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ABSTRACT
Part I

The slow, viscous flow past a thin screen is analyzed based on
Stokes equations. The problem is reduced to an associated electric
potential problem asintroduced by Roscoe. Alternatively, the prob-
lem is formulated in terms of a Stokeslet distribution, which turns
out to be equivalent to the first approach.

Special interest is directed towards the solution of the Stokes
flow past a circular annulus. A "Stokeslet" formulation is used in
this analysis. The problem is finally reduced to solving a Fredholm
integral equation of the second kind. Numerical data for the drag
coefficient and the mean velocity through the hole of the annulus are
obtained.

Stokes flow past a circular screen with numerous holes is also
attempted by assuming a set of approximate boundary conditions. An
"electric potential" formulation is used, and the problem is also reduced
to solving a Fredholm integral equation of the second kind. Drag coei-

ficient and mean velocity through the screen are computed,

Part II
The purpose of this investigation is to formulate correctly a
set of boundary conditions to be prescribed at the interface between
a viscous flow region and a porous medium so that the problem of a
viscous flow past a porous body can be solved.

General macroscopic equations of motion for flow through
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porous media are first derived by averaging Stokes equations over a
volume element of the medium. These equations, including viscous
stresses for the description, are more general than Darcy's law.

They reduce to Darcy's law when the Darcy number becomes extremely
small.

The interface boundary conditions of the first kind are then
formulated with respect to the general macroscopic equations applied
within the porous region. An application of such equations and boundary
conditions to a Poiseuille shear flow problem demonstrates that there
usually exists a thin interface layer immediately inside the porous
medium in which the tangential velocity varies exponentially and
Darcy's law does not apply.

With Darcy's law assumed within the porous region, interface
boundary conditions of the second kind are established which relate
the flow variables across the interface layer. The primary feature
is a jump condition on the tangential velocity, which is found to be
directly proportional to the normal gradient of the tangential velocity
immediately outside the porous medium. This is in agreement with
the experimental results of Beavers, et al.

The derived boundary conditions are applied in the solutions of
two other problems: (1) Viscous flow between a rotating solid cylinder

and a stationary porous cylinder, and (2) Stokes flow past a porous

sphere.
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I. INTRODUCTION

The viscous flow past a group of obstacles or a porous body has
recently attracted extensive 'ulvtiastigations.-r As in the case of a single,
isolated, solid body, there appears at present to be no exact solution of
this many-body problem based on the Navier-Stokes equations. The
theoretical studies of this class of problems have been largely based
on either Stokes' or Oseen's equations ,i which are linear. Ewven for
such approximate equations, exact solutions are scarce.

In the category of a group of obstacles, Tamada and Fujikawa
[ 3] investigated the Oseen flow past an infinite row of equally-spaced
circular cylinders, whereas Miyagi [ 4] studied the same problem
using Stokes' equations. Kuwabara [ 5] dealt with the Oseen flow past
a lattice of elliptic cylinders. All these solutions are based on an
expansion method in terms of a small obstacle size to distance ratio.
By applying the Fourier transform method, Kuwabara [ 6] also obtained
a solution of the Stokes flow past a lattice of parallel flat plates in the
limit of both small and large distances between two consecutive plates.
Keller [ 7] applied the lubrication theory to obtain an approximate
solution for the flow past a row or several rows of closely packed
circular cylinders, Furthermore, Hasimoto [ 8] found approximate

solutions of the Stokes flows past cubic arraysof small spheres. Most

TSee references [ 3] through [ 14].
iFor a comprehensive treatment of Stokes' and Oseen's equations, see

references [1] and [ 2]. Stokes and Oseen flow are also defined
there.
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interesting of all, Hasimoto [9] , in another investigation of the Stokes
flow past a thin screen, was able to obtain an exact solution for the
case of a series of equal and equidistant flat plates (or slits) held
normal to the flow. In this solution the method originally developed by
Roscoe [ 10] was followed, by which the problem of the Stokes flow past
plane obstacles is related to an analogous problem of the electrostatic
potential due to a set of earthed conducting plates of the same shape.

In the category of porous bodies, Joseph and Tao [ 11] treated
the problem of the Stokes flow past a porous sphere. They obtained an
analytic solution satisfying Stok@s' equations in the external flow field,
an empirical Darcy's law in the porous sphere, and a set of boundary
conditions prescribed at the interface, The interface boundary condi-
tions they used state that the pressure and the normal velocity are con-
tinuous across the interface, and that the tangential velocity vanishes
on the fluid side of the interface., Their result shows that the drag of
a porous sphere is always less than that of a solid one for the entire
range of porosity regarded as valid for Darcy's law. Additional treat-
ments of the same nature by Joseph and Tao are given in [12], [13] and
[14]. These problems are all concerned with viscous flows past
porous bodies. In a few cases, however, the porous bodies are not
finite in size as in the first case of a porous sphere,

Some of the boundary conditions proposed by Joseph and Tao
[11] are, however, questionable., It can be argued that a slip velocity
condition, rather than an adherence condition, should hold at the inter-
face, Since in their boundary conditions the fluid is allowed to move

on the porous side along the interface, it is hardly conceivable that



the tangential velocity of the fluid on the fluid side must be zero,
Because of these doubtful boundary conditions, the theory of Joseph
and Tao, and the other analytic results obtained previously, cannot be
considered as established at all, It is therefore clear that for the
problems of flow past a porous obstacle it is important to determine
the boundary conditions which can describe correctly the physical
situation.

We are interested in investigating analytically the viscous flow
past a porous body. In particular, we shall determine the change of
the flow quantities, such as the drag, caused by the porous body as it
replaces a solid one of the same exterior geometrical configuration.

In the case when the porous body consists of numerous intercon-
nected holes such that it may be approximated by a porous medium to
which Darcy's law is applicabl:, correct interface boundary conditions,
as stressed previously, are required to ensure correct solutions, The
nature of these boundary conditions will be discussed in detail in Part
Two of this thesis. In Part One, we are mainly concerned with the
case in which the porous body has a very simple geometry. In this
case, exact solutions can be obtained to satisfy the non-slip boundary
condition on all walls. Due to the inherent difficulty associated with
the Navier-Stokes equations, our analysis is restricted to Stokes flow,
As a specific example, the exact solution is derived for the Stokes flow
past a circular annulus. Based on the results obtained for this case
we can predict, at least qualitatively, the same kind of porosity effects
for more general porous bodies. In addition to this problem, a solu-

tion which satisfies a set of approximate boundary conditions is also
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obtained for the Stokes flow past a circular screen with nume rous holes,

A general mathematical formulation is given in Chapter II for
the Stokes flow past a thin screen of finite size, The problem is trans-
formed to the one of electrostatic potential satisfying the Laplace
equation and the boundary conditions which state that the screen is
perfectly conducting and is charged to a constant potential, This idea
is much the same as that introduced by Roscoe [10] for the Stokes flow
past plane obstacles. It was also used by Hasimoto [ 9] in solving the
Stokes flow past two-dimensional infinite screens. An alternative for-
mulation using a Stokeslet distribution is also attempted. It turns out
to be equivalent to the first formulation.

