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ABSTRACT

The Maxwell integral equations of transfer are applied to a
series of problems involving flows of arbitrary density gases about
spheres. As suggested by Lees a two sided Maxwellian-like weight-
ing function containing a number of free parameters is utilized and a
sufficient number of partial differential moment equations is used to
determine these parameters. Maxwell's inverse fifth-power force
law is used to simplify the evaluation of the collision integrals appear-
ing in the moment equations. All flow quantities are then determined
by integration of the weighting function which results from the solution
of the differential moment system. Three problems are treated:
the heat-flux from a slightly heated sphere at rest in an infinite gas;
the velocity field and drag of a slowly moving sphere in an unbounded
space; the velocity field and drag torque on a slowly rotating sphere.
Solutions to the third problem are found to both first and second-order
in surface Mach number with the secondary centrifugal fan motion
being of particular interest. Singular aspects of the moment method
are encountered in the last two problems and an asymptotic study of
these difficulties leads to a formal criterion for a '"'well posed'" mo-
ment system. The previously unanswered question of just how many
moments must be used in a specific problem is now clarified to a

great extent.
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1. INTRODUCTION

Although there is general understanding of the transition
between highly rarefied gas flows and gas dynamics as described by
the Navier -Stokes equations, a detailed theory is undeveloped because
it involves the difficult.problem of solving the Maxwell-Boltzmann
transport equation subject to initial values and boundary conditions.
Some insight into the nature of this problem is provided by the work
of Willis, (1), (2), (3) who uses the Krook (4) model for the collision
integral in the integro-differential equation for the single-particle
velocity distribution function. Since the Krook model implies iso-
tropic scattering, it is suspect when there are large mean velocity
and mean temperature differences or surface curvature, especially
in the low density high Knudsen number regime.

One would like to preserve the main features of the collision
process, while retaining the ability to deal with nonlinear problems.
With this goal in mind Lees (5) developed a moment method which is
formally applicable for all gas densities. This moment method has
previously been applied only to one dimensional nonsteady flows (6)
and to internal flow problems such as steady plane compressible
Couette flow (7) and conductive heat transfer between concentric
cylinders. (8) In the present investigation we want to study the ef-
fects of surface curvature and other properties of external flows
using this moment method. A series of problems in spherical geom-
etry will be used to illustrate this approach.

The total external flow about a closed body cannot be simply

characterized as continuum, transition, or free-molecule as is often
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done for gaseous flows contained within a finite region. Instead, these
descriptions must be applied to specific regions in the flow. Within a
distance much less than a mean free path from the body the velocity
distribution function always exhibits the discontinuous character asso-
ciated with collisionless flows. On the other hand, no matter how
large the mean free path, the distribution function becomes continuous
and approaches a local Maxwellian at large distances from the body.
Thus, for large R the flow field always has a solution of the Navier-
Stokes equations as a limiting form. At intermediate distances where
the Knudsen number (defined as A/d where A is the mean free path in
the gas and d is the sphere diameter) is of order one the distribution
function naturally deviates from both of the above limiting solutions.
The present attempt is to provide a description of this intermediate
region which is not merely a partial extension of an asymptotic solu-
tion into the transition regime.

Lees suggested that the distribution function in the Maxwell
integral equation of transfer be represented by a weighting function
expressed in terms of a number of parametric functions of space
and time, selected in such a way that essential physical features of
the problem are introduced. The proper number of moments must
be taken to insure that a complete set of first order partial differen-
tial equations is obtained for these undetermined functions. This
weighting function is not to be considered as a solution of the govern-
ing Maxwell-Boltzmann equation.

A particular example of the type of weighting function proposed

by Lees is the '"two-sided Maxwellian,' which is a natural general-
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ization of the situation for free-molecule flow. In body coordinates,
all outwardly directed particle velocity vectors lying within the
""cone of body influence' (region 1 in Fig. 1) are described by the

function f = fl, where

n R, t) m(g -u, (R, t)1°
ty - — 372 e"'P{‘ Z-IZT_%R_t) } il 1=
2nkT, (R, t)/m] 1=’
In region 2 (all other §),
n, (R, t) mlE-u, ®, t)]°
f=f. = e exp{— ol e } (1.1b)
2 [ZTI'kTZ(_}.:E._, t)/m]372 Zsz(_P_r: t)
where n,, . .., u,are ten initially undetermined functions of R and

t. One important advantage of the '"two-sided Maxwellian'' is that the
surface boundary conditions are easily incorporated into the analysis.
For example, in the case of completely diffuse reflection the re-
emitted particles have a Maxwellian velocity distribution correspond-
ing to the surface temperature Ts’ and the mean velocity of the re-
emitted particles is identical to the local surface velocity. Thus

u,; R, t) =u,, and Tl R, t) = Ts when R = RO' When there is no net
mass transfer at the surface an additional boundary condition must be
satisfied which is similar (except that u, ?fuoo) to the usual free-
molecule flow condition. (5)

Once the form of the weighting function is selected, the colli-
sion integral appearing in the Maxwell moment equations can be eval-
uated for an arbitrary force law between the particles. However,
Maxwell's well-known inverse fifth-power law provides an important
simplification of the collision integrals because they can be evaluated

once and for all in terms of simple combinations of lower order
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stresses and heat fluxes. (5) When the solutions for the parametric
functions are inserted into Eqgs. (la) and (1b), the fluid field variables
may be found by integration, thus completing the solution.

In particular, three external spherical flow problems will be
considered. The first is a sphere at rest in an infinite gas of arbi-
trary density, but with a temperature different from that of the sur-
rounding gas. The heat flux to the sphere is calculated as a function
of this temperature difference and the density of the gas (Knudsen
number). This example is used primarily as an introduction to the
more difficulf problems which follow.

The second situation is a sphere in uniform linear motion
relative to a gas at rest at infinity. Since the weighting functions for
this case are linearized for low Mach number, the sphere may be
assumed adiabatic without any loss in generality. The nonadiabatic
translating sphere solution is just a superposition of these first two
cases. Whereas the heat conduction problem yields an analytic solu-
tion, the moving sphere necessitates a numerical integration of the
resulting moment equations.

Finally, a stationary rotating sphere is investigated, As in
the second case, the sphere is taken to be adiabatic and the weighting
functions are expanded in powers of the equatorial surface Mach num-
ber. The first-order solution which determines the retarding torque
on the sphere is not difficult to obtain analytically. More interesting,
however, is the secondary motion which exhibits an influx at the two
poles and an equatorial jet. The dependence of this '""centrifugal fan"

motion on the Knudsen number is determined by numerical integration
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of the second-order moment equations.

One of the primary results obtained in this investigation is a
fuller realization of the importance of choosing the correct weighting
function and moment equations. Specifically, the last two problems
above illustrate the difficulties encountered when an unfortunate choice
of systems is employed. A systematic approach is outlined for ob-
taining a reasonable weighting function and its associated moment
equations for a more general class of problems. A criterion is also
provided by which any moment model may be easily checked for the

existence of various types of singular behavior.
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2. MOMENT METHOD IN SPHERICAL GEOMETRY

2.1. General Remarks

A systematic formulation of the moment method in spherical
geometry is the most efficient way of tying together the various
problems discussed in the following chapters. Besides avoiding
duplicated effort in describing these problems a general development
offers a relatively easy extension of this method to other spherical
problems.

Applying the moment method to a given physical situation
involves, essentially, three distinct problems. First, a suitable
weighting function must be chosen to exhibit the desired physical
detail, remembering that the more parametric functions it contains,
the greater is the difficulty likely encountered in solving the result-
ing moment equations. Some general suggestions for this choice will
be discussed in Section 2. 5.; however, a most useful rule is that
gained from experience with various applications of the moment
method.

Secondly, the many integral functions which appear in the
system of moment equations must be determined in terms of these
parametric functions. A table of integrals is provided in an Appendix
which greatly reduces the effort required to obtain these functions for
the special case of linearized weighting functions in spherical geom-
etry.

The final and perhaps most difficult part is solving the system
of partial differential equations subject to the two part boundary con-

ditions which characterize the method. Under some circumstances
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nonphysical singular eigenfunctions appear which must be eliminated
by finiteness arguments. This is a significant disadvantage when
numerical integrations of the moment equations are sought.

2.2. Weighting Function and Mean Quantities

Consider a sphere of radius R, located at the center of a
spherical coordinate system (Fig. 2a). The region about the sphere
(R > RO) is filled with monatomic gas at an arbitrary density level,
which is characterized by the mean free path ?\m evaluated at infinity.
It is necessary to introduce a spherical velocity coordinate system at
the field point (R, 6, ®) outside the sphere (Fig. 2b). As an inter-
mediate step consider the rectangular components, §R, Ee and gcp
of the velocity vector §, which are directed along the three unit
vectors of the original space ip, ig, a.nd_icp. Then define the three

R

spherical velocity components as

E = |E|, (2 1)

o = cos™ (8,/8), (2.2)
and

T o fEm (Ecp/!:e). (2. 3)

Frorn these expressions it follows that

g = B cosoO, (2. 4)
!;9 = € sin0 cosT, (2.5)
E'cp = € sin 0 sinT. (2. 6)
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As discussed in the Introduction, the simplest weighting
function having a ''two-sided' character and capable of giving a
smooth transition between the highly rarefied and continuum regime
consists of two Maxwellians, each containing several parametric
functions. All outwardly directed molecules with velocity vector §
lying inside the cone of influence (region 1l in Fig. 1) are character-

ized by one Maxwellian fl, where

f=f1£or0<0<11‘/2—0!. (2.7)
in which
& = con (RO/R) . (2. 8)

Then, all molecules with velocity § lying outside of region 1 are char-

acterized by fZ' i.e.,
f=f2for1'r/2—a<0<1'r. (2.9)

The requirement that f should be discontinuous on the edge of the
""cone of body influence'' is a basic feature of the present scheme.
The number of parametric functions which appear in the
weighting function must be determined for each example to be studied.
Although each parametric function has the dimensions of density,
temperature, etc., it must be emphasized that no physical signifi-
cance may be ascribed to it. For example, setting the temperature
parameters equal to constants in the weighting function does not
imply an isothermal flow. The choice is thus an arbitrary one
(subject to conditions of Section 2.5.) reflecting the amount of detail

desired and the insight into the physical problem.
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The '"two-sided Maxwellian' described in the introduction,
Eqgs. (la) and (1b), is sufficiently general to include all of the weight-
ing functions used for the examples in this paper.

Knowing the weighting function f, one can evaluate all mean
quantities Q, which appear in the moment equations, by integrating

over all velocity space,

12 - 27 o0
2
<nQ) = Sing_= S SQf1 E” sino dEdTdo
G & 4 (2. 10)
T 27 o0
+ S S SszgzsinGdngdo ,
T 0 0
> @

where Q represents various functions of the velocity § .

Since the above integrals are difficult to perform when mean
motion exists in the gas, a perturbation expansion is utilized in the
examples to be described. The perturbation parameter or param-
eters need not be determined at this time, and they, in fact, vary
with the particular problem being considered. To effect this the ex-
ponential part of the weighting function is expanded in what is, essen-
tially, a local Mach number expansion. That is, the parametric
functions ana.lago>us to the mean velocity components are assumed
small with respect to the local ""sound speed' based on the paramet-
ric temperature,

Although the integrals can now be completed, before doing
so the four density and temperature functions in Eqs. (la) and (1b)

are replaced by new parametric functions defined as follows:
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Ny = (nl - noo)/noo'
N = (n - n )/n 3

2 2 20 o0 (2.11)
£, = (T - T WT,

t, = (T, - Tw)/Toc.
Of these, the temperature perturbations 1:l and t, are assumed to be
much less than TDO. The weighting function may now be written as

follows:

2 o2 2 2 2
£, = fm[1+N1—3/2t1+ﬁ0§ t1+2[30§Ru1+2[30€ev1+2|30gcpwl]

and (2.12)

_ 2ol 2 2 2
£, —foo_[1+NZ-3/2t2+{30§ c2+zpogRu2+zgogev2+zpogcpw2] "

where
3 222
" ) nooﬁO e-ﬁog (2.13)
o0
.2
and
2 _
BO = m/ZkTw. (2.14)

To motivate this complete linearization of the weighting function
notice that each moment integral Eq. (2.10) is now just a sum of a

series of terms of the form,
waF(E)dg, (2. 15)

since the parametric functions NI’ ce. s W, are all functions of R
only and independent of the velocity §. An integral table containing a
large selection of functions F(§) is given in Appendix A, Table A. 4.
Of course, this expansion can be extended to second order and higher

order terms in a consistent manner.
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The following moments and their defining functions Q will be

encountered in the examples which follow:

n Q=1,
nu, Q= €i ,
P Q =% mc?,
i Q=- mc; ¢, (2.16)
plj = ij * 1Jp’
et = 4
q, Q =z mc;c,
ok
q, Q= %mgigz,
LS
Ple Q—m§.§.§ K
*®
Phq  Q-% m€§§k§1,

where c is the relative velocity 5 - u, 61_]' the Kronecker delta, and
each subscript one of the spherical components R, 68, ®. Notice that
the starred quantities are each associated with a standard kinetic
moment definition in which ¢ is replaced by &.

2. 3. Differential Equations

Maxwell's moment equation in orthogonal curvilinear coordi-
nates including external forces is given by Lees (5), (6) in two reports,
the second being more readily available. Neglecting external forces
and making use of the axial symmetry, the steady state integral equa-

tion of transfer in spherical coordinates takes the following form:

1 o 2 1 9 . i 1
ZBRR \ 85048 + i o sing gfgeQ—dg 'Sf[{ﬁ R %! E
(2.17)

+{—cote§cp R% g }~——g—- {Rgm§R+Rcot9§ g }T dE = AQ,
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where AQ represents the rate of change of Q produced by binary col-
lisions within the gas. Taking Q to be the collisional invariants m,
m§ , %m%z successively, for which ) = 0, one obtains the continuity,
momentum and energy equations of ordinary continuum theory. For
the remaining Q's the collision integral AQ appearing in the integral
transport equation can be evaluated using an arbitrary force law
between the molecules. However, as in most all previous applica-
tions of the moment method, Maxwell's inverse fifth-power law of
repulsion is used because of its simplicity, which results because
the relative velocity is absent from the collision integral. The inte-
grals for this model are given in the original report by Lees (5) for
two of the most commonly used moments: AQ = (p /u)pij for Q = m§i|§j
and AQ = (p/;.i)(-%di + ‘}]3 pij uj) for Q = % m§i§2 The viscosity in these
may be replaced by the mean free path A through the classical rela-

tion for Maxwell molecules:

A o= —H (2.18)
2kT 2
pl—)

mTm

Therefore, for Q = mgi!:j

kT Pij
6 = [T _X'L , (2.19)
and for Q = % mgiéjz
kT 1 ;
b = [5= y (-84, +§inj u). (2. 20)

These results are independent of the form chosen for the weighting
function and thus are evaluated once and for all without the need for

further approximation.
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The ten moment equations which will be used later are now

written in terms of the moments defined in Section 2. 2.

and the col-

lision integrals just given. Taken directly from Eq. (2.17), these

equations are as follows:
Continuity (Q = m):
(Z+R—§~)nu + (cot 6 + a)nu = 0;
R R o i Sl

Radial momentum (Q = m%R):

9, % * *
(2 + R BR) PRR + (cot 0+ -s-g)PRe —Pee _PCDCP = 0;
6 Tangential momentum (Q = m&):
9 % 9 % ¥
(3 + R -a—I'{)PRe + (cot9 + 5‘9‘)1369- cot ePCP('p_ 0;
¢ Tangential momentum (Q = mgcp):
o £ | 3 % _ z
(3+R ﬁ)PchA {cot © +5§)P9cp+ cot GPecp = 0;
Energy (Q = %mgz)l
8 I* a . . .
(2 + Rﬁ)qR + (cot 0 + ﬁ)q9 = 03
Radial stress moment (Q = m%é):
(2 + R ==)R +(cotd +- 290 _2p* . _2p*
aR RRR cot? + 55Prre ~ 2 PRro6" 2 Prow™

Tangential stress moment (Q = mgg )

(2.21)

(2.22)

(2.23)

(2. 24)

(2. 25)

(2. 26)

kT R
Zm X PRR’

(2.27)

TrkT R .

Shear stress moment (Q = ngge):

(2. 28)

(3+R BR)PRR6+ (cote + é‘-g-) ee—Peee—PeW—COteP RXp

TrkT R

m X Pre’
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Shear stress moment (Q = nggcp): (2.29)
(3+R )P* + (cotB + )P +cotdP”
3R T RRY® %’ ROy~ q)cp(‘p R 6
—P* . 1TkT R
o6 N 2m A PRy’
Radial heat-flux (Q = % m§ § ): (2. 30)
0 £ o % * *

(2+R5p)Prpii ¥ (€0t 8 + 55) Pp oii "Pooii Fppii

kT R
—A/ T (= 5qR+pR1 i)

In the last equation the repeated index i indicates a summation over
the three component directions R, 9, ®.

2.4. Boundary Conditions

The boundary conditions for the partial differential moment
equations must be expressed as conditions on the p#rametric functions
chosen for the weighting function. To do this, the analogy between
the parametric function and the physical quantity in a Maxwellian dis-
tribution function must be stressed even more than in the derivation
of the moment equations.

At great distances from the sphere the weighting function
becomes just f, because of the diminishing effect of the body through
its ""cone of influence." Therefore, the boundary condition at infinity
is simply that f, approach a Maxwellian distribution function with
temperature, density and mean velocity given by the physical boundary
conditions at infinity. Clearly, this may be accomplished by having
the parametric functions approach these physical values.

The situation near the sphere is much more complicated be-

cause it involves the physical details of the sphere-molecule inter-
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action. Since a collision free (Knudsen layer) region exists adjacent
to the body for any Knudsen number, the specification of the surface
boundary conditions is very similar to that for the free-molecule
problem. In general, the outgoing distribution function is dependent
on the local incoming distribution function and the surface physics,
characterized by some number of parameters such as energy accom-
modation coefficient, tangential momentum accomodation coefficient,
etc. For simplicity in the present analyses it is assumed that the
molecules suffer diffuse re-emission and complete energy accomoda-
tion. In terms of the moment weighting function this imposes condi-
tions on the outgoing temperature parameter, T, = TS for R = RO’ and

1

the outgoing velocity parameters, iy =Wy BWy = 0 for R = RO. One
additional condition on the mass flux or heat flux must be given at the
sphere to specify the density parameter in the outgoing part of the
weighting function. In most cases a straightforward application of the
above boundary conditions will yield a unique solution to the moment

equations.

2.5. Criterion for a Well Posed Moment System

Although the moment method has been successfully applied to a
variety of transition flows in the past, there have been occasional un-
explained failures of seemingly reasonable moment formulations.

Such difficulties were encountered in two of the problems in the pres-
ent study, and their detailed investigation has led to an easily applied
criterion for a well posed moment system. A numberof considerations
affecting the final choice of a weighting function and differential system

are discussed in this Section, and a general procedure for obtaining a
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well posed moment formulation is presented.

Of major importance in prescribing a moment formulation is
the specification of its order, the number of parametric variables in
the weighting function. One accepted guideline originally proposed
by Lees (5) is that this order must exceed the number of collisional
invariants associated with the collision dynamics. This is clearly
equivalent to requiring the collision integral to appear in the differ-
ential moment system. A further basic consideration is the relation
between the number of moments and the number of independent physi-
cal quantities which exist naturally for each problem. In general,
when these numbers are equal no difficulty is encountered in applying
the moment method. Such is the case for the heat-flux problem and
most previous moment studies.

