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DETERMINATION OF ELECTRONIC ENERGY LEVELS OF MOLECULES
BY 90° LOW ENERGY ELECTRON SCATTERING

Abstract

A review of the theory of electron scattering
‘indicates that low incident beam energies and large scatter-
ing angles are the favorable conditions for the observation
of optically forbidden transitions in atoms and molecules.

An apparatus capable of yielding electron impact.
spectra at 90° with incident electron beam energies between
30 and 50 electron volts is described. The resolution of the
instrument is about 1 electron volt.

Impact spectra of thirteen molecules have been
obtained. Known forbidden transitions to the helium 235,
the hydrogen bjiz:, the nitrogen ABEE:, BBﬂé, a'ﬂé and
ijLb the carbon monoxide a%ﬁ, the ethylene ESB
3Blu
states have been observed.

fg? and

the benzene a states from the corresponding ground

In addition, singlet-triplet vertical transitions in
acetylene, propyne, propadiene, norbornadiene and quad-
ricyclene, peaking at 5.9, 5.9, 4.5, 3.8, and 4.0 ev (10.2
ev), respectively, have been observed and assigned for the

first time.
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Table 1. Observed Electronic Transitions In This Work
molecule peak of observed band assignment
helium 19.8 + 0,2 ev 2%
21.0% 2%p & 2'p
22,.8% 33s, 3's, etc
hydrogen 10,2 b .
" et 3 3 I
12 7% B Z“}aia,c Né Clu
nitrogen 8.5% AH‘J}B’J[J & a'JtJ
1. &1 C3xt.
13.2% b'7. ,etc
16.0
carbon monoxide| 6.2 a3m
8.5 A'T
10,6% b¥E*
13.5%
ethylene 4oh ﬁan,(og’T) )
7 o H A'B,, & B (or V & R)
10,0
acetylene 5.9% T & & B
9.k
propyne 5.9% T & A
propadiene 4.5 T
7.6%
8.7%
9.5%
propane - onset of continuum
at 8.0 ev
1,3-butadiene i A (or V)
9.7 Va4
benzene 3.8 3B
7 .O% B'Bu& C'Ey
10.0
norbornadiene 3.8 o
7.4
quadricyclene 4.0 T

* = not resolved
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, (4 Introduction

The usual experimental techniques in studying the
electronic energy levels of atoms and molecules can be
described as follows. One excites the molecules with
some appropriate emnergy source and observes the excitation
process by measuring the energy involved. Excited
electronic states below the first ionization potential
of a molecule usually lie between a few electron volts
to about 20 electron volts above the ground state. These
energy levels are of great interest in the field of
chemistry and physics because they provide information

on molecular structures and properties.

Energy sources generally used for the excitation
purpose are electrons and photons. The latter have been
adopted most widely because of experimental high resolution
and accuracy. However, there are two restrictions
accompanying the use of photons. First, energy range
beyond about7electron volts correspohds to the wvacuum
ultraviolet region which presents experimental difficulties,
Second, there are certain selection rules based on theory
and experiment that a transition caused by a photon must
otbey. In particular it is well known that optical
transitions between levels of different multiplicity are
highly forbidden if spin-orbit interaction is negligible.
This is often the case for atoms and molecules of small

atomic number,

Fortunately, by using low energy electrons as an

energy source these defects can be overcome.

The term "low energy" means that the energy of the

electrons is of the same order of magnitude as that of the



energy of the molecular electrons. In practice, electron
beams having energies from a few electron volts to a few

tens of electron volts can be employed.

It was first pointed out by Oppenpeimer(l)that in
the collision of an electron with an atom the electron
exchange effect of the incident electron with one of those
in the atom may be important. Physically speaking a
transition involving a change in spin multiplicity may

thus be induced.

The purpose of this research is to obtain information
about low-lying electronic states of molecules which is not

available from optical spectroscopy.



II. Theory of Electron Scattering

IT.1. The classical picture

From the classical mechanical point of wview an

electron with kinetic energy V electron volts travels in

space with the speed

8

v=0.593 x 10°V cm/sec. - 9

From this formula the following table results.

Kinetic ehergy e % ) 4

of electron 1 10 30 50 100
Speed of 3

electron (10% em/sec) ©.593 1.87 3.24 4.19 5.93

On the other hand, the root-mean-square velocity

Vims ©f @ gas molecule of mass m at temperature T is
given by

i€ .
>

v”"s=(3KT/m) (2)

-6
where K=1.380 x 10 erg/degv/molecule is Boltzmann's

constant, At room temperature, T=298°K. Therefore, Vg

equals

04515 x 10 5cm/sec for N, and
1.93 x 10 5cm/sec for H,

Thus, when a beam of low-energy electrons is fired
into a box containing gas molecules, the latter can be
assumed stationary. To a good approximation, the laboratory
coordinate system can be taken as the center-of-mass

coordinate system,




IT.2., Motion of electron wave packets

According to de Broglie's theory of matter waves(z)
when a particle is traveling with linear momentum p, there

is always a wave of wavelehngth

h h
e T

(3)

associated with it, where h.is Planck's constant,

In the case of low-energy electrons this wavelength

is given in the table below for several electron energies.

Kinetic energy
of electron (e v ) - 10 30 50 100

Wavelength of ”
associated wave (A) 12.27 |1 3.88 | 2.24 | 1.735 | 1.227

The physical size of a gas molecule usually is of
the order of 1~73 K in diameter. Thus the region of
interaction of an incident electron with a molecule is
of the same order of magnitude as the wavelength of the
electron wave. Hence the problem must be treated with

quantum mechanics.

o P Definition of Scattering Cross Sections

Consider a beam of electrons with known kinetic
energy, passing éhrough a hypothetical gas consisting of
"hard sphere" atoms of cross-sectional area Q.' If the
number density of the gas is N, and the original electron

current density is I, then the decrease in current density



due to scattering at'ter traveling a small distance dx is

given by
dI= -NQ T dx : (%)

On integration oI equation (4), we have

I=I°exp(-NQX)

(5)

where I, is the current density at x=0.

In reality gas molecules are not hard spheres,.
Electrons are scattered by molecules through some inter-
action potential. However, equation (5) can still be used
to define Q. It is called the total collision cross section
and is a function of the relative kinetic energy E in

general,

The collision of an electron with a gas molecule
can be classified elastic or inelastic depending on
whether or not there is energy transfer from the electron

into the internal degrees o1 freedom of the molecule.

Thus Q can be expressed as

.
Q=Q,+ 2 QJ ' _ (6)
=
where Q=total elastic cross section,
Qj:j—thtotal inelastic cross section,

n=number of all possible inelastic processes.,

In practice, it is convenient to define the
differential cross sectionofas the cross section per unit
solid angle. Thus ﬁdn represents the cross section for

scattering into the solid angle d€ through the Jj=th



process. The following relation holds:

. n

Q= > Qi= > j@;dﬂ, (7)
pe = &

If a spherical polar coordinate system centered on

the molecule 1is used, then
o=

¢=2%
Qj:j j 05 sing 40 de, (8)
G=0 Q=0

In general,q is a function of E, g, and¢. If we

know all theigthen we know all about the scattering process.

T 4. Quantum theory 6f Scattering of electrons by

hvdrogen atoms

In order to treat the scattering process by quantum
mechanics, the scattering system must be described by wave
functions that are solutions of Schroedinger's equation
and which satisfy appropriate boundary conditions. The
simplest case is the collision between an electron and
a hydrogen atom. The arguments and derivations presented
below serve only as a brief review of the field. More
detailed discussion can be found in the book by Mott and

(3)

Massey

II.4%.1. Direct Collisions

If we assume there is no exchange effect and that
electrons are distinguishable, then the incident electron
and the atomic electron can be labeled by subscripts 1 and

2, respectively. The Schroedinger equation for the system



can be written as

- —>
(%, R)=-e¥(F .5 ) (9)
where
H = Hamiltonian of the system (neglecting spin)

A w2,  E* H* 2 e* e*
=SVl r (- m - o o)

rl rll
(10)
¥ = wave function of the system (space part only),
E = total energy of the system,
%,: radius vector from the proton to the j-th

electron, j = 1liox 2,
r,= distance between electrons 1 and 24

7e= mass of an electron and

2 B 3? a* _ :

Vil v+ —+ = the Laplacian operator for the
| T 2x* 9y* a3r
J i % % j=-th electron.

We note that E = E,+ T, , where E, is the ground
state energy of the atom and T, is the kinetic energy of
the incident electron. In the absence of the atom, the

i
¢ Rt

wave function of electron 1 can be written as e and

satisfies the wave equation of a particle in free space

2 S 3
- ’zmvl e" ‘ ='I",e",Q (ll)
Thereiore,
R =om 4= 2B (B -E) (12)

—
- - .
where ﬁ.: %nn,= incident wave number vector,
-

and n, = unit vector along the incident direction.



e N
If %( T, ) are solutions for the Schroedinger

equation of the hydrogen atom

[~ £ - £ 4@ = & %7, (15)

where J = 0,1 2% wiveinsg
then the %(f:) form a complete orthonormal set in the ;:
space.
T —~ - 0.
Thus we can expand 1( r, , r, ) in the r, space as
%, 1 F rq
LRea' |, (ﬂ -
=r oy F) +5>  E)ely),
C(fn)=e g in Pl j (14)

On the right hand side of equation (14), the first term
represents the incident wave and the ground state of the
atom; the term in the summation corresponding to j =0
represents elastic scattering from the atom; the others,
with jZ1 are associated with the inelastic scattering
processes, the sum extending all possible discrete and
continuum states of the atom. For states with energy
higher than the incident energy, the asymptotic forms of
Fj will be a dying exponential. Including these states in
the summation is necessary since, for the expansion to be

correct, the set of basis functions must be complete.

In order to solve for F; ( ), we substitute
equation (14) into equation (9), multiply both sides by
¥ - o
ﬂ( r, ), and integrate over 1, . Making use of equation

(11) and (13) and the orthonormality of the ‘%( ;:),



we obtain

F* 2 —>
[ am Vi 7 ] ; (15)
— Van euiz.n..n +Z f:j-(ﬁ)l/

j:o“:‘ 1,0

where

V. (r) = Mf(E’J S+ ] e R, (16)
Jh.

Equation (15) is a set of coupled partial differential
equations. In principle if we know ﬂ( ;i) then we can

calculate Vja.. Since E 1is also known we can solve for

—

F. (¥ ). Hence the total wave function J( T, , r, ) can

be obtained,

T lbe 2 Born Approximation for direct collisions

The Born approximation is applicable whenever the
incident electron energy is much higher than the inter-
action energy such that the scattered wave is small
compared to the incident wave. This means that the first
term on the right hand side of equation (14) is the
dominating term of the total wave function. Consequently,
Vinand Fj ( o )*in equation (15) are all small compared
to V,, and eﬂﬁ'ﬂ ,respectively,and may be neglected. This
is actually the first order perturbation method applied to

scattering theory.
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When the Born approximation is valid, we can rewrite

equation (15) as

(_*) am y i Bt
* * JRAG)= in €
(KZ + ka J n Zr Yen , {17}
where
2 pean
ke =05 (B —EgJ- (18)
Now equation (17) is a set of uncoupled inhomogeneous

partial differential equations for =n = 0,1,2, ..... etc.

For a realistic scattering potential, F, ( ;T) is
everywhere finite, and at large distances from the atom
( r,»=), the scattered wave must be close to the form of
a spherical wave. With these ideas in mind we see that

egquation (17) is a special kind of partial differential

(&)

equations solvable by the method of Green's function" .

Thus the asymptotic form of the solution Fn( E )

from equation (17) can be written as

s
If we define W to be in the direction of r, , namely,

the direction of scattering, then
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-
I

T

X

~R-F o+ (‘Leﬂm of- order —;_’—-)+ . (20)

Substituting equation (20) into equation (19), we have

- (:'knr; _gﬁh;-_" L"kc":;o'r-f' =%
Ph(rn)f(r\d) (&~ “"4—'7:8 H%’ V. e ]dr'. (21)

Since the only dependence on E in the integral on the
right hand side of equation (21) is through n, the

direction of scattering, it is customary to define
 Ra LT
! — | =L Rall® am
-I[h(gl,q),)'— ["’4‘7‘:6 }[ :h'.z. M,LC
F3

Hence, at large 1r, , the solution of equation (17) becomes:

& #n

FLR) —— £ f s, (23)

(rl—)m.) r'




Fn(f?) is associated with the amplitude of the scattered
wave through the n-th process. It can be obtained in

the Born approximation from equation (21).

II.4.3. Differential cross sections from probability currents

Associated to a particle described by a certain

wave function ¢( r ), there is a probability current density
- 5

S defined by(S)

§=3§’E (WW’ - ﬁbﬁﬁl’*) : - (24)

= —r

where V'is the gradient operator. S satisfies the equation
2L 4 div 3 =8, | (25)
2t

where?:i?r, which is analogous to the continuity equation in

hydrodynamics,
5 f 3
= + div = O
>t } ) (26)

—_—
where fis fluid density and j its current density.

In our scattering problem, the incident wave may be

described as a plane wave in the =z - direction

- sz—l:‘;: -'-'*031
y(r)=Ce sl L ) (27)

where C 1is a normalization constant.

Hence the probability current density associated with

the ZI.cident plane wave in the =z - direction is
5 2 28

incident m



13

Now the scattered wave at large 1, dis, from equation (23)

b'k r
~

Foan) == f, (0.4 (29}

where C is the same normalization constant.

The gradient operator in spherical polar coordinates

is given by

—_
7 .2 0 L9 7 A I 30
V=43 4 ¥35 + % 755 3¢ 3 k75

—

- —_ . - .
where u., U, , uy are unit vectors associated with the

r, 8, ¢, coordinates, respectively.

In order to obtain the probability current dS,,;
coming out an element of solid angle df?,at large r, , we
simply multiply the radial component of the probability
current density vector by the element of surface area at

a distance 1, subtended by dfh:

dSsut =(i;fn)lclzjfn(@"¢J)z dl}i (31)

The ratio of dS,utto Si... is the probability current

scattered into solid angle dfl,per unit incoming probability

current through the n - th scattering process . By
definition, it is equal to the differential cross section
o.( E,8,%) times dfy,, Thus, from equations (28) and
(31) we have

T.(E.6.¢ (32)

m/z
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Substituting the definition of fn(a,¢,) from equation (22)

into equation (32) yields

G(£,0,4)= 2 (F) [ |y, TR (33)

where V,, is defined in equation (16). We see that
equation (33) is the expression for the differential cross

section derived from the Born approximation of direct

scattering.

