite dimen-

sional LTI systems are considered.

Consider the interconnection of systems G and K in Figure 2.3. Denote the closed
loop map from d to z by M := GxK. K is referred to as a stabilizing controller if the
closed loop map of Figure 3.1 is internally stable [Zhou et al., 1995]; this corresponds
to requiring that the map from d, and signals injected anywhere in the loop, to z, v,
and u exists, is bounded, and causal.

Many control problems can be cast in the framework of Figure 2.3. It is usually
required that system K stabilize system G, and in addition, that the closed loop
system M have certain desired properties, often termed performance requirements.
Two widely used performance criteria are that the H., or the H5 norm of the closed
loop system M be made as small as possible. While these are frequency domain
concepts, it will be useful to consider their time domain interpretation, since they
naturally extend to the time varying case. We will concentrate on the discrete time
definitions; the continuous time counterparts can be defined analogously (most of the
definitions apply directly by simply replacing Iy with £s).

The Ho, norm of M is simply the [ induced norm, [[M||, and thus gives the design
problem a simple interpretation: it is required to minimize the energy (or power) gain
of system M. The H; norm can be defined as follows:

M, (E ¢race (m (t))) ‘ (2.19)

where m(t) is the convolution kernel representation for M. The H, design prob-
lem has typically been given a stochastic interpretation; minimizing the H, norm
is equivalent to minimizing the variance of z when the input d is stochastic white

G := (2.18)
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noise [Anderson and Moore, 1990]. An alternate interpretation has been explored in
[Paganini, 1995b], which will be used in Chapter 5 and outlined in Section 2.2.3.
Computationally attractive solutions to the H., and Hy design problems may be
found in [Doyle et al., 1989].

In many instances, minimizing the H, system norm is a much more sensible design
objective than H, optimization. This is essentially due to the gain interpretation; it
is often better to model disturbances as white noise signals than as arbitrary bounded
power signals. This is the case for many types of disturbances, such as thermal noise.
Many other types of disturbances, such as wind gusts, are typically modeled as a
filtered white noise signal. By absorbing these filters, or weights, into system G, one
can consider the case of purely white noise disturbances.

2.1.4 Polynomial Matrices

Polynomial matrices, matrices whose elements are polynomials in some indeter-
minate, are used extensively when describing the behavior of a system in Chapters 6
and 7. What follows are some definitions and results pertaining to polynomial matri-
ces used throughout these two chapters; the reader is referred to [Kailath, 1980] for
details.

A square polynomial matrix R(s) is said to be nonsingular if det(R(s)) # 0. A
nonsingular polynomial matrix whose determinant is not a function of s is called
unimodular; equivalently, R(s) is unimodular if and only if R7!(s) is a polynomial
matrix.

R(s) is said to have full normal row rank if R(s) is full row rank for almost all
s € C. Similarly, R(s) is said to have full normal column rank if R(s) is full column
rank for almost all s € C.

R(s) is said to be right invertible if there exists a polynomial matrix M(s) such
that R(s)M (s) = I; equivalently, R(s) is right invertible if and only if R(s) is full row
rank for all s € C. R(s) is said to be left invertible if there exists a polynomial matrix
M(s) such that M(s)R(s) = I; equivalently, R(s) is left invertible if and only if R(s)
is full column rank for all s € C. If R(s) is right invertible, there exists a polynomial
matrix N(s) such that

R(s)
|~

is unimodular. If R(s) is left invertible, there exists a polynomial matrix N(s) such
that [ R(s) N(s) ] is unimodular.
Any polynomial matrix R(s) can be Smith decomposed as

R(s) = U(s) [ Aés) 8 } V(s), (2.20)

where U(s) and V(s) are unimodular and A(s) is square and nonsingular.
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2.2 Robust Control

When attempting to capture the behavior of a physical system by a mathematical
model, there will invariably be some mismatch between the true behavior of the sys-
tem and that predicted by the model. There are two major sources of this mismatch.
The first is that the parameters which make up a model can never be determined
exactly; this is due to incomplete knowledge of the system, or variations of physical
properties over time. The second, and more compelling source, is due to the fact that
for a mathematical model to be useful, it must be tractable. Thus the goal of the
modeling process is to extract the salient features of a physical system in as concise a
manner as possible. Experimental validation is then used to justify the simplifications
and assumptions which took place in the modeling stage. For example, treating a fluid
as incompressible and inviscid leads to some very elegant and simple equations which
govern its behavior, but leads to models which can only be applied in a restricted
set of circumstances [Shames, 1992]. Dropping the compressibility assumption, and
more importantly, adding viscosity to the problem, leads to more complicated models
which have a wider applicability.

The essence of the robust control paradigm is the concept of explicitly bounding
the mismatch between a mathematical model and the behavior of the system it is
trying to capture. This mismatch is commonly referred to as system uncertainty.
This approach, by necessity, is conservative, since the uncertainty must account for
complex, yet hopefully not crucial, behavior. There is thus an inherent tradeoff in
the modeling of a system between model fidelity and model complexity.

In the traditional robust control framework, the approach taken is to model a phys-
ical system as the interconnection of a finite dimensional LTI system and a bounded,
but unknown, operator (which accounts for the mismatch). This will be formalized
shortly. This framework has been very successful, if judged by the amount of re-
search activity it has generated and the significant number of applications which it
has serviced. The main reason for this success is that the robust control framework
seems to provide the right mix of fidelity and model tractability. It is rich enough to
capture complex systems, yet at the same time remains a tractable paradigm. Exten-
sions of this framework to encompass non-linear and time varying systems have been
made, with promising results [Tierno, 1995, Packard, 1994]; the price paid, of course,
is computational complexity, which is increased substantially.

Just like any tool, however, the applicability of the robust control framework is
not all-encompassing. By that it is meant that even though the idea at the root of
robust control is applicable to most systems, the theory at its present state can only
be applied to a modest (yet significant) number of physical systems. For example,
robust control methods have extensively and successfully been used in flight control
applications, but are not amenable to applications where the behavior is dominated
by non-linearities.

The need for incorporating model mismatch in the design process is best illustrated
by a simple example. Consider the diagram of Figure 2.4. It is required to find a
control law which stabilizes a cylindrical spinning satellite about its minor principal
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Figure 2.4: Spinning satellite stabilization

axis. The satellite is modeled as a rigid body. The equations of motion are described
using a body-fixed co-ordinate system, which is co-incident with the principle axes
and is rotating relative to an inertial frame of reference with angular velocity w =
(wg,wy, w,). The moment of inertia matrix I is diagonal, where I, = I, > I,. Torques
M, and M, are available for control purposes. Angular rates w, and w, are measured
in a rotated co-ordinate system relative to the x/y plane:

{0:1}:{ cqs@ sm&] [ng} (2.21)
Wo —sinf cosd Wy
Assuming no dissipative mechanisms, equating moments results in the following:
= — 2.22
[wy} [“GO}{Wy]+]z{My]7 ( )
I,
a = (1 - -[—> , (2.23)

where (2 denotes the constant value of angular rotation about the z axis, w,. Due
to the energy conservation assumption, the system is marginally open-loop stable.
Since the satellite is prolate, however, any energy dissipation will result in the satellite
eventually spinning along an axis on the z/y plane. The goal is thus to apply torques
M, and M, based on measurements &, and @&, and stabilize the satellite about angular
velocity w = (0,0, ).

To simplify the argument, assume that ¢ > 1 and that tanf = a. Applying

control law
M:c _ Ia: &71
[ M, J "~ cosd { W } (2:24)

results in the following closed loop system:

= A 22
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which is exponentially stable. Note, however, that when 6 is perturbed by a small
amount, 8 = fy + 6, the closed loop system takes the following form:

Bl ] e
Wy - -1+ ab Wy

which is unstable for small positive values of §. Thus the control design is extremely
sensitive to modeling errors, and does not inspire much confidence in its successful
implementation.

2.2.1 Linear Fractional Transformations and Structured Un-
certainty

Referring back to the diagram of Figure 2.3, many standard control design prob-
lems are of the following form:

Control Synthesis

Given system G, find system K such that

o The closed loop system is internally stable.

o The closed loop map from d to z satisfies the given performance requirements.

The above is a reasonable problem formulation; it is required to stabilize the given
system (or equally important, to ensure that K does not de-stabilize an otherwise
stable system), and to achieve a certain level of performance. This performance
requirement is typically to ensure that the map from d to z be small in some sense.
This is natural when addressing disturbance rejection problems, tracking problems
by setting z to be the difference between a reference signal and the process output,
or a combination thereof.

As previously discussed, however, it is important to ensure that a design is not
sensitive to model mismatch and uncertainty. In the robust control framework, the
standard control design problem is replaced by the following:

Robust Control Synthesis
Given a set of possible plants G, find system K such that

o ForallG e G, the closed loop system is internally stable.

e ForallG e G, the closed loop map from d to z satisfies the given performance
requirements.
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G G
Z M
Y G Gy u

Figure 2.5: LFTs and plant sets

In the spinning satellite, for example, the set of plants G could be those parameter-
ized by values of # in a given interval (note that there is no performance requirement
in this example, since there are no exogenous disturbances).

Linear fractional transformations provide a natural and convenient means to
parametrize plant sets G. Referring to the diagram of Figure 2.5, G is a finite di-
mensional LTI system and A is a bounded operator which will serve as the means to
parametrize §. For a fixed A, plant G is of the form

G(A)=AxG =Gy + Gy AT -G A) Gy, (2.27)

where Gy is the nominal system (A = 0). Operator A is assumed to have the
following spatial structure:

A:diag[5lla T 5L[7 AL+17 AL+F]7 (228)

le.,, A is a block diagonal operator. Two types of uncertainty blocks appear in
equation (2.28). The first are the repeated scalar blocks 8,1, where each identity is
of fixed, but arbitrary, dimension; if z = (§;/)w, then z; = §;,w;. The second type
consists of full blocks Ay ;, which are general multi-variable operators.

There are two main reasons for considering this structure for A. The first is that
many types of plant uncertainty can be captured in this form; this is intimately related
to the fact that LF'T systems with the above spatial structure for the uncertainty
are invariant under addition, cascade, and interconnection, three common system
manipulations. By this it is meant that the addition, cascade, or interconnection
of two or more LFT systems with the uncertainty structure of equation (2.28) can
always be written as an LFT system with the uncertainty structure of equation (2.28)
(of possibly different dimension). The reader is referred to [Zhou et al., 1995] for an
in-depth treatment of these issues. The second is that the LFT interconnection of
Figure 2.5 is in fact the natural generalization of state-space descriptions; for example,

by setting A = d; = X and
(11

C D
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one recovers the state-space description of equation (2.17). This is further explored
in [Beck, 1995], along with issues of model reduction for these more general types of
systems.

In addition to the spatial structure of equation (2.28), each component of A is
typically restricted to be one of the following types of operators:

e real parameter;
e LTT operator;
e arbitrary linear operator, or equivalently, linear time varying (LTV) operator;

e static non-linearity.

A further restriction is that the operators be causal (this is clearly not an issue for
real parameters and static non-linearities). This is an important restriction, in light
of the definition of internal stability. The issue of causality will be further explored
in later chapters when various robustness problems are encountered.

Let the spatial structure of A and the type of each operator in A be given (LTI,
LTV, etc.), and denote this class of allowable uncertainty as A. In order to complete
the parameterization of G, a norm bound is imposed on all allowable A as follows:

BA:={AcA: A <1}, (2.29)
For a given system G, set G is then parameterized as follows:

g::{é:é:A*G,AeBA}. (2.30)

Note that when imposing a size constraint on A, it is natural to do so as a
condition on the induced gain. The [, induced gain is used, but other measures such
as the [ induced gain [Dahleh and Diaz-Bobillo, 1995] can be employed as well.

2.2.2 Synthesis for Robust [, Performance

We are now in a position to formulate the standard [, robust synthesis problem:
Robust [, Synthesis
Given system G and uncertainty class A, find system K such that

o AxGxK is internally stable for all A € BA.

¢ |[AxGxK]| <1 forall A € BA.
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Figure 2.6: Iterative Robust H,, Synthesis design

Thus the performance measure is to minimize the Iy to I gain for all allowable
uncertainty. Note that the term Robust H, Synthesis is typically used instead for the
above design problem (strictly speaking, the two are equivalent for LTI uncertainty,
but the term H, is a misnomer for LTV uncertainty). It turns out that this problem,
in its full generality, is a very difficult one to solve. The following facts support this
statement:

e The analysis problem alone, i.e., just determining whether the closed loop sys-
tem satisfies the stability and performance requirement for all A € BA has been
shown to be NP-Hard in the number of diagonal blocks of A when the §; and A;
are real parameters or LTI operators [Braatz et al., 1994],
[Toker and Ozbay, 1995b]. The implication of this result is that in the worst
case, the analysis question for structured real or LTI uncertainty (or any mix
thereof) cannot be computed exactly without exponential growth in computa-
tional cost with problem size [Garey and Johnson, 1979].

e The easiest analysis problem to solve, in that it displays the lowest growth in
computational complexity as a function of problem size, is the case of LTV
uncertainty. For this case, the computational cost growth is polynomial in
the number of diagonal blocks, and can in fact be converted to an AMI. The
synthesis problem in this case can be converted to a bilinear matrix inequal-
ity (BMI) [Safonov et al., 1994], which is, in general, an NP-Hard problem
[Toker and Ozbay, 1995a].

Various techniques such as branch and bound [Newlin, 1996] and power algorithms
[Packard and Doyle, 1993] combined with various upper bounds [Fan et al., 1991],
[Young, 1993] have been shown to yield acceptable growth rates for the analysis ques-
tion for typical problems (although as previously mentioned, the worst case growth
is still exponential). These techniques cannot, however, be applied directly to the
synthesis problem.

The state of the art in synthesis is to iterate between an analysis step and a
scaled Hoo synthesis step, as proposed in [Stein and Doyle, 1991]. This is depicted
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in Figure 2.6. Scales X are systems such that X *AX € A for all A € A; for
LTV uncertainty, for example, the X are constant matrices (of appropriate spatial
structure), while for LTI uncertainty, the X can themselves be LTI systems (again
of appropriate spatial structure). By a simple application of the small gain theorem
[Zames, 1966], it can be shown that if an internally stabilizing controller K and scales
X can be found such that the closed loop H norm of the system with input (d,, d)
and output (zy, 2) is less than one, then K solves the Robust [, Synthesis problem.
The reader is referred to [Packard and Doyle, 1993] for a thorough explanation of
these issues. The above motivates the following iteration:

Synthesis: For fixed scale X, find K which minimizes the closed loop H, norm of
the system with input (d,,d) and output (zy,2). This is a computationally
tractable problem [Doyle et al., 1989].

Analysis: For fixed K, obtain new scales which minimize the closed loop H., norm
of the system with input (dy, d) and output (zy, z). This problem can be either
converted to an AMI (for LTV uncertainty), or can be approximated by an AMI
(for LTI and parametric uncertainty) [Balakrishnan et al., 1994]. As previously
mentioned, this step is in fact a sufficient condition for the analysis problem; if
scales can be found such that the closed loop H, norm is less than one, then
the system is robustly stable and the worst case I, induced gain is less than
one. It can be shown that it is also a necessary condition for LTV uncertainty
[Shamma, 1994].

Thus one would iterate between these two steps until the resulting H. norm, at
either step, is less than one. If this cannot be accomplished, the performance require-
ment will have to be relaxed or the size of the uncertainty will have to be reduced
(or both). It should be stressed that the above iterative scheme is not guaranteed
to converge to the global minimum. Furthermore, even if the global minimum is
achieved and is greater than one, the existence of a controller K which solves the
robust synthesis problem is not precluded (except for the LTV case; but as previ-
ously mentioned, it is likely that finding the global minimum for the LTV case is an
NP-Hard problem).

In order to obtain exact solutions to the Robust Iy Synthesis problem, either a
restricted class for the uncertainty or systems G with a special structure must be
considered; this is addressed in Chapter 4.

2.2.3 Deterministic Noise Sets

In this section, the notions introduced in [Paganini, 1995a) to capture white noise
in sets are reviewed. Given a signal n € [, its autocorrelation function is defined as

R, (7) := A(n, A\7n). (2.31)
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Note that there is no time averaging in the above definition, as would be used for
power signals, since we are dealing with finite energy signals. Given positive integer
N and positive number ~, we define the following set of autocorrelation functions:

R(~7) = B*(r)
Ny = R(T):Z— R™™ I max; ; |(R(0) = I); ;] < ,
max; ; |R(7)i;| <v, 1<7<N (2.32)
and corresponding signal set
Wy, ={n€ll: R,(r) e R} }. (2.33)
For v = 0, define
= Wit (2.34)

The motivation for the above definitions is that sets Wy capture “typical” in-
stances of white noise. For example, when deciding whether a measured signal is a
sample of white noise, one would perform a hypothesis test in terms of some statistic.
The sample correlogram [Ljung, 1987] is such a test; it is required that the sampled
signal be in set W (after normalization) for a sufficiently large N and sufficiently
small 7.

Let H be a LTI system. Define the following induced norm:

IHlyyp := sup {||Hn|| : n. € W'} (2.35)
The following result is from [Paganini, 1995b]:
Lemma 2.1
0 < (11l — ;) "= 0. (2.36)
Furthermore, the convergence rate is exponential in N.

Thus one may induce the Hy norm of a system by considering the worst case norm
resulting from signals in W}}, as N approaches infinity.

Note that bounded energy, not bounded power signals are considered. While
this may seem a strange and unnatural way to describe noise (i.e., requiring noise
signals to decay to zero as time goes to infinity) it is argued quite convincingly in
[Paganini, 1995b] that for the study of disturbance rejection problems, the theory is
best developed in ly. This is analogous to H, theory; it is more convenient math-
ematically to consider the H,, norm as induced from [y to Iy, although it also has
the perhaps more natural interpretation as the worst case power to power gain. Ir-
respective of which interpretation is given (energy to energy or power to power), the
resulting design is the same. One should thus use the interpretation which facilitates
the theoretical development, which in our case is I,.
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Figure 2.7: Iterative Robust H, Synthesis design

2.2.4 Synthesis for Robust H,; Performance

As previously argued, in the absence of uncertainty the #, design problem is
typically more physically motivated than the H,, design problem; most disturbances
are much better modeled as white noise signals rather than arbitrary bounded power
signals (such as sinusoids, for example). The reason that H,, performance has domi-
nated the robust control literature is simply that until recently, there was no natural
way to incorporate a system’s uncertainty (naturally captured by H., type bounds)
with Hy performance (which has typically been given a stochastic interpretation).

Armed with the previous definitions for deterministic noise, we are now in a po-
sition to formulate the robust H, synthesis problem:

Robust H, Synthesis

Given system G and uncertainty class &, find system K such that

o AxGxK is internally stable for all A € BA.

o limy_,0 HA*G*KHWW <1 for all A € BA.

Note that for LTI uncertainty, the limit may be replaced by the system H, norm,
by Lemma 2.1. As in the Robust M., Synthesis problem, this is generally a very
difficult problem to solve. Recent results [Paganini et al., 1994, Paganini, 1995b],
however, have shown that the Robust Hy Synthesis problem as formulated above may
be converted to a Robust H,, Synthesis problem; in particular, it has been shown
in [Paganini, 1995b] that the Robust H., Synthesis problem may be augmented to
achieve Robust H, performance by introducing an extra scaling system Y, as shown
in Figure 2.7. This yields the following iterative scheme:

Synthesis: For fixed scales X and Y, find K which minimizes the closed loop M
norm of the system with input (d,,d) and output (zy, 2).
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Figure 2.8: Interconnection of two networks

Analysis: For fixed K, obtain new scales X and Y which minimize the closed loop
Ho norm of the system with input (dy,d) and output (z,,z). This problem
may be approximated by an AMI [Paganini, 1995b].

The above iterative scheme has two shortcomings:

1. There is now an extra scale to search over, Y. This could potentially introduce
more local minima in the iteration.

2. The resulting Y in the analysis step needs to be approximated by a finite
dimensional system in order for the synthesis step to be applied. This can be
avoided by choosing basis functions [Balakrishnan et al., 1994] to parametrize
Y, which is in effect equivalent to fixing the maximum size of N in the Robust
H, Synthesis problem formulation. Furthermore, increasing the number of basis
functions which parametrize Y increases the computation time and the order
of the resulting controller.

In Chapter 5, the Robust H, Synthesis problem is solved for a restricted class of
uncertainty. In addition, a method is proposed which eliminates the search for scale
Y in the above iterative scheme for problems with general uncertainty structure.

2.3 Behavioral Systems

The behavioral framework, as proposed in [Willems, 1991], is essentially a mathe-
matical formalism for dynamical systems which makes no distinction between inputs
and outputs. The predominant reason for not describing systems as 1/O operators
is that in practice it is often not clear which of the variables should be regarded as
inputs and which as outputs. Examples of this are situations in which the system is
an interconnection of several subsystems. Such an interconnection may induce con-
straints such that variables which could have been considered as inputs or as outputs
in a subsystem can no longer be labeled as such in the interconnected system. Thus it
would seem that imposing an I/O structure to a system, or component, would require
an a priori knowledge of how that component will be used.

As a simple example, consider the two electrical networks of Figure 2.8, described
as I/O operators. It is desired to connect a node together, i.e., to set v; = vy and
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Figure 2.9: Mass-spring-damper systems

11 = i9. If the two networks are defined as in Figure 2.8, where i, and i, are inputs,
and v; and vy are outputs, there is no clear way to represent this interconnection.
The problem is, of course, with the choice of inputs and outputs. If system 2 were
represented with vy an input and i, an output, a simple expression for the above
interconnection could then be derived.

It might also be the case that an I/O structure is not required: should a resistor
in an electrical circuit be considered a voltage to current operator, or a current to
voltage operator? As long as the relation v — Ri = 0 is satisfied, the answer to this
question is irrelevant. It would thus seem that the effort undertaken by the design
engineer to provide I/O system representations might not be warranted.

In addition, equations where no distinction is made between inputs and outputs
arise naturally when modeling physical systems from first principles; it is almost
always the case that components are modeled in terms of mass, momentum, or energy
balances, or physical laws, which are inherently of the form f(w) = 0, where f is an
operator, and w a vector of variables.

Another reason for adopting the behavioral paradigm is that this approach unifies
first principles modeling and interconnection. Both are mathematically equivalent,
since both consist of combining constraint equations. Tools developed for intercon-
nection can then be used for modeling purposes, and vice-versa.

The above discussion may seem elementary to anyone who has ever constructed
a model from first principles. In terms of the control community, however, there has
been a bias towards describing systems as I/O operators. There are good reasons for
this bias; I/O methods have been extremely successful at dealing with conventional
control applications, where the I/O relation describing a given plant is impervious
to the system with which it is connected to. In fact, sensors and actuators are
physically designed with this in mind, as are many electronic devices (for example,
the operational amplifier). Furthermore, no one would argue that a cause-effect (or
I/0O) relationship exists when a controller is implemented by a digital computer, where
sensor signals are sampled and processed to produce the control signals.

The buffering assumption, however, is not an inherent property of all systems to
be controlled. This assumption, in fact, limits the applicability of control methods.
Consider, for example, the mechanical systems of Figure 2.9, where each mass is
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Figure 2.10: Conventional control design. A corresponds to the actuator, S corre-
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Figure 2.11: “Undesirable” control design

attached to a spring and a damper sliding on a frictionless surface. Consider system
one, on the left-hand side of the figure. It is required to construct a control system
for it. From the standard control viewpoint, position x; will be measured by a sensor,
and force f; will be applied by an actuator. This is described by the block diagram
of Figure 2.10, where n is sensor noise. Thus the problem is to find suitable actuators
and sensors and design controller K to achieve certain design objectives. Now consider
the block diagram of Figure 2.11. There are three major problems with this feedback
interconnection from the traditional control view point:

1. There are no actuators and sensors.

2. There is differentiation in the feedback loop (in fact, double differentiation), an
undesirable property for a controller and one which can only be approximated
over a limited frequency range.

3. Any noise at n will result in infinite (in practice large) values of f; and f.

In fact, the block diagram of Figure 2.11 simply captures the interconnection of
system two with system one, as depicted in Figure 2.12. The three previously raised
objections do not seem to apply to this interconnection:



23

T

1 1

— A — A

1 2
11 L

1 - = 1
S S S S NN N N NN

Figure 2.12: Interconnection of systems one and two

NN
o4

1. No actuators or sensors are needed.

2. There is no differentiation; differentiation is an artifice of writing the governing
equations in I/O form.

3. There is no noise at the z,/z, junction, and the system is well behaved.

It thus appears that the I/O framework is not natural, and is in fact a hindrance,
when the role of control is expanded to include non-buffered interconnections.

2.3.1 Continuous Time System Representations

Systems for which the allowable trajectories are the solution set of the following
set of differential equations will be considered:

drw
RLW‘i—"'—FRQw:O (237)
where Ry, .-, Ry are constant matrices. Defining
R(s) = Rps" +---+ R, (2.38)

results in the shorthand notation R(Z)w = 0 for equation (2.37). The above is
referred to as an autoregressive (AR) representation.

Using the notation in [Willems, 1991], a system will be denoted ¥ := {R,R?, 5},
where R and R? correspond to R? valued, bi-infinite, continuous time, trajectories,
and B is the behavior, or the allowable trajectories:

d
B:= {w e Ll R<;1_t)w = O} . (2.39)

According to the dynamical model ¥, time signals in B can in principle occur,
while those outside B cannot.
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Chapter 3
Generalized [» Synthesis

In the standard H,, paradigm, the allowable disturbance class consists of arbi-
trary unit /, norm signals, while the design objective is to ensure that all output
errors have [, norm less than one. In this chapter, the allowable disturbance class
and the design objectives are generalized to encompass a wide class of optimization
problems. The underlying signal space is still taken to be ly; as opposed to standard
Hoo synthesis, however, the allowable disturbance set and performance objective are
general functions of the various inner products of the input and output variables.
For example, denoting d as the exogenous disturbance and z as the output error, a
specific choice is

D Adkyde) <1, > (z, ) < 1, (3.1)

which leads to H., optimization. Using the tools developed in this chapter, other
criteria such as

(dp, di) < 1Vk, (3.2)

(di,di) {di,da)
[(d%dl) (d2, da)

Z Via,z) < 1, (3.4)
I

and many others may be utilized. The motivation for considering these more general
sets are twofold. From a practical point of view, many interesting problems may be
cast in this framework; in Chapters 4 and 5, various open problems are solved using
the framework developed in this chapter. From a purely theoretical standpoint, these
results extend the boundary for which optimization in the I, framework results in
computationally tractable solutions.

The chapter is organized as follows: The problem formulation is outlined in Sec-
tion 3.1. In Section 3.2, various properties of the allowable disturbance classes and
cost criteria are explored. In Section 3.3, an analysis condition is derived, which takes
the form of an operator inequality. Using this condition, a method for constructing
controllers which meet the performance objectives is presented in Section 3.4, which
takes the form of an AMI.

—I<0 (3.3)
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Figure 3.1: Synthesis formulation

3.1 Problem Formulation

Consider the feedback interconnection of finite dimensional LTI systems (simply
referred to as systems in this and the next two chapters) G and K in Figure 3.1, and
denote the closed loop system by M := G x K. If sets D and £ are defined as

D={dely:|ldf <1}, €={ecl: e’ <1}, (3.5)
then it can readily be verified that |[M|| < 1 if and only if

sup sup{e, Md) < 1. (3.6)
ecE deD
Thus H, optimization can be formulated as finding a controller K such that equa-
tion (3.6) is satisfied for a particular choice of D and &.
In this chapter, optimization problems where sets D and £ are not restricted to be
balls in [, are considered. In particular, the following class of sets will be considered:

D = {dely: fi(Md) - M <0, 0<k <Gy}, (3.7)
£ = H{eeli:q(Ale)) —P <0, 0<I<CY, (3.8)

where the fi, and g; are matrix valued linear functions, the M and P, are matrices of
compatible dimension, A(-) is the outer product operator defined in equation (2.7),
and Cy and C, dictate the number of constraints which A(d) and A(e) must satisfy.
For example, setting Cy = C, =0, My = Py =1, and fy = gy = trace(-) yields the
sets of equation (3.5) and results in H., optimization.

In order to formalize the construction of sets D and &£, some definitions need to
be introduced. For matrices A € RP™P™ and B € R™ ™, the trace product C € RP*P
of A and B is defined as

C = A(®B, (3.9)

C[i,j] ;= trace (Ai’jB), (310)
ALL Lo ALp

A = : , (3.11)

APt Lo App
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where A" € R™™, and Cj;; is the i, j element of matrix C. Thus C is a square
matrix, each of whose elements is a linear combination of the elements of B. The
trace product allows us to conveniently define the matrix valued linear functions f
and g¢; in terms of constant matrices Dy and E;, as shown below,

Define the following sets for all € > 0:

D¢ = {VeRP™: D@V - M, <el, 0<k<Cy}, (3.12)
¢ = {VeR:E@V-P<el, 0<I<C.}, (3.13)
D¢ = {dely:Ad) e DY, (3.14)
E = {eclh:Ale) € ¢}, (3.15)

where M, € Rg* ™™ P, € RE*P' my,pi € ZF, and D, € R™mxmem | ¢ RPpXpip,
Denote ® := D0, € := &% D := DY & := £ It will be assumed that 0 < My, P, € R,
with Dy = I € R™™ and Ey = I € RP*P (which in fact implement the trace
function). This imposes constraints ||d||? < My, ||e||? < P, and ensures that sets D
and &£ are bounded. It will also be assumed that © and & are not empty sets; using
similar arguments to those of Lemma 3.3, it can be shown that this implies that D
and £ are not empty as well. In Section 3.2, various properties of sets ©, &, D, and
& will be explored.

Remarks: Since only the symmetric portions of D;@¥ and E,@W¥ are required
in constraints (3.12) and (3.13), it can be assumed that Dy’ = D}*, EY = E".
Furthermore, since A(d) and A(e) are symmetric, D;” and E;” can be assumed to be
symmetric as well.

The problem formulation may now be stated:

Generalized > Synthesis:

Given system G and sets D and £, find o stabilizing controller K such that

sup sup{e, Md) < 1. (3.16)
ecf deD
The term Generalized I3 Synthesis stems from the fact that sets D and £ which
define the allowable disturbances and the cost criterion are not restricted to be balls
in l. Sets D and € are, in general, convex sets which can be used to constrain A(d)
and A(e), respectively. In particular, each constraint in equations (3.12) and (3.13)
is an AMI in the elements of A(d) and A(e) of variable dimension. As an illustrative
example, consider the following sets in /2

Dy = {delj:Ad) <}, (3.17)
D, == {del3:|d|* <1, ||dof? <1}, (3.18)

which can readily be captured in the format of equations (3.14) and (3.12). D, C D,
since Dy possesses an additional constraint on (d,ds). This is depicted in Figure 3.2.
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Thus for Dy, signals which have unit energy content must be orthogonal to each other;
adding constraint (d;, dy) = 0 to D, imposes an orthogonality constraint irrespective
of the signal energy.

Matrix valued constraints, such as the one used to describe Dy, appear naturally
when dealing with certain types of uncertainty, and are encountered in Chapter 4.

