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Abstract

Time, risk, and attention are all integral to economic decision making. The aim
of this work is to understand those key components of decision making using a
variety of approaches: providing axiomatic characterizations to investigate time
discounting, generating measures of visual attention to infer consumers’ inten-
tions, and examining data from unique field settings.

Chapter 2, co-authored with Federico Echenique and Kota Saito, presents
the first revealed-preference characterizations of exponentially-discounted util-
ity model and its generalizations. My characterizations provide non-parametric
revealed-preference tests. I apply the tests to data from a recent experiment, and
find that the axiomatization delivers new insights on a dataset that had been an-
alyzed by traditional parametric methods.

Chapter 3, co-authored with Min Jeong Kang and Colin Camerer, investigates
whether “pre-choice” measures of visual attention improve in prediction of con-
sumers’ purchase intentions. We measure participants’ visual attention using eye-
tracking or mousetracking while they make hypothetical as well as real purchase
decisions. I find that different patterns of visual attention are associated with
hypothetical and real decisions. I then demonstrate that including information
on visual attention improves prediction of purchase decisions when attention is
measured with mousetracking.

Chapter 4 investigates individuals’ attitudes towards risk in a high-stakes en-
vironment using data from a TV game show, Jeopardy!. I first quantify players’
subjective beliefs about answering questions correctly. Using those beliefs in esti-
mation, I find that the representative player is risk averse. I then find that trailing
players tend to wager more than “folk” strategies that are known among the com-
munity of contestants and fans, and this tendency is related to their confidence.
I also find gender differences: male players take more risk than female players,
and even more so when they are competing against two other male players.

Chapter 5, co-authored with Colin Camerer, investigates the dynamics of the
favorite-longshot bias (FLB) using data on horse race betting from an online ex-
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change that allows bettors to trade “in-play.” I find that probabilistic forecasts
implied by market prices before start of the races are well-calibrated, but the de-
gree of FLB increases significantly as the events approach toward the end.
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Chapter 1

Introduction

This dissertation comprises four essays that address questions from several areas
of microeconomics and behavioral economics. Time preferences, risk preferences,
and attention are all integral to our economic decision making. The aim of this
work is to understand those key components of decision making using a variety
of approaches: providing axiomatic characterizations to analyze intertemporal-
choice data, generating measures of visual attention to infer consumers’ cognitive
processes, and collecting and analyzing data from unique field settings.

Chapter 2, co-authored with Federico Echenique and Kota Saito, presents
the first revealed-preference characterizations of the most common models of in-
tertemporal choice: the model of exponentially discounted concave utility (EDU),
and its generalizations including quasi-hyperbolic discounted utility (QHD) and
time separable utility (TSU). This is the first axiomatization of these models tak-
ing consumption data as primitives. My characterizations provide non-parametric
revealed-preference tests. I apply the tests to data from a recent experiment by
Andreoni and Sprenger (2012a), and find that the axiomatization delivers new
insights and perspectives on a dataset that had been analyzed by traditional para-
metric methods. I find that (i) 30% of the subjects’ behavior is consistent with
EDU, (ii) all subjects rationalized as QHD are also rationalized as EDU, and (iii)
52% of the subjects are rationalized by TSU. Those numbers may appear small,
but I demonstrate that violations of EDU, QHD, and TSU are not due to small
mistakes, using two measures of “distance” from rationality.

Chapter 3, co-authored with Min Jeong Kang and Colin Camerer, studies a
well-known “hypothetical bias,” in which consumers tend to overstate their in-
tentions to purchase products compared to actual rates of purchases, using a
novel dataset on consumers’ visual attention. I investigate whether “pre-choice”
measures of visual attention improve in prediction of actual purchase intentions.
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In laboratory choice experiments, we measure participants’ visual attention using
eyetracking or mousetracking while they make hypothetical (whether they would
buy a product at an offered price) as well as real purchase decisions (whether
they do actually buy). I find different patterns of visual attention associated with
hypothetical and real decisions. First, participants spend longer looking both at
price and product image prior to make a real “Buy” decision than making a real
“Don’t buy” decision. Second, I find that during hypothetical choice, the more
participants look at prices, and the longer they take to transition from looking to
making a choice, the more likely they are to switch a hypothetical “Buy” to a real
“Don’t buy,” when they are asked to make real decisions on the same product-
price pair later in the experiment. I then demonstrate that including information
regarding visual attention as well as product’s price improves on using only price
in predicting purchase decisions. This improvement is evident, although small in
magnitude, using mousetracking data, but is not evident using eyetracking data.

Chapter 4 investigates individuals’ attitudes towards risk in a high-stakes en-
vironment using data from a TV game show, Jeopardy!, as a natural experiment.
Exploiting the rich nature of our dataset, I first quantify each player’s subjective
belief about answering correctly in the final round of the game. I then estimate
the representative leading player’s risk preferences in a subset of games in which
no strategic thinking kicks in. Improved method enables me to observe evidence
for risk aversion, unlike Metrick (1995), who finds that the representative player
is risk neutral. I then compare players’ observed wagering decisions with those
suggested by the “folk” strategies known among the community of contestants
and fans. In our dataset, trailing players tend to wager more than the folk strate-
gies suggest, and this tendency is related to subjective beliefs. I also find gender
differences in which male players appear to take more risk than female players,
and even more so when they are competing against two other male players.

Chapter 5, co-authored with Colin Camerer, reports a new empirical evidence
on the dynamics of the favorite-longshot bias (FLB). The bias is one of the most
well-documented regularities in betting markets. Using data on horse race betting
from an online exchange that allows bettors to trade “in-play,” I examine the
dynamics of FLB over time. I find a stark difference in the degree of FLB before
and during the races. Probabilistic forecasts implied by market prices before the
start are well-calibrated, which is in contrast with a wide evidence of FLB in
parimutuel betting markets. However, the degree of FLB gets significantly larger,
especially late in the races.
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Chapter 2

Testable Implications of Models of
Intertemporal Choice: Exponential
Discounting and Its Generalizations

2.1 Introduction

Exponentially discounted utility is the standard model of intertemporal choice in
economics. It is a ubiquitous model, used in all areas of economics. Our paper is
the first revealed preference investigation of exponential discounting: we give a
necessary and sufficient “revealed preference axiom” that a dataset must satisfy
in order to be consistent with exponential discounting. The revealed preference
axiom sheds light on the behavioral assumptions underlying the standard model
of discounting. It also yields a nonparametric test of the theory, applicable in
different empirical investigations of exponential discounting.

Consider an agent who chooses among intertemporal consumptions of a single
good. One general theory is that the agent has a utility function U(x0, . . . , xT)

for the consumption of xt on each date t. The Generalized Axiom of Revealed
Preference (GARP) tells us whether the choices are consistent with some general
utility function U.

The empirical content of general utility maximization is well understood, but
it is too broad (and GARP is too weak) to capture exponential discounting. The
exponentially discounted utility (EDU) model assumes a specific form of U, namely

U(x0, . . . , xT) =
T

∑
t=0

δtu(xt).

In this study, we focus on concave EDU, in which u is a concave function. Con-
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cavity of u is widely used to capture a motive for consumption smoothing over
time. The empirical content of concave EDU maximization is different from that
of general utility maximization, and not well understood in the literature.

The first and most important question addressed in this study is: What is
the version of GARP that allows us to decide whether data are consistent with concave
EDU? The revealed preference axiom that characterizes concave EDU is obviously
going to be stronger than GARP. Despite the ubiquity of EDU in economics, the
literature on revealed preference has not (until now) provided an answer. Our
main result is that a certain revealed preference axiom, termed the “Strong Axiom
of Revealed Exponentially Discounted Utility” (SAR-EDU), describes the choice
data that are consistent with concave EDU preferences.

SAR-EDU is a weak imposition on the data, in the sense that it constrains
prices and quantities in those situations in which unobservables do not matter. The
constraint on prices and quantities is simply that they are inversely related, or that
“demand slopes down.” Essentially, SAR-EDU requires one to consider situations
in which unobservables “cancel out,” and to check that prices and quantities are
inversely related. This inverse relation is a basic implication of concave utility
(that is, of the consumption smoothing motive).

In the paper, we study the empirical content of more general models of time
discounting as well, including the quasi-hyperbolic discounting model (QHD;
Laibson, 1997; Phelps and Pollak, 1968): U(x0, . . . , xT) = u(x0) + β ∑T

t=1 δtu(xt),
general time discounting (GTD): U(x0, . . . , xT) = ∑T

t=0 D(t)u(xt), and time sepa-
rable utility (TSU): U(x0, . . . , xT) = ∑T

t=0 ut(xt), where u and ut are concave. In
the following, we do not explicitly use the concave modifier when there is no risk
of confusion. For example, we say EDU to mean concave EDU.

The contribution of this study is to characterize the empirical content of EDU
and its generalizations. We provide the first revealed-preference axioms (axioms
like GARP but stronger) characterizing EDU, QHD, GTD, and TSU. Our axioms
shed new insights into the behavioral assumptions behind each of these models,
and also constitute nonparametric tests. There are, of course, other axiomatiza-
tions of these models but they start from different primitives. The well known
axiomatization of EDU by Koopmans (1960), for example, starts from complete
preferences over infinite consumption streams.

To illustrate the usefulness of our results for empirical work, we carry out
an application to data from a recent experiment conducted by Andreoni and
Sprenger (2012a) (hereafter AS). AS propose the Convex Time Budget (CTB) de-
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sign, in which subjects are asked to choose from an intertemporal budget set. 1

They find moderate support for the theory that agents are EDU maximizers.
The application of our methods to AS’s data is, we believe, fruitful. We un-

cover features of individual subjects’ behavior that are masked by traditional para-
metric econometric techniques. Our tests give a seemingly different conclusion
from that obtained by AS. At first glance, we find scant evidence for EDU (or in-
deed QHD) whereas AS are cautiously supportive of EDU. Section 2.5 has more
details, and reveals that the methodology of AS and our methodology are more
concordant than what initially emerges.

It should be said that our methods rest on nonparametric revealed preference
tests. As such, the tests are independent of functional form assumptions. The
tests are also simple, and tightly connected to economic theory. The methodology
used currently by experimentalists (such as AS) rests instead on parametrically
estimating a given utility function by statistical methods. Our setup fits the ex-
perimental design of AS, and other CTB experiments, very well, but our results
are also applicable more broadly, including to non-experimental field data.

Related literature. There are different behavioral axiomatizations of EDU in the
literature, starting with Koopmans (1960), and followed by Fishburn and Rubin-
stein (1982) and Fishburn and Edwards (1997). All of them take preferences as
primitive, or in some cases they take utility over consumption streams as the prim-
itive. The idea is that the relevant behavior consists of all pairwise comparisons
of consumption streams. From an empirical perspective, this assumes a infinite
“dataset” of pairwise comparisons. Indeed, the stationarity axiom introduced by
Koopmans (1960), and used by many other authors, requires infinite time. Our
axiomatization of EDU is the first in an environment where agents choose from
budget sets.

Other axiomatizations of EDU impose stationarity in different environments.
In Fishburn and Rubinstein (1982), preferences are defined on one-time consump-
tions in continuous time. In Fishburn and Edwards (1997), preferences are defined
on infinite consumption streams that differ in at most finitely many periods. The
recent work of Dziewulski (2015) gives a characterization for binary comparisons

1Several recent experimental studies use the CTB design, both in the laboratory and in the field
setting, including Andreoni et al. (2015), Ashton (2014), Augenblick et al. (2015), Balakrishnan
et al. (2015), Barcellos and Carvalho (2014), Brocas et al. (2015), Carvalho et al. (2013), Carvalho
et al. (forthcoming), Giné et al. (2013), Janssens et al. (2013), Kuhn et al. (2014), Liu et al. (2014),
Lührmann et al. (2014), Sawada and Kuroishi (2015), and Shaw et al. (2014). Our methods are
largely applicable to data from these experiments.
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of one-time consumptions, a similar setup to Fishburn and Rubinstein (1982), but
assuming finitely many data.

In continuous time setup, Weibull (1985) gives a general characterization of
EDU, also taking preferences as primitives. He characterizes the general time
discounting models and the monotone time discounting models as well. A more
recent paper by Kopylov (2010) also provides a simple axiomatization of EDU
model in a continuous time setup.

The QHD model is first proposed by Phelps and Pollak (1968), who did not
propose an axiomatization. There are several more recent studies that present
a behavioral characterization of QHD, but all take preferences and infinite time
horizons as their primitives, and therefore differ from our results. See Hayashi
(2003), Montiel Olea and Strzalecki (2014), and Galperti and Strulovici (2014) for
axiomatizations.

Time separable utility (TSU) model is the most general model we axiomatize.
In our application of our test to AS’s data, however, we found that significant
number of subjects are not TSU rational. This would suggest the importance of a
non-time separable model. Gilboa (1989) has provided an elegant axiomatization
of a non-time separable utility model. In the paper, by using Anscombe and
Aumann’s (1963) framework and studying preferences over finite sequences of
lotteries, Gilboa (1989) axiomatizes a utility function that can capture a preference
for (or an aversion to) variation of utility levels across periods.

In terms of data from (field) consumption surveys, Browning (1989) provides a
revealed-preference axiom for EDU with no discounting (i.e., δ = 1). Other papers
on survey data do not provide an axiomatic characterization; they, instead, obtain
Afriat inequalities for several models. Crawford (2010) investigates intertemporal
consumption and discusses a particular violation of TSU, namely habit formation.
Crawford (2010) presents Afriat inequalities for the model of habit formation,
and uses Spanish consumption data to carry out the test (see also Crawford and
Polisson, 2014). Adams et al. (2014) work with the Spanish dataset and test EDU
within a model of collective decision making at the household level.

It is important to emphasize that the papers on survey data allow for the
existence of many goods in each period, but they do not allow for more than one
(intertemporal) purchase for each agent. This assumption makes sense because in
consumption surveys one typically has a single observation per household. We
have instead assumed that there is only one good (money) in each period, but we
allow for more than one intertemporal purchase per agent. Allowing for multiple
purchases is crucial in order to apply our tests to experimental data. This is
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because in experiments a subject is usually required to make many decisions and
one choice is chosen randomly for the payment to the subject.

2.2 Exponentially Discounted Utility

Notational conventions. For vectors x, y ∈ Rn, x ≤ y means that xi ≤ yi for all
i = 1, . . . , n, x < y means that x ≤ y and x 6= y, and x � y means that xi < yi for
all i = 1, . . . , n. The set of all x ∈ Rn with 0 ≤ x is denoted by Rn

+ and the set of
all x ∈ Rn with 0� x is denoted by Rn

++.
Let T be a strictly positive integer; T will be the (finite) duration of time, or

time horizon. We abuse notation and use T to denote the set {0, 1, . . . , T}. A
sequence (x0, . . . , xT) = (xt)t∈T ∈ RT

+ will be called a consumption stream. There is
a single good in each period; the good can be thought of as money. Note that the
cardinality of the set T is T + 1, but this never leads to confusion.

Remark 1. We can assume a more general time setup, {0, τ1, . . . , τT}, where τi <

τi+1 for all i < T − 1. Even with this general time setup, our results hold without
changes. The only requirement on the set of time periods is that it contains 0.
Such flexibility in how one specifies time is necessary in the application of our
results to experimental data of Andreoni and Sprenger (2012a). See Section 2.5.1
for details.

The model. The objects of choice in our model are consumption streams. We
assume that an agent has a budget I > 0, faces prices p ∈ RT

++, and chooses an
affordable consumption stream (xt)t∈T ∈ RT

+. Prices can be thought of as interest
rates.

An exponentially discounted utility (EDU) is specified by a discount factor
δ ∈ (0, 1] and a utility function over money u : R+ → R. An EDU maximizing
agent solves the problem

max
x∈B(p,I)

∑
t∈T

δtu(xt) (2.1)

when faced with prices p ∈ RT
++ and budget I > 0. The set B(p, I) = {y ∈ RT

+ :
p · y ≤ I} is the budget set defined by p and I.

The meaning of EDU as an assumption about an agent is that the agent’s
observed behavior is as if it were generated by the maximization of an EDU. To
formalize this idea, we need to state what can be observed.

Definition 1. A dataset is a finite collection of pairs (x, p) ∈ RT
+ × RT

++.
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A dataset is our notion of observable behavior. The interpretation of a dataset
(xk, pk)K

k=1 is that it describes K observations of a consumption stream xk =

(xk
t )t∈T at some given vector of prices pk = (pk

t )t∈T, and budget pk · xk = ∑t∈T pk
t xk

t .
We sometimes use K to denote the set {1, . . . , K}.

Let us clarify the meaning of a dataset by considering two examples. If we
have field consumption data, collected through a consumption survey, then K is 1.
There is one dataset for each agent, or household. This is the setup of Browning
(1989), for example. On the other hand, if, in an experiment, one subject is asked
to make a choice from 45 different budget sets, as in Andreoni and Sprenger
(2012a), then K is 45. The experimenter would typically implement the choice
from one budget set selected at random. It is important to note that our model
allows, but does not require, that K > 1. Even if K = 1, our axiom for EDU is not
satisfied trivially, and has testable implications.

Definition 2. A dataset (xk, pk)K
k=1 is exponential discounted utility rational (EDU

rational) if there is δ ∈ (0, 1] and a concave and strictly increasing function u :
R+ → R such that, for all k,

y ∈ B(pk, pk · xk) =⇒ ∑
t∈T

δtu(yt) ≤ ∑
t∈T

δtu(xk
t ).

As mentioned in the introduction, we restrict attention to concave utility. Our
results will be silent about the non-concave case. So we are focusing on agents
who seek to smooth out their consumption over time.

2.3 A Characterization of EDU Rational Data

EDU rational data will be characterized by a single “revealed preference axiom.”
We shall introduce the axiom by deriving the implications of EDU in specific
instances. Here we assume, for ease of exposition, that u is differentiable, but our
results do not depend on differentiability, and the statement of the theorem will
not require the differentiability of u.

The first-order condition for maximization of EDU is for each k ∈ K and t ∈ T,

δtu′(xk
t ) = λk pk

t . (2.2)

The first-order conditions involve three unobservables: discount factor δ, marginal
utilities u′(xk

t ), and Lagrange multipliers λk. Quantities xk
t and prices pk

t are ob-
servable. Our approach proceeds by finding that certain implications of the model
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for the observables xk and pk must hold, regardless of the values of the unobserv-
ables.

We derive the axiom by considering increasingly general cases. First we con-
sider the case of no discounting and one observation (δ = 1 and K = 1). Then,
we study the case of no discounting (δ = 1 and K ≥ 1). Finally, in Section 2.3.3
we discuss the general case (δ is unknown and K ≥ 1) and present the axiom for
EDU, SAR-EDU.

2.3.1 No Discounting and One Observation: δ = 1 and K = 1

Suppose that δ = 1 and K = 1. That is, we seek to impose EDU rationality in the
special case when δ is known, equals 1, and our dataset has a single observation.
Under these assumptions (omitting the k superindex, as K = 1) the first-order
condition (2.2) becomes u′(xt) = λpt for each t ∈ T. For each pair t, t′ ∈ T, we
obtain

u′(xt)

u′(xt′)
=

pt

pt′
.

By concavity of u, for each pair t, t′ ∈ T, we have

xt > xt′ =⇒
pt

pt′
≤ 1. (2.3)

Thus we obtain a simple implication of EDU rationality in this special case: (2.3)
means that demand must slope down. This “downward sloping demand axiom”
coincides with the axiom obtained by Browning (1989) for the δ = K = 1 case. 2

Property (2.3) can be written in a different way. It is more complicated, and
redundant for now, but will prove useful in the sequel:

Definition 3. A sequence of pairs (xki
ti

, xk′i
t′i
)n

i=1 has the downward sloping demand
property if

xki
ti
> xk′i

t′i
for all i implies that

n

∏
i=1

pki
ti

p
k′i
t′i

≤ 1.

The downward-sloping demand property is not only a necessary condition,
but also a sufficient condition for EDU rationality in the case of δ = 1 and K = 1.

2Browning (1989) is interested in the case of K = 1 because he uses survey consumption data.
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2.3.2 No Discounting: δ = 1

We now take one step towards our general result. Continue to assume that δ = 1,
but now allow that K ≥ 1. The decision maker does not discount future con-
sumptions, but the dataset may contain multiple observations. The first-order
condition (2.2) becomes u′(xk

t ) = λk pk
t for each t ∈ T, and each k ∈ K.

If we try to proceed as in the previous section, we might consider pairs of
observations with xk

t > xk′
t′ :

u′(xk
t )

u′(xk′
t′ )

=
λk

λk′
pk

t

pk′
t′

.

By the concavity of u, we know that

xk
t > xk′

t′ =⇒
λk

λk′
pk

t

pk′
t′
≤ 1.

However, the ratio λk/λk′ does not allow us to conclude anything about the ra-
tio of prices. We would like to conclude, along the lines of downward sloping
demand, that pk

t /pk′
t′ ≤ 1. But the presence of λk/λk′ does not allow us to do

that. Of course if we consider xk
t > xk′

t′ for the same observation (k = k′) then
the conclusion of downward sloping demand continues to hold. When K > 1,
downward sloping demand is still a restriction within each observation k ∈ K.

This suggests that we can obtain an implication of EDU (with δ = 1) across
observations as well. Consider a collection of pairs (xk

t , xk′
t′ ), chosen such that the

λ variables will cancel out. For example, consider:

u′(xk
t1
)

u′(xk′
t2
)

u′(xk′
t3
)

u′(xk
t4
)
=

λk

λk′
λk′

λk

pk
t1

pk′
t2

pk′
t3

pk
t4

.

Then the λ variables cancel out and we obtain that:

xk
t1
> xk′

t2
and xk′

t3
> xk

t4
=⇒

pk
t1

pk′
t2

pk′
t3

pk
t4

≤ 1,

that is, downward sloping demand.
The idea of canceling out the unknown λk’s suggests the following definition.

Definition 4. A sequence of pairs (xki
ti

, xk′i
t′i
)n

i=1 is balanced if each k appears as ki

(on the left of the pair) the same number of times it appears as k′i (on the right).

When K = 1 we know that a sequence must have the downward sloping
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demand property. Now with K ≥ 1 this is only true of balanced sequences: any
balanced sequence has the downward sloping demand property. This property is not
only necessary, but also a sufficient condition for EDU rationality in the case
when δ is known and δ = 1.

2.3.3 General K and δ

We now turn to the case when K can be arbitrary and δ is unknown. Before, when
K = δ = 1, then λ was constant and δ was fixed. EDU rationality is characterized
by downward sloping demand. When K ≥ 1 we saw that we needed to impose
downward sloping demand for balanced sequences. When δ is unknown we need
to further restrict the sequences that are required to satisfy downward sloping
demand. In fact, the relevant axiom turns out to be:

Strong Axiom of Revealed Exponentially Discounted Utility (SAR-EDU): For

any balanced sequence of pairs (xki
ti

, xk′i
t′i
)n

i=1, if ∑n
i=1 ti ≥ ∑n

i=1 t′i, then the sequence has
the downward sloping demand property.

As in Sections 2.3.1 and 2.3.2, the key idea is to control the effects of the
unknowns u, δ, and λ, by focusing on particular configurations of the data. It is
easy to see how such restrictions are necessary. For example, consider two pairs

(xk1
t1

, xk2
t2
) and (xk2

t3
, xk1

t4
)

such that
t1 + t3 ≥ t2 + t4.

By manipulating first-order conditions we obtain that:

u′(xk1
t1
)

u′(xk2
t2
)

u′(xk2
t3
)

u′(xk1
t4
)
=

(
δt2

δt1

λk1 pk1
t1

λk2 pk2
t2

)(
δt4

δt3

λk2 pk2
t3

λk1 pk1
t4

)
= δ(t2+t4)−(t1+t3)

pk1
t1

pk2
t2

pk2
t3

pk1
t4

.

Notice that the pairs (xk1
t1

, xk2
t2
) and (xk2

t3
, xk1

t4
) constitute a balanced sequence of

pairs, so that the Lagrange multipliers cancel out as in Section 2.3.2. Further-
more, the discount factor unambiguously increases the value on the left hand
side, δ(t2+t4)−(t1+t3) ≥ 1 for any δ ∈ (0, 1].

Now the concavity of u implies that when xk1
t1

> xk2
t2

and xk2
t3

> xk1
t4

then the

product δ(t2+t4)−(t1+t3)(pk1
t1

/pk2
t2
)(pk2

t3
/pk1

t4
) cannot exceed 1. Since δ(t2+t4)−(t1+t3) ≥

1 for any δ ∈ (0, 1], then (pk1
t1

/pk2
t2
)(pk2

t3
/pk1

t4
) cannot exceed 1. Thus, we obtain an
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implication of EDU for prices, an observable entity. No matter what the values of the
unobservable δ and u, we find that the ratio of prices cannot be more than 1.

The argument just made extends to arbitrary balanced sequences, and essen-
tially gives the proof of necessity of SAR-EDU. 3 The argument simply amounts to
verifying a rather basic consequence of EDU: the consequence of EDU for those
situations in which unobservables either do not matter or have a known effect
(the effect either resulting from u′ being decreasing or from δ ∈ (0, 1]). What is
surprising is that such a basic consequence of the theory is sufficient as well as
necessary.

Theorem 1. A dataset is EDU rational if and only if it satisfies SAR-EDU.

The proof is in Section 2.6. The proof that SAR-EDU is necessary is, as we
have remarked, simple. The proof of sufficiency is more complicated, and follows
ideas introduced in Echenique and Saito (2015).

Remark 2. It is not obvious from the syntax of SAR-EDU that one can verify
whether a particular dataset satisfies SAR-EDU in finitely many steps. We can
show that, not only is SAR-EDU decidable in finitely many steps, but there is
in fact an efficient algorithm that decides whether a dataset satisfies SAR-EDU.
The proof is very similar to Proposition 2 in Echenique and Saito (2015). So we
omit the proof. SAR-EDU is on the same computational standing as GARP or
the strong axiom of revealed preference. Another way to test SAR-EDU is based
on linearized “Afriat inequalities,” see Lemma 1 of Section 2.6.3. In fact, this is
how we proceed in Section 2.5; see in particular the discussion at the end of that
section.

2.4 More General Models

The ideas behind Theorem 1 can be used to analyze other models of intertemporal
choice, including quasi-hyperbolic discounting (QHD), and more general models.

2.4.1 Quasi-Hyperbolic Discounted Utility

First we investigate QHD. The objective is the same as for EDU: we want to know
when a dataset (xk, pk)K

k=1 is consistent with QHD utility maximization, but the

3We have assumed differentiability of u in our informal derivation, but since u is concave, we
can easily generalize the argument.
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interpretation of a dataset is now more complicated. In the case of QHD, we
assume that each xk is a consumption stream that the agent commits to at date 0.
The reason is that a QHD agent may be dynamically inconsistent, and revise
their planned consumption. The commitment assumption happens to perfectly
fit the application in Section 2.5 to the CTB experiment in Andreoni and Sprenger
(2012a). The commitment assumption will, however, be violated by field data
taken from consumption surveys. It is important to note that the assumption
of commitment is not necessary to test the EDU model, which is dynamically
consistent.

Definition 5. A dataset (xk, pk)K
k=1 is quasi-hyperbolic discounted utility rational (QHD

rational) if there is δ ∈ (0, 1], index for time-bias β > 0, and a concave and strictly
increasing function u : R+ → R such that, for all k,

y ∈ B(pk, pk · xk) =⇒ ∑
t∈T

D(t)u(yt) ≤ ∑
t∈T

D(t)u(xk
t ),

where D(t) = 1 if t = 0 and D(t) = βδt if t > 0. More specifically, if β ≤ 1
in the above definition then the dataset (xk, pk)K

k=1 is present-biased quasi-hyperbolic
discounted utility rational (PQHD-rational).

Strong Axiom of Revealed Quasi-Hyperbolic Discounted Utility (SAR-QHD):

For any balanced sequence of pairs (xki
ti

, xk′i
t′i
)n

i=1, if

1. ∑n
i=1 ti ≥ ∑n

i=1 t′i and

2. #{i : ti > 0} = #{i : t′i > 0},

then the sequence has the downward sloping demand property.

The condition that ∑n
i=1 ti ≥ ∑n

i=1 t′i plays the same role as it did in SAR-EDU,
to control the effect of δ. In addition, we must now have #{i : ti > 0} = #{i : t′i >
0} so as to cancel out β. If we instead focus on PQHD, then we know that β ≤ 1
so the weaker requirement #{i : ti > 0} ≥ #{i : t′i > 0} controls the effect of β. 4

Formally, the axiom to characterize PQHD is as follows:

Strong Axiom of Revealed Present-Biased Quasi-Hyperbolic Discounted Utility

(SAR-PQHD): For any balanced sequence of pairs (xki
ti

, xk′i
t′i
)n

i=1, if

1. ∑n
i=1 ti ≥ ∑n

i=1 t′i and

4It is easy to axiomatize future-biased quasi-hyperbolic discounted utility (FQHD), which is a special
model of QHD with β ≥ 1. For FQHD, in turn, we need #{i : ti > 0} ≤ #{i : t′i > 0}.
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2. #{i : ti > 0} ≥ #{i : t′i > 0},

then the sequence has the downward sloping demand property.

To show the necessity of SAR-QHD, we proceed as in Section 2.3.3. The first
order conditions for maximization of a QHD utility are:

D(t)u′(xk
t ) = λk pk

t . (2.4)

For example, consider a balanced sequence of pairs (xk1
t1

, xk2
t2
), (xk2

t3
, xk1

t4
) with

the property that t1 + t3 ≥ t2 + t4, and #{i ∈ {1, 3} : ti > 0} = #{i ∈ {2, 4} : ti >

0}; where #{i ∈ {1, 3} : ti > 0} and #{i ∈ {2, 4} : ti > 0} are the numbers of non-
time-zero consumption in {xk1

t1
, xk3

t3
} and {xk2

t2
, xk4

t4
}, respectively. By manipulating

the first-order conditions we obtain that:

u′(xk1
t1
)

u′(xk2
t2
)

u′(xk2
t3
)

u′(xk1
t4
)
=

(
β

1{t2>0}

β
1{t1>0}

δt2

δt1

λk1 pk1
t1

λk2 pk2
t2

)(
β

1{t4>0}

β
1{t3>0}

δt4

δt3

λk2 pk2
t3

λk1 pk1
t4

)

= β#{i∈{2,4}:ti>0}−#{i∈{1,3}:ti>0}δ(t2+t4)−(t1+t3)
pk1

t1

pk2
t2

pk2
t3

pk1
t4

= δ(t2+t4)−(t1+t3)
pk1

t1

pk2
t2

pk2
t3

pk1
t4

.

