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ABSTRACT 

This thesis deals with two problems. The first is the deter-

mination of \-designs, combinatorial configurations w hich are essen-

tially symmetric block designs with the condition that each subset be 

of the same cardinality negated. We construct an infinite family of 

such designs from symmetric block designs and obtain some basic 

results about their structure. These results enable us to solve the 

problem for A. = 3 and A. = 4. The second problem deals with con-

figurations related to both \ -designs and (v, k, A. )-configurations. We 

have (n-1) k-subsets of [ 1, 2, ... 'n} ' sl' ... 'sn-1 ' such that 

S . n S . is a A.-set for i f:. j. We obtain specifically the replication 
l J 

numbers of such a des ign in terms of n, k, and A. with one exceptional 

class which we determine explicitly. In certain special cases we set-

tle the problem e ntirely. 
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I. INTRODUCTION 

For the purposes of this thesis, a A-design is a (0, 1) square 

matrix A of order n such that 

( 1. 1) 

t where A denotes the transpose of A, J is the n Xn matrix of ones, 

k. >A > 0, and not all the k. 's are equal. 
J J 

First definitively studied by de Bruijn and Erdos with A= 1 [l ], 

they have received new interest with the following theorem of H. J. 

Ryser [7]: 

A (0, 1} square matrix A satisfying ( 1. 1) with 

k. >A > 0 either has all its row and column sums 
J 

equal (and hence is a balanced incomplete block de-

sign) or has precisely two row sums r 1 and r 
2 

with r 1 + r 2 = n + 1 . 

Along with this result, R yse r also established that apart from row 

and column permutations there is precisely one 2-design. This de-

sign is of order 7 and is of a class of A-designs, called H-designs, 

constructed frorn the symmetric block design with parameters 

( 4A - 1 , 2A , A. ) • 

The combinatorial interest in matrices of this type satisfying 

(1. 1) i s clear. They represent (i.e., are incidence matrices for) the 

following configuration: we have n subsets s 1, s
2

, ... , Sn of 

[l, 2, ... , n} with the feature that s.n S. is a A-set for if. j and the 
1 J 

S. 's do not all have the same cardinality. 
J 

In Chapter II of the present work we will generalize Ryser's 

H-design construction to an arbitrary (v, k, A )-configuration. In 
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Chapter Ill we will establish some properties of \-designs which will 

enable us, in Chapters IV and V, to determine all 3-designs and all 

4-designs. 

Chapter VI then varies the problem slightly to consider the 

following combinatorial situation. We have n-1 subsets S 1, s 2 , . .. , 

S 
1 

of [ 1, 2, ... , n} with the feature that S. (I S . is a \-set for i :/:. j 
n- i J 

and each S. is a k-set. We show here the representing matrices with 
l 

one exceptional class have two row sums, determined explicitly in 

terms of n, k, \. We can say much then about the structure of such 

configurations and in special cases (k = 2\ , \ = 1, n = 2k) determine 

all such designs modulo the determination of related (\J, k, \) -

configurations. The \-designs of Chapter I play a role here. 

The exceptional class is determined explicitly modulo the 

determination of Hadamard . matrices. 
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II. TYPE I A- DE SIGNS 

Theorem Z. 1 

If there exists a (v, k, A. ')-configuration, not of the form (4A. - l , 

ZA. -1 , A-1) , then there exists a A- design with A= k - A 1 and row sums 

v -k and k + l. 

Proof: L et B be the incidence matrix of the (\I , k, A 1 )- configuration, 

written so that column one has its k ones in rows one through k, i.e . , 

1 

A l 

B 
1 

= --~I 
----

AZ 

ci ) 

where A
1 

is of size kXv - 1 and AZ is of size v-k by \J-1. Now form 

the matrix A : 

0 
A ' 

1 

A 0 
= - --

1 

Az 

1 

Then A is a A-design with A = k-A 1 as follows. AZ evidently has 

column sums k - A' so that column one of A has inner p r oduct k - A' 

with each of Z through v. Consider then columns i a n d j of A with 

i ~ j ~ Z. Suppose the corresponding columns in A 1 have inner prod

uct t , then these col umns in Az have inner product A' - t and in A I 
k-ZA '+t so that columns i and j of A have inner product k - ZA '+t+A 1-t 

= k - A' . A has two col umn sums v-k and Z(k - A ') . These are distinct 

precisely if we have avoided the design with parameters (4A - l , ZA-1, 

A-1 ) . The row sum claim in the theorem is obvious. 
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Definition 2. 1 

A A -design obtainable via the construction given in the proof of 

theorem 2. 1 will be called a type-I A-design. 

Remarks 2. 1 

a ) The type-I A-design obtained from the (4A-l, 2A, A)-configu

ration is indeed one of Ryser 1s H-designs. 

b) The above construction when applied to the (excluded) 

(4A- l, 2A- l, A -1 )- configuration will simply produce the symmetric 

block design with parameters (4A-l, 2A, A) . 

c) For a given A there are at most a finite number of parameter 

sets for a type-I A -design. This is because there are at most a finite 

number of (v, k, A 1 ) triples with k-A. 1 = A. 

d} Let A be a type-I A-design derived from the (v, k, A 1 ) matrix 

B. A has (n-1) columns with sum 2A and one exceptional column. 

To obtain the A -design corresponding to the complementary block 

design to B one need only replace this exceptional column by its 

complement. 
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III. PROPERTIES OF A- DESIGNS 

Throughout the discussion A will denote a A-design of order n 

with entries a . . . 
l J 

Its row sums will be denoted r 1 and r
2 

with 

n+l n+ l 
rl > -2-' r2 < - 2- · e 1 will denote the number of rows of A with 

row sum r 1 and e 2 = n -e 1 • k! will denote the number of ones in 
J _,_ 

column j of A which occur in rows w ith sum r
1
, and k·:· = k.-k! 

J J J 

is the /h column sum of A. Following Ryser we set where k. 
J 

r
1
-l 

p = r-:-1 ' x. = 
2 1 

r . -1 
1 

-n:T 

n 
u = -A+ L 

i= 1 

2 
x. 

1 
(3. 1) 

The proof of Ryser 1s theorem is essentially the establishment of the 

relation: 

2 
x. x. - u 

1 1 

from which we have 

Xl + X2 = 1 and 

From (3. 2) u = x.(x. - 1) or 
1 1 

u = 
( r

1
- l)( r

1
-n) 

2 (n-1) 
= 

= 

2 
so that pu = -x

1 
and then from {3. 3 ) 

p+l = 
r

1
-l+ r

2
-l 

r
2
-l 

so that x - _e_ and u - x = 1 - p+ 1 - -xl 2 

as 

1 

= 

0 I 

xlx2 = -u 

(r
1
-l){r

2
-l) 

{n-1 )
2 

. 

2 
px2 = -u . Also note 

n-1 
r=-r 2 

= 

(3. 2 ) 

(3 . 3) 

p We list these relations 
(p+l)2 

= p ' p 
x = _e_ 

1 p+ 1 ' 
u = _-....... e~2 • (3 . 4 ) 

(p+ 1) 

Now 

pn+l = 
p+l 

_e_n+ 1 = 
p+ 1 p+ 1 
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using (3. 3) and (3. 4). From this we obtain the following relations 

which we list for future reference: 

rl = pn+l r
1
-l = p (n-1) 

p+l p+l 

p+n n-1 
rz = ' 

r -1 = p+l p+l 2 

We note in addition the following relations established in 

Ryser's paper: 

-·-
k''.' = \ - p(k! -\) 

J J 

n 1 
2:-. 1 k.-\ 
J= J 

2 = \(l+p} -p 
x: p 

using (3. 4). 

n 

2: 
j=l 

a .. a . 
lJ eJ 
k.-\ 

J 
= 0. 

ie 

x.x 
i e 
u 

where o. is Kronecker's delta. 
ie 

n a .. 
2: --2:1.. = 1 
. 1 k.-\ 
J= J 

From the relation 

2 
x. 

1 

u 

-x. 
1 

= 
u 

elrl(rl-1) + ezrz(rz-1) = \n(n-1} 

we obtain, using (3. 5) and e 
1
+e

2 
= n : 

el (pn+l)(n-l}p + (n-e ) (p+n)(n-1) = \ n(n-1) . 
(l+p)z 1 (l+p)z 

Hence, 

e 
1 

[ (pn+ 1 )p - (n+p)} 
2 

= \n( l+p) - n(p+n) 

and 
2 2 

e
1
n{p -1) = \n(l+p} -n(p+n) , 

so that 

(3. 5) 

(3. 6) 

(3. 7) 

(3 . 8) 

(3. 9) 
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2 
A.(l+p) -(p+n) 

2 
p -1 

Finally, if 6. = det A , 6. is integral and 

(3. 10) 

t::..2 =[fr (k.-t..)l [1+1.. f: k .!x] (3.11) 
J= 1 J '.J J= 1 J 

Type-I /.. -designs with A > 1 all have e 1 ~ 3. The next two 

theorems show this to be true of /..-designs in general. 

Theorem 3. 1 

A A. -design with e 1 = 1 has A. = 1. 