Remarks:

e In general, any compact, convex set may be approximated to any desired accu-
racy with the constraints of equation (3.12). This can, in fact, be achieved with
only scalar valued constraints; the matrix valued constraints offer flexibility, and
extend the class of convex sets which may be described without error (¥ < I,
for example).

e Note that 0 does not have to be an element of © or of &, and consequently of
D or &; equivalently, matrices My and P, are not restricted to be positive semi-
definite. This allows us to consider very general convex sets, at the expense of
complicating some of the proofs which follow.

e The constraints used to define D and & are very closely related to Integral
Quadratic Constraints (IQCs) [Yakubovich, 1971], [Megretski and Treil, 1993] :

(d, TId) > 0, (3.19)

where IT is an LTI, self adjoint operator in £(l5). If IT is a constant matrix, then
the constraint of equation (3.19) can readily be captured by the constraints in ©
((d,IId) is a linear combination of the elements of A(d)); generalizations which
will allow II to be an LTI system are discussed in Section 3.5. On the other
hand, IQCs cannot, in general, capture the constraints in D since the latter can
be matrix valued and affine in A(d).

3.2 Properties of Sets ©, &, D, and &

As previously mentioned, sets © and & are bounded, convex sets which live in a
finite dimensional real vector space. In this section, other properties of sets ©, €,
D, and £ are explored. This is done for technical reasons (some of the proofs which
follow rely on the results in this section), and to provide insight into the Generalized
ly Synthesis optimization problem.

3.2.1 Continuity of Sets D¢ and &€

The following theorem states that sets D¢ and £€ are in some sense continuous as
a function of e
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Figure 3.2: D; and D,. Only the surface of each set is shown; all points below the
surface are allowable.

Theorem 3.1
d(D5,D) =25 0, d(8) =Y o, (3.20)
where the mazimum distance function d (-,-) is defined in equation (2.8).

Before proving the above theorem, two preliminary lemmas need to be introduced.
The following lemma states that D¢ (similarly &¢) is continuous in €:

Lemma 3.2

sup inf 7 (¥ — ¥,) =% 0.

21
¥ cpe VED (3 )

Proof of Lemma 3.2: Assume that equation (3.21) is not satisfied. There exists,
therefore, a number ¢ > 0 and a sequence {\Il’“} with UF € D% such that
inf & (U — ¥*) > § Vk. (3.22)
veD
Since D! is compact, there exists a subsequence of {\I’k } converging in D!. Denote
this limit by Wo. Since the trace product is a linear function of its argument (and is
thus bounded), ¥y € ©. Substituting ¥y in equation (3.22) leads to a contradiction.
n
The following lemma states that if & € Rp>™ is sufficiently close to A(d) € R

. ?

one can find d € [ close to d such that A(d) = ¥:
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Lemma 3.3 Let Cy > 0 be given. There exists Cy > 0 such that Vd € ly of compact
support and 0 < U € Rvm < Cy1 satisfying © (\If - A(d)) < 6% < 1/2, there exists
d € ly such that A(d) =¥ and ||d — d||? < Cyé.

¥ 0

Proof of Lemma 3.3: Fix d and U. Let ¥ = { 0
2

] = T*UT, where T is

unitary, & (£2) < 6, g(3y) > 4. Define

V=TAAT , E:=%-V=T" (\11 - A(d)) T, (3.23)
 [@-8W 0 o o [(Q=8Ey+dS 0]
V= [ Oy B=Eov= ) o |

where the partitions of V, F and E are consistent with ¥. Since T is unitary,

E(Eu) S 52, and thus 0 S E S (S(Cl + 1) Define CZ =T [ 1 (_)— o 8 T*d. Tt

follows that A(d) = TVT*, and

- 2
trace (A(d—d)) = <1 —-V1- 5) trace (X, — Ey;) + trace (Xo — Ey)

< (1-vi- 5)2 (m 7 (1) +6%)) +m (7 (5s) + 62)(3.24)

Since E > 0, there exists @ € RI™™ such that Q? = TET*. Define d € I as follows:
Ld) - dm) | = (@ - Q. (3.25)
d(t) := 0 otherwise.

It thus follows that A(d) = TET*. Finally, define EZ~ := d+A"d, where T is any integer
larger than the support of d. This yields A(d) = ¥. Furthermore,

ld=d|* = [d—d|*+|d|] (3.26)
< om(Ci+3)+om(Cy+1).

Defining Cj := m (2C) + 4) completes the proof. [

We are now in a position to prove Theorem 3.1:

li’roof of Tl~1eorem 3.1: Since ® is bounded, there exists €', > 0 such that
V<O IVY e®. Fix0<§ <1/2. By Lemma 3.2, there exists € > 0 such that

Vd, € D¢, there exists U € D such that & (\f! - A(de)) < §?/2. Furthermore, there ex-
ists T € Z™ sufficiently large such that ||d, — P7pd,||> < § and (@ - A(PTd€)> < 52
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By Lemma 3.3, there exists d such that A(J) =, implying that d € D, and further-
more

. N2

e — d|J? < (Hde — Prd|| + || Prd. — d}]) < 2046, (3.27)

Since ¢ is arbitrary, this implies that d (D¢, D) i 0, as required. Similarly,
d(&,€) =B 0. n

The following corollary follows immediately:
Corollary 3.4 Given bounded M, there exists € > 0 such that

supsup(e, Md) <1 = sup sup (e, Md) < 1. (3.28)
ec€ deD e€Ee deDe

Thus for small enough ¢, sets D and £ are interchangeable with D¢ and £¢. This fact
is crucial in proving the main result of Section 3.3.

3.2.2 Convexity Properties

The allowable disturbances are directly specified by D. The cost criterion, how-
ever, is only indirectly specified by £. Define the following sets:

Z = {z €l i suple, 2) < 1} : (3.29)
ecé
3 = {TeR?:U=A(2), z€ Z}. (3.30)

It is clear that sets ® and € are convex. Set 3 is not convex, but its complement is:

Theorem 3.5 -3, the complement of 3 in RE*?, is closed and conver.

Proof: By using techniques similar to those in the proof of Theorem 3.1, it can
be shown that 3 is open, thus —3 is closed. To prove convexity, let 0 < o < 1 be
given, and let ¥y, U5 € —3. Define Wg := a¥; + (1 — a)W,. Let {2} {25} € —Z be

k— 00

sequences such that A(zF) "—5" ;. Note that for all e;, e; € 5, and fixed k,
(Vaer + V1 — aX ey, Vaz® + /1 - aX"zky T aler, 28) + (1 — a){ey, 28,
A(Vaer +V1I—adTes) =5 al(er) + (1 — a)A(es). (3.31)

Thus by the continuity property of £ established in Theorem 3.1 and the convexity
of &, for fixed k,

sup(e, Vazt +v1 — aX7zF) — <a sup(e, 2) + (1 — a) sup(e, zé“)) T80 [0, 00).
eet ect eef (3.32)
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Figure 3.3: Cost criterion ||z |° < 1, ||z2||° < 1is incompatible, cost criterion ||z||* < 1
is not incompatible.

Thus there exists 7, sufficiently large such that

2, = (1+1/k)(Vazf +V1—aX%z5) e -2, (3.33)
1 ’
T (A(z) —¥p) < Ea(\po) +25 (U1 — A(2})) + 20 (U2 — A(2D)),  (3.34)
which implies that ¥, € —3, as required. [

The above result establishes a necessary condition for a given cost criterion to be
compatible with the Generalized [, Synthesis formulation. For example, cost criterion
{zei?: Nzl < 1, |22 < 1} is incompatible, since the set

{A@) llal® 2 13U {AGR) 2l 2 1}

is not convex, as shown in Figure 3.3. Cost criterion {z € 13 : ||2]]* < 1} is not in-
compatible since {A(2) : 2|12 > 1} is a convex set (and can in fact be implemented
by setting £ = {e € Iy : [|e||* < 1}).

With this insight, a natural way to describe the optimization of equation (3.16)
is in terms of a game, with the adversary’s task of finding d, with A(d) in convex set
D, such that A(z) = A(Md) is in convex set —3 (modulo supremum arguments).

Remarks: Note that the result of Theorem 3.5 only establishes a necessary con-
dition for a given cost criterion to be compatible with the Generalized [, Synthesis
formulation. For example, cost criterion {z € 13 : ||z1||° < 1 or ||z]* < 1} satisfies
the condition in Theorem 3.5, but cannot be implemented with set &£.

3.3 Analysis Condition

The first step in providing a solution to the Generalized I, Synthesis problem is to
obtain an analysis condition for the closed loop system, M = G x K. The main idea
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is the so called S-procedure [Yakubovich, 1971], the process of transforming a prob-
lem to one involving multipliers; similar to the results in [Megretski and Treil, 1993,
Paganini, 1995b], it can be shown that the S-procedure applied to our problem for-
mulation is lossless, or non-conservative. In order to state the analysis condition, the
following notation needs to be introduced. Let A € RP"*P™ be given, with p and m
fixed. The trace transpose A € R™*™ of A is defined as

A1,1 . Al,m
Am,l . Am,m
Py N i 2,
A[i,]] » A[k,l]- (3v36)

Theorem 3.6 Given linear, time invariant, bounded operator M and sets D and &,
the following are equivalent:

I. The following supremum is satisfied:

sup sup(e, Md) < 1. (3.37)
ecf deD

II. There exist 0 < X, € Rp**™ 0 < k< Cy and 0 <Y, e RE*P 0 <[ < C. such

that
Hy—%MX—% < 1, (3.38)
Ca
X:=> Di@X; > 0, (3.39)
k=0
Ce
Y=Y E®Y > 0, (3.40)
=0
Cqa
T,:= ) trace(MyX;) < 1, (3.41)
k=0
Ce
T, ::Ztrace(PIYZ) < 1. (3.42)
1=0

The diagram in Figure 3.4 can provide insight into the above condition. Convex
set © captures the allowable disturbances, while set 3 (whose complement is convex)
captures the cost criterion. Theorem 3.6 states that all disturbances inside © result
in outputs which are inside 3 (statement I) if and only if one can find convex region
9y, defined by a hyperplane and containing @, and convex region 3y, also defined
by a hyperplane and contained in 3, such that all disturbances inside D, result in
outputs which are inside 3, (statement IT). It is clear that the latter part of the above
statement implies the former, making the proof that II implies I straightforward. S-
Losslessness type arguments are used to prove that I implies II.
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Figure 3.4: Insight into Theorem 3.6. Convex set © captures the allowable dis-
turbances, while set 3 (whose complement is convex) captures the cost criterion.
Theorem 3.6 states that all disturbances inside @ result in outputs which are inside 3
if and only if one can find convex region D, defined by a hyperplane and containing
D, and convex region 3, also defined by a hyperplane and contained in 3, such that
all disturbances inside Dg result in outputs which are inside 3,.

Before proving the above theorem, the following preliminary results need to be
established.

Proposition 3.7 Let A € RP™*P™ B e R™™ and X € RP*P be given. Then

trace ((A@B)X) = trace ((A@X)B). (3.43)

Proof of Proposition 3.7:

P
trace (A®B)X) = > (A®B); Z il Z A By, (3.44)
4,j=1 2,j=1 k=1
m m p
trace ((A@X)B) = Z A@X kl Ly = Z By Z A@”;]XU,@']. (3.45)
El=1 k=1 ij=1
]

The following lemma is a standard result in convex analysis (see [Rockafellar, 1970]
for example):

Lemma 3.8 Let Ky, Ky be disjoint, convez sets in R, where Ky is compact and Ks
is closed. Then there exists vector x € R? and o, 5 € R such that

<£C, k1> <a<fg< <l‘,k2> Yk € K1, ky € Ks. (346)



34

Proof of Theorem 3.6:
IT = I: By Proposition 3.7 and equation (3.14), for all d € D,

Ca Cyq
d,xdy = (, (Zbk@xk) d) = trace (Z (Dk@xk) A(d)) (3.47)
k=0

Cga ~

= ) trace ((Dy@A(d)) X) (3.48)
k=0
Ca

< Ztraee(Mka) < 1. (3.49)
k=0

Similarly, (e,Ye) < 1 for all e € £. Tt thus follows that

1 > HY’%MX"% (3.50)
= sup sup (Y“%E,MX_%@: sup  sup (e, Md)
lel*<1df2<1 (e,Ye)<1 (d,Xd)<1
> supsup(e, Md). (3.51)
ecE deD

I = II: The proof of this claim is long and technical. The proof essentially consists
of three parts. The first is to use use the separating plane argument of Lemma 3.8
to construct scaling matrices. In the second part, various arguments are employed
to construct a scale, Y, which satisfies the constraints of equations (3.40) and (3.42).
In the third part, the problem data is manipulated so that the first two parts can be
utilized to construct a scale, X, which satisfies the constraints of equations (3.39) and
(3.41), and yields the condition of equation (3.38). It will be assumed throughout the
proof that M # 0; if M = 0, the proof is trivial.

Step 1: Separating Plane Argument

By the boundedness of £ and Corollary 3.4, there exists 0 < 8 < min(P;*,1/4) and
€ > 0 such that

sup sup {e, Md) + 3 + 5|le||* < 1. (3.52)
ec&c deDs

Define the following matrix valued functions on ly:

o(de) = {e,Md)+ B+ 3| - 1, (3.53)
SP(d,e) = Myle,Md) — D;@A(d), 0<k <y, (3.54)
SEe) = P —E®@Ale), 0<1<C., (3.55)
the following constants,
1 Py ) 3
B.:=max | —,—= |, Bs:=2M, sup sup [{e,Md)]’, (3.56)
p* B 12 Mo flell2 < Be



35

and corresponding bounded set:

V= {TY(d e) = (a(d,e), 5F (d,€), Zf (¢)) : |le||* < B, [ld||* < Ba}.
(3.57)

Define the following closed, convex set:

Z:= {Z: (Z,ZZ:),Zlg) 1z ER*’,Z,CD gR;nkathZ € Rglxpl}.
(3.58)

Thus V and Z live in the same finite dimensional real vector space. Equip this space
with the following inner product:

C Ce
(Z,2) =25+ itrace (Z,?Z,?) + Ztrace <Zf2f> (3.59)
k=0 =0

Lemma 3.9 V()Z is the empty set.

Proof of Lemma 3.9: Assume that there exists d,e such that equations (3.53),
(3.54), (3.55) are all positive semi-definite. The constraints of equation (3.55) imply
that e € £, and in particular, that |le]|* < Py. Furthermore, by the upper bound
on 3, v := (e,Md) > 1/2. Define d := ’y‘éd; constraint £ = 0 in equation (3.54)
implies that ||d||> < My, ensuring that Y(d,e) € V. By similar substitution, M —
vDy@A(d) > 0, implying that d € D, and (e, Md) = /7. If v > 1, equation (3.52)
is not satisfied. If v < 1, \/7 > v, and equation (3.52) is not satisfied as well. [

Proposition 3.10 Let V denote the closure of V. V N Z is the empty set.

Proof of Proposition 3.10: Assume that V N Z is not the empty set. Thus for
all € > 0, from the proof of Lemma 3.9,

sup sup (e, Md) + 8 + 3*|le||* + ¢ > 1 (3.60)
ec&e deDs
which contradicts equation (3.52). n

Lemma 3.11 V is convez and compact.

Proof of Lemma 3.11: The proof uses arguments similar to those found in
[Paganini, 1995b]. Let Yy € co (V), the convex hull of V. Thus

N-1 N-—1
TO = Z CkkT (dk, ek) , Qg 2 0, Z O = 1. (361)
k=0 k=0
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Define
N-1 N-1
fro= VoA T dy, " = Z VarA ey, (3.62)
k=0 k=0
N-1 N-1

aplldel|®* € By, Se:= agllex]|® < B., (3.63)

1l
]

o k=0
& o= ll?fufT for Sq >0, ||f7]] > (3.64)
' 0 for Syl| f7|| =0 7
o oeg” for Se >0, g7l >0 (3.65)
0 for Sellg”|| =0

Thus Y (d7,e") € V Vr. Since M is LTI and Y(-) is quadratic in d and e, it follows
that

N

T(d",e) =3 Y (Vardy, Vager) = Yo. (3.66)
k=0

The above argument demonstrates that Yo € V. Thus co (V) C V, and co (V) C

co (V) C V, so V is convex. ]

We are now in a position to invoke Lemma 3.8:

Proposition 3.12 There ezists Z € Z, with 2 > 0, ZP > 0, ZE > 0 such that for
alT eV, ZelZ,

~ ~

(Z,T) <0< (Z,2). (3.67)

Proof of Proposition 3.12: By Lemma 3.8, and by embedding V and Z in R? , it
follows that there exists «, §, and Z (not necessarily in Z), such that for all T € V,
Z € Z,

(Z,Y)<a<B<(Z 7). (3.68)

Setting Z = 0 yields 3 < 0. Since Z is unbounded and V is compact, however,
B = 0, and each (matrix) element of Z > 0. Since o < 0 and V is compact, a
sufficiently small positive element can be added to each element of Z, thus defining
Z and yielding the required result. [

Step 2: Constructing Y

Since Z is positive, it can be assumed, without loss of generality, that z = 1. Set
Xy = 2P, Y, = Zf. Denote pair (d,e) as allowable if ||d||* < By, |le]|* < B,. Thus
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for all allowable (d, e):

(e, Md) < 1= 53— Blel* + Xolld||* + Yollel[* + (d, Xd) + (e, Ye)
- (Ta; )(OM()) <67 Md> - (Ty -+ )OPO) y (369)
Cqa Ce
X = ) Di@Xy, V=) E@Y, (3.70)
k=1 =1
T, = Ztrace M X Ztrace (PY; (3.71)
k=1

Note that T, and Ty do not necessarily have to be positive, since M, and P, are
assumed to be arbitrary, symmetric matrices. Define

&=

= sup {X,: equation (3.69) satisfied for some Y > 0}, (3.72)
= sup {Yp: equation (3.69) satisfied with X, = z}. (3.73)

2>

Since Yy is uniformly bounded for all Xy by considering d = 0, e = 0, the second
supremum is finite. Since one can always find allowable d and e such that ||d||* —
Moy(e, Md) is negative, and Y is bounded, the first supremum is finite as well. From
the above construction, X, cannot be larger than & (with all other scales except Yj
fixed), and Y, cannot be larger than § with all scales fixed and X, = #. This leads
to the following proposition:

Proposition 3.13 Let X, = 2, Y| = 3, denote the left-hand side of equation (3.69)
by LHS, the right-hand side by RHS. Then

sup sup LHS(d,e) — RHS(d,e) = 0, (3.74)
llel?<Po ldlI*<Bq
sup sup LHS(d,e)— RHS(d,e) = 0. (3.75)

llellP<Be [ld><Ba/2

Proof of Proposition 3.13: By the construction of Z and ¢, the above suprema
must be less than or equal to 0. If the first supremum is negative, Y, can be in-
creased and still satisfy equation (3.69), a contradiction. By the definition of B, in
equation (3.56),

By

sup sup My{e,Md) < —

: 3.76)
12 <Ba llel>< B NG (

Thus for all By/2 < ||d||* < By and |e]|? < B., ||d||? = My(e, Md) > 0. It thus follows
that if the supremum in equation (3.75) is negative, Xy can be increased and still
satisfy equation (3.69), a contradiction as well. |

Lemma 3.14

T, =T, +§Py=1-8. (3.77)
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Proof of Lemma 3.14: Let Xy = 2, Yy, = ¢. There exists an allowable sequence
(d, ex) such that

LHS(dg, ex) — RHS(d, ex) =5 0. (3.78)

By Proposition 3.13, ||dg||* can uniformly be taken to be strictly less than By, or
llex]]* can uniformly be taken to be strictly less than B,. Similar to the proof of
Lemma 3.11, however, by appropriately shifting signals in time these two cases can
be combined to construct a sequence (di, ex) satisfying equation (3.78) such that both
lldi||? and ||ex||* are strictly, uniformly bounded by By and B,, respectively. It thus
follows that there exists € > 0 such that (1 + €)(dy, ex) is allowable. Then

LHS ((1+ €)(di, ex)) — RHS (1 + €) (dy, ex)) "=5 (1 — 8 = T,)
(3.79)

which implies that 1 — 8 — T, < 0. By setting e = 0, d = 0 in equation (3.69),
however, 1 — 8 — T, > 0, yielding the required result. n

Define X :==X +2I, V=Y +9I, T,:=T,+ &M,.
Lemma 3.15 Y > 3%, X >0, T, > 0.
Proof (Lemma): From equation (3.69), for negative values of (e, Md)

o =BllelP + {e, Ye) + (d, Xd)
= (e, Md)

T, 1. (3.80)
If X % 0, one can find a sequence (di, ey) such that the numerator in equation (3.80)
is bounded above by some negative value while the denominator is made arbitrarily
small in magnitude. This would imply that T, is unbounded. A similar argument
holds for Y % (2.

Finally, for all d € D, (d, Xd) < T, which by the positivity of X implies that 7}, > 0.

m
Lemma 3.16
sup sup(e, Y_%Md> < 1. (3.81)
llell?<1 deD
Proof of Lemma 3.16: Define ¢ := Y ze. Thus for all ||e]|> = 1
(@Y 3Md) < 1— €+ (d, Xd) — T,(g, Y "3 Md), (3.82)

where € > 0, and ||e]]? < 51—2 and is thus allowable. It thus follows that for all d € D,
lell* =1,

<1+T$——6

2. Y~ Md
(& Y2 Md) < 1+T,

<1, (3.83)

which yields the required result. |
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Step 3: Constructing X
It has been shown that

supsup(e, Md) <1 = sup sup(e,Y“ﬁ\/Id) <1, (3.84)
e€€ deD lel2<1 deD

where Y satisfies equation (3.40) and associated T, satisfies equation (3.42). Referring
back to the diagram in Figure 3.4, we have shown that for all d € D, there exists
convex region 3g defined by a hyperplane, strictly inside 3, such that the resulting
A(z) are inside this region. By defining

E={ecl:|e]? <1}, (3.85)
the condition of Lemma 3.16 is equivalent to

sup sup(d, M*Y "7¢) < 1. (3.86)

deD peé

Thus by holging Y constant, replacing €& with D, D with &, e with d, d with &, M
with M"Y ™2, and repeating Step 1 and Step 2, scale X satisfying equation (3.39)
may be constructed, with the associated T, satisfying equation (3.41), and

sup sup (d, X ":M*Y"z¢) < 1, (3.87)
fldl2<1flel*<1
which implies equation (3.38). ]

3.4 Synthesis Condition

In this section, the full solution to the Generalized Iy Synthesis problem is pre-
sented, which takes the form of an AMI. This is accomplished by invoking the AMI
Hoo solution. The following result is from [Packard, 1994):

Theorem 3.17 Let system G have minimal state-space representation
A| B, B
C_,l 1?11 1_)12
Cy | Dy1 Dy

There exists a stabilizing controller K for G such that HG*KH < 1 if and only if
there ezist positive definite matrices S and T such that

V@’“[i?ﬁ-[iﬂﬁ%& (3.88)

0*<R[€?:R*—[€?Dﬁ<o, (3.89)
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>0, (3.90)

T A Bl}
R: = — 3
{ ¢ Du
— Ul
U= [UQ]

Remarks: As discussed in [Packard, 1994], it can be assumed without loss of gen-
erality that [ C5 Dy ] is full row rank; thus there always exists a V satisfying
equation (3.91). Similarly for U.

where

(3.91)

BQ U1 . . T T T T
- _ tibl FBy 4+ UsDs = 0.
{ Di, T, } invertible, U{By + U;D15 =0

We are now in a position to state and prove the main result of this chapter:

Theorem 3.18 Let system G have minimal state-space representation
A| B B

Cl Dll D12
C2 D21 D22

There exists a K which solves the Generalized ly Synthesis problem if and only if there
ezist scales X and Y satisfying the conditions of Theorem 3.6, and positive definite
matrices S, T, X and Y, such that

V(R*- Q}R [ Dv*<o, (3.92)
|

. T o .
U (R 0 X R — [ ]>U<O, (3.93)
S I X I Yy I
> _ > _
[ITJ“O’{I I 0, I Y}ZO (3.94)
where
A B ]
R = ,
I:Cl Dll

Cy Dy

V=[W V] :l:‘/l v,

} invertible, CyVy + Dy Vi = 0,
(3.95)

B T
: { 2 D} J invertible, U;B, + Us Dy, = 0.
Dl? DQ
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Proof: In the previous section, an analysis condition was derived which involved
scales X and Y. If M is a bounded system and the scales X and Y are fixed,
equation (3.38) reduces to a standard H,, optimization problem, and results in the
following corollary to Theorem 3.6:

Corollary 3.19 The Generalized 5 Synthesis problem is solvable if and only if there
exist scales X and Y satisfying the conditions of Theorem 3.6 and a stabilizing con-
troller K for G such that

Y7 (GxK) X3 < 1. (3.96)
H

Define

=

G:=

Y-s X~
G

Then equation (3.96) is equivalent to HC_} *KH < 1. Furthermore,

; } . (3.97)

i

A| B B A | BX3 B,
Ci|Du Dy | := Y_%CH Y~%D11X_% Y_%Dm (3.98)
Cy | Dyy Dy CYy D21X_% Dy,

is a minimal state-space representation for G. Define

X:[ég]Y:{ég] (3.99)

and U,V, and R as in equation (3.93). Then R = Y= :RX "z, and V := VX3,
U := YU satisfy equations (3.91). Substituting into equations (3.88) and (3.89)
yields

s o S 0 .
(w5 2] a[5 0o 00
. T 0 . T 0
(w7 2w [T 0 )u<o o0

Finally, by Schur complement arguments [Zhou et al., 1995], if X satisfies matrix
inequality
X I
>
FYEL
then X > X~'. Furthermore, X = X~! satisfies the matrix inequality. This con-
cludes the proof. |
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Remarks:

e A controller may be constructed as described in [Packard, 1994] using the state-
space description for G (which includes scales X and Y') and scales S and T.
The details are omitted.

e The order of the resulting controller is less than or equal to the order of the
plant. Thus the added complexity of sets D and £ only manifests itself in the
computation of the controller, not in the order of the controller itself. This is
due to the fact that no dynamics are utilized when describing sets D and &.

e X is taken to be a positive definite matrix in the above AMI. This results in an
added m(m + 1)/2 decision variables. In fact, X need only have the structure

of X~1; for example, if
Ty 0
X =
[ 0 ] 7

then it suffices to consider X with structure

= z; 0
X =
[0 fz]’

eliminating one decision variable from the AMI. A similar argument holds for Y
and Y.

e The AMI may be solved using standard convex optimization tools, such as The
LMI Control Toolbox [Gahinet et al., 1994].

3.5 Concluding Remarks

In the next two chapters, various open problems are solved using the framework
developed in this chapter, justifying the results from a practical standpoint. From
a purely theoretical standpoint, the result in this chapter appears to be the natural
extension of H., optimization, in the sense that arbitrary convex sets are used to
describe the allowable disturbance classes and cost criteria.

A natural extension of this work is to allow dynamic constraints in the description
of D and €. For example, one might want to include extra terms in the description of
D and D (€ and &) such as A(d, ®;d), where the ®; are systems (this generalization
will allow one to capture general IQCs in the Generalized I, Synthesis framework).
The results in this chapter could then be seen as a special case, with @ = I. In
fact, the analysis condition of Section 3.3 can trivially be extended to the above
case. The synthesis condition, however, cannot. A prelude to this extension is given
in Chapter 5, where correlation constraints of the form A(d, X"d) = 0 are imposed,
which do not fit directly into the Generalized I, Synthesis framework.
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Chapter 4

Applications of Generalized [»
Synthesis

In this chapter, various problems are solved using the Generalized [, Synthesis
framework developed in Chapter 3; synthesis for independently norm bounded distur-
bances, robust stability with “element by element” bounded structured uncertainty,
and certain classes of robust performance problems. In addition, recent results on the
design of gain scheduled controllers are extended to the above cases.

4.1 Square H

In this section, a variant of H., synthesis where norm constraints on each com-
ponent of the disturbance can be imposed is posed and cast into the Generalized [,
Synthesis framework.

The reason for the title of this section will become apparent shortly, although it
is admittedly an abuse of notation. Consider the standard H., synthesis problem
depicted in Figure 4.1, where z € [5 and d € IJ*: it is required to find a controller K
which minimizes the energy output of the closed loop system M := G % K subject to
all possible unit energy (by linearity) disturbance inputs.

If we consider the motivation for this problem, it seems reasonable to lump the
cost as ||z|| = /[|z1]]2 + - - + [|2,]|% it is required to keep the error z small in some
sense, and large deviations are penalized more than smaller ones. It is not so clear,

2 d

K

Figure 4.1: Synthesis formulation
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Jeal

Figure 4.2: Square versus round spatial constraint

however, why the disturbance size is lumped together as [|d|| = \/||d[]> + - + [|dn %
if the d; are physically motivated, their magnitudes will, in general, be independent.
One would expect specifications of the form ||d;|| < a; for each component (this i,
incidentally, one of the arguments for /; design [Dahleh and Diaz-Bobillo, 1995] versus
Moo design, albeit only on the spatial aspect of the norm ). Assume without loss of
generality that o; = \/_1?7__{’ since these constants can be absorbed into system G. To
capture these constraints into the standard H, setup, one would have to cover the
given allowable disturbance set by the following round constraint:

POILTES (4.1)

which corresponds to the diagram of Figure 4.2 for m = 2.
The “square” disturbance set which we want to design for lies inside the round
set. Let @ be a linear operator. Define the following induced norm:

[@llsq == sup ||@d]], (4.2)
ldill< 7
referred to as the square norm. The following relationship between ||®||sq and | ®]|
follows immediately from the above definition:

[@llsq < 2] < Vi |[@]lyq (4.3)

with the above bounds being tight for any m, i.e., one can always find @ such that
|®lsq = [|®]], or such that ||| = Vm ||®]s,- Thus the Ho norm of a system may
be \/m times larger than the square norm, and occurs when only one disturbance has
an effect on the output error.

It is straightforward to construct a simple example such that synthesis will give
this gap. By this, it is meant that doing ., optimization results in a square norm
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which is 1/m times greater than if the optimization were done directly with the square
criterion:

|- |l Analysis | || - [|sq Analysis
|| - {0 Synthesis 1 1
Il llsq Synthesis 1 NG

It should be noted, however, that the simplicity of this example stems from the
assumed controller structure. Consider the following static equations:

21 = (1 + 6Q)d1, (44)
zZ; = (1 - Q)dz, 2 S 1 S m,
e > 0, (4.5)

where @) € R is the design variable. The #, design problem reduces to

14 eQ)
inf & t-e ) . (4.6)

QeR
1-Q

This infimum is 1 for all € > 0, and is uniquely achieved at () = 0. The square
norm for this design is also 1.

If, however, one chooses ( = 1, the resulting H., and square norms are 1+ ¢ and
(1 + €)/y/m, respectively. Thus by letting € go to zero, by the bounds in (4.3), one
can come arbitrarily close to the optimal square norm, and a gap which approaches

vm.

