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Abstract

A multigrid code is developed to solve general systems of convection-diffusion equa-
tions when the diffusion terms are small, i.e., when the Reynolds number is large.
Various upwinding, ‘artificial viscosity and defect correction schemes are considered
and compared. The code is applied to the Navier-Stokes equations for various flow
configurations and used to study boundary layer separation from a leading edge, with
ensuing formation of a downstream eddy. The asymptotic (“triple deck”) theory of
separation is developed for this case, following Sychev, and compared to the numerical
calculations at Reynolds numbers of up to 5000. Much better qualitative agreement
is obtained than has been reported previously. Together with a plausible choice of
two free parameters, the data can be extrapolated to infinite Reynolds number, giv-
ing quantitative agreément with triple deck theory with errors of 20% or less. The
development of a region of constant vorticity is observed in the downstream eddy,
and the global infinite Reynolds number limit is a Prandtl-Batchelor flow; however,
when the plate is stationary, the occurrence of secondary separation suggests that
the limiting flow contains an infinite sequence of eddies behind the separation point.
Secondary separation can be averted by driving the plate, and in this case the limit is
a single-vortex Prandtl-Batchelor flow of the type found by Moore, Saffman and Tan-
veer (1988); we make detailed, encouraging comparisons of the vortex sheet strength
and position. By altering the boundary condition on the plate we obtain viscous ed-
dies that approximate different members of the family of inviscid solutions. The code
is also used to calculate the flow over a finite flat plate aligned with a uniform free
stream; in that case, earlier conflicting results about higher-order corrections to the
boundary layer are explained, and the triple deck generally believed to be established
around the trailing edge is found to be consistent with the numerical results. There
remains a large displacement-like effect in the boundary layer, whose exact origin is

unclear.
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Chapter One

Introduction

The nature of the steady laminar flow of an incompressible fluid in the limit of
small viscosity has received a great deal of attention ever since Prandtl’s discovery
in 1905 of the boundary layer that forms in such a flow next to a wall. Of course,
in all real fluids, the steady flow, while presumably still existing as a solution of the
equations of motion, is unstable when the viscosity is small enough. Nevertheless,
unstable steady flows are studied for several reasons.

First, the low may be of interest in itself, if it has desirable properties such as
high lift or low drag in an airfoil; there may be a way to stabilize the flow while
retaining its essential features.

Second, there is a large body of fluid mechanics research devoted to the study of
an incompressible, inviscid fluid; one would like to know exactly when, and in what
regions of the flow, these assumptions are valid. Extending from this is the hope that
once the limiting steady laminar flow had been found, an asymptotic expansion could
be constructed about it which would be relevant when the viscosity was large enough
for laminar flow to be stable. Although some progress has been made in this direction,
much of the information we have about steady flows with small viscosity comes from
numerical calculations. It has turned out that asymptotic high-Reynolds number
theories are complicated and contain many assumptions about non-local regions of
the flow; in addition, the limit can be reached extremely slowly, so that very large
Reynolds numbers are required to see the limit clearly.

Finally, finding lim,_u is an interesting problem of mathematical physics in
itself, which has been around at least since the Kirchoff-Helmholtz free-streamline
theory of 1867 and is still not completely solved.

To study these flows, we have investigated one possible method for finding high

Reynolds number flows numerically and have applied it to a class of flows in a corner.
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The results are then examined for their implications regarding both the global limit
at high Reynolds number, and the way in which boundary layers separate from near
a leading edge.

In calculating solutions to the steady state Navier-Stokes equations, many tradi-
tional numerical methods break down when the solution to the full, time-dependent
equations is unstable. In addition, the numerical grid must be very fine in order to re-
solve the thin boundary and shear layers that develop, and to avoid erroneous “wiggle”
modes in the solution of the discretized equations. With fast computers, and partic-
ularly with enormous memories, it is now possible to use Newton’s method directly
on the system of discretized equations. Three successful applications of this approach
are the work of Schreiber and Keller (1983, driven cavity flow up to Re=10,000), Mi-
los, Acrivos and Kim (1987, cascade expansion flows up to Re=1000), and Fornberg
(1985, flow past a cylinder up to Re=600).

On an N x N computational grid, the memory requirement for Gaussian elimi-
nation with diagonal ordering is 4N3, and the computational work is O(~N%), which
quickly exhausts any computer. We decided to investigate the use of multigrid, in
which the memory and work requirements are both O(N?), to solve the equations.
We have developed a general multigrid code to solve systems of elliptic equations of

the form

—VZu+f(x,u,Vu) =0 ‘ (1.1)

in two space dimensions when the Reynolds number is large; it is described in Chapter
2. Note that the stream function-vorticity form of the Navier-Stokes equations is in
the form (1.1). It was felt that this approach would be more useful for testing and
also for future applications than a specialized Navier-Stokes code.

Multigrid methods start from the observation that many common relaxation
methods (such as Gauss-Seidel) reduce high frequency errors much faster than they
do low frequency errors, so it would be more efficient to deal with the low frequencies

on a coarser grid, such as one in which the mesh size is doubled in both directions.
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In this way the solution proceeds through a series of ever coarser grids, the last being
one on which the equations can easily be solved exactly. It is then possible to obtain
almost the same convergence rate for the whole solution as for the high frequencies
alone. This explains why the number of iterations required is independent of the
number of grid points. It remains only to specify the way in which the solution is
moved from one grid level to the next. A standard reference, which discusses these
and many other considerations, is A. Brandt’s Guide to Multigrid Development.

When the Reynolds number is large, many relaxation methods become unstable
and no longer reduce the defect, essentially because the matrix associated with a cen-
tered difference formulation is no longer diagonally dominant when the cell Reynolds
number (roughly hRe, where h is the mesh spacing) is greater than 2. This is partic-
ularly a problem for multigrid, which must still function on the coarser grids, where
h is quite large. One way of dealing with this is to use corrected upwind differences,
which can be stably smoothed and preserve the second order accuracy of the solution.
This approach has been used by Schroder and Keller (1989), who used alternating
direction line relaxation, and by Ghia, Ghia and Shin (1983), who used a relaxation
method similar to incomplete lower-upper (ILU) decomposition. However, in our
experience, even with sophisticated smoothers, this method will always exhibit slow
smoothing when the cell Reynolds number becomes large. Instead, we concentrated
on more general defect correction methods, which have the advantage that simple,
fast smoothers with tiny memory requirements can be used, while still retaining ad-
equate convergence rates (usually about 0.3 per iteration) when the cell Reynolds
number is large.

Chapter 2 outlines the general approach of such methods, culminating in Brandt’s
double-discretization scheme. This is applied to several test problems that demon-
strate that second order accuracy is retained at large Reynolds numbers, and that
the accuracy is as good as in previous solutions of the Navier-Stokes equations.

The infinite Reynolds number limit of a viscous flow is expected to be at least

a weak solution of the Euler equations for the motion of an incompressible, inviscid
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fluid. The problem is that in most geometries there are many such solutions. For
example, in flow past a cylinder, in addition to the irrotational solution there is a
Kirchoff-Helmholtz free-streamline solution in which vortex sheets are attached to the
cylinder 55° from the forward stagnation point and extend downstream to infinity,
enclosing a region of stagnant fluid; there is the Foppl solution, irrotational except
for two point vortices in the wake; there may also exist Batchelor solutions with
a finite, rotational wake behind the cylinder; and the best numerical evidence now
indicates that the actual limit may be a Sadovskii vortex which becomes infinitely
large as the viscosity tends to zero. Selecting the correct limit would mean, at the
least, constructing a consistent expansion about one of these flows, valid when the
viscosity is very small but not zero.

We have concentrated on the type of solution, discussed by Batchelor (1956),
in which closed-streamline regions have constant vorticity and are separated from
each other (and from any external, irrotational flow) by walls or vortex sheets. The
driven cavity (see, e.g., Schreiber and Keller (1983)) presumably tends to such a
flow, inasmuch as all its streamlines are closed, and in fact high Reynolds number
calculations show that the vorticity does become roughly constant in the main vortex.
However, no Batchelor flows have been calculated in a square (perhaps because of
the profusion of walls and vortex sheets!), so detailed comparisons cannot be made.
Another candidate for a Batchelor flow as a limit was found by Milos, Acrivos and
Kim(1987). In their geometry, straight channels in a periodic array join over a vertical
step. For certain values of the ratio of channel widths before and after the step, it
appeared that the downstream eddy eventually stopped growing as the Reynolds
number increased. Once again, no inviscid calculation has been performed, although
it would be easier to do in this case.

In this regard, D. Moore suggested that we study the corner flow sketched in
Figure 1.1. The uniform straining field ¥ = —zy is an exact solution of the Navier-
Stokes equations; however, when a flat plate is introduced at y = 0, —1 < z < 1, the

flow separates shortly after hitting the plate and a counter-rotating eddy forms in
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Figure 1.1 Corner flow geometry

the corner. Inviscid calculations have been done in this geometry by Moore, Saffman
and Tanveer (1988), who found a whole family of Batchelor flows, parameterized by
the eddy vorticity w. An example is sketched in Figure 1.2; as w increases, the eddies
bulge out more. The corner flow is of interest not only for a possible Batchelor limit,
but as a simple example of the separation of a boundary layer—an area in which it
might be said that theory outstrips calculations.

This flow was first studied by L.G. Leal (1973), who obtained solutions up to a
Reynolds number of 400, at which point the eddy still appeared to be fully viscous. In
Chapter 3, we extend the calculations to a Reynolds number of 5000. Extensive checks
of convergence and accuracy are made, including a test of the integral property of the
Navier-Stokes equations that the total flux of vorticity through a closed streamline is
zero. Most flow quantities are accurate to within a few tenths of a percent or less.

By Reynolds number 3000 the transition to an inviscid eddy is clear. The forma-
tion of a region of constant vorticity is seen in the main part of the eddy, and there
is no evidence of any of the phenomena that might prevent the limit from being a

Batchelor low. However, at a Reynolds number of 2255, the reverse boundary layer



Figure 1.2 Batchelor flow in a corner

Only one quadrant is sketched; the flow is symmetric about z = 0 and y = 07, with the sign
of the constant vorticity w depending on the quadrant.

that is set up against the wall downstream itself separates, forming a secondary eddy.
This means that the limit cannot be one of the one-eddy flows of Moore et al., and
complicates the theoretical picture considerably. .

To sidestep those difficulties for the moment, we changed the boundary condition
at the wall to prevent secondary separation. These flows are given in Chapter 4. With
u(z,0) = up > 0, the reverse boundary layer is accelerated instead of retarded by the
wall, and remains attached. This also strengthens the main eddy considerably, causing
the emergence of\inviscid behavior in the corner at a lower Reynolds number, and
pushes the primary separation point upstream to just ahead of the plate. The eddy
now looks almost identical to those of Moore et al. and we make detailed, encouraging
comparisons of the eddy shapes and the vortex sheet strengths with Batchelor flows.
By changing the wall boundary condition, Batchelor flows with different vorticity
levels can be found. We conclude that a simple Batchelor flow is the high Reynolds
number limit in this case.

In Chapter 5 we turn our attention to the separation of the boundary layer in
the original corner flow of Chapter 3. The currently accepted explanation of this is
given by triple deck theory, first developed using the method of matched asymptotic
expansions by V.V. Sychev in 1972 for separation from bluff bodies, and in 1979 for
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separation from a leading edge, as here. It holds that separation is governed by a free
interaction between the boundary layer and the external flow with the large pressure
gradient acting over a small distance being just that required to prevent the Goldstein
singularity. More specifically, the external flow is assumed to be locally a Batchelor
flow, which has a singularity in the pressure gradient at separation; the form of that
singularity is then used to derive the scale of the small interaction region. One is left
with the standard boundary layer equation with unusual boundary conditions (the
“lower deck problem”), which was solved by Smith (1977), among others.

We examine the dependence of various flow quantities near separation on the
Reynolds number. It is found that the skin friction and the pressure gradient scale
almost exactly as predicted by triple deck theory. Such good agreement has never
before been found (for example, it is certainly not evident in the bluff body separation
results of Fornberg (1985)). In addition, their profiles are qualitatively similar to
the lower deck solution. Encouraged by this, we next attempt to make a detailed
comparison by determining the two constants in the theory which are supplied by the
global inviscid flow. It turns out that there are no values of the parameters that will
reduce the differences between the computed flows and the lower deck solution below
about a factor of two, even though the flow near separation has definitely entered an
asymptotic regime. In addition, the position of the separation point as a function

—0:34) " is nowhere near the

of the Reynolds number, while well behaved (zsep ~ Re
position given by triple deck theory (zsep ~ Re™1/?).
Some of these discrepancies are explained by a higher order matching. Most flow
quantities near separation are seen to depend linearly on ¢ = Re~1/9, although over
such a small range in € that quadratic or higher order behavior cannot be ruled out.
Even so, taking plausible values for the free parameters and extrapolating the finite
Reynolds number results linearly in € to € = 0 removes all the qualitative discrepancies
with triple deck theory and reduces the quantitative disagreement to about 20%. A

higher order matching also explains the behavior of zep, although in this case the

leading order effect is so small that it is hard to capture in the data.
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We thus believe that the Sychev model of laminar separation has been fully con-
firmed.

Chapter 6 is independent of the rest of the thesis, and concerns a flow that is
literally a textbook example in boundary layer theory (Van Dyke, 1964): the flow
over a finite flat plate aligned with a uniform free stream. This would appear to be
much simpler than the previous examples in that both the zeroth order solution (no
disturbance to the free stream) and the first order solution (the Blasius boundary
layer) are known. Difficulties arise at the next order, where a multitude of compet-
ing effects appear, and when we try to explain results from finite Reynolds number
calculations.

In our investigations of the triple deck, we turned to the finite flat plate as a case
in which it was known to apply and seemed to have been confirmed numerically. The
theory at first appears to be easier to test in this case because it has no undetermined
constants. Here the triple deck is established around the trailing edge and gives the
upstream effect on the boundary layer of the singular near wake, with a contribution
to the drag of 2.66Re~"/%. This agrees with Navier-Stokes calculations (Jobe and
Burggraf (1974)). However, prior to the discovery of the triple deck, the second order
theory of Kuo (1953), which gives the correction to the first order drag as 4.12Re™!,
also seemed to be in agreement. Furthermore, a glance at the results of Dennis
and Dunwoody’s 1966 finite Reynolds number calculations shows that neither theory
explains the calculated values of the skin friction on the plate. We decided to do some
Navier-Stokes calculations ourselves to see what was really going on.

It turns out that finite Reynolds number results are greatly influenced by the
small viscous regions at the leading and trailing edges in which the full Navier-Stokes
equations hold. These make it impossible to see any triple deck trailing edge region
directly. However, by constructing a least squares fit between the numerical data
and a model theory, we can show that the triple deck theory is at least consistent
with the data. One reason that the triple deck’s trailing edge effect is not obvious is

that there is a large displacement-like effect in the boundary layer, i.e., an O(Re™!)
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increase in skin friction extending over the whole plate. Even at Re = 600, the
largest Reynolds number considered, this was comparable in magnitude to the triple
deck effect. An O(Re™!) increase would correspond to the displacement effect of the
Blasius boundary layer on the external flow, except that numerically it is about half
the size of the effect calculated by Kuo.

Finally, we construct a model of the flow that includes all these effects, and show
that the apparent agreement in drag found by previous workers is in fact a coincidence
that is due to near cancellation of the next smallest terms of the drag expansion.

We have found multigrid to be a practical method of solving the steady-state
Navier-Stokes equations. It is harder to implement than other popular solvers, and
care must be taken at the boundaries if full efficiency is to be obtained. Another
drawback is that it gives less information about the solution than does Newton’s
method (such as the occurrence of bifurcations), and that when convergence breaks
down it is hard to locate the problem, although all methods suffer from this to some
extent. (For example, Newton’s method may require ever smaller continuation steps,
or it may become impossible to solve the linear systems to the required accuracy.)

In return, solutions can be found very quickly on extremely fine grids. Solving
the Navier-Stokes equations in the work of a few dozen Gauss-Seidel iterations can

certainly stand as a useful benchmark.
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Chapter 2
Multigrid methods

2.1 The basic multigrid algorithm.

As discussed in Chapter 1, we wish to solve the equation
—V2u 4+ f(x,u,Vu) = 0, (2.1)
which for the current description can be regarded as discretized as
LFuf = ¥ (2.2)

where k identifies a grid with mesh size Ax. The problem (2.2) is to be solved on
a sequence of M grids with mesh sizes hy = 2 %hy, 0 < k < M. One iteration of
multigrid consists of smoothing the high frequency errors on a particular grid by re-
laxation, then solving for the low frequency errors by applying multigrid to the next
coarser grid. It is thus inherently recursive. On the coarsest grid, the equations are
solved either exactly or iteratively until the error is much smaller than the discretiza-
tion error; because of the small number of equations, this is not expensive. Thus,
both the relaxation method and the processes for transferring between grids need to
be specified.

Let I be an interpolation operator from coarse to fine grids. Bilinear interpolation
is the simplest method that maintains the order of accuracy of the corrections and
is usually used. That is, the coarse grid values are simply injected into the fine grid,
and the remaining fine grid unknowns are given by the linear average of their nearest
neighbors.

Sometimes two restriction operators are specified: one for defects and one for

solution values. However, for nonlinear problems these are both usually taken to be
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the “full weighting operator” R: coarse grid values are given by the computational

molecule L 2 1
1
k— k — k
u’.’j 1 — —16 [% 421 %] u2,-’2]- = Ruzi,zj. (23)

Now one iteration of the FAS (“Full Approximation Scheme”, so-called because
the unknowns themselves rather than just the corrections are maintained on the coarse
grids) multigrid method is defined as follows:

e Smooth the high-frequency error on grid k£ by applying v relaxations to (2.2).