Proof: With e 1 = 1 the matrix A has two column types: 

-·-
k' 1 

-.-
A. p-p+A. = kl = 1 

-·-
k' = 0 k;- = A. (l+p) 2 

(3. 12) 

as seen from (3. 6 ). Now (3. 10) yields 

n- 1 = ( p+ 1 )(A. p- p+A.) , (3. 13 ) 

and we compute from (3. 5) and (3. 13) 

r2 = A.(l+p)-p+l • (3. 14) 
..... .. ... 

From (3. 12) we note that p = k;" k;·· is an integer, while 

(3. 12) and (3. 14) indicate that r2 =k l. 

We now normalize the matrix A to the form 

1 •.. 110 ... 0 
A = -

B C 

and use (3. 8 )with i = 1 ' t > 1 to deduce 

rl 
atj x l x2 

L: k -A. = --- = 1 
u 

j= 1 
1 
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or 

i.e., B has constant row sums k 1 -/.... Since r 2 = k 1 , C has row 

sums /.... 

We now further normalize within the matrices B and C to 

bring A to the form 

1 ------1 0 ------ 0 

1--1 0--0 1--1 0--0 

1 

(3 . 15) 

where c
1 

has an initial zero column. We suppose c 1 is not vacu

ous. Let a denote the sum of row 1 of B 1 , 1' the sum of row 1 of 

C 
1 

, and note from (3. 8) with i = 

a + ,. -
~ k:-:x- -

1 2 
= 

u 
1 
p 

in view of (3. 4). W e w r ite this more conveniently as 

a +__!__ = 1 
/... p-p+ 1 /... p p 

Thus , we have 

A. pa + ,. (A. p - p+ 1) = /... (/... p - p+ 1) 

or 

2 
/...p (cr+T ) = /... p + (p-1)(1' -A) • 

But p > 1 and 1' < /... so that 

(cr+1') < /... . 

(3 . 16 ) 

(3 . 1 7 ) 
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We now write (3. 16) as 

pf/... 
2 

- /...(O'+T+l) + T} = T -/... < 0 , 

so that 

A 
2 

- A.(O'+T+l) + T < 0 . (3. 18) 

But then A. 
2

+T < A.(a+T+l) s: /... (/...)because of (3. 17). This means that 

T = 0, but then (3.16) gives O' =A. - 1 + _.!_. Hence, we are forced to 
p 

conclude that C 
1 

is vacuous, and thus from (3. 15) we see that 

k
2

=(n-l), orfrom(3.13) 

A.(l+p) = (l+p)(A.p-p+A.)' 

whence A. = 1 as asserted. 

Theorem 3. 2 

A A. -design has e 
1 

i 2. 

Proof: From (3. 5) and (3. 10) with e 
1 

= 2 we have 

2 
n = (A.-2)p + (2/...-l)p+A.+2 

r 1 = (A.-2)p+(A.+2) (3. 19) 

r
2 

= (A.-2)p
2

+(A.+l)p+l 

The possibilities for k! are 0, 1, 2 and the corresponding column 
J 

types are displayed in the following table: 

k! 0 1 2 
J 
··-k'.'' A. +A.p /... +/... p-p A.+A.p-2p 
J (3. 20) 

k. A.+A.p /...+/... p-p+ 1 A.+A.p-2p+2 
J 

no. of columns w x y 

We thus have the relations 
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2 
w+x+y = (A.-2)p +(2A.-l)p+A.+2 

2 
x+2y = 2(A.-2)p +2(A.+l)p+2 

n 

(3. 21) 

from w+x+y = n, L k! = e 1 r 1 and (3. 19). We explicitly determine 
j= 1 J 

w, y, and y as follows . Normalize the first two rows of A: 

1--1 1--1 0--0 0--0 

1--1 0--0 1--1 0-0 

y x/2 x/2 

and use (3. 8) on these rows obtaining 
2 

xl y 
= A. p-2p+2 u 

or 

w 

= p 

2 
y = (A. - 2) p + 2 p . 

Now from (3. 21) we may compute 

x = 2(A. -1)p+2 

w = A. -p . 

(3. 22) 

(3.23} 

Thus, p is integral and p ~ A.. Further, normalize A so that i ts 

first three rows appear so: 

y x w 
( __ __,,-... \ ( __,..,,__ ~ 

1--1 1--1 1--1 1--1 0--0 0 - -0 0--0 0--0 

1--1 1--1 0--0 0--0 1--1 1--1 0--0 0--0 

1--1 0--0 1--1 0--0 1--1 0 --0 1--1 0--0 

a ,. ,. I a. 

With a, ,., '!' 1
, and a. d efined by this diagram, use (3 . 8) on rows one 

and three and also on two and three. This will provide the informa -

ti on 
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a + T = l 
A. p - 2 p+ 2 A. p - p+ 1 

(3. 24) 
a + ,,.. = 1 

A. p - 2 p+ 2 A. p- p+ 1 

so that necessarily 'T' = T 1
• Using (3. 8) on row three with itself: 

~--=a--=- + 2'T' + ~ 
A.p-2p+2 A.p-p+l A.p 

= l+_!_ 
p 

Then (3. 24) and (3. 25) imply 

T + ~ = 1 
A. p-p+ 1 A. p p 

which when solved for 'r becomes 

,,. = (A.-a,)(A.p-p+l) 
X: P 

Solving (3. 24) for cr gives 

= (A. p - 2 p+ 2) ( 1 - [ _!_ - ~ } ) 
p A.p 

_ (A.p-2p+2)(A.p-A.+a.) 
a - A. P 

Now (3. 27) and (3. 28) mean 

so that evidently m = [A.+c:x.(p-1)]/A.p is a positive integer. But 

a, :s: A - p < A. and p :;:: 2 , 

so 

( p - 1 )a, < ( p - 1 )A. . 

Hence, 

A.+ (p-l)a, < A.p and 0 < m < 1 . 

(3 . 25) 

(3. 26) 

(3. 27) 

(3. 28) 

(3. 29) 

This contradiction denies the existence of a A.-design with e
1 

= 2. 
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We remark that the corresponding statements to theorems 3.1 

and 3.2 for the parameter e 2 are almost immediate . For e
2

:;; 2 we 

have k':' = 0, 1, 2, correspondingly k!-/... = /.../p, /... -1/p, /...-2/p. 
J J 

Since 1 / p is not integral, the only compatible pair of these is (/...Ip , 

/...-2/ p) , whence e
2 

= 2, p = 2. But (3. 8) then used on the last two 

rows of A would say that r
2 

= (/...+2)/4 . But (3. 10) becomes 

9/... - n-2 9/... 
n-2 = 

3 
or n = 4 + 1. But then 4 divides /... and r

2 
is not 

integral. 

Since !-designs have e 1 = 1, Theorem 3. 1 offers a charac 

terization of these configurations. The next theorem characterizes 

!-designs in a different way. 

Theorem 3 . 3 

A /... -design may be permuted to a normal matrix if and only 

if /... = 1. 

Proof: Since a 1-design may be permuted to a symmetric matrix, 

this part of the implication is clear. 

Conversely, suppose A is normal. Permute the rows and 

columns of A so that the first e 1 rows (columns) have row (column) 

sum r 1 . We work with this permuted matrix viewed as 

~-Li 
~ 

where A
1 

is e 1 Xe
1

. From (3. 6) we have 

Since A is a /...-design with respect to rows and columns, A
1 

has 

constant row and column sums, x, given by: 
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(3. 30) 

A
2 

has row sums r
1 
-x and column sums c where 

(3. 31) 

From(3.30)and(3.3l)wehave c-x = r
2
-l and hence 

1 - x ~ 0 • (3. 32) 

Thus, x = 0 or x = 1. If x = 1 , then from (3. 32) r 2 = c , so A
4 

is 

a zero block and columns one and e
1
+1 meet in A ~ 1 positions. If 

x = 0, A 1 is a zero block and (3. 32) shows A
4 

to have column sums 

one. Here again columns e 1+1 and one meet in less than two posi

tions. Hence in either event, A = 1 as asserted. 

The last three results contain the following theorem due to 

Majumdar [ 5 J : 

Corollary 3. 4 

and 

Let A be a (0, 1) matrix of size \! X \!. Suppose both 

AAt = f..'J+diag[r
1

-t.. 1 , ••• ,r\J-f..'] 

AtA = t..J + diag[k
1

-t.. , ... , k\J-t..] , 

0 <A 1 < r. , 0 <A < k.. Then A is either a (v, k, A )-configuration or 
1 J 

a I-design. 

