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ABSTRACT

A new phenomenon of the generation of internal solitons is
investigated in this thesis by applying theoretical models and is
observed in both numerical and experimental results. By imposing
an external disturbance, such as a top surface pressure or a bottom
bump, that moves with a constant velocity within a transcritical
range after an impulsive start from rest, upon a two-layered or a
continuously stratified fluid system, a series of solitons are gener-
ated, one after another periodically, each surging ahead of the dis-
turbance in turn. Two theoretical models, belonging to the general-
ized Boussinesq class, are developed to investigate the generation of
weakly nonlinear and weakly dispersive long waves and their evolution
in an inviscid, immiscible, and incompressible stratified fluid sys-
tem under the forcing of the external disturbances. The top surface
may be either free or covered by a rigid horizontal plate. For the
generalized Boussinesq class for two-layered fluid systems, we have
derived the FOUR -equation model for the free top-surface case and
the THREE-equation model for the rigid horizontal top-surface case;
these are extensions of the one-layer homogeneous fluid system
previously considered by Wu (1979). For primarily unidirectional
motions a forced KdV equation is obtained which represents each
normal mode of a two-layer system or a continuously stratified fluid
system. Numerical schemes have been successfully developed to
solve these equaEions. Experiments were performed to investigate

this phenomenon using fresh water to form the upper layer and brine
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the lower layer. The relationship between the main properties (the
amplitude and the period of generation) of the generated solitons and
the forcing function configurations is d;lscus sed along with comparisons
of theoretical, numerical and experimental results. Qualitatively all
the results are consistent in exhibiting the salient features of the
resulting motion. Quantitatively the numerical results based on the
continuously stratified fluid model seem to be more satisfactory than
those given by the two-layered fluid model in comparison with the
present experiments. The discrepancy between the theory and experi-
ment is supposedly due to the viscous effects, which will be left for

future work.
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I. INTRODUCTION

This thesis is mainly concerned with the generation of internal
solitons* that move ahead of disturbances moving with a transcritical
velocity in a shallow stratified fluid system. Internal waves, including
all kinds of wave phenomena inside a stratified fluid system, have been
a subject of interest for a long time in geophysics, ocean engineering,
applied mathematics and hydrodynamics. The vast oceans on the
earth are a complex stratified fluid system widely distributed with
pycnoclines, which are horizontally layered regions with a large den-
sity variation, commonly located about 50-150 meters below the
ocean surface. With the development of oceanography and ocean
engineering, more and more publications on internal waves in nature
have appeared. Lock (1980),Osborn, Burch & Scarlet (1978) and
Osborn & Burch (1980) reported field observations in the deep waters
of the Andaman Sea off Thailand. Other investigations have been re-
ported by Perry & Schimke (1970) on internal waves and internal
solitary waves in the area of the Northwest Coast of Sumatra, by
Ziegenbein (1969, 1970) in the Strait of Gibraltar, Eriksen (1978) in
the Bermuda Area, Gargett (1976) and Farmer & Smith (1980) in the
Western Coast Area of Canada and by Halpern (1971), Haury (1979)

and Chereskin (1983) in the Massachusetts Bay. A significant feature

The term soliton (or solitary wave) used in this work is intended
to name the waves which are completely above or completely below
the mean-water line. They are generated, one after another, by
moving disturbances and each of them carries the essential qualities
of a single solitary wave.
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of these observations is the discovery of how large the amplitude of
these internal waves occurring in nature can be. Internal solitary
waves as high as 60m in amplitude have been reported (Osborn et al.
(1980)) although the top surface waves that accompany such giant inter-
nal waves are invariably very small. It was noticed long ago that
ocean-going vessels off the coast of Norway suddenly found themselves
unable to maintain their accustomed speed as they moved past the
mouth of a fjord. This '"dead water'' phenomenon is related to the
internal waves as explained by the Swedish oceanographer Ekman.
At certain speeds, much of the power from the ship's engines is
spent, wastefully, on the creation of internal waves (Long (1970)).
Internal waves are also responsible for the flexing of drilling risers
of offshore drilling rigs in the deep waters of the Andaman Sea
(Locke (1980)).

Important experimental studies on internal waves have been
conducted by many researchers. Among them are Yih & Guha (1955),
Lee & Beardsley (1974), Hurdis & Pao (1975), Baines (1977, 1979),
Maxworthy (1979), Hammack (1980), Koop &rButler (1981), Lansing
& Maxworthy (1984), Kao (1985) and Gilreath & Brandt (1985).

The phenomenon of generation and evolution of internal waves
in a stably stratified fluid has been a subject of considerable recent
interest. Internal waves have been investigated theoretically by
Keulegan (1953), Long (1956), Peters & Stoker (1960), Benjamin
(1966, 1967) and Koop & Butler (1981) for two-layer fluid systems,
and Peters & Stoker (1960), Benney (1966), Benjamin (1966, 1967),

Wu (1966), Wu & Mei (1967), Ono (1975), Joseph (1977), Kubota, Ko
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& Dobbs (1978) and by Liu, Kubota & Ko (1980) for continuously
stratified fluid systems.

Most of these research studies are concerned only with '""free"
wave propagation — there being no external forcings except the con-
servative gravity field acting as a restoring force. Among a few of
the papers that have considered external forcing disturbances such as a
surface pressure or the forcing due to bottom unevenness, we can
mention Lansing & Maxworthy (1984) who investigated, both theoreti-
cally and experimentally, the generation and evolution of internal
waves in a two-layer system by towing an obstacle with a sinusoidal
motion. They concluded that the generation mechanism of an internal
wave train by tidal flows in the ocean is: '"'As the ebb tide proceeds,

a depression, i.e., a lee wave, is formed behind the obstacle......
As the ebb tide slackens, the depression, which has gained a large
potential energy, moves upstream against the flow. As the depres-
sion propagates away from the obstacle it evolves into a number of
solitary waves. "

The phenomenon of soliton generation by moving disturbances
was first discovered in the homogeneous one-layer case. This run-
away soliton phenqmenon was first identified and reported by Wu &
Wu (1982) from their numerical calculations and later it was con-
firmed by experiments with both two and three-dimensional distur-
bances in the homogeneous one-layer case, namely by Lee (1985) for
two-dimensional disturbance and Ertekin (1984) for three-dimensional

disturbance. Also there have been some theoretical investigations on
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this phenomenon (see Huang et al. (1982), Akylas (1984), Cole (1985),
Mei (1986) and Wu (1984, 1986)).

Recently, Grimshaw & Smyth (1985) investigated the flow of a
stratified fluid over localized topography and obtained a forced KdV
equation to model the generation and evolution of internal waves by
uneven bottoms. From their forced KdV equation they showed solitons
were generated ahead of the disturbance in resonant cases,

The main objective of this thesis is to study the runaway
soliton phenomenon in stratified fluid systems theoretically, numeri-
cally and experimentally. It is expected to find some new behaviors
as well as similar behaviors to those already known for the homogene-
ous one-layer case. The second objective is to develop some theoreti-
cal models for investigating weakly nonlinear and weakly dispersive
internal waves in inviscid and incompressible stratified fluid systems,
which may be useful for solving other related problems such as inter-
nal wave interactions, in addition to the runaway soliton problem.

The first theoretical model developed belongs to the Boussinesq
class which allows waves to propagate in all directions through a two-
layer fluid system having a free top surface. The second model be-
longs to the Korteweg-de Vries class, which describes waves propa-
gating in one direction for two-layer fluid systems with a free top
surface. The third and fourth models belong to the Boussinesq class
and the Korteweg-de Vries class, respectively, both for two-layer
fluid systems covered by a rigid horizontal top surface. The fifth
model is the forced KdV equation for continuously stratified fluid

systems with a free top surface or a rigid horizontal top surface.
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Two very general types of external forcing disturbances are consider-
ed. A system may have an undular bottom in motion, as is admissible
to all the models, and pressure disturbances can be applied on the top
surface in the models applicable to systems having a free top surface.
Disturbances should be small since our models are not fully nonlinear.

Several numerical schemes for solving the basic equations of
each model have been developed and the numerical results will be
discussed in Chapter VIII. Experiments were done with fresh water
forming the upper layer and brine the lower layer. The external
forcing was provided by a bottom bump, which has a circular-arc top
surface and flat bottom surface, which can be driven to move along
the floor of a water tank with a uniform velocity, started impulsively
from rest. From the numerical results of the various theoretical
models and the experimental results it is found that when a distur-
bance moves horizontally at a constant transcritical velocity through
a stratified fluid, a sequence of solitons are generated, one after
another to surge ahead of the disturbance. For a two-layer fluid
system, there are two characteristic velocities, cg for the slow
mode and cg for the fast mode, which can be determined on the
linear theory or on the lowest order results of weakly nonlinear
theory. When the density difference of the two layers is small, s
is nearly equal to the characteristic velocity of the homogeneous
one-layer system (as if the density is uniform), whereas g is much
smaller than ¢;; in fact, —Z—fs- = O((l-c)l/z), where o is the density

ratio of the upper to the lower layer. In the fast mode, when the

velocity of the moving disturbance is near Cgr Wave behaviors are
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almost the same as those in the homogeneous one-layer case with the
amplitude of top surface larger than that of interface. In the slow
mode, when the velocity of the moving disturbance is near g which
is the case of our main interest, waves along the interface are much
greater than those on the top surface, a picture very much like the
behavior of internal waves found in the field observations. Because
of this similarity, the slow mode is sometimes called the internal
wave mode and the fast mode, the top-surface wave mode. The
theoretical model for continuously stratified fluid systems is developed
with the intention of modeling our experiments more accurately since
water and brine are miscible and mass diffusion is inevitable in our
experiments. There are infinitely many modes of wave motions in
every continuously stratified fluid systems. For the free top surface
case, the first mode (with the largest characteristic velocity and with
no zero point in its characteristic function within the depth range of
the system) is similar to the previous top surface wave mode and the
second mode (with the next largest characteristic velocity and only
one zero point in its characteristic function in the depth range of the
system) is similar to the internal wave mode of a two-layer fluid
system just mentioned. In fact, the two-layer stratification is a close
approximation of the situation in our experiment, which consists of
two regions of very slowly varying density connected by a region of
fast density variation. The numerical results of the theoretical
models explored and the experimental results all exhibited the phe-
nomenon of internal soliton generation by disturbances moving with

CONSTANT velocity in both two-layer systems and continuously
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stratified fluid systems whether the top surface is free or covered by
a rigid horizontal plate. The relationship between the amplitude and
generation period of internal runaway solitons, and the velocity and
size of forcing distributions, and the background density profile will
be discussed in Chapter VIII.

A summary of the contents of this thesis can be given as
follows. In Chapter II, a system of basic equations of the Boussinesq
class is derived for two-layer systems with a free top surface follow-
ing a similar procedure as that developed by Wu (1979), originally for
homogeneous one-layer systems. To provide a method of solution
based on this generalized Boussinesq model, a numerical scheme
consisting of two-step finite differencing is presented in Chapter III.
In Chapter IV, the forced KdV model is developed for the cases con-
sidered in Chapter II by using the 2-timing perturbation method,
followed by providing a numerical scheme specially designed for
using this model. Chapter V is concerned with two-layer systems
with a rigid horizontal top surface. First, a model of the Boussinesq
class is developed following a procedure similar to that used in
Chapter II, for which a numerical scheme is derived. Secondly, the
forced KdV model is derived for this case by applying the perturbation
method after that introduced by Gardner & Morikawa (1960). The
theoretical internal wave model for systems with continuous stratifi-
cation is derived in Chapter VI by applying the mass conservation
principle and the momentum equations of the system. The experi-
mental aspects are presented in Chapter VII. All the results, theo~

retical, numerical and experimental, are discussed in Chapter VIII

and in the last chapter.
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II. WEAKLY NONLINEAR LONG-WAVE MODEL

IN TWO-LAYER SYSTEMS

The equations of motion for weakly nonlinear and weakly disper-
sive long waves propagating in a two-layered fluid system with external
forcing, such as a moving surface pressure distribution or a changing
bottom topography, are derived from the layer-mean Bernoulli equa-
tions and the mass conservation principle. The resulting equations
are (3.1)-(3. 4), which present a FOUR-equation model of the general-
ized Boussinesq class. Some numerical solutions will be presented

later.

2.1 Basic Equations
The first class of fluid systems which we consider here consists
of two layers of immiscible incompressible fluids under the action of
gravity and external forcing disturbances. The density of the upper
layer, Py» 1is less than that of the lower layer, P,s SO that the
system can maintain a stable equilibrium with respect to small dis-
turbances. When at rest, the upper layer has a uniform depth h

1

and the depth of the lower layer, h2’ may be a function of space and
possibly time when the bottom is in motion. (cf. Figure 2.1).

Both fluids are assumed to be inviscid and the flow irrotational
so that a velocity potential, ¢, exists. In addition, the effects of
surface tension are neglected.

In the analysis of the generation of weakly nonlinear and weakly

dispersive long waves by moving disturbances and the subsequent

evolution of these waves, two small parameters are of importance;
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one measures the nonlinear effects of relative order

a =2, (2.1)
(o]

where a is a typical wave amplitude with reference to the total liquid
depth h0 and the other parameter gives a measure of the relative

order of the dispersive effects

, (2. 2)

where M\ is a representative wavelength. Both parameters are

assumed small. The ratio

o akz
Ur = —2- = ——3 ,
€ h
(o]

called the Ursell number, gives a measure of the comparative impor-
tance of the nonlinear and dispersive effects. For Ur « 1, the model
belongs to the class of linear theory; for Ur » 1, it belongs to the
Airy class in which the nonlinear effects predominate; and for

Ur = 0(1), it belongs to the Boussinesq class (Ursell (1953)). In the
Boussinesq class, nonlinear effects balance the dispersive effects so
that solitary waves and cnoidal waves are possible. In the present

investigation, we assume

Ur O(1)

i.e. o

0%
For the irrbtational flow of inviscid fluids occurring in the
gravitational field, Bernoulli's equation holds, separately, for both

upper and lower layers, namely,
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9 , 1 2
§+£+gt_{+gz:0, (2.3)

where p is the pressure, U is the fluid velocity and z the vertical
coordinate.

The transport theorem, equation (7) in Wu (1979), is valid for
any material layer of a homogeneous fluid — that is, any layer be-
tween two material surfaces, say zl(x, y,t) and zz(x, v,t) (x,vy are
the horizontal Cartesian coordinates), each'consisting always of the
same material (fluid particles) throughout the motion. The theorem

states that

Bl = 20 + v [uf] , (2. 4)

where f(x,y,z,t) is any flow quantity, = (u, v) is the horizontal

o
C . 9., o, . -
projection of the velocity vector, ¥ = (Tx 5—};) is the corresponding

two-dimensional vector operator and

z,(%, y, t)
[F] = g F(x,v,2,t)dz = (z,-2,)F , (2.5)
z;(x, v, t)

is the integral of a quantity F across the vertical range of the
material layers zy< z < z, ata fixed horizontal position I= (%, v)
and at a fixed time t, and F is the average value of F over the
vertical layer, df/dt denotes the material derivative,

If f istakenas f=1 and f= u within each of the layers, the

transport theorem gives the following equations:
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Tll + Vv - (71121) =0 ’ (2. 6)

M, + V- Mmu,)=0, (2.7)
— — _ 1_ —

(Mayy+ vy g = “py M1VPL

m,a,), + V' (nu,u,) = -4V

222t MYz, p, 12 P2 ¢

where subscripts 1 and 2 denote quantities for the upper and the
lower layers, respectively, and the partial differentiation with re-
spect to time t is denoted by a subscript t or, alternatively, by an
overhead dot sign, such as those in equations (2. 6) and (2. 7). ub and
n, are the total depths of the individual layers. If gl and §2 denote
the displacements of the top surface and the interface relative to their

undisturbed levels (cf. Figure 2.1), we have

711 hl + ;l = 42 ’ (2.8)

M, = hyt g, . (2.9)

The conditions of irrotationality and incompres sibility result in
Laplace's equation

2
v+ 254=0 , (2.10)
oz

which applies everwhere in the upper layer for the potential ¢1 , and

2 2
9
in the lower layer for the potential ¢2, and where Vz =t —% .

Ix dy
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2.2 Boundary Conditions
For the two-layer system six boundary conditions are required:
two for the top surface, one for the bottom surface and three for the
interface between the two layers.
Taking gravity in the negative z direction and the undisturbed
position of the top surface at z = 0, the kinematic and dynamic bound-

ary conditions are applied at the top surface and give

w = ‘%* u, * Vg, at z=10,(xy,t (2.11)
and
P = p,(xv,t) at z =¢,(x,v,t) (2.12)

where Py is the external pressure applied at the top surface and w
is the component of fluid velocity in the z direction.

The kinematic boundary condition at the bottom is

9
w = -(z- + u, * V)h, at z= -h;-h,(x,y,t) . (2.13)

The kinematic and dynamic boundary conditions at the interface

are
3;2
Wl—a—t+21 v;z at z_gz-hl, (2.14)
8§2
Wz__at_+ EZ.VC’Z at z = gz-hl, (2.15)
and
P = p, at z = g, - hy (2.16)

where w; is the vertical velocity in the upper layer and W, in the

lower layer.
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2.3 The Dimensionless Form

The same dimensionless variables (with one exception for
pressure) as those used in Wu (1979, equation 21) for the single-layer
homogeneous system are adopted here for the two-layer system (as
well as for the continuously stratified fluid system to be considered
later). In the following ''*" indicates a dimensionless variable, X
is a characteristic wavelength, and c¢ = Jg? is a typical wave
speed for the-homogeneous-fluid-layer case (g is the gravitational
acceleration).

The horizontal coordinates are nondimens ionalized by \, =z

and all depths or surface elevations are nondimensionalized by ho’

the time is scaled by % and ¢ by cA. Thus

oy = B @R e ) = b

(2.17)

t* = % , (u*. v*, w*) = (u,v,w)/c, ¢* = %\

Because the density is different for each layer, we take the

nondimensionalization of the pressure as

¢ pl
py = for the upper layer,
1 plgho
and (2. 18)
p* - P2 for the lower layer .
2 ngho

Substituting (2. 17) and (2. 18) into (2. 10) and (2.3) and immedi-

ately omitting the superscript *, we obtain the Laplace equation:

z—g = _€2v2¢ ’ (2-19)
z
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and Bernoulli's equation:

p+¢+%U2+Z=0, (2. 20)

with suffix 1 (for the upper layer) and suffix 2 (for the lower layer)

respectively.

Equations (2. 6) and (2. 7) remain the same as before, namely,

Ayt Ve mymy) =0,
(2.21)
Myt Ve myu,) = 0
The boundary conditions now become as follows:
P=p, at z = gl(x, y,t) (top surface), (2.22)
dgl
w = e3¢ at z—gl, (2.23)
81;2
w1=e(at+51»v;2) at z=§2-h1,
342 (2.24)
w2=e(at +1_1_2'V§2) at z=§2-h1,
pz = Upl at z = 42 - hl ’ (2. 25)
dh2
W= -e at z = -hl -h2 (bottom) , (2. 26)
where o is the density ratio
P1 . (2.27)

For the equilibrium of a two-layer system to be stable, we require

that
0 <o <1
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In addition, the dimensionless velocity components are given by

u = vé (2.28)
w = El %g _ (2. 29)

With the small amplitude assumption and the relations between
the variables involved, the following order estimates and assumptions

appear to be consistent for both the upper and lower layers:

£ = Olo) ,

O(er) ,

Ie
0

(2.30)
= O(ae) ,

w
h2= HZ - d with H2 = const and d = O(at) ,

Notice the last formula, which implies small variations of the
bottom topography in order to maintain the wave amplitude small in

the problem formulated.

2.4 The Series Expansion

An expansion of the following form is assumed for each layer:

g 2n .
p = X ¢ Q(Zn) (r,z,t) . (2.31)
n:

(o]

Upon substituting (2.31) in (2. 19), the Q(Zn)'s are obtained in

the form

Q(O) = P (x,t) , (2.32)

_ 1.2.2
¢>(2) = 202 (z,t)+ Z¢(3)(£,t) -52°V ?0) (2.33)
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and so on, the linear term of z in P is deleted because @ =0
(o) (o)z
as a consequence of the bottom boundary condition (2. 26), the inter-
face boundary condition (2. 24), the assumption d = O(®) and the
relation (2. 29).

Accordingly, we have for u and w the expansions

u = V¢ = a[2(0)+522(1)+542(2)+.,,] R (2.34)
W=€l-8-£= Cle [W(1)+€2W(2)+...] , (2.35)

with the relations

— o=l 2
B T V‘P(o)(b t) = a v + O(e”) , (2.36)
wgy = VQ(Z) , (2.37)
8@2 vz
W(l) = —-(—Laz = fP(3) -z ¢(o) . (2.38)

Substituting the above expansion for w into the bottom boundary

condition (2. 26), ?3) of the lower layer is determined as

1

?2(3) = ‘ﬁza- - (hl + HZ) v2¢2(0) ’ (2.39)

where the order estimate of d = O(®) has been used and ¢, is the
¢ for the lower layer and similar notations are used for other
quantities.

To obtain <p(3) for the upper layer, the interface boundary
conditions must be used. In fact, the difference between the two

equations in (2. 24) yields
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Wl-WZ=€(21-22)'V§,2=O(O¢2€) at z=§,2-h1
(2. 40)

which indicates that the interface is a vortex sheet in general, with a
velocity jump aligned with the interface. Since go(o), ‘p(l) <p(3) are
independent of z, the following formula for <p1(3) can be obtained

upon substituting the expansions for w into (2. 40):

I 2 2
P13) T "R BV o) H V25 ) (2. 41)

2.5 The Layer-mean Bernoulli Equations

At the top surface and the interface Bernoulli's equation (2. 20)

provides the following relations:

-~

1, =~ =2 _
po+§1+¢1+§-(1.1_-1_1_+w)- o, (2. 42)
D. +¢?+l(3-{1~+\}72)+§ -h =0 (2. 43)
Py 12 17 52" ’ y

1’\4 ~ ~2 _
p2+¢2+§(_q-g+w)2+§2-h1—0, (2. 44)

where a """ above a variable denotes the quantity is evaluated at

the top surface and a "'~ denotes evaluation at the interface. From

these equations we obtain the following relations:
6, + 2(v)%e g 4 =¢+ (v;,r)_q;_l a+ W),
17 2 17 Po 2 ZLatw

(2. 45)
l T 2 ~ —_ -t -1-' M -1—~.~ ~2
9 * Z(V9)"+Lytpy = 6+ 5 (V) -qsl > u+ w)+h,

(2. 46)
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3, + (98,05 + 1+ p, = 6+ 3(98,)% - ¢

where $ means %?

