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ABSTRACT 

Part I 

The slow, viscous flow past a thin screen is analyzed based on 

Stokes equations. The problem is reduced to an associated electric 

potential problem as introduced by Roscoe. Alternatively, the prob

lem is formulated in terms of a Stokeslet distribution, which turns 

out to be equivalent to the first approach. 

Special interest is directed towards the s olution of the Stokes 

flow past a circular annulus. A "Stokeslet" formulation is used in 

this analysis. The problem is finally reduced to solving a Fredh.olm 

integral equation of the second kind. Numerical data for the drag 

coefficient and the mean velocity through the hole of the annulus are 

obtained. 

Stokes flow past a circular screen with numerous holes is also 

attempted by assuming a set of approximate boundary conditions. An 

"electric potential" formulation is used, and the problem is a.lso reduced 

to solving a Fredholm integral equation of the second kind. Drag coef

ficient and mean velocity through the screen are computed. 

Part II 

The purpose of this investigation is to formulate correctly a 

set of boundary conditions to be prescribed at the interface between 

a viscous flow region and a porous medium so tha t the problem of a 

viscous flow past a porous body can be solved. 

General macroscopic equations of motion for flow through 
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porous media are first derived by averaging Stokes equations over a 

volume element of the medium. These equations, including viscous 

stress es for the description, are more general than Darcy's law. 

They reduce to Darcy's law when the Darcy number becomes extremely 

small. 

The interface boundary conditions of the first kind are then 

formulated with respect to the general macroscopic equations applied 

within the porous region. An application of such equations and boundary 

conditions to a Poiseuille shear flow problem demonstrates that there 

usually exists a thin interface layer immediately inside the porous 

medimn in which the tangential velocity varies exponentially and 

Darcy's law does not apply. 

With Darcy's law assumed within the porous region, interface 

boundary conditions of the second kind are established which relate 

the flow variables across the interface layer. The primary feature 

is a jump condition on the tangential velocity, which is found to be 

directly proportional to the normal gradient of the tangential velocity 

immediately outside the porous medium. This is in agreement with 

the experimental results of Beavers, et al. 

The derived boundary conditions are applied in the solutions of 

two other problems: (1) Viscous flow between a rotating solid cylinder 

and a stationary porous cylinder, and (2) Stokes flow past a porous 

sphere. 
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PART ONE 

STOKES FLOW PAST A THIN SCREEN 
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I. INTRODUCTION 

The viscous flow past a group of obstacles or a porous body has 

recently attracted extensive inv~stigations.t As in the case of a single, 

isolated, solid body, there appears at present to be no exact solution of 

this many-body problem based on the Navier-Stokes equations. The 

theoretical studies of this class of problems have been largely based 

on either Stokes' or Oseen's equations ,:t: which are linear. Even for 

such approximate equations, exact solutions are scarce. 

In the category of a group of obstacles, Tamada and Fujikawa 

[ 3] investigated the Oseen flow past an infinite row of equally-spaced 

circular cylinders, whereas Miyagi [ 4] studied the s ame problem 

using Stokes' equations. Kuwahara [ 5] dealt with the Oseen flow past 

a lattice of elliptic cylinders. All the .s e solutions are based on an 

expansion method in terms of a small obstacle size to distance ratio. 

By applying the Fourier transform method, Kuwahara [ 6] a lso obtained 

a solution of the Stokes flow past a lattice of parallel flat plates in the 

limit of both small and large distances between two consecutive plates. 

Keller [ 7] applied the lubrication theory to obtain an approximate 

solution for the flow past a row or several rows of closely packed 

circular cylinders. Furthermore, Hasimoto [ 8] found approximate 

solutions of the Stokes flows past cubic arrays of small spheres. Most 

t See references [ 3] through [ 14]. 

:t:For a comprehensive treatment of Stokes' and Oseen's equations, see 
r eferences [ l] and [ 2]. Stokes and Oseen flow are also defined 
there. 
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interesting of all, Has imoto [ 9] , in another investigation of the Stokes 

flow pas t a thin screen, was able to obtain an exact solution for the 

case of a series of equal and equidistant flat plates (or slits) held 

normal to the flow. In this solution the method originally developed by 

Roscoe [ 10] was followed, by which the problem of the Stokes flow past 

plane obstacles is related to an analogous problem of the electrostatic 

potential due to a set of earthed conducting plates of the same shape. 

In the category of porous bodies, Joseph and Tao [ ll] treated 

the problem of the Stokes flow past a porous sphere. They obtained an 

analytic solution satisfying Stokes' equations in the external flow field, 

an empirical Darcy's law in the porous sphere, and a set of boundary 

conditions prescribed at the interface. The interface boundary condi

tions they used state that the pressure and the normal velocity are con

tinuous across the interface, and that the tangential velocity .vanishes 

on the fluid side of the interface. Their result shows that the drag of 

a porous sphere is always less than that of a solid one for the entire 

range of porosity regarded as valid for Darcy's law. Additional treat

ments of the same nature by Joseph and Tao are given in [ 12] , [ 13] and 

[ 14]. These problems are all concerned with viscous flows past 

porous bodies. In a few cases , however, the porous bodies are not 

finite in size as in the first case of a porous sphere . 

Some of the boundary conditions proposed by Joseph and T ao 

[ ll] are , howe ver, questionable. It can be a rgued that a slip velocity 

condition, rather tha n a n adherence condition, s hould hold a t the inter

face. Since in their b oundary conditions the fluid is allowed to move 

on the porous s ide along the interface , it is hardly conceivable that 
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the tangential velocity of the fluid on the fluid side must be zero. 

Because of these doubtful boundary conditions, the theory of Joseph 

and Tao, and the other analytic results obtained previously, cannot be 

considered as established at all. It is therefore clear that for the 

problems of flow past a porous obstacle it is important to determine 

the boundary conditions which can describe correctly the physical 

situation. 

We are interested in investigating analytically the viscous flow 

past a porous body. In particular, we shall determi ne the change of 

the flow quantities, such as the drag, caused by the porous body as it 

r e places a solid one of the same exterior geometrical configuration. 

In the case when the porous body consists of numerous intercon

nected holes such that it may be approximated by a porous medium to 

which Darcy's law is applicabh, correct interface boundary conditions, 

as stressed previously, are required to ensure correct solutions . The 

nature of these boundary conditions will be discussed in detail in Part 

Two of this thesis. In Part One, we are mainly concerned with the 

case in which the porous body has a very simple geometry. In this 

case , exact solutions can be obtained to satisfy the non-slip boundary 

condition on all walls. Due to the inherent difficulty associated with 

the Navier-Stokes equations, our analysis is restricted to Stokes flow. 

As a specific example, the exact solution is derived for the Stokes flow 

past a circular annulus. Based on the results obtained for this case 

we can predict, at least qualitatively, the same kind of porosi.ty effects 

for more general porous bodies. In addition to this problem, a solu

tion which satisfies a set of approximate boundary conditions is also 
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obtained for the Stokes flow past a circular screen with numerous holes. 

A general mathematical formulation is given in Chapter II for 

the Stokes flow past a thin screen of finite size. The problem is trans

formed to the one of electrostatic potential satisfying the Laplace 

equation and the boundary conditions which state that the screen is 

perfectly conducting and is charged to a constant potential. This idea 

is much the same as that introduced by Roscoe [ 10] for the Stokes flow 

past plane obstacles. It was also used by Hasimoto [ 9] in solving the 

Stokes flow past two-dimensional infinite screens. An alternative for

mulation using a Stokeslet distribution is also attempted. It turns out 

to be equivalent to the first formulation. 

In Chapter III an exact solution for the case of a simple screen, 

namely, a circular annulus, is obtained. In fact, this solution is a 

particular case of Roscoe's work. The annulus is geometrically simple 

enough to admit an exact solution, but it offers good indication of the 

porosity-effect as the hole size varies . With regard to the correspond

ing potential problem of a charged conducting annulus, it is only 

recently that great attention has been given to it. It was solved either 

by triple integral equations as given by Cooke [ 15] , or by a simpler 

method developed by Williams [ 16] • Their results may be appropri

ated directly to obtain our solution for flow past an annulus, but their 

published information is very limited. To obtain flow properties other 

than just drag, the problem is worthwhile to be re-examined. For pro

viding an alternative way of approach, the method of Stokeslet distri

bution will be used in the derivationo 
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In Chapter IV, the solution for a circular screen possessing a 

great number of holes is attempted. The exact non- slip boundary con

dition is replaced by an approximate one, that is, a pressure jump 

proportional to the local average fluid velocity through the screen is 

prescribed at the screen. The corresponding potential problem, using 

an approach parallel to Williams' [ 16] , is eventually reduced to a 

Fredholm integral equation of the second kind and a solution i s, thus, 

obtainedo 
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II. GENERAL MATHEMATICAL FORMULATION FOR 

STOKES FLOW PAST A THIN SCREEN OF FINITE SIZE 

For incompressible, viscous flows in which the inertial effect 

is negligible, Stokes' equations are 

z~ 
-V'p + µV' u = 0, (2.1) 

V'•u=O, (2. 2) 

where µ is the coefficient of viscosity, p is the pressure and u 

is the velocity vector ( its components in Cartesian coordinates will 

be denoted by u, v, w, in the x, y, z directions, respectively). 

These equations together with the non-slip boundary condition on 

solid walls are sufficient to determine the solution of the flow past 

a three-dimensional finite obstacle, or in the case of two-dimensional 

flows, an obstacle in a bounded region. 

The stress tensor er is given by 

er = -pl + µ[ V'~ + (V'~ »:<] , (2. 3 ) 

where I is an identity tensor and the superscript " """ designates the 

transpose of a tensor. 

Taking the divergence of (2.1), and making use of (2. 2), we 

see that p is a harmonic function, that is 

(2. 4) 

Similarly, by taking the curl of ( 2 .1), the vorticity w as 

defined by 
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w =\i'X u (2. 5) 

is seen to satisfy 

2-
\i' w = O. (2. 6) 

Thus, each component of the vorticity in Cartesian coordinates is 

also a harmonic function, and the vorticity transport in Stokes flow 

is governed by steady- state diffusion only. 

Our problem of the Stokes flow past a thin screen of finite 

size is to solve (2.1) - (2.2) under the boundary conditions 

u = 0 on walls of screen, (2. 7) 

p-pro as J~J -ro' (2. 8) 

where e 1 is a unit vector in the direction of the uniform flow at 

infinity. Y 

Fig. 1. Stokes flow past a 
thin screen of finite 
size. 

In Cartesian coordinates (x,y,z} with the x-axis lying in 

the direction of e 1 , the screen is chosen to lie in the plane x = 0 

(see Fig. 1). On account of the symmetry of the obstacle with 

respect to the plane x = 0, Stokes' equations (2.1) - (2. 2) admit a 

solution of the following symmetry: 
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u(x,y,z) = u(-x,y,z) , 

v{x,y,z) = -v(-x,y,z) , 

w(x,y,z) = -w(-x,y,z) , 

(p(x,y,z) - p
00

) = -(p(-x,y,z) - p
00

) , 

Since v,w,(p-p ) are odd in x, it is required that 
00 

on the part of x = 0 plane comple
mentary to the screen walls. 

(2. 9) 

(2.10) 

Since p is a harmonic function and is odd in x, we may write 

(2.11) 

where cf? itself is a harmonic function but is even w ith respect to x, 

that is 

(2.12) 

and 

<P (x, y, z) = <P (-x, y, z) • (2.13) 

Substituting (2.11} into (2. 1), we obtain 

2~ a 
\7 u = 2 Bx \l<P • (2.14) 

A particular solution of u satisfying (2.14) is x\l<P, a s can 

be easily verified by direct substitution. However, u = x\l<I> alone 

doe s not satisfy the continuity equation (2. 2). W e shall also require a 

homogeneous solution to b e added to the particular s olution s o that the 
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continuity equation (2. 2) is satisfied. The correct homogeneous solu

tion is seen to be ( U - <Pf;1 as can be readily verified. Therefore, a 

solution of (2.1) - (2. 2) is 

(2.15) 

This representation (2.15) automatically makes v and w 

vanish at x = 0, as required by (2. 7} and (2.10) . The rest of the 

boundary conditions in (2. 7), (2 . 8) and (2.10) are also satisfied pro-

vided that 

<P = u on walls at x = 0, (2.16) 

a <P = 0 outside the wall at x = 0 ox 
, , ( 2. 17) 

<P- 0 as 1; I - oo • ( 2. 18) 

Condition (2.17) follows from tne requirement that <P i s a function 

even in x. 

Now the problem of Stokes flow specified by (2.1}, (2. 2), (2. 7), 

( 2. 8) and ( 2. 10) has been reduced to an associated problem of electric 

potential <P satisfying the Laplace e quation ( 2.12} and the boundary 

conditi.ons (2.16} - (2.18). This potential problem can be regarded as 

1. a Dirichlet problem in an infinite space, with an equipoten-

tial U prescribed on the screen walls at x = O; or 

2. a mixed type boundary value problem in the half space 

x > 0 , w ith potenti a l U and its normal derivative equal 0 prescribed 

respectively on the wall 's part and the non-wall's part of the plane 
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x = o. 

Both of these problems have been thoroughly treated. The unique-

ness and existence properties of their solutions are well-known. In turn, 

these properties may be appropriated for the ·Original Stokes problem. 

The Dirichlet problem above actually can give more physical 

insight than the other. The problem can be interpreted in terms of a 

source distribution at the screen wall. The sources should be so dis-

tributed that the potential <I> on the screen wall is a constant U. This 

is exactly the electrostatic problem of the potential <I> due to a charged 

conducting screen maintained at an equipotential U. 

In electrostatics t, the potential <I>(~) due to a surface-charge 

(source) distribution "\'(t'> is given by 

dS--
i; I 

(2.19) 

For the present problem, the integral in (2.19) is carried over the wall 

part of the screen, W. 

By applying the boundary condition (2.16) to (2.19), we obtain 

an integral equation for the surface-charge density "{((') , 

r 
u =.) 

w 

yff'> Is - s I I dSfi (~ on W) , (2. 20) 

where both i; and °(1 lie on the screen wall. This integral equation 

is generally not easy to solve, even for screens of relatively simple 

t For a general treatment of electrostatics, see, for example, 
Jackson [ 17]. 
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geometryo However, once y((') is obtained, the potential <P is 

simply given by {2.19) and the original Stokes flow problem is deter-

mined by ( 2. 15) • 

It is also known in electrostatics that there is a jump 4'1T)' in 

the normal component of the electric field (-V'<P) across a surface 

distributed with a surface-charge of density -y; in other words, across the 

screen wall we have 

( 2. 21) 

where "-"and"+" designate the negative and positive sides of x = 0, 

respectively. 

By virtue of the symmetry (Z.13) of <P with respect to x, 

and therefore, 

(
. a<J? 
-ax)_ 

(for y, z on W) • (2. 22) 

For the purpose of calculating the drag on the screen, the 

stres.s tensor (2. 3) is first written in terms of <P, so that 

(J" = - (p + 211 a<P)I + 211x\7(\7<P) . 
00 .- ax .- (2. 23) 

The viscous stresses, represented by the last term of (2. 23), are 

identically zero at x = O;, This leaves the pressure as the only ~tTess 

aeting on the screen. The wall pressures on the positive and the 

negative sides of x = 0, by virtue of equation (2. 22), a re s.een to 
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be related directly to "{ as follows : 

(2. 24) 

The drag D on the screen is contributed by the pressure alone, 

giving 

D =S {p_ -p+) dS =Snµ s 'V dS = 8-nµQ 
w w 

(2.25) 

in which use has been made of (2. 24), and Q stands for the total 

charge on the screen. 

Furthermore, if the elE;ctrostatic capacity C of the screen is 

defined as the charge per unit potential on the screen (namely, C = Q/U), 

then (2. 25) becomes 

D=8nµUC. ( 2 . 26) 

This simple result is remarkable; it is noted that the drag is directly 

proportional to the electrostatic capacity of the screen of the associated 

problem. 

The foregoing formulation is along the reasoning of Roscoe 

[ 10]. We shall see that an alternative approach using "Stokeslet11 

distribution is also possible. A Stokeslet of strength a is a singular -

~ 

ity in Stokes flow such that it experiences a force of magnitude -8 1Tµa. 

In other words, the Stokeslet is equivalent to a point force 8nµa applied 

to the fluid. The corresponding pres sure and velocity field of a 

Stokeslet can be obtained from the following equations: 
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'V•u=O, 

and the solutions are 

~ 

p(x) = 2 ; • (;; ~ °() 
µ. ,~ ~,3 

x - s 

for a Stokeslet situated at x = s. 

(2. 27) 

(2. 2) 

(2. 28) 

(2. 29) 

Since Stokes 1 equations are linear, more complicated solutions 

can be constructed by superimposing Stokeslets together with other 

elementary solutions of Stokes 1 equations. In particular, we shall con-

sider Stokeslet distribution at a surface. Let a surface Stokeslet of 

density ae1 be distributed over the wall part of the screen (denoted 

by W), all the Stokeslets being inthe x-direction, then such a distri-

bution plus a uniform flow gives the pres sure and the velocity field as 

follows, 

~ (' 
p(x ) = p + 2µ. \ 

co '-'W 

xa(t') 

I ~ ~ 13 
x - s' 

as~, , (2. 30) 

u (x) 

(2.31) 

This formulation thus yields a successful solution for flow past a 

screen when the density function a(°t') can be found s uch that both 



-15-

boundary conditions (2. 7) and (2. 8) are satisfied. We can prove that it 

is indeed the case. 

Condition (2. 8) is obviously satisfied by (2. 30) and (2. 31), 

whereas the other boundary condition (2. 7) can be satisfied if 

U = ~-. -a(f') dSy, • 
w It -t'I ';> 

(2.32) 

But this is precisely the integral equation for a (('), and we observe 

that (2.32) is identical to the integral equation (2. 19) provided 

a((') = -y(('), namely, the surface Stokeslet d ens ity is equal to the 

negative of the surface charge density considered in the associated 

electric potential problem. As a matter of fact, if we write 

<I> (x) = s 
w 

(2. 33) 

equations (2.30), (2.31) and (2.32) are also reduced exactly to (2. 11), 

(2.1 5 ) a.nd (2.16) as already derived in the previous formulation. Thus, 

the two formulations, one by r elating to an associated electric pot:ential 

and the other by using Stokeslets , are seen to l ead to the same result. 
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III. STOKES FLOW PAST A CIRCULAR ANNULUS 

Consider a Stokes flow past a circular annulus with a uniform 

free stream velocity U perpendicular to the annulus, as shown 

schematically in Figo 2. By virtue of the axial symmetry of the 

annulus, cylindrical polar coordinates (r, 8 ,x) will be used through

out the following analysis. The annulus lies in the plane x = 0, with 

its center at the origin. Its inner and outer radii are a and b 

respectively. p 

u 
p 

x 

Fig. 2. Stokes flow past a circular annulus. 

Such an annulus is probably the simplest screen which can 

illustrate the general analytic method outlined in the preceding 

chapter, and at the same time demonstrate the effect of porosity in 

an obstacle to the flow. 