The balancedness of the sequence of pairs (xk1
t1

, xk2
t2
) and (xk2

t3
, xk1

t4
) implies that

Lagrange multipliers cancel out. The assumption of #{i ∈ {1, 3} : ti > 0} = #{i ∈
{2, 4} : ti > 0} implies that β cancels out. As in SAR-EDU, the discount factor
unambiguously increases the value of the right hand side.

Finally, concavity of u implies that, when xk1
t1

> xk2
t2

and xk2
t3

> xk1
s4 , we have

that (pk1
t1

/pk2
t2
)(pk2

t3
/pk1

t4
) cannot exceed 1. That is, the downward sloping demand

property holds.
The next theorem summarizes our results on QHD.

Theorem 2. A dataset is QHD-rational if and only if it satisfies SAR-QHD. Moreover,
the dataset is PQHD-rational if and only if it satisfies SAR-PQHD.

The proof of Theorem 2 is in Section 2.7.
One consequence of Theorems 1 and 2 is that, under certain circumstances,

EDU and PQHD are observationally equivalent. These circumstances are very rele-
vant for the discussion in Section 2.5 of AS’s experiment: our next result, Propo-
sition 1, shows that if an agent does not consume at the soonest date (i.e., xk

0 = 0
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for all k ∈ K), then EDU and PQHD are observationally equivalent. In AS’s ex-
periment, 82.8% of the subjects (i.e., 24 out of 29 subjects) who satisfy SAR-EDU
do not consume at the soonest date. This explains why, in AS’s data, QHD has
very limited scope beyond what can be explained by EDU.

Proposition 1. Suppose that a dataset (xk, pk)K
k=1 satisfies that xk

0 = 0 for all k ∈ K.
Then (xk, pk)K

k=1 is PQHD rational if and only if it is EDU rational.

Proof. Of course, if the data is EDU rational then it is PQHD rational. Let us

prove the converse. Choose a sequence (xki
ti

, xk′i
t′i
)n

i=1 such that (1) xki
ti
> xk′i

t′i
for all

i ∈ {1, . . . , n}, (2) ∑n
i=1 ti ≥ ∑n

i=1 t′i, and (3) each k appears as ki the same number
of times as k′i.

By (1), xki
ti
> 0 for all i ∈ {1, . . . , n}. Since xk

0 = 0 for all k ∈ K, we obtain ti > 0
for all i ∈ {1, . . . , n}. Therefore, #{i ∈ {1, . . . , n} : ti > 0} = #{i ∈ {1, . . . , n}} ≥
#{i ∈ {1, . . . , n} : t′i > 0}. Therefore, the sequence satisfies all of the conditions in
SAR-PQHD. Since the dataset is PQHD rational, Theorem 2 shows that

n

∏
i=1

pki
ti

pki
t′i

≤ 1. (2.5)

Therefore, Conditions (1), (2), and (3) imply (2.5), which is SAR-EDU. Therefore,
by Theorem 1, the dataset must be EDU rational.

2.4.2 More General Models of Time Discounting

Building on the ideas in the previous two theorems, we can characterize more
general models of intertemporal choice. These models end up being useful in
Section 2.5.2 when we classify subjects in AS’s experiment.

Of course the most general model is utility maximization, without constraints
on the form of the utility.

max U(x0, . . . , xT) s.t. p · x ≤ I. (2.6)

The relevant revealed preference axiom is GARP. In the following, we provide
three special cases of (2.6), which are obtained by restricting U. We list the three
models in order of generality. Let C be the set of all continuous, concave, and
strictly increasing function u : R+ → R.
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1. Time-separable utility (TSU): The class TSU of all U that can be written as

U(x0, . . . , xT) = ∑
t∈T

ut(xt),

where ut ∈ C for all t ∈ T.

2. General time discounting (GTD): The class GTD of all U that can be written as

U(x0, . . . , xT) = ∑
t∈T

D(t)u(xt),

for some u ∈ C, and a function D : T → R++.

3. Monotone time discounting (MTD): The class MTD of all U that can be written
as

U(x0, . . . , xT) = ∑
t∈T

D(t)u(xt),

for some u ∈ C, and a function D : T → R++ that is monotonically decreas-
ing.

In the following definition, the set M of utility functions can be any of the
classes defined above (i.e., TSU, GTD, MTD).

Definition 6. For M ∈ {TSU, GTD, MTD}, a dataset (xk, pk)K
k=1 is M rational if

there is a utility function U in the class M of utilities such that for all k,

pk · y ≤ pk · xk =⇒ U(y) ≤ U(xk).

It is easy to derive each axiom from first-order conditions as we did for EDU
and QHD. The idea is to choose a sequence of pairs of observations so that we
can cancel out the Lagrange multipliers and control or cancel out the effects of
other unobservables. We omit the derivations.

Strong Axiom of Revealed Time Separable Utility (SAR-TSU): For any balanced

sequence of pairs (xki
ti

, xk′i
t′i
)n

i=1, if each ti = t′i for all i, then the sequence has the downward
sloping demand property.

Strong Axiom of Revealed General Time Discounted Utility (SAR-GTD): For

any balanced sequence of pairs (xki
ti

, xk′i
t′i
)n

i=1, if each t appears as ti (on the left of the

pair) the same number of times it appears as t′i (on the right), then the sequence has the
downward sloping demand property.
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Strong Axiom of Revealed Monotone Time Discounted Utility (SAR-MTD): For

any balanced sequence of pairs (xki
ti

, xk′i
t′i
)n

i=1, if there is a permutation π of {1, 2, . . . , n}
such that ti ≥ t′

π(i), then the sequence has the downward sloping demand property.

Each of these axioms imposes the downward sloping demand property of
a balanced sequence under increasingly demanding conditions. For example,
SAR-TSU imposes the downward sloping demand property of a subset of the
sequences that are constrained by SAR-MTD; and SAR-MTD in turn constrains
fewer sequences than SAR-EDU. How demanding an axiom is, in terms of impos-
ing the downward sloping demand property, mirrors how demanding the theory
is: EDU is a special case of MTD, which is a special case of TSU.

Theorem 3. Let M ∈ {TSU, GTD, MTD}. A dataset is M-rational if and only if it
satisfies SAR-M.

The proof of Theorem 3 follows similar ideas to those used in the proofs of the
other two results, and is relegated to Section A.1.

2.5 Empirical Application

2.5.1 Description of the Data

AS introduce an experimental method called the Convex Time Budget (CTB) de-
sign. In contrast with the “multiple price list method” (e.g., Andersen et al.,
2008a), subjects in AS are asked to allocate 100 experimental tokens between
“sooner” (time τ) and “later” (time τ + d) accounts. Tokens allocated to each
account have a value of aτ and aτ+d, converting experimental currency unit into
real monetary value for final payments. The gross interest rate over d days is
thus given by aτ+d/aτ. There are three possible sooner dates τ ∈ {0, 7, 35}, three
possible delays d ∈ {35, 70, 98} (the unit of period is one day), and five different
pairs of conversion rates (aτ, aτ+d). Each subject thus completes 45 decisions. 5

Each subject’s decision in a trial is characterized by a tuple (τ, d, aτ, aτ+d, cτ):
the first four elements (τ, d, aτ, aτ+d) characterize the budget set she faces in this
trial, and cτ is the number of tokens she decides to allocate to the sooner payment.

5See Figure A.1 in Section A.2 for an illustration. For each pair of starting date and delay
length (τ, d), the five budgets are nested. Looking at all 45 budget sets, except for eight cases in
which (aτ , aτ+d) = (0.2, 0.25), aτ+d is fixed at 0.2 and aτ ranges between 0.1 and 0.2. Participants’
choices therefore always satisfy GARP by design.
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In the experiment, subjects make a two-period choice. They choose (xτ, xτ+d)

subject to pτxτ + xτ+d = I. We need to formulate the problem as choosing
(x0, . . . xT) subject to ∑t∈T ptxt = I. We set prices to be pτ = aτ+d/aτ and pτ+d = 1
(a normalization), and we define consumptions (monetary amounts) xτ = cτ · aτ

and xτ+d = (100− cτ) · aτ+d.
We shall implicitly set the prices of periods that are not offered to be very

high, so that agents choose zero consumption in those periods. For example,
when subjects face a convex budget with (τ, d) = (35, 70), we treat prices pt for
t 6= 35, 105 as high. In any of the rationalizations we consider, marginal utilities
at zero are finite. So by setting such prices high enough, the choices in such time
periods do not affect whether a dataset is rationalizable. In this way, for each of
the 97 subjects, we obtained a dataset with K = 45 and T = {t : t = τ or t =

τ + d for some τ ∈ {0, 7, 35} and d ∈ {35, 70, 98}}.
Three features of the AS design make their experiment ideal for our exercise.

First and most importantly, the experimental setup is precisely the situation our
model tries to capture: subjects choose an intertemporal consumption from a
budget set. As we briefly mention above, most previous experimental studies
on intertemporal decision utilize an environment with discrete (in many cases,
binary) choice sets. Strictly speaking, budgets in AS experiment are discrete as
well, but we understand them to be a reasonable approximation to continuous
choice (tokens are worth $0.1 to $0.25).

Secondly, the AS experiment has subjects committing to a consumption stream.
Recall that to test for QHD and more general models (although not for EDU) we
need to assume that agents commit to a consumption stream. In the AS design,
the commitment assumption is satisfied.

Thirdly, AS put significant effort into equalizing the transaction costs of sooner
and later payments, and minimizing the unwanted effects of uncertainty regard-
ing future payments.

Before discussing our results, we summarize AS’s main findings. AS esti-
mate the per-period discount factor, present bias, and utility curvature assuming
a QHD model with CRRA utility over money:

U(x0, . . . , xT) =
1
α

xα
0 + β ∑

t∈T\{0}
δt 1

α
xα

t . (2.7)

Their estimation uses pooled data from all subjects, fitting a common specifi-
cation (2.7). AS find no evidence of present bias (β̂ = 1.007, SE = 0.006; the
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Sample: 97 subjects

EDU: 29.9%
QHD: 29.9%

MTD: 39.2%
GTD: 42.3%

TSU: 51.6%Not TSU: 48.4%

Figure 2.1: Classification of subjects in AS’s experiment.

hypothesis of no present bias, β = 1, is not rejected; F1,96 = 1.51, p = 0.22). 6 AS
also estimate (2.7) at the level of individual subjects and find that the estimated
β̂’s are narrowly distributed around 1, with the median estimate being 1.0011.

2.5.2 Results

We test our axioms for each individual subject in AS’s experiment. Note that
we do not pool the choice data of different subjects. The tests are based on the
linearized Afriat inequalities presented in Lemma 1. The models we examine are
EDU, QHD, MTD, GTD, and TSU. In the sequel, we shall label a subject as “M
rational” if her dataset passes the revealed preference test for model M and “M
non-rational” otherwise. The models can be ordered by the tightness of the associ-
ated axioms. Essentially, we have that EDU ⊂ PQHD ⊂ MTD ⊂ GTD ⊂ TSU, and
that EDU ⊂ QHD ⊂ GTD ⊂ TSU, as QHD is not comparable to MTD (QHD al-
lows β > 1). For this reason, when we find that a subject is EDU rational, she is of
course also M rational for all other models M ∈ {PQHD, QHD, MTD, GTD, TSU}.
We sometimes label a subject as “strictly M rational” for the most restrictive model
M such that the agent is M rational. For example, a subject is strictly QHD rational
if her dataset passes the QHD test but not the EDU test.

Figure 2.1 summarizes the results. We find that 29 subjects are EDU rational.
QHD also rationalizes the same 29 subjects: there are no subjects who are strictly
QHD rational. As we mentioned in Proposition 1, this is related to agents’ peculiar

6AS estimate several model specifications (e.g., assuming CARA instead of CRRA, or incorpo-
rating additional parameters to capture background consumptions), and they also use different
estimation methods (e.g., two-limit Tobit model to handle corner choices). In our comparison, we
use their results from a nonlinear least squares estimation of quasi-hyperbolic discounting and
CRRA utility function without background consumption.
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pattern of choices. Proposition 1 shows that if an agent does not consume at the
soonest date (i.e., xk

0 = 0 for all k ∈ K), then EDU and PQHD are observationally
equivalent. In AS’s experiment, more than 82.8% of the subjects who satisfy SAR-
EDU (i.e., 25% of the total subjects) do not consume at the soonest date.

EDU and QHD are arguably the most important models of intertemporal
choice used in economics, but it is interesting to go beyond these models and look
at the more general utility functions described in Section 2.4.2. We find that nine
additional subjects (9.3%) have utility functions in MTD, three additional subjects
(3.1%) have utility functions in GTD, and nine more subjects (9.3%) become ratio-
nal by allowing a general TSU. In all, 51.6% of subjects can be rationalized by one
of the time-separable models.

In summary, while AS find moderate support for EDU, our conclusion is closer
to a rejection of EDU. In fact, close to half of the subjects in the experiment do not
even exhibit time separable preferences. In the next section, we look at why our
methods and AS’s give seemingly contradictory conclusions from the same data.

Similarities and differences with AS’s findings. Our analysis is for individual
subjects. But the main results in AS use pooled data from all subjects. If we
instead focus on individual level estimates of the same parametric model as AS,
the source of the differences becomes quite clear. We focus on the individual
estimates from AS (see Tables A6 and A7 in the online appendix of Andreoni and
Sprenger, 2012a). 7

Figure 2.2 summarizes the comparison. Each bar in the figure corresponds to
one subject. The vertical value of the bar is AS’s estimated value β̂ for that subject.
We categorized the subjects depending on their strict M-rationality. For example,
the subjects who belong to the blue area pass our EDU test and the subjects who
belong to the brown area do not pass any tests; they are not TSU rational.

There are two important facts one can glean from the figure. First, our test
is consistent with AS’s methodology and their estimates: the subjects who pass
the EDU test have estimated β̂ very close to 1. So Figure 2.2 shows that our
methodology and AS’s methodology are, in fact, in agreement.

Secondly, those subjects who fail the EDU test but pass MTD, GTD, or TSU
test tend to have β̂ 6= 1. Moreover, those who do not pass any of the tests
(i.e., TSU non-rational subjects) have estimated β̂ which are far from 1 in magni-

7We obtain parameters for 86 of the 97 subjects. The remaining 11 subjects were excluded from
AS’s analysis, since preference parameters were not estimable. We can run our tests on the 11
excluded subjects: seven of them pass the EDU and QHD tests.
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Figure 2.2: Estimated present-bias parameter for each category of subjects.

tude compared to the other groups of subjects, and are distributed symmetrically
around 1. 8 Roughly speaking, for half of the TSU non-rational subjects, β̂ > 1;
for the other half, β̂ < 1. Hence, the “average” subject looks, in some sense, as
an EDU agent, even though the majority of subjects are inconsistent with EDU
according to our test. It is therefore possible that AS’s finding in favor of EDU
in their aggregate preference estimation reflects the choice behavior of such an
average subject.

Choice pattern of EDU rational and TSU non-rational subjects. Next we look
into subjects’ choice patterns, focusing on the two main groups that the subjects
fall into: those that are EDU rational and those that fail the TSU test. We inves-
tigate three aspects. First, we study the fraction of choices at the corner of the
budget set. Second, we check for violations of wealth monotonicity. Finally, we
check for violations of WARP.

Corner vs. interior choice: For each subject, we calculate the proportion (out
of 45 choices) of (i) interior allocations, (ii) corner allocations in which subjects
spend all their budget on a later reward (called “all tokens later”), and (iii) corner
allocations in which subjects spend all their budget on the earlier reward (called
“all tokens sooner”).

8See Section A.4 for further comparisons between AS’s parametric model estimation and our
nonparametric revealed preference tests.
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Figure 2.3: Individual choice patterns and class of rationality.

We observe that all but two subjects who pass our EDU test never made inte-
rior allocations during the experiment, and frequently chose to allocate all tokens
to the later payments. 9 This point is made clear in Figure 2.3, which presents
each subject’s choice pattern, sorted by the results of our EDU and TSU tests. The
fraction of interior allocations increases by moving from EDU rational subjects
(only 6.9% of them, two subjects, made at least one interior allocation) to subjects
who pass the TSU test but not the EDU test (66.7% of them made at least one
interior allocation), and it increases further when we look at subjects who fail the
TSU test (in fact, 48.9% of them chose interior allocations in at least half of the
trials).

The high incidence of corner solutions for EDU rational agents should be con-
sidered in light of Proposition 1. EDU and QHD are observationally equivalent
when a subject never chooses date 0 consumption, and this happens for 82.8% (24
out of 29) of EDU rational subjects. So, for the vast majority of the subjects that
pass SAR-EDU, the theory would have no power to distinguish between QHD
and EDU.

Wealth monotonicity: In AS’s experiments, eight out of the nine time frames
contain a wealth shift. We check wealth monotonicity, or normality of demand,
using choices in those time frames. Monotonicity requires that cτ and cτ+d should

9AS already remark on the incidence of of corner choices, and comment on how this phe-
nomenon may suggest that the curvature of utility is small and close to that of a linear function.
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be weakly increasing in wealth, holding the price rate constant in the eight time
frames. Obviously, all of the EDU rational subjects satisfy monotonicity. On
the other hand, most of TSU non-rational subjects (43 out of 47 subjects) violate
monotonicity.

Eliminating the wealth-shift observations from the data does not, however,
suffice to make most subjects TSU rational. The choices of the TSU non-rational
agents are inconsistent with TSU for more complicated reasons than simply a
violation of normal demand.

WARP: In AS’s experimental design, budget lines never cross at an interior
point of the budget. However, there are budgets that cross at the corner of con-
suming all later (when “all later” corresponds to the same date; see Figure A.1 in
the appendix). In particular, eight out of the nine time frames contain four bud-
gets that share the same “all later” allocation at $20. In the remaining time frame
(τ, d) = (7, 70), all five budgets share the same “all later” allocation at $20. So
we can test WARP by using such choices. We found that seven out of 97 subjects
violated WARP. None of these seven pass the TSU test (of course).

Distance measure 1: minimum price perturbation. We find that many subjects’
choices in the AS experiment are inconsistent with EDU, QHD, and even TSU. Is
a subject inconsistent with these models because she made a few mistakes, or is
her behavior severely inconsistent with the model? The answer to these questions
is that the violations we have detected are severe, and not due to small mistakes.

We quantify the distance to rationality using two different approaches. The
first approach adds noise to the data, and measures how much noise has to be
added in order to reconcile the theory with the data. This allows us to set up a
statistical test, and calculate the probability of having as much noise as we need
to explain the data if the model is right.

Borrowing ideas from the minimal perturbation based test studied in Varian
(1985), the money pump test in Echenique et al. (2011), and the upper bound
test of Fleissig and Whitney (2005), we propose a measure of distance to rational-
ity that involves a perturbation to the model or to the data. Assuming that the
perturbation is random we can calculate the probability of observing the kind of
perturbation needed to rationalize the data. As a result, we obtain a statistical
test: a p-value for the hypothesis that a subject is EDU rational.

The perturbation can take two equivalent forms. We can think of perturb-
ing prices (so-called measurement error in prices, this is the approach taken in
Echenique et al., 2011) or we can think of perturbing marginal utilities. In the
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first interpretaion, the environment faced by the subject does not fit exactly the
experimental design. In the second interpretation, the subject has a random util-
ity, and his utility function is allowed to be different in each observation. The
two interpretations are mathematically equivalent; we shall stick to the first for
concreteness.

Let Dtrue = (qk, xk)K
k=1 denote a “true” dataset and Dobs = (pk, xk)K

k=1 denote
an “observed” dataset. The true and observed datasets are connected by the
relationship qk

t = pk
t εk

t for all t = 0, . . . , T and k = 1, . . . K where εk
t > 0 is a

random variable.
Let H0 and H1 denote the null hypothesis that the true dataset Dtrue is EDU

rational and the alternative hypothesis that Dtrue is not EDU rational. Consider a
test statistic, which is the solution to the following optimization problem given a
dataset Dobs = (pk, xk)K

k=1:

Φ∗
(
(pk, xk)K

k=1

)
= min

{
K

∑
k=1

T

∑
t=0

1
K(T + 1)

∣∣∣log εk
t

∣∣∣ ∣∣∣∣∣H0 is true

}
. (2.8)

Then, we can construct a test as follows:
reject H0 if

∫ ∞

Φ∗((pk,xk)K
k=1)

fΦ̂(z)dz < α,

accept H0 otherwise,

where α is the size of the test and fΦ̂ is the pdf of the distribution of Φ̂ =

∑k,t | log εk
t |/(K(T + 1)). 10 We explain details in Section A.5.

For each of the 68 EDU non-rational subjects (similarly for QHD and TSU), we
calculate the test statistic Φ∗. The empirical CDFs of calculated Φ∗EDU along with
Φ∗QHD and Φ∗TSU are shown in the left panel of Figure 2.4.

In order to perform a statistical hypothesis test, we need to know the dis-
tribution of Φ̂ and its critical value Cα. First we randomly draw 10,000 sets
of K × (T + 1) noise terms ε from a log-normal distribution. The shape of the
log-normal distribution, Fσ

ε , is determined such that log ε ∼ N(0, σ2) with σ ∈
{0.025, 0.1, 0.2, 0.5}. 11 Second, we calculate Φ̂ = ∑k,t | log εk

t |/(K(T + 1)). Since

10The size of a test is the probability of falsely rejecting the null hypothesis. That is, it is the
probability of making a Type I error: α = P(test rejects H0|H0 is true).

11Mean zero assumption of log ε is reasonable given the relationship between true and observed
dataset, qk

t = pk
t εk

t . There is no theoretical guidance as to the choice of standard deviation σ.
We instead rely on economic intuition. When log ε ∼ N(0, 0.025), the distribution of ε has 25-
percentile at 0.983 and 75-percentile at 1.017. This implies that a subject whose perceptual random
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Figure 2.4: Empirical CDFs of distance measures based on minimum price perturbation
(left) and maximal subset (right).

Table 2.1: H0 rejection rates.

Standard deviation (σ) of Fσ
ε 0.0250 0.1000 0.2000 0.5000

25-percentile of Fσ
ε 0.9830 0.9301 0.8568 0.6299

75-percentile of Fσ
ε 1.0167 1.0644 1.1218 1.2365

Critical value Cσ
0.05 0.0226 0.0905 0.1819 0.4664

EDU 0.9853 0.8676 0.7794 0.6471
QHD 0.9853 0.8529 0.7647 0.6471
TSU 0.9706 0.7794 0.6324 0.5000

we have 10,000 of such Φ̂, we have empirical distribution which well captures the
true shape of the distribution. We then find critical values for 5% significance
level, Cσ

0.05 for each σ. Table 2.1 summarizes the results of the hypothesis test un-
der several different values of σ. The main lesson from this exercise is that even
under a relatively large standard deviation of σ = 0.5 for log ε, we reject the null
hypothesis that the true dataset (qk, xk)K

k=1 is EDU rational for about 65% of EDU
non-rational subjects.

Distance measure 2: maximal subset. The second approach to quantify the dis-
tance to rationality relies on dropping observations until the data can be rational-
ized. If one has to drop many observations to rationalize the data, then the data

shocks are drawn from this particular distribution inflates or deflates prices at most 1.7% with
probability 50%. When log ε ∼ N(0, 0.5), the distribution of ε has 25-percentile at 0.630 and 75-
percentile at 1.237, which indicates that much larger price distortions are more likely.
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is far from being rational. 12 In particular, we take the following steps. For each
EDU non-rational (similarly for QHD and TSU) subject’s dataset (i) we randomly
drop one observation from the dataset, and (ii) we implement the EDU test. If the
dataset is EDU rational, we stop here. Otherwise, we drop another observation
randomly and test for EDU rationality again, and (iii) we repeat this procedure
until the subset becomes EDU rational.

Ideally, one would check all possible subsets of data, but such a calculation
is obviously computationally infeasible. Our approach of sequentially choos-
ing (at random) one observation to drop is a rough approximation to the ideal
measure. In particular, the conclusion can depend on the particular sequence
chosen. To address this problem we iterate the process 30, 000 times for each
EDU non-rational subject. 13 Let nm be the number of observations required to
be dropped from the original dataset to make the subdata EDU rational, in the
m-th iteration. We define the distance of the dataset from EDU rationality by
d′EDU = min{n1, . . . , n30000}/45. By definition, the measure is between 0 and 1,
and the smaller d′EDU is the closer the dataset to be EDU rational. We also note
that the measure is an upper bound on the distance we want to capture, due to
the random nature and path-dependence of our approach. 14

The right panel of Figure 2.4 shows the empirical CDFs of d′EDU along with
d′QHD and d′TSU. Note that the sample size is different for each line: d′EDU and
d′QHD are calculated for the 68 EDU and QHD non-rational subjects, while d′TSU is
calculated for the 47 TSU non-rational subjects. We find that the median d′TSU is
0.111, implying that half of the 47 TSU non-rational subjects become TSU rational
by dropping at most 11% of the observations. For EDU and QHD, on the other
hand, more observations need to be dropped to rationalize the data: median d′EDU
and d′QHD are 0.378 and 0.356, respectively. This shows that subjects’ violation of
EDU and QHD are not due to small mistakes. 15

12This approach is motivated by Houtman and Maks (1985), who measure the distance to ratio-
nality by finding the largest subset of observations that is consistent with GARP.

13We first performed 10,000 iterations and then prepared two additional sets, of 10,000 iterations
each, as a way to check robustness of our approach. One might worry that this sampling approach
may be far from the optimal exhaustive search over all subsets, but we increased the sample size
very significantly without detecting important changes. We refer to Section A.6 for more details.

14We should observe d′EDU ≥ d′QHD ≥ d′TSU as a logical consequence (if the subset of data,
after dropping n observations, is EDU rational, then the same subset is QHD rational, and so
on). In reality, however, due to sample variations in the stochastic algorithm we use to compute
distances, we observe several instances in which d′EDU ≥ d′QHD is violated. We correct for this by
simply replacing d′QHD with d′EDU whenever such a violation is observed.

15We also find that the distributions of d′EDU and d′QHD are almost indistinguishable (the null
hypothesis of equal distribution is not rejected by the two-sample Kolmogorov-Smirnov test).
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Figure 2.5: (Left) Distance to EDU rationality based on maximal subset and proportion
of interior allocations. (Right) Correlation between two distance measures. The dotted
lines represent the slopes of the least-squares fit.

In the left panel of Figure 2.5, we see a significant positive correlation (Pear-
son’s correlation coefficient ρ = 0.7239, p < 10−11) between the proportion of
interior allocations and the distance to EDU rationality.

The two approaches to measuring the distance to rationality rely on different
assumptions: our first measure depends on assuming a distribution of errors,
and the interpretation is sensitive to the variance used on the errors. The sec-
ond measure depends on approximating the minimal violating subset, and is not
behaviorally founded. It is therefore comforting that the two measures give the
same message. Indeed, the right panel of Figure 2.5 shows that the two measures
are highly correlated (Pearson’s correlation coefficient ρ = 0.8999, p < 10−25).

Jittering analysis. Aside from distance, we consider the robustness of our re-
sults in a different sense. We studied how “knife edge” the satisfaction of an
axiom can be. Is it possible that subjects have preferences in model M, but that
they have slightly unstable tastes? Could the violations of QHD be due to small
instabilities in tastes? We employ a “jittering” method akin to the one discussed
in Andreoni et al. (2013). 16

We perturb utility to produce data from a synthetic consumer with slightly
unstable tastes: more precisely, we assume a CRRA instantaneous utility with
QHD of the form (2.7), as in AS. Given a set of estimated parameters (α̂, δ̂, β̂),
we added normal noise on one of the parameters while fixing the other two, e.g.,
(α̂ + ε, δ̂, β̂) where ε ∼ N(0, σ2). We set σ, the standard deviation of jittering, to

16We appreciate insightful comments from Jim Andreoni and Ben Gillen on this subject.
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equal the standard error of the corresponding parameter estimate. We simulate
choices with such “jittered” parameters, and then apply our test.

First, we take parameters and standard errors from the aggregate estima-
tion in AS: (α, δ, β) = (0.897, 0.999, 1.007), (se(α), se(δ), se(β)) = (0.0085, 1.8 ×
10−4, 0.0058). 17 For each parameter, we simulate 1,000 jittered versions of param-
eters, predict choices, and perform the QHD test. We observe a 100% pass rate
no matter which parameter is jittered, suggesting that our QHD test is robust to
small perturbations to the underlying preference parameters.

Secondly, we perform the same exercise using AS’s individual parameter es-
timates and standard errors, restricting our attention to those subjects who pass
our QHD test (and whose parameters are estimable by AS). For each subject and
each parameter, we draw 100 jittered versions of the parameter using estimated
standard errors, predict choices, and perform the QHD test. This procedure gives
us pass rates for QHD for each subject. We observe 100% pass rate for 20 out of 22
subjects when α is jittered, all 22 subjects when δ is jittered, and all 22 subjects
when β is jittered. As in the case of the aggregate parameter estimates, the QHD
test is robust to perturbation of the underlying preference parameters.

We have performed a similar exercise while perturbing choices instead of util-
ity parameters. We prefer the method of perturbing utility because the story of
slightly unstable tastes is more appealing than the idea that agents “tremble”
when making a choice. The conclusion of this analysis is not as clearly in favor of
the robustness of our tests, and it depends on what one takes to be the relevant
jittering standard deviations. The results are in Section A.7.

Power of the tests. Finally, we discuss the power of our tests. It is well known
that tests in revealed preference theory can have low power when used on certain
configurations of budget sets. The low power of GARP is well documented. As a
result, it is common to assess the power of a test by comparing the pass rates (the
fraction of choices that pass the relevant revealed preference axiom) from purely
random choices. 18 Here we report the results from such an assessment using our
tests and the experimental design of AS. We find no evidence of low power.

We generate 10,000 datasets in which choices are made at random and uni-

17Table 3, column (3) in Andreoni and Sprenger (2012a).
18The idea of using random choices as a benchmark is first applied to revealed preference theory

by Bronars (1987). This approach is the most popular in empirical application: see, among other
studies, Adams et al. (2014), Andreoni and Miller (2002), Beatty and Crawford (2011), Choi et al.
(2007), Crawford (2010), Dean and Martin (forthcoming), Fisman et al. (2007). For overview of
power calculation, see discussions in Andreoni et al. (2013) and Crawford and De Rock (2014).
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formly distributed on the frontier of the budget set (Method 1 of Bronars, 1987).
Datasets generated in this way always fail our tests. Next, we apply the simple
bootstrap method to look at the power from an ex post perspective, as originally
introduced in Andreoni and Miller (2002). For each of 45 budget sets, we ran-
domly pick one choice from the set of choices observed in the entire experiment
(i.e., 97 observations for each budget). We generate 10,000 such datasets and apply
our revealed preference tests. We again observe high percentages of violation.