Thus if the size of each component of the disturbance is known, one might want
to perform the design directly with the square, versus the round, spatial constraint
on the disturbance (hence the name Square H,, since the signal norm is still ly):

Square H, Synthesis:
Given system G, find a stabilizing controller K such that [|G x K|, < 1.

This may be cast into the Generalized [, Synthesis framework by defining

D
£

Il

{dely:||dl]” <1, 1 <k <m}, (4.7
{e el ])e]}2 < 1},

Il

o
o e
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or in terms of sets ® and €,

D}c S R;nxm’ Dk[i,j] = { (1) Zo;hirvv;lfe s 1 § k S m, (49)
My = 1,1<k<m, (4.10)
E1 = I S Rgijp’ (411)

Note that in definition of the square norm, d € [J' was partitioned into m scalar
valued signals. In general, one could define the square norm for any partition of d.

Remarks: It should be noted that the argument for choosing a square versus a
round spatial constraint is based on a worst case design methodology; the round set
must cover the square set to account for all possible disturbances. If, however, one
wishes to relax the worst case assumption, the round set could be seen as a means
to prevent all the components from achieving their maximum energy content (i.e.,
the design is performed with the round set inside the square set). In this context,
the square design is the more conservative one. This, however, is simply a scaling
argument (y/m to be exact); the resulting H,, design is the same whether done
inside or outside the “square”. Regardless of the interpretation, H,, design may
not be the wisest thing to do (as illustrated by the previous example, where it is
clear that the square design is better than the H,, design). This usually stems from
requiring optimality, or near-optimality. This is often remedied by considering sub-
optimal designs, and employing other criteria for choosing a controller (for example,
maximum entropy controllers [Glover and Mustafa, 1989]). In this light, Square H
design should be seen as an additional tool in the H, methodology; the specific
application will determine whether it yields better designs.

4.2 Robust Stability

Consider the setup of Figure 4.3; variables z and d are partitioned into C. and C,
components (not necessarily scalar valued). This partition induces a corresponding
one for A:

Ce
dk = ZAkth 1 S k S Cd. (413)
l=1

The set UA (where “U” symbolizes uncertainty) is defined as follows:
UA = {A: A e L), ||Anl < 1}. (4.14)

The plant uncertainty, A, is then assumed to be in set UA. Note that A is not
assumed to be causal, but as shall be argued later, all the results in this section are
valid for causal perturbations as well. Analysis conditions for systems subject to this
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Figure 4.3: Synthesis for robust stability

type of structured uncertainty, typically referred to as full-structured uncertainty, are
explored in [Kouvaritakis and Latchman, 1985] and [Young, 1996].

K is referred to as a robustly stabilizing controller for G and UA if K is a stabilizing
controller for G and

sup ||(I- MA)’IH < 00, (4.15)
AcUA

where M := G x K. This condition establishes the stability and well-posedness of the
closed loop system for all allowable uncertainty; any I, signal injected in the loop will
be amplified by a finite amount. If the condition above is satisfied, the closed loop
system of Figure 4.3 is said to be robustly stable.

The following theorem establishes the equivalence of finding a robustly stabiliz-
ing controller K to a problem which can be cast into the Generalized [, Synthesis
framework:

Theorem 4.1 The following statements are equivalent:
I. K is a robustly stabilizing controller for G and UA.
II. K is a stabilizing controller for G and

Ce
sup 3]l < 1, (116)
ldrll?<1 =

where z = Md.
Before proving the above theorem, the following preliminary lemma is required:

Lemma 4.2 Given z;,y € lo, |lyl| <> ||z;]| if and only if there exist A; € L(1y),
1A <1, such thaty = Ajx;.
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Proof of Lemma 4.2: First, assume that y = > Ajz;, with ||A;]] < 1. Then
lull < 221141 llz;]| < ll2y]] as required.
Assume that v := Y ||z;|| > ||ly|l. Define the following operators:

Y N for v lle
A= Al orallel= 00 (4.17)
0 fora gl =0

By construction, y = Y A,z;. Furthermore, since v > ||ly||, it follows that ||A;]] < 1.
n

Proof of Theorem 4.1:

ITI = I: Assume that K is not a robustly stabilizing controller, violating (4.15).
Thus Ve > 0, 3n, % € Iy and A € UA such that [[n]] <€ Y ||Z] = 1, and Z =
(I—MA) 'n. Setting d = AZ results in z := Md = 7 — n, with ||di| < 1 by
Lemma 4.2. Since € is arbitrary, (4.16) is contradicted.

I = II: Since K is a robustly stabilizing controller, it immediately follows that K is
a stabilizing controller for G. Furthermore, by continuity, (4.15) implies that there
exists 7 < 1 such that

sup H(I - MA)’ln < 0. (4.18)
rdAcUA

Assume that (4.16) is not satisfied. Then 3d € Iy, ||di|| < 1, such that > ||z > r.
By Lemma 4.2, it follows that there exists A such that rA € UA and Az = d, which
contradicts equation (4.18). n

It remains to show how statement IT can be cast into a Generalized [, Synthesis
problem. First, note that ||z|| = supy, 2, (y,); the cost criterion in equation (4.16)
is therefore equivalent to

Ce
Sl = sup fe,2). (419)
=1 lel*<1
Thus one can choose £ and D to be the following sets:
D = {delf:|dil’ <1, 1<k<C,}, (4.20)
£ = {eel:|la|’<1,1<1<C.}. (4.21)

Sets © and & may be constructed as in Section 4.1.
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Figure 4.4: Robust performance

Remarks:

e The above is a special case of the Robust [y Synthesis problem formulation
of Section 2.2.2; there is no performance requirement, and by rearranging the
uncertainty A" in block diagonal form, as per equation (2.28), the above can be
cast as a Robust /3 Synthesis problem.

e It is shown in [Shamma, 1994] that for the Robust l; Synthesis problem with
LTV uncertainty, if robust performance can be violated with a non-causal A,
it will also fail for some causal A. Thus all the results in the section hold for
causal A as well.

4.3 Robust Performance

In standard g theory [Packard and Doyle, 1993], robust performance problems
may be recast as robust stability problems by introducing fictitious uncertainty blocks.
In this section, this idea is used to explore the types of robust performance problems
which are equivalent to the robust stability problems encountered in the previous
section.

In Figure 4.3, let z = (v, w) and d = (s,t). Signals v, w, s, and t are themselves
partitioned into C,, C,,, C,, and C, (not necessarily scalar valued) components. This
induces the following partition for A

ASV ASW
A = [ Atv Atw :! s (422)
and results in the diagram of Figure 4.4, where { = A™w and

_ ii ASV ASW }

A = AY g (4.23)
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Allowable uncertainty set UA can be defined analogously to UA. A class of robust
performance problems may be obtained by replacing constraint £ = A™w with a
corresponding gain constraint between ¢ and w:

Theorem 4.3 The following statements are equivalent:
I. K is a robustly stabilizing controller for G and UA, and

Cw

sup  sup Z\}le < L. (4.24)
AcUA |itll<t 25

II. K is a stabilizing controller for G and

sup Z 2] < 1. (4.25)

dk“<1

Proof:

IT = I: By assumption, Je > 0 such that ) ||z]| < 1 —¢€ for all d € I, with ||di]| < 1.
Assume that statement I is false. Since UA C UA, if K is not a robustly stabilizing
controller for G and UA, statement IT must be false by Theorem 4.1, a contradiction.
Thus 3t € I, with ||| < 1 and A € UA such that 1 —e < 3 |Jwy|| < 1 (where the
upper bound follows by appropriately scaling ). Define v := 3 ||lu;||. By linearity,
3t € Iy with ||£]] < 1/(1 +7) and A € UA such that (1 —¢)/(1+7) < 3w <
1/(1 + ) and Y |lull = v/(1 +v). By Lemma 4.2, it follows that ||d;]| < 1, and
> llzil] > 1 — ¢, a contradiction of statement II.

I = II: By continuity, statement I is equivalent to the existence of 0 < r < 1 such
that

-1

sup H (I-MA) < 00 (4.26)
rAcUA o0
and
sup  sup Z lwi]| < 7. (4.27)

rAcUA |IflI<1 123

Assume that statement II is false. Thus 3d € I, with ||di|| < 1 such that o =
Y llall > 7. Let v:= 3" [lw||. There are two cases:

v=0: Since Y_ ||vk]] > 7, by Lemma 4.2 A% and A* such that s = A%
and ¢t = A%, with |[rA|| < 1 and ”TAEE’H < 1. Thus the following equation is

satisfied
v A 0 v
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Figure 4.5: Robust disturbance rejection

which contradicts equation (4.26).

v > 0: By linearity, 3d € [y with ||dg]| < r/v such that > ||z = ar/y,
Sllwil] = r, and Y ||v|| = r(e/y = 1) > r(r/v — 1). By Lemma 4.2, there exist
A%, A% such that s = A%y + A™w, with [[rA}|| < 1 and ||[rA}]] < 1. Tt
remains to show the existence of # € I and A™ such that t = A™v+1, |[rAfY ]| <1,
and |[&x]] <1 to contradict equation (4.27). Let (g := ||t4||. Construct #; as follows:

B tk for ﬁk S 1 )
b = f’i for Gy > 1 (429)
B

Thus ||ty —t]| = 0 for B < 1 and ||ty —&|| = B — 1 < r/y — 1 for B > 1. Since
> llull > r(r/y — 1), application of Lemma 4.2 yields the required A*, as required.
n

4.3.1 Examples
Robust Disturbance Rejection

Consider the setup of Figure 4.5. Given P, it is required to design K such that
disturbances t;, along with measurement errors #,, have a small effect on plant output
w. The plant is subject to inverse additive unstructured uncertainty A%Y, with asso-
ciated weight W,,. The exact problem formulation is the following: find a controller
K such that the closed loop system is robustly stable and

sup  sup sup |jw| < 1. (4.30)
A<l [B]<T [I&2]I<1
This can be converted to the setup of Figure 4.4 by noting that s = A®Vw. Also note
that if either of ¢; or ¢, are vector valued signals, they can further be partitioned and
bounded in norm separately, as per the Square H., problem.
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Figure 4.6: Robust tracking

Robust Tracking

Consider the setup of Figure 4.6. Given P, it is required to design K such that
z tracks . Equivalently, letting W, be a weight which captures the range over
which tracking is desired, it is required to keep w; small. The plant is subject to
multiplicative, unstructured uncertainty A*V, with associated weight W,. It may
also be required to bound the control effort; this is done by weighting the controller
output by W,,, and requiring ws to be small. Formally, it is required to find K such
that the closed loop system is robustly stable and

sup  sup |lw]| < 1. (4.31)
[late||<t NElist

This problem can also be converted to the setup of Figure 4.4 by defining ¢ := t+A" .
Note that if £ is vector valued, it may be partitioned and bounded in norm separately
(with an appropriately defined A*V).

4.4 Robust Gain Scheduling

In [Packard, 1994, Apkarian and Gahinet, 1995], the AMI approach is used to ex-
tend Ho, theory to the design of parameter varying controllers for parameter varying
systems; these results allow one to design gain scheduled controllers which achieve
guaranteed performance and stability objectives. One of the drawbacks of the the-
ory, however, is that plant uncertainty cannot directly be incorporated in the design
process.

In this section, the results in [Packard, 1994] are extended to allow for structured
uncertainty in the given system. In this formulation, the controller to be designed
has access to the time varying parameters, but does not have access to the plant
uncertainty. This is achieved by combining the parameter varying framework with
the Generalized I, Synthesis framework of Chapter 3. The solution takes the form of
an AMI, which is both a necessary and sufficient condition for the posed problem to
have a solution.
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Figure 4.7: Gain scheduling design

4.4.1 Robust Gain Scheduling Problem Formulation

Consider the block diagram of Figure 4.7. Gy is the given system, A" is the plant
uncertainty, and AP is a structured operator (to be defined) which parameterizes the
plant and which the controller K (to be designed) has access to.

Partition variables z* and d" into C* and C3 components (not necessarily scalar
valued). This partition induces a corresponding one for A":

ce
dp=> Apzl, 1<k<Co (4.32)
[==1

The set UA is the same one encountered in Section 4.2, and is defined as follows:
UA = {A": A% € L(), [|AR] < 1}. (4.33)

The plant uncertainty is then assumed to be in set UA. The plant parameters AP
are assumed to be in set PA:

PA = {AP = diagld.],- ,6cel]: 6, € L(L), |6 <1}, (434)

where the identities above are of arbitrary, but fixed dimension. It is required to
find system K such that the closed loop system is robustly stable. More precisely,
construct system G; from Gy such that the two closed loop systems in Figure 4.7 are
identical, i.e.,

A" (AP % Go) * (AP xK) = A% % (AP % (AP % (G, +K))).  (4.35)
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Figure 4.8: Equivalent system

Define the following uncertainty set:

PPA := {AP? = diag[d,1,0,1,--- ,0¢cel,0¢el] : 6; € L(I2),||6,]] < 1}.
(4.36)

Thus the multiplicity of each operator in PA has been doubled in size. By rearrang-
ing Gy, a new system Gy can be constructed such that the closed loop systems of
Figure 4.7 and the one in Figure 4.8 are identical, i.e.,

A" x (AP x (AP x (G1xK))) = A" x (APP % (G x K)) . (4.37)

The problem formulation is as follows:

Robust Gain Scheduling
Find system K which stabilizes Go and satisfies

sup sup |- (GexK)A) ™| < oo, (4.38)
A"EUA APPcPPA

where A := diag[APP, AY].

Remarks:

e In practice, the operators in set PA will be time varying bounded real param-
eters, not arbitrary bounded operators on /5. Thus the above condition may be
conservative.

e Note that Gy, and hence G, is a highly structured system matrix; system K
has full access to AP. This is the key fact utilized in [Packard, 1994] to solve
the gain scheduling problem when A" is unstructured, or one full block.
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Note that the multiplicity of each §; in AP which K has access to is assumed to
be the same as that which affects system Gy; it is conceivable that allowing more
copies of each §; might lead to better performance controllers. It has been shown
in [Packard, 1994], however, that one can always do as well with a duplicate copy
of AP for the controller K. This is analogous to standard H., optimization (and
is in fact intimately related), where the order of the controller can always be
assumed to be equal to that of the plant.

The above is a robust stability problem; as in Section 4.3, however, many robust
performance problems may be converted to robust stability problems. This is
explored in Section 4.4.3.

As stated in the problem formulation, the A" and AP do not have to be causal.
But as argued in Section 4.2, all the results hold for causal A as well.

Given linear, time invariant bounded operator M, define the following set in I,:

D= {d el : Dy@A(d) + Dy@AMd) — M, <0, 0< k< Cy}
(4.39)

Set D differs from D in that an extra term involving A(Md) is included in the
constraints. As in the definition of D, it is assumed that 0 < M, € R, with
Dy =1 € R™™ and Dy = 0 € R™™, implying that ||d||> < M,. D¢ can be
defined analogously to D¢.

The following corollary is an extension of Theorem 3.6 in Chapter 3:

Corollary 4.4 Given linear, time invariant, bounded operator M and sets D and
&, the following are equivalent:

I.

II.

There erists € > 0 such that the following supremum is satisfied:

sup sup (e, Md) < 1. (4.40)
e€Ee depe
There exist 0 < X, e Rp* ™™ 0< k< Cyand 0 <Y, € RE*P 0 <[ < C. such
that

Hy—%MX‘% <1, (4.41)
Ca R
X = ZDk®Xk -+ M* (Dk@){k) M > 0, (4.42)
k=0
Ce
Y=Y EB@Y > 0, (4.43)
1=0
Ca
T,:=) trace(MX;) < 1, (4.44)
k=0
Ce
T, ::Ztrace (PY) < 1. (4.45)

=0



Remarks:

e The proof of the above claim is essentially equivalent to that of Theorem 3.6 in
Chapter 3 when Dy(@A(d) is replaced by Dy@A(d) + Dx@A(Md) and Dy@X} is
replaced by D®X, + M*(Dy@®X;)M. Note, however, that X is now a positive
definite operator, not a constant matrix.

e Statement I in Corollary 4.4 is stronger than statement I in Theorem 3.6. This
simplifies the proof that statement I implies statement IT since the continuity
property presented in Theorem 3.1 is not required; this continuity property
has not been proved for D. Conversely, one can only infer from the proof of
Theorem 3.6 that statement IT implies statement I in Corollary 4.4 when ¢ = 0;
since the inequalities in statement II are strict, however, the result follows for
some € > 0.

e While the analysis condition can be extended to allow constraints D, the syn-
thesis condition in Chapter 3 cannot be extended, in general.

4.4.2 Converting to Generalized [, Synthesis Setup

The Robust Gain Scheduling problem will now be converted to the modified Gen-
eralized [, Synthesis setup of Corollary 4.4. This will result in a scaled H, condition,
which will later be converted to an AMI.

Define the following sets:

D = {dely:d=(dP,d"), A(df) — A((Md)?) < eI, ||dpf* <1+e} (4.46)
£ = {e€lyie=(ePe"),]le’|* <e e <1+ €}, (4.47)

which can readily be put in the form of equations (4.39) and (3.15).

Theorem 4.5 System K solves the Robust Gain Scheduling problem if and only if
K stabilizes Gy and there exists an € > 0 such that the following two conditions are
satisfied:

sup sup(e, Md) < 1, (4.48)
deDe  e€é&s
D¢ is bounded, (4.49)

where M := Gy x K.

Proof of Theorem 4.5: The following preliminary lemma is required:

Lemma 4.6 [Paganini et al., 1994] Given x,y € ly, there exists a linear operator
6, |I8]] <1, such that y = 81z if and only if A(x) — A(y) > 0.
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Sufficiency: Assume that K does not solve the Robust Gain Scheduling problem.
It suffices to show that either of equations (4.48) or (4.49) is not satisfied. Fix ¢ > 0.
By equation (4.38), there exists n = (nP,n") € ly, Z = (2P, z") € [y, such that
Z=n+ MAZ, ||n|| <, and either of the following two conditions are satisfied:

Sl =1, 2] < 7- (4.50)
St ,;sz:%, (4.51)

Let d = (dP,d") := AZ, z = (2P, 2") := Z — n = Md. If equation (4.50) is satisfied,
then by Lemmas 4.2 and 4.6 and the norm bound on n the following conditions must
be satisfied:

a5 <1, A@) - AGE) < O(VAL (4.52)
SOl > 1-0(). (4.53)

=1

From equation (4.53), one can find e € £ such that (e, Md) > 1 — O ().
If equation (4.51) is satisfied,

lag] <1, A(d®) = A(R) <O (VOI, |12°]| > % —0(). (434)

Since M is bounded, [|dP|| > 1/O (y/€). Since € is arbitrary, at least one of equa-
tions (4.48) and (4.49) are not satisfied.

Necessity: Assume that for all € > 0, equation (4.48) is not satisfied. Define z = Md.
Then

I < 14e, A(dD) A (D) < e, Z| M21-0().  (459)

It follows that there exists z,n € [, such that z = z + n with

AdR) —A(R) <0, ZHZ}‘H>1+6 Inll < O (Ve). (4.56)

=1

By Lemmas 4.2 and 4.6, there exists A such that d = Az, yielding
2= (I-MA)"n, [2]>1, ||| <O (Ve). (4.57)

Since e is arbitrary, equation (4.38) is not satisfied.
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Assume that for all € > 0, equation (4.49) is not satisfied. By appropriate scaling,
the following equations are satisfied:

il < e A(dR) = A(2) < el, [ldP]| = 1. (4.58)

It follows that there exists Z,n € I such that Z = 2 + n with

ce

M)~ A () <0, S 2 e nll <O (Vo). (4.59)

l=1

By Lemmas 4.2 and 4.6, there exists A such that d = Az, yielding
2=(1-MA)"n, [Iz] > [|d?| = 1, |nll <O (V). (4.60)
Since € is arbitrary, equation (4.38) is not satisfied. ]
We are now in a position to invoke Corollary 4.4:

Theorem 4.7 System K solves the Robust Gain Scheduling problem if and only if
K stabilizes Gy and there erists scales

Cq
X, = diag[zi],--- szenl], xp >0, Zxk <1, (4.61)
k=1
ce
Yu = diag[ylja e 72/0(‘;]]7 Yy > 07 Zyl < 17 (462)
=1
Xp = diag[X17 Tt ach]a Xy > 0, (463)
such that
X% X_%
P (L M| P O_l <1 (4.64)
0 Y.° 0 Xu?

Proof of Theorem 4.7: First, note that equation (4.64) is equivalent to

X, 0 X, 0
M*| P —| P . 65
[ . YU_I}M [ . XU}<0 (4.65)

Sufficiency: Assume that the above scales exist, and that equation (4.65) is satisfied.
It follows that there exists ¥, > 0, sufficiently large, and § > 0, sufficiently small,
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such that
MY ™M ~-X < 0, (4.66)
Y, 0
= 4.
Y [O Yu] > 0, (4.67)
Xp O Xp O
= - M- P M > 0 4.68
A A R ]
c3 cd
(1+5)Zxk+52trace(){,§) < 1, (4.69)
k=1 k=1
Ce
(1+6)) wi+dtrace(Y?) < 1. (4.70)
=1

Since § > 0, it can readily be verified that there exists € > 0 such that (e,Ye) <
1 Ve € £° and that (d,Xd) < 1 Vd € D¢. Since X > 0, this implies that D¢ is
bounded, verifying condition (4.49). Invoking the same arguments used in the suffi-
ciency proof of Theorem 3.6, it follows that equation (4.48) is satisfied as well.

Necessity: All the conditions of Corollary 4.4 are satisfied, with the exception of
additional constraints ||e||* < Py, ||d||* < M, for some Py, My > 0, which are not
explicitly included in sets £ and D; these constraints are necessary, since the proof
of Theorem 3.6 explicitly depends on the presence of these constraints. Since £¢ is
bounded, by construction, and it is given that D¢ is bounded, there exist constants
Py, My > 0, sufficiently large, such that constraints |le||> < Py, ||d||* < M, do not
affect sets £¢ and D¢. In addition, there exists § > 0 such that constraint ||eP||* < 0
in € may be replaced by ||e?||* < 6, since M and D are bounded. The following scales
can thus be constructed, as per Corollary 4.4, such that M*Y M — X < 0:

. X, 0 X, 0 -
= —M*| P M P ) .
X [ 0 o} +{ 0 XU]+Y01>0, (4.71)
5 v .
v o= [OP )3 }+Y01>o, (4.72)
Xy = diag[#:], -+, 3cyl], & > 0, (4.73)
Y diag(iil, -, jeul], 9 >0, (4.74)
X, = diag[Xy, -, Xep], Xi>0, (4.75)
» > 0, (4.76)
Ca 23
Sodn+MXo < 1, Y g+ YoPy + dtrace (y;) <1. (4.77)
k=1 =1

Define the following scales:

Xpi=Xp +XoI, Xy:=Xu+Xol, Yo=Y, +Y,1. (4.78)
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Figure 4.9: Equivalent gain scheduling problem

Since Py > C* and M, > C% for constraints ||e||* < Py and ||d||* < M, to be inactive,
these scalings satisfy the first three conditions of Theorem 4.7. This leads to the
following matrix inequality:

Xp+ V5t =Xol 0 Xp 0
* - 0. 4.79
M p y-1 } M [ 0 x| < (4.79)

u

Since 6 > 0, f/p is bounded. Furthermore, X, < M. Thus M, can be chosen
sufficiently large such that Yp‘1 — XoI > 0. This yields equation (4.65), as required.
|

4.4.3 Synthesis Condition

The condition of Theorem 4.7 and the particular structure of G, could be used to
convert the Robust Gain Scheduling problem to an AMI. Much of this development,
however, would duplicate the main results in [Packard, 1994]. The condition of The-
orem 4.7 will instead be converted to a form for which the results in [Packard, 1994]
may be applied, and an AMI constructed from the resulting conditions.

For fixed scales X, and Y, the conditions of Theorem 4.7 are equivalent to the
Gain Scheduling problem of [Packard, 1994] in Figure 4.9; it is required to find a
nominally stabilizing controller K such that

sup  [[(AP % Go) x (APxK)| < 1, (4.80)
APEPA
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where
I 0 O 1 0 O
= L S
Go=10 ¥s? 0[Go| 0 Xu7 0. (4.81)
0 0 I 0 0 I

In [Packard, 1994], scalings which commute with AP are introduced to convert
the above problem to a scaled H, condition; these scales are in fact the X, of the
previous section, modulo the transformation from Gg to Go. The following result is
from [Packard, 1994]:

Theorem 4.8 Let
All A12 Bll BQI
Agy | Ay Bis B
Cii|Ci2 Din Dpy
C1 | Co Dy Dy

be a minimal state-space description for system Go. There exists a nominally stabiliz-
ing controller K such that equation (4.80) is satisfied if there exist structured positive
definite matrices X and Y satisfying an AMI (with structure and AMI outlined in
[Packard, 1994]) such that

V<R*[55HR-H?DV*<0, (482)
_ _ [ X ~ X -
o (=G 7[5 7))o= (59
where
_ A B }
R = = = 3
{ ¢ Du
V = { _1 ‘2 ] : |: ?/2 1‘2/21 } invertible, 62‘71* +D21V2* = 0,
. o (4.84)
U= { -1 ] : { D2 ﬁl ] invertible, U;By + UiDyy = 0.
2 12 Uz
Remarks:

o As discussed in [Packard, 1994], it can be assumed without loss of generality
that [ C, Dy | is full row rank; thus there always exists a V satisfying equa-
tion (4.84). Similarly for U.
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e As stated in the theorem, the above condition is only sufficient for the existence
of a K such that equation (4.80) is satisfied. As argued in the previous section,
however, the above condition is also necessary (again assummg that the AP are
LTV operators).

We are now in a position to state and prove the main result:

Theorem 4.9 Let
Ap | A B By
Agy | Azs By By
Cu|Ci Du Dip
Co1 | Coa Doy Dy

be a minimal state-space description for system Gg. There exists a K which solves the
Robust Gain Scheduling problem if and only if there exist scales Xy and Yy satisfying
the conditions of Theorem 4.7, positive definite matrices Xy and Yy, and structured
positive definite matrices X and Y satisfying an AMI (with structure and AMI out-
lined in [Packard, 1994]), such that

LY 0 Y 0 .
(¥ 2 ]ne [0 2 ) <a 455
. X 0 . X 0
o (a[ X 0 e 5 2 ]Yee w9
Xy 1 Yo I
_ > — >
{ I %, |2 0, I Y, } > 0, (4.87)
where
A B }
R= :
{ C1 Dn
V=[WV W ] : ¢ D invertible, CoV* + DoV} =0,
’ ‘;1 ? (4.88)
U= ' : 2 i J* * =0.
[ U, ] [ Diy U, } invertible, U;By +U;Dis =0
Proof of Theorem 4.9: By the definition of G, defining
i|B, B, A B.X. B,
Co|Du Dy | = | Y 2C, | Ve 2D11 w? Y4?Dy (4.89)
02 D21 D22 02 Dng;§ D22
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yields a minimal state-space representation for Gy. Define

~ I 0 ~ I 0
eelg 2] [0 2]

?

and U,V, and R as in equation (4.88). Then R = Y 2RX"2, and V := VX3,
U := Y~3U satisfy equations (4.84). Substituting into equations (4.82) and (4.83)
yields
'Y 0 Y 0
* — * , 4.90
v(R_O Yu_l}R {0 XuDV<O, (4.90)
X 0 X 0
* - . 4.91
R I L T

Finally, by Schur complement arguments [Zhou et al., 1995], if X, satisfies matrix

I - - )
inequality [ ji,“ x > 0, then X, > X' Furthermore, X, = X! satisfies the
u
matrix inequality. This concludes the proof. [}

Remarks:

e A controller may be constructed as described in [Packard, 1994] using the state-

space description for Gy (which includes scales X, and Y,) and scales X and
Y.

e The affine matrix inequalities may be solved using standard convex optimization
tools, such as The LMI Control Toolbox [Gahinet et al., 1994].

Example

The robust performance examples of Section 4.3 can now be extended to allow
for parameter varying plants. In particular, consider the setup of Figure 4.10. Given
system P, it is required to design system K such that disturbance ¢, and measurement
noise ¢, have a small effect on plant output w. The plant is subject to inverse additive
unstructured uncertainty A", weighted by W,,. In addition, plant PxAP is a function
of time varying parameters Ap in set PA. The system to be designed, K, has access
to these parameters as well. The exact problem formulation is to find a system K
such that the closed loop system is robustly stable and

sup sup sup sup [|w| < 1. (4.92)
APEPA JAY|<1 [[B]l<l [1E2)i<1

Note that if either of #; or £, are vector valued signals, they can further be partitioned
and bounded in norm separately. The above can be converted to the problem setup
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of Figure 4.7 using techniques similar to those in Section 4.3. The idea is to first
apply the tools in Section 4.3, with plant P x AP and controller K x AP, to convert
the above robust performance problem to the robust stability problem of Figure 4.11.
The APs can then be unwrapped from G(AP) and K(AP) to yield the block diagram
in Figure 4.7.
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Chapter 5

Extension to Deterministic Noise
Disturbances

In the standard robust control paradigm, the signal space which characterizes
performance is equivalent to that which captures a system’s uncertainty. For ex-
ample, H., tools are used when dealing with bounded energy (or power) gain un-
certainty [Packard and Doyle, 1993, Megretski and Treil, 1993], while when working
with [, disturbances, the uncertainty is assumed to be of finite amplitude gain
[Khammash and Pearson, 1991].

While it is often the case that the particular characterization of the uncertainty is
not critical to the design process, the signal space used to characterize the performance
often is. In particular, one of the common complaints among control design engineers
who use H methods is that the resulting designs tend to be sluggish and overly
conservative. As an alternative, H, designs are often employed. The attractive feature
of Hy designs is their gain interpretation; they minimize the power output when
the disturbances are assumed to be white noise or impulses. This is in contrast
to Hoo designs, which minimize the energy to energy (or power to power) gain; in
many applications, modeling the disturbances as arbitrary signals is a poor modeling
choice, and thus H., designs may lead to low performance controllers. A potential
problem with #H, designs, however, is that they lack robustness properties, as first
outlined in [Doyle, 1978]. H., design methods, on the other hand, can readily be
extended to encompass a system’s uncertainty. A desirable control design strategy
would then be one which has the I/O gain interpretation of the H, norm, but can
readily accommodate H., bounds on the uncertainty.

In [Paganini, 1993], a framework is developed whereby white noise signals are
captured in a deterministic setting. The main motivation behind this approach was
the reconciling of the worst case setting, natural when considering robustness issues,
with the stochastic setting. This framework proved very natural when addressing the
so-called Robust Ha Analysis problem, which was solved in [Paganini et al., 1994] and
[Paganini, 1995a]. The elements of this framework relevant to the material presented
in this chapter are outlined in Section 2.2.3.

In this chapter, the Generalized I, Synthesis results of Chapters 3 and 4 are
extended to allow deterministic noise disturbances. In particular, the Square Ho.
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K

Figure 5.1: Problem Formulation

problem can be extended to provide a solution to the so called mixed Hy — Hoo
problem, and the robust performance problems of Chapter 4 can be extended to
allow noise disturbances as well as arbitrary /5 bounded disturbances.