The equations governing Stokes flow past a circular annulus 

are Stokes' equations (2.1) and (2.2), 



-17-

2-
- 'V' p + µ'V' u = 0 (3. 1) 

(3. 2) 

where for convenience the equations have been re-numbered for this 

chapter. The non-slip boundary condition and the conditions at 

infinity for this particular case are 

and 

u = 0 ' 

u 

at x = 0 

p - p 
00 

a<p<b, (3. 3) 

as 1;; I - oo • (3. 4 ) 

This Stokes problem, according to the general form ulation of 

the preceeding chapter, can be reduced to an associated electr ic 

pote ntial probl em des cribed by (2 . 11), ( 2.12) , ( 2 . 15 )-(2 . 18), namely, 

(3. 5) 

(3. 6) 

where 

\724> = 0 (3. 7) 

and the e l ectric potential <I> satisfies t he boundary conditions : 

<l>=U, at x = 0 ' a< p < b , (3 . 8 ) 

a<I> 
= 0 , at x = 0 . p < and p > b, (3. 9 ) ax- a 

<I>-0 , as 1;; I - 00 . (3. 10) 

The problem (3. 7 ) - (3 . 10 ) may b e interpreted as that of find ing 

the electric potential <J? due to a conducting circular a nnulus char ged 
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to a constant potential U. It can be solved either by using triple 

integral equations employed by Cooke [ 15] , or by a simpler method 

developed by Williams [ 16]. Our formulation in terms of the 

integral equation (2. 20) is in accordance with the method of Williams. 

Both Cook and Williams eventually reduced the electrostatic annulus 

problem to that of the solution of a Fredholm integral equation of the 

second kind. Cooke obtained a solution numerically and determined 

the electric capacity of the conducting annulus. Since the drag on the 

screen has been found in (2. 26) to be directly proportional to the 

electric capacity, the Stokes annulus problem is considered solved 

insofar as the drag is concerned. Nevertheless, we are also interested 

in other flow properties, such as the discharge through the hole of the 

annulus, etc. Such information is not derivable from Cooke's published 

results. Hence, we shall re-examine the Stokes problem. More-

over, since an alternative but equivalent formulation in terms of 

Stokeslet distribution has been introduced in Chapter II, it might be 

fruitful to follow this approach at this time so as to avoid using the 

terminology of electrostatics. 

Stokes lets are assumed to be distributed symmetrically on the 

annulus about its axis, the surface density a(p} has a radial depen-

dence only. The 11Stokeslet 11 formulation, as given in (2. 30), (2. 31) 

and (2. 32), may be written down specifically for the annulus problem~ 

p(p,9,x) 
rbsZ'IT xa(p')p' d9 1 dp 1 

= p + 2µ \ 3 
00 Ja o R 

(3. 11) 
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,...bs21T _ _ 
' a{p')(x -l;') p 1 d8'dp' 

+ xj 3 ' 
a o R 

(3.12) 

where a{p ') is to be determined from the integral equation, 

rbs21T - { ') I d8' dp I 
U=\ ap PR' 

,) a o 
{a< p < b) , (3 . 13) 

and w here 

- - J 2 2 2 R =Ix -s'I = 1x ·+p + p' - 2pp'cos (8-8'), 

R' = It -t• I= ~ p 2
+ p '

2
- 2pp'cos (8 - 8 1

) 

x = {p,8,x), z; = {p,8,0) • t'={p',8',0) 

We begin now to solve the integral equation (3 .13). After a {p ) 

is obtained, the velocity and pressure are simply given by (3.11) and 

(3. 12). Before starting with the solution, we shall first discuss some 

mathematical preliminaries which will have frequent use in later cal-

culations. 

Lemma 1. If p and p 1 are positive, then 

j
n21T d8' cmin(p,p') dt 

J 2 z = 4J J 2 z .I 2 2 . 
o lp+p'- 2pp'cos{8-8') o 

1
p-t lp'-t 

(3.14) 

The proof is given by Copson [ 18] in his treatment of the 

electrified disc. 
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Lemma 2. If f(p) is once continuously differentiable on 

(a, b), then the integral equation 

f(p) =Sp 
a 

has the solution 

G(t) = 2 sin rrc 
TT 

(a < p < b, O<c<l), (3. 15) 

(a < t < b) (3.16) 

Lemma 3. If f(p) is once continuously differentiable on 

(a, b) ,then the integral equation 

(a < p < b, 0 < c < 1) (3.17) 

has the solution 

G(t) = 2 sin rrc 
c (a < t < b) • (3.18) 

Both Lemma 2 and Lemma 3 are generalizations of Abel's 

integral equations. The proofs are given, for example , by Sneddon 

[ 19] • 

In making use of Lem1na 1, or equation ( 3 .14), equa tion (3.13) 

is reduced to 

rb smin(p, p ') dt 
- 4 ) p'a (p') dp' .... / 2 2 .... / Z Z = U 

' a 0 l p -t ., p I - t 
(a<p < b). 

(3 .19) 
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This equation can be re-written as 

L~sPsP I rpsp ] . p 'a(p ') dt dp I 

+J ~ z z~ ,2 z a o b op -t p -t 

u 
= - 4 ' 

or 

Upon interchanging the order of integration, 

and then combining terms to give 

[Sas• b + spsb J p 'a(p ') dp I dt = 
.... / 2 2_, 2 z o a a t 1 p -t l p' -t 

Finally, the above equation takes the form 

cp dt Sb p 'a(p ') dp I -

J~ ~22-
U IQ I I dt Sb j'a 

- 4 - p (p ) dp ~ l 2 ~ I 2 Z 0 

alp-1. tp'-t a o p -t p -t 

We write 

G(t) =Sb p 'a(p ') dp' 
t ~p,2-t2 

(a< t < b) 

(3.20) 

(3. 21) 

The inversion of (3. 21) is a special case (c = 1/2) of Lemma 3, or 

equations (3.17) and (3.18). Accordingly, 
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'a( ') _ ~ ~ Sb tG{t) dt 
p p - - lT dp I ~ 2 l p I t -p I 

{a < p I < b) o (3. 22) 

Also for simplicity, we write 

B(p) = - ~ - rp'a(p') dp'r ~ 2 2~ ,2 2 
a o p -t p -t 

{3. 23) 

Equation {3. 20) then becomes 

Sp G{t) dt = B{p) • 

a-p7 (3. 24) 

Consider B{p) as a known function; the above equation may be in-

verted according to Lemma 2, or equations (3 . 15) and (3 .16), for 

the special case c = 1/2. The result is as follows: 

- t 
G(t) =~ ~\· pB{p) dp 

lT dt J ~ tz z a -p 

: ~ ~ [ - U 5·tpp d - strbsa pp 'a(p ') du dp Id~ -1 
lT dt 4 j ,../ "l 2 ,../ 2 Z ,../ I 2 1 

a t -p a: a o 1 t -p 1 P -u 1 P -u 

= - ~ {U t +SaduCb[p'a{p') dp' 
lT 4 ~ j _, 2 2 

, t -a o a ~ p' -u 

. d st p d - , } 
x \Tt ~t2 2 ~ 2 2) J . a -p p -u 

(3. 25) 

We shall now substitute {3. 22) for p 'a (p ') into the above equation. 

First, observe that 
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Sb p 'a(p ')dp I 

ap I -U J 2 2 
= _ ~Sb 1 ( _i__ •Sb s G(s) ds ·) dp 1 

TT ~ 1 Z Z \ dp I ~ Z I Z a p -u p s -p 

2 sG(s) ds ~
b 

= - a -u 2 2 2 Z " p a (s -u ) ~ s - a 
(3. 26) 

and also 

{3. 27) 

Thus, equation (3. 25) reduces to 

G(t) = 2 t [ U +~sa a
2
-u

2 
d \b sG(s) ds l 

- Tr ]tz-az 4 TT 2 2 U ' ( 2 2) _j Z 2 j 
~ o t -u ""a s -u . -, s -a 

= _ ~ t ;-u +~sb sG{s) ds la {a
2
-u

2
) du J {3 28 ) 

TT~ L 4 TT ~ 2 2 J 2 2 2 2 • • ~t-a as-a o{t-u)(s-u) 

The last integral in (3. 28) is evaluated to be 

)

a 2 2 (a -u ) du 
2 2 2 2 

·· o (t -u )(s -u ) 
= 

2 2 2 2 
1 ( t -a 1 t+a s -a 1 s +a ) og-- - og --

2(t2_82) t t-a s s-a 

t 
{a < < b) • 

s {3. 29) 

Therefore, (3. 28) is finally reduced to a Fredholm integral equation 

of the second kind, 

G(t) u t 4 j'"'b = - -2 ~ - - 2 K(t,s)G{s) ds 
TT"t -a TT a 

t (a < < b) , 
s 

(3.30) 
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where the kernel K(t,s) is 

K(t, s) 
2 2 + . 

s -a lo ~) 
s gs-a 

(3. 31) 

Fredholm integral equations of the second kind can be evalu-

ated numerically by well established procedures. The problem is 

thus considered solved. All the flow quantities desired may then be 

determined from the numerical result of G(t) using equations (3. 22), 

(3.ll) and (3.12). 

To obtain the pressure distribution on the annulus wall, 

equation (3. ll) is rewritten as 

(3. 3 2) 

where 

cp(~) = sbs21T -a(p ') p ~ d0' dp I 

a o 

= - s aff') dSy, 
w 1;; - °C' I '=' 

(3. 33) 

in which W indicates that the integration is over the wall of the 

annulus. The pressure jump across the annulus wall can then be 

expressed by 

P+ - p_ 
r a<P 

= 2µ I (ax) 
L. . + 

(3. 34) 
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where 11 +11 and 11
-

11 denote the positive and negative sides of the plane 

x = 0, respectively. The jump [ ( ~!) +- ( ~!) J , in accordance 

with (3. 3 3), is known to be 4TT a. Hence 

p + - p - = + 8 TTµQ • ( 3. 3 5) 

Since (p - p ) is odd in x, the pressure distribution on the wall is 
00 

finally obtained as 

(a < p < b) • (3.36) 

In terms of the function G(t), the above becomes 

(a < p < b) • (3. 37) 

The drag D experienced by the annulus is seen to be due to 

the pressure jump alone. It rr.ay be evaluated from 

Cb 
D = 2 TT J (p - - p +) p dp 

a 
(3 . 38) 

or equivalently, the drag is simply the sum of forces experienced by 

all Stokeslets, namely 

- b 
D = 2 TTS -8 TTµa ( p) p dp 

a . 
(3.39) 

Again, in terms of G(t), 

D = - 32TTµsb tG(t) dt 
~ 2 2 at -a 

(3.40) 
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Next, we observe that the only non-vanishing component of 

the velocity through the hole of the annulus is given by 

Sar Zrr ~ 'a(p ') d9 I dp I 
uo (p ) = u + 2 • 

ojo ~ p +p' -2pp 1 cos(9-9 1
) 

(3. 41) 

Substitution of (3. 22) for p 'a(p ') into the above equation yields 

u ( ) = u + ~sb sG(s) ds Sp a
2
-t

2 
dt 

0 p TT .... / Z Z 2 2 a 1 s - a o (s -t ) p -t 
(3. 42) 

The rate of discharge through the hole may then be obtained 

by integrating u ( p ) over the hole area, giving 
0 

= 2u + 16 ('b sG(s) ds 
rra a j .... / 2 2 

a 
1

s -a 

j"bP2 s+a - 8 s -a log-- G(s) ds • 
s -a 

a 
(3 . 43) 

The mean velocity u 
0 

through the hole is simpl y given by Q /rra 
2

, 
0 

or 

u = U [ 1 + ...!_§_ ('b sG(s ) ds 
o rraU j J Z Z a 

1 
s -a 

Sb~ 8 2 2 s +a 
--- s - a log -- G( s ) d s J . 2 s - a 

rra U a 
(3 . 44) 

In the special case of a solid disk, which corresponds to a = 0, 

the Fre dholm integral equation (3. 30) reduces to a v e ry s imple ex-

press ion, 

G(t) = u 
- Zrr • (3 . 45) 
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The corresponding Stokeslet distribution is then given by (3. 22) as 

a(p) u 1 = --;2p (3. 46) 

Accordingly, equation {3.36) gives the pressure on the wall as 

{3.47) 

and also equation (3. 39) gives for the drag 

D = 16 µ Ub • (3. 48) 

Both of these results for the pres sure distribution and the drag are 

well-known; see for example, Lamb [ 20]. 

We now return to a numerical calculation of the integral 

equation (3. 30). To subdue the square root singularity at s = a in 

the kernel K(t, s), we make the following change of variables 

We also d e note 

H{9) 

H(~) 

a +b a - b 
t = -2- + -2-cos e = h(9) 

a +b a - b 
s = -2- +-2- cos <f> = h(<f>) 

= - 2 rr /i3="l h(e) cos ~ G{h (9) ) 
u Vh(S) +l 

= - 2 rr ~ h(p) cos _p G(h{<f>) ) 
u v'h(<f>) +1 2 

l 
\ 

{3. 49) 

(3 . 50) 
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where {3 = b/ao 

Then the integral equation (3. 30) becomes 

e 2 e Srr x (e)H(e) = cos 2 - 2 cos 2 rce, cf>)H(<f>) aq, , 
TT 0 

(3. 51) 

where 

x (O) _ (h(O) + l)Vh(O) - 1 
- r;::--; 2 

v {3··1 h (9) 
(3. 5 2) 

h 2(9) -1 h(O) + 1 h 2 (cp) -1 h(cf>) +l 

I'(9,<f>) = 
h(O) log h(O) -1 h(p) log h(<f>) - 1 

2 2 • (3.53) 
h (9) - h (cf>) 

The kernel (3. 53) has a removable singularity at 9 = <j>, its value at 

these points may be evaluated by L'Hopital 1 s rule, giving 

r<e, e) = h
2

(a) +1 log h(O) +1 1 
2h3(9) h(O) -1 - h2(9) , 

(3. 54) 

which is seen to have a logarithmic singularity at 9 = 0 only. 

Using the above transformation, the drag and the mean velocity 

through the hole as given by (3. 40) and (3. 44) are reduced to 

and 

D = 16µ Ua STT H(O) d9 
0 

(3. 55) 

j 8 \rr : -/13-1 (h(O) +1)-/h(O) - 1 
1 

h(O) +l . e · ~I I 
uo = Ull - TTzjo 1_ 1- 2 h(O) og h(0)-1 sinz: ..J H(e) de j . 

(3.56) 

The drag coefficient, formed with respect to the solid disk drag given 

by equation (3. 48), is therefore 
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(3 . 57) 

The integral equation (3. 51) is solved numerically for H(8) by 

a standard method which approximates the equation by a set of alge-

braic equations. Gaussian quadrature is used to evaluate the integral 

so as to avoid encountering the corner point (8 = 0, cf> = O) which is 

logaritlunically singular as seen in (3. 54). Gaussian ordinates of 

six, eight and ten are used successively in each computation for a 

given value of 13. The values obtained for H(8) are seen to be 

bounded and are converging, having no singularity throughout the 

interval from 0 to 'TT. The Gaussian quadrature is also used in the 

computation of the drag coefficient CD (equation 3. 57) ) and the mean 

velocity ratio u /U (equation (3. 56) ) • The results obtained are 
0 

listed in the following table. 

CD u /U 
0 

13 =E t = 6 8 10 6 8 10 n 
a 

10.000 0.99968 0.99980 0.99983 o. d"2748 0.02761 0.02742 

5.000 0.99871 0.99883 0.99887 0.055 29 0.05495 0.05476 

2.000 0.98081 0.98093 0.98098 0.14422 0.14393 0.1438 1 

1.600 0.95955 0.95967 o. 9597 2 0.18825 0.18801 0.18790 

l. 350 0.92479 0.92491 0.92496 0. 23740 0.23721 0 . 23712 

1.250 o. 89741 0.89753 0.89757 0.26828 0.26811 0.26805 

1. 200 o. 87744 0.87756 o. 87760 0.28853 0.28837 0.28831 

1. 125 0.83245 o. 8325 6 0.8~260 0.32996 0.32984 o. 32979 

1. 070 0.77 5 24 0.77 534 o. 77 53 8 o. 37 804 0 .377 94 0. 37789 

1.040 0.72190 0.72199 0.72202 o. 42068 0.420 59 o. 420 56 
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CD li /u 
0 

13 = ~ n = 6 8 10 6 8 10 
a 

10 020 o.66133 0.66141 o.66144 0.46814 0.46808 0 . 46805 

1.010 0.60793 o.60799 0.60801 0.50992 0.50987 0.50985 

1. 005 0.56142 0.56147 0.56149 0.54655 0.54650 0.54648 

1.001 0.47538 0.47542 o. 47 543 0.61509 0.61506 0.61505 

1.0001 0.38919 0.38922 0.38919 0.68459 0.68456 0.68458 

l. 0000 (0) ( l) 

t is the number of Gaussian ordinates used. n 

We see from this table that the convergence is good. The 

values corresponding to ten Gaussian ordinates may be considered 

accurate to the fourth decimal place. The total time consumed on 

an IBM 7094 computer for this problem was 33 sec. 

The drag coefficient CD and the mean velocity ratio u
0
/U 

are plotted against the porosity TJ of the annulus in Fig. 3. The 

porosity 11 is defined to be the ratio of the hole area rra 2 to the 

total area irb
2 , namely, T) = a 

2 
/b

2 = l /132 • The reduction in drag 

is seen to be very small when the porosity is small or moderate. 

Even when as much as 50% of area is missing from a solid disk, 

the drag is only reduced by 6%. When the porosity approaches unity, 

however, CD reduces rapidly to z ero. It is a lso apparent from this 

plot that it is difficult for the flow to go through the hole; the mean 

velocity u is only a fraction of the free stream velocity U when TJ 
0 

is small. As TJ approac h e s unity, of course , u
0 

a pproa ches U. 

These characterisitc s are expected in general for a porous body in 

very vis co us flow . 
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Fig. 3. Drag coefficient and mean velocity through the 
hole of a circular annulus in Stokes flow. 
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IV. STOKES FLOW PAST A THIN CIRCULAR SCREEN 

Consider a uniform Stokes flow past a thin circular screen 

passes sing numerous holes. The screen has a radius a and its 

plane coincides with the coordinate plane x = O. Cylindrical polar 

coordinates (r, 9 ,x) will be used in this analysis. The velocity com-

ponents in the corresponding directions will be denoted by v, w and 

u respectively. 

Obtaining a solution for the microscopic flow in this case is, 

of course, beyond our means, but we may consider a mean flow 

instead of the microscopic one. In particular, the mean velocity and 

pressure at the screen are assumed to be the averages over a screen 

area which is small compared with the total area of the screen and 

yet still includes a large number of holes. The mean quantities are 

further assumed to vary smoothly throughout the flow field. 

The mean flow should also satisfy Stokes equations (2.1) and 

(2. 2), because these equations are linear. We shall use the same 

symbols for the mean quantities as for their microscopic counterparts. 

Therefore, 

2~ 

- V'p + µ V' u = 0 ' (4.1) 

\i'.u=O. (4. 2) 

The symmetrical nature of the flow expressed by (2. 9) should still 

hold for the mean flow. In particular, 

v, w -- 0 at x = 0 , (4. 3) 
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for points on the screen as well as those outside the screen. 