The conclusion is that our tests seem to have good power against the (admit-
tedly crude) alternative of random choices. This is a credit to the design of AS.

Afriat inequalities. It should be said that the empirical implementation of our
test rests on a set of Afriat inequalities, and not on explicitly checking the axioms.
The Afriat inequalities are new to this study, though (see Lemma 1), and differ-
ent from the standard approach to developing Afriat inequalities in the revealed
preference literature. The new form of Afriat inequalities may seem ex-post (now
that we know them) like a minor idea, but they were not ex-ante obvious. There
are several papers (Adams et al., 2014; Crawford, 2010; Demuynck and Verriest,
2013) in the revealed preference literature that formulate the inequalities in the
traditional fashion. The system of inequalities is then not linear (and cannot be
linearized like our system can). As a result, these authors resort to a grid search
over a finite set of values of the discount factor. The grid search can be a real
limitation: we have examples in which our test gives higher pass rates for EDU
than what the authors’ methods give. Presumably the reason is that the grid does
not allow one to conclude with certainty that an agent is not EDU rational, as it
does not take full advantage of δ having arbitrary values in (0, 1]. So, in a sense,
one of the key innovations of this study are the new Afriat inequalities. These are
crucial for both the theoretical results and the empirical implementation. 19

2.6 Proof of Theorem 1

We present the proof of the equivalence between EDU rationality and SAR-EDU.
The proof is based on using the first-order conditions for maximizing a utility

with the EDU over a budget set. Our first lemma ensures that we can without loss
of generality restrict attention to first-order conditions. The proof of the lemma is
the same as that of Lemma 3 in Echenique and Saito (2015) with the changes of S

19The other key theoretical insight is the approximation result in Lemma 6.
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to T and {µs}s∈S to {δt}t∈T, where µs is the subjective probability that state s ∈ S
realizes.

We use the following notation in the proofs: X = {xk
t : k ∈ K, t ∈ T}.

Lemma 1. Let (xk, pk)K
k=1 be a dataset. The following statements are equivalent:

1. (xk, pk)K
k=1 is EDU rational.

2. There are strictly positive numbers vk
t , λk, and δ ∈ (0, 1], for t = 1, . . . , T and

k = 1, . . . , K, such that

δtvk
t = λk pk

t , xk
t > xk′

t′ =⇒ vk
t ≤ vk′

t′ .

Proof. We shall prove that (1) implies (2). Let (xk, pk)K
k=1 be EDU rational. Let

δ ∈ (0, 1] and u : R+ → R be as in the definition of EDU rational data. Then
(see, for example, Theorem 28.3 of Rockafellar, 1970), there are numbers λk ≥ 0,
k = 1, . . . , K such that if we let

vk
t =

λk pk
t

δt

then vk
t ∈ ∂u(xk

t ) if xk
t > 0, and there is w ∈ ∂u(xk

t ) with vk
t ≥ w if xk

t = 0. In fact,
it is easy to see that λk > 0, and therefore vk

t > 0.
By the concavity of u, and the consequent monotonicity of ∂u(xk

t ) (see Theo-
rem 24.8 of Rockafellar, 1970), if xk

t > xk′
t′ > 0, vk

t ∈ ∂u(xk
t ), and vk′

t′ ∈ ∂u(xk′
t′ ), then

vk
t ≤ vk′

t′ . If xk
t > xk′

t′ = 0, then w ∈ ∂u(xk′
t′ ) with vk′

t′ ≥ w. So vk
t ≤ w ≤ vk′

t′ .
In second place, we show that (2) implies (1). Suppose that the numbers vk

t ,
λk, δ, for t ∈ T and k ∈ K, are as in (2).

Enumerate the elements in X in increasing order:

y1 < y2 < · · · < yn.

Let
y

i
= min{vk

t : xk
t = yi} and ȳi = max{vk

t : xk
t = yi}.

Let zi = (yi + yi+1)/2, i = 1, . . . , n − 1; z0 = 0, and zn = yn + 1. Let f be a
correspondence defined as follows:

f (z) =


[y

i
, ȳi] if z = yi,

max{ȳi : z < yi} if yn > z and ∀i(z 6= yi),

y
n
/2 if yn < z.
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By assumption of the numbers vk
t , we have that, when y < y′, v ∈ f (y) and

v′ ∈ f (y′), then v ≤ v′. Then the correspondence f is monotone and there is a
concave function u for which ∂u = f (Theorem 24.8 of Rockafellar, 1970). Given
that vk

t > 0 all the elements in the range of f are positive, and therefore u is strictly
increasing.

Finally, for all (k, t), λk pk
t /δt = vk

t ∈ ∂u(vk
t ) and therefore the first-order con-

ditions to a maximum choice of x hold at xk
t . Since u is concave the first-order

conditions are sufficient. The dataset is therefore EDU rational.

2.6.1 Necessity

Lemma 2. If a dataset (xk, pk)K
k=1 is EDU rational, then it satisfies SAR-EDU.

Proof. Let (xk, pk)K
k=1 be EDU rational, and let δ ∈ (0, 1] and u : R+ → R be as

in the definition of EDU rational. By Lemma 1, there exists a strictly positive
solution vk

t , λk, δ to the system in statement (2) of Lemma 1 with vk
t ∈ ∂u(xk

t )

when xk
t > 0, and vk

t ≥ w ∈ ∂u(xk
t ) when xk

t = 0.

Let (xki
ti

, xk′i
t′i
)n

i=1 be a sequence satisfying the three conditions in SAR-EDU.

Then xki
ti

> xk′i
t′i

. Suppose that xk′i
t′i

> 0. Then, vki
ti
∈ ∂u(xki

ti
) and vk′i

t′i
∈ ∂u(xk′i

t′i
).

By the concavity of u, it follows that λki δt′i pki
ti
≤ λk′i δti pk′i

t′i
(see Theorem 24.8 of

Rockafellar, 1970). Similarly, if xk′i
t′i
= 0, then vki

ti
∈ ∂u(xki

ti
) and vk′i

t′i
≥ w ∈ ∂u(xk′i

t′i
).

So λki δt′i pki
ti
≤ λk′i δti pk′i

t′i
. Therefore,

1 ≥
n

∏
i=1

λki δt′i pki
ti

λk′i δti p
k′i
t′i

=
1

δ(∑ ti−∑ t′i)

n

∏
i=1

pki
ti

p
k′i
t′i

≥
n

∏
i=1

pki
ti

p
k′i
t′i

,

as the sequence satisfies (2) and (3) of SAR-EDU, and hence ∑ ti ≥ ∑ t′i and the
numbers λk appear the same number of times in the denominator as in the nu-
merator of this product.

2.6.2 Theorem of the Alternative

To prove sufficiency, we shall use the following lemma, which is a version of the
Theorem of the Alternative. This is Theorem 1.6.1 in Stoer and Witzgall (1970).
We shall use it here in the cases where F is either the real or the rational numbers.
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Lemma 3. Let A be an m× n matrix, B be an l × n matrix, and E be an r× n matrix.
Suppose that the entries of the matrices A, B, and E belong to the commutative ordered
field F. Exactly one of the following alternatives is true.

1. There is u ∈ Fn such that A · u = 0, B · u ≥ 0, E · u� 0.

2. There is θ ∈ Fr, η ∈ Fl, and π ∈ Fm such that θ · A + η · B + π · E = 0; π > 0
and η ≥ 0.

We also use the following lemma, which follows from Lemma 3 (See Border
(2013) or Chambers and Echenique (2014)):

Lemma 4. Let A be an m× n matrix, B be an l × n matrix, and E be an r× n matrix.
Suppose that the entries of the matrices A, B, and E are rational numbers. Exactly one of
the following alternatives is true.

1. There is u ∈ Rn such that A · u = 0, B · u ≥ 0, and E · u� 0.

2. There is θ ∈ Qr, η ∈ Ql, and π ∈ Qm such that θ · A + η · B + π · E = 0; π > 0
and η ≥ 0.

2.6.3 Sufficiency

We proceed to prove the sufficiency direction. An outline of the argument is as
follows. We know from Lemma 1 that it suffices to find a solution to the Afriat
inequalities (actually first-order conditions), written as statement (2) in the lemma.
So we set up the problem to find a solution to a system of linear inequalities
obtained from using logarithms to linearize the Afriat inequalities in Lemma 1.

Lemma 5 establishes that SAR-EDU is sufficient for SEU rationality when the
logarithms of the prices are rational numbers. The role of rational logarithms
comes from our use of a version of the theorem of the alternative (see Lemma 4).

The next step in the proof (Lemma 6) establishes that we can approximate any
dataset satisfying SAR-EDU with a dataset for which the logarithms of prices are
rational, and for which SAR-EDU is satisfied. This step is crucial, and somewhat
delicate. 20

Finally, Lemma 7 establishes the result by using another version of the theorem
of the alternative, stated as Lemma 3 above.

20One might have tried to obtain a solution to the Afriat inequalities for “perturbed” systems
(with prices that are rational after taking logs), and then considered the limit. This does not work
because the solutions to our systems of inequalities are in a non-compact space. It is not clear how
to establish that the limits exist and are well-behaved. Lemma 6 avoids the problem.
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The statement of the lemmas follow. The rest of the paper is devoted to the
proof of these lemmas.

Lemma 5. Let data (xk, pk)k
k=1 satisfy SAR-EDU. Suppose that log(pk

t ) ∈ Q for all k
and t. Then there are numbers vk

t , λk, δ, for t ∈ T and k = 1, . . . , K satisfying (2) in
Lemma 1.

Lemma 6. Let data (xk, pk)k
k=1 satisfy SAR-EDU. Then for all positive numbers ε̄, there

exists qk
t ∈ [pk

t − ε̄, pk
t ] for all t ∈ T and k ∈ K such that log qk

t ∈ Q and the dataset
(xk, qk)k

k=1 satisfy SAR-EDU.

Lemma 7. Let data (xk, pk)k
k=1 satisfy SAR-EDU. Then there are numbers vk

t , λk, δ, for
t ∈ T and k = 1, . . . , K satisfying (2) in Lemma 1.

2.6.4 Proof of Lemma 5

We linearize the equation in system (2) of Lemma 1. The result is:

log v(xk
t ) + t log δ− log λk − log pk

t = 0, (2.9)

x > x′ =⇒ log v(x′) ≥ log v(x), (2.10)

log δ ≤ 0. (2.11)

In the system comprised by (2.9), (2.10), and (2.11), the unknowns are the real
numbers log vk

t , log δ, k ∈ K and t ∈ T.
First, we are going to write the system of inequalities (2.9) and (2.10) in matrix

form. We shall define a matrix A such that there are positive numbers vk
t , λk,

and δ the logs of which satisfy equation (2.9) if and only if there is a solution
u ∈ RK×(T+1)+1+K+1 to the system of equations

A · u = 0,

and for which the last component of u is strictly positive.
Let A be a matrix with K × (T + 1) + 1 + K + 1 columns, defined as follows:

we have one row for every pair (k, t), one column for every pair (k, t), one column
for each k, and two additional columns. Organize the columns so that we first
have the K × (T + 1) columns for the pairs (k, t), then one of the single columns
mentioned in last place, which we shall refer to as the δ-column, then K columns
(one for each k), and finally one last column. In the row corresponding to (k, t)
the matrix has zeroes everywhere with the following exceptions: it has a 1 in the
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column for (k, t), t in the δ column, −1 in the column for k, and − log pk
t in the

very last column.
Thus, matrix A looks as follows:


(1,0) ··· (k,t) ··· (K,T) δ 1 ··· k ··· K p

...
...

...
...

...
...

...
...

...
(k,t) 0 · · · 1 · · · 0 t 0 · · · −1 · · · 0 − log pk

t
...

...
...

...
...

...
...

...
...

.

Consider the system A · u = 0. If there are numbers solving equation (2.9),
then these define a solution u ∈ RK×(T+1)+1+K+1 for which the last component
is 1. If, on the other hand, there is a solution u ∈ RK×(T+1)+1+K+1 to the system
A · u = 0 in which the last component is strictly positive, then by dividing through
by the last component of u we obtain numbers that solve equation (2.9).

In second place, we write the system of inequalities (2.10) and (2.11) in ma-
trix form. Let B be a matrix with K × (T + 1) + 1 + K + 1 columns. Define B as
follows: one row for every pair (k, t) and (k′, t′) with xk

t > xk′
t′ ; in the row corre-

sponding to (k, t) and (k′, t′) we have zeroes everywhere with the exception of a
−1 in the column for (k, t) and a 1 in the column for (k′, t′). These rows captures
the inequality (2.10). Finally, in the last row, we have zero everywhere with the
exception of a −1 at K × (T + 1) + 1th column. We shall refer to this last row as
the δ-row, which is capturing the inequality (2.11).

In third place, we have a matrix E that captures the requirement that the last
component of a solution be strictly positive. The matrix E has a single row and
K× (T + 1) + 1+ K + 1 columns. It has zeroes everywhere except for 1 in the last
column.

To sum up, there is a solution to system (2.9), (2.10), and (2.11) if and only
if there is a vector u ∈ RK×(T+1)+1+K+1 that solves the system of equations and
linear inequalities:

(S1) : A · u = 0, B · u ≥ 0, E · u� 0.

The entries of A, B, and E are integer numbers, with the exception of the last
column of A. Under the hypothesis of the lemma we are proving, the last column
consists of rational numbers.

By Lemma 4, then, there is such a solution u to S1 if and only if there is no
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rational vector (θ, η, π) that solves the system of equations and linear inequalities:

(S2) : θ · A + η · B + π · E = 0, η ≥ 0, π > 0.

In the following, we shall prove that the non-existence of a solution u implies
that the data must violate SAR-EDU. Suppose then that there is no solution u and
let (θ, η, π) be a rational vector as above, solving system S2.

By multiplying (θ, η, π) by any positive integer we obtain new vectors that
solve S2, so we can take (θ, η, π) to be integer vectors.

Henceforth, we use the following notational convention: for a matrix D with
K× (T + 1) + 1 + K + 1 columns, write D1 for the submatrix of D corresponding
to the first K × (T + 1) columns, let D2 be the submatrix corresponding to the
following one column (i.e., δ-column), D3 correspond to the next K columns, and
D4 to the last column. Thus, D = [D1 D2 D3 D4 ].

Claim 1. (i) θ · A1 + η · B1 = 0; (ii) θ · A2 + η · B2 = 0; (iii) θ · A3 = 0; and (iv)
θ · A4 + π · E4 = 0.

Proof. Since θ · A + η · B + π · E = 0, then θ · Ai + η · Bi + π · Ei = 0 for all i =

1, . . . , 4. Moreover, since B3, B4, E1, E2, and E3 are zero matrices, we obtain the
claim.

For convenience, we transform the matrices A and B using θ and η. We trans-
form the matrices A and B as follows. Let us define a matrix A∗ from A by letting
A∗ have K× (T + 1) + 1 + K + 1 columns that consists of the rows as follows: for
each row in r ∈ A (i) have θr copies of the rth row when θr > 0; (ii) omit row r
when θr = 0; and (iii) have θr copies of the rth row multiplied by −1 when θr < 0.

We refer to rows that are copies of some r in A with θr > 0 as original rows.
We refer to rows that are copies of some r in A with θr < 0 as converted rows.

Similarly, we define the matrix B∗ from B by including the same columns as
B and ηr copies of each row (and thus omitting row r when ηr = 0; recall that
ηr ≥ 0 for all r).

Claim 2. For any (k, t), all the entries in the column for (k, t) in A∗1 are of the same sign.

Proof. By definition of A, the column for (k, t) will have zero in all its entries with
the exception of the row for (k, t). In A∗, for each (k, t), there are three mutually
exclusive possibilities: the row for (k, t) in A can (i) not appear in A∗, (ii) it can
appear as original, or (iii) it can appear as converted. This shows the claim.
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Claim 3. There exists a sequence of pairs (xki
ti

, xk′i
t′i
)n∗

i=1 that satisfies Condition (1) in
SAR-EDU.

Proof. We define such a sequence by induction. Let B1 = B∗. Given Bi, define
Bi+1 as follows.

Denote by >i the binary relation on X defined by z >i z′ if z > z′ and there
is at least one pair (k, t) and (k′, t′) for which (i) xk

t > xk′
t′ , (ii) z = xk

t and z′ = xk′
t′ ,

and (iii) the row corresponding xk
t > xk′

t′ in B has strictly positive weight in η.
The binary relation >i cannot exhibit cycles because >i⊆>. There is therefore

at least one sequence zi
1, . . . , zi

Li
in X such that zi

j >
i zi

j+1 for all j = 1, . . . , Li − 1
and with the property that there is no z ∈ X with z >i zi

1 or zi
Li
>i z.

Observe that Bi has at least one row corresponding to zi
j >

i zi
j+1 for all j =

1, . . . , Li − 1. Let the matrix Bi+1 be defined as the matrix obtained from Bi by
omitting one copy of the row corresponding to zi

j > zi
j+1, for all j = 1, . . . Li − 1.

The matrix Bi+1 has strictly fewer rows than Bi. There is therefore n∗ for which
Bn∗+1 either has no more rows, or Bn∗+1

1 has only zeroes in all its entries (its rows
are copies of the δ-row which has only zeroes in its first K× (T + 1) columns).

Define a sequence of pairs (xki
ti

, xk′i
t′i
)n∗

i=1 by letting xki
ti
= zi

1 and xk′i
t′i
= zi

Li
. Note

that, as a result, xki
ti

> xk′i
t′i

for all i. Therefore the sequence of pairs (xki
ti

, xk′i
t′i
)n∗

i=1
satisfies Condition (1) in SAR-EDU.

We shall use the sequence of pairs (xki
ti

, xk′i
t′i
)n∗

i=1 as our candidate violation of
SAR-EDU.

Consider a sequence of matrices Ai, i = 1, . . . , n∗ defined as follows. Let
A1 = A∗, B1 = B∗, and C1 =

[
A1

B1

]
. Observe that the rows of C1 add to the null

vector by Claim 1.
We shall proceed by induction. Suppose that Ai has been defined, and that the

rows of Ci =
[

Ai

Bi

]
add to the null vector.

Recall the definition of the sequence

xki
ti
= zi

1 > · · · > zi
Li
= xk′i

t′i
.

There is no z ∈ X with z >i zi
1 or zi

Li
>i z, so in order for the rows of Ci to add to

zero there must be a −1 in Ai
1 in the column corresponding to (k′i, t′i) and a 1 in

Ai
1 in the column corresponding to (ki, ti). Let ri be a row in Ai corresponding to

(ki, ti), and r′i be a row corresponding to (k′i, t′i). The existence of a −1 in Ai
1 in the

column corresponding to (k′i, t′i), and a 1 in Ai
1 in the column corresponding to
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(ki, ti), ensures that ri and r′i exist. Note that the row r′i is a converted row while
ri is original. Let Ai+1 be defined from Ai by deleting the two rows, ri and r′i.

Claim 4. The sum of ri, r′i, and the rows of Bi which are deleted when forming Bi+1

(corresponding to the pairs zi
j > zi

j+1, j = 1, . . . , Li − 1) add to the null vector.

Proof. Recall that zi
j >

i zi
j+1 for all j = 1, . . . , Li − 1. So when we add the rows

corresponding to zi
j >

i zi
j+1 and zi

j+1 >i zi
j+2, then the entries in the column for

(k, t) with xk
t = zi

j+1 cancel out and the sum is zero in that entry. Thus, when we
add the rows of Bi that are not in Bi+1 we obtain a vector that is zero everywhere
except the columns corresponding to zi

1 and zi
Li

. This vector cancels out with
ri + r′i, by definition of ri and r′i.

Claim 5. The matrix A∗ can be partitioned into pairs (ri, r′i), in which the rows r′i are
converted and the rows ri are original.

Proof. For each i, Ai+1 differs from Ai in that the rows ri and r′i are removed from
Ai to form Ai+1. We shall prove that A∗ is composed of the 2n∗ rows ri and r′i.

First note that since the rows of Ci add up to the null vector, and Ai+1 and
Bi+1 are obtained from Ai and Bi by removing a collection of rows that add up to
zero, then the rows of Ci+1 must add up to zero as well.

By way of contradiction, suppose that there exist rows left after removing rn∗

and r′n∗ . Then, by the argument above, the rows of the matrix Cn∗+1 must add to
the null vector. If there are rows left, then the matrix Cn∗+1 is well defined.

By definition of the sequence Bi, however, Bn∗+1 has all its entries equal to
zero, or has no rows. Therefore, the rows remaining in An∗+1

1 must add up to
zero. By Claim 2, the entries of a column (k, t) of A∗ are always of the same sign.
Moreover, each row of A∗ has a non-zero element in the first K× (T + 1) columns.
Therefore, no subset of the columns of A∗1 can sum to the null vector.

Claim 6. (i) For any k and t, if (ki, ti) = (k, t) for some i, then the row ri corresponding
to (k, t) appears as original in A∗. Similarly, if (k′i, t′i) = (k′, t′) for some i, then the row
corresponding to (k, t) appears converted in A∗. (ii) If the row corresponding to (k, t)
appears as original in A∗, then there is some i with (ki, ti) = (k, t). Similarly, if the row
corresponding to (k, t) appears converted in A∗, then there is i with (k′i, t′i) = (k, t).

Proof. (i) is true by definition of (xki
ti

, xk′i
t′i
). (ii) is immediate from Claim 5 because

if the row corresponding to (k, t) appears as original in A∗ then it equals ri for
some i, and then xk

t = xki
ti

. Similarly when the row appears converted.
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Claim 7. The sequence (xki
ti

, xk′i
t′i
)n∗

i=1 satisfies conditions (2) and (3) in SAR-EDU.

Proof. We first establish condition (2). Note that A∗2 is a vector, and in row r the
entry of A∗2 is as follows. There must be a raw (k, t) in A of which the raw r is a
copy. Hence, the component at the row r of A∗2 is t if r is original and −t if r is
converted. Now, by the construction of the sequence when r appears as original
there is some i for which t = ti, when r appears as converted there is some i
for which t = t′i. So for each r there is i such that (A∗4)r is either ti or −t′i. By
Claim 1 (ii), θ · A2 + η · B2 = 0. Recall that θ · A2 equals the sum of the rows of A∗2 .
Moreover, B2 is a vector that has zeroes everywhere except a −1 in the δ row (i.e.,
K× (T + 1) + 1th row). Therefore, the sum of the rows of A∗2 equals ηK×(T+1)+1,
where ηK×(T+1)+1 is the K × (T + 1) + 1th element of η. Since η ≥ 0, therefore,
∑n∗

i=1 ti ≥ ∑n∗
i=1 t′i, and condition (2) in the axiom is satisfied.

Now we turn to condition (3). By Claim 1 (iii), the rows of A∗3 add up to
zero. Therefore, the number of times that k appears in an original row equals the
number of times that it appears in a converted row. By Claim 6, then, the number
of times k appears as ki equals the number of times it appears as k′i. Therefore,
condition (3) in the axiom is satisfied.

Finally, in the following, we show that ∏n∗
i=1 pki

ti
/pk′i

t′i
> 1, which finishes the

proof of Lemma 5 as the sequence (xki
ti

, xk′i
t′i
)n∗

i=1 would then exhibit a violation of
SAR-EDU.

Claim 8. ∏n∗
i=1 pki

ti
/pk′i

t′i
> 1.

Proof. By Claim 1 (iv) and the fact that the submatrix E4 equals the scalar 1, we
obtain

0 = θ · A4 + πE4 =

(
n∗

∑
i=1

(ri + r′i)

)
4

+ π,

where (∑n∗
i=1(ri + r′i))4 is the (scalar) sum of the entries of A∗4 . Recall that − log pki

ti

is the last entry of row ri and that log pk′i
t′i

is the last entry of row r′i, as r′i is con-

verted and ri original. Therefore the sum of the rows of A∗4 are ∑n∗
i=1 log(pk′i

t′i
/pki

ti
).

Then,
n∗

∑
i=1

log(pk′i
t′i

/pki
ti
) = −π < 0.

Thus ∏n∗
i=1 pki

ti
/pk′i

t′i
> 1.
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2.6.5 Proof of Lemma 6

For each sequence σ = (xki
ti

, xk′i
t′i
)n

i=1 that satisfies conditions (1), (2), and (3) in SAR-

EDU, we define a vector tσ ∈ N(K×T)2
as follows. To make the notation easier, we

identify the pair (xki
ti

, xk′i
t′i
) with ((ki, ti), (k′i, t′i)). Let tσ((k, t), (k′, t′)) be the number

of times that the pair (xk
t , xk′

t′ ) appears in the sequence σ. One can then describe
the satisfaction of SAR-EDU by means of the vectors tσ. Define

T =
{

tσ ∈ N(K×T)2
: σ satisfies conditions (1), (2), (3) in SAR-EDU

}
.

Observe that the set T depends only on (xk)K
k=1 in the dataset (xk, pk)K

k=1. It does
not depend on prices.

For each ((k, t), (k′, t′)) ∈ (K× T)2 such that xk
t > xk′

t′ , define

γ̂((k, t), (k′, t′)) = log

(
pk

t

pk′
t′

)
,

and define γ̂((k, t), (k′, t′)) = 0 when xk
t ≤ xk′

t′ . Then, γ̂ is a (KT)2-dimensional

real-valued vector. If σ = (xki
ti

, xk′i
t′i
)n

i=1, then

γ̂ · tσ = ∑
((k,t),(k′,t′))∈(K×T)2

γ̂((k, t), (k′, t′))tσ((k, t), (k′, t′)) = log

 n

∏
i=1

pki
ti

p
k′i
t′i

 .

Thus, the data satisfy SAR-EDU if and only if γ̂ · t ≤ 0 for all t ∈ T.
Enumerate the elements in X in increasing order:

y1 < y2 < · · · < yN.

Fix an arbitrary ξ ∈ (0, 1).
We shall construct by induction a sequence (εk

t(n)) for n = 1, . . . , N, where
εk

t(n) is defined for all (k, t) with xk
t = yn.

By the denseness of the rational numbers, and the continuity of the exponential
function, for each (k, t) such that xk

t = y1, there exists a positive number εk
t(1) such

that log(pk
t εk

t(1)) ∈ Q and ξ < εk
t(1) < 1. Let ε(1) = min{εk

t(1) : xk
t = y1}.

In second place, for each (k, t) such that xk
t = y2, there exists a positive εk

t(2)
such that log(pk

t εk
t(2)) ∈ Q and ξ < εk

t(2) < ε(1). Let ε(2) = min{εk
t(2) : xk

t = y2}.
In third place, and reasoning by induction, suppose that ε(n) has been defined
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and that ξ < ε(n). For each (k, t) such that xk
t = yn+1, let εk

t(n+ 1) > 0 be such that
log(pk

t εk
t(n + 1)) ∈ Q, and ξ < εk

t(n + 1) < ε(n). Let ε(n + 1) = min{εk
t(n + 1) :

xk
t = yn}.

This defines the sequence (εk
t(n)) by induction. Note that εk

t(n + 1)/ε(n) < 1
for all n. Let ξ̄ < 1 be such that εk

t(n + 1)/ε(n) < ξ̄.
For each k ∈ K and t ∈ T, let qk

t = pk
t εk

t(n), where n is such that xk
t = yn. We

claim that the data (xk, qk)K
k=1 satisfy SAR-EDU. Let γ∗ be defined from (qk)K

k=1 in
the same manner as γ̂ was defined from (pk)K

k=1.
For each pair ((k, t), (k′, t′)) with xk

t > xk′
t′ , if n and m are such that xk

t = yn and
xk′

t′ = ym, then n > m. By the definition of ε,

εk
t(n)

εk′
t′ (m)

<
εk

t(n)
ε(m)

< ξ̄ < 1.

Therefore,

γ∗((k, t), (k′, t′)) = log
pk

t εk
t(n)

pk′
t′ ε

k′
t′ (m)

< log
pk

t

pk′
t′
+ log ξ̄ < log

pk
t

pk′
t′
= γ̂(xk

s , xk′
t′ ).

Thus, for all t ∈ T, γ∗ · t ≤ γ̂ · t ≤ 0, as t ≥ 0 and the data (xk, pk)K
k=1 satisfy SAR-

EDU. Thus the data (xk, qk)K
k=1 satisfy SAR-EDU. Finally, note that ξ < εk

t(n) < 1
for all n and each k ∈ K, t ∈ T. So that by choosing ξ close enough to 1 we can
take the prices (qk) to be as close to (pk) as desired.

2.6.6 Proof of Lemma 7

Consider the system comprised by (2.9), (2.10), and (2.11) in the proof of Lemma 5.
Let A, B, and E be constructed from the data as in the proof of Lemma 5. The
difference with respect to Lemma 5 is that now the entries of A4 may not be
rational. Note that the entries of E, B, and Ai, i = 1, 2, 3 are rational.

Suppose, towards a contradiction, that there is no solution to the system com-
prised by (2.9), (2.10), and (2.11). Then, by the argument in the proof of Lemma 5
there is no solution to system S1. Lemma 3 with F = R implies that there is a real
vector (θ, η, π) such that

θ · A + η · B + π · E = 0 and η ≥ 0, π > 0.

Recall that B4 = 0 and E4 = 1, so we obtain that θ · A4 + π = 0.
Let (qk)K

k=1 be vectors of prices such that the dataset (xk, qk)K
k=1 satisfies SAR-
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EDU and log qk
t ∈ Q for all k and t. (Such (qk)K

k=1 exists by Lemma 6.) Construct
matrices A′, B′, and E′ from this dataset in the same way as A, B, and E is
constructed in the proof of Lemma 5. Note that only the prices are different in
(xk, qk) compared to (xk, pk). So E′ = E, B′ = B and A′i = Ai for i = 1, 2, 3. Since
only prices qk are different in this dataset, only A′4 may be different from A4.

By Lemma 6, we can choose prices qk such that |θ · A′4 − θ · A4| < π/2. We
have shown that θ · A4 = −π, so the choice of prices qk guarantees that θ · A′4 < 0.
Let π′ = −θ · A′4 > 0.