If k£ =0, solve (2.2) to high accuracy by using sufficient relaxations.

e Set up problem on grid (k—1), the solution to which will correct the low-frequency
errors on grid k. Another way of looking at this is to note that we correct the
right hand side of the grid (k¥ — 1) problem so that its solution ié the interpolation

of the fine grid solution.

uk-—l — Ruk
(2.4)
Fk—l - R(Fk _ Lkuk) +Lk—luk—l
e Solve the grid (k — 1) problem by applying this algorithm recursively: i.e., apply
multigrid 4 times to the coarse grid problem L*¥~1yf-1 = Fk-1
¢ Incorporate the corrections from the coarse grid to the fine grid. Note that inter-

polating the coarse grid solution itself would destroy the high frequency improve-

ments made in the first step.
uf = uf + I(ub — RuF) (2.5)

e Relax the fine grid v, times.

If the coarse grid problem were solved exactly, there would still be only a finite con-
vergence rate on the fine grid (the “two-grid rate”), controlled by the worst-smoothed
high frequency component of the error (and affected by the intergrid transfers). So
there is no point in solving the coarse grid problem more accurately than necessary.
In practice, using v = 1 or 2 will usually almost attain the two-grid rate. One itera-

tion with v = 1 is called a V-cycle, because the algorithm descends step by step from
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level k to level 0 and back to k; one iteration with v = 2 is called a W-cycle because
of the schematic representation when k = 2 (ie.,grid2 -1 —>0—-51—-0—-1— 2).
Instead of starting with uM~1 = 0, the first approximation is usually found by
interpolating the solution from the next coarser grid. In this way, we start by solving
the problem on the coarsest grid, and progress upwards. The interpolation operator
I* used in this process can be profitably of a higher order than I, because solutions are
usually smoother than corrections. This is particularly important in our application
to the Navier-Stokes equations because the stream function is quadratic near the
wall; failure to do so would result in O(1) errors when the new boundary values are
calculated. Commonly bicubic interpolation is used. In our implementation, first the
coarse grid values were injected; then fine grid points with one coordinate coincident
with the coarse grid were interpolated in that direction only; finally the remaining
values could be found using the just-calculated adjacent fine grid values.
This gives the FMG (“Full Multigrid”) algorithm:
e Solve L%Y = F0 by relaxation
e Fork=1,...,M —1, set u* = I*u*~! and solve L*u* = F* by N iterations of

FAS multigrid.

2.2 Implementation.

A C code implementing the above algorithm for Helmholtz problems of the form

—Viu+ f(x,u) =0 in @ = [a,b] x [¢,d],
(2.6)
u=g ondQ
had already been written by Eric Van de Velde and has been described extensively
by him elsewhere. His main interest was in parallel implementation, not in solving
a particular problem. We decided to adapt his program for the more general vector

equation (2.1). Further, with an eye to eventual application to the Navier-Stokes

equations, more general boundary conditions would be required, of the form

ug = g(x,uz), (2.7)
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where ug is a vector of unknowns at a boundary point and u; the unknowns at
an immediately interior point. This allows for Dirichlet and Neumann boundary
conditions, as well as for coupled Woods-type expansions of the no-slip condition (see
§3.3). It does not allow for writing the discretized equation at the boundary point
itself and eliminating any exterior points; this was thought to be an unnecessary
complication.

When solving systems, the interpolation and restriction operators carry over eas-
ily: they can be applied to each unknown in turn. The relaxation process is more

complicated. The Newton linearization of (2.1) is
V2t 4 £ ut 4 iy, Vel = ~f(u") + fyu” + fy,Vu", (2.8)

where the Jacobians are evaluated at u®. It is clear that the relaxations will need
access not just to f, but to the three Jacobian matrices fy, f,, and f,,. Furthermore,
it is possible to insert the Newton linearized boundary condition when these values
are needed in the interior relaxations; this requires the matrix gy. Once subroutines
returning these values are supplied, virtually any equation of the type (2.1) with
boundary conditions (2.7) can be handled. Of course, that allows many phenomena
that are difficult to handle, such as singularities and indefiniteness; we concentrated
on those problems arising in the solution of the Navier-Stokes equations. However,
using a general implementation was useful for testing and comparison with other

multigrid experiments.

2.3 Defect correction.

There are two reasons why the initial discretization (2.2) may not be suitable
or adequate: we may want a solution of higher-order accuracy, without solving the
higher-order equations directly; or it may be difficult to stably relax the equations
as discretized, even though their solution is smooth. Multigrid is ideally suited to
dealing with these problems without extra work: usually, the difference between the

solution to the high- and low-order discretizations is mostly in the low frequencies,
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and can be handled on the coarse grid, i.e., by choosing the intergrid transfers and
the coarse grid problem appropriately. In fact, the original FAS algorithm is just a
technique for solving for part of the fine grid defect.

In our case the problem is that most relaxation methods (for example, all point
and line methods) become unstable when applied to center-differenced convection-
diffusion equations in which convection greatly dominates diffusion. Here a “stable”
relaxation of Lu = F' is one that reduces the defect F' — Lu when u is close enough
to the solution L~1F; a stable smoother need only reduce the high frequencies of the

defect. Gauss-Seidel relaxation applied to the equation
~V2u + aug + buy = 0, (2.9)

discretized using central differences with mesh spacing % in the z direction and &
in the y direction, for example, is stable only when the “cell Reynolds number,”
a = |ah| + |bk|, is less than 2. The earliest way of dealing with this problem was to
use upwind differencing on the convection terms, that is, one-sided differences in the
direction opposite to the convection. Here a left difference (u; — u;_1)/h would be
used if @ > 0. Upwind differencing leads to stable relaxation, and although it is only
first-order accurate, as late as 1980 it was applied to many high Reynolds number
problems. Eventually it was realized, of course, that since upwind differencing is
equivalent to adding artificial viscosity proportional to the Reynolds number Re,
past a certain Re (once « is much greater than 2), the numerical solution does not
depend on Re at all.

One way to combine the O(h?) accuracy of central differences with the stability
of upwinding is to use upwind-corrected differences. Consider the discretization of

uz. This can be decomposed as

1

1 1
ﬁ(um —Uj-1) = ﬁ(u‘ —uj-1) + ﬁ(uz‘ﬂ — 2u; + uj-1)

A (2.10)
or  Alu=AJu+ -2-AI-5u

and similarly for right differences. This shows that if upwinding is used, we can retain

second order accuracy by adding an artificial viscosity term to the right hand side.
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To put these considerations in a more general framework, we construct a general
O(h) discretization Lu = 0 of (2.9), which can be stably relaxed, then extend it to
more general equations such as (2.8). One method is to use upwind differences on

the convection terms:
—(Dgz + Ayg)u+ aAFu+ bATu =0, (2.11)

where we take a left difference A7 if @ > 0 and a right difference A} if a < 0, and

similarly for AF. From (2.10), this can be rewritten as

h k
~(Dgz + Dyg)u +a(Ad F 5 De)u+ b(AY F 7 Dyp)u =0 (2.12)
or
k|b
- ((1 + %ﬂ)Aﬁ + (14 —li—l)Ay-g> u+ allu + bAJu = 0. (2.13)

When applied to the linear operator on the left hand side of (2.8), this approach
means using centered differences on the convection terms, as in L, and adding an

artificial viscosity. A slight generalization of (2.13) gives
Lu= —(dz Qg3 + dyyg) + convection terms, (2.14)

where the artificial viscosity coefficients d; and dy are given by
d; = max(1, Bh|fy, 1),
dy = max(L, BE|fa, )

This form of d; and dy is chosen so that in regions where there is little convection

(2.15)

(such as near walls), the original O(h?) discretization is recovered; elsewhere, where
d is large, the difference between (2.13) and (2.14) is not significant in our context.

B = 1/2 corresponds to upwind differencing. In the case of many unknowns, cross
terms coupling the equations cause no problems; so here for f,, we use the diagonal
entries of f;,. Now that we are not limited to direct upwinding, we can experiment
with different schemes: for example, making B depend on the grid level, or using

isotropic artificial viscosity, i.e., d, = d;l = max(dz,dy). De Zeeuw and van Asselt
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(1985) investigated many such schemes in a multigrid context, and concluded that for
fastest convergence one should use S = 1/2 on the finest grid and 8 = 1 on all coarser
grids, and we verified their numerical experiments in the process of testing our code;
but as they did not considering removing the added viscosity, these schemes are not
useful for our problem.

We now have two discretizations of our original equation (2.1): an O(h?) one,
L*u* using central differences, and an O(h) one, L*uF. With this notation we can

write the corrected-difference iteration for the solution of Lfuf = FF as
LRubntt = Trybm 4 (Fk — [Rykm), (2.16)

There is another way to view this: with regard to the Newton linearization (2.8),
upwind-correcting is equivalent to using upwind differences in the Jacobians but cen-
tral differences in f. Clearly the fixed point of the iteration will be second order
accurate.

This method was used successfully by Schréder and Keller (1989) in a 3-D calcula-
tion of wavy Taylor vorticies. However, it is not suitable for arbitrarily high Reynolds
numbers. Because (2.16) as described above is no longer the Newton linearization
of (2.1), solving it exactly will lead to only linear convergence. If that linear rate of
convergence if fast enough, this procedure is adequate because in a multigrid context,
(2.16) is only relaxed, not solved exactly.

To investigate this question, we considered the corrected difference iteration (2.16)
applied to the linear convection-diffusion equation (2.9) using standard Fourier error
analysis. Substitution of an error term consisting of the Fourier mode eimeHimy i
the case b = —a shows that it is reduced by an amount a/(2 + «), independently of
the mode m. That is, the convergence rate of (2.16), when solved exactly for u®"+1,
tends to zero as the cell Reynolds number @ — oo. This is bad news if we hope
to adapt (2.16) for use in multigrid, which can tolerate poor smoothing in the low

frequency components of the error only. Furthermore, this 1 —O(a™!) error reduction

was also found to hold in applying multigrid to the Navier-Stokes equations. Since
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we are hoping to have smoothing rates of at least 0.5, being limited to 1 — O(a™!) is
clearly inadequate. We therefore consider more general defect correction techniques.

If we abandon the idea of convergence to the exact solution of (2.2), we can
construct much more robust schemes: we smooth only with respect to the stable
operator L, and correct any errors later:

e Smooth LFu* = F*

o Correct the defect: L¥u%n+1 = Lrybm 4 (FF — Lrykm), (2.17)
Because we have mixed operators, fhis system cannot have the same solution as (2.2).
Auzinger (1987a, b) gives a representation of the altered solution and interprets (2.17)
as a variant of (2.16) with a “stabilized” discretization. There is no reduction of the
order of accuracy of the solution if the problem is “sufficiently smooth.” Such proofs
are not available for the Navier-Stokes equations, and we rely on comparison with
previous solutions and on mesh refinement to determine accuracy.

For many problems, the difference between the two operators L and L is mostly
in the low freqency components. (If it is not, (2.17) will show poor convergence
anyway). In this case we can conveniently combine the two steps by relegating the
defect correction to the coarse grid:

e Smooth LFuF = F*

o Solve LF~1y*F—1 = L*-1Ry* 4 R(F¥ — LFu¥) via multigrid. (2.18)
An analysis of this method is given in Hackbusch’s book (1985). At this point we
would like to apply the multigrid philosophy to the coarse grid problem itself, i.e., use
the same technique to get an O(h?) solution on the coarse grid. This would enable
the defect corrections to be applied on every level. However, we cannot simply replace
L*=1 by L*¥-1 since we need to use L for smoothing. The remedy is to use two right
hand sides on each level below the finest: F¥, to be used in computing the defect
correction needed on level (k —1), and F* to be used for smoothing on level k. This

results in the double-discretization scheme of Brandt (1984):

e Smooth LFuf = FF¥
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e Compute the defect on the coarse grid, d¥~1 = R(F* — LFu¥).
o Set FF=1 = [k=1Rpyk 4 gk-1
and F¥-1 = Lk-1Ry¥ 4 gk-1,
e Apply multigrid to level (k — 1), starting with u*~! = Ru*, and interpolate the

corrections as usual.

Note that there is no smoothing performed after interpolation of the corrections.
Although including it would not degrade the order of the approximation of uF, it
would certainly increase the size of the error, since smoothers always alter the low
fregencies to some extent.

The choice of smoothers when using a defect correction scheme is different than
in regular multigrid. Of course we want the fastest smoothing rate possible, but in
addition, we do not want to disturb the low freQuencies, which are to be handled solely
on the coarser grids. This rules out such sophisticated smoothers as incomplete LU-
decomposition and block decomposition. In fact, the more we couple the unknowns
across space (even by line relaxation, say) the more the low frequencies are going to
be affected. This was confirmed through the solution of test problems using different
smoothers. Thus one of the simplest smoothers of all, red-black Gauss-Seidel, is seen
to be suitable for these problems. We wish to smooth each level enough to reduce
the high frequency errors appreciably (say by 0.25-0.5) but not so much that the
corrected low fregencies are degraded. In practice, v = 2 Gauss-Seidel sweeps were
found to be appropriate. In the case of solving systems of equations as in (2.1), we
solved for all the unknowns at a point simultaneously. Although this had the same
smoothing rate as solving for each unknown in turn, it gave enhanced stability on the

coarser grids.

2.4 Memory and work requirements.

Consider a system of 2 equations to be solved on an N X N grid. We must store
the unknowns and the two right hand sides, F¥ and F*, on each grid. However, on the

finest grid, FM-1 = pM~1 g, FM=1 peed not be stored. In the case of homogeneous



19
equations (such as the unforced Navier-Stokes equations), F¥~1 = 0 and need not
be stored either. All the relaxations are done in place and need no extra storage. The
total memory requirement is therefore

1 1 1 2 2
246(; + 3+ gtV = AN (2.19)

In practice, to keep our implementation flexible we stored FM~1 and the defect
F¥ — L*¥u* so we actually used 6N? locations. By way of comparison, even the
simplest ILU smoother needs an extra 14N? locations to do its elimination.

A work unit is defined as the computational effort to relax the fine grid once,
and is commonly used to describe the work done by the total multigrid algorithm, al-
though it ignores differences due to using different smoothers. Apart from smoothing,
the computational overhead (one fine grid defect, two coarse grid defects, and four
intergrid transfers) is about two work units. The total work for one FAS iteration
(assuming sufficient levels that the work to solve the equations on level 0 is negligible)

is therefore
7
16

_n +2
+...)= T
or 2(v1 + 2) in the case of W-cycles (v = 2). In FMG multigrid, we perform, say, m

(v1 +2)(1 + % + work units (2.20)

FAS iterations on each level before progressing to the next finest level: the work is
therefore
1

8
21 +2)m(1 + i tE T )= §(I/1 + 2)m work units. (2.21)

Typically, v; = 2 and m = 4, giving the total work as 43 work units; but with point
smoothers, one work unit is very fast. For example, in the computations done in
Chapter 3 on a 384 x 320 grid with 246,000 unknowns, one work unit took seven

seconds on a DEC 3100 workstation.

2.5 Testing.

We report here on the results of applying our multigrid program to two different

problems: firstly, a linear convection-diffusion equation, to demonstrate the accuracy
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of the defect correction technique, and secondly, the Navier-Stokes equations in a
situation in which an accurate solution is already known.

The first situation is sketched in Figure 2.1a. This problem was considered by de

Zeeuw and van Asselt (1985). Dirichlet data are specified on y = 0 on the left, and

convected along circles centered on the origin. The problem is to convect the solution

accurately without introducing excess diffusion.

1073V2%u = y(1 — 2¥)uy — 2(1 —y?¥)uy on [-1,1] x [0,1],

u(z,0) =1+ tanh(10+20z), —-1<z <0, (2.19)
% =0 on rest of boundary
on

First, an “exact” solution u. was obtained by solving the standard O(h?) discretiza-
tion on a 128 x 64 grid, by using 4 ILU relaxation sweeps applied to the upwind-
corrected equations on the finest grid, and double-discretization on all coarser grids.
This solution was cdmpared to that obtained by two other methods: wu;, using the
double-discretization method described above, and uy, using a single-discretization
method in which artificial viscosity is added in the smoothing steps, but not removed;
i.e., L was used throughout. In all cases the coarsest grid was 8 x 4, and nonisotropic
artificial viscosity as in (2.15) was used with # = 0.5 on the two finest grids and
B3 = 1 on all others. For both u; and wug, the error reduction per iteration, although
slightly worse on the finer grids, was always in the range 0.3-0.5. Four W cycles were
performed.

In Table 2.1 we have given the mean and maximum errors for the two algorithms
and estimated the order of accuracy as a power of the grid spacing. Of course, ug
is only O(h) because viscosity proportional to h has been added; but in wu;, the
same viscosity has been removed by defect correction, and, as expected, it is O(h?%)
accurate.

The second test is the driven cavity problem, in which the Navier-Stokes equations
are solved in [0,1] x {[0,1], with v = 1 on the top edge and u.n = 0 on the rest of
the boundary. The flow is sketched in Figure 2.1b. We consider this problem because



(a)
uy=0
1
y
u, =0 convecton direction 1, =0
-1 u(x,0) given 0 uy=0 x |1
(b)
u=1, v=0
1 -
y
u=v=0 u=v=0
" Ysep
0
0 u=v=0 X 1

Figure 2.1 Two test problems

(a) linear convection-diffusion equation; (b) the driven cavity.
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Table 2.1 Defect correction applied to a convection-diffusion equation

Grid flur — ellz flur — welloo  luz —uelli  [luz — ueloo
32 x 16 0.0767 0.2707 0.1387 0.5455

64 x 32 0.0237 0.0998 0.0757 0.3142

128 x 64 0.0037 0.0175 0.0304 0.1336
Order 2.18 1.98 1.09 1.01

highly accurate solutions have already been found by Schreiber and Keller (1983).
They solved the equations to O(h?) using Newton’s method and continued in the
Reynolds number, on fine grids. Here we take Re=400, and solve the problem using
relatively coarse grids to check accuracy. The boundary conditions are evaluated
using a Woods expansion as explained in §3.3.

We found that 8 = 0.5, the smallest permissible value for linear stability of the
relaxations, was no longer stable when used on the Navier-Stokes equations. Instead
we used 8 = 0.6 on the two finest grids and § = 1 on the others. Six iterations
were necessary for convergence below truncation errors (this was checked later by
doing more iterations). The results for N=32, 48, and 64 are shown in table 2.2,
where the accuracy on those coarse grids is compared with the Schreiber and Keller
solution which is Richardson-extrapolated from N=100 and N=141. Here % and w
are the values of the stream function and vorticity at the center of the main vortex,
defined as the extremum of . ey and e, are their respective errors. ysep is the
point of separation of the secondary eddy in the lower right corner (this could only

be estimated from Schreiber and Keller’s plot).