IX.4.4. Selection rules from the Born Approximation

For the case of inelastic electron scattering by a
hydrogen atom (n>o), we may further simplify the expression
for W ( E,0,¢) by substituting V,, into equation (33)

= (6)

and making use of the following equation for small 4k

- o
ok -1 ok B
J"; — drr = 2L e : (34)
ir'—=n| - (4R) »
where
A% = W — ka M, (35)

is the wave number transfer vector,and
) 2 2 2
(ak) "= kR +Ra" — 2R, BncosQ, . (36)

Thus from equations (16), (33), (34), (35), and (36),



we have:

In order to simplify equation (37), let us choose

—
sk to be along the 2z,- direction, thus

. AR | ¢ (aR)
e =g s (38)

- 2
Ian general, if [6@#)1]«», we have the following expansion (7)

eo(di)aa _ ¢ (a®)3, N [L.(A\ﬁ)%]1+ o
k] 2!
. i [(’Gﬂi’)gzlp 7 (39)
- L1 _

Substituting equation (39) into equation (37), we obtain

“mre? 3 ) ]
e, 0. 4) = SEEE (4] £ [ ot [ e

L=a

2
where

an

<3,1-P> _ jf‘ L/—'n* }:P "f’o O{F: ‘
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The first term in the summation with f= 0 is =zero

for n = o because of the orthomormality of the wave
=
functions %JEL

From equation (36) we see that the requirements for

Ak to be small are that:

— —
a). k,and k, are approximately of the same

magnitude,

b), the scattering angle €, is small. These are also

the conditions for the Born approximation to be valid.

When the assumption
(AR)" >> (ak)* (41)

is introduced into equation (%40), the resulting

Tn( E,6,¢,) depends on the electric dipole transition
moment(izn only. This dependence is the same as that of

the transition probability of an electric dipole interacting
with an electromagnetic field (8). In other words, the

small - angle inelastic scattering of sufficiently high

energy electrons by H - atoms obeys the same electric-—

dipole selection rules as do the optical transitions.

This conclusion may be generalized for many-electron atoms
and molecules and is actually observed experimentally by

many authors. (See part III. below.)

Whenever in equation (40) the term for 4= 1 is zero
L. . that for {= 2 is non-zero, we have a quadrupole-
allowed transition analogous to the electric quadrupole

allowed but dipole forbidden optical transitions.
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b e S Energyv dependence of cross sections

/e have seen above that the Born approximation should
be valid for large incident energies and small scattering
angles only. However, the agreement of experiment with
theory has been surprisingly good down to fairly low beam
energies (~200 e v ) and up to fairly large scattering
angles (A&Sﬁ. Furthermore, the differential cross section

decreases rapidly with angle. ( See Section IIL. 1.)

Therefore, it seems worthwhile to estimate the
energy dependence of inelastic cross sections {Q, from
the Born approximation although it breaks down at large

angles.

From equation (8), we have for the cross-section

Q,(E) for excition of the n-thstate

27T b

Q.(E) = Ta(E,0,¢) sin0 do d¢ (42)

$=0 O=0

In our case, a central potential problem, there is
]
no ¢ - dependence, and therefore

T
g lE = 2% f Th(E,0) sin® do . (43)
P=0o

It is convenient to change the variable of integration
\“L)from ® to a4k because U E,® ) is readily obtained in
terms of 4k. Thus, from equation (36) we have (dropping

the subscripts 1 )
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SinG 0 — @%) d(«R) -
"l'{éo "-"{n_ ()-GL#)

The limits for integration, trom equation (36), are now
—&o_ﬁ'n ahoz 'i?o -+ _ﬁ)ﬂ. "

Thus equation (43) becomes:

Ro + R
@%) dlak)
Q) E)= 2% Tn(E,0%) -——-—_gﬁ - (45)
o B i

For the optically allowed electric dipole transition

('Cian#O ) at large incidentlenergy E, we have(g)
oo IR méd'} I I - Y
Qn(E) & — i [{& % l E 1 Fazy ~ ¢

Similarly, for the electric quadrupole transition(optically

forbidden) at large incident energy E, we have:

CQ“(E) ~ e m™ &% }<:Zz:%hlz

E

Thus we see that the optically forbidden transitions depend

on E more strongly than does the optically allowed ones..
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IXI.4.6., Bxchange Collisions Born-Oppenheimer

Approximation

The theory of scattering of electrons by hydrogen
atoms which we have developed so far has been limited to
direct collisions. We have assumed that electrons are
distinguishable and that there is no exchange. The
corresponging results are in agreement with experiment
under the conditions of high incident energy and low
scattering angle mentioned above. However, at low incident
energies and large scattering angles the contribution from

electron exchange becomes non-negligible..

In equation (40), we obtained a differential cross
section for the incident electron being scattered into a
given direction after exciting the H-atom to the n-th state,.
It is also possible that the incident electron may be
captured by the atom into the n-th state, and the atomic
electron ejected. This phenomenon is known as electron
exchange. It was first taken into account by Oppenheimer
(l)in treating the problems of elastic scattering of electrons

by hydrogen and helium atoms..

In order to calculate the probability of exchange
scattering, the total wave function %(E;E) may be expanded
-9
in a linear combination of Y(xL) with coefficients G,(T, )

to be determined in a way similar to the direct collision

case

z(RE) =3 l(f) (F) (48)

3
where %&r,) satisfy the H-atom Schroedinger equation and
form a complete orthonormal set in.;?space, (because the

incident electron 1 is captured by the atom after scattering).
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It can be shown that G,(T, ) has the asymptotic form
(10)

. LRy b
Grh(r,_) iy WIS

. ‘
el N O 95 (49)

—>
Physically this may be visualized as G,(r, ) taking the form

of an outgoing spherical wave when 11, becomes large.,

Thus the diftferential cross section for capture of
clectron 1 into the n-th state and ejection of electron 2

into the direction 9 6., ¢, ), is then

0" (£, 0., 4) = 2 | 3,(0..4)|

(50)
In order to calculate g, (6&,®), we may proceed as

we did for the direct collision case by substituting

equation (48) into Schroedinger's equation (9), multiplying

¥ -
by ﬂ(f?), and integrating over r, . Thus we obtain

(v + 4) @B =2 [4Hi[-€ 1 5 (R By uF.

(51)

If the conditions for the Born approximation are
valid such that the dominating contribution to the total
wave function comes from the incident wave, we may write
- r d
Lﬁono ok

T(n n)= ¢ ¢ (F) (52)

Substituting equatiocn (52) into equation (51) and using

the method of Green's function ; we obtain.



21

iRn by
(how 1 (86, 4) (53)
where
, R "“i’hﬁ’}?l T e* g
’1@‘- a) = T ?.JA[ SL,.,(“ 5-_+—9—a]'

Fn( .q’) ; e )[ F R R

T - (54)
,CL h F: lf/o(r’) dn dr,

and T is a unit vector in the direction (9,¢,) of scattering.
(;’serves as the integration variable of the ejected
electron 2). Equation (54) is then an expression for the
amplitude due to exchange collisions calculated from the

Born approximation.

IT, 4.7, Exchange Collision and Indistinguishable Electrons

According to the Pauli principle, electrons are
indistinguishable., Hence the wave function of the system
(space part) can not%%orrectly represented by either equation
(14) or equation (48) alone. On taking into account the
indistinguishability of electrons, the wave function before
collision, normalized to represent a stream of unit incident

current density, can be written as a linear combination of

. . . 1
two wave iunctlons( )

-
z ‘._:%o'n

2R = [ T = ]

where the plus sign and the minus sign designate the symmetric

and antisymmetric wave functions, respectively.



If the atom is excited to an n-th state after the

collision then the normalized wave functions can be written

as

- Qe N =l Lfn-na
§‘J—Jn (h)n)sfiz:[e‘ L//h(r‘) :t e

The operator which connects the initial state to

the final state to give rise to scattering amplitudes is

~

of the form

z

A S e =
V(VJT) - r + IF’“F—"] P {57)

5
where r' is the coordinate of the scattered or ejected electron
and ¥ is the cooadinate of the electron remaining in the

atom. We see that V(rgr) is a symmetric ope_rator..

The Pauli exclusion princigle(ll)states that the

wave function representing an actual state of a system
containing two or more electrons must be antisymmetric in
poth space and spin coordinates of the electrons; in other
words, the wave function must change sign on interchanging

the coordinates of any two electrons.

If we assume that the spin-orbit interaction is
negligipnle in the scattering problem, then the spin part
and the space part of the total wave function can be
tactored. The space part must be symmetric if the spin
part is antisymmetric, and wvice versa. Hence, only initial
end final states of the same symmetry in the space part may

give rise to non-vanishing matrix elements for the symmetric



- - .
operator V(r,r). These matrix elements are

afe
e — F ¥ . -~
g, = ff i’n V \-‘k. drl dr

(58)
= Zd:i.re«::ti Zexchange .
where
-p%
Zdirect= ff % (r )[ ]
: '@Z'h . .
« & Y (R) dF) AR (59)
and
..-L.f;:' :x.
4Gexc:hange= jT-e G )[. ” ]'
o e_ t#(r) dr dr . (60)

(?’is used in equation (60) as the integration variable for

the ejected electron).

Comparisons of equations (22),(37) and (59), and
(54),(50) and (60) suggest that the formula for differential

cross sections should be modified into the following form

et = () [z, vz, "+ ]2, -2, []

=% letneal +plg-gp]
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where a and b are constants determined by the number of
eclectrons and the multiplicities of the states involwved.
For the casge o1 electron scattering by an H-atom, the spin
wave function associated with %h+ must be antisymmetric,

and it can be written as

S™ = Té‘ [ () pe — pw d(z)] ; (62)

where &A(1) stands for the spin function of electron 1 with

spin up and F(Z) stands for that of electron 2 with spin

down, etc,

Similarly, the spin wave function associated with

Wm* must be symmetric, and it can be written as

T = (1) et(2),

or L[ wp@ + p @] (63)
or A(1) [5(2),

If we assume that the scattering process can take
place with equal propability through any one of the four
. possible spin state channels given in equation (62) and (63)
then when this process does occur it has a probability of
+ of occuring through S and a probability of % ot occuring
through :+. Thus we have

h(E,@,Q#))'——— ::g: ["" '*in 2—3_]7C gn/] . (64)

where the subscripts 1 and 2 have been omitted because they

all refer to the scattered electron. Equation (64) is the
expression for the differential cross section of scattering
by the n-th process derived from the Born-Oppenheimer

approximation.
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H
=
Ut

cattering of Electrons by Helium Atoms Born-

Oppenheimer Approximation

The theory of scattering of electrons by H-atoms
may be generalized to many-electron atoms, Let us consider
the simple example of the helium atom which has two atomic
electrons and a nucleus with charge +2€. If we label the
incident electron 1, and the atomic eledtrons 2 and 3, with
the origin of the coordinate system at the nucleus, then
the direct scattering amplitude from the Born approximation

can be written as

=D Pné —I—"A" f‘: 2 " f
£, (0.4) === W GIRB[-Fe ‘r‘]
o (65)
L Re + 1y - T
s @ Y (%, 75) dF, dFF dF,

Similarly, the exchange scattering amplitude from the

Born-Oppenheimer approximation is '

- E -ﬁn'ﬂ. il
e Y

iRl o (66)
. e (R, ) dn dr dr,

The ground state of the helium atom is a singlet
stute, and excitation can occur either to a singlet or a
tripi.t state, In the former case, in which no multiplicity

change occurs, the differential cross section is found to
(12)
c

-

U;s,-ngleé _ ;%:_ / 7[h ~ gn) 2 (67)
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The excitation to triplet states can only arise from

ectron exchange. Thus the differential cross section is
2]

{-h‘lolef' ‘%n

?n/z (68)

II.6. Limitations of the Born-Oppenheimer Approximation

It is well known(lB)that the probability of exchange
scattering of an electron by an atom falls off rapidly as
the incident energy increases. The observed and calculated
excitation cross-sections for the helium‘ZBS, hBS, and SSS

states serve as a typical example,

On the other hand the Born approximation holds
only when the incident energy is large compared to the
interaction.energy and when the scatitering angle is small.
This means that calculations based on the Born-Oppenheimer
approximation can not yield satisfactory results in the

region where exchange scattering is appreciable.

The difficulty associated with the Born-Oppenheimer
approximation may be understood as follows. We recall
that the expansions of J(T ,r. ) in equations (14) and (48)
are exact and that the following orthogonality relations

must hold

j [Z - F.(F) %(E)] $x(r) .09':1 =0 (69)

J
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[12- @)D KR 47 <o

(70)
However, in obtaining solutions to the Schroedinger
equation we have used the following approximate wave
function
I F?
> = LRo o= I (a
Q("s z)'_: < (lbo )",,)_ (71)

Equation (71) actually does not satisfy equations (69) and
(70). But tor high impact energy F, (T ) and G,(r ) are

small so that the error is small.

i 6 S 8 Method of Partial Waves

Since the Born approximation fails to work for low
energy collisions, we must find some other method to analyze
the problem of exchange scattering. One such method,
proved to be very powerful and useful, is the method of

(14)

partial waves This method is mainly used for spherically
symmetrical potentials. The idea is to expand the total

wave function as a series of Legendre polynomials multiplied
by radial wave functions and then substitute the wave
function into the Schroedinger's equation and solve the

radial part of the differential equation subject to appropri-

ate bounidary conditions.

To demonstrate how this method works, let us consider
the simplest situation of an electron scattered by a center
of force. The problem of elastic scattering of an electron

by an H-atom can be considered to belong to this category,



o
o

because we may approximately treat the interaction between
the electron and the atom through some effective potential
=\
: X & : . .
V\r)( D). The Schroedinger equation of the one-particle

system can be written as

[V“L—%:(E-V)]:O , (72)

d

If we assume that the particle with energy E is
incident from the Z-direction, and that V represents a
central field,then‘?possesses cylindrical symmetry about
the _-axis and is not a function of%, The Laplacian
opecrator in terms of spherical polar coordinates (r,@,¢)

can e written as

v’-___,_;_ i(rx_:;_) _ 5 (7.3)

2
Where L 1s the total angular momentum operator:

| % s mP5) LB g - (74
b = n Sihe 20 Sm&a—&— + Sin*@ SCP"} . et

5 o . " a o ‘}'
Sincefis not a function of'¢, we can expandl/into the

following linear combination

Mg

re=—> ¢ F (o)

(75)

S
I\
o

whoere the Pl(cos@) are the Legendre polynomials(l6)which

satisfy the differential equation

2

L P = % 44+1) R (76)
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and obey the orthoné@ality relation

{
T pwR@dx=d, (77)
-

where

gﬁ — when L= m

(78)

= 0 Otherwise.

Each term in the expansion of equation (75) is
called a "partial wave" corresponding to a particular wvalue
o). The names S5 p-, d-, f-, waves are associated with
£=0,1,2,3,4....,respectively. This terminology is derived

from optical spectroscopy..