Note that θ · A′i + η · B′i + π′Ei = 0 for i = 1, 2, 3, as (θ, η, π) solves system S2
for matrices A, B, and E, and A′i = Ai, B′i = Bi, and Ei = 0 for i = 1, 2, 3. Finally,
B4 = 0 so

θ · A′4 + η · B′4 + π′E4 = θ · A′4 + π′ = 0.

We also have that η ≥ 0 and π′ > 0. Therefore θ, η, and π′ constitute a solution
S2 for matrices A′, B′, and E′.

Lemma 3 then implies that there is no solution to S1 for matrices A′, B′, and
E′. So there is no solution to the system comprised by (2.9), (2.10), and (2.11)
in the proof of Lemma 5. However, this contradicts Lemma 5 because the data
(xk, qk) satisfies SAR-EDU and log qk

t ∈ Q for all k = 1, . . . , K and t = 1, . . . , T.

2.7 Proof of Theorem 2

The proofs for QHD and PQHD are similar, so we give a detailed proof for PQHD
and then explain how the proof for QHD is different.

Lemma 8. Let (xk, pk)K
k=1 be a dataset. The following statements are equivalent:

1. (xk, pk)K
k=1 is PQHD rational.

2. There are strictly positive numbers vk
t , λk, β ≤ 1, and δ ∈ (0, 1], for t = 0, . . . , T

and k = 1, . . . , K, such that

vk
t = λk pk

t if t = 0, βδtvk
t = λk pk

t if t > 0, and xk
t > xk′

t′ =⇒ vk
t ≤ vk′

t′ .

The proof of Lemma 8 is very similar to the proof of Lemma 1 and omitted.

2.7.1 Necessity

Lemma 9. If a dataset (xk, pk)K
k=1 is PQHD rational, then it satisfies SAR-PQHD.
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Proof. Let (xk, pk)K
k=1 be PQHD rational, and let β ≤ 1, δ ∈ (0, 1], and u : R+ → R

be as in the definition of PQHD rational. By Lemma 8, there exists a strictly
positive solution vk

t , λk, β, δ to the system in statement (2) of Lemma 8 with
vk

t ∈ ∂u(xk
t ) when xk

t > 0, and vk
t ≥ w ∈ ∂u(xk

t ) when xk
t = 0. Moreover, vk

t =

λk pk
t /D(t), where D(t) = 1 if t = 0 and D(t) = βδt if t > 0.

Let (xki
ti

, xk′i
t′i
)n

i=1 be a sequence satisfying the four conditions in SAR-PQHD.

Then xki
ti
> xk′i

t′i
. Suppose that xk′i

t′i
> 0. Then, vki

ti
∈ ∂u(xki

ti
) and vk′i

t′i
∈ ∂u(xk′i

t′i
). By

the concavity of u, it follows that vki
ti
≤ vk′i

t′i
. Similarly, if xk′i

t′i
= 0, then vki

ti
∈ ∂u(xki

ti
)

and vk′i
t′i
≥ w ∈ ∂u(xk′i

t′i
), so that vki

ti
≤ vk′i

t′i
. Therefore,

1 ≥
n

∏
i=1

λki D(t′i)pki
ti

λk′i D(ti)p
k′i
t′i

=
n

∏
i=1

D(t′i)pki
ti

D(ti)p
k′i
t′i

=
β#{i:t′i>0}−#{i:ti>0}

δ(∑ ti−∑ t′i)

n

∏
i=1

pki
ti

p
k′i
t′i

≥
n

∏
i=1

pki
ti

p
k′i
t′i

,

where the first equality holds by (4) of SAR-PQHD, and the numbers λk appear
the same number of times in the denominator as in the numerator of this product.
Moreover, the last inequality holds by (2) and (3) of SAR-PQHD.

2.7.2 Sufficiency

Lemma 10. Let data (xk, pk)k
k=1 satisfy SAR-PQHD. Suppose that log(pk

t ) ∈ Q for all
k and t. Then there are numbers vk

t , λk, β, δ, for t ∈ T and k ∈ K satisfying (2) in
Lemma 8.

Lemma 11. Let data (xk, pk)k
k=1 satisfy SAR-PQHD. Then for all positive numbers ε̄,

there exists qk
t ∈ [pk

t − ε̄, pk
t ] for all t ∈ T and k ∈ K such that log qk

t ∈ Q and the dataset
(xk, qk)k

k=1 satisfy SAR-PQHD.

Lemma 12. Let data (xk, pk)k
k=1 satisfy SAR-PQHD. Then there are numbers vk

t , λk, β,
δ, for t ∈ T and k ∈ K satisfying (2) in Lemma 8.

Lemma 11 and 12 hold as in the proof for Theorem 1.
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2.7.3 Proof of Lemma 10

We linearize the equation in system (2) of Lemma 8. The result is:

log v(xk
t )− log λk − log pk

t = 0 if t = 0, (2.12)

log v(xk
t ) + log β + t log δ− log λk − log pk

t = 0 if t > 0, (2.13)

x > x′ =⇒ log v(x′) ≥ log v(x), (2.14)

log β ≥ 0, (2.15)

log δ ≤ 0. (2.16)

In the system comprised by (2.12), (2.13), (2.14), (2.15), and (2.16), the unknowns
are the real numbers log β, log δ, log λk, and log vk

t for all k = 1, . . . , K and t =

1, . . . , T.
First, we are going to write the system of inequalities from (2.12) to (2.16) in

matrix form.
We shall define a matrix A such that there are positive numbers vk

t , λk, β, and
δ the logs of which satisfy equations (2.12) and (2.13) if and only if there is a
solution u ∈ RK×(T+1)+2+K+1 to the system of equations

A · u = 0,

and for which the last component of u is strictly positive.
Let A be a matrix with K× (T + 1) rows and K× (T + 1) + 2+ K + 1 columns,

defined as follows: we have one row for every pair (k, t), one column for every
pair (k, t), two columns for each k, and two additional columns. Organize the
columns so that we first have the K× (T + 1) columns for the pairs (k, t), then two
columns, which we shall refer to as the β-column and δ-column, respectively, then
K columns (one for each k), and finally one last column. In the row corresponding
to (k, t) the matrix has zeroes everywhere with the following exceptions: it has a 1
in the column for (k, t), it has a 1 if t > 0 and it has a 0 if t = 0 in the β-column,
it has t in the δ-column, it has a −1 in the column for k, and − log pk

t in the very
last column.
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Thus, matrix A looks as follows:



(1,1) ··· (k,t) (k,t′) ··· (K,T) β δ 1 ··· k ··· K p
...

...
...

...
...

...
...

...
...

...
...

(k,t=0) 0 · · · 1 0 · · · 0 0 t 0 · · · −1 · · · 0 − log pk
t

(k,t′>0) 0 · · · 0 1 · · · 0 1 t′ 0 · · · −1 · · · 0 − log pk
t′

...
...

...
...

...
...

...
...

...
...

...

 .

Consider the system A · u = 0. If there are numbers solving equations (2.12)
and (2.13), then these define a solution u ∈ RK×(T+1)+2+K+1 for which the last
component is 1. If, on the other hand, there is a solution u ∈ RK×(T+1)+2+K+1

to the system A · u = 0 in which the last component is strictly positive, then
by dividing through by the last component of u we obtain numbers that solve
equation (2.12) and (2.13).

In second place, we write the system of inequalities (2.14), (2.15), and (2.16)
in matrix form. Let B be a matrix with K × (T + 1) + 2 + K + 1 columns. Define
B as follows: one row for every pair (k, t) and (k′, t′) with xk

t > xk′
t′ ; in the row

corresponding to (k, t) and (k′, t′) we have zeroes everywhere with the exception
of a −1 in the column for (k, t) and a 1 in the column for (k′, t′). Finally, we have
the last two rows, where we have zeroes everywhere with one exception. In the
first row, we have a −1 at (K× (T + 1) + 1)-th column; in the second row, we have
a −1 at (K× (T + 1) + 2)-th column. We shall refer to the first row as the β-row,
which captures (2.15). We also shall refer to the second row as the δ-row, which
captures (2.16). For (general) QHD, we do not have a β-row.

In third place, we have a matrix E that captures the requirement that the last
component of a solution be strictly positive. The matrix E has a single row and
K× (T + 1) + 2+ K + 1 columns. It has zeroes everywhere except for 1 in the last
column.

To sum up, there is a solution to system (2.12), (2.13), (2.14), (2.15), and (2.16)
if and only if there is a vector u ∈ RK×(T+1)+2+K+1 that solves the system of
equations and linear inequalities:

(S1) : A · u = 0, B · u ≥ 0, E · u� 0.

The argument now follow along the lines of the proof of Theorem 1. Suppose that
there is no solution u and let (θ, η, π) be an integer vector solving system:

(S2) : θ · A + η · B + π · E = 0, η ≥ 0, π > 0.
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The following has the same proof as Claim 1.

Claim 9. (i) θ · A1 + η · B1 = 0; (ii) θ · A2 + η · B2 = 0; (iii) θ · A3 + η · B3 = 0; (iv)
θ · A4 = 0; and (v) θ · A5 + π · E5 = 0.

We transform the matrices A and B based on the values of θ and η, as we
did in the proof of Theorem 1. Let us define a matrix A∗ from A and B∗ from
B, as we did in the proof of Theorem 1. We can prove the same claims (i.e.,
Claims 2, 3, 4, 5, and 6) as in the proof of Theorem 1. The proofs are the same
and omitted. In particular, we can show that there exists a sequence of pairs

(xki
ti

, xk′i
t′i
)n∗

i=1 that satisfies (1) in SAR-PQHD. We shall use the sequence of pairs

(xki
ti

, xk′i
t′i
)n∗

i=1 as our candidate violation of SAR-PQHD.

Claim 10. The sequence (xki
ti

, xk′i
t′i
)n∗

i=1 satisfies (2), (3), and (4) in SAR-PQHD.

Proof. We first establish (2). Note that A∗3 is a vector, and in row r the entry of
A∗3 is as follows. There must be a (k, t) of which r is a copy. Then the component
at row r of A∗3 is t if r is original and −t if r is converted. Now, when r appears
as original there is some i for which t = ti, when r appears as converted there is
some i for which t = t′i. So for each r there is i such that (A∗3)r is either ti or −t′i.

By Claim 9 (iii), θ · A3 + η · B3 = 0. Recall that θ · A3 equals the sum of the rows
of A∗3 . Moreover, B3 is a vector that has zeroes everywhere except a −1 in the δ

row (i.e., K × (T + 1) + 2th row). Therefore, the sum of the rows of A∗3 equals
ηK×(T+1)+2, where ηK×(T+1)+2 is the K× (T + 1) + 2th element of η. Since η ≥ 0,
therefore, ∑i:ti>0 ti −∑i:t′i>0 t′i = ηK×(T+1)+2 ≥ 0, and condition (2) in the axiom is
satisfied.

Next, we show (3). By Claim 9 (ii), θ · A2 + η · B2 = 0. Recall that θ · A2 equals
the sum of the rows of A∗2 . Moreover, B2 is a vector that has zeroes everywhere
except a −1 in the β-row (i.e., K × (T + 1) + 1th row). Therefore, the sum of the
rows of A∗2 equals ηK×(T+1)+1, where ηK×(T+1)+1 is the K× (T + 1) + 1th element
of η. Since η ≥ 0, therefore, #{i : ti > 0} − #{i : t′i > 0} = ηK×(T+1)+1 ≥ 0, and
condition (3) in the axiom is satisfied. (For (general) QHD, B2 is a zero vector in
the β-row (i.e., K× (T + 1) + 1th row). Therefore, #{i : ti > 0} − #{i : t′i > 0} = 0,
and condition (3) in SAR-QHD is satisfied.)

Now we turn to (4). By Claim 9 (iv), the rows of A∗4 add up to zero. Therefore,
the number of times that k appears in an original row equals the number of times
that it appears in a converted row. By Claim 6, then, the number of times k
appears as ki equals the number of times it appears as k′i. Therefore, condition (4)
in the axiom is satisfied.
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Finally, we can show that ∏n∗
i=1 pki

ti
/pk′i

t′i
> 1, which completes the proof of

Lemma 5 as the sequence (xki
ti

, xk′i
t′i
)n∗

i=1 would then exhibit a violation of SAR-
PQHD. The proof is the same as that of the corresponding lemma in the proof of
Theorem 1.
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Chapter 3

When the Eyes Say Buy: Visual
Fixations during Hypothetical
Consumer Choice Improve Prediction
of Actual Purchases

3.1 Introduction

Real choices are binding consequential commitments to a course of action, like ac-
cepting a job or voting in an election. However, scientists and policy makers who
are interested in real choices often rely on hypothetical statements about what
people would choose, rather than what they do actually choose. Measurement of
hypothetical choice is common in many fields, and is usually done for practical
reasons. Examples include pre-election polling in politics (e.g., Gallup presiden-
tial election poll), marketing surveys of potential new products to forecast sales
(Chandon et al., 2004; Green and Srinivasan, 1990; Infosino, 1986; Jamieson and
Bass, 1989; Raghubir and Greenleaf, 2006; Schlosser et al., 2006; Silk and Urban,
1978; Urban et al., 1983), artificial choices about moral dilemmas or measurement
of “sacred” values, which cannot be actually enforced for ethical reasons (Berns
et al., 2012; FeldmanHall et al., 2012b; Greene et al., 2004, 2001; Hariri et al.,
2006; Kühberger et al., 2002; Monterosso et al., 2007), eliciting quality-adjusted-
life-years (QALY) to choose medical procedures (Cutler et al., 1997; Garber and
Phelps, 1997; Gold et al., 1996; Zeckhauser and Shepard, 1976), and surveys used
to estimate dollar value of goods that are not traded in markets (such as clean air
or the prevention of oil spills) for cost-benefit analysis (Carson, 2012; Carson and
Hanemann, 2005; Shogren, 2005, 2006).

The maintained assumption in all these research areas is that hypothetical
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choices offer some useful relation to real choice. However, many comparisons
show that hypothetical and real choices can differ systematically. The differ-
ences are collectively called “hypothetical bias.” Typically, it is an upward “Yes
bias”: people overstate their intentions to buy new products and vote, compared
to actual rates of purchase and voting (Blumenschein et al., 2008; Bohm, 1972;
Cummings et al., 1995; Johannesson et al., 1998; List and Gallet, 2001; Little and
Berrens, 2004; Murphy et al., 2005). A small number of brain imaging studies have
found common valuation regions (Kang et al., 2011) or emotion regions (Feldman-
Hall et al., 2012a) for both types of choice, as well as distinct regions which are
more strongly activated during real choice (Kang and Camerer, 2013).

Given the possibility of hypothetical bias, an important practical challenge is
how to accurately forecast real choices from data on hypothetical choices. A good
forecasting correction method is also likely to be scientifically valuable, if it can
create knowledge about the detailed mechanism that produces bias (and how it
varies across types of choices and people).

Different forecasting methods have been tried. Methods can be sorted into
two categories: procedures and enhanced pre-choice measurement. Procedural
approaches change how questions are asked or choice data are processed. Mea-
surement methods collect more data and use them to improve forecasting.

Procedures Many studies have explored different experimental or statistical pro-
cedures that might reduce the bias. Statistical procedures (“calibration”) search
for a predictable measurable relations between the hypothetical and real choices,
and then test how well that relation can be used to forecast actual choices from hy-
pothetical ones within-sample, or in a new case (Blackburn et al., 1994; Fox et al.,
1998; Kurz, 1974; List and Shogren, 1998, 2002; Shogren, 1993). For example, in
our study we observe that about 55% of subjects choose to purchase consumer
goods hypothetically, but only 23% do when choices are real. So one could take a
hypothetical purchase rate in a new sample, and multiply it by 0.23/0.55 = 0.40,
to crudely estimate a real purchase rate.

Calibration methods such as these have been extended to account for socio-
demographics variables in hypothetical bias. They are useful for many purposes.
However, calibration has not been well-tuned to adjust for likely vagaries of spe-
cific goods and choice contexts, as flagged by List and Shogren (1998, 2002).

A more ambitious procedure is to search for a way of asking hypothetical
questions that gives answers which are closer to real-choice answers. Champ et al.
(1997) ask respondents how “certain” they are (on a 10-point scale) about whether
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they would actually donate the stated amount to a project if asked to do so. Cum-
mings and Taylor (1999) use the “cheap talk” protocol: the design includes an
explicit discussion of the hypothetical bias problem (what it is and why it might
occur) at the beginning of the experiment. Following findings in social psychol-
ogy, Jacquemet et al. (2013) use a “solemn oath,” asking participants to swear on
their honor to give honest answers, as a truth-telling commitment device. Finally,
the “dissonance-minimizing format” of Blamey et al. (1999) and Loomis et al.
(1999) include additional response categories that permit respondents to express
support for a project or policy without having to commit dollars. 1

Several meta-analyses have been conducted to evaluate effects of diverse ex-
perimental methods on hypothetical bias to find variables that account for the
variation in bias across goods and contexts (Carson et al., 1996; List and Gal-
let, 2001; Little and Berrens, 2004; Murphy et al., 2005). Hypothetical bias is in-
fluenced by the distinction between willingness-to-pay or willingness-to-accept,
public goods and private goods, and elicitation methods.

All calibration methods also rely on extrapolating from a past hypothetical-
actual relation to the future. An example of where this can backfire is politics.
Historically, polls asking people whom they intend to vote for overestimated the
actual vote for black candidates on election day (Keeter and Samaranayake, 2007).
However, this so-called “Bradley effect” (also known as “Wilder effect”) has grad-
ually eroded over time (Hopkins, 2009).

Further search for ideal procedures to pose hypothetical questions that yield
responses that predict real answers is surely worthwhile. However, there is no
current consensus on a single method that works effectively across choice con-
texts. We therefore turn to measuring more variables.

Pre-choice measures Another approach that has been explored more tentatively
is to measure psychological or neural variables that are recorded during the pro-
cess of hypothetical choice, and use those measures to forecast actual choice. 2

These measures will often precede choice, so we generally call them “pre-choice”
measures. We report new evidence from this approach using measures of vi-

1Other procedures, such as asking respondents to consider budget constraints and budgetary
substitutes, are shown to be ineffective (Loomis et al., 1994; Neill, 1995).

2Recent study by Bernheim et al. (2015) has features of both procedural and measurement
methods approaches. Their proposed method, called “non-choice revealed preference,” involves
estimation of statistical relationships between choices and non-choice variables and prediction of
choices using those relationships together with non-choice data under new environment. They
propose that non-choice reactions could include from simple ratings (liking, familiarity, certainty,
happiness, etc.) to physiological reactions including brain activities.
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sual attention—both mouse-based lookup of information (mousetracking), and
eyetracking recordings. 3

We record visual attention as people make hypothetical choices (about con-
sumer products, for example). On some trials people choose to (hypothetically)
buy the product, and on others they don’t buy. On later trials they are surprised
by the opportunity to actually buy some of those same products.

The motivating hypothesis is that what people looked at during the initial
hypothetical choice will help forecast whether they will stick with their original
hypothetical choice, or will change their minds when making a subsequent real
choice. 4 A quick preview of the main result is the following: during hypotheti-
cal choice, the more people look at prices, and the longer they take to transition
from looking to making a choice, the more likely they are to switch a hypothet-
ical “Buy” to a real “Don’t buy.” The improvement in prediction is not large in
magnitude. However, it provides initial evidence that some improvement is pos-
sible using pre-choice measures, and further efforts designed at maximizing the
improvement in prediction could do much better.

Note that a few recent studies have measured functional magnetic resonance
imaging (fMRI) and electroencephalography (EEG) signals and used them to fore-
cast actual choices, (e.g., Levy et al., 2011; Smith et al., 2014; Tusche et al., 2010).
While interesting and promising, none of these studies are specifically designed
to make the leap from hypothetical pre-choice thinking to later actual choices. We
discuss their methods and compare them to ours in the concluding discussion.

The remaining of the paper is organized as follows. We describe our experi-
mental design in Section 3.2, report the main results in Section 3.3, and discuss
our results and conclude in Section 3.4. Additional results and experimental de-
tails are reported in Sections B.1 to B.4.

3There is only one study directly comparing results from both measures on a common task
(Lohse and Johnson, 1996). As in that study, we find that the main regularities are common across
both visual fixation measures.

4This is partly motivated by the “mind eye hypothesis” which assumes that what a person is
looking at indicates what they are currently thinking about or attending to (Just and Carpenter,
1980). Studies have shown a connection between eyetracking patterns and users’ decision making
processes (Goldberg et al., 2002). Remarkably, eye movements can be even more accurate than con-
scious recall in predicting whether people have seen a visual stimulus before (and eye movements
are associated with hippocampal activity measured by fMRI; Hannula and Ranganath, 2009).
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3.2 Experimental Design

3.2.1 Experiment I: Mousetracking Study

Participants Participants were undergraduate or graduate students recruited
from subject pools at Caltech. Twenty-eight male subjects participated in Exper-
iment I. Two additional subjects participated, but their data were excluded from
the analysis for reasons described below.

Stimuli One hundred and twenty familiar consumer products (e.g., backpack,
watch, flash drive) were selected based on popular categories from a pilot test
and an earlier study (Kang et al., 2011). 5 The product images were no larger than
320× 320 pixels in size. Stimulus presentation and response recording were con-
trolled by MATLAB (MathWorks, Natick, MA), using the Psychophysics Toolbox
extensions (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).

Experimental procedures The experiment consists of four blocks: a willingness-
to-pay (WTP) reporting block, a hypothetical purchase block, a real purchase
block, and a “surprise” real purchase block. Mousetracking was used only in
the three purchase blocks, and participants’ viewing time was determined from
mouse events (e.g., clicks on certain parts of the screen). Subjects were told that
they would earn up to $50 for completing the experiment. Detailed instructions
for each part were given immediately prior to that part. Therefore, participants
were unaware of the existence of two real purchase blocks while they were in the
hypothetical purchase block. 6 7

In the WTP reporting block, subjects were shown images of the 120 consumer
products, one at a time and in random order. They were asked to state a max-
imum hypothetical WTP for each item, under the restriction that whatever they
would buy must be for themselves (i.e., it cannot be gifted or re-sold). In each

5For the complete product list, see Table B.3 in Section B.3.
6See Instructions in Section B.4.
7We intentionally did not counter-balance the order of the hypothetical and real conditions,

following the considerations described in Kang et al. (2011) and Kang and Camerer (2013). There
might be an ordering effect in which thinking about real choices first would spill over to affect
hypothetical choices. On the other hand, the spill-over effect is expected to be minimal, if any, in
the hypothetical-then-real order since in the real condition participants have a strong incentive to
change or adjust any behavior carried over from previous hypothetical block. In addition, previous
studies that used a within-subject design found no evidence for ordering (Cummings et al., 1995;
Johannesson et al., 1998). Notice also that hypothetical decision followed by real decision is a
natural order for forecasting purposes since, in most applications, hypothetical decision data are
gathered in advance of real decisions.
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Figure 3.1: Example screens for pre-mouse/pre-eyetracking trials (A), mousetracking
trials (B), and eyetracking trials (C).

trial, subjects entered an amount between $0 and $50 using a sliding scale in $1
increments (Figure 3.1A).

Upon completion of the first part, 60 out of 120 products were selected for
each subject, by the computer, for presentation to the subject during the mouse-
tracking blocks. More specifically, the computer ranked products in descending
order of the subject’s WTPs, except for the products with WTP of $50 (to avoid
the ceiling effect), and then paired up each two adjacent products (e.g., {1st, 2nd},
{3rd, 4th}, ...). Among these pairs, the 30 pairs with the highest WTP were se-
lected. One product of each adjacent pair was randomly chosen and assigned
to the hypothetical trials, and the other product from each pair was assigned to
the real trials. This procedure ensured that the distributions of WTPs in both of
hypothetical and real blocks were matched. See Figure B.1 in Section B.3.

In the hypothetical purchase block, subjects were shown a product image with
an offer price, one product at a time, and asked to make a hypothetical purchase
decision and respond with a Yes or No key press. Each of the 30 products selected
in the aforementioned way was presented to the subject three times (for a total
of 90 trials in the hypothetical block), and with a different offer price each time.
The offer prices for each product were determined as follows: (i) let Pi be the
offer price for product i, WTPi be the WTP for product i, and d be a discounting
factor; (ii) sample d from the set {0.6 + α, 0.9 + α, 1.2 + α} without replacement
for every repeat of product i, where α is a random variable from a uniform dis-
tribution over the range [−0.05, 0.05] (i.e., α is to add jitter); and (iii) determine
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Figure 3.2: Timeline of the experiment and an illustration of allocation of products into
each choice block.

the offer price by Pi = WTPi × d. This procedure ensured that there was a bal-
anced distribution of three different price levels (low, middle, and high) so as to
increase statistical power and facilitate detection of a treatment effect, if any, on
the purchase behavior. The jitter helps to prevent subjects from noticing any type
of pricing rule.

The real purchase block was identical in structure to that of the hypothetical
block except for one significant difference. Specifically, subjects were informed
that one of the 90 trials would be randomly chosen at the end of the experiment,
and whatever decision they had made in the chosen trial would be implemented
as real, whether that purchase decision was Yes or No. Since only one trial would
count as real, subjects were instructed that there was no reason for concern on
their part about spreading their budget too thinly over the different items. In-
stead, they were instructed to treat each trial independently of each other, as if it
were the only decision in consideration. The offer prices for each product in this
block were determined as in the hypothetical purchase block.

In the final “surprise” real purchase part, the same 90 item-price pairs that
had been presented in the earlier hypothetical trials were shown again. This time,
subjects were asked to make a real decision on these items. That is, the subjects
were told that exactly one trial of the 180 real trials, including 90 from the earlier
real part and 90 from this surprise real part, would be randomly selected and
implemented, based on their decision made in the selected trial. This surprise
real part was designed to measure switches from hypothetical to real decisions
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for a matched set of items presented once in each condition; therefore, the offer
prices for each product remained identical to those in the hypothetical block.

At the end of the experiment, one trial from the real or surprise real block was
randomly selected. When the subject had made a purchase decision at the offered
price in the selected trial, he paid the offered price out of his $50 budget from
experiment participation, and the product was shipped to him and the subject
received any remainder of the $50 in cash at the end of the experiment. Otherwise,
if the decision in the selected trial was to not buy, the subject received the full $50
in cash and did not receive any product.

During the pre-mousetracking part, the initial location of the anchor on the
WTP scale (Figure 3.1A) was randomized for each trial and recorded. These data
were used as a check for subjects’ engagement in the task and possible anchoring
effects. Correlations between participants’ WTP responses and anchor positions
were calculated for each subject. For two subjects, the WTP reports were highly
correlated with the anchor positions (p < 0.0001) and the number of trials in
which |anchor −WTP| ≤ 5 was outside two standard deviations of the group
average (i.e., greater than 47 trials). Therefore, these two subjects were excluded
from the analysis.

Viewing time data measurement In addition to decision and response time, we
also recorded the amount of time participants spent viewing the product image
and the offer price in the mousetracking trials. In each of these trials, subjects
saw two gray opaque boxes on the screen behind which a product image and
the offered price were hidden (Figure 3.1B). Subjects had to click and hold the
left mouse-button on one of the boxes to see the information behind it (right two
panels of Figure 3.1B), and they were able to see either the product or the price
at any given time. The viewing times of products and prices were recorded by
tracking mouse events occurring on the boxes (clicks and releases)—that is, the
time elapsed from the moment when the gray box opened to the moment when
it closed, and aggregated (summed) within a trial. In addition to viewing times,
“latency” was defined as the time between the final box closing and when choice
was entered (i.e., key press) to capture last minute computations and contempla-
tions to reach a decision. There was no time limit, and subjects could spend as
much time as they wished on the task. Before the start of the hypothetical pur-
chase block, subjects went through five practice rounds to become familiar with
the mousetracking task.

The placement of the image and the price was counter-balanced between sub-
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jects. That is, one group of subjects saw the screen with a product-top and price-
bottom display, and the other saw the screen with a reversed (i.e., price-top and
product-bottom) display.

3.2.2 Experiment II: Eyetracking Study

The procedure for Experiment II was similar to that of Experiment I, and thus we
provide descriptions only when methodological disparity is present between the
two experiments.

Participants Seventeen participants were recruited in the same way as in Ex-
periment I. Participants were screened so that they participated only once in this
study (Experiment I and II, inclusive). All subjects had normal or corrected-to-
normal vision, and they earned up to $50 for participation.

Experimental procedure The experimental procedure was basically identical to
that of Experiment I, except that in purchase decision trials, opaque boxes were
removed from the screen and subjects freely viewed information on the screen at
the pace they desired (Figure 3.1C). The placement of the image and the price was
counter-balanced between subjects as in Experiment I.

Gaze data measurement Gaze data were collected from subjects during the
three purchase blocks using the head-mounted EyeLink 2 system (SR Research,
Mississauga, Canada) at 250 Hz. Binocular gaze data from both eyes were gath-
ered whenever available (most cases), but when there was a calibration problem
with one eye, monocular gaze data were collected from the well calibrated eye.
When binocular gaze data were collected, we used the average gaze position be-
tween the two eyes for gaze analysis. The system was calibrated at the beginning
of each block. Drift correction was performed before each trial to ensure that
accuracy of the calibration parameters is maintained. Gaze data acquisition was
controlled by MATLAB (MathWorks, Natick, MA), using the Psychophysics and
Eyelink Toolbox extensions (Brainard, 1997; Cornelissen et al., 2002; Kleiner et al.,
2007; Pelli, 1997). 8

8Eyetracking data of four trials from three participants were not recorded properly. However,
decisions in those trials were recorded.



56

Table 3.1: Summary statistics in Experiment I (mousetracking) and Experiment II (eye-
tracking).

Experiment I Experiment II

Average Hyp Real Hyp Real

Purchase percentage (%) a, b*** 55.99 25.59 55.88 16.67
WTP ($) 23.51 23.51 26.91 26.86
Price ($) 21.06 21.10 24.13 24.07
Response time (sec) 4.01 4.43 2.30 2.16
Cumulative image viewing time (sec) a*** 0.95 1.50 1.32 1.33
Cumulative price viewing time (sec) b* 0.70 0.64 0.49 0.43
# of image clicks/fixations a** b* 1.27 1.36 2.44 2.32
# of price clicks/fixations 1.21 1.20 1.54 1.44
Image viewing time per click/fixation (sec) a*** 0.72 0.89 0.53 0.54
Price viewing time per click/fixation (sec) a*** 0.60 0.53 0.32 0.30

Notes: Asterisks indicate statistical significance between hypothetical and real condition. ∗∗∗ :
p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.10, for Experiment I (a) and II (b). In Experiment II, averages for
purchase percentage, WTP, and price are calculated including first trial of each condition.