The mean pressure must have a jump across the screen. The 

magnitude of the jump is expected to be linked somehow with the local 

mean normal velocity through the screen. In fact, assuming a local 

uniform flow through the screen, we may perform a dimensional 

analysis for the following group of parameters: u, 6p, µ, P. where 

6p = p + - p _ denotes the pres sure jump and P. denotes a character

istic size of the holes. The analysis yields the following linear 

relation: 

k 
u = - -6p 

µ 
(x = 0, p < a) , (4. 4) 

where k is a proportionality constant which is termed the permea-

bility. The magnitude of the permeability k measures the ease with 

which the flow passes through the screen. The relation (4. 4) is very 

much like Darcy's law for flow through porous media, except that k 

here has a dimension of length while that in D arcy's law has a dimen-

sion of length squared. The permeability is expected to be dependent 

upon the detailed structure of the screen alone, such as the hole s i ze 

i., the hole shapes, and the porosity of the screen. It s hould not 

depend upon the fluid properties, nor upon the overall size and shape 

of the screen. We shall assur:ie the screen has a homogeneous 

structure so that k is a constant of the screen material. 

The permeability k must be determined by experiment, but 

for some idealized hole structures, it may also be deduced by a 

theoretical analysis. For example, an ideal screen may consist of a 
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series of equal, parallel slits. Hasimoto [ 9] obtained an exact 

solution for a uniform Stokes flow past such a screen of infinite size. 

From his solution, we deduce that 

k = __!__ l1og cos -¥ T] Id 
4Tr 1 - T] ' 

(4. 5) 

where TJ is the porosity of the screen defined as the ratio of the hole 

area to the total area of the sc reen. For the case of equal parallel 

slits , 

(4. 6) 

where P. is the width of the slit and d is the width of the wall 

b etween the successive slits. 

The Stokes problem for the above circular screen is described 

by equations (4.1) and (4. 2) unde r the approximate boundary conditions 

(4. 3) and (4. 4) together with the following condition at infinity: 

u as Ix! - oo (4. 7 ) 

where e 1 is a unit vector in the dir ection of the x -ax is. 

The problem may be reduced to an associated e l ectric potential 

problem sim.ilar to that formulated generally in Chapter II. 

= P + 2µ. acI> 
p 00 ox (4. 8) 

(4. 9) 

where 
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(4 . 10) 

with the boundary conditions, 

= =F 4k ( ~! ~~ (x = 0' p < a) ' ( 4. 11) 

El<Ii 
OX = 0 (x = 0, p > a) ' (4.12) 

~- 0, as I; I - 00 (4.13) 

The boundary condition (4.11) is a linear combination of "Dirichlet" 

and "Neumann" conditions. The potential <I>, satisfying this condition 

and the others, (4.12) and (4.13), should be unique. 

To solve the potential problem (4.10) - (4 . 13), we shall assume 

a surface source density y(p) distributed axisymmetrically over the 

screen (p <a). The potential <I>(~) due to such a source distribution 

is given by 

- sas21T e'y( e') dO I d p' 
<I> (x ) - -r'"'l!zllf=!il""'c:.,........,2-=-==--....... --

0 o \}x + p + p' - 2pp' cos (0-0') 
(4.14) 

The surface source density y(p) is then to be determined by 

requiring the potential <I:i to satisfy the boundary conditions (4.11) to 

(4.13). The last two conditions are automatically satisfied, while the 

first one r e duce s to 

U - <I:i = 8rrky(p) (x = 0, p < a) (4.15 ) 
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by using the following well-known jump relation as given by (2. 21):. 

( o<I> ( oq» 
- ) - - ) = - 41T"'f{p) ox + ox - (4.16) 

The boundary condition (4.15) , written out explicitly, is an 

integral equation for y(P) 

Sa s21T d9 u - p I)' ( p I) d p I ---,.=::;;;====:;:;;======== = 81Tky ( p) • 
. o o .\)p

2
+p• 2 -2pp'cos(9-9') 

Upon application of Len1ma 1 of Chapter III, this becomes 

I 

- c·spsp - rasp J p 'x(f) dt dp I = 
U 4 \ . I 2 ~ I 2 2 B 1Tky ( P) • 

0 0 ,_, p 0 \IP - t " p I - t 

After interchanging the order of integration, we get 

,-.p dt r I ( ') d I 

u - 4) '1 z z E-.YJf p = 81Tky{p) • 
'- 0 p - t t ~p I - t 2 

We write 

G(t) =Sa p 'y(p ') dp' 
t ~p 1 2_ t2 

(t < a) • 

{4.17) 

(4.18) 

(4.19) 

(4. 20) 

The inversion of this integral equation has been given by Lemma 3 of 

Chapter III to be 

, ( ') _ 2 d s a tG{t) dt 
p y p - - 1T dp I .J 2 2 p I t _ p I 

(p'<a). (4. 21) 

Substitution of both (4. 20) and (4. 21) into (4.19) yields the 
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U _ 4SP G(t) dt 
~ 2 2 op -t 
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= -16k .!_ ~ s a tG(t) dt 
p dp p~t2-p2 . 

(4. 22) 

Multiplied throughout by p, this equation is integrated from p to a, 

giving 

a a Sp' uS ,2 d I - 4s I d I G(t) dt 
pp pp '12 2 

p p 0 p' -t 

= -16ksa ~' rs a tG(t) dt l dp I ' 

P dp _ p' ~t2-p,2 , 

4kSa tG(t) dt 
..J 2 2 pt -p 

(4. 23) 

= ~ (a
2

- p
2

) - s: "1a
2

- t
2 

G(t) dt + s: "1p
2

- t
2 

G(t) dt • 

(4. 24) 

L et the right-hand side of (4. 24) be denoted by B (p). Con-

s idering B(p) as a known function, (4. 24) may be inverted according 

to Lemma 3 of Chapter III to give 

4ktG(t) = - ~ ~r pB(p) dp 
rr dt t .yPz_ tz 

(4.25) 

Substituting B(p) back into the equat ion and carrying out the integra-

tions and differentiations successively, we finally obtain a Fredholn~ 

integral equation of the second kind for the function G(t), that is, 
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u ~ 2 2 Sa 2rrkG(t) = 4a -t - K(t,s)G(s) ds, 
0 

K(t,s) =log 

- ~--2 2 2 2 
-t + a - s 

(4. 26) 

(4. 27) 

A Fredholm integral equation of the second kind can be solved 

by a certain standard numerical method, and so the potential problem 

is considered solved. The flow quantities of the original Stokes 

problem may t hen be deduced from the numerical function G(t), and 

hence the Stokes problem is also considered solved. 

For the pressure distribution on the screen, we have from 

(4.8) and (4.16), taking into consideration that ocf>/ox is odd in. x, 

(x = 0, p < a) • (4. 28) 

Upon substitution from (4. 21), we obtain 

_ ±B 1 d satG(t)dt 
p± - p 00 µ -p dP. '1 2 2 

. p t -p 
(x = 0, p < a) • (4. 29) 

The mean viscous stresses at the screen can be shown to be 

zero, and hence the drag of the screen is due to the pressure jump 

alone. The drag D is therefore 

D = 2rrSa (p_ - P+)P dp 
0 

= 3 2rrµ Sa G(t) dt • 
0 

(4. 30) 
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A drag coefficient CD may be formed with respect to the solid disk 

drag , 16µUa, so that 

2 Sa CD = u: G(t) dt • 
0 

(4 . 31) 

The norm al veloc ity through the screen is g iven b y the boundary 

condition (4. 4), that is 

k 
u = - - (p - p ) 

µ + - (x = 0, p < a ) • (4. 4) 

Averaging (4.4) over the whole screen, we obtain the following simple 

relation between the mean velocity u through the screen and the 
0 

drag coefficient CD 

(4. 32) 

To facilitate the n umerical computation of the integral equation 

(4. 26) we shall make the following change of variables: 

t = as s = al'] (4. 33) 

and 

H(s ) = ~G(as > H(11 ) = ~ G (a11) (4 . 34) 

Equation (4. 26), therefore, becomes 

(4. 35) 

where 

.. ~. 
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(4. 36) 

The drag coefficient, equation (4. 31), is reduced to 

CD = s 1 
H (s) ds • 

0 

(4. 37) 

The integral equation (4. 35) is solved approximately by a set of 

algebraic equations. For a given value of a/k, the function H(s) is 

evaluated successively at ten, twenty and forty equally spaced points 

within the interval (O, 1) . The logarithmic singularity at T] = s of the 

kernel r(s 'TJ) has been properly taken care of in the evaluation of the 

integral . To integrate equation (4 . 37) for CD' use has b een made of 

Simpson's rule. The results obtained for the drag coefficient CD 

are tabulated in the following: 

a CD 

k t =10 20 40 n 

1 0 . 163 0.162 0 . 162 

5 0.481 0 . 480 o. 479 

10 o . 641 0 . 639 o. 638 

20 o . 77 2 0.769 0.768 

30 0.831 0 . 827 0 . 826 

50 o . 888 0.884 0.882 

100 o . 939 0 . 934 

200 0.969 0 . 965 

300 o. 979 o. 976 

1000 0 . 996 0 . 993 

t n is the number of ordinates used in the solution of 
H(s ) . 
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From this table, we see that the convergence is very good for 

increasing number of ordinates used in the numerical solution of the 

integral equation. The total time used on an IBM 70 94 Computer 

for this problem amounted to 58 sec. only. 

The drag coeffic i ent CD is plotted against a/k in Fig. 4 . 

It is seen that its values are a l ways below unity, that is, the drag of 

a circular screen is less than that of a circular disk of the same 

radius a. To obtain certain physical feeling as to the porosity effect 

of the screen, we approximate it by a parallel slit model. Based on 

(4.5),iftheporosity 11 is 0.5, the value of a/k is 180 for 10 slits and 

1800 for 100 s lit s in the screen . At these values of a/k, CD is 

very close to unity and the screen behaves like a solid one. Only 

when 11 becomes unrealistically large, can a screen experience a 

substantial reduction in its drag. For example, 11 = O. 95, the ratio 

a/k becomes 20 for 10 slits and 200 for 100 slits in the screen. 

The corresponding CD is O. 77 and O. 97 respectively. At this 

porosity, however, the width of the slit must be 19 times greater 

than that of the wall. The plot also gives u /U as a function of a/k. 
0 

The mean velocity u through the holes of the screen becomes ex
o 

ceedingly small when a/k > 200, and hence it shows the tremendous 

blockage effect of the screen at low Reynolds numbers. 
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PART TWO 

VISCOUS FLOWS PAST POROUS BODIES OF FINITE SIZE 
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I. INTRODUCTION 

Many physical phenomena and engineering applications involve 

viscous flow around and through porous bodies. Examples are the 

lubrication of porous bearings which are often used as machine 

elements, viscous gravity waves propagating over a permeable bed, 

viscous flow through porous rollers used in paper mills, etc . There 

are also flows which have great fundamental interest, such as the 

viscous flow past a porous sphere and the rotation of a porous cylinder 

in a viscous fluid. 

These flow phenomena have a common feature in that the 

motions of the fluid can be divided into two distinctive regions. One 

region is that of the porous material saturated with the fluid, and the 

other is a pure fluid region where no solid materials are present. 

The flow in these two regions is governed by two different sets of 

differential equations, and the flow quantities at the interface joining 

the two regions must be related by a set of appropriate conditions. 

These conditions will be called interface boundary conditions. The 

actual flow in the porous region passes through many interwoven 

passages" Its complexity necessitates using an averaging method 

which replaces the detailed flow by an equivalent mean flow. This 

mean flow is supposed to be d 'i.stributed homogeneously throughout 

the space originally occupied by the porous region. The empirical 

t law of Darcy is commonly used to describe such a mean flow 

t For flow through porous media and Darcy's law, see (l] and ( 2]. 
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provided ce rtain r estrictive conditions are met. For the flow in the 

fluid region, we shall limit our attention to Newtonian fluids satisfy-

ing the full Navier-Stokes equations or satisfying their limiting 

forms for small Reynolds number flows, i.e. Stokes' and Oseen's 

equations. The interface boundary conditions, therefore, serve to 

connect the flow variables of Darcy's law applied on one side of the 

interface to those of the viscous flow equations applied on the other 

side. Since the corresponding flow variables in the neighboring 

regions are actually derived from somewhat different definitions, it 

is not readily clear how to make associations between them. This is 

one of the main reasons why the interface boundary conditions have 

been controversial in recent years. The purpose of this investigation 

is to c larify the interface boundary conditions and to formulate them 

correctly. 

Recent studies on porous body flows have been made by Tao, 

Joseph, and Shir [ 3] - [ 7]. Their analyses include the slow motion 

of a porous sphere, the · rotation of a porous disc, the ground flow 

induced by a moving cylinder, as well as the lubrication of a porous 

bearing. The interface boundary conditions used in these s tudies 

were as follows: (1) the normal velocity on the fluid side equals the 

normal superficial velocity t on the porous side; (2) the pres s ure on 

the fluid side equals the mean pressure t on the porous side; and (3) 

the tangential velocity on the fluid side vanishes. The third boundary 

t For definitions of superficial velocity and mean pres sure, see 
Chapter II. 
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condition on t angential velocity is a d ebatabl e one because the inter

face actually contains many holes and a tangential movement of fluid 

is poss ible at least over the hole parts of the interface boundary. The 

net effect could very well be a slip rather than a non-slip condition 

for the tangential velocity on the fluid side of the interface. 

The authors mentioned above have also assumed that the third 

condition is app roximately valid when the permeabilityt is small com 

pared with some typical gross area of the porous body. However, 

the slip velocity can still be large and important in some cases even 

when the above criterion is satisfied. An illustration of this point is seen 

in an experiment involving Poise uille channel flow over a naturally per

meab~. e block reported by Beavers and Joseph [ 8]. They found that 

when the gap of the channel is small, the fluid efflux is greatly in

creased over the value it would have been if the block were imper

meable. This indicates the presence of a large slip velocity immedi

ately adjacent to the permeable surface, and appears to be the case 

regardless of the value of the permeability. This slip effect was 

attributed to the existence of a thin layer immediately inside the 

permeable block, in which Darcy's law is not applicable and across 

which the tangential velocity changes continuously from its interior 

mean value to the slip value outside the block. The slip velocity can 

be considerably gre ater than the interior mean velocity. Their 

difference, or the tangential velocity jump across the thin layer, 

was found to be proportional to the normal gradient of the tangential 

t For permeability, see [ l] and [ 2] , or Chapter II. 
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velocity outside the block. From these findings, it appears that if 

Darcy's law is used to model the flow through the porous region, the 

interface boundary conditions should relate flow variables on the two 

boundaries of the thin layer instead of at the crudely simplified inter

face of zero thickness. In particular, the tangential velocity jump 

condition should replace the non-slip tangential velocity condition 

mentioned previously. 

There have also been studies on the viscous damping of a 

gravity wave propagating over a porous bed. Hunt [ 9] in his treat

ment assumed almost the same set of interface boundary conditions 

as used by T ao et al. However, instead of relating just the pressures, 

he included also the normal viscous stres ses and required the total 

normal stresses to be continuous across the interface. Murray [ 10] 

repeated the a nalysis of the same problem but adopted a different set 

of interface boundary conditions. He related {but did not make equal) 

both the normal and the tangential velocities across the interface. 

He established a third condition derived from energy conservation at 

the interface. 

In the literature to date, different sets of interface boundary 

conditions have been used by different investigators. Unfortunately, 

none of these sets have been supported by convincing proof. The 

reason behind the confus ion is largely due to the fact that clear cut 

definitions of the flow variables for the equivalent mean flow in the 

porous region and an understanding of the true nature of such a flow 

are still lacking. Therefore, it is necessary that the flow in a porous 
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medium be studied thoroughly befor e a ny interface boundary conditions 

can be formulated correctly. 

The following chapter is devoted to a critical examination of 

the flow in porous medium. Darcy's law i s first reviewed and its 

limitations concluded. Then, continuing on beyond the usual empirical 

point of view, we consider the mean flow to be built up from those 

microscopic flow through the winding narrow passages. A ssuming 

the microscopic flow to be sufficiently random, and that Stokes' 

equations for slow viscous flow are applicable for their description, 

general macroscopic equations of motion for the apparent mean flow 

are derived by a s tatistical means. This statistical approach also 

enables us to define unambiguously all the mean flow variables. The 

resulting macroscopic equations are believed to be more generally 

val id than Darcy's law, and actually reduc e to Darcy 's law when the 

Darcy number is s mall . The Darcy number, to be defined in the 

analysis later on, measures the relative importance of the mean 

viscous force with respect to the mean resistance provided by the 

solid material in the porous medium. Chapter II concludes with a 

study of the e nergy balance in a porous medium. 

Establishment of the above mentioned macros copic equations 

l eads to correct formuJations of interface boundary conditions. A 

correct formulation should be one of the following: (1) Establish 

correct equations of motion for flow in the w hole porous region up to 

the immediate neighborhood of the interface and then relate corre

sponding flow variables acro ss the interface of zero thickness. 
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(2) Continue to use Darcy's law except in a thin but finite porous 

layer at the interface and then obtain jump conditions on the flow 

variables across this layer. Both of these formulations will be con

sidered in Chapter III. The macroscopic equations obtained herein 

are appropriate for the first formulation mentioned above. In addi

tion, when the macroscopic equations are applied, as will be illus

trated by an example, the solution clearly shows that there usually 

exists an interface layer across which the mean tangential velocity 

varies rapidly and, consequently, the mean viscous stresses are not 

negligible. This is the layer in which Darcy's law ceases to apply. 

A nominal thickness of the layer is derived from the analysis and its 

order of magnitude is comparable to the grain size of porous media 

arising in general practice. In spite of the thinness of the layer, the 

contribution to the tangential velocity jump is, however, not small. 

An analysis of flow within an interface layer of general nature actually 

leads to the full establishment of the interface boundary conditions of 

the second kind. 

In the last chapter, both types of interface boundary conditions 

are applied to the analytic solutions of two fundamental problems. 

One is the Stokes flow past a porous sphere; the other is the viscous 

flow between two cylinders, the outer one is impermeable and rotating 

at a constant speed, while the inner one is porous and stationary. 

Both examples are valuable in demonstrating (1) the existence of a 

solution of these types of coupled flow problems, and (2) the porosity 

effect of a porous body on the external flow. 
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II. EQUATIONS OF MOTION FOR FLOW THROUGH POROUS MEDIA 

2.1. Empirical Darcy's Law 

We begin with a brief review of the structure of porous media 

and the empirical law of Darcy. 

A porous medium is a solid containing numerous intercon-

nected pores. The pores commonly have two types, one is the inter-

granular type , like the pores between sand grains; and the other is 

the interwoven tunnel type, like the pores in material made up by 

fibers or wires. There are also isolated pores but they do not affect 

the flow in a porous medium, and are better considered as a part of 

the solid. The structure of pores, or their complementary solids, 

can be characterized by many factors, such as surface area, chemical 

c omposition, size d).stributions, etc . In fluid mechanics, two param-

e t ers are most important. These are the porosity and the character-

istic size. The porosity of a porous medium, T), is defined as the 

ratio of the volume of all interconnected pores in a gross volume of 

porous medium to that gross volume. When the distribution of the 

pores is sufficiently random, both in size and in location, we may 

c onsider the porous medium as homogeneous and isotropic. Under 

such assumptions, if we pass a surface through the medium, the 

ratio of all surface pores on this surface to the total area of the 

surface will have the same value as the volume porosity T). Like-

wise, if we pass a line through such a medium, the line porosity is 

also the s ame as the volume porosity . Thus, we have in a homo-

geneous isotropic porous medium, ---...... 
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= volume of pores = 
TJ total volume 

area of surface pores 
total area 

= length of line pores (Z. l) 
total length 

All the pores considered are necessarily interconnected. The 

characteristic size can be defined as the average size either of the 

solid grains or of the pores of the medium, whichever is more con-

venient. 