The chapter is organized as follows: The problem formulation is first outlined in
Section 5.1. The solution is obtained by transforming the problem to a Generalized [,
Synthesis problem in Sections 5.2 through 5.4. Various synthesis problems are solved
in Sections 5.5 and 5.6, followed by a simple numerical example which illustrates
the tools developed and their numerical properties in Section 5.7. The extension to
general Robust H, Synthesis is discussed in Section 5.8.

5.1 Problem Formulation

Consider the feedback interconnection of systems Gg and K in Figure 5.1, and
denote the closed loop system as My := Gy « K. The problem formulation is as
follows:

Generalized [; Synthesis with Correlation Constraints

Given system Gg and sets Dy, &, and WR, find a stabilizing controller K such
that

sup sup sup {eg, Modp) < 1. (5.1)
€Dy nEWT eo€lo

Set Do and & are of the same form as equation (3.14) and equation (3.15) in
Chapter 3. Set W} is the noise set of Section 2.2.3. Standard H., and H, synthesis
can be recast m the above setup. For example by considering only 81gnals [ with
constraint [|I[|*> < 1 and cost criterion ||zo||* < 1 (implementable by ||eo]|* < 1), the
result is Ho optlmlzatlon By considering only signals n with constraint n € W
and cost criterion IleH < 1, the resulting design approaches the optimal H, design
exponentially in N from above as per Lemma 2.1.
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5.2 Image Representation for Wy

In this section, an alternate characterization of W} is presented which is com-
patible with the Generalized [, Synthesis problem formulation. In particular, the
Generalized l; Synthesis setup does not allow constraints of the form A(n,A"n) =0
to be imposed. These are exactly the types of constraints required to capture Wy.

What will be done instead is to construct a system V, let n = Vn, and impose
constraints on n which are compatible with the Generalized [y Synthesis setup. It
is shown that these constraints, plus an additional norm constraint on n, result in
n € Wy.

Let N and m be given. Define

14N _ 1=

Uy : , = 1<k <N, 5.2
SN ©E RN < (5.2)
U = [U, T,.. Uy Ty, (5.3)

V := diag[U, U, ---, U]. (5.4)

Thus V is an m output, 2mN input block diagonal stable system, with m copies of U
on the block diagonal. In can readily be verified that U and V are co-inner systems:

1
VV* = —1 5.5
ON (5:5)
_ _ 1
and furthermore, ||V|| = ||U|| = oTR
Define 71 € 2™V as follows:
A= (R e i), (5.6)
ﬁi = (ni,la ﬁi,lv sy ni,N; ﬁi,N)?
and the following set of constraints:
Ci: gl <1, lnsl® <1 1<i<m,  1<E<N
Co: (Mg, nyk) — (g, Myp) =0 1<i<j<m, 1<k<N (5.7)
Cs: (Mg, k) — (Rig, ) =0 1<i<j<m, 1<k<N '
C4 : (ni,k,nj,k> -+ <ﬁi,kaﬁj,k> =0 1 <3 <j < m, k=
The constraint set A/ is then defined as:
N = {ielZ™ :Cyq, Ca, Cs, Cy4are satisfied } . (5.8)
The image set W{(}W may now be defined:
Wi, ={nell n=Via,neN, ||| >1-~}. (5.9)

For v = 1, define

~K’l = WK/},D (510)
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which corresponds to no explicit norm constraint on n;, and can thus be captured
with the type of constraints in the Generalized [, Synthesis setup, i.e., N can be
captured in the form of equation (3.14), and N defined analogously. The following
theorem outlines how W} and W}\'}ﬁ are related, and is crucial to the synthesis results
which follow:

Theorem 5.1

L g, =Wwg.
IL. WgCcWg fory>0.

III. d (Wﬁ,ﬁ/, W{{}) 18 upper semi-continuous as a function of v at v = 0, where the

mazimum distance function d (-,-) is defined in equation (2.8).

The above theorem states that one may replace the constraint n € W@ by n = Vi,
i € N provided that the norm of each component of n is close to 1. Before proving
Theorem 5.1, the following two preliminary lemmas are required:

Lemma 5.2

S = {n € lg” :ONV*n € '/\/'7 anH - 1} = Wﬁ,o- (5.11)

Proof of Lemma 5.2: Since V is co-inner, it is clear that by setting 7 = 2NV*n

S C Wi, To show that Wiy C S, let n € Wiy, where n = Vi, i € N. For
each component of n, by constraints Cy, [|7;]|> < 2N, which implies |]n,H2 < 1. Thus
In:||* = 1, ||7||> = 2N. Since U is co-inner, there exists stable system U, such that

U
V2N [ U } 1s unitary. Thus for each i, 72; can be uniquely decomposed as
i
= U"v; + Ul w;, (5.12)
where v; € I, w; € V1. Furthermore, ||7i]|* = HU*UzH HIUlwzH Since n; = Uny,
it follows that v; = 2Nn27 and that HUZH = [[Un||> = ||]|* = 2N; thus w; = 0, and
n; = 2NU"n,. This implies that 7 = 2NV*n, as required. [ |

Lemma 5.3 Given R € R}, where v < W]vl_i_—l)g, there exists a signal x € I such
that R,(T) = R(7) for 7 € [-N, N].

The proof of Lemma 5.3 may be found in the appendix at the end of this chapter.
We are now in a position to prove Theorem 5.1:
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Proof of Theorem 5.1: We begin by showing how 7 is constrained when
2NV*n € N. Let n = 2NV*n. Thus

niy = 2NUjn;, Ap = 2NUin,;, 1<i<m, 1<k <N. (5.13)
By substitution, constraints Cy to Cy4 are equivalent to :

Ci:  [mil” + (ni, A*ni) <1 1<i<m,  1<k<N
]i”ill2‘<ni,)\kni> <1 1 <1< m, 1<k<N

C,: (ni,)\kn]) + (ni,)\_knj> =0 1<i<j<m, 1<k<N

Ca: (ny,Xnj)) =y A*n)=0 1<i<j<m, 1<k<N (514)

Cs: (nyynj) =0 1<i<ji<m,

where A is the unit delay operator defined in equation (2.15).

Proof of I: Let n € WN The above constraints are then trivially satisfied, provmg
n € S since ||n;||> = 1; thus by Lemma 5.2, n € Wzvo Now let n € WN, ,
equivalently, n € S by Lemma 5.2. It is then straightforward to show that the a,bove
constraints imply that n € W}, as required.

Proof of II: This follows from I and Wﬁﬁ C Wﬁﬁo for 0 <~ < .

Proof of III: Let ¢ > 0 be given. It will be shown that there exists a 75 > 0 such
that for all 0 < v < g, d (WNW ) < e. Let 79 > 0 be fixed. For any 0 < v < g,

n e Wﬁn and corresponding 72, we may decompose 7 as in equation (5.12) yielding:

Since ||7;]] < V2N and [|n;]| > 1 — 7, it follows that ||w;| < 2N\/2v,. Applying
constraints Cy through Cy4 to equation (5.15) results in

Ci: [Inill” + (ni, A*ni) <1+ O0(Jwil)  1<i<m,  1<k<N
Il = (ns, Nns) < 1+ O(J|wil]) 1< <m, 1<k<N

Csy: I(ni,)\knj) + (ni,)\"knm <O(Jlwil]) 1<i<j<m, 1<kE<N

Cs: I(ni,)\knj> - (ni,)\“knm <O(flwil]) 1<i<j<m, 1<k<N(516)

Ca: [(ni,n5)] < O(J|lwill) 1<i<j<m.

It follows that there exists a constant C, independent of 7y, such that n € Wy ¢ S

Since n € ly, there exists a 7' € Z* such that ] n; — HP o ” 1 < 27. Define
o= (A, ..oy Nm), (5.17)
. € Prn,
n; = (1-— . 5.18
U= 5 TP (5.18)



71

It can be shown that for ) < 55, 7 € Wiac 55 Furthermore, |[|n—n| < £+2/my,.
Define

O, = 1- <1~ 6\;_”>2, (5.19)

R(t) = —C7'Ri(r), 1< || <N, (5.20
R(O) = C7'(I-R:i(0)). (5.21)
2
It can be verified that R € RT]GQC\/%C’fl' By Lemma 5.3, for vy < m%ﬁm, there
exists signal x € Iy such that R,(7) = R(r) for 7 € [-N, N].
Define
d:=n+C ATy, (5.22)
Then
Ry(t) = Ra(r)+ C1R,(7) (5.23)
= 0 T # 0,
1 7 =0.

Thus d € W5 Furthermore,

[n—dl < [ln—al+|a-d| (5.24)
< 4oy + =
6 3
Choosing
1 C? € -
R O 5.2
Jo = T { 20" 8CZm2(N + 1)V’ 6\/5} (5.25)
gives the required result. [

5.3 Converting to Generalized [, Synthesis Setup

Referring back to Figure 5.1, it is required to find a stabilizing controller K such
that

sup sup sup {(eg, Mydp) < 1, (5.26)
leDg neEWT epeés

where M := G * K and dy = (I, n).

The diagram of Figure 5.2 can be used to gain intuition into how the above
problem may be converted to a Generalized l; Synthesis problem. By the results
in the previous section, one can impose the constraint n € WZ by setting n = Vi
and imposing Generalized [, Synthesis type of constraints on 7, along with norm
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21
k n
1+mk
n .
29 ) V z = < d — n
1 z9 l
1+mk GO 1
G
K K
Figure 5.2: Converting to Generalized [, Synthesis problem
constraints ||n;|| = 1. There is no direct way to impose this norm constraint on n, so

it will be done indirectly. By choosing a large value for k in Figure 5.2, error signal

z1 will dominate error signal z3; thus the worst case signal is one which makes z; as

large as possible. But making 2; as large as possible is equivalent to forcing n to have

maximum norm, and thus to be in set WJ. We make this more precise as follows:
For fixed k, define

1
@ = T (5.27)
aGl, oGV oGy
G = 0 kaV 0 |, (5.28)
Gy  GLV Gy
= {eelra)’ <1, 1<i<m}, (5.29)
D = {d=(L,A)el:leDy €N}, (5.30)
£ = {e=(e,€):e0 €&, €}, (5.31)

The following theorem establishes the equivalence of the Generalized [, Synthe-
sis with Correlation Constraints problem to an augmented Generalized [, Synthesis
problem:

Theorem 5.4 The following two statements are equivalent:

I. K is a stabilizing controller for Gy and

sup sup sup {eg, Mydp) < 1. (5.32)
€Dy nEWKYL ep €€y

IL. K is a stabilizing controller for G and there exists constant ko such that Yk > ky,

sup sup (e, Md) < 1 (5.33)
deD ecE

where M 1= G x K.
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Proof: First note that K stabilizes Gy if and only if K stabilizes G.

IT = I: Assume statement II. Then by straight substitution

{
sup sup sup sup « <<60,M0 [ s ]) +k<é,Vﬁ>> < 1. (5.34)
I€Dy REN eo€fy EE™ \4L
Since Wi € Wi and supyz, 2<1 (€ (V)i) = [|(V7);]], it follows that
sup sup sup | (e, Mody) + kZ nal | <1+ km. (5.35)
€Dy TLEWX} egE&y i1
Since ||ng]| = 1, the result follows.

I = II: Assume statement I. By continuity of d (W}\’}ﬁ, W};,”) at v = 0, there exists
v > 0, constant Cy, and controller K such that

sup sup sup {eg, Mody) < Cp < 1. (5.36)
€Dy ne]fvwﬁo en€Ep

Furthermore, since My is a stable system and Dy, WR’?WO? and &, are bounded, there
exists constant C; such that

Cy:=sup sup sup {ey, Modp) < o0. (5.37)
leDy ne)fvg; e9€&

If statement II is false, for all K and k there exists [, 71, eg, € in their respective sets
such that

l
M k(e, Vi) >1+k :
(€0, Mo [ Vi }) +k(e,Vn) > 1+ km, (5.38)
or equivalently,
< i 1(Co+1 !
o> _ - ) 5
;.-1 I(Va)ill 2 m+ - ( 5 (€0, M { v ]>) (5.39)

In particular, let £k = C} /7. Then ||[(Va);|| > 1 — vy and thus n := Vn € VNV}{},%.
Furthermore,

Co+1 l Co+1
02 - <€0,M0 }: V7 }> = 02 - <60, M0d0> S O, (540)
a contradiction of equation (5.36). ]

Note that D is consistent with the Generalized Iy Synthesis formulation of Chap-
ter 3. The solution in Chapter 3 can thus be invoked and provide a solution to the
Generalized Iy Synthesis with Correlation Constraints problem.
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COST
C, 2mN
C, sm(m—1)N
Cs im(m —1)N
Cy sm(m —1)
TOTAL | m (2N + (m — 1)(N + 1))

Table 5.1: Cost of constraints

5.4 Computation

A controller K may be found which satisfies equation (5.33) using the Generalized
o Synthesis solution in Chapter 3 for a given k; thus one would choose k, and
synthesize a controller. In order to solve the original problem of equation (5.32),
however, we need to ensure that k > kg. It is possible to find a lower bound for kg
given the open loop system G, the number of correlation constraints N, and how
closely we want to approximate the optimal solution. In practice, however, k£ should
be chosen as large as the numerical algorithm allows, and the resulting closed loop
system analyzed to determine what performance level was achieved.

For a given N and m, it is also worth noting how much constraints C; through C4
cost, in terms of the number of constraints (which is linearly related to the number
of decision variables required). This is outlined in Table 5.1; thus the growth is
linear in N and quadratic in m. In order to keep the computational complexity
down, constraints C, through C4 may be omitted, with the result being that each
component of n will tend to be a white noise signal, but may be correlated to other
components. The particular nature of the problem will dictate how conservative this
omission will be.

In addition, G consists of an augmented version of Gy. In particular, V results in
an extra m/V number of states. Since the number of decision variables grows as the
square of the number of states of the plant, quadratic growth is unavoidable, both in
N and in m.

5.5 Mixed Hy; — H, Synthesis

In this section, the problem of synthesizing controllers when the disturbance class
consists of a mix of arbitrary /; bounded signals and deterministic noise signals is ad-
dressed. This in effect provides a solution to the so called mixed Hy — Hoo problem
formulated in [Doyle et al., 1994b], variations of which have been the focus of much
research activity this last decade [D’Andrea, 1996b], [D’Andrea and Paganini, 1994],
[Stoorvogel, 1993, [Petersen et al., 1993], [Khargonekar and Rotea, 1991],

[Bernstein and Haddad, 1989].
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Consider the feedback interconnection of Figure 5.1, and denote the closed loop
system as My := Gy x K. Define set Dy as follows:

Dy:={lel: ||| <1}, (5.41)

for some partition of [. The problem formulation is the following:

Mixed H; — Ho Synthesis
Given system Gg and set Dy, find a stabilizing controller K such that

lim sup sup [[Mydyll < 1, (5.42)
N=001eDy newy

where dy := (I, n).

The above problem formulation is intimately related to the Square H, problem of
Chapter 4; the only difference is that some of the disturbances are required to satisfy
correlation constraints. A specific example of where this problem formulation may
arise is tracking a reference signal [ (which may be weighted to restrict tracking over a
certain frequency range), in the presence of sensor noise or other random disturbance
n.

Defining & := {eg € I : lleol)” < 1}, Theorem 5.4 may be applied to convert the
Mixed Hy — Ho problem to a Generalized I, Synthesis problem for fixed N, for which
a solution may be found in Chapter 3.

Remarks:

e In order to solve the Mixed Hy — Ho, Synthesis problem as stated, one might
have to choose an arbitrarily large N. As discussed in Section 5.4, however,
the computational cost grows substantially as N is increased, as is the order
of the resulting controller. One would thus choose an N which gives the re-
quired tradeoff between controller/computational complexity and performance
improvement. This issue is explored in Section 5.7.

e It is not readily apparent whether a controller which solves the Mixed Hs — Hoo
Synthesis problem can be taken to be of fixed and bounded order. For example,
when there is no signal [, the problem reduces to an H, synthesis problem,
for which the order of the controller has to be no larger than the order of the
plant. Similarly, if there is no signal n, the problem reduces to an H,, synthesis
problem, where again the order of the controller needs to be no larger than
that of the plant. The solution provided in this chapter will yield controllers of
arbitrarily large order as N goes to infinity. It remains to be shown whether
this is an inherent property of the problem formulation or of the approach taken
to solve the problem. Even if a condition for which the order of the controller
is bounded exists, it may not be convex in the design parameters (analogous to
the Robust I, Synthesis problem for LTV uncertainty).
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Figure 5.3: Robust H, performance

5.6 Synthesis for Robust H; Performance

The robust performance results of Chapter 4 may be extended to include deter-
ministic noise disturbances as in the Square H., problem. Consider the setup of
Figure 5.3. The allowable uncertainty set UA is defined as

UA = {A% : A*V € L(1,),]|ASY] < 1}, (5.43)
consistent with the following partition of s and w:

sk=Y_ Afw. (5.44)
l

The problem is to design a robustly stabilizing controller K such that the worst
case gain from n € Wy to w is minimized for all allowable uncertainty A". The
following corollary is an extension of Theorem 4.3:

Corollary 5.5 The following statements are equivalent:

I. K is a robustly stabilizing controller for G and UA, and

sup sup lug]] < 1. (5.45)
A€cUA newWp Z

II. K is a stabilizing controller for G and

sup  sup Z llwi]| < (5.46)

lIskll<1 newn
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Ho Analysis | Hs Analysis | Optimal Controller

-

Hoo Synthesis | 1.1429 1.1429 K=
‘Ho Synthesis | 1.7143 0.9897 K =14 0.3889A

Table 5.2: Exact synthesis results
Remarks:

e Theorem 5.4 may be applied to statement II and thus solve the posed robust
performance problem.

e Note that the allowable uncertainty set is a subset of that considered in the
robust performance problem of Chapter 4; if signal v were present in the problem
formulation, as in Figure 4.4, the proof of Theorem 4.3 could not be extended
to Corollary 5.5.

e The types of problems which may be cast into the above setup include the Robust
Disturbance Rejection problem of Figure 4.5, where now correlation constraints
can be imposed on #; and/or f,, forcing them to be white noise signals.

e The Robust Tracking problem of Figure 4.6 cannot be generalized to restrict ¢
to be in set WE}, since it does not fit into the above framework.

5.7 Numerical Example

A simple example for which the exact solution is known is presented in this section.
In particular, the machinery developed in this chapter is used to synthesize an optimal
Hy controller for a given plant. This is not being proposed as a general means to
synthesize optimal H, controllers, since exact solutions exist; knowing the solution,
however, allows us to explore the properties of the algorithm on a simple example.

Consider the following unstable, non-minimum phase, single input, single output
plant:

__A_J[_l
P= 22.
At 2

(5.47)

The goal is to minimize the s norm of the sensitivity function, S = (1 + PK)™1.
The generalized plant Gy for this problem is

(5.48)

ng[l “P}.

1 -P

Table 5.2 summarizes the results obtained using standard synthesis methods,
as described in [Dahleh and Diaz-Bobillo, 1995]. The design was then repeated for
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Figure 5.4: Synthesis with constraints

k =10,10,100 with N fixed at 4, and for N = 0, 1, 2, 4 with k fixed at 100. The result-
ing closed loop responses (shown as solid lines) are depicted in Figure 5.4, along with
the optimal H, and H results (shown as dashed lines) for comparison purposes.

In the first plot, the flat response is that of the optimal H,, closed loop, while
the response with the highest peak is that of the optimal #H, closed loop. The three
intermediate curves correspond to different values of k, ascending values of k corre-
sponding to ascending values of the H., norm (i.e., the peak at 0 frequency).

In the second plot, ascending values of N correspond to ascending values of the
Mo norm. Note that the N = 0, k£ = 100 design is identical to the H., design, as
expected.

The N =4, k = 100 controller is

_1.0079 + 0.3953A
 140.0306)

(5.49)

which is very close to the optimal 5 controller. Furthermore, the closed loop -
norm for this design is 0.9899, and the M., norm is 1.690, again extremely close to
the optimal #H, design. Note that the N = 4 design is not necessarily the “best” one.
For example, the N = 1 design has a closed loop H; norm of 1.021 and #., norm of
1.377; As a percentage, the N = 1 design has H, norm which is approximately 3%
larger than the N = 4 design, but Ho, norm which is 23% smaller. The point is that
most of the reduction in the H, norm occurred with only one constraint; pushing
harder to reduce the H, norm only serves to increase the H,, norm.
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l
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Figure 5.5: Equivalent mixed problem

5.8 Robust H,; Synthesis

Recall the Robust #s Synthesis problem of Section 2.2.4:

Robust #H, Synthesis

Given system G and uncertainty class A, find system K such that

o A x G %K s internally stable for all A € BA.

o limy_,o [|A *G*KngL <1 for all A € BA.

A scaling X was introduced to account for the uncertainty A, while a scaling Y
was introduced to account for the input noise disturbance, which led to an iterative
synthesis/analysis scheme similar to that of the Robust [, Synthesis case. This is
shown in Figure 2.7. Scaling Y was introduced to convert the synthesis step to
an H., optimization; this, in fact, is not necessary. An equivalent condition is the
following:

(&1
(1}
[ o)
N’

lim sup 2] < 1, (5.
N7 w22 <t

linl n

as depicted in Figure 5.5.

For fixed X, the above reduces to a variant of the Mixed Hy — H, problem
presented in Section 5.5 (the difference being that the norms of n and [ are coupled);
the results in that section can be generalized to include this case. The following
iterative procedure can thus be used for controller synthesis for fixed N:

Synthesis: For fixed scales X, find K which minimizes the closed loop output error
in the Mixed Hs — Hoo problem of Figure 5.5.
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Analysis: For fixed K, obtain new scales X and Y which minimize the closed loop
Hoo norm of the system in Figure 2.7 with input (dy, d) and output (2, z). This
problem may be approximated by an AMI [Paganini, 1995b].

This iterative scheme differs from the one presented in Section 2.2.4 in that scales
Y are not assumed to be fixed during the synthesis iteration (solving the mixed
problem is equivalent to solving for the optimal K and for the optimal Y in the
scaled H problem). Thus scales Y are allowed to vary over both the synthesis and
analysis iterations. This alleviates the first concern outlined in Section 2.2.4, since
no new local minima are introduced when considering Hs performance instead of H,
performance.

Appendix
Proof of Lemma 5.3: Let
voRO)  FROA) - R(N)
0= % Rg 1) N_l—.R(O) e g R( T 1) € RN xm(N+1).
R(=N) %R(—N+1) NHR( ) 31

By Gergorshin’s Circle Theorem [Strang, 1988], we may bound each eigenvalue of Q)
from below by

N
1—my 1 —ym(N +1)? 5
N+1 "Z_ ™2 TN (5.52)

Since v < (N+1 5, @ > 0. Thus there exists P > 0 such that P? = Q. Let

P = [ g ] c ]RQm(N-H)><m(N-{—1)7 (553)

i.e., we have added m(N + 1) rows of zeros to P. Now define z(t) as follows
z(0)
: c (P)) (5.54)
z (2m(N +1)?)

i.e., formed by stacking the columns of P into one long vector. We claim that R,(7) =
R(r) for || < N. Partition P as

POO PON
P=| : .. (5.55)



which implies
N
R(T):(NJrl*]T])ZPikPkp j=i+T.
k=0
Further partitioning each Py, as
Pr=[ (P - (Pi)m |
and using the fact that Py; = P}, we have

N

R(m) = (N+1=17)Y > (Pah(Pp)f, j=i+T.

k=0 [=1

It thus follows from the definition of z(¢) in (5.54), for 0 < 7 < N,

N m N-t1
Rx(T) - ZZZ zy Z+7‘]

7=0 =1 =0
N—t N m

- ZZ H—TJ)?
1=0 7=0 [=1

B P N+1- TR(T)

= R(r)

A similar argument holds for negative 7.
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(5.58)

(5.59)
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Chapter 6

State-Space Manipulations for
Behavioral Representations

In this chapter, state-space descriptions are used to represent the behavioral sys-
tems introduced in Section 2.3, and various tools to manipulate these representations
are developed. The reasons for adopting a state-space framework are twofold: the
first is that it provides a convenient method for generalizing the behavioral framework
to include uncertainty; this is discussed in Section 6.7. The second is that the H.,
Optimal Interconnections problem of Chapter 7 is solved using state-space techniques.

6.1 Output Nulling Representations

Output Nulling (ON) representations are a state-space method of capturing the
behavior of a system. In this section, ON representations for systems are introduced,
and various tools for manipulating and analyzing systems in this form are developed.
These first-order representations are extensively described in [Weiland, 1991]. Some of
the results in this section and related algorithms first appeared in
[D’Andrea and Paganini, 1993]. Related results on first-order representations and
various construction algorithms can be found in [Kuijper, 1992].

Given the following set of equations,

o= ol )=l 6.1

where 4 € R™™, B € R, C € R, D € R*, and M ¢ R+ox(n+r)  the
behavior of a system ¥ = {R,R?, B} is defined to be

B :={w € C*: (6.1) is satisfied for some x € C*} . (6.2)

Note that C* functions are considered. This is done to streamline the development
and avoid working with distributions. Some of the issues associated with L'¢ func-
tions are explored in Section 6.5.1. Matrix M is referred to as as a representation
matriz for X. Matrices A, B, C, and D are uniquely specified for a given M and
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g; since ¢ will usually be known from context and be constant, M contains all the
information required to characterize B.

Since there are many representations which yield the same behavior, it will be
useful to define the following equivalence relation: given M e R7)%(+0) and M €
RA+Dx(+0) Af ~ M if M and M yield the same behavior.

Representation matrix A is termed observable if (C, A) is an observable pair.
Given M, one can always construct observable M ~ M by eliminating the unobserv-
able portion of z in (6.1).

M is termed dependent if there exists M ~ M such that # < r. Thus a dependent
representation has redundant equations.

M is termed minimal if M ~ M = 7 > n, # > r. The following lemma
establishes a condition for minimality:

Lemma 6.1 ( [Weiland, 1991]) Representation matriz M is minimal if and only if
it 1s observable and D is full row rank.

The following lemma outlines the transformations which may be performed on M
to yield equivalent representations:

Lemma 6.2 ( [Weiland, 1991] ) Given a (minimal) representation matriz M, M
is an equivalent representation matriz if (and only if)

- [ TYA+LC)T T-YB+ LD)

M= PCT PD (6.3)

where L is any matriz, P and T are any square, invertible matrices.

6.1.1 Constructing ON Representations from AR Represen-
tations

The following procedure yields an observable, but not necessarily minimal, ON
representation given an AR representation. The reduction procedure of Section 6.1.2
can be used to make the resulting representation minimal.

Given the following set of AR equations

drw
RL_th_i_+...+R0w:O, (64)

consider the following set of equations:
i‘l = R0w7

T = xp1+ Rpw,
0 = $L+RLZU, (66)
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which can be captured in ON form by setting M equal to

Ry

M::[?Jg],with}?:: S (6.7)
Ry

Note that the above partition for M does not correspond to the partition of equa-
tion (6.1). By repeated differentiation of equation (6.6) and substituting for the z;, it
immediately follows that any w which satisfies the ON equations must also satisfy the
AR equations. To show the converse, let w satisfy the AR equations. By integrating
(6.4) L times, it follows that

RLw(t) + Ty (t) = 0, (68)

where
t
2(t) = / (31(F) + Ry w(r)) dr + ¢, o €R (6.9)
0

for 1 <1 < L. These x; and w also satisfy the ON equations.

Note that M in (6.7) is not necessarily minimal, since R; need not be full row
rank. The total number of states in this representation are rL. By building an
ON representation for each AR equation, and interconnecting them as described in
Section 6.4, a lower state dimension representation can be constructed, with the total
number of states equal to Y d)(R(£)), with dj(R(€)) := the degree of the 1-th row of
R(£). The resulting representation is minimal if and only if the leading coefficient
matriz of R(§) is of full row rank; equivalently, if R(¢) is row proper [Willems, 1992].

6.1.2 Constructing Minimal ON Representations

Let M be an observable representation matrix. Let P} be a basis for Im (¢ D D,
P; a basis for Im (P,D), and T a basis for Ker (P;-P,C). Define

PPy
Pw=|PP |, T:=[T T+]. (6.10)
Py

Applying the behavior preserving transformations of Lemma 6.2 results in the follow-
ing equivalent representation

c, C D |, (6.11)
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where () is an invertible, square matrix. Partitioning x into z; and x5, consistent
with the partition in (6.11), the second to last equation implies that z, = 0, and hence
zo = 0. It follows that that following is an equivalent, observable representation:

All Bl
C, D |. (6.12)
A21 B2

The above procedure can be repeated until the resulting D matrix has full row
rank. Note that the above procedure yields an equivalent representation with less
number of states n, or less number of equations r (or both), if the original represen-
tation was not minimal.

6.2 I/0 Maps

Given a minimal representation matrix M € R+x(n+a) it ig g straightforward
matter to construct a proper, I/O parameterization of the behavior B. Since D is full
row rank, there exists a re-ordering of variables w = (y, u) such that D = [ D, D, }

with D, square and invertible, and B = [ B, B, ] By the transformations of

Lemma 6.2 (P = D;', L = —B,D;"), it follows that the following is an equivalent
parameterization of B:

[2]=[*moge opmn][2]
Yy -D,C -D;'D, u
It can be shown that all proper I/O maps may be generated in this fashion
[Willems, 1991]. Note that the number of outputs is equal to 7, and the number
of inputs ¢ — r. As shown in [Willems, 1991], these are integer invariants, thus all
I/O maps (proper or not) must have r outputs and ¢ — r inputs.

A variable w; is said to be free if it can take on all values in €' and still be
consistent with the behavior B. Equivalently, the system description provides no
information on the properties of variable w;. It is shown in [Willems, 1991] that the
maximum number of free variables must be equal to the number of input variables,
q — r, and leads to the following corollary:

Corollary 6.3 Given that a representation matriz M is not dependent, the number
of outputs in any I/0 map is r, and the number of free variables is at most q—r.

6.3 Stability

A system ¥ with variables w is said to be stable if w € B = w(t) —» 0 as
t — 00. Let M be an observable representation matrix for ¥. The following is a
characterization of stability:
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Lemma 6.4 Given an observable representation matriz M, 3 is stable if and only
if

[ A-sl B } is full column rank Vs € C*. (6.14)

C D

Proof: Assume that (6.14) is not full column rank for some sy € Ct. Then there
exist complex vectors v; and v, such that z(t) = v1€*! and w(t) = vye®? satisfy the
ON equations. Note that by observability, vy # 0. Furthermore, since Re (s¢) > 0,
w(t) does not decay to zero. If sy is purely real, v; and v, can be taken to be real,
implying that w(t) is real; note that if sy has an imaginary component, the real parts
of z(t) and w(t) are non-zero and will also satisfy the ON equations.
Now assume that (6.14) is full column rank. D is not necessarily full row rank,
but by applying the reduction procedure of Section 6.1.2, it can be shown that the
resulting minimal representation will also satisfy the rank condition of (6.14). This
implies that the resulting D matrix is square and invertible. Setting P = D~
L = —BD™!, and applying the transformations of Lemma 6.2, the following is an
equivalent representation matrix for X:

A0
C I

{ A-BD7'C 0 ] ’ (6.15)

D¢ 1

where the rank condition implies that A is Hurwitz. The only solutions to these
equations are w(t) = CeAlxy, which decay to zero. ]

6.4 Interconnection

If ¥; and ¥, are two dynamical systems, their interconnection can simply be
considered as imposing the laws of both ¥, and ¥y. Formally the interconnection of
Y1 =R R?, B;) and X, = (R R?, B,) is denoted by £, A &y and defined as

El A 22 = {R, Rq, Bl N Bg} . (616)

Thus interconnection can be interpreted as the intersection of behaviors, or as com-
bining constraint equations. Thus an allowable trajectory must satisfy the governing
equations of both systems.