By using the expansion of the potential to cancel the lower order

terms on the right hand side of the above equations and by taking the

average across the depth and subtracting, the following equations

result:

» h
< 1, -2 2 0 1.2_2. 22 4
¢1+E(V¢1) t L +p = (-‘2 1(3)'6h1 v ¢1(0))+O(O¢ € ,0),

(2. 48)

By 1, 2.2

2 o
+ Ole [2 ¢1(3)+3h1 v

- 1,_.=.2 ~ _ ‘ 22 . 4,
¢1+2(v¢1) +g2+ pl—hl <p1(0)]+ O(a"c", ate ),

(2. 49)

1

H
2, T2 2,02 .
[ (B Hot 3 H)V 705 (o))

- 1,.— 2 ~ iy 1
9,7 3(V0 ) Lyt py=hyt ael-F gy 0o 3

ro(@%?, aety | (2. 50)

in which (2.30) and the following relations have been used

z, = -5 + O(at) )

Zp T by -5t Ol

Z _ 1 .2

25 = %+ O@) ,

Z .2 1.2

3 = B+ hH,+3 H + O@)
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which are readily derived using the definition (2.5) for ¥ and the

assumption (2.30). Here the subscript 1 or 2 for z and z°

signifies the depth average being taken across the upper or the lower

layer.

Substituting the expression for <p(3) (equations (2.39) and (2. 41))
into (2. 48), (2.49) and (2.50) and using the relation (2. 36), we obtain

the following:

h .

2B 9 2— —
{5 3¢ by + b V%, + H2V2¢z]

- l 7 .2 -
¢1+ E(Vﬁbl) Tt P, =€

2

1 J _2— 4 2 2
eh 3V ¢1}+ O(ate ~, a¢“e “) (2.51)

2

128
+31 v

5V 8, 1+ Ofa, afe?) | (2. 52)

. H,
¢ Z(qu )+§2+pz-h1+e {2 at[h +(h +H )v ¢]

H
2 1. .08 2 4 2 2
- 3% (b + 3 H)3V%E b+ O(ae?, ofe?) . (2. 53)

Finally, by making use of (2. 25), 32 =op), B’l and p, can be

eliminated from (2.53) - ¢ - (2. 52), giving

3708, -8, + 0(98)% - 3 (78,74 0 - 1z, =
(2.54)

h
(g -1)h +EG{-T8t[h +hV¢+HV¢]+ Vz‘fl}

2. % 9 5 1 a2l
e {2_5_[ +(h+H)v¢]-2(h+—H)V¢}+O(ae ).

’
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Thus, the layer-mean Bernoulli equations (2.51) and (2. 54) have
been obtained, which will be used later for numerical calculations.
There are four unknowns here, namely ;1, {.,2,751 and 25-2. Two
additional equations are needed; they are furnished by invoking the
principle of conservation of mass for each layer as given below.

Because the velocity potentials are determinate up to an arbi-
trary function of time, the first term on the right hand side of (2. 54),
which is a constant, can be absorbed into the potentials. Consequently,
this constant term will be omitted in the sequel; this procedure is

found to further facilitate application of the open boundary condition

used in our numerical computation of the solution.,

2.6 Mass Conservation
The conservation of mass in each layer is assured by equation

(2.21), which can be written as

i’l + vl +hy -4, V8] = ¢, + o, aked) | (2.55)
(,+ v [(¢, + B) ¥6,] = -h, + O(ae®, @?e?) , (2. 56)

where the following relations have been used:

VE, - V8, = Oae?, a?c?)
V¢2 - v$2 = O(ae4, azez)

as can be readily deduced from the expansion expressions for the
potentials, the expressions of cp(3) and the order estimate for d.

This completes the formulation of the problem, We now have
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four equations (2.51), (2.54), (2.55) and (2. 56) for four unknowns
gl, 42, $1 and ?p-z. The system of equations describes the evolution
of weakly nonlinear and weakly dispersive long waves and is capable
of describing three-dimensional waves. The bottom of the fluid
system can be variable and in motion and an unsteady external

pressure may act at the top surface.
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III. NUMERICAL METHOD

In this chapter, a numerical scheme using finite differencing is

developed for solving the set of basic equations presented in the last
chapter.

For convenience, the bar over ¢ will be omitted in the sequel

and the four equations to be solved are rewritten as follows:

CONTINUITY EQUATIONS:

L+ Ve [+ hy - £,)98,] = £, + O(aet, a?e?)

R (3.1)
° B ® 4 2 2
L+ V- [, + hy) V8,]=-h,+ O(ate™, % %) (3.2)
LAYER-MEAN BERNOULLI EQUATIONS:
b+ 2 (vp )2+, +p = Z{E—a[ﬂ + H, v%.]
172V H et = e rlh, t Hy VO,
+%h§ v2$1}+0(ae4,a2e2) , (3.3)
s 2 1 2 _
1 2 1 2 .2 _2°
-3e (h10'+ HZ)hZ-EE Gh1V¢1 (3. 4)

1 2 2 25 4 2 2
+2e HZ(-3H2-hlo)V¢2+Q(0¢e,O¢€ ),

where the first constant term on the right hand side of (2.54) has been

combined into the potentials.

For further reference, the four .equations (3. 1)-(3. 4) will be

called the FOUR-equation model, there being four unknowns: Ql, gz,
¢1 and ¢2 .
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3.1 Finite Difference Scheme

A finite difference method is developed for solving the four
equations (3.1)-(3.4). In advancing { and ¢ at every time step, the
improved Euler-Cauchy method following a two-step predictor-
corrector procedure is applied. This scheme is similar to thé,t
employed by Wu & Wu (1982), but is considerably more complicated
because there are twice as many unknowns and twice as many equa-
tions involved in the present two-layer case as compared with the
homogeneous single-layer case. In addition, a direct method of
solving the resulting linear algebraic equations, which are formed
from the implicit scheme for solving the two layer-mean Bernoulli
equations, is used rather than the iteration method used in the earlier
study.

The spatial derivatives are approximated by central differ-
ences. More specifically, we consider the time interval At between
time t = kAt and time t = (k+1)At. The quantities to be calculated
at time level ktl are first replaced by the provisional values at the
provisional level kt+1 given by the predictor scheme. Then they are
changed to new values at the next time level ktl given by the correc-

tor, as depicted by the following diagram:

predictor corrector

(S — s (gL )

k+1
where (-)k denotes a quantity at time level k. Thus, the time
derivatives are approximated by the difference between the quantities

at the time-levels k and ktl for the predictor stage and those at

time-levels k and kt+l for the corrector stage.
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All spatial derivatives (without time differentiation), are known
from the previous time-step calculation. The time-level k values
are taken for the predictor stage and the average of the time-level k
and time-level k+1 values are taken for the corrector stage.

The terms with time and space cross derivatives are approxi-
mated by the values at the corresponding time levels, i.e., by the
time-level k and time-level k+1 for the predictor stage and by the
time-level k and time-level k+l for the corrector stage. They are

summarized as follows:

n 3
() a—%L(n:OIZ) —%——andh

9t 9% (8x°at) 2
predictor k+1, k k
corrector  ktl,k % ([k] + [&F1)])

Although this theoretical model (in the homogeneous single-
layer case) has been applied to two-dimensional cases by Wu & Wy
(1982) and Lee (1985) and to three-dimensional cases by Lepelletier
(1981) and Schember (1982), all the calculations in this thesis will be
done for the two-dimensional case involving the horizontal coordinate
x and the vertical coordinate z.

In summary, the present numerical scheme of approximating
the equations (3.1)-(3.4) is listed below in the conventional notation:

a subscript i denotes the i-th x position and the superscripts denote
the various time levels as defined above. In these equations the error

4

terms of O(tte’, azez) are neglected.
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PREDICTOR STAGE:

(3.2):
o1 Lk k ktl At k Kk
2,1 T b2, ity -hy - N [4(42 i+1 ;2 i-1t B2 =By )

k K Kk Kk ..k Kk Kk
07 141 - 92 3+ (62, ;¥ 1y )@, ;i 92,1417 2%, )1,
(3.5)
(3.1):
k+1 k k+1 Lk

b1,; Tb1,itt "8 2[ (41 i+1” 41 o c2 i+1 Cz i-1/

k k K K k k k
2y 1P g 2,iT B@y 1t - 29, I
(3. 6)
(3.3):
1 2.2 .51 2 ) 2222k+1
“3E R %173 hHygy T (8x7+5 9
2 k1 1 2.2 K1 1 k+1
e th2¢2,i "3 € h1“51,1+1'2E h H2¢ ,itl
2 .k 1,.k kK 2 .k k 2
Ax"¢) t[8(¢1,i+1 SRS ITLAL (S Py, 4% ]
P2, 2k 1 220k ok 265 )
z € 2,173 MO0 ity 1,i

-z¢h (¢2 i+l ‘bl?f 1-1'2‘1’12{ o 3.7
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(3. 4):
2 W1, 2., 1 1 1 2
gelonl o] v fHg Hyt g hyoly s 1+ 0bx” -5 e%n ”’11<+1
2 2. 2 L, 1 2 .2 kil
tl-ax" - CH,GH  hyo)lé, | + g eSon] P1, i1
2 1 1 _ .k .k K

2 1 k2 K k.2
ax” -3 “At(¢1 #1721, 1) +§At(¢ 2,i¢1 ~ %251

1 2.2,k & Kk 2., 1 1
g oh @) 41t 9) 5129 )t e“H,GH, + Sho)

P

k 2 k Z-‘
(¢2’ w1t ¢2, o1 C 2‘#2,1) -5e (hlo+ hZ, i) At Ax hZ ,

(3. 8)
CORRECTOR STAGE:
(3.2):
k+1 _ ,k k k+1 At k k

+h

52,1 T b2,ithy by - 2[442 i+1 " 52, 5.1t By 17 i

2 Ax

k k

K K K K I
(92, 1417 92,110 (& ;+ By )05, 1+ 92,141 = 295 )
s A mry kt1 K+l . FFT LRI

+ h

(4 it1 7 52,001 B g by 0,y -6 )

k+1 k+1 ¢k+1 + ¢k+1 ¢k+-1 ), (3.9)

* (§ 2 2,i-1 2,itl ~
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(3.1):

kt1 k k+1 k JaY

~ £ .l k k k
81,1 T b, it b2, "8t N [36) 441 - S1,i-1752, w1t 62,520

k

K K K Kk
1,041 "1, 1707 - § T h )(¢1 -1t 9] 429

(¢ 1, )

S ™ U ey (N wrey S ey R s}
R AU RTRR SUFE R SRYER R S [ 91 i1

k+ k+1

P e el L+ oL . (.10)

1

P

- 295 1)

(3.3):

2L 2. 2,2 k]
t3ehylé,

2,2 ,ktl 1 2 k+1
1,i+1 - 2°¢ thzd’z, i+1 -

k

2k K 2
Ax7¢) -zAatlg @) - 9) % €y, it Py ax7]

ktl ¢k+1 k+1 k+1

2
"EAt[s (¢ 1+1 - 1’1_1) (él O,i )AX ]

1 2 2 2k

Pge hAtAxtlhy thy ) - Seth] By 4 91 5.1 - 29

k
1,9

lehH(d)

K K
2 2,1 P2, - 24 ) (3.11)
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(3. 4):
+ 2.0 1 1 1 |
gelonl o v, L no 192,11t oaxtagedo St
2 2. .2 k1, 12 Kkt1
+ [-Ax” - ¢ H,($H,+ hlcr)]lﬁz’i ze oh? ¢1 +1
2 1 K+
+ efmy(d H, + 300005 1, )
k K 2 1 K Py 2
(01,1 - 9;,)8x +3 (@-1(-¢; ; - b, JatAx” - 16 oAt

wi i+l "~ ¢11(, i-1) - %‘6 crAt(‘i’lfjrilﬂ i ¢11<T'11'1 o —llz o

O, 11 - 95, )+ To ar0 Ly - oL 2 L2yt

(¢}1(, i+1 T ¢11<, i-1 "~ ¢ Jte °H (§H2+ .;.hl )(‘/’12(, i+1+¢];, i-l'zd’l?f,
(3.12)

The procedural execution of this numerical scheme can be des-

cribed as follows. First, for the predictor stage, equations (3.5) and

(3. 6) can be used directly to obtain the values of led-:' nd §k+1 .

We note that (3. 7) and (3.8) are a set of linear algebraic equations for

the potentials ¢11{+1 d ¢k+.1

at the provisional level k1.

)

1
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After the computation for the predictor stage is completed, the
next four equations (3.9)-(3. 12) can be treated similarly for the

corrector stage. That is, ;11{+i1 and §’12<+il can be solved directly

from (3.9) and (3.10) and ¢11<+il and (}51§+il. can be solved from
(3.11) and (3. 12) by using a method of linear algebra, which will be

described in the next section.

3.2 Solution of the Linear Algebraic Equations

For definiteness, let us consider a region of calculation with n
inner points and 2 boundary points. Assuming that the boundary
values are known or can be obtained, e.g., from the calculation for the
preceding time level, before solving these equations (this assumption
will be relaxed later in the sequel when the boundary conditions are
discussed), then equations (3. 7) and (3. 8) for the predictor stage can

be represented in matrix form:

[K] {x} = {b} , (3.13)

where the unknown column vector {x} is

G = {9y 108y 191, 505 50 s 8y 08, 3T GL19)

1,n’ n

for the time-level kt+l (Superscript T in the above expression

means transpose and the boundary values are ¢ d

1, 0’ ¢2, o’ ¢1, n+1’ an
¢, nt1) {b} is obtained from the right hand side of equations (3. 7)
and (3. 8), which is known, and possibly some boundary values may

contribute to this vector, and [K] is the constant matrix:
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i 7 i
ACO0OoO0 .. kR, ko, Ky,
CACO.. k21k22k23k24
0 CACO. . ky) kyp kg kyy Kyg Ky,
6 CaAacC. . _ ka1 Ky kg kyy ko ko
[K]= ...... I
0CAC
0 C A
(3.15)
where
F" -
2,2 2 2
Ax +3E hl € thZ
[A] =
H ch
2 1 2 2 .2 2 1
oAx-zeohy - AxT-2 A
-
211 212
21 %22
and
~
1 2.2 1 2
-3¢ by -7 ¢ hH,
[C] = H oh
L e2on e®H (=2 + —L)
6 1 2'3 2
€11 ©12
€21 ©22 .

Similarly, equations (3. 11) and (3. 12) for the corrector stage

can be expressed in the same form as (3.13) except with a different
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known {b} and with {x} in (3.14) representing the unknowns at the
time-level kt+l. We notice that [K] for both the predictor stage and
the corrector stage are the same constant matrix.

In general, [K] is not symmetric, but it is banded with band-
with of 7. Gaussian elimination is used to solve equation (3. 13), with
partial pivoting to make the solutions reliable. The Gauss elimination
procedure with partial pivoting is equivalent to transforming [K]
into an upper triangular form through elementary row operations.
Thus, it transforms [K] into the multiplication of a series of the
elementary matrices, which correspond to the elementary row
operations, and an upper triangular matrix. In the problem under
consideration, [K] is a constant matrix and the same [K] is used
for both the predictor and the corrector stages. Therefore the trans-
formation of [K] needs to be done only once at the beginning of the
numerical program and thereafter only some simple calculations are
needed at every time step for obtaining the solutions of (3.13). This
algorithm thus provides the solution to the system (3. 13) very
efficiently.

The matrix [K] is decomposed as follows:

K = P1L1P2L2P3L3 ""Pn-an-l A

where matrix Pi is the elementary matrix which results from row
exchange based on the i-th column consideration and is formed as
follows. If the maximum of the absolute values of the elements in the
i-th column below or at the diagonal occurs at the j=th row (then j> i),

then Pi is obtained by exchanging the i-th row and j-th row of the
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unit matrix. If this maximum happens to be at the i-th row, then
the row exchange is not needed and the corresponding Pi is the unit
matrix itself. The matrix L.1 is the product of elementary matrices
to represent the Gauss elimination of the elements below the diagonal

in the i-th column. It has the following form:

F—- —
1
1

1

111
L= 1, 1

1
1
e = .

i-th column

The upper triangular matrix A would have bandwidth 4 if the
procedure is without pivoting. With pivoting, however, the bandwidth
of A is 6 in the present case (for the decomposition of general banded
matrix [G] with m; lines below the diagonal and m, lines above the
diagonal, the bandwidth of A is m1+m2+1, which is the same as that
of [G], but in the present case of [K] because of its specific structure,
the bandwidth of [A] is 6 instead of 7). So the result of the decom-
position contains a banded matrix A, n-1 matrices P, which can be
stored as a one-dimensional vector, and n-1 matrices L, which can
be stored in a matrix with the size 3x(n-1).

In solving (3. 13) at every time step, we first solve for vector

{y} from the equation:

P\L\P,L,....P L . {y} = {b} ,
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and then solve for the unknown {x} us ing the equation:
A {x} = {yi

These two equations can be solved easily because of the simple

structures of the P's, L's and A,
In summary, the procedure from time-level k to time-level

k+l consists of the following steps:

PREDICTOR STAGE:

§12<+1 is found directly from (3.5),

§11<+1 is found directly from (3. 6) ,
k+1 kt1
oy 7, ¢

is obtained by solving the linear system (3. 7) and

(3.8).
CORRECTOR STAGE:

g}jl is found directly from (3.9),

§k+1 is found directly from (3.10) ,
1

¢11<+1 , ¢12<+1 is obtained by solving the linear system (3.11) and

(3.12).

It remains to deal with the boundary conditions required for
handling the values of the unknowns at the boundary nodes of the
region of computation so as to allow the computation to proceed with

errors less than a specific limit.
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3.3 Numerical Boundary Condition and Window Shifting

The region of calculation, termed the "window'!, is always finite.
In order to calculate the solution within a smaller region, to save
computer time, and to be able to obtain solutions for very long time
behavior, it will be necessary to ascertain a suitable numerical
boundary condition that can ensure both convergence and stability of
the numerical results by suppressing fictitious reflections from the
boundaries.

Three numerical boundary conditions are used in the calculations
of the FOUR -equation model and models developed later in this thesis
and they are depicted in the following paragraphs:

1. LINEAR BOUNDARY CONDITION,

The method of linear extrapolation is applied to obtain the
boundary values of { and ¢ from the values at two interior neighbor-

ing nodal points. For the FOUR-equation model, they are

k+1 kt+1 kt+1 k+1 = 2 kt+1 kt+1

éj,O = Zgj,l - ;j’z ’ gj,n+1 - éj,n = é’j,n-l »
k+1 _ ktl kt+1 kt1 - k+1 k+1
%o T B0 T %2 S =l - e

for both the upper and lower layer (j =1,2). Similar formulas are
obtained for calculating ¢{ and ¢ at the provisional time-level k+1,
Consequently, the matrix [K] in (3.15) assumes, for the boundary

nodes, the form:
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K117 2117201 *pp™ 3% 2ep k3T eppmeg= 0, kyu=cpp-cpn=0,
K217 221%2¢10  Kpp® 3557205, ky3=cp1-0517 0, k= cynecy,= 0,
K 0,

2n-1,2n-3"°11"S11 = X2n-1,20-27%12"%12 = o,

Kan-1,2n-1721172¢110 Koy 1 an=21,%2¢),,

Kon, 20-37%217%217 O Ky pn 2765276557 0,

k +2c¢ k +2¢

2n,2n-1"2217%%21°  %2p 2n"222%2¢,;

2. OPEN BOUNDARY CONDITION (1).

The unknown boundary values of ¢, and ¢i at time-level
ktl are determined by assuming (see Wu & Wu (1982)) that the
disturbed motion adjacent to the boundary is regarded as a long wave
system propagating outward from the inner region through the
boundary with a constant characteristic velocity c. Therefore the
open boundary condition .is the simple wave equation,

Qt + c Qx = 0 at the boundary of the computation region, (3.16)
where Q stands for the wave elevations and the layer-mean potentials
in the FOUR-equation model, and the sign is taken such that the wave is
propagated from the interior of the computation region to the outside.
A signal being propagated with the velocity c¢ from the nodes near a
boundary at the time-level k towards the boundary point in general

would not necessarily reach a grid point of calculation at the time-

level ktl. Therefore, the values of these unknowns at this boundary



36
point are determined by parabolic interpolation from the three consecu-
tive nodal points at the end of the computation region (the window) and
are taken as the boundary values of these unknown variables. The re-

quired difference equations are

ktl  _ ok, 1,k ky 4t g
o5 Q3 - Q)eFS )
1, k. .k kK, At .2
+§(QO+Q2"2Q1)(°AX'B) ,
At (3.17)
ktl  _ .k, 1.k k At g
Pntl T Rt 2Qnl - (A - B)
1,k Kk k. . At 2
+E(Qn+l+Qn-l-2Qn)(CE;-B) ’

where B =1, Q is the same as before and the subscript 0 denotes the
spatial position at the left boundary and the subscript nt+l at the
right boundary. The two equations in (3.17) can also be obtained

from the Taylor series expansion of Q and by making use of (3. 16).