Substituting equation (75) into the Schroedinger

equation (72) and making use of (76), we have

% L] d*% 404 g + (41 - o) ﬂ] P Gos)=0, (79

dF* r

where

-’%01:'&’1—5_ bl (80)

and

TE = -%g; Vi) (81)

Since the P, (cos@) are orthogonal functions and non-

o) i L. = 5 o
vanishing for an arbitrary®, and-F is non-zero tor finite r,



we must have

7Y _ 24D + [
dr* pr

Eguation (82) is the differential equation that we
want to solve once U(r) is given. If we can tind $(r)

then we know the wave function and the problem is solved..

TEa7 aide Asvmptotic Form of the Radial Partial Wave Function

%(r)

N . . . .
for a physically real scattering potentlal,y is
everywhere finite, continuous, single valued and, for our

scattering problem, must have the asymptotic form

Aol
P % l:-é%o%’ eL
k!/ "\'1’, @) i e —+ '—-—r_——' )C(@) .

: GH%«Q (83)

Hence the boundary conditions for'%(r) must be such that

Y (r) is continuous and finite everywhere, equal to zero
g

at the origin and satisfy equation (83). Also, U(r) goes
to zero at large distances r, If in equation (82) we ne-
glect both terms U(r) andﬁléyat large distances, the

o)

symptotic solution of equation (82) can be written as

$,(r) —~— A, sin(kr +B8,) (84)

)

wiieT e %ﬁ and 34 are constants to be determined by solving



equation (82).

0 ; = - :
DX e Selution ot %(r) for a Free Particle

In order to get some feeling about the relationship
petween the constants A,, By and the potential energy lr),
- .
le. us consider the case of a particle in free space,

such that

c
v
o]
~—

Il

0, (85)

The differential equation then becomes

5gzii __ﬁ(l’“) ? 5 ﬁz.? —
'e o ] e .

T = (86)

We see that equation (86) is of the same form as

the differential equation that generates the spherical Bessel

(17)

functions .. The general solution to equation (86) can

be written as
Y, () = for [ 4 1, (1) + B, 7, (1%.,!")] ) (87)

where %& and 35 are constants, and % (k,r) and n,y(k, r)
are two independent spherical Bessel functions defined by

the following

L= [ T, (40, ¥
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ey -
n, (%0 = (1) ! e Ty 1D (89)

Sl - ) . N o (16).
where J, %(Lmr) and {4Hﬂ(k°r) are Bessel functions
We note however, that {%“J)(k,r) starts out as
- ({++ 3 z
(kor)( ok small @ (lb), and does not satisfy the condition

that {(0) must be zero. Hence we must choose

3] =0, ‘ (90)

The asymptotic form of the Bessel function Jn(x)

when [xﬁiand x[>|n/ is given by (19)
Jalx) s 2 COS[-X-—(7r+%)l§I (91)
k) =00 (il ’ = -

Therefore the asymptotic form of equation (87), with
/7

_,l = 0, is
W ¢ é s {x (92)
e B T A Ssin | 2,r-21Z&
L b w2 [ Ro ) ]

Comparing equations (92) and (84), we see that the phase

= is egual to —%; f'or the case of particle in free space,

-~

wi.zle the constants A, and 4{ are determined by the

ncrmalization conditions.
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5 1 T Uy TP Differential Cross Sections IFrom Phase Shifts

In view of equation (84) and (92), the asymptotic
solution for equation (82) may be written in the tollowing

form

@, = A, S"n(-r%of—-"pz@ +7)) ) (93)

where 7£is the phase shift arising from the scattering
potential U(r). 1In general, @ must be determined by
solving. the differential equation subject to the boundary
conditions that %: O at the origin and have the form given

by equation (93) at large r.

A physical interpretation monmy be given by
saying that introduction of U makes the phase of the
scattered wave to increase byﬁgwhen compared with free

spherical wave (i.e, U = 0).

Substituting equation (93) into equation (75), the:

asymptotic form of the wave function ¥(r,®) becomes

(“DO‘,@) —~ __;:,Z A—Q S;‘n['ﬁiar—l:]-zﬁ‘—fze] E@CCOS&)- (9}4’)

Fr—e =

Now equations (94) and (83) are two asymptotic forms of
the same function *(r,@), and heénce should be equivalent.

For convenience of comparison, we will also expand equation

~
o

33) in a linear combination of the complete orthonormal

et of Bf(cos@). Algebraic manipulation(zo)shows that the

w

()

irst term on the right hand side of equation (83) becomes
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CRF LR FCcose
e = &

= 4 7
= > @i’ { (40 Plese), (95)
=0

where ie(kor) is the spherical Bessel function defined
in equation (88). Making use of equations (88) and (91),

the asymptotic form of equation (95) can be written as

8&%} . Z (&“?+l>£ﬁ[ﬁ_i; Sin (ﬁ"-%)]@(@s@). (96)

r—=e =0

Similarly, the second term on the right hand side of equation

(83) can be expanded as.

d'ﬁér (:'fgar oo
_CLr___ )C(@)_H_ er Z C, B (cos®) ) (97)
L=o

where C is a coefficient to be determined. Thus

gy
equation (83) becomes

co 2
L/J(r,@) —~— Z (20+1) ¢ [_%:7 Sin (ﬁ,r—'—‘g‘-) g
=S Jwo (98)
eﬁar
+ = Gy Ee(c'.os@).
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Making use of the mathematical identities

i o o HE ; (99)

and

sinc9=:—a[—(e e Yy (100)

equation (98) can be written as

co
J (r.0) —_— Z [‘?"‘D'H -f-C}e“%r
e.(z2) Foe f aih, <
=0

(101)
7 :
My e’ ~¢ Rol” )
“lam— e [Fhe
Similar.y, equation (94) can be written as
co
J (- 0) o [ h, - ] ikt
G0 L
D=0
(102)

P& i - i Rt
as Frp (% ‘e ¢ I
[ R = = & —FE(“‘@).

A mathematical theorem states that if

e
(o]
+
os]
®
!
O

(103)
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then
A =B = 0 (104)

Since equations (101) and (102) are equivalent, we must

have

Q«Q—.’" — Ai; —““0375 b"?_(;
[-__——_;l =y -+ C_g] [‘Z’T e e ] = O i (105)
,P':.O, ‘1 1' G
29+ " A, ea‘_?-;f _.u&]
2 - R = 2 ==
KRR L K (106)

Solving equations (105) and (106), we have

,4_{, _ i (244 84‘71

10
-/%a > ( 7)

{28-+1) ¢ 2 (108)
Co == (e )



37

Thus

fW= S ¢, B (os9)

L=0

oo (109)
_ (24-+1) 27,
= — (e _1) fi (coss) .

,0:0

In view of equation (32), the differential cross section

for elastic scattering in terms of the phase shifts is

N

0, (E.0) = \ ]C(@)

(110)

()

e e j2 *
| 2 e Reeso

The’& are obtained by solving the Schroedinger equation

(82) subject to the boundary condition &¥(0) = 0 and the

asymptotic condition of equation (93). From the 77 one
2

can calculate O,(E,®) according to equation (110).

3 T e < Total Cross Sections and Partial Cross Sections

The total cross section Q(E) can be obtained by

integrating the differential cross section over all solid

angles.



¢=0 Jg=0
7 S i =
L
__ A% [ E = (e "o B |sineds (111)
-ﬁa =0 ,?-:.O
& >
_ 4z (24+1) sin
—%f %20 72 p)

‘ r . .
where we have made use of the orthongmality properties

of the Legendre polynomials given by equation (77).

We see from equation (111) that the total cross

section QQ(E) can be expressed as a sum of the partial

)
cross sections QU(E), defined by

(2, (E) ,,1 (24+1) sin? 2, $=0.1, 2, --- (112)

It is of interest to estimate the maximum partial cross

section for a given angular momentum quantum number.{. The
i P . . . ~ -
function sin', is an oscillating function between 0 and 1.
‘A
Therefore, by letting-ﬁ:nn+§;,where

n is an integer, we
have

g ;
[ CDMRX] = (113)
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EEeT 254 Comparison of Classical and Quantum Mechanical

Partial Cross Sections

Let us consider a particle with mass m and velocity
v moving towards a scattering center in a central field
potential., Then the classical angular momentum L associated

with an impact parameter b can be written as

L = mvb. (114)
Thus
o o (115)
mv
ad
ab = 5 (116)

The increment of cross section dg associated with an

increment in impact parameter from b to b + db is then

27 (117)
G & 4%

I7 we define
L =% 9 (118)

and

dd = % de
(119)

-

uith‘Qbeing classically a continuous variable,



then

Sl o
a =fdcz=f’“’°,w,a

e loves .}l’_‘{')l

(120)

= [Fee]ae

Hence the classical partial cross section at,@per unit

f-range is just .

. CR 7T ,
Q = A 29 (121)

class

: ; : (&
Comparing this classical Ql
ciag,

Swith the partial cross section
in equation (112), we see that the ractor 4(24 + l)sinﬂﬁ

instead of 24 is a gquantum mechanical result..

We also observe that if all the phase shift Z due
to some scattering potential is equal to an integral
multiple of L for nonzero k,, then the total cross section
Q,(E) vanishes. Experimentally, it has been found that for
slow electrons elastically scattered from noble gas atoms
the c¢cross section undulates with electron beam energy. i B -4
turns out that the scattering cross section for a few tenths

ev - . .
of an_,electron may be unusually small, This is known as

thie Ramsauer-Townsend effect(zl)
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i O S 7 Angular Distributions of Scattered Electrons

The general expression for the differential cross
section for elastic scattering obtained in equation. (110)
is a function of incident wave number k,, the phase
shiftyq, and the Legendre polynomials Eg(coso). Thus it
is ;Mp;rtant to understand the qualitative behavior arising
from these polynomials. The first few Legendre polynomials

are listed bel_ow(zz).~

Po(x) =-1
P, (x) = x
P, (x) = $(3x° - 1) (122)
B, (x) = 3(5x° - 3x)
Pylx) = %(35:5+ - 30x% + 3) .
In our case x = cos@, where ©is the scattering angle.. For

convenience of discussion, the diff'erential cross section

can be written as:

. (E.0) = J.?S_ Cy P (coso) (123)

P

viere ¢, is a function sf 4y Iy and~7, as defined in

equation (108). d

If we assume that ﬁmax is. the maximum.£ beyond
which contributions to a certain scattering process are
negligible, then the differential cross section G(E,®) for

Lnax = 0,1,2,.+.... can be written as:

0, (bp=0 = G C, (124)
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= * ¥
T e = | €7+ CF coss]| Co 4 Creoss] ) (125)
c 2
— z z 126
UD (‘Qmay: ?—) - CO ¥ C‘ L kS (3 G @ _I) ( )

We see from equation (124) that for scattering proc-
esses for which the only important term is that for f{= O
the differential cross section is not a function of angle.
Whereas for ﬁnmx= 1,2,....etc, the differential cross
sections are polynomials of cos® of the order 21m“. Since
cosn@ is a sharply peaking function around ©= 0° for large
n, the differential cross section is sharply forward peaked
for large J

max *

The above is also true for inelastic scattering. For
spin forbidden transitions, which require electron exchange
and can only occur with small impact parameters, the contri-
buting f values must be small, Hence the differential cross
sections have a much more uniform angular dependence. The
optically allowed transitions, on the other hand, have sharply
forward peaked distribution.

in
050 g g S Conservation of Particles Elastic Scattering

In section II.7.3. we obtained the expression for

C,in equation (108) by comparing the two asymptotic forms

o}

f the same wave function ¥(r,6) in equations (83) and (94).
However, we will see that the expression for Cy may also
be derived from the principle of conservation of particles

alone,



From equation (98) the radial wave function associated

with angular momentmn%ﬂ@ﬁﬂéat large r dis given by

Iz kol

E&(r') = (24 +1) L’p [%o(—r Sin (-,@of’—-—z—-)] -+ €

— & (127)

Using equation (24), the inward probability current in the

radisl direction associated with %(r) is then

e =~ [~E(2rd(GF )+ Rl Gz

b

ocr the case of elastic scattering, the net inward radial

rTobability current must be zero because of conservation

o]

of particles, thus

ks

——:é-[:ww)( C_@%— Cp) + k. /QQ/ =0 (129)

.

It can be easily shown that equation (129) is true when

[y == 2L, ¢ o= 1) (130)

~ -t
‘;"" f?o D

where>&is a real constant. We see that equation (130)is

of the same form as equation (108).
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T %+:8% Maximum Inelastic Cross-Section for A Given

Angular Momentum
&

So far in the partial wave method we have only
considered the problem of elastic scattering of electrons
by a center of force, with both the interacting potential
U(r) and the phase shift ngeing real guantities. If we
now assume that U(r) is complex in the one-particle problem
then this produces destruction of particles which otherwise
would be scattered elastically. From a complex potential
U(r), the resulting phase shift 72also becomes complex.

Thus we may write
77)2 =N, + (M4, (131)

where bothJEand)% are real. lhe imaginary part of the phase
shift will then completely determine the inelastic cross

sections . This is the one-particle description for

s : . ; 4 . .
The partial elastic cross section Q, using equation

(97), can be written as

I

Q;ﬂ 27 f / Cy P(;Cwm)!zsm@ 40
(132)

- 4-TC =
= KA+ [C'Q,

Equation (132) can be reduced to equation (112), by using
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Since inelastic collisions can now occur, the net
inward radial probability current will be equal to the flux
of particles which have sufiered inelastic collisions. At
a large distance r from the center the net inward flux

(23)

will therefore be given by

S =Lz [Q? ] ’ (133)

R, rod % <7 inelastic

where Q is the partial inelastic cross—-section

inelastic
summed over all possible processes,

Equation (133) and (128) must be equivalent, and

thus we have

r o7 7 L ] 2 ox +

== ~+ = T —

L &-;-o-;_qj | Q inel. Q %, ( G C’Q) 5 (134)
where ngtotal] is the partial cross section for all
collisions, both elastic and inelastic.

Since % 2
z qb =
]C,Q [ = |7z [ (135)
J
we have
N/ 2
C}p . <L7T {Cf Iz e [(Qﬁﬁﬁ.]
o T a4 12 il 2 2 (136)
[Cgmqy]

[‘J J +7L 3 . "
where LQ maxJ = —3(2f + 1) is the aame as in equation (113).
o
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In reality Q:S[thotal] (137)

lience from equations (136) and (137)

g »
[Q total]\lbmax ]. (138)
Furthermore
L 2 ¥
(Q inelastic] = [Q total Q°£ (139)
=5(Q.%otal] ;[Q total]/[ v
Q max]

The maximum value of the right-hand side occurs when

? LTy 4
[Q total] = y[@ max] (lhO)
so c oo e
r -
L« inelastic] e ﬁ‘ (22+ﬂ) (l“l)

o



L7

In equation (lhl), the equality only arises when

2 7
Q, = S5 (24L+D). (142)

Equation (141) is an expression for the maximum inelastic
partial cross section summed over all inelastic processes.
This turns out to be a very useful formula for checking

theoretical calculations.