In more complex problems it is often a matter of expediency
to seek solutions using fewer moments than natural independent vari-
ables. Obviously, this procedure imposes a number of implicit rela-
tions among the physical flow variables. Depending upon the particu-
lar form of these relationships, various modes of singular behavior
may appear. Both the translating and rotating sphere problems are
examples of this type. A detailed description of the origin of these
singular situations will now be described.

A linearized system of axisymmetric partial differential mo-
ment equations can always be reduced to one of ordinary differential
equations by an expansion of the A-dependence in an orthogonal basis
such as Legendre polynomials. For each term in the 6-expansion

the resulting system may be characterized by the nth-order system
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= [AR)-yR)] = BR)-y(R) + cR), (2.31)

where A and B are known, y is the vector of parametric functions to
be determined, and ¢ may include cross coupling of terms with other
f-dependence. A necessary condition for a differential equation of
this form to have a general nxn solution matrix is that A be a rever-
sible (nonsingular) transformation matrix. If this condition is not
satisfied the solution is not sufficiently general to fit n arbitrary
boundary conditions on the parametric functions.

Before proceeding it is useful to specify more precisely the
solution to equation (2. 31) when A is singular and of rank (n - 1). No
generality is lost if the elements of the nth row of A are assumed to be
zero since this can always be accomplished by appropriate linear
operations on the vector equation (2. 31) without altering its form.

A very basic consequence of the singular nature of A is now apparent,
that is the reduction of the nth component differential equation (the nth
row of Eq. (2. 31) ) to an algebraic relationship among the parametric
functions provided the elements of the nth row of 2 are not all zero.
In the rather special situation where all elements of the nth row of

B are also identically zero the system is either indeterminate (does
not contain n independent equations) or inconsistent depending on
whether S is or is not zero. However, in most cases the algebraic
equation is present and may be used to eliminate one of the parametric
variables (ym where B.m # 0) from the first n - 1 rows of the system,
thus yielding a reduced (n - 1)-order differential system with a new

transformation matrix A’. If this matrix is nonsingular the new system
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has an (n- 1)-dimension solution space or, equivalently, a general
solution containing n - 1 integration constants. The solution to the
reduced system together with the algebraic expression for the mth
parametric variable thus constitute the complete solution to the origi-
nal moment system. It is also possible that the reduced transforma -
tion matrix may again be singular and of rank n - 2 in which case the
above reduction is repeated as necessary. A similar discussion with
obvious modification applies to a system whose original transforma-
tion matrix A is of lower rank thann - 1. The important considera -
tion here is that the general solution contains fewer than n integration
constants and cannot satisfy n arbitrary boundary conditions on the
parametric functions.

If a canonical variable associated with each moment equation
is defined as the object of the radial differential operator in that equa-
tion, e.g. nup in the continuity equation, then A(R) represents the
transformation from parametric to canonical variables. In this con-
text the above nonsingular condition on A is equivalent to the require-
ment that parametric variables be uniquely determined by the canoni-
cal variables associated with the selected moment equations. The
converse is obviously true because of the integral definitions of the
canonical variables.

A similar specification is applicable to the general nonlinear
moment problem, where the condition that the determinant of A be
nonzero is replaced by a similar condition on the Jacobian of the
vector transformation from parametric to canonical variables. The

situation is complicated by the fact that the Jacobian is a function of
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the parametric variables y, and '"'surfaces' may exist within the phase
space of parametric variables on which the Jacobian vanishes. In
this event the moment solution must be determined independently for
different regions within this phase space. Because of the relatively.
large dimensions of this space the characterization of the singular
points and the determination of their locci prove to be difficult prob-
lems.

Again considering the linearized moment system, it can be
shown that the linear transformation matrix A described above is the
same for each perturbation order and is equal to the nonlinear Jaco-
bian matrix evaluated at Yo the vector about which the parametric
variables are perturbed. Therefore a singular transformation matrix
A indicates that the zeroth-order solution, usually a pure Maxwellian,
represents a singular point in the parametric phase space for the par-
ticular moment model being investigated.

The significance of the transformation matrix from canonical
to parametric variables has been emphasized in the preceding dis-
cussion of linear moment formulations. The fact that the determinant
of this transformation is a function of the spatial variable R provides
a final important statement about the behavior of a proposed moment
system. Three significant situations may be encountered with respect
to such singular transformations. First, when the matrix is nonsingu-
lar throughout space the moment formulation is well posed and con-
ducive to relatively easy integration. Second, when the transforma -
tion is singular everywhere a general solution capable of satisfying

n arbitrary boundary conditions is impossible. Such poorly posed
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formulations are briefly discussed in connection with both the trans-
lating and rotating sphere problems. Finally, the determinant may
vanish at isolated points in R (usually the endpoints representing the
sphere surface and infinity). In this case the moment system (2. 31)
may be transformed into a standard differential form for the para-

metric variables,

2 yR) = CR)-yR) +dR), (2. 32)

where C(R) contains at most isolated singularities. Singular solutions
may arise from this formulation, and asymptotic means may be re-
quired for an analytic understanding of the resulting solution matrix.
A detailed example of this third case is presented in Chapter 4 where
the six-moment system for the translating sphere is solved.

It is now possible to describe a reasonably simple method for
writing and testing a proposed moment formulation. Step number one
is the determination of the independent natural fluid dynamic quanti-
ties for the flow in question. A Newtonian fluid is not assumed for
this purpose, and consequently the stress tensor and the heat-flux
vector are included in this count. However, many of these elements
will be zero because of flow symmetries. The number obtained above
provides a natural order for a trial moment system. A weighting
function is then chosen containing the above number of parametric
functions; the exact parameters are not necessarily determined. Also
chosen at this time is a set of moment equations and its associated
set of canonical variables. These canonical variables must be speci-

fied as functions of the parametric variables through integrations of
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the trial weighting function, and the determinant of this transforma -
tion may then be evaluated. If the resulting determinant has at most
isolated zeros the moment system is capable of solution. On the
other hand, if the transformation is singular throughout space, alter-
ations must be made on either the weighting function or the set of
moment equations until a well posed formulation is obtained. Details
of this procedure are clarified in the specific problems of the follow-
ing chapters.

The principal idea of the above is the avoidance of unrealistic
coupling among the integrated physical flow quantities. A physical
understanding of the problem will, in most instances, provide a prop-
er system from the beginning, but occasional unexpected relation-
ships are revealed by the above formal testing method. Although the
above discussion is directed to flows in axisymmetrical spherical

geometry the ideas may be carried over to a more general class of

problems.
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3. HEAT TRANSFER FROM A SPHERE

3.1. Description of the Problem

The problem of the heat transfer from a sphere to a mona-
tomic gas at rest provides a simple and illustrative introduction to
the moment method in spherical geometry. The related problem of
heat transfer from a wire (or between two concentric cylinders) was
investigated by Liu and Lees (8) using a four moment method with
reasonable results, thus suggesting a similar four moment approach
to the sphere problem. The solution for the heat transfer from a
sphere, along with the cylindrical case, has been reported by Lees (6)
in a discussion of the transition properties of kinetic flows. Here,
this solution will be developed within the general framework of Chap-
ter 2, which is slightly different from the formulation previously
reported.

At normal gas density, heat transfer from the sphere is inde-
pendent of the pressure in the gas, while at very low densities the
heat flux becomes proportional to the pressure. At intermediate
densities the heat conduction versus pressure relationship is mére
complex as is illustrated in Fig. 3. This intermediate region was
studied both experimentally and analytically by Takao, (9) who utilized
a more complex form containing polynomials for the weighting func-
tion. He found good agreement with experimentally measured heat
transfer in air between concentric spheres. His values provide a
good experimental check for the moment method discussed in this
Chapter. There are no known experimental checks for the tempera-

ture and density fields about the sphere.
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The sphere is assumed to have a high thermal conductivity
and a temperature which is very near that of the surrounding gas.
This temperature difference between the sphere and the gas at infinity
(or the outer sphere) is small compared to TOo and the ratio AT/TOO is
the relevant perturbation parameter for this problem.

3.2. Weighting Function and Mean Quantities

In order to satisfy at least the three conservation equations
and the heat-flux equation, one finds that the weighting function must
contain a minimum of four parametric functions. Also, since the
temperature and pressure gradients in this problem are quite small,
it is reasonable to expect little contribution from the velocity param-
eters in Eq. (2.12). Consequently, a four moment system is chosen

with the following weighting function:

L
I
(M%)

2 o
1 fooE+N1- tl+[30§ tl]
and (3. 1)
& 2 a2
> fw[l+N2-2t2+ﬁ0§t2].

This system incorporates sufficient freedom for the appropriate phys-

f

ical quantities to remain everywhere independent. The zeroth order
part (foo) of the weighting function may be ignored since it will identi-
cally satisfy all moment equations.

Now the mean quantities which appear in the moment equations
must be integrated. For example, in the continuity Eq. (2.21) we
need nup = IfERdE = I glgR dg + ‘J" Fzng_E_. Using Eq. (3.1) and Table

Region 1 Region 2
A. 4., of Appendix A, this results in

n
00
nu =

R awe,

- N, - 3t,) (1-x%),

1
(N} + 3ty - N,
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where a new independent variable x is introduced for later convenience.

It is defined as follows:

x = /1-RS/R2 : (3.2)

The other mean quantities appearing in the continuity, momentum,
energy and heat-flux equations may be found similarly.

In order to bring out all pertinent parameters governing the
problem we choose n_ TOO, and RO as the characteristic number
density, temperature, and length, respectively. The flow variables
which occur in the moment equations are then non-dimensionalized as
follows:

n by n

u,v,w by

= J/kT /2mm ;
o0

2.,\/17;30

P, by n kT _ ; (3. 3)
n_ kToc
e 5 G _ = :
Pljk’ 9. by ol BO n_ kTkaTco [Zmm
n,, kT, 4

Then, denoting all non-dimensionalized quantities by a bar super-

script, the relevant moments are

EE = (N, - N, + %tl " %tz)(l - xz) ; (3. 4)

p’;R = - %(Nl +t)0 - x3) - %-(NZ +ty) (1 + x3), (3.5)

P o LI+t )(1-3%/24x3/2)- L (N Vi e 12 3.6
6 = -5( 1 1)( -3x x )-35( 2+t2)( +3x/2-x ), (3.6)

T . 2 2

dr = 2(Nj - N, +3t;/2 - 3t,/2)(1-x"), (3.7)
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* _ 5 3. S 3
Pporis = 2 Ny + 26)(1 - x7) + 25 (N, + 2t,) (14x7), (3. 8)
* _ ¥  _5m 3
Peeii _PCpCpii = =3 (N1+2t1)(1 -3/2x+1/2 x7) (3.9)
5 3
+ SN, +2t,)(1+3/2x-1/2x7),
. - o ¥ 5/2— 3.10
qR —qR = nuR ( . )
= (LN H AN, +T/4t) - /4,0 - 23 .

3.3. Differential Equations and Boundary Conditions

In this problem the moment equations of Section 2. 3. become
ordinary differential equations because of the complete spherical
symmetry. Thus, in non-dimensional form the system of equations

for the first order solution is

Continuity:
g s ;
(2+Rﬁ)nuR" 0; (3.11)
R -momentum:
d £ % .
Energy:
d , % _
(2+R-a—R)qR =0; (3.13)
Heat-flux:
d * * * _ 2mR .
(2+ R 3R )PRRii - Pooii - Foopii = - (5 i)

Note that the zeroth order mean free path is used in the collision in-

tegral in Eq. (3. 14).
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The continuity and energy equations can be integrated directly

giving
v R
R nuR=N1 —N2+ 1/2 t1 - 172 tZ:c;omstant:C1 i (3.15)
and
:—{t_ = - - = = . .
RZ a5 ZN1 2 N2 + 3t1 3 t:2 constant C2 (3.16)

Using Eqgs. (3.15) and (3. 16) the momentum equation can also be

integrated to give

N, +t, + N, +t, = constant = C (3.17)

1 1 2 2 i

Finally, using the above expressions, the heat-flux equation reduces

to the simple form:

dty 2
dR 15KaR> ¢ : g
where the Knudsen number is defined as Kn = 7%
0

This system is regular at both boundaries indicating the use of
the simple boundary conditions described in Section 2.4. For this

problem these conditions are

t1=€=-T a.tR_=1,
—_— w —
nu, =0 at R =1,
B B (3.19)
NZ:Q at R =0 ,
tz=0 at R = o0 .

For the similar problem of heat-flux between two spheres it is only
necessary to apply the last two conditions at a point R equal to the

ratio of sphere diameters.

3.4. Moment Solutions

Integrating Eq. (3.18) with integration constant C4 and apply-

ing these boundary conditions one can determine the four integration
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constants. These constants, which do depend on Knudsen number,

are found to be

g, = b,
(3. 20)

2
1 — = -
g0y =BGy =0y =&/l +o5gg !

Thus, one obtains the following solutions for the four parametric

functions:
N, = -(/2+—2—)p,
15KnR
N, = - 2B#(15KnR)) ,
> (3.21)
t; = (1+——)8,
15KnR
t2 = Zﬁ/(ISKnI_{) .
where
2
P = €/{1+ 15Kn)

All of the mean quantities may now be found by substituting
Eqs. (3.21) into the expressions of Section 3.2. The most interesting
of these quantities are the radial heat-flux and the temperature field.

Using Eq. (3.10) the heat-flux is

2KT 1 . Rg
dg = nookToo( pesoery ) A 5 ) Rz ) (3.22)
I5Kn

Using subscript c¢ to denote quantities evaluated in the continuum

limit, it is possible to represent the total heat-transfer ratio as

Q 1

= . (3: 23)
% 1. K

The temperature field is defined through the relation p = nkT,

in which p and n can be found by integration of the now known weighting
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function. The resulting expression for the temperature is

T w
S =2+ L-RG/R) + (1-5) 1-Ry/R) (3. 24)

where

1
6 = S S . (3. 25)

L 15Kn

The first term in Eq. (3.24) represents a collisionless distribution
weighted by the rarefaction parameter 6, while the second term gives
the slowly-varying, collision-dominated temperature field far from
the sphere. In the next Section this dual character of the temperature
field is pursued to give an alternative approach to the solution just

~ found.

3.5. Solution by Matching

Kubota (10) has shown that the matching of a free-molecule
"inner'" and a Fourier ''outer' temperature distribution using a method
similar to that of Kaplun and Lagerstrom (11) can reproduce the entire
four -moment solution for heat-transfer between concentric cylinders.
The linear superposition of a free-molecule like and Fourier like tem-
perature field in the sphere solution, Eq. (3.24), suggests a similar
matching solution for the sphere problem. This procedure is nota
true mathematical asymptotic matching, but a physically motivated
analogy.

Here we take as an inner solution the Knudsen free-molecule
expression (12) for the heat-flux from a sphere whose temperature
differs slightly from that of the surrounding gas:

l6mk Rg

Q =ﬁAT, (3. 26)
o0
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where kc is the heat conductivity of a monatomic gas defined by the

kinetic relation:

X = 15k

1
2
c 4mu

= 15/4 nkMwm/2kT)? . (3.27)

The corresponding temperature distribution is given by

2
F,*»T= 31+ /1 —RO/RZ)AT . (3. 28)

Eliminating AT between Eqs. (3.26) and (3. 28) gives the inner tem-
perature field in terms of the total heat-flux:
150 Q 5>
T -T=—°°2—(1+/1-R0/R ) . (3.29)
s 32rk R
c 0

Far from the sphere, where collisions must eventually domi-

nate the flow, the solution of the Fourier heat conduction equation is

applicable:

T-T =Q/4rk R . (3.30)
0 [

The Q here must be the same as for the inner solution if these two
temperature fields are to be matched.

The two solutions are each valid in different regions and the
value of the heat-flux cannot be determined from either because of the
lack of applicable boundary conditions. The condition which allows

a solution is supplied by matching the inner and outer solutions as

follows:

lim T. = litn “T
- - inner R~R outer

0
Applying this condition to Eqgs. (3.29) and (3. 30) gives
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15) Q
T -—=2 = T +Q/4rk R,. (3. 31)
S lérk RZ * .
c 0
This may be solved for Q to give
. 1 1
Q. T T mBx. W 35}
< I+ g
4R0
where
Q_ = 4wk _R,AT . (3. 33)

" The uniformly valid temperature field is found by subtracting
the common part, TQﬁ + Q/4TrkCR0, from the outer solution and adding

the remainder to the inner solution, thereby giving
TS = T 1 2 2
— 3T 3 6(1 +,/1-R0 /R7) + (1-5)(1-R0/R) " (3. 34)

5 skl (3. 35)

with

Therefore, matching in this manner produces both the temperature
distribution and heat-flux exactly as in the four -moment method of the
last Section.

3.6. Heat Transfer and Comparison with Experiment

The limiting moment solutions for the total heat-transfer from
a sphere are easily found by integrating Eq. (3.22) over the sphere

surface. In the limit of large Knudsen number this integration yields

[T

Q = 4'rrR2n kAT (2kT /mm)?2 ,
0 e o

which is just the Knudsen formula, Eq. (3.26). With the addition of a

thermal accomodation coefficient to account for the imperfect accom-
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modation, this formula is well established experimentally. In the
limit of small Knudsen number the moment method readily repro-
duces the Fourier result,

Q = 4wk R AT,
provided the definition (3. 27) is used for the heat conductivity of a
monatomic gas.

Experimental values for the total heat conduction from a sphere
at intermediate values of the Knudsen number are provided by Takao
(9) who performed these measurements in air. In a monatomic gas
the translational energy transferred to the gas by the sphere is pro-
portional to 2kAT. For a diatomic gas at room temperature the addi-
tional rotational energy makes this energy transferral proportional to
3kAT. Therefore the heat-transfer ratio given by formula (3. 23) must

be increased by a factor of 3/2 in the free-molecule limit to become

Q 1
HC‘ 1+ 5Kn {3.36)

This expression is compared with Takao's experimental results in

Fig. 4 in which excellent agreement is found to exist.
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4, SLOW FLOW PAST A SPHERE

4.1. Description of the Problem

The problem is to determine the flow field about a sphere
moving with uniform velocity U through an infinite homogeneous gas
of arbitrary density. We restrict our attention to the low speed case
where the speed ratio S, defined as U(rn/ZkT00 )%, is very small
(Mach number M << 1). The sphere is assumed to have a high thermal
conductivity and a temperature which is very near that of the sur-
rounding gas. This allows the flow dynamics to be decoupled from
the thermodynamic temperature field, thus permitting each to be
solved independently (neglecting coupling of order SZ). The compan-
ion problem of determining the temperature field about a stationary
sphere with heat-flux was discussed in the last Chapter and may be
added linearly to the dynamic solution if so desired.

It is a simple matter to show that flows about geometrically
similar bodies are dynamically similar, provided only that their speed
ratios and Knudsen numbers are equal. Thus the desired flow field
solutions for linearized flow about a sphere will, when normalized by
U, form one parameter families of curves depending only on Knudsen
number. The nondimensionalized speed at infinity U is therefore the
only perturbation quantity for this problem.

An alternative method for exhibiting the parameters involved
in this problem is illustrated in Fig. 5 where the Reynolds number,

Re ~M/Kn, is introduced. This description more clearly gives the
specific range of parameters for which the present solution is intended

and, in particular, indicates the limiting solutions with which the
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moment values may be compared. These two limiting solutions for
large and small Knudsen number are well known and provide excellent
checks for any theory, although care must be exercised when assign-
ing physical significance to them.