3. OPEN BOUNDARY CONDITION (2).

In the two-layer fluid system, there are two characteristic
velocities and two corresponding wave systems. The open boundary
condition (2) is designed to let both wave systems move outward

'freely'. This condition can be expressed as

where Cq and c; are the slow and fast characteristic velocities
based on the linear theory and the signs are chosen so that the waves

always propagated outward from the region of calculation, with the
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initial conditions evaluated at the two previous time-levels k and

k-1:
Q(x, tk)

R(x) ,

k k-1
D(x) = Q(x: tA);Q(x’t ))

Q, (x, £5)

In integral form the solution is

k
S xtet-t)

_ 1
Q(x, t) = W{

D(s)ds - csR(xj'_cf(t-tk)) +
s -

k
xte (t-t7) ch(xics(t-tk))] s

where the same signs are assigned as before to have the waves always
leaving the region of computation.

By using this integral of the boundary condition and assuming a
parabolic interpolation near the boundary (3 points), the open boundary

condition (2) assumes the expression:

2
k+t1 _ At 2 2 k-1 k-1 k-1
Qo = = (cf + ceC + cs)(-Qo + ZQl -Qz ) +
(64x7)
_at (c, - ¢ )% (@ - 208+ o) 4
(6Ax2) f s o 1 2

At k k k k-1 k-1 k-1
m (cf + cs)(-3Qo + 4Q1-Q2+ 3Qo -4Q1 + QZ )

+ 2Q% _ k-1
o 0o ’
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and
2
k+1 _ At 2 2 k-1 k-1 k-1
Qn+l - (6Ax2) (Cf + CeCe T Cs)(-Qn+l * ZQn - Qn-l )+
Atz 2 k k k
> Ce = ¢ (O] 1" 2074+ Q ) +
(6Ax%) s n+ n n-1
At k k k k-1 k-1
(4Ax) (Cf * Cs)(-3Qn+l * 4Qn Qn—l + 3Qn+l - 4Qn

k-1

k- k
+ Qn-l) * ZQn+1 - Qn+1 ,

where the notation is the same as that in (3.17). For the open
boundary condition (2), the third time-level k-1 is needed to deal
with the near-boundary region. Accordingly, additional values of
gi and ¢i before the initial instant are required for the calculation
in a near-boundary region.

For both open boundary conditions (1) and (2)

Ql;-i—l _ Qk+1 ’ Qk+l _ Qk+1

o n+1 n+l ’

and the matrix [K] in (3.15) for solving the algebraic system is un-
changed but with some additional terms admitted to {b} on the right
hand side of (3. 13).

Finally, we state that the same window shifting technique is
used to save computer time and storage as that used by Wu & Wy
(1982). In most of our calculations, we will consider a disturbance
moving with a uniform velocity. With reference to the absolute
frame where the velocity and wave elevation are zero at infinity,
we shift the "window' (of calculation) after every N time steps to

keep the disturbance suitably located in the window and the prominent
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waves well located. The position of the disturbance can be kept
stationary relative to the window every N time steps if the following
relation is adhered to:

A
At = (ﬁTiI:T , (3.18)

where U is the velocity of the disturbance (relative to the absolute
frame). This means that the disturbance moves a distance of Ax in
time NAt,

New boundary points will therefore appear at the upstream
boundary every time the window is shifted. The values of the solution
at these points are obtained using the open boundary condition (1) and
to distinguish this condition from the boundary conditions used for the
basic equations the former will Be called the window boundary condition
and the latter, the equation boundary condition. For the window
boundary condition, (3.17) can also be used with B = 2. We notice
that for the open boundary condition (2) associated with the basic
equations, two new boundary values are required for subsequent
calculation of the solution and these two values are furnished by
applying the window boundary condition.

The numerical results will be presented in Chapter VIII.
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IV. FORCED KDV EQUATION FOR TWO-LAYER SYSTEMS

A forced KdV equation for a two-layer system with a free top
surface will be derived by applying the two-timing perturbation method
for the case when some external forcings, which can occur as a
moving top-surface pressure or a moving bottom disturbance, exist.

A numerical scheme for the solution of this equation will also be

presented in this chapter.

4.1 Derivation of the Forced K4V Equation

In this section, a two-timing perturbation method will be used
and the characteristic velocities will be obtained as the lowest order
results and the corresponding forced KdV equation for the wave eleva-
tions will be obtained as the next higher order result.

Consider the two-layer system described in Chapter II with
Py My h1 and '¢1 referring to the upper layer and Pos My, h2 and
¢2 to the lower layer. The quantities are shown in Figure 2.1 along
with the top.surface elevation §1 and the interface elevation §’2'
Here ¢ is restored to its original meaning, namely, the local veloc-
ity potential including dependence on z, instead of the layer-mean
potential. In this chapter we shall consider waves propagating only
in one horizontal direction x and assume that there is no variation
along the y direction (which is the other horizontal direction). The

nondimensional variables are defined the same as before:

) | (zhdy) ® g, ) o4 'E(.thL , (4.1)

h
o i*7o
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where

c = Jgh_ . (4.2)
Also, with H2 being a constant and d a small quantity,

h2 = H2 -d

It is convenient to take

hO = hl+H2 s (4. 3)
and the small parameter is taken, in accordance with o = O(ez) and
Y

% » as
h
2
@ = ()7 . (4. 4)

For the remainder of this chapter all the variables are assumed to be
dimensionless, except where pointed out otherwise. The Laplace

equation becomes

ap  té, =0, (4.5)

for both layers.
The cumulative nonlinear effects indicate the merit of using

two time scales and the slow time T employed here is

T = ot , (4. 6)

Considering any physical quantity as a function of x,2z,t and T instead
of x,z, and t, the original partial derivative with respect to t, Qt’
will then be modified to assume the form Qt + aQ,r. By using the

Bernoulli equation, the boundary conditions become
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1.2 1 .2 ) )
1t A0t Pt IO g L 0 et as g,
(4.7)
1 _ )
- 0£‘¢IZ+ ¢1x§lx+ §1t+ aél'r = 0 at z-= Ql , (4.8)
1.2 1 .2 .
TPyt Oyt Tt g P, T L) -
(4.9)
1.2 1 .2 )
Port Wprt 30t 3a 9o, Ly at 2= ta-hy
agzx(¢lx - ¢2X) = ¢1Z = ¢2z at z = Qz - h]. » (4. 10)
1 -— —
§2t+a§’27_0¢¢2z+¢2x§2x = 0 at z=4,~-h;, (4.11)
dt+ad7-i¢zz+ ¢, d = 0 at z= d-1, (4.12)

where the subscripts x,z,t,T denote partial differentiations, z = gl
is the top surface, z = Z_,Z-hl is the interface, z = d-1 is the
bottom and

Pl

o = L 4.13
, ( )

The unknown wave elevations and velocity potentials are

expanded as follows:

;1 = a(él(l)(xrt; T) + a§1(2)+ .---) »
?;2 = a(gz(l)(X,t,'T) +a§,2(2)+ R | R

(4. 14)
¢, = TR R S S

¢2 = 0¢(¢2(1)(x,z,t,‘r)+a¢2(2)+,,,,)
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We recall that the wave elevation { is assumed to be of O(&), so
that the Ursell number is of O(1). To obtain a self-consistent formu-

lation for the present model, we find that the external forcing functions

must be of O(az), that is,

P= 0() , (4. 15)

and d = a®’D, D= 0() . (4. 16)

After substituting the above expansions for the potentials

(4. 14) into the Laplace equation (4. 5), we find that the potentials

must have the following forms,

¢1(1) = R(l)(x:t’T) ’

¢2(1) = L(l)(x,t: T) ’

-1 2
Pl2) = 2 EFR) R EHR)R G\ 6 TR 5 (x, , 7)

s

1 2
-5 (z+1)° L

®2(2) (Wt Tyt )

1 4 ] 3
%13) = 33 (2B Ry - Z (z+h)) R 2)xx

1 2
-3 (z+h1) R(3)xx + (z+h1)R(4)(x, t, T)+ R(s)(x, t, T)

»

_ 1 4 1 2
¢2(3) T 24 (z+1) L(l)xxxx- 2 (z+1) L(3)x:x+

(Z+1)L(4)(X. t, T)+ L(S)(x’ t, 7), (4.17)
where R(n) and L(n) are arbitrary functions of (x,t, T) and (4. 8),

(4. 12) and (4. 16) have been used to obtain the first, second and fourth

of the above equalities. Substituting these expressions into the
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boundary conditions (4. 7)-(4. 12) and equating the corresponding terms
of the same orders, we obtain a set of differential equations for R,

L and ¢. On the top surface, the dynamical boundary condition

(4. 7) gives
Ryt by = 0 (4. 18)
RESRS +hR,. +R_. +R,  _+P+ir 2, =0
2 1 (xR et Rayr 27 ()x T h12)7 0>
(4. 19)
and the kinematic boundary condition (4. 8) gives
bR xx L1y = Rz (4.20)
1,3 1,2
SR W~ 6P R(lmo ¥ 2T R (2)sct B1R (3 ) -
Ryt Rt b1t brayr = 0 - (4.21)

At the interface between the two fluids the continuity of pressure (4. 9)

gives
IR (1)~ Liyet Lapyle-1) = 0, (4. 22)
TRyt Ripyr + 7R @100y + 4 2 Dst™ Loyt
-L(I)T-% L(”x2 =0, (4. 23)

The kinematic boundary condition in the upper fluid at the interface

(4. 10) gives

- HZL(I)xx - R(Z) =0, (4. 24)



45

"Lt L20R W 2B ()x T 2 () ()%

1..3 -
+ 6H2 L(l) -HZL(3)XX-R(4) + L(4) =0, (4. 25)
and in the lower fluid at the interface (4. 11) gives
HZL(I)xx+ gz(l)t = 0, (4. 26)
£, Lo\ - H3L +HL. +L. ¢t
2(1) (1)xx™ 6 2 ~(1)xxxx 2703 )xx (1)x>2(1)x

T2y Loyrlig T O - (4.27)
Finally, for the boundary condition on the bottom, (4.12) gives

Dt = L(4) . (4.28)

The first order equations, (4. 18), (4.20), (4.22), (4.24) and

(4.26), lead to the following results:
i = Ry - (4.29)

gz(l)(o-l) = L(l)t-O'R(l)t R (430)

2t T PRt Ree = "Ha L)

: (4.31)
S20tt = Srqnyee” Prbi(n)ax - (4.32)
Ry = L2y - (4.33)

Combining and differentiating these relations, we obtain for

R(l)’ L(l)’ c’l(l) and 42(1) the equations:
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ByHy(1-o)R () Ry = Ry = 0 (434
B (=00 e ¥ Dttt = Tl )etax = 0 (4.35)
b H =008 ) (s ¥ S1(0)ettt = S1(1)ttace = © (4.36)
B (=9385 (1o ¥ L2(1)ttet = E2(1)ttac = O - (4.37)

The second order equations, namely (4.19), (4.21), (4.23),
(4. 25), (4.27) and (4.28), are rather involved. Td eliminate the
L R i i
unknowns 41(2)‘ 4,2(2), (3) and (4 Ve combine these equations

as follows:

HZ(O'-I)(4° 19)th + (4. lg)ttt - Hz(c-l)(4. 21)XX - (4. Zl)tt

- H2(4. 23 )xxt + HZ(G-I)(4. 25)XX + (4. .25)1'_t
+ Hz(a-l)(4.27)xx

and thus obtain

+h1H2(1-c)R = B , (4.38)

R(3 ettt T R(3 )xxtt (3 )xxxx

in which



47

B = HZ(l-cr)Axx - Att + HZ(I-G)(CZ(I)L(I)XX)XX

1
*H -0 TS z"(R(l) )t

1 2
B R L L PY R L. L. S

(o- l)H L H

1.3
2 B M yssoott™ FoL(1 ) st

1
Z (1)xxoeex
H

where
_ . 3
=L mT e T 201 7 1) R (1) 6 e | —

1.3
+ h1

Rioos T 52108 (1% ~ 220" ()x = 51018 (1)x

o

1.2
- 7 hy

R(Z)xx - ‘;1(1)7 - R(Z)tt

+ R(l)t‘T+P + Z(R(l) )t+ L(4)

Equation (4.38) can also be expressed as follows:

4
I (gr-c.5-)R
i=1

B = LTB+ NTB , (4. 40)

where LTB represents the linear terms of B and NTB the non-
linear terms of B and the ci's are the characteristic velocities

based on linear theory, given by

¢ - =201 V1- 4h H, (1-0)] i=1,2,3,4 . (4. 41)
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The expression for LTB and NTB are

_ 1,3 1,2
LTB = Hy(l-ollg by R}y = 2 51 R(2)somx = 51(1)sxr
- LR + h, R +P_]-L
2 71 (1 )xxxxtt 1 77(2)xxtt xxt (4)tt
1.3 1.2 1.2
"6 h1 R(l)xx.x:xtt t2 h1 R(Z)xxtt * 41(1)tt'r * 2 th(l)xxtttt
- th(Z)tttt - R(l)ttt'r - Pttt * H2(1"’)4'2(1)>:x'r
1..3
* HZR(I)xxtT t3H L(l)xxxxtt - HZL(l)xxt'r
(4. 42)
and
NTB = H,(1-0)(t; 1) = &1 (1) R (1) T €y = 1) (1)xdnx
1 2 1 2
R st~ 2 Fa ) st
etz 200 L1 R e C20)x - S1000R (1)x
+ Lyt -1®r2 )] (4. 43)
(1)x°2(1)x 2 (1)x't'tt )

The homogeneous form of (4.38) and the first order result
(4.34)-(4.37) are simple fourth order wave equations. The general
solution of say (4.34) is

. ,

R(l) = _ﬁl f.l(x+cit) , (4. 44)

where the fi's are arbitrary functions. Because 0 <o< 1, h1+ HZ:I,

h; > 0 and H2 > 0 in the present problem, the four c;'s are all
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distinct, none vanishing. Notice that 7 is inside the functions as a
parameter (f.l(x t et T), if written more completely in the component
of (4. 44)) and the same is implied in the formulas below.
Because the sign of c only changes the directions of wave
propagation, we consider *c together, and there exist only two
possible wave modes in the two-layer systems. These are called the

slow mode and the fast mode and have the characteristic velocities

1 - J1-4h1H2(1-c)

c, = > ) (4. 45)
and
. jl + j1-4h1H2(1-o)
f 2 . (4. 46)

The first order term of lower layer potential L(l) can be

determined from (4. 44) and (4.31) as

4

- 1 2
L(l) = if';.l Hz (c.1 - hl) fi(x + Cit) ) (4. 47)

where the assumption that the velocity vanishing at infinity has been

used. Then from (4.30)

4 h
42(1) = Z (—1 -ci) fi’(x+ Cit) , (4. 48)

i=1 i
where the superscript prime / means the differentiation with respect

to the argument x + c;t. From (4.29)

4

iy T 7 F efirep) (4. 49)
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and from (4.33) we find R(Z)

4

@ T E By-e) g txten (4. 50)

1=

R

We now assume that the surface pressure and bottom variation

can be written as

4

P = Z P(x+xt) , (4.51)
i=1 .
4

D= X D(x+ct). , (4.52)
i=1

Since T is implicitin P and D, the disturbance velocities are not
necessarily equal to -c;-

Substituting the above expressions for R(l)’ L(l)’ R(Z)’ 41(1)'
t"Z(l)’ P and D’ into the right hand side of equation (4. 41) and (4. 42)

and using equation (4. 28) for L(4), we obtain

4
LTB = £ L.(x+tcgt), , (4. 53)
i=1
where
_ ((6) 1.2 . 2 2 1
L, = £° {H,(1-0) b} (¢ - 2h))+ hyc? G by - )]
e (el -nEHE - Lnf)e b (P - npcts Lrdets L3}
i '¢ 27177 1Y T S T 2 MG T RS
" 1 2
+ fi’T[HZ(l-G)(ci h1 + Ci)+ HZO'Ci+ Ci(hl - 3ci )]

" w3
+ P, ci[HZ(l-c) - c‘;'] - D7 <, (4. 54)
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(6)

where £, means the 6th order derivative of fi. with respect to its

argument x + cit’ and

4 /74 7
NTB = Z Z f £ [H,(2c +c)
i=1 j=1 * J vt
1 .2 2 A1 .2 1,1
- Hz (ci - hl)(cj - hl)(5c1+ 3cj + Cj ci)+ 3h1H2(1--0')(Ci +c. )
2 1, 1 2
- hl(c.1+ Zcicj)(ci + Cj ) - .’i»ci cj]
4 4
1,2 2 1 2
+ =z Z £ " [H,c, - (c% - h )% - b )(2c, + = 2
PR [, e, m (e - hylley - Bylaey L
1 1 2.1 1 3
+ thZ(l-o)( ci- cj)-hlcj (Ci 5 ) -cj]. (4.55)

Now let us restrict our formulation to the case of only one
mode moving in only one direction. Then the summations in equations
(4. 53) and (4.55) contain only one term, for a specific i. Since there
is a factor (aa_t - < %) in the differential operator on the left hand
side of equation (4. 40), the inhomogeneous terms with single argu-
ment x + c; on the right hand side of (4. 40) would have to give rise
to secular terms to the solution unless they are required to vanish.

With this requirement we obtain the following equation:

-3_ 2 2 Lalt _l 3 l 3
Hzci[(hl-ZHZ)c + hIHZ(l-c)-hl +H2](f £7) +[(3h1+ 3H2+h1H2cr)
2 1.2,1,.:2 e ¢(6), 2 2\
c; - thZ(l-c)(3 hl+ 3H2 + thZU)]Cif +c . (2-4c i)f'r

2 " 4 o _
+[h1H2(1-c)-(hl+Hzc)ci]P - <, D" =0 , (4.56)
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where the subscript i (except Ci) has been omitted and the relation

c?-c2£+hH(l-c) = 0

1572 , (4.57)

which readily follows from (4.38) or (4. 41), has been used.

Integrating (4. 56) twice under the condition that the disturbances

vanish at infinity, we obtain

I%c"tl[(h - 2H, )c + by H,(1-0)-hy + H,]( £)

1..3 2 1.2 1..2 "
3H2+ thZO')C -h Hz(l-o)( h1+ 3H2+ thZU]cif

+[(h+

2 2,7 2 . 4 s/ _
< (2 - 4ci)f7+[h1H2(1-0') - (h1+H20)ci]P -c.lD =0,

(4. 58)
In the present case (4. 49) is
gl(l) = -cifi (x + cit) , (4.59)
and equation (4. 58) becomes,
3
HZ[(h - 2H )c *hjHy(l-0) - h; + H 141(1)41(1)
1.3, 1..3 1 ..2
-[(3 h1+3H2+h1H20)c -hH (1 0)( 3H2+hH ]41(1)

2 29/ 4./
- ¢,(2 - 4c i)41(1)7+ [thZ(l-c) - (b + H,a)c’, P -c. D=0,

(4. 60)
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If we further express t"l(l)’ P and D in terms of L1 Py and d
by the following relations, the first of which is the approximation of

the expansion (4. 14),

Cl = ac’l(l) ’ (4. 61)
p = o’r (4.15)
4 = a’D | (4.16)

and change the arguments 7 and x + Cit back to the arguments x

and t by using (4. 6), the following equation is obtained

a.l(Qt - CiQx) + aZQQx+ C!a.3Q ta, Py T 2gd =0

b ™x ’
(4. 62)
where
Q = &y
_ 2
a; = c.l(4c,1- 2) |,
a,= = [c*(h, - 2H H h H, (1-0)+ H, - h.]
2 I—I2 i1 2 172 2 11’
S SR B S 2 1.2 1.2
az = - (3 h1 + 3H2+ thZG)ci+ thz(l—O')(3 h1+ 3 H2 +h1H20),
= h.H,(1-0) - (h, + H_g)c>
a4 7 B U-0) - {hy 20lc,
_ 4
g = ¢y (4. 63)

If the inhomogeneous forcing terms Pox and dx are absent, this
equation reduces to the well-known Korteweg-de Vries equation, or
simply the KdV equation. It contains both nonlinear effects and

dispersive effects. In the formulation presented above, one can see
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that equation (4. 62) is the evolution equation for the two layer system
when the disturbance is moving with a transcritical velocity about a
characteristic velocity of the linear system. Equation (4.62) holds
for left-going disturbance when the c; is positive and x increasing
to the right. For right-going waves (4. 62) is also applicable with c;
taken negative in (4. 62) and (4. 63). For the interface elevation gz, a
similar KdV equation can be obtained by using the first order relation

b,

G~ (- 2, (4. 64)
C.
1

in (4. 62) and (4. 63). The resulting KdV equation has the same form

as (4. 62), however, the coefficients are now,

Q =, ,

h
32 ° c;l {Czi[ﬁi t20- 1]+ (0 - Dite+ Dhy - K1},

-.1tr2,1.3 1.3 1. 2 1.2
a; = - cs [ci (3 h + oh H, + 3 Hy)+ (0.1)th2(3111 +oh H,+ 31—12)],
ay = -CiHZO' ,

a, = (b, - c%)c (4. 65)
5 1 i’ci o .

where the characteristic velocity relation (4.57) has been used.
Some useful first order results can be deduced from equations

(4. 44), (4.47), (4.48) and (4. 49) for the one-component case using the

expansions (4. 14) as follows
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h,
Ly ~ G ooy,
L -
. I
&2 c. %2x ¢

and

(4. 66)

When the densities of the two layers are nearly equal, which

is a case of practical importance, the forced KdV equation can be

further simplified. In this case, o is approximately equal to 1 and

the slow mode wave speed becomes, by (4. 45),

c, ™~ {thZ(l-O‘) (4. 67)
Consequently, (4. 65) can be written as
1 3,1

1 1 1
§§2t-§2x+Z(h_l'H_z)gZLZx-—ahH 2

6 “ P17 e T 3P4

1 -
-Z-hldx = 0 . (4. 68)

In addition, the following relations can be obtained from (4. 64),
(4. 66) and (4. 67):

’

1
¢1X ~ ‘h_Hz(l'o')gz ’

1
(4. 69)
1
" ~ - —

2x HZ 1 ¢1X
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For the fast mode (with o=1), ¢ = 1 (see equation (4. 46))

and we have for gl the equation

3 (o] 1 1 B

t"l‘cnc’lx_Zglglx- 6Clxxx—§'pox-_2—dx— 0 (4. 70)
and for the other flow quantities the relations

bo ™ Haby

¢lx - —C’l ?