IT.8. Method of Distorted Waves

In the direct collision case, we obtained a set of
counled partial differential equations in the following

form

1 ~
'ko n,'

" LR ,
[V + %4 F.(i)=22 v. e + > F®y

Jn

> (143)

J-“-O.l,:..---

from equations (15) and (18).

In order to solve them, we made the assumption that
the incident energy of the electrons is large compared to
the interaction energy such that the only significant term

on the right hand side is

B R
a}-n L Ko no = h
_:{S-z, \/an 8

Tais is known as the Born approximation.
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Unfortunately, many of the interesting cases happen
at lower incident energies. Therefore, let us make the

less drastic assumption that the non-diagonal matrix

elements ij are so small that we may neglect ak% products
) N a1,
on the right hand side except V__F and V__e . Hence
= nn mn on

we obtain the series of equations

- b L“Jg‘:-—?
v+t RE=2% e )
(s ] BRI =22 et ™ ay R@)]
> (145)

( for n%o0)

which must satisfy the boundary conditions

iRl

FF) s £ i 0.4), meomime.  (14)

The above approximation is often called the distorted

(24,25)

use this method to calculate the excitation of the 218 and

(24)

wave method. slassey and Moiseiwitsch were able to

235 states and the 23P state (25) of helium by electron
impact. The excitation cross sections calculated by these
authors showed considerable improvements over the previous
calculations using the Born-Oppenheimer approximation(l3).
However, as pointed out by these authors; substantial

discrepancies from the observed data still remained.
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IT.9. Close-Coupling Approximation

In the collisions of electrons and atoms, it is
possible that atomic states other than the initial and
tfinal states may have contributions to a particular
scattering process. [for example, in the scattering of
electrons by H-atoms, the incident electron may excite
the atom to an excited state, then the atom in its excited
state may again interact with this scattered electron and
lose its excitation energy. Lthe scattered electron thus

coming out would appear to have been scattered elastically.

In order to have a complete treatment of the problem,
the total wave function for the electron plus H atom case

can be expanded in the antisymmetrized form

— —> . - F (?’;)
Y (R, Bo)==2 LPP(!:.G:J ﬁ,m)u% -
r

— if (E’n.ﬁm)f—‘"—-@ Sal
R f

PLY
where 0; and 1r, are the spin coordinate and unit vector

b I .- . ~ = < P
along the direction of r; of the ¢-th electron, respectively,
.’:: 1 or 2.

(26)
and Seston

o
]
( y
=
; 3
(_-L
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(@]
ct
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ct
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where n and ﬁl are the principal and angular momentum

uantum numbers respectivel of the atomic electron; ﬂ
y ] ? a4

)

nd k, are the orbital angular momentum and the wave
nunber, respectively, of the scattered electron; L is
the total angular momentum gquantum number and S is the
total spin; and M, and MS are the components of L and

S, respectively, along the = - direction..

The sum over [ in equation (147) must in principle
include all the discrete and continuum states of the H-
atom, However, due to practical difficulties we can »nly
include a finite number of states. The following designations

(27a)

are listed by Burke and Smith

o
S
.
w
Y
ct
-4
[e]

approximation when only the 1S state of
the' H~atom is used in
equation (147).

b). Strong-coupling

énproximation when 15 and 25 states of the
H-atom are used.

¢). Close-coupling

approximation when 45, 25 and 2P states of the
H-atom are used.

Burke and Schey<27b) were able to use the close-
coupling approximation to calculate the differential cross
sections of elastic scattering of electrons by H-atoms for
incident energies below the first excited state of the

H-atom (10.2 e v ).

S ; —_ 28

Later, Burke, Schey and bmlth( ) reported further
work using tihis approximation to calculate the elastic and
inelastic differential cross sections of electrons scattered

by H-atctoms with incident energies in the range from 11.0
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to 54.4 e v. The results presented by these authors showed
that the differential cross sections of elastic and
optically allowed inelastic collisions were in general
strongly forward peaked. However, the magnitude of the cross

sections were too large compared to available experimental

values,

Ii.10, Ochkur-Born-0Oppenheimer Approximation for Exchange

Scattering

o6
Recently, Ochkur(”)) reported a simple formula

which permitted one to calculate the exchange scattering

=

of electrons by atoms with approximately the same degree
of accuracy as that yielded by the Born formula in the
direct collision case. The excitation functions were

calculated for the 238 and 23

P levels in helium, The
results showed considerably better agreement with ex-
periments than previous calculations by other authors
(13,24,25,)

The principal idea in Ochkur's work is to expand
the exchange amplitude g (E,9,9) in a series in inverse
powers of lk,, then to truncate the series, keeping
only the lowest order terms in iﬁ’ with the assumption
that Xk, and kn are both large compared to Ak, The
reason for discarding higtier order terms in %ﬁis that
these terms are not consistent with first order perturbation
theory. If such terms are retained, then as the energy
is decreased they start dominating at energies at which
otherwise first order perturbation theory might be expected

to apply and give . unreassnapble results.
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i 0 T .0 PO P Prior and Post Interactions

The exchange scattering amplitude for the case of
heilium from the Born-Oppenheimer approximation can be

written as

- —275}'?;61 "'L-Z‘:’E) S W
(oot e (1] STyt
- =

ol i =
. e ()(,o (n)r})dr'drldF; 5 (114—9)

Where Vox is the operator for the exchange interaction,

and can have the following two forms

prier ’ | '

Voo ={(-m 5+7) | (150)
pest | ! |
w =CErETR) . (151)

The '"prior" interaction represents the interaction of
the incident electron with the atom and the "post" inter-
action represents the interaction of the ejected electron

with the atom, If‘ﬁand % are exact wave functions of the
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atom, then the prior and the post interactions are
equivalent. However, in practice, we do not have exact
solutions for atoms with two or more electrons. Thus,
some approximate wave functions must be used. It can be
Shownn that <30)if the Hartree self-consistent field
approximate wave functions are used, then the post-prior
problem does not arise, But this is not true for other

types of approximation(l)b).

We note that equation (66) in section II.5. was

written with the post interaction. The choice was arbitrary.

IT.10.2. Exchange Scattering Amplitude

From equations (149) and (150), the exchange
scattering amplitude for the case of helium can be written

as

9 (e.6.9 —_271"” f” sl +_l_]e£(7€.-r, —ﬁn-r;)'

e S 4 I o 152
(P”*(h.t G)L{!o(r‘:r}) drl Dpraafr; ( )

This amplitude can be written as a sum of three terms as

follows

9. (2.0.4) = g% + 921+ §7(E) . ()

2
Ochkur("g) showed that these three terms were given by:



(1) RAME® ram ¥ - ., (4R
a . * : D - 3
= I () [y R e e dRaE
+ (higher order terms) , (154)

& = O(—) (155)

0{33

_ O(——J,i?) ‘ (156)

Hence, to within order Z%:', gnh) andg‘fi)can be neglected in
the framework of first order perturbation theory. (When

Y, and ¥, have different space symmetry, g&J = 0O(L). ).

Thus the exchange amplitude can be written as

gu(2.0.9) = (P25 ) L [ QAR R RCER) -

- —p
Ldﬁ'r; —_ =5

. C . dr. dn

(157)
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where g has an explicit dependence of'éa. We recall

n
from equations (32) and (37) that the direct scattering

amplitude for the case of the H-atom can be written as

—

_ [ 8Wimer) | pooa GARCE,
R O B A OGS

Thus we see that fn and g, have similar forms except
that the expression for gn has a dependence on.b@fwhile
the expression for fn has a dependence on hﬁmh This

difference leads to different energy dependence of the

cross sections.
It should be pointed out that in Ochkur's treatment

the problem of "prior or post interaction" is eliminated

by neglecting the higher order terms in (q?),
-]

e P 1 1 |9 Cross Sections for Triplet Excitations in Helium

The differential cross section for the excitation
from the ground state to a triplet state by electron

exchange in helium is given in equation (68) as

-I:HF"{,"\" ﬂh 2
G =3 e

where the expression for 8, is now given in equation

(157«

The total cross section is then
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Hriplet B i & 2
e J [8.]" sine do d
Ll (159)

For a central potential problem such as this,
there is no §5 dependence. Furthermore, we can change the
integration variable from d@ to d(4k). Using equation

(44), the total cross section is given by

triplet  gpq xSmre® |
" B £ (‘5{6 e
2 (160)
kﬁh}n ,,‘A_'E-F: 3
[ [l d o [fenden,
Ro - Rn
where P

<n] eadﬁ' nlc:)> =

— ¥, = = -3 = da_‘ﬁ’-f_:: -
—j ,(rR)b(E.n)e dr, dr;
‘ (161)
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We see from equation (160) that since

-

R S>> a'ﬁ:f—ﬁ,—{:} (162)

2

(29)

the integral over Ak is relatively independent of k.

Therefore the cross section has the following energy

dependence

(163)

at large E.

Ochkur(29) states that there exists a preference for
transitions without a change of the angular momentum guantum
number | of the excited electron, and that transitions with
Al = 2 were much less probable. He also shows that the

dependence of cross sections on the principal quantum

number 1n for fixed ﬂ is approximately

=2 (164)

II1.10.4. Rudge's Correction of Ochkur's Formula

In a recent letter, Rudge(Bl) pointed out that the
exchange scattering amplitude obtained from Ochkur's method

in equation (157) was in a sense incorrect, and that it
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should be replaced by the following form

%h(E,@,fil’) gt (_ g?:)}%:é)l: (1%”.‘_](:);]<)’l]eidﬁ‘nlo> ) _—_

in order to be consistent with results derived from the

variational principle.

(32)

elastic scattering of electrons by the H-atom in its ground

Rudge also reported scme calculations on the
state and the excitation of the 28 state from the ground
state. In both cases the exchange collisions were taken
into account based on formulae derived from the variational
principle. The results showed encouraging improvements

over the previous calculations.

The total and differential cross sections for
excitations in helium from the ground state to the 238

and 23
(33)

P states have recently been calculated by Cartwright

with the Ochkur and Ochkur-Rudge approximations.

IT.11. Theory of FElectron Scattering by Molecules

In this section, we will consider a few important
points related to the collisions of electrons with molecules.
The term "molecule" used here applies to diatomic or
polyatomic molecules. Since a molecule is composed of
two or more atoms, most of the early discussions about
single atoms should be applicable to a molecule if we can

make it stand still and fire electrons at it. However,
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in addition to the electronic motion and translational
motion associated with an atom, there are also vibrational
and rotational degrees of freedom associated with the
nuclei of a molecule. In order to handle the problem
properly, we must describe the system by a total wave
function of the incoming electron, the molecular electrons

and the nuclei.

In elastic scattering, interference occurs between
the electron waves scattered from different atoms in the
same molecule. This is apparent in the angular distribution
of the scattered electrons, and serves as a tool in studying

molecular structures.

The dnelastic collisions include the possibilities
of electronic excitation, vibrational.and rotational
excitation, molecular dissociation, negative and positive
ion formation. In the present work, we will focus our

interests only on the electronic excitation and ionization

of molecules..

5 i PR [ [P (9 EFElectronic Transitions in Diatomic Molecules

The Franck-Condon principle

It is well known in optical spectroscopy that the
electron Jjump in a molecule takes place so rapidly in
comparison to the vibrational and rotational motion that
immediately afterwards the nuclei still have very nearly
the same relative position and velocity as before the

jump.. This is called the Franck-Condon principle..

Discussions on the emission and absorption of

radiation by molecules and a wave-mechanical proof of
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the Franck-Condon principle can be found in standard

references .
(8)

Our present concern is whether or not this principle

holds for electronic excitation by electron impact.

For molecules like H, and N,, the vibrational

constants, &, of the ground electronic states are given by

(8 )

a)e (Ha.>= }4395-24 Cm_l

(166)
-1
&, (V)= 2359.61 ecm™~ .
The period T of a classical simple harmonic oscillator
at frequency 2} is given by
T==—
= — = - ) :
2’ C w (167)

wiiere ¢ 1is the speed of light in vacuum and is approx-

(0]
imately equal to 3 x 10t cm/sec..

At room temperature, for H,, most of the molecules
are in the ground vibrational state with zero-point energy
4+4a),. Therefore, the vibrational period is of the order
of 1.5 & 10_]')“‘L sec. For heavier molecules the vibrational

periods are even longer than that of H,.
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Un the other hand, from section II.l. the average
time an electron of 30 electron volts will spend around
the neighborhood of a molecule of linear dimen_sions of

o -
about 1 A is of the order of 3 x 10 47 sec.

From these simple calculations, we see that the
motion of a low energy electron is fast compared to the
nuclear motion, Hence if electronic excitation of the
molecule takes place during a collision it is wvery likely

that the Franck-Condon principle will still hold.

i G T 0 i S Flectronic Excitation Cross Sections

In order to demonstrate how to calculate the cross
sections for molecular electronic excitations by electron
impact, let us consider the simplest problem of direct
excitation by an electron of a H, molecule. A detailed

treatment has been given by Cartwright and Kuppermann(34)

The scattering amplitude from the Born approximation

is given by

—_— -3
®

—_— = —&.7}2'? LRe* i — -
f(#,6.0)= 228 [ gy v g dud

whereﬁiand 2,are the molecular wave functions of the
ground and the n-th excited state of the H, molecule
respectively, V 1is the interaction potential for direct
collisions, and d?is the volume element for all the

necessary coordinates.

If we label the incident electron 1, and the

molecular electrons 2 and 3, with the origin of coordinate
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system sitting at the center of mass of the H, molecule,
and designate the ppuclei by subscripts A and B then the

interaction potential can be written as

| ! ) |
= —— -~ — g — 4+ — .
\/ rfﬂ r-"6 rm. i3 153l

Further, since the electronic motion is much faster
than the nuclear motion, let us assume that the molecular
wave functions can be written as products of the electronic,

vibrational, and rotational wave functions. Thus we have

%, = 1(n.5RE R Yj_m(x,@) )

0w (170)

3, =%(REe) f @Y @y, oam

where R is the internuclear distance and X ,% are the
orientation coordinates of the molecule; ?op( R) and gn»’(R)
are the vibrational wave functions of the ground and excited
electronic states respectively; and Y;j(i,q7) and {f'(x,?)
are the rotational wave functions of the ground and excited

states, respectively..

Substituting equations (169),(170) and (171) into
equation (168), we have '



63

fo o) = 2Z5E [T e [ rdeele 1]

(172)

where

direct direct - -
T = T (keak®) (173)

—

= -3
caRn,
- je Sl Al s D LUSE

3 - .
'q}n (hdra dr‘a‘
—

We see that the integration over

r, may be simplified
using equation (34), provided 4k is small.