Consider the Mach number at infinity to be fixed at a value
M<< 1 and restrict the Reynolds number to the values, 0 < Re < 1.
The Knudsen number is then confined to the range, M < Kn <, in-
stead of the full range, 0 < Kn <o, which one might expect for flow
of arbitrary density. In this way the high Reynolds number flows,
which are in the realm of continuum theory, are avoided, and the
limiting solution for low Knudsen number is thus theVStokes solution
(13) of the Navier-Stokes equations. Of course, the convective cor-
rections due to Ossen will be needed for sufficiently large distances
from the sphere as in the continuum theory.

Although Kn = «« represents the unrealistic situation of a totally
collisionless flow, it ciosely resembles the solution near the sphere
for Kn >> 1. This free-molecule solution is described by two entirely
independent Maxwellian distributions: one at sphere temperature and
zero velocity for all molecules leaving the sphere, and a second at
free stream conditions for all other particles.

There exists virtually no experimental data describing the
velocity fields or stress patterns about a slowly moving sphere in
any density regime. However, some excellent measurements by
Millikan (14) in 1923 provide good experimental values for low speed
sphere drag. Since the sphere drag is an integral of certain of the

above stresses, Millikan's results may be used as a check on the
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present theory. Millikan's data cover a useful range of Knudsen
numbers (0. 01 < Kn < 10) at very low speed ratios (S < 10_5).

Most previous theoretical investigations of this problem are,
like the experiments, concerned only with integrated effects such
as the sphere drag dependence on Knudsen number. They neglect
the velocity and stress fields about the sphere except in the limiting
solutions discussed above. Also, these theories are restricted to a
partial range of Knudsen number.

Most of the theoretical work for low speed sphere drag has
been done for the near-free-molecﬁle regime (Kn> 1). In this regime
the method of Knudsen iteration has been applied with various collision
models to give the first order (Kn-l) iteration of the Maxwell-Boltz-
mann equation. Szymanski (15) and Liu, et. al. (16) use this method
with simplifying analytical approximations and Maxwellian molecules
to determine the ratio, CD/CDfm’ of the drag coefficient to the free-
molecule value. These two approaches are very similar with the ex-
ception that Liu, et. al. carry their analysis to higher order in the
speed ratio S. Questioning the validity of the approximations used by
Liu, et. al. on both theoretical and practical grounds, Willis (2) pro-
posed that a simple statistical collision model be used to avoid the
analytical difficulties. Hence, using the Krook model, (4) he performs
a Knudsen iteration and finds results which agree well with Millikan's
data.

One sphere theory in the near-continuum regime is that of
Goldberg, (17) in which the Grad 13-moment equations are solved for

linearized flow about a slowly moving sphere. Its validity is
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restricted to the near-continuum regime because this model fails to
reproduce the discontinuous nature of the distribution function found
in low density regimes.

Although the last two theories provide accurate drag values
in the limiting regimes for which they are proposed, they both break
down in the transition regime where the Knudsen number is of order
one. The moment method is employed here in an attempt to bridge
this gap and to provide drag, velocity and stress field values for flows
at all Knudsen numbers.

4. 2. Weighting Function and Mean Quantities

The number of parametric functions which appear in the weight-
ing function for this problem must now be determined. Following the
general procedure outlined in Section 2.5, the first step is the deter-
mination of the naturally independent physical quantities associated
with the problem. In this example there are eight such quantities,

U o

r* Yg To o Ppps PRG’ C-IR and 619’ with only one independent nor-
mal stress rather than the usual two because of the axial symmetry.
An eight-moment system would therefore be expected to exhibit mini-
mum difficulty in solution.

The general weighting function (2.12) becomes a natural eight-
parameter weighting function for this problem when the w's are elimi-
nated by axial symmetry. Unfortunately, all combinations of eight-
moment equations through third-order yield singular transformations
from parametric to canonical variables throughout space and do not

provide well posed moment systems (see Section 2.5.). The only hope

for an eight-moment system is a different weighting function or the use
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of higher order moment equations with the attendant more complicated
collision terms.

An alternative approach is the reduction of the number of
moments, realizing that certain relationships among the eight physical
moments are thereby introduced. In this way it is possible to obtain
a system in which the transformation from parametric to canonical
variables is singular only at isolated points. A six-parameter weight-
ing function is formed by considering the temperatures in the Max-
wellian weighting function to be constant and equal to Toc . The general
rule proposed by Lees (5) that the number of parametric functions
must exceed the number of collision invariants remains satisfied.

It was not realized at the time of solution that the obvious
eight-moment system would not work, and the reduction to six mo -
ments was initially justified by the belief that the temperature varia-
tions in the weighting functions were second order in Mach number
for an adiabatic sphere. This is not the case, however, and the justi-
fication for making the temperature parameters constant instead of
the number densities, N1 (R) and Nz(li), is comparison with the known
limiting solutions: the temperature and density are both constant in
the continuum solution; the Maxwellian temperatures are constant in
the free-molecule solution while the number densities are not.

The additional simplicity of the six-moment formulation fur-
ther justifies it, and we proceed with the hope that the numerical
differences are small. Thus the final forms for the weighting func-

tions are chosen to be
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where the zeroth-order part of the weighting function foc has been

f

dropped as in the heat-flux problem.

Again, the mean quantities which af)pear in the moment equa-
tions must be found by integration of this weighting function. Using
Table 4 of Appendix A and non-dimensionalizing all quantities by the
expressions (3. 3), the required first order mean flow quantities are
now collected with the notation N, = N; + N,, N_ = N, - N, E+ =El+-\'1_2,

etc., being used for convenience. They are

nu_ = (1 = xz)N_ + %E+ - %x3ﬁ_ s (4. 2)
moy =4, - (3/4x - 1/4x0WV_ (4. 3)
Nl 3 1 4 i
Pog = -3N, + 3x°N_-=(l -x)u_, (4. 4)
* = 3 1 p R
Peg‘:Pcpcpz-%N++(3/4x-1/4X )N_—T_IT(].—X ) u_, (4. 5)
—_ 2
* 1 2,°—
Ppg =- 31 -x)v_, (4. 6)
q’; =2(1 - xZ)N_ +5/4u, -5/4 x3G_ , (4.7)
V% - ;-
dq =5/4v+-(15/8x-5/8x e, (4. 8)
B =ML saW %32 «3fen B (4. 9)
RRR - + - ’
< - 3 By
p"RRez 1/2 v+-(5/4x = e x"}v_ (4.10)
5. 2 - 3 -
Pgee = (1-x")" N_+1/2u_- (5/4x -3/4x)u_, (4.11)

d
*
|

3
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Plag = 3/2%, - (45/16 x-15/8 x>+ 9/16 x°)v._, (4.13)
e _ g

Phop = 1/3 Phog » (4.14)

P = P> (4. 15)
RO RO *

_ 3 1 2 A

pRR = = 1/2. (X - X )N_ - ﬁ (1+2x - 3% )u_ " (4.16)

4.3. Differential Equations

Unlike the heat conduction problem with its spherical symmetry,
the system of moment equations governing this problem remains a
partial differential system. The six lowest order independent equa-
tions of Section 2. 3. which are not trivially satisfied are chosen for
this system. In non-dimensional form these equations are

Continuity (2.21):

9 e

(2+Rﬁ)nuR+(cot9+—%~) ug =0; (4.17)

Radial momentum (2. 22):

0

9

_o ¥ ES B - .
(2 + Ryg) PRy *(cot® + 57 PR,y - ee P =B (4. 18)
O momentum (2.23):
o Y
(3 + R )P"‘e + (cot @ +5—5)P8<e-cot913$q) = 0; (4.19)
Energy (2. 25):
2 + RBR)qR (cot B +52) &% = 0; (4. 20)
Radial stress moment (2.26):
(24R 2= B +(cotd + 2 P¥_ - 2P ZP* L
JR’"RRR “B” RRB ROB "“ TRy TPRR» (4.21)



-39-

Shear stress moment (2.28)-

9 \ o 9 \ o * * o%
R ——
= Prp - (4.22)
o0

With the integrated expressions (4. 2) through (4. 16) inserted, these
equations form a complete system governing the six parametric func-
tions, El’ EZ’ —\;1, 72, Nl’ and NZ'

One might expect that eliminating the two temperature param-
eters from the eight-moment fo rmulation would indicate dropping the
"thermodynamic'' equations, i.e. the energy and heat-flux equations.
This in fact is the case, however equations (2.25), (2.26) and (2.27)
are linearly dependent under the 6-dependence assumed below and the
simpler energy equation may be used instead of the equivalent tan-
gential stress moment.

The flow symmetry now suggests a very important simplifica -
tion, the reduction of the partial differential system to one of ordinary
differential equations. This separation is accomplished by assuming

that each parametric function is a product of either sin 8 or cos 6 and

a function of R only. The following substitutions are thus made:
'{1_1(5) = FG;(R) cos 0 ;
v ([R) = ’JI(R) sin 0 ; (4. 23)

Nl(_E_{) = ’1\\31 (R) cos 6;
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Gz(l:_{) = ’;Z(R) cos B ;
v,(R) = V,(R) sin 6 ;

N,(R) = 'ﬁz(R) cos 0 .

The integrated flow variables which appear in the moment equations
also separate in a similar manner with the tilde superscript having

an analagous interpretation. Also, a simple change of variable to

x=sine =,[1 - Rg/Rz makes the domain of the independent variable,

0 <x £1, more convenient for subsequent numerical analysis. From

this

d _1-x"d

Rig = — 55 - (4. 24)

Making the above substitutions in the system of partial differ-

ential equations yields the following system of six ordinary differential

equations:
Continuity:

1 - xz d ~ ~

S +2nuR+2nu9~0; (4. 25)
Radial momentum:

-———1"‘zdpﬁ’f‘ 2P _ 42D _2PF = 0. 426

x dx - RR RR RO ~ 06 ’ (4. 26)
8 Momentum:

fusl d B ao® £ oo,

= dx'mret?Fmre " Tes T U (4. 27)

Energy:
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1 -x" d % o o
= a{-qR-!-ZqR-’que = i3 (4. 28)

Radial stress moment:

2 ~ ~
— E' £
1 -x dp* 42D + 2Py

x dx - RRR RRR 06 =EPRR; (4. 29)

Shear stress moment:

2

1 = d % % Tk % _TR ~
s HEPRR9+3PRR9"PR89_4PBW_HpRB' (4. 30)

4. 4. Boundary Conditions

The determination of the proper boundary conditions for a
numerical solution of the sixth-order system of linear ordinary dif-
ferential equations is greatly complicated by the presence of singular
points at both ends of the integration domain. These singular points
correspond to the sphere surface and infinity, both points at which
the boundary conditions are to be applied. A set of necessary condi-
tions can be given at this time, but it may not be sufficient to deter-
mine a unique solution.

The physical properties of the surface-molecule interaction
must first be determined and for simplicity in the present analysis
it is assumed that the molecules suffer diffuse re-emission and com-
plete energy accomodation. This stipulation imposes two conditions

on the outgoing part of the weighting function at the surface of the

sphere:

’El(x)=o at x=0 ; (4. 31)



Vl(x) = 0 at x =0, (4. 32)

A third condition at the surface of the sphere is that of no net mass-

flux,
nuR(x) = 0 at x=0, (4. 33)

which may be expressed in terms of the parametric functions, using

Eq. (4.2), as
Nl(x) = Nz(x) +1/2 'Ez(x) = 0 Ak x=0. (4. 34)

The remaining three conditions are obtained by forcing the

weighting function to approach a Maxwellian distribution with uniform

flow at infinity. Thus,

U,(x) = -T at =x=1, (4. 35)

?2(;{) = 7 at m=], (4. 36)
and

Nx) = 0 it =51 (4.37)

For numerical purposes it is desirable to normalize the para-
metric functions by the perturbation parameter, ¢ = U, so that all

boundary conditions are pure numbers. The conditions (4. 35) and

(4. 36) then become

Ez(x) = «1 a4 x=1, (4. 38)
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and

?Fz(x) = 1 at x=1, (4.39)

while the rest remain unchanged. This normalization is assumed in
the following discussion of the numerical solution.

4.5. Moment Solutions

A number of attempts were made to integrate the sixth-order
system subject to the boundary conditions of the last Section. All of
these naive attempts failed with the exception of the special case
where Kn = o (no collision terms in the equations). This particular
solution yielded velocity and stress fields which agreed with the exact
free-molecule solution (See Appendix E) to a remarkable degree and
provided much hope for the collisional moment solutions if they could
be determined.

The general numerical approach which proved most promising
involved writing the six differential equations as central finite differ-
ence equations for each of fifty one grid points in the interval O0<x< 1.
The resulting three hundred algebraic equations plus the six boundary
conditions then formed a 306x 306 coefficient matrix whose inversion
provided the values of the parametric functions at each of the grid
points quite accurately. When collision terms were allowed in this
scheme the resulting solution exhibited an instability near the sphere
whose strength increased in proportion to the coefficient of the colli-
sion term, i.e. like Kn_l.

Clearly, something more complex is involved than was found

in the heat-transfer solution and a detailed analytic investigation of
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the differential system is called for. This involves the rather formai-
dable task of classifying all singular points of the system and develop-
ing asymptotic representations for the solution matrix at these points.
Fortunately, this is possible and many interesting aspects of this
problem are clarified by this effort.

A number of simplifications may be made to the sixth-order
system to facilitate the study of its singularities. Specifically, one
quadrature and two integral relations can be found which reduce the
required analysis to that of a third-order system. The first integral
relation is suggested by the fact that the drag integral is constant for
any spherical surface within the gas. With respect to the moment
equations this result is found by subtracting two times the tangential

momentum Eq. (4.27) from the radial momentum Eq. (4. 26) to give

2 ~
1 -x~ d % Tk Tk o
=2 e Pap= 2B+ 2P, = 4B, = 0. (4. 40)

Direct integration of this equation gives

gk 3k 2

which, expressed in terms of the parametric functions through Eqgs.

(4. 4) and (4.6), is
S1/2 N+ 1/25°N_ -2 a-xDY_ + 10 - AT =c D). (4.42)

A second integral is found by subtracting five times the continuity
equation (4. 25) from the energy equation (4.28). Using expressions

(4.2), (4.3), (4.7) and (4. 8) the resulting differential equation is
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Ja-H)N_+20 -A)N_=0, (4.43)

X

which may be integrated to show that
N_ = constant = C,,. (4. 44)

Finally, formal integration of the continuity equation yields the quad-

rature relation

U, =x u -2 W - X’B’E -(3/2x'-1/2 x )’5" dx+C, (4.45)
+ 12 = - 3
where a new variable is defined as
W g P, (4. 46)

and x’ is a dummy integration variable.

The three relations, Eqgs. (4.42), (4.44) and (4. 45), may be
used to replace the continuity, radial momentum and energy equations
in the original sixth-order system. Using these relations to eliminate
the parametric variables N+, N and Ti'+, the remaining three equations

become:
~-Momentum:

-C]E:E(l—xz)z;_ x(1+3x° 1 _+x(1-x2¥ + 21 C (R e xz—O. (4. 47)

Radial stress moment:

d—d)-{-[% x3(1-x2)?:f_]+ (8x3-6x5)’1‘1'_ + (2 X - 4x3+2 x5)?r'

x 2

I p 4
-2 g (1-xD)7(143x0) W 455 x(1-x7)3C, = 05 (4.48)
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Shear stress moment:

3 5 5 3 5 1.3 3 5.m
= [w V- Gx -5 %) -]+w+(2 -5 X )u_
i (4. 49)
23 3 ] 3/2~ 2.2
b (Zx- B dredV_a g 063 c20aPPc, = 0.

These three equations exhibit the entire singular behavior of the ori-

ginal system.

A more convenient notation for the analysis of this system is

afforded by the vector equation,

d (4.50)

dx

X:

13>

‘X +3a,

where the vector Y is defined by

It is relatively easy to show from equations (4.47), (4.48) and (4. 49)

that the coefficient matrix is

3 (1+3x"7) _1—?—?—};4—2x +3x8 —131—x4—8x6+3x8
1
'91— [ % YA L4 se (1-x2)> 12
A= 12)2 i _—3+%x-x3 -;3{-+%x-x3 , (4.51)
- (1-x 3x
1)
—La-x%Za+3x%)
9Knx
| o ~x(14+3x%) x(1-x7)

and that the inhomogeneous vector is
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3 2
™ 5 3 3 2 2 ™ X
—— (3% -5x7)(C,x+5>x C, MH2x(l-x ) C,- ———=—,.C
(I_XZ)Z 174 2 2 6Kn(l-x2')3/2 2
TTCZ
a =( - . (4.52)
- ﬁ 6Knx(1~x2)3/2
2 3 2
(1-x7)

General methods for finding the asymptotic behavior of solu -
tions to linear systems of ordinary differential equations are exten-
sively described in a volume by Wasow. (18) The position and char-
acter of all singular points are determined by the matrix A The
singular points of the system occur at the singularities of the matrix
elements which in this example are found at x = 0 and x = 1, the
sphere surface and infinity. These singularities are relatéd directly
to the singular points of the transformation from parametric to canon-
ical variables, although not realized at the time of solution. Three
asymptotic expansions of this system, which explain the numerical
difficulties encountered earlier, are now discussed with the details
being given in the Appendices.

First, the behavior of the system is investigated at the sphere
surface assuming that the Knudsen number is a bounded parameter.
At x = 0 the matrix éhas a second order pole in two of its elements
which makes this point an irregular singular point with rank one,
according to the classification given by Wasow. The determination
of the complete asymptotic expansion about an irregular singular
point is quite involved and a detailed analysis is carried out in

Appendix B. For the present purpose only the general solution
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matrix to the homogeneous form of equation (4.50) is needed. From
the first column of this asymptotic solution matrix (B. 24), one of the

three general vector solutions to equation (4.50) is

b N
r_}? el/9Knx(0(X3))
x
1 1/9Knx 1 2 1 2 3
n, ~ J ? e (l-z—K—nx-x +4K—nzx +0(x7)) > ; (4. 53)
13 el/gKnx(O(XB))
. ¥ -

where 0(f(x)) is used in the standard manner to represent any function

of x such that the lim O—(fji((—:)—)—)— is bounded. Clearly, this solution is

very singular nea.:-c;oz 0 and contributes to the numerical instability
whenever collisions are permitted (Kn #ow) unless it is completely
eliminated by the boundary conditions. The other two vector solu-
tions, columns two and three of Eq. (B.24), are regular in x at the
sphere surface and represent the physically real solution.

A curious behavior is found in the coefficients of the asymp-
totic expansions for the above solution matrix. The parameter Kn
occurs in both the numerator and denominator of these coefficients,
thus invalidating this representation for both the limiting cases of
free-molecule and continuum flow. This behavior occurs because
some of the similarity transformation matrices used in obtaining this
solution become singular in these limits (see Appendix B). The im-
plication is that the region of validity of the asymptotic representation
depends on the parameter Kn in such a way as to shrink in about x=0
as the Knudsen number becomes either large or small. This depend-

ence on a ''stretched coordinate' is characteristic of a class of
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singular perturbation problem s having '"boundary layers'' near the
singular points of the independent variable. Physically, this behavior
is expected in the continuum limit since a thin collisionless '"Knudsen
layer'" always exists near the sphere for arbitrarily small values of
Kn. On the other hand, no such singular behavior is expected in the
physical flow for the large Knudsen number limit. Since the asymp-
totic representation exhibits this characteristic in both limits, one
explanation is that the exact solution matrix consists of two solution
vectors regular in (1 /Kn) and a singular vector, which appears as a
solution to a-singular perturbation problem. Somehow the singular
solution vector then affects the others in the asymptotic solution
matrix when obtained by the methods of Appendix B. This explanation
is borne out by the eventual numerical results. The consequences of
the above are that the sphere surface is a special type of singularity
called a ''turning point' or '"transition point' and that an extremely
complex analysis of a third order turning point is required to fully
support the above explanation. Fortunately, enough knowledge to
numerically integrate the differential system can be determined with-
out this effort.