The equations governing the flow through the porous medium 

were established empirically by Darcy in 1856. The equations have 

since been generalized into the following form: 

\i'•q=O, 

q = ~'VP 
µ 

In the above, q is the superficial velocity defined as the rate of 

(2. 2) 

( 2. 3) 

volume flow through a cross section of unit area normal to the flow. 

P is understood to be some sort of mean pressure but without ever 

being given a clear definition. In an experiment, it is taken to be the 

pressure measured by a piezometer inserted through the wall of a 

channel in which fluid flows through a porous medium . Also in the 

above, µ is the viscosity of the fluid and k is the permeability. 

The value of permeability measures the ease with which the flow 

passes through the medium. It is the most important dynamic 

parameter of flow through a porous medium, because it combines 

all the influences of the complicated geometrical structure of pores 
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and solids into a single experimental coefficient. The permeability 

usually assumes a very small number for ordinary porous media. 

For example, a sand mixture, of size range 0.139 to O. 211 mm and 

of porosity O. 37, has a permeability k equal to O. 2 X 10- 6 cm2 • 

Even for wire crimps (each wiire crimp is 0. 32g mm in diameter and 

5. 7 mm long) with a porosity O. 76, k is around 1 X 10-4 cm2 • t 

Darcy's law has, of course, its intrinsic limitations. Accord-

ing to various investigators, the law is only true under the following 

conditions: 

i. The macroscopic scale of the porous medium in question 

is much larger than the characteristic size of the pores. 

ii. The pores in the porous medium are interconnected and 

saturated with only one fluid. 

iii. The fluid is incompressible, homogeneous and isotropic. 

iv. Both the solids and the fluid are physically and chemically 

stable and do not react with one another. 

v. The flow through the porous medium is very slow. The 

slowness is measured by the Reynolds number, Re = ..e.9E , 
µ 

where p is the fluid density, q is a certain mean velocity 

in the medium and d is a characteristi c size of the pores 

or of the grains. For example, in a porous medium con-

sisting of uniform spherical particles, Re should be less 

than 4 if d denotes the diameter of the particle. 

Under the conditions outlined above, the permeability k is a 

t For some permeability data, see [ 16]. 
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property of the geometrical structure of the pores or the solids 

alone. It could in general depend on the position as well as the 

direction within the medium, but it is independent of the fluid pro-

perties. Furthermore, if the porous medium is statistically homo-

geneous and isotropic, k is a constant of the medium. Then, by 

dimensional analysis, it can be shown that 

2 
k = a (TJ, s)d , (2. 4) 

where a is a dimensionless coefficient depending on the porosity TJ 

and the shape factor s of the pores or the solids. 

The Darcy equations (2 . 2) and (2 .3) serve very well in many 

instances of flow through a bulk of ordinary porous medium, such as 

flow underneath a dam and underground flow due to pumping of a well. 

Mathematically, (2. 2) and (2 . 3} are equivalent to 

2 
V'P=O, 

k 
q = - - V'P 

µ 

(2. 5} 

(2. 3} 

The harmonic function P can be shown to exist and to be unique when 

either P or ~: {which is proportional to qn) or a mixed condition 

of both of the m is prescribed on certain appropriate boundaries. 

Further variations of boundary value problems are possible . When 

P is found, the velocity field is simply given by (2. 3). 
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2. 2 . Microscopic and Macroscopic Descriptions 

Darcy's law, as outlined in the preceding section, is to 

describe the flow through porous media in a superficial and gross 

fashion. It is not concerned with the details of the flow throughout 

the interwoven passages. We call such a gross description a macro

scopic description, while one concerned with details of the flows is 

termed a microscopic description. The microscopic flow is too 

complicated to analyze, and therefore a macroscopic approach is 

necessary . 

An empirical method, by which Darcy's law was established, 

is not the only way by which a macroscopic description can be pro

perly deduced or induced. A macroscopic description is most 

rationally built up from the microscopic flow by statistical means. 

An adequate statistical formulation does not require a complete 

knowledge of the microscopic flow. 

The same type of concept has ·been used in kinetic theory 

which considers random molecular motion as the "microscopic" 

basis for the "macroscopic 11 continuous motion of a fluid. 

Fig. 1. Microscopic and macroscopic flows. 
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To begin with the statistical formulation, we consider a 

porous medium which occupies a region V. L et the microscopic 

flow inside the region be described by the velocity u and the pres-

sure p. A fluid p a rticle usually follows a tortuous path through the 

mediurn, as is indicated in Fig. 1. But as viewed from far away 

the tortuos ity of the particle path becomes vague and smoothed. 

Equivalently, we can consider a smooth mean path, as shown by the 

dotted line, instead of the original tortuous one. A smoothing effect 

can be obtained by defining a mean velocity q s and a mean pressure 

p at a point x as follows: 

qs(;) = 61V s - ~(;') dV 
f 6 Vf(x) 

p(;) = 6~ s -p(;') dV 
f 6Vix) 

(2. 6) 

(2.7) 

where the integrations are over 6Vf' the pore portion of a small 

region 6 V surrounding x. The quantities 6 V f and 6 V denote 

the pore volume and the total volume of 6V, r esp ectively. This 

averaging process effectively transforms the microscopic flow in 

the porous medium V to an apparent mean flow, namely, a 

macroscopic one, in a continuous medium V' . The range of V' 

is identical to that of V. The transformation is demonstrated 

graphically in Fig. 1. We shall further assume that the volume 

6 V c hosen for the averaging is small compared with the overall 

volume of the region V but is large enough to include s ufficiently 

many pores so that resulting mean values are continuously differ-

entiable to the desired degree throughout the continuous medium V'. 
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The mean pressure and the mean velocity d efined above are 

seen to b e the true average vaiues of their respective microscopic 

quanti. ties associated with a bulk of fluid. Therefore, q gives the 
s 

true vdocity of motion of such a bulk of fluid. For this reason, qs 

will be termed the seepage velocity. In order to compare with the 

superficial velocity q us ed in Darcy's law, we shall also define a 

corresponding mean velocity as follows: 

- 1 r> -~ 
q = 6 v j _ U (XI) d V o ( 2 0 8) 

6 V f(x) 

The only difference between this and qs is that in the present defi

nition the integral is divided by the total volume ~ V instead of the 

partial v olume ~ V £" Suppose that the porosity in the neighborhood 

of x is T]. the relation between q and qs is s imply 

(2 . 9) 

Furthermore, if the porous m edium is locally homogeneous and 

isotropic, it is plausible to assume that the mean value obtained by 

a volume average will have the same value as obtained by a corre-

sponding surface average , provided both the volwne and the surface 

include the same r eference point x . The mean velocity q of (2 . 8) 

may then be calculated alternatively by the surface average. Its 

physical meaning is precisely the discharge p er unit gross area of 

porous medium normal to the flow. Thus, we have identified q of 

( 2 . 8) with q in Darcy's law and we shall call them both superficial 

velocities. We shall also identify p to be the mean pressure P of 
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Darcy's law when the interface boundary conditions are established in 

Chapter III. 

Having already established a link between the microscopic and 

the macros copic points of view, the next task is to establish the equa-

tions of motion for macroscopic flow, namely, to find the differential 

relations between derivatives of the mean velocity and the mean 

pressure. Before this can be done, it is necessary first to state the 

law gove rning the microscopic flow. For the present investigation, 

we shall limit our attention to a Newtonian fluid satisfying the Navier-

Stokes equations: 

\7•u=O, (2.10) 

au - - 2-
p 8t + p(u • 'V)u = -'Vp + µ.\7 u (2. ll) 

where u, p, p, µ are respectively the local velocity, pres sure, 

density and viscosity of the fluid defined in the usual sense of con-

tinuum mechanics. In principle, the microscopic flow field is com-

pletely determined if the non- slip condition is imposed on all the 

solid surfaces. 

By referring to the characteristic velocity in the porous 

medium, q, the characteristic size of the solid (or the pore), d, 

and the characteristic frequency, £, the above equations can be 

made nondimensional by using the following substitutions: 

X
-, X I f -d,t=t, - u u' = -q 

p' = ..E_ 
i:g 
d 

(2 .12) 



giving 

and 

where 

-61-

VI • ~I = Q t 

a~· - - 2-
f0 8tT + Re(u' • v')u' = -v'p' +v' u' 

Re=~= 
v Reynolds number, 

f 
0 

=--v = reduced frequency • 

(2 . 13) 

(2.14) 

When both the Reynolds number and the reduced frequency of a micro-

scopic flow are sufficiently small, the inertia terms on the left of 

(2.14) may be neglected and the result becomes Stokes' equations t for 

slow viscous flow. Recovering the dimensional forms, Stokes' 

equations become 

v·u=O, (2.15) 

2--v p +µvu= O (2.16) 

In this case, the boundary condition of microscopic flow is again the 

non-slip one. 

For most cases of practical interest, we may limit our 

studies of viscous flows through a porous medium to the category in 

which the microscopic flow satisfies Stokes' equations (2.15) - (2.16), 

and we shall attempt to derive the macroscopic description by apply-

ing appropriate statistical means, or an averaging method, to the 

t For a treatment of Stokes 1 equations, see [ 11] and [ 12] . 
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Stokes' equations. Before doing that, we shall however consider 

construction of some idealized models of porous media for which 

the microscopic solutions of Stokes' equations can be obtained. 

These simple models are interesting because they can provide valuable 

insight into the more complicated general case of flow through a ran

domly distributed porous medium, and thereby enable us to establish 

the macroscopic equations correctly. 

2. 3. Idealized Models of Porous Media 

Idealized models of porous media are formed by regular arrays 

of obstacles, for which the solutions of Stokes' equations can be obtained 

By appl ying the averaging processes described by (2. 6) and (2. 7) of 

the preceeding section to the microscopic solution, a macroscopic 

equation of motion can be derived for each specific model. Following 

this approach we shall discuss in the sequel three models: (1) Parallel 

tubes, (2) an array of circular cylinders, and (3) a lattice of spheres. 

These models have been described in the literature by various approxi

mations. Here we collect only those solutions obtained analytically. 

Model (1) • Par all el tubes: -

The parallel tube model consists of a bunch of identical, 

parallel tubes imbedded in the solid. The flow in each cylindrical 

tube is assumed to be a Poisouille flow, maintained by the same 

constant pressure gradient along the tube. The microscopic velocity 

distribution over a cross section of the tube generally as smnes the 

following form: t 

t For a treatment of viscous flow through a tube, see [ 12] • 
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u(y,z) = ~ ¥xf(y,z) (2 .17) 

where v 2
f = -1 within the cross section of the tube' and f = 0 on 

the tube boundary. Here the x-axis coincides with the axis of the 

tube, and u is the x-component of the velocity. For example, for 

the flow through a circular tube, 

u(r) = 1 ~ (R2 _ 2) 
- 4µ dx r ' (2. 18) 

in which r is the radial di.stance, and R is the radius of the cir cu-

lar tube. 

For this particular model, the seepage velocity q , as defined 
s 

by (2. 6), is the same as the mean velocity through the tube, that is 

qs = l SA u(y, z ) dS' (2.19) 

where the integration is over the whole tube cross section and A 

denotes the cross sectional area of the tube. On the other hand, since 

the pressure is uniform over the cross section, the mean pressure p 

may be considered to be the same as p. Therefore, upon integration 

of (2.19), using the velocity distribution (2.17) and substituting p for 

p, the following macroscopic relation is obtained: 

(2 . 20) 

where .R. is the characteristic length of the pores and is now set to be 

.fA. The coefficient cr1 is a constant depending on the shape of the 

cross section, and may be called a shape factor. 
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The values of a-1 for various s hapes of tube cross sections 

are tabulc;.ted in the f ollowing: t 

A =1
2 

Q'l 

0 2 1 
rra 8rr 

~ rrab l ( 1 ) b 

4TT m2+l ' 
m = -a 

( 2. 21) 

ffi ...{3 2 ...{3 
Ta -

45 

EJ 
00 tanh (n +i~ 

4ab 1 .- bm
2 I m J, m= ~ rrlm- - z-

(n+ -} )5 a 
TT n=O 

The wall resista nce F provided by a unit length of a single 

tube is simply 

( 2 . 22) 

Suppose that this model has a porosity T), then the number of 

tubes in a unit cross sectional area is TJ/ A, and the total resi s tance 

D (drag) per unit volume of the medium is given by 

( 2. 23) 

in which A 
2 

again has been replaced by P. • 

If the s uperficial veloc ity q instead of the seepage velocity 

qs i s u sed, then, . by the rel ation q = T)qs , (2. 20 ) and (2. 23 ) can be 

t For s olutions of the viscous flow through tubes, see [ 12]. 
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rewritten as 

and 

£ 2 dp 
q = - YJ0'1 - -µ dx 

(2.24) 

D=-1 Lq . (2.25) 
£1'1 P.. 2 

In the above the characteristic length P.. was chosen to be 

associated with the pore size. Alternatively, a characteristic length 

may 2.lso be chosen appropriate to the solid dim ens ions. A proper 

solid length may be defined as: 

1 - ri d = - P.. ( 2 . 26) 
Y] 

In terms of the characteristic length d, (2. 24) and (2. 25) become 

(2. 27) 

and 

(2. 28 ) 

Model (2). An Array of Circular Cylinders:-

In the c ircular cylinder m od el , parallel circular cylinders 

are arranged in a periodic fashion and a uniform mean flow is taken 

in the direction transverse to the axis of the cylinders. No analytical 

or numerical solution of Stokes 1 equations has been found for arbi-

trary spacing of such an array of cylinders. The existing solutions 
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are mostly restricted to square arrays in the limit of either small or 

large gaps between neighboring cylinders . Such a square array is 

q 

represented in Fig . 2. The cylinders all have the same diameter d, 

and the distance between centers is h. The number of cylinders per 

unit length along either the x or the y directions is l/h, and the 

number of cylinders in a unit cross sectional area is l/h 2 • The 

porosity T} of the medium is therefore 

2 
T] = 1 1T ( d \ 

- 4 h) 0 

h 
lo 

ty 
0 0 0 0 0 0 

r_O 6.Vf } 6.V 
0 6.Vs 

d _r 0 Fig . .. x 
0 0 
0 0 0 

6.Ss} 
6.Sf 6.S 

2~ 

(2. 29) 

Uniform flow through 
a square arra.y of 
circular cylinders . 

The limiting case of very small gaps, with d/h ~ l, was in-

vestigated by Keller [ 13] . He approximated the flow in the narrow 

gap between the cylinders by the lubrication theory which assumes a 

locally parallel flow . Based on this theory the drag force acting on 

a single cylinder in the array has been found as 

F:::: 9..[2 rrµ 
(2. 30) 

In terms of porosity T] as given by (2. 29) , (2 .30) becomes 
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(2.31) 

When the gap becomes very large, with d/h << 1, Hasimoto 

[ 14] determined the force on a single cylinder as 

F:::::: 4rrµ 

(1og 2J1 - 1. 3105) q 
(2. 32) 

Again in terms of the porosity 11, (2. 32) becomes 

F = 8rrµ 
-log (l-11) - l.4764q ( 11 - 1) • (2. 33) 

The drag per unit volume D is now simply the total force on 

all the cylinders contained in a unit volume. This may be obtained 

by multiplying F by the number of cylinders in a unit cross sectional 

area l/h
2

• Therefore, for the case d/h - 1, 

(2.34) 

and for the case d/h << 1, 

D::::: 32(1 - TJ) Lq 
- log (1- 11) - 1. 4764 d2 

(11 - 1) (2.35) 

In order to derive a macroscopic equation for this idealized 

porous medium, we consider an elementary rectangular parallelepiped 

6 V indicated in Fig. 2 . The volume 6 V is further divided into two 
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parts, the pore part 6 V f and the solid part 6 Vs. The bounding 

surface ,6 s of I\ v is likewise divided into the pore part 6 sf and 

the solid part /.\S • Let all the internal solid surfaces be denoted s 

by 6Si, then the pore volume 6 Vf is bounded externally by 6Sf 

and internally by all 6S .• 
l 

By integrating Stokes' equation (2.16) over 6 Vf' we have 

r> 

\ (-V'p+ v •T)dV = O. 
·'-'6V 

f 

(2. 36) 

In the above, Y' • T has replaced µ Y' 
2t; in (2.16), since 

2~ 
\i' • T = µ\7 U 

by virtue of the continuity equation (2.15) and the expression of the 

viscous stress tensor 

~ ~* 
T = µ(Y'u + \7u ) , (2.37) 

where the * designates the transpose of a tens or. 

Upon using the divergence theorem, (2. 36) bec omes 

s (-pl+T)~ dS= -:ls (-pl+T)~dS, 
6Sf 6Si 

(2. 38) 

where n is a unit normal pointing outward from the fluid region and 

I is an identity tensor. The right-hand side of (2. 38) is exactly the 

total drag on all the cylinders in L\ V. It may be written as 

-LS (-pI+T)~ds=i DdV = 
i 6Si 6 V 

D{6V)e 
x 

(2.39) 

Substituting ( 2 . 39) into (2. 38) and expressing the l eft-hand side 
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explicitly, we have 

S C-p+T11)dy-S <-p+T11)dy +S T1z dx - S T1zdx = n(6V). c2.4o) 
xMx x yMy y 

Since the flow velocity is periodic, the viscous stresses must be 

identical on the two opposite faces of the rectangular parallelepiped 

choseno The net effect on the T-integrations therefore cancel s out, 

leaving only pressure on the surface 6Sf to balance the drag. Thus 

(2. 40 ) becomes 

6;6y cs p dy - s p dy ]= D • 
x+6x x 

In the limit when 6x and 6y are small but still include a large 

number of cylinders, we may define a mean pre s sure and a mean 

pressure gradient consistent with (2. 7), by 

- 1 s p = iJ 6y p dy ' 

and 

~ = lim p(x + 6x) - p(x) 
dx 6 x-O 6x 

Therefore (2 . 41) becomes 

dp D 
dx = T) 

(2. 41) 

(2. 42) 

(2.43) 

(2 .44) 

Substituting ( 2.34) and (2.35) for D into (2.44), we arrive at 

the foilowing macroscopic equations for flow through this idealized 

porous medium: 
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z..fz (l z r:;---\1 )5/2 dz d;; 
q= - 9 7T Tj --::rrrVl-Tjl µdx (TJ""l-~)' (Z.45) 

and 

q __ [-log (1- ri) - 1.4764] ri dz~ 
- 3 2 (1 - TJ) µ dx 

(11 "" 1) (2. 46) 

Model (3). A Lattice of Spheres:-

This model is consisted of a periodic lattice of solid spheres. 