Table 2.2 Defect correction applied to the driven cavity problem

N - ey ) ew Ysep
“exact”  0.11399 2.2898 ~ 0.33
32 0.09872  0.0153 2.1707 0.119 0.346
48 0.10649  0.0075 2.2032 0.089 0.336
64 0.10993  0.0041 2.2393 0.050 0.327
64,0(h?) 0.0050 0.042

Although the h dependence is somewhat irregular, since the position of the center

of the vortex can be located only up to O(h), the accuracy is clearly comparable to an
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exact solution of the O(h?%) equations. In the last line of Table 2.2, the error in that
solution has been estimated from Schreiber and Keller’s results on two finer grids.

In addition, a run with N=96 gave ysep = 0.3271, so it can be seen that the
solutions with smaller N locate it correctly to within about %—h (except for N=64,
which is accidentally accurate).

In conclusion, we are confident that the solution shift is negligible compared to
the basic discretization error, and that our solution is in fact O(h?) accurate. All
that remains is to determine the actual accuracy, which is best done by examining
sensitive features of the solution (such as wall vorticity) to see how they depend on
h. In the following chapter we present extensive convergence and accuracy tests for

our main computations.
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Chapter 3

Separated corner flow

3.1 Introduction.

In 1973, L.G. Leal studied the eddy formed when a straining field (given by the
stream function ¥ = —zy) impinges on a flat plate, lying on the z-axis from -1 to
1 (see Figure 1.1). This flow is simpler than others that have been examined at
high Reynolds numbers, but retains many features of interest, such as a separating
boundary layer, a reattaching shear layer, and an eddy. In addition, it is especially
amenable to accurate numerical calculations, for several reasons:

1. The eddy size does not appear to grow without limit as the Reynolds number
tends to infinity, so the problem can be solved in a fairly small domain.

2. Downstream of the eddy, the converging flow helps the vorticity diffuse across the
axis of symmetry. Apart from a narrow vortical wake, no sophisticated boundary
conditions are required to keep the computational domain small, in contrast to
such cases as uniform flow past a bluff body, or even channel flow over a step.

3. The geometry permits a simple conformal map that concentrates grid points near
the leading edge, where the boundary layer separates.

Leal obtained numerical results up to a Reynolds number of 400, based on a
reference velocity of 1 and the plate semilength, 1. He was able to establish that
the flow was regular through separation, with no sign of the Goldstein singularity
emerging, but all the eddies appeared to be fully viscous. Our calculations show that
the transition to inviscid dynamics takes place over the range of Reynolds numbers
1000-3000.

By extending the calculation to Re=5000, extensive comparisons of the behavior
of the boundary layer near separation with triple deck theory are possible. In addition,

the transition to a largely inviscid eddy is seen: the eddy is pushed downstream
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and a region of constant vorticity develops. For Re > 2255, secondary separation
occurs, complicating the theoretical picture considerably and invalidating a one-eddy

Batchelor flow as the infinite Reynolds number limit.

b i
Xe X Xsep 1 X

Figure 3.1 Local flow geometry

3.2 The physical problem and the equations of motion.

The flow geometry is sketched in Figure 1.1, and the quadrant in which we solve
the equations in Figure 3.1. The flow is completely specified by the plate, the lines
of symmetry on the axes, and the uniform strain in the far field. In the absence of
the plate, 1) = —zy is an exact solution of the Navier-Stokes equations with velocity
u = —z, v = 0 on the z-axis. Superficially, this problem is similar to the problem
solved by Howarth (1938), of the evolution of a boundary layer placed in a linearly
decelerated free stream, which shows separation at z = 0.88. Although there would
be no separation without deceleration in the free stream, the velocity outside the
boundary layer and the separating streamline are strongly coupled and cannot be
considered in isolation. Indeed, the skin friction ahead of separation turns out to
show no resemblance to Howarth’s solution.

We use the stream function-vorticity representation of the flow, in which the
velocities are related to the stream function ¥ by u = 1y, v = —9, and the vorticity

w is defined by w = v; — uy. Nondimensionalizing lengths by the position of the
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leading edge, 1, and velocities by the undisturbed velocity at the leading edge, 1, the

Navier-Stokes equations for incompressible, steady flow are

Vz"b = —w,
(3.1)
Vi = Re(thys — batoy),

where the Reynolds number Re = 1/v and v is the kinematic viscosity. Transform-
ing to elliptical cylindrical coordinates with * = cosh £ cos7, y = sinh {sin 7, these

become

V2¢ = _'](67 TI)W,
V2w = Re(ywe — pewn),

where J(£,n) = %(cosh2¢ — cos2p) is the Jacobian of the transformation and now

(3.2)

V? = O¢¢ + Opn- The quarter-plane z > 0, y > 0 maps to the semi-infinite strip
£ >0,0< < %, with the plate at 0 < z < 1, y = 0 mapping to the n axis ({ =0,
0<n< %)

The boundary conditions must be expressed in stream function-vorticity form
and transformed to the new coordinates. Let n be a vector normal to a boundary.
The z- and y-axes are streamlines so we have ¢ = 0 there. The symmetry condition
(shown as dashed lines in Figure 3.1) Vu.n is easily rewritten as w = 0. The no-slip
condition at the plate, u = 0, becomes psiy = 0, or 1)y = 0 here, which transforms
to ¥ = 0.

The boundary conditions in the computational coordinates are

Y — —zy = —-}1- sinh26sin2p, w—0 as { — oo, (3.3a)
ve(0,m) =¥(0,n) =0 for0<p< g (3.30)
P(£,0) =¥ 7/2) =w((,0) =w(,x/2) =0  for £ > 0. (3.3¢)

The flow in the computational coordinates is sketched in Figure 3.2.
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Figure 3.2 Flow in transformed coordinates
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Figure 3.3 Computational grid

The third coarsest grid (24 x 20) is shown in the original coordinates. Here {., = 1.767
and Yoo = 2.84.
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3.3 Treatment of the boundary conditions.

One of the coarser computational domains is shown in Figure 3.3. Let A be the
grid spacing in the ¢ direction, and k in the 5 direction. Because of the coordinate
mapping, the grid spacing on the plate near the leading edge is Az ~ k%/2. This
concentrates grid points in the region we are interested in, and also reduces the spatial
effect of errors caused by the leading edge singularity. Notice that the actual singular
point, £ = = 0, is never used in the relaxations.

The no-slip boundary condition ¥ = 0 was transformed using the expansion
of Woods, in which the surface vorticity is written as a function of the adjacent
stream function and vorticity. The Taylor expansions of ¥ and w with respect to ¢
are written out at £ = 0, and the first three derivatives of ¢ eliminated using the

boundary conditions and (3.2). This gives
3 1 9
J(0,n)wo = _ﬁd’l - EJ(h,TI)wl + O(h*), (3.4)

where w; = w(jh,n). In some problems, a drawback of this method is that it de-
stroys the expansion of the truncation error in powers of A% (useful in Richardson
extrapolation) which is obtained using an O(h) approximation for the surface vortic-
ity. However, in solving model problems, (3.4) was found to be much more accurate
than other expansions at modest values of h. Also, the defect correction process will
introduce new errors of order A% and every higher order.

Over most of the domain, the far field boundary condition can be approximated
by setting ¢ = —-} sinh2¢ sin2n and w = 0 at ¢ = {w. A more accurate condition
can be found by setting w = 0 and solving V2¢ = 0 in [£x, 00) X [0,7/2], leading
to a relationship between v and ¢ at { = £; however, the grid stretching at large
€ makes it easy to check the effect of the finite domain. In §3.4.2 we show that it is
negligible, so that asymptotic boundary conditions are not required.

Close to the y-axis a wake persists, and the vorticity is not exponentially small.

The form of this vortical wake can be found as follows. If we assume that the flow
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in the wake is relatively undisturbed by the vorticity close to the z-axis, then the

vorticity transport equation

wwg + vwy = vViw (3.5)
can be approximated in the straining field u = —z, v = y by
—Twg + Ywy = Vwzg, (3.6)
with boundary conditions
w(0,y) =0, w — 0 exponentially as z — oco. (3.7)

We seek a similarity form for w, say w = yP¢(z), where z = zy". Substituting in (3.6)
leads to
—2g' + Bg +72¢' = vy*g", (3.8)
so we take v = 0 for similarity. In this flow the outward diffusion of the vorticity is
just balanced by the inward compression of the flow.
This equation can be solved exactly by transforming it into the parabolic cylinder
equation. However, it turns out that only one solution is both positive and decays
exponentially as z — co (negative wake vorticity is not expected in this problem);

this solution has # = —2 and
2
w=ayg(z/\/v), g(w)=we /2 (3.9)

where the constant a, a measure of the strength of the wake, is supplied by the whole
flow and cannot be locally determined.

The correction to the far field stream function 3 = —zy is found to be O(vy~2),
and can be safely ignored. The corrections to the velocities are O(v1/2), justifying
our initial approximation (3.6). The small size of the wake, about 3,/v, and its fairly
rapid decay in y help the process of finding this flow.

Equation (3.9) cannot be imposed as a Dirichlet condition because the wake
strength @ is unknown. A simple boundary condition that retains the structure of the

wake is

2
w(oor) = (gjl—w—‘—") (oo — hy1) (3.10)

o
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for z < 4,/v, and w = 0 elsewhere. This works because the wake is resolved only on
the finest grids, and on these grids near the y-axis, z is almost constant from one grid

point to the next. Interpolation to constant z is not necessary.

3.4 Numerical solution of the equations.

The equations (3.2), together with boundary conditions (3.3), (3.4), and (3.10),
are now in the general form (2.1) considered in Chapter 2, and are to be solved in
a rectangular domain. We generally used the standard full multigrid algorithm with
W-cycles.

An extension was made to the interpolation operator (/) used for incorporating
coarse grid corrections to the fine grid to improve convergence for this problem. For
points not adjacent to the wall £ = 0, bilinear interpolation was sufficient. However,
¥ ~ £2 near the wall, and this behavior must be preserved by interpolations. Linear
interpolation is O(h?) accurate, which translates into an O(1) error in the wall vor-
ticity on application of the boundary condition (3.4). The simplest way to avoid this

is to use the interpolation operator

(Ip?*)(h,m) = $**(2h, n)/4 (3.11)

in the £ direction and linear interpolation in the # direction. Higher order inter-
polations at the wall and bicubic interpolation of the corrections everywhere were
experimented with but were found to give worse convergence at high Reynolds num-
bers, presumably because the corrections in the defect correction method are not
sufficiently smooth. It is also correct to use (3.11) when the boundary condition is
Y¢ = g(n), because only the corrections in 3 are interpolated; the linear part of %,
€g(n), does not change.

Secondly, the vorticity is singular at the origin, and the interpolations should take
this into account. Bilinear interpolation at the point (k, k) would use the value of the

vorticity at (0,0), which is not defined. Instead, we use interpolations that preserve
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the form of the singularity. Writing the Carrier-Lin (1948) leading edge singularity

in our coordinates,
n’ + &
Y]

is nonsingular at the origin. At the point (k,2k) we interpolate linearly from two

w (3.12)

o=

adjacent & values. On 5 = 0, & is not defined, so for values at (k, k) and (24, k) we

just use the values on 5 = 2k. Finally, (3.12) is used to get interpolated values for w.

3.4.1 Multigrid convergence.

The coarsest grid was always 6 x 5, i.e., N = 5 points on the plate. Collective
Gauss-Seidel-Newton relaxations were used with both unknowns being updated si-
multaneously at a point. The grid points were scanned in red-black order. Here we
consider the convergence of the multigrid iterations in a specific case: Re = 1000 with
N = 80 points on the plate. The cell Reynolds number in this case is typical of all
our runs. We cannot test convergence by looking at the defect, because it does not
go to zero under the defect correction scheme. Nor do we know the solution ahead
of time. Instead, we monitor a particular flow quantity from iteration to iteration.
Q= folwd:z: = for/ 2cusinndr) is used, which is sensitive because of the high order
boundary conditions used, and because the negative vorticity in the eddy region par-
tially cancels the square-root singularity near the leading edge. The behavior of Q"
on the finest grid at the end of each multigrid iteration n was used as a convergence
test throughout our work.

Table 3.1 gives the convergence history over 12 iterations, with v = 2 smoothing
steps, § = 0.6 on the two finest grids and S = 1 on all others. Convergence is not
monotonic but is quite rapid overall, with about the same rate in the initial and final
iterations. We use (Q™ — Q" 1)/(Q"~! — Q"~2) as an estimate of the convergence
rate, or error reduction per iteration. In this case, the asymptotic convergence rate
is about 0.30, and the mean rate over all twelve iterations is 0.33.

To show that this algorithm generates “full multigrid” convergence similar to that

found in linear problems, Table 3.2 gives the reconnection point y.. after different
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Table 3.1 Multigrid convergence

FMG is used with initial guess 0 on the coarsest grid; results are

given for n = 12 iterations on the finest grid.

Q‘n
5.705991
5.083912
5.245922
5.226105
5.268903
5.278613
5.282886
5.283479
5.283669
10 5.283793
11 5.283814
12 5.283827

OO0~ U W~ I

Qr — Qn—l

0.622
0.162
0.020
0.043
0.010
0.0043
0.00059
0.00019
0.00012
0.00002
0.00001

Asymptotic convergence rate ~ (.30

Table 3.2 FMG convergence

This measures the error after completing n FMG iterations. The
error e” is the difference between yrec and the value, 0.6153, found
with N = 160. We also give a common FMG error norm, §” =

e*fe™.

n Yrec

2 0.5891
3 0.5940
4 0.5954
10 0.5969

eﬂ

0.0262
0.0213
0.0199
0.0184

o
1.42

1.16
1.08

numbers of FMG iterations. Even after two iterations, the distance from the ac-

tual value is much less than the discretization error. If we count the computational

overhead (one fine grid defect, two coarse grid defects, and four interpolations and

restrictions) as two work units (this is borne out by actual timings), we therefore

require a minimum of 11 work units to solve the equations to within truncation er-

rors. In practice, of course, we usually solve the equations much more accurately,

both to ensure that we have algebraic convergence, and to allow later Richardson

extrapolation.

Table 3.3 gives the dependence of the convergence rate on the number of smooth-
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Table 3.3 Convergence rates

Here v is the number of smoothing sweeps applied per level;
k is the number of fine grids on which # = 0.6 (on coarser
grids, # = 1); and “Rate” is the mean error reduction in
Q per iteration, averaged over twelve iterations.

v k Rate e” o"

1 2 0.50 0.0154

2 2 0.33 0.0184

3 2 0.35 0.0206

1ILU 2 0.21 0.0281

(2.5 times slower)

2 0 0.42 0.0247 1.20
2 1 0.39 0.0202 1.34
2 2 0.33 0.0184 1.16
2 3 0.44 0.0168 1.40

ing sweeps v applied on each level and the corresponding error in yrec. Increasing
v from 2 to 3 shows no improvement because at that point convergence is limited
by the defect correction iterations, not by the smoothing of high frequency errors.
The errors e™ increase with » because each smoothing with respect to ' moves the
unknowns farther from the solution with respect to F'. Clearly, v = 1 and v = 2 are
both good choices; we usually used v = 2 except at the highest Reynolds numbers.

For Re < 3000 the algorithm was found to be very robust: convergence and
accuracy properties hardly depended on the method’s parameters. Table 3.4 gives
results for four different runs using an artificial viscosity parameter of # = 0.6 on the
1, 2 and 3 finest grids, respectively, and for 3 = 1 everywhere. (We cannot use 0.6 on
all grids because then the relaxations do not smooth the errors on the coarsest grid,
slowing or destroying convergence.) Setting 8 = 0.6 on the two finest grids only is the
best choice, and this was usually used. This behavior stands in contrast to the results
of de Zeeuw and van Asselt (1985), who found that a small coefficient should be used
only on the finest grid for fastest convergence when a defect correction scheme is not
used.

For finer grids and larger Reynolds numbers the éonvergence rates are the same,

up to a point. Eventually we began to experience convergence problems with full
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multigrid. This was related to the existence of spurious solutions to the discrete
equations close to the “real” solution. In these solutions the secondary eddy was either
larger and much stronger than expected, or it collapsed. After checking convergence
to these solutions carefully, it was eventually realized that their vorticity wiggles
on the plate and their large errors in the flux test (described below) indicated that
they were spurious. These solutions were avoided by using trivial continuation in the
Reynolds number, starting multigrid on the finest level with a solution obtained at a
lower Reynolds number. Large steps in Reynolds number (e.g., 1000) could be used.
In addition, for Re > 3000, we obtained better results using 8 = 0.6 on the finest grid
only (stabilizing the second-finest grid relaxations), with v = 1 relaxation (decreasing
the defect correction error). \

At Re = 5000, N = 320, the method converges at the same rate initially (aver-
aging 0.53 with one smoothing step for the first 6 iterations) but slows down in the
asymptotic stage (rate about 0.74). This degraded asymptotic convergence rapidly
gets worse, and at Re = 6000 the method no longer converges. (The first few it-
erations still show convergence to something close to a solution, but fol w behaves
erratically after that, changing about 0.05 from iteration to iteration.) This problem
is believed to be linked to the growing differences between F* and F, and between
F* and F?* as the cell Reynolds number increases, for this flow field. This behavior
is not seen in the linear convection-diffusion equation tested in Chapter 2, which can
be solved with the same convergence rate for any Reynolds number. Thus we do not

expect a linear analysis to pinpoint the problem. We return to this question later.