Thus from equation (32) the differential cross section
can be written as

Tl 0.8) = 22 [ 4 [

47[:_2.%1&4'

=7 (ﬁ) ” I ?,:: Toim iﬁ;“'f]'
2

’ \gs,‘nx dx dgﬂ) ' (174)
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IIedlle3s Statistical Average of the Differential Cross

Sections

The expression for the differential cross sections
from the Born approximation for direct scattering of
electrons by the H2 molecule that we obtained in equation
(172) represents excitations from a particular groundstate
(0,¥,0,M,) to a particular excited state (n,2,J',M').
Thus, let us redefine the differential cross sections as
follows

Hoh o
n¥dIm

Consm = Tlh.0.9) , (175)

For practical purposes we do not consider the cross
sections for excitations to the individual rotational
states, but the sum over all final rotational states..

Since the following relationship holds for an

arbitrary function G(x,?),(BS)

>

I m

J [ le.w(x,?)r G (x.9) ij(x, ¢) Sinx d o(go/i:

1

(176)
= ’ Y, (x.9) C~r(7<,‘f’)}z sinzdzdy

therefore from equation (174), we have
P S LA . © A My (*é,,) Yo
ovIm — o - T s = .
Tm m K Ro .
%P

[ J §* T i» R'de] sopdg dy S

hy’
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where we have made the assumption that the separations
between rotational levels are small compared to the
excitation energies, such that kn is almost independent
of J!' and M'. Actually the energy states are degenerate
with respect to the quantum numbers M' in the absence of
an external magnetic field. Furthermore, because of the
mass diff'erences between electrons and molecules, electrons
are very inefficient in producing angular momentum
excitations. Thus excitations from a certain ground state
(0,¥,J,M) to a certain excited state (n,2,J',M',), will
only have appreciable intensity within a narrow range of
JYa

Under usual experimental conditions, the target gasses
are at a certain temperature T, say room temperature.
The wvarious rotational states of the ground vibrational

state are populated according to their statistical weights.

Thus we have

RIGEDES
co J T ET T ny'
R S - A
G_,nv TJ=0 M=-T
(4 I x
oy Z E e_ Ja?z-fﬁ)T (178)
T m
Since
& Y = -
- po P 179)
m=-x

equation (178) can be rewritten as
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o' 2 2. ¥ dir. < -
T 2_4115‘-4 < a Sinzdxdyp
* ( T _”_> §w’ I” E» el :

A H (180)
7(,5"
where
NIGEDES
T arkT
_ Z r+) @ "
{lyy= —= '
’ > (zz4) e T E L LThT ’ AEBL)
T
and L

‘}%n.

1!
e
s
|
Hl3
—
M

= EoyT)J (182)

If we further assume that the scattering amplitude
[TilreCt] is independent of R, (this is usually assumed
in optical spectroscopy and is known as the Franck-Condon

principle), then equation (180) becomes

= 4-zi£1*e‘* <_72:,> j:’<} ‘Ei""!‘z’? (183)
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-
(IR, = [ s
' x4 (184)
- orientational average or [T,2"|* ,
s
A = ] [€° ® £ ® R*dR : -

= Franck-Condon factor imn
electron impact spectroscopy.

Egquation (183) is the expression for the differential
cross sections for direct scattering of electrons by H2
molecules summed over all rotational lewvels of the
excited states and averaged over all rotational states of

the ground state. Similar expression can be derived for

exchange scatterings.

IT.12 General Properties of Inelastic Cross Sections

In conclusion of the theory of electron scattering
and as a guide to the experiments, it seems worthwhile to
emphasize once more some of the important aspects which
are well eétablished on both theoretical and experimental

(9)

electrons by atoms and molecules. These aspects may be

grounds in connection with inelastic scattering of
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summarized as follows.

Enerev Dependence of Cross Sections at Large E

(1)

(2)

(3)

Optically allowed (electric dipole allowed)

g E

E .
Optically forbidden (electric quadrupole allowed)

transitions fall off at the rate of -~

transitions not involving a change in spin fall

off at the rate ofawé.

Spin forbidden (from exchange scattering only)

transitions fall off at the rate of‘vé;

Angular Distribution of Scattered Electrons

(1)

(2)

Optically allowed transitions and elastic
scattering have sharply forward peaked distribu-

tions.

Optically forbidden transitions and spin forbidden

transitions have more uniform angular distributions.

Magnitude of Cross Sections

(1)

(2)

(3)

Elastic scattering is approximately two orders of

magnitude larger than inelastic scattering.

At high electron energies the optically allowed
transitions are considerably larger than other

inelastic processes.

Spin forbidden transitions are only appreciable
if at all, at electron energies in a narrow

range close to the threshold.

Franck-Condon Principle

Is observed in the electronic excitations of

molecules by low energy electron impact.



69

5 P i P Historical Background

(36)

About half a century ago, Franck and Hertz
were the first workers to study the inelastic collisions
0i" electrons with atoms and molecules. They found that
(Béc)for metal vapors such as Hg, Zn, and Cd the optical
spectral lines could be excited by low energy electrons,
and for the alkali and alkali earth atoms the ionization
potentials obtained from the elecfron impact method agreed
with the optical wvalues. At that time this was a
confirmation of Bohr's old gquantum theory, and was also
the introduction of a new experimental technique (Franck-
Hertz experiment) for the study of electronic spectra.

Because of experimental difficulties in studying
single collision processes, so far only very little
information is available about the differential cross
sections On(E,9,9,) for all energies E and scattering
angles © of a given process "n" for any given atom or
molecule. The main electron impact experiments which have

been done to present may be summarized as follows.

A. The total donization cross sections as a function

of electron energy.

B. Analysis of the ionization cross sections into
contributions from single, double, etc., ionization

processes.

C. Cross sections for inner-~shell ionization as a

function of energy of some metallic atoms.

D, Electronic excitation cross sections from optical

measurements ..

E. Angular distribution functions for elastic collisions

with atoms at fixed electron energies.
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i FElectron diftfraction studies on gas molecules.

G Vibrational and rotational excitation measurements

with gas molecules.

H. Negative ion tformation and dissociative transition

measurements.,
T 2 Scattering studies on crystals.

J. Electronic excitation cross section measurements by
energy analysis of the scattered electrons (see

below).

For the interests of the present research we will
brieifly review the recent progress in the field of atomic
and molecular electronic excitation measurements by

energy analysis of the scattered electrons.,

LET .. 8 & Forward Scattering Measurements lLassettre et al

(37)

In a series of papers Lassettre and his coworkers
recported their work on electron impact of He, Hop, No,

co, 025, CH&’ CzHé’ C2Hh’ and H20 molecules. The energy
range of the incident electrons was between 250 and 600 ev;
and the observation angles were smaller than 151 The
impact spectra thus obtained resembled generally the
corresponding optical absorption spectra. The conclusion
was that the optical selection rules were obeyed under the
sald experimental conditions.. _

These authors were able to show that by increasing
the scattering angle from 3.8° to 15.3° at a beam energy
of about 500 ev, the intensity of the helium 1'S = 2'P
transition fell off rapidly while the angular momentum
forbidden transition 1'S - 2'S gradually gained intensity

relative to that of the 1'S » 2'P transition. Also, by
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lowering the beam energies from 350 to 250 ev at a fixed

scattering angle of 0°, this forbidden transition started
to show up. However, no spin forbidden transitions were

observed in this high energy range.

Further work reported by Lassettre(jg) and his
coworkers on successive studies of N, showed the obser-
vation of three "electric dipole forbgdden but quadrupole
allowed" transitions located at 8.7 to 9.6 ev, 11.86 ev
and 12.25 ev, respectively, for beam energies between
60 and 500 ev and at small scattering angles. The first
one mentioned above was due to the transition.afxgé'xdz;,
the so called Lyman-Birge-Hopfield band.,

Most recently, Skerbele, Dillon, and Lassettre(39)
reported further observations in N2 and CO at still lower
beam energies using counting techniques. Singlet-triplet
transitions were observed.

The nitrogen A?E:; Baﬂgand_ C®N. transitions showed
up clearly between 0° and 16° scattering angles and 35 to
50 ev beam energies. The intensities of these triplet
states and that of the a‘ﬁ& electric quadrupole allowed
transition were about % and 10% respectively, of that of
the optically allowed transitions. The carbon monoxide
aBR and b32+transitions at 2° angle and 50 ev beam
energy also showed intensities about 0.5%~1% of that of
the allowed transitions. The energy resolution in these
experiments was in general better than 0.1 ev and was
achieved using 180° spﬁerl'ca., electrostatic analyzers.
The ratios of wvibrational line intensities showed good
agreement with those calculated from Franck-Condon factors.,

However, these authors pointed out that a survey of
the spectra of 16 polyatomic molecules at beam energies of
535 ev and higher had failed to reveal any singlet-triplet
transition. They predicted that beam energies closer to

threshold might be needed to excite such states in polyatomic
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molecules at small angles.

ITT.2. Torward Scattering Measurements Simpson et al

A few yvears ago Simpson(4o) constructed a forward

scattering high resolution (0.030 ev) electron impact
spectrometer. The results obtained with it were similar
to those of Lassetitre. &At 0° scattering angle and 50 ev
beam energy Simpson and Mielczarek(4’) were unable to
detect spin-forbidden transitions in He or Cqu. Further-
more, Kuyatt, Simpson and Mielczarek(a ) were again unable
Lo Tindg spiﬁ-forbidden transitions in Hz, HD or D2
with electron beam energies ranging between 30 and 90 ev,
nor with H20 with beam energies as low as 9 ev,

ATter the operation of this instrument was improved,
Chamberlain, Heideman, Simpson and Kuyatt(QB) found several
singlet-{triplet transitions in He at beam energies up to

(L4,45)

50 ev. Recently, Heideman, Kuyatt and Chamberlain

also reported seeing triplet states in N, (44) with beam
energies between 15.7 and 35 ewv. and in H2(45) with beamn.

energies between 13.7 and 50.7 ev.

ITI.3. Electronic Excitation at Threshold Trapped-

Electron Method

Another low energy electron impact method for study-
ing the electronic tramnsitions at threshold in atoms and
(46)

molecules was developed by Schulz This technigue

involves trapping inelastically scattered electrons which
have lost practically all of their energy in an electrostatic
potential well of about 0.1 to 0.3 ev depth and letting

them move randomly in this well until theystrike a collector.
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In taking a spectrum, the incident beam energy is scanned.
The collimation of the electron beams is achieved by means
of a magnetic field of about 100 gauss along the beam
direction. This method is called the "trapped-electron

method". Using this method, Schulz obtained threshold

excitation spectra on He, Hg’ and H2 (46), on N, ,CO and
He(h7), on HzO(AB), on N20 (49), and on 02(50).

The spectra obtained with this method agreed very
well with the optical spectra. Furthermore, in addition
to the optically allowed states Schulz also observed
singlet-triplet transitions due to electron exchange. The
intensities of the optically allowed and spin-forbidden
transitions were of the same order of magnitude. In cases
like He, N2 and CO the singlet-triplet transitions appeared
with higher intensities than the optically allowed transitions.

Recently, Bowman and Miller(SJ )

reported low
energy electron impact studies of molecules by means of
the trapped-electron technique. Excitation spectra were
obtained over the subionization energy range for methane,
ethane, ethylene, propylene, acetylene, propyne, and

l-butyne. The helium 23

S transition was so pronounced that
these authors used this peak at 19.81 ev to establish the
incident electron energy scale.

(52)

Further work by Bowman using the same technique
also yvielded excitation spectra of hydrogen cyanide,
nitrogen, methyl cyanide, ethyl cyanide, and butadiene.
Very recently, a high resolution(about 0.1 ev)
trapped-electron spectrometer has been put into operation
by Brongersma and Qosterhoff (53), Tnreshold excitation
spectra of CO and N, have been obtained. Vibrational
struciure of the c5 aBRFXtransition is partially resolved,
whereas the first strong transition in N, is shown to be

the BBK%+OC2;,‘instead of the A32:4;X§;transition suggested
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A difficulty of the trapped-electron method is
that low energy negative ions produced in the system are
also trapped and detected. Therefore, to get the trapped-
electron current, it is necessary to obtain the negative
ion current with zero well depth in a separate run and

subtract it from the total current.

Ifr.4. Large-Angle Measurements

+(54,55,5¢)

Recently, Kuppermann and Raf reported
some low energy electron impact spectra on helium, argon,
hydrogen and ethylene. The beam energies were between

25 and 75 ev, Scattered electrons within an angular range
from 22° to 112° were energy analyzed simultaneously by a
retardation potential method. Spin forbidden transitions
were reported in addition to the optically allowed ones.

{57}

Most recently, Doering used a single cylindrical
electrostatic analyzer to study low energy electron impact
spectra of helium at 90°, The beam energies were between
LO and 100 ev, and the resolution was about 1 ev. However,
he was unable to detect the 235 state in helium

(58)

Doering also studied ethylene at incident beam
energies of 25, 50 and 70 ev and at a fixed scattering

angle of 90°. The most intense inelastic peak was found

to be a 8 ev, corresponding to number of unresolved allowed
transitions. A peak was observed at 4.6 ev which was
assigned to the forbidden singlet-triplet transition detected
by Kuppermann and Raff(54'55). The intensity of the 4.6 ev
peak was about 10% of that of the 8 ev peak at 35 ev beam

energy.
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IV. Experimental

From the foregoing discussions of theory and ex-
perimental background, we see that by using low energy
electrons as an energy source we may obtain valuable
information about spin-forbidden energy levels of many
simple molecules because of electron exchange.

Both theory and experiments have indicated that
exchange collisions are appreciable only for incident
energies within a narrow range beyond the threshold of
excitation. Furthermore, the ratio of differential cross
sections for the spin forbidden and optically allowed
transitions seems to increase with increasing scattering
angle @. Thus we see that low-energy and large-angle are
the two favorable conditions for the observation of optically
forbidden transitions.

In this section, we present a description of the
experimental details of the 90° low-energy electron impact

spectrometer we used in the present work.

IVv.1l. The Apparatus

The design and construction of our electron impact

spectrometer is based upon the apparatus used by Arnot

(59)

of' the mercury atom. The original work on setting-up of

and Baines in their work on collision cross sections

our spectrometer was done by Raff(eo). He introduced
differential pumping between the cathode and the sample.
regions to avoid cathode poisoning and sample contamination.
The use of bakeable metal high wvacuum systems and of
electronic circuits for current and voltage measurements

are the improcvements over Arnot and Baines' apparatus.
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In the present work, one of the grids used by RafTfl
was substituted by a stack of parallel disks, along the
lines of the Lozier gun(él), as described below. This
selects electrons scattered at 901 which sharpens the

energy resolution when using retardation potential method.