In an attempt to further understand the behavior of this third
order system a second asymptotic representation is found near the
sphere, but for totally collisionless flow. Details of this calculation
are given in Appendix C. Again, the matrix é has a second order
pole in one of its elements, suggesting an irregular singular point at
x = 0. However, this point is what is often referred to as a '"'pseudo

essential singular point'' since a transformation (shearing) exists
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which takes Ainto a matrix with a first order pole as its strongest
singularity. Thus, for Kn =, the system is really one about a
regular singular point and has a solution matrix with, at most, poles
at x = 0. This lack of an exponentially singular solution explains the
early success in numerically integrating the free-molecule problem.
As a final step in the analytic investigation of this system an
asymptotic representation is found about the point infinity. The vector
differential equation (4.50) is recast with R as the independent variable
and the matrix é expanded in negative powers of R. As in the first of
the previous two expansions the point infinity is an essential singular
point, but this time with rank two. The details of the expansion at
this point are given in Appendix D and the resulting homogeneous

asymptotic solution matrix (D. 25) is

-4R
. B B — N
2_.?_12_11.1.,__ RS_Z’?ZKnRé—P... egKn(I/R+...)
ZR _4'];_{_
n o~ § 3—2 . 9—K—1;+ 1R, Z'I;;Kn§2+_-_ e%{n(;f_“) . (4.54)
= 2R 2R _ 9KnR
-4R
2. 358, . B .HEgh . Jama.
_ 2R S

Again the exponential solution vector, characteristic of essential
singular points, forms one of the three columns of the homogeneous
matrix, but in this case it is a dying exponential for large R and
causes no numerical difficulty. Also occurring is an algebraically
singular vector, the second column of (4.54), which may be identified
with a similar singular solution to the continuum Stokes equation. (13)

The remaining solution corresponds to the regular incompressible

Stokes solution for slow flow past a sphere. Although well behaved
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for small values of Kn, this asymptotic representation obviously fails
in the free-molecule limit in a manner much like the collisional as-
ymptotic solution does at the sphere surface. This behavior is an
example of the well-known singular nature of unbounded collisionless
flows as R approaches infinity.

A nearly complete understanding of the nature of all solutions
to the original sixth-order differential system has been developed,
and it is now possible to re-examine and reformulate the boundary
conditions necessary to numerically integrate the collisional system.
In view of the physical analogy involved it is reasonable to expect that
all parametric functions remain finite throughout the flow field. How-
ever, as has been shown by the above asymptotic representations, one
singular solution vector is present at each singular point, the sphere
surface and infinity. It will now be shown that a finiteness condition
is necessary to complete the numerical formulation of this problem.

Consider first the algebraic singular solution at infinity,
column two of solution matrix (4. 54). Substitution of this vector into
the drag integral (4. 42) yields a solution for NZ(R) which grows like
R near infinity. Therefore the condition (4. 37) that fﬁz(x=l) =0is
equivalent to a finiteness condition at infinity, and the original six
boundary conditions remain intact. An inadequacy of this set of
boundary conditions is, however, revealed through inspection of the
quadrature relation (4.45). Specifically, since sz(x=1) = -1, the
integral must be bounded and the part of the integrand in square
brackets must consequently vanish for large R. Thus,

~
W - =2

+2 9, ~0(1/R%) (4. 55)

0
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for each of the six general solution vectors. This coupling between
?‘{2 and ’\72 at infinity makes the two boundary conditions on the velocity
parameters, (4.38) and (4.39), equivalent, and only five conditions
remain for the sixth-order system.

A new condition must now be provided to uniquely determine
the complete six-moment solution. The obvious choice is to require
all parametric functions to be bounded at the sphere surface. It can-
not be proven that this finiteness condition is sufficient since the solu-
tion vector which is singular at the sphere may be eliminated by one
of the boundary conditions at infinity. Analytically connecting the
asymptotic representations about separated singular points is a very
difficult problem. However, it can be shown numerically that the
singular solution is not eliminated by the five remaining original
boundary conditions. The finiteness condition therefore completes
the formulation of this problem.

The finiteness condition must now be stated in a form conven-
ient for numerical integration. The three general solution vectors to
the collisional third-order system at the sphere are the columns of
the matrix (B. 24). One of these vectors is the exponentially singular

solution ull previously discussed, and the other two are
.-
12Kn
no ~ 1 + 0(x), (4. 56)

and

(o

+ 0(x) . (4.57)

3

w

t

Fet o
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Also found in Appendix B is a particular integral for the third-order
inhomogeneous system. Since this particular integral vanishes at the

sphere the complete solution for the vector Y is
Y = C4ﬂ1+C5_1:12+C6_nB+ 0(x) . (4. 58)

In this context the finiteness condition is simply C4 = 0. Therefore,

from (4.56) and (4.57)

w = Y, = . =

atx =0 (4. 59)
and, using the other boundary conditions,

(1+ )'{12+‘{;2=o akx= {0 (4. 60)

T2
is an equivalent form for the finiteness condition at the sphere sur-
face.

The system of finite difference equations discussed at the
beginning of this Section can now be solved. With the finiteness con-
dition (4.60) replacing the redundant boundary condition (4. 39) the
band matrix inversion proceeds quickly and gives well behaved solu-
tions for the six parametric functions. It is easier to invert the
original sixth-order system than to work with the inhomogeneous
third-order system and its attendant quadrature and integral relations.
An additional benefit results since these integral relations then pro-
vide excellent checks on the accuracy of the numerical procedure,
which was found to be quite good. The numerical values for the six
parametric functions are tabulated in Appendix G for a representative

collection of Knudsen numbers. The flow fields andintegral properties
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of these moment solutions will be discussed in succeeding Sections.

4.6. Solution by Matching

The successful attempt in Section 3.5 to obtain the heat-
transfer solution through a matching procedure suggests a similar
approach for the more complex flow problem. For this flow problem
the drag integral is constant throughout both regions instead of the
heat-flux, and the velocity fields are matched instead of the tempera-
tures.

The free-molecule solution for slow flow past a sphere is
chosen as the inner solution for this matching procedure. This lin-
earized collisionless solution is developed in Appendix E where the
drag is found to be

1
8mkT \ 2z 3
_ 2 3 00 4
D = wRyn, Ug(— ) (§+g) _ (4.61)
In this expression U0 represents a uniform flow at some point away
from the sphere (not necessarily at ). The corresponding velocity

fields are

up, = -Ujcosdf(R) (4. 62)
and
u, = Ug sind £,(R), (4. 63)
where
8 o Q2 3/2 o2 2 RiR,
fl(R)=%-—02——03+%—(1-——g) +1—Pg§(1-—%)1og( )(4.64)
8R® 4R R 0 R R-Ry /,

and



2 3 2 2 1
£,R) = 17+ ROZ ¥ __R°3 + (g ——Roz)<1 _——Rg )
16R 8R 4 R
2 4
R R R+R
R ( 20 0y ( o>
e (32— - — Vog(=——) (465
BZR " R-R,

These velocity field functions are found by integration in Appendix E.
Using Eq. (4.61) to eliminate U, a complete inner velocity field is
determined as a function of the drag integral only.

Utilized in the region far from the sphere is a solution of

Stokes equation which satisfies only the boundary condition at infinity:

up = - U_cos8(l - A/R + B/R’) ; (4. 66)

Y = U_sind (1 - 1A/R - 3B/R7). (4. 67)

The no slip conditions at the sphere which give the usual Stokes solu~
tion are not applied, thus leaving two free constants to be determined
by the matching, A and B in the above expressions. Integration of
the forces due to this flow pattern gives a relation between the drag

and one of the constants,
D = 4Trp,U°CA. (4. 68)

These inner and outer solutions are each valid in different
regions and the drag integral cannot be determined from either except
by matching in an appropriate manner. The matching condition dis-

cussed earlier takes the vector form

lim u, = lim u ; (4. 69)
Bt inner R_'Ro outer
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and provides values for both of the undetermined constants. Applying

this condition to each component of the velocity field gives

3w
U (1 -A/Ry+B/Ry)=U (4. 70)

0

U (1 - 3A/R, - +tB/R}) = U,. (4. 71)

0

Subtraction of Eq. (4. 71) from (4. 70) then provides the relationship

B =

2
Ry

A . (4. 72)

W =

Finally, substitution of Eqs. (4.61), (4.68) and (4. 72) into either
(4. 70) or (4. 71) yields an expression for the drag which is analagous

to the heat-flux relation (3. 32),

D . 1 ) (4. 73)
D, 1 [
+ r
R (Bka )3(_‘_1_+ Ly
0% T % 6
where
D, = 6rrROpU°o. (4. 74)

Of course, | may be replaced by ) through the relation

A = —ZET—E (4. 75)
(ﬁ)

so the drag may be represented as a function of the Knudsen number,

D 1
== —— : (4. 76)
D, . _Kn

Z T
(5 *35)
The uniformly valid radial velocity field is found by subtracting

the common part, —Uoocose (1 - A/RO + B/Rg ), from the outer solu-

tion and adding the remainder to the inner solution, giving



A - U, coshf

up = -U_cos (zx— - ;) g L(R), (4. 77)

3R
where account is taken of Eq. (4.72). Then, eliminating A and U0
with the aid of equations (4.61), (4.68), (4.74) and (4. 76), this ex-

pression becomes

3R, R,
Up = -UOCCOSG [(1 - 6)(1 - SR + '2——3) + 6f1(R):| 5 (4. 78)

R

where
5 = - (4. 79)
- (E + T ) . .
1 % 9 =
Kn

Similarly, the tangential velocity is found to be

3R0

3
} R
. 0

g = UwsmﬁLU -8 - 4 - ;E§)+6f2&U]. (4. 80)

Inspection of these velocity functions reveals that the flow
determined by this matching procedure is composed of two parts:
one, identical to the free-molecule solution weighted by a function
of Knudsen number; a second which is exactly the continuum Stokes
solution also weighted by a function of Kn. This dual character is
qualitatively very similar to the behavior found for the heat-transfer
solution, although the rarefaction parameter 6 is numerically differ-
ent in the two problems. The velocity fields found here by matching
methods will now be illustrated and compared with the numerical
moment solutions obtained in the previous Section.

4.7. Velocity Field

Once the values of the six parametric functions are determined
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by the moment method it is possible to calculate all physical proper-
ties of the flow about the sphere. Of particular interest is the veloc-
ity distribution which is given explicitly by Eqs. (4.2) and (4. 3) and
the known parametric functions. The radial velocity is shown in
Fig. 6 and the related tangential velocity in Fig. 7, both plotted as
functions of xz =1 - Rg/RZ. Both of these curves illustrate the dual
character of the flow field for transitional values of the Knudsen num-
ber. Specifically, the inner portions of the transition velocities have
the general shape of the upper free-molecule solution while the veloc-
ities far from the sphere have the character of the lower Stokes solu-
tion. The shear-stress is also shown in Fig. 8 as an example of the
higher moments which can easily be found.

In the velocity plots the exact free-molecule solution given
in Appendix E is shown as a dotted line, and the collisionless moment
solution is not shown since it lies within one percent of the exact free-
molecule solution at all points in the flow field. The other limiting
solution could not be calculated exactly by the moment method as
formulated, but the solution for Kn = . 001 is virtually identical to the
Stokes solution which is also shown as a dotted line.

Three representative tangential velocity fields which result
from the matching procedure of the last Section are plotted in Fig. 9.
These curves, taken directly from equation (4. 80), are each com-
pared with a moment solution for the same value of the Knudsen num-
ber. The plots resulting from these two methods appear to have
nearly identical shapes, although the matched solutions are shifted

slightly as if representing flows at somewhat different Knudsen
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number. However, the numerical differences are small and the near
congruence of the two solutions is encouraging. The favorable com-
parison of the moment solutions with curves composed of linearly
superimposed Stokes and free-molecule patterns is even stronger
evidence of the dual character of the physical flow field as modeled
by the moment equations. Plots of the radial velocity field show a
very similar behavior.

No experimental values for any of the flow field variables are
known for comparison with the distributions predicted. Also, no
theoretical results providing transitional velocity details are known.
However, a velocity field for the slip regime (low Knudsen number)
was obtained originally by Basset (19) for low Reynolds number flows.
Basset's solution may be reproduced in the present context very simply
by applying appropriate boundary conditions to the general Stokes solu-

tion discussed in the last Section. The necessary conditions are
u, =0 at R =R (4. 81)

and the Maxwell slip condition for diffuse re-emission

_ 2y du
u -u = = ; 4, 82
gas wall ( pc dy )wall ( )

Using the relation (4. 75) and the expression for the mean velocity,
oy £y
c = (8kT/mm)? , 7 (4. 83)

the second boundary condition above becomes

ue = kﬁ' at R=RO . (484)
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Applying these conditions to the velocity expressions (4.66) and (4. 67),

the velocity fields found by Basset become:

.U cosol1.3(lt2Ka R0 1 1-2Kn Rg, % i
YR T TV 0" 2T v e 'R T2V e >
2 B RQ
_ 1 + 2Kn 0 1 1-2Kn 0
ng & U @ 9[_ (T 4% ) R - 7T74Kn) 3] % 56)

The expression (4. 68) for the drag of the general Stokes solution then
gives

Kn
K

1+ 2

as the drag for the Basset slip solution.

Obviously, this slip solution is a reasonable approximation
for low Knudsen numbers only. A plot of the tangential velocity (4. 86)
is presented in Fig. 9 for Kn = 0. 05 along with the velocities found by
matching and the moment method. The slip solution is qualitatively
in error near the sphere where a Knudsen layer is evident in the other
two solutions.

4. 8. Sphere Drag and Comparison with Experiment

Although very few investigations of the velocity and pressure
distributions exist, a number of results are available which give the
drag integral for a slowly moving sphere in various flow regimes. A
comparison of these results with the drag values found in this Chapter
will now be presented.

The drag predicted by the moment method is easily found by
integrating the normal stress and shear stress over the sphere sur-

face. A convenient representation for this drag is the ratio of the
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drag coefficient to the coefficient for collisionless flow CD/CDf

which in terms of the normalized moments is

i e
Ch _ -PRR(Kn) + 2 PRe(Kn)
G = = ~, : (4. 88)
-p* ; ¥
Dfm PRR(oo) 2 PRe(oc)

A plot of this moment drag as a function of Knudsen number is pre-
sented in Fig. 10 along with the experimental values by Millikan. (14)
Also shown is the drag ratio, expression (4.76), which results from
the matched solution. The values from both the moment method and
the matching method are seen to pass smoothly from the continuum
to the free-molecule limit, but both fall somewhat below the experi-
mental points. The quite good agreement between these two curves
further suggests a relationship between the two methods, originally
found in the heat-transfer problem where they gave identical results.

Some other theoretical results are also presented in Fig. 10,
although all are valid only in limited Knudsen number regimes. The
agreement with Goldberg's thirteen-moment solution (17) is excellent
in the near continuum regime, but the thirteen-moment solution ap-
proaches the wrong limit for free-molecule flow. In the low density
regime the Knudsen iteration curves of Willis (2) and Liu, et. al. (16)
are seen to give better agreement with Millikan's values than the

moment method.
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5. SLOWLY ROTATING SPHERE

5.1. Description of the Problem

In this Chapter the sphere is again at rest in an infinite homo-
geneous gas of arbitrary density, but it is now spinning with an angular
velocity w about an axis fixed in this space. The rotational speed is
restricted to low values of the surface equatorial speed ratio Seq’
defined as wRO(m/szoc )%. Of particular interest in this problem
is the flow which is of second-order in the surface Mach number.
Consequently, the weighting function is expanded in this parameter
and both first and second-order moment solutions are determined.

As before, the sphere is assumed to have a high thermal con-
ductivity and the sphere temperature is taken equal to the gas temper-
ature at infinity to eliminate all heat-flux other than that produced by
the spinning sphere. Without this last assumption the presence of two
perturbation parameters, wRO and At, would unnecessarily complicate
the problem, especially the portion of the solution which is second-
order in wRO‘

In determining the limiting solutions for the rotating sphere,
the discussion of Section 4.1. remains relevant. In ‘accord with this
the moment solution should approach in the continuum limit the solu-
tion of Stokes equation about a rotating sphere, and the more complex
high Reynolds number solutions should not be reproduced. The rela-
tively simple first-order Stokes solution was obtained by Lamb (20)
who also knew of the existence of the second-order 'centrifugal fan"
motion as did Stokes. However, the formulation and solution of this

second-order problem remained for Bickley (21) and still later for
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Collins, (22) both of whom used an expansion of the Navier-Stokes
equation in powers of Reynolds number. This motion is characterized
by a radial influx at both poles of the sphere which is balanced by an
equal outflux at the equator.

As in the case of the translating sphere the collisionless limit
is described by one Maxwellian distribution representing the station-
ary ambient conditions and another reflecting the effect of the sphere.
Note that the velocity in the sphere influenced part of the distribution
function depends on the point of the sphere from which the particle in
question originates. The collisionless velocity fields are then deter-
mined by integration after expanding the sphere Maxwellian in powers
of surface Mach number. The first-order velocity field is readily
integrated and is described, for example, by Willis. (3) The second-
order integration is more difficult because of the varying mean veloc-
ity within the sphere's cone of influence described above, and no
known reference to this motion is available. This integration is pre-
sented in Appendix F for the velocity fields and some higher moments
such as the stress tensor. The ''centrifugal fan' motion is also found
in the totally collisionless flow pattern which results from this inte-
gration. Further, the velocity fields are very nearly the same shape
as in the continuum low Reynolds number solution, but of different
magnitude.

Some excellent measurements by Lord, Bowden and Harbour
(23), (24), (25), (26) of the drag torque on a revolving sphere in various
Knudsen number regimes constitute nearly the entire experimental

effort devoted to this problem. No measurements of the velocity field
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for either the first or second-order motion are known. This is not
surprising considering the very small induced secondary flow, par-
ticularly in the low density regime.

Existing theoretical studies of the rotating sphere are also
quite limited. Willis (3) has investigated the first-order motion by
means of a Knudsen iteration technique through which he determined
the drag torque in the near free-molecule regime. In the same report
Willis compares the first-order torque found by the moment method
with proposed interpolation formulas and the above data by Lord and
Harbour. No investigations of the second-order velocity patterns
are available other than the continuum solutions by Bickley and Collins
previously mentioned. Consequently, the second-order moment solu-
tion obtained in the following Sections cannot be compared with any-
thing but the known limiting solutions for large and small Knudsen
number.

5.2. First-Order Moment Solution

The first-order moment solution was originally presented by
Willis (3) for the case of a slowly rotating sphere within a fixed con-
centric sphere of larger diameter. This solution is quite simple and
since it provides the basis for the second-order development to follow,
it will be repeated here.

In order to provide sufficient freedom in the formulation of the
second-order moment equations a general weighting function must be
chosen to represent the true distribution function. The '"two-sided
Maxwellian'' described in the introduction, Eqs. (la) and (lb), con-

sists of ten parametric functions and is appropriate for this purpose.
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The linearized form of this weighting function is given by Eq. (2.12)
Although it will not be shown in detail, the substitution of the
weighting function (2.12) into the moment equations results in the total

separation of the two tangential velocity parameters, w, and w,, from

1 2
other parametric functions. Specifically, the tangential momentum
equation (2.24) and the shear stress moment equation (2.29) contain
only the w's while the remaining equations involve only the other eight
parameters. A great simplification now follows from the homogeneous
boundary conditions appropriate to the eight functions, NI' NZ’ tl, tz,
Uy, Uy, Vi, Voo The only solution satisfying these conditions is the trivial
solution with all eight parameters identically zero. The problem is in
reality a two moment system for the parameters, W1 and W) which
will now be integrated to complete the first-order solution.