3.4.2 Accuracy of the solutions.

The errors due to the finite domain are extremely small. At Re = 1000, N = 160,
moving the outer boundary from £o = 1.767 (Yoo = 2.84) to £ = 2.356 (yoo = 5.23)
changed the reconnection point yec by only 1074—2% of the discretization error.
Imposing the free stream condition downstream at {,, = 1.767 led to larger errors of
about 0.0012, or 25% of the discretization error. Accordingly, all runs used the wake
boundary condition (3.10) with s = 1.767 for Re > 1000.
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Originally, we examined the dependence of the solutions on h by repeatedly dou-
bling N and checking that they were in fact second order accurate. This confirmed
that the errors were O(h?) throughout the flow field. Some tests are shown in Figure
3.4. In all cases the errors increased faster than the Reynolds number—this is shown
in Table 3.5. Since Vw = O(Re) in the boundary layers, and the vorticity transport
equation has terms proportional to ReVw, we might expect discretization errors of
order O(Re?); fortunately, it appears that these thin layers do not excessively pollute
the rest of the solution. However, instead of presenting these results, we concentrate
here on a test that checks a known property of incompressible steady flows against

the numerical solutions.

The Kirchoff circulation theorem for steady flow (Batchelor 1967) states that
f .
ds = .
v [V xwds=0, (3.13)

where the integral is taken around any closed streamline; that is, the total flux of
vorticity through any material surface is zero. This conservation law is clearly not
built into our numerical solution, so we can use (3.13) to see how well we have satisfied
the Navier-Stokes equations globally. We take C to be the contour surrounding the

main eddy:
C=U{ (,0):0 <z < zgep

(z,y) : ¥(z,y) = 0 separating streamline (3.14)
(0,9) i Yrec 2y 20}
This includes the entire shear layer, which is where the greatest errors are expected.
The entire contour is contained in boundary layers of thickness O(Re~1/2) (except at
its corners), so we expect the local flux of vorticity to be O(Re)—hence the normal-
izing v in (3.13).
The integral (3.13) must be evaluated carefully. We use the trapezoidal rule for
the integration, taking care to retain second order accuracy at the corners, where

the flux is large. The position of ¢ = 0 and the flux there are found using linear
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interpolation from adjacent points. There is one convenient point: because (£,7) is a

conformal map of (z,y),
—wy dz-*-wz dy = —wy dé' +Ll.)£ dT], (3’15)

so it is straightforward to compute the integrand in the computational coordinates.
The mapping functions enter only when the flux itself is computed.

In this flow, the flux of vorticity is directed into the eddy on the separating
streamline, and out of the eddy on z = 0 and y = 0. We estimate the relative error as
the total flux divided by the absolute flux in or out of the eddy. It would be useful to
compare our errors with those in other numerical Navier-Stokes solutions, but tests

such as (3.13) do not seem to have been applied in the past, to our knowledge.

Table 3.4 Accuracy of vorticity and total vorticity flux

Here the “fine grid” has N points on the plate, and the “coarse grid” N/2. The vorticity is evaluated
at the center of the Richardson-extrapolated eddy. The flux error is defined in the text.

Re N Vorticity at center Flux error
Coarse  Fine  Richardson Coarse Fine Richardson

150 160 0.670 0.667 0.666 0.006 0.004

400 160 1.313 1.293 1.285 0.013 0.004

1000 160 1.616 1.583 1.572 0.058 0.012 0.007
2000 320 1.818 1.777 1.762 0.048 0.008 0.007
3000 320 1.979 1.912 1.889 0.091 0.019 0.007
4000 320 2.105 2.014 1.984 0.148 0.034 0.006
5000 320 2.200 2.105 2.074 0.193 0.045 0.007

Table 3.4 gives the flux errors for various mesh sizes and Reynolds numbers.
Although (3.13) might accidentally be very small in a particular case, the consistent
results indicate that this is not happening. The relative error appears to be slightly
better than O(h?), because the discretization error of the integral itself is decreasing.

One great advantage of solving F#u = r directly using Newton’s method is that
the accuracy can be improved by eliminating the discretization error term by term by
Richardson extrapolation. This is usually done at a single point, after checking that

the error is indeed of the required order. With our approach, if the same solution



37

parameters are used with a smaller N (e.g., 8 = 0.6 on the two finest grids), the
discretization error of the defect-corrected solutions will have the same coefficients
of k2. This term can then be eliminated, leaving an error of O(h3). In addition, we
have a post facto check that the extrapolation was valid by computing the new flux
balance. This new flux error is also shown in Table 3.4, and in every case it is about
the same size as the discretization error in the integral (3.13), which is only computed
to O(h?). Also note that the integrand is the third derivative of the stream function,
evaluated in a thin boundary layer, and is expected to have much larger errors than
those in 9 and w.

Unfortunately, those derivatives are precisely the quantities required in studying

the flow: for example,
(V x w)(z,0) = wy(z,0) = Re py(z,0) (3.16)

is the (scaled) adverse pressure gradient experienced by the main boundary layer.
So, although extrapolation at the coarse grid points is sufficient for the gross flow,
for greatest accuracy at the boundaries we need to evaluate quantities like (3.16) on
the finest grid. In this case, we first interpolate the N/2 solution to the fine grid
using bicubic interpolation, introducing new O(h*) errors—smaller than those of the
final solution. Figure 3.4 compares different methods of computing this quantity at
Re=5000.

Finally, we have estimated the relative error in our final solution at Re = 5000,
as follows. First the dependence of the errors on Reynolds number was estimated for
each quantity. Then the coefficient of A% in the Richardson-extrapolated solutions
was found at Re = 400 (from N =40, N = 80, and N = 160 calculations), and this
result extrapolated to Re = 5000 using the observed power law dependence. (Thus,
we are assuming that this dependence is the same at both second and third order).
The relative errors are given in Table 3.5 and are mostly a few tenths of a percent.
The error is larger in maxp; because the maximum occurs near the leading edge

singularity, where the finite differences break down.
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Figure 3.4 Accuracy of boundary quantities

The flux of vorticity is shown at y = 0 (top) and z = 0 (bottom) for Re = 5000, calculated using third
order finite differences. (a) N=160 points on the plate; (b) N=320; (c) Richardson extrapolation
evaluated on coarse grid; (d) Richardson extrapolation evaluated on fine grid.
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Table 3.5 Relative errors in final Re = 5000 solution

Quantity Re dependence  Relative error
1 — Zgep Re%5 5x 104

We Rel3 1.5 x 1073
Tz(Zsep) Rel? 1.3 x 1073

Pz (Tsep) Rel# 3 x1073

max pz Rel# 3x 102

3.5 The basic flow structure.
3.5.1 Previous results due to L.G. Leal.

Leal (1973) used Re = 2/v, so his nominal Reynolds number is twice ours. His
Reynolds numbers have been rewritten here using Re = 1/v in an attempt to avoid
confusion. ‘

He found that after the boundary layer has separated, the eddy shape rapidly as-
sumed a fairly constant form as the Reynolds number increased. The large amount of
positive vorticity generated at the leading edge was convected increasingly efficiently
downstream, forming a shear layer. By studying the shear stress through separa-
tion, Leal found no sign of the Goldstein singularity. He noted that the Howarth
result (zsep = 0.88) is irrelevant when the external flow is modified by the eddy, and
performed a boundary layer calculation using the observed pressure distribution on
the plate, which gave similar results to the full Navier-Stokes solution; however, this
pressure was still changing at Re = 400, the highest Reynolds number he considered.

By comparing the shape of the eddy to sample viscous and inviscid eddies, he
noted that all the eddies were largely viscous and that there was no hint of any
transition, in contrast with the classical work of Batchelor. In fact, as we shall see,
the inviscid transition was just about to take place, and already at Re = 400 there is

evidence that vorticity is starting to be convected around the eddy.

3.5.2 The inviscid transition.

Table 3.6 gives global properties of the flows for 150 < Re < 5000. Contour

plots of the stream function and vorticity are shown in Figure 3.5. All results were
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Figure 3.5 Streamline and vorticity ¢ontours

The interior contour levels are ¥ = —0.001(0.001)0.004, then 6y = 0.004; and éw = 2. The wiggles
near the leading edge are caused by linear interpolation in the plotting routine. The vorticity
contours, on the right, also include the separating streamline as a dashed line.
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Figure 3.6 Perspective view of vorticity
Here w has been truncated to lie in the range —5 < w < 10.
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Table 3.6 Primary eddy characteristics

These are the values found by Richardson extrapolation. %, and w, are values at the center of the
main eddy. See Figure 3.1 for more information.

Re Tsep Yrec yrec/zsep Zc Ye Ve We l'c/-'lf'*, yc/y*
150 0.5696 0.3902 0.685 0.1695 0.2010 0.0031 0.667 (0.53,0.62)
Leal .58 .39 .68 0.003 (.52,.63)
400 0.6968 0.5321 0.764 0.1524 0.2766 0.0083 1.285 (0.47,0.62)
Leal 70 515 .735 .0072 (.52,.63)

1000 0.7814 0.6191 0.792  0.1524 0.2766 0.0140 1.572 (0.41,0.55)
2000 0.8278 0.6678 0.807  0.1657 0.2337 0.0182 1.762 (0.39,0.48)
3000 0.8497 0.6908 0.813  0.1705 0.2289 0.0205 1.889 (0.38,0.45)
4000 0.8633 0.7069 0.819  0.1755 0.2287 0.0221 1.984  (0.40,0.46)
5000 0.8729 0.7165 0.821 0.1755 0.2287 0.0234 2.074 (0.39,0.45)

Table 3.7 Secondary eddy characteristics

Re Tsep Irec Tc Ye 104 Pe We
2250 ~ (.38 0 0

3000 0.3307  0.4556  0.4055 0.0295 —047 —0.347
4000 0.3052 0.4894 0.4239 0.0542 -2.96 —0.760
5000 0.2896  0.5126 0.4371 0.0497 —4.34 —0.733

calculated using Richardson extrapolation from the solutions found with N and N/2
grid points on the plate. For very small Reynolds numbers there is no reverse flow.
At Re = 25 the flow separates from the plate, first at £ = 0 but rapidly separating
farther upstream as the Reynolds number increases. For 100 < Re < 1000, the
main global changes are the upstream motion of the separation point, the increasing
aspect ratio due to increasingly efficient convection of the shear layer, and a rapid
strengthening of the eddy. At the origin, a nearly uniform downward jet impinges on
the plate; locally there is Heimenz flow. Because of the symmetry condition at z = 0,
there is no possibility of a sequence of corner eddies (either because of boundary layer
separation, as in the driven cavity, or viscous Moffat vortices, which are subdominant
to Heimenz flow in this geometry).

We note that at finite Reynolds number the flow separates at a finite angle to
the plate. Near separation (given by the point of zero skin friction), there is a Stokes

region in which inertial forces are subdominant to viscous forces. The equation for
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the stream function is then V4 = 0, and the solution which represents separation

at an angle 6 from a wall is
¥ = y*(ycos§ — zsin ), (3.17)

where separation takes place at the origin. From this it is easy to show that the initial
slope of the w = 0 contour is one-third of the slope of the separating streamline Y =0,
which can be seen in Figure 3.5, and that that slope is

_ 3w(0,0)

t = .
and 2y(0,0)

(3.18)

Consideration of inertial forces shows that (3.17) is valid for ¢ < Re=1/3,

The quantities z./2* and y./y* give the relative position of the eddy center and
characterize the structure of the eddy (see Figure 3.1). Table 3.6 shows that the
eddy center moves first left and then down as the Reynolds number increases and
remains fixed for Re > 3000. Leal computed two “reference” eddies, one viscous
(V%4 = 0) which had z./z* = (0.52,0.63), and one inviscid (V% = —1) which had
zc/z* = (0.40,0.47). Comparing these values to the results in Table 3.6, we see that
the structure of the eddy changes from viscous to inviscid as Re increases from 400 to
2000. Looking at Figure 3.6, this corresponds to the emergence of a region of almost
constant vorticity.

The similarity of our Navier-Stokes flows to Leal’s sample eddies is surprising,
and suggests that other features (the flow near separation, the actual values of the
vorticity, the formation of a secondary eddy) are less important than the relative
magnitude of the viscous and convective terms.

With hindsight, it is easy to see why a Reynolds number of 400 is insufficient
to see inviscid flow: the flat plate “brakes” the eddy, which has typical velocities
% ~ %c/yc ~ .03 or a local Reynolds number of about 12. At Re=2000, z ~ .08, so
the local Reynolds number is about 160, which is much more likely to show inviscid

dynamics. Furthermore, a circular vortex patch with constant vorticity wg has ¢, =
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%woyf ~ .028 here, so we conjecture that the main part of the eddy has reached its
asymptotic state.

Batchelor (1956) has shown that in a region of flow in which the streamlines
remain closed as Re — oo and do not pass through a singular region, the vorticity
will tend to a constant. (In brief, at Re = oo, vorticity is clearly constant along
a closed streamline; the net flux of vorticity across it must always be zero; it only
remains to show that the flux is actually zero everywhere.) As we have observed the
rapid development of a region of constant vorticity, and as there is absolutely no sign
of either of the two caveats mentioned above, we believe that the infinite Reynolds
number limit of this flow does indeed follow the Prandtl-Batchelor model of constant
vorticity regions separated by vortex sheets.

It is interesting that the level of vorticity in the plateau is still increasing slowly
but almost linearly at Re = 5000. This is because the local Reynolds number in
some parts of the boundary layers is much less than 5000, so that they have not yet
reached their asymptotic state. But it does raise the question as to whether the level

at Re = oo is substantially higher.

3.5.3 Secondary separation.

As Re increases, the local Reynolds number near the wall downstream increases
rapidly, and a reverse boundary layer forms there. This is evident in the vorticity near
the wall in Figure 3.5. In contrast to the smaller Reynolds numbers, at Re = 1000
the flow is almost stagnant behind the separation point. The reverse boundary layer
has broadened significantly and the faster downstream fluid does not come back that
far.

At Re = 2255 (determined with N = 320), the reverse boundary layer separates,
first at z = 0.38, and a secondary eddy forms. This may be explained as follows.
Let (zc,yc) be the center of the vortex. A Batchelor vortex with constant internal
vorticity wo will have a slip velocity at y = 0 which rises from zero at z = 0 to a

maximum of about %LUch at z = 7, (by comparison with a circular vortex), and falls
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to zero at z = 1, being O (wo(l — x)3/2) near the cusp. If the viscosity v is very small
but not zero, boundary layers will develop to satisfy the extra boundary condition—in
this case, a no-slip wall. Boundary layer integrations with applied external velocities
show that initially accelerated boundary layers tend to separate almost immediately
after the external velocity begins to decrease.

Characteristics of the secondary eddy are shown in Table 3.7. It grows fairly
rapidly and its large-Re behavior can be guessed from the results in 3000 < Re £
5000. Some fluid must always return from the main part of the eddy to the cusp,
to supply the mass entrained by the shear layer. It appears, though, that as the
secondary eddy grows, this return takes place in an O(Re~1/2) shear layer next to
the main, outgoing one. Interestingly, all the calculations show a third, weak center in
this layer; possibly it disappears as Re — oo. Velocities are very small, about 0.03 , in
the region between separation and the secondary reconnection, but it seems inevitable
that a tertiary eddy will form there eventually. (A flattening of w in this region is
already evident at Re = 5000; see Figure 3.7.) The inviscid limit would thus consist
of an infinite sequence of eddies behind the separation point, each one containing still
finer structure. The rapidly decreasing velocities mean that the number of eddies will

grow very slowly with the Reynolds number, probably logarithmically.

3.6 Asymptotic behavior at boundaries.

This will be discussed in detail in Chapter 5. As the Reynolds number increases,
the separation point continues to move closer to the leading edge. The reconnection
point also continues to increase, but the aspect ratio of the eddies levels off sharply
once inviscid behavior has set in.

Figure 3.7 shows the vorticity at the wall (proportional to shear stress) divided
by Rel/2, the expected asymptotic growth for a boundary layer. Although the scaled
value is roughly O(1), the boundary layer is still developing at Re = 5000. Note that
the incipient secondary separation is already hinted at at Re = 400: w has a local

maximum. The pressure gradient in the boundary layer (equal to the flux of vorticity
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Figure 3.7 Wall vorticity

Here and in Figures 3.8, 3.9, and 3.10, results are given for Re = 150, 400, 1000, 2000, 3000, 4600
and 5000. Separation takes place at the point where w = 0, which moves to right (towards the
leading edge) as Re increases.
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Figure 3.8 Wall pressure gradient
Computed as wy(z,0)/Re using third order finite differences. max p, increases with Reynolds num-
ber. The wiggles at Re = 5000 are introduced by extrapolation using the N = 160 solution, which
does not completely converge; the N = 320 solution is smooth. The sign has been changed so that
a positive value represents an adverse pressure gradient near the leading edge. The separation point

is marked x.
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Figure 3.9 Vertical velocity at z = 0

Velocity decreases with increasing Reynolds number.
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Figure 3.10 Flux of vorticity at z = 0

The reconnection point, which increases with increasing Reynolds number, is marked x.
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at the wall divided by Re) is shown in Figure 3.8. There is a Carrier-Lin singularity
at the leading edge, followed by an adverse pressure gradient that increases slowly
with Reynolds number, falling to near zero behind separation. Figure 3.9 shows the
vertical velocity (v = 0 corresponding to reconnection), and 3.10 the scaled vorticity
flux (or py) at z = 0. They are still changing at Re = 5000 because the shear layer
has diffused considerably by the time it reaches the z-axis.

We note that Figures 3.9 and 3.10 are strongly supportive of a triple deck-like
interaction as the smallest scale phenomenon at reconnection. The vertical velocity

031" and the scaled vorticity flux,

gradient v, at separation is proportional to Re
to Re®%, both exponents being close to their triple deck values of 1/4 and 1/8,
respectively. However, yrec increases only slowly: if we assume that the inviscid flow
reconnects at y = 1, then 1 —ygep Re~%175 This is believed to be due to a relatively
large scale inviscid interaction caused by the shear layer, which rapidly broadens as

it nears reconnection. A self-consistent asymptotic description of this process is still

under construction.

3.7 Summary.

We have found accurate solutions to the Navier-Stokes equations for Re < 5000.
For Re less than about 400, the corner eddies are fully viscous. In 1000 < Re < 3000,
their main part undergoes a rapid transition to inviscid character, and the Prandtl-
Batchelor model of infinite Reynolds number flow is definitely correct in this case.
However, the next stage, in which all the viscous layers reach an asymptotic state, will
be considerably slower, especially near z = 0. Near separation, Figures 3.7 and 3.8
appear to indicate that separation is already in an asymptotic regime at Re = 150; we
study this extensively in Chapter 5. At Re = 2250, the downstream reverse boundary
layer separates, and we speculate that the inviscid limit contains an infinite sequence
of eddies behind the separation point.