IV.1.1. The Vacuum System

The vacuum system consists of two cylindrical
chambers. One houses the electron gun and is referred to
as the gun chamber; the other containé the grids necessary
for the energy analysis of the scattered electrons and is
referred to as the collision chamber or the scattering
chamber. These two chambers are separately pumped. They
are interconnected by a 1.5 mm diameter pinhole through
which the electron beam produced in the gun chamber enters
the collision chamber. A schematic diagram of the spectro-

meter is shown in Figure 1.

Al The wvacuum chambers

The vacuum enclosures for the electron gun and the
collision chamber consist of two brass tubes, 3%" in inner
diameter, with a wall thickness of 7%“, and lOf%" and 57£"
in length, respectively. These tubes are closed at the ends
by 304-stainless steel flanges through which the electrical
leads pass via glass to metal seals. The two chambers are
mechanically joined by means of a double flange; however,
the only intermnal vacuum connection between them is through
the 1.5 mm pinhole at the center of this double flange.

The gun chamber is provided with four omne-inch
side-flanges for the connection of auxilliary components
to the system. The collision chamber is provided with five

such entry flanges.
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B The gold wire gaskets

All vacuum seals in the gun and collision chamber
regions are made by means of gold wire gaskets. These
are prepared by cutting offif proper lengths of 0.030" gold
wire, annealing it in an oxygen-gas torch, and then sealing
the ends to each other by fusing them with a small, intense
flame. After forming, the gaskets are again annealed be-

fore use.

Cs The gate valves

The gun chamber is connected to a 2" gate wvalve
through 2" brass tubing while the collision chamber is
joined to a second two inch gate valve via l%“ brass tubing.
At the gate valves and below, all seals are made by means
of rubber O-rings coated with a thin layer of Apiezon-N

vacuum grease.

D. The liquid nitrogen traps

Below each of the gate valves is a large liquid
nitrogen trap which serves as a baffle for ﬁhe 0il diffusion
pumps . These traps consist of an inner and an outer can.

The inner can, constructed of copper, is cylindrical with

a concave bottom and a conveX top. The capacity of this
inner can is about 3 liters and it will hold its charge of
liquid nitrogen for a period of about seven hours. Automatic
filling of the traps is accomplished with the use of two
solenoid wvalves, one for each trap, connected to a compressed
air line, and two pairs of Eagle Cyclo-Flex. automatic

timers. One clock of each pair controls the time between
fillings and the other the duration of each filling.

The outer wvacuum jacket of the traps is a brass tube
10" in diameter and 12" in length. This tube is covered
by a circular plate to which the innef can is attached by

means of two thin-wall inconel tubings. The seal between



the cover and the tube is made by means of an O-ring. The

traps are shown Schematically in Figure 1.

. The wvacuum pumps

The pumping system for the gun chamber consists of
a W.M. Welch single-stage duo-seal mechanical pump with
a free-air capacity of 33.4 1/mm. This is connected to
a Consolidated Electrodynamics MCF-300 three state 4" oil
diffusion pump, which has an optimum unbaffled pumping
speed of 300 1/sec.

The pumping system for the collision chamber is
identical to that of the gun chamber except that a W.M.
Welch two-stage duo-seal pump is used to back up the MCF-
300 o0il diffusion pump. This mechanical pump has a free:

air capacity of 140 1/mm.

B The idonization gauges

The pressure in each of the chambers is monitored
by means ol ion gauges connected to the side flanges.
In the gun chamber an RCA 1949 gauge tube is used while in
the collision chamber a Veeco RG-75 type gauge is used.
There is also another RG-75 gauge tube mounted below the

gate valve on the collision chamber side.

G. The bake—-out oven

The purpose of the bake out is to increase the
degassing rate of the components inside the wvacuum chamber
in order to obtain the ultimate wvacuum within a short time.
The gold wire seals allow the system to be baked at temper-
atures up to 280°C. This bake-out is accomplished by the
use of an external oven, made of 4" thick transite, measuring
274" x 154" x 11%".. The oven contains 3840 Watts of heating
elements mounted on four sides and the top. The temperature
inside the oven is monitored with an iron-constantan

thermocouple.
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After bakeout at 280°C for a period of about 24
hours, an ultimate vacuum below 5 x ]_O—’7 torr can usually

be obtained in each of the two chambers.

H. The differential pumping

Since the two chambers are connected by only a small
‘1.5 mm pinhole, good differential pumping can be maintained
between them. In general, the pressure within the gun
chamber can be maintained at a wvalue of‘ﬁathat of the
collision chamber for a collision chamber pressure of the

order of lO—h torr.

9 . ] . The Electron Gun

The electron gun consists of a cathode with a heating
element and five planar electrodes. The purpose of the
gun is to produce a beam of electrons, of energy between
30 and 70 ev, well-collimated, and with an intensity of
around 10_7 amp measured in the collision chamber. Figure
2 shows a cross section through the axis of the cylindrically

symmetrical electron gun.

A The cathode

The cathode used in the electron gun is a KB623B-
N10985 RCA oxide cathode. The cathode is mounted in an
I116061-C230F ceramic spacer which serves to insulate it
from other elements of the electron gun assembly. Electrical
connections to the cathode are made with the help of two

metal tabs spot-welded to its body.

B. The heating element

The oxide cathode assembly is indirectly heated by

an RCA MCH 8004D ceramic coated heater, wound up as a double
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helix. This tungsten filament has an apparent length of
about 15 mm (the total length of the uncoiled wire being
much longer) and fits into the metal compartment directly
behind the oxide coated surface of the cathode, It is
rated tor 6.3 v and 0.6 amp but can be operated at currents
up to 0.9 amp. With currents in this range temperatures
between 1000°and 1300°K can easily be obtained. At these
temperatures the total emission from the cathode is

sufficient for the purposes of this experiment.

C. The E1 electrode

Mounted about-ﬁﬂ in front of the cathode is the
electrode El which is used to withdraw a large number
of electrons from the surface of the oxide emitter. (see
Figure 2).

El ié made by spot-welding an inconel cylinder
(with 7 mm inner diameter andn%%" in length) onto a l%"
diameter inconel plate (with a 4.9 mm diameter center hole

andT%" in thickness).

D. The E2,E3,E4 and electrondes

The electrodes E2, E3 and E4 have the purpose of
collimation and focusing the beam. These three electrodes
are all made of 1%" diamiter inconel plates (%# in thickness).
The center hole diameters in these electrodes are O «5725
1.015 and 0.572 mm for E2,E3 and £3, respectively. The
spacings between them are (see Figure 2) E2 to E1 = 1.50 mm,

E3 to E2 = 1.50 mm, and E4 to E3 = 1.06 mm.

E.. The E5 electrode

The final electrode E5 in the electron gun assembly
is a small gold disk mounted in the center of the stain-
less steel flange connecting the gun chamber with the

collision chamber. The spacing between E5 and E4 is 6.2 mm.
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This gold disk is 0.,010" thick and has a 1.5 mm diameter
hole in the center. It is attached by epoxy resin to a 1"
diameter quartz disk (#“ in thickness and with a %" hole
in its center). The hole in the gold disk allows the
electron beam to pass into the collision chamber. The
quartz disk is itself attached tc the stainless steel
rlange by epoxy rTesin. This arrangement serves to insulate
E5 from the center flange. _
The potential on E5 relative to the cathode determines
the energy of the electrons that enter the collision chamber.
In order to eliminate the possibility of the electron
beam being distorted by the ground potential of the steel
flange or the dielectric materials of the quartz disk and
epoxy resin, a small tantalum cylinder E5 with diameter
about;%" and length about%”'is spot-welded onto the
collision chamber side of E5 (see Figure 2). This shields

the electron beam against stray fields..

By The electron gun assembly

The cathode with its heating element along with
the five electrodes constitute the electron gun. These
elements are mounted under adequate alignment conditions
and keep rigidly fixed in position(ez).

The accurate spacings and electrical insulation
between these elements are achieved by means of precision
sapphire balls placed into holes (with smaller diameters
than the sapphire balls) drilled in the inconel plates.
Three balls are placed between every two plates. The
diameters of the hole and the ball determine the separation.

It should be pointed out that the present version
of the electron gun follows very closely to that described
by Raff(éz). The only differences are that in the present
electron gun the center hole diameters of E2 and E4 are

both 0.572 mm while previously they were both 0.5 mm.
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G The improvement in alignment of the electron gun

An examination of Raff's electron gun assembly under
a microscope with calibrated vertical and horizontal
scales showed that the center of E4 was displaced by 0,13 mm
relative to the line between the centers of E2 and ES(GZ).
We note that the average distance between E2 and
E4 is 3.75 mm. Hence 0.13 mm off-centerness of E4 would
cause an angular deviation of 2° from the axis of symmetry.
This oiff-centerness has actually been observed and
corrected on an optical comparator (with a 50 times
magnifying lens) to less than 0,.,0005" or 0%0.2° angular

deviation.

IV.1.3. The Collision Chamber

The collision chamber contains a beam collector
(BC), a shielding grid (GlA), three sets of concentric
cylindrical grids (G1,G2 and GS) and two sets of concentric
cylinders (scattering collector SC, and the shield). Figure
3 shows a cross section through the axis of the cylindrically

symmetrical collision chamber grid system.

A The beam collector

The beam collector is a cone made of brass with7%"
in diameter at the open end. It rests in a cone-shaped
space provided at the end of the boron nitride supporting
rod and is l%" from E5. The electron beam is directed at
this collector and the resulting current is measured during

an experiment.

B, The Gl grid

The Gl grid is a major modification of Ratfi's

61
apparatus based on the idea of Lozier( ). This grid gives
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rise to a directional selectivity for electrons scattered

around 90° .
This grid has a length of l%“ and is made of a

stack of 22 copper disks 0.010" in thi . ckness l%" in

diameter and with a center hole'%" in diameter. These disks

are in electrical contact with, and rigidly supported by,

a brass tripod and are mechanically separated by small brass

washers 0,050" in thickness. This gives 21 annular paths

of 0.050" in width and 0.500" in length each for scattered

electrons coming out in the radial direction (perpendicular

to the electron beam axis. The tripod is made by silver-

soldering 3 L-shaped brass. rods (" diameter) at 120° to

each other onto a brass split ring (o.d. =g", i.d. =5",

heigh =§3")- The ring of the tripod is tightly fitted on

the boron nitride rod and the three ends of the tripod are

supported by a stainless steel end-plate through boron

nitride washers as insulators,

C s The GlA grid

The GlA grid is a disk made from a piece of circular
tungsten gauze which has a 100 x 100 mesh size (lOO wires
of 0.001" diameter per linear inch of gauze) with a trans-
parency of 81%. A hole of about 4" diameter is cut out
at the center of Gl1A to permit the electron beam to reach
BC without reflecting off GlA.

Gl and GlA are maintained at the same potential as

mw
B

Ut

and E5' during an experiment so that electrons traveling
in this region are not subject to electrostatic fields.
The purpose of GlA is to prevent Iield penetration from BC

into the scattering region enclosed by Gl.

D The G2 and G3 grids

The G2 and G3 grids are constructed of tantalum

gauze which has a 50 x 50 mesh size (50 wires of 0.,003"
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diameter per linear inch of gauze) with a transparency of
; , = : ; ! ;

T2%a These cylindrical grids are l%" and 2" in length

and l%" and 2%" in diameter, respectively. They are

supported by a brass tripod similar to that of Gl.

E.. The scattering collector

The scattering collector SC is a cylinder concentric
with and surrounding G3. Its diameter is 2%" and its
length is 14", the same in length as Gl. The collector
is made of tantalum foil, O.oo0l" thick, and is supported
by a brass tripod similar to that of Gl. All three legs
of the tripod and leads to the collector are shielded by
tantalum foil and ceramic insulatofs to minimize the back-

ground current,

B The shield

The shield is a cylinder (made of 0.001" thick
tantalum toil) surrounding the scattering collector. Its
diameter is 2%" and its length is 24". The rear end (the
one turthest from the gun chamber) of the shield is partially
closed by six leaves of tantalum foil extanding toward the
boron nitride supporting rod in order to collect stray
electrons in this region. The shield is also supported by

a brass tripod similar to that which supports Gl.

G. Deposition of platinum black

In order to reﬁuce reflection of electrons, all
surfaces of the grids and collectors in the collisicx
chamber are coated with a thin layer of platinum black.

It is electrolytically deposited on the grids irom a plat-
inum anode in a solution of chloroplatinic acid containing
a trace of lead acetate. For a current of 50 ma (at 3.5 v

D.C.) a deposition time of 15 min is usually satisfactory.
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IV.1.4. The Inlet System

The sample gas inlet to the collision chamber is
through one of the side flanges attached to the chamber.
A 3' length of %“ copper tubing is silver-soldered onto
this flange. This tubing is connected to a Hoke A413 High
vacuum diaphram-seal valve which serves to separate the
chamber from the inlet manifold. The latter is equipped
with an NRC-0521 thermocouple gauge and a bakeable Granville-
Phillips wvariable leak valve whose conductance is contin-

uously adjustable from 100 atm cms/sec tn 10~

atm cmj/sec.
This variable leak regulates the flow of sample gas into
the collision chamber.

The pumping system for the inlet manifold is a
liquid nitrogen trap and a W.M. Welch single-stage, duo-
scal mechanical pump which has a free air capacity of
33.4 1/min. A Veeco one-inch brass bellows valve is mounted
between the inlet manifold and the cold trap. The pumping

system is shut off from the manifold during an experiment.

IV.1.5. The Helmholtz Coils

Two pairs of Helmholtz coils are used to neutralize
the earth's magnetic field in the collision chamber region.
One pair is mounted horizontally for the neutralization of
the vertical component, and the other vertically for the
neutralization of one of the horizontal conponents. The
whole apparatus is oriented in such a way that the horizontal
component of the earth's magnetic field along the electron
beam axis is zeroc., All metals used in the collision and
gun chamber regions are non-magnetic.

The wire used for the Helmholtz coils is #32 B

& S annealed copper of linear resistance of 0.5383 ohms/m,
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at 20°C. The dimensions of the coils are given below.

Vertical pair Horizontal Pair

- B 5
average diameter of coils 38 Losn
average separation of coils 195" 207"
number of turns per coil 1376 1622

IV.1.6. Measuring Equipments and Power Supplies

Pressure measurements are made with an NRC-763
thermocouple and ultrahigh vacuum ionization gauge control.
An auxiliary filament power supply Keeps the ion gauge
filaments heated when they are not connected to the NRC-763
circuit,

Magnetic field measurements are made with a Bell

Model 120 gaussmeter (O.l to 30000 gauss in 12 ranges, full
scale) equipped with an M1201 magna probe (100 time more

sensitive in each specified range).
Voltage measurements are made with a John Fluke model
803 DC-AC differential voltmeter (accuracy: .001 v on 50 v

range).