The reduced form of the first-order weighting function is
£ =t [142828 w.]
i} 0 0 "1

and (5.1)
£, =f [1+2p28 w,] .
0 p 2
The mean quantities which appear in the ® momentum equation (2.24)
and the shear stress equation (2.29) can now be integrated using

Table 4 of Appendix A. Nondimensionalizing all quantities by the

expressions (3. 3), the relevant moments are

22

Rep - a1 -xt) W, | (5. 2)

d
0

Pop = 0 (5. 3)
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3 — 3 5. —

Pove = /2w, - (5/4%x -3/4x)w_, (5. 4)
PY =0 (5. 5)
Reyp ~ 7 ’

% — 3 5 —

P = 1/2w, - (15/16 x - 5/8 x” + 3/16 x" )W (5. 6)
88w
E e

Pons = 3Pgsy (5. 7)

As a consequence of expressions (5.3) and (5.5) above the partial
differential moment equations become ordinary differential equations

and the velocity parameters may be written as

W, = %+(R)g(9),

and (5. 8)
w_ = w_(R)g(8),

where g(6) is an arbitrary function of 6 which will be determined later
through application of the appropriate boundary conditions.

In a nondimensional form the system of equations for the first

order solution is

d, % _
(3+Rgg)Ppy, = 0, (5. 9)
and
d ¥ k %  _ 7R ~ _ mR_*%
(3 + R qx)PrRro - Paoy - T PRe ‘X;Pch' (5.10)

The first of these equations may be immediately integrated to give

€3 -
Pr = cl/R3,

Ro (5.11)

from which

W_ = -2mRC,. (5.12)
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Finally, using the moment integrals and the above solution for Tvv_,

the shear stress equation (5.10) reduces to the simple form:

d .~ ;5
— (W, /R) =—— , (5.13)
dar ‘W4 -rr

which upon integration yields

wC

w, = CZR -

_1_2 : (5. 14)
3KnR

This completes the first order solution except for the application of

boundary conditions, which for this problem are

w, = 3(w,_+w)=wR,sind at R = 1 , (5.15)

+ 0

and

w, = é(w_F -w ) =0 at R = o« . (5.16)

The integration constants can now be determined with the aid of these

conditions to be

wR
_ 0 1
Gy 5 2w ‘1+ ) (5.17)
12Kn
and
By = DR [t
2 T Wiy :—1—). . (5.18)
12Kn

The 6 dependence is now also specified to be
g(B) = sin 6 . (5.19)

The final solution to the first order moment equations is thus

1 wR.Osine

Wy B (R +
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and
) 1 wR.051nB

W = ( )
2 =2 1

The mean quantities of interest are the tangential velocity and
the shear stress which determines the drag torque on the sphere.
The mean velocity, as specified by a particular integral of the weight-

ing function (5.1),is

v, = 1/2w+—(3/4x—1/4x3)w_, (5. 21)
which becomes
R,03 Rg 5 <
o, o [——3 F 12 - e =i in ]
® 12KnR 4R
(wR si;'le ) (5.22)
1 +15mm

The shear stress moment, Eq. (5.2), becomes

4
n kT wR . sin 6
_ o o 0
Ry = ( —) - (5.23)

2T R3 I+_—12Kn

Both the tangential velocity and the shear stress approach the proper

values in the limits of large and small Knudsen number.
The drag torque on the sphere is simply an integral of expres-
sion (5. 23) over the surface of the sphere. A convenient representa-

tion of the drag dependence on density is the ratio

1

DiD, = T T7Ra * (3 2%

where the subscript ¢ indicates the continuum limit value. This
simple Knudsen number dependence is identical to a general inter-

polation formula suggested by Sherman. (27)
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One comment is in order concerning the above moment solu-
tion in which w1(5. 20) is found to grow like R at large distances from
the sphere. Initially, this behavior appears to contradict the earlier
low Mach number assumption which permitted the expansion of the ex-
ponential in the weighting function. However, this growth is due to
a geometrical effect reflecting the diminishing range of the § inte-
gration far from the sphere. The consequence of this is that the mean
i velocity of the weighting function is not represented directly by W
For example, consider the expansion of the exact collisionless distri-
bution function performed in Appendix F. There it is shown that to

first order in surface Mach number

b= £ [_1 +2ple. (LEXEQ)]: £ 1+Zfig§cprsin 9] . (5.25)

Note that in the last expression wRsinf, which corresponds to w, in

the moment formulation, is unbounded even though the magnitude of

the mean surface velocity (wX R_O) is always much less than the mean

molecular speed.

5.3. Second-Order Weighting Function and Mean Quantities

A ten-parameter second-order weighting function follows
naturally from an expansion of the '"two-sided Maxwellian' described
in the Introduction. To effect this expansion, the parametric functions

are assumed to have the following form:

n. = n (1+N.(2)+...);
i o0 i

H
I

T (l+t.(2)+...);
oc 3t
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u. = u, + s
% 1
(5. 26)
Ny = .(2) % ’
ol i
w. = W.(l) + w.(z) T 5
1 it 1

where account is taken of the first-order solution found in the pre-

vious Section. All quantities with bracketed superscripts are of order
(Eln) where €is the perturbation parameter, the equatorial surface
Mach number in this case. With these parameters inserted into Eq.

(1.1a) and (l. 1b) the order (62) part of the weighting function becomes
(2) _ (2) (2)_,2 (1)2 2 (2 2 (2
i -fec[Ni -3/26{ ) pew %1 2p2u{Pe 1 2p2 v

+ 280 w ()g + 2pgwl)? g +pot! gZJ (5. 27)

where i = 1, 2.

The moment integrals appearing in the moment equations must
now be determined using the above second-order weighting function.

To simplify notation in the ensuing development of the second-order

solution the new quantities,

I‘ =

3 v_v§1)2+§2(1)2

and

(5. 28)
T_ = Wl ':‘;lél)z ’

are introduced. With the only first-order parameters thus eliminated,

the bracketed superscripts may be dropped and the remaining param-
eters will henceforth be understood to be of second-order. Again

using Table 4 of Appendix A and non-dimensionalizing all quantities
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by the expressions (3. 3), the necessary second-order moments are

as follows:

mug A = 1xPN _+1/2¢ )+ 172, -1/2 %7 T
xz 2
-'—4"”_—(]. = X )I‘_ 5 (5'2‘9)
“Ee(z) =1/2%, - (3/4% - 1/4 )V (5. 30)
ﬁ(z) =1/2%, - (3/4x - 1/4 )W (5.31)
§(2)= - 172 NJr +1/2 x3N_ - 1./2 to+ 1/2 x3t_
3
1 Ao | B o . _
- -1 -x)u_+ e (1 -x)T (5.32)
() :
Pog == 1/2 (N, +t,)+ (3/4x-1/4x")(N_+1t)
_ 2
B TR T (U Ll Sl (5. 33)
o 4 1f4 %°
Poy & ° 1/2 (N +t)+ (3/4x - 1/4x")(N_+t)
- EI'TF (1 -x5%a - %1"++€i—w(33x—26x3+9x5)r_; (5. 34)
=@ 22—
P, = -5 -x%%_ (5. 35)
¥ 2). 1 - T
Pro = - 25 (- =% (5. 36)
q_;(z) = (1-x%)@N_+3t)+5/4u, -5/4%x 0
& % (1 = 4x% + 3x4)r_ ; (5.37)
q_g(z) = 5/4%, - (15/8x - 5/8 x)V_; (5. 38)
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Prod¥ = 125, - 5/ax’ - 37405
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2
¥ (2) _ Bar 3 28
Pcpcpii = 5m(N, + 2t ) -5 (3x - x ) (N _+2t ) +6(1 -x7) u_
+ 4T, - (255/32 % - 95/16 x°+63/32 x)T_; (5.51)
2
® (2)_ 2. o
Preiy = 6l -x=7) v_ . 15, 52)

5.4. Differential Equations

Clearly, full utilization of the ten-parameter weighting function
just described requires a system of ten partial differential moment
equations. The ten moment equations which were collected in Section
2.3. represent a complete sequence of moments through second order
in € plus one third order moment, Q = %;nggz, and provide a natural
initial system with which to attempt a solution of this problem. The
equations missing in this sequence are linear combinations of the ten
given equations, a consequence of the physical symmetries present in
the stress tensor, and thus provide no useful information.

Unfortunately, this ten-moment formulation is improperly
posed in the sense described in Section 2. 5. and cannot be solved to
satisfy ten arbitrary boundary conditions. To demonstrate that the
linear transformation from parametric to canonical variables is
singular it is necessary to consider only the three canonical variables
g;i(?‘), gé{ ) and P;ee(z) associated respectively with the moment
equations (2. 25), 2.26) and (2.27). Using the integral definitions of
these variables provided by expressions (5. 37), (5.40) and (5.43) it

is easy to verify that

— — T
*(2) * o (2) * (2)_ _"-
2ag’ - Prrr ' "2Prpg = 7B iRe R
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A relationship thus exists between these three canonical variables,
and appropriate manipulations of the associated moment equations
will produce a row of zeros in the transformation matrix A. Funda-

H 4

mentally, this reflects the coupling between P and P-‘:cpcp through

RB6 R
symmetries in the chosen weighting function.

A mathematically interesting possibility is that the ten natural
boundary conditions might be satisfied by a solution containing fewer
integration constants. This conjecture is not pursued now since the
complete general solution, which is difficult to obtain, would be re-
quired for verification and other avenues of approach are open.

An alternative formulation which provides for a nonsingular
transformation to canonical variables everywhere except at ¢« will now
be described. TUnless the form of the weighting function is changed
quite radically, perhaps by introducing an anisotropic temperature
parameter, the coupling among the canonical variables of Egs. (2.25),
(2.26) and (2. 27) will remain and the transformation matrix will be
singular throughout physical space. Another approach is the replace-
ment of one of these three equations by a higher moment equation,
which avoids the difficulty by the employment of a new canonical vari-
able. One such possibility is the tangential heat-flux equation, but
its canonical variable P;;Gii is directly related _to P;B of the tangential
momentum equation indicating that another singular system would re-
sult. Although higher order moment equations undoubtedly exist
which satisfy the nonsingular criterion of Section 2. 5., all involve

more complicated expressions for the collision terms than those pre-

viously given. For this reason a ten moment formulation offering
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reasonable hope of solution appears unlikely and efforts are redirected
to a system containing fewer parametric functions and moment equa -
tions. This simplification is very analagous to the elimination of the
temperature parameters which was carried out in Chapter 4 for the
first-order solution of flow past a sphere.

It has been found generally desirable to maintain the symmetry
of the weighting function by incorporating even numbers of parametric
functions. Therefore, in the present example eight parameters and
eight moment equations are used, which fluid dynamically corresponds
to assigning Up, g,

ables. The eight moment equations are Continuity, Radial Momentum,

utp’ PRG PRC()' PRR’ p, and T as independent vari-

8 Momentum, ¢ Momentum, Energy, RO Shear Stress,R{pShear Stress
and Radial Heat-flux. Eliminated are the two normal stress equations,

(2.26) and (2.27).

5.5. Boundary Conditions

Once again a singular point of the moment system at infinity
presents possible complications in the specification of appropriate
boundary conditions. However, a set of necessary conditions is
readily available from Section 2. 4. where diffuse re-emission and
complete energy accomodation were assumed at the sphere surface.
With these assumptions all temperature perturbations must vanish
and, since the sphere motion is entirely accomodated by the first-
order velocity solutions, all higher order velocities must satisfy
homogeneous boundary conditions at the sphere. The surface condi-

tions on the second-order parameters are therefore
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tl(x) =0 at =20 , (5.54)

u (x) =0 ak x=0 |, (5.55)

Vl(x) = 0 at x=0 , (5.56)
and

Ql(x) = 0 at wz2l . (5.57)

Completing the conditions at the sphere is the specification of no net

mass -flux,

n_uR(z)(x) =0 %t ==0, (5. 58)

which with Eq. (5.29) becomes

I
g

N (%) +1/2¢_(x) +1/20,(x) =0 at x (5.59)

»
The remaining conditions result from forcing the weighting

function to approach a Maxwellian distribution at rest at infinity.

These conditions on the second-order parametric functions are

IIZ(x) =0 at x=1, (5.60)
Vz(x) =0 at x=1, (5.61)
"—»Erz(x) = 0 at x=1, (5.62)
Nz(x) =0 at %=1, (5. 63)

and

LX) =0  at x=1. (5. 64)
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Note that ten conditions are given since the specific form of the eight-
parameter weighting function is still undetermined.

5.6. Moment Solution

The eight-moment formulation of the second-order flow about
a rotating sphere does not involve a singular transformation to canon-
ical variables provided that Vi Voo W, W and any four of the remain-
ing six parametric functions are retained. Since the choice of which
four additional parameters to incorporate is arbitrary at this point,
all will be carried until the detailed specification is required. This
choice is dictated more by ease of solution than by any fundamental
property of the resulting system. In fact, solutions having small
numerical variations may be obtained using different forms of the
weighting function, a result which is typical of moment methods.

The solutions now to be described are found in part by analytical
methods but must be completed by a numerical integration.

An immediate simplification results from substituting the inte-
gral definitions, (5.29) to (5.52), into the ¢® momentum and shear
moment equations, which are expressed in nondimensional form by
Egs. (5.9) and (5.10). Since the relevant moment integrals are iden-
tical to the first-order expressions the resulting solutions for the
second-order parameters w_'_(z) and w (2) are also the same as the

first-order solutions given by Eqs. (5.12) and (5. 14). However, only

the trivial solution,

W = and wil = g (5. 65)

satisfies the homogeneous second-order boundary conditions, which
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indicates that no secondary azimuthal motion exists. Also, the
second-order drag torque is zero for all Knudsen number regimes,

a result which agrees with both the continuum and free-molecule
limiting solutions. It is therefore necessary to solve the third-order
moment system to obtain corrections to the simple drag torque rela-
tion (5. 24) of Section 5. 2.

In the other examples considered the partial differential mo-
ment equations have been reduced to ordinary differential equations
by assuming appropriate 8-dependence for the parametric variables.
The separation has always been reasonably obvious from flow symme-
tries or boundary conditions, but in this case the situation is not near-
ly so clear. Of course, a general expansion in some orthogonal basis
of the B-dependence of all parameters must work, '_but this involves
more effort than is necessary if the proper separation can be guessed.
Fortunately, a relatively simple 6-dependence is appropriate and its
development will now be described.

The initial indications of the f-dependence were obtained from
the velocity fields of the known limiting solutions. The radial velocity
has a (3 cosze - 1) dependence and the tangential velocity behaves as
sin B8 cos 0 in both the continuum and free-molecule solutions. It was
also believed reasonable that the thermodynamic part of the flow,
temperature and density, would be driven entirely by the first-order
velocity field which has sin 6 behavior, and the N's and t's were
assumed to have sinze dependence. However, although they permitted
separation of the equations, these assumptions were overly restrictive

and the resulting solutions could not satisfy the required boundary
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conditions.
The clue for correcting the assumed A-dependence is provided
by the second-order free-molecule distribution function of Appendix F,

which may be represented by the general form,

fFI(\i) _ Gl (E)sin26+ Gz(g)(sinze COSZ.]-_Cosze)+Gs(_g_)cosesinecosT, (5. 66)

where the G's are not functions of 7 (see Fig. 2). Thus all moment
integrals involving odd powers of §e= EcosgcosT have only sinf cos
dependence as was assumed (T is integrated from 0 to 2w). However,
all other moments have in general two components which behave as
sinzeand cosze, not just (3 cosze - 1) as does the radial velocity.

Consequently, one appropriate though not unique separation is as

follows:

N, (R) = N,(R) sin®0 + R (R)(3 cos®0- 1) ; (5. 67)

N (R) = N (R) sin®0 + N_(R)(3 cos?0- 1) ; (5. 68)

t (R) =T (R) sin8+ & (R) (3 cos’8- 1) ; (5. 69

+'= + + - ’ &t
~ . 2 A 2

t (R) =t (R) sin 8+t (R)(3cos 8-1) ; (5. 70)

_ " LB 2

u+(1_1_) = u+(R) sin 8 + u+(R)(3 cos B-1) ; (5.71)

- . . . 2

u_(l?_{) = u_(R) sin 0 + u_(R)(3 cos B-1) ; (5. 72)

$+(_I_<) = G+(R) sin 6 cos 0 ; (5. 73)

v (R) =¥ _(R) sin Bcos 0, (5. 74)
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with similar behavior for the moment integrals. This separation is

also appropriate for the two equations dropped from the original

system of ten moment equations.

The remaining six partial differential moment equations are

now collected using the above superscript notation to indicate the

appropriate 8-dependence of the moment integrals. The resulting

ten nondimensional ordinary differential equations obtained through

separation of these moment equations are as follows:

Continuity, s in2 9:

d, ~ _ .
(2+ R“d—P-;) nuR = 0 ) - (5.
3 2
Continuity, 3 cos 6 - 1:
(2 +R Ss)nutdu, = 0 ; 5
AR gt Uug = : (5.
o 2
R momentum, sin 6:
d %k i it )
(2+Rgﬁ)PRR»Pee—qup— 0 ; (5.
R momentum, 3 cosze -1:
d % . Sk "% ) :
(2+Rd_R—,)PRR+PRG-P69-PCPCP—O ’ (5
f momentum, sin fcos 08 :
" [ "% % A% )
(3+RHT{)PR9+3P99“Pcpcp'6P96"0’ (5.
2
Energy, sin 0 :
d, % _ .
2+Rggldg = 0 ; (5

75)

76)

{7)

78)

79)

. 80)
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' 2
Energy, 3 cos 8- 1:

-

:k

Shear stress, sin 0 cos 0:

d Tk ’k T “&

o TR W
(3+R45 )Pprg - eee'Pecpcp+3PRee Ropep 6PRee‘xoc Prg’ (5-82)
2
R heat-flux, sin 0 :
2+rR ypF  p* p* TR (1) (1) 55 5 g3
ar) PrRii" Foeii ~ Fppii A Pro Yo g’ :
2
R heat-flux, 3 cos 0 -1 :
d *A *A 3; €3 _ 2R .~
B+ Ban P e ~Posis Fuypii " Presi = - M, IR G B

The exact form of the reduced weighting funcfion must now be
specified to provide a closed system of ordinary differential equations.
One possibility is obtained by eliminating the two temperature param-
eters from expression (5.27) as was done for flow past a sphere. This
function then provides a system of ten ordinary differential equations
governing the ten remaining parameters on the right hand side of ex-
pressions (5.67) to (5. 74). However, because of a singular point at
infinity, the solution to this system is not uniquely determined by
application of the boundary conditions of Section 5. 5. One integration
constant remains which must be determined through some specification
of the asymptotic nature of 'EZ(R) at infinity. Investigation of this con-
dition is not pursued since an appropriate value for the free constant
makes this solution nearly identical to one provided by a slightly dif-

ferent formulation now to be described.
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Consider now a weighting function with the parameters €+ (R),

t R), ®

) ,(R) and W _(R) of Egs. (5.69) to (5. 72) set equal to zero.

Eliminating "GZ(R) removes the above singular behavior and allows

a unique solution. The resulting 6-dependence of the parametric
functions is very much as originally thought with the exception of

the two density parameters which now have an additional (3 cosze - 1)
dependence. This addition is necessary to satisfy the mass-flux
boundary condition (5. 59) which is actually two conditions, one on
n'\tflR and one on l’ﬁJ.R.