Batchelor (1967) includes a photo of an experiment in which a splitter plate is

introduced in front of a stagnation point. We have reproduced it in Figure 3.11.
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The main changes from our flow are that the free stream has uniform flow, rather
than uniform strain, and that there is also a wall at z = 0, apparently extending to
y = 0.55. Unfortunately the Reynolds number is not given.

Nevertheless, the similarity with our flows is striking. The flow in 3.11 appears
to separate at £ = 0.81, and the eddy center in the top eddy is at z. = 0.23,
Yc = 0.13—less than our value because of the different oncoming flow. Secondary
separation occurs at z = 0.33. These values suggest that the Reynolds number is
between 1000 and 2000. Notice, however, that there are two strong secondary eddies
in y > 0 and several weaker ones, in contrast to our results. Because there is not exact
symmetry between the two halves of the flow, we believe that these eddies are due
to unsteadiness. There may well there exist time-periodic flows in which a sequence
of secondary eddies appears at much smaller Reynolds numbers than in our steady

flows.

Figure 3.11 An experiment showing separated corner flow
Reproduced from Batchelor (1967), Plate 7.
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Chapter 4

Viscous corner eddies and Batchelor flows

4.1 The Batchelor model of infinite Reynolds number flow.

Inviscid flows consisting of regions of constant vorticity separated by vortex sheets
and possibly bounded by walls were first proposed by Batchelor (1956) as possible
limits of viscous flows at infinite Reynolds number. Pressure is constant across a
vortex sheet, and if the velocities on either side are ¢ and g_ then Bernoulli’s theorem

shows that the sheet strength v = ¢4 — g_ obeys

g+ +¢-) = ¢ (4.1)

with ¢ a constant. For example, a corner flow can be found using Kirchoff’s free
streamline theory which consists of a stagnant corner separated from an external,
irrotational flow by the line z2/3 + y2/3 = 1, on which ¢_ = 0 and ¢4 = 3/4.
(More details of this flow are given in §5.8.) The initial behavior of the dividing
streamline, y ~ az®/2, is always present unless ¢ = 0. The simplest example of a
rotational Batchelor flow is the circular vortex with constant vorticity w embedded in
irrotational flow, in which the fluid has tangential velocity wr/2 at a distance r from
the vortex’s center.

A family of rotational corner flows was found by Moore, Saffman and Tanveer
(1988) (henceforth referred to as MST), which had internal vorticity 0 < w < 6.117.
The corresponding flow separating at z = L, say, would have vorticity w and would
reconnect at y = L, since only symmetric eddies were found to exist. If such a flow is
to be the limit of viscous flow as Re — oo, the viscous flow would presumably have
a core of constant vorticity, with thin O(Re~'/?) boundary layers near the walls to
satisfy the extra boundary condition not present in inviscid flow, and with the vortex
sheet being replaced by a shear layer with velocity jump v. L and w would then be

determined by the wall boundary conditions.



35

The Navier-Stokes solutions of the previous section show a transition to a largely
inviscid eddy that cannot, however, be an MST vortex. First, the aspect ratio of
the eddies does not tend to 1, but seems to level off at about 0.8; only symmetric
Batchelor vortices were found by MST. More important, the constant-vorticity core
does not spread over the whole eddy, but stays downstream; upstream, secondary

separation occurs.

vortex )
vortex
/ ?heets \(/ sheets

w4<0 W, 031<O

Figure 4.1 Two possible Batchelor flows with secondary separation
The results of Chapter 3 suggest the limiting flow on the left.

There are probably more inviscid solutions, consisting of several regions of con-
stant vorticity, each bounded by a vortex sheet. Two possibilities are sketched in
Figure 4.1. This would certainly break the symmetry of the 1-region family. How-
ever, there is no reason to suppose that tertiary separation is avoided either, which
in principle can give rise to an infinite sequence of eddies in the cusp, as suggested
by Messiter (1975). Since u = o(1 — z), the Reynolds number necessary to form each
successive eddy would increase. This sequence could terminate if the velocity in the
cusp decreased with increasing Reynolds number, but this is not indicated by the
Re = 5000 results.

Despite these problems, the eddy shapes calculated in Chapter 3 are rather similar
to the MST vortices. Figure 4.2 shows the separating streamline at Re = 1000 and
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Figure 4.2 Separating streamlines in corner eddy

The inner solid line is the ¥ = 0 streamline at Re = 1000, and the outer line is ¥ = 0
at Re = 5000. Results taken from Chapter 3. The dashed lines are inviscid vortex sheet
positions, as explained in the text.

5000, compared to the MST vortex with constant vorticity 2 separating at the same
position as the viscous flow. At Re = 1000, the flow near separation is different, but
at Re = 5000 the agreement is encouraging, and surprising, in view of the secondary
separation—although the secondary eddy may interfere with the external flow as it

continues to grow in strength. Certainly the difference is less than the thickness of

the shear layer.

4.2 Single eddy flows with a moving wall.

The behavior of the flat plate problem suggests that to see the simplest Batchelor
vortex it is necessary to prevent separation of the reverse boundary layer. One way
to do this would be to apply suction at the wall. However, this would upset the mass
balance, creating an unknown far field. A simpler way is to give the plate a positive
horizontal velocity. Setting u(z,0) = u, gives ¢ = upsiny, which is implemented as

(cf. (3.10))
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The first flow computed was with u, = 0.2 at Re = 1000, shown in Figures 4.3 and
4.5. The moving plate did indeed stop the boundary layer from widening excessively;
furthermore, the “strength” of the eddy (the maximum value of the stream function)
increased from 0.014 in the stationary plate case to 0.041, because of the velocity
imparted to the eddy by the plate. The increased local Reynolds number in the eddy
explains the more nearly inviscid flow: there is already a distinct plateau of vorticity
with wy ~ 2.5. When up > 0 the streamline ) = 0 clearly cannot contact the plate.
One possibility is for a thin layer of reversed flow to remain near the plate for a short
distance, but this does not turn out to be the case. (It may occur in the singular limit
up — 0.) Instead, there is a stagnation point a distance O(v) ahead of the plate and
the flow immediately separates. Because the external flow never comes in contact
with the plate, it remains inviscid, and the dividing streamline behaves like az3/2. A
graph of yfég is a straight line away from the stagnation point, and we find a ~ 0.590.
The distance s from the origin to the shear layer along the line y = = can be found
approximately if its position is taken as the point of maximum vorticity. This gives »
s = 0.54. These values closely correspond to the MST vortex with wg = 2.5 (see
Table 4.2).

Increasing the Reynolds number to 2000 and 4000 gave similar flows, shown in
Figure 4.3, suggesting that secondary separation is definitely averted. wq increased
slowly, as shown in Table 4.3. It thus appears that one of the family of MST vortices
is selected as the large Reynolds number limit, which one depending on the boundary
conditions on the axes. The finite-Re solutions agree well with the corresponding
MST vortex, with two exceptions:

1. The aspect ratios remain less than one. This is probably due to viscous action
close to z = 0, because the dividing streamline follows the proposed vortex sheet
closely until then. Note that at finite Reynolds numbers, the streamline must
reconnect at right angles in a stagnation point, not in a cusp. Reconnection is
discussed briefly in §3.7 and is the subject of ongoing research. We believe that

it is possible for the cusp-shaped shear layer to reattach in an orderly fashion.



Figure 4.3 Streamline and vorticity contours

for u(z,0) = 0.2 and Re=1000, 2000 and 3000. The contour intervals are Ay = .005 and Aw = 2.
Note the developing region of constant vorticity, and the boundary layer near y = 0. The wiggles
near the leading edge are caused by interpolation in the plotting routine.
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2. The constant vorticity region does not cover the whole eddy. The problem this
time is not slow flow upstream—in fact, the flow is nearly inviscid in the cusp,
as shown by the vorticity contours that follow the streamlines everywhere except
near the wall. Instead, disturbances generated in the downstream boundary layer

are swept away from the wall by the natural motion of the eddy.

separating streamline

vorticit
f & y=0, y-allx3?

contour

~

boundary
layer

]
Xleft Xright x=1

Figure 4.4 Viscous flow in the cusp

This effect can be estimated as follows. Consider the Batchelor flow with internal
vorticity w. The equation for the stream function in the cusp is approximately 1, =

3/2

—w, with ¥y =0 at y =0 and at y = ysep = az”/*, so

= %wy(ysep - y)- (4-3)

Thus the streamlines turn around as shown in Figure 4.4 when u = 0, or
AR
= (Eﬁ) , (4.4)
measuring distance from the leading edge. Now suppose that viscous effects do not
greatly alter the flow field. Downstream, in the boundary layer, ¢ = u,y + O(y?*) and
y = O(v}/?). So streamlines (or, equivalently, vorticity contours) originating in the
boundary layer will turn around when z = O(»'/%); the constant vorticity region will
enter the cusp very slowly.
Of course, the disturbance from the boundary layer invalidates the original ap-

proximation, which is only correct downstream of the disturbance. Nevertheless, the
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result seems to hold throughout the cusp. Table 4.1 shows the left and right turning
points for the w = 2 contour at three Reynolds numbers; the dependence is about
Re=135) close to that predicted. Evaluating the constants shows a disagreement of

about 20%); evidently, the streamlines are not disturbed much by the boundary layer.

Table 4.1 Turning points of w = 2 contour

“ratio” is the distance at that value of Re divided by the distance at the
next smallest Re; the distances are predicted to go like Re~1/6,

Re 1 - z4efs ratio 1 — z,igns ratio ARe™1/6
1000 .609 .362

2000 .553 .908 337 931 .891
3000 531 .960 311 .923 .935

Table 4.2 Properties of the Batchelor corner flow

Reproduced from MST. Here ¢ is the jump in the square of the
velocity across the sheet, s is the distance from the origin to the
vortex sheet measured along y = z, and a is the constant in the

initial sheet position y = az®/2.

w q 8 a

0.0 0.75 0.5 (2/3)%/2
1.0 0.7464 0.5056 0.550
2.0 0.7344 0.5231 0.568
3.0 0.7099 0.5541 0.605
4.0 0.6619 0.6028 0.683
5.0 0.5598 0.6790 0.874
6.0 0.2255 0.8262 2.17
6.115 0 Yy~ z1/2

By altering the boundary condition on the plate, different members of the family
of MST vortices can be found. The first set of solutions was found by setting u =
up and increasing u, at Re = 2000. Solutions could be found up to u, = 0.85,
beyond which the multigrid iterations did not converge, presumably because the local
Reynolds number was too large. The eddy shapes are shown in Figure 4.6. The flows
behaved roughly like the MST family, with the eddy bulging out as wy increased,
but because of the large velocity enforced near £ = 1-—mot present in a Batchelor

flow—the correspondence of eddy shapes is not exact. However, the sheet strength
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Figure 4.5 Perspective view of vorticity
(a) u(z,0) = 0.2, Re=1000 (compare the developed plateau here with the u(z,0) = 0 case in Figure
3.6); (b) u(z) piecewise linear, u, = 1.5, Re=2000, opposite viewpoint (note the large plateau and
negligible shear layer). w has been truncated to lie in the range —5 < w < 10 because of the
singularity at the leading edge and the boundary layer on the plate.
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Figure 4.6 Dividing streamlines
for u(z,0) = 0, 0.1, 0.2, 0.3, 0.4 and 0.75 at Re=2000. The eddy is pushed outward
because of the higher velocities in the interior. For larger up, the separation poini is
pushed upstream and the %2 behavior is lost.

was estimated in two cases and is shown in Figure 4.7. The numerical values disagree
by about 10%, but the broad features are correct, including a weak sheet with a
boundary layer at the cusp when wy is large.

(The sheet strength v = g4 — g was estimated as follows. The velocity is roughly
linear away from the shear layer, so it was linearly extrapolated to the point at which
¢ = 0. For the points marked U, ¢+ and g— were found, giving an estimate for
q = 7(0), marked x. For the points marked A, only ¢+ could be estimated, and
~ was calculated from ¢° = ¢42 — ¢_2. Relative arclength was defined as arclength
along the line ¥y = 0 measured from z = 1, divided by twice the arclength to the

symmetry point y = z.)

4.3 Comparison with Moore-Saffman-Tanveer inviscid flows.

To see if finite Reynolds number eddies could be found that corresponded even
more closely to Batchelor flows, the (somewhat artificial) boundary condition was
chosen in which u(z,0) is piecewise linear, and u(0) = u(1) = 0, u(1/4) = up. The

length scale L of the corresponding Batchelor flow was estimated by extrapolating
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Figure 4.7 Vortex sheet strengths

The solid lines are the sheet strengths of Batchelor corner flows with internal vorticity 0.5,
3, 4, 5, and 6 (strength decreasing with increasing w), reproduced from MST. Also shown
are estimates of sheet strength for two finite-Reynolds number calculations, u(z,0) = 0.2 at
Re = 3000, which had wo = 2.87 (upper marks) and u(z,0) = 0.75 at Re = 2000, wg = 4.53
(lower marks). See text for further explanation.

the y ~ %2 behavior to the z-axis. The dividing streamlines for six up values are
shown against the position of the vortex sheet in Figure 4.8. Considering that the
width of the shear layer in these cases is more than 0.1, the agreement is extremely
good, and it must be concluded that for this geometry, the limit of small viscosity is
indeed a Batchelor flow.

The results for different wall conditions are summarized in Table 4.3. Both the
internal vorticity and the relative size of the plateau region increase roughly linearly
with u,, the latter confirming that the presence of inviscid dynamics is controlled by
the local Reynolds number. The decrease in Ay at u, = 2 shows that the w is not
completely constant; u, = 2 is really beyond the limit at which we can obtain reliable
results.

The question arises as to whether all of the MST vortices are possible large

Reynolds number limits of Navier-Stokes solutions with appropriate boundary con-
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Figure 4.8 Eddy shapes and vortex sheets

The dividing streamline is shown for Re=2000, u(z) piecewise linear and u, = 0.25, 0.5,
1.0, 1.5, and 2, for which wo = 2.44, 3.19, 4.41, 5.26 and 5.98. The vortex sheet of each
corresponding MST vortex flow with internal vorticity wg is shown for comparison (dashed
lines). For up = 0.25 and 0.5, it is drawn with length scale L = 0.93 and 0.96, respectively;
for the others, the length scale was so close to 1 that we used L = 1.

ditions. Eddies with small wy would be difficult to realize, since braking the flow
by adding walls, etc., can cause secondary boundary layer separation, and the slow
speed in the eddy would make it difficult to calculate the inviscid limit. Large wp
values seem quite possible, since wo appears to increase linearly with u,. Although
it could level off, it seems more likely that either L would increase, giving larger and
larger eddies, or that flows with wg > 6.12 might correspond to Batchelor flows with

inward-pointing cusps, which have not been calculated.

4.4 A note on accuracy.

All the calculations used N = 320 and {x = 1.767. Because we are not inter-
ested in knowing the vorticity gradients, etc., very accurately, we have performed
less stringent tests. Computations in the u(z,0) piecewise linear, up = 1 case with
N =160, {x = 1.767 and N = 320, £ = 2.356, showed a difference in wg and .
of about 2%, so the error in the N = 320 results is about 0.5%. At u, = 2, the
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Table 4.3 Properties of driven viscous corner eddies

Here the wall condition on u(z) is either constant or piecewise linear, wq is the value
of vorticity in the plateau, A; is the total area of the eddy, and A, is the proportion
of the eddy taken by the plateau. The plateau was defined as the area enclosed
by a streamline such that the standard deviation of the vorticity in its interior was
less than 0.05; this was found to correspond to an intuitive definition from vorticity

plots such as Figure 4.5.

Re u(z) Up Ve wp A A

1000 0.0 0.0140 1.61 0.203 0.005
2000 0.0 0.0182 1.75 0.218 0.046
3000 0.0 0.0206 1.89 0.221 0.145
4000 0.0 0.0220 1.98 0.221 0.226
5000 0.0 0.0234 2.07 0.221 0.260
1000 constant 0.2 0.0408 2.51 0.296 0.068
2000 constant 0.2 0.0458 2.74 0.302 0.222
3000 constant 0.2 0.0484 2.87 0.302  0.288
4000 constant 0.2 0.0498 294 0.303 0.317
2000 0.0 0.0182 1.75 0.218 0.046
2000 constant 0.1 0.0313 2.27 0.262 0.141
2000 constant 0.2 0.0458 2.74 0.302 0.222
2000 constant 0.3 0.0621 3.21 0.340 0.294
2000 constant 0.4 0.0776  3.51 0.379 0.346

2000 constant 0.75 0.1414  4.53 0.506 0.476

2000 linear 0.25 0.0346 2.44 0.252 0.187
2000 linear 0.50 0.0550  3.19 0.295 0.324

2000 linear 1.0 0.1028 4.41 0.376 0.527
2000 linear 1.5 0.1555  5.26 0.458 0.613
2000 linear 2.0 0.2125 5.98 0.540 0.430

difference was only 0.5%—the computation is more accurate for larger values of u,.
These “driven” flows appear to be governed by less subtle dynamics than those of
Chapter 3. The level of vorticity in the plateau is locally undetermined and is fixed by
viscous action in the boundary layers. When the wall is moving, the local Reynolds
pumber is large everywhere, so the approach to inviscid dynamics is more rapid than
in the u{z,0) = 0 case. The u(z,0) — 0 limit is singular, because for u(z,0) > 0 the

dividing streamline must leave from z > 1.
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Chapter 5

Laminar separation from a leading edge

In certain cases the flow separates from the surface at a point entirely determined by
external conditions. A fluid layer, which is set in rotation by the friction on the wall, is
thus forced into the free fluid and, in accomplishing a complete transformation of the flow,
plays the same role as the Helmholtz separation layers. A change in the viscosity u simply
changes the thickness of the turbulent layer ...It is therefore possible to pass to the limit
p# = 0 and still retain the same flow figure. ...the necessary condition for the separation
of the flow is that there should be a pressure increase along the surface in the direction
of the flow [whose magnitude] can be determined only by the numerical evaluation of the

problem which is yet to be undertaken.
L. Prandtl, 1905

Here the main stream, which has hitherto been in close contact with the body, suddenly,
and for no obvious reason, breaks away, and downstream a region of eddying flow, which is
usually turbulent even if the flow elsewhere is laminar, is set up. ...The main problem we
have to face, if we believe that the boundary layer is intimately associated with separation,
is how its thickness can change abruptly from O(R~/2) upstream of [separation] to O(1)
downstream, especially as the Reynolds number R may be scaled out of the boundary-layer
equations. The only way in which this can happen is by breakdown of the solution of the

boundary-layer equations ...
S.N. Brown and K. Stewartson, 1969

...separation of the flow on a smooth surface occurs under the action of large pressure
gradients acting over a small portion of the surface. The flow scheme in which it is assumed
that separation ...occurs as the result of an adverse pressure gradient distributed over a
finite portion of the body surface, ... apparently does not hold in actuality.