Electron beam currents are measured with a Keithley

model 410 micro-micro ammeter.

Scattered currents are measured with a Cary model

31 vibrating reed electrometer.

Data recordings are made with a Moseley model

7100-AMR two channel strip chart recorder.
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The Electron gun filament is operated by a Kepco

model CK18-3m voltage/current regulated power supply(range:

O to 18 v, O to 3 amp; stability: better than 0.01%).

The Potential to El1 electrode is supplied by a Kepco

KR11-M voltage regulated power supply(range: O to 150 v;

stability: 0.25%; resolution: about 0.05 v ).

The Potential between cathode and ground is supplied

by a John Fluke model 407 regulated power supply(range:

O to 555 v; stability: better than 0.01%; resolution: 2 mv).

The Helmholtz coils are operated by two separate

Kepco model HB-2M voltage regulated power supplies(DC output:
0O to 325 v; stability: better than 0.1%1; normal operating

current: about 10 ma).

The Potential to E2 is supplied by a 6-volt car

battery(rated for 55 amp-hour, normal operating current:

about 1 ma).
Potentials to other electrodes and grids are Ifrom

90 volt B-batteries.

IV.2. The Experimental Procedure

IV.2.1. Pump-Down and Bakeout

After the system is assembled it is leak checked with
a Consolidated Electrodynamics Corp. fodel 24-120A helium
leak detector, which has a sensitivity of about 5 x lO_lO

atm cmB/sec/division. The diffusion pumps are then turned



91

on. After pumping for about one day the pressure in the
gun chamber is in the region of 10_6 torr while that of
the collision chamber is of the order of J.O—5 tory. The
system is then baked to about 280°C for 24 hours or longer
while the pressure below the gate valve is monitored.
Af'ter cooling down, the pressure in the gun chamber is
usually 2 x 10”7

5 x 10”7

torr and that of the collision chamber is

torr.

LY olie 2 Degassing and Activation of the Cathode

The cathode of the electron gun is degassed by
gradually dincreasing the D.C. heater current to about 0.80
or 0.90 amp. The gradual increase in the temperature of
the cathode causes the electron_emitting oxide to degas
and comnsequently raises the pressure within the gun chamber.
This pressure rise is followed by the ion gauge, and the
filament current is increased slowly so that the pressure
within the gun chamber never rises above 2 Xx 10_6 torr
during the process. In general, this degassing procedure
takes from one to two hours.

After degassing the cathode the activation process
is begun. This consists in placing a positive potential
on the electrode El, and allowing a large current to be
drawn from the cathode, which results in its activation.

The emission current is generally a function of the cathode
temperature (which is controlled by the heater current) and
the electric field intensity. For a heater current of 0.38
amp and the E1 voltage at 50 v, the emission current measured
at El1 is about 0.2 to 3 ma depending on the age of the
cathode.
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EVa2:Be Functions of the Electrodes and Grids

After the cathode 1s activated; suitable potentials
are applied to the electrodes and grids to produce an
electron beam. Figure 4 shows the circuit diagram as well
as a set of typical operating voltages. The functions of
the electrodes and grids are as follows.

Cathode: source of electrons

El: controls the emission current from the cathode
at fixed heater current.

E2,E3,E4: electron-optical focusing lenses to
minimize the background of scattered current and maximize
the beam current. (The characteristics of these electrodes
are described in the next section)

E5: controls the energy of the electron beam that
enters the collision chamber.

Gl,GlA: Provides a field-free space by being set
at same potential as E5.

G2: prevents positive ions from being collected by
the scattering collector by being set at 10 volts positive
with respect to E5.

G3: energy-analyzes the scattered electrons. VWhen
G3 is at the cathode potential, no electrons should reach
the scattering collector. However, when G3 is at some pot-
ential V with respect to the cathode, then electrons which
have lost energies (iﬁ ev) equal to or less than V{(in volts)
can pass through G3.

SC: collects the scattered electrons. It is
grounded through the input resistor of the electrometer.

Shield: shields SC from stray electrons.

BC: collects the incident electron beam.

The holding potential between SC and GJ3 and that

between BC and GlA are determined by the experimental
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condition of yielding a minimum background. Details of

the behavior of the electrodes and grids are discussed in

section IV.3.

IV.2.4. Introduction of Gas Samples

To do an experiment, the gas sample to be studied
is iniroduced into the scattering chamber and is pumped
away under dynamic conditions.

We note that if the mean free path for collisions
of electrons with gas molecules_is large compared to
collision chamber dimensions then multiple electron collision
processes will be much less probable than single collisions,
Therefore the scattering chamber pressure (Psc) during a
run is maintained of the order of 10 torr such that the

mean free path of 35 ev electrons in N for example, is

2 (e3)

of the order of 175 cm at rcom temperature

In order to stabilize the pressure Psc’ a steady
state of the flow of gas through the collision chamber must
be obtained. To achieve this, the gate-valve between the
collision chamber and the liquid nitrogen trap is held at
an almost closed position to cut down the pumping speed to
less than 1 1/sec. The volume of the collision chamber is
approximately l% liters and therefore the time constant of
the system is longer than 1 sec.

After the gate valve is set at the almost closed
position, a suitable presure PSc is obtained by adjusting

the opening of the Granville-Phillips variable leak wvalue.
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ITVaZaDs Procedure for Taking a Spectrum

7

With a beam current of about 1 x 10 amp measured

at BC and a collision chamber pressure of about 1 x 10-4

torry (uncalibrated readings from the ion gauge), the total
; : _ = -11
scattered current is of the order of 10 amp ..
The scattered current i . as a function of the
s

retardation potential V is recorded on the strip chart

G3
A (s
recorder. The ratio of increments:;g; is then plotted

against V to give the energy loss spectrum.

G3
It should be noted that V is related to the

G
energy loss of the scattered eleczron by an additive constant,
commonly known as the "contact potential'. In the present
work, the elastically scattered current peak is taken as
the zero of the energy scale. The value of VG3 at this
point corresponds to the contact potential. Generally, the
contact potential is a function of the potentials on the
electrodes and grids and changes from day to day. Contact
potentials ranging from 0.5 volts to 2 wvolts have been

observed.

IV.3. Characteristics of the Apparatus

IV.3.1s £1 and Cathode as a Diode

From the geometric construction of the electron
gun shown in .’'Zgure 2, we see that the cathode and the
electrode £1 in front of it can be regarded as a diode
vacuum tube. A diode has the characteristics that the
plate current increases with increasing plate voltage to

a certain value and then levels off, The plate voltage
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region before the leveling off is called the "space-charge
limited region'", and the region thereafter is called the
"te_mperature limited region". The current in the latter

is often called the saturation current.

Figure 5 shows a plot of ta versus VEi for heater
currents iH ranging from 0.84 to 0.92 amp for an "aged"

cathode. The full lines and dashed lines correspond to
VE2 at 0.00 and 10.76 v, respectively. The undulations
in these curves seem to be due to electron optical effects.
Figure 6 shows the emission current Q,as a function
of the plate wvoltage VE1 for a "fresh" cathode with heater
current at 0.88 amp. The full line and dashed line corres-
pond to Vg, at 1.13 and 4.75 volts, respectively. We see
that under this fresh cathode condition this range of
operation is a typical example of the "space-charge limited
region",
It is found that the average life-time of the "fresh"
cathode with heater currents above 0.8 amp is of the order

ol two hundred hours.

IV.3:2, Electron Beam Currents Measured at EL

We have set E5 to zero potential with respect to the
cathode in order not to fire elcctrons into the scattering
chamber and measure the electron currents to E4 as a
function of Vp, at different V,voltages. Figure 7 shows
an example of such measurements with the ratio of increments

alss

AVe plotted against V while VE{’ V. and V are made

E2 E3 EL
equal to 5.01, 24,50 and 50.00 v, respectively. (All
potentials are measured with respect to the cathode unless
otherwise specified). The current reaching E3 is also

measured, and it is only a few percent of that measured at
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' under these conditions.

We see that Figure 7 rescmbles the Boltuzmann dis-
tribution curve with the high energy tail pointing towards
negative values of VEg' This is just what one would ex-
pect in a retardation potential measurement. In the
particular example, the full width at half maximum (F.W.H.M.)
is 0,31 ev, and the peak of the curve is located at VE2 =
0.65 volts.

Experiments of this kind with V_. varying from 10 to
A

i
50 v indicate that the full width at half maximum increases
monotonically to about 1.1 ev (see Figure 8), and that the

peak position shifts to larger VE values.

2

IV G a3 Estimate of the Cathode Temperature

It is well known that for an ideal thermionic emitter

(40 )

the energy F.W.H.M. is given by

l;?1§4'

AE = 2.643T = -2 1

[1&oo
(186)

where T is the temperaturé of the cathode in °K and AE
is in ev,

If we assume that the observed full width at half

- " Aleq ) -
maximum of the " -~ versus b 4 "curve at each value of

T2

VEl represents the superimposed effects of the thermal(64)
energy distribution and the electron optical broadening
then from the éxtrapolated P.W.H. M. at VEl= 0 v we should
be able to calculate the cathode temperature. Accoxrding to
Figure 8 this value is about 0.25 ev for a heater current

of 0.88 amp. This corresponds to a cathode temperature of
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140°K for the case of an ideal thermionic emitter. This
is a typical operation temperature for an oxide coated

cathode.

IV.3.4. Effect of the Farth's Magnetic Ffield

—_—
A particle of charge q and velocity v moving in
—»
a magnetic field B dis subject to a force
— - a0
- == 15
P = gv x B, (187)
—_ -3 -

If v is perpendicular to B, and B is homogeneous,
then the particle will move in a circular path of radius

mv

R o= — (188)

For the case of an electron with a kinetic energy
of fVJ ev and a homogeneous field of ]B] gauss, R is given

Ry

L :
R = 3.37 g7 cm (189)
Thus for 2 1 ev electron moving perpendicularly to the

earth's magnecic field of 0.31 gauss in our laboratory,
this radius is 10.9 cm. This is comparable to the dimensions
of the apparatus. Therefore the earth's magnetic field must
be neutralized.

Two pairs of Helmholtz coils described in section
TNl 5 aré constructed based on these consideration., By

properly adjusting the currents flowing through these coils
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the earth's magnetic field can be neutralized to less than
0y 5%, or abowt 1,5 milldigawss. The average fluctuation
of the magnetic field in our laboratory is found to be about

i~

% from day to day. However, the operation of a large

H

magnet in an adjacent laboratory can sometimes cause an
. : n & ; o . e o o5
abrupt change of 10% in magnitude and 15 in direction of

the ambient magnetic field vector.

IV w35 o Background Current As a Function of Magnetic Field

]

In addition to being able to cancel the ambient
nagnetic field, the two pairs of Helmholtz coils can also
be used to generate magnetic fields between zero and two
gauss pointing towards any given direction in the plane of
their axes. (The upper limit is due to the particular coil
design and the power supplies chosen). Thus the resultant
magnetic field in the region of the apparatus can be varied.

As the electron beam is shot into the collision
chamber, we can still detect a current on the scattering
collector even if there is no gas sample present, This
is referred to as the background current of the instrument.

If the axis of the electron gun and that of the
collision chamber grid assemblies are not well aligned, we
would expect to observe a larger background to beam current
ratio than il they are properly aligned,provided there is
no external magnetic field present.

Figure 9 (a) and (b) show the results when 50 ev
electron beams are directed into the "empty" collision
chamber at various magnetic fields. The direction of the
electron beams 1s perpendicular to the paper and pointing
upwards. The system is oriented such that the earth's

masnetic field vector lies in the plane of the paper. The
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magnetic field at each point is the radius vector from the
origin of the coordinate system to that point. The

number adjacent to each point is the.ratio of scattered

5

current to beam current in units of 10 ~, G3 is arpitrarily

set at 27 volts. The pressure in the collision chamber is

T

about 5 x ig oYy With tThe common conditions described
avbove, Figure 9(a) describes the magnetic field when the
end of the axis of the grid system is missed from the
electron gun axis by;%ﬁ in the plane containing E5; Figure
9(b)describes the field when the two axes are aligned to
better thanez" in the E5 plane.

We see from Figure 9(a) that the minimum value of
i%toccurs at point Ml for which the magnetic field is 0.63
gauss. On the other hand, in Figure 9(b), when the system
is well aligned, the minimum wvalue of%ﬁ-occurs at point
M, which represents a magnetic field of only 0.03 gauss.

The information obtained from Figure 9 may be
summarized as follows. In order to minimize the background
to beam current ratio, the system must be well aligned

and the earth's magnetic field must be reduced to a minimum..

IV.3.6. The Lozier Grid

In the present work, a retardation potential method
is used to perform the energy analysis of the scattered
electrons,. Since only the normal velocity component of
an electron is being affected by the retarding potential,
an electron with energy E coming to a grid at an angle
© with respect to its axis of cylindrical symmetry would
appear to the grid as if it only had an energy E sin%Q.

It is because of this that we have made Gl into a

directional selection grid. This should sharpen the
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instrument resolution. (see also section Iv,1.3.)

Figure 10(a) shows a sectional view of the annular
paths defined by Gl. If we assume that all electrons
hitting the walls will be collected . by the grid and not
reach SC,then a transparency function T(®) can be calculated
for a given set of parameters t, d, a and r.

In the present design - the parameters
t,d,a and r are chosen to be 0,010", 0.050", 0.500" and
0.1875", respectively. We have made simple calculation
of T(®) for this case by dividing the length element 2Q
into 25 small segments and evaluating the angular range

subtended by the center of each segment in slots A,3, and

Ca "he number of segments accessible to a given angle is
then counted for every half a degree interval. Effects at

the two ends of the stack of disks are ignored.

Figure lO(b) shows the resulting transparency
function of this set of grid system. The transparency at
90° is taken to be unity. We see that T(@) is approximately
a triangle whose base extends from 84° to 96awith an apex
at 90 ; The F.W.H.M. of this distribution is 6°, Ef
90°% 6°and 90° = 3° are the maximum and average contributing
angles, respectively, then the corresponding maximum and
average relative energy spreads will be 1.01% and 0.27%,
respectively. For electrongnergies of 50 ev or lower, the
energy spread caused by Gl should then be comparable to the
thermal energy spread'from the oxide coated cathode, provid-

ed the reflection coefficient of the metal plate is =zero.