The mean flow is assumed to be uniform throughout the medium . The 

exact solution of Stokes' equations for such a configuration is also not 

available . Hasimoto [ 14] examined Stokes flow past three types of 

cubic lattice of spheres, all in the limit of small sphere concentra-

tions . For a simple cubic lattice in which a sphere of diameter d is 

located at each corner of a cube of length h, he found for the drag on 

a single sphere, 

F=~q 
y 

where y is given by 

(TJ"" 1) 

1/ 3 z y = 1-1.7601~1-ri) + (1-ri) - 1.5593(1-11) + . • • 

(2.47) 

(2.48) 

In the above, 11 again denotes the porosity of the medium and is 

given by 

(2.49) 

for th·e cubic lattice. 
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This drag on a sphere in the lattice is seen to be greater than 

that on an isolated sphere, which is 3nµqd. For the other two types 

of lattice investigated by Hasimoto, the drag F was found to differ 

only slightly from that given by (2. 47) so long as the sphere concen-

tration remains small. From these findings it may be inferred that 

any type of periodic array of spheres would yield a drag close to that 

of (2 . 47). 

The drag per unit volume, D, is given by the drag F on a 

single sphere times the number of the spheres in a unit volume, 

( 1 ) I 1 d3 -11/(;'TT ,or 

D = 18(1 - 11) J::.. 
y d2q 

(11"'1). (2. 50) 

This should be approximately valid for any type of sphere lattice. 

Again, by integrating Stokes 1 equation (2. 16) over an elemen-

tary volume of the porous medium, similar to what was done for the 

case of circular cylinders, the following macroscopic e quation for 

flow through the present model of porous medium is obtaine d. 

= - 11y d
2 ~ 

q 18(1-11) µ dx 
(11-1) • (2.51) 

From the above results of models of porous media, we take 

note in particular of the following features of uniform flow through 

porous media. 

i. For the above three models, the macroscopic e quations of 

motion, (2.27), (2.45), (2.46) and (2 .5 1) a ll ass ume the same form, 
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~ dn 
q = - -= µ dx' 

where k of each model is tabulated as follows: 

model k 
range of 
validity 

3 
parallel tubes 0:'1 T] d 2 O<ri<1 

2 (1 - TJ) 

a 1 is given by (2. 21) 

circular cylinders z-{2 ri(1 -f;/1-:-;1)5/ 2d z ri- 1 - .!!" 
(square arrays) 91T 1T 4 

[-log(1-ri) - l.4764]TJd2 
32(1 - ri) T] - 1 

spheres riy dz T] - 1 
(any 1 attice) 

18(1 - ri) 

'I is given by ( 2. 48) 

(2. 52) 

d 

defined 
by (2 . 26) 

diameter 
of the 
cylinders (2. 53) 

diamete r 
of the 
spheres 

(2. 52) is seen to be identical to Darcy's law if p is identified as P, 

and k as the permeability of the porous medium. Some of the above 

tabulated formulas for k are represented graphically in Fig . 3. 

Equation (2. 52) should also hold true for any periodic array of 

obstacles. 

ii. The drag per unit volume given by these three models, 

(2.28), (2.34), (2.35) and (2.50), are of the same form, 

(2.54) 
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/ 

Circular 
Cylinders 

# # ~ ,, '"'""'""'" 

Circular Cylinders 

106~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
0 0.1 0 .2 0.3 0.4 0 .5 0 .6 0.7 0 .8 0.9 1.0 

POROSITY. T/ 

Fig. 3. P e rmeability for idealized models of porous meuia. 
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It is seen that the drag is proportional to the superficial 

velocity q, and the same should also be true for any periodic array 

of obstacles. 

iii. The physical meaning of the macroscopic equation (2. 52), 

or Darcy's law, states that the mean pressure drop over a distance 

is balanced by the drag of the solid material within the distance. For 

a porous medium composed of periodic array of obstacles, the mean 

viscous stresses are either identically zero, or the stresses on two 

opposite faces of a well-chosen elementary volume cancel each other. 

The net effect of viscous stresses on the balance of forces is always 

zero. 

iv . For a uniform, mean flow through a random porous 

medium which may be considered as statistically homogeneous and 

isotropic, the same three conclusions above also hold valid. This 

is so because on all parallel cross sections of such a medium, the 

viscous stresses are statistically the same, and have no net effect 

on the balance of forces. 

The general case of non-uniform flow through a random porous 

medium, whether the generalized Darcy's law (2. 2) - (2. 3) is valid or 

not, will be investigated in the next section. 

2. 4. Derivation of General Macroscopic Equations of Motion 

We proceed to consider the general case of non-uniform flow 

in a random porous medium, and derive the macroscopic equations of 
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motion based on the microscopic Stokes' equations. 

The porous medium is assumed to be statistically homogeneous 

and isotropic, with a prescribed porosity T), and the mean flow in it 

need not be uniform. The transformation from the microscopic to the 

macroscopic description is effected by equations (2. 6) and (2. 7) which 

define the seepage velocity q and the mean pressure p. In order to 
s 

obtain the macroscopic equations, it is necessary to determine the 

relationship between the mean derivatives and the derivatives of the 

means. For this purpose we consider again a small volume 6V of 

the porous medium. The fluid portion of it is denoted by 6 Vf. 6 V 

is bounded by the surface 6S of which the fluid portion is £::.Sf; and 

6 Vf is bounded externally by £::.Sf and internally by all £::.Si's which 

designate the surfaces of the solids within 6 V. Such a small volume 

element is shown schematically in Fig. 4. 

b.St} /\ . 
b.Ss uS 

Fig. 4. Non-uniform flow 
through a random 
porous medium-
a volume element. 

First we consider the mean of the velocity gradient over the 

volume £::, vf, that is, 

au. 1 ~..,, au. 
i i av • 

ax . = 6Vf £::.V ax. 
J f J 

(2. 55) 
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By using the divergence theorem, it transforms into surface integrals 

au. 
l 

ax.= 
J 

6
1
V l u.n. dS + 6~ \' s u.n. dS , 

f.) 6Sf 1 J f? 6S. 1 J 
l l 

(2. 56) 

where n. is the jth component of the outward unit normal to the 
J 

bounding surfaces. Since u. vanishes on solid surfaces, the second 
l 

integral disappears. In the first integral u. may be replaced by its 
l 

local mean value q . , still keeping the identity approximately true. 
Sl 

Of course, the criterion is that the volume element chosen for evalu-

a ting 
au. 

l 

ax. 
J 

q . should be considerably smaller than 6 V used in obtaining 
Sl 

1£ this replacement is effected, we have 

au. 
l 

ax.= 
J 

!v S q .n. dS. 
w f 6S Sl J 

f 

(2. 57) 

Now since q is defined and assumed to be continuous t:hrough-
si 

out 6 V as if the solids were not there, it is reasonable to introduce 

the approximation 

S q .n. dS = 11r q .n. dS , 
6S Sl J ~ 6S Sl J 

f 

(2. 58) 

where TJ is the porosity of the medium. Therefore, from (2. 57) 

au. 
l 

ax. 
J 

= ATJV S q .n. dS 
w f 6S Sl J 

(2. 59) 

Again on the assumption that q
8

i is continuouslydi££erentiable through-
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out l:!.V, the volume integral may be recovered by applying the di-

vergence theorem, giving 

(2. 60) 

We shall further assume that the mean velocity gradient varies only 

slowly over the small volume !:!. V. Consequently, the integrand in 

(2 . 60) may be pulled out to give 

au. 
1 

ax. 
J 

= 
aq . 

Sl 

ax. 
J 

(2.61) 

This states that the mean of the velocity gradient is equal to 

the gradient of the mean velocity. However, the same conclusion 

does not hold for the pressure. Following the above steps of analysis, 

we obtain for the mean pressure gradient 

an at; 1 ~2 S 
..:..L- = ....:.a:- + -- pn d S 
axi axi !:!. Vf . ...J !:!.S. i . 

1 1 

(2. 62) 

The integral term in (2. 62) retains in general since p need not 

vanish on solid boundary. 

Similarly, for the viscous stress tensor 'T (see Eq. (2. 37)), 

where 

E .• 
12 

'T •• = µ E .. • 
lJ lJ 

au. au . 
= 1 + --1 

ax. ax. 
J 1 

(2.63) 

(2. 64) 
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is the rate of strain tensor, we obtain the following expressions for 

the mean values: 

and 

_ ( oqsi oqsj ) 
T . . - µ -n-- + n 

lJ ux. ux. 

OT .. 
_.21 = ox. 

J 

J l 

~ 1 I~S n + AV T • . n. dS 
oxj w f . .6 S. lJ J 

l l 

(2. 65) 

(2. 66) 

For future reference, we shall also w rite the mean vorticity 

as 

o~ oqsk 
wi = eijk ox . = eijk ax.-

J J 

(2. 67) 

After all these mean derivatives have been obtained, it is just 

a straightforward matter to transform the Stokes equations to the 

macroscopic equations. Firstly, consider the averaging of the con-

tinuity equation (2.15) over the volume .6 Vf, 

(2. 68) 

According to (2. 61), this is immediately reduced to 

(2. 69) 

Next consider the averaging of Stokes 1 equation (2. 16). Using 

the alternative form (2. 36), we have 

- \i'p + \i' • T = 0 • (2. 70) 
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By substituting (2. 62) and (2. 66) into (2. 70), it follows that 

-V'p +V' •T = 6~ CIS (-pI+T)~ dS J 
f . .6S. 

l l 

(2.71) 

where n is the unit normal pointing towards the interior of the solids. 

The sum of the surface integrals on the right-hand side is therefore 

exactly the total drag in the volume 6 V. Denoting the drag per unit 

volume of the porous medium by D, we have 

-V'p + V'. T = 6 ~ s D dV • 
f 6V 

(2.72) 

On the assumption that D is a slowly varying function over 6V, it 

can be taken out of the integral. After T is substituted by the relation 

(2 . 65) and us:e is made of the continuity equation (2. 69), equation (2. 7 2) 

finally reduces to 

(2 . 7 3) 

Furthermore, if the mean velocity qs is also a s lowly varying 

function, we may assume that D varies linearly with q as shown 

by (2. 54) and q in this expression may further be replaced by l"}q • 
s 

Then ( 2 . 73) becomes 

(2. 74) 

Equations (2 . 69) and (2 . 74) are the general macroscopic 

equations of motion that were to be sought. In order to compare the 
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above result with Darcy's law, we further express (2. 69) and (2. 74) 

in terms of the superficial velocity q 

giving 

and 

~ 2-
- 'Vp + 11 'V q = 

by using the relation q = 11q , 
s 

~
kq 

(2.7 5 ) 

(2. 76) 

Here for completeness, we also write the mean stress tensor (2. 65) 

in terms of q , that is 

T = ~ ('\7 q + ('\7 q) *> • (2.77) 

The set of macroscopic equations (2. 75) and (2. 76) w ill be 

adopted in the later analyses of interface boundary conditions. The 

first one states the conservation of mass, while the second one ex-

presses the balance of the forces. The latter is different from Darcy's 

law in that the viscous forces in the fluid, in addition to the pressure, 

are include d in bala ncing the resistance exerted by the solids. How-

ever, for an ordinary porous medium, the value of k is always so 

small that the resistance represented by the right-hand side term of 

(2. 76) always overpowers the viscous forc es given by the second term 

on the left. This means the viscous term is negligible and equation 

(2. 76) tends to Darcy' s law unless the mean velocity gradient is also 

very large. 

The whole picture b ecomes clearer when (2. 7 6 ) is written in 
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a dimensionless form. Let the macroscopic characteristic length 

be L, the characteristic velocity be q, and write the dimensionless 

variables as follows: 

We have then 

x 
= L • 

where Da is the Darcy number defined by 

Da 
k 

= --2 • 
riL 

(2. 78) 

(2. 79) 

(2. 80) 

Therefore, when the Darcy number is small, the mac roscopic equa

tion (2. 76) reduces to Darcy's law. 

2. 5. Energy Consideration 

In order to understand more about the mechanism of the flow 

through porous media, we shall consider the balance of energy. 

A macroscopic energy equation may be derived directly from 

the macroscopic equation of motion, (2.73) or (2.74) . Taking the 

dot product of q with the equation, we have after certain manipula
s 

tions 

\l • (-p I + "T )q 
s 

1 -2 D -= Z µE + Ti" • qs = (2 . 81) 
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where 'T is given by (2. 65), or by 

where 

-
E = \i'q s 

- * + (V' q ) • 
s 

Integrating the energy equation (2.81) over a volume 6V 

bounded by its surface D.S, we get 

r - - -\ (-pI+T)n•qsdS 
.J D.S 

\ 1 -2 s 13 -= j - µE av + - • q av . 
t::.V 2 6VTJ s 

(2. 82) 

(2.83) 

(2. 84) 

In this expression, the left-hand side may be interpreted as the work 

done on the surface 6S by all the apparent mean stresses; the first 

term on the right may be considered as the apparent energy dissipation; 

and the last term is the work done by the apparent body force distribu-

tion. From the macroscopic point of view the equation expresses a 

sort of energy balance between the various quantities. However, the 

above interpretation must not be construed to mean that those terms 

contained in ( 2. 84) are the actual mean work done and the actual mean 

energy dissipation in the porous medium. It was nevertheless true 

that those terms in the macroscopic equation of motion (2. 73) corre-

spond to the mean stre s ses or forc e s in the porous medium. 

To clarify this point further, we start alternatively to construct 

a macroscopic energy e quation from the microscopic one . Taking the 
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inner product of u and the Stokes' equation (2.16), we obtain the 

following microscopic energy equation: 

\I • (-pl + -r)~ 1 2 = zµE (2. 85) 

where T and E are stres s and rate of strain tensor given by (2. 63) 

and (2. 64) . The term on the right-hand side is commonly known to be 

the energy dissipation per unit volume of the fluid. 

Apply equation (2. 85) within a volume 6 V of the porous medium, 

represented schematically in Fig. 4. Integration over the fluid portion 

s (-pl +-r); 0 u dS + l s (-pl+ T);. u dS 
6Sf . l:IS. 

l l 

(2. 86) 

Since u vanishes on the solid boundaries, the second term on the 

left disappears, and so 

I" -- s 1 2 J (-pl +-r)n• u dS = z µE dV 
6Sf 6Vf 

(2 . 87) 

This is the true balance of energy for a volume of porous medium. 

Equation ( 2. 87) states that the work done by real stresses on 6Sf is 

equal to the total energy dissipation within 6 Vf. 

Let each flow variable be written in the sum of its mean com-

ponent and its fluctuating component, that is 
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p = p + p' • T =T+'T 1
• E = E +EI • (2. 88) 

where each mean component has been defined previously in the begin-

ning of the last section. We also recognize that 

-
'T = j.J.E • - - * T

1 = µE' = µ(V'u' + (\i'u 1
) ) • (2. 89) 

Next we observe that the mean of a product such as pu may be re-

lated to the product of the mean in the following way: 

pu = \p + p')(qs + u') = p qs + p'~' (2. 90) 

where the terms linear in the fluctuating components. such as p 'qs • 

are zero in view of (2.88). Likewise. 

(2. 91) 

and 

(2. 92) 

-In the equation (2. 87). we may write (-pl + 'T)n • u as 

-(-pu +'Tu) • n • and replace each product such as pu by its local mean 

value. The result is 

( 2 . 93) 

Substituting (2. 90). (2. 91) and ( 2. 92) into (2 . 93). we have 
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S [ {-pI + T)~. q + {-p~' + µE 1~1 ) • ;] dS 
6S s 

f 

S { 1 -2 + 1 --;2 ) dV = z µE Z µE • 
6Vf 

{2. 94) 

All the mean quantities in {2. 94) are actually defined and are 

continuous over the whole region 6V bounded by 6S. Analogous to 

what was done in {2 . 58), equation {2. 94) may be written as 

S 1 -2 2 = Z µ{E + e- 1 
) dV • 

6V 
{2. 95) 

So far it is clear that the apparent mean flow does not alone 

contribute to the total work don·e on a surface, or to the total energy 

dissipation within a volume of the porous medium. The fluctuating 

components have definite contributions. In particular, for a uniform 

mean flow through the porous medium, the mean velocity gradient 

vanishes and the energy dissipation is completely contained i n the 

fl 
-;z 

uctuating components , E • 

Converting {2. 95) to its differential form, we have, after some 

rearrangement, an alternative macroscopic energy equation in the 

following form: 

) 1 - 2 + 1 -;z. { ,-, ,-, ) - - q = - µE - µE - "\l • -p U + 11 E U "V • {-pI+T s 2 2 r 
(2 . 96) 

Comparing { 2. 96) with (2. 81), we identify 
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= 211= q 2 = !. µ.E"'2 - ". (-p'~' +µ.E"'~') 
k s 2 

(2. 97) 

Therefore, from the macroscopic point of view, the apparent work done 

by the body force takes care of all the contributions from the fluctuating 

components of velocities and pressure in the corresponding region of 

the porous medium. 

In the limit when the Darcy number is small so that Darcy's 

law is applicable, the energy equation {2. 81) is also simplified to 

-'Vp • q = 
s 

The integral form of this equation is 

11 

\ -"P~ • q as= S ~ . Ci dV • 
J6S s 6V 11 s 

(2. 98) 

{2. 99) 

Equation (2. 99) merely expresses the balance between the work done 

by the pres sure and the apparent work done by the body force . There 

is no dissipative term. In the corresponding porous medium, of 

course, dissipation is always present, and is in this limiting case pro-

vided by the fluctuating components of velocities. 
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III. INTERFACE BOUNDARY CONDITIONS 

From a microscopic point of view, the viscous flow past (as 

well as through) a porous body is continuous throughout the flow field, 

which includes the external fluid region and the interior pores of the 

porous body so long as the fluid within the pores is also in motion. 

The fluid motion is bounded by solid surfaces; there is no interface 

of any sort . However, as we already discussed in the last chapter, 

the complexity of the flow in the pores suggests that it will be more 

fruitful to describe it macroscopically by regarding the porous region 

a homogeneous regime in which the original microscopic flow is 

represented by an apparent mean flow. In this way, we rnay con

sider two distinct homogeneous regions - -the real fluid region and 

the imaginary porous one. These two regions are separated by a 

geometrical interface located at the physical boundary of the porous 

body. 

We are interested in the case when the flow in the fluid region 

satisfies the Navier-Stokes equations or their limiting forms for 

small Reynolds number, and the flow in the porous medium satisfies 

Darcy's law. Although Darcy's law is known to be limited by various 

physical factors such as the molecular effects, flow turbulence, ion 

exchanges, and other anomalies, the validity of Darcy' s law, accord

ing to (2 .14) and (2. 79), generally requires, among other things, 

that both the Reynolds number Re and the Darcy number Da must 

be s ufficiently small, 
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Re =~ 
µ 

<< 1 ' 
(3. 1) 

Da 
k 

1 {3. 2) =-- << . 
11L

2 

A small Reynolds number means a slow microscopic motion of the 

fluid inside the pores 0 while a small Darcy number implies that the 

macroscopic size of the porous body is much greater than the size of 

the solid grains composing it. The latter also places a re s triction on 

the porosity of the body. The porosity should never be close to unity, 

for otherwise k becomes very large and overpowers L 2 • 

In order that the solution of the governing differential equa-

tions is not to be undeterminate, it is necessary to establish a set of 

interface boundary conditions to relate the flow variables across the 

interface. In the formulation of such conditions, there are certain 

inherent difficulties: 

i. The flow variables, such as velocity and pressure, for the 

two regions bear the same names but do not have precisely 

the same meanings . 