Proof: We suppose A is not a (v, k , A )-configuration so that A is a 

)...-design and At is a A '-design. We specialize (3. 11) to the case 

where A has two column sums k 1 and k 2 occurring respectively 

f 1 and f
2 

times: 

2 f1- 1 f2-l 
!:::,. = (kl -A) (k2 - A) [(kl -A )(k2-A )+f..e 1 (k2-A )+A.ez(kl -A)} 

(3. 33) 
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t 
From (3. 33} we see the characteristic polynomial of A A to be 

f -1 f -1 
P 

1 
(x) = (k 

1 
-A. -x) 

1 
(k

2
-A. -x) 2 g 

1 
(x) (3. 34} 

where 

(3. 35} 

"Similarly, " the characteristic polynomial of AAt 

e
1
-l e

2
-l 

= (r
1

-A. 1 -x) (r
2

- A. 1-x) g
2

(x) (3.36) 

where 

(3. 37) 

If e 
1 

or f 
1 

is 1 , we have A. = A. ' = 1 . Hence we may take e. 2 3 , 
1 

f . 2 3 by Theorems 3. 1, 3. 2 and the following remarks. Since, e.g. 
1 

g
1 

(k. -A.) f. 0 , £. -1 is the precise multiplicity of k. -A. with similar 
1 1 1 

remarks for P 2 (x). Further, g . (x) has distinct roots - - this may be 
1 

seen directly or by noting that P. (x) must have a root of multiplic ity 
1 

one by the classical theorem of Perron-Frobenius [2]. Now since 

AAt and AtA are similar, P
1

(x) = P
2

(x) . 

show that g 1 (x) = g 2 (x) and hence A.= A.', 

But the above remarks 

k. = r. , and e. = f. 
1 1 1 1 

whence A may be permuted to a normal matrix and by Theorem 3. 3 

Our next few results, though of a general nature, are de-

veloped explicitly for considering the nature of A-designs for speci-

fied A. (particularly here A. = 3 and A. = 4). 

Lemma 3. 5 

( 1) A /...-design with a column with k~ 
J 

A. = ZA - 1 has p = A _ 1 • 
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(2) A A. -des ign with p = A.~ 1 is an H-design. t 

··-
Proof: (1) The corresponding k·:· is A. - p(A. -1); hence, A. - p (A. -1) 2 0 

J 
A. 

or p $; A. -1 . Furthe r, p(A.-1), and since p > 1, p (A. -1) 2 A. or 

> A. H p -A. -l. ence, 
A. 

p = A.- l as asserted. 

(2) From (3. 5) we have 

A. (n -1) = 2A. - l ' 
1 

_ (n -l)(A. -1) 
r 2- - 2A. -1 ' (3. 38) 

and since A. a nd 2A.- l are relatively prime, we h ave for a p ositive 

integer t 

n - 1 = t(2A. -1) 

and we may r ewrite (3. 38 ) as 

r
1
-l = A. t , 

Now from (3 . 10) 

( 2A. - 1 )
2 

( A. ) 
A. T=-r - x-:T - n 

e l = A. 2 
( -) - 1 A. - 1 

2 
e

1 
= -t(A. -1) - (A. -1) + A.(2A. -l) 

Now theorems 3 . 1 and 3. 2 imply e 
1 

2 3 , so that 

t(A.-1)
2 = A. (2A.-l ) - (A. - 1) - 3 

t ~ 
2A. (A. -1 )-2 

(A - 1 )
2 

$; 2 + _2_ _ 2 
A. -1 (A - 1 ) 2 

(3. 3 9) 

(3. 40) 

(3 . 4 1) 

Hence, t = 1 or t = 2 . 2 
If t = 1 from (3 . 4 1 ), e 1 = A. and from (3 . 39) 

n = 2A.. H e n ce , 2 
A. < 2A. or A. < 2 . Thus, t = 2 and r 1 = 2A. + 1 , 

r 2 = 2A.-l from (3 . 40 ), and Ryser has shown that a A. -design with 

t See Remark ( 2 . 1. a ). 
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these parameters is necessarily an H-design. 

Lemma 3. 6 

Let A be a \-design with two column sums k 1 and k
2

. Sup 

pose furthe r that there is precisely one column with sum k
1

. Then 

A is a type -I \-design. 

Proof: Supposing A has two column sums, write A in the form 

where [A1A 2J has row sums r 1 an~ ~A3A4] has row sums r
2 

, and 

~~] has column sums k 1 while [A :l has column sums k 2 . Let a i 

be an arbitrary row sum of A 1 . T hen from (3 . 9 ) we have 

2 a . rl-cri xl 1 + 1 1 + p k 1 -A. k 2 -A. = = ' u 

whence, since kl f:. kz a. does not 
1 

depend on i ' i. e. , Al has con-

stant row sums a . Similarly, A 3 has constant row sums '!". In the 

present case, A 1 and A 3 are col umn vectors , and since surely 

a f:. '!" , we have a = 0 , '!" = 1 or a = 1 , '!" = 0. In either case, all 

-·· 
remaining columns are of the k! = k·:· = A. type. We suppose a = 0, 

J J 

'!" = 1 and form 

B = 

1 

1 
0 

0 

A' 2 

where AZ denotes the complement of A 2 . Column one of B has sum 

e 1 . Column j of A 2 has sum A. , colu mn j of AZ has sum e 
1 

- A. , 
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and column j of A
4 

has sum A ; thus, B has constant column sums 

e 
1

. If two columns of A
4 

meet in t positions the corresponding 

columns of A
2 

meet in A-1 locations, so thos e columns in AZ, meet 

in e 
1 

-A-t for a total column inner product in B of e 1 -A. Thus, B 

is an (n, e 
1

, e 
1

- A) - balanced, incomplete symmetric block design 

yielding our matrix A as a type-I A -design. 

W e remark that it is easy to show that a A-design cannot have 

two columns with one sum and the remaining n-2 with another sum. 

We will need one further lemma for our discussion of 3- and 

4-desig ns. 

Lemma 3. 7 

A A -de s ign with e 1 = A has p :;:; A with (2A- l )p integral. 

Proof: 
~:.: 

Let x denote the number of columns with k~ = k . =A . 

AX :;:; e 
2 

= n -A or 

Now (3. 10) becomes 

x :;:; n-A 
-A-

n - 1 = ( 2A - 1 ( ( l+ p ) , 

J J 
Then 

(3. 42) 

(3. 43) 

so that from (3. 5) r 2 = 2A and thus r 1 = n+l-2A. Thus, the first A 

rows of A contain A(2A-l) zeros, and if n ~ A(2A-l), surely 

x ~ n-A(2A-l), which, together with (3. 43), forces 

n-A. 
n - A ( 2A - 1 ) :;:; -A-

n (A - l) :;:; A 
2

(2A - l )-A = A (2A + 1 )(A -1) . 

Hence, 

n :;:; A (2A + 1) . 

Thus, in any event n:;:; A.(2A+l), and from (3. 43) we have 

(3. 44) 
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(3. 45) 

noting (3. 44). 

From (3. 45 ), of course, p (ZA.-1) is integral. 
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IV. 3-DESIGNS 

Type-I 3-Designs 

(v, k, A. )-configurations with k-A. = 3 have one of the following 

parameter sets: (13, 4, l); (13, 9, 6); (11, 5, 2); (11, 6, 3). Each of 

these excepting the (11, 5, 2) will produce via Theorem 2. 1 a 3-design. 

We illustrate each type: 

0 1 1 1 1 1 1 1 1 1 0 0 0 

0 1 1 1 1 1 1 0 0 0 1 1 1 

0 1 1 1 0 0 0 1 1 1 1 1 1 

0 0 0 0 1 1 1 1 1 1 1 1 1 

1 1 0 0 1 0 0 1 0 0 1 0 0 

1 1 0 0 0 1 0 0 1 0 0 1 0 

1 I 0 0 0 0 1 0 0 1 0 0 1 

1 0 1 0 1 0 0 0 0 1 0 1 0 

I 0 I 0 0 1 0 I 0 0 0 0 1 

1 0 1 0 0 0 1 0 1 0 1 0 0 

I 0 0 I 1 0 0 0 1 0 0 0 1 

1 0 0 1 0 1 0 0 0 1 1 0 0 

1 0 0 1 0 0 1 1 0 0 0 1 0 

3-design from (13, 4, l); 

~1=4, r1=9, r2=5, 

p = 2. 

Theorem 4. 1 

1 1 1 1 1 1 1 1 1 1 0 0 0 

1 1 1 1 1 1 1 0 0 0 1 I 1 

1 1 1 1 0 0 0 1 1 I 1 1 1 

1 0 0 0 1 1 1 1 1 1 1 1 1 

0 1 0 0 1 0 0 1 0 0 I 0 0 

0 1 0 0 0 1 0 0 I 0 0 1 0 

0 1 0 0 0 0 1 0 0 1 0 0 1 

0 0 1 0 1 0 0 0 0 1 0 1 0 

0 0 1 0 0 1 0 1 0 0 0 0 1 

0 0 1 0 0 0 1 0 I 0 1 0 0 

0 0 0 1 1 0 0 0 1 0 0 0 I 

0 0 0 1 0 1 0 0 0 1 1 0 0 

0 0 0 I 0 0 1 I 0 0 0 1 0 

From (13, 9, 6); e 1 = 4 

..!1=10, r2 = 4, p=3. 

All 3-designs are type-I designs. 

Proof: In view of Lemma 3. 5, we may take k! ~ 4. If some k! = 4 
J J --' 

25-n 
then p = 2 or p = 3. From (3. 10) e 1 = -

3
- so that, since e

1 
~n-3 

and 4 ~ e 1 ~ 11 (e 1 < 4A.) , we have n = 10, 13. If n = 10, e 
1 

= 5, and 

The remaining columns have k! ~ 2 since k! = 4 and p = 2 
J J 

implies k''.' = 1. Let £. denote the number of columns with k! = i . 
J 1 J 
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1 1 0 0 0 1 1 1 0 1 1 

1 1 1 0 1 0 0 0 1 1 1 

1 1 1 1 0 1 1 0 1 0 0 

1 0 1 1 1 0 1 1 0 1 0 

1 0 0 1 1 1 0 1 1 0 1 

0 0 0 1 0 0 1 0 1 1 1 

0 0 1 0 1 1 ·1 0 0 0 1 

0 0 1 0 0 1 0 1 1 1 0 

0 1 0 1 1 1 0 0 0 1 0 

0 1 0 0 1 0 1 1 1 0 0 

0 1 1 1 0 0 0 1 0 0 1 

From (11, 6, 3) -- "H-design with A. =3" 

~ 1 =5, r 1 =7, r 2 =5, p=3/2. 