The final formulation is now complete and involves a system
of ten ordinary differential equations, (5.75) to (5. 84), governing the
ten parametric functions, T\"I+, N, ﬁ+,N_, T:"_I_, t, 1"1+, ﬁ_, $+ and ¥V .
It may appear that the above ordinary differential system derives
from a six moment partial differential system containing eight para-
metric functions. This apparent contradiction arises from the desire
to label the weighting function parameters with a physically meaning-
ful notation. In other words, there exist two implied relations among
the eight parameters, which result from the assumed 6-dependence,
and the weighting function actually contains only six free parametric
functions at this point. As is typical of moment methods, the final
weighting function is itself the ultimate justification of the entire pro-
cedure. A weighting function will now be developed which satisfies
the originally prescribed eight moment equations and the associated
boundary conditions.

The ten ordinary differential equations must now be integrated

to complete the eight moment solution for the rotating sphere. A
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great simplification is available in that these ten equations are separ-
able and may be integrated as a succession of lower order systems.
Specifically, the four equations exhibiting sinze behavior contain only
four parametric functions and can be integrated independently of the
other equations. The sinze part of the continuity equation (5. 75) is

directly integrable to yield

~ —2
fup = C;/R" , (5. 85)

which with Eq. (5.29) becomes

~ X n
N_+1/2% - 3=T_ = C;. (5. 86)

Similarly, from the energy equation (5. 80) and the heat-flux definition

(5.37) it follows that

~ 1 2

2N_+3% +4(1-3x")T_=C, . (5.87)
: G.g : : 2 2 o i

The intermixing of independent variables R and x =1 - RO/R is

somewhat unfortunate, but this seems preferable to the proliferation

of radical expressions in the following discussion. Since

—2
r. = Rea+—21_y, (5. 88)
6KnR
with
1 ~2
y = (1 +_12_Kn) . (5.89)

is known from the first-order solutions (5. 20) and (5. 21) these last

two expressions provide immediate solutions for two of the ten para-

metric functions,



T o= -c1+1/2c2-8+r(1+6mll§3)y, (5. 90)
and
N_= 3/2¢,-1/4c, +-1_é7r(4-_3—2)(ﬁ2+ e ) (5.91)
R 6KnR

The remaining sinZB parameters are only slightly more diffi-
cult to obtain from the radial momentum equation (5. 77) and heat-flux
equation (5.83). When the moment definitions of Section 5. 3. and the
above solutions for N'_ and 'Ei are inserted, both of these equations
simply become quadratures for linear combinations of N’+ and ?+'

The necessary integrations are straightforward and the parametric

solutions which result are

C =2
o~ 2 |, ¥R y [14 1 jif sk, 1
N, = C, - = i - — + + cos (—)
¥ 37 1sgknr 7 8O0"Kn g iggnwt 32 R
=2.3 ' (5. 92)
= (1_'__1_13_)__(145 = 26/§2 - g/'ﬁqf)],
32 R
and
t, & €, + C2 I [E+-1—+ 7cos_1(—1—)
4 47 \sgor 8O"Enly  agnap? 16 R
=21 _ _ (5. 93)
-Q;{_R_L (75 - 46/R2 B 8/R4)] .
48 R

The boundary conditions (5.54), (5.58), (5.63) and (5. 64) may now be
applied to these solutions to determine the four integration constants

and complete this portion of the system. The resulting constants are

c, =0, (5. 94)

1 7 11 1
Co & [g=- * + ) Y
2 47  2560Kn 240mKn 960‘"an 1

— . (5.95)
torems)
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_ 3y 111y

Cy = -1/4C, - 15 * 5720Kn ° (5. 96)
_ 7

C, = 1/2C, + 5pglos - L . (5.97)

Two of the remaining six parameters can now be determined
frorﬁ the equations having (3 cosze - 1) angular behavior. In particu-
lar, five-halves of the continuity equation (5. 76) minus the energy
equation (5. 81) is

ES

)

d £ l* ~ I* —
(2+Rd—-R)(5/2 nup -q_R)+ 5/2 nug - gy = 0, (5. 98)
which with the integral definitions of Section 5. 3. becomes
d 2, 1.
@+ R0 -x )N | = 0. (5. 99)
This equation readily integrates to give
f\l_ = constant = C5 . (5.100)

Similarly, consider 127 times the R-momentum equation (5. 78) plus
the R-heat-flux equation (5. 84). Again using the integral definitions

of Section 5. 3. the relevant combinations are as follows:

" " 3
127 Poo * Pooag =R, + 7 N_; (5.101)
12 B e + Prp. =9 (5.102)
12 B + B« -l 4 3/2 1/2 )0
™ Pog 86ii = - ™, w( X - x )N_ ¢ (5.103)
12y P +P:k & ol 3/2 1/2 xR
™ oo cpcpii-_“ ++1r( x-1/2x7)N_ (5.104)
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and

éR = -1/2 (1 -x9)R_. (5. 105)

After inserting these expressions and the above solution for I‘:T_ the
combined equation reduces to the form,'

d C

A 5
a8 M ® -

6KnR

5 ; (5.106)
which is easily integrated to give

N+ = C6 + CS/GKnR . (5.107)

The boundary condition (5.63) may now be applied to show that

Cg =Cy (5.108)
and consequently

N, = Cg(l + 1/6KnR) . (5.109)

The integration constant C5 cannot be determined until the remaining
parameters, ﬁz in particular, are found. The solution for the six
parameters which can be determined analytically is now complete.
The four remaining parameters are found by simultaneous nu-
merical integration of a system of four ordinary differential equations
even though this system may be further separated into two second
order differential equations. This reduction is helpful, however, in
understanding the analytic behavior of the solutions at the singular

points of the system and will therefore now be described. Of the un-

determined parameters only it and ¥ appear in the R-momentum
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equation (5. 78) and f-momentum equation (5.79). After a solution
for 4 and ¥ _is determined the continuity equation (5. 76) and the
shear stress equation (5. 82) form a system governing the parametric
functions ﬁ+ and 'G+ and allow the full completion of the eight moment
formulation.

The radial momentum equation with the substitution of the

integral moments (5. 32) through (5. 35) becomes

@R? -RH L& +a_+1/29_ =F,®), (5.110)
daR - - -

where F1 (R) is known from the first-order solution and the previously
completed portion of the second-order solution. Similarly, the 6-

momentum equation may be written as

9

-~
v -

= d
- s
dR - o

-6a = Fz(ﬁ) ; (5.111)

These two equations readily combine to yield

A
@2R*-R%) S59_ +R-LT_+29_=6F +F,
dR® ~ dR B
+@RP-R)LF,, (5.112)
dR
from which &t is determined by the expression,
A~ T d -~ -~
8 = RSF_ -9 -F,/6 . (5.113)
dR

The equation (5.112) has a regular singular point at infinity
but no finite singular points within the range of integration (R =1),.
Although the indicial roots at this singular point differ by an integer
(@ = 0, -1) no logarithmic solutions exist and the general horﬁogeneous

solution may be written
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G =a,[® - 3/4 'l o1/32R 34, )4 Zanil-n
= -n
+bo(1-1/6 R™2-1/40R™ 4 -+ ) FIP,R T, (5. 114)
where
2
(n~ - 3)a.n
242 T ZT F )2 + n) (5. 115)
and
2
n” + 2n - Z)bn
Priz = ZE TG T ) (5.116)

A series expression could also be given for a particular integral of
this equation but the algebraic complexity of the F's makes this very
tedious and the result is unnecessary for the following numerical
integration.

Now consider the other second-order differential equation
which results from combining the continuity equation with the shear

stress equation. The continuity equation (5.76) may be written as

e d A A - R
Raﬁu++-2u++v+=F3(R) (5. 117)

and the shear stress equation (5. 82) as

-~

R—9Y, -7, -64, =F,R) , (5.118)

4
dR
where Fa and F4 now involve the above solutions for 4_ and ?_ as well
as the parametric functions found earlier. From these it is not diffi-

cult to obtain the equation,

v, + 2R v++4v+=6F3+ 2F4+R. F4, (5.119)

i |2
& l=
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for ’\?+ and the auxiliary expression for 4 _,

A

G, = (ﬁa‘%{’ﬂ = ¥, =~ F b, | (5. 120)

Equation (5.119) is of a type known as an Euler-Cauchy differential

equation and has the analytic homogeneous solutions,

g, = g(#iVI574 - 2) (5.121)

The difficulty which prevents a complete analytic solution for the
parameters ﬁ+ and 'x?+ is the presence of nonanalytic expressions in

the inhomogeneous terms Fj and F4. Because of these quantities
which include & and ¥_a particular integral cannot be determined by
variation of parameters except as an infinite series.

With th_is general understanding of the behavior of these four
parametric functions in hand a numerical procedure can now be pre-
scribed. The integration is performed over the interval 0 to 1 of the
independent variable x with the only difficulty occurring at the singular
point x = 1 (R = infinity) where two of the boundary conditions are to
be applied. From the homogeneous solution (5.114) it can be seen
that a forward integration in the direction of increasing x will in
general diverge making a simple application of these conditions im-
possible. A solution to this system could be obtained by matching a
numerical integration over most of the range to an asymptotic, con-
vergent in this case, expansion in a small region near x = 1. The
determination of this expansion is quite difficult however, and a much
simpler method was employed to satisfy the boundary conditions at

infinity. Initializing with the three boundary conditions at the sphere
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(5.55), (5.56) and (5.58) (remember that C5 is undetermined from
the previous solutions) a Runge-Kutta-Gill integration scheme was
forward integrated to the point xz = ., 95 where the slopes of the cal-
culable quantitie's ﬁR and GB were then matched to continuum like
solutions of the same magnitude. Justification of this procedure is
two-fold: at large distances from the sphere all transition flow fields
become continuum in character and secondly the free-molecule veloc-
ity -fields agree with the continuum to dominant order in expansions
about infinity. Thus a reasonably quick and efficient integration
scheme provides the final four parametric functions, G.+, 4, ?Jr and ¥ .

In summary, a second-order weighting function of the general
form (5.27) has been developed which satisfies a reasonable choice
of eight partial differential moment equations. This weighting function
reduces to the appropriate Maxwellian forms at the sphere surface and
at infinity thus satisfying the most basic specification of the boundary

conditions. The parameters appearing in this weighting function have

the following 8 separation:

N.R) = N _(R) T ﬁi(R)(S cos’B- 1) ; (5.122)
t,(R) = Ti(R) ai5"G ; (5.123)
W,(R) = 8,(R) (3 cos® - 1) ; (5. 124)
v, (R) ='\?i(R) sinf cos B ; (5.125)
Tvi(g) =0 . (5.126)

A mixed analytic and numerical solution is provided for the tennonzero
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quantities above and tabulations of these results are presented in
Appendix H for a representative collection of Knudsen numbers.

Once the values of the parametric functions are determined
by the moment method it is possible to calculate all physical proper-
ties of the flow about the sphere using Equations (5. 29) to (5. 52). Of
particular interest are the velocity fields and the total drag torque on
the sphere, which may be found by an integration over the sphere sur-
face. Notice that because of the perturbation procedure, all second-
order physical quantities must also be multiplied by the factor,

2 2.2

411'[30 w RO , to obtain the actual numerical values.

5.7. Velocity Field

The description of the velocity field is greatly simplified be-
cause of its alternating character with succeeding terms in the surface
Mach number expansion. All velocity fields of odd power in Mach
number have only ¢ components and those with even powers have only
R and A components. The first-order ¢ velocity field is given analyt-
ically by equation (5. 22) and is shown for a series of representative
Knudsen numbers in Fig. 11, plotted versus x2 =1 - Rg i RZ. The
slip nature of the free-molecule flow atthe sphere surface is clearly
evident and the dual character of the transition solutions is again
illustrated as in the earlier problems;

The second-order velocity field, which involves both radial
and tangential components in planes through the sphere axis, is more
difficult to illustrate because it is normalized by a function of Knudsen
number and not just by the sphere surface speed as in the first-order

solution. Further understanding of this behavior may arise from an
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examination of the limiting solutions of continuum and free-molecule

flow. The continuum solution given by Bickley (21) has the form,

=i . 2
uR = -g:-zw(l -1/R)7(3 cos B0 - l)wRORe, (5.127)
R
Ug = __13(1 - 1fR) sinGcosGwRoRe , (5.128)
4R

where the Reynolds number is given by

1
2

Re = (rm/8kT)?wR,/Kn . (5.129)

Thus, when normalized by the sphere surface speed, the secondary

flow field may be written as
Ec/ wR = f(R) M/Kn . (5.130)

In contrast the free-molecule secondary flow obtained in Appendix F

is of the form,
gfm/wRO =g(R) M . (5.131)

The induced secondary flow is consequently of much greater magnitude
in the high density regime.

Because of the difference in magnitude between free-molecule
and continuum secondary flow, the solutions are illustrated in two
parts. In Fig. 12 the magnitude of the maximum radial velocity is
plotted as a function of Knudsen number and is seen to approach the
limiting solutions in a reasonable manner, It is somewhat surprising
to find that this curve has a minimum for a transition value of Kn and

lies below the continuum line for most of the low Kn solutions. This
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result cannot be substantiated however, since no other solutions exist
for this problem. A curve of the maximum tangential velocity exhib-
its essentially the same behavior.

The second characteristic of the secondary flow which must
be described is the velocity pattern as a function of Knudsen number.
For this, all velocity moment solutions are normalized by their maxi-
mum value and shown along with normalized distributions of the free-
molecule and continuum velocities. Fig. 13 gives the R-dependence of
the radial velocity field for a sequence of Kn values Qith the most
noticeable feature being the similarity of the patterns over the extreme
range of densities. The moment solution for infinite Kn provides a
better approximation of the limiting solution than do the low Kn evalu-
ations whose maximum values appear to be shifted slightly away from
the sphere.

The R-dependence of the normalized tangential velocity fields
is shown in Fig. 14, again with the two limiting patterns as dashed
lines. As in the radial velocity fields the low Kn sblutions appear
shifted away from the sphere surface, but the general shape is simi-
lar throughout the Knudsen number range. Of particular interest is
the existence of velocity slip at the sphere surface in all of the mo-
ment solutions, while the limiting solutions show no evidence of slip
for reasons which are easily understood. For example, the integrated
free-molecule solution of Appendix F' exhibits no second-order slip
because the distribution function of the ambient particles has only a
zeroth-order component and the second-order distribution function of

sphere molecules must approach zero at the surface. However, there
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is no reason to expect no slip for transition values of Kn. The slip
found for the infinite Kn moment solution must be due to the averaging
properties of the moment method coupled with the relatively high
radial slopes near the surface.

5.8. Sphere Drag Torque and Comparison with Experiment

Although only qualitative flow visualization investigations of
the velocity fields exist, a series of experiments are available which
give the drag torque for a slowly revolving sphere in a variety of den-
sity regirrua-s.i The drag torque found by the moment method is now
compared with these experiments and with other theoretical results.

In the moment solution it has been found that no second-order
contribution to the sphere drag is present and the only comparison
possible is with the rfirst-order expression (5. 24). A plot of this
moment drag as a function of Knudsen number is presented in Fig. 15
along with the above mentioned experimental values by Lord and
Harbour. (24) As for the translating sphere drag the moment torque
values are seen to pass smoothly from the continuum to the free-
molecule limit, but fall somewhat below the experimental points.

Two other theoretical results are also presented in Fig. 15,
although each is valid only in a limited Knudsen number regime. A
slip calculation by Lord and Harbour fits the experimental data some-
what better than the moment solution for small values of Kn. Also
shown is a Knudsen iteration calculation by Willis (3) which is restrict-
ed to large Knudsen number flows. A number of other results are also
available, but being essentially experimental curve fits these are of

little interest in this discussion.
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Additional experiments by Bowden and Harbour (25) provide
excellent values for the drag torque on a sphere revolving at surface
Mach numbers of up to five. A noticeable drop in measured transi-
tion drag was found for the higher values of M with no satisfactory
explanation being given. The present moment method presents an
interesting possibility for further study of this Mach number depend-
ence. A third-order solution about the rotating sphere would reduce
to a system of only two partial differential moment equations in the
same way as the first-order solution. Again the existence of an
immediate integral of the ® momentum equation simplifies the problem
to one requiring only a quadrature for completion. Unfortunately, a
very large number of inhomogeneous terms from the lower order solu-
tions makes this numerical integration quite difficult. Such a solution
might, however, be valid for surprisingly large values of the surface
Mach number because of the very small numerical values found for
the second-order parametric functions, which dominate the inhomoge-

neous driving terms for the third-order solution.
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APPENDIX A
INTEGRAL TABLES FOR MOMENTS OF THE WEIGHTING
FUNCTION AND EXACT FREE-MOLECULE SOLUTIONS
In Section 2. 2 it was shown that for a completely linearized
weighting function each moment integral consists of a sum of terms

of the form,

Sfoo F(E) dE (A. 1)

A collection of integrals of this type is provided in Table A. 4 for all
quantities F(E) required in the problems discussed in the text. In

component form these integrals are

% ﬁo 2‘_‘1 ?'n 00 -[32
S fmF(S)dE:%TS S SF(;_)e 0™ e®singd ga 7 a6, (4, 2)
Region 1 ® 0 0 0
T 27 oo
S F(£)dg = S S ) e o EsincdEdTdo, (A.3)
Region 2 1 e 0 0
2

where g, 7 and € are defined by expressions (2.1) through (2. 3) and

illustrated in Fig. 2. Of course, F(£) must also be expressed in com-

ponent form as

F(E) = F(&g, &, E )=F(,0,T) , (A. 4)
with

gR = Ecos o |, (A. 5)

f‘;e = E sin ocos T, (A. 6)

g = E sino sinT . (A. 7)



-101-
Tables A.1, A.2 and A. 3 provide the definite integrals required to
evaluate (A.2) and (A. 3), and in combination they provide the very
useful results of Table A. 4.
Also collected in Table A.5 are the definite integrals needed
to obtain the exact free molecule results described in Appendices

E and F.
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TABLE A.1

oo 2
-BO g
Nyeraber F(E) SF(g)e de
0
1
A 1.1 1 75, ===
A 1.2 £ —
26,4
A 1.3 g2 L
4p,
A. 1.4 g3 ——14
28,
4 3
A.l1.5 E —z N
86,
A l.6 g> L
Po
A 1.7 g® =2 Jw
168,
A. 1.8 e’ —%—
Po
A.1.9 g8 ——1059 -
326,
TABLE A. 2
27
Number F(T) S F(T)dT
0
A.2.1 1 2%
- sinz T k0
A.2.3 ™ o 3 -Z—
A. 2.4 sinz'r cosz'r' g—



Number

.1

.10

w11

.12
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TABLE A.3
(x = sin «a)
T2 % 'IT
F(o) S F(o)do S F(o)do
0 Tr/z -
sin © 1 - x 1 4+ x
- 2 1 3 2 1 3
sin O §—x+§-x 3+x-§x
- 8 2.3 1 5 8 2.3 1
ik TR ol L v S e
5 1 2 1 2
sin0 coso > (1-x7) -5 (1-x°)
sinC coszcr 3 (1-x3) 2 (1+x3)
3 3
; 3 1 4 1 4
sin0 cos O T (1-x7) —Z(l_x )
sino cos4o ik (1 -x5) 1 (1+x5)
5 5
singo cosSO 71)- (1—x6) - -é— (l-xé)
2 2
. 3 1 2 1 2
sin" 0 cosO Z(l-x) -Z(1~x )
.. 3 2 2 3 .1 5 2 1 3 1 5
sin 0 cos O ﬁ-ix +gx E+§x -gx
in?'crcos;3 i--l— 4+1 6 S +_1, 4__1_
s g 18 “4* 7§ =% e E® " F
3 3

SIN°0 cos o £ (1-x%) - % (1 -x%)
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TABLE A. 4
Number F(§) F(E) £ _df S F(8) foo 45
Region 1 Region 2
n n
A4l 1 —= (1-x) —= (l+x)
n n
Atz g (1-x%) -—2 (1-x7)
n n
A4z gl D (1-x7) X (4x")
4p 4p
0 0
2 1o "o 3
A.4.4 P;e B 5 (2-3x+x7) (2+3x -x7)
88 8Po
3n 3n
A.4.5 gz O% (1-x) 5 (1+x)
4ﬁ'0 4‘30
n n
A6 gl ®_ (1-x) 5 (1-x7)
2fm B, 2)’_;’50
2 2 n 2 < 2
A4.7  gpele el ©. (1-x%) © (1-x%)
4Yn B, 4)’_[30
2 n n
A48 g8 ® . (1-x°) ®1-x%)
3n 3n
4
A.4.9 € 2 (-=") B
R 3 )
86, 8B
P Poo i 15 5335 Mo 15 53,3 5
« s 8 S gpd B 'a¥ BFi L R )
0 Po
n n
A 4.11 ° —2 (245x°-3x")

22 252
R %0 R 5% 7

(2-5x% +3x )
‘34

16
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TABLE A.4 (Cont.)