V.V. Sychev, 1972

5.1 Introduction.

In this chapter we return to the flows of Chapter 3—a decelerating free stream
impinging on an aligned, stationary flat plate—to consider the separation of the
boundary layer from the plate. After a long period of development, this process is
now thought to be governed by a free interaction between a thin viscous layer and the

changes it induces in the external flow. Such interactions are found in a wide variety



67

of situations and are generally known as “triple deck” theories because of the three
distinct sublayers embedded in the external flow.

Triple deck theory first emerged in 1969 when Stewartson and Williams expanded
on an early idea of Lighthill’s to explain supersonic separation. Stewartson (1969)
and Messiter (1970) simultaneously found a similar structure at the trailing edge of
a finite flat plate. The case of incompressible separation was developed by Sychev in
1972 for separation from a bluff body, and in 1979 for separation from the leading
edge of a flat plate. The brief derivation below is based on this latter work, but

corrects an error in Sychev’s final lower deck equations.

5.2 The global flow.

The basic problem in incompressible, large-Reynolds number flows is that the
limiting inviscid solution is not known. Usually there are many solutions that fit the
boundary conditions. Which one is selected in the limit Re — oo remains an open
question. However, the most promising candidate in our case is a Prandtl-Batchelor
flow. As discussed in Chapter 4, the one-eddy model is not correct for the stationary
plate, but the global shape does seem to be roughly correct.

Two aspects of the inviscid solution are used in deriving the asymptotic theory.
One is the local form of the separating streamline. This is unlikely to be affected by
changes in the downstream eddy, such as asymmetry or more complicated structure
(although certain coefficients could change). The other is the flow in the cusp just
behind separation, which supplies a boundary condition for the triple deck. This is
discussed in §5.4 below.

An example of a Prandtl-Batchelor flow is given in an appendix (§5.8). In general,
if separation is located at £ = zep, then the pressure gradient in the inviscid solution

just ahead of that point is given by

Pz ~ (Tsep — z)_1/2 a8 T — Ty (5.1)

The constant ¢ cannot be negative or zero, because some adverse pressure gradient is

required for separation to take place; but ¢ > 0 and an unbounded gradient appears
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to imply separation upstream of Zsep, a contradiction. In the case of bluff body
separation, the resolution is that ¢ is positive but tends to zero as Re — co—it turns
out to be O(Re~1/16), However, in leading edge separation (Sychev 1979), there is
no contradiction because the separation point can move up to the leading edge as
Re — oo; c is then a positive constant determined by the global geometry.

Thus, in contrast to the bluff body case, where c is given by the triple deck theory
and the dependence of zsp on ¢ by inviscid theory (e.g., in Brodetsky (1923)), here

Teep 18 determined once c is supplied.

4 I1I
€
g=Re */° o
II
1 0
\x':/() Xsep
€ >

< gt —>

Figure 5.1 Flow structure near separation

I. Lower deck—viscous boundary layer equations hold. II. Middle deck—inviscid,
vorticity present. III. Upper deck—inviscid, linearized Euler equations hold. IV.
Blasius boundary layer. V. External inviscid flow. VI. Fully viscous—Navier-Stokes
equations hold.

5.3 Construction of the triple deck.

The local flow situation is sketched in Figure 5.1, along with the various regions
of the flow in which distinct approximations to the Navier-Stokes equations are valid.
The small, fully viscous region at the leading edge has a purely local effect and will
not be considered further here (although its effect can sometimes be substantial—see

Chapter 6). The leading edge is situated at £ = 0. Conventionally, the speed of the
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external flow is taken to be positive, so that the z coordinate of Chapter 3 must be
reversed.

Let v be the kinematic viscosity, and suppose that lengths have been nondimen-
sionalized by a characteristic length /, and velocities by the uniform straining at
infinity Us. Then the relevant Reynolds number is Re = Uy !/v, and our results will
be expressed in terms of the same quantities that are computed numerically.

The leading order outer solution is taken as a Prandtl-Batchelor flow separating
at Tep. However, we assume that the change in its behavior from the equivalent flow
separating at the leading edge is a lower order correction, and use the properties of
the latter.

Let Up be the velocity of the external flow at the leading edge. It is initially
unknown, since the upstream flow is affected by the (also unknown) eddy shape. It
will probably be less than the undisturbed velocity Uy,. For example, Uy = % for the
irrotational corner eddy. The inviscid pressure gradient and separating streamline are

given by

Pz = cUE(Tsep — z)~1/2, Z < Tgep; (5.2)

4
ysep = §C(.’E - xsep)3/2, x> xsep. (5-3)

Suppose that zsep ~ € < 1, and that as the singular behavior (5.2) develops in
the main part of the boundary layer, it is modulated by a local interaction (initiated
by a thin, viscous layer next to the plate—region I in Figure 5.1) between the pressure
and the ejecting boundary layer, occurring on a small length scale |z — zsep| ~ €.

Then the pressure gradient p; ~ e~%/2. For a viscous boundary layer we require

Uy ~ Py ~ Re"luw. (5.4)

Close to the plate u ~ Au, giving u ~ €*/* and y ~ Re~1/2¢3%/8  To be consistent

with the inviscid breakaway (5.3), y ~ (2 — sep)’/2, giving

Ir — msep ~ Sa ~ R€_4/9. . (5-5)
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If @ > 1, a standard attached Blasius boundary layer of thickness Re™1/2:1/2 will
already have developed by the time the interaction region is reached; and if o > 4/3
it will be thicker than the lower deck. This is shown as region IV in Figure 5.1. The

correct matching between the two layers would then be
!xlli—r»r})(uy)Blasius ~ Rel/26—1/2 ~ (uy)interaction ~ Rel/2€a/4—3a/8, (5'6)

giving a = 4 and € ~ Re=1/9. Values of a < % do not appear to lead to consistent

matching.

O

Now that the dimensions of the lower deck have been found, define eo = (UpRe)™

and change to local coordinates: let
u=ceoUgU, v=edlsV, p=elULP, T —zep=cgX, y=clY. (5.7)

First consider the oncoming Blasius layer which forms the upstream boundary condi-
tion for the lower deck. At a distance z from the leading edge, with an external free

stream of speed Uy, its velocity profile near the wall is
u = Uglzaox_l/zRel/zy, (5.8)

where ag &~ 0.3321. If separation occurs at z = feg, say, thisis U = aoB~Y?Y in the

local coordinates.

The problem in the lower deck is now partially specified: standard boundary layer

equations hold,
Ux +VWw =0, UUx+ VUy + Px = Uyy, (5.9)

with boundary conditions

U=V=0 at¥Y=0 (5.10)
U— aoﬂ_l/zY, V-0 as X — —© (5.11)
P — —2¢(—X)Y/? as X — —oo. (5.12)

To complete the system we must consider the interaction between this region and the
outer, inviscid flow. The O(e?) pressure jump in the lower deck is transmitted un-

changed through the continuing Blasius layer and induces a similar sized perturbation
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in velocities in the main stream, of vertical extent O(e*). Therefore, the linearized

Euler equations hold, which have a known solution
1 e P(¢)
Ax(X) = Vapper(X,0) = == /_oo g% (5.13)

where we have defined the displacement velocity A(X), which would be an O(ef)
quantity in outer coordinates. The vertical velocity in the upper deck is €2UsVipper-
This turning of streamlines cannot be supplied by the middle deck, which is essentially
inviscid here, so it must match to the outer limit of the lower deck. Details of
this matching process are given in Stewartson (1974). Essentially, the main deck
is displaced vertically by an amount €9 A(X), so that the position of the separating
streamline ysep in inner coordinates is asymptotically A(X) as X — oco. The result

of the matching is
U—aof V2(Y + A(X)) asY — oo. (5.14)

Finally, (5.12)-(5.14), together with the inviscid result that P — 0 downstream,
imply
A— —§CX3/2 as X — oo, (5.15)

which matches with (5.3).

Downstream conditions (i.e. X — oo with Y fixed) are usually found by assuming
that the inviscid flow is stagnant downstream. The outgoing shear layer entrains fluid
from the eddy, with the mass supplied by an incoming reverse boundary layer on the
plate.

We can now apply a linear transformation to the lower deck problem to put it
in the same form as that solved by Smith (1977). There is a two parameter family
of linear scalings of all variables which leaves (5.9) and (5.13) invariant. If we want

both the coefficients of Y and of A in (5.14) to be 1, we must choose

U=AU, V=XV, X=275X, Y=)7%, P=)P, A=)\, (5.16)
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where A = (ag8~1/2)1/4, This transforms the far field boundary conditions to

U (Y+4X)) as¥ - (5.17)
P - —a (—Y)-l/z as X — —00 (5.18)

where a = 2¢A~9/2,

The system (5.9) with conditions (5.10,13,17 and 18) has been solved numerically,
and it appears that a solution only exists for one value of a. Smith (1977) used the
Fliigge-Lotz approximation to continue the boundary layer integration into the region
of reversed flow and found that his iterative method only converged for a = 0.44.
Korolev (1980) used upwind differencing and found a = 0.42. Van Dommelen and
Shen (1983), using a Newton collocation method to satisfy the Hilbert relation (5.13),
were able to solve the full equations directly for o, giving o = 0.415. (We use a = 0.42
throughout.) The lower deck problem is thus regarded as solved.

These three solutions are all qualitatively similar and are summarized in Table
5.2. Unfortunately, in some quantities which we would like to evaluate, they disagree
with one another substantially. |

The final step is to eliminate A and solve for 8, giving A = (a/2¢)~%/? and the

asymptotic distance to separation as

Teep = Pe0 = agUo_l/g(a/2c)16/9Re—l/9. (5.19)

5.4 The effect of external vorticity.

The presence of vorticity in the limiting flow does not appear to alter this asymp-
totic structure. Inviscid considerations were discussed by J.H.B. Smith (1982). In the
external flow, the addition of a flow with vorticity is subdominant at separation to the
irrotational flow; in the cusp, although vorticity gives a different matching condition,
the final result (5.3) for the separating streamline is unaltered. The cusp is too small

for vorticity to have a local effect.
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Consider an inviscid flow with internal vorticity wy and external vorticity wj.
When viscosity is present, the change in velocities in the main deck ahead of separation
is O(w1y) = O(€%), much smaller than the O(¢?) perturbations induced by the free
interaction. Downstream, typical velocities inside the wedge 0 < y < yzep = O((z —
:csep)s/ %) are O(woysep). In the irrotational theory, there is a slow return flow near
the wall of magnitude O(e13/3(z — Zeep)~%/6). (This is required to supply the mass
for the outgoing shear layer; details are in Sychev (1979)). Comparing these two
quantities, it is clear that the latter becomes dominant well before the interaction
region  — Teep = O(e?) is reached. Thus, vorticity in the cusp does not alter the
matching procedure of the triple deck.

In our case, and apparently in all cases of steady separation; secondary eddies
appear downstream. These may alter Up and c slightly, but their main effect is on
the downstream matching of the triple deck. We believe that there is no local change:
velocities in the cusp are always extremely small, and because the return flow required
by the triple deck is accelerating, it will dominate any effect which tends to zero in
the cusp. There could, however, be a change farther downstream, in a region in which

these two effects are of the same order.

5.5 Comparison with numerical solution of the Navier-Stokes equations.

Previous comparisons of the incompressible triple deck with experiments or cal-
culations have found that, while separation was plausibly a local phenomenon, there
was no numerical agreement in detail (Smith 1977). For example, in Fornberg’s 1985
calculation of uniform flow past a cylinder up to Reynolds number 600 (based on cylin-

0.65 instead of

der diameter), the skin friction at separation behaves roughly like Re
the bluff body triple deck dependence Re™/%; and the pressure gradient at separation
actually decreased over the entire range of Reynolds numbers considered, roughly like
Re=%23 instead of the gradual Rel/8 increase expected. Numerical comparisons are
difficult because the limiting flow is unknown. In the Kirchoff-Helmholtz flow, Uy = 1

is required to match the free stream at infinity downstream, and since the limiting
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position of the separation point is known to be 55° from the front of the cylinder, the
scaled skin friction A = Re~1/ %uy there can be estimated from moderate Reynolds
number calculations—although even this procedure is not formally valid. However,
in a Batchelor flow, Up, A, and the limiting separation point are determined by the
vorticity in the eddies; i.e., from a local point of view, we have two free parameters
again, just as in leading edge separation.

It was hoped that by considering leading edge separation, where the interaction
region is smaller, and by going to higher Reynolds numbers, better agreement could
be obtained.

For the purposes of comparison, since Uy is unknown, we first rewrite the inner
variables of the lower deck in terms of the quantities actually used in the calculation.

Letting ¢ = Re~1/% = Uol / 960, and dropping the bars on the inner variables,
u=¢el = aUg/g,u"z/gU,
v =gV = eaU(f/gp‘6/9I/,
p=¢e*P = 62U016/9p‘4/9P, (5.20)
& — Toep = €X' = AUV U1 x,
and y=¢%0"= ESUO_G/gpS/QY,
where y = (a/2c). Primed coordinates can then be directly calculated. Some addi-

tional quantities of interest are the skin friction and pressure gradients:

To = Uyg = € T = e U2 2Ty, (5.21)

and  p, = e 2Py = e 200140 py (5.22)

Here T = Uy is the lower deck skin friction.

In Table 5.1, various flow quantities from the calculations of Chapter 3 are meas-
ured near separation. As in Chapter 3, the sign of pz has been changed so that
a positive value represents an adverse pressure gradient, as in (5.1). The effect of
Reynolds number on dependent variables is shown in Figure 5.2, and on streamwise

scales in Figure 5.3. It is immediately apparent that the qualitative predictions of
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Table 5.1 Separation at finite Reynolds number

Re Tsep —72(Zsep) -T7'(0) min 7 min T
150 0.4304 6.106 0.0407 -0.63 -0.0391
400 0.3032 15.96 0.0399 -1.07 -0.0384
1000 0.2185 41.12 0.0411 -1.92 -0.0413
2000 0.1722 84.44 0.0422 -3.00 -0.0439
3000 0.1503 129.9 0.0433 -3.91 -0.0458
4000 0.1367 175.7 0.0439 -4.81 -0.0479
5000 0.1271 223.0 0.0446 -5.45 -0.0480
Power law fit: Re—0-3¢ Rel:% Re0-60

Re Pz (Zsep) P:(0) max p; max Py,

150 0.1828 0.0600 0.4651 0.1527

400 0.2298 0.0607 0.5745 0.1517

1000 0.2999 0.0646 0.7005 0.1509

2000 0.3693 0.0682 0.8628 0.1593

3000 0.4208 0.0710 0.9459 0.1596

4000 0.4618 0.0731 0.9951 0.1575

5000 0.4978 0.0750 1.0261 0.1546

Power law fit: Re®34 Re24

triple deck theory are fully confirmed. As the Reynolds number increases, an increas-
ingly large pressure gradient does act over a decreasing region of the plate, triggering
separation.

We therefore move on to consider quantitative comparisons, for which we need
values for Uy and ¢ to determine the scalings in (5.20). We also need values to compare
to, which unfortunately are not known reliably; results of the three solutions of the

lower deck problem are summarized in Table 5.2.

5.5.1 Skin friction at the wall.

These are shown in scaled coordinates X', T' in Figure 5.3 for 150 < Re < 5000.
Numerical values of 7;(zsep) are given in Table 5.1. The skin friction near separation
scales in precisely the manner predicted by the theory. The best fit of a power law

1.05

relationship on the skin friction gradient gives 7,(zsep) ~ Re'"°, extremely close to

the triple deck exponent of 1. 7'(X') appears to have converged, at least to graphical



76

1000.0 f— T i 1 1 IIII] | T 1 i llfl| i 1 1 TIII:‘
- 3
N N
o —

r o

[o]

100.0 ¢ . E
C ]
b —
- o) -
i

10.0

T T TTTT0]

o
i bl

L
o]
1

1.0

T TTITT]
*
+
L1 41 el

T
+

Ol | b el Lo et ! 1 L 11
.

100 1000 Re 10000

[
o

Figure 5.2 Effect of Reynolds number on laminar separation
Here the Reynolds number increases by a factor of 100. The skin friction gradient at separation,
tyz(Zsep), i3 marked o. The adverse pressure gradient at separation is marked x. The maximum
adverse pressure gradient on the plate is marked +.
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Figure 5.3 Effect of Reynolds number on streamwise scales

The distance from the leading edge to the separation point is marked +. The distance
upstream from separation to the point of maximum pressure gradient is marked o. The
distance downstream from separation to the point of minimum skin friction is marked *.

accuracy, over the range —4 < X' < 6. It reaches a minimum behind the separation

0-60 close to the triple deck exponent

point, as predicted, which is proportional to Re
of 5/9. The main qualitative discrepancy is that it is concave upward for X' < —1;
but as the leading edge is still quite close (at X' = —5.6 at Re = 5000), this is
probably due to the influence of z=1/2 singularity there.

If we try to find values of Uy and g by matching to the known lower deck solution,
however, we immediately run into problems. Positioning the minimum correctly
requires U(,—4/9u10/9 ~ 0.5, and matching its value requires U&4/9p‘8/9 ~ 1.65 (using
values at Re = 5000), or Uy = 0.97, u = 0.54; these values give ~Tx(0) = 0.11, three
or four times too large.