There are several integer invariants associated with a system ¥ [Willems, 1991].
One is p*(X), the number of outputs in any I/O map; given a representation which
is not dependent, this invariant is equal to . Another is the minimum number of
states required to describe ¥ in ON form, n*(X); given a minimal representation, this
invariant is equal to n.

As defined in [Willems, 1992], ¥; A X, is termed a feedback interconnection if
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An interpretation of the above is that the laws of the systems can be viewed as
independent. A feedback interconnection is termed regular if

n*(S1 A Bg) = 0 (51) + 0" (Sa). (6.18)

If n*(X1 A Eg) < n*(E1) + n*(Xy), the interconnection is termed singular. Regular
feedback interconnections are the standard ones considered in feedback control. Sin-
gular feedback interconnections differ in that the interconnection results in algebraic
constraints on the states; thus the states of the individual systems must be matched
before interconnection can take place.

Perhaps the simplest example of a singular interconnection is connecting two ca-
pacitors in parallel; the voltages across each capacitor must be the same before in-
terconnection, else an infinite (in practice, “large”) current will flow between the two
components. In terms of the invariant n, one state (the voltage across the capacitor)
is required to describe each component, but only one state is required to describe
the two capacitors in parallel, not two, since the voltages across each capacitor are
required to be the same.

One may think of interconnection in two contexts. First, when interconnection is
simply an artifice of the modeling process, where the system has been broken into
subsystems. Second, when a physical interconnection is established at a particular
time. When interconnecting for modeling, a singular interconnection is simply a flag
that the states are constrained and therefore one might want to simplify the model.
When connecting two systems at a particular instant in time, however, a singular
interconnection would require that the states be matched in advance, otherwise a
transient phenomenon will occur which is not modeled and is potentially damaging;
in the simple parallel capacitors example, the residual charges on the two capacitors
must be compatible, otherwise a large current may flow at the time of contact.

The following lemma can be used to construct a representation matrix for the
interconnection of two systems:

Lemma 6.5 Given minimal representations matrices My, and M, for systems ¥,
and 22,

A0 B,
0 A B,

M= 1
Cy 0 Dy (6.19)
0 Oy D,

is a representation matriz for ¥ = X1 A Sy. The interconnection is a feedback inter-
connection if and only if M is not dependent; the feedback interconnection is reqular
if and only if M is minimal.

Proof: The definition of interconnection immediately implies that M is a represen-
tation matrix for . The equivalence between the interconnection being a feedback
interconnection and M not being dependent is a direct consequence of Corollary 6.3.
The equivalence between regularity and minimality of M is a direct consequence of
(C, A) being an observable pair. ]
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6.5 Latent Variable Elimination

Given a system X, with behavior B and variables w = (v,l), it is required to
construct a representation for system X, with behavior B, defined by:

B, :={v e C>®:(v,l) € Bfor some | € C}. (6.20)

In the terminology of [Willems, 1991], variables [ are the latent variables, while vari-
ables v are the manifest variables. The latent variables are thus seen as auxiliary
variables used to describe the system, while the manifest variables are presumably
the variables of interest. Let M be a minimal representation matrix for X:

A B, B
= i 21
v=15 o o] 2
B B 1\
Let V3 be a basis for Ker ({ Dl }), and V5, a basis for ( Ker { Dl ]) N Ker(Dy).
! !
Let Vi = [ Vo V5 ]l. Since D;V; is full column rank, there exists L such that
-1
‘/*D* ‘/*B*
B, + LD;)V; = 0. Define P := [ g ] and T := { 271 ] . Defining
it LDV (Ve Dj)* (VB

[ =: Vil +V3lo+V3l3 and applying the behavior preserving transformations of Lemma
6.2 results in the following representation which does not change behavior B, (since
V' is square and invertible):

An A B,y 0 B,
Ay Ay By, 0 0
Cu Cio Dyy Dy 0
021 022 DU’Q 0 0

(6.22)

o O OO

where B;, and Dy, are square and invertible. Let state z be partitioned into z; and
T, consistent with the above partition.

Proposition 6.6 The following ON representation, with x, a latent variable, cap-
tures behavior B, :

[ A22 B’U,Q A21 :I (6 23)

Co D,y Cy

Proof: If v satisfies (6.22), it must also satisfy (6.23); if v satisfies (6.23) for some
x1, it also satisfies (6.22) by appropriately defining {; and Is. [

The above procedure can be repeated until there are no more latent variables
left. Note that the minimality of the representation is not necessarily preserved, since
(Caz, A22) need not be an observable pair; in that case, however, the unobservable
modes can be truncated to yield a minimal representation.
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6.5.1 Proper Elimination

The elimination procedure just outlined is valid as long as the behavior con-
sists of C'™ trajectories. Problems arise, however, if the larger class of locally abso-
lutely integrable trajectories, £, are considered. In particular, such an elimination
also captures the closure of By in the topology of £, denoted B, as discussed in
[Rapisarda and Willems, 1996]. A simple example is presented shortly to illustrate
this fact.

There are several reasons why one might want to consider £ trajectories. The
most compelling one, from an aesthetic point of view, is that functions such as steps
and ramps should not be excluded from the allowable behavior. From a practical
point of view, this may be dismissed as irrelevant since one can argue that all “real
signals” are C'°°, and that discontinuities are a human abstraction. While this may
very well be the case, it is useful to consider what effects steps and ramps have on a
system; one would be reluctant to construct an amplifier which results in unbounded
outputs for step-like inputs.

In terms of latent variable elimination, one might want to know if the removed
latent variables are well behaved for all possible manifest trajectories, including steps
and ramps, consistent with the manifest behavior. As a simple example, consider the
following equation:

=1, (6.24)

where the solutions are taken to be in £i°°. In terms of the manifest behavior By,
this system is equivalent to

Ov=0 (6.25)

with the additional smoothness constraint that v be absolutely continuous. By con-
sidering By, this constraint is eliminated and v can be any L trajectory.

It may be desirable to know when these smoothness constraints on v exist, how-
ever, as previously argued:

Theorem 6.7 Let M, as per equation (6.21), be a minimal representation matriz
for ¥. By = By if and only if rank(D;) = p*(Z) — p*(Z,).

Proof:

<=: Assume that the rank condition is satisfied. Since M is a minimal representation
matrix, rank([ D, D; |) = p*(X). By assumption, there exists a partition of latent
variables [ into [; and I, with the size of /; equal to rank(D;), and a partition of
the manifest variables v into y and u with the size of y equal to p*(X,), such that
| D, D, | is invertible (after allowing for re-ordering of variables | and v). As
per Section 6.2, construct the following I/O representation of ¥ from representation
matrix M:
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i = Az+ Biu+ Byly, (6.26)
— élx -+ DHU + f)lglg,
ll = 621,’ -+ Dglu + [)22[2.

First, note that variables u are free in C* (and L as well), and are thus legitimate
input variables for both B and B,. By the rank assumption and Corollary 6.3, how-
ever, the size of u constitutes the maximum number of free variables for B,. From
this it can be concluded that the transfer function from I, to y must be zero; if this
were not the case, there would exist at least one component of y which is free in C*
for u = 0. Thus

& = Ax+ By, (6.27)
y = élx+1511u,

is a valid parameterization of B.. Note, however, that for all (y,u) € £ satisfying
equations (6.27), (I, l2) = (Cox + Doyyu,0) € L satisfies equations (6.26) as well,
proving that B, = B,.

=: Assume that the rank condition is not satisfied. If rank(D;)> p*(Z) — p*(Z,),
form an I/O representation for ¥ as in the previous construction with the size of y
less than p*(¥); this implies that p*(Z,) < p*(Xy), obviously a contradiction. Thus
the assumption implies that rank (D;)< p*(X) — p*(X,). For any I/O partition of
manifest variables v into y and u:

rank([ D; D, ]) < rank(D;) + rank(D,) (6.28)
< p'(Z) —p*(Zy) +rank(D,)
< pi(%).

Thus for all I/O partitions of manifest variables v into y and u, there exists a column
of D, which is not in the column space of [ D, D, ] For any given partition, let j*
be such a column. Let u(t) be the following £¢ time trajectory:

u(t) = 0 fort <0, (6.29)
u;(t) = 0fort>0, j#j,
u+(t) = 1 fort >0,

resulting in the following equation,

Dy;. = C (2(07) —2(0%)) + Dy (1(07) = 1(07)) + D, (y(07) — y(01)).
(6.30)
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Figure 6.1: Circuit example

This implies that z(0~) —x(07) # 0, contradicting the fact that  must be absolutely
continuous for all [ and v in £!°¢. Thus trajectory u above is not an allowable trajec-
tory, which implies that u is not free in £°¢. This proves that B, # By, as required.

|

The following corollary follows immediately, independently proved in
[Polderman, 1993]:

Corollary 6.8 B, = B, if and only if there exists a partition of v into y and u with
the size of y equal to p*(X), and a partition of | into Iy and ly with the size of I, equal
to p*(X) — p*(Ey), such that ly = 0 defines a proper 1/0 map from u to y and ;.

6.6 Example

In this section, a simple example is used to illustrate some of the machinery
developed in this chapter. Consider the circuit diagram of Figure 6.1. The various
currents and voltages satisfy the following equations:

Vi-V, = I, (6.31)
Vo=V, = I, (6.32)
Vi—V, = I, (6.33)
Vi-V, = I, (6.34)
L+L+1L+1, = 0, (6.35)

which can be put in ON form by the procedure outlined in Section 6.1.1:
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The double lines in the representation matrix are used to highlight the partition
into matrices A, B,C and D. By Lemma 6.1, the above is a minimal representation
since (C, A) is an observable pair and D is full row rank. Note that the use of variable
V. greatly simplified the description of the equations governing the system, but is not
necessary when describing the terminal behavior of the network. It can thus be seen
as a latent variable, and removed by invoking the procedure of Section 6.5:

O oo oo

Vi (6.37)

OO - OO0 O O

- O OO OO

= el e OO D

— OO RO OO

OO OO - O

—_ 0 O Ol O o
o

o
O S O OO O e

Note that the above representation is still minimal. Also note that V,, was properly
eliminable; this implies that no voltage spikes can occur at node n.

Assume that V5, V3 and V, are grounded. Equivalently, interconnect the circuit
with Vo, = V3 = V; = 0, and eliminate these variables:
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5] [0 o of|-11000]|™
i 0 0 010 0010]]|™
iy 0 0 00 0001 ";US
Ol=]=1t 0 oo 0100 ; (6.38)
0 0 -1 0f=11000 11
0 0 0 —-1-11000 [2
0 | 0 0 0o 1111 13

Note that the resulting D matrix is not full row rank; by Lemma 6.5, a singular
interconnection has occurred. This captures the fact that the voltage across the two
capacitors, which are also states, must be equal (25 = z3).

Construct a minimal representation as per Section 6.1.2:

(& ] [0 of-1100 07"
i 0 00 001 0 ";”f
1

0| _| -1 0fo0o 010 0 Ll (6.39)
0 0 —-1/-1100 0 P
0 0 00 001 —1 [2
| 0 0 00 111 1 ’
ol L _—14_

and eliminate I, I5, and Iy:

i 0 0 ]-1 1 1
By | =] =05 0] 0 —05 f/-‘j (6.40)
0 0 -1|-1 1 I

Again, it can be verified that Iy, I3, and I, are properly eliminable. Create I/0
map from I; to V}, as per Section 6.2:

o 0 1 0 o
By | =] =05 0 | =05 || 2 |. (6.41)
4 0 -1 1 I

Note that Vi could have been chosen as the input. The resulting transfer function
is the impedance at node 1:

$2 4+ 0.55 + 0.5
206)=—% 05

(6.42)
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Figure 6.2: Extension to uncertain systems

6.7 Extension to Uncertain Systems

As argued in Section 2.3, in many instances it is more natural to model a system
in implicit, or behavioral form, as opposed to an I/O relation between signals. In
addition, it was argued in Section 2.2 that the likelihood of success of model based
control designs is vastly increased when the discrepancies between a model and the
behavior of the system it is trying to capture are taken into account. In this section,
these two ideas are merged, and a method for incorporating uncertainty into the
description of behavioral systems is proposed based on the LFT framework.

The behavior captured by an ON representation is simply the set of w which
satisfy Gw = 0, where system G has state-space representation

AlB
Cc|D
In order to incorporate uncertainty in the description of a system, one can consider

trajectories which satisfy

G := : (6.43)

(AxG)w =0, (6.44)
where A has the following spatial structure:
A= diag [51[k1, ey 5LII€L> AL+1, A 7AL+FJ . (645)

This is depicted in Figure 6.2. Thus Goyw = 0 captures the “nominal” behavior
which occurs when A = 0.

A potential problem with this parametrization is that one has to ensure the well
posedness of the above LFT (i.e., the existence of (I—Gy;A)™1). A way to study this
well posedness simultaneously with the parametrized behavior is to introduce latent
variables | and to consider the following set of equations:

[-AGy, —AGy, } [ ! } _0 (6.46)

GQl GQQ w
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System G can in turn be expressed as an LFT on the differentiation operator f—t (or
the delay operator A in discrete time). With this modification, A can be augmented
to include a block 241, which is consistent with the structure of equation (6.45).

We formalize this as follows: the allowable class of uncertainty, ©, is taken to be
an (L+F)-tuple of operators, §; through dy and Ay, through Ay, r. Each §; and
A, is restricted to be a certain type of operator: LTV, LTI, a real parameter, or the
operator %. For example, a particular choice for @ is the following:

©:={0= (0, .0):8; € L(lx),||6:]] <1} (6.47)

in this example, © consists of arbitrary (equivalently LTV) contractive operators from
Ly to Ly, Another choice could be some of the §; being real parameters with size
restriction |d;] < 1. Associated with © is an L-tuple of integers k, which establishes
the multiplicity of each §;, and is used to define the uncertainty:

k = (ky, - ,kp), (6.48)
A(k, 0) = diag [6IIk17 T 76LIICL7 AL+1> Ty AL“}—F] . (649)
Let matrix M (referred to as the representation matriz) with the following struc-

ture be given

(6.50)

w-[42)

¢ D

where A € R**, Be R, C € R™*" and D € R™Y, and let k be given. For a fixed
0, and hence A(k, 8), denote By as the following set of time trajectories:

Bg:={we L*:31 e L st. equation (6.51) is satisfied } :

{[—CAA _‘;BJ H] = 0. (6.51)

The behavior B of system X is then defined as follows:

B:= | Be. | (6.52)

O

The triple (M, k, ©) is referred to as a representation for system .

Example

Consider Newton’s famous law

d dy
F e — — 5
dt (m dt) (6.53)
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where F' is the force acting on a particle of mass m at position y. This relation can
be captured by the following set of equations:

dy

l, = =% 6.54

1 dt? ( )

b = mi, (6.55)
dls

= = 6.56

12 dta ( v )

0 = F—1 (6.57)

This can be put in the form of equation (6.51) by defining w = (F,y),

) d

A = diag [—CZZIQ, m} , (6.58)

and a suitable choice for M. Assume that the mass m is known to be in the range
0.8 < m < 1.2. Then the behavior B, consisting of all possible trajectories consistent
with equation (6.53), can be captured as per equation (6.52) by defining

e = {(—%,m) 10.8<m < 1.2}; (6.59)
k = (2,1). (6.60)
il

Remarks: Note that when © = {£}, equation (6.51) does not reduce to an ON
representation. In fact, the following equations are obtained:

{ﬂ:[ég“ﬂ (6.61)

It is a straight forward matter to convert the above equations to ON form: this is
d1scussed in Section 7.4. One could capture ON representations directly by setting

={ f ) and imposing an additional constraint on x(—o0); it seems more natural,
however to work with the differentiation operator since most dynamic equations are
in differential (as opposed to integral) form.

Given a method of parametrizing the behavior of a system, it is natural to ask when
two representations yield the same behavior, and when a representation is minimal.
This is explored next.

6.7.1 Weak and Strong Equivalence

Let the uncertainty class ® be given. (M,k,®) and (M,f{, ©) are said to be
weakly equivalent representations if they parametrize the same behavior:

B=B5. (6.62)
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(M, k,®) and (M, k, ©) are said to be strongly equivalent if
Bo =By VO € ©. (6.63)

It is clear that strong equivalence implies weak equivalence; the converse, how-
ever, is typically not true. To illustrate the difference between these two notions of
equivalence, let © consist of the uncertainty structure defined in equation (6.47) and
consider the three following system equations:

(I (517)2; (664)
Uy = —'(511)2; (665)
Uy = 51521}2. (666)

All of the above systems capture the same behavior; it thus follows that all rep-
resentations for these systems will be weakly equivalent. For different values of é;,
however, the behaviors of the above systems are all different, and are thus not strongly
equivalent.

A class of strongly equivalent representations for a given (M, k, ©) is of the form
(M, Xk, ®), where M is defined as

N T-Y A+ LC)T T-Y(B+LD)
T PCT PD ’

where T is an invertible matrix such that TA(k,0) = A(k,0)T for all 8 € ©, L is
any matrix of compatible dimension, and P is any invertible matrix of compatible
dimension. The above does not parametrize all strongly (and thus weakly) equivalent
representations; for example, there might exist a representation with fewer latent
variables n or fewer equations r, or both. For the special case where ® = {ad;},
(C, A) is an observable pair, and M is full row rank, it can be shown that the above
captures all equivalent representations [D’Andrea, 1994], [Weiland, 1991] (note that
when © consists of a single operator, the notions of strong and weak equivalence are
the same).

Let the uncertainty structure © be fixed, and let representation (M,k,®) be
given. If for all other weakly (strongly) equivalent representations (M k, ®),7r>r
and 7 > n, then (M, k, ®) is said to be a weakly (strongly) minimal representation
(note that it is not readily apparent whether a minimal representation exists or not).
Returning to the special case of @ = {£} (for which strong and weak equivalence are
the same), it can be shown that a representation is minimal if and only if (C, A) is an
observable pair and M is full row rank. Thus equation (6.67) parametrizes all equiv-
alent minimal representations when @ = {%}, similar to the result of Lemma 6.2.

A natural question arises as to when a representation is minimal for a given ©, and
how to construct minimal representations. This appears to be a difficult problem; to
date, only when special cases for ® are considered (LTV operators) and an I/O notion
of strong equivalence is adopted (discussed in the next section) have computationally
tractable methods for constructing minimal representations been obtained.

(6.67)
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6.7.2 1I/0 Equivalence

When the B and D matrices in representation matrix M are restricted to be of

the form
B 0 B,
RS 005

and the manifest variables are partitioned into w = (y, u), the following I/O equations
are obtained:

I = A(k,0)(Al + Byu), (6.69)
y = Cl+ Dyu. (6.70)
Define
A B, .~ _|A B,
M;, = [C’ D, }, 0 =1 A | (6.71)

which are obtained from the corresponding representation matrices M and M. Rep-
resentations (M, k, ®) and (M, k, ©) are said to be weakly 1/0 equivalent if

VO c©,30 cOst. Ak ) xM, = Ak, 0)* M,
Vo€ ®,30 c Os.t. Ak, 0)x M, = A(K,0) M,
(M,k, ©) and (M, k, ©) are said to be strongly 1/0 equivalent if
Ak, 0) « My, = A(k,0) x M;, V0 € ©. (6.72)

In general, I/O equivalence is a more restrictive notion of equivalence; the I/0
equivalence of two representations does not imply that they parametrize the same
behavior. For example, the following two sets of equations are I/O equivalent, but
capture different behaviors:

[=0u, y=1 y = Ou. (6.73)

6.7.3 Concluding Remarks

All the notions of equivalence are related as per the following diagram:

weak strong
. — .
equivalence equivalence
weak strong
I/0 == I/0

equivalence equivalence
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One can also ask the question of how equivalence is related for different types of
uncertainty class ©. It is clear that the following relation holds:

LTV . LTI parametric
equivalence equivalence equivalence

Thus a strong case can be made for considering strongly equivalent representa-
tions for LTV uncertainty: if given a representation one substitutes for it a strongly
equivalent representation for LTV @, it will also be equivalent irrespective of what
kind of equivalence or what type of uncertainty is desired at some later stage. Thus
if one does not know a priori how the model will be used or whether the uncertainty
is LTV, LTI, or parametric, the right equivalence class to consider is that induced by
strongly equivalent representations and LTV uncertainty.

Another reason for considering strong equivalence and LTV @ is that strong equiv-
alence is much easier to check for than weak equivalence, and that working with
LTV uncertainty typically leads to more tractable conditions than when working
with LTI or parametric uncertainty; to date, the only type of equivalence which has
yielded computationally tractable methods for determining whether two realizations
are equivalent and for constructing minimal representations is strong I/O equivalence
for LTV © [Beck, 1995], [D’Andrea, 1997]. Current research includes extending these
techniques and the earlier algorithms presented in this chapter, such as latent variable
elimination, to the more general case of strong equivalence for LTV ©. It is conjec-
tured that for uncertainty other than LTV © or when the notion of weak equivalence
is adopted, the question of equivalence and the characterization of minimality are
NP-Hard in the number of elements in ©, L + F.

The concepts introduced in this section have been used in other seemingly unre-
lated areas of research: in [Paganini et al., 1994], the analysis conditions in
[Megretski and Treil, 1993] were extended to the above types of uncertain systems; by
incorporating the set descriptions of white noise in [Paganini, 1993] with these analy-
sis results, an analysis condition for robust H, performance was derived. These results
were expanded to the general case of implicitly defined systems in [Paganini, 1995b).
How model validation and system identification can be unified using these represen-
tations is outlined in [Newlin, 1996], [Paganini, 1995b] and [Doyle et al., 1994a].
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Chapter 7

Hoo Optimal Interconnections

In this chapter, an optimal control problem for continuous time, linear time in-
variant systems is formulated and solved in a behavioral framework. This general
formulation, which includes standard H,, optimization as a special case, provides
added freedom in the design of sub-optimal compensators, and can in fact be viewed
as a means of designing optimal systems. In particular, the formulation presented
allows for singular interconnections, which naturally occur when interconnecting first
principles models.

7.1 Introduction

Invariably, most of the tools developed in the field of optimal control have relegated
the control design process to a secondary role in the design of systems: a control algo-
rithm is only sought after the system to be controlled has already been designed, and
the type and location of the actuators and sensors has been determined; equivalently,
given both sensor variables and actuator variables, a viable control strategy consists
of an algorithm which produces actuators signals from the measured variables, and
results in a closed loop system which achieves certain performance objectives. These
objectives may be I/O in nature (such as H,, Ha, or L), or transient oriented (such
as LQR).

For most applications, however, the level of performance which can be attained
by any control strategy is dictated by the dynamics of the plant [Doyle et al., 1992].
Thus from a system level, the above standard approaches are not optimal, since the
control design process is decoupled from the design of the rest of the system. The
result is that the control engineer is left with little freedom in how to control the
system, or an iteration must take place between the design of the system and the
design of the controller. Clearly, the optimal strategy would be to design the system
and controller at the same time, or in other words, to view the design of the controller
as part of the system design process.

In this chapter, a general optimization problem is posed where the objective is of
finding optimal relations between a system’s variables. This type of formulation is
very closely related to the behavioral framework for describing systems, outlined in
Chapter 6. The design process in this framework takes the form of finding additional
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Figure 7.1: Problem formulation

constraints on a system’s behavior such that the remaining allowable trajectories
satisfy given a priori requirements. The optimization criterion adopted in this chapter
is the rejection of £, bounded disturbances, which leads to a general version of the
Ho design problem for continuous time, linear time invariant systems described by
implicit equations.

Other research in this area includes [Trentelman and Willems, 1995], where a sim-
ilar type of problem formulation from a polynomial representation standpoint is ad-
dressed. The problem of integrated system and controller design using a successive
covariance approximation approach is addressed in [Skelton, 1995], and includes a
summary of the key issues which will drive future research into integrated system
design.

The chapter is organized as follows: The problem formulation is outlined in Sec-
tion 7.2, followed by a simple example in Section 7.3 which is cast in this framework.
The problem is solved in Sections 7.4, 7.5 and 7.6. In Section 7.7, the example prob-
lem of Section 7.3 is solved. In Section 7.8, the concepts of Full Information and Full
Control are introduced, followed by an example in Section 7.9.

7.2 Problem Formulation

Let system ¥, = {R R%*%teta B 1 be given, i.e., w is partitioned into four
parts, w = (z,d, ¢, [):
z: error signals which are required to be small;
d: exogenous disturbances, unexplained by the given model;
c: variables which are accessible for control purposes;
. latent variables, auxiliary variables used when constructing .
The objective is to find system ¥, = {R R%, B,}, acting on the variables ¢, such
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K

Figure 7.2: Standard I/O H, formulation

that ¥ := X, A ¥, = {R,R&= %teta Bl satisfies the following:

(P1) Unrestricted Disturbance: For the interconnected system, d is free:
Vde C™, Jz,¢,l € C®s.t. w € B. (7.1)

Equivalently, system X, does not provide any additional information about
the disturbance.

(P2) Stability:

d=0,weB= 7:lim z(t), c(t) = 0. (7.2)

Thus if one stops exciting the system, the error and control signals decay
to 0. Note that there is no such restriction on latent variables /; this will
be motivated by the simple example in Section 7.3.

(P3) Performance:

sup ]| < 1. (7.3)
de(C>NLy), ||ldl<1,weB

Note that the general performance specification ||z]| < v can be imposed
by appropriately scaling 2.

In general, a system Y. which only has access to variables ¢ will be referred to
as a compensator. If in addition ¥ satisfies constraints P1, P2, and P3, ¥, will be
referred to as an allowable compensator.

It is useful to compare the above problem formulation to the standard, I/O He
formulation of Figure 7.2. Variables z and d have the same interpretation, ¢ is a priori
partitioned into y and u, and there are no latent variables [. In terms of P1 through
P3, P1 is automatically satisfied by the imposed structure on K, P2 is typically
replaced by the requirement that the closed loop system be internally stable, a more
stringent requirement as shall be demonstrated later, and P3 reduces to |G  K|| < 1.
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Figure 7.3: Suspension design

7.3 Example

The following simple example can be used to illustrate the main differences be-
tween the problem formulation outlined above and standard H., design. It consists
of a one degree of freedom suspension design; an explicit solution to this problem
is provided in Section 7.7. Consider the setup of Figure 7.3. The goal is to design
system X, the suspension, in order to achieve certain performance objectives which
will be described shortly. Variable m denotes the sprung mass, or the mass of the
cab where the passengers will ride. X is the mechanism which is to be designed; it is
restricted to be a relation between F, and x — y. The spring and the damper model
a tire, which is in contact with the road.

The equations describing the system and the performance objectives are as follows:

0 = F.—mi (7.4)
0 = F+by—7)+kly—r)

a = F.

cg = T—y

21 = x—r (tracking)

29 = T (comfort)

d = 7.

The first two equations are the equations of motion about an equilibrium point.
The second two equations dictate which variables system Y. has access to. The
next two equations describe the performance objectives; the sprung mass is required
to track the road, while simultaneously be subjected to small values of jerk (the
Jerk, or third derivative of position, is to a first approximation a good measure of
passenger discomfort, and is in general a quantity which should be kept small in the
design of mechanical systems [Shigley and Uicker, 1980]). The last equation models
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the allowable road disturbances; restricting d to be an L, disturbance of unit norm
restricts r to be small at high frequencies and allows r to be large at low frequencies.
This corresponds to restricting large amplitude road disturbances to be gradual (hills),
while allowing smaller amplitude disturbances to be sharper (potholes and speed
bumps). Also note that when d = 0, r(t) = Cp + Ct for some constants Cy and
C1; this corresponds to a constant climb, which should be allowed in the equations of
motion.

It is clear from this example why the definition of stability should not encompass
the latent variables: 7 should not be restricted to decay to 0 when d = 0. In general,
if one is concerned about the size of a latent variable, it could be penalized and be
made a part of z.

There are several reasons why standard H., design cannot directly handle this
problem. The first is that there is no way to manipulate the above system into
the form of Figure 7.2 with G proper. This precludes the use of standard state-
space methods for solving the problem. A further constraint is that the resulting
design must result in a singular interconnection with the plant; equivalently, the
interconnection must impose algebraic constraints on the states (this is demonstrated
in Section 7.7). This is not allowed in standard feedback control. It should be noted
that by choosing appropriate weights for the various signals (for example, by first
constructing a non-proper G, and then low-pass filtering all transfer functions which
are not proper by a sufficient amount), one can approximate the problem with one
which fits the setup of Figure 7.2. It is very unnatural to do so, however, and as shall
be demonstrated, unnecessary as well.

7.4 Dual Representations

It will be useful to introduce the notion of a dual ON representation for a system
Y. Given an observable representation M, where it can be assumed without loss
of generality that the A matrix is invertible by Lemma 6.2, the following equations

capture the behavior B:
2)(:]-a:]
v Y1 (7.5)

QI :‘>z

HE =AM

It can be verified that the behavior preserving transformations of Lemma 6.2
apply to dual ON representations as well. The definitions of observable, dependent,
and minimal can be applied to dual ON representations; it can be shown that these
definitions are satisfied for an ON representation if and only if they are satisfied for
its dual.
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7.4.1 Stability Conditions
By the following identities:

[AE'SIJZ;] [501 ?H“i“g_”g}[ﬁ l;],s;éo, (7.6)

[gg} B [ég][ﬁﬂ (7.7)

and Lemma 6.4, the following corollary may be used to characterize stability:

Corollary 7.1  Given observable dual representation matriz M, ¥ is stable if and

only if [ A 851 g J is full column rank Vs € C* /{0} and D is full column rank.

7.4.2 Constructing AR Representations from Dual ON Rep-
resentations

When the problem formulation of Section 7.2 is solved in Section 7.5, the resulting
Y. will be in dual ON form. The following procedure may be used to construct an
AR representation given a dual ON representation.

Let B be captured by the following observable dual ON equations:

r = A+ Buw, (7.8)
0 = Ciz+ Dw.

Let matrix F' be such that A+ FC is nilpotent. The following equations capture the
same behavior as (7.8):

© = Ai+ Bw=(A+ FO)i+ (B+ FD)uw, (7.9)
0 = Ci+ Duw. (7.10)
Let L be the dimension of the largest Jordan block of A. Define the following:
RQ = D, (711)
R, = CA™'B, 1<I<L. (7.12)

Proposition 7.2 R(%)w = 0 is an AR representation for ¥.