In Chapter III an exact solution for the case of a simple screen,
namely, a circular annulus, is obtained. In fact, this solution is a
particular case of Roscoe's work. The annulus is geometrically simple
enough to admit an exact solution, but it offers good indication of the
porosity-effect as the hole size varies, With regard to the correspond-
ing potential problem of a charged conducting annulus, it is only
recently that great attention has been given to it. It was solved either
by triple integral equations as given by Cooke [15] ,or by a simpler
method developed by Williams [16] . Their results may be appropri-
ated directly to obtain our solution for flow past an annulus, but their
published information is very limited. To obtain flow properties other
than just drag, the problem is worthwhile to be re-examined, For pro-
viding an alternative way of approach, the method of Stokeslet distri-

bution will be used in the derivation,



In Chapter IV, the solution for a circular screen possessing a
great number of holes is attempted. The exact non-slip boundary con-
dition is replaced by an approximate one, that is, a pressure jump
proportional to the local average fluid velocity through the screen is
prescribed at the screen. The corresponding potential problem, using
an approach parallel to Williams' [16], is eventually reduced to a

Fredholm integral equation of the second kind and a solution is, thus,

obtained.,
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II. GENERAL MATHEMATICAL FORMULATION FOR
STOKES FLOW PAST A THIN SCREEN OF FINITE SIZE

For incompressible, viscous flows in which the inertial effect

is negligible, Stokes' equations are
2._3-
-Vp + pV7u =0, (2,1)
Veu =0, (2.2)

where p 1is the coefficient of viscosity, p is the pressure and a

is the velocity vector (its components in Cartesian coordinates will
be denoted by u, v, w, in the x,y, z directions, respectively).
These equations together with the non-slip boundary condition on

solid walls are sufficient to determine the solution of the flow past

a three-dimensional finite obstacle, or in the case of two-dimensional
flows, an obstacle in a bounded region.,

The stress tensor o 1is given by

o= pl 4 ¥ 2002 , (2.3)

where I is an identity tensor and the superscript "*" designates the

transpose of a tensor,

Taking the divergence of (2, 1), and making use of (2.2), we

see that p is a harmonic function, that is
- W
vp =0, (2.4)

Similarly, by taking the curl of (2.1), the vorticity ® as
defined by



@ =VX u (2.5)

is seen to satisfy

YVow =0, (2. 6)

Thus, each component of the vorticity in Cartesian coordinates is
also a harmonic function, and the vorticity transport in Stokes flow
is governed by steady-state diffusion only.

Our problem of the Stokes flow past a thin screen of finite

size is to solve (2.1) - (2.2) under the boundary conditions
@ =0 on walls of screen, (2.7)
u—’Ugl, P P, 2s |;|—*oo, (2.8)

where e; is a unit vector in the direction of the uniform flow at

Fig, 1. Stokes flow past a
thin screen of finite
size,

In Cartesian coordinates (x,y,z) with the x-axis lying in
the direction of a , the screen is chosen to lie in the plane x =0
(see Fig. 1) On account of the symmetry of the obstacle with
respect to the plane x = 0, Stokes' equations (2.1) - (2.2) admit a

solution of the following symmetry:



u(X,Y,Z) =~ u(—x:Y:z) ’

V(stsz) = "V(“Xsle) ’
(2.9)
w(x,y,z) = ~-w(-x,y,2) ,
(P(X?Y’Z) - Pm) - ’(P(—X,Ysz) - Poo) )
Since v,w,(p—-pm) are odd in x, it is required that
v,w,(p-poo) =0 , on the part of x = 0 plane comple-
mentary to the screen walls, (2.10)

Since p is a harmonic function and is odd in x, we may write

_ odb
P=P, t2ugy » (2.11)

where @ itself is a harmonic function but is even with respect to x,

that is

vé=0 , (2.12)
and

®(x,y,z) =®(-x,y,2) . (2.13)
Substituting (2.11) into (2.1), we obtain
Viu =2—Vo. (2.14)

A particular solution of u satisfying (2.14) is xV®, as can
be easily verified by direct substitution. However, 4 = xV® alone
does not satisfy the continuity equation (2.2). We shall also require a

homogeneous solution to be added to the particular solution so that the
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continuity equation (2. 2) is satisfied. The correct homogeneous solu-
tion is seen to be (U—Q))gl as can be readily verified, Therefore, a

solution of (2.1) - (2.2) is
U= (U-de; +xvd. (2.15)

This representation (2.15) automatically makes v and w
vanish at x = 0, as required by (2.7) and (2.10). The rest of the

boundary conditions in (2,7), (2.8) and (2,10) are also satisfied pro-

vided that
&=U |, on walls at x =0, (2.16)
22 -0,  outsidethe wallat x =0, (2.17)
&— 0 , as |x| —~ . (2.18)

Condition (2.17) follows from tne requirement that & is a function
even in X,

Now the problem of Stokes flow specified by (2.1), (2.2), (2.7),
(2.8) and (2.10) has been reduced to an associated problem of electric
potential & satisfying the Laplace equation (2.12) and the boundary
conditions (2.16) - (2.18). This potential problem can be regarded as

l. a Dirichlet problem in an infinite space, with an equipoten-
tial U prescribed on the screen walls at x = 0; or

2. a mixed type boundary value problem in the half space
x > 0, with potential U and its normal derivative equal 0 prescribed

respectively on the wall's part and the non-wall's part of the plane
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I
o

Both of these problems have been thoroughly treated. The unique-
ness and existence properties of their solutions are well-known., In turn,
these properties may be appropriated fer the .original Stokes problem.

The Dirichlet problem above actually can give more physical
insight than the other. The problem can be interpreted in terms of a
source distribution at the screen wall. The sources should be so dis-
tributed that the potential ® on the screen wall is a constant U. This
is exactly the electrostatic problem of the potential & due to a charged
conducting screen maintained at an equipotential U.

In electrostaticsT » the potential &(x) due to a surface-charge

(source) distribution y(z') is given by

. (2.19)

@(;)=S' —}‘—_5;'1— ds—
Wlx—«;'| ¢!

For the present problem, the integral in (2.19) is carried over the wall
part of the screen, W.
By applying the boundary condition (2.16) to (2.19), we obtain

an integral equation for the surface-charge density 'y(?_l:') i
(‘ Al =
U= ;%g asgy @ on W) , (2. 20)
W

where both Z and Z' lie on the screen wall. This integral equation

is generally not easy to solve, even for screens of relatively simple

1.

For a general treatment of electrostatics, see, for example,
Jackson [17].
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geometry, However, once y(Z') is obtained, the potential & is

simply given by (2.19) and the original Stokes flow problem is deter-

mined by (2.15).

It is also known in electrostatics that there is a jump 4wy in
the normal component of the electric field (-V®) across a surface

distributed with a surface-charge of density vy; in other words, across the

screen wall we have

12 (8@ ~

(7))~ (&), =4 LRl
where "~-" and "+" designate the negative and positive sides of x = 0,
respectively,

By virtue of the symmetry (2.13) of & with respect to x,
0Py _ A
(532 + (ax)_ »
and therefore,
(%—‘;’ = F 2my (for y,z on W). (2.22)
*x
For the purpose of calculating the drag on the screen, the

stress tensor (2.3) is first written in terms of &, so that
s (g, * 2 ST+ B ) (2. 23)
P M Bx H vos .

The viscous stresses, represented by the last term of (2.23), are
identically zero at x = 0, This leaves the pressure as the only stress
acting on the screen, The wall pressures on the positive and the

negative sides of x = 0, by virtue of equation (2.22), are seen to
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be related directly to y as follows:
9d"
Py =Py, t2n (-3;)*=POD F 4my . (2.24)

The drag D on the screen is contributed by the pressure alone,

giving

D=Sl (p_-py) dS=8m§ y dS =8mQ , (2. 25)
W W

in which use has been made of (2.24), and Q stands for the total
charge on the screen,

Furthermore, if the electrostatic capacity C of the screen is
defined as the charge per unit potential on the screen (namely, C = Q/U),

then (2. 25) becomes

D =8mUC. (2.26)

This simple result is remarkable; it is noted that the drag is directly
proportional to the electrostatic capacity of the screen of the associated
problem.,

The foregoing formulation is along the reasoning of Roscoe
[10]. We shall see that an alternative approach using "Stokeslet"
distribution is also possible. A Stokeslet of strength o isa singular-
ity in Stokes flow such that it experiences a force of magnitude —Smu_; =
In other words,the Stokeslet is equivalent to a point force 87r|.LE; applied
to the fluid. The corresponding pressure and velocity field of a

Stokeslet can be obtained from the following equations :
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-7p + V70 4 Bmablx-T)l=0, (2. 27)
Veu=0, (2.2)

and the solutions are

p() = 2p 2t E8) (2. 28)
= -2 |
e = o +[a-(x-§)](x z)

F-El 0 =-tiP %2
for a Stokeslet situated at x = Z.