11. Although the interface is considered to be homogeneous b. 

the macroscopic sense, in reality, it is composed partially 

of solid surfaces and partially of pore surfaces. 

iii. Darcy's law may not be uniformly applicable in the whole 

porous region even if the Darcy number is small. In fact, 

there exists a porous laye r adjacent to the interface in 

which the flow needs special consideration. 



-89-

The first and the second difficulties are removed since we have 

rigorously defined the macroscopic flow variables in the porous medium 

with respect to their microscopic counterparts. The third one may be 

resolved if we either (1) ignore the interface porous layer, which is 

usually very thin , and establish appropriate interface boundary condi-

tions which relate the viscous flow and the Darcy flow across the layer, 

or (2) use a more general macroscopic equation valid for the whole 

porous region, including the interface porous layer, and formulate 

interface boundary conditions by joining the viscous flow and the macro -

scopic flow at the interface. Thus, we have two types of interface 

boundary conditions under consideration. The latter will be taken up 

first. 

3 . 1. Interface Boundary Conditions of the First Kind--For Gene ral 

Macroscopic Equations of Motion 

The general macroscopic equations of motion for flow through 

porous media, when only the Reynolds number (refer to (3 .1) ) is 

small, have been derived in the last chapter. 

Y'·q=O (2.75) 

(2. 7 6) 

Only when the Darcy number (see (3. 2) ) is also small can equation 

(2. 76) reduce to Darcy's law. However, e ven with a small Darcy 

number, the full equation (2. 76) should still be used for evaluation of 

the flow wherever the velocity gradient is large. 

In the immediate vicinity of an inte rface , the tangential 

velocity can vary rapidly under the direct influence of the external 
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shear. According to w hat was said above, this is the layer in which 

Darcy's law ceases to apply, and the full macroscopic equations must 

be used. In fact, the same macroscopic equations can be applied to 

the whole porous region without separate consideration of the inter-

face layer. These equations are valid even when the D arcy number is 

not small . 

In the following we shall formulate the interfac e boundary con-

ditions when the macroscopic equation {2. 76) i s applied throughout 

the porous region and a Newtonian viscous fluid exists on the other 

side. The interface which we will deal with is an ideal one; its sur-

face structure is statistically the same as any other surface cut 

through the porous medium. It has a surface porosity TJ, the same 

in value as the volume porosity of the medium. A schematical repre-

sentation of such an ideal interface is given in Fig. 5. 

6.Ao 
6.A' 

Fig. 5. An ideal interface. 

The correct interface boundary conditions may be derived by 

considering the true mass and momentum conservation across the 

interface, or by applying the Navier-Stokes equations (2 . 10) and {2 . 11) 

to the fluid portion of a pill box control volume straddling the inter-

face as shown in Fig. 5. The results obtained in terms of the micro-



-91-

scopic quantities may then be transformed to the macroscopic ones. 

This may be achieved by a simpler, alternative way. All the 

microscopic variables, u, p as well as their derivatives, are con-

tinuous through the pores at the interface. We still consider the same 

pill box and designate the face on the fluid side by !:::.A , while that 
0 . 

on the porous side by f:::.A1 • The box has a small thickness E and a 

face area A which is small compared with the characteristic macro-

scopic area but is, however, large enough to include many pores. It 

always contains the interface f:::.A' even as E tends to zero. We shall 

also use the subscripts "s" and "£" to indicate the solid and the 

fluid parts of a surface, respectively. 

We first consider the velocity u. As E _. 0 we have 

S t;ds= .S ·~ds+S t;ds. 
M !:::.A' !:::.A ' 

0 f s 

(3. 3) 

Since u vanishe s on the solid surfaces f:::.A' and its value on !:::.A' 
s f 

approaches that on f:::.Alf, the above equation reduces to 

(3. 4) 

Let the local mean velocities be u for the fluid side and q 
o sl 

for the porous side; these are defined as follows: 

u 
0 = ~S ;ds 

f:::.A 
0 

{3. 5) 

{3. 6) 
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Equation (3. 4) immediately becomes 

(3. 7) 

or in terms of the superficial velocity g1 , defined as T]qsl, 

(3 . 8) 

The mean velocities q and q 1 sl are assumed to be 

continuous along the interface. They are also assumed to be the 

limits approached uniformly by the corresponding mean velocities 

and q defined in the interior regions. We must also con-

sider the mean flow for the external fluid region because the micro-

scopic external flows near the· interface change continuously to those 

within the porous region and are too complicated to treat. Here we 

further remark that the mean velocity of the external flow, in the 

case of slow motion, satisfies the linear Stokes ' or Oseen 's equations. 

Next we consider the derivatives of velocity, i.e. , the velocity 

gradients. Some macroscopic conditions are imrnediately available 

from the result of (3. 8). Since the velocities u 
0 

and q
1 

are equal 

on the opposite sides of the interface, so their tangential derivatives 

must also be equal, that is 

( 
aui . - oq . . 
-- ) '--

1 
) i = 1 ' 2' 3 axj 0 - \ oxj 1 ' 

j = 1 '2 • (3. 9) 

where (x1 , x 2 , x 3 ) are the local Cartesian coordinates with the x 3 -axis 

t Note that we use the same notation ~ for l:totl:r the microscopi c veloc
ity and the mean velocity in the fluid region. The same a pplies to 
the pressure p. 
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normal to the interface, as indicated in Fig. 5. 

Using the continuity equations (2.10) and (2. 75) for the relevant 

sides of the interface, and utilizing the condition (3 . 9), the following 

condition is also immediately obtained: 

(3.10) 

It is more difficult to derive the conditions for the remaining 

two derivatives, that is , for the normal derivatives of the tangential 

velocities. Starting from the pill box, as E tends to zero, we have 

again 

S 
au. 

6.A ox~ 
0 

dS S 
au. 

= 6.A ox~ 
1£ 

dS + l S 
OU. 

6.A I OX3 
s 

dS, i = 1, 2. (3. 11) 

But this time we are not so fortunate as in (3. 3) to have the integral 

vanish over 6.A' • In fact, this integral remains undetermined and 
s 

also unrelated to the flow at the face 6.A
1

• Its contribution can only 

be estimated. 
OU. 

l We observe that the velocity gradients, -- , are continuous 
OX3 

along the interface. Their values along the solid faces cannot deviate 

much from the values over the ne.ighboring pore faces. This is 

because the length of a pore or solid is only a small fraction of a 

typical macroscopic length. Therefore, the mean velocity gradient 

over the solid faces 6.A' should be about the sam e as the mean 
s 

value over the entire 6.A '. In other words , 
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) 
ou. s 

dS:::: (1-ri) r dS = (1-ri) 
.. 6A' X 3 6A 

Using this, (3.11) reduces to 

l S 
ou. 

T) -
6A OX3 

0 

S 
ou. 

dS:::: - 1 

' 6A OX3 
1£ 

dS • 

OU . 
1 

dS. 
OX3 

(3.12) 

0 

(3 .13) 

We may interchange the integration and differentiation, and according 

to (3.5) and (3.6) we may write the resulting equation in terms of the 

mean velocities as follows: 

i=l,2. (3 .14) 

This expression is different from those for the other components 

of the velocity gradient, the difference being the factor Tl multiplying 

the normal derivative of the tangential components of the velocity of 

the exterior flow. 

It is possible to give an order of magnitude estimate of the 

error involved in the relationship (3 .14). Suppose that the character-

is tic length and velocity associated with the external flow are L and 

U, respectively. Then the normal velocity gradient at the interface 

is O(U/L). We further suppose that the characteristic velocity in 

the pores at the interface is q, then the difference between the 

velocity gradients · 0n the soli<l face and those on the neighboring 

pore face is o•f the order 

(3. 15 ) 
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Accordingly, the corresponding error involved in (3 .14) is expected 

to be of the same order of magnitude as above, i.e. , 

(3.16) 

Thus we see that the approximation (3 .14) is good when: q/U << 1, 

as indeed is usually the case. 

The conditions on the velocity gradients, equations (3. 9) ' 

(3.10) and (3.14), may be summarized as follows: 

8u1 au.l.. 8u1 .£9.1.. .£9.1.. ~ 
8x1 8x2 TJ 8x3 8x1 8x2 8x3 

8u2 8u2 a~ ::::: ~ ~ ~ (3 .17) 8x1 8x2 TJ 8x3 8x1 8x2 8x3 

8u3 OU3 8u3 ~ 3-9.J_ 3-9.J_ 
8x1 8x2 8x3 0 

8x1 8x2 8x3 1 

The two relations for . 8
8

u 1 and Buz are the only exceptions to the 
X3 8x3 

condition that the components of the derivatives of the macroscopic 

velocities u and q are required to be continuous at the interface. 

They are also the only two conditions independent of the condition 

(3. 8). 

As a result of (3.17), the relationship that exists at the inter-

face between the mean stress tensor 'T (see (2. 63)) for the fluid side 

and T (see (2. 77)) for the porous side is now apparent. Note that 

not every component of these tensors assumes the same type of 

relationship. 

The final interface boundary condition to be obtained is that 

for the pressure. Similar to the case of the velocity gradient, we 
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write down 

S p dS = s p dS + \ p dS • 
!::.A !::.A vt::,A' 

0 lf s 

By approximating the last integral by 

(' p dS ~ (1 - TJ)s p dS , 
.)t::.A ' !::.A 

s 0 

(3.18) reduces to 

Again, the mean pressures are defined as follows: 

= ls p dS 
!::.A 

0 

in terms of which equation (3. 20) becomes 

(3 .18) 

(3 .19) 

(3. 20) 

(3. 21) 

(3. 22) 

(3. 23) 

These mean pressures are also assumed to b e the continuous limiting 

values of the corresponding mean pressures p and p within their 

respective regions. 

Equations (3.8), (3.14) and (3.23) give the six interface 

boundary conditions for the problem of viscous flows past a porous 

body . These conditions are appropriate when the viscous flow 
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equations, such as Stokes 1 equations(2.15) and (2.16), are applied in 

the fluid region and the full macroscopic equati ons (2. 75) and (2. 76) 

ar e applied in the porous region. According to the approximation 

introduced in the derivation, the velocity at the interface should b e 

much s maller than the characteristic mean velocity in the viscous 

fluid region in order for these conditions to apply . 

For later references , the present interface boundary con-

ditions a re summarized below in a generalized notation. At the 

interfa c e , 

u = q • (3. 24) 

(3. 25) 

p=p (3.26) 

where it is understood that u and p are for the fluid region, 

whereas q and p are for the porous region. The subscript "t" 

indicates the tangential components of the velocity and n is the 

coordinate normal to the interface. 

3. 2. An Illustrative Example 

We shall now examine a simple problem in which the interface 

boundary conditions (3. 24) - (3. 26) are applied. Consider a two-

dimensional pure shear flow in a uniform channel bounded by a solid 

w all on one side and connected to a half-infinite porous medium on 

the other, as shown in Fig. 6. The flow is in the direction parallel 
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to the interface. The porous medium has porosity T) and permea-

bility k. We are interested in finding whether such a shear flow can 

really exist, and if so, what is the velocity distribution. 

y 

i-------;i....,_u 

x 
Fig. 6. A schematical 

representation of 
a shear flow within 
and above a half
infinite porous 
medium. 

For a shear flow sketched in Fig. 6, the velocity assumes 

the following forms: 

u = u(y)e°" x (3 . 2 7) 

Suppose the general macroscopic equations (2. 75) and (2. 76) are 

valid within the porous medium; then for this particular case, (2. 7 5) 

i s automatically satisfied, and (2. 76) is simplified to 

2 _.££ +~~ = 
8x T) dy2 

_.££=0 
8y 

(3. 28) 

(3.29) 

From the above e qua tions, we may already conclude that p 

is independent of y and furthermore 
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~ = 
dx 

const. (3. 30) 

If this pressure gradient is sufficiently large, the Reynolds 

number (based on the channel width) may become so high that turbu-

lence is produced in the flow. In such a case the Navier-Stokes 

equations ( 2.10) and (2. ll) are no longer applicable for the mean flow 

above the porous medium. Instead, equations containing the Reynolds 

stresses for turbulent flows [ 15] will be more accurate, especially 

in the immediate vicinity of the interface where the velocity fluctu-

ation from the mean may be considerable. However, we shall assume 

that the Reynolds number is so low that the flow is laminar and satis-

fies the Navier-Stokes equations. Equation (2.10) is again automati-

cally satisfied and ( 2.11) reduces to 

(3. 31) 

- ~ = 0 ay • (3. 3 2) 

Again we conclude that 

E.E = 
dx 

const. (3.33) 

Therefore, the pres sure gradient is uniform in both regions of the 

flow. 

The general solution of (3. 28) is given by 

q = Ae a y + B:a y - _!s ~ • 
µ dx 

(3. 34} 
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By the condition requiring q to be bounded as y --+- -oo, B = O. 

We have then 

q = qz = ~~ µ d x ' 
as y--+- -oo , (3.3 .5) 

where ~ is a constant velocity. This relation is recognized as 

Darcy's law and implies that the flow satisfies this law in the interior 

of the porous medium where the surface effects have diminis hed. 

Concurrently, the general solution of (3 .31) for the flow veloc-

ity within the channel can be written as 

U = 1 -9.£ y2 + Cy + D 2µ dx • (3. 36) 

where C and D are two arbitrary constants. 

The boundary conditions of this problem are as follows: 

q = qz as y - -oo , (3. 37) 

u = 0 ' at y = h • (3.38) 

The interface boundary conditions (3.24) - (3.26) become for this 

case 

where u 
0 

q=u=u 
0 

p=p 

at y = 0, 

(3. 39a) 

(3.39b) 

(3. 39c) 

and ( ~u) are the slip velocity and the v e locity gradient 
y 0 

at the interface. Of cours e , the quantities u and 
0 

(
d . 
du) a r e 

y 0 
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unknown at this stage, and will be determined as a part of the prob-

lem. 

The shear flow requires a constant pressure gradient for both 

flow regions, as found in (3.30) and {3.33). In order to satisfy the 

interface boundary condition (3. 39c), it is further required that the 

pres sure gradients be equal in the two flow regions, 

~ = 
dx iE = - J:!k qz ' dx (3.40) 

where use has been made of (3. 35) and (3. 3 7) to relate the pressure 

gradient with qz. 

Upon application of the boundary conditions (3. 3 7) and (3. 39a) 

to (3.34), with the aid of (3.40), the following solution for the flow 

in the· porous medium is obtained. 

. _f!fy 
. ~k 

q = qz + ( u 
0 

- qz ) e • (3. 41) 

The solution for the flow in the fluid region may be found from 

(3.36) by requiring it to satisfy the boundary conditions (3.38) and 

(3. 39a). The result is 

u = (u - ~ i£ y)(l - Y ) 
o 2µ dx h 

(3.42) 

In terms of q 2 , the above becomes 

(3.43) 

The above solution still involves the unknown slip velocity u
0

, 
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which can be determined by applying the remaining interface boundary 

condition (3.39b). From (3.40) we have 

i9. = fiJ (u - qz) ' 
dy "k 0 

Hence by (3 . 39b), 

We also obtain directly from (3.43) 

(~~) = 
0 

uo h 
- - + - qz h Zk 

at y = 0. (3. 44) 

(3. 45) 

(3.46) 

On substituting (3 . 46) into (3 .45), the slip velocity u is found to be 
0 

where 

u = 
0 

h 
h' = 

..fk 

In terms of ¥x equation (3. 47) may be written as 

u =-
0 

h'(..fTJ h' + 2) ~ ~ = - ..fTJ h 1 +2 h..fk ~ 
Z(h' +"/TJ) 1-1 dx 2(h' +"fTJ) T dx • 

(3. 4 7) 

(3.48) 

(3. 49) 

With u known, the velocity profiles in both flow regions are simply 
0 

given by (3 .41) and (3.42). 

Finally, the rate of discharge Q through the channel can be 

calculated from (3. 42) and (3. 49). The res ult is 
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0 
= _ h'

2 + 4..,fTJ h' + 6 h
3 El? • 

12h'(h' + ...fTJ) µ. dx 
(3. 50} 

When h' - oo, or k - 0, the above discharge rate tends to that of 

a channel with solid walls , that is 

Therefore 

1 h
3 

d = ---~ 12 µ. dx 

Q =l + 3(...fTJh' + 2) 
QO h I (h I +...f'r]) 

(3. 51) 

(3 . 5 2) 

The ratio of the slip velocity to the mean velocity Q/h is 

readily obtained from (3 . 49) and (3. 50) as 

(3.53) 

From the above analysis, we conclude the following: 

i. As can be seen from (3. 41), the velocity in the porous 

medium decays exponentially from the interface. Under ordinary 

circumstances where k is small, the rate of decay is very fast. 

Hence in such case the velocity variation occurs completely within 

a thin layer adjacent to the interface. Outside this layer, the velocity 

is a constant qz determined by Darcy's law. This confirms the 

earlier prediction of the existence of a thin interface layer in which 

the full macroscopic equations should be applied instead of Darcy's 

law. A nominal thickness o of the interface l ayer may be defined 

to be the distance through which the velocity difference, q - qz, is 
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reduced to l/e = O. 369 of its initial value, u
0 

- q 2 • Hence 

(3. 54) 

ii. As indicated by (3. 4 7), the tangential velocity u irnmedi
o 

ately above the interface is generally not zero. Thus, the so called 

non- slip condition on a permeable wall does not hold. In fact, the 

slip velocity can be many times greater than the velocity q 2 deter-

mined by Darcy's law within the pa>rous medium. This is most ob

vious when h' >> 1, or h>> -fk. Under this condition, u0 ~ ~T] h'q2 • 

On the other hand , u is never large compared with the mean veloc
o 

ity Q/h of the channel flow. In particular, when h' >> 1, 

u
0

"' ( ~~T]) ( ~) , namely, u is very small compared with 
0 

despite its large magnitude compared with q 2 • 

Q/h 

iii. In (3. 44), the velocity jump u - q 2 across the interface 
0 

layer is seen to be directly proportional to the normal velocity 

gradient (~u) immediately outside the porous medium. 
y 0 

This 

relationship is derived independent of the particular shear flow pre-

scribed over the porous medium, so its general validity is plausible. 

iv. The macroscopic effect of the porous wall is manifested 

by the increase of the total rate of discharge through the channel in com-

parison with that corresponding to a channel bounded by two solid 

walls. It is of significance to note from (3. 52) that the increase in 

the dis charge rate is negligibly small when h 1 >> l; while under the 

same circumstances, the slip velocity greatly exceeds the Darcy 

velocity q 2 in the porous medium. On the other hand, the discharge 
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rate increases greatly when h is of the same order of magnitude 

or smaller than .fk. Under the latter conditions, however, the depth 

of channel h would be exceedingly small in the case of an ordinary 

porous medium with small k. 

3.3 . Interface Boundary Conditions of the Second Kind--For Darcy's 

Law 

In the preceeding discussion we have found that Darcy's law 

is applicable throughout a porous region except within a thin layer 

near an interface. It is reasonable to infer that the same is generally 

true for any porous region, so long as the Darcy number is small. 