(4. 71)

¢2x ~ _C’l ’
and

¢lx - ¢2x '

which can be obtained similarly as for the slow mode. For the fast
mode, equation (4. 75) is expected on physical grounds to agree with
the case when Py =Py (i. e., the case of a single homogeneous fluid
layer). This is confirmed by comparison with the forced KdV equation
given by Lee (1985, equation 2.58) for the homogeneous one layer case,
Sometimes the dimensional equation is desired. The one

corresponding to (4. 62) and (4. 65) is

a,(Q, - c.Q )+ 2,00 +a,Quxx’ ¥4Poxt 259, = 0, (4.72)
1 t 1 x 2 x 3

©
il

2
1 4(:i - Zgho ,

- 2
5 ”-H—g—joci (e} [y @o- VM, (o= D [0 by - B,

)
]
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_ 1.3 1.3, 1 2 1.2 1.2
az = -gc.l(3 hl + othzho + 3 HZ ) - Cig (a-l)thZ(3 h1+ O'th +=H
1
a, = -— c.H, ,
4 Py, i 2
ag c.gh1 -c, ,
and

4 2 2 _
c; - ghoci + g thZ(l-o) =0

All the variables except o are dimensional in (4. 72)-(4. 74).

corresponding dimensional forms of (4. 67) and (4. 68) are,

s h
o
1 3,1 1 1
o fat T Saxt 2 T Gt e Halo
HZ o) - i d = 0
Zghopz ox 2hO x

1
23

(4. 73)

(4. 74)

The

(4. 75)

(4. 76)

These forced KdV equations for two layer systems will be

2)!

analyzed and the results discussed in Chapter VIII, Now the numerical

scheme for solving the KdV equation is presented next.

4.2 A Numerical Scheme for the Forced KdV Equation

In the previous section, a forced KdV equation has been

derived. Without losing generality, it can be represented in the

following form

Qt - CiQX+ aZQQx + a3Q + a4dX =0 ,

(4.77)
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where Q represents the surface elevation of the upper or lower layer
or the velocity of the upper or lower layer, d represents the external
forcing, which may include both a surface pressure and a variation in
the bottom topography, and the ai's (i=2,3,4) are constant. This
equation immediately follows from (4. 72) by a éimple division because
the first coefficient a; in (4. 72) is never zero, which is the case
being considered here, thatis, with 0 < ¢ < 1.

Two finite-difference schemes for solving the forced K4V
equation are presented below, one of which is explicit and the other,
implicit.

A Taylor series expansion of Q with respect to time and the
KdV equation (4. 77) are used in the explicit scheme, which is similar

to that of Vliegenthart (1971). The series expansion for Q is

K+l _ -k kK , 1,2k 3
Q.1 _Q1+AtQit+2 (At)A Qitt+ oAt”) (4. 78)
with
Qt = ciQx - a.?_QQx - a:,,QXxx - a.4dx , (4. 79)

d

_ 2 2
Qtt = 'ZciaZQx - ZciaZQQxx - 2c.1a3Q + ¢y Qxx -cad

2 2 2.2 2
+2a2QQx+ aZQ Qxx+3a2a3Qxx+ 5a2a3QxQ + 2§2a3Q

+a +
3 e 22240,4, + 32404 tajad o o-ad

(4.80)

which are obtained by invoking the forced KdVv equation several times.

The following central differencing approximations are used for the x

derivatives in (4. 80) and (4. 81):
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N 2
Qix = zax Ry - Q)+ 0@,
Q =L (. . +q . -20)+0@&xd)
x -~
Q = L (Q -2Q.,,+2Q -Q. )+ O(sz)
ixxx 37742 i+1 i-1 i-2 ,
2Ax ] ]
_ 1 5
Qi T T I SR S Qj.2)* Olax )
I W ] )
ioooooeT 6 (Qy5 - 6Qu, +15Q, , - 20Q, + 15Q, ;- 6Q, ,

2
+ Q. ,)+ O(ax")

To use these expressions, six boundary points are needed in
every time step forward and boundary contamination of the results
(such as by fictitious reflections of waves from the boundary) will
occur relatively earlier than the two boundary points schemes, such
as the one outlined in Chapter III and the following implicit scheme.

In order to diminish such boundary contamination, we will adopt the
following implicit scheme to solve the forced KdV equation numeri-
cally.

To apply the implicit scheme, we first change the KdV equation

to the so-called regularized equation (Benjamin et al. (1972)),

1 -
Qt - ciQx+ aZQQx+ c, a3Qxxt + a.4dx = 0 . (4.81)

which is obtained by making use of the leading order terms in (4. 77),

-1
i Qxxt'

namely Qt = ciQx’ in approximating the term Q by ¢
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As elucidated by Whitham (1974, p. 463), (4.81) agrees with (4. 77)
for the dispersive relation on linear approximation for small wave-
number k, yet (4.81) is superior to (4. 77) for numerical calculations
because it can effectively curtain numerical errors of grid sizes
(large values of k).

A finite difference method with a predictor-corrector pro-
cedure is adopted. The spatial derivatives are approximated by
central differencing and temporal derivatives by forward differences.
The same window shifting procedure and open-boundary condition are
used as described in Chapter III of this thesis. Only the main steps
are presented here, and more details of the method can be found in

the thesis of Lee (1985), p. 22-26. The resulting formulas are:

PREDICTOR
k+1 1 2.~ k+1 ktl _ k k k
-Qi-l + (2 - Y ciAx Q. -Q = ZQi - Q1+1 Q" i1

3 t i+1

1 k k k 2 2 k
+ — c, [—a Q - Ci)(Qi+1 - Qi-l)AtAx - Qi ax ta, atdx (dx) i] ,

3
(4. 82)
CORRECTOR
ol g L L axd)QltL QL = 20%- ok ok (Ll gk .2
i-1 az i i i i+l” “i-1"7 a, i i
1 1k k. k k
+ 2a3 Cil_:Z(aZQi - ci)(Q 1" Qi_l)AtAx + a4At/_\x(dx)i ]
1 1 k+l k+l kt+1
+ Zs, cil;z(azQ.1 - c. )(Q 1) AtAx + a AtAx (d ) ],

(4. 83)
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where the same notations are used as in Chapter III and c; is the
characteristic velocity. Both (4. 82) and (4. 83) are linear algebraic

equations and can be represented in the following matrix form

K] x) = (v, (4. 84)
with  (x) = Q;, Q,, ..., Q)7 , (4. 85)
B s -1 ]
-1 ] -1
K} = | ... (4. 86)
-1 s -1
-1 s ,

where the subscripts are such that Q‘o is for the left boundary value

and Qn+l the right one and

s = 2 - cAx® | (4. 87)
a 1

3
The matrix [K] is tridiagonal. The values of a.3 have been calcu-
lated for the two-layer system with h1 ranging from 0. 05 to 0. 95
(by 0. 05 increment) and for density ratios between 0. 05 and 0. 95
(with 0. 05 increment). Within this range of the parameters all the
calculated values of a3 are negative for both the fast mode and the
slow mode. Thus the matrix [K] seems strictly diagonally dominant

for the two-layer system

The numerical results will be discussed in Chapter VIII,
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V. INTERNAL WAVES WITH A RIGID TOP SURFACE

In this chapter, we consider a two-layer fluid system with a
rigid horizontal top surface. The two layers of immiscible, inviscid,
and incompressible fluids are unbounded in the horizontal directions
and the same notations are used as before, except with the subscript
for the interface elevation which is deleted, as shown in Figure 5. 1,
For predicting the behavior of this system two theoretical models are
developed. One is given by a set of three equations of motion for
three unknowns: namely, the interface elevation, and the layer-mean
velocity potentials for the upper and lower layers. These equations
are derived by applying the mass conservation principle and using the
Bernoulli equations, similar to the approach described in Chapter II.
Because there are three basic equations involved, this model will be
called the THREE-equation model. The numerical scheme for com-
puting solutions to the THREE-equation model will also be developed.

Another theoretical model gives a single equation, the forced
KdV equation, which is obtained by applying the perturbation method

after that introduced by Gardner & Morikawa (1960) for the single

layer case.

5.1 The THREE-equation Model
5.1.1 Derivation of the THREE-equation model
The two small parameters are

a

Ao = o «1, (5.1)

o

and ho
€ = ~ « 1, (5.2)
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which are assumed to be related, as before, by

In terms of the dimensionless variables defined in (2.17) and
(2. 18), the equations and boundary conditions can be expressed as

Laplace equation

9,, = <°v% (5.3)

Bernoulli equation

p+q§+%g2+z= 0, (5. 4)
Mass conservation

-tV [y -0E,] = o0, (5. 5)

h, +{+ V- [y +£)w,] = 0 . (5. 6)

At the top surface the boundary condition requires that

w = 0 at Z=h1. (5.7)

At the interface three boundary conditions are imposed,

wy = e(%% + u, - %9 at z=¢ , (5. 8)
Wy = € (%% tou, - V) at z=¢ , (5.9)
P, = op; at z=¢ | (5. 10)

And at the bottom boundary, we have the condition

at z = -h

R > (5.11)

o}
with ¢ = —L | (5.12)
P2



64

In addition, we have, as before,

u = ¢ , (5.13)
w = El%g , (5. 14)

We further reiterate that

{ = Ola) ,
u = O(a) ,
(5.15)
w = O(ae),
hZ: HZ - d »
with H, = constant and d= O(®). The position z = 0 is now set

at the undisturbed interface position. The Laplace equation is satis-

fied by the expansion of ¢, for each layer, as

> 2
¢ = o fzog n@(zn)(_l_', Z,t) (5' 16)
with
%oy T Y&t (5.17)
@(2) = ¢(2)(£,t)+ ch(3)(£,t) --é-zzv%(o) , (5.18)

where the linear term of z in é(o) is deleted as required by the top
surface and interface boundary conditions (5. 7), (5.8) and (5.9) and
the assumptions (5. 15).

The following relations can be readily obtained

_ _ 2 4
u = V¢—O¢[E(o)+e 11_(1)+e P‘-(Z)+”'] ’ (5.19)
w = %%g: ae[w(1)+ezw(2)+...] , (5.20)
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_ _ o mlor 2
Yoy = qu(o)(_r_,t) = a v +O0@E”) , (5.21)
Yy = vé(z) , (5.22)
9d
- 2) _ 2
Wy T THg - 90(3) - zV go(o) . (5.23)

The 90(3) terms are determined from the bottom boundary

condition and the interface boundary conditions

_ © -1 2
<p2(3) = —hZOl -HZV (PZ(o) s (5.24)

?1) -ﬁza‘l-szzgoz(o) . (5.25)

By applying the Bernoulli equations (5. 4) to the two sides of the

interface, we have for the upper and lower layers

"

~

~2
w

1~ ~ -

pptét3@-u+w, +¢ =0, (5.26)
"+$+i(5-€+%2) L =0 (5.27)
P T ®rzi2r 1 2 ’ '

where the quantities with ""~' denote their values at the interface
and the subscripts 1 and 2 represent the upper and lower layers,

respectively., Equivalently, (5.26) and (5.27) can be expressed as
P y p

¢, +

'_"e— ?
]
N]—
I
<)
+
5!

(v8)% + ¢+ 3, = §,+ 298 )2 4

N

*

6, +3 (V8,2 4 1+, =4, + 2(v8,)%- ¢, -1 @. 5+ 57
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Substituting the series expansions (5. 19)-(5. 23) into (5.28) and

(5.29), we obtain

h

= — 2 ~ .
¢1+%(V¢1) tL+p = (71<p1(3) szcpl( )t +O(dze ac),
H

3’2 + %(v$2)2+ ¢+ 52 =(- 22 <p2(3) szzqoz( ))de +O(a 2 2, 0164),

(5.30)

where the following relations have been used

zl = —2— + O(a) s

ZZ = - > + O(a) ,

2 _ 1.2

zy = 3 h1 + Ola) ,
and ___

2 _ 1.2

z, =3 ]C—I2 + O(a) ,

By eliminating the ¢,..'s, P, and | from equations (5. 24),
y g (3) 1 pz

(5.25), (5.30), and (5.10), the following equation is obtained

R R 2rl + € ulo%
¢2‘ o9+ 7(v9,)" - c(V¢ )2 +¢(l-0) = ¢ [ by * 3 H;V ¢2(0)]+
+ ce [ hih, + th vz‘;’Z( ) %hi v29‘;1(0)]Jr O(a£4’ azez) )

(5.31)
Furthermore, from the expansions of the potentials (5. 16) and (5.17)

we note that C!<p(o) in (5.31) can be replaced by ¢ without affecting

4

the order of the remainder term O(ck , aze 2) and the following
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relation between 31’ 32 and ¢ is obtained,
¥, 08+ 1 (98,7 L o824 L(1oo) = S B8+ ob ) +
2 1 2 2 2 1 2 "2V 2 1

2
1

2,1

2,1 2 2
(3H2

+—O'hH)V ¢2+O(O¢e ae”)

v¢+ >

o=
q

(5.32)
To complete the system, two more equations are required and they
can be obtained from the continuity equations (5.5) and (5.6), by noting
that for long waves, ‘

W, - W, 1, o2

O(ae *, a“) ,

and

V8, - VB, = O(ac?, a%?)
The two continuity equations then become

-+ V'[(hr z_,)VEI] = O(ae4, 0!2&2) , (5.33)

v. lb - )8, + (hy+ 0)VF,] = - b, + Oae*, &?e?) . (5.34)

The system of three equations (5.32), (5.33) and (5.34) can be
solved numerically using the method similar to that presented in
Chapter III, in which case the method involves a scheme for solving
a set of linear algebraic equations with a coefficient matrix of band-
width 7. In the present case of a rigid horizontal top surface it is
possible to change the equations into a new form that only has a
tridiagonal coefficient matrix instead of a matrix of bandwidth 7.

Another useful relation between the potentials can be obtained

from enforcing the top-surface boundary condition, which yields
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2
?13) = 1V o) - (5.35)

A simple combination of (5.35) with (5. 25) then gives

2 1

2 .

which can also be obtained from the continuity equations (5.5) and

(5.6). Therefore,

2-r 2—+ ¢ 2
EZ 1 2,1 2,1 2
If (5.37) is multiplied by =—————(+0ch< + = gH” + = g°h.H ) and
hl+ O'HZ 6 1 3 2 2 1772

added to (5.31), there results the equation

. h.H_ (ch,+H.) ) _ —_
R-e ——E——2 2R + 2(WR)%+ o(VR) - (V6 + 1 6%-0)(vF, )2
[3(h1+ oH,)]
H oH,(ch +H )
+4(l-0) = ¢ (SF+ ok, - L3(i1+01H )]2 }h,+ o@@d, a%?) |
2
(5.38)
where R = 52 - O‘al , (5.39)

which will be called the combined layer-mean potential, or simply the
""combined mean potential. Finally, the equation (5. 34) with unknowns

51 and ¢2 can be changed to one for R and 761 as

Ve {lhy + ohy+ Le-DIVE, } + V- [(hy+ L)VR] = -k, + O(aeé, a®e?),
(5. 40)

The required THREE-equation model now is comprised of the

three equations (5.33), (5.38) and (5. 40) for the unknowns £, R and -51.
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5.1.2 A numerical scheme for the THREE-equation model
A finite-difference numerical method using the predictor-
corrector two-step procedure has been developed for solving the
above three basic equations. The time derivatives are approximated
by the forward difference and the spatial derivatives by the central

difference.

In the following calculations, only the two-dimensional case will
be considered.

In the numerical scheme there are two stages for each time
increment At. For the first stage, or the predictor stage, the
provisional values at the provisional time-level k+1 are calculated by
using the known values at the time-level k. In the second stage, or
the corrector stage, the unknown values at the time-level ktl are
obtained from the known values at time-levels k and ktl. There
are three steps in every stage: the first is to calculate { explicitly
from (5.33), the second is to obtain R implicitly from (5. 38), and
third is to obtain 31 implicitly from (5. 40). The upper bar over the

4, aze?‘) will be omitted in the sequel

(bl and the error terms O(0e
for brevity. Using the same notation as in Chapter III, the detailed
formulas for the numerical calculations for the THREE-equation

model can be written as follows:

PREDICTOR STAGE:

(5.33):
1 k. At .k 1.,k 1,k kK Lk 1.k
e N N I LR SN 24 AR AR S S
(Ax™) & i-1
K K 1k 1,k
Si-2hp)t oy by -5 -5t (5.41)
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(5.38):
k+1 pry gy ey -rRK _rRK 4+ 2+r)RES
-Ri_1 + (2+r)Ri R+1 = Ri-l i1 (2+r) ;
rAt oy k 2 o,k k k k
A [' 1+1 - R 1 Ripr- R, 1@ i ¢1,i-1)
2
(0 -ag) .k _ 4k 2 2.k 2 k
- 8 (¢ gi+1 ¢1’ i-l) = (I'G)Ax gi +AX Shz’ i_] y
(5. 42)
where r and s are the constants defined by
3(h, + oH,)ax?
r = — (5.43)
€ h H (oh +H )
2(20n% + oHZ + 3h H,)
1 2 2 (5. 44)
S 6(1’11 T O_HZ) ’ .

(5. 40):

*r1 k+1 Py
291,11 - (@;tb)éy Fh# 4173

'_L‘r—-

Kl | ktl | RFT . LT
(h2,1+hz,i+1+4 i)

kt+1
i+l

k+1

(R R )- (hk+1+ hk+1 Qk + §k+i)(Rk+1 _Rk+1)] 2-kt1

2,it By 1/1-4xh

(5.45)

where

J) %(0-1)(§k+1 §k+1 ), (5. 46)

: i+1 (5.47)

2,1’
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CORRECTOR STAGE:

(5.33):
It 1 k. At .k 1 .k 1.k
& T Lt 78y iy -5 -5 )
2Ax
k 1.k 1.k 1.k 1
t9) ;6 éi-1+2§‘1+1+§ - 2h )”’1 1B - 28 - 2 85 )]
At - TF1 1. TF1 =1
t—=-[¢7" , (n -3 L £ 0)
a1t 7 2 2 i-1
kL1 KFT, 1,0, W1 ey 1,91 1,991
MW R PR S KN IS -2hy e +1‘h1'2 & 241+1)]
(5. 48)
(5.38):
ki1 k+1  _k+l _  _k K
R * @R -RTV = -Rio1 - Ry
k. rAt k 2 g0k ok .. .k k
@R L ERE ) CRY ) AT R LR P
24Ax
2
(o -c! k k 2 2 'k
= 8 (¢1, -1+1 - ¢1’ -1_1) - (1 G)Ax ; +Ax ShZ,]_
1 _ okl 2

1 KA1 WH T, ToF ] 3
-8 Ry R -TRT SEISULIUEIER By

2 —
(@°-0) ,k+1 kL 2 2, k¥l , 2 wktl
TR Ot )T - ATy ax SR il

(5. 49)
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and (5. 40):
k+1 kt1 kt1 _ _Llro kt1,  ktl k+l, k+l
2391, 1.1 = (B¥b)o T B 2[(h2,i+hz,i+1+§i o)
k+l L ktl k+1l, ,ktl k+ ktl,, ok+1 _kt+1
(R - -R5) - (hz + hZ 1t b 1, L PR -R7]
Ax2£§+.,1 , (5. 50)
where
B g . k+l k+1 (o-1) ,, ktl k+1
al—h1+2(h2,i_1+h2,i)+ > (¢, T4 1), (5.51)
bi = a'i+]. (5.52)

The equations (5. 42) and (5. 49) can easily be solved because

the coefficient matrix

F2+r -1

K=1 ... (5.53)

is symmetric and strictly diagonally dominant due to the property of

r >0, as is obvious from (5. 43).
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The equations (5. 45) and (5. 50) have the coefficient matrix
[ -2;-b) b
a, -a,
K=+ . (5. 54)

which is symmetric from (5.47) and (5.52). From these equations
all the a. and bi are generally positive if small { is considered.
This is especially true when the densities of the two layers are close.
Under this positive assumption, these algebraic equation systems are
well behaved in the sense that their inversion by Gaussian elimination
can be performed safely without partial pivoting. (A proof is given in
Appendix 1. )

To complete our description of the numerical scheme for the
THREE-equation model, we state that the same open boundary con-
dition (1) and the same window shifting scheme as those given in
Chapter III can be used. Examples of the numerical results will be

presented for this model in Chapter VIIL,

5.2 Forced KdV Equation

Another plausible theoretical model for investigating the two-
layer fluid system with a rigid horizontal top surface (see Figure 5. 1)
is the forced KdV equation, which will be derived in this section.

Only the case of two-dimensional motions will be considered and all
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the quantities will retain their dimensional form. In Chapter IV, it
was shown that the waves are slowly varying functions with reference
to a frame moving with a velocity close to a characteristic speed. On
physical grounds, we expect this to remain valid for the general case
of weakly nonlinear and weakly dispersive long waves moving with the
disturbance within a transcritical speed range striding across a
specific characteristic velocity. Following this reasoning, the re-
quired equation can be readily derived by invoking Gardner-Morikawa's

transformation (Gardner & Morikawa (1960), equations (29) and (31))

£ = Jafx+ct) , (5. 55)
T = a3/2t , ' (5. 56)

where @ is a small parameter.
With the physical quantities considered as functions of € and
T instead of functions of x and t (in addition to z), the above trans-
formation signifies that they have only slow variations in the frame
moving with the characteristic velocity c, where ¢ is a constant,
unknown quantity which must be determined as a part of the solution.
Corresponding to the new variables € and 7, the velocity

potentials and the interface displacement { assume the following

expansions
by = VDb )& 2+ @d 06, T2,
¢, = W[sbz(l)(é.’f.ZHa¢2(2)(€.'r,Z)+...] ,

¢ o= agraly e (5.57)
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From the last formula, the small parameter ® infers the order of
magnitude of the interfacial wave elevation.