Since Stokes' equations are linear, more complicated solutions
can be constructed by superimposing Stokeslets together with other
elementary solutions of Stokes' equations. In particular, we shall con-
sider Stokeslet distribution at a surface, Let a surface Stokeslet of
density ofe} be distributed over the wall part of the screen (denoted
by W), all the Stokeslets being inthe x~direction, then such a distri-
bution plus a uniform flow gives the pressure and the velocity field as

follows,

pE) =py t o | F2E) gs (2.30)

Jw |x-7|3

= ¢ _e@ = L0 ethi-2"
s = (v 2O e o of D) a5y,

|x-1T

(2. 31)

This formulation thus yields a successful solution for flow past a

screen when the density function a(g’) can be found such that both



.

boundary conditions (2.7) and (2. 8) are satisfied, We can prove that it
is indeed the case.
Condition (2, 8) is obviously satisfied by (2.30) and (2.31),
whereas the other boundary condition (2.7) can be satisfied if
-
Uzs —:‘i@:Lds—g—. . (2.32)
woT-2
But this is precisely the integral equation for oz(—gl ), and we observe
that (2.32) is identical to the integral equation (2.19) provided
a(fh) = —y(f’) , namely, the surface Stokeslet density is equal to the
negative of the surface charge density considered in the associated
electric potential problem. As a matter of fact, if we write
- » W
B(x) = 5 e e (2.33)
wo|x -1
equations (2.30), (2.31) and (2.32) are also reduced exactly to (2.11),
(2.15) and (2.16) as already derived in the previous formulation, Thus,

the two formulations, one by relating to an associated electric potential

and the other by using Stokeslets,are seen to lead to the same result.
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III. STOKES FLOW PAST A CIRCULAR ANNULUS

Consider a Stokes flow past a circular annulus with a uniform
free stream velocity U perpendicular to the annulus, as shown
schematically in Fig. 2. By virtue of the axial symmetry of the
annulus, cylindrical polar coordinates (r,0,x) will be used through-
out the following analysis. The annulus lies in the plane x = 0, with

its center at the origin. Its inner and outer radii are a and b

respectively. | P

Fig. 2. Stokes flow past a circular annulus,

Such an annulus is probably the simplest screen which can
illustrate the general analytic method outlined in the preceding
chapter, and at the same time demonstrate the effect of porosity in
an obstacle to the flow.

The equations governing Stokes flow past a circular annulus

are Stokes' equations (2.1) and (2.2),
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g . B (3.1)
vVeu=0 , (3.2)

where for convenience the equations have been re-numbered for this
chapter. The non-slip boundary condition and the conditions at

infinity for this particular case are

u=0, at x=0, a<p<hb, (3.3)

and

Em*Ugl, P~pP, » as x| = o . (3.4)

This Stokes problem, according to the general formulation of
the preceeding chapter, can be reduced to an associated electric

potential problem described by (2.11), (2.12), (2.15)-(2.18), namely,

P=pm+2u—g-§ . (3, 5)

= (U - q;)?e"l +xVd (3. 6)
where

v2e=0 , (3.7)

and the electric potential & satisfies the boundary conditions:

&=U, at x=0, a<p<hb, (3.8)
%;%:0, at x=0, p<a and p > b, (3.9)
& =0, as |%x|—+ oo . (3.10)

The problem (3.7) - (3.10) may be interpreted as that of finding

the electric potential & due to a conducting circular annulus charged
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to a constant potential U. It can be solved either by using triple
integral equations employed by Cooke [15], or by a simpler method
developed by Williams [ 16] . Our formulation in terms of the
integral equation (2.20) is in accordance with the method of Williams.
Both Cook and Williams eventually reduced the electrostatic annulus
problem to that of the solution of a Fredholm integral equation of the
second kind. Cooke obtained a solution numerically and determined
the electric capacity of the conducting annulus. Since the drag on the
screen has been found in (2.26) to be directly proportional to the
electric capacity, the Stokes annulus problem is considered solved
insofar as the drag is concerned. Nevertheless, we are also interested
in other flow properties, such as the discharge through the hole of the
annulus, etc. Such information is notderivable from Cooke's published
results. Hence, we shall re-examine the Stokes problem. More-
over, since an alternative but equivalent formulation in terms of
Stokeslet distribution has been introduced in Chapter II, it might be
fruitful to follow this approach at this time so as to avoid using the
terminology of electrostatics.

Stokeslets are assumed to be distributed symmetrically on the
annulus about its axis, the surface density «a(p) has a radial depen-
dence only., The "Stokeslet" formulation, as given in (2.30), (2.31)

and (2.32), may be wriiten down specifically for the annulus problem:

br2m 1yt 1 T
p(p,8,x) = p_ + sz S' xe(p )93 g8 gp (3.11)
avo R
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o § bplmw g . 3
u(p,0,x) = LU +S‘ S' a(p )dee dp ]el
a0

3 s (3«12)

bp2 - =
+x) § " a(p")(E - Tp' 40" dp’
avo R

where «(p') is to be determined from the integral equation,

(‘b Z'IT_ 1At 1 1
U=\ S alp )prie dp Is < p 2By . (3.13)
YaYo

and where

o
]

[; _Z'I = szﬁ- p2+ p'z - 2pp'cos (6-0") ,

p—y

R! = lz -g'] g Jpz‘f' p.Z_ ZPP'COS (6—9') »

—_—

x =(p,0,x), L =(p,0,0), T'=(p',0',0) .

We begin now to solve the integral equation (3.13). After «(p)
is obtained, the velocity and pressure are simply given by (3.11) and
(3.12). Before starting with the solution, we shall first discuss some
mathematical preliminaries which will have frequent use in later cal-

culations.

Lemma l. If p and p' are positive, then

: 1
S‘Z“ de! _ 4&‘1’1’111’1([3»[7 ) dt
o) Jp2+ p'z‘- 2pp'cos (6-98") o Jpz-t2 ‘/p'?‘-tz
(3.14)
The proof is given by Copson [ 18] in his treatment of the

electrified disc.
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Lemma 2., If f(p) is once continuously differentiable on

(a,b), then the integral equation

P G(t) at

f(p) =
i (pZ_ tZ)c

(a<p<b, 0<c<1), (3.15)

has the solution

z t
G(t) = 2 sin mc _@_S pf(p) dp

™ dt 2\1-¢

: (a<t<b) . (3.16)
a (t™-p7)

Lemma 3. If f(p) is once continuously differentiable on

(a,b),then the integral equation

b Gt) at

f(p) =
p (t%-p?)°¢

(a<p<b,0<c<l) , (3.17)

has the solution

: b
_ _2sinwc d pf(p) dp

Both Lemma 2 and Lemma 3 are generalizations of Abel's
integral equations. The proofs are given, for example, by Sneddon
[19].

In making use of Lemma 1, or equation (3.14), equation (3.13)

is reduced to

b min(P:P')
~4§ pla(p") dp’S‘ g =U (a<p<b).

a o AJPZ-;ZJQ'Z-tZ

(3.19)
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This equation can be re-written as

1
!.-SPS*P +S\PS-P ] p'a(p') dt dp' __ U
Ld o o Jpz—tZJp'z—tZ 4

or

i p(“a+ P(‘P LQ(B ) dt dP _ ,E_I
L) J ) _| 2.2 [ 2.2 &-
¥ Yava 4p { !

Upon interchanging the order of integration,

Ldgda Jads oYp avp {pz—tzJp'Z-tz 4
and then combining terms to give

[S‘S S'S' ]PO-’(P)dP dt  _ _U

Jpz ZJP'Z Z 4

Finally, the above equation takes the form

1 f"b 22
S' P"“(PZ)dZP = _%-) pla(p') dP’S g ‘
{p' a o ;ipz—tz ;;p'z—tz

(3. 20)

We write

b 1 1 ]
G(t):S' —PV‘"_(EZ’—‘%E (agt<H . (3. 21)
t p' -t

The inversion of (3.21) is a special case (c =1/2) of Lemma 3, or

equations (3.17) and (3.18). Accordingly,
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b
2 d tG(t) dt
' "o . L8 '
pla(p') = - He (a<p'<hb). (3.22)

pl t _pl

Also for simplicity, we write

B(p) = -

wla

S‘ 'a(P)dp‘S‘ T 2(2 - - (3. 23)

Equation (3.20) then becomes

P
g Glt) dt _ g(o) . (3. 24)

a p -t

Consider B(p) as a known function; the above equation may be in-
verted according to Lemma 2, or equations (3,15) and (3.16), for

the special case c = 1/2. The result is as follows:

Git) = 2 Ed—\\ eBlp) dp
t%-p

=%'§'[’—Sa‘lff(i{=e=z S‘S’aS’OJ pp ;(&2 d_ug;pc}% - :
--3 13 Ehra S [P
x(dtg Jj—j—_z) \}

(3.25)

We shall now substitute (3.22) for p'a(p'} into the above equation.