Then since kj = 2 implies k;' = 5, f 2 = 0, 1 with £2+£3+£
4 

= 10 and 

2£
2 

+ 3f
3 

+ 4f
4 

= 35. Clearly then f 2 = 0, f
3 

= f
4 

= 5. Now (3. 9) 

cannot hold with i = 6. If n = 13, e 1 = 4, r 1 = 9. Then f
4 

= 1, 

which forces f
2 

= 4, f
3 

= 8. But then from (3. 11) we have the con

tradiction ~ 2 
= 2

8 
· 3

11
. Hence, we must have p = 3 and k! = 4 

J 

means k ''.' = 0 , so all remain ing columns have k! = k,:, = 3. Again, 
J J J 

(3.10) and e 1 ~ 4 force n :s: 13 and we must haven= 13 for e
1 

to be 

integral, but then e 
1 

= 4 so that f
4 

= 1 and we have a type-I design 

by Lemma 3. 6. 

For all the remaining 3-designs we have the n k! :S: 3 , and 
J 

T a ble 4. 1 d i splays the column possibilities. 

k! 0 1 2 3 
J 
:::: 

k. 3+3p 3+2p 3+p 3 
J 

k . 3+3p 4+2p 5+p 6 

Table 4 . 1 
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Suppose we have a 3-design with~ 1 ~ 6. Then from (3. 10) we de-

2 
duce -n ~ 3p -5p-9. But Table 4. 1 makes it clear that n ~ 10 

whence 1 < p < 3 / 2. But then 2p is not integral and 3p must be, 

which means p = 4/3. This forces n = 10 and e 
1 

would not b e inte-

gral. 

With~ l = 5, 

integral and p s: 2 . 

2 
(3. 10) becomes n = -2p +5p+8 so that 2p is 

Hence, p = 2, 3/2; p = 3/2 can only yield the 

H-design by Lemma 3. 5; and p = 2 means n = 10, r = 7. But 
p 

e
2 

= 5 forces one column with k':' = 5 and the remaining with k ''.' = 3; 
J J 

hence, Lemma 3. 6 applies . 

2 
If~ 1 =4, we haven= -p +5p+7, so tha t p = 2,3,4. 

(1) p=2, n = 13, r 1 = 9, e 
2 

= 9 ; now f
0 

= 0, 1. If £
0 

= 0 we 

would have 
1 1 

f 1 + f 2 + f 3 = 13 , f 1 + 2f 2 + 3 f 
3 

= 3 6 , and S f 1 + 4 f 
2 

+ 

~ f
3 

= ¥ , which has no integral solution. Hence , f 0 = 1 , f
3 

= 12 , 

and we have a type-I design. (2) p = 3, n = 13, r
1 

= 10; e
1 

r
1 

= 40, 

butkj S:3 denies this. (3) p=4, n=ll, r1=9, e2=7; e2=7 

::~ 

means kj must be 3 or 7; hence, £2 = 1, f 3 = 12 , and Lemma 3. 6 

applies. 

The final case is ~ 1 = 3 . Here, Lemma 3 . 7 gives p s: 3, 

(3. 10) becomes n = 5p+6 so that p = 2, 3. (1) p=2, n=l6, r = 11; 
1 

the column structure is uniquely determined and we obtain f 1 = 0 , 

. 2 7 24 
f

2 
= 12, f

3 
= 3, from which b.. = 3 · 2 . (2) p = 3, n = 21 , 

r 
1 

= 16 ; h e re, the proof of Lemma 3 . 7 shows that £
3 

= 6 so that 

surely f
0 

= 0 and from £0+£ 1+f
2 

= 15 and f 1+2£2 = 30 we have 

f
1 

= 0 , f
2 

= 15. But then b..
2 

= 2
4

3
6

5
15

. 

Thus, all 3-designs are type -I designs . 
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V. 4-DESIGNS 

All (\!, k, A. )-triples with k-A. = 4 are listed below [excluding 

the (15, 7, 3)], together with the parameters of the derived 4-designs : 

1. (21, 5, 1) n = 21, rl = 16, e l = 5, p = 3 

2. (21, 16, 12): n = 21, rl = 17, el = 5, p = 4 

3. (16, 6, 2) n= 16, rl = 10, el = 6, p = 3/2 

4. (16, 10, 6) n= 16, rl = 11, el = 6, p = 2 

5. (15, 8, 4) n= 15, rl = 9, el = 7, p = 4/3 

Table 5. 1 

Theorem 5. 1 

All 4-designs are type-I. 

Proof: We proceed as in the case of 3-designs to note we may take 

k! $ 6, eliminating H-designs from consideration. The column pos -
J 

sibilities are then displayed: 

k! 0 1 2 3 4 5 6 
J 

4+4p 4+3p 4+2p 4+p 4 4-p 4-2p 

Table 5. 2 

Suppose a 4-design has a column with k! = 6. Then 2p is integral 
- J-

andinfact p=3/2 or p= 2. From(3 . 10)and 6::;;e
1 

$ n-3 we have 

7 + 2. + -
1
- $ n $ - 2 p 2 + 7 p+ 1 0 

p 2 
p 

( 5. 1) 

further, (pn+l)/(p+l) = r
1 

must be integral. So for p = 3/2 we have 

-·· 
Since k ! = 6 now means k~·- = 1 , all re -

J J 

maining k. 1 s are 3 or 4. But 3 is not possible since p is not inte
J 

gral. Thus, Lemma 3 . 6 applies, a.J.1.d the design does not exist. 
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w. h 2 f ( 5 1) h 11 ,.,. < 16 . h Zn+ l · 1 it p = rom . we ave ""' n - wit -
3
- integra , i.e., 

n = 13 , 16. If n = 13, r 1 = 9, e 1 = 7, we can have only one kj = 6 

with the remaining columns of the form k! = 4 or k! = 5. With f. 
J J i 

the number of columns with kj = i, we have f 4 + f
5 

= 12 and 

4f
4 

+ 5f
5 

= 57. This means f
4 

= 3 and f
5 

= 9, but then from (3. 11) 

b . h d " • A 2 28 311 we o tain t e contra iction LJ,. = · . With n = 16 , r 1 = 11 , and 

-·-
e 

1 
= 6. Here, k! = 6 having k~·- = 0 means that all remaining col-

J J 
-·-

umns have k! = k·:· = 4 and we have the type-I design from line 4 of 
J J 

of T able 5. 1. 

Next, suppose we have a 4-design with k! = 5 occurring. Then 
- J-

P= 2, 3, or 4. We have here 5 s; e
1 

s; n-3 or 

7+7/p+ l/p
2 

s; n s; -p
2

+7p +9 (5.2) 

(1) p = 2. 11 ::::; n::::; 19, n = 1 mod 3; hence, n = 13, 16, 19. Note 

-~ 

that k! = 5 means k-.'- = 2 ; hence, all remaining columns have 
J J 

k!:;::: 2' so we are working with the following column table: 
J 

k! 2 3 4 5 

-·--·-k . 8 6 4 2 
J 

k. 10 9 8 7 
J 

Table 5.3 

n = 13, rl = 9, el = 7: ez = 6 forc es fz = 0, £3 s; 1. If f3 = 1 

then £
4 

+ £
5 

= 12, 4£
4 

+ 5£
5 

= 60. Hence, £
5 

= 12, £
4 

= 0, and 

Lemma 3. 6 shows this design does not exist. 

ez = 10 forces £2 s; 1 and 

f2+£3+£4+£5 = 16 

2f2+ 3f3+4f 4+5f5 = 66 
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1 1 1 1 17 
t;f2+5f3+4f4+3f5 - 4 

Thus, f
2 

= 1 gives £
3 

= 0, f
5 

= 4, f
4 

= 11 and we obtain the contra

d iction 6.
2 = 3 7 . 2

24
, w hile f

2 
= 0 forces the absurdity f

3 
= 5/2, 

n = 19 , r 1 = 13 , e 1 = 5 : e 1 = 5 gives f 
5 

= 1 a nd 

f2 + f3 + f4 = 18 ' 

2£ 2 + 3£ 3 + 4f 4 = 6 0 ' 

17 
=4 ,. 

w hich has the u nique solution £2 = 1, f 3 = 10, f
4 

= 7. Here, 6.
2 = 

3
4

. 2
16

. s 10 
does not exclude this possibility. Consider a row of A 

with sum r 1 = 13 and a zero in the column with kj = 2. Let 'T' be the 

number of ones in this row in columns wi th k! = 3 and u se (3. 8 ) with 
J 

i = t obt aining: 

.!. + .'.!:. + 12-'T' = 3 
3 5 4 

or 'T' = 20/3. 