In other words, no values of Uy and g correctly account for the main observed

features of the skin friction.
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Figure 5.4 Skin friction near separation in scaled coordinates.

Here Re = 150, 400, 1000, 2000, 3000, 4000, and 5000, and arrows indicate the direction of increasing
Reynolds number.
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Figure 5.5 Pressure gradient at the plate near separation in scaled coordinates.

See Figure 5.4 for caption.

Table 5.2 Properties of lower deck solution
Values from three calculations (Smith (1977), Korolev(1980) and van Dommelen and Shen (1983))
are compared. The maximum pressure gradient is attained between X = -3 and X = —4, and the
minimum skin friction between X = 6 and X = 8. The values from Re = 5000 are given in primed
coordinates, i.e., without factors of Uy and u (see (5.20)).

a -Tx(0) min T Px(0) max Py
Smith 0.44 0.033* -0.079% 0.073* 0.090*
Korolev 0.42 0.036* -0.078¢% 0.072* 0.086*
v. D. &S. 0.415 0.025* -0.079 0.072f 0.075
Re = 5000 0.045 -0.048 0.075 0.155
(at X' = -3) (at X' = -3.75)

tValue read from graph
* Slope read from graph

5.5.2 Pressure gradient.

These are shown in Figure 5.5. The pressure gradients scale approximately cor-
rectly in z, and maintain the same general profile in —4 < X < 6. The leading
edge singularity is seen to the left; however, once the Reynolds number is greater
than about 1000, the pressure gradient maximum has settled down and does not
seem to be influenced by the singularity. Again, we have qualitative agreement with

the theory: there is a pressure gradient maximum followed by a fall to zero behind
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separation.

However, throughout the whole range of Reynolds numbers, there remain three
major discrepancies. Firstly, pz(sep) is increasing faster than predicted rate (p; ~
Re%3%) compared to the predicted exponent 2/9). Secondly, the maximum pressure
gradient is about twice as large as the value at separation, instead of 5%-20% larger,
and it decays much too rapidly. Finally, there is no way that the positions of the
pressure gradient and skin friction extrema can both be scaled to agree with the
lower deck solutions.

If we discount the large maxima as caused by the proximity of the leading edge,
we might take Py, (0) = 0.075 to obtain the matching condition Ugo/gu"l‘i/9 = 0.97.
Together with T%,(0) = —0.045 or U§u~% = 1.36, we find Up = 0.67, 4 = 0.57. These
are plausible values, but this “matching” is hardly a good fit: nothing agrees except

the two values we have selected.

5.5.3 Distance to separation.

These are shown in Figure 5.3. They appear to have an exact power law depend-
ence on the Reynolds number: e, ~ Re3%. This is completely at odds with triple
deck theory, which predicts an exponent of —1/9. However, recall that this Re=1/9
dependence came from matching the Blasius boundary layer to the upsiream limit
of the interaction region (see (5.11)), and that the asymptotic sizes of this region,
given in (5.7), had already been found before we did that final matching. So it is
not implausible that the interaction region could develop at a lower Reynolds number
than that for the final behavior (5.19).

If we regard (5.19) as specifying the onset of the interaction region (unfortunately
only vaguely defined in the theory), we might expect a large component of order
X =Re*in Tgep- Indeed, a best fit of zsep to functions of the form aRe™Y9 1 bRe™"
gives v = 0.43, very close to 4/9. Under this hypothesis, significant departure from

straight line behavior in Figure 5.3 might not be seen until the Reynolds number is

in the range 10* to 10°.
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5.6 Higher order matching..

There are no values of the parameters Uy and u that can make the difference
between the computed profiles and the lower deck solutions less than a factor of
about two. But, since we have verified the main features of the free interaction, let
us relax our standards and assume that triple deck theory is valid. Up and p are
determined by the external flow, which sees only the shape and outer velocity of the
shear layer centered on the separating streamline ¥ = 0. These quantities seem to
depend only weakly on the detailed structure of the eddy. For example, we computed
a flow with stationary walls at both y =0, ~-1<z<landz =0, -1 <y < 1. The
extra downstream wall braked the eddy (v, was reduced from 0.014 to 0.009) and
made it fully viscous, but all the separation quantities in Table 5.1 changed by only
1-2%. Since the shape of the eddies is very similar to that of the Moore-Saffman-
Tanveer vortex with the same internal vorticity level, it seems reasonable to use that
vortex as a model of the external flow. Of course, the secondary eddy could have a
local effect not visible in Figure 4.2, which will change the constants; however, in the
MST vortices, Up and p depend very weakly on wy (at least for wg <~ 4).

We therefore investigate the consequences of taking wo = 2, Uy = 0.734 and
4 = 2a/3a = 0.493. |

In triple deck theory, all quantities ) are expanded in each deck as a power series
in ¢; i.e., Q = e™(Qo + Q1 + €2Q2 + . ..). Matched asymptotics gives n, but to date,
the lower deck problem has only been solved to first order: only ()¢ has been found.

There is no reason to believe that the higher order coefficients @1, @2, ... are
small compared to @, and their effect may be considerable, because ¢ is so large
(5000~1/° = 0.388). In Figure 5.6 we have plotted T'(—2), T%,(0), and min T' against
€. Remarkably, for Re > 1000, they all seem to be linear functions of €. The same
behavior is seen in Figure 5.7 for the pressure gradients at five values of X'. We thus
make the guess that the effect of second and higher order terms is small, and linearly

extrapolate to £ = 0 to determine Qf and @ in each case.



0.4 ' T T l T T T T ; T T

: 5

S =L ]

2 .

D -t - :

0.2 F . \ :

- :

+

- I

r —

Ak 0

F .............. *k k¥ * * :

e R R ;

D—f| :

’- —

: ]

0.0 | ]

- c00 @ ° ° o E

NN . ) - :

—_001 _ : ' L l 1 ! J J ] ] L
0.0 0.1 0.2 0.3 0.4 0.5 0.6
~ 1
e = Re 9

Figure 5.6 Second order fit to skin friction
Here ¢ = Re~'/?, and results are given for 150 < Re < 5000. minT" is given by o. T7(-2)/2 is
given by *, and —4T%,(0) by +. The straight lines are the linear least squares fits through the four
highest Reynolds numbers. At € = 0, the extrapolated value is compared to the lower deck solutions
of F.T. Smith (marked S) and van Dommelen and Shen (marked D).
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Figure 5.7 Second order fit to pressure gradient

See Figure 5.6 for caption. Pk, is given for X’ = =4, -2, 0, 2, and 4, shown by A, +, *, o, and
x respectively. The extrapolated values are compared to the lower deck solution at X’ = —2 and
X' =0.
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5.6.1 Skin friction.

We find min T§ = —0.090, or min Ty = —0.078, exactly agreeing with first order
triple deck theory. The minimum occurs at X' ~ —3.4, or X ~ —6.5, which also
agrees exactly.

Linear extrapolation of the skin friction gradients at separation, shown as + in
Figure 5.6, gives — T,y = 0.066, or —Tx¢ = 0.030, which is bracketed by the triple
deck results for this quantity, 0.025, 0.033, and 0.036. At least the error is no more
than about 20%.

Carrying out the procedure at different values of X' also gives consistent results,
as shown in Figure 5.9. This good agreement increases our confidence in the linear

extrapolation, i.e., in ignoring possible higher order terms.

5.6.2 Pressure gradient.

Here the numerical agreement is less good although the procedure does reduce
the errors considerably. It turns out that the maximum at X' ~ —3.5 is a higher
order effect, as is the observed rapid decrease through separation. Py,(—4), given by
circles in Figure 5.7, has just started to decrease at the highest Reynolds numbers
considered. It cannot be reliably extrapolated to € = 0, but clearly its limit is less
than Pyo(—2).

At X' = —2 and 0 we find Py, = 0.150 and 0.138, respectively, or Pxo = 0.099
and 0.091, giving a maximum pressure gradient about 9% larger than the value at
separation. These values are larger than the triple deck values by 15-25%, although
this error is much smaller than in our first order matching.

At X' = 2 and 4 the errors are much less. The overall agreement is shown in

Figure 5.10.

5.6.3 Distance to separation.

After the above successes, we might hope that a higher order matching will also

explain the calculated values of zsep. In this case, as noted in §5.5.2, we expect large
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Table 5.3 Extrapolation to ¢ =0

As explained in §5.6 and Figures 5.6 and 5.7, a linear best fit was

made of various quantities against €, through Re = 2000, 3000,
4000 and 5000. The line is then transformed to standard lower
deck coordinates using Uy = 0.734 and p = 0.493. Qp isthee =0
intercept and @ is the slope.

Quantity X Qo @1

T -3.82 0.113 0.078
Tx 0 -0.030 0.025
min T —0.078 0.092
T 7.65 0.072 0.082
Px —7.65 ~ 0.08 >0
Py —3.82 0.099 —0.039
Px 0 0.091 —-0.107
Px 3.82 0.049 —0.065
Px 7.65 0.021 —0.027

contributions of order €%, so a linear extrapolation is not sufficient. In addition, the
first order term, given in (5.19), is so small compared to the higher order terms that
it is swamped by the errors in the calculations.

When Uy = 0.734 and p = 0.493, (5.19) gives zgep = 0.0325¢. A fit to zgep of the
form ac + be* gives a = 0.14 and b = 3.26, but this does not explain all the variability
in the data. Unfortunately, fitting a full fourth order polynomial gives unrealistic
results (with, for example, a < 0). Our results are simply not accurate enough to
capture this many terms in the expansion of Zgep.

One plausible, accurate fit was obtained by dropping the quadratic term:
Tsep = 0.0501¢ + 1.2042¢% + 1.6244¢* + e, (5.23)

where |e| < 0.0004. This is shown in Figure 5.8. Its estimate for the coeflicient of
the linear term is the right order of magnitude, but it would be extremely hard to
obtain a better matching from finite Reynolds number calculations, or even to prove
or disprove (5.23): the exponents are just too small and the sought after effect is at

too high an order.
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Figure 5.8 Distance to separation

The distance from the leading edge to the separation point is shown for 150 < Re < 5000. The
solid line is a plausible fit based on triple deck theory, given by (5.23).
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Figure 5.9 Skin friction compared with triple deck theory

Results are given in the standard lower deck coordinates X, T. The solid line is the
Re = 5000 calculation (see Figure 5.4 for lower Reynolds numbers). The large dashes are
van Dommelen and Shen’s lower deck solution, and the small dashes are F.T. Smith’s. The

" circles represent a linear extrapolation from the finite Reynolds number calculations. The
value at X = 6.5 is the extrapolated minimum skin friction.

5.7 Discussion.

Second order matching removes all the qualitative disagreements (noted in §5.5)
between the calculated flow near separation and the lower deck results. It also reduces
the quantitative differences to about 20% or less when plausible values of Uy and U
are used. The final comparison between our results and triple deck theory is shown
in Figures 5.9 and 5.10.

This procedure could never be used to find Up and x. In the MST family of
vortices, dUp/dwy < 0 and du/dwy < 0. All the quantities of interest (see (5.20)-
(5.22)) have a positive power of Uy and a negative power of K, so any system of
equations designed to match them would be very ill-conditioned.

Our whole procedure that leads to a numerical confirmation of triple deck theory
is based on the linear extrapolations in Figures 5.6 and 5.7. If higher order terms are

not, in fact, small, then the extrapolation is not valid and the agreement is accidental.
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Figure 5.10 Pressure gradient compared with triple deck theory
See Figure 5.9 for legend.

(Note that the range of € over which the linear behavior is observed is so small that
a small quadratic effect would look like a linear one.) However, separation at the
Reynolds numbers considered certainly does not match the first order theory.

A by-product of the extrapolation is an estimate of the second order correction
at that point. These are given in Table 5.3. T} is everywhere positive (about 0.08)
and has a fairly sudden increase near X = 0. Py is initially positive, changes sign
at X ~ 5, and has a large maximum near X = 0. These predictions can be tested
when the lower deck problem has been solved to second order. In the case of Tsep,
only the guess that its quadratic term is small could be checked.

What is the source of the second order corrections? Obviously, there are the con-
tributions induced by the first order terms, and terms from the regular perturbation
expansion of the upstream boundary layer. But several important effects only enter
at higher order. One is from the external flow: it separates at Tsep, but Uy and c are
evaluated from the flow separating at the leading edge. The MST vortex separating
at L = 1 — Teep has separation speed LUy and streamline Ysep ~ L™Y2c23/2 A naive

application of (5.22) would then give p, ox L1%/?, so this can be a substantial effect.
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To find it, (5.23) indicates that we would have to continue to fourth order.

The inviscid pressure gradient at separation is p, = U§(cz™1/2 + % + O(z1/?);
i.e., it proceeds in powers of €2. Although the free interaction induces terms of €2,
¢~1 and every higher order in the interaction region, clearly the constant term in p,
will have a large influence which is only captured at third order. For example, in the
irrotational corner eddy, p; does not even start increasing until z ~ 0.05.

For these reasons, the linear dependence on ¢ in our results is rather surprising,

although the close agreement with the lower deck solution stands in its favor.

5.8 Appendix: the stagnant corner eddy.

The Prandtl-Batchelor corner flow can be calculated using Kirchoff-Helmholtz
free streamline theory in the case wo = 0 (and hence u = v = 0 in the eddy). The
flow is assumed to separate at z = 1, y = 0 and reattach at z = 0, y = 1. The shape
of the separating streamline and the velocity there are initially unknown.

The speed on the separating streamline is found to be Uy = 3/4, and the complex

velocity potential w at a point z = z + 1y is given implicitly by

z= A4 -:1;,\3, (5.24)

A= i\/w +1/w? - 9/16, (5.25)

and positive square roots are taken on the positive real axis. The separating stream-

where

line is given by Sw = 0 and |w| < $; then (5.24) reduces to 3 4+ 4?3 =1, or
y ~ (3(1 — 2))3/? as z — 1. So the constant ¢ in (5.3) is 3(2)*/? in this case.
The velocity v on £ > 1, y = 0 is given implicitly by z = u + %U{}u‘“" , from which

the behavior (5.2) can be retrieved.
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Chapter 6

High Reynolds number flow over a finite flat
plate

6.1 History and overview.

Determining the flow over a finite flat plate aligned with a uniform free stream is
a classic problem in boundary layer theory. Unlike the flow past a semi-infinite plate,
which is now understood and is discussed in Van Dyke (1964), the finite plate is
considerably more complicated because of the multistructured wake and its upstream
influence. Van Dyke also reviews this problem, but our brief stﬁdy suggests that
previous workers were too hasty to declare the problem closed.

Let the free stream be given by u = 1, v = 0 at infinity, and let the flat plate lie
on the r axis between z = 0 and = = 1; then the Reynolds number R is given by 1/v.
The leading order behavior of the boundary layer was given by Blasius (1908): the
local skin friction is cg; = A(z/R)~Y/2, where A = .33206, and the normalized drag
coefficient is Dp; = 4AR~Y/2. This is valid when z >> R~/2; close to the leading
edge, the boundary layer approximation is not valid, and a full Navier-Stokes solution
is required, given by Veldman and van de Vooren, (1974), who found that the skin
friction near the leading edge is about 13% larger than the Blasius value. We express

the skin friction and drag relative to their Blasius values; i.e.,
r=-2L and D= M.
cBl Dgi

Goldstein (1930) analyzed the wake just behind the plate, and found a two-tiered
structure, consisting of the continuing, constant Blasius layer, and an inner layer,
required because of the change in boundary conditions at ¢ = 1, in which u(z,0)
grows like (z — 1)1/3, The far wake has a similarity form, given in (6.3) below.

Kuo (1953) attempted to find the next term in the boundary layer of the main

part of the plate by assuming that the vertical velocity outside the boundary layer
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is zero in £ > 1. The displacement effect of the first order boundary layer on the
external flow can then be calculated, and finally the boundary layer equations re-
integrated with this new external flow. This procedure gives the second order skin

friction and drag as
r=14RY?K(z), D=1+3.10R"12 (6.1)

He found good agreement with observed and calculated values of the drag. This
agreement, however, appears to be accidental: in the first place, the viscous region
near the leading edge also contributes an O(R~1/?) term to the drag, (as noted by
Van Dyke (1964)), but more seriously, K(z) is too small by a factor of at least 2
over most of the plate, say in < 0.8. K(z) has a logarithmic singularity at z = 1;
thus, most of its integrated skin friction comes from near the trailing edge, which
is just where Kuo’s approximation is most questionable. The agreement in drag is
thus a numerical coincidence, the deficit in skin friction over most of the plate being
balanced by an excess caused by the singularity.

The theoretical situation was revolutionized by the independent discovery by
Stewartson (1969) and Messiter (1970) that the upstream influence of Goldstein’s
sublayer is of streamwise extent O(R~%/®), and is described by a triple deck estab-
lished around the trailing edge. Full details are available elsewhere, for example in
Stewartson’s excellent review (1974). The lower deck equations are the same as those
found in laminar separation, but the boundary conditions at y = 0 and as z, y — oo
are different. Also, because the limiting solution is known, there are no free parame-
ters left in the equations or the scalings. This simplifies matters considerably, and the
lower deck equations were solved by Jobe and Burggraf (1974), and later by Veldman
and van de Vooren (1974) and by Melnik and Chow (1975), who found

r=1++/zT(X), D=1+200R"%8, (6.2)

where X = A5/4R3/8(z — 1) is the inner length. (The /Z term arises from our

definition of 7). They, too, reported excellent agreement with the drag,‘down to
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a Reynolds number of 1 (!), and said that the numerical Navier-Stokes solutions of
Dennis and Dunwoody, (1966) supported the existence of an R~3/8 region, and even
confirmed the value of T'(0), which is difficult in view of the singularity in skin friction
present at the trailing edge (on the smallest, O(R~3/4) scale analyzed by Stewartson
(1968)). Since (6.1) and (6.2) are in conflict, they suggested that the O(R™1) term
in (6.1) was canceled by further terms in the triple deck expansion.

Now, at a Reynolds number of 100, the leading edge of the plate is at X = —1.84,
not its asymptotic value X = —oo. Comparing the actual skin friction with the triple
deck prediction shows that the latter is also too small by a factor of about 2. The
accidental agreement in drag must come from the inclusion in the integrated skin

friction of the range from —oo to the leading edge.