The Laplace equation holds for both layers,

Ve = 0 . (5. 58)

The boundary conditions are as follows: with z = 0 set at the top

surface,

¢, =0 at z=0, (5.59)

o {8 3(v81%+ gL}]) = [o{dy+ & (V014 ge}l, at z - ¢-hy ,

(5. 60)
CxlPrye - 9py) =91, -¢,, at z= {-hy , (5. 61)
912 = Lt 9,0, at z={-h , (5. 62)
92, = 4t 9,4, at z=d-h_, (5. 63)

in the same notations as before. With all the flow quantities regarded

as functions of ¢,7 and z, the Laplace equation (5. 58) becomes

9% 52
(a —2.+ _2..)¢ = Q0 . (5. 64)
o2& dz

By further substituting the expansions (5.57) into (5. 64), we obtain

1. ¢1(1) = R(l)(g,'r) , (5. 65)
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1 2
b1 T - 2R R € TR ) et R (6, T)
(5.67)
. 2
P22) T = 203 L1)e e (6 THL G, it W L (6, T)
(5. 68)
_ 1 4 1 3
%) T 2R Ry e (6.7 - gt PR (6, 7)

1 2
- E(z+h1) R(3 )gg(g, T)-I_-R(4)(§, '?’)(z+h1)+R(5)(§, T) ,

(5. 69)

= L. 4 1 3
2(3) T 225 TR) L )gppe (6 T) - g (zth ) Li2)ge €7
1 2
- E(z'*'ho) L(3)§§(§’ T)+L(4)(g» T)(Z+ho)+ L(S)(gr T) »

(5. 70)

where the terms linear in z for (5. 65) and (5. 66) have been deleted
because of the boundary conditions (5.59) and (5. 61) by virtue of the
expansions (5.57).

As already shown in Chapter IV, the forcing function is as-
sumed to be of order O(az). 7

d = oD | (5. 71)

The corresponding expansions of the boundary conditions

(5.59)-(5. 63) yield the following equations. From (5. 59):

Ry -BR ) = 0, (5. 72)
1.3 1,2
Ra) = ~e M R)geeet 78] Rt iR ig)ee (5. 73)
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From (5. 60):

GR(I)g = -CL(1)§+ gg(l)(c-l) , (5.

+ ogcR

1 .2
Ry La)r 1g* Z2M2Hugee ~HMalige- oLz,

1 .2 1.2 _
+EO’R(1)§ -EL(1)§+ gg(z)(cf-l) = 0. (5.
From (5. 61):
Ry = Ly Holnyee - (5

) = R, 13

2
Sme®me- Lae 4)" 6 2 1)egeet 7 H Lejee

Tohere - D@ foRweet L)l aee (5.

From (5. 62):
Hahiee = L)+ et

1..3 1 2
“tmes T 5 T2 Mueeee 752 Laiee t Falsyee

-L(4)+L(1)§g(1)€+c;(2)g+ Layr= 0 . (5.

From (5. 63):
L(Z) = 0, (5
Lia) = <Dy . (5

=0, (5.
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The first order equations can be combined to yield, under the

vanishing boundary conditions at infinity, the following relations:

R(Z) = c?;(l)g , (5. 83)

and

2 gthZ(l-c)

cc = e (5. 84)
0’H2+h1

For the next order results, we perform the following operation
(5.73 )ocH2 + (5. 75)§h1H2+ (5. 77)ocH2+ (5. 79)(CH20+ch1)

L .
to cancel the unknowns R(3), R(4), (3) and t_,(z) with the help of

(5.81) and (5.84). The result is the forced KdV equation

1

a'IQ'r + aZQQ§ + 33Q§§§ + EDg =0 , (5. 85)
where

Q = g‘(l) , (5.86)
= .1 1

a.l = = c (1 + hl GHZ) ’

a, = 3(z - —lonZ), (5.87)

2 h1

1

a

3 = g HyhjotH,)

Or expressed in terms of the original variables

al(Qt - ch) + aZQQx + a3Qxxx + (5. 88)

N]—
»
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with
Q = ¢, (5. 89)

and a;, a5, and a3 given by (5.87). We note that the above forced
KdV equation, (5.85) or (5. 88), represents a theoretical model for
left-going long Waveé with ¢ positive and for right-going waves with
¢ negative. By making use of the first-order relations (5. 82), the
forced KdV equations for the velocities of the upper and the lower
layers are found to have the same form as (5. 88) but with different
coefficients. The formulas (5. 82) may take the more convenient form

according to (5.57), (5.65) and (5. 66),

-cf{ = HZU.Z = —hlul ’ (590)

where up and u, are the velocities in the x-direction for the upper
and the lower layers. The previous results in dimensionless form
with the notations and normalizations given in Section 5. 1 are as
follows:

NONDIMENSIONAL

2 1 _
al(Qt - cQX) + aZQQXJr € a3QXXX+ > dX = 0 , (5.91)

with the coefficients given by (5.87) and ¢ given by (5. 84) with
g =1 and (5.90) is also true for the present dimensionless variables.
The numerical scheme for solving the forced KdV equation has been

presented in Chapter IV and the results will be discussed in Chapter
VIII.
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VI, FORCED KDV EQUATION FOR CONTINUOUSLY

STRATIFIED FLUID SYSTEM

The problem under consideration is concerned with weakly
nonlinear long waves in a continuously stratified fluid system, which
is assumed to be inviscid and incompressible. The primary density
distribution (which prevails in steady state without disturbance) is
p(z) and g(x, Vs 2 t) is the vertical displacement of a material sur-

face from its undisturbed position at the z = z plane at time t = 0,

z = 2 +Llx,y, z,t) . (6. 1a)

The vertical component of the fluid velocity is then

-

w=§%=§t+uéx+vgy. (6. 1b)

-~ - -

By assuming the fluid to be incompressible we imply that

d
EE= pt+upX + pr+wpz = 0 . (6. 1c)

When at rest, the stably stratified density profile,
P = plz), (6. 1d)
is assumed given. From the above four equations it follows that
Py, Z,t) = b (2-4(x,y,2_,1) . (6. Le)

Notice that the function p on the right-hand side of (6. le) is simply
P (z ).
As external forcings, we consider surface pressures or

bottom variations, and the system is shown in Figure 6.1. Because
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of the density variation, the motion in general will be rotational and
velocity potentials do not exist. In this chapter the principle of mass
conservation and the momentum equations will be used to derive the
forced KdV equation for this case. Finally a numerical scheme for

determining its coefficients will be presented.

6.1 Mass Conservation and Momentum Equations
Only two-dimensional problems will be considered in this
chapter (horizontal x and vertical z) and the physical quantities will

be given in dimensional form.

The continuity equation,

ux+w = 0 , (6.2)

is a consequence to the assumption (6. lc), where the subscripts stand
for partial differentiations as before. Here u is the horizontal ve-
locity and w the vertical component,

The x- and z- components of the momentum equations are

p(u,c tuu + wuz) = -p (6.3)

x ’

p(wt+ uw_ + sz) = -p, t glp - p) , | (6. 4)

where p is the disturbed "excess pressure'!, i.e., the pressure
above the local hydrostatic pressure in the state of rest. The

boundary conditions at the top surface and at the bottom are:
h

p+S g;(z)dz = P, at z=h+z ) (6.5)
ht ¢

¢ = d at z=4d , (6.6)
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where Z is the wave elevation at the top surface (z = h + Z ), z=0
is set as datum at the bottom level, d is the bottom depth variation
from the level z =0, h is the undisturbed constant water depth,
aside from d, and P, is the external surface pressure acting on the

top surface (cf. Figure 6. 1).

We again adopt, after Gardner-Morikawa, the transformation

Jax + ct) 6. 7)

T = a3/

urr
n

, (6. 8)

where @ is a small parameter (e. g.» a measure of the wave ampli-
tude with reference to depth h), and all the physical quantities are
considered as functions of £, T and z. The basic equations and the

boundary conditions then become

ug Je+w =0, (6.9)
plu o 372, c r&ug + ﬁuu§+ wu, ) = -J—&—Pg , (6. 10)
(w a3/2+cJ'cTw + JQuw, + )= -p_+g(p - p) (6.11)
p(w, ¢ gt ww )=-p tglp-p) , .
and h
P = p, -S gp (z)dz at z = h+f , (6.12)
ht{
g = 4 atz=4d . (6. 13)
6.2 Expansions

For wu, {, and p, we introduce the following expansions
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Otul(g,T,z) + 0¢2u2 (¢, T,z)+ ..

& = ag,(E,7,2)+ 01242 (€,7,2) +. , (6. 14)

2
P = ap (€, 7,2)+ A%, (§,7,2)+ ..

In the above expansion for t(x, z, t), Ln is regarded as a function of
(x, z,t) by inversion of (6. la) applying the implicit function theorem

The expansion for w can then be deduced as follows:

W= ét +u§x+wgz

- a3/2§7+ c J&‘§§+uﬁgg +wg_

/2

= cglga3 + (€’17+u1 §l§+c§1gglz+ cgzg)OtS/2

+ o@’/?) 6. 15)

By substituting these expansions into (6.9)-(6.13),

using the small
external forcing hypotheses,

(6.16)

(6.17)

and incorporating the Taylor's series expansion of the density rela-

tion (6. le), the following relations are obtained: for the continuity

equation,

Blet Hp el ol t et ) ),

ety £y,),] = o@d)

(6.18)
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for the horizontal momentum equation
- - o
[o ag,op ][culg + (cu2g+ u .t Uy cglgulz)]+plg+ ang

= O(a?)

, (6.19)
where E—’ means %Z—), and for the vertical momentum equation,
cl. .. pO+p. + & = gle, o' +ar, o - Lagn 2] + O(a?)
16g PETP1, T APy, = gl p 2 P m2ee" by '
(6.20)

The boundary condition for the top surface becomes

2 —
pyt Op, + ALypy, t O(@”) = aP+ gp(g1 + aL, + aglzgl)

+%g3’0¢§i‘ at z=h , (6.21)

where Z has been expanded about z = h by

L = ¢+ ¢ (Wem) + 0@’ (6. 22)

for x and t fixed. The bottom boundary condition is,

Ly + @, +0@®) = aD  at z=o | (6. 23)

6.3 The First-Order Equations

Using the boundary conditions that uj, éj and pJ. vanish at

infinity, we obtain the first-order equations as

2_
Py Py, (6.24)

u; = -cglz (6.25)



Py = 8P &y atz=h (6. 26)
and _ _
(P ng)Z = 'gz PI g]_ 4 (6278.)
C
&y = 0 atz=0 , (6. 27b)

t

L1, = 5t atz=n (6.27c)

The system of equations (6.27) defines an eigenvalue problem whose
solution will determine the eigenvalue c¢ and the eigenfunction gl.
This problem has, in general, infinitely many eigenvalues and corres-
ponding eigenfunctions and each pair represents one (normal) mode of
free oscillations that the system can perform.

Since £ and 7 only appear as parameters in system (6.27),

we may assume the solution form by separation of variables as

&, = E(z)NE, ) , (6.28)

where E(z) is an eigen-solution of the following Sturm-Liouville
problem corresponding to eigenvalue c:
—~ it 1 -,
(pE) = = go'E , (6.29)
c

with the boundary conditions

E =

1

at z =10 , (6.30)

E/

It
1

0
1 ,
= gE at z=h , (6.31)
C

where the prime means differentiation with respect to z. To each
normal mode of C’l’ the corresponding pressure and velocity are

given by (6.24) and (6. 25),
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6.4

Second Order Equations

From equations (6. 18)-(6. 20) and boundary conditions (6.21)
and (6.23), we obtain the second order equations as

e E R T L RSP SN S

(6.32)
-ng’ cuy, + p (cu

26 T U1 T U ue Felyuy )+ Pe =g,

(6.33)
2 — - 1= 2
C élggp + pzz = g(ézp/ - E P” él) , (6. 34)
QZ = D at z =0

’ (6.35)

= P o o 1 Y’ 2 _
P2t 1Pz = Preplptep il 580t} atz=h.
By eliminating u

(6.36)
2 and p, from (6.32)-(6.34) and using (6.28) and
(6.25), we find

u, = -cNE’ ,
1
Z —_

(6.37)
<P Lop,),m 80" Ly = -gP” NN

Z 2_ It I
g_E -cp NgggE-ZCNT(PE )

+c°NN, [p(E. EE") + o’EE']’ (6.38)
=
The boundary conditions to this order are found as follows
%2 = b atz =0 , (6.39)
2 1 2g 3g° 2 2.,
_1 _ _ /
c ngz- ggzg _E Pé . N'rE+ NNg( CZ E”- ¢"EE")
at z=nh (6. 40)
Equation (6.38) and boundary conditions (6. 39) and (

6. 40) constitute
an inhomogeneous Sturm - Liouville problem for ng.

Since ¢ has
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been determined with 4‘1 and is also an eigenvalue of the system
(6.38)-(6. 40), it follows from Fredholm's Alternative Theorem that
in order to have a solution for &5, (6.38) must satisfy the required
compatibility condition. According to the fourth formula of (G) in
Ince (1926), p. 268 (there is a mistake, the K inside the integral
should be deleted), the inhomogeneous terms of (6.38) must satisfy

the following equation, after some simplification,

2 - ’ -
2Nt 3NN a N+ P (oE (0D, + EM)P, =0,
(6. 41)
where h
a]. = _ZcS\ —pEIZdZ R (6. 42)
o
h
a, = 3c‘25v FE 34z | (6. 43)
o
a; = CZ S EEz dz , (6. 44)
o

This equation is the forced K4V equation we sought. By the relation

(see equation (6. 14))

£ ~af, = aNE |, (6. 45)

the forced KdV equation (6. 41) can be restored to the form of original

variables as
a2 2=, .
al(Qt-ch) + Ez] QQx + a3Qm+ c p(0)E (O)E(z)dx

+EME(@=)p = 0, (6. 46a)
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with

Q =1 . (6. 46b)

Equation (6. 46) is for the left- or right-going forced wave motions
accordingly as cis positive or negative. If the surface pressure term
is absent, (6.46) agrees with equation 3. 6 obtained by Grimshaw &
Smyth (1985).

For the case of continuously stratified systems with a rigid
top surface, the resulting equations are also the forced KdV equation
(6. 46a,b) with the coefficients (6. 42)-(6. 44) but with the eigenvalue c
and the eigenfunction E now satisfying (6.29) and the boundary
conditions

E =0 atz=0 and z=h . (6.47)

For two-layer systems, the density profile is a step function
in z, for which case the ¢ and E can be easily derived from the
general equations (6. 29)-(6.31). There are two values for c2 and the
corresponding E's are linear functions of z in each layer. The

resulting KdV equation agrees with that obtained in Chapters IV and
Chapter V.,

6.5 Eigenvalues and Eigenfunctions

In both cases, whether the top surface is free or a fixed rigid
plate, the two eigenvalue problems for £, given above are self-adjoint
Sturm-Liouville systems (Ince (1926), p. 217). However, we note that
the eigenvalue c appears not only in the differential equation but also
in the top-surface second boundary condition in the system (6.29)-

(6.31). For simplicity, p’/ is assumed always negative. Under this
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assumption it can be proved that the two eigenvalue systems each has
infinitely many real eigenvalues and they can be arranged in decreasing

order of magnitude as
20 s Coinnn (6. 48)

with the limit point zero if positive cj‘s are considered. The

corresponding eigenfunctions are

j ) (6.49)

"

Eo’ El’ EZ’ ..

and Ej has exactly j zeros in the interval (0, h) for ij=0,1,2,...
On the contrary, every two-layer system has only two eigenvalues
and eigenfunctions. As far as known to the author, the only analytical
solution (in closed form) of the eigenvalue problems (6.29)-(6.31) or
(6.29) and (6. 47) with a primary density distribution varying with the
depth is that for the exponential distribution p = exp(-6z), where
6 > 0 (Benney (1966), p. 60). For the density profile p(z) in our
experiment, the method of Taylor's series expansion will be used to
solve the eigenvalue problem.

Nondimensional variable representations will be used in the
sequel: z is normalized by h, p by a reference density, c‘2 by gh
and E can be taken as dimensionless. Then the system (6.29)

becomes

(eE) = L5 E (6. 50a)
C

with the boundary conditions

E = 0 at z =0 , (6.50Db)
E/:%E at z =1 . (6.50¢)
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The basic density distribution is assigned the following form,

which can be very well fitted for comparison with experiments,

o = %(p2 - py) tanh[k(H-z)] + % (Pt p)) (6.51)

where » P>» k and H are constants with P> > Py, K> 0 and
P1r P2 27 P

0< H< 1. With this density distribution, equation (6. 50a) becomes

= {a tanh[k(H-2)] + bleosh’[k(H-z)] E’- E+ L E = ¢

2 ’
C
(6.52)
where
2= 36,0 b= Lo +o) 6. 53)
’ T2 TRy, :
and
b>a> o0 . (6.54)

Since equation (6. 52) has no singularities on the real z-axis,
0<z <1, its solution may be expanded in Taylor's series at any
point in this region. For convergence of the series, the points in
the complex z plane where the coefficient of the second order
derivative term vanishes are considered and the nearest ones (to the

real region (0, 1)) are

zZy = H-5+-1 (6. 55)
= H-oh[1n &) 4 ]
z, = - 5 Ln wi] , (6.56)

P2

where i is the imaginary unit, i = J—l, and 1ln denotes natural

logarithm. Two Taylor series expansions are employed, one about



91

z = 0 and the other about z = 1, with the radius of convergence

Ro = 1zll and R1 = fzz-lf » respectively, where
2 2 1_r2
R0=H +—2 s (6.57)
4k
and
p 2
RS = [1.H.-L In(-4)% + = (6. 58)
1 2k Py 4k2

which readily follow from (6. 55) and (6.56). For the case when

(1 - Ei) is small, the two regions of convergence generally have an
2

overlapped region, though when the overlapped region is narrow, a
large number of terms of the series will be required.

By using one Taylor series about z = 0 ,

2

E(o)— z + ...

= e + e,z + ey ) (6.59)

and the other about z = 1

’

EY - E vy Ez4+E 224 (Z = z-1)

1 T EZ+E, : (6. 60)

and equation (6.52), the coefficients of these series can be deter-

mined if the first ﬁvo coefficients are known. The relations are

(i+2)! - : aK
o (bt Ale, s = aK(itlle,, , - 2 Sitl
(i+1)! i i! 2
- -1 PR ey (i-2)zr “4K%e.,

- &BK%i-... - £ (A or B)K'

(i-3)131 €3 -

(i=0,1,2,..) (6.61)
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where
A = a sinh(KH) + b cosh(KH) (K = 2k)

’

and
B -3 COSh(KH) -b smh(KH)

For the coefficients Ei’ formula (6.61) also holds except now with

A

i

-a sinh(K-KH) + b cosh(K-KH) , (K= 2k)

»

and
B

-a cosh(K-KH) + b sinh(K-KH)
By (6.54), b+ A is not zero, therefore €43 can be readily obtained
from (6. 61).

The first coefficient is required to vanish by the boundary

condition at z = 0 and e, can be arbitrary and normalized to be 1.

That is,
e = 0, e, = 1. (6. 62)
The coefficients E1 and EZ are specified as follows
E, = ¢? E, = 1. (6. 63)
1 e 2

Thus, all the coefficients of the expansions, ei's and Ei's are
determined, and so are E(o) and E(l). Finally, E(o) and E(l)
can be employed to construct the solution of the eigenvalue system
(6.52) considered

E =E(°) (for 0< z< zo) ,

(6. 64)
E

pE(l) (for zo< z < 1),
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where p is a constant to be determined by the matching E(o) and
E(l) at some desirable matching point z, located in the over-
lapped region of convergence. This new E satisfies the boundary
conditions and the differential equation in the two separate regions.
For this E to be the desired solution, continuities of E and E' at

the matching point z, are required and they are

E® (222 )= pa) (2 - z_-1)

and (6. 65)
e, - 2 ) =pEM (2 = z_-1)

A necessary and sufficient condition for satisfying both conditions in

(6. 65) is
s =g, = zo)E(”'(z =z - 1)-EC) (5= zo)E(”(z: 2 ~1)=0

(6. 66)

When this equation is satisfied, P can be found from (6. 65) and the
eigenfunction- E is then determined. Finally, equation (6. 66) is
used to determine the eigenvalue c. Thus, the eigenvalue and the
eigenfunction are solved.

In summary, the procedure of solving the eigenvalue problem
(6. 52) with boundary conditions (6. 50b) and (6.50c) is as follows.
First try some value for c; with this c, E(o) and E(l)_ can be deter-
mined and S of (6. 66) is calculated. Repeated trials can provide
a satisfactory value for the eigenvalue c. Then from either one of
(6.65) p is determined, and E(O), E(l) and therefore the eigen-

function E are determined.
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For the flat-top surface case, the eigenvalue problem (6. 47)
can be solved using the preceding formulas with only one revision:

the first equation of (6. 63) is changed to

E1 = 0 . (6.67)

After the eigenvalue problem is solved, the coefficients of the
forced KdV equation for the continuously stratified system can be
obtained numerically by applying formulas (6. 42-6. 44) and then the
forced KdV equation is solved by the method shown in section 4. 2.

The results = 'l be presented in Chapter VIII,
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VII. EXPERIMENTAL STUDY ON THE GENERATION

OF INTERNAL SOLITONS

By employing a bottom bump, which moves with a transcritical
velocity about a characteristic velocity, along the floor of a two-layer
fluid system as a moving disturbance, internal solitons were found, in
our laboratory experiments, to be generated, surging ahead of the
disturbance (bump) one after another periodically., The present
experimental studies are primarily interested inthe lower trans-
critical range of a two-layer fluid system, or in the first internal
transcritical range of a continuously stratified fluid system. The
equipment and measurements of the experiments will be presented in

this chapter.

7.1 Experimental Equipment

The experiments were performed in the wave tank in 004
Thomas Laboratory of the California Institute of Technology. The
wave tank, constructed with 0.5 inch glass on all the containing sides,
is approximately 7.5 meters long and has a 0. 76m (wide) by 0. 6m
(high) cross section. The unevenness of the tank bottom -from the
horizontal plane is less than + 0. lcm.