(2) p = 3 . We have from (5. 2) 10 :;:; n:;:; 21 and from (3. 10) e
1 

= 

(6 1-n ) /8 so that n = 5 (mod 8 ). Thus, n = 13 or n = 21. Since 
.... 

k! = 5 and p = 3 g ives k ·:· = 1 , all remaining k! values are eithe r 3 
J J J 

or 4. In case n = 13 , e 1 = 6, r 1 = 10 and the column structure of 

A is determined by the system: 

f3 + f4 + f5 = 13 ' 

3£3 + 4f4 + 5f5 = 6 0 

61 = TI, 

which has the unique (and u nacce ptable) solution f
3 

= -1, f
4 

= f
5 

= 7. 
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In the case of n= 21, e 1 =5, r 1 =16. Surely then f
5 

= 1 and 

f
3 

+ f
4 

= 20, while 3f
3 

+ 4f
4 

= 75, i . e., f
3 

= 5, f
4 

= 15. W e write 

rows one and two of A 

k! = 5 k! = 3 k! = 4 
J J J .-.. ............ ___...___ (' o' (1 o' 1 1 0 1 0 

1 1. .. 1 o ... 0 1. .. 1 0 ... 0 1. .. 1 0 ... 0 1. .. 1 o .. . 0 

a. 

We use (3. 8) with i = t = 1 to obtain 

1 + cr + 15-cr __ 4 2 b -4-

whe re <J is the partial sum of row one occurring in columns with 

kj = 3. We see then that a = 3 ; this means if {3 denotes the inter

section of rows one and two in the last 15 columns that {3 2 9 . W ith a, 

denoting the intersection in columns with k! = 3 we h ave a 2 1 , and 
J 

from (3. 8) with i = 1, t = 2, 

or 
3 a.= z-(10-{3) . 

Since a 2 1 we have {3 = 9 , but then a= 3/2. 

(3) p = 4. He re, e
1 

= (96-n)/1 5 and 9 ~ n ~ 21 w ith n = 6 mod 15. 

This means n = 21, e
1 

= 5. Surely f
5 

= 1, f
4 

= 20, and this is the 

type - I design from line 2 of Table 5 . 1. 

We have thus shown that a ll 4 - designs with some k! > 4 are 
J 

type-I. For the remaining designs we h ave then the abbreviated col-

umn table: 



-26-

k! 0 0 0 3 4 
J 
-·-.,, 

4+3p 4+2p 4+p 4 k. 4+4p 
J 

k. 4+4p 5+3p 6+2p 7+p 8 
J 

Table 5. 4 

Note that this table makes it clear that n ~ 12. 

We now suppose we have a 4-design with.!: 1 ~ 7. Since 

2 
= 4p -J- 7p + 4 - n 

el 2 
p - 1 

we have 4p
2 

+ 7p + 4 - n ~ 7p
2 

- 7, or 3p
2 

- 7p - 11 :s: -n :s: -12 

hence, 

3p
2 

- 7p + 1 ::;; 0 

or 

7 + ,j 49 - 12 p ::;; < 2Q 
72 

Thus, if p is integral, p = 2, while one of 2p, 3p, or 4p must be 

integral sothat p musttakeoneofthevalues 2, 3/2, 4/3, 5/3, 

5/4, 7/4. Since we have n s -3p
2 

+ 7p + 11 and e
1 

must be integral, 

this leaves only three candidates: ( 1) n = 13, p = 2, e 
1 

= 7 ; 

(2)n=l5, p=4/3, e
1

=7; (3)n = l2, p=7/4, e
1

=8. 

( 1) Since p = 2, Table 5. 4 makes the column structure clear: pre-

cisely one column with k! = 3, 
J 

Hence, Lemma 3. 6 applies. 

_,_ 

k''.' = 6, a nd 12 with k! = 
J J 

(2) Here again, the column structure is forced. One column has 

-·-
k ! = 1 and the remaining have k! = k-:- = 4. Hence, Lemma 3. 6 ap-

J J J 

plies. 

(3) There is only one admissable column here. 
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We now consider 4 - designs with!: 
1 

= 6. We obtain as usual 

2 
n . = - 2p + 7 p+l0 ~ 12, (5. 3) 

from which we deduce 

Further, (5 . 3 ) shows that 2p is integral, so that we obtain the f ollow-

ing candidates for a 4 - design with e 
1 

= 6. 

Case 

1 

2 

3 

4 

p 

2 

3 

3/2 

5/2 

n 

16 

13 

16 

15 

11 6 10 

10 4 7 

10 7 10 

1 1 5 9 

Case 1. We a r e supposing kj $ 4 ; then surel y e 
1

r
1 

$ 64 , but evi

dently e 
1 

r 
1 

= 6 6 . 

Case 2. From T able 5 . 4 we see only 2 column types are admissable: 
~ ~ 

k! = 3, k''.' = 7 and k! = k·:· = 4. We must have one of the forme r and 
J J J J 

12 of the latte r so that Lemma 3. 6 excludes this design. 

Case 3 . The col umn possibilities he r e are 

k! 0 2 4 
J 
-·-' •' 

k. 10 7 4 
J 

k. 1 0 9 8 
J 

With f. the number of columns with k! = i, we have 
1 J 

fo + f2 + f4 = 16 , 

2£ 2 + 4f 4 = 6 0 ' 

fo f2 f4 
6 +--s +4 = 

47 
TI' 
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yielding the uni que solution f
0 

= 1, f
2 

= 0, f
4 

= 15. This is the 

type-I design from the ( 16, 6, 2) configuration. 

Case 4. Here again, with kj = 4 we cannot have e 1 r 1 = 66. 

This brings us to 4-designs with~ 1 = 5. We have 

2 
n = -p + 7p + 9 

so that p is an integer and p ~ 6. We systematically exclude the 

five possibilities. 

Case 1. p = 2 , n = 1 9 , r 1 = 13 , r 2 = 7 , e 2 = 14 . Here, f 1, f 
0 
~ 1 . 

If f
0 

= 1, the remaining k;:<,s satisfy k;:< ~ 6 so that f
1 

= f
2 

= 0, 

f
4 

= 11, f
3 

= 7. These values violate (3. 7). Hence, f
0 

= 0. If 

f
1 

= 1 we have 

2£2 + 3f3 + 4f4 = 64 , 

1 1 1 
t) f2 + 5 f3 + 4 f4 = 

115 
28 

which has no integrals e lution. Thus, f
1 

= 0 and the conditions are 

f2 + f3 + f4 = 18 , 

2£ 2 + 3f 3 + 4f 4 = 6 5 

17 
=4 

yielding the inadmissable values f
2 

= 6, f
4 

= 17, f
3 

= -5. 

Case 2. p = 3, n= 21, r 1 =16, r 2 = 6, e
2 

= 16. Here, note if 

f 0 = 1 we have the type-I d esign from the (21, 5, 1 )-configuration. 

Since f
0 
~ 1 we suppose f

0 
= 0. Surely also f

1 
~ 1 and if f

1 
= 1 

necessarily f 2 = 0 with f
3 

= 0, 1 and respectively f
4 

= 20, 19. The 

former alternative is excluded by Lemma 3. 6 and the latter by (3. 7) 

301 ...1 61 
=bCf ..,.TI 
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Thus, we have f 1 = 0 and 

f2 + f3 + f4 = 21 

2f2 + 3f3 + 4f4 = 80 

61 = TI ' 

but this forces f
4 

= 21, f
3 

= -4, f
2 

= 4, so that only the type-I de-

sign occurs. 

Cas e 3. p = 4, n = 21, r 1 = 13, r 2 = 9, e 2 = 16. Table 5. 4 shows 

he re f 
0 

= 0 , f 1 s; 1 , f 
2 

s; 1 . If f 1 = 1 , f 
2 

= f 
3 

= 0 and f 
4 

= 2 0 , and 

Lemma 3. 6 excludes this possibility. If f
1 

= 0 we h ave 

f2 + f3 + f4 = 21 ' 

2f 2 + 3f 3 + 4f 4 = 6 5 ' 

1 1 1 
TO f2 + 7 f3 + 4 f4 = 6 

yielding the absurdity f
2 

= 130/3, f
3 

= -203/3, f
4 

= 136/3. 

Case 4. p = 5, n = 19, e
2 

= 14, r 1 = 16, r
2 

= 4. Here, e
1

r
1 

= 80 

denies k! s; 4. 
J 

Case 5. p = 6, n = 15, r 1 =13, r 2 = 3. Again, e 1r 1 =65 forbids 

k! s; 4. 
J 

We now t a k e the case e 
1 

= 4. Lemma 3. 7 a nd Table 5. 4 

make it clear tha t p is integral a nd p s; 4. Indeed 

n = 7p + 8 , r 1 = 7p + 1 , 

so that there are three possible 4-designs with e 1 = 4. 

( 1) p = 4, n = 36 , r 1 = 29. For reference we note the column pos -

sibilities are given in the following table: 



k! 
J 
··-,,. 

k . 
J 

k. 
J 

Now since e = 2 
32 , 

:Ek!~ 
J 

28 + 3 · 29 = 

-30-

0 1 2 

20 16 12 

20 17 14 

f4 ~ 8' but if f4 ~ 7 we 

115. Thus, f = 4 
8 and 

I:' k! = 
J 

84 :-;:; 3 . 28 
k! ;<;; 3 

J 

3 4 

8 4 

11 8 

have elrl = 116 = 

forces f
3 

= 28 with the remaining fi 's zero. In a row with sum 

··-
r 2 = 8, let a be the sum of the entries in columns with k! = k -:· = 4. 