3.3 Results

Behavior and viewing times Table 3.1 shows summary statistics of behavior in
hypothetical and real conditions from two experiments. Note that the distribution
of the WTPs subjects stated for presented products was approximately matched
across hypothetical and real conditions by construction (see Section 3.2). There-
fore, if there is no hypothetical bias, then subjects should choose to buy goods
at the same rate in the two conditions. As found in previous studies, however,
subjects exhibited a significant hypothetical bias (Kang et al., 2011; Little and
Berrens, 2004). The hypothetical purchase rates were 56.0% and 55.9% in the two
experiments (SE = 2.36, 3.39) and the real purchase rates were 25.6% and 16.7%
(SE = 3.90, 1.98). The reduction in purchase rates is highly significant in both
experiments (two-sided paired sample t-test, p < 0.0001).

To explore differences in the visual gaze pattern during hypothetical and real
purchase that could potentially contribute to improvement of prediction, we con-
structed gaze distribution maps for different conditions of interest, for the eye-
tracking experiment II only, using iMap (Caldara and Miellet, 2011; Chauvin et al.,
2005). Gaze distribution maps allow for statistical testing of differences between
conditions in viewing any part of the stimuli. They are thus free of subjectiv-
ity and potential error in defining regions of interest (ROIs) a priori, and allow
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differences on a fine spatial scale. 9

Figure 3.3 shows the gaze distribution maps (panel A), along with a map mea-
suring gaze differences across condition (panel B) and decision (panel C). Panel B
shows that subjects fixated more frequently on the price as well as the image in
the real condition than in the hypothetical condition before making a Yes deci-
sion, while that pattern was reversed before making a No decision (the threshold
for two-tailed Pixel test p < 0.05 is |z| > 4.3125, corrected for multiple compar-
isons). Similarly, Panel C shows that subjects fixated longer on both product and
price when they made Yes decisions than No decisions. In the hypothetical condi-
tion, however, Yes-dominant areas (red) and No-dominant areas (blue) were both
present. 10 These differential patterns of visual attention associated with hypo-
thetical and real decisions are observed also in mouse-based Experiment I, using
an ROI-based aggregate measure of fixation duration as shown in Figure 3.4. 11

We speculate that we did not observe any difference in viewing times between Yes
and No decisions in the hypothetical condition because we constructed viewing
time measures by summing up total duration fixated on the predetermined ROIs,
thus discarding all the fine-grained information regarding spatial attention.

In addition to viewing times for image and price, there is also an interesting
difference in latency, which is the duration between the last time subjects viewed
the price or the image, and the time at which they made a decision (recorded
in Experiment I only). This pre-choice latency was significantly longer for real
Yes compared to real No decisions (Yes: M = 1.08, SE = 0.19; No: M = 0.62,
SE = 0.07; two-sided paired sample t-test, p < 0.01), but there was no such
difference in hypothetical decisions. (Yes: M = 0.74, SE = 0.06; No: M = 0.82,
SE = 0.08). This extra pre-choice latency plausibly reflects additional last minute
contemplation before choosing to actually buy the product (Figure 3.5).

Furthermore, pre-choice latencies in the hypothetical condition were longer
when subjects later made a No decision rather than a Yes decision in the surprise
real condition (Yes: M = 0.64, SE = 0.07; No: M = 0.84, SE = 0.07; two-sided
paired sample t-test, p < 0.001). That is, subjects who took a longer time post-
viewing before making a hypothetical choice were more likely to change their
minds and say No when asked to choose for real. This is the first clue that

9See Section B.1 for more information about gaze data analysis, construction of ROIs, and gaze
distribution maps.

10We obtain qualitatively similar results in the comparison between hypothetical and surprise
real conditions. See statistical fixation map (Figure B.6) in Section B.3.

11We briefly note that number of mouse clicks or eye fixations showed basically the same pat-
terns across hypothetical and real conditions, and across conditions, as measures of visual atten-
tion times do. See Figure B.4 in Section B.3.
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Figure 3.3: Gaze distribution maps by condition and decision from Experiment II. A.
Average gaze prevalence. B. Statistical significance of the difference between real and
hypothetical conditions. Red indicates gaze bias toward real choice (i.e., longer viewing
time in the real than the hypothetical condition) and blue indicates gaze bias toward hy-
pothetical choice. C. Statistical significance of the difference between Yes and No decisions
within each condition. In Panels B and C, product images are shown in the background
for illustration. Red indicates gaze bias toward Yes and blue indicates bias toward No.
The threshold for two-tailed Pixel test p < 0.05 is |z| > 4.3125, corrected for multiple
comparisons.
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Figure 3.4: Average viewing time (sec) by condition and decision. Image and price
viewing times in Experiment I (top) and in Experiment II (bottom). Error bars indicate
standard errors. ∗∗∗ : p < 0.001, ∗∗ : p < 0.005, ∗ : p < 0.05, + : p < 0.10, two-sided
paired sample t-test. Comparison between hypothetical Yes and No is not significant.

features of hypothetical decisions might have some predictive power for whether
hypothetical choices translate into the same real choices, for the same products
(see Classification Analysis below).

Decision switches By design, participants faced exactly the same pairs of prod-
uct and price in the hypothetical and surprise real conditions. Although subjects
should make the same decisions between these two conditions in the absence
of hypothetical bias, we observed frequent decision switches, as shown in Ta-
ble 3.2: more than half (55.5% and 69.4% in Experiment I and II, respectively) of
hypothetical Yes decisions were switched to No decisions in the surprise real con-
dition, compared to a very low rate of switching in the opposite direction (5.2%
and 3.6%).
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Figure 3.5: Pre-choice latency by condition and decision in Experiment I. For “Hyp-
sorted” bars, average latencies in hypothetical condition sorted by decisions in matching
surprise real trials are plotted. Two additional subjects are dropped, since they did not
make any Yes decisions in surprise real trials. Asterisks indicate statistical significance:
∗∗ : p < 0.001, ∗ : p < 0.01, two-sided paired sample t-test.

Because the overwhelming majority of switches are from Yes to No, we next
focus on whether there are differences in characteristics of decision problems (i.e.,
WTP and price) and fixation patterns between trials in which subjects made the
same Yes decision in the surprise real condition (“stick” trials) and those in which
they later changed their minds from Yes to No (“switch” trials). In Experiment I,
during switch trials WTPs and prices were significantly higher, subjects fixated
significantly longer on both image and price, and pre-choice latency was also
significantly longer, than on stick trials. In contrast, we found significant differ-
ences only between price fixation time, and standardized fixation time for price
in Experiment II. 12

In Experiment I, fixations on both image and price were longer in hypothetical
Yes decisions that later resulted in switches to No. This finding is in contrast
to the general tendency to pay less attention to price in hypothetical decisions.
In switch trials participants also have longer pre-choice latencies. We speculate
that in hypothetical trials resulting in a Yes that later is switched, participants
collect more information (= longer fixations), are still not really sure they want
to buy (= longer latency), but respond with a reluctant Yes decision anyway. The
longer fixations and pre-choice latency could be indicators of hesitation, despite
choosing Yes.

12See Table B.2 in Section B.3.
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Table 3.2: The percentage of decision switches from Hypothetical to Surprise Real deci-
sions in Experiment I (mousetracking) and II (eyetracking).

Experiment I Surprise Real

Yes No Total

Hyp Yes 24.9 31.1 56.0
No 2.3 41.7 44.0

Total 27.2 72.8 100.0

Experiment II Surprise Real

Yes No Total

Hyp Yes 17.1 38.8 55.9
No 1.6 42.5 44.1

Total 18.7 81.3 100.0
Notes: The total number of observations: 2520 (Experiment I); 1530 (Experiment II). Numbers
appear in the right panel are slightly different from those in Tables 3.1 and B.1 since in this table
first trial in each condition and four trials in which eyetracking data were not recorded (but choices
were recorded) are included.

Logistic regression Analysis The analyses above show differences between vi-
sual processing in hypothetical and real conditions, depending on whether choices
are Yes or No. Next we ran several logistic regression models, in which the depen-
dent variable was purchase decision (Yes = 1 and No = 0). Independent variables
included viewing times and several dummy variables (Table 3.3, columns AB and
DE). 13 Longer viewing times for price and image were significant predictors of
the purchase decision only in the real conditions, in both experiments. The sec-
ond group of logistic regression models included price, WTP, viewing times, and
dummy variables as independent variables (Table 3.3, columns C and F). WTP and
price were generally strong predictors of purchase decisions; this is unsurprising
because these are the only variables predicted by standard economic theory to
guide decisions, and they undoubtedly have an effect on choice.

More surprisingly, image and price viewing times were also significant pre-
dictors of purchase even after controlling for WTP and price, but only in the real
condition. It is also notable that the magnitudes of the coefficients for price and
WTP are smaller in the real condition than in the hypothetical condition, which
implies that including viewing times reduces the statistical influence of price and
subjective value (WTP) on decisions.

We also ran several logistic regression models in which the dependent variable
was decision switch between hypothetical and surprise real condition (switch = 1,
stick = 0) and independent variables included viewing times collected during the
hypothetical trials. Focusing on hypothetical Yes trials, we found that not only
prices but also price viewing time and latency were significant predictors of later

13Viewing times, including latency and other viewing time, were standardized within subject,
across conditions.
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Table 3.3: Random-effects logistic regression of purchase decision (Yes = 1, No = 0;
group variable = subject).

Experiment I Experiment II

Independent variables A B C D E F

WTP 0.214 *** 0.153 ***
(0.017) (0.016)

Price −0.206 *** −0.149 ***
(0.017) (0.015)

Real ×WTP −0.120 *** −0.032
(0.021) (0.024)

Real × Price 0.050 ** 0.014
(0.019) (0.017)

ImageViewing −0.034 −0.095
(0.085) (0.083)

PriceViewing 0.007 0.007
(0.050) (0.096)

Real −1.798 *** −1.804 *** −0.479 −2.499 *** −2.542 *** −2.316 ***
(0.297) (0.298) (0.433) (0.322) (0.320) (0.664)

Real × ImageViewing 0.223 *** 0.256 ** 0.218 *** 0.402 *** 0.497 *** 0.307 ***
(0.050) (0.092) (0.055) (0.092) (0.115) (0.083)

Real × PriceViewing 0.289 *** 0.282 ** 0.337 *** 0.240 * 0.232 0.281 **
(0.077) (0.093) (0.078) (0.105) (0.140) (0.108)

Trial −0.005 ** −0.006 ** −0.006 ** −0.004 −0.005 * −0.005 *
(0.002) (0.002) (0.002) (0.002) (0.002) (0.003)

Real × Trial 0.006 * 0.006 * 0.007 * 0.010 * 0.011 ** 0.010 *
(0.003) (0.003) (0.003) (0.004) (0.004) (0.005)

Constant 0.524 ** 0.531 ** −0.067 0.427 ** 0.470 * 0.037
(0.154) (0.162) (0.320) (0.164) (0.184) (0.462)

Log likelihood −2934.45 −2934.28 −2456.79 −1645.50 −1644.50 −1428.37
# Obs 5040 5040 5040 3023 3023 3023

Notes: Level of significance ∗∗∗ : p < 0.001, ∗∗ : p < 0.01, ∗ : p < 0.05. ImageViewing
(PriceViewing) is cumulative fixation time for image (price), standardized across conditions within
subject. Real is a dummy variable for real trials (1 if real, 0 otherwise). Robust standard errors are
reported in parentheses, corrected for subject-level clustering. According to likelihood-ratio tests,
adding the variable ImageViewing and/or PriceViewing to specifications A and D does not result
in a statistically significant improvement in model fit.

decision switches in Experiment I (Table 3.4).
This logistic regression analysis establishes that viewing times do have sig-

nificant associations with the purchase decision. Next, we investigate whether
we can actually predict purchase decisions more accurately by including viewing
times, using classification analysis.

Classification analysis A main goal of this study is to investigate whether we
could predict consumers’ actual purchase decisions using information on visual
attention. Note that information of this kind is potentially available to sellers in
natural settings (such as website time usage or in-store observation of customer
visit times). To provide an answer to this question, we performed a linear discrim-
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Table 3.4: Random-effects logistic regression of decision switch (switch = 1, stick = 0;
conditional on hypothetical Yes; group variable = subject). Independent variables are
measured during the hypothetical condition.

Experiment I Experiment II

Independent variables A B C D E F

Price 0.039 *** 0.040 *** 0.062 *** 0.064 ***
(0.011) (0.011) (0.017) (0.017)

ImageViewing 0.002 0.015 0.189 0.234
(0.088) (0.097) (0.146) (0.160)

PriceViewing 0.242 *** 0.257 *** 0.064 0.079
(0.064) (0.065) (0.105) (0.101)

Latency/Else 0.345 *** 0.355 *** 0.357 *** 0.045 0.029 0.050
(0.092) (0.092) (0.091) (0.095) (0.082) (0.092)

Constant −0.352 0.367 −0.331 −0.421 0.881 ** −0.442
(0.415) (0.372) (0.422) (0.502) (0.314) (0.493)

Log likelihood −692.57 −703.16 −697.07 −435.82 −453.61 −438.05
# Obs 1411 1411 1411 842 842 842

Notes: Level of significance ∗∗∗ : p < 0.001, ∗∗ : p < 0.01, ∗ : p < 0.05. ImageViewing
(PriceViewing) is cumulative fixation time for image (price), standardized within subject across
conditions. Latency/Else are constructed in the similar manner.

inant analysis (LDA) to predict purchase decisions. As independent variables, the
model included price and price viewing time, image viewing time, and (in Exper-
iment I) pre-choice latency as well as other viewing time (i.e., the duration of
the gaze at blank screen areas which show neither image nor price; Experiment
II). 14 15

We used the following procedure. Prior to classification analysis, viewing
times, including latency and other viewing time, were standardized within sub-
ject, across different purchase conditions. For each condition, any subjects who
made fewer than five Yes or No decisions were excluded from this classification

14It is important to note why WTP information was not used in the classification analyses that
were reported above. Not surprisingly, WTP is closely related to purchase decisions. Indeed,
including WTP along with price classifies decisions sufficiently well that viewing times no longer
add predictive power. However, in most natural settings unbiased subject-specific measures of
WTP are more difficult to collect than visual attention (or other kinds of self-report). For example,
a user accessing a website will provide a clickstream to a retailer, even if the user does not answer
a question about WTP. In many practical settings, consumers have no positive incentive to state
their true subjective WTP, and will usually have a natural inclination to understate it. When
respondents are especially concerned about their social image with a surveyor (even online), WTPs
can be highly misreported, especially for vices and virtues.

15Unlike Experiment I, there was no clear-cut way to measure latency as defined above (i.e.,
not looking at a stimulus but still contemplating before submitting a decision) in this part unless
subjects actually closed their eyes after the last fixation until the decision submission. Therefore,
we used the total duration of the gaze at blank instead, called “other viewing time” or simply,
“else.”
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analysis, because classification requires enough observations in both response cat-
egories. In Experiment I, this criterion left a total of 23 subjects for each of the
real and surprise real conditions, and 28 for the hypothetical condition. In Experi-
ment II, no subjects were excluded for hypothetical classification, one subject was
excluded from real classification, and three subjects were excluded from surprise
real classification.

We performed a linear discriminant analysis (LDA) for each subject with view-
ing times, latency, and price as independent variables (i.e., features) to predict
purchase decisions (Yes = 1, No = 0). The detailed classification procedure was
as follows. First, for each subject, we divided 90 observations into a training
sample to estimate a classification model, and a hold-out sample to evaluate pre-
dictions based on the estimated model. Specifically, exactly two observations, one
Yes decision and one No decision, were randomly selected out of 90 observations
and set aside. By construction, one could classify 50% of the decisions correctly
by chance. This 50% prediction level serves as the baseline success rate against
which our classification results are compared. A classification model was then
estimated based on the rest of the 88 samples, and used to predict binary choices
associated with the hold-out samples. This procedure was repeated 1,0000 times
per subject. We called a correct prediction a “success.” For classification of de-
cisions in real (hypothetical) trials, viewing times and latency collected from real
(hypothetical) trials were used. However, for classification of decisions in surprise
real trials (i.e., real, binding purchase decisions), viewing times and latency from
matching hypothetical trials were used.

Figure 3.6 shows that viewing times do improve prediction accuracy to a mod-
est extent. Adding viewing times to price in predicting real purchase decisions
(using viewing times collected in the real condition) improved accuracy from
62.7% to 69.2%, and from 62.1% to 68.5%, in Experiments I and II, respectively.
These success rates for prediction were significantly higher than the baseline suc-
cess rate of 50%. On the other hand, prediction of hypothetical choices was not
improved by adding viewing times collected in the hypothetical condition (66.2%
and 65.3% in Experiment I, and 62.3% and 62.8% in Experiment II).

A much more challenging test is whether viewing times collected in hypothet-
ical trials can improve prediction of decisions for the same products in the surprise
real trials. This improvement is evident, although small in magnitude, using
mousetracking data (Experiment I), but there is no improvement using eyetrack-
ing data (Experiment II). That is, in Experiment I the average success rate was
significantly improved from 62.4% (prices only) to 65.6% by incorporating view-
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Figure 3.6: Average success rates for classification of decisions by condition in Experiment
I (left) and Experiment II (right). Viewing times include ImageViewing, PriceViewing and
Latency for Experiment I, and ImageViewing, PriceViewing and Else for Experiment II. For
classification of decisions in surprise real trials, viewing times from matching hypothetical
are used. Asterisks indicate statistical significance: ∗∗ : p < 0.001, ∗ : p < 0.01, one-
sided paired sample t-test. Error bars indicate standard errors. Dashed horizontal lines
represent a chance level (50%).

ing times (SE = 1.8, 1.9; one-sided paired sample t-test, p < 0.01).
We can also test, focusing only on hypothetical Yes trials, whether we can pre-

dict their decision switches in the later surprise real condition using hypothetical
viewing times. In contrast with the case of predicting surprise real decisions,
we do not see significant improvement in predictive accuracy by adding viewing
time data in either experiment. Prediction success rates vary only a little across
sets of predictors, averaging around 56% and 60% for Experiments I and II. As
is common in other classification studies (e.g., Smith et al., 2014) some partici-
pants’ stick/switch choices can be classified rather accurately and others cannot
(see also Figure 3.7). This motivates our next analysis, in which we investigate the
possibility of improving prediction by selecting a subset of predictors.

Improve prediction with feature selection In the previous analysis, we apply
the same model (price only or price and viewing times) to all subjects’ data to
measure prediction success rates. Given the heterogeneity in visual fixation pat-
terns, we might expect that different subsets of predictors could improve pre-
diction for different subjects. In order to assess this possibility, we perform the
classification analysis with feature selection.

Since we have a small number of predictors, we can exhaustively examine
all possible combinations of predictors and compare the performance of linear
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Figure 3.7: Individual heterogeneity in improvement of prediction success rates in Ex-
periment I (left panels) and Experiment II (right panels). Each panel compares prediction
success rates using price only (x-axis) and using both price and viewing times (y-axis).
Each dot represents one subject. Top panels: prediction of hypothetical choices; Middle
panels: prediction of real choices; Bottom panels: prediction of surprise real choices (with
viewing times recorded during matching hypothetical trials).

classifiers in terms of their resulting success rates. 16 For each subject, we select a
subset of viewing times that achieves the highest success rate when added to price
information. We call this set of viewing times the best subset. Figure 3.8 shows
empirical cumulative distribution functions (CDFs) for prediction success rates in
each condition, using (i) price only, (ii) price and all viewing times, and (iii) price
and (individual-specific) best subset of viewing times. The figure revealed that
for many subjects, including some subset of viewing time information actually
works better than including all of them. Although the method employed here is
a naïve one (simply picking the model which attains the highest success rate), we
observe the potential of improving prediction.

3.4 Discussion

A sizable amount of evidence suggests that answers to hypothetical questions are
systematically biased. Using a novel experimental design, we explored whether
visual attention that is easy to measure—attention to product images or prices—is
associated with the tendency to overstate hypothetical purchase intentions, com-
pared to real purchases (hypothetical bias). The present study showed that view-
ing times (both for product images and prices) are longer when subjects reported

16When the number of predictors is large, one can use methods such as forward- or backward-
stepwise selection (see Hastie et al., 2009).
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Figure 3.8: Empirical CDFs for prediction success rates using price only, price and all
viewing times, and price and the best subset of viewing times (individual-specific). Left
column: Experiment I; right column: Experiment II. First row: hypothetical choice; second
row: real choice; third row: surprise real choice; fourth row: surprise real switch.
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a purchase intention (i.e., a Yes response) than when they did not, but only in the
real purchase condition.

A natural hypothesis that states individuals who are looking at image (price)
longer would (would not) buy does not seem like to hold in our data. In general,
price viewing time is shorter than image viewing time, probably because a num-
ber is processed more quickly than a more complex product image. However,
we observed differences in viewing times when they answered Yes and when
they answered No in the real condition. Such differences were not present in the
hypothetical condition. The results that subjects exhibited differential patterns
of visual attention in hypothetical and real purchasing decisions complements
the previous neuroimaging results, showing that a common set of valuation cir-
cuit including areas of the orbitofrontal cortex and the ventral striatum exhibited
stronger activation in the real condition than in the hypothetical condition (Kang
et al., 2011).

We further investigated to what extent visual fixations help predicting pur-
chasing decisions. We found that adding viewing times to prices in cross-validated
linear discriminant analysis of purchase improves accuracy from 62.7% to 69.2%
for real purchases, and from 62.4% to 65.6% for surprise real purchases using
viewing times in corresponding hypothetical condition (but only when viewing
times are recorded by mousetracking). Even though these improvements are not
large in magnitude, they are highly significant, and could even be of practical im-
portance for firms forecasting consumer behavior in highly competitive markets.

One may wonder why viewing times recorded in the hypothetical condition
could improve prediction of choices in corresponding surprise real trials, even
though those same viewing times did not add much in predicting choices in the
hypothetical condition (Figures 3.4 and 3.6). Notice that although image and price
viewing times did not vary by decision in the hypothetical condition, latency ex-
hibited a significant difference when sorted by the corresponding choices in the
surprise real condition (Figure 3.5). It is likely that the predictive power came
from this information, which we could obtain only in Experiment I. Participants
spent longer on last-second thoughts in hypothetical trials in which they say No
in later surprise real trials for the same products. One explanation is that they
spent longer before making decisions since they were unsure (or indifferent) be-
tween buying and not buying, and break the tie by answering a difficult Yes to a
hypothetical question.

An important question is how our classification accuracies compare to those in
the recent studies, which also aimed at predicting consumer choice or valuation.
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Accuracies in three recent studies using cross-validated neural decoding from
fMRI signals (rather than visual attention), were 61%, 70%, and 55-60% in Levy
et al. (2011), Smith et al. (2014), and Tusche et al. (2010). Although there is clearly
substantial room for improvement, our classifications using prices and viewing
times between 65-69% are at the high end of the range of these other studies.

Mousetracking and eyetracking have been used widely in cognitive psychol-
ogy and experimental economics in order to uncover cognitive processes behind
many domains of economic decision making, including consumer choice under
time pressure (Reutskaja et al., 2011), information acquisition in complex multi-
attribute multi-alternative environment (Gabaix et al., 2006), bargaining (Camerer
et al., 1993; Johnson et al., 2002), and strategic thinking (Brocas et al., 2014a,b;
Costa-Gomes et al., 2001; Devetag et al., forthcoming; Knoepfle et al., 2009; Polo-
nio et al., 2015; Stewart et al., 2015; Wang et al., 2010). However, little is known
about the relative advantages of these two methods since most of the existing
studies used either one of the methods. The current study filled this gap, by
using two methods and comparing the results (the only exception is a study by
(Lohse and Johnson, 1996)). It is notable that the main results in our study are
basically the same using either motor-driven mouse movements to reveal infor-
mation on computer screen boxes (in Experiment I), or video-based eyetracking
(in Experiment II). The robustness of these choice patterns to how attention is
measured is encouraging for practical applications.

Mousetracking seems to be more sensitive than eyetracking, in two ways. First,
choices in surprise real decisions were better predicted with hypothetical viewing
times in the mousetracking sessions than in the eyetracking sessions (Figure 3.6).
The differences in viewing times between hypothetical and real choices are also
larger when measured by mousetracking compared to eyetracking. We speculate
that mouse movement is more effortful and deliberative than eye saccades. As
a result, there will be fewer random, low-information mouse movements com-
pared to eye saccades. If so, mouse movements are actually clearer evidence of
underlying deliberate decision processes than eye saccades are.

Our results have two implications for practice.
As noted in the introduction, the two leading methods for predicting real

choice from hypothetical reports are statistical adjustment, and using instructions
to respondents that are intended to produce more realistic reported choices. Our
method is also a kind of statistical adjustment, but it uses pre-choice cognitive
data that are easy to measure. Furthermore, unlike special instructions to respon-
dents, which require substantial internal validity and may not work well for all
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subjects and choices, measuring their visual attention is relatively effortless and
does not require special comprehension or internalization by subjects. Given the
small, but promising incremental predictive power of viewing times in predicting
real choice, a more finely-tuned version of our method using viewing times could
prove to be useful on larger scales.

Second, the fact that viewing times are associated with purchase invites the
possibility that manipulating viewing times exogenously can causally change real
purchase decisions. Indeed, previous studies have shown the presence of causal
effect of manipulation of visual fixations on preferences, on a modest scale, by
simply changing the duration of exposure to food items (Armel et al., 2008) or
face images (Shimojo et al., 2003).
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Chapter 4

Risk Taking in a Natural High-Stakes
Setting: Wagering Decisions in
Jeopardy!

4.1 Introduction

Risk preferences play a key role in the many domain of economic decision mak-
ing, including insurance selection and activity in financial markets.

Traditionally, economists have been trying to understand risk attitude using
several different empirical approaches. The first approach relies on macroeco-
nomic data on consumption and savings to estimate risk attitudes implied by
Euler equations derived from lifecycle models (Attanasio and Weber, 1989), sur-
vey data on household portfolios, or labor supply data (Chetty, 2006). In the
second approach, researchers use controlled laboratory experiments with real
monetary incentives (Camerer, 1995; Harrison and Rutström, 2008; Hey, 2014;
Starmer, 2000). This strand of literature has established that substantial hetero-
geneity in risk preferences exist (Bruhin et al., 2010; Choi et al., 2007) and de-
viations from the standard expected utility theory are evident (Camerer, 1989;
Camerer and Ho, 1994; Harless and Camerer, 1994; Hey and Orme, 1994). The
third approach, which has been growing more recently, uses field data from choice
domains that are well-structured for estimating preferences and comparing theo-
ries (see Barseghyan et al., 2015, for an extensive review). Cohen and Einav (2007)
and Barseghyan et al. (2013), for example, estimate models of choice under un-
certainty using insurance choice data. Jullien and Salanié (2000) and Chiappori
et al. (2012) use horse racing betting data to recover a representative agent’s risk
preference or heterogeneity in bettors’ preferences.

Since Gertner’s (1993) seminal work, researchers have been using data from
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TV game shows to investigate attitude towards risk. Although researchers note
potential issues on the use of special sample of participants in TV game shows
(e.g., they may participate to be in the limelight), TV game shows often provide
a good environment to test expected utility theory as well as non-expected utility
theory since they “are presented with well-defined choices where the stakes are
real and sizable, and the tasks are repeated in the same manner from contestant
to contestant” (Andersen et al., 2008b, p. 361).

Subsequent studies have examined the behavior of contestants, their risk pref-
erences in particular, using data from a variety of game shows such as Affari
Tuoi (Bombardini and Trebbi, 2012; Botti et al., 2008), Cash Cab (Bliss et al., 2012;
Keldenich and Klemm, 2014; Kelley and Lemke, 2015), Deal or No Deal (Blavatskyy
and Pogrebna, 2008; Brooks et al., 2009; de Roos and Sarafidis, 2010; Deck et al.,
2008; Mulino et al., 2009; Post et al., 2008), Hoosier Millionaire (Fullenkamp et al.,
2003), Lingo (Beetsma and Schotman, 2001), and Who Wants to be a Millionaire?
(Hartley et al., 2014).

Using data from 4,810 Jeopardy! episodes, we investigate players’ risk attitude,
strategic thinking, and gender differences in players’ behavior. Jeopardy! is one
of the most popular TV games shows in the United States, which has more than
thirty years of history. The final round of the game, which we explain in de-
tail in Section 4.2, involves features of both risk taking and strategic interaction.
Some of the analyses reported in this study follow the approach taken in Metrick
(1995), who analyzes wagering behavior in the final round and finds that the rep-
resentative player is risk neutral and that players do not appear to play empirical
best responses. We depart from Metrick (1995) by quantifying players’ subjective
beliefs, which is made possible by richer nature of our dataset as well as recent
advances in machine learning techniques.

We obtain the following set of observations. First, unlike Metrick (1995), we
find that the representative player is risk averse under the assumption of expected
utility and constant absolute risk aversion (CARA) in the situation where leading
players do not need to take into account other players’ strategies. Second, in
strategic situations, trailing players tend to wager more than what “folk” strate-
gies suggest, which are thought to be well known among the community of Jeop-
ardy! contestants and fans, while the majority of leading players follow those folk
strategies. We also show that trailing players’ overbetting is based on their subjec-
tive beliefs while leading players’ obedience to folk strategies is rather mechanical
and not related with their subjective beliefs. Third, we look at gender differences
in risk taking and find that female players are in general more risk averse than
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male contestants, confirming a pattern repeatedly observed in the laboratory and
field.

The current study contributes to two strands of literature. First, we use a
machine learning techniques, such as Least Absolute Shrinkage and Selection
Operator (LASSO; Hastie et al., 2009) and cross-validation, to quantify players’
subjective beliefs. It is a methodological advance in the literature on estimating
risk preferences using the field data, particularly the data from TV game shows,
in which researchers usually do not have access to individuals’ subjective beliefs.
We confirm the usefulness of the machine learning approach from two observa-
tions: (i) we obtain a well-calibrated measure of subjective beliefs (Figure 4.2), and
(ii) we obtain precise estimates of the coefficients of absolute risk aversion using
the measure of subjective beliefs in standard econometric estimation (Table 4.8).
Second, we demonstrate that gender difference in risk taking behavior are context
dependent in the TV game show under study. A voluminous empirical evidence
in economics suggest that women are more risk averse than men (Byrnes et al.,
1999; Charness and Gneezy, 2012; Croson and Gneezy, 2009; Eckel and Gross-
man, 2002, 2008; Fehr-Duda et al., 2010). We first confirm that female players are
indeed more risk averse than male players in a series of analyses. On top of this,
we find that male players in female-dominant groups take less risk compared to
those in male-dominant groups. Female players, on the other hand, do not exhibit
the gender-context effect.