The physical extent of the interface layer is usually so small that we 

may consider the Darcy equations join with the viscous flow equa-

tions right at the interface. To ensure that the solutions are still 

correct, the interface boundary conditions to be prescribed at the 

interface should correlate directly the corresponding flow variables 

across the interface layer. The success of this approach depends on 

how general these conditions can be established in advance. Although 

incapable of describing the detailed flow within the interface layer, 

the present approach will yield the same solution to the shear fl0w 

problem discussed previously provided that the interface boundary 

conditions are given as follows: 

p = p 

u -
~du 

q = VT]k -dy 

. I at y 0 o 
{3 . 55a) 

(3. 55b) 
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where as before, p and u pertain to the fluid region, whereas p 

and q are for the porous region. 

The velocity jump condition (3. 55b) was examined experi-

mentally by Beavers et al. [ 8]. Their experiment dealt with the 

same flow configurations as the example worked out in the pre-

ceeding section. Relying purely upon dimensional analysis, they 

assumed 

u - q 
lk du = a dy' 

0 

at y = 0 (3. 56) 

where a is an experiment coefficient to be deduced from the dis
o 

c harge rate through the channel above the porous material. They 

found a to be in the range 0 .1 to 4. 0 for several porous materials 
0 

-6 -5 2 
having permeability k ranging from 10 to 10 in • Since no 

porosity data were included in their report, no direct c omparison car1 be 

made between (3.55b ) and (3.56). However, their a apparently takes 
0 

on values in a wider range than the corresponding theoretical value 

l/lri would allow, because l/lri i s always greate r than unity. This 

discrepancy may b e attl'.ibuted to the fact that the porous interfaces 

they use d are not the ideal ones as we have ass urned . 

The validity of (3. 55a) and (3. 55b) are not so limited to 

p aralle l shear flows and flat interfaces only. It is possible to show 

that they are quite general. For the sake of simplicity, however, 

we shall consider at present only the case of general two-dimensional 

flow involving a flat interface . The Darcy number i s ass ume d to be 

v ery small. 

We assume that an interface layer exi sts in which the macro-
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scopic equations (2. 75) and (2. 76) hold. In Cartesian coordinates 

(x,y,z) the flat interface coincides with the x-z plane and the y-axis 

is perpendicular to it. The thickness of the interface layer c5 is 

assumed to be very small compared with a characteristic macro-

scopic length L. The flow in the interface layer is joined on the 

interior side of the layer smoothly to a flow determined by Darcy's 

law. If we write 

q = qz 

P = P2 

then qz is given by Darcy 1 s law, 

qz = k -
µ_('Vp)z 

(at y = 
(3. 57a) 

- c5 

(3. 57b) 

(3. 58) 

On the other side of the layer, the flow is related to the mean flow of 

the viscous fluid region through the interface boundary conditions of 

the first k ind. For plane flow, we have 

q = 

aq 
x 

Ely 

u = (u ,v ,0) 
0 0 0 

= 11( ~;) 
0 

(3. 59a) 

at y = 0 (3. 59b) 

(3.59c) 

All of the above boundary values are functions of x and they ar e not 

all independent since tb,ere are relationships between them. 
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We proceed now to simplify the macroscopic equations for this 

interface layer. In order to achieve this, we shall make estimates 

of the order of magnitude of each term in the basic equations. First 

we rewrite the macroscopic equations in dimensionless form by refer-

ring all velocities to u , and all linear dimensions to a characteristic 
0 

length L, which is so selected as to ensure that the dimensionless 

8q /ox is of order unity. The pressure is made dimensionless with 
x 

respect to µu L/ko The result, except for the continuity equation, 
0 

has bee n derived before as equation (2. 79). For the present plane 

flow, written with the se>.me symbols as for their dimensional counter-

parts, we have the following complete set of dimensionless equations: 

(3. 60) 

0(1) (1) 

aZ 
op +na(~ 
ox oxz (3. 6la) 

~ 
8y (3.6lb) 

O(o) 

where Da = k/TJL
2 

is the Darcy number. 

With the assumption made previously the dimensionless inter-
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face layer thickness o/L, for which we shall retain the symbol o, is 

very small compared to unity, namely, o << 1. 

Orders of magnitude of the individual terms in the equations 

above are designated underneath each term. 

We see fir st from the continuity equation (3. 60) that s inc e 

oqx/ox ,.., 0(1), we have o~/oy ,.., 0(1). However, unlike the ordinary 

boundary layer theory, we cannot state that q is small, because the 
y 

variation of a large v ariable can be small as well. Fortunately, since 

all the equations are linear, we can always superpose another s olution 

to cancel such a large constant term of ~· if any. In other words, 

there is no los s of generality if we assume v = 0 in the present prob
o 

lem. Assuming v = 0, it is possible to state now 
0 

quently, 
2 2 o q /ox ,.., O(o) and also 

y 

~,.., O(o). Conse

a2q /ax2 ,.., 0(1). 
x 

Sinc e ~ increa3es to a value many times that of (~)z within 

a distance o, as indicated by the example given in the preceeding 

section, we may assert that oq /ay,.., l/o and a
2

q /ay2 ,.., l/o2 • 
x x 

2 I 2 Similarly, 8~/oy,.., O(o/o) = 0(1) and o qy oy ,.., 0(1/o). 

We see then from (3. 6la) that the viscous t erm , second on the 

left, is of the same order of magnitude as the drag term on the right 

only if 

Da,.., o2 • (3. 62) 

From (3. 6lb) , it may also be inferred that 8p/oy,.., O(o), or the 

p res sur e increase over the interface l a y e r is of order o
2

, ~· e. , very 

small. Thus, the pressure in a direction normal to the interface layer 
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is practically constant; and it may be assumed equal to that at the 

porous edge of the layer where its value is determined by Darcy's law, 

namely 

p=pz=po' (3.63) 

and 

a;; µ 
..=...:. = - - (q h (3. 64) ox k x 

where use has been made of (3. 57b), (3. 58) and (3. 59c). 

Finally, with relatively :>mall order terms neglected, equations 

(3.60) - (3. 61a,b) are simplified to the "interface layer equations." 

Returning to dimensional quantities, we have 

(3. 65) 

(3.66) 

where the macroscopic equation of motion normal to the interface has 

been dropped, and in (3. 66) use has been made of (3 . 64) in eliminating 

op/ox. The general solution of (3. 66) is given by 

~y -~y 
qx = (~)z + A(x)e + B(x) (3.67) 

In order to join the neighboring flows, conditions (3. 57a) and 

(3. 59a, b) must be satisfied. Using only the conditions 
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at y = 0 

at y = - CD 

the coefficients in (3. 67) are fully determined, and we obtain for the 

tangential velocity distribution in the interface layer 

~y 
q = (q h + [ u - (q h] e k • 

x x 0 x (3. 68) 

It is of interest to observe that even though (q h and u are x 0 

functions of x, the solution (3 . 68) is of the same form as (3 . 41) where 

the velocities (q )z and u were assumed constant. In other words, x 0 

the solution is the same as that obtained by assuming locally constant 

(q )z and u • It is also interesting to note that the velocity varies 
x 0 

exponentially in y and hence the interface layer thickness may be 

defined as 

• (3 . 69) 

This is independent of x , and so we have a uniformly thin interface 

layer in spite of any velocity variation along the interface. 

To satisfy the other condition 

at y = 0 (3. 59b) 

we first calculate Bq /By from (3. 68) and then substitute the result 
x 

into the above equation. Once again we obtain the relationship 

r-::- i OU \ 
= Vi]K \a) 

y 0 
(3. 70) 
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which is the same as (3. 55b); the general validity of this jump con-

dition is thereby confirmed. 

We may also calculate the normal velocity q from (3. 65) by 
y 

using the result (3. 68) and the condition from (3. 59a), 

q = 0 y 
at y = 0, 

along w ith the assumption v = O. The solution is then 
0 

and so by (3. 57a) and (3. 69) 

(3. 71) 

(3. 72) 

which is seen to be of the order (o/L)u , the same as was estimated 
0 

before. Such a small normal velocity may be considered negligible 

compared to the tangential velocity u • 
0 

We may superpose a normal flow onto the prese nt solution (3. 68) 

and (3 . 71): 

q = v e 
0 y 

(3. 73) 

This satisfies all the mac r oscopic equations of motion provided the 

corresponding pres sure distribution is given by 

~ - J:: 
dy - T] 

2 
d v 

0 

dx2 - ..!: v k 0 
{3. 74) 
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Integrating (3. 74) across the interface layer and using the 

relations (3. 57ij and (3. 59c), we obtain for the pressure jump across 

the interface layer 

P
0 

- Pz (3.75) 

The magnitude of this is seen to be of order µv /-Jki]. 
0 

This is a very 

small fraction of the macroscopic variation of pressure over a length 

L, which is estimated to be of order µv L/ko Therefore, neglecting 
0 

this pressure jump across the interface will introduce only very small 

errors to the solution of this category of problems. Hence, we assert 

that p ~ pz for the normal flow v through the interface layer. 
0 0 

In summary, we may now write down all the approximate equa-

tions relating flow variables across the interface layer. These are the 

interface boundary conditions of the second kind for plane flow: 

P ~ Pz 
0 

(3. 76) 

(3. 77) 

(3. 78) 

The first condition is concluded from (3. 72) and (3. 73), L;he second 

is identical to (3. 70), and the last results from the approximations 

discussed subsequent to equations (3. 62) and (3. 75)o 

Owing to the linearities of the macroscopic equa tio ns , t h e 

a b ove interface boundary cond~tions for plane flow may be easily ex-

tended to the three dimensional case when the interface is flat. We 
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simply write down the results without further discussion. 

(3. 79) 

at the interface, (3. 80) 

p = p (3. 81) 

where n is the coordinate normal to the interface and t indicates 

tangential directions. 

Actually, thes e interface conditions can be equally well applied 

to a curved surface provided certain minor restrictions are met. This 

will be demonstrated by an example in the next chapter. 

It may be that the interface is not an ideal one, namely, that it 

has a different geometrical construction than its interior region. In 

such a case k and 11 in (3. 80) should be determined with respect to 

the interface layer. However, this would be difficult to achieve in 

practice. It is more practical to introduce another coefficient 13 such 

that 

u -
t 

(3 . 82) 

and to have 13 determined by experiments. Outside of this modifica-

tion, the other two conditions (3. 79) and (3. 81) r emain unchanged. 

At this stage, we recall that the pressure P in Darcy's law 

(2. 3) has been assumed to be equal to the mean pressure p defined 

in (2 . 7). This is now well justified.; because P is experimentally a 

measure of the mean pressure in the fluid side of the interface. This 
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is the mean pressure p on the left side of equation {3. 81), and hence 

should be equal to p in the porous region according to condition (3. 81). 
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IV. VISCOUS FLOWS PAST POROUS BODIES OF FINITE SIZE 

4.1. Viscous Flow Between a Rotating Solid Cylinder and a Stationary 

Porous Cylinder 

Consider the viscous fl.ow between two concentric cylinders 

such that the inner porous cylinder is stationary and the outer solid 

cylinder is rotating at a constant angular speed w. We are inter-

ested in the fluid motion between the cylinders as well as that induced 

in the porous region. Such a coupled fl.ow is shown schematically 

in Fig. 7. y 

x 
Fig. 7. Viscous flow between 

a solid and a porous 
cylinder. 

Since the interface boundary conditions of the second kind 

for a c urved interface have not been established, we shall consider 

the application of the macroscopic equations of motion instead of 

Darcy's law w ithin the porous region. In fact, it will turn out from 

the solutions obtained in this example that the same set of interface 

boundary conditions of the second kind (3. 79) - (3.81) is approximately 

true for a curved interface a s well . 

We assume that the ±'low is axisymmetrical and is in the cir -

cumfe rential dire'c tion only. For the flow in the porous cylinder, 
~ ~ 

q = q(r)e 
9

• The macroscopic continuity equation (2. 75 ) is auto-
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matically satisfied, while the macroscopic equation (2. 76) for plane 

polar coordinates reduces to 

EE - o 
dr - ' (4.1) 

and 

~+!.~ 
dr2 r dr 

(4. 2) 

We further assume that the flow between the cylinders is 

laminar, and satisfies the Navier- Stokes equations. Since "t;: = u(r)(;
8

, 

the continuity equation (2.10) is automatically satisfied, while the 

Navier-Stokes equation (2.11) for plane polar coordinates reduces to 

2 
~ =~ 
dr r 

d
2u 1 du u 

dr2 + r dr - r2 = 
0 

• 

The boundary conditions of the problem are as follows: 

q = finite, at r = 0 , 

u = bw , at r = b , 

(4. 3) 

(4. 4) 

(4. 5a) 

(4. 5b) 

and the interface boundary conditions of the first kind (3. 24) - (3. 26) 

reduce to 

1.1. = <J. ~ {"'.!:. 6a~ 

I du ~ at (4. 6b) Tl dr = r = a • dr 

p=p (4. 6c ) 
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Substitution of x = ~ r into equation (4. 2) yields 

2 
.i_s + .!. dq - ('1 + _!:_2) q = 0 • 
dx2 x dx x 

(4 . 7) 

The solutions of this equation are the modified Bess el functions, 

which are the Bessel fu~ctions of purely imaginary arguments. 

Usually they are denoted by 

I (x) = i -v J (ix) , 
v v (4. Sa) 

K () _ lT .v +lH(l)(. ) 
V X - z l V lX , (4. Sb) 

where v indicates the order. In this case , v = 1. These functions 

are real when x is real, and their asymptotic representations are 

as follows: 

For x << 1: 

(4. 9a) 

Kv(x),..., - [lnG) + 0.5772 + ••• ], v = 0, 

r(v) ( 2 . v 
.... _2_ x) · 

(4. 9b) 

v * 0 0 

For x >> (l,v) 

(4. lOa ) 

(4 . lOb) 
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They also satisfy the recurrence identity , 

v 
I 1 (x) = I 1 (x) - - I (x) • v v- x v (4.11) 

The general solution of (4. 2) is therefore given by 

(4.12) 

and the solution of (4.4), which is seen to be Euler's equation, is 

(4.13) 

The four c oefficients A 1 , Az, B1 and B 2 in equations (4 . 12) 

and (4.13) can be readily determined by a simple application of the 

four boundary conditions, (4o5a,b) and (4.6a,b)o 

We shall write the solutions in terms of the slip velocity u
0

, 

which is the velocity u at r = a. According to (4. 6a), we have 

u = q = uo, at r = a • (4 . 14) 

In order for q to satisfy (4. 5a), the coefficient A 2 in (4.12) 

must vanish. In terms of u , (4.12) reduces to 
0 

q(r) = u 
0 

I1 (~ r) 
Iz (~a) 

(4.15) 

The velocity u must satisfy (4. Sb), and so in terms of u
0

, 

(4 . 13) becomes 

u(r) 
') 2 

b'"'w - a u 0 + ab (u9 - a w) 1 
= 2 2 r 2 2 

b-a b-a r 
(4.16) 
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The slip velocity uo is still unknown, and is determined 

from (4.15) and (4.16) by requiring these velocities to satisfy the 

interface boundary condition (4. 6b). First from (4.15), we obtain 

( 
d . - fiJ [ Io ( ~ ~) 1 
~) - = ~~ I (. - /Ti .) - (1 

r-a i l'k. a k a 
(4.17) 

where use has been made of the identity (4. ll). Condition (4. 6b) is 

then applied to give the following relation 

(4.18) 

By requiring (4.16) to satisfy the above relation, the slip velocity 

uo is finally obtained as 

Uo = --------------------- (4.19) 

With u 0 known, the velocity distributions of the flow in both regions 

are given by equations (4.15) and (4.16). 

We shall examine the solution in the limit when the Darcy 

number is small. The Darcy number in this problem m a y be defined 

as 

k 
Da = --2 • (4 . 20) 

T]a 

In the limit of small Da, the velocity distribution q of (4.15) in the 
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vicinity of the interface may be expanded to give 

q(r)::::: uo 
# .-~ (a-r) 

(4. 21) 

Thus, we see that the velocity decays rapidly, in this case reducing 

to zero within a small distance (a few times the interface layer thick

ness o = .../k/TJ) from the interface located at r = a. This is the same 

situation as occurred in the vicinity of a flat interface. The thickness 

o of the interface layer for the cylindrical interface can also be defined 

to be /k/TJ , and is seen to be uniform along the interface. 

The relation (4.18) can also be expanded for small Da by 

using (4. lOa), to give 

(
d . 

uo = ..rr;k d~) [ 1 + O(Da)] • 
r=a 

(4. 22) 

The velocity jump, in this case from 0 to u 0 , is again proportional 

to the normal velocity gradient provided that Da is sufficiently small. 

From this example, we may infer that in general a curved 

porous interface behaves locally very much the same as a flat inter-

face. The important stipulation is that the local Darcy number 

D = k/TJR 
2

, defined with respect to the radius of c urvature R, is 

sufficiently small. With this result, the interface boundary conditions 

of the second kind for a curved porous interface may be approximated 

by those established for a flat interface, namely, equations (3.79) to 

(3.81). 

For this particular case, the approximate interface boundary 
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conditions of the second kind may be written as follows 

Uo = ~(~i) 
r=a 

J 

(4. 23a) 

at r = a • 

p=p (4. 23b) 

Using these conditions, solutions for the velocities may be obtained, 

which satisfy Darcy's law on one side of the interface and (4.4) on the 

other. The results are the same as (4.15) and (4.16) in the limit of 

small Da. Of course, detailed knowledge of the flow within the inter-

face layer is now lost. 

For small Da, the velocity u is found to be 

u= (4. 24) 

The s lip velocity u 0 at r = a is then 

2ab .[;jk_ 
a 

(4.25) 

In terms of h = b - a, this result becomes 

l+~ 
Uo -
bw-~(-a~+-l)~l~E~(l_+_h~.)]~+-1 

..r,:jk ..... a 2a 

a 
(4. 26) 

Finally, the torque acting on the outer cylinder , which is 

required to maintain the motion, is 
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so that 

2 2 ( # • 
M = 4nµa b w 1 - a) 

(b2-a2)+(b2+a2) ~ 
a 

(4. 27) 

which tends to the value M for a solid cylinder as k - 0, where s 

M 
s 

(4. 28) 

The ratio of the torque on a porous cylinder to M is then 
s 

2b2 -f;ik 
a = 1 b~ a bw' 

(4. 29) 

or, in terms of h, it becomes 

(4. 30) 

Equations (4. 27) through (4. 30) are also valid only when Da << 1. 

The torque coefficient CM is plotted against a/.;;;k and h/a 

in Fig. 8. The plot includes only a very small range of a/...{;ik in 

which the effect of the porous cylinder is more apparent. Beyond 

this range, the coefficient CM approaches unity, so that the torque 

M becomes nearly the same as for solid cylinders, especially when 

the gap h between the cylinders is moderate or large. This graph 
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also shows that the torque reduction is larger the smaller the gap is. 

For an ordinary porous cylinder, the value of a/..{;jk_ is expected to 

be much larger than the maximrun indicated in the plot. Therefore the 

porous cylinder usually behaves very much like a solid one, unless 

the gap h is very small. 