First, observe that
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S’b pla(p')dp' _ _ ng 1 (ﬁ.&b sG(s) ds ) o
2 ‘ Z ZS' sG(s) ds
= - a -u Fl (3'2'6)
% a (s -u )J B

and also

t
d p dp N Va -u (3. 27)
dt , 2 2 Z2 2 J 2
a4/t -p pT-u t -u)4 t —a

Thus, equation (3. 25) reduces to

. b =
a u du( sG(s) ds j

7 .
Jﬂ'[ S Peg® Oy (Sz_uz){ G2 2

2
Z % S' sG(s)ds (a”-u )du
_ £ (3.28)
Tr L4: O(tz_u )(s ]

G(t)

:liN

The last integral in (3. 28) is evaluated to be

ga (az—uz) du _ 1 (tz-—az log tta sz-a2 log s+a
o (tZ_uZ)(SZ_uZ) 2(1:2_ 2 t-a s s-a
(a< f<w) , (3. 29)

s

Therefore, (3.28) is finally reduced to a Fredholm integral equation

of the second kind,

~b
Glt) = - %J.:%._az . —%‘SaK(t,s)G(s) ds  (a<i<b), (3.30)
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where the kernel K(t,s) is

t+ta s —a2 s+a)

ts tz-a2
K(t,s) = ( log - log
2 ftz—aZ,Js&—aZ(tz—sz) t t-a S s-a
(3.31)

Fredholm integral equations of the second kind can be evalu-
ated numerically by well established procedures., The problem is
thus considered solved. All the flow quantities desired may then be
determined from the numerical result of G(t) using equations (3. 22),
{3.11) and (3,12).

To obtain the pressure distribution on the annulus wall,

equation (3.11) is rewritten as

p) =p_ +2m 32, (3.32)

where

®(x)

1

Sibﬁzw -a(p')p' do' dp'
5 R

a

il

5’ a1 (A B,

% T s (3.33)
wlx-T1 °

in which W indicates that the integration is over the wall of the
annulus. The pressure jump across the annulus wall can then be

expressed by
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where "+" and "-" denote the positive and negative sides of the plane

_ ’ ; [ 0 L i -
x = 0, respectively. The jump L(—a-;)+- (E)_ J » 1n accordance

with (3.33), is known to be 4wa. Hence
p+ - p— = 8TnJ,Q’ ° (3135)

Since (p —poo) is odd in x, the pressure distribution on the wall is

finally obtained as

p.lp) = p * 4ma(p) (a <p<b). (3.36)

In terms of the function G(t), the above becomes

b
- 8 d tG(t) dt
Bl = Py ® dp‘sp a (a <p <b).(3.37)

The drag D experienced by the annulus is seen to be due to

the pressure jump alone. It m.ay be evaluated from
b
D = ij p_-pJedp , (3.38)
a

or equivalently, the drag is simply the sum of forces experienced by

all Stokeslets, namely

b > b
D= 2"3 -8mpa(p)p dp = - 16w u§ pa(p) dp . (3.39)
a a

Again, in terms of Gf(t),

b
s 32WS tGit) dt (3.40)
a t -a
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Next, we observe that the only non-vanishing component of

the velocity through the hole of the annulus is given by

u(p) = U +S‘ Szw S Q(P 1 46 dp . (3.41)
Jp +p -2pp'cos(6-0")

Substitution of (3.22) for p'e(p') into the above equation yields

2 2
uO(p) U+ -H—S sG(s) ds Va -t~ dt (3.42)

a;s o(s 2)Jpz—tZ )

The rate of discharge through the hole may then be obtained

by integrating uo(p) over the hole area, giving

ra +b
Q = ZTrS pu_ dp = o +16a5 8is) da
° (6] a S ~a
N
- BS s -a 1og——— G(s) ds . (3.43)

a

The mean velocity 1—10 through the hole is simply given by Qo/waz,

or
5 -uf1+ 6 " stils) de
B © TalU L 2
aVs -a
J -a® log 222 G(s) ds] . (3.44)
Ta U

In the special case of a solid disk, which corresponds to a =0,

the Fredholm integral equation (3.30) reduces to a very simple ex-

pression,

Gl = = g—" ) (3. 45)
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The corresponding Stokeslet distribution is then given by (3.22) as

a(p) = ——% : . (3.46)
™ b -p

Accordingly, equation (3.36) gives the pressure on the wall as
B 7B , (3.47)

and also equation (3.39) gives for the drag

D= 16 pUb . (3.48)

Both of these results for the pressure distribution and the drag are
well-known; see for example, Lamb [ 20].

We now return to a numerical calculation of the integral
equation (3.30). To subdue the square root singularity at s = a in

the kernel K(t,s), we make the following change of variables

t=222 +2-Dcos 0= n(e) ,
(3.49)
s = i;—b +a-2b cos ¢ = h(¢) .
We also denote
_ 2w h(8) 0
H(®) = - == Vp-1 ——— cos 5 G(h(8)) ,
g Vh{B) +1 . l
(3.50)
_ 2w h(¢) ¢
Hid) = - SX V/p-1 G(h(¢) ) , S
¢ i B S o cos 5
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where B = b/a.

Then the integral equation (3,30) becomes

e 2 o (T
x (6)H(8) = cos 5 - — cos 'ES. I'(6,d)H(d) do , (3.51)
m™ o
where
x (o) = (RO LUEHO) -1 (3.52)
V-1 h™(0)
h%(0) -1, h(8)+1 h(d) -1, h(¢)+]
T(o, 4 = —2CL__ZROI-T " RG] "ERE)-T (5 g

n%(0) - h%(¢)

The kernel (3.53) has a removable singularity at 6 = ¢, its value at

these points may be evaluated by L'Hopital's rule, giving

hZ(0) +1

2h>(0)

h(6) +1 1

- ) (3- 54)
h(0) -1 hz(e)

I'(6,0) = log

which is seen to have a logarithmic singularity at © = 0 only.
Using the above transformation, the drag and the mean velocity

through the hole as given by (3.40) and (3.44) are reduced to

™
D = 16}J.UaS' H(0) do (3.55)
(o)

and

- ™ _
5 =ufi- & g 7)o VBl hE@MVRE) -1, hio)H
AN

2 1:(0) o8 poj-1 *in 3 | H(O) de .
(o]

(3.56)
The drag coefficient, formed with respect to the solid disk drag given

by equation (3.48), is therefore
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K
Cp = 550 H(6) 40 . (3. 57)

The integral equation (3.51) is solved numerically for H(8) by
a standard method which approximates the equation by a set of alge-
braic equations. Gaussian quadrature is used to evaluate the integral
so as to avoid encountering the corner point (6 = 0, ¢ = 0) which is
logarithmically singular as seen in (3.54). Gaussian ordinates of
six, eight and ten are used successively in each computation for a
given value of B. The values obtained for H(B) are seen to be
bounded and are converging, having no singularity throughout the
interval from 0 to w. The Gaussian quadrature is also used in the
computation of the drag coefficient Cp (equation 3.57) ) and the mean
velocity ratio GO/U (equation (3.56) ). The results obtained are

listed in the following table.

p=2 n' =6 8 10 6 8 10

10.000 0.99968 0,99980 0,99983 0,02748 0,02761 0,02742
5.000 0.99871 0.,99883 0.99887 0.05529 0.05495 0,05476
2.000 0.98081 0,98093 0,98098 0.14422 0,14393 0,14381
1,600 0.95955 0.95967 0.95972 0.18825 0.18801 0.18790
1,350 0,92479 0,92491 0,92496 0,23740 0,23721 0.,23712
1.250 0.89741 0.89753 0.89757 0.26828 0.26811 0,26805
1,200 0.87744 0.87756 0.,87760 0,28853 0,28837 0,28831
1s125 0.83245 0.83256 0.,83260 0.32996 0.32984 0.32979
1,070 0.77524 0.77534 0,77538 0.37804 0.37794 0.37789

1,040 0,72190 0,72199 0,72202 0,42068 0,42059 0,42056
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n =6 8 10 6 8 10

1,020 0.66133 0.66141 0.66144 0,46814 0.46808 0.46805
1.010 0.60793 0.60799 0.60801 0,50992 0.50987 0.50985
1.005 0.56142 0.,56147 0.56149 0.54655 0.54650 0.54648
1,001 0.47538 0.,47542 0.,47543 0.61509 0.61506 0.61505

1.0001 0.38919 0.38922 0.38919 0.68459 0.68456 0.68458
1.0000 (0) (1)

n is the number of Gaussian ordinates used.