The remainder of this chapter is organized as follows. Section 4.2 describes the
basic rules of Jeopardy! and our dataset. Section 4.3 presents several descriptive
statistics of our dataset. Section 4.4 revisits Metrick’s (1995) analyses to examine if
one of his main findings (risk neutrality of the representative player) holds in our
bigger dataset. In Section 4.5 we quantify players’ subjective beliefs about their
chances of answering correctly in the final round. In order to do this, we first
assemble a rich set of features which captures several aspects of game dynamics
and then select “meaningful” subset using LASSO. We then estimate a representa-
tive player’s risk preferences with these quantified subjective beliefs together with
two-limit Tobit approach. In Section 4.6 we turn to strategic situations and look
into the top two players’ behavior with several “folk” strategies as benchmarks.
Finally, in Section 4.7 we look into gender differences.
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4.2 Description of Jeopardy! and Data

4.2.1 Rules of the Game

Jeopardy! is one of the most popular TV quiz shows in the United States. The show
is “ranked number 45 on TV Guide’s list of the 60 greatest American television
programs of all time” (Cohen, 2015). It debuted on 1964 and the current version
of the show started on September 10, 1984 and is still on the air. In the show
three contestants compete by answering questions in various general knowledge
categories.

The game consists of three stages. In each of the first two stages, called the
Jeopardy! round and the Double Jeopardy! round, a panel of 30 clues is presented.
There are six categories and each of them has five clues, which are valued incre-
mentally reflecting the difficulty of the question. The clue values in the Jeopardy!
round originally ranged from $100 to $500 in $100 increments, and values are
twice as large in the Double Jropardy! as the name suggests. Those panel val-
ues were doubled after November 26, 2001, implying that panel values ranged
between $200 to $1,000 in the Jeopardy! round and $400 to $2,000 in the Double
Jeopardy! round. 1 After a contestant picks a panel, the clue is revealed and read by
the host. Then, the first contestant who rings in must provide a response. Differ-
ently from other quiz shows, in Jeopardy!, contestants must phrase their answers
in the form of questions. A correct response adds the clue value to her/his score,
while an incorrect response subtracts it. The contestant who responds correctly
can select the next clue from the panel. One clue in the Jeopardy! round and two
clues in the Double Jeopardy! round are called Daily Doubles. Only the contestant
who selects a Daily Double panel has an opportunity to respond. The contestant
first decides how much to bet (the minimum amount is $5 and the maximum is
the bigger one of her/his current score and the highest dollar clue in the round)
and then provides a response. At the end of the second stage, any contestants
whose scores are nonpositive are eliminated from the game.

The final stage of the game is called the Final Jeopardy!. After the host an-
nounces the category, each contestant decides how much to bet between $0 and
her/his total score. The clue is then revealed and contestants are given 30 seconds
to write down their responses. Contestants who respond correctly earn their bets.

The contestant who earns the most wins the game and returns as the champion
in the next match. If two or more contestants tie for first place, they return on the

1We investigate how players responded to this one-time structural change in Section C.1.
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Table 4.1: Number of archived games in each year.

Year # games Year # games Year # games Year # games

1984 26 1992 48 2000 230 2008 232
1985 27 1993 57 2001 218 2009 226
1986 46 1994 25 2002 144 2010 231
1987 58 1995 31 2003 174 2011 224
1988 80 1996 100 2004 230 2012 231
1989 81 1997 225 2005 225 2013 231
1990 92 1998 224 2006 230 2014 231
1991 38 1999 230 2007 231 2015 152

Notes: Last access to the archive is on August 31, 2015, before the start of new season 32.

next match as co-champions. However, if all three contestants have a final score
of $0, there is no winner and none of the contestants return on the next game.
Originally, a contestant who won five consecutive days “retired” undefeated but
this limit was eliminated after September 8, 2003.

4.2.2 Source and Description of the Dataset

We obtain the data from the website J! Archive, which is created and managed
by former contestants (including Kenneth Jennings, who has the record winning
streak of 74 games) and fans of the show. 2 The archive contains clues, answers,
contestants who answered correctly and so on. The data is rich enough to recon-
struct the dynamics of the game.

The website archives more than 4,800 games from the beginning of the show
in 1984. Table 4.1 presents number of archived games aired in each year. The
website does not provide a complete list of games broadcasted so far. In fact,
many of the games before 1995 are missing, while after 1996, most of the games
are archived.

In the dataset, there are nine games which involve four contestants (quarter-
final games of Super Jeopardy! tournament). 3 The final sample includes 4,810
games which consist of 1,813 games before November 25, 2001 and 2,997 games

2http://j-archive.com/.
3In 13 games we observe situations in which a contestant finishing the Double Jeopardy! round

with a zero or negative score was granted a nominal score of $1,000 with which to wager for
the final round. This is a special rule in Celebrity Jeopardy! games. We exclude those games and
two additional (“pilot”) games before the official start of the first season on September 10, 1984.
We also exclude three “IBM Challenge Games” on February 14 to 16, 2011, in which Watson, an
artificial intelligent computer system developed by IBM, participated as one of the contestants.

http://j-archive.com/
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after November 26 of the same year, when panel values were doubled.
We obtain demographic information regarding contestants. The J! Archive

website describes each contestant’s occupation (e.g., a college student, a realtor,
a software engineer) and which city she or he is from. The website does not list
each contestant’s gender, but we recover that information using an API provided
by Genderize.io. 4 The API judges gender of a first name. It cannot determine
gender for 155 (7.9%) of 1,964 distinct names appearing in our dataset, but returns
higher than 95% confidence for 1,403 (77.6%) of the remaining 1,809 names. We
manually check gender of contestants for the ambiguous ones, with confidence
lower than 90%, by looking up their pictures posted on the player profile pages
on J! Archive. When we use players’ gender in our analyses, we restrict samples
to a subset of players whose gender is identified by the API with more than 90%
confidence or those whose gender is identified manually.

4.3 Preliminary Analyses

4.3.1 Setup and Notations

We use the notation of Metrick (1995). Three players begin the Final Jeopardy!
round with scores earned during the previous two rounds. We rank these players
by their scores and denote them as the endowment vector X = (x1, x2, x3) ∈ R3

+

such that x1 ≥ x2 ≥ x3. Let Y = (y1, y2, y3) ∈×3
i=1[0, xi] be the vector of bets that

satisfies yi ∈ [0, xi] for all i ∈ {1, 2, 3}. Finally, let A = (a1, a2, a3) ∈ {0, 1}3 be the
vector of states that represents the correct (ai = 1) or incorrect (ai = 0) answer for
each player i.

4.3.2 Descriptive Statistics

As we described in the previous section, players can proceed to the Final Jeopardy!
round if the total score earned in the first two rounds is positive (except for some
special cases such as the Celebrity Jeopardy! games). Our dataset contains four
games in which only one player made it to the final, 258 games in which two
players made it to the final, and the remaining 4,548 games in which all three
players proceeded to the final round. Three players were strictly ordered (x1 >

x2 > x3) in 4,692 games, two players were tied at second place (x1 > x2 = x3) in

4https://genderize.io.

https://genderize.io
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Table 4.2: Frequency of the states for three-players (left) and two-players finals (right).

State Number of Frequency
(a1, a2, a3) observations f (a1, a2, a3)

(1, 1, 1) 899.0 0.198
(1, 1, 0) 506.5 0.111
(1, 0, 1) 424.0 0.093
(1, 0, 0) 545.5 0.120
(0, 1, 1) 373.5 0.082
(0, 1, 0) 496.5 0.109
(0, 0, 1) 393.0 0.086
(0, 0, 0) 910.0 0.200

Total 4548.0 1.000

State Number of Frequency
(a1, a2) observations f (a1, a2)

(1, 1) 80.0 0.310
(1, 0) 67.5 0.262
(0, 1) 36.5 0.141
(0, 0) 74.0 0.287

Total 258.0 1.000

Notes: A “1” indicates a correct answer for that player. Thus, all three players answered
correctly in f (1, 1, 1) = 0.198 of the games. Fractional observations are due to some ties
at the beginning of the final round. Observations from tied games are split between the
two possible definitions for the state.

71 games, two players were tied at first place (x1 = x2 > x3) in 46 games, and all
three players were tied (x1 = x2 = x3) in one game.

For those 4,548 games with three players in the final round, the number of
outcomes and their frequencies of each state A are presented in the left panel of
Table 4.2. The right panel of Table 4.2 presents the same statistics for 258 games
involving only two contestants. Finally, Table 4.3 presents the ranking of the
player before and after the final round. More than 70% of leading players ended
up being the champion, but other players also had chances: about 26% of the
champions were at 2nd or 3rd place before starting the final round.

The total of 14,164 players made their bets and responded to the question in the
final round. Here the returning champions are counted as different individuals
in each game. Their answers were roughly equally split into correct (49.5%) and
incorrect (50.5%) responses. The probability of correct responses for each rank of
players is presented in Table 4.4. Player 1 has a higher probability of answering
correctly than chance level (one-sided binomial test, p < 0.001) while player 3 has
a lower probability than chance (one-sided binomial test, p < 0.001).

The left panel of Figure 4.1 shows the distribution of bet amount (bin size
is $100). We observe several spikes at round numbers (every $1,000), possibly
reflecting saliency or focality of those bets. Note, however, that players’ scores,
xi, themselves cluster at those round numbers by design of the game and hence
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Table 4.3: Ranking before and after the final round.

After FJ

Before FJ 1st 2nd 3rd Total

1st 3,585 837 436 4,858
2nd 1,010 2,767 1053 4,834
3rd 273 1,323 3,142 4,738

Total 4,868 4,927 4,635 14,430
Notes: This table include 266 players eliminated from the final round (negative scores).
Numbers in “Total” columns can exceed the total number of games (4,810) due to ties.

Table 4.4: Outcome of the Final Jeopardy!.

Correct Incorrect

# obs. Freq # obs. Freq

Player 1 2,549 0.525 2,309 0.475
Player 2 2,407 0.499 2,423 0.501
Player 3 2,050 0.458 2,426 0.542

Total 7,006 0.495 7,158 0.505

the existence of spikes does not immediately imply that players were “left-digit
biased” (Lacetera et al., 2012). The right panel of Figure 4.1 displays bet share (bet
amount divided by endowment) for each player separately. Players 2 and 3 chose
to bet all that they had much more frequently than player 1, who rarely did so.

There are 4,716 games in which all three contestants’ genders are identified
with confidence higher than 95%. Gender compositions for those games are as
follows: (i) three male contestants in 492 (10.4%) games, (ii) two male contestants
and one female contestant in 2,823 (59.9%) games, (iii) one male contestant and
two female contestants in 1,301 (27.6%) games, and (iv) three female contestants
in 100 (2.1%) games.

4.4 Metrick (1995) Revisited

The wager-decision problem players face in the Final Jeopardy! round is inher-
ently a very complex one. 5 A player must take into account not only her own

5Nalebuff (1990) lists Final Jeopardy! wagering as one of the puzzles and asks “What advice can
economists offer?” His reply to the question is one sentence: “I don’t know.”
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Figure 4.1: (Left panel) Distribution of wagers. (Right panel) Empirical CDFs for bet as
share of the endowment for each player separately.

subjective belief about getting the right answer and her tolerance to risk but also
her estimates of other players’ beliefs and betting strategies. In certain situations,
however, all of these strategic complications go away. In this section we analyze
behavior in these simplified situations following Metrick’s (1995) procedure to ex-
amine whether his main result (risk neutrality of the representative player) holds
in our bigger dataset.

A game is called “runaway” if x1 ≥ 2x2, i.e., player 1’s score is so far ahead
of player 2’s that player 1 is (almost) guaranteed to win. In this type of games,
the maximum score player 2 could obtain is 2x2 (by betting x2 and answering
correctly). Therefore, player 1 is guaranteed to win by betting any amount y1 ∈
[0, x1− 2x2] irrespective of the outcome of her response. There are 1,269 games of
this type in our dataset. Player 1’s wagering is summarized in Table 4.5. About
95% of bets fall into the range y1 ∈ [0, x1 − 2x2], and 84.6% of those decisions
(1,038 out of 1,227) are in the strict interior of the range. There are 34 situations
in which player 1’s score is exactly twice as large as player 2’s. In 79.4% of those
games player 1 chose y1 = 0 to secure a win or tie.

Metrick (1995) estimated the “representative” player’s risk preferences in the
following manner. Player 1’s decision problem is modeled as an expected utility
maximization:

max
y1

p ·U(x1 + y1 + WU) + (1− p) ·U(x1 − y1 + WU)

s.t. 0 ≤ y1 ≤ x1 − 2x2,
(4.1)

where p is her subjective probability of responding correctly and WU is her cer-
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Table 4.5: Player 1’s wagering in “runaway” games.

Outcome

Bet amount # obs. Freq Correct Incorrect

y1 = 0 162 0.128 87 75
0 < y1 < x1 − 2x2 − 1 927 0.730 516 411
y1 = x1 − 2x2 − 1 111 0.087 69 42
y1 = x1 − 2x2 27 0.021 17 10
x1 − 2x2 < y1 < x1 37 0.029 22 15
y1 = x1 5 0.004 3 2

Total 1,269 1.000 714 555

tainty equivalent of the wealth W for utility function U (here, W is a random
variable representing the value of their future winnings for a first-time cham-
pion). Assuming a utility function with constant absolute risk aversion (CARA)
specification U(w) = 1− exp(−αw) and an interior choice, the solution to the
above problem (4.1) is

y∗1 =
1

2α
ln
(

p
1− p

)
. (4.2)

Since subjective probability p is unobservable (in his dataset), Metrick (1995) es-
timates risk preference of the “representative” player: the value of α that is most
likely to result in the observed sample of bets (y1) and frequencies of correct and
incorrect responses (a1). Rewriting the above equation, we obtain

p =
exp(2αy1)

1 + exp(2αy1)
. (4.3)

He applies maximum-likelihood estimation with a1 as the dependent and y1 as the
independent variable and then solves for α. Using 104 uncensored observations,
Metrick (1995) reports that the point estimate for α is 6.6× 10−5 with a standard
error of 5.6 × 10−5. The null hypothesis that the representative player is risk-
neutral is not rejected.

Applying the same method to our 1,038 interior (i.e., 0 < y1 < x1 − 2x2) bets
and their associated outcomes, we estimate the same logit model with a1 as the
dependent and y1 as the independent variable. The point estimate is α̂ = 1.93×
10−5 with a much smaller standard error of 9.41× 10−6. The null hypothesis of
risk-neutrality is rejected at a 5% significance level (p = 0.041). The model implies
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Table 4.6: Estimation of CARA utility function with logit specification.

All Before After

α 1.93× 10−5∗ 2.42× 10−5 1.83× 10−5†

(9.41× 10−6) (2.45× 10−5) (1.05× 10−5)

Constant 1.36× 10−1 1.11× 10−1 1.45× 10−1

(8.50× 10−2) (1.45× 10−1) (1.10× 10−1)

# Obs. 1,038 390 648
Pseudo R2 0.0031 0.0018 0.0036

CC (0/101) 1.000 1.000 1.000
CC (0/102) 1.000 0.999 1.000
CC (0/103) 0.995 0.994 0.995
CC (0/104) 0.952 0.940 0.954
CC (0/105) 0.578 0.502 0.595
CC (0/106) 0.072 0.057 0.076

Notes. The table displays the estimation results using whole sample (column 1), sub-
sample before November 25, 2001 (column 2), and subsample after November 26, 2001
(column 3). Standard errors are in parentheses. The implied certainty coefficient (CC;
certainty equivalent as a fraction of the expected value) is shown for 50/50 gambles of $0
or $10z, z = 1, . . . , 6. ∗∗∗: p < 0.001, ∗∗: p < 0.01, ∗: p < 0.05, †: p < 0.1.

that there is no intercept term in equation (4.3). The estimation result does not
contradict this implication: the estimated intercept term is 0.136 with a standard
error of 0.085 (p = 0.109).

Since the panel values were doubled after November 26, 2001, we estimate
the model for each subsample before and after the panel values were doubled,
and obtain results presented in the right two columns in Table 4.6. The estimated
α̂ is in the direction of risk aversion but insignificant before panel values were
doubled, and it is marginally significant at 10% level after panel values were
doubled. The difference is statistically insignificant (χ2 test p = 0.8285).

Following Post et al. (2008), we also calculate the implied certainty coefficient,
which is the certainty equivalent as a fraction of the expected value, for 50/50
gambles of $0 or $10z for z = 1, . . . , 6. These values illustrate the shape of the
estimated utility function: it exhibits risk neutrality when CC = 1 and risk aver-
sion when CC < 1. The values of CC’s are similar to those reported in Post et al.
(2008), although they estimated the flexible expo-power family of utility functions
which nests CARA and CRRA as special cases.
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4.5 Estimating the Representative Player’s Risk Pref-
erences

Metrick’s (1995) approach described in Section 4.4 relies on the assumption that
actual outcomes provide a reasonable approximation of players’ beliefs about
whether they respond correctly or not. Hausman et al. (1998), however, show
that misclassification of the left hand side variable results in an attenuated esti-
mate in probit or logit specification. In our context, misclassification occurs when
a player answers correctly when she is not expected to do so, or vice versa. In
this section, we aim to improve the estimation result by incorporating subjective
beliefs quantified by machine learning techniques.

4.5.1 Quantifying Subjective Beliefs

The website J! Archive records a detailed game information including the number
of correct and incorrect responses from players, values of panels to which players
answer correctly, and who gets Daily Doubles on panels, and so on.

Using those observables characteristics, we aim to quantify each player’s sub-
jective belief about answering the Final Jeopardy! question correctly. It is not a
trivial task since we do not have structural knowledge regarding the relationship
between those observable contents and unobservable subjective beliefs.

We approach this problem by considering a large number of candidate observ-
able features in search of a potentially small set that is predictive, using cross-
validation to control for overfitting (Arlot and Celisse, 2010; Geisser, 1975; Hastie
et al., 2009; Stone, 1974). Cross-validation avoids overfitting because the training
sample is independent from the test sample, as described below. The similar ma-
chine learning approach has been used in many applications in computer science
and neuroscience, and a few in economics (Bajari et al., 2015; Belloni et al., 2012,
2014; Bernheim et al., 2015; Camerer et al., 2014; Einav and Levin, 2014; Krajbich
et al., 2009; Smith et al., 2014; Varian, 2014).

For each player i = 1, . . . , N in the Final Jeopardy! round from the entire dataset,
let Di denote a vector of m observable features (e.g., score, number of correct
responses, and so on). We model player i’s probability of answering correctly
ai = 1 with a logistic form:

pi = Pr[ai = 1|Di] =
exp(β0 + β

′Di)

1 + exp(β0 + β′Di)
,



83

Table 4.7: The set of features used for LASSO.

# Feature

1 Score at the end of the Double Jeopardy! round
2 Score at the end of the Double Jeopardy! round (inflation adjusted)
3 Maximum score during the first two round
4 Number of correct responses (including Daily Doubles)
5 Number of incorrect responses (including Daily Doubles)
6 Percent correct responses (including Daily Doubles)
7 Dummy for the 1st place
8 Dummy for the 2nd place

9-18 Number of correct responses (other than Daily Doubles) for each of the 10 panel values
19-28 Number of incorrect responses (other than Daily Doubles) for each of the 10 panel values
29-38 Squared number of correct responses (other than Daily Doubles) for each of the 10 panel values
39-48 Squared number of incorrect responses (other than Daily Doubles) for each of the 10 panel values

where β = (β1, . . . , βm). We chose 48 observable features recorded during the
entire game. See Table 4.7 for the list. We choose not to include the actual wager
amount or the share of wagering amount with respect to the endowment inten-
tionally, since our primary motivation in this exercise is to quantify subjective
beliefs at the beginning of the Final Jeopardy! round but before deciding how
much to wager.

Our objective in this exercise is out-of-sample prediction (and not causal infer-
ence or coefficient estimation). We thus employ cross-validation for model assess-
ment and model selection. In particular, we randomly split the entire dataset into
10 approximately equal-sized groups. For each of those 10 “holdout” samples, we
train a model to classify players into correct responses and incorrect responses,
using the remaining 90% of the dataset (called the “training” samples). We esti-
mate a logistic regression with a Least Absolute Shrinkage and Selection Operator
(LASSO). We maximize penalized log-likelihood function

1
N

N

∑
i=1

{
ai log(pi) + (1− ai) log(1− pi)

}
− λ‖β‖1,

where ‖β‖1 denotes the L1 norm on β, i.e., ‖β‖1 = ∑m
j=1 |β j|. Note that pi depends

on β0 but this term is not penalized in the LASSO specification. By applying
these trained models, we then conduct out-of-sample classification of the binary
outcomes for each of the 10 holdout samples. In the context of binary models,
Cramer (1999) proposes identifying an alternative as the predicted outcome if
its predictive probability exceeds its baseline frequency in the population. We
classify a response as “correct” if the predicted probability is above the (rank-
specific) empirical frequency of correct responses, and “incorrect” otherwise (see
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Table 4.4).
The value of λ is determined through cross-validation. We first partition

the training samples into ten approximately equal-sized subsets indexed k =

1, . . . , 10. We call each subset a “fold.” For each k, we estimate penalized re-
gression given above for each possible value of λ in a pre-specified grid, using
only data from the remaining k− 1 folds. We use the estimated model to predict
outcomes for the left-out fold, and compute accuracy of the predictions by com-
paring them to the actual outcomes. The value of λ with the highest successful
prediction rates across all of the folds, λ∗, is then used to estimate the model with
all of the observations in the training sample. We obtain a predicted probability
of correct response (which we equate with the player’s subjective belief) of the
test sample using the estimated model.

The left panel of Figure 4.2 shows the kernel density estimation of predicted
subjective beliefs for each rank of players. The mode of distribution is 0.516 for
player 1, 0.490 for player 2, and 0.453 for player 3. Those values are close to ac-
tual empirical frequency of correct responses (Table 4.4). This closeness is not
completely guaranteed by the LASSO method, but indicates that the predicted
values correspond to the overall empirical frequencies and that overfitting is min-
imal. The right panel of Figure 4.2 shows the relationship between predicted
probabilities of answering correctly and average probabilities of actually answer-
ing correctly (called a calibration curve). In order to generate this plot, we first
split predicted probabilities of correct answers in deciles. We then calculate actual
probabilities of correct answers within each decile part. The plot suggests that our
prediction model is reasonably well-calibrated.

Which subset of features does LASSO select (i.e., β j 6= 0)? We find that, from
the main features, (i) inflation adjusted score, (ii) number of correct responses,
(iii) number of incorrect responses, and (iv) a dummy for the first player are the
important ones. Several of the numbers of correct/incorrect responses for each
position of panel and squared numbers of them also kick in the model, but the
interpretation is unclear.
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Figure 4.2: (Left) Kernel density estimation of subjective beliefs for each player. Stars
indicate the modes of the distributions. (Right) Relationship between predicted probabil-
ities of answering correctly and actual probabilities of answering correctly.

4.5.2 Estimation

As in Metrick (1995), we assume that player 1’s decision problem is modeled as
an expected utility maximization:

max
y1

p ·U(x1 + y1 + WU) + (1− p) ·U(x1 − y1 + WU)

s.t. 0 ≤ y1 ≤ x1 − 2x2,
(4.4)

where p is her subjective probability of responding correctly and WU is her cer-
tainty equivalent of the wealth W for utility function U. We again assume a CARA
utility function U(w) = 1− exp(−αw). We are thus able to ignore the wealth term
WU. Rearranging the optimality condition yields

y∗1 =
1

2α
ln
(

p
1− p

)
.

Assuming an additive error, this functional form can be estimated at the aggre-
gate level. An issue to consider is the potential of corner solutions. Following
Andreoni and Sprenger (2012a) and Augenblick et al. (2015), who estimate dis-
count factor and present-bias parameter in the presence of corner choices, we
provide estimates from two-limit Tobit regression. This technique is applicable
to the case that the tangency condition does not hold with equality (Wooldridge,
2002). In the two-limit Tobit specification, we define a latent variable ỹ1 as be-
ing equal to the theoretically predicted wager for some utility function plus an
error term. We then assume that we observe y1 = 0 if ỹ1 ≤ 0, y1 = 2x2 − x1 if
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Table 4.8: Estimation of CARA utility function with two-limit Tobit specification.

All Before After

α 5.81× 10−5∗∗∗ 7.90× 10−5∗∗∗ 5.28× 10−5∗∗∗

(1.97× 10−6) (4.56× 10−6) (2.19× 10−6)

# Obs. 1,200 450 750
Log-likelihood −10073.72 −3625.92 −6375.77

CC (0/101) 1.000 1.000 1.000
CC (0/102) 0.999 0.998 0.999
CC (0/103) 0.986 0.980 0.987
CC (0/104) 0.857 0.807 0.870
CC (0/105) 0.238 0.175 0.261
CC (0/106) 0.024 0.018 0.026

Notes. The table displays the estimation results using whole sample (column 1), sub-
sample before November 25, 2001 (column 2), and subsample after November 26, 2001
(column 3). Standard errors are in parentheses. The implied certainty coefficient (CC;
certainty equivalent as a fraction of the expected value) is shown for 50/50 gambles of $0
or $10z, z = 1, . . . , 6. ∗∗∗: p < 0.001, ∗∗: p < 0.01, ∗: p < 0.05.

ỹ1 ≥ 2x2 − x1, and y1 = ỹ1 otherwise. 6

The estimation results are presented in Table 4.8. Unlike previous analysis
based on Metrick’s (1995) approach, here we found strong, precise evidence of
risk aversion.

In order to assess economic significance of estimated coefficients of absolute
risk aversion, we compare our results with estimates obtained in the literature
(see Barseghyan et al., 2015, for details in estimation methods). Looking at risk
aversion in other TV game shows, Gertner (1993), using two different meth-
ods, obtains statistically significant lower bounds on risk aversion 3.1× 10−4 and
7.11× 10−5, Beetsma and Schotman (2001) obtain much higher risk aversion of
0.12, Fullenkamp et al. (2003) obtain mean estimates ranging from 4.8× 10−6 to
9.7× 10−6, Post et al. (2008) obtain 1.58× 10−5, and de Roos and Sarafidis (2010)
obtain the average lower bound of 7.81× 10−5 for dynamically consistent play-
ers. 7 In the context of insurance (either auto or health) choices, Cohen and Einav
(2007) obtain a median coefficient of 3.4× 10−5, Handel (2013) obtains estimates
ranging from 1.9× 10−4 to 3.3× 10−4, and Einav et al. (2013) obtain an average

6In this formulation, negative latent variable means a player is unconfident and would prefer
to bet against himself/herself.

7Post et al. (2008) estimate a flexible expo-power utility function which has CARA as a special
case, but coefficients for the German edition of Deal or No Deal reduces to CARA.
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coefficient of 1.9× 10−3. Those estimates are the order of magnitude smaller than
those estimated from lottery choice experiments. For example, Choi et al. (2007)
obtain a median estimate of 0.029, Holt and Laury (2002) have 0.032, and von
Gaudecker et al. (2011) obtain 0.018 from a laboratory experiment and 0.032 from
an online survey. 8

Taken together, the magnitude of absolute risk aversion estimated in the cur-
rent study is consistent with those find in the field settings including other TV
game shows and insurance choices, but they are much closer to risk-neutral com-
pared to typical utility function estimated from lottery choice experiments.

4.6 Folk Wagering Strategies in Non-Runaway Games

A game is called “non-runaway” if x1 < 2x2, i.e., player 1’s lead is not large
enough to guarantee her a victory. In this type of games, players need to take into
account how much other players would wager. Instead of trying to fully char-
acterize equilibrium behavior, we investigate players’ behavior in those strategic
situations by comparing players’ wager decisions with several “folk” strategies,
which are known to the community of Jeopardy! contestants and fans.

There exist several well-known “rules of thumb” for deciding how much to
wager in non-runaway situations in the community of Jeopardy! contestants and
fans. The J! Archive website, the main source of our data, has a section called
“wager calculation” which lists a suggestion on how much each player should
wager to win the game.

Those wager suggestions, which we call folk strategies, depend on which subin-
tervals of (0, 1) the ratio of scores x2/x1 falls into. In other words, the suggestions
depend on the number m ∈ N at which

x2

x1
∈
(

m
m + 1

,
m + 1
m + 2

]
.

In the community of Jeopardy! fans, the threshold ratio (m + 1)/(m + 2) is known
as a “break point” and the game situation is called “two-thirds for first place” if
m = 2, “three-quarters for first place” if m = 3, and “four-fifth for first place” if
m ≥ 4.

There is one simple folk strategy for player 1, which is known as “Boyd’s rule”

8Since Holt and Laury (2002) do not report a comparable estimate, we take the value reported
in Cohen and Einav (2007) who re-estimate risk aversion using Holt and Laury’s (2002) “×90”
treatment data.
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and is applied to every situation except for some very special cases. Under this
rule, player 1 is suggested to wager to cover a doubled score by player 2, i.e.,
wager y1 = 2x2 − x1 or $1 more of that. This corresponds exactly to the “shutout
bet” in Metrick’s (1995) terminology. For player 2, folk strategies depend on the
threshold number m ∈ N but folk strategies can be expressed as intervals of the
form [wm

2 , w̄m
2 ]. When m = 1, it is suggested that player 2 should wager everything

(i.e., y2 = x2). When m = 2, it is suggested that player 2 should wager between
w2

2 = 0 and w̄2
2 = 3x2 − 2x1. When m = 3, it is suggested that player 2 should

wager between w3
2 = x1 − x2 and w̄3

2 = 3x2 − 2x1. When m ≥ 4, it is suggested
that player 2 should wager between w4

2 = 2(x1 − x2) and w̄4
2 = 3x2 − 2x1.

Notice that the value of common upper bound 3x2 − 2x1 comes from the fact
that player 1’s final score would become 2x1 − 2x2 if she wagered y1 = 2x2 − x1

and her answer was incorrect. Player 2’s wager y2 ≤ 3x2 − 2x1 guarantees her
final score being at least this amount even if her answer was incorrect.