Proof: If w satisfies (7.9) and (7.10), repeated differentiation of (7.9), substitution
into (7.10), and the fact that A* = 0, implies that w satisfies R(Lyw = 0. Now
assume that w satisfies R(l—id;)w = (. Define

+ -+ Buw. (7.13)

It follows that (7.10) is satisfied. Furthermore, since A = 0, (7.9) is satisfied as well.
n
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7.5 Problem Conversion

A solution to the problem of Section 7.2 is presented with the assumption that
the compensator 3, forms a feedback interconnection with X,. It is shown below,
however, that a pre-compensating system can be first interconnected with ¥, to make
this assumption unrestrictive.

Theorem 7.3 Let ¥, be an allowable compensator. There exist systems S, and 3,
such that

1. . AYX, is an allowable compensator.
2. %, and ¥, A S, form a feedback interconnection.

3. ToAS AT =T, AN AL,

Proof: Let R,(§) = [ RZ(§) RY(E) RL(E) R:(€) ] be an AR representation for
¥p. Using the Smith form decomposition for polynomial matrices (see Section 2.1.4)
and the equivalence of AR representations under left multiplication by unimodular
matrices [Willems, 1991], it follows that R,(£) can be assumed to have the form

R5(&) RG(&) R,(8)  Rp(9)

, (7.14)
0 0 0 D(R(E)

Rp(f) =

where [ Rz (€) RE,(€) RL,(€) ] is full normal row rank, RS,(€) is right invertible,

and D(§) is square and full normal rank.
Define ¥ by AR representation RJ,. Interconnecting X, with . results in the fol-
lowing AR representation for the interconnected system:

R5(&) Ry (&) Ru(§) Rp(6)

0 0 0 . (6) (7.15)

In the language of [Willems, 1991], this pre-compensator has the effect of removing
the finite dimensional uncontrollable behavior which involves only variables c¢. Since
the behavior of £, A £, A £, is a subset of the behavior of ¥, A ©,, it follows that
requirements P2 and P3 are satisfied for compensator £, A Y,. Furthermore, since the
two closed loop behaviors differ only by a finite dimensional subspace, requirement
P1 must be satisfied as well. This proves part 1.

Let R.(£) be an AR representation for £.. An AR representation for S, AS AY, s

Ry (&) Rp(§) Ry, (€) RS (€)
0 0 0 Ry |- (7.16)
0 0 0 R
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By the rank conditions on [ R (£) R% (£) R (€) ] and Ry, there must exist poly-
nomial matrices Uy (§) and Us(€) such that

Roy(€)

oo ][ R g
P ~ | & : 7.17
Uie) ) || R© N (717)

where Us(€) is a unimodular matrix and

)

X 7.18
Re(€) T

is full normal row rank. Thus system . defined by AR representation R.(€) forms
a feedback interconnection with X, A ., and S,ASAS, = =T, AS A S, proving
parts 2 and 3. [ |

Thus by first interconnecting the given system X, with pre-compensator ¥, and
forming 2 = %, ALX,, one need only consider compensators 3, which form feedback
interconnections with E Furthermore, if Zc is an allowable compensator for Z
S A S, is an allowable compensator for X,.

One of the major complications which arises in the problem formulation of Section
7.2 is allowing singular interconnections, since they result in algebraic constraints
on the states. This problem is circumvented by working with dual representations;
as will be shown, algebraic constraints take the form of uncontrollable modes at
s = 0 for a related I/O state-space representation. This characterization of singular
interconnections vastly simplifies the problem at hand, and allows one to convert it
to an almost standard ., problem with minor modifications. The solution to this
associated Ho, problem may be found in Section 7.6.

It will be assumed that pre-compensator ¥, has already been applied to the given
system, as per Theorem 7.3. The reader is referred to [Kailath, 1980] for details on
how to construct an AR representation for £, as per equation (7.14). It will also
be assumed that ¥, has no latent variables. The removal of these variables may be
accomplished with the algorithm in Section 6.5.

Let M € R #72)%(np+0:+490+42) he 3 minimal dual representation matrix for X, and
M, e R(”C tre)X(rete) he g dual representation matrix for the candidate compensator
Y. Let X = ¥, A X, be the resulting feedback interconnection. By Lemma 6.5 and
equation (7.5), the following is a dual representation matrix for ¥:

- Ao (7.19)

=
I
o HNo _g>x
Do o
cF o
o
=

o
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The following lemma is central to converting the problem data to a more usable
form:

Lemma 7.4 If an an allowable compensator ¥, exists, there exists invertible matriz
W such that the behavior of ¥, can be captured by the following equations:

Tp .Ci'p A Bl BQ
z = szo d |, M;{O =|C, Dy Dy |, c=W"! [ z } .
U Cy Dy 0O (7.20)

Furthermore, one need only consider compensators X, which are captured by the fol-

lowing equations:
Ze 10| Te 10 A B
= M = — — 721
][5 ] e =2 3] =

Proof: By Lemma 6.5, M is not a dependent representation. By requirement P1,
the number of free variables must be at least g4; by Corollary 6.3 this implies that
Tp+7e < ¢ + ge. Stability requirement P2, on the other hand, implies that r, +r, >

¢z +¢c by the rank condition of Corollary 7.1. Thus r. = ¢, +¢.—r,, and by Corollary
7.1, the following matrix must be square and invertible:

Dz Dt
PP 7.22
K- (7.22)
Since Dg must have full column rank, by the behavior preserving transformations of
Lemma 6.2, it can be assumed that

YA I Ae Dcl
D:[ ] Dp:{D%’}, (7.23)

where D;Z must be full row rank. There exists, therefore, invertible matrix W such
that D§2W‘1 = [ 10 } Define the following change of co-ordinates for variables ¢:

Lﬂ == We=: [Eﬁ;}c (7.24)

where the size of variable y is equal to the number of rows of nyz- Finally, partition
[752 = [ I 0] induces partition D; = [ DY D |, where D¥ must be square and
invertible. It now follows that by applying the behavior preserving transformations
of Lemma 6.2 as in Section 6.2, X, can now be captured in dual I/O form with y and
z as outputs and d and u as inputs, and 3; can be captured in dual I/O form with
v an output and y an input, as stated in the lemma. Matrices M9 and M can
readily be determined from Mp and M,; the details are omitted. [ |
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{zll—é ,’iJ—m

Figure 7.4: 1/O representation

[;]«L;‘i ij—m

Figure 7.5: Dual problem

Lemma 7.4 has a simple interpretation: for there to be a solution to the H..
Optimal Interconnection problem, there must exist a partition of control variables ¢
into y and u such that the behavior of ¥, can be captured by the possibly non-proper,
non-standard I/O map of Figure 7.4.

Given this representation, a solution to the H., Optimal Interconnection problem
may be obtained by applying a slightly modified version of the standard H., solution
in [Glover and Doyle, 1989] to the system of Figure 7.5. Note that the system of
Figure 7.5 is constructed purely for technical reasons; there is no natural physical
interpretation for it.

Theorem 7.5 Let G be the system corresponding to state space representation

A| B B,
Cl Dll D12 3
CQ D21 O

as per Figure 7.5. There exists an allowable compensator L. if and only if there exists
system K with state space representation

QI :‘>I
S B

such that

I. K internally stabilizes G except for possible modes at 0;
II. ||GxK]| <1.
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If such a K exists, a dual representation matriz for an allowable ¥, is

T A BW,; T .
=< _ . 7.2
{0} lC(DWr“Wz)}[C} (7.25)
Proof: Let ¥, be an allowable compensator. By Lemma 7.4 and equation (7.20),
the following dual I/O representation for ¥ may be constructed:

x A B .
z | =| ¢ D {d } (7.26)
OC EC

where the above matrices can be determined from the matrices in Lemma 7.4; the
details are omitted. By Corollary 7.1, the eigenvalues of A must be in C~ U {0}
since (C' A) is an observable pair; this proves part I. There exists, therefore, a state
transformation which yields the following equations:

Ca, ] [A 0 0 0 B ][ i ]

Lo, 0 ‘{1011 AO 1{1013 B;(h ‘i.ol

L0, = 0 A021 A022 4023 B02 x.oz ’ (727)
To, 0 0 0 Ay, 0 To,
Lz | ¢ ¢ o0 Ci D* || d |

where A, is Hurwitz and Ay, A, , Ag,, are nilpotent. Equation 2o, = Ag,, a0, implies
that zp, = 0; these are the algebraic constraints which result from a singular inter-
connection. Thus singularity is equivalent to uncontrollable modes at 0. States zg,
are controllable from d, but unobservable from z; they are, however, observable from
y and/or u; these states correspond to derivatives of d appearing in the closed loop
expressions for y and u (note that this does not violate the stability requirement).
The o, states are controllable from d and observable from z. If any of these states
are present, derivatives of d will appear in the closed loop expression for z, violating
performance requirement P3.

Given that there are no zq, states, and since fls is invertible, the following state-space
I/O map from d to z may be written:

[ ‘ZS ] 4 4715, { “25 } . (7.28)

C:A7Y D* - C#A;' B,
Furthermore, P3 is satisfied if and only if there are no xy, states and

~ ~ ~ A “ -1 . ~
sup & (Dz —CEATIB, — CFA (jw[ - A;l) A;IBS> - (7.29)
weR
o PN ~ A o -1 . ~
sup & (Dz — CIA7'By — jwC? AT} ([ - ju‘;A;l) A;lBs> -
WER
“ N N\ 1
sup & <DZ+C§ (ij~A) Bs) <1
wEeR
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This proves part II. The sufficiency of conditions I and II, and the given representa-
tion for an allowable 3., follow directly from the previous arguments and Lemma 7.4.
]

Under some mild assumptions, the solution to the H., synthesis problem of The-
orem 7.5 is presented next.

7.6 H, Solution

A Riccati based solution to the synthesis problem of Theorem 7.5 is presented in
this section, in the style of [Doyle et al., 1989]. The development will closely parallel
that in [Glover and Doyle, 1989, and specific references to this work will be made to
streamline the proofs and arguments.

The techniques used to solve this problem are very similar to those in
[Mita et al., 1993] where an H, control problem with unstable weighting functions
is solved. In fact, the derived conditions in [Mita et al., 1993] are equivalent to those
presented in this section, even though extra assumptions on their problem data are
made. Similarly, in [Copeland and Safonov, 1995], a general synthesis procedure is
outlined where pre-compensators are used to cancel zeros on the jw axis; this ap-
proach, however, cannot be applied in general to the problem of Theorem 7.5.

In the setup of Theorem 7.5, a controller which internally stabilizes the system
with the exception of possible modes at s = 0 will be termed an admissible controller.
Note that the state-space equations for the closed loop system G % K are:

A+ B,DCy B,C By + ByD Do,
BC, A BDy, : (7.30)
Cy + D;3DCy D1,C ’ Dy + Dwf)Dm

For K to be admissible, any modes at s = 0 must be either unobservable or un-
controllable (or both). As is shown in [Zhou et al., 1995], the unobservable modes
at s = 0 of (7.30) must correspond to the invariant zeros at s = 0 of G2, and the
uncontrollable modes at s = 0 must correspond to the invariant zeros at s = 0 of

G, where
Al By
Cy | Do

These violate the invariant zero assumptions in [Glover and Doyle, 1989], as will be
discussed next.

G = : (7.31)

A| B
, Gy = :
Cy | Dy

7.6.1 Assumptions

The following assumptions are made on the problem data:
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D
(A2) D1, full column rank with [ Dy, D ] unitary, Dy full row rank with { 2 }

D,
unitary.
i B
(A3) A—ju B full column rank Vw # 0 .
| C1 Do |
o B
(A4) I P Rl row rank Yu # 0.
| G2 Dy |

Condition (A3) is equivalent to (D% C;, A — B3 D},C}) having no purely imaginary
unobservable modes, except possibly at s = 0. A Kalman decomposition induces the
following state transformation S:

AF[ AFI
A7 = LT g-1Ag, (7.32)
_A21 22
By By |
B B = B | N
o | _ e e | _[a],
c,’ | Cy Cy | Cy
In this co-ordinate system,
_ A7 0
picl' =[ ™ o], (4" - B Dpey) = }
* X (7.33)

where &7 is nilpotent, and (C’FI, /_lm) has no purely imaginary unobservable modes.
Similarly, condition (A4) is equivalent to (4 — B, Dj,Cy, B D* ) having no purely
imaginary uncontrollable modes, except possibly at s = 0. State transformation T is
defined analogously to S.
The final assumption on the problem data follows, presented last since it is more
natural to do so in the appropriate co-ordinate system:

(A1) (41, , By, ) stabilizable, (Cyy, Ajy) detectable.

Assumption (A2) is equivalent to requiring that D;, and Dsy; be full column rank
and full row rank, respectively, by the freedom in the change of co-ordinates of equa-
tion (7.24). In general, assumptions (A2), (A3), and (A4) are not necessary for a solu-
tion to exist, but they allow the Riccati based approach in [Glover and Doyle, 1989]
to be used. (A1), however, is necessary for a solution to exist. If not satisfied, it
can be shown that all closed loop maps will have unstable modes, with any modes
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at s = 0 appearing in the map from d to z. The simplest method of relaxing
assumptions (A2), (A3), and (A4) is to modify the various H. LMI solutions in
[Gahinet and Apkarian, 1994] and [Packard, 1994]. This is a topic of future research.

The only differences between the above assumptions and those in
[Glover and Doyle, 1989] are the relaxation on the invariant zeros at s = 0 of G,
and Goy;; this is done to allow the closed loop system to have unobservable and/or
uncontrollable modes at s = 0, as previously discussed.

7.6.2 Equivalence of Special Problems

Most of the complications which arise from relaxing the invariant zero at s = 0 as-
sumption can be eliminated by showing the equivalence between two Full Information
problems:

A B, By
D
(FI) Given G = le %1 012 , find an admissible K such that
IGxK]| < 1.
Ay, | Bl By
FI
— — D —
(FI) Given G = C}l 011 DOIQ , find a stabilizing K such that
IG+K] < 1.

Associated with problems FI and FI are Hamiltonians H., and H ., respectively;
their definitions may be found in [Glover and Doyle, 1989], equation (3.1). If H, €
dom(Ric), we will denote X, := Ric(H,,), and

X
Xy =877 0 St
0 0

Note that Xo is not defined in terms of Ric(Hy); when H,, € dom(Ric), however,
it can be shown that X = Ric(H).
The following lemma outlines the equivalence of the two problems:

Lemma 7.6 FI has a solution if and only if FI has a solution. Furthermore, all ad-
missible K such that ||G x K| < 1 are given by the formulas in
[Glover and Doyle, 1989], Theorem 8.1 (c).
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Proof: Assume, without loss of generality, that the state-space data for FI is in
the same co-ordinates as FI, i.e., S = I. The superscript 7 will thus be dropped to

simplify the notation. Let
AlB
C|D

be a candidate controller for FI, resulting in the following equations:

K=

.’ii’l = Auxl -+ Blld -+ Bgl (DBCQJ?Q + U), (734)
z = C1l$1 -+ Dlld -+ D12 (DT2012SEQ + u),
$-2 = AQl.Q?l + AQQSL'Q -+ Blgd -+ BQQU,

r = A.’i’ + Bll'l -+ BQQ?Q + Bgd7
u+ D5Choxy = C&+ Dizy + Doxy + Dyd + D3,Cho.

Assume K solves FI. Then defining K by the last three equations of (7.34) results in
|G*K]| < 1. Note that it isn’t clear whether K is an internally stabilizing controller,
since there could be closed loop modes at s = 0. By construction, the following
matrix is full column rank

A By

C'11 D12

3

it follows that (u + D7,C1o23) € L3 Vd € £3. Thus a minimal realization for K will
internally stabilize G.

Conversely, if K = [ K, K4 ] solves FI, it follows that

Ki= | K, ~DpCy K| (7.35)

is admissible since (A9 — By D3,C12) is nilpotent, and the 2, states are unobservable.
Furthermore, |G x K|| < 1.

By equations (7.34) and the above arguments, it is clear that any K which solves
FI can be decomposed into the form of (7.35), where K = [ K; Kj | solves FL
It thus follows that if one could generate all K which solve FI, all K which solve
FI could be generated as well. It can readily be verified that the equations in
[Glover and Doyle, 1989] Theorem 3.1 (c) give this parameterization. n

Full Control problems FC and FC, the duals of the Full Information problems FI
and FI, can be defined analogously, along with J, Jo, and Y. It can be shown
that if Jo, € dom(Ric) and Yo = Ric(J), the corresponding definition for Yy, is
Yo O

0 0
The equivalence of the FC and FC problems follow by duality.

Yo =T

*
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7.6.3 Output Feedback

The formulas for all admissible controllers and the conditions for their existence are
virtually identical to those in [Glover and Doyle, 1989], Theorem 4.1. In the interest
of clarity, the formulas and conditions for D;; = 0 are given, although the proofs
presented hold for Dy; # 0. The formulas for the Dy; # 0 case may be generalized as
in [Glover and Doyle, 1989], Theorem 4.1.

Theorem 7.7 Suppose G satisfies assumptions (A1) through (A4).

1. There exists an admissible K such that |G x K[| < 1 if and only if
(a) He € dom(Ric), with X o = Ric(Hy) > 0;
(b) Jo € dom(Ric), withY o, = Ric(J) > 0;
(c) p(XooYo) < 1.
2.  Given that the conditions of part 1 are satisfied, then all rational admissible

controllers K satisfying |G x K|| < 1 are given by K = (K, x ®) for arbitrary
® € RHoo such that |®|| < 1 where

A+ BF + By | —Z3'Ly Z3 (B + Luy)
Ka = = F2 0 I s
—<CQ -+ Flg) I 0
Zo = (7.36)
F = BiXe
L —(DTQCI + B;Xoo)
L= | VGt ~(BiDjy +YuC5) |

Note, in fact, that the only difference between Theorem 7.7 and Theorem 4.1 in
[Glover and Doyle, 1989] is that only Hamiltonians H,, and Y, are required to be in
dom(Ric), not Hy and Y,,. Also note that the coupling condition is on X, and Yoo,
not on X, and Y. Xo and Yo can be constructed from X, and Y, as outlined
earlier.

Proof: The main idea in [Glover and Doyle, 1989 is to convert the output feedback
problem to an output estimation problem, given that the Full Information problem
has a solution. The solution to the output estimation problem, in turn, can be derived
from the Full Control problem. This approach can also be used to prove Theorem 7.7,
the only technical difficulty is allowing modes at s = 0, which must be uncontrollable
and/or unobservable throughout the development. Thus one needs to ensure that the
arguments used throughout the proofs in [Glover and Doyle, 1989] carry over when
internal stability is relaxed to allowing modes at s = 0. This has already been done
for the Full Information problem in Lemma 7.6, and the Full Control problem by
duality.
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It can be verified that the results on the disturbance feedforward and output estima-
tion problems carry through once the results for the Full Information and Full Control
problems are established; the main observation is that Lemma 3.4 in
[Glover and Doyle, 1989 is still valid, since the modes at s = 0 of Ar are unob-
servable ([Glover and Doyle, 1989], equation (3.22)). The conversion from an output
feedback problem to an output estimation problem follows immediately as well. The
last step is then to solve the resulting output estimation problem, and establish the
coupling condition and formulas.

The generalized plant for the derived output estimation problem is the following:

A+BF | Bl B
Gy 1= —Dply, | Dy Dy |- (7.37)

As shown in [Glover and Doyle, 1989), it is required to solve the corresponding Full
Control problem. Assume, without loss of generality, that we are in the FC co-ordinate
system. Gy, then has the following form:

Au+BuFy A+ ByFy | By By
G Aoy + BioFi1 Ay + BioFio | By Ba (7.38)
tmp . .
’ — D1y F ~DysFy, | Diy Dy

Co+ Dy Fyy Coy+ DyFiy | Dy O

It follows that (Gymp)21 inherits the same invariant zeros of Go;. The corresponding
Full Control problem to be solved (by Lemma 7.6 and duality) is therefore

Ay + B Fy 1 By, [ I o }
Dy [0 1]], (7.39)
Dy [0 0]

e F'C

Gtmp = ~Dp Fy
Co1 + Dy Fiy

with corresponding Hamiltonian jtmp. We thus need to establish that 7tmp € dom(Ric)
and that Yy, = Ric(Jimp) > 0. In [Glover and Doyle, 1989], the following condition
is derived:

I — XY
Yoo

= (A+ LO), (7.40)

J
tmp Yoo

I— X, Y, }

where Jyy, is the Hamiltonian associated with the Full Control problem of (7.38).
Because of the co-ordinate system chosen, this condition implies that

_ I - (XY
JW{ <?>n

o0

A*, (7.41)

. ] - (Yoo)llyoo
Y

e}
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where A is associated with the FC problem, and is Hurwitz. It then follows that
Vimp = Yoo (I = (Kao)11¥oo) | 2 0 == p((Xoo)11Vao) < 1 = p(NooVa) < 1.
Y imp
0
[Glover and Doyle, 1989]. |

Furthermore, defining Y, :=

0
0 }, yields the required formulas, as per

7.7 Example Revisited

We return to the example first outlined in Section 7.3. The following values for
the system parameters are chosen:

m =1, b= 20, k = 100.

Furthermore, 2; is scaled by a factor of 100 relative to z,.

Equations (7.4) are in AR form. Using the procedure of Section 6.1.1 to construct
an ON representation, the procedure of Section 6.1.2 to make it minimal, and finally
the procedure of Section 6.5 to eliminate latent variables F,, x, ¥ and r (which are
properly eliminable), results in a representation matrix with the following D matrix

0 —0.0082 0 0 —0.0001
D=0 00100 0 0.0087 —0.9998 (7.42)
0  0.0002 0 —0.5773 —0.0151

and variables z1, 29, d, ¢1 and cy. It follows from Section 6.2 that the only one way
to write the above as a proper I/O map is with z; and d as inputs. Furthermore,
since the allowable control strategies must only involve ¢; and ¢, it follows that all
interconnections must be singular. Thus standard H, tools cannot be applied to this
problem.

By next constructing a dual representation matrix as in Section 7.4, applying the
procedure of Section 7.5 to convert it to the form of Theorem 7.5, using the Ho
solution of Section 7.6, and constructing an AR representation from the resulting
dual ON representation for £, via Section 7.4.2, the following form for the optimal
system X, is obtained:

1.3379(i — §j) + 10.1164(2 — 3) + 17.1342(x — y) + 0.1623F, + F. = 0,
(7.43)

with the corresponding optimal performance level of v = 5.84. Defining kopt 1=
17.1342, b,y := 8.2417, and I/O map F by transfer function i‘zsfégl, the following is
an equivalent expression for (7.43):

Fo= ~kopi(z —y) — bopt (& — §) + F(z — y). (7.44)

Thus the optimal system may be implemented as a spring with coefficient Kopt, @
damper with coefficient b,,;, and an active component F (note that this parameteri-
zation is not unique. The criterion used to extract k,,; and bopt Was that the resulting
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Synthesis ’ k I b ] active component | v achieved
Ho optimal | 17.13 | 8.24 YES 5.84
Ho optimal | 17.13 | 8.24 set to 0 6.11
Search 16.70 | 7.55 NO 6.00
Hoo, no tire | 16.06 | 6.23 NO 6.23

Table 7.1: Comparison of various designs

transfer function be proper with a DC gain of 0). For comparison purposes, the
resulting performance level without F is v = 6.11.

In order to determine how close the above design comes to predicting what the
optimal values of spring and damper coefficients are in the absence of F, a search was
performed by gridding the space of spring and damper coefficients, and determining
the Ho norm for the resulting designs. The optimal design was a spring coefficient
ksearcn = 16.70 and a damper coeflicient bseqren, = 7.55, with a resulting performance
level of v = 6.00 .

For this simple example, the optimal H., design essentially gives the parallel inter-
connection of a spring and a damper as the optimal compensator X, the suspension.
The difference between this design and that obtained by searching for optimal spring
and damper values was less than 3%. This is mainly due to the simple performance
specifications and road disturbance profile, which result in a relation between F. and
x — y which can be approximated very well by a spring and a damper. In fact, by
residualizing the tire dynamics (equivalently, by setting y = r), the optimal H,, de-
sign results in a performance level of v = 6.23 a value of 16.06 for &, a value of 6.23
for bept, and a value of 0 for F. The various results are tabulated in Table 7.1.

7.8 Full Information and Full Control in a Behav-
ioral Context

In the previous sections, a solution to the H., Optimal Interconnection problem
was presented which consisted of two Riccati equations and a coupling condition.
Associated with each Riccati equation was a special problem from standard .,
theory: Full Information and Full Control . Since the original problem data was
converted to a form for which the standard H tools could be applied, the physical
meaning of these special problems is not readily apparent. In this section, the concepts
of Full Information and Full Control are extended to the behavioral framework, and
the implications of these definitions are explored. It is shown that these definitions
are more fundamental than those given for the standard I/O case; in particular, the
concept of state is not required and no a priori partition of the system variables into
inputs and outputs needs to be performed.
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Figure 7.6: Full Information observer

7.8.1 Full Information and Full Control in the I/O Setting

In the Full Information problem, it is assumed that the controller has full access
to the system state (denoted z) and the disturbances d. In the Full Control problem,
it is assumed that the controller can influence the state equations (the ones involving
&) and the output error equations (the ones involving 2) independently.

Given a system G, it can readily be shown that if the controller has access to z and
d, the associated Full Control problem has a trivial solution; similarly, if the controller
can influence the state and output error equations independently, the associated Full
Information problem has a trivial solution. In each of the above two cases, only one
Riccati equation needs to be solved, and the coupling condition is trivially satisfied.

In the behavioral framework, there is no distinction between inputs and outputs,
and the concept of state is not an inherent property of the system. Thus one may ask
the following question; is there a natural notion of Full Information and Full Control
in the behavioral framework? If such a notion exists, it must not depend on I/0O
partitions, and be state-space independent. We motivate below how the concept of
state may be removed from the Full Information problem in the I/O setting, as a
prelude to the results of Section 7.8.2.

Stateless Full Information

A standard H, problem reduces to a Full Information problem if an observer
can be constructed which yields z and d, as shown in Figure 7.6. In this case, only
one Riccati equation needs to be solved, since the associated Full Control problem
is trivially satisfied, as previously discussed. As will be shown, the following is an
equivalent condition: can an observer be constructed which yields d and 2? We have
the following proposition:

Proposition 7.8 An observer can be constructed which yields x and d if and only
if an observer (possibly improper) can be constructed which yields » and d.

Proof: Let
A| B B
Cl Dll D12
02 D21 D22
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Figure 7.7: Full Control pre-compensator

be a minimal state space representation for G, with inputs d and u, and outputs z
and y. Let an observer which yields  and d exist. Since z = Ciz + Dy;d + Disu,
one can recover 2z as well. Now assume that an observer which yields z and d exists.
Note that

Cx:[;]—D{Z], (7.45)

where all the variables on the right hand side are know. Thus by repeatedly differen-
tiating the above equation and substituting for &, and since (C, A) is an observable
pair, one may recover state x. n

Full Control

A problem reduces to a Full Control problem if a pre-compensator can be con-
structed such that u; can be injected into the state equations and us can be injected
into the output error equations, as shown in Figure 7.7. Unlike the Full Information
problem, however, there is no simple definition of Full Control which does not involve
the state; this is a shortcoming of the I/O framework, as shown below.

7.8.2 Full Information and Full Control in the Behavioral
Setting

We proceed to define Full Information and Full Control in a behavioral context.
Let ¥, be given, and define v := (2,d). The starting point is a minimal AR repre-
sentation for the behavior B,:

R'(=)v = R(=)c (7.46)

Note that all the latent variables in ¥, have been removed (see Section 6.5). We
have the following definitions:

Definition 1  The Ho, Optimal Interconnection problem is a Full Information prob-
lem iof R*(s) is full column rank Vs € C*.
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Definition 2 The H., Optimal Interconnection problem is a Full Control problem
if R°(s) is full row rank Vs € C*.

We now discuss the ramifications of these definitions:

Full Information

Assume that R"(s) satisfies the Full Information rank condition. By Smith de-
composing R"(s) and left multiplication by a unimodular matrix (which does not
change the behavior, see [Willems, 1991]), it can be assumed that

R(s) = {Aé‘s)]wsy (7.47)
R(s) = {gzgz” (7.48)

where A(s) is square and invertible for all s in C*, V (s) is unimodular, and RS(s) is
full normal row rank. R$(s), in turn, can be decomposed as

R5(s) = [ Aals) 0] Vals) (7.49)

where Ay(s) is square and of full normal rank, and Vj(s) is unimodular. Define
¢ = Va(4)e =: (c1,c2). Thus R§(4)c = 0 is equivalent to Ap(4)c; = 0. Note that
this change of co-ordinates in no way affects the feasibility of finding a solution; if
Rg(%)é = 0 is an allowable compensator in the new set of compensator co-ordinates,
then RS(£)Va(4)c = 0 is an allowable compensator in the original compensator co-
ordinates. Similarly if R¢(Z)c = 0 is allowable in the original co-ordinates, then
R(L)V,1(4)e = 0 is allowable in the new co-ordinates. As is argued in Section 7.5,
a pre-compensator of the form ¢; = 0 can be applied to the system without changing
the feasibility of finding an allowable compensator. Thus a Full Information problem
can always be converted to the following form:

A(%)V(%)v - RC(%)C (7.50)

after a possible change of compensator co-ordinates and applying an appropriate pre-
compensator.
Given ¢, let ¢ solve the following system of equations

A(%)V(%)@ = RC(%)C. (7.51)

Thus

A(%) (V(%) (v — @)) =0, (7.52)
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and by the assumed structure of A(s), V/(4)o jma V(4)v. Since V() is unimodular,

this implies that © "% 4. Thus by having access to control variables ¢, one may
infer what variables v are, resulting in knowledge of all the system variables. Note
that this is exactly the interpretation given in Section 7.8.1.

There is a connection between the Full Information problem discussed here and
the behavioral version of H., explored in [Trentelman and Willems, 1995]; in their
formulation, RY(s) is assumed to be the identity, which is a special case of the Full
Information rank condition.

Full Control

Assume that R°(s) satisfies the Full Control rank condition. Using a Smith de-
composition, it can be assumed that

Re(s)=[ A(s) 0]V(s) (7.53)

where A(s) is square and invertible for all s in C™, and V' (s) is unimodular. Define
('g—) =1 (61702). Thus

R (=)v=A(=)q (7.54)

and ¢y does not affect v.
Given ¢4, let ¢; solve the following system of equations

d

A((—ﬁ)cl = ¢]. (7.55)
Thus
., d
R (dt)v = {4, (7.56)

and by the assumed structure of A(s), & ‘—3° 0 = ¢; '—%° 0. Thus one can fully

control all the equations which involve variables v, and control variables ¢; approach
the desired values ¢;. It is clear why there is no simple I/O interpretation of the above
result, as mentioned in Section 7.8.1; controlling the equations involving d and z has
no simple counterpart in the I/O framework. The duality is apparent, however; in
the I/O Full Information problem, it was shown that estimating z and d is equivalent
to estimating 2 and d. For the Full Control problem, controlling z and z is equivalent
to controlling the equations involving d and z.