We see from this table that the convergence is good. The
values corresponding to ten Gaussian ordinates may be considered
accurate to the fourth decimal place. The total time consumed on
an IBM 7094 computer for this problem was 33 sec.,

The drag coefficient CD and the mean velocity ratio 1_10/U
are plotted against the porosity mn of the annulus in Fig. 3. The
porosity 11 is defined to be the ratio of the hole area 1ra2 to the
total area 11'b2', namely, mM = az/b2 =1 /[32 . The reduction in drag
is seen to be very small when the porosity is small or moderate.
Even when as much as 50% of area is mis sing from a solid disk,
the drag is only reduced by 6%. When the porosity approaches unity,
however, CD reduces rapidly to zero. It is also apparent from this
plot that it is difficult for the flow to go through the hole; the mean
velocity Go is only a fraction of the free stream velocity U when n
is small. As n approaches unity, of course, _1._10 approaches U.

These characterisitcs are expected in general for a porous body in

very viscous flow.
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IV. STOKES FLOW PAST A THIN CIRCULAR SCREEN

Consider a uniform Stokes flow past a thin circular screen
possessing numerous holes. The screen has a radius a and its
plane coincides with the coordinate plane x = 0. Cylindrical polar
coordinates (r,0,x) will be used in this analysis., The velocity com-
ponents in the corresponding directions will be denoted by v, w and
u respectively.

Obtaining a solution for the microscopic flow in this case is,
of course, beyond our means, but we may consider a mean flow
instead of the microscopic one. In particular, the mean velocity and
pressure at the screen are assumed to be the averages over a screen
area which is small compared with the total area of the screen and
yet still includes a large number of holes. The mean quantities are
further assumed to vary smoothly throughout the flow field.

The mean flow should also satisfy Stokes equations (2.1) and
(2.2), because these equations are linear. We shall use the same

symbols for the mean quantities as for their microscopic counterparts.

Therefore,
2= _
-Vp tpvu =0, (4.1)
V.u=0. (4.2)

The symmetrical nature of the flow expressed by (2.9) should still

hold for the mean flow. In particular,

v,w =0 , at x=0, (4. 3)



=33=

for points on the screen as well as those outside the screen.

The mean pressure must have a jump across the screen. The
magnitude of the jump is expected to be linked somehow with the local
mean normal velocity through the screen. In fact, assuming a local
uniform flow through the screen, we may perform a dimensional
analysis for the following group of parameters: u, Ap, p, £ where
Ap = p, - p_ denotes the pressure jump and £ denotes a character-

istic size of the holes. The analysis yields the following linear

relation:

u=- —Ap (x=0, p<a), (4. 4)

where k is a proportionality constant which is termed the permea-
bility. The magnitude of the permeability k measures the ease with
which the flow passes through the screen. The relation (4.4) is very
much like Darcy's law {or flow through porous media, except that k
here has a dimension of length while that in Darcy's law has a dimen-
sion of length squared. The permeability is expected to be dependent
upon the detailed structure of the screen alone, such as the hole size
£, the hole shapes, and the porosity of the screen. It should not
depend upon the fluid properties, nor upon the overall size and shape
of the screen. We shall assurae the screen has a homogeneous
structure so that k is a constant of the screen material,

The permeability k must be determined by experiment, but
for some idealized hole structures, it may also be deduced by a

theoretical analysis. For example, an ideal screen may consist of a
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series of equal, parallel slits. Hasimoto [ 9] obtained an exact
solution for a uniform Stokes flow past such a screen of infinite size.
From his solution, we deduce that

1 llog cos —g n|

k:-_ﬂ 1-7 d, (4-5)

where mn 1is the porosity of the screen defined as the ratio of the hole
area to the total area of the screen. For the case of equal parallel

slits,

KNEgyT (4. 6)

where £ 1is the width of the slit and d is the width of the wall

between the successive slits.

The Stokes problem for the above circular screen is described
by equations (4.1) and (4.2) under the approximate boundary conditions

(4.3) and (4.4) together with the following condition at infinity:
E = Uﬂél ’ PP

o * 28 || = o , (4.7)

where e; is a unit vector in the direction of the x-axis.
The problem may be reduced to an associated electric potential

problem similar to that formulated generally in Chapter II.

P=p + 2p — , (4.8)

4= (U-®)e, +xvd , (4.9)

where
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VZ(D 1 (4.10)

with the boundary conditions,

v-o=-2[(52) - () ]

_ 9P _

= ¥ 4k _3"5)3: { =0, p<a); (4.11)
o0& _ =
B—X——O - (x=0,p>a), (4.12)
®—0, as Ix| Suall oo BN (4.13)

The boundary condition (4.11) is a linear combination of "Dirichlet"
and "Neumann" conditions. The potential &, satisfying this condition
and the others, (4.12) and (4.13), should be unique.

To solve the potential problem (4.10) - (4.13), we shall assume
a surface source density y(p) distributed axisymmetrically over the

screen (p < a). The potential CIJ(;;) due to such a source distribution

is given by

apam 1 1 1 1
o”o \/x +p"+ p'""- 2pp' cos (6-96")

The surface source density vy(p) is then to be determined by
requiring the potential & to satisfy the boundary conditions (4.11) to
(4.13). The last two conditions are automatically satisfied, while the

first one reduces to

U - & = 8vky(p) , (x =0, p <a) 5 {(4.15)
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by using the following well-known jump relation as given by (2. 21):
od ody _
(3), - (5%) = -amvto) . )

The boundary condition (4.15), written out explicitly, is an

integral equation for wy(P)

a 2 de
U—S p'ylp") dp'Sl — = 8mky(p) . (4.17)
Yo o Vp“+p'“- 2pp'cos (6-0')

Upon application of Lemma 1 of Chapter III, this becomes

o-a[ {710 e s . e

After interchanging the order of integration, we get

P dt Sa E: (l)d 1
U-4 5 = 8rky(p) . (4.19)
‘\’o dp -t t Vp' -t

We write

a 1 ! 1
Gl(t) =S. py(p’) dp' (t<a) . (4. 20)
t
The inversion of this integral equation has been given by Lemma 3 of
Chapter III to be

2 tG(t) dt

2 d
o'ylp) = - 2 —.S (o' <a) . (4. 21)
mde' o2 o2

Substitution of both (4, 20) and (4. 21) into (4.19) yields the
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following equation for Gf(t):

P a
. ) SAELdE g L dS‘ EoiEE | (4.22)

fzz d
o 4p -t pppt—p

Multiplied throughout by p, this equation is integrated from p to a,

1
a a P
US plzdpl > S pl dp' G(t) dt
P P o \Yp'"-t

a
. -16k§ ?1@‘ [S tG{t) dt 7 dp' , (4. 23)
t--p"

giving

a
s S’ tG(t) dt
p Vt“-p

a P
= % (az-pz) - g \Iaz- £? G(t) dt +§ \}pz- £2 G(t) dt .
~ 0 (o]

(4.24)

Let the right-hand side of (4.24) be denoted by B(p). Con-
sidering B(p) as a known function, (4.24) may be inverted according

to Lemma 3 of Chapter III to give

4ktG(t) = -

BN
D-alg_,

Sa (4. 25)
t

P

Substituting B(p) back into the equation and carrying out the integra-
tions and differentiations successively, we finally obtain a Fredholm

integral equation of the second kind for the function G(t), that is,
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a
2eeBlE) = —I—i\’az—tz -S Kit. s)Gls) ds,
(0]

where

(4.26)

(4.27)

A Fredholm integral equation of the second kind can be solved

by a certain standard numerical method, and so the potential problem

is considered solved. The flow quantities of the original Stokes

problem may then be deduced from the numerical function G(t), and

hence the Stokes problem is also considered solved,

For the pressure distribution on the screen, we have from

(4.8) and (4.16), taking into consideration that 8®/8x is odd in x,

Py = P, ¥ 4mey(p) (x=0, p<a).