The main objective of the analysis in this section is how often each player obeys
those suggested folk strategies. Tables 4.9 and 4.10 present frequencies of wagers
falling into each category for each value of m ∈ {1, 2, 3, 4}. First, the majority
of player 1 chose to wager more than 2x2 − x1 to achieve a higher score than
player 2’s maximum possible score. However, many of those bets are within $100
from the threshold. Player 1 rarely bet $0, and the frequency of the bet somewhere
between $0 and 2x2− x1 increases as m becomes large (i.e., the difference between
player 1’s score and player2’s score shrinks).

In contrast with player 1’s general tendency to obey the folk strategy, player
2’s bets fall outside the suggested ranges quite often (Table 4.10). Except for the
case of m = 1, where “bet everything” (i.e., y2 = x2) is the suggested strategy,
player 2 tends to overbet.

We then ask which subset of player 2 chose to obey folk strategies and who
chose to overbet and which subset of player 1 chose to bet the amount that is
sufficient to cover player 2’s maximum possible score and who chose to bet more
aggressively. It is reasonable to hypothesize that players base their decisions on
their subjective beliefs. The general regression framework to capture this effect
can be written as

Pr[ξi = 1|Zi] = G(Zi, β),

where ξi is an indicator variable that takes on the value 1 if the i-th observation
of player 2 chooses y2 ∈ (w̄m

2 , x2] and 0 if y2 ∈ [wm
2 , w̄m

2 ] for m ≥ 2 (we thus
drop observations where player 2 chose to underbet) for the case of player 2,
and similarly, takes on the value 1 if the i-th observation of player 1 chooses
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Table 4.9: Frequencies of player 1’s wager categories.

m = 1 m = 2 m = 3 m ≥ 4

y1 = 0 0.012 0.018 0.013 0.009
y1 ∈ (0, 2x2 − x1) 0.051 0.125 0.139 0.198
y1 = 2x2 − x1 0.060 0.049 0.040 0.045
y1 ∈ (2x2 − x1, 2x2 − x1 + 100] 0.600 0.584 0.613 0.531
y1 > 2x2 − x1 + 100 0.278 0.225 0.195 0.216

N 1,004 570 375 1,495
Note: Italicized numbers represent the frequencies with which observed wagers match
folk strategies suggestions.

Table 4.10: Frequencies of player 2’s wager categories.

m = 1 m = 2 m = 3 m ≥ 4

y2 ∈ [0, wm
2 ) – – 0.120 0.199

y2 ∈ [wm
2 , w̄m

2 ] 0.014 0.156 0.245 0.363
y2 ∈ (w̄m

2 , x2) 0.736 0.675 0.488 0.280
y2 = x2 0.250 0.168 0.147 0.157

N 1,004 570 375 1,495
Notes: For m = 1, we define w1

2 = w̄1
2 = 0. Italicized numbers represent the frequencies

with which observed wagers match folk strategies suggestions.

y1 ∈ [2x2 − x1, 2x2 − x1 + 100] and 0 if y1 ∈ (2x2 − x1 + 100, x1] for m ≥ 2 (similar
remark applies). The vector Zi comprises a set of variables including Score xi, Diff
x1− x2, and a dummy variable Male. Since we are primarily interested in whether
estimated subjective beliefs can rationalize their wagering decisions, we include
Belief as well as Belief 2 to capture potential nonlinear effect. We choose a logit
specification for the function G.

Table 4.11 presents result from a series of logistic regressions. In specifica-
tion (2), the coefficient on Belief is negative and significant, and the coefficient on
Belief 2 is positive and significant. Those two coefficients are close in magnitude
(the absolute values are not significantly different each other, p = 0.657). Those
observations imply that the relationship between probability of overbetting and
subjective belief is U-shape with the reflection point around 0.5. In other words,
players who are more “confident,” in both positive and negative directions, tend
to wager more than what folk strategies suggest. Columns (4) to (6) indicate that
the model does not fit player 1’s behavior well. The coefficients on Belief and
Belief 2 suggest U-shaper relationship but neither of them are significant. Further-
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Table 4.11: Estimation result.

Player 2 Player 1

(1) (2) (3) (4) (5) (6)

Belief −18.80 −65.52∗ −70.46∗ −17.21 −23.11 −21.54
(29.22) (31.69) (31.82) (21.75) (21.60) (22.05)

Belief 2 12.28 63.72∗ 67.94∗ 16.58 23.65 22.44
(28.10) (30.54) (30.64) (21.42) (21.29) (21.70)

Belief−i 28.00 −21.79
(21.23) (27.58)

Belief 2
−i −25.68 17.53

(21.09) (26.77)

Score (K) −0.132∗∗∗ −0.136∗∗∗ −0.003 0.005
(0.015) (0.016) (0.014) (0.016)

Diff (K) 0.491∗∗∗ 0.479∗∗∗ −0.068 −0.059
(0.040) (0.041) (0.036) (0.045)

Male −0.030 −0.032 0.143 0.143
(0.104) (0.104) (0.110) (0.111)

Constant 7.045 17.79 11.73 5.493 6.746 12.68
(7.576) (8.198) (9.285) (5.508) (5.472) (8.619)

N 1,983 1,983 1,983 1,987 1,987 1,987
Pseudo R2 0.009 0.096 0.097 0.000 0.003 0.005

Notes: For player 2, the dependent variable is a dummy that takes 1 if y2 ∈ (w̄m
2 , x2]

and 0 if y2 ∈ [wm
2 , w̄m

2 ]. For player 1, the dependent variable is a dummy that takes 1 if
y1 ∈ [2x2 − x1, 2x2 − x1 + 100] and 0 if y1 ∈ (2x2 − x1 + 100, x1]. Only observations in
m ≥ 2 are included. Robust standard errors are in parentheses. Stars indicate significance
level. ∗∗∗: p < 0.001, ∗∗: p < 0.01, ∗: p < 0.05.

more, we do not observe any effect of own score nor score difference.
Those results, taken together, imply that player 2’s wagering decisions are in

part based on their subjective beliefs, while player 1’s are not. It might be the case
that player 1 tends to choose some amount close to 2x2 − x1 mechanically, rather
than deliberately think about her own chance of answering correctly.

4.7 Gender Differences

In this section, we analyze whether or not gender differences in risk-taking are
observed in wagering decisions in several different contexts.
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In Final Jeopardy! runaway wagers We estimate the parameter in CARA specifi-
cation studied in Section 4.5.2 separately for each gender. The estimated parame-
ter α̂m for the representative male player is 5.61× 10−5 (SE = 2.16× 10−6) while
the parameter α̂ f for the representative female player is 7.5× 10−5 (SE = 6.43×
10−6). The difference α̂ f − α̂m is positive and statistically significant (p = 0.01),
implying that the representative female player is more risk averse than the repre-
sentative male player.

In Daily Double wagers As we described in Section 4.2, special panels called
Daily Doubles are hidden on the boards during the first two rounds. Unlike the
case with usual panels, only the contestant who selects the panel has an oppor-
tunity to respond. Before the clue is revealed, the contestant has to decide how
much to bet (the minimum amount is $5 and the maximum is the bigger one of
her/his current score and the highest dollar clue in the round).

One may wonder the possibility of strategic thinking in wagering decisions for
Daily Double situations, but the effect may be small due to the following reason.
Note that Daily Doubles are just one part of dynamic games. Since players’ scores
are continually changing over time, there is no significant gain to make a strategic
move just for one period.

With slight abuse of notation, here we represent score and wagering amounts
at the time of Daily Double by xi and yi.

We first estimate the following model to capture simple male-female difference
in wager decisions:

Wi = β0 + β1Malei + βXi + εi, (4.5)

where Male is a dummy variable for male players. The control variables include
the following. Timing ∈ (0, 1] codes when this Daily Double panel was opened
(number of panels opened so far, including the current one, divided by the total
number of panels opened in the round). Diff codes the absolute difference be-
tween i’s score and the highest score of the other two players (i.e., |xi−maxj 6=i xj|).
Position ∈ {1, . . . , 5} codes on which row the panel was hidden (possibly reflect-
ing difficulty level of the question). Gain is the value added to the player’s score
immediately before picking a Daily Double panel. 9 Score is the score at the time

9Remember that only the contestant who provides the correct answer to the current panel can
select a panel for the next round with an exception of “triple stumper” situation where all three
players respond incorrectly or none of them respond. Thus, in many cases, the player who picks
a Daily Double panel has earned some amount right before.
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of Daily Double opening. Treatment takes 1 if the game is after November 26, 2001.
The dependent variable is wager share, yi divided by the maximum possible wa-
ger. 10

Columns (1) to (4) in Table 4.12 present the result of estimation. It is clear that
in general male contestants wager more aggressively than female contestants.

Next, we ask whether gender-contextual factors such as the gender of the other
players in the game influence wagering decisions. We estimate the following
model:

Wi = β0 + β1Malei + β2Minorityi + β3Malei ×Minorityi + βXi + εi, (4.6)

where Minority takes 1 if player i is grouped with two opposite-gender players
and 0 otherwise. Again, the dependent variable is wager share, yi divided by the
maximum possible wager.

Columns (5) to (8) in Table 4.12 present the result of estimation. The coefficient
β2 captures the difference between behavior of a female player in a male-dominant
group and a female player in a female-dominant group. Similarly, the additive
effect β2 + β3 captures the difference between behavior of a male player in a
female-dominant group and a male player in a male-dominant group.

In all four columns, estimated β2 is not significantly different from 0: there is
no gender-contextual effect in female players’ behavior. On the other hand, β2 +

β3 is negative and significant in all but one case: male players in female-dominant
groups wager more conservatively compared to those in male-dominant groups.

10Note that the maximum is bigger one of her/his current score and the highest dollar clue
in the round. Therefore, players can wager a positive amount even if their scores are negative
(xi < 0) at the moment.
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Discussion In the series of analyses presented above, we consistently find that
male players wager more than female players do. This pattern is consistent
with the widespread view and its voluminous empirical supporting evidence that
women are more risk averse than men (Byrnes et al., 1999; Charness and Gneezy,
2012; Croson and Gneezy, 2009; Eckel and Grossman, 2002, 2008; Fehr-Duda et al.,
2010). A recent study by Kelley and Lemke (2015), using data from TV game
show Cash Cab, also find that a group of male players is more likely to take the
double-or-nothing gamble than a group of female players. Our finding that male
players in female-dominant games wager less aggressively compared to those
in male-dominant games is, however, in the opposite direction from Lindquist
and Säve-Söderbergh’s (2011) finding: in the Swedish version of Jeopardy!, female
players wager more conservatively when they are assigned to an all-male group,
compared to playing in a mixed or female-only group.

In order to asses whether the observed gender-context effect is driven by a mo-
tive for competition or a mere-presence of the other gender, we estimate a model
similar to (4.6) using Final Jeopardy! wagers in runaway games. As we explained
in Section 4.4, in runaway games, player 1’s score is so far ahead of player 2’s that
player 1 is guaranteed to win. Thus, if we observed a gender-context effect in
wagering decisions in runaway games, the effect would be driven primarily by a
mere-presence of the other gender, rather than a motive for competition.

Table 4.13 presents the result. We observe that neither β2 nor β2 + β3 is signif-
icantly different from 0, meaning that the gender-context effect is not present in
runaway wagering decisions.

Given this result, the gender-context effect observed among male players in
Daily Double situations (Table 4.12) may be interpreted as a result of a motive
for intrasexual competition. This interpretation is in line with the argument in
evolutionary psychology, which suggests that gender difference in risk taking is
rooted partially in differences in intrasexual competition. Since Trivers (1972), it
has been argued that men have had to compete with one another over access to
mating opportunities to a greater extent than women have throughout evolution-
ary history. Since risk-taking can communicate characteristics such as confidence,
it can increase a man’s chances of gaining access to desired mating opportunities.
Although risky behavior can be costly, evolutionary theories of mate competi-
tion suggest that men often are inclined to pursue a relatively high risk-high
payoff strategy when it comes to acquiring mates (Baker and Maner, 2009; Wil-
son and Daly, 1985). This view is further supported by the evidence that male
risk-taking is pronounced primarily under social circumstances that prime psy-
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Table 4.13: Gender-context effect in Final Jeopardy! runaway wagers.

(1) (2) (3) (4)
Dependent variable y1/x1 y1/x1 y1/δ y1/δ

Male 0.036∗∗ 0.026∗ 0.023 0.048
(0.012) (0.011) (0.096) (0.099)

Minority 0.005 0.009 0.121 0.097
(0.018) (0.017) (0.162) (0.161)

Male×Minority −0.030 −0.024 −0.215 −0.199
(0.023) (0.022) (0.174) (0.172)

Constant 0.131∗∗∗ 0.092 0.623∗∗∗ 0.286
(0.010) (0.052) (0.083) (0.243)

Control No Yes No Yes

N 1,216 1,216 1,183 1,183
R2 0.009 0.218 0.001 0.014

H0: β2 + β3 = 0 p = 0.1025 p = 0.2911 p = 0.1442 p = 0.1137
Notes: Robust standard errors are in parentheses. Stars indicate significance level. ∗∗∗:
p < 0.001, ∗∗: p < 0.01, ∗: p < 0.05.

chological states associated with intrasexual competition (Daly and Wilson, 2001).
Since Jeopardy! is one of the most popular TV game show in the U.S., being in the
limelight may act as a priming factor of intrasexual competition.

4.8 Conclusion

In the current study, we touch several topics in microeconomics and behavioral
economics through a rich behavioral data from a popular TV game show Jeop-
ardy!. We find that (i) the representative player in this game is risk averse but the
degree of risk aversion is very limited, (ii) players overbet than or conform to folk
strategies depending on the contexts, (iii) female players are more risk averse than
male contestants, and (iv) male players in female-dominant groups take less risk
compared to those in male-dominant groups.

The behavior of contestants in TV game shows like Jeopardy! may not im-
mediately be generalized to an ordinary person’s decisions under risk. We still
believe that investigating choices in this particular game show provides new in-
sights into individual’s attitude toward risk and gender differences, because the
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decision problems are simple and well-defined, have a feature of (in many cases
mixed-gender) competition, and more importantly, the amounts at stake are very
large.

Our analysis first reveals that the representative player is risk averse in sit-
uations where the presence of other players is safely ignored (runaway games).
Although the estimated coefficients of absolute risk aversion is statistically sig-
nificant, the implied degree of risk aversion is moderate. Even with tens of
thousands of dollars at stake, the representative player rejects offers in excess
of three-quarters of the expected value. In this regard, we note two limitations in
the current approach: we assume a representative player and an expected utility
of wealth model. The mismatch between small scale risk aversion commonly ob-
served in experimental studies and limited large scale risk aversion found in the
current study may thus be a product of those two methodological assumptions.

Our second main observation in this study is the gender-context effect. On
top of the “baseline” gender effect, in which female players are more risk averse
than male players, we find that male players in female-dominant groups take less
risk compared to those in male-dominant groups. In other words, male players
become more competitive in the presence of other male players. This finding is
consistent with the mate competition story often discussed in evolutionary theo-
ries, but we do not observe the effect in games with female-female competition.

Every season, Jeopardy hosts “special” games such as Tournament of Champions,
College Championship, Celebrity Jeopardy!, Teachers Tournament, Teen Tournament, and
Kids Week. Looking at how different groups of demographically similar players
respond to gender contexts will be a fruitful avenue for future research.
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Chapter 5

Dynamics of Forecast Miscalibration
in the U.K. Horse Racing In-Play
Betting Data

5.1 Introduction

The favorite-longshot bias (FLB) is one of the most well-documented regulari-
ties in betting markets (Camerer, 2004; Coleman, 2004; Jullien and Salanié, 2008;
Ottaviani and Sørensen, 2008; Thaler and Ziemba, 1988; Tompkins et al., 2008).
Specifically, bettors value longshots (horses with a relatively small chance of win-
ning) more than expected given how rarely they win, and they value favorites too
little given how often they actually win. As a result, the expected return from
any bet increases with the probability that the event will occur. The bias is con-
sidered as an important deviation from the market efficiency hypothesis (Fama,
1965, 1970), which argues that the betting odds for an event provide the best fore-
cast of its probability of occurrence and that the expected return at all odds will
be the same.

FLB was first documented by Griffith (1949) and McGlothlin (1956), and sub-
sequently observed in many types of events across many countries. A partial list
goes as follows: Dowie (1976), Ali (1977), Snyder (1978), Hausch et al. (1981),
Asch et al. (1982), Henery (1985), Bird et al. (1987), Vaughan Williams and Pa-
ton (1997), Jullien and Salanié (2000), Snowberg and Wolfers (2010), and Gandhi
and Serrano-Padial (2015) document FLB in horse racing, both in parimutuel and
fixed-odds markets in the U.S., the U.K., and Australia. Zuber et al. (1985) and
Sauer (1998) find evidence in the NFL point spread market. 1 See Table D.1 for a

1Although the majority of studies find evidence in favor of FLB, some find the “reverse” FLB
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list of studies documenting FLB, the reverse FLB, or no bias.
In contrast with a voluminous evidence showing FLB (or reverse FLB) in bet-

ting markets, no attention has been paid to its dynamic aspects: when the bias
appears and how it evolves over time. This is in part due to limited availability of
data that allow researchers to investigate such questions. Note that most existing
studies use parimutuel odds or fixed odds set by bookmakers, where the final
closing odds are the only available source of data.

In the current study, we exploit a novel and rich dataset from a U.K. online
betting exchange market, Betfair, to provide a new insight on FLB. An online
betting exchange is a relatively new form of betting mechanism (see Section 5.2 for
details). It is a type of prediction market, in which participants trade a set of all-
or-nothing contingent claims on some events (Arrow et al., 2008; Snowberg et al.,
2011, 2013; Sonnemann et al., 2013; Wolfers and Zitzewitz, 2004). Under certain
conditions, the price of the contingent claim can be interpreted as the market’s
expectation of probabilistic forecast about the event’s likelihood (Manski, 2006;
Wolfers and Zitzewitz, 2007). Using a second-by-second limit-order book data
from Betfair on all U.K. horse races (including both flat and jump races) between
January to early November in 2014, we conduct a clean test for FLB at each moment
in time, before and during the races.

We obtain two main findings. First, unlike standard findings in parimutuel
betting markets which show evidence supporting FLB, we find that betting odds
taken from a 10 minute time window prior to races are well-calibrated (that
means, there is no FLB). Second, when we look at time window just before (40 sec-
onds to 5 seconds) races finish, market odds exhibit systematic FLB. Furthermore,
the degree of bias gets larger as races approach to the finish line.

Methodologically, we first nonparametrically estimate calibration curves, which
relate objective probability (actual empirical probability that horses win) to sub-
jective probability implied by market odds, through a local polynomial regres-
sion. We further follow Page and Clemen’s (2013) approach to construct valid
confidence bands along the estimated calibration curves. The shape of the non-
parametric calibration curve lends itself to a clear evidence of growing FLB prior
to the race finish, and then we go one step further by estimating calibration curves
assuming specific parametric structures to relate our results with the “probability
weighting function” extensively studied in non-expected utility models of deci-
sion making under risk, and also to understand potential mechanisms behind the

(e.g., Gillen et al., 2015; Woodland and Woodland, 1994, 2001, 2003) or no bias at all (e.g., Busche,
1994; Busche and Hall, 1988).



99

result. Our estimation results indicate that number of horses in the given race per
se is not related with the degree of FLB. The association with pre-race aggregate
trading volume, which reflects liquidity of the market and potentially the degree
of participants’ attention to the race, is also weak. We found that total race dura-
tion, even though we focus on the final 40 seconds from the finish, significantly
contributes to the degree of FLB.

5.2 Data

5.2.1 Background on Betting

We first introduce common terminologies on betting and standard mechanisms
of betting markets.

Betting The betting environment that is standard in Europe, especially in the
U.K., is operated by licensed organizations called bookmakers. Bookmakers play a
similar role as market makers in financial markets by adjusting odds (i.e., prices
in betting environment). Their objective is to achieve a balanced book so that they
will profit from whatever the outcome of the event is. The type of bet in this
environment is called a fixed-odds bet. Under this form of betting, party A, who
wants to bet on (back) some event, agrees to pay another party B who wants to
bet against (lay) the same event a certain amount (stake) if the outcome does not
hold, and B agrees to pay A the same stake multiplied by the odds if the outcome
holds.

There are several conventions in displaying odds. Fractional odds quote the net
total that will be paid out to the bettor relative to the stake if the event holds.
Odds of 3/1 (also displayed as 3:1; read “three-to-one”) implies that the bettor
stands to make a $300 profit on a $100 stake. Odds of 1/1 are also known as
even. Decimal odds quote the winning amount that would be paid out to the bettor
(including stake). Therefore, the decimal odds are equivalent to the decimal value
of the fractional odds plus one: fractional odds 3/1 are quoted as 4 and even odds
of 1/1 are quoted as 2. 2

2Moneyline odds is a popular format among U.S. bookmakers. Quotes can be either positive or
negative. If the figure quoted is positive, the odds are quoting how much money will be won on
a $100 wager. Fractional odds of 3/1 would be quoted as +300. If the figure quoted is negative,
then the odds are quoting how much money must be wagered to win $100. Fractional odds of
1/3 would thus be quoted as −300.
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The second standard betting system, common in the U.S. horse racing in par-
ticular, is called parimutuel betting (Thaler and Ziemba, 1988). In this system, all
bets related to a particular event are pooled together. The final payout is deter-
mined by the manner in which winning bets divide the total money on losing
bets, less transaction costs including track take. The odds are thus determined
only after the pool is closed.

The third betting system, which has become increasingly popular since around
2000, is online betting exchange. The market matches bettors who want to back an
outcome with those who are willing to lay the same outcome. Notice that in the
traditional betting environment, bookmakers and race tracks take the lay side of
every bet. Another important feature of this new type of betting market is that
bettors are allowed to place bets in-play. That means, bettors are able to make
transactions even during events of interest (until just before the final outcomes
are realized). The betting exchanges are thus also known as in-play betting or live
betting.

Betting exchanges are essentially order-driven markets: bettors have the choice
of either (i) placing a limit order, which is an order to buy or sell a bet at a specific
price (i.e., odds) and wait for another bettor to match the bet or (ii) place a market
order and thereby directly match a bet that has already been offered by another
bettor.

There are many online betting exchange markets including Bet365, Betfair, Bet
Victor, Coral, Ladbrokes, Paddy power, Skybet, Stan James, Totepool, Unibet, and
William Hill. Betfair is one of the biggest online betting exchange market, which is
located in the U.K. and covers a wide range of events including american football,
bandy, baseball, basketball, bowls, boxing, cricket, cycling, darts, financial bets,
floorball, football, gaelic games, golf, greyhound racing, handball, horse racing,
ice hockey, mixed marital arts, motor sports, politics, pool, rugby, snooker, tennis,
volleyball, winter sports. Volumes on the exchange are estimated to have doubled
from 5.23 billion USD to 11.06 billion USD between 2003 and 2004, and almost
doubled again between 2004 and 2005 (Croxson and Reade, 2014). Total trading
volume increased to 83.55 billion USD in 2014. 3

Market odds as probabilities It is a common wisdom that the odds (or prices)
in these betting exchanges reflect the market’s expectations about the likelihood
of associated events. For example, 3/1 fractional odds (or decimal odds of 4)

3Betfair annual report (available at http://corporate.betfair.com/~/media/Files/B/
Betfair-Corporate/pdf/annual-report-2015.pdf).

http://corporate.betfair.com/~/media/Files/B/Betfair-Corporate/pdf/annual-report-2015.pdf
http://corporate.betfair.com/~/media/Files/B/Betfair-Corporate/pdf/annual-report-2015.pdf
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would imply a view that the event under betting is three times more likely not
to occur than to occur (25% chance of occurrence). Similarly, in the parimutuel
betting, the proportion of the money in the pool that is wagered on any given
outcome (horse) can be interpreted as the subjective probability that the outcome
will occur (horse will win).

Betting exchange is one type of “prediction markets,” in which probabilities
derived from market prices prove to be useful in forecasting (Arrow et al., 2008;
Snowberg et al., 2011, 2013; Sonnemann et al., 2013; Wolfers and Zitzewitz, 2004).
Forsythe et al. (1992) and Berg et al. (2008), for example, examine the perfor-
mance of the Iowa Electronic Market on political outcomes and find that markets
outperform polls as predictors of future election results. Firms have also created
internal markets to predict outcomes of corporate interest, such as new product
sales (Chen and Plott, 2002; Cowgill and Zitzewitz, 2015). More recently, predic-
tion markets have been used to aggregate opinion regarding the “reproducibility”
(i.e., whether or not scientific results reported in studies will be reproduced in
replication studies) of scientific results (Camerer et al., 2015; Dreber et al., 2015).

However, the interpretation of odds as subjective probabilities is under hot
debate. Manski (2006) points out that appropriate theoretical results guarantee-
ing that interpretation were lacking and shows that, if traders are risk neutral
and have heterogeneous beliefs, prediction market prices only partially identify
the central tendency of those beliefs. Gjerstad (2005) investigates relationship be-
tween coefficients of relative risk aversion, the distribution of traders’ beliefs, and
equilibrium prices. Wolfers and Zitzewitz (2007) then provide sufficient condi-
tions (such as log utility) under which the inverse of betting odds coincides with
average beliefs among traders. Sonnemann et al. (2013) empirically show that pre-
diction market prices closely match the mean and median of traders’ subjective
beliefs.

5.2.2 Description of Data

We obtained data on 8,834 U.K. horse race events from Fracsoft, a third-party
vendor of Betfair betting exchange data. The dataset cover all U.K. races (both
flat and jump) between January 1st, 2014 and November 10th, 2014. Our dataset
focus only on the win market and do not include the place market.

We merge the limit-order book data from Betfair with race information data
we obtain from two sources. The first source is Betfair itself, which provides an
indicator of winning horse together with volume-weighted average odds before
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races start and aggregate trading volume before and after races start. 4 The second
source is the Sporting Life website. 5 We extract race information, including offi-
cial race start time, winning time, finish position, distance, from the “Racecards”
pages and “Full results” pages.

The primary variable of interest in the current study is probabilistic forecasts
of the winning probability for each horse in a given race implied by market odds
at each moment before and after the race starts. Since Betfair uses “decimal odds,”
which stands for the payout ratio of a winning bet, the inverse of the decimal odds
can be interpreted as the market expectation of probability of occurrence of the
underlying event. 6

We calculate the implied (raw) probability qhr(t) that horse hr will win race r
forecasted at time t (either pre-race of in-race) by inverting the mid-point of back-
lay spread (Brown, 2014). More precisely, given the best back odds OB

hr
(t) and the

best lay odds OL
hr
(t) at time t, we calculate the implied probability by

qhr(t) =
1(

OB
hr
(t) + OL

hr
(t)
)

/2
. (5.1)

These market probabilities on all possible outcomes of an event usually sum to
greater than one because of the transaction costs, the so-called “overround.” Fol-
lowing the convention in the literature and assuming that the overround is equally
distributed over the outcome probabilities, we obtain normalized probabilities by

phr(t) =
qhr(t)

∑
ir∈Hr

qir(t)
, (5.2)

where Hr is the set of horses in race r. In the sequel we may drop subscript r
when no confusion is expected.

5.2.3 Descriptive Statistics

The total of 80,871 horses started in 8,834 races and 72,556 of them (89.7%) fin-
ished. There is a large variability in the data. The average number of horses in
a race is 9.15. The minimum is two horses (for as many as two races) and the

4http://www.betfairpromo.com/betfairsp/prices/index.php.
5http://www.sportinglife.com/.
6Betfair allows for quotes from 1.01 to 1,000. The grid becomes increasingly coarser, ranging

from one penny increments between odds of 1.01 to 2.00, to 10 pounds increments between odds
of 100 to 1,000.

http://www.betfairpromo.com/betfairsp/prices/index.php
http://www.sportinglife.com/
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maximum is 34 horses (for only one race). There are only 76 races with more than
or equal to 20 horses.

The mean race duration is 173.14 seconds and the median is 129.07 seconds.
There are 2,644 races which finished in 90 seconds or shorter, and there are 4,836
races which lasted longer than 120 seconds.

The mean pre-race trading volume is 71,094 (GBP) and the median is 27,387.
The mean in-play trading volume is 20,665 (GBP) and the median is 4,089. The
event that attracted the largest amount of money in our dataset is Cheltenham
Gold Cup. This is a Grade 1 National Hunt race in which horses run three miles
and two-and-half furlongs (5,331m) and jump 22 fences on the way. 7 The race is
a part of “Cheltenham Festival,” which takes place annually at March and is the
highlight of the National Hunt season. The total pre-race trading volume in this
only one race amounted to over nine million GBP.

The distribution of winning probabilities implied by pre-race volume-weighted
average odds is shown in the left panel of Figure 5.1. The mean implied prob-
ability is 0.115 and the median is 0.083. The red line represents the maximum
likelihood fit of beta distribution B(α, β) with the estimated shape parameters
α = 0.975 and β = 6.988. The right panel of Figure 5.1 illustrates the dynamics
of implied probabilities during Cheltenham Gold Cup. Before the race started,
two horses named Bobs Worth and Silviniaco Conti were strong favorites (volume-
weighted average odds for those two horses before the race were 2.66 and 4.03,
respectively). Implied probabilities were relatively stable until around 350 sec-
onds after race started. Then, the dynamics became busy: implied probabilities
for two favorite horses became volatile but suddenly, the third horse Lord Winder-
mere (highlighted red in the right panel of Figure 5.1) took the lead and won the
race at the very last moment. 8

The left panel of Figure 5.2 shows a time series of median (together with 25-
and 75-percentile) amount of cumulative money (in the unit of 1,000 GBP) traded
on the exchange before races start. Notice that about 80% of the money is bet in
the last five minutes before races start. This shape is consistent with the finding in
a U.S. racetrack parimutuel betting market reported in Camerer (1998). Similarly,

7National Hunt racing is the official name of the type of horse racing in which horses jump
fences and ditches.

8Note that the European/U.K. style of racing is quite different from the typical American style.
American races are faster-paced, and it is common for a few horses to vie for leadership early in
the race, and change positions frequently. In European/U.K. style the pace is slower early in the
race and horses do not switch positions as frequently; they save energy for a mad scramble in
the last 30 seconds of the race. This is reflected in the typical odds profile in the right panel of
Figure 5.1 in which the implied subjective probabilities do not change much until late in the race.
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Figure 5.1: Probabilities implied by pre-race trading volume weighted average odds with
estimated Beta density (left) and the dynamics of implied probabilities during a long race,
the Cheltenham Gold Cup (right).
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Figure 5.2: Median and inter-quartile range of cumulative trading volumes before start
(left) and finish (right).

the right panel of Figure 5.2 shows the same series before races finish. While the
magnitude of increase is less pronounced compared to the series for pre-race, the
shape exhibits slight convexity.