The experiments employed a moving bottom bump as an exter-
nal forcing agency, which is easier to manage than dealing with
moving surface pressure disturbances (cf. Figure 7.1). A two-
dimensional aluminum bump, with a length of 72cm, which spanned
the width of the tank, had a circular-arc top surface and a flat

bottom which was adjusted in height so there was a clearance of about



96
0. 05cm from the bottom of the tank at the highest location of the tank
bottom. To avoid any undesired electric interference between the
bump and the wave gauges, the bump was electrically insulated with a
coating of Varsity spray enamel No. 1140. With the coating, the
bump had the cross section of 0. 66cm high and 4. 9cm wide. It was
rigidly connected to a towing carriage which can move along the two
parallel tracks mounted on the flanged top of the side walls of the tank
under tow by a one-fourth HP dc motor (Bodine NSH-55) through a
cable and pulley system. The speed of the carriage was controlled
remotely using a Minaric variable speed control (Model W63). The
carriage could be brought to its working speed (about 6cm/s) from
rest very quickly (less than 0.5 second) and then maintained constant
for the experiment. The departure of the parallel tracks from the
horizontal level was + 0. 03cm.

The fluids used for the experiments were fresh water in the
upper layer and brine in the lower layer, with a specific density of
about 1. 03. Our experience showed that brine with higher densities
would cause some electric behavior not suitable or controllable for
taking measurements in the experiments conducted. The brine was
dyed red with Schilling food coloring to make the profile of the internal
waves stand out pellucidly for easy visualization. Shortly after
preparation for the experiment, the fluid system consisted of an upper
layer of fresh water, a lower layer of brine, and a narrow mixed
layer, called pycnocline, between them, across which the density
increases monotonically from the fresh water to the original brine.

It is desirable to make this mixing layer as thin as possible for various
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reasons, one for making direct comparisons with the two-layer fluid
model and another for making the internal wave profile very sharp.
To achieve this objective, the following tank-filled procedure was
adopted. First, the tank was filled to a desired height with fresh
water, say hl' Then the brine, prepared beforehand to have the
desired density and quantity in a separate tank, was fed into the tank
to form the lower layer through eight feeding tubes (Resinite vinyl
insulation sleeving No. 9 with 0.118 I.D. and 0.20 wall) located
evenly apart along the length of a sidewall of the tank. The best
results for stratification of the fluid system were obtained with a
suitable siphon-feeding rate and with the ends of the feeding tubes
directed perpendicular towards and nearly touching the tank bottom
so that the brine would spread evenly over the bottom of the tank with
least possible disturbance to the formation of the fluid system. An
optimum filling rate ranged between about 0. 6 to 0. 8cm increase in
height of the brine layer per hour. Follwing this procedure we found
the resulting system to be quite stable, the pycnocline to be relatively
thin, and the demarcation surface between the colorless fresh-water
layer and the underneath layer of colored brine quite sharp. This
sharp layer separation could be maintained, apparently with negligible
cross-layer mass diffusion for several hours. This demarcation
surface will be called the color interface. The pycnocline was
generally found to be about 1. 5cm thick at the beginning of a series
of experiments (of commonly 10 runs) and about 2cm at the end of the
series. Its thickness is defined by the ratio of the maximum density

difference Py = Py (i. e., between py at the bottom and Py at the



98

top surface) to the maximum density gradient, that is,

o P]_
& = az . (7. 1)
max - iz
ze[o, h]

We note that the color interface was usually not the surface where the
maximum density gradient was found. Let the total depth of the fluid
system inside the tank be h after each filling of the brine layer
(under the fresh water layer of depth hl)’ which would typically take
three to four hours to finish, then H2 = h-h; would be the height of
the brine layer according to the supply from the brine storage.
Disregarding the mass diffusion that must have occurred, we call
h1 and H2 the nominal depths of the upper and the lower layers and
their interface, the nominal interface. The color interface was
usually found not to coincide with the nominal interface, probably due
to some inevitable turbulent mixing during the filling operation and
the diffusion effects of the dye and the salt. In general the color
interface was found to lie 1 to 2cm higher than the nominal interface
for general experimental situations.

The carriage speed was measured by a tacometer (Servo-tek
D-C generator ST-721-7B 7v/1000RPM) in contact with one of the
tracks. To cross check the carriage speed, two electric switches,
4.2 meters apart and connected to a clock, were used to measure the

average speed of the carriage over the middle range of each run.

7.2 Measurements of Wave Elevations and Density Distribution

A set of wave gauges, of resistance type, were used to
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measure the elevations of both the top surface waves and the internal
waves primarily centered about the pycnocline. These wave gauges
were made of parallel stainless wires of various length, 1/16 inch
(0. 16cm) in diameter, and typically separated by 0.5cm. For
measuring the top surface waves, the wave gauge works by the
principle that the electric resistance across the two parallel wires
varies with an "'effective amount'' of water between them, and hence
the wave elevation can be determined by calibration. For the inter-

facial wave gauge, the upper part of the parallel wires of the gauge
was coated with the GC red GLPT insulating varnish so that only the
lower uncoated parts of the wires would provide a measure of the
conductivity of the fluid surrounding the wires (cf. Figure 7. 2).
During experimental measurements, these conductive parts were
always kept below the top surface so that the top surface variation
would not affect the interfacial wave gauge signal. The vertical
location of the interfacial wave gauges were set such that their con-
ducting parts would pierce through the interface and the vertical
location of the top surface wave gauges would never reach the inter-
face. Four gauges were used. One of them was for the top surface
wave and the others for the internal waves; their locations are shown
in Figure 7.1. Three of these gauges, including the one for the top
surface waves and two for the internal waves, were fixed with
respect to the tank, being mounted on a support beam which spanned
the entire length of the tank. The fixed gauge for measuring the top
surface waves, FTG (standing for Fixed Top surface wave Gauge),

and one of the fixed gauges for the interfacial wave, FIGI (standing
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for Fixed Interfacial wave Gauge 1), were both located at 100L from
the left starting position of the 1eaciing edge of the bump, where L
denotes the chord length of the bump. The other fixed gauge for the
interfacial wave, FIG2, was located at 40L from the left starting
position. A moving gauge for measuring interfacial waves, MIG (for
Moving Interfacial Wave Gauge), was fastened on the carriage, to
move with the bump during the éxperiment, at 1. 8L to the right of the
right edge of the bump (cf. Figure 7.1). The distance between the
left and right starting positions was IZbL.

The waves were recorded in three ways. The simplest one
was by use of a video camera, which was mounted to the carriage and
moved with it to record wave profiles near the bump. The second and
third were the signals from the wave gauges recorded by means of a
chart recorder (Sanborn 8 channel thermal chart recorder (Model
358-100A) and a PDP 11/23 computer throughout each run. The
signals from the gauges were taken as input to one arm of the
Wheatstone bridge (cf. Figure 7.3) connected to Hewlett-Packard
carrier preamplifiers (Model 8805A) which also provided 4.5 volts
2400 Hz excitation signals to each bridge to make the signal-taking
from the gauges possible. Because the signals from the preamplifiers
still contained some noise of 2400 Hz components, a R-C low-pass
filter (with approximately R = 6k ohm and ¢ = 1y farad, with a cut.-
off frequency of about 30 Hz and a stopband of amplification factor less
than 0.1 for frequencies larger than 260 Hz) was used to filter out the
noise components for every channel, Thesé cleaned and amplified

signals were then taken as input to the chart recorder, with a set of
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Sanborn low-gain amplifiers (Model 958-2900), and to the computer,
using an Analog-to-Digital (A/D) data acquisifion system. The
computer data acquisition was made at 20 Hz.

Preliminary experiments showed some troublesome inter-
actions between the wave gauges and the brine, giving rise to false
signals which seemed to depend on the carriage position along the
tank. This problem was later resolved by grounding the tank and the
carriage to the power outlet ground point and by placing a grounded
tinned copper wire (20 AWG 0. 8mm diameter) along a corner of the
tank cross section along the entire tank length. In addition, the fixed
interfacial wave gauges FIGI1 and FIG2 were specially made by using
one wire placed at the center as one end to the bridge, surrounded by
four grounded wires connected to the grounded end of the bridge (cf.
Figure 7.2), and further using three tinned copper wires to weld to-
gether the conducting parts of the surrounding wires and thus forming
a sparse grounded net. With these improvements, the errors in wave
elevation measurements caused by such electric interferences were
reduced to less than about 1lmm of wave height for each gauge.

The density profiles in the rest state were measured by a
density probe, which consisted of a centered stainless wire of 1/32
inch (0. 08cm) diameter as one electrode, surrounded by a grounded
aluminum ring of 0.4cm inner diameter, 0.lcm thick, and 0. 6cm in
height as the grounded electrode (cf. Figure 7. 4), both ends being
fixed on a Plexiglass plate. The immersed part of the central stain-
less wire above the ring was electrically insulated by a coating of

Varsity spray enamel No. 1140. The entire probe was further
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platinized according to the standard chemical method (Water (1965),
p. 282) before its use in the experiment.

Four 'standard' saline solutions with specific densities
accurately set at 1. 01, 1.02, 1.03 and 1. 04 were prepared and placed
in four beakers for calibration in addition to the pure water. The
density profiles were recorded around the middle of the tank. To
obtain the density profile of the tank water at rest, the probe was
moved upward step by step from near the bottom to just below the top
surface. More data points were taken near the pycnocline where
rapid density variations existed. The locations for calibrating the
fixed wave gauges were at their individual working positions (possibly
with some small transverse displacements). The location for calibra-
ting the moving gauge MIG was at the starting position.

Results of the calibrations of the gauges and probe were
plotted and interpolated for use in each series of experiment; for this
purpose their best representation was obtained with cubic curve
fittings by the least square method. Typically the error due to the
cubic curve fitting was less than 0.3mm displacement for the gauge
calibrations.

The experiments were performed first with the nominal depths
h1 = 6cm and H2 = 2cm. After several experiments, a selective
withdrawal was performed to siphon out the fluid in the pycnocline,
thereby making the pycnocline effectively thinner. Accordingly, the
total depth of the stratified water was slightly reduced. After several
more experiments, the selective withdrawal was again performed,

further reducing the total depth of the water layer. When the carriage
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was moving with the bump in one direction along the tank, the moving
wave gauge was in front of the bump, 1.8L ahead of the leading edge
of the bump, so it recorded the disturbances in front of the bump and
the wave gauges FIG1 and FTG recorded the disturbances at the
position initially located at 100L ahead of the bump and for FIG2, the
waves at 40L ahead of the bump. When the bump was moving in the
other direction, the moving wave gauge was behind the bump, 2.8L
behind the leading edge (left edge) of the bump, so it recorded the
disturbance behind the bump and the wave gauges FIGl and FTG
recorded the disturbance at the position initially located at 20L ahead
of the bump and for FIG2, the waves at 80L ahead of the bump. (cf.
Figure 7.1). The density profile measurements and the gauge cali-
brations were conducted at the beginning and at the end of a set of
experiments and also before and after each selective-withdrawal.
The measured density profile and the nearest calibration result were
used for signal processing and the corresponding numerical calculation.
The experimental results, their corresponding numerical calculations

and their comparisons will be presented in the next chapter.
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VIII. ANALYSES OF THE RESULTS

The results of numerical calculations based on the several
theoretical models presented in the foregoing, and the corresponding
experimental studies are the topics of this chapter. Only two-
dimensional cases will be considered. Of interest are the wave
motions generated by such disturbances as a top-surface pressure
distribution or a bottom bump, which keeps moving, after an impul-
sive start from rest, with a uniform velocity U, in a stratified fluid
system. The resulting wave generation and evolution from these
forcings will be examined in this chapter. Before doing that, let us
first consider the wave resistance experienced by the forcing distur-

bance, which will be used in later discussion.

8.1 The Wave Resistance

External forcings, such as a top surface pressure or a bottom
bump, will generally experience a certain resistance and hence must
do work on the fluid system, which may vary with time and may be
positive or negative. For the case of a top-surface pressure forcing,
the resistance a left-going forcing pressure p must sustain is given
by
R = -S pgxdx ) (8. l)r
which represents component of the surface pressure p(x,t) acting in
the negative x-direction and on the water surface of elevation {(x,t)
integrated over the entire forcing region. For forcing pressures of

compact support or falling to zero sufficiently fast at infinity, an
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integration by parts of (8. 1) gives
R = S gpxdx

A positive R signifies a resistance that must be overcome by the
forcing disturbance, whereas a negative R means that the external
forcing is (temporally) being pushed forward by the fluid system.

For symmetric forciné distributions on a finite region, called the
forcing region, one can easily see from (8. 1) that for a left-going
positive pressure, i.e., the external pressure is everywhere greater
than the ambient pressure in the forcing region, the free surface
elevation should have a negative slope on the average under the forcing
pressure to make R postive, or vice versa for the forcing pressure
to change it's sign or direction of motion. The wave resistance

coefficient, defined as

- R '
Cr = — (8.2)
plgho

where Py is the density at the top surface, is given by

CR = -Spt_!,xdx = Sgpxdx , (8.3)

if p and { assume the following dimensionless form

N

1570 o

For the bottom forcing case, the wave resistance is

R = _S‘ pthdx , (8. 4)
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where p is the pressure on the bottom, or in coefficient form

CR - R 5 , (8.5)
Pzgho

where Py is the density at the bottom. By using the Bernoulli equa-

tion, (8.5) can be recast as

Cp = S q'szdxdx ) (8. 6)

where the higher order terms have been neglected and the variables
are nondimensionalized with (2. 17). Because the first-order value of
the potential is depth-independent, the depth-average potential can be
used in (8. 6) to the same order terms retained. For the KdV model,
the potential ¢2 can be converted to a known quantity as follows.

For the two-layer system with a free top surface, the first-
order relations (4. 47) and (4. 48) yield, with consideration of only one
component, in dimensionless form,

Cc.

Ly = - -}i t21) 8.7

where £ =x+ c;t. Referring to Chapter IV, we have (see equation

(4.17))

$. + O(@?) = aL,. . = ac.L
2

(1) i (1)g
Hence by (8. 7),

c2
; 2, _ i

[\8)
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Therefore, (8.6) for the wave resistance coefficient becomes, for the
KdV model,

1 2
== c

C, = H2 : ngdxdx+ O(a4) . (8.8)

R

For the two-layer system with a fixed horizontal top surface,
the wave resistance coefficient can similarly be calculated. Referring

to 5.2, we have, by the Bernoulli equation,

- - ; 4
R = Spdxdx = -g p2¢2dxdx+ O(a™)

And from (5. 82),

= _
fueTT H, oy
therefore
. CZ 2
¢, = 57 L+ OW@)
2

and finally, in dimensionless form,

2

|n

C =

R S td dx + O(a®) . (8. 9)

L

2

For continuously stratified fluid systems, (6.28) and (6. 24),
which are valid for the top surface either free or fixed, can be used,

up to the first order, to give

ac® SNE’

n

p

’

¢ = oEN
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The wave resistance coefficient, defined as,

C _ R
R = - 2 ’ (8.10)
p(o)gh

can be expressed, on using the above results for p and ¢, in the

following dimensionless form

Cp = 2 g_((;o_)L Sg(z)dxdx , (8.11)

where z is any vertical position such that E(z) is not zero (such

selection of z does not affect CR since {(z) is proportional to

E(z)).

8.2 Analyses of Results for the Two-layer Forced KdV Equation
Compared with the FOUR-equation or THREE-equation models
of the Boussinesq class, the forced KdV equation is simpler and is
more promising for further fruitful investigations. Moreover, the
well-posedness in regard to the existence, uniqueness and continuous
dependence on initial data, etc. of the solution of the forced KdV
equation has been proved for some general well-behaved forcing
functions and initial data (cf. Bona & Smith (1975), proposition 15).
The well-posedness of the solution of the forced fegularized Kdv
equation, also called the PBBM equation (Miura (1976), following
Peregrine (1966) and Benjamin, Bona & Mahony (1972)), which has
been used in numerical calculations, has been proved in a more
straightforward way for some general well-behaved forcing functions

and initial data (cf. Benjamin et al. (1972) Theorems 2,4 and 5).
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8.2.1 Theoretical Analyses

First, some simple and useful results can be obtained from
the first-order relationships.

For the free top-surface case considered in Chapter 1V, (4. 64)
and (4. 69) are the first-order results and they may be converted by
using (4.57) to the following more convenient expressions, which are

accurate up to the leading-order,

1.2
Ly = o [e] - Hy(1-0)]g, (8.12)
= L 2
"1 7 REye iz o) o (8.13)
°i
u, = o-g Ly o (8.14)
2
and u, = — (c2 - h )u (8. 15)
2 T H, CiT MM :

where u is horizontal velocity, u = bx’ and the subscript 1 (or 2)
represents the upper (or the lower) layer quantities; these expressions
are in the dimensionless form defined by (4. 1) and the u is normal-

ized by ¢ = "gho . We can readily verify using (4. 57) that for the

two-layer system (with OthZ # 0),

2
c.l-H2 (l-0) # 0 ,

and

-h, % 0 . (8. 16)
i 1

For the slow mode, which is of main interests here, one can further

show that
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2
cg -HZ(].-O') < 0,
and

ci-hl <0, (8.17)

by considering the continuous dependence of the quantities on the left-
hand side of the above expressions on the depth and density ratio and
by examining the relationship between the roots and coefficients of
equations (4.57), including (8.16). On the other hand, for the fast
mode (c.1 = cf), the left hand side of (8.17) must be all positive with
g replaced by Cq-
Likewise, for the case of the fixed horizontal top surface con-

sidered in Chapter V, one can obtain from (5. 82), (5.57) and (5.55)

the following first-order relations

~ <.
uw, =y ¢ , (8.18)
1
wu, = -f L, (8.19)
2
and h1
u, = 'I:I; uy (8.20)

Physically, these results mean that to the leading order, the
velocities in the upper and the lower layers, and the wave elevations
of the top surface, if free, and the interface are all proportional to
each other. Furthermore, for the fixed horizontal top-surface case
and the slow mode of the free top-surface case, the velocities in the
upper and the lower layers are always opposite in direction, signifying

that the interface is always a vortex sheet across which the tangential
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velocity may have a jump, In addition, the elevation of the top surface,
if it is free, is always opposite in sign to that of the interface. For
the fast mode, the velocities in the two layers are always in the same
direction and both wave elevations are positive.
Secondly, we note that the forced KdV equations for the two-

layer case (see equation (4. 62)) and the continuous stratification

case (see equation (6. 46)),

Q -cQ +a.Q0 +a.0Q +a,d =0
t x 2 x 3 Txxx

49, , (8.21)

is analogous to the one-layer (homogeneous fluid system) forced KdV
equation (see Lee (1985) (2. 58)) which reads for the left going forcings

as

- (1I+

ol

1 -
a7 Adax - Faxxx -3 Px = 0, (8.22)

where d denotes a bottom bump and/or a top-surface pressure,
h

o = (TO)Z , and q 1is the surface wave elevation for the one-layer

system. The analogy becomes one-to-one (i. e., equivalent) if the

quantities satisfy the scaling law:

Q:-_3C_q’

2a2

_ 6a3 <

X - - olc »
6a

_ 1 3

t T ¢ T dc T,
and 3C2

d = I D . (8. 23)
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So, to each two-layer case there corresponds a one-layer system
given by (8. 23) for scaling the variables. It is of interest to note that
the Froude number remains invariant under the scaling (8. 23) (the
characteristic velocity for the one-layer case is normalized to unity
in (8.22)). The numerical results for one-layer systems (see Lee
(1985), chapter 4) can therefore be used to predict the behavior of
wave motions in stratified fluid systems. However, since % and %
are seen from (8. 23) to have different scaling factors in general, the
analogous cases are not dynamically similar even with the proper
scaling of x and t. Nevertheless, we can conclude on the invariance
of Froude number that in stratified fluid systems, disturbances moving
with transcritical velocities will generate a series of solitons surging
ahead of the disturbance very much similar to the phenomenon known

for the one-layer case.

Small Density Difference Case

In this case, the above analyses may be further simplified to

enable us to draw some quantitative conclusions.
The slow mode will be considered first. For (1-0) € 1, the

dimensionless form of (4. 69), for the case of free top-surface,

becomes,
6y = -Hyll-olg,
w, = |2 H_(l-0)
1 h1 2 2’
and hl
u, = “Tou - . (8. 24)
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Clearly, the first equation above shows that the displacements of the
two surfaces are always opposite in sign, but the top surface wave
elevation is very small compared to the interfacial wave on account
of l=0 being small. The horizontal velocities in the two layers are
always opposite in direction, and the velocity ratio is inversely
proportional to the depth ratio for the two layers. So the shallower
layer has a larger horizontal velocity in inverse proportion.