Upon substitution from (4.21), we obtain

~ 1 d (*tG(t) dt
Pﬂ:‘PwiSHF'd—QS‘p e

(X=0, p<a)u

(4. 28)

(4. 29)

The mean viscous stresses at the screen can be shown to be

zero, and hence the drag of the screen is due to the pressure jump

alone. The drag D is therefore

v/
i

a
an (p_-pJpdp
o

a
32"”5‘ G(t) dt .
o

(4.30)
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A drag coefficient CD may be formed with respect to the solid disk

drag, l6uUa, so that
2 N
CD = —.[*j.—a S.O G’(t) dt . (4:. 31)

The normal velocity through the screen is given by the boundary

condition (4.4), that is

ws -5 (py-p) (x=0, p<a) . (4.4)

Averaging (4.4) over the whole screen, we obtain the following simple
relation between the mean velocity Go through the screen and the

drag coefficient CD

To facilitate the numerical computation of the integral equation

(4. 26) we shall make the following change of variables:

cr
1]
n
w
1l

an ; (4.33)

and

H(E) = 20 G(at) ,  HM = 2T Glan) . (4.34)

Equation (4. 26), therefore, becomes
.1
k
en¥mg) = IW1-62 - e, s an (4.35)
o

where
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Vi-¢2 +\ﬁ- nZ
V]g2 -n2|

The drag coefficient, equation (4.31), is reduced to

T(E,m) = log . (4.36)

1
Cp = So H(E) d€ . (4.37)

The integral equation (4.35) is solved approximately by a set of
algebraic equations. For a given value of a/k, the function H(§) is
evaluated successively at ten, twenty and forty equally spaced points
within the interval (0,1). The logarithmic singularity at n = £ of the
kernel I'(§,7m) has been properly taken care of in the evaluation of the
integral. To integrate equation (4.37) for CD’ use has been made of
Simpson's rule. The results obtained for the drag coefficient Ch

are tabulated in the following:

a “p
2 5! =10 20 40
1 0.163 0.162 0.162
5 0.481 0.480 0.479
10 0. 641 0. 639 0.638
20 0.772 0.769 0.768
30 0.831 0.827 0.826
50 0.888 0.884 0.882
100 0.939 0.934
200 0.969 0.965
300 0.979 0.976
1000 0.996 0.993
:

n is the number of ordinates used in the solution of

H(E).
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From this table, we see that the convergence is very good for
increasing number of ordinates used in the numerical solution of the
integral equation. The total time used on an IBM 7094 Computer
for this problem amounted to 58 sec. only,

The drag coefficient Cp is plotted against a/k in Fig. 4.

It is seen that its values are always below unity, that is, the drag of
a circular screen is less than that of a circular disk of the same
radius a. To obtain certain physical feeling as to the porosity effect
of the screen, we approximate it by a parallel slit model. Based on
(4.5),if the porosity 1 is 0.5, the value of a/k is 180 for 10 slits and
1800 for 100 slits in the screen. At these values of a/k, CD is
very close to unity and the screen behaves like a solid one. Only
when 7 becomes unrealistically large, can a screen experience a
substantial reduction in its drag. For example, m = 0.95, the ratio
a/k becomes 20 for 10 slits and 200 for 100 slits in the screen.

The corresponding CD is 0.77 and 0.97 respectively. At this
porosity, however, the width of the slit must be 19 times greater
than that of the wall. The plot also gives EO/U as a function of a/k.
The mean velocity Eo through the holes of the screen becomes ex-
ceedingly small when a/k > 200, and hence it shows the tremendous

blockage effect of the screen at low Reynolds numbers,
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PART TWO

VISCOUS FLOWS PAST POROUS BODIES OF FINITE SIZE
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I. INTRODUCTION

Many physical phenomena and engineering applications involve
viscous flow around and through porous bodies. Examples are the
lubrication of porous bearings which are often used as machine
elements, viscous gravity waves propagating over a permeable bed,
viscous flow through porous rollers used in paper mills, etc. There
are also flows which have great fundamental interest, such as the
viscous flow past a porous sphere and the rotation of a porous cylinder
in a viscous fluid.

These flow phenomena have a common feature in that the
motions of the_ fluid can be divided into two distinctive regions. One
region is that of the porous material saturated with the fluid, and the
other is a pure fluid region where no solid materials are present,
The flow in these two regions is governed by two different sets of
differential equations, and the flow quantities at the interface joining
the two regions must be related by a set of appropriate conditions.
These conditions will be called interface boundary conditions. The
actual flow in the porous region passes through many interwoven
passages. Its complexity necessitates using an averaging method
which replaces the detailed flow by an equivalent mean flow, This
mean flow is supposed to be distributed homogeneously throughout
the space originally occupied by the porous region. The empirical

law of Da.rcy*T is commonly used to describe such a mean flow

Yror flow through porous media and Darcy's law, see [1] and [ 2].
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provided certain restrictive conditions are met. For the flow in the
fluid region, we shall limit our attention to Newtonian fluids satisfy-
ing the full Navier-Stokes equations or satisfying their limiting
forms for small Reynolds number flows, i.e. Stokes' and Oseen's
equations. The interface boundary conditions, therefore, serve to
connect the flow variables of Darcy's law applied on one side of the
interface to those of the viscous flow equations applied on the other
side. Since the corresponding flow variables in the neighboring
regions are actually derived from somewhat different definitions, it
is not readily clear how to make associations between them. This is
one of the main reasons why the interface boundary conditions have
been controversial in recent years. The purpose of this investigation
is to clarify the interface boundary conditions and to formulate them
correctly.

Recent studies on porous body flows have been made by Tao,
Joseph, and Shir [ 3] - [7]. Their analyses include the slow motion
of a porous sphere, the rotation of a porous disc, the ground flow
induced by a moving cylinder, as well as the lubrication of a porous
bearing. The interface boundary conditions used in these studies
were as follows: (1) the normal velocity on the fluid side equals the
normal superficial velocityT on the porous side; (2) the pressure on
the fluid side equals the mean pressureT on the porous side; and (3)

the tangential velocity on the fluid side vanishes. The third boundary

TFor definitions of superficial velocity and mean pressure, see
Chapter II,
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condition on tangential velocity is a debatable one because the inter-
face actually contains many holes and a tangential movement of fluid
is possible at least over the hole parts of the interface boundary. The
net effect could very well be a slip rather than a non-slip condition
for the tangential velocity on the fluid side of the interface.

The authors mentioned above have also assumed that the third
condition is approximately valid when the permeabilityT is small com-
pared with some typical gross area of the porous body. However,
the slip velocity can still be large and important in some cases even
when the above criterion is satisfied. Anillustration ofthis pointis seen
inan experiment involving Poiseuille channel flow over a naturally per-
meable block reported by Beavers and Joseph [ 8]. They found that
when the gap of the channel is small, the fluid efflux is greatly in-
creased over the value it would have been if the block were imper-
meable. This indicates the presence of a large slip velocity immedi-
ately adjacent to the permeable surface, and appears to be the case
regardless of the value of the permeability. This slip effect was
attributed to the existence of a thin layer immediately inside the
permeable block, in which Darcy's law is not applicable and across
which the tangential velocity changes continuously from its interior
mean value to the slip value outside the block. The slip velocity can
be considerably greater than the interior mean velocity. Their
difference, or the tangential velocity jump across the thin layer,

was found to be proportional to the normal gradient of the tangential

TFor permeability, see [1] and [ 2], or Chapter II.
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velocity outside the block. From these findings, it appears that if
Darcy's law is used to model the flow through the porous region, the
interface boundary conditions should relate flow variables on the two
boundaries of the thin layer instead of at the crudely simplified inter-
face of zero thickness. In particular, the tangential velocity jump
condition should replace the non-slip tangential velocity condition
mentioned previously,.