Number  F(§) 5 F(9f_dg § F(E)f_dg
RéEpgion 1 Region 2
n n
Ad1z gl gcpz 6——:{4;" (8-15%+10x"-3x") 64;’4 (8+15x-10x+33)
0 0
5n 5n
A.4.13 gRZ g2 = Flace™) L3 (14+%”)
86, 86,
5n 5n
A.4.14 ag‘gz, g; g2 16‘3"; (2-Bmbu) 16;; (B4 3%cux")
0 0
. 150 15n
A.4.15 E - (1-x) 2 (14x)
88y 8
n n
A 4.16 gpf y_°°5(1-x6) -y_°°5 fL-2
) TP
0 0
n n
A.4.17 :—;R3 gez, gé gq‘:‘ Y_°°5 (1-3xF+2x8) - ): . (1 -3xt4+2x%)
4)yr B 4)mp
0 0
3n 3n
A.4.18 €R3 g? = °°5 AL - y_°° = 1-x7)
2)Ym B Zyr B
0 0
3n 3 3n 3
4 4 o0 2 00 2
A4.19  EpEg el . (1-x%) _sﬁrpg i ="
> 2 noc 2 3 noo 2 3
A.4.20 gpefe sﬁrpg (i =) -85‘33 (1 =
3n 2 3n 2
2 2 2 2
¥Pg 0
3n 3n
A. 4. 22 gRE4 ;30; (Lx") . Y_BwS T
™ 0 Nl 0
n n
2. 2,2 o 3 " 3 . 5
A.4.23 ER Ecp g ;—Z—ﬁ-s— (Z—SX +3x ) -3—'2—‘;%* (2+5X -3x )
0 0
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TABLE A.4 (Cont.)
Number F(§) S F(;_)fw dg S F(_'g_)fw dg
Region 1 Region 2
2 _4 S 3 3.5
A.4.24 Eq B —% (2-5%"+3x") ——°°6 (2+5x~-3x")
16P 168,
21ln 21ln
A4.25  greele? 0 (-15x+10x23x) —% (8+15x- 10:°13x)
¥ 128p 1288
35n 35n
2 .4
A.4.26 Eq & ,5;54 g’ (2—3x+x3) ——%(2+3x-x )
328, 328
0
Tn U5
A. 4.27 gggcpz g2 ——2 (8-15x+10x-3x) 0 (8+15x-105+3x)
128p 128p
0
& 105noo 105n
A.4.28 g —7 (1-x) —gﬁ (1+x)
168, 166,

equal to zero.

All integrals involving odd powers of either §e or gcp are
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TABLE A.5
(x = sin@, y = cosa = l—xz)
1
Number F(x, s) S (F(x, s)ds
- 0
1
A.5.1 s{l-g=y8 5
5 2 31 a2yE 2
A.5. s (l-s") 15
A.5.3 5(1-52)2 e
5 S -S 105
2 _1
A.5.4 sl -g2) 2 1
i 2
A.5.5 s (l=s") 2 %
5 -3 8
A.5.6 82t <8") =
PR {i-62) % e
S -8 5
1
A.5.8 s(l-y2s%)? L a-x) 1y
i
A.5.9 S ey s )P & @-5x+3x7) /y*
1
A.5.10 82 (L-y%8°)? o (8-35x°+42x" -15x ) /y®
L
A.5.11 sl s g 1/(14x)

A.5.12 s3(1 -yzs )~ 2 -%— (2—3x+x3)/y4



Number

« 1:3

.14

.15

. 16

.17

.18

- 1.9

.20

= 21

.22

2 &3
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TABLE A.5 (Cont. )

F(x, s) S F(x, s)ds
0
1
s lleym ) = (B=15x4 100" -3y
RPN 315—(16-35x+35x3-21x5+5x7)/y8
2
2.1 2 2.1 2 1+
s(1-8°)2(1-y“s°)? === - I¢ log (1—_,)%)
8y
i 1L 22 4, 2
31 -s2)2(1-y2e2)} (z.x‘)4 i 1z x (z-g )1og (iq)
loy 6y 32y it 4
1 1 52-
Su-thapht ) e +5Y)|:2 = logd =1
48y Poy SVZ 16y’
2,-+. 2 2-1 1 1+
s1-897F1-y"HF  oleg (R
A 3ol 1% 1+
s(l-s?7 Z(l-y~s™)® §+z—ylog (-1—_%)
1 1 2 2 2
53(1-52)-7‘(1-y252)2 2-—3); + X (4-3;{ )log (i+z)
-y
8y y
2 2 1 e 1+
s(ls)(lys)2 —z-—310g(1—_z)
Zy 4 y
2 2 2
s (1 s ) B YZSZ) 5 2+x4 _x (4-:; )10g (l+y)
8y 16y R

8+10x-3:F %

242 22X (8 4 10g A1)
48y 32 i

s(ls)(l-yss)z
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APPENDIX B

ASYMPTOTIC EXPANSION OF COLLISIONAL
SOLUTION NEAR SPHERE SURFACE

A brief description of the asymptotic expansions about the
singular points of the third-order vector equation governing the flow
past a sphere is given in this and the next two Appendices. Consid-
ered here is the singular point at the sphere surface (x=0) for the
case of a bounded but otherwise arbitrary Knudsen number flow. The
solution for the totally collisionless system is fundamentally different
and will be described in a separate Appendix. Since the analysis
follows rather closely the development provided by Wasow, (18) any
relevant proofs or detail procedural motivations may be found in that
text. The principal ideas involved in each of the expansions and the
appropriate results will be presented in the following pages.

The starting point for each of the asymptotic developments is
the third-order vector differential equation (4.50) along vﬁth the de-
fining expressions (4.51) and (4.52). The singular nature of this
system is determined entirely by the homogeneous solution matrix
and consequently by the character of the matrix A given by (4.51).
When expanded about x = 0, the highest order element in this matrix
is of order (1 /xz) and the system thus has an irregular singular point
at x = 0, according to the classification employed by Wasow. Since
most equations with irregular singularities have them occurring at
infinity the present problem is made to parallel the general develop -

ment by the transformation z = 1/x, which gives the following equation,
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4 v(z) = B(z) * Y(a). (B. 1)
dz = = ==
The matrix B is represented by a series,

=n

{(z) = ZEB. = " R (B.2)

e

in which the Bn's are determined directly from expression (4.51) to

be _
0 0 0
By, = |-4/3 1/9Kn 0|, (B. 3)
0 0 0
N i
[0 0 0]
B, =0 & il | (B. 4)
| 0 0 04

etc. The actual analysis was carried out to much higher order than
shown and occasionally results will appear which do not follow from
the expressions provided in the previous step.

As a preliminary operation the equation is put into standard

form through the application of a similarity transformation,

0 1/12Ka O
T = |1 1 0], (B.5)
0 0 1

which yields the system,

Zl(z) =g(z) 'Il(z)- (B.é)

gl

The new dependent variable Y, is defined by the relation,

Y(z) = T-Y, (z), (B. 7)



and the matrix C(z) = ZC_= by
clz) = T-1-B(z)- T , (B. 8)
from which
[1/9Kn 0 0]
CO =10 0 o1, (B.9)
Lo o o]
[3 3 37]
G, =|o0 0 01, (B. 10)
) 0 0_

etc. This similarity transformation is applied so that C, is a block

0
diagonal matrix,which is assumed in the general development of the
theory of irregular singular points.

The fundamental idea is now to find a matrix function P(z),
holomorphic and with nonvanishing determinant at z = infinity, which

transforms the system (B. 6) into one more amenable to solution.

Formally making the transformation
Y, (z) = B(2)Y,(z) , (B.11)

the differential equation (B. 6) becomes an equation for the new de-

pendent variable 5_(2 (z),
94 v (z) = D(z) -Y,(z) (B. 12)
dZ —2 = -—2 2 2

in which

D(z) = P ™' (2)-C(z)-P(z) - B\ (z)-

g

diz (=), (B. 13)
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Tentatively assuming that

P(z) = ZP_z"", (B. 14)
D(z) = TD_z ", (B.15)
equation (B. 13) provides the following relations:
Cog'Pg-PypDy = 0, (B.16)
1

-0, (B.17)

r—
CO'Pr} - Pr- Dy :z (Ps' Dr-s-cr-s' PS)—(r—l)Pr
s=0

If these two equations can be satisfied, then the series (B. 14) and
(B.15) formally satisfy eQuation (B.13) and a new equation is obtained
which may be easier to solve. Flexibility is gained in that P(z) and
D(z) are both partially free to be chosen in a most advantageous man-
ner, however P(z) will in general not be convergent, thereby pro-

viding the restriction to asymptotic solutions.

An obvious solution to equation (B. 16) is

PO ==I 3 (B.18)

and

D, = C

0 0’ (B.19)

With these two expressions equation (B.17) may be written in the form,

CO'Pr - Pr'CO = Dr # Hr’ (B.-20)

where Hr depends only on Pj and Dj with j < r. Fortunately a matrix

equation of this form has unique solutions for specific simple forms
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of the matrices Pr and Dr' In particular, Dr is assumed to be of the
same block diagonal form as the matrix CO, and all elements of Pr
(r > 0) which occur in this block diagonal pattern are assumed to be
zero. Substitution of matrices of this form into equation (B. 20) pro-
vides an algorithm by which successive terms in the expansion of

P(z) and D(z) may be determined. This procedure gives the following

expressions:
B 2 2 Z2; 2
1 -27Kn/z + (972Kn - 5/2)/=z -27Kn/z+972Kn" " /z
P~ |oO 1 0 (B.21)
0 0 1
L
- 2 3
1/9Kn + 3/z + 1/2Knz" + 2/z 0 0
D ~ 0 1/2° 6/2> : (B.22)
0 1/z3 -?J/.z3

The equation (B. 12) has now been reduced to two simple differential
systems: one a scalar equation for the first component of Yz(z), and
a second-order system about an ordinary point which may be solved
by a straight-forward series approach. Consequently, one solution

matrix for equation (B.12) is

ezngn.(z3 - zz/Kn -z + ... ) 0 0
2 2
Y, ~ 0 1= 108" ... «3/5"% ... |l @329
0 - I/Zz2 * wows 1+3/2z2+...

Obtaining the asymptotic representation for the original third-order
differential system (4. 50) is merely an algebraic exercise in reversing

the various transformations described above. The final homogeneous
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solution matrix is

g /9Knx(0(1) ) 1/12Kn-x>f128n ~x° [4Kn
1/9Knx 2
n o~ E—«—3—(1-x/2Kn—x +...) 1 - 27Knx -27Knx |. (B.24)
- X
2 2
e1/9Knx(O(l)) -x" /2 1+3x“/2

The solution is completed by finding a particular integral of
the inhomogeneous equation (4. 50). This may be accomplished by a
matrix form of the variation of parameters method or more simply
by a trial series solution. Expanding the inhomogeneous vector
(4.52) for small x and using either method, a particular integral is
2
sz G
Y. ~{ 3% 6 x + (54wKn + 12Kn) C x> + (B. 25)
=0 2 2 2 U : ’
-mC x2 AR
it
This particular integral plus the solution matrix (B. 24) times an
arbitrary constant vector completes the general asymptotic repre-

sentation for flow near the sphere.
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APPENDIX C
ASYMPTOTIC EXPANSION OF COLLISIONLESS
SOLUTION NEAR SPHERE SURFACE

In Appendix B a general asymptotic representation about the
sphere surface was developed for the third-order differential system
(4. 50) of Chapter Four. Unfortunately this expansion does not fully
reveal the singular nature of the solution near the sphere. Investi-
gation of the asymptotic homogeneous solution matrix (B. 24) shows
an unexpected characteristic of the second two column vectors which
represent the physically meaningful solutions. The Knudsen number
parameter appears in both the numerator and denominator of the co-
efficients in these asymptotic expressions, thus rendering them use-
less as representations for the collisionless flow.

In an effort to understand this behavior the previous study is
repeated with the Knudsen number set equal to infinity in the original
differential system. As before the singular character is determined
by the elements of the matrix é in (4. 51), and the transformation
z = 1/x is again made to place the system in standard form. This
transformation gives equation (B. 1) with =B(z) now represented by a

series expansion with the elements,

[0 0 0]

By = | -4/3 0 0 ; (C.1)
| 0 0 0
[0 0 0 ]

B, = |0 3 3 ) (C. 2)
Lo 0 0]
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etc. This system appears to have an irregular singular point at
z = 00 as was found in Appendix B for the full system, but it is actu-
ally what is often termed a '"'pseudo essential' singular point. This
means that transformations exist which take the system into one with
a regular singular point, and a solution matrix with at most poles at
that point results. Because of the complexity of the transformations
involved, the development of the collisionless asymptotic representa-
tion is merely sketched without full motivation for many of the steps.

The present development parallels that of Appendix B for
awhile with one of the preliminary operations being the application

of the similarity transformation,

0 1 0
E = |-4/3 0 of, (C. 3)
0 0 1
to the matrix =B(z). This step is utilized to obtain a Jordan canonical

form for the first term in the series, BO’ and leads to a new differ-

ential equation,
d

9z Yi(z) = C(z) - ¥,(2) , (C. 4)
with
Y(z) = T-Y,(z), (C. 5)
and
0 1 0
Cy =10 0 0

, (C.6)



3 0 -9/4
c, =| 0 0 0 , (e M
0 0 0

etc. Notice that C, is now in block diagonal form and consider a

0
transformation to a new variable defined by
3_?1 (z) = P(z) -Xz(z) . (C. 8)

which must satisfy the equation,

d
dz

Y,(z) = D(z) -Y,(z) . (C. 9)
P(z) and =D(z) must satisfy the same conditions, (B.16) and (B.17),
as in Appendix B, and again an obvious solution for the first of these
is

P =___1_ s (C.10)
and

D, = CO | (C.11)
The process now diverges from that used in Appendix B because all
the eigenvalues of CO are zero and Dr (r > 0) can no longer be chosen

to be block diagonal. A slightly more complex algorithm (See Wasow

(18) for details) can, however, be found which yields

1 0 0
Plz)~ | -3/z +8/32° 1 -2/s° 9/4z-2/2° | +0z"4"  (c.12)
0 0 1
and
0 1 0
Dia) ~ | -3/a” Y1l 9/4x2 | + 0l~Y . (C. 13)

—4‘3‘/3z3 0 -3/z3
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A shearing transformation, defined as

1 0 0
S(z) =10 1/z 0 ) (C.14)
0 0 1/27:.2

now gives a vector differential equation,

L Y,(2) = E(@)-Y52) (C-15)
in which
X_z(z) = i(z)':g?,(z) 3 (C'16)

Performing the necessary algebra then shows that

0 1/z 0
E(z) ~ | -3/2+6/2°  4/z - 1/2° 9/45° | 4002, (C.18)
4]/3g-20/32> 0 Al = Bhas

and the system has been transformed to one with E0 = 0. The prob-
lem has consequently been reduced to one with a regular singular
point for which it is relatively easy to obtain asymptotic representa-
tions of the solution matrix.

Consider now the differential system recast in the usual form

associated with regular singular points,

1

* Y, (x) = E)Y, 6, (C.19)
where

i E(1/x) . (C.20)

The eigenvalues of Fg,are -1, -2 and -3 and it is convenient to diago-

nalize F with the similarity transformation,



1 0 1
T, =|1 0 30,
4/3 1 -4/3

-

which yields the new differential equation,

xad; Y, x) = Gx)Y, (x)

The new variables are defined by the expressions ,

Y (x) =T, ¥, (x) ,

and

w144z 9x2/8 0
Gx)~ |0 -2 8x2/3 +0(x
-4x2 -9x2/8 -3

The two shearing transformations,

1 0 0
il(x) =10 1 o |,
0 0 1/x
and
1 0 0
gZ(X) =10 1/x 01;
0 0 1/x

are now applied in succession to give 1_’5 defined by the relation,

Y, (x) S (%) -8 5(x) - ¥ (x)

The differential equation,

A LW - HETE

%),

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)

(C.27)

(C.28)
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results in which

-1 + 4x2 9x%/8 . 9x2/2
H(x)~| 0 -1 Sel3 |+ B, (C. 29)
0 0 3

Only one more transformation is necessary to complete this
analysis and it is formally very similar to the transformation (C. 8)

used earlier. A new variable 36(x) is defined by the expression,

Yo = (%)Y, (%), (C. 30)
and the resulting differential equation is

x ¥ () = I(x) X (%) (C. 31)
in which

36 = @7 () Hx) Q) - 207 (x) 5= Q) - (C. 32)

The aim is, of course, to determine g(x) in such a way that i(x) in
(C.31) becomes as simple as possible, preferably so simple that an
explicit solution is possible. Insertion of assumed series expansions
into equation (C. 32) and performance of the necessary algebra pro-

vide the following equivalent formulation,

HO.QO_QO‘JO:O : (C. 33)
r-1
(HO - rI=)'Qr - Qr'JO :SE:O (Qs'Jr—s-Hr—s.Qs)’ r>0. (C. 34)

These expressions are analagous to equations (B.16) and (B.17) in
the essential singular point analysis of Appendix B.

Again an obvious choice for satisfying Eq. (C.33) is

Q, =1, (C. 35)
and

JO =H0. , (C. 36)
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Finally, it may be shown that independently of the right hand side a
matrix equation of the form (C. 34) has a unique solution for Qr pro-
vided that H0 and H0 -l have no eigenvalues in common. This is the
motivation for applying the two immediately preceding shearing trans-
formations which made the eigenvalues of I-IO identical. Since the
right hand side of (C. 34) is free at this point, the simplest possible
choice for i(x) is made, namely J'O = HO and Jr =0 for r > 0. Equa-
tion (C. 34) then provides a convenient formula for calculating succes-

sive terms in the expansion of the transformation Q(x) to give

1+ sz 9x/8 15x2/4
Q(x) ~| 0 1 8x/3 |+ 0(x3) . (C. 37)
0 0 1

The problem has now been reduced to solving equation (C. 31)
with i(x) =Hpy = = I, which quite simply provides the solution matrix,
Y (x)= = 1. (C. 38)
Finding the asymptotic representation for the original third-order
differential system (4. 50) is merely an algebraic exercise in revers-
ing the above transformations. The resulting homogeneous solution
matrix for the collisionless system is
-2 -x2/3 0 -19/3+3x2/2
n ~| -4/3x - 4x/3 -1-6x°/5 -4/3x>-5x/2 [+0(>).  (C.39)
4x/3 1+2x% | -4/3x+8x/3
The solution is completed by the addition of a particular inte-

gral of the inhomogeneous system (4.50). One such integral as de-

termined by series substitution is



~ ¢

»

~
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C 2+..