7.8.3 Connections with Riccati Solution

We show in this section that if the Full Information rank condition of Definition 1
is satisfied, the I/O Full Control problem FC of Section 7.6.2 has a trivial solution
and only the Riccati equation associated with the I/O Full Information problem
FI needs to be solved. Similarly, if the Full Control rank condition of Definition 2
is satisfied, the I/O Full Information problem FI has a trivial solution and only the
Riccati equation associated with the I/O Full Control problem FC needs to be solved.
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Full Information

Let equation (7.50) be given, where A(s) is square and invertible for all s in C*
and V(s) is unimodular. By Lemma 7.4, there exists a dual representation for the
behavior B, of the following form:

T A 0 B1 BQWQ Z
0 - Cl o~ D11 D12W2 d 5 (757)
0 Cy 0 Dy W,y .

We have the following Theorem:

Theorem 7.9 Do is square and invertible, and the eigenvalues of (A — Bng"iCQ)
have negative real part or are zero. Furthermore, the I1/0O Full Control problem FC' of
Section 7.6.2 has a trivial solution.

Proof: That D, is square follows directly by setting ¢ = 0 in equation (7.57) and
by noting that A(s)V(s) is square. First assume that Dy is not invertible. Then
there exists vector dy such that Dydy = 0; then (z,z,d,c) := (Bydy, D11dy, dg, 0)
satisfies equation (7.57), and thus

A(0)V(0) [ Dud ] =0,

do

a contradiction. Now let sq # 0 be an eigenvalue of (A — B, D5;'C5) with positive or
zero real part. By Schur complement arguments, this implies that there exist vectors

xg and dgy such that
[ A~ 30] B1 :I |: ) ] .
Cy Dy, do

Thus (z, z,d, ¢) = (sozo, C120 + D11dy, do, 0) exp(sy 't) satisfies equation (7.57). Note
that if dg = 0, then Cyzy # 0 by the minimality of the dual representation in equa-
tion (7.57); thus
Alsy )V (s57) { C“”OZD ndo ] =0,
0

a contradiction.

Note that since D is invertible, it can be assumed to be unitary without loss of
generality (pre-multiply the last row of equation (7.57) by D', for example). The
detectability assumption in (A1) and the rank condition in (A4) are satisfied as well.
Since the eigenvalues of (A — Blegél Cs) have negative real part or are zero, it follows
that the eigenvalues of (4], — By, D3,Cy, ) must have negative real part. Applying
the following control strategy to the I/O Full Control problem

@, = —ByDi, (7.58)
112 - “‘Dlnglg (759>
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results in the following closed loop equations:
Fo= (4y - By DyGy )i (7.60)
FC FC gy ~FC\ .
= (Cy — Dy D30y )2 (7.61)

™2

Since the closed loop eigenvalues have negative real part, the above constant feed-
back law solves the I/O Full Control problem, and results in perfect disturbance
attenuation. ]

Note that the Riccati equation associated with the above I/O Full Control problem
has zero as a solution (all the closed loop modes are stable and uncontrollable); thus
only the I/O Full Information problem needs to be solved, and the coupling condition
between the two Riccati solutions is trivially satisfied.

Full Control

Let equation (7.54) be given, where A(s) is square and invertible for all s in C*. To
avoid extra notation, replace ¢; by ¢. By Lemma 7.4, there exists a dual representation
for the behavior B, as in equation (7.57). We have the following Theorem:

Theorem 7.10 D, is square and invertible, and the eigenvalues of (A— By D,'CH)
have negative real part or are zero. Furthermore, the I/O Full Information problem
FI has a trivial solution.

Proof: The proof is essentially the dual of the Full Information case and follows by
setting (d, z) = 0 in equation (7.57); the details are omitted. n

Analogous to the previous case, the Riccati equation associated with the associated
I/O Full Information problem has zero as a solution (all the closed loop modes are
stable and unobservable); thus only the I/O Full Control problem needs to be solved,
and the coupling condition between the two Riccati solutions is trivially satisfied.

Example

We return to the example of Section 7.3. For positive values of b and &, this is a
Full Information problem; the solution in Section 7.7 reduces to one Riccati equation.
This may also be verified by expressing variables z and d as functions of ¢:

b21+l€21 = b62+k02_61 (762)
Zo = L 7.63
2 = ECI (7.63)
1
d = —¢ -3 (7.64)
m

Thus 2; can be recovered using the first equation, 2, from the second equation,
and since z; is now known, d can be recovered from the third equation.
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Figure 7.9: Suspension design as a function of [. The solid curve corresponds to the
optimal design, while the dashed curve corresponds to a search for the optimal spring
and damper values for the suspension.

7.9 Another Example

A slightly different example is the suspension design for a bicycle, depicted in
Figure 7.8. The rider is situated at point [ relative to the center of mass of the
“frame,” modeled as a rigid bar. The disturbances are d; := 7, and dy := 7, the
control variables F, and z2 — y9, and the output errors xo — 75 and the jerk at point
[. Tt can readily be verified that once the above system is written in the form of
equation (7.46), the corresponding RY(s) is a three by four matrix, which cannot have
full column rank for any value of s. By adding control variable c; = d;, however, the
above may be converted to a Full Information problem.

It is desired to design the suspension as a function of /. As in Section 7.7, the
sprung mass has mass 1, the damper coefficient is 20, and the spring coefficient is
100. The tracking error is scaled by a factor of 100 relative to the jerk at point
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Figure 7.10: Suspension design as a function of [, dy(t) = da(t—1). In the left plot, the
solid curve corresponds to the optimal design, while the dashed curve corresponds to
a search for the optimal spring and damper values for the suspension. A bode plot for
the optimal compensator (with the displacement an input and the force an output)
at [ = 0.05 is shown in the right plot.

[. The resulting designs are depicted in Figure 7.9. The solid curve corresponds to
the optimal design, while the dashed curve corresponds to a search for the optimal
spring and damper values for the suspension. For this simple case, the optimal design
essentially resulted in a spring and a damper as the optimal components for the
suspension.

A more interesting example is obtained by letting d; be a delayed version of ds,
di(t) = do(t — 1) (this is implemented as a first-order Pade approximation); this
corresponds to the rear tire being subject to the same disturbance as the front tire,
consistent with the bicycle moving forwards at a fixed speed. The resulting designs
are depicted in Figure 7.10.

Note that the optimal compensator may be implemented as a spring, a damper,
and an active component. Also note that unlike the previous examples, the active
component is substantial and improves the design by over a factor of three (at | =
0.05).

Two interesting points may be concluded from this example. The first is that a
substantial increase in performance may be achieved by using an active suspension.
The second is that the optimal location for the rider depends on whether an active
component is used or not.

7.10 Concluding Remarks

The results in this chapter extend the ., framework to allow for singular inter-
connections. These types of interconnections occur naturally when interconnecting
first principle models; for example, the simple suspension design presented in Sec-
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tion 7.7 resulted in three algebraic constraints on the states.

A desirable feature of this design methodology is also demonstrated by this simple
example; the optimal design consists of a part which can be implemented with passive
components, and an active part. Typically, these designs are not performed simulta-
neously; i.e., the choice of which spring and damper values to use would not typically
be made at the same time that an active suspension design was being performed. The
problem formulation in this chapter makes no distinction between these two phases,
and views the design process as determining the optimal relation between a given set
of variables.

There are several logical continuations to this work. On the technical side, as-
sumptions Aj, Az, and A4 in Theorem 7.5 need to be relaxed to provide a purely
general solution. While issues of optimality have been explored in this chapter, the
important issue of implementability has not been addressed. In many cases, the
optimal relation between a system’s variables may not be physically realizable; for
example, how would one implement relation F, = & — 4 in the suspension design of
Section 7.77 More generally, designs of real systems must take into account numerous
other types of constraints, such as mass and size limitations, and other properties of
a model, such as non-linearities, distributed effects, and model uncertainty, which
make the design techniques presented in this chapter not directly applicable. The
results in this chapter should thus be seen as providing bounds on the best achievable
performance, and provide guidelines on how to proceed with the design of the overall
system.
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Part 11

Rotating Stall Control of an Axial
Flow Compressor using Pulsed Air
Injection
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Chapter 8

Preliminaries

In the next two chapters, a control strategy aimed at eliminating the hysteresis
region normally associated with rotating stall is presented. This objective is a worth-
while pursuit in that it would allow operation closer to the stall line of a compressor.
From a practical point of view, the elimination of the hysteresis region is a more
realistic design objective than stabilizing the unstable branch of the compressor char-
acteristic; this latter objective is typically only viable for systems with well defined
stall precursors, not a justifiable assumption for many high speed systems.

We depart from previous studies in the sense that we make use of a small number
of pulsed air injectors (three) as our means of actuation, and that the orientation
of the injected air relative to the rotor face is not restricted to be in the axial di-
rection. The motivation for using pulsed air injection is that they are a potentially
practical technology for implementation on real engines. For similar reasons, we have
concentrated on the use of wall mounted static pressure sensors for detecting stall
rather than using hot wire anemometers. Indeed, one of the goals of this work is to
indicate to what extent air injection is a viable actuation technology for stabilization
of rotating stall, as initially explored in [Khalak and Murray, 1995].

In addition to providing detailed experimental results on the use of pulsed air
injection for stabilization of rotating stall, an analysis of this approach is presented
which uses the Moore-Greitzer formulation to construct a low-order nonlinear model
of the dynamics in the presence of the controls. A shifted compressor characteristic
is used to model the effect of the actuators, in a manner similar to that presented
in [Gysling, 1993]. The analysis supports the experimental results obtained on the
Caltech compressor and gives further insight into the role of pulsed air injection in
the stabilization process.

This chapter serves as the background material for the results presented in Chap-
ter 9. In Section 8.1, the phenomenon of rotating stall is briefly reviewed and the
motivation for eliminating rotating stall in compression systems is presented. In Sec-
tion 8.2, previous work aimed at tackling some of the issues which surfaced in the
previous section is outlined. The experimental setup is described in Section 8.3; the
relevant characteristics of the compressor system are described, including the steady-
state performance characteristic of the compressor and the effects of continuous air
injection on the steady-state performance characteristic. The Moore-Greitzer three-
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state model, which is used extensively in the analyses of Chapter 9, is reviewed in
Section 8.4.

8.1 Introduction and Motivation

As gas turbine engines have become better understood and better designed, sub-
stantial performance increases in engine designs have become harder to achieve, es-
pecially with passive control methods. The presence of full authority digital engine
controllers (FADECs) on modern gas turbines has enabled the use of active control
to achieve additional performance enhancements. Virtually all modern aircraft en-
gines rely on the use of FADECs for controlling engine operation, although the use
of dynamic feedback to modify engine operation is relatively rudimentary.

One example of the use of active control to improve engine performance is the Per-
formance Seeking Control (PSC) program at NASA Dryden Flight Research Center.
The basic idea behind performance seeking control is to modulate the engine param-
eters to achieve optimal performance based on the current operating conditions. In
simulation studies [Smith et al., 1991] a 15% increase in thrust and a 3% decrease in
fuel consumption have been obtained by the use of a controller which scheduled en-
gine parameters for improved steady-state operation. Subsonic flight tests at NASA
Dryden Flight Research Center [Gilyard and Orme, 1992] validated the technique and
showed a 1-2% decrease in fuel consumption during minimum fuel mode operation
and measured thrust increases of up to 15% during maximum thrust mode.

Future applications of active control to jet engines will increasingly rely on the
use of dynamic feedback to modify the dynamics of the engine and provide enhanced
stability which is currently unachievable with passive methods. The development of
so-called smart engines [Paduano et al., 1993b] is an area of intense research activity,
both in academia and in industry. A major goal is the use of feedback controllers
to reduce the effects of performance limiting instabilities that currently constrain the
available power and efficiency of jet engines. In addition to technological advances,
success in this area requires new techniques for modelling of jet engine dynamics for
the purposes of control, as well as development and application of advanced control
techniques capable of taking into account the high noise levels and nonlinear operating
characteristics of aeroengines.

An initial step in the development of active control techniques for gas turbine
engines is active control of the compressor core of the engine. Two of the main lim-
iting factors in the performance of compression systems are rotating stall and surge.
Rotating stall refers to a dynamic instability that occurs when a non-axisymmetric
flow pattern develops in the blade passages of a compressor stage and forces a drastic
reduction in the performance of the compressor. This degradation in performance is
usually unacceptable and must be avoided.

The Emmons stall model [Emmons et al., 1955] provides an intuitive, if some-
what simplistic, explanation of the stall phenomenon. Consider Figure 8.1. The right
diagram represents a cross-section of a high hub-to-tip ratio compressor, typical of
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Figure 8.1: Emmons model of stall

axial flow systems. Assuming that the flow is essentially two-dimensional in nature
(stemming from the high hub-to-tip ratio assumption), the rotor blades can be “un-
wrapped” in the circumferential direction and yield the diagram on the left. Each
rotor blade is assumed to be a small airfoil. In a fixed rotor frame of reference, the
free-stream incident angle can be broken down into two orthogonal components, the
first due to the rotor rotation, the second due to the axial flow through the com-
pressor. As the flow through the compressor is reduced, the angle of attack on each
blade is increased (assuming that the rotation rate of rotor is kept constant). When
the angle of attack exceeds the stall angle of a blade, the flow about that blade sep-
arates. The effect is to divert the flow about this reduced flow blade, increasing the
local angle of attack of the blade immediately above it and decreasing the angle of
attack of the blade immediately below it, as depicted in the figure. This has the effect
of stalling the blade above, and unstalling the blade below. Thus the stalled region
moves up the row of rotor blades, resulting in a region of reduced flow rotating around
the circumference of the compressor, as depicted on the right in Figure 8.1. The rate
of rotation of the stalled region is typically a fraction of the rotation rate of the rotor.
It has experimentally been observed that more than one such stalled region may be
present, with all the stalled regions rotating at the same rate. The overall effect of
this rotating stalled region is a reduced average pressure and average flow operating
condition. Furthermore, the flow typically has to be increased a substantial amount
before all the blades unstall.
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Figure 8.2: The solid curve corresponds to stable operating points for the compres-
sor, the dotted curve unstable operating points. The actual operating point is the
intersection of the compressor characteristic with the dashed load curve. The asterisk
corresponds to the peak of the compressor characteristic, the transition between sta-
ble and unstable open loop operation. In the Closed Loop plot, curve 1 corresponds
to a control strategy which stabilizes the unstable portion of the compressor char-
acteristic with no rotating stall component, while curve 2 corresponds to a control
strategy which stabilizes the unstable portion of the compressor characteristic with
varying degrees of rotating stall.

Surge is a large amplitude, axisymmetric oscillation in the compressor which re-
sults from exciting unstable dynamics in the overall pumping system. While surge and
stall are separate phenomenon, the presence of stall is a precursor to the onset of surge
in many compressor systems. A more detailed description of these phenomena and
their effects on overall performance can be found in the survey paper [Greitzer, 1981].

The goal of active control of stall and surge is to improve operability of the engine
by allowing operation closer to the current stall line of the compressor. One of the
significant features of high-performance axial-flow compressors is hysteresis in the
performance of the compressor before and after rotating stall. As a consequence, if
the operating point of a compressor momentarily crosses over the stall line due to a
transient effect, the operating point of the compressor does not return to its original
value, but rather to a much lower pressure/flow point.

This is depicted in the left diagram of Figure 8.2. If the compressor is operated
at point B (the intersection of the steady-state compressor curve and the load curve),
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another stable operating point, C, exists on the lower branch of the compressor char-
acteristic. This operating point corresponds to the lower average pressure and average
flow conditions which exist during rotating stall. The basin of attraction of operating
points on the lower branch is typically much larger than that of points on the upper
branch, especially when point B is near the top of the compressor characteristic; thus
small disturbances and transient effects can lead to a jump from operating point B to
operating point C. In order to avoid this jump, the compressor is operated at point
A, where the load curve only intersects the compressor at one point.

Using active control methods it is possible to modify the dynamics of the system
such that hysteresis effects are either delayed or eliminated (depending on the ap-
proach used). This is depicted in the diagram on the right-hand side of Figure 8.2.
Either the unstable portion of the compressor characteristic can be stabilized (no ro-
tating stall), or operating points which exhibit varying degrees of rotating stall can be
created. In either case, the lower branch of the compressor characteristic disappears
(in the region of interest), and the hysteresis region normally associated with rotating
stall is eliminated.

8.2 Previous Work

Early work on rotating stall and surge concentrated on developing theoretical
models which captured the main features of the two effects. In [Greitzer, 1976],
a 1D (axial) model was presented which predicted the onset of surge using a single
parameter, B. For large values of B the pumping system exhibits surge while for small
values it operates in rotating stall. More recent work [Moore and Greitzer, 1986] gives
a refined model of rotating stall and surge which uses three coupled, nonlinear, partial
differential equations to model the pressure and flow in a compressor system. The
Moore-Greitzer model is the starting point for many of the current models used for
rotating stall. In additional to fundamental modeling issues, there has also been work
in studying the details of how stall occurs in experimental systems [Day, 1993b]. The
detailed dynamics of stall and surge are not yet understood, but the basic mechanisms
of stall and surge are fairly well classified and models which capture the main features
of these instabilities are currently available in the literature.

There have been some recent papers which give a good overview of the basic anal-
ysis techniques which can be brought to bear [Abed et al., 1993, McCaughan, 1989,
MecCaughan, 1990]. These papers analyze the global bifurcation behavior of the un-
controlled system and illuminate the nonlinear characteristics of the system which
lead to instability as well as hysteresis. These techniques are particularly impor-
tant in understanding the difference between improving operability of the engine and
stabilization of the unstable dynamics.

Despite of the complexity of the dynamics of the system, experimental work has
demonstrated that active control can be used to extend the operating point of the
compressor past the normal stall limit. In [Paduano et al., 1993a], for example, a
20% decrease in mass flow for stall inception using actuated inlet guide vanes which
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generated an upstream vortical distortion was reported; circumferential modes were
used to model the compressor, actuators, and sensors, and a decoupled, linear model
for the evolution of the modal coefficients was assumed. In [Day, 1993a], a similar
technique with air injection as the actuation scheme was used, and an extension
of approximately 5% in the stall point was achieved. Day also explored the use
of air injection for destabilizing finite stall cells by injecting air in the jet nearest
the stall cell. The control design was ad hoc, but gave good performance and did
not rely on modal behavior. Active stabilization using aero-mechanical feedback has
been reported in [Gysling, 1993, Gysling and Greitzer, 1995], where an array of twelve
small reed valves upstream of the rotor which injected air based on the unsteady
pressure exerted on the reed valve in the presence of rotating stall was used. By
properly tuning the mechanical properties of the reed valve mechanism, rotating stall
was stabilized past the normal stall point of the compressor. A modal analysis (in
the circumferential variable) of the controller was used to validate the experimental
results on an analytical model.

A somewhat different approach is the use of 1D actuation via bleed valves for
control of rotating stall and surge. The controllers are based on a relatively complex
1D model of the compressor which captures the hysteresis and global dynamics of
the system. The controllers change the nonlinear characteristics of the system so
that surge does not occur and the change in operating point due to rotating stall is
minimized. The approach used in [Badmus et al., 1995] used axisymmetric actuation
(an outlet bleed valve) to eliminate the hysteresis effects of stall and also prevent
surge without eliminating the stall cells per se. A theoretical description of this ap-
proach has been given in [Liaw and Abed, 1996]. Recent experimental and numerical
investigations of this technique can be found in [Eveker et al., 1995].

8.3 Experimental Setup

In order to test the effects of air injection for stabilization of rotating stall, a low-
speed, axial low compressor facility designed for use in validation of active control
techniques has been constructed at Caltech. While this compressor is substantially
simpler than a typical compressor in a gas turbine engine, it has many of the es-
sential operating characteristics of high-speed compressors and is ideally suited for
implementation of active control techniques due to its size and ease of use.

The entire experimental setup is shown in Figure 8.3 and was designed and con-
structed in accordance with AMCA/ASHRE standards for measurement and calibra-
tion of compressors of this type [AMCA/ASHRAE, 1985]. The compressor is a 17 ¢cm
diameter, single stage, axial flow compressor with 14 blades, a hub to tip ratio of 0.7,
and a blade chord of 3.75 cm. In addition to the compressor unit, the system consists
of an inlet nozzle, adjustable downstream throttle, and an optional plenum. Sensors
include a pair of static pressure rings on the inlet and outlet sides, a pitot measuring
plane near the outlet, and an array of six static pressure transducers located in front
of the compressor face. Actuation is achieved with a low-speed, electrically driven



! 150 cm , . 60cm
nozzle =
—_— 17cem H =
’? R -
static pressure compressor static pressure
ring rimng
sensor/actuator ring flow straightener bleed valve
Figure 8.3: Caltech compressor rig
sensor ring  rotor stator
. pressure . M '*
jector -~ Sensor ar | e | ~»
injector e ‘
o | =
Ao | 7 ™~
pressure | ® 'y ~
sensor '
/ & w«.

4 H

4.7cm 57cm 12cm

sensor ring (end view) sensor ring (side view)

Figure 8.4: Sensor ring

135

throttle



136

Compressor characteristic @6000 rpm

0.35

0.3

0.25

Head coefficient

0.2r

01 8.1 0.2 0.3 0.4 0.5
Flow coefficient

Figure 8.5: Fan characteristic for Able 29680 compressor at 6000 RPM. The flow
coefficient is is defined to be /JA%JT’ where m is the mass flow through the compressor,
p is the density of air, A, is the cross-sectional area of the annulus, and U, is the
rotor blade speed at mid-span. The head coefficient is defined to be %—;, where AP
is the pressure rise across the compressor. Dark lines indicate continuous changes in
the operating point while lighter lines represent discontinuous changes. The circles
mark the points of discontinuity. ‘P’ is the operating point for the parametric studies

outlined in Section 9.2.

throttle at the outlet as well as a high response bleed which can be located either
before or after the plenum and a set of three air injectors at the compressor face
(described in more detail below).

For all the experimental results presented, the compressor was run at 6000 RPM,
giving a peak head coefficient of 0.38 at a flow coefficient of 0.37, as shown in Fig-
ure 8.5. In physical units, this corresponds to 940 Pa at 0.19 m®/s . The high response
bleed valve was only used to generate disturbances, and the optional plenum was only
used in the experiments of Section 9.2.3. All sensors and actuators are interfaced to
a PC-based real-time control computer running at a servo rate of 2000 iterations per
second.

The sensor ring shown in Figure 8.4 is located at the compressor inlet and used
to measure the unsteady pressures upstream of the rotor. The ring has six pressure
transducers equally spaced around the compressor circumference, approximately 5 cm
(0.7 mean rotor radii) upstream of the rotor. These transducers have a resolution of
approximately 1.2 Pa and a bandwidth of 1 kHz, and are low-pass filtered at 500 Hz
prior to sampling by a 12 bit A/D converter. The inlet and outlet static pressure rings
shown in Figure 8.3 are instrumented with similar transducers, but are not filtered
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Figure 8.6: Compressor characteristics for various air injection angles. The flow coef-
ficient calculation is based on the total flow through the compressor (i.e., it includes
the contribution from the air injectors). ‘NAI’ corresponds to the unactuated case
(no air injection). The circles mark the peak operating point for each compressor
characteristic.

prior to sampling.

Three air injection actuators are also located on the sensor ring shown in Fig-
ure 8.4. The injectors are controlled by on/off solenoid valves which can be placed at
a variety of (static) locations and orientations. The valves are actuated via custom
overdriving circuitry interfaced directly to the computer, and are capable of a 50%
duty cycle at up to 200 Hz. Hot-wire measurements were performed to determine
the velocity profile of the air injection at the compressor face for the active control
experiments outlined in Section 9.2. The injected air was found to disperse from 3
mm at the exit of the injector to approximately 20 mm at the compressor face; this
dispersion occurred over a distance of 9 cm (the distance between the exit of the air
injector and the rotor face).

Three measures of control authority were calculated to characterize the air injec-
tors; the mass flux, the momentum flux, and the energy flux. As a percentage of the
mean values for the compressor operating at the peak of the compressor character-
istic, the flow through each air injector on continuously contributed to 1.7% of the
mass flux, 2.4% of the momentum flux, and 1.3% of the energy flux . Each of the
control authority measures is thus small compared to the corresponding values for
the compressor.

The dynamic behavior of the compressor system has many of the basic properties
of high performance, axial flow compressors. The measured compressor characteristic
is shown in Figure 8.5. The effect of rotating stall is clearly seen in the measured
compressor characteristic. If the flow is decreased beyond the value at which the
characteristic reaches its peak, the compressor enters rotating stall and operates at
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a much lower average pressure. Once in rotating stall the flow must be increased
substantially before the system returns to the unstalled portion of the compressor
characteristic.

The effects of the air injectors can be roughly characterized by their effect on the
static compressor map. In [D’Andrea et al., 1995], the effect of continuous air injec-
tion into the rotor face at different incident angles was investigated. The experimental
results indicated that the compressor characteristic could be altered by air injection.
In Figure 8.6, the shifted compressor characteristics are plotted for various incident
angles. In these plots, the flow coefficient corresponds to the mass flow through the
compressor (sum of the inlet mass flow plus the injected mass flow). Note that for
positive angles (air injected into the blade rotation), the shifting of the characteristic
is approximately the same, with the only difference being the stall inception point (as
marked by circles).

8.4 Moore-Greitzer Three-State Model

In this section, a three state model for a compression system based on a single
mode Galerkin projection [Moore and Greitzer, 1986] is presented. This model is too
simple to be able to reproduce in detail the operation of a compressor. It does,
however, capture the essential dynamics of a compression system and allows one to
perform symbolic analysis of the model.

The Moore-Greitzer three-state model is essentially a relation between the follow-
ing dimensionless variables:

¢ time

0 circumferential position about annulus

®(£) annulus averaged flow through compressor

A(&) amplitude of sinusoidal flow component through compressor
¥(€) instantaneous annulus averaged pressure rise across compressor
o throttle position (the load)

The compressor is assumed to be of high hub-to-tip ratio, thus the flow at the rotor
face is restricted to an annulus, and is essentially two-dimensional; 6 corresponds to
the angular position about this annulus. The flow through the compressor at the
rotor face is assumed to be of the form ®(&) + A(€) sin( +wé&), where w is the angular
rate of rotation of the flow disturbance.

The Moore-Greitzer equations (see [Moore and Greitzer, 1986]) are:

B = o (a0 - v@),
v+t = [T e agsine.ac 8.)

("“rl) LA L[ g () + Ae)sinC)sin e,

a/) d¢ 7 Jo
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In the equations, ¥ is the steady-state compressor characteristic, and the quan-
tities ., B, a, and m are parameters which depend on the compression system. The
basic assumptions which are inherent in the above model are the following:

e Potential flow upstream of the compressor. This assumes a low-speed system
and clean inlet conditions.

e Two-dimensional flow. This assumes a high hub-to-tip ratio compressor.
e The pressure rise across the compressor is small compared to the ambient level.

e The compressor characteristic is a memoryless nonlinearity operating on the
local flow coefficient.

e The first modal component of the non-axis symmetric portion of the disturbance
is dominant.

The reader is referred to [Moore and Greitzer, 1986] for an in-depth discussion on
the above assumptions. The essential feature of the three-state model is that the
complex fluid dynamic interactions in the compressor are captured by a nonlinear
map (the compressor characteristic) and by first-order lags which capture the inertia
of the fluid through the compressor. This apparently simple model and its extensions
have been remarkably successful at capturing the essential dynamics of compression
systems.

With the assumption that the nonlinearity which captures the compressor char-
acteristic is a polynomial of order no higher than three, the previous integrals may
be performed to yield the following set of ODEs:

¥ = ! (@—7\/@),

41,B?
- 1 J 020, (®)
b = o (\Ilc(é) — U+ ZW) , (8.2)
P2 (0%(@)  JPE()
14+ ma od 8 0P3 ’

where J := A2,

The bifurcation properties of the above system of equations were initially studied
in [McCaughan, 1989, McCaughan, 1990], where the bifurcations for the pure rotating
stall case, the pure surge case, and combination stall/surge case were thoroughly
investigated. Only the analysis for the pure rotating stall case is discussed here.

The bifurcation diagram for a representative compressor characteristic is known
to have a transcritical bifurcation (for the choice of coordinates chosen) at the point
which corresponds to operating at the peak of the steady-state compressor charac-
teristic (see Figure 8.7). This throttle setting, which corresponds to the peak of the
characteristic (0¥ (®)/0®) = 0, is denoted by ~v*. This operating point corresponds
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Compressor characteristic Bifurcation Diagram
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Figure 8.7: Bifurcation diagram showing jumps associated with the hysteresis loop
for the compressor characteristic shown on the left. The numerical values were de-
termined by fitting the various model parameters in equations (8.2) to the Caltech

rig.

to where the stalled branch intersects the horizontal axis in the bifurcation diagram
shown in Figure 8.7.

The unstable sections of the bifurcation diagram in Figure 8.7 are shown as dashed
lines, and the stable sections are shown as solid lines. This diagram suggests a
hysteresis region since as the throttle is closed (v is decreased) J = 0 is a stable
solution until ~* is reached, at which point the stable solution for J is non-zero
(which corresponds to a jump to rotating stall). As « continues to decrease, the stable
solution for J continues to be non-zero. If the throttle is then opened, beginning at
v < 7%, the system continues to evolve along the stalled branch until v is increased
to a value substantially greater than +* before returning to the J = 0 branch. The
system has substantially different solutions depending on the path that ~ follows.
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Chapter 9
Control of Rotating Stall

In this chapter, results on the use of pulsed air injection to control rotating stall
in the Caltech compressor are presented. In Section 9.1, the injection of air is mod-
eled as an unsteady shift in the compressor characteristic, and incorporated into the
Moore-Greitzer three-state model of the compressor. By observing the change in
the bifurcation behavior of this model subject to nonlinear feedback, the viability of
various air injection orientations are established. An orientation consistent with this
analysis is then used for feedback control in Section 9.2. By measuring the unsteady
pressures near the rotor face, a control algorithm determines the magnitude and phase
of the first mode of rotating stall and controls the injection of air in the front of the
rotor face. Experimental results show that this technique eliminates the hysteresis
loop normally associated with rotating stall. A parametric study is used to determine
the optimal control parameters for suppression of stall. The resulting control strat-
egy is also shown to suppress surge when a plenum is present. A simulation study
in Section 9.3 using the higher fidelity distributed model in [Mansoux et al., 1994]
is then presented, which yields results similar to those obtained experimentally and
confirms the legitimacy of modeling the air injection as a local shift of the compressor
characteristic.