There have also been studies on the viscous damping of a
gravity wave propagating over a porous bed. Hunt [ 9] in his treat-
ment assumed almost the same set of interface boundary conditions
as used by Tao et al. However, instead of relating just the pressures,
he included also the normal viscous stresses and required the total
normal stresses to be continuous across the interface. Murray [ 10]
repeated the analysis of the same problem but adopted a different set
of interface boundary conditions. He related (but did not make equal)
both the normal and the tangential velocities across the interface.

He established a third condition derived from energy conservation at
the interface,

In the literature to date, different sets of interface boundary
conditions have been used by different investigators. Unfortunately,
none of these sets have been supported by convincing proof. The
reason behind the confusion is largely due to the fact that clear cut
definitions of the flow variables for the equivalent mean flow in the
porous region and an understanding of the true nature of such a flow

are still lacking. Therefore, it is necessary that the flow in a porous
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medium be studied thoroughly before any interface boundary conditions
can be formulated correctly.

The following chapter is devoted to a critical examination of
the flow in porous medium. Darcy's law is first reviewed and its
limitations concluded. Then, continuing on beyond the usual empirical
point of view, we consider the mean flow to be built up from those
microscopic flow through the winding narrow passages. Assuming
the microscopic flow to be sufficiently random, and that Stokes'
equations for slow viscous flow are applicable for their description,
general macroscopic equations of motion for the apparent mean flow
are derived by a statistical means. This statistical approach also
enables us to define unambiguously all the mean flow variables. The
resulting macroscopic equations are believed to be more generally
valid than Darcy's law, and actually reduce to Darcy's law when the
Darcy number is small. The Darcy number, to be defined in the
analysis later on, measures the relative importance of the mean
viscous force with respect to the mean resistance provided by the
solid material in the porous medium. Chapter II concludes with a
study of the energy balance in a porous medium.

Establishment of the above mentioned macroscopic equations
leads to correct formulations of interface boundary conditions., A
correct formulation should be one of the following: (1) Establish
correct equations of motion for flow in the whole porous region up to
the immediate neighborhood of the interface and then relate corre-

sponding flow variables across the interface of zero thickness,
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(2) Continue to use Darcy's law except in a thin but finite porous
layer at the interface and then obtain jump conditions on the flow
variables across this layer. Both of these formulations will be con-
sidered in Chapter III. The macroscopic equations obtained herein
are appropriate for the first formulation mentioned above. In addi-
tion, when the macroscopic equations are applied, as will be illus-
trated by an example, the solution clearly shows that there usually
exists an interface layer across which the mean tangential velocity
varies rapidly and, consequently, the mean viscous stresses are not
negligible., This is the layer in which Darcy's law ceases to apply.
A nominal thickness of the layer is derived from the analysis and its
order of magnitude is comparable to the grain size of porous media
arising in general practice. In spite of the thinness of the layer, the
contribution to the tangential velocity jump is, however, not small,
An analysis of flow within an interface layer of general nature actually
leads to the full establishment of the interface boundary conditions of
the second kind.

In the last chapter, both types of interface boundary conditions
are applied to the analytic solutions of two fundamental problems.
One is the Stokes flow past a porous sphere; the other is the viscous
flow between two cylinders, the outer one is impermeable and rotating
at a constant speed, while the inner one is porous and stationary.
Both examples are valuable in demonstrating (1) the existence of a
solution of these types of coupled flow problems, and (2) the porosity

effect of a porous body on the external flow.
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II. EQUATIONS OF MOTION FOR FLOW THROUGH POROUS MEDIA

2.1. Empirical Darcy's Law

We begin with a brief review of the structure of porous media
and the empirical law of Darcy.

A porous medium is a solid containing numerous intercon-
nected pores. The pores commonly have two types, one is the inter-
granular type, like the pores between sand grains; and the other is
the interwoven tunnel type, like the pores in material made up by
fibers or wires, There are also isolated pores but they do not affect
the flow in a porous medium, and are better considered as a part of
the solid. The structure of pores, or their complementary solids,
can be characterized by many factors, such as surface area, chemical
composition, size distributions, etc. In fluid mechanics, two param-
eters are most important. These are the porosity and the character-
istic size. The porosity of a porous medium, m, is defined as the
ratio of the volume of all interconnected pores in a gross volume of
porous medium to that gross volume. When the distribution of the
pores is sufficiently random, both in size and in location, we may
consider the porous medium as homogeneous and isotropic. Under
such assumptions, if we pass a surface through the medium, the
ratio of all surface pores on this surface to the total area of the
surface will have the same value as the volume porosity m. Like-
wise, if we pass a line through such a medium, the line porosity is
also the same as the volume porosity. Thus, we have in a homo-

geneous isotropic porous medium,
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_ volume of pores _ area of surface pores

total volume total area

_ length of line pores (2.1)
- total length : *

All the pores considered are necessarily interconnected. The
characteristic size can be defined as the average size either of the
solid grains or of the pores of the medium, whichever is more con-
venient.

The equations governing the flow through the porous medium
were established empirically by Darcy in 1856, The equations have

since been generalized into the following form:

VAR |

i

o, (2.2)

q=-%
18

VP . {2.3)
In the above, a is the superficial velocity defined as the rate of
volume flow through a cross section of unit area normal to the flow.
P is understood to be some sort of mean pressure but without ever
being given a clear definition. In an experiment, it is taken to be the
pressure measured by a piezometer inserted through the wall of a
channel in which fluid flows through a porous medium. Also in the
above, p is the viscosity of the fluid and k is the permeability.
The value of permeability measures the ease with which the flow
passes through the medium. It is the most important dynamic
parameter of flow through a porous medium, because it combines

all the influences of the complicated geometrical structure of pores
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and solids into a single experimental coefficient. The permeability
usually assumes a very small number for ordinary porous media.
For example, a sand mixture, of size range 0,139 to 0.211 mm and

of porosity 0.37, has a permeability k egual to 0,2 X 10—6 crn2

Even for wire crimps (each wire crimp is 0,328 mm in diameter and
5.7 mm long) with a porosity 0.76, k is around 1 X 1 crnz..T

Darcy's law has, of course, its intrinsic limitations. Accord-
ing to various investigators, the law is only true under the following
conditions:

i. The macroscopic scale of the porous medium in question
is much larger than the characteristic size of the pores.

ii. The pores in the porous medium are interconnected and
saturated with only one fluid.

iii, The fluid is incompressible, homogeneous and isotropic.
ive Both the solids and the fluid are physically and chemically
stable and do not react with one another.

v. The flow through the porous medium is very slow. The
slowness is measured by the Reynolds number, Re = pEd s
where p is the fluid density, q is a certain mean velocity
in the medium and d is a characteristic size of the pores
or of the grains., For example, in a porous medium con-
sisting of uniform spherical particles, Re should be less
than 4 if d denotes the diameter of the particle.

Under the conditions outlined above, the permeability k is a

TFor some permeability data, see [16].
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property of the geometrical structure of the pores or the solids
alone. It could in general depend on the position as well as the
direction within the medium, but it is independent of the fluid pro-
perties. Furthermore, if the porous medium is statistically homo-
geneous and isotropic, k is a constant of the medium. Then, by

dimensional analysis, it can be shown that
2
k = a’("’].S)d ’ (2:- 4)

where o is a dimensionless coefficient depending on the porosity n
and the shape factor s of the pores or the solids.

The Darcy equations (2,.2) and (2.3) serve very well in many
instances of flow through a bulk of ordinary porous medium, such as
flow underneath a dam and underground flow due to pumping of a well.