6.2 Computations.

The skin friction results of Dennis and Dunwoody are sufficient to show that
all is not well, but it is hard to extract detailed information from their graphs. We
decided to solve the Navier-Stokes equations for a range of medium Reynolds numbers
using our existing multigrid program. One difficulty was that the desired high order
correction to the skin friction is caused by the upstream influence of the wake, which
must therefore be well represented in the solution.

The downstream boundary condition for the vorticity is not crucial, because the
equation governing the vorticity is largely parabolic in the wake, so errors made
downstream decay exponentially upstream. We used w; = 0 in the wake and w = 0
elsewhere. The stream function is more important—imposing the free stream condi-
tion would violate conservation of momentum—and we use the Oseén wake, given by
Imai (1951). It has been pointed out by Fornberg (1980) that the Oseén wake is of no
practical use in finding the far field of flow past a bluff body, because in addition to
the narrow wake there is another large irrotational effect due to the trailing eddies.
However, these are not present in our problem, so we expect Imai’s approximation to

apply at modest distances from the plate.
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The computational coordinates are (£, 5) as in the corner flow problem. The
upper half plane maps into £ > 0, 0 < < 7, so the plate length is 2. (All our results
have been translated into the plate length 1 case.) The first three terms of the far

field expansion of the stream function can be written
Y=o+ 1 + ¥
Yo=Yy
$1. = ~Cp (erf(Q) ~ 0/)

(VEert(v3Q) - exp(~Q)ert(@)) — 4 exp(~Q?)

(6.3)

___Cb
Y2 = _QﬁuP

where

P = (r/v)"? cos(8/2),
Q = (r/v)/*sin(6/2),
A is an unknown constant, and (r, ) are polar coordinates for (z, y).

This apparently does not agree with the formula used by Dennis and Dunwoody
(1966), but it can be shown to be equivalent in the wake region to the result of Gold-
stein (1930). He found that the far wake merged smoothly with the near similarity
wake if the origin for the former were = 0.48. This is close enough to z = % that
we may take the origin for the Oseén expansion at the center of the plate, and use
(6.3) directly. Any discrepancy can be absorbed in the constant A in the second order
term.

Cp = v Jg wsinndy is recalculated after each relaxation and the first two terms
of the expansion are imposed as a Dirichlet condition at a fixed value of £ = (.
Then £, was increased until the flow had converged adequately.

The drag converged rapidly, since its main contribution comes from the singularity
at the leading edge. T was more sensitive, but did not change appreciably when the
downstream boundary was moved from 8 to 20 plate lengths behind the trailing edge.
As far as could be determined, 7 agreed with the results in Dennis and Dunwoody.

Initially, with o = 3.5 and a 192 x 160 grid, 7 appeared to have converged,

but the vorticity in the downstream wake did not match its expected asymptotic
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values. This was because the grid stretching downstream caused the wake to diffuse
too quickly. Thus, it was necessary to locally refine the grid once in the wake by
using a one level finer grid there, which cured the problem. For R =600, the highest
Reynolds number considered, accuracy was checked on a 320 x 224 grid with a 440 x 50
refinement in the wake. We estimate that the relative error in the skin friction in this
calculation is about 0.3%; however, we are mainly interested in the higher order
correction, a small effect: this has a magnified relative error of about 2%. As in

Chapter 3, the errors at smaller Reynolds numbers are much smaller.
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Figure 6.1 Velocity profiles in the wake

Here R = 200 and the solid lines are the velocity profiles at z =1.5, 2.5 and 3.5. The
horizontal scale is the same for z and u. The dotted lines show the first order Oseén wake
and the dashed lines show the second order wake with 4 = 0.

Our main interest in not in the wake, but it can be checked against the Oseén
expansion given above. This is done in Figure 6.1 for R = 200 at three downstream
positions, for the two and three term expansions with 4 = 0. (A4 # 0 did not
significantly improve the agreement). Clearly the results are consistent with the
Oseén wake. The near wake is more problematical, and in fact there is no clear
region in which the u(z,0) ~ z1/3 Goldstein similarity solution is evident. This is
because close to the trailing edge, the full Navier-Stokes equations apply and instead

we see u(z,0) ~ z!/2. The expected scaling (see §6.4 below) was verified and we find
u(,0) = Re/*X1/%(0.46 — 0.027X,e + O(X2)), (6.4)

where Xie = Re3/4(x -1).
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Table 6.1 gives the actual and relative drag coefficients, and 7 is shown in Figure

6.2 for R =25, 50, 100, 200, 400 and 600. Notice that the skin friction is still more
than 12% larger than the Blasius value even at R = 600. Various features are evident,
which are discussed tentatively below. However, just as it is easy to err in considering
only integral properties like the drag, so it is easy to mistake one weak asymptotic

feature for another.

Table 6.1 Drag of a finite flat plate

R Cp D

25 0.4126 1.5530
50 0.2701 1.4379
100 0.1788 1.3460
200 0.1197 1.2742
400 0.0807  1.2145
600 0.0642 1.1847

6.3 The leading edge.

The increase in 7 near the leading edge, which is sharper for higher Reynolds
numbers, is believed to be a local viscous effect identical to that seen in the semi-
infinite plate, as noted by Van Dyke (1964). Although formally confined to the viscous
length scale R™!, it is still about 0.05 at Rz = 100, which is why it shows up here.
The amount of increase can be taken from the Navier-Stokes solution for flow past a
semi-infinite flat plate of van de Vooren and Dijkstra (1970); the values we used are
given in Table 6.3 at the end of the chapter. Sure enough, if this effect is subtracted
off, 7 looks similar near the leading edge for all Reynolds numbers—compare the
leading edge region in Figures 6.2 and 6.3. The remaining discrepancy is thought to
be a higher order effect, due to the fact that the external velocity is not exactly 1 at

the leading edge.
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Figure 6.2 Higher order skin friction on a flat plate

r= (skin friction)/(Blasius skin friction) is shown here for R =25, 50, 100, 200, 400, and
600; 7 decreases with increasing Reynolds number.

6.4 The trailing edge.

Locally, the square root singularity of Carrier and Lin (1948) applies, which ex-
plains the blow-up in Figure 6.2 as z — 1. However, it has been shown to apply only
in a region of extent R~3/%, and, in fact, on that scale the flow rapidly converges and

is found to be given by
cf = RY?| Xe| 7% (0.46 +0.17| Xee] + O (X)) (6.5)

where X = (z — 1)R%*. (The coefficient of the quadratic term is about —0.027).
Stewartson (1968) solved the linearized problem and found the constants in (6.5)
to be 0.59 and 0.15. (Since this region is entirely contained in the innermost layer
of the triple deck, his linear shear A has been replaced here by the increased value

1.343 x 0.3321 due to the triple deck). The equality of the constants in (6.4) and (6.5)
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can be shown from the Carrier-Lin solution ¢ = Ar%/2(sin 160 + sin %0), where r and
6 are polar coordinates measured from the trailing edge.

The effect in (6.5) is significant out to Xie ~ 2.8, which is similar to the extent
seen in the local Navier-Stokes solution of Schneider and Denny (1971) at R = 10%,
although they did not fit a singularity. This corresponds to z = 0.91 at R = 100,
and z = 0.98 at R = 600. The drag due to (6.5) is difficult to calculate because
of the smooth merging with the rest of the flow. However, the increased drag due
to the ezcess skin friction is clearly positive, in contrast to the —0.11R—5/4 given by
Stewartson; we do not know the reason for this discrepancy.

The trailing edge singularity frustrates efforts to find the rest of the flow near
there. It cannot simply be subtracted off (like the leading edge) because it is not a
small effect, and is not known a priori. We shall simply have to rely on its small

lateral extent not to confuse matters.

6.5 The triple deck assumed.

Recall from (6.2) that to first order, the triple deck effect in 7 is of constant
magnitude and O(R~%/%) spatial extent. It is clear from F igure 6.2 that not all the
variation is going to be explained by this. At z = 0.2, for example, the relative effect
VZ T(X) is only about .03-.04. Consequently the first step was to assume that the
triple deck was in fact present, subtract it off, and see what was left. The values of
T(X) used are given in Table 6.3 at the end of the chapter. The remainder turns
out to be proportional to R~1/2 everywhere on the plate, which would correspond
to an overall displacement effect of the boundary layer and wake. This is shown in
Figure 6.3. Over most of the plate there is only a small additional decrease of about
8% as R increases by a factor of 24, and a small increase closer to the trailing edge.
The trailing edge singularity is seen to the right. The data thus suggest that other
effects, such as successive terms in the triple deck expansion (the first of which would

be O(R~/8)), must be relatively small.
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The remainder when the leading edge and triple deck effects are subtracted from = is
found to behave like R=1/2. It is shown here scaled by R/2, where R is as in Figure 6.2.
Arrows show the direction of decreasing R. (Slow wiggles are caused by interpolation of
the subtracted functions.) The trailing edge singularity is seen to the right.

The dashed line is Kuo’s displacement effect K(z).

6.6 The triple deck confirmed?

To see if there was a priori evidence in the data for a trailing edge region of the

triple deck kind, a least squares fit to 7 was made of the form
m(zi, Bj) = 1+ B; g(zi) + VR h(X(2i, ), 1<i<N,1<j<p, (6.6)

where X = A/4R*(z — 1). The unknowns are the displacement effect g(z;) and the
triple deck effect 2(Xy), 1 < k¥ < M. h is linearly interpolated from its values at X k
to get a value at X (z;, R;). This helps to couple the unknowns if M is not too large.
The z;’s and X}’s are equally spaced. Of course, (6.6) is already quite restrictive,
(i.e., the R dependencies of the effects are assumed), but we don’t want to have too
many unknowns and overfit the data. With @ = 3/8, the mean error in (6.6) is .0025,
and we do indeed find the triple deck effect: lh(X) - T(X)| <.005 for -2 < X < 0.
At large X there are less data and the error is larger, as it is at X = 0, since here
h has been extrapolated, and we found £(0) = 0.32 as compared to T(0) = 0.343.
Possibly a siﬁﬁlar procedure was used by Dennis and Dunwoody (1966) as quoted by
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Figure 6.4 Least squares fit of the triple deck effect

The points are the fitted values A(X}:), 1 < k < 12, and the solid line is the triple deck
solution of Jobe and Burggraf (1974).

Jobe and Burggraf (1974). The fit is shown in Figure 6.4 when N = 19, M = 12,
p =4 and R; =100, 200, 400 and 600.

However, a fit with comparable mean error is also possible with other values of o,
vincluding a = 0! Although this is rejected on theoretical grounds (A would then be
part of the first order boundary layer), it does appear that there is no conclusive evi-
dence of a region that scales with R~%/8 over this range of Reynolds numbers. There
is stronger evidence if we also consider the data obtained by Schneider and Denny
(1971), who used an interactive boundary layer approach at R = 10°, apparently
applied in the range 0.5 < z < 2. At this Reynolds number, displacement effects are

negligible, and their calculated pressure disturbance covers an extent consistent with

the triple deck.

6.7 Decomposition of friction and drag.
Our final proposed approximation is now clear. For (1 — z)R%* less than about

2.8, cy is given by (6.5); away from there, we have
r~ 1+ L(Rz) + VzT(X) + R~%d(z), (6.7)
where L is the viscous contribution from the leading edge and we suggest that d(z) is

a displacement effect. These competing effects are shown in Figure 6.5 for R=600—

clearly they are all significant. The contribution to the drag from L is asymptotically
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Figure 6.5 Decomposition of skin friction for R = 600

2.326R~1. (Van Dyke (1964) apparently includes only half of this). Relative to the
Blasius drag, this is. 1.75R~1/2. The relative drag due to d(z) is 1.49R-Y/2. The

contribution from the triple deck is

1/1 T(X(z)dz = — [ T(X)dX
2 Jo T 2X Jx(0)
1 [ (0 X(0) o
~ 5% (/_oo T(X)dX - /_oo 0.3106(—X) dX) as R — oo
= 2.00R™%/® ~ 2.93R~1/2 (6.8)

So, combing the four effects in (6.7), we have
D ~1+2.00R™%® 4+ 0.31R™1/2, (6.9)

Table 6.2 shows that all three effects are significant for moderate Reynolds num-
bers. The reason for the good agreement with the drag found by Jobe and Burggraf
(1974) is now clear: the terms of order R~!/2, arising from three different sources,
almost cancel, and their total is much smaller than the R~3/2 term even for moderate
Reynolds numbers. Of course, (6.9) is not formally accurate to the order written
because there are also contributions from the next terms in the triple deck expansion
which are O(R™Y/ 2). However, as noted in §6.5, inspection of the skin friction shows

that these are expected to be small.
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Table 6.2 Contributions to the drag.

Effect R =100 R =200 R =400 R =600
actual drag 1.346 1.274 1.215 1.185
Blasius 1 1 1 1

triple deck 0.094 0.084 0.074 0.068
leading edge 0.103 0.084 0.066 0.057
remainder 0.149 0.106 0.075 0.060

power law fit to remainder: R~9-%0

6.8 The displacement effect.

It is not possible to be absolutely sure that we have identified the correct asymp-
totic behavior of 7 over the whole range of z based on a study of a small number
of finite Reynolds numbers, although Schneider and Denny’s study confirms that we
have not misidentified the triple deck. The main problem concerns the cause of d(z).
As seen in Figure 6.3, it is completely different from the displacement effect calculated
by Kuo (1953); in fact, it is roughly constant over the whole plate (away from the
trailing edge singularity). We have confirmed Kuo’s power series expansion of the
boundary layer via a direct integration of the boundary layer equations. It is true
that the jump in vertical velocity at ¢ = 1 assumed by Kuo is in fact smoothed out by
the third term in the triple deck expansion, thus removing the logarithmic singularity
he found in K(z); however, away from the trailing edge his analysis should still be
valid. Either his approximation that the vertical velocity is zero in z > 1 is not valid,
and the slow broadening of the wake downstream makes the “sink” effect of the finite
plate less severe or local (triple deck) and global effects are so hopelessly intermingled
at these moderate Reynolds numbers as to render our decomposition suspect. The

computation of T'(X) in §6.5 remains in its favor, however.
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Table 6.3 Magnitudes of leading edge and triple deck effects
Values taken from van de Vooren and Dijkstra (1970) and Jobe and Burggraf (1974), respectively.

].Oglo R.'E 0 0.5 1 1.5 2 2.5 3
L(Rxz) 0.1524 0.1518 0.1316 0.0901 0.0488 0.0211 0.0087

-X 0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8
T(X) 0343 0266 0.216 0.182 0.160 0.140 0.124 0.114 0.102 0.092

-X 20 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
T(X) 0.086 0.078 0.072 0.066 0.062 0.058 0.054 0.050 0.048 0.046
T ~ 0.3106(—X)~%/3% as X > oo
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Chapter 7

Suggestions for further research

Our experience with multigrid has been similar to that of others: it is fairly
easy to get a converged solution of some sort, but harder to get solutions at higher
Reynolds numbers, and to pinpoint the area that is limiting the convergence rate.
Achi Brandt’s view is that at large Reynolds numbers, distinct phenomena may cause
different problems in different parts of the flow field, so that to achieve increased
performance it will be necessary for the program to recognize the local nature of the
flow (e.g., inviscid, a shear layer, or fully viscous) and to take action accordingly.

A frustration of our work is that we have not been able to identify the cause of
convergence failure at Re = 6000. We can only reiterate what is not at fault.

It is not a coarse grid problem, unless im)erting L rather than L on the coarsest
grid commits a systematic error: removing the coarsest or the two coarsest grids gave
identical results. The linear advection-diffusion equation considered in Chapter 2 can
be solved with an asymptotic convergence rate of 0.5 at any Reynolds number, so
we suspect that some aspect of the flow field itself is the culprit. The cell Reynolds
number in the main part of the eddy, admittedly only about 5 in the undriven flows
of Chapter 3, does not seem to be causing problems, as the driven flows of Chapter
4 converge with much higher cell Reynolds numbers (15-20) throughout the flow.

An algorithm in which artificial viscosity is used both in smoothing and in comput-
ing the defect also shows degraded convergence at about the same Reynolds number.
This suggests that one potential problem—wiggles due to central differencing in the
defect—has not yet set in. This is also indicated by our observation that limiting
the defect corrections to the interchange between the two finest grids never improves

convergence.
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Thus, a good problem to study is the effect of unaligned internal shear layers on
the convergence of a two grid cycle without defect correction.

Although our results could have been obtained with other methods, multigrid has
given us the accurate results that made possible the confirmation of the Sychev model
of laminar separation.

The results of Chapter 3 suggest three main questions on the nature of high
Reynolds number flows:

1. The vorticity is substantially constant in the main part of the eddy by Re = 3000.
Boundary layer theory could in principle give the limiting value of this plateau
vorticity wp by a consistency argument: the boundary layer must be continuous
after being integrated around the eddy. However, wy is still increasing almost
linearly at Re = 5000, and even more rapid increases are observed in other flows
(Fornberg 1985, Milos, Acrivos and Kim 1987). What asymptotic process controls
the value of wg?

2. What is the asymptotic structure of the sequence of eddies that forms in the cusp,
and do they have any effect on the primary separation?

3. What is the asymntotic structure of the colliding shear layers at the rear of a
Prandtl-Batchelor flow?

The next two chapters are more conclusive. Although we have certainly demon-
strated that simple Prandtl-Batchelor flows are indeed the limit of viscous flows at
infinite Reynolds number, if the boundary conditions are chosen appropriately, the
flows are unlikely to be of interest for themselves except for possible theoretical at-
tention because of their simple structure.

Chapter 5 substantially confirms the triple deck model of laminar separation. It
also suggests that the reason its predictions are not observed in other flows is that
higher order effects can be comparatively large at the Reynolds numbers used in
practice.

The conclusion of Chapter 6, on the flow over a finite flat plate, is simple: don’t
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believe everything you read. Hasty comparisons of only one flow quantity (the drag)
gave accidentally good results in previous studies. We increase the dimension by one
and study the skin friction, and in so doing may be falling into the same trap (but at
a higher order). Nevertheless, the displacement-like effect seen in the boundary layer

is real and substantial and remains to be explained.
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