J J 

From (3. 9 ) we must have 

or a = 1. Now if a. is the inner product of this row with, say, row 

one, we have from (3. 8) 

1 a,-1 
4 + -7- = 1 . 

But this says a. -1 = 21/4, and thus the design cannot exist. 

(2) p = 3' 

Note that 

straints: 

n = 29, r 1 = 22. Here, the column table is 

k! 
J 
··-k:·· 

J 

k. 
J 

fo ::;;; 1 . 

0 1 2 3 

16 13 10 7 

16 14 1 2 10 

If f -0 - 1 then f l $'.; 1 . We have 

fo + fl + f2 + f3 + f4 = 2 9 ' 

f 1 + 2f2 + 3f3 + 4£4 = 88 ' 

1 1 1 1 1 
b f o + 5 fl + 4 f2 + 3 f3 + 2 £4 = 

4 

4 

8 

in general the 

61 
6. 

con-

( 5. 4) 
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With f
0 

= 1, f 
1 

= 1 this system has a unique s elution with f
2 

= -12 I 5. 

If f
0 

= 1, f
1 

= 0, we obtain f 2 = 0, f 3 = 24, f
4 

= 4. W e can write 

this design so that rows 4 and 5 appear so: 

18 6 
--~~............_-~~- -~~-............_-~-~ ( ) I ~ 

0 1 111 1 10-----0 

1 1 0 0 0 1-- 1 0--0 1 - - 1 0 - -0 

where column one has k ::' = 0, 
J 

columns 2 through 5 have k::' = 4. 
J 

Now using (3 . 8) with these two rows, we must h ave 

1 + (J 

4 b = 1 ' 

w hich is not possible with a integra l. Thus, f
0 

= 0 and the system 

(5. 4) becomes a rank 3 system w i th the one p arameter solu tion: 

f2 = 8f4 - 26 ' 

fl = -7 /2 f4 + 25/2 

f3 = -11/2 f4 + 85/2 . 

Since e
2 

= 25, f
4 

::s: 6, but the above equa tions show a contradiction 

for f
2

;;::: 0 means f
4 

;<: 4, while f 1 ;;::: 0 forces f
4 

::s: 3 . 

(3 ) p = 2, n = 22, r 1 = 15 . With these parameters we have the fol -

lowing rank 3 system on the variables f. 
4 1 

~ fi = 22 ' 
i=O 
4 

L: ifi = 60 ' 

i=O 

This system h as the 2-parameter s e lution 
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8 
£0 = 3 4 - - £ - 6£ 

5 3 4 

21 
f 1 = -8 4 + 5 f 3 + 14£ 4 ' 

f = 72 - ~£ - 9£ 
2 5 3 4 

We require integer values, non-negative with £0 ~ 1 and £
4 
~ 4. This 

yields precisely one possibility: 

How ever, this is not an acceptable column structure, as it yields 

from (3. 11) 6
2 = 2 16

. 3
11

· 5
10

. This completes consideration of the 

case e 1 = 4. 

We take the final case~ 1 = 3. We have from (3. 10) and (3. 5) 

2 
n = p + 7p + 7 , 

r 1 = p
2 + 6p + 1 , 

r 2 = p + 7 . 

From Table 5. 4 we see our usual constraints are 

2 
4p +7p+4 

4p 

2 = p + 7p + 7 

f 1 + 2£ 2 + 3 f 3 = 3 p 
2 

+ 18 p + 3 ' 

noting that k! ~ 3. 
J 

Now 

1 

2 

1 
2p+l 

- 2(p+l}(l 1) 
- ( 3 p+ 1) p+ 3 - 2 p+ 2 f. 0 

(5. 5) 
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So the system (5. 5) has the I-parameter solution: 

3 2 
4p + 7 p - ( 11 + 4f3 )p + 12 

f -0 - p+3 

f = 2 

2 
-3(3p + l)(p + 2p - 3 - f3) 

p+3 

2 
6(p + l)(p + 3p - f3) 

p+3 

(5. 6) 

(5. 7) 

(5. 8) 

3 2 
From (5. 7 ), ( l 1+4f

3 
)p ~ 4p +8p - p. On the other hand, from (5. 6 ), 

3 2 
(11+4f

3
)p :=:: 4p +7p +12. Hence, we have 

4 3 8p2 3 2 1 p + - p :=;; 4p + 7 p + 2 

or 
2 

p - p - 12 :=;; 0 ' 

whence p :=:: 4. 

( 1) p = 4. The relations (5. 6 ), (5. 7 ), and (5. 8) become 

f
1 
~ 0 implies f

3 
~ 21, but f

0 
~ 0 forces f

3 
:=:: 21. Thus, f

3 
= 21, 

. 2 30 32 21 
f

2
=30, f

0
=f1 =0. Butthen(3.ll)g1ves.6. =2 ·5 ·7. 

18 21 1 
(2) p=2. We have f 2 =5 (10-f3 ), f 1 = 5 (f3 -5), f 0 =5(50-8f

3
) 

so tha t f
3 

= 5, f 1 = 0, f 2 = 18 , f 0 = 2. Here again, (3. 11) ex-

. 2 20 5 25 
eludes the design for .6. = 3 · 5 · 2 

(3) p = 3. f
2 

= 4(18-f
3

), f
1

=5(f
3

-12), f
0 

= 25-2f
3

. Surely then 

f
3 

= 12, f 2 = 24, f 1 = 0, f 0 = 1. (3.11) will not exclude this possi-

bility, so we write rows one and twenty as 

12 16 8 -------"'-- ~ ""'"-( °'r '( ----..'\ 
0 1 11 10 0 

0 1--1 0--0 1--1 0--0 1--1 0--0 
~ '-._J 

a .,. 
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-·-
Noting n = 37, r

1 
= 28, r 2 = 10, and kj = 0 gives kj.,. = 16 < e 2 • In 

the diagram, columns 2 through 13 have k! = 3. Now (3. 9) gives 
J 

a + 10-cr _ 4 
b - 8--3 or 

Then (3. 8) w ith these two rows gives 

a ,. 
b + 8 = 1 or 

a = 2 • 

,. = 16 
3 

which is not possible. This completes the discussion of e 1 = 3 and 

hence also the tabulation of 4 -designs . 
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VI. /... - MA TRICES 

1. Introduction 

In this section we shall be interested in the following com-

binatorial situation: s l' ... ' sn-1 are to be subsets of [ 1, 2, •.. 'n} 

with the feature that each S . is a k-set and for i f: j , S. n S. is a /...-
1 1 J 

set. Our results will show that with one exceptional class, there are 

precisely two replication numbers for such a configuration and we 

can find them explicitly in terms of n, k, and /.... We can describe 

quite completely the structure of such configurations,and in certain 

cases describe all such designs. Further, we can completely list the 

exceptional designs, modulo the problem of the determination of all 

Hadamard matrices. The device used here is similar to that used 

for the problem of /... -designs, and we deal exclusively with the inci-

dence matrix of such configurations . This matrix, A, is (0, 1), of 

size n X (n-1) with the feature 

where I and J are the usual matrices of order (n-1). 

For ease in stating our results, we make the following formal 

definition. 

Definition. Let n, k, /... be integers with n > k > /... > 0. 

A(n, k, /...)will denote the class of all nx (n-1) (0, !)-matrices A 

such that 

where I is the identity matrix of order n-1 and J is the matrix of 

ones of order n-1. We call the elements of A(n, k, /...) /...-matrices. 
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2 . The Structure of A - Matrices 

Examples : 

1. Adjoining a row of zeros or a row of ones to a (\J, k, A)-

configuration produces elements of A(\J+ 1, k, A) or 

A(\J+ l, k+l, /... +l), respectively. 

2. Removing a column from a (\J, k, A )- configuration pro-

duces an element of A(\J, k, A). 

3 . Removing the exceptional column (k. f; 2/...) from a 
J 

type-I ;\ -design of order n gives an element of A(n, 2/... , A). 

4. Let B be the incidence matrix of a (4/... -1 , 2A., /...)-

symmetric block design and 0 $; e :S: 4/...-1. Choose e columns 

of B and replace them by their complementary vectors. Now 

adjoin a row vector with ones in precisely those chosen col-

umns and zeros elsewhere. The resultant matrix l ies in 

A(4A., 2A., A.). We prove this l ast assertion. The complemented 

columns had sum 4A.- l-2A. = 2/... -1 and adjoining a one brings 

this sum to 2A.. These complemented columns have inner 

product A.-1 among themselves and the a dditional row vecto r 

augments this to A. The unaltered columns meet in A. posi-

tions ,and adjoining zeros has not changed this. Finally, a 

complimented column of a {\J, k, A) - configuration meets a non -

compl emented column in k-A. positions; here, this is A. and the 

bordering row vector does not affect this count. We will call 

matrices constructed in this way _l\ -matrices. 

Before proceeding to the discussion of the properties of A. -

matrices, we list a few remarks: 
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(1) A - matrices never have constant row sums, for if r were 

the row sum we would have rn = k(n-1) ,and hence n divides k, 

denying k < n . 

(2) The construction of I-\ -matrices given in example 4 al

lows the choice of 0 columns or all the columns to be complemented. 