TN oS wfw Behaviour of the G2 Grid

As described in section IV.2.3, the purpose of
setting G2 at 10 volts positive with respect to E5 is to



T(0)

FWHM=6°.

b, (it i ] S et s it
Q)

—— e — — ——

| eleciron beam axis

= s = s

,f
|

S S ST (S |

Q P

+ - o o AR . o P— 1 my £ T.00
Figure 10(a). Scctional iwlar sure 10(b). Tx y < ‘ b

& C - | - ~ e e 4. & ~ e \ d ‘

paths defined grid, &8 8 luncolen oI Sca ] 23 {5 ¥

d=0.050", =0

00T



[
'®)
=2

w
[¢]
m
i

prevent positive ions from being collected by the
electron collector,

Figure 11 shows the scattered current as a function

of VG9 for Gz at 0,1, and 2 v, The sample gas is nitrogen
at $.6 = IO torr the electron beam energy and current are
50 ev and 4.7 x 10 7 amp, respectively. This experiment

-

was done with a grid systemfsimilar to the previous
apparatus described by Raff(éo) in which Gl is a cylindrical
mesh rather than a disk stack.

We see that the scattered currents reach steady
values when G2 becomes 5 volts or more positive with respect
to ES5. The current increment for G3 between O and 1 volt
(or between 1 and 2 volts) becomes a constant when (VG9 -
¥, ) is higher than 5 volts. Therefore the potential on

G2 is chosen to be 10 volits positive with respect to E5 and

IV 9 8, Holding Potential on the Beam Collector

In order to insure that electrons which reach the
beam collector are indeed collected and not reflectec
back into the collision region, a holding potential of
70 volts is applied between the beam collector and GlA,
(G1a, G1, and E5 are at the same potential).

Figure 12 shows the scattered current from helium
as a function of VBc for 30, 35, 40 and 50 ev beams. The
pressure in the collision chamber is 3.4 x 10—4 torr
(ion gauge reading). The scattered currents are normalized
to the same beam current of 1 x 10_7 amp. G3 is set at
50 v with respect to the cathode, corresponding to a
retarding potvential difference of 20 v for the 50 ev beam

and of Ov for the 30 ev beam.
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of the electric fields.

Figure 14 shows the elastic peaks of helium [or
30, 35, 40 and 50 ev incident beam energies. The lowest
beam energy produced by the present geometry is about 23
ev. The electron beam diverges excessively if E5 is lower
than 28 ev no matter what potentials are applied to E1,
E2, E3 and E4. Therefore no experiment is made with beams
of energy lower than 30 ev.

The F.W.H.M. or the elastic peaks represents the
actual resolution of the instrument. This 1s about 1 ev
for the present apparatus and is only good for distinguishing
electronic energy levels with eﬁergy separation of about
1 ew. No fine structure of vibrational or rotational

states can be resolved.

IV.F.310. Helium Spectra As a Function of the Holding

Potential Between SC and G3

T ling ‘ tial V._ not on has a
The holding potential SC to G3 1y 5 an
effect on the full width at half maximum of the elastic
peaks as shown in Figure 13(b) but also influences the
electrostatic field in the scattering region.
Figure 15 shows three 50 ev helium spectra witn
pows v 8« E i beak i
SC to G3 set at 5, 10, and 15 volt% The elastic r is
plotted on 10 times less sensitive scale in Figure 15(c)
The lowest electronically excited state of helium is <tThe
235 state at 19.81 ev above the ground state. The first
optically allowed transition is the 1'S —» 2'P transition
at 21.21 ev.
We see from these 3530 ev spectra that when V_ . .
SC to G3
is set at 5 or 10 volts there is an undulating back-

ground superimposed on the elastic and inelastic peaks.
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The undulating background becomes small when VSC to G3

is set at 15 volts.
Similar experiments for 40,35, and 30 ev beams
are made. It is found that the undulating background

becomes small when VSC to G3 is set at 25, 30 and 35 v
for 40, 35 and 30 ev beams, respectively. In general,

£ =
the background ceases to undulate when VSC%&; + VES

65 v. Since the resolution worsens as V increases,

SC to G3
we choose the minimum value of this quantity for which the
background undulations become unimportant.

The reason for this undulating background is not
clearly understood, It may be caused by some electro-
static effect. However, it is worthwhile to mention that

the 50 ev helium spectrum with at 15 wvolts,

VSC to G3

Firure 15(0), agrees very well with the helium spectrum
s

reported by Doering( 7). The details: about the helium

spectra will be discussed later.

IV.3.11. The Rising Background

A difficulty associated with the present.method is
the rising background in the region of large energy loss.
The reason for this rise is that in measuring increments
of the scattered current at large energy loss, we have to
set VG3 at more and more positive potentials with respect
to the cathode., The closer VG3 gets to the wvalue of VGl
the greater is the field penetration into the electron
beam region, with consequent with-drawal of beam electrons
which then reach SC without having been scattered.

This problem becomes serious when we want to scan
the large energy loss region with low energy beams. The

30 ev spectrum of helium in Figure 16 serves as a good
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example for this situation. We see that at this beam
energy the inelastic transitions in helium are parti_ally
masked by the fast rising background.

It would be convenient if we could subtract the
instrumental background from a spectrum to obtain the net
inelastic signal. However, it seems that this can not
be done in a simple way. The dashed curve in Figure 16
represents a blank scan after the shut off of helium. It
is obvious that the background is not simply related to
either the pressure or the elastic peak.

Fortunately, the ionization potentials for many
molecules are around 15 ev or lower and the important
electronic energy levels are even lower. ‘Thus, we can
still use the present technique to obtain electron impact
spectra for those molecules ‘at incident beam energies of

30 ev or higher.

IV.3.12. Limitations of the Present Apparatus

From the preceding discussions we see that the
present apparatus is Eapable of yielding electron impact
spectra of molecules at 90° scatterihg angle for incident
beam energies higher than 30 ev with a resolution of about
1l ev. However, there are a few conditions associated

with the present apparatus which limit its use.

A. The tajils of the elastic peaks

Since the elastic peaks are generally 10 times or
more higher than the inelastic ones the tails of the former
extend into the energy loss region of about 3 ev. There-
fore, it is difficult to study low-lying exciied states
with excitation-energies equal to or less than about 3 ev

with the present set-up.
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B. The rising background

The background problem discussed in section IV.3.11.
causes the observed spectra to be superimposed on a base
line which rises as the energy loss increases. Thus, we
can only obtain a qualitative estimate on the ratios of
peak heights for the inelastic transitions observed.
Quantitative measurements of the peak heights may be

achieved only after this background problem is solved.

C. The effective scattering volume

In a scattering experiment, if we know the number
density of the scatterer, the intensity of the electron
beam, the path length, and the scattered current intensity
for a given solid angle, then we can calculate the differential
écattering cross section. However, for charged particles
such as electrons the collimation of the beam changes
with beam energy. Therefore, the path length which ;s
related to the effective scattering volume is a function
of that energy. Thus the comparison of peak heights of the
same transition at different beam energies is not mean-
ingful unless the effective scattering volumes are taken
into account. .

Nevertheless, the ratio of peak heights of different
tyvpes of inelastic transitions at the same beam energy can
still be compared. The energy dependence of the ratio

may shed light on the nature of the transitions involwved.

D. The problem of cathode poisoning

It is found that the type of oxide coated cathode
used in the present work is good only for experiments
involving inert or reducing gases. Molecules such as
water, carbon dioxide, nitric oxide or oxygen introduced
into the collision chamber in the usual way will decrease

the emission current in a wvery short time. Fortunately
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the emission current can be restored if a reducing gas is
introduced into the system afterwards. This is probably
due to some reversible oxidation-reduction change of the
surface work function of the cathode.

The situation may be improved by increasing the
effective pumping speed in the cathode region, and by
redesigning an electron gun with its cathode not facing
directly the flux of gaé molecules from the collision

chamber,

E., The conductance-limited pumping speeds

In the present vacuum system, although the 4" oil
diffusion pumps are rated for pumping speeds of 300 1/sec
actually the effective pumping speeds in the wvacuum
chambers are quite limited because of small conductance
tubes and ligquid nitrogen traps. A simple calculation
using the formula for the molecular flow case given by

(65)

Pirani and Yarwood shows that the conductances of

the tubes between the wvacuum chambers and the diffusion

6
pumps are 11 and 25 l/sec( 66)

for the collision and gun
chamber sides, respectively, The conductance in the vicinity
of the cathode would be still smaller because of the compact
geometry of the electrodes. An improved vacuum Ssystem

with higher pumping speed in the gun chmaber may therefore

enable us to study the oxidizing molecules.
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Comparison of Performance oif Present Apparatus

With Previous Version

The wvacuum system,

supplies, measuring devices,

electron gun assembly, voltagec

and operation procedures used

with the present apparatus are essentially the same as in

the previous version used by Kuppermann and Raif

(54,55, 60 )

The only important modification was the introduction of the

Yozier grid into the scattering chamber.

The general

differences in the experimental conditions of these two

versions can be summarized as follows.

Previous
apparatus

Present
apparatus

) S Angular range
of scattering
observed

i Electron beam
energies used

3. Axis of the
electron gun

L. Magnetic
material in
the scatter-
ing chamber

5. A small
magnet for
collimating
the electron
beam

6. Magnetic
field in
scattering
region

22° to 112°

between 25
and 75 ev

2.0° deviated
small amounts

of Kovar and
nickel

needed

inhomogeneous
due to presence
of small magnet

84° to 96°

between 30
and 50 ev

corrected to
G*+0,.2°

nomne

not needed

ambient field
neutralized
homogenecusly to
less than 0.5%
of the earth's
field
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The modifications introduced produced very large

differences in the resulting spectra,

as listed below.

Previous Present
apparatus apparatus
1a Size of total
scattered 3 x lO"lOamp T amp

signal

2. Ionization
process of
molecules

3. Contact
potential
correction

L. Position of
the elastic
peak in
spectrum

5. Ratio of
elastic to
inelastic

peak heights

6. Ratie of
allowed to

appeared as
a peak

based on the
ionization peak

appeared as

if it had lost
energy of

2 ev

ranging from
1 to 5

appeared as
an onset

based on the
elastic peak

defined as
ZEero energy
loss

always greater
than 10

allowed ones

Torbidden about 1 generally much
inelastic stronger than
peak heights forbidden ones
- : ’ 54,55, 60
Furthermore, in the previous work( 4 2 ), there

are a few points which are not easily understood. They

are listed as follows.

1. The full width at half height of the elastic peak is
of the order of 1 ev, yet two energy levels in argon located

as close as 0.6 ev are clearly resolved.

24 In the H2 spectrum the peak positions occur at onset

energies, whereas for the case of CZHQ they occur at



energies corresponding to absorption maxima.

3. Two helium spectra with beam energies of 25 and 50 ev
show no major change in the relative intensities for <tThe
spin forbidden and optically allowed transitions,

4, 1In spite of statement 3, the triplet state in C_H,,

peaking at about L.4 ev shows drastic changes in intensity
relative to the optically allowedrtransition when the beam
energy is increased from 40 to 75 ev.

The difference in behaviour of the two versions of

the apparatus can be assigned mainly to two causes.

a). The use of a small collimating magnet and the presence
of some magnetic materials in the scattering chamber of the
previous version could produce a disturbance in the scattered
electron trajectories.

b). The non-directional nature of the first analyzer
grid produces an elastic peak with a large high-energy
tail, in which slight fluctuations could produce spurious
signals. We conclude that some of the features of the
spectra obtained with the previous version of the apparatus
are suspect. Therefore, the results obtained with it
should not be relied on unless confirmed by the present
modified version. As shown in detail in the rest of this
thesis, this present version produces results consistent
with other measurements and devoid of the inconsistencies

mentioned above.



V. Results and Discussions

Electron impact spectra have been obtained for the
helium atom and twelve molecules at 90° scattering angle
with incident beam energies of 50, Lo, 35 and 30 ev.

These twelve molecules are hydrogen, nitrogen, carbon
monoxide,ethylene, acetylene, methyl acetylene, allene,
propane, l,3-butadiene, benzene, norbornadiene and
guadricyclene.

In taking the spéctrum of each molecule the energy
loss region is scanned at least six to eight times at each
beam energy to make sure that the observed structure is
reproducible. The electron beam current is generally between
1.0 and 1.5 x 10_7 amp. The gas sample pressures in th
scattering chamber are of the order of 10_4 torr as
measured by an uncalibrated ion gauge. “The potential
settings on the electrodes and grids for all experiments
are as indicated in Figure 4. The resolution of the in-
strument is about 1 ev as discussed in section IV.3.9.

Theoretically, the optically allowed transitions are
the most intense transitions in an electron impact spectrum
when the Bormn approximation is wvalid. The conditions for

the Born approximation to hold are as follows.

A, The incident beam energy is high compared to the
excitation energy, and

B.. The scattering angle is small..

Our experiments are done at 90° with low incident beam
energies since under these conditions the Born approximation
breaks down and optically forbidden transitions may be
observed.

It is well known that the absolute magnitude of the
ditferential cross section U,(E,0,9) for a given inelastic

process, n, of a given molecule falls off with increasing
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scattering angle. ‘'I'hus the measurable signal drops when
a detector with a fixed incoming solid angle is placed at
larger and larger scattering angles. This is probably the
reason that most of the reported electron impact work is
done at small scattering angles..

In order to take advantage of the favorable ratio
of optically forbidden to allowed transitions at large
angles and still to obtain a measurable signal, one may
either use very intense. incident electron beams or try to
increase the effective incoming solid angle of the detector.

Doering(57’5?)

uses the first approach, i.e., his ex-
periments are done with 100 microampere electron beams.
In the present work, however, the second approach has
been adopted.

It should be pointed out that so far there has
been very little work done in 90° electron scattering
spectroscopy except the very recent work by Doering on

7) (s%)

and on ethylene , with which our present
work agrees very well,

The helium 23

helium

S state at 19.81 ev, which Doering
was unable to observe with electron beam energies higher
than 40 ev, is clearly resolved at 35 and 30 ev in the
present work (see Figure 18).

The energy levels of the diatomic moleculea HZ’ N2
and CO are well known from optical spectroscopy ( ).
Therefore, the electron impact spectra of these molecules
serve as a check on the capability of our instrument to
excite molecular electronic energy levels. In addition to
optically allowed transitions, the low-lying antibonding
b2S,} state of H,, the unresolved ABE‘:', BSTEE and a7y

states of N the CBX“ state of NZ’ and the aBRZstate of

2!
CO have all been observed in the present work (see Figures

20,22, and 24). The intensity ratio of spin forbidden to
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optically allowed transitions is of the order of é-or
better in our experiments, Skerbele, Dillon and Lassettre
(B?a,b) observed ratios of spin forbidden to optically
allowed transitions of the order of 10—3 inAN2 and CO
with similar incident electron beam energies but at
scattering angles between 0° and 16°. Thus it is obvious
that low incident beam energies and large scattering
angles are indeed favorable conditions for the observationof
optically forbidden electronic transitions. (See also
sections II.12 and III.4)

The ethylene spectra, shown in Figure 25, agree with

(58)

Doering's work very well. The only two peaks rTe-
solved a