4. 2. Stokes Flow Past a Porous Sphere 

Consider the slow uniform flow past a porous sphere, as shown 

in Fig. 9. The sphere has radius a, porosity 71, and permeability 

k. We assume that the Reynolds number Ud/v is so small that 

Stokes' equations can be applied to the fluid region. Consequently, 

for the flow within the porous sphere , the corresponding Reynolds 

number qd/v is even smaller. We further assume that the Darcy 

number k/11a2 is als o small, so that Darcy's l aw can be us ed within 

the porous region. This is the same problem treated by Joseph and 

Tao [ 3] • Y 

r 

u 

x 

Fig.- 9. Stokes flow past a porous sphere. 
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As Darcy's law will be applied within the porous sphere, we 

shall use the interface boundary conditions of the second kind. As 

implied by the preceding example, these conditions for a curved 

interface may be approximated by equations (3. 79) - (3. 81), provided 

the local Darcy number k/11R
2 

is very small. In this case, the 

radius of curvature R is a constant equal to a, and hence we are 

assured of a small Darcy number. 

Spherical polar coordinates (r, 8, cp) will be used in the analy-

sis. The governing equations are as follows: 

r > a: \l • u = 0 • 

-"Vp 
2~ 

+ µ\7 u 

r <a: \l • q = 0 

k -
q = - "Vp 

µ 

The boundary conditions are 

r - oo: 

r = a: 

p-p 
00 

u 
r 

p=p 

= 0 , 

(4.31) 

(4.32) 

(4. 33) 

(4. 34) 

(4. 35a) 

(4. 35b) 

(4. 36a) 

(4. 36b) 

(4. 36c) 
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r = 0: q = finite, (4.37a) 

(4. 37b) 

Considering the rotational symmetry of this problem, Stokes' 

stream functions Yi and '.II, pertinent to the outside flow and inside 

flow respectively, are defined by the following equations: 

For r > a: 
1 ~ u =- _l_~. u = 2 88 ' 8 r sin8 or ' r sin 8 r 

(4. 38) 

1 o'.V 1 8'.V 
qr = 08 ' q = -

or . 2 
sin 8 r r sin 8 

r 
for r < a: (4. 39) 

Also, the vorticity outside, w, and inside the sphere, W , have the 

following relationships: 

For r > a: w='VXu= 
D2lj; 

. 8 e r sin cp 

1 ~13 ~3 2 
'V X w = - r sin 8 (er r o 9 - e 8 8 r ) D Yi 

where 

for r < a: W='VXq = 

Taking the curl of (4. 32) and (4. 34) g ives 

(4. 40) 

(4. 41) 

(4. 42) 

(4.43) 

(4. 44) 
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(r > a) , (4. 45) 

w = 0 (r < a) • (4. 46) 

Therefore, upon substitution of (4. 42) and ( 4. 44) into the above 

equations, we obtain 

D
4

tji = 0 (r > a) , (4.47) 

D
2ir = 0 (r < a ). (4. 48) 

The boundary condition at infinity becomes 

.1. 1 u 2 . 2 0 't'-+ 2 r sin , as r - oo • (4. 49) 

Furthermore, since q is required to be regular at r = 0, we may 

stipulate that 

W = 0 , at r = 0 o (4. 50) 

Assume a separation of variables for the stream functions 

tjJ = f(r) sin
2 a ' (4. 51) 

w = F(r) sin2a , (4. 52) 

we have 

(4.53) 

(4. 54) 

(4. 55) 
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where 

(4. 56) 

and hence 

_s,2£ 
w =--sin ee 

r <p 
(4. 57) 

Y' x w 
zs.2£ 1 d 2 = - -z- cos a er + r dr (£ f) (4. 58) 
r 

By using the results (4. 54) and (4. 55), equations (4. 47) and 

(4. 48) reduce to 

s,4 f = f"" - ~ f" + ~ f' - ~ f = 0 
2 3 r (4. 59) 

r r 

if-F = F" - ~ F = 0 • (4. 60) 
r 

The general solutions for these ordinary differential equations can be 

written down immediately. 

For r > a: 

for r < a: 

f(r) = A +Br + Cr2 +Dr 4 
r 

F{r) = ~ + B 1 r
2 • 

r 

(4. 61) 

(4. 62) 

After taking into consideration the boundary conditions (4. 49) and 

(4. 50), the above equations further reduce to 

f(r) = ~ Ur
2 

+ Br + ~ (4. 63) 

F{r) (4. 64) 

in which we have written B 1 Using the above solution f(r), 
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we find that for r > a, 

(4. 65) 

2B 
w = 2 sine e 

r <p 
(4. 66) 

4B ~ 2B 
V' x w = 3 cos e er + 3 sine ee (4. 67) 

r r 

2~ 4µB ~ 2uB . ~ 
V'p = µV' u = -µV' Xw = - 3 cos 8 er- ..::.ir sin 8 e 8 .(4. 68) 

r r 

The last equation is easily integrated. After applying the boundary 

condition (4. 35b) for p at oo the pressure becomes 

2µB 
P = P 

00 
+ 2 cos e (r > a) • (4. 69) 

r 

The stream functions, velocities, as well as the pressure dis-

tributions in the fluid and the porous regions can easily be found from 

equations (4. 51), (4. 52), (4. 38), (4. 39) and (4. 34). The results are 

summarized as follows: 

r >a 

1 2 A 
ljJ = ( 2 Ur + Br + r) . 28 sin , 

2B 2A 
Ur= (U +--;- +3)cos e , 

r 

u
8 

= (- U - B + ~) sin 8 , 
r 3 

r 

2µB 
p =pro + 2 cos e , 

r 

r <a 

,T, 1 2 • 2 e 
'J.' = - q r sin 2 0 

q = q cos e , r o 

= -q sin e 
0 

(4. 70) 
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Here we observe that the flow in the porous sphere is uniform 

and parallel to the x-axis. The same result has been obtained by 

Joseph and Tao [ 3] , though without specific mention about it. Now we 

consider the interface boundary conditions (4.36a,b,c) at r =a. 

Simple substitutions of (4.70) in (4.36a,b,c) yield 

u = - 2 

B 1 2 
a + 2 ao qo = O ' 

where a
0

, a
0 

are defined as 

a 
0 

QI 

0 

a = .fk • 

- 1 
- .f 11 

(4. 71) 

(4.72) 

(4.73) 

( 4. 74) 

(4. 75) 

(4. 76) 

The three unknown coefficients A, B, q can b e solved from 
0 

the three simultaneous equations (4. 71) - (4. 73). Thes e c o e fficients 

are found to be 
\ 

A = .!__ U 
3 4 
a 

(4.77a ) 
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B 3 
a = -m 4 U 

3 1 
qo = m 2 2 U' 

a 
0 

where 1., m are abbreviations for 

1. 

1 
1--

Q' a 
0 0 

- 1 +-2-
Q' a 

0 0 

+ 2 _l 11 
2 2 \ 

1 + 

a 
0 

1 
a a 

0 0 

+ _1_·) 
a a 

0 0 

m = ~~~~~-.,,-~-=--~~~~~..,..... 
1 + _2_ +2 _1_ (1 +-1- ') • 

aa 2 2 aa 
o o a o o 

0 

( 4. 77b) 

(4. 77c) 

(4. 78a) 

(4.78b) 

Substituting (4.77a,b,c) into (4.70), we finally obtain the 

solution: 

1 2 [ ( r ·)2 
3 ( r) 1. (a) J . 2 lji= -zUa a -m"'4\a +4 r sin 0, 

r 3( · 1( ·3] Ur = u L 1 - m 2 ~) + 2 ~) cos e. 

3 µUa 
p = poo - m 2 2 cos e • 

r 

3 k 
q -m--Ucose, 

r - 2 a2 

3 k' 
qe = -m 2 2 u sin e • 

a 

(4. 79) 

This solution is seen to converge to that for a solid sphere as k - 0 
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(in which case i. - 1, m - 1), as should be expected. 

We now calculate the drag experienced by the porous sphere. 

To this end, the following components of the viscous stresses in the 

fluid region are first found from the solution (4. 79): 

'T 
rr 

'T re 
1 our 0 (. ue J 3 u (a . 3 . = µ [ r 88 + r or -r) = - i. 2 7 r) sm e • 

Thus, at the spherical surface, r = a, 

P - p ml .i:.Q cos e , - oo - 2 a 

'T = 3f.l;U (m _ i.) cos e 
rr r 

'T 
re = - i. l ~sine • 2 a 

(4. 80a) 

(4. 80b) 

(4. 8la) 

(4. 8lb) 

(4. 8lc) 

In Stokes flow, the total force acting on all solid surfaces is 

equal to the total force on any closed surface surrounding these solids. 

Therefore, to obtain the total drag D , it is only necessary to integrate 

the stresses over the spherical surface at r = a . We shall do this for 

each stress component separately in order to see the relative contri-

bution. from each. 

DP= -s s p cos e a
2 

dQ = m ZnµUa , 

D..,. =SS Trrcos e a
2 an=- (m-i.)4nµUa' 

rr 

(4 . 82a) 

(4. 82b) 
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DTre = - SS .,.resin e a
2 

dO = l. 4nµUa. 

The total drag is simply the summation 

D=D 
p 

+D 
'T 
rr 

+ D = (41 - m) 2nµ Ua • 
7 r0 

(4. 82c) 

(4.83) 

Notice that this reduces to the value of the drag on a solid sphere, 

6nµUa, as k - 0 (£ - 1, m - 1). 

. /.,,.. 2 
Since the Darcy number k1 •1a is assumed to be small, or 

a >> 1, we may expand the drag formula (4. 83) with respect to small 
0 

l/a • Since 
0 

1 = l 

m = 1 

3 
a a 

0 0 

1 
a a 

0 0 

equations ( 4. 82a, b, c) become approximately 

D 
7

r0 

1 
a a 

0 0 

L~2 a - : 2 J 4nµ Ua 
o o a a 

0 0 

[ 1 - a ~ + ( 
6
2 - ~)2z J 4nµUa • 

o o a a 
0 0 

(4. 84a) 

(4. 84b) 

(4. 85a) 

(4. 85b) 

(4. 85) 

The formula (4.83) of the total drag, therefore , has the following; 

expansion: 
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~ ) al 2 ] 6TIµ Ua 

0 

1 
a 

0 

<< 1) (4. 86) 

A drag coefficient may be formed with respect to the solid 

sphere drag as follows: 

(fk << l) a . (4. 87) 

The drag coefficient CD plotted against a/.r;:Jk is presented 

in Fig. l 0. The third order term of (4. 87) has been neglected in the 

plot. It is observed that the drag coefficient is always less than 

unity. In other words , the po .rosity effect for a sphere is a reduction 

in its drag. It is also se e n that no appreciable reduction occurs when 

a/,r:;:;k > 200. A porous sphere which has a/J rik > 200 may then be 

considered a.s equivalent to a solid one insofar as its drag in a Stokes 

flow is concerned. This is usually the case for a sphere consisting 

of ordinary porous material which in general has a very small k . 

Only 1.n the e xtreme case when the sphere becomes very porous 

(ri ......, 1 ), can the porosity effect become great. To see this we assume 

a small sphere model for the porous medium, as discussed in Section 

3 of Chapter II. We further assume that it is a simple cubic array. 

In order for the value of a/J rik to be around 200, the distance be -

tween t..h.e centers of the spherical particles, according to (2. 53) and 

(2. 49), should be twice the particle diameter (h/d = 2), when there 

are assumed to be 100 small particles along a diameter of the porous 

s phe r e . The corresponding porosity is 0 . 93. However, in general 

prac tice this cannot be achieved with packed particles. For the same 
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arrange ment discussed above a moderate reduction of drag, say 2 Oo/o 

occurs only when h/ d is as large as 60. 

Finally, we shall compare the present formula for the drag 

coefficient (4. 87) w ith some results obtained by others. The drag 

d erived by Joseph and Tao [ 3] based on th e assumption of no-slip 

(u
8 

= 0 at r = a), may be written in coefficient form and expanded in 

small Fk/ a to give 

l k 
CD...., l - 2 2 

a 
(4. 88) 

Assuming that the tangential velocity is continuous across the inter -

face (n
8 

= q
8 

), we arrive at a slightly different formula 

3 k 
CD...., 1 - 2 --Z

a 
(4 . 89) 

Thus we see that (4. 8 7) inc re tse s the accuracy in the representation 

of the drag coeffic i e nt, a nd it always gives a smaller drag than does 

either (4. 88) or (4. 89). Of course, as fk./a becomes very small, 

the discrepancies diminsh. 
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V. CONCLUSIONS AND DISCUSSION 

i. The set of general macroscopic equations of motion (2 . 75) 

and (2 . 76) are derived for flow through a porous medium . They are 

obtained by averaging Stokes equations over a volume element of the 

medium. Thus the applicability of the macroscopic equations is 

limited to small Reynolds numbers based on the pore or the solid 

grain size of the porous substance (Re = qd/ v << l ) . Aside from this 

restriction, the equations are generally valid whether the porosity is 

small or large. If, in additiori, the Darcy number is also small 

2 
(Da = k/ ri L << 1 ), the macroscopic equations reduce to Darcy's law. 

F o r a typical porous medium, the Darcy numbe r is usually very 

small and hence Dar cy's law is generally applicable. To see this, we 

considered k approximated by the Carman-Kozeny equationt, 

2 
k:::::: T)d / 5, where d is the hydraulic radius of the medium. This 

leads to a Darcy number 
2 

Da= 0,2(d/L). In a packed bed, d is 

only a fraction of the particle size. A porous body must include many 

particles in order to be described macroscopically, hence the macro-

scopic leng th L must be many times d, and this assures a very 

small Darcy number. An equation similar to (2. 76) has been suggest-

ed by Brinkman [ 18), [ 19) , for flow through porous media. The 

pre sent derivation may be considered as a more rigorous justification 

and a modification of his work. 

ii. In order to solve analytically a coupled proble m of v i scous 

t See, for example, reference [ 17) . 
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flow past a p orous b ody , the interface boundary conditions must be 

established. Two formulations are presented. One involves the 

macroscopic equations of motion applied throughout the porous region; 

the second makes direct use of Darcy's law. The purpose of estab

lishing the first type is to build a foundation for the second one, 

though the former may have its own usage when the Darcy number is 

not so small. 

iii. The interface boundary conditions of the fir st kind are 

expressed in (3. 24) to (3. 26). These equations state that (1) the 

velocity in the fluid region is joined continuously to the superficial 

velocity in the porous region. (2) the normal gradient of the tangent

ial velocity on the fluid side is related to that of the superficial 

tangential velocity on the porous side by a factor ri. (3) the mean 

pressures defined in each region join continuously across the inter

face. The interface has been assumed as an ideal one, having statis -

tic ally the same properties as a surface pas sing arbitrarily through 

the medium. 

iv . We apply the general macroscopic equations of motion, 

together with the interface boundary conditions of the first kind to a 

simple problem, namely a Poiseuille channel flow ove r a 

permeable bed. The result shows that the velocity field undergoes a 

transition from that given by Darcy's law to that of the external fluid 

flow. This transition occurs in a very thin layer in the porous region 

in the immediate neighborhood of the interface when the Darcy number 

is small. In the interface layer, the tangential velocity varies 
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exponentially across the layer, and the nominal thickness 6 of this 

layer is given by (3. 54). For an ordinary porous medium , (again 

according to the Carman-Kozeny equation), 6 is abo ut 0. 45d, where 

the hydr aulic radius d is a fraction of the particle size in a packed 

b ed . The macroscopic equations at a small Darcy number are thus 

only important within a region of depth seve ral times 6, or within a 

distanc e comparable to the size of a particle . Beyond that the porous 

medium flow c an be d escribed by Darcy 's law . It may be argued that 

the information obtained about the nature of the transition layer at the 

inte r face is not accurate simply b ecause in such a small r egion there 

is an insuffic ient number of particles present to assure the validity 

of a macroscopic desc ription. This is indeed true. But it may also 

be reasoned that the average can be taken over planes parallel to the 

interface. The area of the planes may be chosen so as to include a 

sufficie nt numbe r of surface por e s, particularly w h en the interface is 

flat or possesses a l a rge radius of curvature . 

v . Inasmuch as the thickness 6 of the interface layer is so 

very small in the case of small Darcy number s, it may be argu ed 

that the layer i s totally negligible and that Darcy's law may be applied 

in the whole r egion of the porous medium. However, it is found that 

the actual tangential velocity varies drastically across the lay e r. This 

variation must then b e interpreted as a jump condition for the solution 

of the probl em to be physically realistic while at th e same time treat

ed as mentione d above . The inte rface boundary con ditions of the 

second kind are given by ( 3 . 76) to (3 . 78) whi ch state that: (1) the 
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normal veloc ity in the fluid region joins continuously with the super -

ficial normal velocity in the porous region. (2) The tangential 

velocity has a jump, the magnitude of which is linearly proportional 

to the normal gradient of the tangential velocity on the fluid side. 

The proportionality factor is [TiK. (3) The relevant mean pressures 

vary c ontinuously across the interface. These conditions are rigor -

ously demonstrated for a general two dimensional flow with a flat 

interface and are extended for three dimensional flow with a flat 

interface. It is also shown that they are approximately valid for a 

curved interface as well, as long as the local radius of curvature is 

large ; or more precisely , that the local Darcy number 

is small, where R is the radius of curvature. 

2 
Da = k/11R , 

vi. The derived jump condition (3. 77) on the tangential 

velocity offers a firm theoretical support for the corresponding experi-

mental result (3. 56) of Beavers et al. The only discrepancy between 

the theory and the experiment is in the proportionality coefficient in 

these relations . The reason :or this discrepancy is that equation 

(3. 77) is deduced using the assumption of an ideal interface, while in 

practice, this is not achievable. Since a realistic interface may be 

rough and may have a porosity and a permeability near the interface 

different from those in the interior region, it is suggested that an 

experimental coefficient 13 always be incorporated with the jump 

condition as is shown in equation (3. 82 ). Even when dealing with an 

ideal interface, it is still worthwhile to use a coefficient 13 . This is 

because the accuracy of the macroscopic equation on which the 
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theoretical jump condition depends has not been really established. 

vii. To illustrate the use of the interface boundary conditions 

establishe d in this work and to calculate the porosity effect of a 

porous body, two problems have been worked out in d etail. One 

problem is the viscous flow between a rotating solid cylinder and a 

stationary porous cylinder; and the other is the Stokes flow past a 

porous sphere . The latter is the same problem treated by Joseph 

and Tao [ 3] . In general w hen the Darcy number is very small, as is 

usually the case , the v is cous flow is insensitive to a naturally porous 

boundary and the porosity effect is negligible. When the Darcy num

ber is not so small, as for a very porous body, however, the effect 

may be appr eciable as is demonstrated in the reduction of the torque 

a nd drag coefficients. The present formulation is c onsidered as an 

improvement over any others mentioned in the Introduction. The 

porosity effect is also detectable even with a small Darcy number 

when the external flow is bounde d in a narrow region, as is demon

strated in the first problem with a small gap between the cylinders. 

From (4. 30), it is e stimated that a 10% reduction in torque coeffi c ient 

can r esult when the gap h ""4rid, based on the assumption that both 

a/# and h/ a are small and the Carman-Kozeny equation is used 

to approximate k. This gap is comparable to a particle size, and is 

thus very small indeed. Unless the interfac e is smooth, the flow in 

the gap may be greatly disturbed and invalidate the assumption of 

circumferential parallel flow made in the problem. 
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