This amountsilio adjoining a zero row to the (4A-l, 2A,A)- configura-

tion and a row of ones to the complementary (4A-l, 2A -l, A-l)design , 

respectively. 

(3) H A matrices may have more tha n 2 row sums, as the fol

lowing example constructed from the (7, 4, 2) -design shows: 

1 1 0 0 0 0 0 

1 1 0 1 1 1 1 

1 0 1 1 1 0 0 

1 0 1 0 0 1 1 

0 0 0 1 0 1 0 

0 0 0 0 1 0 1 

0 1 1 1 0 0 1 

0 1 1 0 1 1 0 

(4) H A matrices may be viewed as constructed directly from 

Hadamard matrices as follows: normalize the Hadamard matrix H 

of order 4A so that its initial column contains positive ones . Delete 

this column, obtaining H 1 of o rde r 4A X 4A-l . Now let A = t(H
1
+J) 

t and note that A is (0, 1), and since JH1 = 0, A A= Al+AJ. 

(5) The class A(4A, 2A,A ). We have shown that this class con-

tains the so -called H A matrices. In fact, these are all its members. 

For take AC A(4A, 2A, A) and w rite the first row with ones initially 

placed, say, in c olumns 1, 2, . .. , r. Complement the first r columns 
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and remove row one. The resulting matrix B is square, 

(4A.-l) X (4A. -l) has /h column sum 4A. - 2A. = 2A. for j = 1, ... , r, and 

of course 2A. for j > r. Viewing two columns of A we observe that 

1 1 , 1 0 , 0 1 , and 0 0 each occur precisely A. times, so that B has 

column inner products A. and indeed is the incidence matrix of a 

(4A.-l, 2A.,A) block design evidently yielding A as an HA matrix. 

(6) If A E:" .t\(n, k, A) , then the complement of A lies in 

J\(n, n-k, n-2k+A.). 

(7) The class J\(n, k, A) with k(k-1) = A (n-1) cons is ts precisely 

of the examples (2) above. This will come out in our discussion of 

A -matrices, but of course follows ~· from the r a tiona l completion 

theorem of Hall a nd Ryser [ 4]. 

Theorem 6. 2. 1 

Let A E J\(n, k, A). Then either ( 1) An = k 2 
and A is an H A -

matrix, or (2) A.n f. k
2 

and A has t wo row sums g iven by the roots of 

the quadratic equa tion: 

x 2 - [ n - (n-k)(k; 2A) J x + (k-A )(n- 1) [ 1 + k- 2~ ] = 0 . 
An-k An-k 

Proof: Taking the case (2) first, we form the matrix 

A/k all a l 2 a 
1, n-1 

B 
A/k a21 a22 a2,n- l = 

A/k a 1 a n, 2 a n,n-1 n, 

and argue that it is non-singular as follows: since (k-A )I + A. J with 

k f. A is non-singular, A h as rank n -1 , so if B is singular, the 
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vector (A. /k, •.. , A. /k)t lies in the column space of A , i . e. , there is 

- - t some real vector X such that AX = (A. /k, .. . , A. /k) . Now this means 

t - t t t -A AX =A (A. /k, . . . , A. /k) = (/...,A., ... , A. ) . If X = (x 1, ... , xn- l), this 
n-1 

gives (k-A. )x. + A. :E x. = A.. 
l j = 1 J 

Thus, since k i A. , all the x. are 
l 

equal, which would imply that A has constant row sums, contrary to 

the remark ( 1) above. - t Now l et Y = (y 1, y 2 , .. . , yn) be the unique so-

lution to 
t- t 

B Y = (A. , . . . , A. ) and set 

u = A.(A.n- k
2

) /k
2

, 

n 2 
w = -A. + I: y. 

i= 1 l 

Now form the mat rix of order (n+ 1) X (n+ 1 ) 

Y 1 A./k a l 1 
' 

Yz A. /k a2, 1 

c = 

yn A. /k a 
n, 1 

A A ,.;:\ 

t Note that C C = diag[ w, u, k-A., ... , k - A. J . 

a 1, n - 1 

a 2, n - 1 

a 
n,n- 1 

Sine e A. n i k 
2 

, u -:/. 0 

and C is singular if w = 0 . The l ast n-columns of C are independ-

ent since B was non-singular so that if C were singular, the vector 

Y 1 = (y l ' . · · , Y n' tFf )t would lie in the column space of 

Bl = [ B J ,r-r . .. ,r-r 

i . e . , we would have a vector ~ such that Y 1 = B 
1 

'<P . Hence, 

t- t - . -Bl Y l = B l Bl <j> = d1ag [ u, k-A., ... , k-A. ]<j> • 

But indeed, B 1tY 1 = 0, so then ~ = 0, Y 
1 

= 0, forcing A. = 0 . Hence, 

C is non-singular and w i- 0, and we can form 
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K = C diag [ l/,j;;, I/JU, l/Jk-A., ... , l/Jk-A. J 

and note 

KtK = diag [ l/,/W, l/,/U, ... , l/~ ] 2
diag [w, u, k - A., •.. , k-A.] =I. 

t 
Hence, KK = I and we obtain the r e lations: 

(6. 1) 

y. ' r. 
l +-/\- l = 0 

w ku + k-A. (6. 2 ) 

2 
Yi A. 2 r. 
- + -- + l = 1 

w kzu k-A. 
(6. 3 ) 

y.y. A.2 a, .. 
2--J. + -- + ---2:.L = 0 .. 

w k zu k-A. iJ 
(6. 4) 

t 
whe re AA = (a. .. ) and a. . . = r.. From (6. 2) and (6. 3 ) we obtain 

lJ 11 l 

0 . (6. 5) 

Since from (6. 2) we see not all the y. are equal, (6 . 5 ) shows there 
l 

are precisely two valu es y 1 and y 2 with y 1+ y 2 = 1. (Note here if 

k(k-1) = A. (n-1 ), (6 . 5) forces y. = 0, 1. ) So from (6 . 2 ) there are t wo 
l 

values for r . with: 
l 

= (k-A. >(- .!_ - ZA. ) 
w ku 

= (k-A. >(.!_ + .!_ + n- 1 _ ZA. ) 
A. u k-A. ku 

2 
= ( k - A. ) ( 1 + k - ZA. k 2 ) + n - 1 

A. A.n-k 2 A.n-k 

= (k - A. )(n - Zk ) + n _ 1 
A.n-k

2 

(6. 6 ) 
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r 1 + r 2 = n - (n-k}(k-2/...) (6.7) 

/...n-k 

We have thus only to check the value of r
1

r
2

• The calculation is a bit 

messy, and we introduce 

2 o = /...n-k 

Now (6. 2) then gives 

2 
y. 

1 
= 

N - k-/... • 

2r./... /... 2 

+ku~ +zz) 
k u 

so that (6. 3) becomes 

2 
r. 2r.k k2 /... r. 

w ( 
1
2 + o~ + 2) + 6 + ~ = 1 · 

N o 

Viewing (6. 9) as a quadratic in r. /N we see that 
1 

From (6. 1) and the definition of u we observe that 

hence, (6. 10) becomes 

k
2 

k
2 

n-1 1 k
2 

/...(n-1) 1 
= {} + XB + r::r + r - b2 - No - -r; 

(6. 8) 

(6. 9) 

(6. 10) 

1 k
2 

n-1 1 
w = XB+---rT+ r; 

= (n;J) (1 - ~) + /... ~ (k
2 

+ o - t...) = (n;J) (1 - ~) + ¥ 
Thus, 

precisely as desired. 

(n-l}(k-t...}{1 + k- 2/...
2

} , 
/...n-k 

2 We now treat the case (1 }, i.e., we assume /...n = k and show 

A is an HA. matrix. In view of remark (S) above, this means we must 

show n = 4/... , k = 2/... . 
n 

From !: a . . a .k = /... (j f. k} we note that 
i= 1 lJ 1 
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n 
l: a .. (r. - 1) = A.(n-2) 

i= 1 lJ l 

j = 1, 2, ... , n- 1 

the 
.th 

sum of A. l row Hence if 

x. 
l 

r. - 1 
l = n - 2 

n 
2:: a . . x. = A. 

i= 1 lJ l 

n 
u = - A. + 2:: 

i= 1 

i = 1, 2, ... , n 

j = 1, 2, •.. , n-1 • 

2 
x . 

l 

and suppose u >- 0. Then (6. 13) and (6. 11) give 

or 

n 
2:: 

i=l 

2 
x. 

l 
= 

n r.-1 2 
l: (-1-) 

. 
1 

n-2 
i= 

n n 
!: r.(r.-1) - !: r. + n >- A.(n-2)

2 
. 

i= 1 l l i= 1 l 

But summing (6 . 12) over j we see that 

n 

r: r.(r.-1) = A. (n-l)(n-2) 
i= 1 l l 

(6. 11) 

(6. 12) 

(6. 13) 

(6. 14) 

2 
So (6. 14) is A.(n-l)(n-2)-k(n-l) + n >- A.n-2) , which we may write 

( k-A. )(n-2) S: (n-k) , 

which, since k-A. >- 1, forces k = 2, A. = 1. 
2 

Now A.n = k means 

n = 4, so we have the HA. matrices of order 4. Thus, w e take n > 4 

and have u < 0. Now the matrix 

B = [ 
a 

n, 1 

al, n-l 1 
an, n -1 J 
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is non- singular as follows. As before, if B is singular with 

X = (x
1

, . .. , xn)t, there is some Y such that X = AY. Then 

t--+ t --+ . . --+ t 
A X = A A Y which if Y = (y l' . .. , y n - l ) says 

n 
(k-A. )y. + A. i: y. = A. 