9.1 Characteristic Shifting

Based on the open loop results in Figure 8.6, the air injectors are modeled as direct
actuators of the steady state compressor characteristic. The effects of feedback control
can then be explored when the amount of shifting is proportional to J = A?, where
A is the magnitude of the first Fourier coefficient of the of the stall disturbance.
It should be stressed that this cannot be duplicated experimentally, since the air
injectors can only be either on or off, and the air injection is not distributed evenly
about the circumference of the compressor. Furthermore, this feedback strategy does
not exploit the ability to actuate each air injector independently. The benefits of this
simplified analysis will, however, become apparent shortly.
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The controlled compressor characteristic is taken to be

U, = Upom + KJU,, (9.1)
where
U nom (®) = ag + a1® + a,®* + a3 P, V(@) = co + 1 ®. (9.2)

The bifurcation analysis in Section 8.4 can be performed with the above form for
the compressor characteristic. In particular, the effects of such a control strategy
on the hysteresis region can be analyzed. On the stalled branch of the bifurcation
diagram, the following algebraic equations must hold:

®? = VU, (9.3)
B J 92 (®)
T (P) = V=T (9-4)
0T (D) T OT(D)
e 8 093 (9:5)

Since @, ¥, and v may be determined from J for each equilibrium solution on the
stalled branch of the bifurcation diagram, we may differentiate equation (9.3) with
respect to .J to obtain

id  dy 4T
2P— = Iy —T 2, .
TR T Y, (9:6)

Differentiating equation (9.4) with respect to J and evaluating (d¥/dJ) at the
peak of the compressor characteristic yields

A\ 10?2 om (D)

— = KW (D) + =il .
a7|,_. = K@+ 5 (97)

Similarly, differentiating equation (9.5) with respect to J yields
OV (®) 1P enom(P)
K cu - cnom
dJ |, _.. _82\Ilcnom(<1>)
0P?

Substituting equations (9.7) and (9.8) into equation (9.6) and solving for (d.J/d),
the slope of the bifurcation diagram at the equilibrium point associated with v* is:
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dJ VI

ey T L 0TW(®) | 10T (@) 00
P Wenom (P) 20 o 4 092
092

where all expressions in the right hand side of equation (9.9) are evaluated at the
equilibrium point at the peak of the compressor characteristic.

Without feedback (K = 0), the denominator in equation (9.9) must be positive
and greater than 0 to yield the hysteresis region in Figure 8.7. In order to elimi-
nate this hysteresis region, the denominator must be made 0 or negative. The term
associated with —K is the following:

0P, (D)
od (I)\I'cu((p)
U o (@) 20 (9.10)
532

Thus in order to make the denominator as negative as possible for a fixed K,
the above quantity needs to be made as large as possible. Since the second partial
derivative of W ,0m (®) with respect to ® is negative at the stall inception point, this
suggests that the most beneficial shift is one which has the largest positive offset and
the largest negative slope. Referring back to the steady state shifts of Figure 8.6,
this analysis suggests that the +30 and 440 characteristics are good candidates for
feedback control.

9.2 Experimental Results Using Pulsed Air Injec-
tion

In this section, we present the experimental results on the use of air injection to
control rotating stall. The effects of this control strategy on the surge dynamics are
also explored. In Figure 9.1, the altered characteristic is plotted for an incident angle
of 40 degrees, along with the unactuated characteristic for comparison purposes. This
orientation was used for all the active control experiments in this section.

9.2.1 Description of Control Algorithm

The basic strategy of the control algorithm is to sense the location and magnitude
of the peak of the first mode component of a circumferential pressure disturbance and
apply pulses of air based on the size and location of this first mode relative to the air
injectors, essentially the same strategy presented in [Day, 1993a.
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Open loop injection: 40 degrees
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Figure 9.1: Compressor characteristic at air injection angle of 40 degrees. ‘P’ is the
operating point for the parametric studies outlined in Section 9.2.

The plots in Figure 9.2 show the spatial Fourier modal components of the pressure
disturbance when a transition from unstalled to stalled behavior occurs. Since six
equally spaced pressure transducers were used to measure the pressure disturbance,
only the first two modes could be determined. As can be seen, the dominant mode is
the first one. From the slope of the phase plots one can conclude that both the first
and second mode disturbances are rotating at a rate of approximately 65 Hz.

To ascertain that no significant aliasing was taking place due to the use of only
six pressure transducers, time domain measurements were analyzed for each pressure
transducer and the power spectrum determined. It was found that most of the signal
power was contained in two bands centered around 65 Hz and 130 Hz, as shown in
Figure 9.3. Assuming that the pressure disturbance is a traveling wave about the
circumference of the compressor, this would indicate that the third mode component
is also negligible spatially about the circumference of the compressor.

The parameters used in the control algorithm are:

jeton injector pulse width

threshold threshold for stall detection
window angle window for stall detection
anglel threshold angle for injector 1
angle2 threshold angle for injector 2
angle3 threshold angle for injector 3

The algorithm is illustrated in Figure 9.4, and behaves as follows: Each air injector
is activated when the magnitude of the first mode is greater than threshold and the



145

Transition to stall
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Figure 9.4: Control Algorithm. The above logic is repeated for each air injector. The
double rectangle corresponds to the beginning of a servo loop, which occurs at a rate
of 2000 iterations per second.
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location of the peak of the first mode is within a pre-specified window (as determined
by angle and window); once an air injector is activated, it remains activated for
jeton number of servo-loops, irrespective of the magnitude mag and location phase
of the first mode. Note that phase and mag refer to the phase and magnitude of
the first Fourier coefficient, not the physical location and value of the peak pressure
disturbance at the compressor face. In the case that the pressure disturbance is
sinusoidal (which is a good approximation when fully stalled), phase and the physical
location of the peak pressure disturbance differ by a constant, due to delays in the
data acquisition stage. This delay was calculated to be 1.5 ms.

9.2.2 Parametric study

The controller parameters were varied in order to determine the optimal operating
conditions for the controller, and to determine the effects on the closed loop behav-
ior. The parameters varied were jeton and anglel, angle2 and angle3. For this
parametric study, the value of threshold was set to correspond to a head coefficient
of 0.004 (10 Pa), and window was set to correspond to 25 degrees. The chosen value
of threshold was slightly above that of the noise level, and thus allowed the control
algorithm to sense a stall cell forming as quickly as possible. Assuming that the first
mode rotates at a constant rate of 65 Hz, one servo period corresponds to a rotation
of 12 degrees. By setting window larger than this value, we are ensured that the peak
of the stall cell disturbance will not be missed. On the other hand, the window should
not be too large, to ensure that we do not have double activations (this is guaranteed
by setting window < 12xjeton), and to ensure that an air injector activates at the
same time relative to the stall location (this might be a problem if the magnitude
of the stall cell becomes greater than threshold near the end of an air injector’s
window). It was found experimentally that the value of window could be set in the
range of 15 degrees to 90 degrees without changing the performance of the controller.

Effect of activation angles

For a fixed value of jeton, a search was performed over the activation angle for
each air injector to determine the optimal strategy. The compressor was operated at
point P in Figures 8.5 and 9.1. Parameters anglel, angle2, and angle3 were each
varied in 30 degree increments, from 0 to 330 degrees. Thus a total of 1,728 different
controllers were tested for each value of jeton. For each of these settings, the control
algorithm was operated for 16 seconds, and the average size of the stall cell and
amount of time each air injector was on was recorded. A 0.1 second disturbance was
generated every second via the high speed bleed valve to ensure that the compressor
would stall.

The criterion used to determine the optimal setting for anglel, angle2, and
angle3 for a fixed jeton was the setting which yielded the lowest value for the
average magnitude of the first mode (other criteria were also investigated, such as
the total time that air injectors were on and the average pressure rise across the
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I jeton ’ anglel | angle2 | angle3

11 120 270 0
13 120 240 330
15 90 210 330
17 60 180 300
19 60 180 300

Table 9.1: Optimal setting for different values of jeton

ANGLE1

EG  ANGLE1=300DEG  ANGLEl=

Figure 9.5: Parametric study, jeton = 11. Dark areas correspond to low average
values for the first mode disturbance, light areas correspond to large average values.
The horizontal axis for each plot corresponds to angle2, 0 — 360 degrees; the vertical
axis corresponds to angle3, 180 — 540 degrees, shifted to center the dark areas. The
white ‘X’ corresponds to the optimal setting for angle2 and angle3

compressor, producing roughly the same results).

The results of this parametric study for jeton =11, 13, 15, 17 and 19 may be found
in Figures 9.5, 9.6, 9.7, 9.8, and 9.9. In each of the figures, there are twelve separate
plots, one for each setting of anglel. Dark areas correspond to low average values
for the first mode disturbance, while light areas correspond to large average values.
Referring to the plots corresponding to jeton=15, Figure 9.7, one may conclude
that the optimal setting for anglel, angle2, and angle3 is roughly (90,210, 330);
the performance of the control algorithm was insensitive to simultaneous parameter
deviations of up to 30 degrees from this optimal setting. The optimal setting for the
other values of jeton may be found in Table 9.1; The ‘X’ in the plots corresponds to
the optimal setting for angle2 and angle3.

Effect of time delays

To fully understand the operation of the controller and properly interpret the
experimental results, one must take into account the activation and deactivation
delays of the air injectors. Using hot-wire measurements, the average activation
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Figure 9.6: Parametric study, jeton = 13

ANGLE?
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Figure 9.9: Parametric study, jeton = 19

delay for each injector was calculated to be 6.5 ms, while the deactivation delay was
4.5 ms. The activation delay corresponds to the total time it takes for the power of
the injected air to reach 50% of its steady state value (at a distance of approximately
9 cm from the exit of the injector) from the time the injector was ordered to turn on;
this delay takes into account the time required to open the solenoid valve and any
delays in the air flow. Similarly for the deactivation delay.

Assuming a constant rotational speed of 65 Hz, it is possible to determine what
the relative position of the peak of the first mode disturbance is relative to the ac-
tivation of each air injector. This is depicted in Figure 9.10 for jeton = 15 and air
injector 1. The 90 degree rotation corresponds to the experimentally determined op-
timal lag, as explained in the previous section; the 185 degree lag corresponds to the
delay from sensing to actuation (1.5 ms + 6.5 ms); similarly, the de-activation lag is
approximately 315 degrees (1.5 ms + 7.5 ms + 4.5 ms); the —30 degree rotation corre-
sponds to the measured physical location where the injected air strikes the rotor face
(recall that the air injectors were angled into the blade rotation). Thus air injector 1
activates approximately 55 degrees before the peak of the pressure disturbance and
deactivates 75 degrees after the peak. Since the air injectors were physically spaced
120 degrees apart and the experimentally determined lags for anglel, angle2, and
angle3 were also spaced 120 degrees apart, the above argument holds for air injectors
2 and 3 as well. Thus the optimal setting for anglel, angle2, and angle3 corresponds
to a very intuitive control strategy: activate each air injector when the pressure is
high and the flow is low. The above analysis can be performed for the other values
of jeton, yielding similar results.

The experimentally determined optimal controller can easily be visualized in Fig-
ure 9.11. The light region corresponds to an area of higher pressure (stalled region),
the boxes represent the position of the injected air, and the stall cell is rotating
counter-clockwise. The stall cell position relative to the actuator when the injector
opens is shown on the left and the stall cell position at the last instant that the in-
jector is open is shown on the right. Intuitively, the controller attempts to increase
the flow in the regions of the rotor which are stalled. The illustrations in Figure 9.11
correspond to actual data with jeton = 13.
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injector;on time

Figure 9.10: On-time for air injector 1, jeton = 15. The shaded region corresponds
to the location of the peak of the first Fourier component of the disturbance for which
an air injector is on, assuming a constant rotational rate of 65 Hz.

{=003.5 ms t=008.0 ms

.
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Figure 9.11: Visualization of optimal controller found via experimental search. The
rotor rotation and stall cell rotation are in the counter-clockwise direction.
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Effect of pulse width

It was found that for values of jeton less than or equal to 9 and greater than or
equal to 22 the compressor remained stalled all the time. Taking the activation and
deactivation delays into account, a value of 9 corresponds to approximately 2.5 ms of
on-time for each injector, or about 60 degrees when the disturbance rotates at 65 Hz.
This amount of time apparently was not enough to bring the compressor out of stall.

A value of 22 for jeton corresponds to approximately 9 ms of on-time for each
injector, or about 210 degrees at a rotation rate of 65 Hz. Thus for this value, an air
injectors remain active even when the local flow is above the spatially averaged value
through the compressor.

One can understand why there should exist an upper and a lower bound for values
of jeton which eliminate stall through limiting arguments. Clearly for jeton = 0
(no control), the compressor will transition into stall. To understand what happens
when jeton = oo, one need only look at the plot of Figure 9.1; when operating near
the stall point of the compressor, there are two possible operating points which the
compressor may reach when all the air injectors are turned on. One is the unstalled
branch, while the other is the stalled branch. If the compressor is unstalled when
the air injectors are activated, the operating point will shift to the upper branch; if
the compressor is stalled, the operating point will shift to the lower branch (this was
verified experimentally). Furthermore, phase information is lost when activating the
air injectors for long periods of time. Thus one cannot eliminate the rotating stall
condition by simply turning all the air injectors on. Since there exists a value of
jeton for which stall is eliminated, it follows that a lower and upper bound exist as
well.

Closed Loop Performance

A typical operation of the controller may be found in Figure 9.12. The closed
loop compressor performance curve is shown in Figure 9.13 for the optimal choice
of injector phasing for jeton = 15. The results shown to the left of the peak of
the characteristic are time averaged values, since in this region a steady state stall
disturbance is present. Error bars are included to show the variation from the mean
at these operating points. In general, it was determined that operating points to the
left of the peak were not dependent on the initial conditions of the system, i.e., the
hysteresis region usually associated with stall was eliminated.

9.2.3 Effects of control algorithm on surge dynamics

Several experiments were performed to determine the effect of the control algo-
rithm when the optional plenum was attached to the compressor. The results may
be found in Figure 9.14. At operating point P (see Figure 8.5), a disturbance lasting
20 rotor revolutions (0.2 seconds) was generated via the high speed bleed valve (the
time for which the bleed valve was closed is represented by a horizontal line in the
upper left plots in Figure 9.14).
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Figure 9.12: Closed loop operation. The upper left plot consists of the pressure data
for transducers 1, 3, and 5. The lower left plot consists of the control signals applied
to the air injectors. The upper right plot consists of the calculated first and second
mode magnitudes; the dashed line corresponds to the setting for threshold. The
lower right plot consists of the variation in the head coefficient.
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Closed loop compressor characteristic
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Figure 9.13: Closed loop compressor characteristic for jeton = 15, optimal controller.
The asterisks correspond to time averaged data, while the solid lines interpolate these
points. The pressure and flow variance are included for each data point as error bars.
The open loop compressor characteristic is included for comparison purposes.

Referring to the uncontrolled data, the system promptly went into surge. As
can be seen from the plots, there were two different surge modes, one at 1.4 Hz
and the other at 1.8 Hz. The compressor was stalled during the low pressure rise
intervals, and unstalled during the high pressure rise intervals. The pressure versus
flow plot clearly illustrates the surge limit cycle; starting at point P (the asterisk),
the graph is traversed in a counter-clockwise direction. The two different surge modes
appear as two different closed circuits in this plot, which share a substantial part of
the trajectory. Note that there exists a hysteresis region associated with the surge
dynamics; the system did not exit surge when the disturbance was removed. This is
due to the strong coupling between stall and surge. Also note that the duration of
the disturbance corresponded approximately to the time it took for the pressure and
flow to reach their minimum value; this observation is important in the analysis of
the closed loop behavior given below.

Two pressure disturbances were generated approximately 2.5 seconds apart with
the controller activated. As before, each pressure disturbance destabilized the sys-
tem. Note that the controller had virtually no effect on the surge trajectory during
the time the disturbance was present (in this 20 revolution time period, the trajec-
tory is virtually the same as the one in the previous experiment). On the subsequent
cycle, however, the pressure and flow variations were substantially decreased, and
were completely eliminated by the end of the third cycle. It was determined that
by shortening the time duration of the pressure disturbance (while still keeping it
large enough to cause the open loop system to go into surge), the pressure and flow
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Figure 9.14: Compressor dynamics with plenum: the top set of plots correspond to
data taken without the controller, the bottom set of plots with the controller. In
each of the top left plots, a solid line is used to indicate the length of time for which
the high speed bleed valve was activated. All data was low-pass filtered at 150 Hz,
except for the pressure versus flow plots (the lower right plots), where the data was

filtered at 10 Hz; the asterisk in these plots corresponds to operating point P, as per
Figure 8.5.
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variations during the first cycle were reduced, with the limiting behavior approaching
the trajectories commencing from the second cycle in the plots. Thus if the dura-
tion of the disturbance was short enough, the magnitude of the pressure and flow
disturbances could be kept to within 30% of the operating pressure and flow.

A possible explanation of why the control algorithm is successful at eliminating
stall and surge is the strong coupling between the surge and stall dynamics; the
compressor is stalled when the head coefficient is decreasing. The control algorithm
at this point activates, and tries to eliminate the stalled condition. This has the
effect of increasing the net pressure rise across the compressor during the periods of
decreasing head coefficient. Thus the control algorithm is in effect providing positive
damping to the surge dynamics. This is a topic for future research.

Note that the above control strategy does not displace the steady state surge
line. What it does do is make the system less susceptible to disturbances by taking
advantage of the strong coupling between stall and surge. This is further explored in
[Behnken, 1996], where the bleed valve is used to directly control the surge instability,
and the air injectors are used to control rotating stall.

9.3 Simulations

In this section, simulations using a high fidelity model are presented. The main
motivation for performing the simulations was to demonstrate the validity of model-
ing the air injection actuation as a local shift of the compressor characteristic. This
relatively simple approach to modeling the aggregate effects of injecting air into the
rotor blades is very attractive from a computational (and thus control) perspective;
the eventual goal is to provide a low-order mechanism which captures the essential fea-
tures of air injection, analogous to capturing the dominant dynamics of a compression
system via the Moore-Greitzer equations, and thus facilitate subsequent analyses and
control designs which make use of air injectors. Another function of the simulations
is to corroborate the experimental results and thus to give confidence in the control
strategy of Section 9.2. The details on how the parameters used in the simulations
were chosen and how the simulations were carried out are found in [Behnken, 1996];
only the aspects which directly relate to the experimental results in this chapter are
presented here.

The compressor model used throughout the simulations is the distributed model
in [Mansoux et al., 1994], a system of equations describing the dynamics of the flow
coefficient ® at discrete points around the compressor annulus. The simulations
also include additional effects such as time lags associated with the change in the
pressure rise delivered (¥, has dynamics associated with it) and the mass/momentum
effects associated with air injection. The model is attractive because the steady state
compressor characteristic shifting can be included as a local effect instead of as an
axially averaged shift, as was done for the Moore-Greitzer model.
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9.3.1 Distributed Model

The full details of the distributed model presented in [Mansoux et al., 1994] should
be obtained from that reference; only the details required to explain how the compres-
sor characteristic shifting was included in the model will be presented here. The final
equations (equations (20) in [Mansoux et al., 1994]) which make up the distributed
model for a compression system are given by:

: 1
b= <S<I> - yx/TI?) (9.11)

and
G'DEGP = -G DGO + ¥ (®) - TV, (9.12)

where U is the annulus averaged pressure rise coefficient, ® is the vector of flow
coefficients at discrete points around the compressor annulus, 7 is the throttle posi-
tion, and Dy, Dg, T, S, B and [, are constants which depend on the compressor rig
(see [Mansoux et al., 1994]). G is the discrete Fourier transform matrix, i.e.

P
(1)1 Re él
®q Im &,
b = ) G:d+— ) \
DQopy1 Re @,
Im @n

where ®; is the Fourier coefficient associated with mode i, and n is the number of
modes included in the model. Seven modes were used for the results presented. Two
additional effects not included in the above equations but included in the simulations
are the effects of unsteady flow on the pressure rise delivered by the compressor and
the mass/momentum addition terms associated with air injection.

The Caltech compressor rig has three air injectors placed 120 degrees apart around
the compressor annulus (as in Figure 8.4), and each injector has an effect on a small
region of the compressor rotor. In the distributed model, the vector of pressure rise
coefficients around the compressor annulus is given by ¥ (®). In order to include the
compressor characteristic shifting as a local effect, the shift is included as

‘Ilc(q)z) = ‘I,cnom(@i) + (\I’cu(q}z) - ‘Ilcnom(q)z‘)) L(“z) (913)

at the three points around the annulus which have injectors associated with them and
as

\I'c((pz) = ‘Ilcnom(q)i) (914)

for the remaining positions. Here W .., is the nominal compressor characteristic,
while W, is the locally shifted characteristic. The control variables are the u;, which
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Figure 9.15: Hysteresis loops for simulation compressor characteristics. The left plot
corresponds to the fit for the No Air Injection (NAI) case, the right plot corresponds
to the fit for the +40 degrees case. Simulation data points are denoted with an x.

take the values of 0 or 1 if the air injector is off or on, respectively. The transient
effect of the air injection on the compressor characteristic shift is modeled as a delay
followed by a first order lag; this is captured by operator L. The values for the delay
and lag were chosen to correspond to the values observed in the experiment.

The results of the simulations corresponding to no air injection and continuous air
injection may be found in Figure 9.15. In these plots, the experimentally determined
characteristics (see Figure 9.1) are included for comparison purposes.

9.3.2 Parametric Study

The goal of the simulation based parametric study was to determine the optimal
control strategy based on a model for the compressor. In particular, a search for
the optimal phasing for the activation of each air injector relative to the measured
position of the peak of the first mode stall disturbance was performed.

The control algorithm was essentially the same as the one described in Figure 9.4
in Section 9.2. The major difference was in the implementation of what corresponded
to activating the air injectors for jeton number of servo iterations in the experimental
study. This was accomplished by activating each air injector when the magnitude of
the first mode disturbance became greater than some threshold magnitude and the
phase of the first mode disturbance was within a pre-specified window. The threshold
magnitude was based on the noise level in the experimental determination of the
magnitude of the first Fourier mode.

In terms of the logic of Figure 9.4, this corresponds to setting jeton to 0 and
window to 120 degrees, and running the servo loop at an infinitely high rate. This is
roughly how the control algorithm behaved in the experimental studies for jeton =
15. This algorithm was used to simplify the simulation code and vastly decrease its
running time.
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Figure 9.16: Simulation parametric study. Dark areas correspond to low average
values for the first mode disturbance, light areas correspond to large average values.
The horizontal axis for each plot corresponds to angle2, 0 — 360 degrees; the vertical
axis corresponds to angle3, 180 — 540 degrees, shifted to center the dark areas. The
white ‘X’ corresponds to the optimal setting for angle2 and angle3

As in the experimental study, the phasing of each air injector was independently
varied in 30 degree increments. For each controller tested, the average amplitude of
the first mode stall cell was recorded. In all the simulations, the same initial stall cell
disturbance (both in magnitude and phase) was used. Analogous to the experimental
results of Section 9.2, the simulation results are shown in Figure 9.16. The simulation
study predicts the same periodic trends for the optimal phasing observed in the
experimental data.

The optimal phase setting for the simulation parametric study is approximately
(150, 270, 30). The activation, de-activation, and transport delays were implemented
by a Pade approximation. In the experimental setup, the air injectors were not
symmetric with respect to the turn on and turn off times; it was found that the air
injectors would take approximately 2 ms longer to turn on than to turn off (this was
taken into account in the analysis of Figure 9.10), which corresponds to roughly 50
degree of stall rotation. This asymmetry was not implemented in the simulation.
When this 50 degree phase lead is subtracted from the above optimal setting, a value
consistent with the optimal setting obtained experimentally is obtained.

9.3.3 Closed Loop Simulations

The closed loop characteristic for the optimal controller obtained via simulation
is shown in Figure 9.17. The hysteresis region has essentially been eliminated, as was
observed in the experiments. The transition to rotating stall is also gradual, i.e. there
is no jump from zero stall to fully developed stall. These two results, along with the
matching of the trends between the experimental and simulation parametric studies
strongly support the air injection model presented here. Further work on refining the
model will focus on using numerical techniques to determine the bifurcation charac-
teristics, and coupling surge controllers with the pulsed air injection controller for
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Distributed Model: Closed Loop Simulation
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Figure 9.17: Simulated closed loop compressor characteristic. Simulation data points
are denoted with an x; the experimentally obtained open loop compressor character-
istic is included for comparison purposes.

rotating stall.

9.4 Conclusions and Future Work

The active control techniques presented in this chapter proved to be simple, easy
to implement, yet at the same time extremely effective in eliminating the hysteresis
region normally associated with rotating stall. The following procedure is suggested
by the results in this chapter:

1. Experimentally determine the air injector orientation that results in a shifted
compressor characteristic ¥, maximizing the following quantity

0¥ (D)
od (I)‘I’cu(q)) -
Vo (D) + 5T (9.15)
0d?

evaluated at the peak of the compressor characteristic. This is suggested by the
bifurcation analysis of Section 9.1; maximizing the above amount tends to bend
back the unstable bifurcation branch by the largest amount for a fixed amount
of proportional feedback.

2. Pulse air onto the rotor face based on the strategy outlined in the flow chart
of Figure 9.4; center each pulse about the peak of the first mode disturbance,
and activate each air injector for the amount of time which yields the best
performance.
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The simulation studies performed with a high fidelity model were in agreement
with the experimental results; furthermore, they justified the modeling of air injection
as a localized shift in the compressor characteristic.

It should be emphasized that the above strategy for controlling rotating stall is
not based on precursors; for our system, the time scale associated with the growth of
the stall disturbance is comparable to the bandwidth of our actuators (see Figure 9.2),
rendering control strategies based on small signal behavior ineffective. Our control
scheme beats down stall after it starts to develop, but before it grows to full size.
In fact, this control scheme can eliminate rotating stall starting from a fully stalled
condition.

The main physical phenomenon which was utilized in the experimental work and
the ensuing analysis was that the steady state compressor characteristic could be
shifted by injecting air at the face of the compressor. While it has been previously
shown that by introducing pre-swirl at the inlet and by the use of inlet guide vanes the
compressor characteristic can be altered for many compressors [Longley, 1994], the
extent to which this effect can be achieved using air injection is an open research topic.
The impact of the results presented thus hinge on demonstrating the genericness of
shifting the compressor characteristic using localized air injection.

The experiments were performed with three air injectors at a fixed flow rate and
distance from the compressor face. It is important to characterize how the perfor-
mance of the control design varies by varying these parameters. For example, given
an upper limit on the total flow which can be introduced by the air injectors, what
is the optimal number of air injectors which should be used for feedback control?
How should they be oriented relative to the compressor face? What is the tradeoff
between the velocity of injected air and the performance of the compressor? These
same questions can be asked for a fixed power limit on the actuation, or velocity limit,
or combinations thereof. In order to answer these questions, more parametric studies
need to be performed, and a more detailed model which captures the fluid dynamical
interactions needs to be developed and studied.

While it is important to determine how the closed loop performance varies as
a function of these parameters, it is equally important to determine the regions of
implementability for these parameters. For example, injecting air at a velocity which
is much greater than the mean velocity through the compressor would not be feasible
for high speed systems. It is also desirable to use re-circulation as the means to provide
the needed flow for air injection [Gysling and Greitzer, 1995], which will restrict the
velocity at which air can be injected. Another issue is the effect of pulsing high
momentum flow onto the rotor blades; this should be studied to determine what the
detrimental effects are, and see if they are offset by the resulting benefits.

The control effort required to eliminate the hysteresis region is approximately 1.3%
in terms of power and 1.7% in terms of flow of the compressor operating near the peak
of the compressor characteristic. In a jet engine, however, these figures are large in
an absolute sense. Subsequent to the experimental results presented in this chapter,
these figures were drastically reduced by moving the air injectors closer to the rotor
face. In particular, the power figure was reduced to approximately 0.15% and the
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flow figure to 0.35%. Furthermore, the time each air injector was on (as determined
by jeton) was reduced to approximately 45 degrees of a stall disturbance revolution;
this is consistent with hot wire measurements near the rotor face, which show that
the stall disturbance is localized to less than two rotor blades, or approximately 50
degrees.

Even though controlling stall was the main purpose of the work presented in
this chapter, the elimination of surge is also an important aspect of extending the
operability of a compressor. We have demonstrated that the controller designed to
control stall can also have positive effects in eliminating surge. This is mainly due to
the strong coupling between surge and stall, although a more detailed analysis needs
to be performed to fully determine this interaction. Furthermore, the transients which
occur when stabilizing surge need to be made as small as possible in order to prevent
the compression system from being damaged.
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Chapter 10

Conclusions

In this chapter the main contributions of this dissertation are summarized and
future avenues of related research are investigated.

10.1 Summary

e A general optimization problem in the /s framework, Generalized /5 Synthesis,
was formulated and solved. This framework appears to be the natural extension
of H, optimization, in the sense that arbitrary convex sets are used to describe
the allowable disturbances and the performance criterion. The associated fea-
sibility condition is an AMI, which is both a necessary and sufficient condition
for the problem to have a solution, and is computationally tractable.

e Using the Generalized [, Synthesis framework several open problems in ro-
bust and optimal control were solved. These included synthesis for indepen-
dently norm bounded disturbances, robust stability with “element by element”
bounded structured uncertainty, and certain classes of robust performance prob-
lems. The gain scheduling results in [Packard, 1994] were extended to the Gen-
eralized [, Synthesis framework.

e By extending the Generalized l; Synthesis framework to allow for the determin-
istic noise disturbances of [Paganini, 1993], a solution to the mixed Hy — Hoo
problem was presented. This solution can, in turn, be used as one of the two
iterative steps for Robust H, Synthesis, truly putting Robust H, Synthesis on
the same par as Robust H,, Synthesis in terms of computational complexity.

e The behavioral framework for system representation was invoked to pose and
solve a variant of H,, optimization where no distinction between inputs and
outputs is made. This formulation allows for singular interconnections, which
arise naturally when interconnecting first principle models.

e A simple control scheme which has the potential of greatly increasing the oper-
ability of compressors was outlined. By measuring the unsteady pressures near
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the rotor face of the compressor, the control algorithm determines the magni-
tude and phase of the first mode of rotating stall and controls the injection of air
in the front of the rotor face. Experimental results showed that this technique
eliminates the hysteresis loop normally associated with rotating stall.

10.2 Future Research Directions

e The constraints which can be imposed using the Generalized I, Synthesis frame-
work do not include dynamics. This was alleviated in Chapter 5 for the special
case of correlation constraints. The theory needs to be extended to allow for
general convex constraints which include dynamics. Furthermore, the boundary
between problems which are computationally tractable and NP-Hard needs to
be delineated. Achieving this goal will result in a truly general and complete
framework for /5 synthesis.

e While the problems solved in Chapters 3, 4, and 5 have been present in the
control community for quite some time, the theory needs to be tried out on
actual experimental problems to determine what the benefits are of this more
general, but computationally more demanding, synthesis framework.

e The results on optimal interconnections and behavioral systems are very pre-
liminary. A much more thorough investigation needs to be conducted in order
to make the theory applicable to real systems. For example, the H., Optimal
Interconnections results could be extended to the uncertain behavioral represen-
tations introduced in Chapter 6, and combined with the Generalized [ Synthesis
framework.

e From a practical point of view, many issues need to be resolved before the pulsed
air injection control scheme can be implemented on a full scale system. From
a theoretical standpoint, a more systematic means of characterizing the effects
of pulsed air injection needs to be developed.

The two parts of this dissertation are, in a sense, at the two extremes of control
theory. In the first part, general tools were developed for model based control design
which can be used to achieve very well defined performance objectives. In the second
part, the control design was not model based, and the role of mathematics was to
provide guidelines on the choice of various physical parameters and to corroborate the
experimental results (and thus show that results are in some sense generic to a wider
class of systems). For a given problem, the particular application being considered
will dictate which of the two above strategies should be adopted; if the design is to
be successful, it will in all probability be a combination of both.
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