The forced KdV equations for the free top-surface case and
the rigid horizontal top-surface case become identical as the density
differences for the two layers decrease to small values, i.e., they
both asymptotically become (4. 68) for the interfacial waves, in
dimensionless form. Substituting the coefficients of (4. 68) into the

scaling relations (8. 23) yields

thz
Q = —=—gq , (8.25)
h,-H,
x = ’thZX ) (8.26)
1
t = —m— T , (8.27)
Jl-o
Hz
d = D , (8.28)
hl-H2
and h
1
P = ¢ b, (8.29)
H,-h,

where p and P denote the analogous top surface pressures, which
are to replace the forcing terms d and D, respectively, in the above

KdV equations when a top surface pressure is present. From these
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scaling relations, we may draw the following conclusions.
(1) In the one-layer case, the solitons generated to surge ahead of
the moving disturbance (called runaway solitons), as predicted by
(8.22), are always positive in elevation (without depressions below the
undisturbed free surface), no matter whether forcing is positive or
negative, as has been reported and communicated by Lee (1985), In
other words, the runaway soliton solution q of (8.22) is alwayé
positive whatever the forcing function D is. However, by the scaling
relation (8.25), the interfacial elevation Q for solitons in a two-layer
system is positive or negative accordingly as h1 is greater or smaller
than HZ' This is of course expected on physical grounds that free
solitons in two-layer fluid systems always displace away from the
thinner layer of fluid into the thicker one. Examples of such negative
solitary waves will be shown later.
(2) The density ratio of a two-layer system, o, takes part only
in the time scaling. Therefore the entire wave behavior will remain
unchanged with respect to the scaled time (hence with the velocity also
scaled) and to the same Froude number.
(3) With regard to the scaling of forcing functions, p and d, we
see by comparing (8. 28) and (8. 29) that the pressure forcing, p, and
the bump forcing, d, of the same distribution have different effects on
waves, noting that for one-layer systems the surface pressure P and
the bottom bump forcing D are exactly equivalent (see Lee (1985)) for
the KdV model. For the same system configuration (i. e., the same
hl’ hence the same H2 since h1 + H2 = 1, aside from the effects due

to density ratio as already considered in (2)), effective forcing strengths
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(which are best measured by the equivalent D and P of the analogous
one-layer system) of the forcings, bottom bump or top-surface
pressure, are found to be inversely proportional to distance between

the forcing and the interface. In fact, with p =d in (8.28) and (8. 29),

we have
P(due to p) _ EI_Z
D(due to d=p) B hl

Physically, this means that the closer the forcing to the interface, the
larger the interfacial waves will result, for the same strength of the
two kinds of disturbances. When h1 and H2 are nearly equal, the
effective forcing strengths become very small as indicated by the
scaling relations (8. 28) and (8.29). An interesting case arises when
h1 = HZ’ which will be discussed later.

Two kinds of effective forcings can be classified, positive and
negative, based on the above scaling relations (8. 25), (8.26), (8.28)

and (8.29). The two categories are:
Positive effective forcing,

h1 2 HZ’ with Ps O, or dz 0 . (8.30)

Negative effective forcing,

h1 2 HZ’

with pz 0, or d s 0. (8.31)

For the same amplitude of the forcing (same p or d), the same
waves will be observed if we exchange h1 and H2 and at the same
time change the top surface disturbance to the bottom bump distur-

bance.,
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More conclusions can be drawn from the above scaling rela-
tions, but we will not go further here.

The case of equal depths for the two layers needs a separate
consideration. The nonlinear term in the K4V equation (4. 68) vanishes
as the density ratio o = 1, implying that the existence of free solitons
and the runaway solitons would be impossible according to this model
(cf. Keulegan (1953), p. 140, also Long (1956), p. 469 (24) and p. 470,
Fig. 5). However, ‘this result is a particular consequence to the

previoﬁs procedure of taking 1-0—>0 first and I_—I-l- —1 afterwards.
2

If we reverse the procedure by first letting h1 = H2 and then making

the density ratio approach unity, we find the resulting nonlinear term

small, but not zero.

For the free top-surface case, we obtain

-1 3 1 1 1 B
¢ Q-7 (- ‘[c’_)QQx‘24°‘Qxxx'4dx+4Px‘ 0
(8.32)
and for the fixed horizontal top-surface case,
-1 3 1 1 -
c Qt-QX-Z(I-G)QQx-24O¢Q - 4dx = 0, (8.33)

both in dimensionless form. The Q's in the above formulas denote
the interface wave elevation. Whether the runaway solitons are
positive or negative depends on the sign of the ratio of the coefficients
of the nonlinear term and the first time derivative term, as can be
seen from the first scaling relation of (8. 23). Thus, when h1 = H2
the runaway (and also free) internal solitons are negative for the free

top-surface case and positive for the fixed top-surface case provided

the density difference is small. Actually it is also true for arbitrary
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densities ((1-0) not necessarily small), which can be seen from the
first scaling formula of (8.23), with a, and a, given by (4. 65) for
the free top-surface case and with ay and a, given by (5. 87) for the
fixed horizontal top-surface case. A numerical result will be shown
for this case later (cf. Figure 8.12).

We conclude this section with a brief account of the fast mode.
By a similar procedure as that for the slow mode, the following result
is obtained. For a two-layer system with small density differences,
the fast mode is almost the same as the only mode in the one-layer
case. The wave-elevation-ratio for the top surface and the interface
is approximately equal to the corresponding depth-ratio, i.e. , l:HZ,
and the fluid velocities in the upper and the lower layers are equal.

8.2.2 Results from Numerical Calculations

The forced KdV equations for stratified fluid systems can be
transformed to the one-layer KdV equation by suitable scalings as
shown in the preceding section, with the Froude number unaffected by
the scaling. Therefore, much advantage can be taken of behaviors
already known for various kinds of forcing distributions over a range
of transcritical speeds for the one-layer system, as given in an
extensive study by Lee (1985). In spite of having this advantage, more
calculations will be performed in the present study for various strati-
fied fluid systems in order to investigate more thoroughly the relation-
ships between the characteristics of waves generated, the system
configurations and the forcing distributions, to examine the validity of
these theoretical models, and to further understand the basic mecha-

nism underlying the phenomenon.
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In the present subsection, only the slow mode of two-layer
systems with bottom-bump forcing and with a free top surface will
be considered. To diminish as much as possible any fictitious re-
flections from the boundary of the region of computation, the open
boundary condition (1) given by (3. 16) and the window-shifting scheme
described in Chapter III will be adopted in our computation, with the
value of c, assignedto c in (3.16) and in the window-shifting formu-
la for all the cases undertaken. Note that ¢, in the present context
corresponds to ¢ = 1 in one-layer systems according to the present
scaling rule. All cases but one will be devoted to the case with small
density differences.

The equation adopted here for numerical computations for two-

layer systems is the regularized KdV equation (8.21) with an external

forcing d = d(x+Ut),

1 -
Qt-ch+ aZQQx+caSQxxt+ a.4dx = 0 , (8.34)

In the absence of forcing (d = 0), the homogeneous equation of (8.34)

has as an exact solution, the solitary wave:

Q = a sech’[k(x + Ut)] , (8.35)
where
_ ..l
U = c-3aa, (8.36)
2 ajac
k- = . (8.37)
4a3(3c - aza)

This free soliton solution was used to test the stability and accuracy
of the numerical scheme for solving the two-layer KdV equation and to

ascertain an optimum choice of the space-grid and time-grid size,

Ax and At.
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The forced KdV equation (4. 62) with the coefficients (4. 65) was
used for calculating the interfacial wave elevations. The correspond-
ing top-surface wave elevations were deduced by using (4. 64).

In all the numerical calculations covered in this chapter, X\
was taken to equal ho in all dimensionless expressions. So the same
values of the horizontal coordinate x and of the wave elevation ¢
represent the same physical sizes in these two dimensions. All the
numerical results are presented in the nondimensional form with
normalization (2. 17) in this chapter, and for the two-layer system
(2.18) is also used.

The result of testing the numerical code developed here versus
the exact solution of free soliton (8.35) is shown in Figure 8.1 for a
specific case with FH, = 0.25, o = 0.97 and the wave amplitude
a = 0. 15 (which is not small as compared with HZ) and with grid size
Ax =0.1 and At = ?—: = 0.665. The window-shifting velocity was
cg = 0.0752 towards thz left. The free soliton solution (8.35) was
taken as the initial condition and the forcing term in (8.34) was set to
zero prior to executing the numerical scheme. The curves in the
Figure from top to bottom represent the wave profiles at several
times instants: from t=0 to t= 1330 with equal time intervals.
The left-end (flat) level of each curve represents the undisturbed
water surface if not yet reached by the leading wave. The peak values
were shown for each curve in Figure 8.1. The values of K in the
figure represents the number of calculation cycles and the time for
that curve is KAt; this notation will be used throughout this chapter.

This result shows that the present numerical scheme for this case
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(and several others tested) is sufficiently accurate: with only one per
cent variation in wave amplitude after traveling a distance more than
120 times the total water depth while the wave phase velocity only has
a discrepancy of less than 0.1 per cent between the numerical result
and the exact solution (8.36). With this error estimate, we proceed
touse Ax = 0.1 and At is determined from (3. 18) by a suitable
choice of N. N was taken to be 2 for the Froude number Fr 2 0.8
and 4 for 0.4 < Fr < 0.8 in all the calculations carried out. For
instance, in the above test case we took FrN = 2. In view of the
scaling rule for the forced KdV equation, which contains the leading
term Qt - CSQX, the relevant quantity for considering proper choice
of At is cSAt/Ax, which is equal to 1/(FrN) by_ (3.18).

The forcing distributions assigned for the numerical calcula-

tions are all of the form

2T
% dm{l-cos[—f (x-xo+Ut)]} for O<x-xo+Ut < L

p ord = | . (8.38)
0 for other domain of x

where X is the initial position of the leading edge of the forcing
function except those used for making comparisons with the experi-
ments (the above x is the original coordinate without being affected
by window shifting). All the initial conditions were set zero for the
two-layer-system calculations presented in this subsection. Note the
simple relation:

U= ¢ Fr
s

The numerical results obtained for Fr = 0, 5, 0.7, 0.9, 1,

1.1, 1.22 and 1. 25 are shown in Figures 8.2 to 8. 8 with the
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parameters HZ = 0.2 and o = 0.97 and for the forcing, L =1 and
dm = 0.05. These curves except the last one represent the wave
profiles at different instants, separated by equal time intervals. The
region of forcing lies between the two vertical dashed lines which
retains the same horizontal position because of the window shifting,
The last curve in each figure shows the variation of the wave resis-
tance coefficient with time and was calculated from (8.8). These
results show that within a transcritical speed range, runaway solitons
are generated periodically to surge ahead of the forcing disturbance.
They also show that when CR reaches a maximum, a new soliton
peak appears just ahead of the bump, and the time interval between
successive maxima of CR provides a convenient measure of the
generation period of runaway solitons. The effects of Fr on the
runaway solitons will be discussed in the next section in more detail.
Figures 8.9 to 8. 11 present the results for different HZ
(HZ = 0.3, 0.7, and 0.9) with Fr=1, L =1, dm = 0.05 and
g = 0.97. (The result for H2 = 0.2 is already given in Figure 8.5.)
The solitons generated are positive for H2 = 0.2 and 0.3 and
negative for H2 = 0.7 and 0.9. For HZ > 0.5, it is expected, on
scaling considerations in 8. 2.1, that negative solitons would be
generated if the computing calculation time was long enough for that
to occur. For the negative effective forcing, like that with H2 = 0.9,
the numerical results indicate that the instant when CR reaches a
minimum is near the instant for a new peak of generated runaway

soliton to appear just ahead of the bump and the time interval between

successive minima of CR gives a convenient measure of the generation
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period of runaway solitons. To see the soliton generation phenomena
for the case of h1 = HZ’ a long time of calculation is needed, espe-
cially when (1-0) is small. The result for o = 0,2 and hl = H2 is
shown in Figure 8. 12 for Fr = 1, L=1, dm = 0.05. As expected, a
negative soliton is generated for this free top-surface case.

The numerical results showing the effects of varying bump
width are presented in Figures 8. 13 to 8. 15 for L = 0.5, 2 and 4
with H2 = 0.2, 0=0.97, drn = 0.05. The case of L =1 was
shown in Figure 8.5 already. From these results, we see that the
generated‘ runaway solitons become stronger, their amplitudes larger
and their generation periods shorter, when L is increased from 0.5
to L =2. The effects of the bump-width variation on wave generation
is most noticeable for L =2 to 4; for L greater than 4, this trend
appears to gradually subside. This is an interesting result and it may
be due to the decrease of the gradient of the bump shape when L is
increased for dIn fixed because the forcing strength is proportional
to dX in the KdV equation.

The effects due to varying bump height are shown in Figures

b

8.16 to 8.18 for dm = -0.1, -0.05 and 0.1 with Fr = 1, H2 = 0.2
L =1 and o= 0.97. The result for dm = 0.05 has been given in
Figure 8.5. The amplitudes of the runaway solitons become con-
siderably larger and the generation periods, considerably shorter for
bumps of larger height, other parameters being equal. Therefore the
effects of bump height are strong. A positive (or negative) dm

corresponds to a positive (or negative) effective forcing in the present

case. The negative effective forcing has some features quite different
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from positive ones. Compared with the positive effective forcing
function of the same size and shape, the Tunaway solitons generated
by the negative forcing have longer generation period, the distance
between successively generated solitons is larger and often a region
of nearly undisturbed level exists between them. In other Wofds, the
generated solitons are more isolated. Further, their wave resis-
tance coefficient curves are not so symmetric about the point of maxi-
mum or minimum of CR as those in positive effective forcing cases.

The effect of varying density-ratios is shown in Figure 8. 19
with 0= 0.94 and with Fr=1, L =1, dm= 0. 05 and HZ = 0.2,
The cases of small density differences have been discussed in section
8.2.1.1, where it was shown that the effect of o variation is basically
equivalent to a change of time scale. With relation (8.27) for the time
scaling and (4. 73) for cg» one can conclude that wave forms should
be nearly the same for the same K, the number of computing cycles,
for the present case (of small density differences) because the scaling
relation (8.27) has a factor m and the slow characteristic
velocity has the same factor, which is used to determine the size of
At, and at last o does not affect the principal results in time KAt¢t.
This feature is exemplified in Figures 8.19 and 8.5, where we can
see almost the same curves for the same K's (but for different times),
The distance traversed by the forcing is KatU = % KAx by (3.18).
Because Ax and N are not affected by the variation of ¢ in the
case being considered, the same K means equal distance traversed
by the forcing disturbance. This property has a practical utility in

performing experiments; it means that for the present cases (of
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small density differences) a run of one experiment with a given den-
sity-ratio in a tank of finite length can be made to exhibit nearly the
same wave phenomenon as the result from another run with a
different density-ratio but in the same tank (fixed HZ)’ using the
same forcing disturbance and Froude number provided the moving
velocity of forcing is properly scaled.

All the numerical computations carried out in this section
were performed by the Cray X-MP/12 computer of NRL with single
precision. The processing rate is of the order of 100 million floating
point operations per second during the effective usage of the computer.
For most cases (calculation region of x= 80, K = 1600 and Ax = 0. 1)

r

the CPU time was about 7 seconds.

8.3 Analyses for the THREE-equation and FOUR-equation Models

The THREE-equation model for the fixed flat top-surface case
and the FOUR-equation model for the free top-surface case were
derived in Chapters V and II and the numerical schemes for applying
these models were presented in Chapters V and III. They can model
motions of long waves propagating in arbitrary directions, including
three-dimensional wave motions. In sharp contrast, the forced KdV
model admits motions in one direction only. So the THREE-equation
and FOUR-equation models have applicability of broader scope than
the KdV model.

We will first consider the THREE-equation model developed
for the two-layer fluid systems covered with a fixed horizontal top

surface. The stability and accuracy of the numerical scheme for
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solving the three basic equations of this model (see equations (5.33),
(5.38) and (5. 40)) will be investigated by applying it to computing a
free soliton solution (d = 0), employing the KdV equation (5. 91) and
the first order relations (5.9 0) to provide the initial data required for
computations by the established numerical scheme. More precisely,
the three required initial conditions used to test the present scheme

are, in dimensionless form, the initial wave elevation,

£ = a sechz [k(x - xo)] s (8.39)

where X is the initial position of the soliton peak and

aaz
ko= | —2 (8. 40)

12a3e

a, and a, being given by (5.87)(¢ was taken to be 1) and the initial

3

layer-mean potential of the upper layer,

. ca
(i)l = hlk tanh [k(x —XO)] ,

where c is given by (5. 84), and the initial combined potential

_ ac
R = - thzk (hl + O'Hz) tanh [k (x - Xo)]

The solitary wave in (8.39) is an exact solution of the KdV equation

(5.91) without the forcing term. The numerical result of this test

computation is presented in Figure 8.20 for the case with H2 = 0.25,
o = 0.97, wave amplitude a = 0.15 and the grid size Ax = 0.1 and
At = é—z{-) = 0.664 (corresponding to FrN =2 in (3.18)). The

s

window-shifting velocity is c = 0.0753. The peak value of each
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wave profile is shown on the curve. Because the initial condition is
not the exact solution of the THREE-equation model, there was some
slight decrease of the amplitude at early times, but the wave amplitude
becomes nearly constant from the fourth curve on. Beyond this initial
stage of "adjustment'’, the relative variation of wave amplitude is less
than 0.2 per cent over the traversed distance of 153 times the water
depth. Based on this numerical study, the grid size of Ax = 0.1
will be adopted while taking, for selection of At, N =2 for Fr 2 0.9;
N =4 for 0.4  Fr < 0.9; N = 8 for Fr= 0.2 and 0.3.

The numerical results for the Froude number Fr = 0.2, 0.5,
0.7, 0.8, 0.9, 1, 1.1 and 1.2 and for zero initial conditions are
shown in Figures 8. 21 to 8. 28 for HZ = 0.2, 0= 0.97, L=1 and
dm = 0.05. As before, the last curve in these figures represents the
wave resistance coefficient, which is calculated from (8.6). Almost
the same qualitative behaviors are observed of the resulting wave
motions shown in these figures for the present two-layer case as
those for the one-layer case obtained by Lee (1985). They are also
similar to the solutions of the KdV equation shown in Figures 8.2 to
8.8. Therefore the solutions of the KdV equation are also used in the
following discussion.

The basic behaviors are as follows. As Fr is increased from
0.2 to 0.7, new solitary waves appear in front of the bump, increasing
in amplitude with increasing Fr, though still very small. The parts
of the trailing waves near the trailing edge of the bump are nearly

stationary relative to the bump, increasingly becoming greater as Fr

is increased. For Fr = 0.8 and 0.9, solitary waves of considerable
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amplitude are generated to run upstream, followed by a region of very
uniform depression behind the bump, prolonging in extent with time.
In this high subcritical regime, the fluctuations in wave elevation of
the successively generated solitons seem to gradually fall off with
advancing time, accompanied by a similar curve for the wave resisg-
tance coefficient.

For the critical case, Fr = 1, the wave resistance coefficient
curve becomes very regularly periodic, such as shown in Figure 8.5,
The successive maxima of 104CR are 1.082, 1.051, 1,047, 1.048
and 1. 049 and the successive minima are O, 6674, 0.6794, 0.6806,
0.6795 and 0.6778. The time intervals beteeen consecutive maxima
of CR are 204. 4 for the first interval and then 205, 9, 207.3 and 203.1.
The region of depression is very uniform in depth (the minimum level
reached there being at -0. 0725, -0. 0725, -0.0724, -0.724 and
-0. 0724 from the first (top) curve to the fifth one) and is extending in
length. This region of depression is followed by a trailing train of
cnoidal-like waves. For Fr = 1.1 and 1.22 (Figures 8. 6 to 8. 7),
the trailing waves become weaker and the depression regions are no
longer so flat as when Fr = 1. In all the cases when upstream running
solitons exist, their amplitudes and the period of their generation
increase with increasing Fr until Fr reaches a value, which is
about 1.2, beyond which the phenomenon of upstream running soliton
generation by moving disturbances ceases to occur. In view of the
result that the free solitary wave of greatest height has Fr = % for
the one-layer system (Whitham (1974), p. 480), no runaway solitons

would be generated for Fr > %L- . It is believed to be also true for
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stratified fluid systems because of the correspondence between the
stratified fluid systems and the one-layer system for the same Froude
number by suitable scaling conversions of other flow quantities (see
section 8,2. 1).

The FOUR-equation scheme was also tested using the solution
for free solitons of the slow mode for a two-layer system with a free
top-surface, given by Peters & Stoker (1960) (called type No. 2 for a
two-layer system). The initial conditions are, in nondimensional
form, (h2 = const = H2 because it is forcing-free, and in the following,

s 1is their 11, and k is their 4)

a sechZA ,

&2

aH2 2
&, = I sech"A |
1 sh1 2

- Jasc
¢1 = . (_——_shl- Hz)k tanh A ,
and
b, = fkc tanh A , (8. 41)
2
with A = \I'E_lk(x-xo) ,

2 2
. 3Fs (hy-H,)+sH, (H, -2h, +H}]

2e H, (sh-H,)(h, s-h

o
1]

4 4
1 -H2 - 30 thZ)

ZHZ

1- [1+4(c-Dh 1,
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and

2 _ 2,

als®(h, -H, +sH, (H, -2h  }HZ]
H, (sh) -H)[2sh, (o- 1)+ 1]

s +

where X is a constant representing the initial position of the soliton
peak, and a is positive for a positive free soliton. The test cases
are for H2 = 0.2and o0 = 0.95. The numerical scheme for solving
the FOUR -equation presented in Chapter III is found to be less satis-
factory than the schemes for the KdV equation and the THREE-equation
model. The size of At required for yielding reliable results is con-
siderably smaller than that used for the KdV equation and the THREE-
equation model. For the present test case, which is shown in
Figures 8.29 and 8.32, At is taken to be half of Ax. In the Figures
8.29t08.32. Ax = 0.1, At = 0.05, a = 0.05, H= 0.2, and
0 = 0.95. The technique of window shifting was not used in these
calculations. There are 14 curves in each figure, in which solid lines
represent interface waves and dashed lines represent the top surface
waves. The undisturbed levels of the interfacial waves and the top-
surface waves are put in the same position. The top curves represent
the initial waves and the second set of curves, the waves at time
t = 20. They proceed with an equal time interval of 20 reaching the
bottom curves where t = 120.

The boundary condition used to obtain the results shown in
Figures 8.29 and 8.30 was the open boundary condition (1), (see

section 3.2.2)). In Figure 8.29, the wave amplitude changes from
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0. 05 at the top (initial) to the following: 0. 05263, 0. 05343, 0.05393,
0. 05393, 0. 053 96, 0.05394 and it keeps nearly constant at later
stages. To test the validity of the open boundary condition, the same
case was calculated with only half the size of the Previous computation
region (the right half of the original region being deleted) and so the
soliton would have passed the boundary before the computation ends.
The result of this second computation was subtracted from the full
region result for the same reduced region, and this difference is
shown in Figure 8. 30, with the wave scale magnified 25 times to
exhibit small errors. From Figure 8.30, we see that fictitious re-
flections from the boundary totaled less than 4 per cent of the incident
wave amplitude and the main differences in the first two groups are the
relative error in predicting very small top surface waves.