J i= 1 i 

j = 1, .. . , r-1 . 

Since k -:F A. this means y . = y 
J 

j = 1, .. . , n-1 . But then 

(r.-1)/(n- 2) = r.y 
i i 

i = 1, .. . , n , which would imply A has constant 

-+ t 
row sums. We may then choose Z = (z 

1
, .•. , zn) such that 

t--+ t 
B Z = (A., A., • •. , A. ) • 

n 2 
With W= -/... + i: Z., we show W-:f O. 

i= 1 i 

Suppose not. Then 

and 

But u < 0 . 

We thus form, as in the previou s theorem, the matrix K of 

order (n+l) X (n+l ) 

a 
1, n - 1 

K = 
x a 1 a n,n- 1 n n, - -
JU. Jk - A. J k-A. 

g 
w a u ~ k-A. 

g 
k-A. 

t t 
As we have arranged K K = I so we have as a bonus KK = I or 

specifically: 

(6 . 15 ) 
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2 2 
r. X . y. 

1 
+ 1 + 

1 1 
k-A. = u w 

r. X. y. 
1 + 1 + l 

k - A. u 
= 0 . 

w 

Now from (6. 17) we have 

and from (6. 11) 

so that (6. 18) gives 

where 

[
x. r . J 

y. = - w _1 + _ 1_ ' 
1 u k-A. 

r. 
1 

k-A. = 

Now (6. 16) and (6. 17) give 

2 
x . 

1 

u 

2 
x . y. Yi 

1 + _1_ = 1 ' 
u w w 

so with (6 . 19), 

2 
xi xi 1 ~ 2 2 

2
J3xi + 1 ) - - - + {3x. + k ' + w x. (3 + -k ' 2 = 

u u 1 -/\ 1 - /\ (k-A. ) 

Now observe that 

(6. 16) 

(6 . 17) 

(6. 18) 

(6. 19) 

1 ' 

(6. 20) 

2 2 n 2 
u(n- 2 ) = -A.(n-2) + L: (r . -1) 

i= 1 
1 

2 
n n 

= -A.(n- 2 ) + L: r.(r. -1) - L: r. + n 
i=l 

1 1 
i=l 

1 

= A.(n- 2 )- k(n-l)+n, 

and for ease of computation set '!" = u(n-2)
2

. We first compute J3 
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more explicitly: 

2 
A = _.!.. + n-2 = (n-2) + (n-2) 
t' u k-A. T k-;\ 

(3 _ (n-2)(n-k) 
- (k-A. )T (6 . 21) 

The observation here is that J3 i- 0 so that (6. 19) shows that the 

number of distinct y. is the same as the number of distinct x . and 
l l 

2 
hence r . as well. We now compute the coefficient of x. in the 

l l 

quadratic (6. 20). This number is /3( ul(3 + w(3) . 

u(3 = 2 
(n-2) 

(n-2)(n-k) = 
(k-A. )T 

(n-k) 
(n-2}(k-A.) 

From (6. 15) 

~ = - ~ - ~ - ~=~ = - ~ - (n~2)2 - (~=i) 
= T(k-A.) + (n-2)

2
A.(k-A.) + (n-1);\,

-X T (k-X:) 

Computing the numerator we obtain, since A.n = k 2 

T(k-A.) + (n-2)
2

:>...(k-A.) + A.(n-l)T = k(n-k). Thus, 

-A.T(k-/...) 
k(n-k) w = 

Now 

1 
/3( uf3 + wf3) = ·(3 { (n-Z)(k-A.) _ AT(k-A.) (n-2)(n-k) } 

n-k k(n-k) (k-A. h 

(6. 22) 

(6. 23) 

= (3(n- 2 ) {k2 -A.k-A.(n-k)} = (3(n- 2 ) {k2 -A.n} = 0. 
k(n-k) k(n-k) 

This means that (6. 20) is not a quadratic, but then if the coefficient 

of x . is not zero, we would arrive at the contradiction of constant 
l 
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row sums. 2 We therefore may assert that a A-matrix with An= k 

also has 

-2f3w = n-2 . 

We then use (6. 21) and (6 . 23), obtaining 

+2 ((n-2)(n-k))(A'T'(k-A)) = n- 2 , 
(k-A h k(n-k) 

2A 
k = 1 

Since n = k
2 

/A we have n = 4A and A is an HA -matrix. This com

pletes the proof of Theorem 6. 2. 1. 

Having completely settled the classes A(n, k, A) with An = k 2 

we discuss the case An f. k
2 

and note that our proof of Theorem 6. 2.1 

gives us some information on the structure of these A-matrices . 

Let us write the A-matrix A so that its first e rows have 

sum r 1 and the remaining (n-e) have sum r 2 . Note that the ex (n-1) 

submatrix A 1 with row sums r 1 has constant column sums k' where 

k'(r 1-l) + (k-k')(r 2-l) = A(n-2) or 

kt = 
A(n-2) - k(r

2
-l) 

In view of (6. 4) with this normalization 
e 

AAt = 

A I 

(6. 24) 

(6. 25 ) 
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where 

A 
-- ---.... 2 

w An - k 

A r 1 
= - I + 2 + k-A 

An-k 

So 

Al= r 1 -k+A, 

2 
An-k 

= 
r 1 -k+A 

k-A 

and similarly, (6. 26) 

A2 = r 2 -k+A. 

We may compute also A 1 from (6. 4) and (6. 5): 

A' Y1Y2 A 1 2 2 
= --- - = - ~(A - Ak-uk ) k-A w 2 

An-k uk 

2 
k - 2A -A +k+An-k - A 1 + = = 2 2 

An-k An-k 

r r 
A'= (k-A){1+ k-2A:} = 1 2 

An-k2 (n-1) 

We finally note tha t our choice of the y. gives 
1 

k'y + (k-k')y = A 
1 2 

A 

An- k 
2 

(6. 27) 

( 6. 28) 

With these remarks on the general structure of A-matrices, we dis -

cuss some special classes J\(n, k,A) . 

3. J\(n,2A,A) 

Theorem 6. 3. 1 

A E: J\(n, 2A, A) if and only if 

(a } n = 4A. and A is an H A - matrix, or 

(b) n = 4A -l and A is a partial (4A.-l, 2A,A)-configuration, or 

(c} A is completeable to a type-I A.-design. 

Proof: If n = 4A , we have already remarked that A is an HA -
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matrix. If n f. 41.., then A.n f. k
2 

and we may use (6. 28): 

since y 
1 

+ y 
2 

= 1 this becomes 

Now if k 1 f. A. we would have y 1 = y 2 = ±, which would force r 1 = r
2

. 

Hence, k' =A., and adjoining a column with ones in positions one 

through e and zeros elsewhere completes A to a (\I, k, A.) with k= 21.., 

i.e . , (41..-1, 21.., A.) or by Lemma 3. 6 to a type-I /..-design. 

4. /\(n, k, 1) 

Theorem 6. 4. 1 

A E: l\(n, k, 1) if and only if 

(a) A is a 4 X 4 H
1 

matrix, or 

(b) A is an (n-1) X (n-1) permutation matrix bordered with a row of 

ones (a partial I-design), or 

(c) A is a partial projective plane, or 

(d) A is a projective plane with a row of zeros added. 

Proof: Since A. = 1 forces row inner products to be zero or one, we 

have, from (6. 25) and (6. 26), either e = 1 or e > 1 and say t..
1 

= 1, 

t..
2 

= 0. If e = 1, then k' = 0, 1. If k' = 0, we clearly have the pos

sibility (d) of the theorem. If k' = 1, we surely have the case (b). 

With e > 1, note that if r. = 0 we have case (d) and r . f. 0 with (6.27) 
1 1 

and the above remarks A. 1 = 1 . If t..
1 

= 1, A. 
2 

= 0, the matrix ob

tained by adjoining a column with zeros in positions one through e 

yields a projective plane. 
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5. A(2k, k, A) and J\(4A, k, A) 

Theorem 6. 5. 1 

A A -matrix with n = 2k or n = 4A is an HA -matrix. 

2 
Proof: If n = 2k and An f. k , we apply Theorem 6. 2. 1. In particu-

lar, we compute the product r
1

r
2

: 

(' k-2A } 
r 1r 2 = (k-A)(2k-l)i_ l + k(ZA-k) 

= (k-A )(Zk-1 )(k-1) 
k 

but this would mean k divides A, denying k >A. Thus, we conclude 

2 
An = k and A is an HA -matrix. 

If n = 4A and An f. k
2

, we compute 

(4A-k)(k-2A) 
r +r = 4A -

1 2 4A 2 - k2 

4A - k 
r 1 + r 2 = 4 A + 2X: + k 

Now since k < n we must have 

but this says k :;:;; A . 

4A. - k ~ 2A + k , 

2 
Hence, we conclude in this case also that An=k 

and A is an HA -matrix. 

The preceding theorem then shows that the exceptional class of 

HA -matrices is characterized by any one of the conditions An = k
2

, 

n = 2k, or n = 4A . 
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