5%
sz/3 + 3TI'C1X2/5 + (2/9 + 'rr/4)C2x

-wclx2 S (1/9 + «n/2)(:2x3 +...

3

t s

(C. 40)
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APPENDIX D
ASYMPTOTIC EXPANSION OF
COLLISIONAL SOLUTION AT INFINITY

A general understanding of the singular nature of the sixth-
order moment system near the sphere surface has been obtained in
the previous two Appendices, but for a global description of the six
eigenfunctions it is necessary to look also at the other singular point
of this system. In this Appendix the reduced third-order system
(4. 50) is written with R as the independent variable and the analysis
of Wasow is applied to the study of the point R = oo.

The starting point for this development is again the homo-
geneous formulation of the differential equation (4.50) and specifically
the expression (4.51) for the matrix é Recasting with R as the inde-

pendent variable, equation (4.50) becomes

d
ar YR) =R B(R)'¥(R), (D. 1)

where R is assumed to be the nondimensional variable previously de-
noted by a bar superscript. The matrix B(R) may be represented by
the series,

B(R) =z:BnR'“, ~ (D.2)

in which the Br'1 s are determined directly from expression (4. 51) to be
4/3 -16/3 -4/3

B, =|4/3 -4/3 -4/3

0 g ' (D. 3)

0 -4 0
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0 -4/9Kn
Bl = 0 -4 /9Kn
0 0

0

0

0

etc. This system has an irregular singular point with rank two at

infinity, according to the classification provided by Wasow.

(D. 4)

The initial step is the transformation of this system into one

with rank one which can then be solved in the same way as the system

of Appendix B. The similarity transformation,

1 1 1
T = | @ 1/2 0 |
1 1/2 0

is first applied to yield the system,

d

containing the new variable,

(R) = g'l-g(R).

The resulting matrix C(R) = T CnR_n is given by

from which

K -2 -4/3
o =|0© 0 8/3
Lo 0 0
[0 2/9Kn 0
c, =0 -4/9Kn 0
0 0 0

(D.

(D.

(D.

(D.

(D.

« 5)

6)

7)

8)

9)

10)
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etc. The purpose of this transformation is to provide an upper diag-

onal form for the first term C, which then permits the shearing trans-

formation,
1 0 0
E(R) =10 L/R 0 , (D.11)
0 o 1/r?

to be used to lower the rank of the system. The resulting rank one

system is

d — .
in which
Y,R) = STR)-Y,(R), (D. 13)

and

DR) = RS 'R)-CR)-SR) - 8™ R)- & SR) . (D. 14)

Performing the necessary algebra reveals D(R) to have the compo-

nents,
0 -2 0
D, =| 0 -4/9Kn  8/3 |, (D. 15)
0 0 0
3 2/9Kn ~4/3
D, =|0 1 0 |» (D. 16)
0 1/3Kn -1
etc.

The system (D. 12) is now in a form directly analagous to equa-

tion (B. 1), and the remaining analysis follows step by step that
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described in Appendix B. The matrix D, is first block diagonalized

through application of the similarity transformation,

1 0 1
T, =|0 1 2/9Kn |, (D.17)
0 1/6Kn 0

which yields the differential equation,

d _

for the variable,

|
Y3R) = T Y,®R) . (D 19)

As before, the next step is to transform E(R) into a matrix F(R)
which is fully block diagonal in the pattern of EO. The formal trans-
formation _E_(R) which accomplishes this may be found term by term
from a series of matrix equations of the form (B. 16) and (B.17). The
resulting differential system is

d

IR Y4 R) = ER)-¥,R) , (D. 20)
in which
sl
yMR) =P (R)-13(R) . (D. 21)

The matrix E(R), which is given by
FR) = PT'(R)-ER)-PR) - P 'R)- 2= P(R) , (D. 22)

is easily shown to be
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- 2
R R
-3 1  45Kn -3,
FR) ~ | S = + 25 0 +OR ™)
= R 2R
4 1 1 ,27Kn, 1 (D. 23)
L2 v 9&n R~ 3RnT 2 )Rz
-

The differential system (D. 20) has now been reduced to two
simpler differential systems: one a scalar equation for the third com-
ponent of the vector Xy and a second-order system which still con-
tains a regular singular point at R = oco. Although similar to the pre-
ceding discussion, the second-order analysis is relatively simple and
the details will not be presented here. Combining the results of the

reduced systems gives

. 9Kn 5 27Kn 4 -
2 — W-’—.‘. R - '_“2__ R + " .. 0
Y (R | & ndbily o p®a JBA g3, 0 (D. 24)
Y, R~ R2 7)
—4R/9Kn{i }
L 0 0 e gt i

as a solution matrix for the system (D. 20).

The asymptotic representation for the original third-order
differential system (4. 50) is once again found by inverting the series
of transformations described above. The resulting homogeneous

solution matrix valid in the neighborhood of R = oo is

o
9Kn 5 27Kn _4 -4R /9Kn 1
2——2'R—+... R" 2 R+... e [R‘l‘...}
n o~ iz -9ﬁ3+. - -%R3+2—;KnRz+. 25 e'4R/9Kn{—L- 5+ } . (D.25)
= 2R 2R 9KnR
9Kn 5 27Kn .4 -4R/9Kn{l o }
bz—ﬁ—+... R™ - =5 R +... e R "'J
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Note that only one regular solution vector (column one) exists at
infinity.
The solution is completed by the addition of a particular inte-
gral of the inhomogeneous equation (4.50). Expanding the inhomoge -
neous vector (4.52) in negative powers of R and substituting a trial

series provides the following particular integral,

~

O(R-3)
3nC

T 3 2 -3

X0~4-_2—(CI+ZCZ)+ -—2+0(R ) . (D. 26)

16R
C 3wC

w 3 ey 2 =3

=(C. +=>C,) + = + 0(R 7)

L2. 1 4 2 6KnR 16R2

This vector plus the solution matrix (D. 25) times an arbitrary con-
stant vector completes the asymptbtic representation of the third-

order system at infinity.
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APPENDIX E
FREE-MOLECULE SOLUTION ABOUT TRANSLATING SPHERE

An exact collisionless solution for slow flow past a sphere
provides one limiting theoretical evaluation with which to compare
the moment solution for Kn = . All free-molecule integral moments
are readily evaluated by velocity space integrations of a simple '"two-
sided Maxwellian'' distribution function. Details of these integrations
and a table of several resulting flow quantities are presented in this
Appendix.

The necessary velocity space integrations for the collisionless
flow are similar to those required for the moment method, and the
geometry and notation described in Section 2. 2. may again be used
(see Fig. 2). The distribution function is discontinuous on the sphere

grazing cone as before and is characterized by

— ¥ .
f = fl for 0<o< > @
- < (E.1)
f = fz for ~2“ -a g T ;
where
-1
o = cos (RO/R). (E. 2)

The moment integrals are then given by the expression,
-} @ 2T o0
<nQ> = I ‘f Jq Qflgz sinocdEdT do
0 00

2 (E. 3)

™ oC
+ I IO ‘[0 sz %2 singdd g dT do ,

-a

=,
2
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As a prerequisite for the evaluation of the moment integrals
it is necessary to express the distribution function f explicitly as a
function of R and §. This is quite easy in the case of fZ’ the ambient
part of the distribution, since it is a Maxwellian with mean velocity U.

Thus, the linearized form is
f,=% |1 -2p28 Ucos® + 282 &, Uaind (E. 4)
2 oc 0°R 0°6 2 ’
which may also be found from Eq. (2.12) by setting

-Ucos 0, (E.5)

Ya

U sin 6 (E. 6)

V2
and the other parameters equal to zero.

The correct expression for the sphere influenced portion of the
distribution function is more difficult to obtain because the effective
number density is not constant over the sphere as was assumed in the
moment method. With the assumptions of diffuse re-emission and
total energy accomodation,the sphere influenced distribution may be

written as
£, = fx[l +N; (R, 8)] . (E.7)

The outgoing number density N, (R, E) is most easily evaluated through
the application of a local continuity condition at the sphere surface
where Nl(R‘O’ E) = Nl(RO) is independent of §. Local surface continuity
is as sured—;y requirir:;the radial mass-flux to vanish at the sphere.

Thus



nu =N1(R0)—§ﬁcose=0 at R=RO, (E. 8)

where 0 is the polar angle to the vector Rg- The distribution on the

sphere surface is therefore

fl=fw[1+%ﬁcose] at R =R, . (E. 9)

One very important characteristic of free-molecule flows is
the constant nature of the velocity distribution function along particle
paths. This feature allows the distribution at any point in space to be
related to that just found for the sphere surface. In fact, the distri-

bution function at any point R is of the similar form,
fl(g,§)=f°c[l+%;ﬁcos 5] , (E.10)

where & is the polar angle of the point at which the velocity vector §
intersects the sphere (see Fig. 16). It only remains to express 6 as
an explicit function of R and §, which may be accomplished through

the spherical trigonometric relation,
cos 6 = cos V cos O+ sinV sin 0 cos T . (E.11)

With the introduction of

Y = VvV+ 0 (E.IZ)

and

1]
]

siny = sin(v + 0) , (E.13)

the angle vmay be eliminated from Eq. (E. 11) by the expressions,



cos V = cos (y - 0)

sinV = sin (y - 0)

Finally, 0 is related to s
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cos?y cos0 + sin¥y sin0

and &6 is given by the expression,

cos & = [(1 -yzs

+[s(l

2
_.'y s

2)%

2

(E. 14)

= sin%y cos 0 - cos?ysinO .
through the law of sines,

R . .

0 _ sin O _ sing
"R ~ sin(w-v-0_ s < (E. 15)
1

(1—52)a + yszjcos 0

1 2 4

)2 - ys(l-s )a:lsinG cos T. (E. 16)

Before evaluating the integral moments it is convenient to

replace 0 by s in the first integral of Eq. (E. 3).

The range of inte-

gration, 0 < o< % - o, becomes simply 0 <s <1, and from Eq. (E.15)
_cosa _ 2 2. -%
do = cosods =(l-y's”7) ¢ yds (E.17)

Thus, with fl and f2 given by Eqs. (E.10) and (E. 4) the required

result is
1 2m o
eay=[[[ag
000
™ 2
I

™
0 0

(S ERE
R

o0
Jszgz sin 0d€ dT do

|-

2

gz Syz(l—y SZ) dEdTds

(E. 18)

Table A.5 contains a number of definite integrals in s which simplify

the evaluation of the first part of Eq. (E. 18).

The second part is

very similar to the integrations needed in the moment method
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and may consequently be determined with the aid of Table A. 4. A

sequence of collisionless integral moments is collected in the

following Table.

TABLE E. 1

(x=Y1-R{/R®, y = Ry/R)

Number Integral Moment
_ 2
E. 1.1 n=n_+n U[:Z'rr 1z)Y - t —go— |cos ®
3 XZ 13 x3 x4 l+y
E.1.2 nup =n 8] —§+ Rl _T_I_G_ylog(l )]cose
3 3 2
_ 3 3x  x x (4-x")x v
E:l:3 nug =n U|:8+—4 7 +y_8 + 2y log (1 )|sinbB
2 2y4 (2-5x>+3x") |
E. 1.4 Ppg= -n k'I'[1+ —{ + By (1 -x )} cos G:l
4
_ - Uij (8- 15x+10x -3x ) 4y‘ }
E.1.5 Pgg= Py = noole:l+8L5 4 o = cosf
=, 4 3 5
= - Ul2y~  (2-5x7+3x7) 4
E.1.6  Ppg=PRpe=",KTg \:25 By ¥ -‘EL] sin 6
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APPENDIX F

FREE-MOLECULE SOLUTION ABOUT ROTATING SPHERE

The collisionless flow induced by a sphere rotating in an un-
bounded gas is represented exactly by a 'two stream Maxwellian"
as was that about the translating sphere. The evaluationof the velocity
field and other integral moments for this flow parallels the develop-
ment of Appendix E, and the geometry and trigonometric relationships
discussed therein are assumed (see Figs. 2 and 16). The distribution
function is expanded in powers of the surface equatorial Mach number,
and both first and second-order integral moments are evaluated. The
secondary velocity field is of particular interest as a limiting solution
with which to compare the second-order moment method solution.

Although the basic specification of the distribution function is
not conceptually difficult, the explicit form needed for the moment
evaluation is rather long and the integrations are consequently some-
what tedious. Since the gas is assumed stagnant at infinity the ambi-

ent part of the distribution is simply

f, = £ ; (F. 1)
a steady Maxwellian at ambient conditions.

Because of the steady ambient distribution,the incoming mass
flux is constant over the sphere surface, and the outstreaming num-
ber density is therefore constant everywhere and equal to n, . The
temperature in f; is also constant from the assumption of complete

energy accomodation. Again using the constant character of colli-

sionless distribution functions along particle paths, the sphere
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influenced portion of the velocity distribution is

3
n P
£, = = 30 exp[— [3(2) € - wx i))z:‘ , (F. 2)

Te

where R is the point at which the velocity vector £ intersects the

sphere. With [301 _u_JxROI << 1 the exponential expression in Eq. (F. 2)

may be expanded through second order to give
2 2 2 4 2
fl = fw[l + Zﬁo_g_.(ngQ) - ﬁo(g_ox i)) +2]30 {5_-(Qx_R_O)] ] . (F.3)

This distribution may now be simplified through the colinearity of

R - R and E to give

£ = fco[,l +2p0 5 WxR) - 93(59*1&))2 +2p5 {5-@::5)}2] . (F.4)
which may be written as

_ 2 ; 2 2.2 . 2 4 .2 2 2. .2
fl = foo[l + 2{30 EcprmnG-ﬁo w RO sin 6 + 2[30 Ecp w R sin Eﬂ (F.5)
The zeroth-order velocity distribution is thus foc throughout velocity
space, and all higher orders exist only within the ""cone of body influ-
ence. "
The first-order integral moments are very easily integrated

with the help of Table A.4. For example,

1 2 : 2
nu,, = J f(l ) gcpdg ZﬁOwR sin® I foc gcp dg

Region 1 Region 1
. 1 3 L3
=n_ wR 31n6(z-zx+zx ) ; (F.6)

where integral A. 4.4 is utilized.

The first-order integral moments are collected in Table F. 1.
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From Eq. (F.5) the second-order velocity distribution is

(2) _ 4 .2 22 .2 2 2.2 ., 2
f1 = foc 2[30 Ecpw R sin 6—[3000 RO sin & (F. 7)
The first term in this expression is also integrable directly

from Table A.4, but the second term requires a bit more effort. The

expression (E. 16) for cos § may be used to give

sin26 =1 - coszé = sinze
1 i
+ [2yzs4—sz—y252+2ysz(l -52)2(1 —yzsz)z](sinzﬁcosz’r-cosze)
1 1
+[(25-4s3)y(1—yzsz)z—(25—4yzs3)(l—sz')ajcose sinBcosT.
(F. 8)
The second part of any second-order integral moment is thus given by
1 27 1
-2
-(3(2) szgf j j Qfocsinzf)(l-szyz) sy2d€drds , (F. 9)
0O 0 O

where sin26 is substituted from above. Although tedious, these
second-order integral moments can now be evaluated directly with
the assistance of Table A.5 for the s integrals. A listing of the

simpler secondary moments is provided in Table F. 2.

TABLE F. 1
(x = )’l—RS/RZ)
Number Integral Moment
(1) ; 1 3 L 3
F, L1 nuy, =n°°sz1n8(-2—'-Zx+Zx)
4
5 s Ro =~ 2m w —3— sin

R
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TABLE F.2
x = /1-RZ /R?, y = R,/R)
0 0
Integral Moment

- (2)=_i[}ﬁ_ﬁ_i_}i_(lJrYz)z+X4(1+Y2)10 ]
ir|. 4 1273 "8y 16 42 & Ty

Number

< (3 cosze- 1)
3 Py 14
S Ty+% + == 2 (2+y +y )log(——y—)]

cos O sin ©

— Rz
F.2.3 qE”’: 2, smze+zﬁﬁf)
4R
F.2.4 §*E) = prt
6
%(2) a 3 13
¥. 2.5 PRR -——2—(1--2-x+7x)51n 8
8wy
3 5 7
1T 1 1, 2y 8y x 9x:l
oot e ! - (1-3cos 6
8w 35y2 B 5 35 10y2 70y2
*(2)_ 1 3 2.3 3 1 5 .
F.2.6 Pee —8 2(§X x +Zx -gx)s1n9
5 3
18 8  léy” x
+81T7 >-5 t 35 —-—2--———»+ ](8s1n 9—~—cose)
y ¥
®(2) -1 33 2 3 5
F.2.7 P = (2 - F5Fx+x +-=x =X )sin 0
wpep Snyz 8 4 8
5 3
11 8 8 ,16 X 2x 9
* g - 5+_._.Y.35 = - —Z = :]( sin 9-—(:05 6)
y y 5y
o F()_ 172 2.3 16 5 16 x3 4x5 9x?
i Pre “8m|5°85Y *3mY 2tz —2
35y%  y® sy®

-cos Bsin @
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APPENDIX G
NUMERICAL VALUES OF MOMENT PARAMETERS
FOR TRANSLATING SPHERE

An analytic solution of the sixth-order moment system consist-
ing of Eqgs. (4.17) to (4. 22) was impossible, and a numerical evalua-
tion of the six parametric quantities was necessary. The above six
linear differential equations were written as central finite difference
equations for each of fifty cells in the internal 0 < Z <1, where the

new independent variable,

zZ =1 - 1—x=l—‘\/l-Y1-R(2)/R2, (G. 1)

was used for numerical convenience. This transformation eliminated

large values for the slopes of some of the parameters near x =27 = 1.
The resulting system of algebraic equations and the six boundary con-
ditions formed a 306 x 19 band matrix whose inversion provided the
parametric functions at each of the fifty one grid points. The integral
relations described in Section 4.5 provided useful checks on the entire
procedure. The numerical solutions are tabulated on the following

pages for representative values of the Knudsen number.
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APPENDIX H
NUMERICAL VALUES OF MOMENT PARAMETERS
FOR ROTATING SPHERE -

The ten parametric components of the rotating sphere weight-
ing function are shown on the right hand side of Eqgs. (5.122) to (5.126)
along with their assumed 8-dependence. A mixed analytic and numer-
ical solution was required to determine these ten functions of R. The
six parameters, N+, NH,T#?_, ﬁ+ and IQI_, are given analytically by the
expressions (5. 90) to (5. 93), (5.100) and (5.109), and numerical
values of these expressions are tabulated in this Appendix.

The remaining four parameters were obtained by a Runge-
Kutta -Gill integration scheme integrated from the sphere towards
infinity. The boundary conditions at infinity were satisfied by match-
ing the moment velocity vector and its slope to a continuum-like
velocity field at the point, xz = .95. The numerical results are pre-
sented on the following pages for a series of Knudsen numbers repre-

senting free-molecule to continuum conditions.
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FIG. 1 GEOMETRY FOR TWO-SIDED MAXWELLIAN
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FIG. 2a SPHERE GEOMETRY
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