Mathematically, (2.2) and (2.3) are equivalent to

VP =0, (2.5)

E:—:—IVP. (2.3)

The harmonic function P can be shown to exist and to be unique when
either P or %ll—j (which is proportional to qn) or a mixed condition
of both of them is prescribed on certain appropriate boundaries,
Further variations of boundary value problems are possible. When

P is found, the velocity field is simply given by (2.3).
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2.2, Microscopic and Macroscopic Descriptions

Darcy's law, as outlined in the preceding section, is to
describe the flow through porous media in a superficial and gross
fashion. It is not concerned with the details of the flow throughout
the interwoven passages. We call such a gross description a macro-
scopic description, while one concerned with details of the flows is
termed a microscopic description. The microscopic flow is too
complicated to analyze, and therefore a macroscopic approach is
necessary.

An empirical method, by which Darcy's law was established,
i s not the only way by which a macroscopic description can be pro-
perly deduced or induced. A macroscopic description is most
rationally built up from the microscopic flow by statistical means.
An adequate statistical formulation does not require a complete
knowledge of the microscopic flow.

The same type of concept has been used in kinetic theory
which considers random molecular motion as the "microscopic”

basis for the "macroscopic" continuous motion of a fluid.

Fig. 1. Microscopic and macroscopic flows.
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To begin with the statistical formulation, we consider a
porous medium which occupies a region V. Let the microscopic
flow inside the region be described by the velocity 4 and the pres-
sure p. A fluid particle usually follows a tortuous path through the
medium, as is indicated in Fig. 1. But as viewed from far away
the tortuosity of the particle path becomes vague and smoothed.
Equivalently, we can consider a smooth mean path, as shown by the
dotted line, instead of the original tortuous one. A smoothing effect
can be obtained by defining a mean velocity as and a mean pressure

P at a point x as follows:

il — 1 -— i
q_(x) =37 . ulx'yav , (2. 6)
§ B¥g AV (X)
PN ¥ 1 (* =
plx) = 3z=r _ px')yav , (2.7)
Avf‘SAV'f(x)

where the integrations are over zwf, the pore portion of a small
region AV surrounding %. The quantities AVf and AV denote
the pore volume and the total volume of AV, respectively., This
averaging process effectively transforms the microscopic flow in
the porous medium V to an apparent mean flow, namely, a
macroscopic one, in a continuous medium V'. The range of V'
is identical to that of V. The transformation is demonstrated
graphically in Fig. 1. We shall further assume that the volume
AV chosen for the averaging is small compared with the overall
volume of the region V but is large enough to include sufficiently
many pores so that resulting mean values are continuously differ-

entiable to the desired degree throughout the continuous medium V',
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The mean pressure and the mean velocity defined above are
seen to be the true average values of their respective microscopic

—

quantities associated with a bulk of fluid. Therefore, qg gives the
true velocity of motion of such a bulk of fluid. For this reason, ES
will be termed the seepage velocity. In order to compare with the

superficial velocity a used in Darcy's law, we shall also define a

corresponding mean velocity as follows:

2

—_ 1 —_

(I

—_

AVf(x)

The only difference between this and (_:IS is that in the present defi-
nition the integral is divided by the total volume AV instead of the
partial volume AVf. Suppose that the porosity in the neighborhood

of x is 7, the relation between a and Es is simply

—_

<_:I=T1qs . (2.9)

Furthermore, if the porous medium is locally homogeneous and
isotropic, it is plausible to assume that the mean value obtained by
a volume average will have the same value as obtained by a corre-
sponding surface average, provided both the volume and the surface
include the same reference point %. The mean velocity a of (2.8)
may then be calculated alternatively by the surface average. Its
physical meaning is precisely the discharge per unit gross area of
porous medium normal to the flow. Thus, we have identified E of
(2.8) with —;1 in Darcy's law and we shall call them both superficial

velocities. We shall also identify p to be the mean pressure P of
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Darcy's law when the interface boundary conditions are established in
Chapter III.

Having already established a link between the microscopic and
the macroscopic points of view, the next task is to establish the equa-
tions of motion for macroscopic flow, namely, to find the differential
relations between derivatives of the mean velocity and the mean
pressure. Before this can be done, it is necessary first to state the
law governing the microscopic flow. For the present investigation,
we shall limit our attention to a Newtonian fluid satisfying the Navier-

Stokes equations:

Ve.eu=0, (2.10)

p%—t‘f + plas V)T = -Vp + 4V , (2.11)

where u, P, P, B are respectively the local velocity, pressure,
density and viscosity of the fluid defined in the usual sense of con-
tinuum mechanics. In principle, the microscopic flow field is com-
pletely determined if the non-slip condition is imposed on all the
solid surfaces.

By referring to the characteristic velocity in the porous
medium, g, the characteristic size of the solid (or the pore), d,
and the characteristic frequency, f, the above equations can be

made nondimensional by using the following substitutions:

, t'=ft, u'=

K|

x' = , P (2.12)

alg)

|:_E__’
Bq
d



-61-

giving
v'eu' =0, (2.13)
and
85' Th noo 11 1275
fOW + Re{u'* V')u' = -¥'p'+vV'"u' , (2.14)
where

Re = %c—l = Reynolds number,

FA
g oS

o = reduced frequency .

When both the Reynolds number and the reduced frequency of a micro-
scopic flow are sufficiently small, the inertia terms on the left of
(2.14) may be neglected and the result becomes Stokes' equationsT for
slow viscous flow. Recovering the dimensional forms, Stokes'

equations become
Veu=0, (2.15)
2_.
-Vp tpViu =0 . (2.16)

In this case, the boundary condition of microscopic flow is again the
non-slip one.

For most cases of practical interest, we may limit our
studies of viscous flows through a porous medium to the category in
which the microscopic flow satisfies Stokes' equations (2.15) - (2.16),
and we shall attempt to derive the macroscopic description by apply-

ing appropriate statistical means,or an averaging method, to the

TFor a treatment of Stokes' equations, see [11] and [ 12].
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Stokes' equations. Before doing that, we shall however consider
construction of some idealized models of porous media for which

the microscopic solutions of Stokes' equations can be obtained.

These simple models are interesting because they can provide valuable
insight into the more complicated general case of flow through a ran-
domly_ distributed porous medium, and thereby enable us to establish

the macroscopic equations correctly.

2.3, Idealized Models of Porous Media

Idealized models of porous media are formed by regular arrays
of obstacles, for which the solutions of Stokes'equations can be obtained
By applying the averaging processes described by (2. 6) and (2.7) of
the preceeding section to the microscopic solution, a macroscopic
equation of motion can be derived for each specific model. Following
this approach we shall discuss in the sequel three models: (1) Parallel
tubes, (2) an array of circular cylinders, and (3) a lattice of spheres.
These models have been described in the literature by various approxi-

mations. Here we collect only those solutions obtained analytically,

Model (1). Parallel tubes:-

The parallel tube model consists of a bunch of identical,
parallel tubes imbedded in the solid. The flow in each cylindrical
tube is assumed to be a Poisouille flow, maintained by the same
constant pressure gradient along the tube. The microscopic velocity
distribution over a cross section of the tube generally assumes the

following forrn:T

For a treatment of viscous flow through a tube, see [12].
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- _L1dp
U.(Y,Z) = n dx f(Y,Z) ] (2.17)
where ’\72:5 = -1 within the cross section of the tube, and f=0 on

the tube boundary. Here the x-axis coincides with the axis of the
tube, and u is the x-component of the velocity. For example, for

the flow through a circular tube,

ofr) = - 5z L ®RE- %) , (2.18)

in which r 1is the radial distance, and R is the radius of the circu-
lar tube.
For this particular model, the seepage velocity q s as defined

by (2.6), is the same as the mean velocity through the tube, that is
o
gy = K‘S‘ uly,z) dS, (2.19)
A

where the integration is over the whole tube cross section and A
denotes the cross sectional area of the tube. On the other hand, since
the pressure is uniform over the cross section, the mean pressure P
may be considered to be the same as p. Therefore, upon integration
of (2.19), using the velocity distribution (2.17) and substituting p for
p, the following macroscopic relation is obtained:

2

- a2 dp
qS = - n dx (2--20)

where £ is the characteristic length of the pores and is now set to be
VA. The coefficient @, is a constant depending on the shape of the

cross section, and may be called a shape factor.
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