The open boundary condition (2) (see section 3.2.3) was used to
obtain the results in Figures 8.31 and 8.32. Like Figures 8.26 and
8.27, Figure 8. 31 shows the propagation of the free soliton through a
full computation region and Figure 8.32 presents the difference
between the computations in the half x range (12) and in the full x
range (24). The only difference between Figures 8.30 and Figures
8.32 is the boundary condition; the former used open boundary condi-
tion (1) and the latter open boundary condition (2). The result shown
in Figure 8. 32 is better than that in Figure 8.30. The difference is
small for the interface wave but is substantial for the top~surface
wave. In Figure 8.32, where open boundary condition (2) was used,
reflection of the top-surface wave from the boundary is nearly zero as

compared with the interface waves in Figure 8. 32 and with the
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corresponding results given in Figure 8.30. This comparative study
shows that the open boundary condition (2) is a significant improve-
ment over condition (1) in letting both fast-mode components and
slow-mode components go freely out of the boundary,

Further tests with different a, Ax and At were performed
on the numerical scheme for the FOUR -equation model. The results
showed that for the stability of the numerical scheme, At must be
taken considerably smaller than that used in the scheme for the
THREE-equation model and Ax should be large enough and it is re- .
quired to be larger for higher waves. Good results were obtained
with Ax = 0.05 for a wave amplitude of a = 0.05, as in the above
test case. But Aax should be about 0.2 for a = 0.075 to maintain
the desired numerical stability, and we should take Ax = 0.4 for
a= 0.1 with At < Ax/2 for that two-layer test system. The above
grid size estimates are concerned primarily with the slow mode
motions generalized by the forcing. So computations with the FOUR-
equation scheme are only suitable for small waves and large horizontal
scales. Only four numerical results of the FOUR-equation scheme
will be presented in the following.

The first case is for the bottom bump forcing. The numerical

scheme for the FOUR-equation model was executed to obtain results

for H, = 0.2, 0= 0.96, 4 = 0.06, U= 0.07 (¢ = 0.080
2 m x s
therefore Fr = 0.87), L = 2, Ax = 0.4 and N = 40 (then

At = 0, 143). The open boundary condition (2) was used and the
initial conditions are zero, The results in Figure 8.33 show that the

top-surface wave is very small indeed and by virtue of this result the



132

THREE-equation model is expected to be also applicable for this
case. The solution of the THREE-equation for the fixed horizontal
top-surface case was obtained for the same parameters (same Ax
but different N, N = 4 here), as shown with dash-dot lines in the
same figure for comparison. The two theoretical models are found
to be in good agreement. So the THREE-equation model can be used
to provide good approximate solutions for the free top surface case
when the density differences are small.

The second and third cases are concerned with the top surface
pressure forcings. Their initial conditions are those of the stationary
equilibrium solution, i.e., both the potentials and the interface waves
were zero and the top free surface had a hydrostatic response to the
pressure acting on it. The computation was carried out for o = 0. 96,
Fr=1.00 (U= cg = 0. 0716), pressure distribution width L = 2,

Ax = 0.4 and N = 40 in Figures 8.34 and 8.35, with application of
the open boundary condition (2). Further, for Figure 8. 34 the top

surface pressure had amplitude dm = -0.15, acting on water with

2

former case, the upper layer was thicker than the lower one, so only

HZ = 0.15 and dm = 0.0254 and H, = 0.85 for Figure 8.35. In the

positive solitons can appear, whereas the situation is opposite for the
latter figure. The top surface waves are noted to have a major peak
just under the forcing pressure, which maintained its magnitude and
position throughout.

Figure 8.36 shows the numerical result for the fast mode, i.e.,
when the forcing pressure was moving at a speed near the largest

characteristic velocity of the two-layer system. The parameters
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used were H2 = 0.3, 0= 0.97, dm = 0.12, U= 0.9 (Fr = 0.9,
c, = 0.997), L=2, N=2 and Ax = 0.4. The linear boundary
condition described in section (3.3, 1.) was used in this case and the
initial condition is the stationary solution. The result is very similar
to that of the KdV equation for the corresponding case.

To compare the results of the FOUR -equation and the KdV equa -
tion, the numerical solution of the K4V equation is calculated for the
case of figure 8.34. Both interface wave curves are shown in figure
8. 37 with solid lines representing the solution of the FOUR -equation
model and dashed lines, the KdV solution (by the implicit scheme).
Also included in the figure is the solution of the KdV equation obtained
by the explicit scheme, shown with dash-dot lines. In computing solu-
tions to the KdV equation we took, &x = 0.4 and N = 8. The figure
shows a good agreement between the solutions of the FOUR-equation
model, the KdV equation with implicit scheme and the KdV equation
with explicit scheme for this case.

The computation of the results of the THREE -equation and the
FOUR -equation models were conducted on a VAX 11/780 digital com-
puter in the Booth Computing Center of the California Institute of
Technology. The CPU time for figure 8. 24, solution of THREE -equation
model, (Ax = 0.1, calculation region = 60, number of calculation
cycles K = 1200) was about 7 minutes and the CPU time for figure
8. 35, solution of the FOUR-equation model, (Ax = 0. 4, calculation

region = 120, K = 4400) was about 26 minutes.
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8.4 Analyses of the Forced KdV Equation for Continuously Stratified

Systems and Comparisons with Experimental Results

The forced KAV equation for continuously stratified systems and
its numerical scheme were presented in chapter VI and its numerical
results will be discussed in the present section. The experimental
aspects were discussed in chapter VII and the experimental results and
comparisons between the numerical results and the experimental results
will be investigated in the present section.

f‘igure 8. 38 is a typical density probe calibration result, in which
the points are the measured data and the line is obtained by cubic curve-
fitting. Figure 8. 39 shows a typical density profile of a stratified fluid
system, prepared according to the procedure specified earlier. The
points represent the data points acquired by using the calibrated density
probe and a depth gauge; these points are curve-fitted ve ry well to a
hyperbolic tangent distribution by the method of least-squares.

We will consider only the cases in which the speed of the distur-
bance is near the characteristic velocity of the first internal wave mode,
which is <y in (6. 48). In these cases, the top surface wave is invari-
ably very small and is commonly undiscernible, as can be attested by
the experimental data shown in Figure 8. 40 (in dimensionless form),

a case which is typical. The coefficients of the KdV equation (6. 45)

and ¢, can be obtained from the results of curve-fitting for Py Py
k and H (defined in (6. 51)) by using the series method described in
section 6.5. Typically, 150 terms were taken and the ratio of the next
remainder term (the 151th term) over the summation of first 150 terms

of the series would be less than 10-6, so c; can be determined very
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accurately. A typical eigenfunction is shown in Figure 8. 41 for the
case: p; = I, P, = 1.026, k¥ = 7.78 and H = 0.278. As stated
in chapter VI, this eigenfunction corresponding to ¢y has one zero
inside the depth range (0, 1) of the system. For the general case corre-
sponding to our experiments, this zero is generally very close to the
top surface, hence rendering the value of this eigenfunction at the top
surface very small. This salient feature of the first eigenmode is
consistent with the physical observation because the wave elevation at
the top surface is proportional to this eigenfunction according to (6. 45).
The maximum of the absolute value of this eigenfunction is not at the
position H, but ata position about 0. 07 above H. From the numerical
results, c; seems to decrease with decreasing k (when the pycnocline
becomes thicker). For our experiments, k is between 6 and 9, and <,
is about 80% to 90% of the < of the two-layer system with the same
P1r Py and H.

In all the numerical calculations performed corresponding to our
experimental situations, the forcing shape was taken to be the same as
the bump used in the experiment, which is a circular-arc and the dX
term in the forced KdV equation was approximated by the central dif-
ference of d. Ax was taken to be -é L and N was taken to be 2
except for Figure 8. 42, where N = 4. All the initial conditions are
zero. All the numerical results are for the wave elevation at the
horizontal level of z = H.

Figures 8. 42 to 8. 48 give the numerical and experimental results

in the increasing order of the Froude number (based on Cl)' Each

figure consists of two parts; the upper part depicts two snapshots of
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the numerical results of wave elevationat z = H , one at t = lte

2
and the other at t = te where t, is the dimensionless time instant
of motion last computed. The lower part presents the experimental
data, received from the gauges MIG, FIGI1 and FIG2, and the corre-
sponding numerical results plotted together for comparison (solid lines
give numerical results and dashed lines, experimental recordings).
For right-going runs of the carriage, waves are propagated first to
gauge FIG2 (the second curve in the lower part of figures) and then to
gauge FIGI1 (the third curve) while the first curve records the wave
measured by the moving gauge MIG ahead of the disturbance. For
left-going runs, the waves are propagated first to gauge FIGI (the
second curve) and then to gauge FIG2 (the third curve) and the first
curve (MIG) records the wave behind the disturbance.

Figure 8. 42 presents results for Fr = 0. 659, H = 0.278,

o = 0.975, velocity of the moving disturbance U = 0. 0403, the bump
width L = 0.671 and the bump height dm = 0.0904 acquired during
a left-going run. Generation of upstream internal solitary waves are
predicted, but the experimental recordings exhibit more waves than
in the numerical results. However, the amplitudes of the trailing waves
measured experimentally are much less than those of the numerical
results. The recording of the trailing wave by gauge MIG shows a
considerable departure from the numerical results, this is because
according to the numerical results, the near field of the trailing waves
soon becomes stationary, with the gauge positioned at a positive wave
elevation, whereas in the experiment trailing waves were being devel-

oped and a trough happened to recede slowly downward.
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The case in Figure 8. 43 corresponding to Fr = 0,972,
H =0.278, 0 = 0.975, U = 0.0595, L = 0.671 and dm = 0. 0904,
for a right-going run. For the upstream waves, agreement between
theory and experiment seems fairly satisfactory in most of the major
qualitative aspects. More specifically, the upstream-running internal
solitary waves given by the experimental recordings are somewhat
smaller in amplitude and delayed and slower in phase than those of the
numerical results, especially in the last curve, where the waves have
propagated for some distance after being generated. Further numeri-
cal results of the KdV equation are shown in Figure 8. 43 for two-layer
systems obtained for the same forcing and the same ¢ and H as
those measured in the experiment; they are represented by dash-dot
lines. Obviously, the numerical results based on the continuously
stratified fluid model seem to be more satisfactory than those given
by the two-layered fluid model in light of this comparison with experi-
ments.

Figure 8.44 presents more results for the case of Fr = 0. 985,
H =0.244, 0 = 0.970, U = 0.0611, L = 0.613 and dm = 0. 0825
for a left-going run. Similar behaviors are seen here as in Figure
8.43. The next four figures are for supercritical cases. In Figure
8.45, we have Fr = 1.09, H = 0.271, o = 0.973, U = 0.0693,
L = 0.645 and dm = 0. 0868 for a left-going run. The numerical
results for the FIG2 station show the generation of a soliton of a con-
siderable amplitude but the internal wave developed more slowly and
was unable to run ahead of the bump within the limited time of the

experiment. Figure 8.46 is for the case with Fr = 1,16, H = 0, 244,
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0=0.970,U=0.0722, L = 0,613 and dm = 0.0825 and for a right-going
run. The numerical and experimental curves for the FIG2 station
and a large part of the early time results for MIG are found in good
agreement. Further, the curves associated with MIG show that a run-
away soliton was about to be generated experimentally. The next cases
are shown in Figure 8.47 for Fr = 1,18, H = 0. 269, o = 0.970,
U = 0.0750, L = 0.613 and dm = 0.0825 for a left-going run.
The last case of study is shown in Figure 8.48 for Fr = 1. 26,
H = 0.269, 0 = 0.970, U = 0.0798, L = 0.613 and dm: 0.0825,
and for a right-going run. In these supercritical cases the resulting
waves are small except in a region around the bump, and the numerical
results are in rather good agreement with the experimental recordings.

In summary, all these results show a good qualitative agreement
between theory and experiment for all the main features of these internal
runaway solitons. At small Froude numbers, the upstream-running
internal waves are small but the period of their generation is also short.
With increasing Froude number, the generated upstream-running inter-
nal solitons become larger in amplitude and the period of generation
becomes longer, until no upstream internal wave is generated when a
certain supercritical Froude number is reached. Quantitatively, most
of the cases investigated show that the internal solitons so generated
have smaller amplitudes and larger generation periods in the experi-
ments than in numerical calculations. Since our theoretical model is
inviscid, the viscous effects can not be readily accounted for without
having these models appropriately modified and these effects are

thought to be a most likely cause of the discrepancies between theory
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and experiment. To give a crude estimate of the viscous effects, the
decay formula for free internal solitons in a two -layer system, given
by Leone, Segur & Hammack (1982) (7a) and (7b), was used to calculate
the decay of the first soliton in Figure 8. 43, with the kinematic viscosity
of water taken to be 0. Olcmz/s. If the amplitude of the first soliton at
FI1G2, 0.1, is taken as the initial amplitude, the calculated amplitude
when this soliton reaches the FIGI position, after traversed 60L dis-
tance, is about 0.038, whereas its recorded amplitude in the experiment
at the corresponding position is about 0.077. So the decay rate for the
leading solitary wave obtained from the theoretical formula given by
Leone et al. is considerably stronger than that derived from our exper-
imental recording. There are two possible explanations for this dif-
ference. First, the decay rate may be higher in two-layer cases than
in continuously stratified cases which are equivalent by analogy. The
truth of this variance between the two categories of fluid systems
remains to be seen. To include the viscous effect into the continuously
stratified cases as well as in the process of the generation stage, fur-
ther research is required. Second, the external forcing may still be
reacting on the wave and thus reducing its decay rate. Some fine
structures of the flow field were observed about the position of the
first trailing wave during the experiment; they are believed to be re-
lated to wave breaking, which in turn enhanced the mixing process,
and may contribute to the discrepancies between the experimental

recordings and the numerical results in the trailing wave region.
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IX. SUMMARY

The phenomenon of generation of internal solitons by distur-
bances moving with a transcritical velocity through a stratified fluid
system has been verified by the numerical results of several different
forced KdV models and by two theoretical models of generalized
Boussinesq class as well as by experiments. Similar to the one -layer
(of homogeneous fluid) case, solitons are found to be generated and to
surge ahead of a moving disturbance, which moves with a uniform
transcritical velocity U where U is close to a characteristic veloc-
ity of the stratified fluid system. With increasing U, both the ampli-
tude of the solitons generated and the period of soliton generation
increase until this phenomenon ceases to occur at a certain super-
critical Froude number about 1.2, For the Froude number very close
to 1, solitons seem to be generated almost periodically and indefinitely.

Most of the cases considered here are for the slow mode motion
of a two-layer fluid system or for the first internal wave mode of a
continuously stratified fluid system, and for small density variations
of the system. In these cases, the internal solitary waves so gener-
ated exhibit similar features as those of the one-layer case. However,
the top surfaces, if free, remain almost undisturbed.

Two categories of theoretical models have been developed here
for investigating stratified fluid systems; one is of the generalized
Boussinesq class, which is particularly suitable for describing wave
motions propagating in all directions, the other is the generalized
Korteweg-de Vries class, which can describe wave motions primarily

in one direction. These theoretical models have been found satis-
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factory for predicting weakly nonlinear and weakly dispersive long
internal waves in a stratified fluid system and for evaluating their
generation and evolution under the influence of external forcings which
may be in motion. External forcing disturbances have been exemplified
by top surface pressures and moving bottom unevenness, while the top
surface of the system may be either free or covered with a rigid
horizontal plate. The basic equations of the Boussinesq class for the
free top-surface case of two-layer systems form the FOUR-equation
model and that for two-layer systems with a rigid horizontal top-surface
gives the THREE -equation model.

From the analyses of the KdV model for two-layer systems, the
generated solitons are found to have the following salient features:

The velocities in the upper and the lower layers and the wave
elevations are all proportional to each other to the leading order.
Furthermore, for the rigid horizontal top-surface case and for the
slow mode motion with a free top surface, the velocities in the two
layers are always opposite in direction. For every case in a two-layer
system, there always exists a unique, corresponding, homogeneous
one-layer case with the same Froude number and related by known
scaling laws. With this correspondence, the wave behaviors in a
stratified two-layer systern can be observed in the simpler situation
of a homogeneous one-layer system with the same Froude number and
with the other variable correlated by scaling.

When the densities of the upper and the lower layers of a two-
layer system are nearly equal, the wave behaviors are as follows.

For the slow mode motion, unless the depths of the two-layers are
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nearly equal, interfacial solitary waves, which are generated in what-
ever manner and are settled in form, always extend away from the
narrower layer. This is apparent from the scaling rules for the
correspondence of two-layer system to a unique one-layer system,
and the effect of variations in the density-ratio for the two-layer
system is only to alter the time scale (and hence also the velocity
scale). In comparing the top surface pressure forcing and the bottom
disturbance forcing, their effective forcing strengths are found to
have a factor inversely proportional to the distance between the
forcing position and the interface.

Several numerical schemes have been developed for solving
problems with the FOUR -equation model, the THREE -equation model
and the various forced KdV equations. They are finite-differencing
methods with a modified Euler's predictor-and-corrector technique.
The effects of the physical properties of the basic fluid system and the
forcing on generations of internal solitons were discussed with numer-
ical results. Comparison between these different theoretical models
has demonstrated their consistency for the various cases considered.

The forced KdV equation for continuously stratified fluid systems
has been derived by applying the perturbation method. To obtain solu-
tions, it is required to first find the characteristic velocities and the
corresponding coefficients of the KdV equation from the primary
density profile of the system by solving an associated eigenvalue
problem. There are infinitely many modes for this system. The
first mode, with the largest characteristic velocity, is similar to the

homogeneous one-layer case, in which the largest displacement occurs
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at the top surface. The next mode is called the first internal mode,
and is the main interest in this study.

Experiments were performed with a bottom bump as a forcing
disturbance moving near the characteristic velocity of the first inter-
nal mode. The fluids used for the experiments were fresh water in
the upper layer and brine in the lower layer. The experimental
results have produced valuable data concerning all the basic features
of the generations of internal solitons stated previously. The experi-
mental results have been compared with the numerical results of the
forced KdV equation for continuously stratified systems and with the
other model for two-layer systems. Quantitatively, the numerical
results based on the continuously stratified fluid model seem to be
more satisfactory than those given by the two -layered fluid models in
comparison with experiment. Generally speaking, the experimental
recordings give periods of soliton generation appreciably longer than
predicted by the various theories and this discrepancy is believed to
be related to viscous effects. To include the viscous effects in the cal-
culations for continuously stratified systems under the influence of

external forcing excitations, further research is required.
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APPENDIX

SOME PROPERTIES OF THE COEFFICIENT MATRIX (5. 54)

During the Gauss's elimination procedure for a tridiagonal

matrix

p— -

21 231

212

22
A = al3 a23 a33 (A.1)

without the partial pivoting (i. e., without the row exchange), the ith
diagonal element r, becomes as follows, after the subdiagonal (i. e.,
below the diagonal) elements in the first (i - l)th, if i > 1, columns

vanish by the eliminations,

r. = RN for 1=2,3,...,n

b4

where Di is the determinant that is formed by the first i rows and

the first i columns of the matrix A,

PROPERTY 1
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For the matrix

-al—bl bl
a,  -az-bh, b,
B = 3.3 —3-3—b3 b3 (A3)
ah "@n _bn ’

- _
the following relations

Di(-l)l > 0 for i = 1,2,...,n , (A. 4)

(D, + b.D, )(-1)" > 0 for i=2,3,...,n (A.5)

where D.1 is the determinant formed by the first i rows and the
first i columns of the matrix B, are valid if all the ai’s and b.l's

are positive.

PROOF
D1 = -3y -bl < 0 ,
D2 = a2a1+ albz-l-blb2 > 0, (A, 6)
D2 + bZDl = a2, >0

Therefore (A.4) are valid for i=1,2 and (A.5) are valid for

i = 2. Following the induction method, suppose that

and
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Div1 = (agyq = by )D-a, 10, D,
~a 1Dy + B D, )-b, D, (A. 7)
hence
Kbl Kk K
Dip 1 G0 = 2y 1 (O + B Dy D%+ by DU (-DF > 0,

and

k1 _ k
Prer1 ¥ i) PJCDTT = 2 (D + 5 D DS > 0

Q.E.D.
This property implies that B is nonsingular. Actually more

strong conclusions can be reached:

D,(-1)" > (i+ Um' for i=2,...,n , (A. 8)
and  (D;+b.D. )(-1)'>m" for i=2,3,...,n , (A. 9)
where m = min (a,,b.).
i=1,2,...,n vo1
PROPERTY 2
Under the conditions in the property 1,
Izl > b for i=1,2,...,n-1 . (A. 10)

PROOF
For i=1, itis obvious.

For i=2, by virtue of the relations (A. 6)

D2+ bZDl >0

»

and using (A. 2)
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it follows that

lrzl > b, ,

because D1 < 0
For i > 2, from (A.7), we have
Di = _ai(Di-l + bi-lDi-Z) - biDi-l for i =3,4,...,n-1

and from (A. 4) and (A.5), we have

(Di_1+bi_1Di_2)(~1)1'1 >0 for i=3,4,...,n-1 ,

D-l_l(-l)h'1 >0 for i = 3,4,...,n-1 ,
therefore

ID,I > Ip,D, 1,

because of the positiveness of a.i' s and b.l's.

By (A.2)
D,

r, = Df for i = 3,4,..,n-1 ,
i-1

it follows that

lr.l > b. for i
i i

3,4,...,n-1 ., Q.E. D,

For the matrix K in (5.54), it has above properties and

because it is also symmetric, so

[ril > a,

+1 for i = 1,2,..,n-1
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Due to this property, the procedure of the Gauss's elimination always
keeps the absolute value of the diagonal element larger than the
absolute values of the subdiagonal elements in its column. In other
words, the procedure with partial pivoting does not exchange the rows
of the matrix because it will find that the diagonal element is always
larger than the subdiagonal elements in the absolute values in the
same column. In view of this property, the Gauss's elimination
method without the partial pivoting can be used safely for the system

with the coefficient matrix K in (5. 54).
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