It is a general tendency in this market that we observe relatively stable paths
of implied probabilities before races start. This is reasonable since traders in the
market receive virtually no additional information in this time window. This
tendency holds until 30 to 40 seconds before races finish. Implied probabilities
then become much more volatile. Some approach toward 1 while others approach
toward 0. See Figure D.1 for an illustration of dynamics of implied probabilities
pre- and in-race (an extension of the right panel of Figure 5.1). Given those typical
patterns of the dynamics of implied probabilities, in the following analyses we
divide the entire race duration into two categories. The first category is pre-race,
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and in particular we focus on 10 minutes before races start. The second category
is the last phase of the races. Since most of the dynamic aspects of horse racing
appear in the “last straight,” we look at up to 40 seconds before races finish.

5.3 Empirical Tests of the Favorite-Longshot Bias

In this section, we test the existence of FLB and its dynamics over time, using
four different approaches (for a review, see Coleman, 2004). All of the approaches
share the common idea of comparing the objective win probabilities with the
probabilities implied by market odds. It is often useful to visualize the relation-
ship between objective and implied win probabilities, which we call a calibration
curve (Dawid, 1982; Lichtenstein et al., 1977). In typical empirical studies on FLB,
implied probabilities are taken on the x-axis and objective probabilities are taken
on the y-axis. In the current study, we flip the axes to make it easily comparable to
the shape of the probability weighting function, which takes objective probabilities
on the x-axis and subjective probabilities (or decision weights) on the y-axis.

The probabilistic forecast is well calibrated if, for example, of those horses to
which the market assigns a probability 20% of winning, the large-sample em-
pirical proportion that actually win turns out to be close to 20%. This definition
implies that we would observe 45-degree-line calibration curve for well-calibrated
forecasts. The existence of FLB, on the other hand, implies that we would observe
calibration curves that have an inverse-S shape. Formally, a calibration curve
φ : [0, 1]→ [0, 1] exhibits FLB if φ(q) > p for q ∈ [0, q0] and φ(q) < q for q ∈ [q1, 1]
for some 0 < q0 ≤ q1 < 1. We reserve the notation p for probabilities implied by
market odds. In order to avoid confusion, hereafter we denote objective probabil-
ity by q.

5.3.1 Bunching Horses with Similar Odds

We start our analysis from the method commonly used in the early literature of
FLB (see, for example, Andrikogiannopoulou and Papakonstantinou, 2011; Jullien
and Salanié, 2000). We first divide horses into K roughly equal-sized groups by
their odds. Let Hk denote the set of horses assigned in group k and Nk denote the
cardinality of Hk, namely, the number of horses in group k. We then compute the



106

Table 5.1: A bunching-based test of the Favorite-Longshot Bias.

Average implied
Group (k) # Obs. minh∈Hk

ph maxh∈Hk
ph Frequency (π̄k) probability (p̄k) z-statistic p-value

1 7256 0.0009 0.0151 0.0061 0.0075 1.5751 0.1152
2 7256 0.0151 0.0304 0.0214 0.0230 0.9449 0.3447
3 7255 0.0304 0.0459 0.0385 0.0377 −0.3158 0.7522
4 7256 0.0459 0.0638 0.0557 0.0545 −0.4506 0.6523
5 7255 0.0638 0.0840 0.0775 0.0736 −1.2308 0.2184
6 7256 0.0840 0.1057 0.0994 0.0945 −1.3896 0.1647
7 7256 0.1057 0.1389 0.1290 0.1212 −1.9939 0.0462
8 7255 0.1389 0.1826 0.1615 0.1593 −0.5299 0.5962
9 7256 0.1826 0.2579 0.2281 0.2169 −2.2700 0.0232

10 7255 0.2579 0.9730 0.3996 0.3798 −3.4423 0.0006

average implied probabilities of horses in group k, p̄k, by

p̄k =
1

Nk
∑

h∈Hk

ph.

Let ωh ∈ {0, 1} denote an indicator for whether or not horse h won the race. We
then compute the average winning probabilities of horses in group k, π̄k, by

π̄k =
1

Nk
∑

h∈Hk

ωh.

With sufficiently large and independent Nk, the average winning probability π̄k

approaches a normal distribution. Then, a z-statistic can be computed by

zk =
p̄k − π̄k√

π̄k(1−π̄k)
Nk

.

We are thus able to perform a series of z-test to examine the difference between
implied winning probabilities and actual winning probabilities for each group k
(Ali, 1977; Busche and Walls, 2000; Gandar et al., 2001).

The results from those z-tests are reported in Table 5.1. Here, we calculate
(normalized) implied probabilities using pre-race volume-weighted average odds
to reflect all the information contained in pre-race trading activities. We find that
the market significantly underestimates the probabilities of winning by horses in
group k ∈ {7, 9, 10}. However, we do not find systematic overestimation of small
probabilities as suggested by FLB.
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Table 5.2: A regression-based test of the Favorite-Longshot Bias.

Before start Before finish

Timing −600 (s) −60 (s) −40 (s) −20 (s) −10 (s) −5 (s)

β1: Slope 1.041 1.031 1.035 1.073 1.089 1.084
(0.012) (0.012) (0.008) (0.005) (0.003) (0.002)

β0: Constant 0.0001 0.0013 −0.0029 −0.0081 −0.0102 −0.0097
(0.0014) (0.0014) (0.0009) (0.0006) (0.0003) (0.0002)

# observations 72,078 72,091 72,063 72,068 72,068 72,068
# clusters 8,762 8,764 8,759 8,760 8,760 8,760

p-value (H0: β0 = 0) 0.958 0.353 < 0.005 < 0.001 < 0.001 < 0.001
p-value (H0: β1 = 1) < 0.001 < 0.010 < 0.001 < 0.001 < 0.001 < 0.001
p-value (H0: (β0, β1) = (0, 1)) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Note: Clustered standard errors in parentheses.

5.3.2 Linear Regression

The second approach for testing FLB that is popular in the literature is based on
estimating

ωh = β0 + β1ph(t) + εh (5.3)

and testing the joint null hypothesis of H0 : (β0, β1) = (0, 1), which is essentially
testing whether implied probabilities are perfectly calibrated (on the 45-degree
line). Note that we reverse the axes in this formulation: implied probabilities are
on the x- axis and actual probabilities are on the y-axis.

We estimate (5.3) using implied probabilities at 600 and 60 seconds before
races start and 40, 20, 10, and 5 seconds before races finish. Results are presented
in Table 5.2. The joint hypothesis H0 : (β0, β1) = (0, 1) is rejected at all timing
examined here. Before the race starts, β1 is significantly larger than one and β0 is
not significantly different from zero, implying that only underestimation of large
probabilities is present. After races start, on the other hand, β1 > 1 and β0 < 0 are
both statistically significant, implying that underestimation of large probabilities
and overestimation of small probabilities are both present.

5.3.3 Nonparametric Estimation of Calibration Curves

The previous two approaches have two potential drawbacks. First, they do not
provide the precise shape of calibration curves. Second, they occasionally include
several horses from the same race in one group, even though only one can win,
violating independence. Those drawbacks motivate our third approach, which is
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originally proposed in the recent study by Page and Clemen (2013). The large-
sample nature of our data makes it possible to estimate a calibration curve φ

nonparametrically. Nonparametric regression provides a useful diagnostic tool
for detecting FLB.

Let the data be {(Xi, yi)}n
i=1 from an unknown joint density f . The regression

function for yi on Xi is
m(x0) = E f [yi|Xi = x0].

We want to estimate this nonparametrically, with minimal assumptions about the
structure of m. The idea for local linear estimator is to fit the local model

yi = β0 + β1(Xi − x) + εi

through the observations in the same neighborhood. The reason for using the
regressor Xi− x rather than Xi is so that the intercept equals m(x) = E[yi|Xi = x].
Once we get the estimates β̂0(x) and β̂1(x), we then set m̂(x) = β̂0(x). We can
use β̂1(x) to estimate ∂m(x)/∂x.

Fan (1993) extends the idea of local linear regression to construct a smooth
version of a local polynomial: finding α and β to minimize

n

∑
i=1

K
(

x0 − Xi

hn

)
{yi − β0 − β1(x0 − Xi)}2 ,

where K is a kernel function and hn is a bandwidth. Let β̂0 and β̂1 be the solution
to the weighted least squares problem given above. Simple calculation yields

β̂0 =
∑n

i=1 Wiyi

∑n
i=1 Wi

with Wi defined by

Wi = K
(

x0 − Xi

hn

)
(sn,2 − (x0 − Xi)sn,1),

where

sn,l =
n

∑
i=1

K
(

x0 − Xi

hn

)
(x0 − Xi)

l, l = 0, 1, 2, . . .

This idea is an extension of Stone (1977) and is similar in spirit to locally weighted
scatterplot smoothers (LOWESS; Cleveland, 1979), but is simpler to implement
since it does not require the identification of nearest neighbors.
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Page and Clemen (2013) take this idea to estimate local regression line for each
implied probability p by solving

min
β0,β1

n

∑
i=1

Kh(p− pi){yi − β0 − β1(pi − p)}, (5.4)

where pi represents the i-th of n observations used in the estimation, h is the width
of an estimation window around p and Kh is an Epanechnikov kernel defined by

Kh(p− pi) =
3
4

[
1−

(
p− pi

h

)2
]
1{|p− pi| ≤ h}. (5.5)

The estimator of conditional expectation E[ω|p] is then given by β̂0.
This approach provides precise estimates for very high and low probabilities

(Fan, 1992, 1993; Fan and Gijbels, 1992). 9 This is particularly important in our
context since we are interested primarily in whether a calibration curve systemat-
ically deviates from perfect calibration at probabilities close to two boundaries, 0
and 1.

An innovation in Page and Clemen’s (2013) approach is the use of clustered
bootstrap to account for the non-independence of implied probabilities. 10 Using
groups of non-independent markets as clusters in a bootstrap resampling, they
are able to estimate a confidence interval for the entire calibration curve.

Figure 5.3 shows the nonparametrically estimated calibration curves φs
t , using

implied probabilities at t ∈ {600, 60} seconds before races start. The gray area
is the 95% confidence band calculated by the clustered bootstrap procedure with
1,000 replications.

Implied probabilities are well calibrated on the range [0, 0.5] and in particular
close to the boundary (see Figure D.2 for the shape of calibration curves around
q ∈ [0, 0.1]). The estimated calibration curves φs

t deviate from perfect calibration
outside this range, but the confidence bands are also wider. This is natural since,
before a race starts, even the most favored horse usually has an implied probabil-
ity less than 0.5. The results indicate that FLB is very limited before races start:
we observe slight tendency to underestimate objective probabilities larger than
0.9 but the confidence band is relatively wide in this region due to the smaller
sample size (it is rare to have pre-race implied probabilities higher than 0.9).

Next, we turn to nonparametric estimation of calibration curves φ
f
t , using im-

9Härdle (1990) documents boundary problem in kernel estimation.
10See Efron and Tibshirani (1993), Härdle and Bowman (1988), Härdle and Marron (1991).
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Figure 5.3: Nonparametric estimation of calibration curves φs
t , t ∈ {600, 60} seconds

before races start.
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Figure 5.4: Nonparametric estimation of calibration curves φ
f
t , t ∈ {40, 20, 10, 5} seconds

before races finish.

plied probabilities at t ∈ {40, 20, 10, 5} seconds before races finish. Figure 5.4
displays estimated φ

f
t with 95% confidence bands. First, we observe limited FLB

at 40 seconds before races finish: φ
f
40 coincides with perfect calibration (i.e., 95%

confidence band covers the 45-degree line) for objective probability q ∈ [0, 0.25].
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However, φ
f
t exhibits bigger deviations from perfect calibration as races approach

to finish line (φ f
20(q) > q for q ∈ [0, 0.11] and φ

f
20(q) < q for q ∈ [0.42, 1]; φ

f
10(q) > q

for q ∈ [0, 0.15] and φ
f
10(q) < q for q ∈ [0.35, 1]; φ

f
5 (q) > q for q ∈ [0, 0.21] and

φ
f
5 (q) < q for q ∈ [0.44, 1]). Noticeably, the inverse-S shape of calibration curves

φ
f
t exhibits significant FLB at the implied probabilities extremely close to 0 and 1

(see Figure D.3 for the shape of calibration curves around q ∈ [0, 0.1]). 11

Our finding that the degree of FLB is magnified as the remaining time horizon
of the event shortens is the contrary to Page and Clemen’s (2013) finding that the
FLB is weaker as the time to contract expiration shortens. Note, however, that
the types of events studied in Page and Clemen (2013) and the current study are
different. Page and Clemen (2013) use data from Intrade markets on future events,
especially on political and sports events, which usually have a much longer time
span than horse racing markets examined here.

5.3.4 Parametric Estimation of Calibration Curves

The results from nonparametric estimation already implicated the non-existence
of FLB prior to races and increasing FLB just before finishes. In order to under-
stand structures of nonlinear relationships between objective and implied proba-
bilities and investigate potential mechanisms behind them, we add several para-
metric structures in estimation of calibration curves.

In particular, we borrow ideas from the literature on non-expected utility theo-
ries such as prospect theory (Kahneman and Tversky, 1979), cumulative prospect
theory (Tversky and Kahneman, 1992; Wakker and Tversky, 1993), and rank-
dependent utility (Diecidue and Wakker, 2001; Quiggin, 1982). A key construct
in those models is a decision weight, or subjective probability weighting function
(Barberis, 2013; Wakker, 2010; Wu et al., 2004). A probability weighting function
w : [0, 1] → [0, 1] maps objective probabilities to (subjective) decision weights.
Several functional forms have been proposed to capture probability weighting
(see Fehr-Duda and Epper, 2012, for a review). Here we focus on one particular
class of two-parameter functional form suggested by Lattimore et al. (1992), which
has a clear separation between curvature and elevation (Abdellaoui et al., 2010;
Gonzalez and Wu, 1999). 12 Another well-studied two-parameter class of prob-

11Polkovnichenko and Zhao (2013) nonparametrically estimate probability weighting functions
using prices of the S&P500 index options and find similar inverse-S shape.

12Tversky and Kahneman (1992) propose the single-parameter probability weighting function
w(q) = qγ/(qγ + (1− q)γ)1/γ which is empirically examined in Camerer and Ho (1994), Wu and
Gonzalez (1996), Abdellaoui (2000), Bleichrodt and Pinto (2000), Bleichrodt (2001), Harrison and
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ability weighting function is suggested (and axiomatized) by Prelec (1998). We
obtain qualitatively similar conclusions under this alternative specification and
thus results are omitted. Using an adaptive design optimiaztion, Cavagnaro et al.
(2013) find that those two two-parameter specifications of the probability weight-
ing function provide the best explanation of experimental data at the individual
level while there is heterogeneity across subjects in which one describes the data
best.

The probability weighting function studied by Lattimore et al. (1992) has the
following form:

w(q) =
δqγ

δqγ + (1− q)γ
, γ, δ ≥ 0. (5.6)

The first parameter γ controls the curvature and measures sensitivity towards
changes in (intermediate) objective probability. The value γ = 1 corresponds
to linear probability weighting function and smaller γ indicates larger deviation
from linearity in a commonly observed inverse-S direction. The second parameter
δ controls the elevation (δ = 1 corresponds to a crossing at q = 0.5). This form was
originally used by Goldstein and Einhorn (1987) as a generalization of Karmarkar
(1978, 1979), although not as a probability weighting function.

This class of probability weighting function is also known as linear-in-log-
odds specification since it is assumed that the log of the weighted odds and the
log probability odds have a linear relationship

ln
(

w(q)
1− w(q)

)
= γ ln

(
q

1− q

)
+ ln δ.

Zhang and Maloney (2012) consider how probabilistic information is used in a
wide variety of cognitive, perceptual, and motor tasks and find that the distortion
of probability in all cases is well-captured as linear transformations of the log
odds of frequency, providing an empirical justification for the use of the linear-in-
log-odds specification.

Rutström (2009), Andreoni and Sprenger (2012b), Andrikogiannopoulou and Papakonstantinou
(2013), and Callen et al. (2014). Prelec (1998) provides an axiomatization of another one-parameter
specification given by w(p) = exp(−(− ln q)γ), which is empirically examined in Wu and Gonza-
lez (1996), Bleichrodt and Pinto (2000), Donkers et al. (2001), Snowberg and Wolfers (2010), Hsu
et al. (2009), Tanaka et al. (2010), and Takahashi et al. (2010).
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Table 5.3: Estimation of Lattimore et al. (1992) probability weighting function.

(1) (2) (3) (4) (5) (6)
Before start Before finish

Timing −600 (s) −60 (s) −40 (s) −20 (s) −10 (s) −5 (s)

γ: Curvature 0.983 0.997 0.959 0.872 0.774 0.685
(0.015) (0.016) (0.014) (0.013) (0.016) (0.020)

δ: Elevation 0.925 0.946 0.938 0.866 0.803 0.784
(0.021) (0.022) (0.016) (0.010) (0.007) (0.008)

# observations 72,078 72,091 72,063 72,068 72,068 72,068
# clusters 8,762 8,764 8,759 8,760 8,760 8,760

p-value (H0: γ = 1) 0.272 0.837 2.70× 10−3 4.20× 10−22 1.01× 10−47 1.73× 10−54

Note: Clustered standard errors in parentheses.

By inverting (5.6), we obtain

q =
1

1 +
(

δ(1− w(q))
w(q)

)1/γ
. (5.7)

We estimate parameters in (5.7) using Nonlinear Least Squares with standard
errors clustered at the race level. We then obtain calibration curves by inverting
back the function (5.7) and plugging estimated γ̂t and δ̂t:

φt(q) =
δ̂tqγ̂t

δ̂tqγ̂t + (1− q)γ̂t
. (5.8)

Here, parameters are indexed by time t to make the timing of implied probabilities
used for estimation explicit.

Table 5.3 presents the estimation results. The first two columns estimate φs
t

for t ∈ {600, 60}. The results indicate that the curvature parameter γ is not sig-
nificantly different from 1 in both cases, indicating non-existence of FLB prior to
races. Furthermore, the relationship between implied probabilities and objective
probabilities are stable in this range of time: three estimated φs

t , t ∈ {600, 60, 10}
are indistinguishable (left panel of Figure 5.5) and γ̂t’s are not significantly differ-
ent from 1 on the entire time interval from 600 seconds until one second before
races start (right panel of Figure 5.5; gray area represents 95% confidence band).

Columns (3) to (6), which present estimated φ
f
t for t ∈ {40, 20, 10, 5} seconds

before races finish, also echo our nonparametric results. Estimated curvatures are
significantly different from 1 in all cases, and as races approach to the finish, the
deviation of γ̂t increases (Figure 5.6).
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Figure 5.5: Estimated calibration curves before races start, φs
t .

0
.2

.4
.6

.8
1

Im
p

lie
d

 p
ro

b
a

b
ili

ty

0 .2 .4 .6 .8 1
Actual probability

−5s −10s

−20s −40s

.6
.7

.8
.9

1
g

a
m

m
a

−40 −30 −20 −10 0
Time to race finish (s)

Figure 5.6: Estimated calibration curves before races finish, φ
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In order to understand potential mechanisms driving those results, we next
estimate the same model while allowing the curvature parameter γ to capture
different characteristics of the races. We specify

γ = γ0 + γX,

where X includes variables such as the number of horses finishing the given race,
overall duration of the race, and pre-race aggregate trading volume. Since there
is no FLB prior to races, we focus on timing before the finish. In this estimation
we stack all observations at t ∈ {40, 20, 10, 5} seconds before finish.

We include three dummies indicating t ∈ {20, 10, 5} as well as number of
finishing horses, total race duration (in seconds), and aggregated pre-race trading
volumes (for each horse separately; in unit of 1,000 GBP). First, inclusion of those
control variables (race duration and pre-race trading volume), do not influence the
direction, magnitude, and significance of the dummies coding for the remaining
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Table 5.4: Structure of curvature.

(1) (2) (3) (4)

δ: Elevation 0.865 0.867 0.867 0.869
(0.007) (0.007) (0.007) (0.007)

γ0: Curvature at t = 40 0.919 0.949 0.930 0.967
(0.021) (0.014) (0.009) (0.024)

γ1: 1{t = 20} −0.049 −0.050 −0.050 −0.049
(0.011) (0.011) (0.011) (0.011)

γ2: 1{t = 10} −0.144 −0.145 −0.143 −0.144
(0.017) (0.017) (0.017) (0.017)

γ3: 1{t = 5} −0.244 −0.245 −0.244 −0.245
(0.022) (0.022) (0.022) (0.022)

γ4: Number of finishing horses 1.57× 10−4 9.04× 10−4

(1.74× 10−3) (1.75× 10−3)

γ5: Race duration (s) −1.92× 10−4 * −1.88× 10−4 *
(7.92× 10−5) (7.97× 10−5)

γ6: Pre-race trading volume (1000 GBP) −8.52× 10−5 * −8.19× 10−5

(4.22× 10−5) (4.25× 10−5)

# observations 28,8267 28,8267 28,8267 28,8267
# clusters 8,760 8,760 8,760 8,760
Notes: Clustered standard errors in parentheses. For γ4, γ5, and γ6, a star indicates p < 0.05.

race time, which validates our previous estimation results (p-values for the null
hypothesis H0: γ0 + γi = 1 as well as H0: γi = 0, i ∈ {1, 2, 3}, are all less than
0.001).

In the in-play betting markets, thinking about multiple assets simultaneously
under extreme time pressure is a cognitively (and operationally) demanding task.
We include number of finishing horses in a given race as an explanatory variable
to capture a potential relationship between FLB and limited attention as well as
partition dependence. However, the estimated γ4 is positive and not significantly
different from 0 (see columns (1) and (4) in Table 5.4). This may imply that number
of finishing horses does not influence the degree of FLB observed right before
races finish per se, but the interpretation needs some caution. In particular, in
this approach we are not distinguishing the number of horses in a given race and
the number of horses “effectively competing” at the moment of our interests, even
though traders stop trading on some horses before races finish when they judge
that those horses have no chance of winning.

Next, we look at the effect of pre-race aggregated trading volume on curvature.
The estimated γ6 is negative but no significantly different from 0 after controlling
for other race characteristics (compare columns (3) and (4) in Table 5.4). The
larger pre-race trading volumes indicate higher liquidity in the markets. Using
Intrade markets on future events, Page and Clemen’s (2013) also find that trading
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volumes do not have a significant effect on calibration. Tetlock (2008) also find
the calibration of TradeSports market prices to event (both financial and sporting)
probabilities does not improve with increases in liquidity. other traders’ knowl-
edge and unwittingly bet against them, which can slow the response of prices to
information.

5.4 Discussion

5.4.1 Magnitude of Estimated Curvature

We find that market-implied probabilities exhibit significant FLB during last 40
seconds of the races and the degree of the bias appears to be increasing as races
approach the finish lines. Those results are evident in the inverse-S shape of the
estimated probability weighting function. Although the curvatures are signifi-
cantly different from 1 in a statistical sense, it is unclear how big the biases are.
Here we compare estimated parameters in our dataset and those in the literature
on experimental and empirical studies of non-expected utility theory.

Table 5.5 lists 17 sets of parameter estimates from 10 different studies (taken
from the online supplementary material for Hsu et al. (2009) and extended by
including more recent studies). Those studies all involve lottery choices, but each
uses different elicitation methodologies, different domains (either gains or losses),
and different estimation techniques. We thus need caution in comparing those
estimates at face values, but it still provides useful information. 13

The estimated curvature γ exhibits heterogeneity across studies, and the me-
dian of those 17 estimates is 0.60. Notice that estimated γ which exhibits the
strongest bias in our dataset, namely, that derived from five seconds prior to goal,
is 0.685 (Table 5.3, column (6)). This means that the curvature of the probability
weighting function in our dataset, even though statistically significant, is much
less pronounced compared to the majority of probability weighting functions es-
timated with lottery choice experiments (see Figure D.4).

We have slightly different picture in field evidence of probability weighting
functions. Jullien and Salanié (2000) estimate several probability weighting func-
tions using 34,443 flat horse race run in the U.K. between 1986 and 1995. They
obtain (γ̂, δ̂) = (0.97, 0.88), which is close to linearity (in fact they cannot reject

13The online supplementary material for van de Kuilen and Wakker (2011) provides an extensive
list of studies both in favor of and against inverse-S shape probability weighting functions, both
under risk and uncertainty.
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Table 5.5: Empirical studies on Lattimore et al. (1992) probability weighting function.

Estimates
Study Domain γ δ

Tversky and Fox (1995) Gains 0.69 0.77
Wu and Gonzalez (1996) Gains 0.68 0.84
Gonzalez and Wu (1999) Gains 0.44 0.77
Abdellaoui (2000) Gains 0.60 0.65
Abdellaoui (2000) Losses 0.65 0.84
Etchart-Vincent (2004) Small stakes Losses 0.84 1.02
Etchart-Vincent (2004) Large stakes Losses 0.85 1.18
Stott (2006) Gains 0.96 1.40
Fehr-Duda et al. (2006) Female Gains 0.47 0.74
Fehr-Duda et al. (2006) Male Gains 0.56 0.88
Fehr-Duda et al. (2006) Female Losses 0.47 1.10
Fehr-Duda et al. (2006) Male Losses 0.57 1.00
Hsu et al. (2009) Gains 0.79 0.80
Booij et al. (2010) Gains 0.62 0.77
Booij et al. (2010) Losses 0.59 1.02
Bruhin et al. (2010) Gains 0.38 0.93
Bruhin et al. (2010) Losses 0.40 0.99

Median All 0.60 0.88
Gains 0.61 0.79

Losses 0.59 1.02

This study 600 (s) before start 0.98 0.93
60 (s) before start 1.00 0.95
40 (s) before finish 0.96 0.94
20 (s) before finish 0.87 0.87
10 (s) before finish 0.77 0.80
5 (s) before finish 0.69 0.78

expected utility). Page and Clemen (2013), the closest to the current study, use
transaction data from 1,883 Intrade markets on future events including both po-
litical and sports markets and obtain (γ̂, δ̂) = (0.80, 0.94). The null hypothesis of
linearity, γ = 1, is rejected at 1% significance level. Feess et al. (2014) use more
than five million fixed-odds bets placed at the New Zealand Racing Board and
find that (γ̂, δ̂) = (0.99, 1.28) for gains and (γ̂, δ̂) = (0.98, 0.81) for losses. They
reject the null hypothesis of linearity thanks to large sample size, but curvature
in the gain domain is not significantly different from that in the loss domain.
Andrikogiannopoulou and Papakonstantinou (2015) use a novel individual-level
trading data from a sports wagering market (their dataset cover 336 randomly
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selected traders over a five-year period). The median of population estimates is
(γ̂, δ̂) = (0.91, 1.17). Those values imply that the probability weighting function
is concave for most probabilities and has a slight inverse-S shape. There are not
many studies investigating calibration of in-play implied probabilities. Hartzmark
and Solomon (2012) is one exception, who obtain (γ̂, δ̂) = (0.76, 0.96) from NFL
in-play betting prices at TradeSports. 14 Taken together, those estimated values
from field dataset are close to our estimates from pre-race implied probabilities
(see Figure D.4).

5.4.2 Explanations for the Favorite-Longshot Bias

A number of theories have been proposed to explain FLB. Ottaviani and Sørensen
(2008) summarize them into seven major categories: (i) misestimation of proba-
bilities, (ii) preference for risk, (iii) heterogeneous beliefs, (iv) market power by
informed bettors, (v) market power by uninformed bookmakers, (vi) limited arbi-
trage by informed bettors, and (vii) timing of bets. Of those, we are particularly
interested in (i), (ii), (iii), and to some extent (vii). We do not cover explanations
based on market power or arbitrage here, primarily because those theories con-
sider an environment with fixed-odds betting, while our data are from a betting
exchange market. 15

Weitzman (1965), who estimates utility function using over 12,000 horse races,
suggests that local risk loving (i.e., convex utility function) is consistent with ob-
served FLB. Quandt (1986) proves that FLB is a necessary condition for equi-
librium in the parimutuel betting market with risk-loving traders. Jullien and
Salanié (2000) later use 34,000 horse races in the U.K. and estimate expected util-
ity model with constant absolute risk aversion (CARA) utility function. Their
estimation result indicates risk loving. Next, they estimate cumulative prospect
theory and find that utility function is convex, probability weighting function for
gains is convex but not significant, and probability weighting function for losses

14Hartzmark and Solomon (2012) relate this finding with the disposition effect, the tendency of
investors to sell stocks trading at a gain relative to purchase price, rather than stocks trading at a
loss (Odean, 1998; Shefrin and Statman, 1985). Their reasoning goes as follows. When the price is
above the pre-game price and there is positive news pushing up the price (including touchdowns
and intercepts), there will be an excess supply, causing short-term negative returns and prices
being pushed below their fundamental value. This will be followed by positive long-term returns
as trading prices return to their true equilibrium probability. They find patterns of apparent
overreaction followed by underreaction that depend on whether the price is above or below the
pre-game price.

15For example, Shin (1991, 1992) explain FLB based on the response of an uninformed book-
maker to insider’s private information.
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is concave, a rejection of expected utility maximization. 16

The earliest explanation for the FLB can be found in Griffith (1949), who ar-
gues that a simple psychology of overestimation of low probabilities can explain
the bias. Using data from 6.4 million horse races started in the U.S. between 1992
and 2001, Snowberg and Wolfers (2010) conduct a crucial test of distinguishing
preference for risk and probability misperceptions. Their innovation is in the use
of the exotic bets (compound lotteries) to differentiate two theories, while most
other studies focus only on the win bets. They find that misperceptions of proba-
bility explain FLB better than preferences for risk.

Ali (1977) proves that FLB can be explained with bettors that are risk-neutral
expected utility maximizers but have heterogeneous risk perceptions and capi-
tal constraints. Based on this idea, Gandhi and Serrano-Padial (2015) show that
differences in agents’ beliefs lead to a pricing pattern consistent with FLB in a
competitive market for Arrow-Debreu securities. Using data from 176,000 U.S.
horse races (and assuming that bettors are risk neutral), they estimate that about
70% of the bettors have roughly correct beliefs and the remaining 30% have dis-
persed beliefs. 17 In a similar spirit, Ottaviani and Sørensen (2015) theoretically
examine how the market price aggregates the bettors’ posterior beliefs and how
the equilibrium price reacts to information that becomes publicly available to all
bettors in the environment with heterogeneous prior beliefs, common knowledge
of information structure, and wealth effects. They find that the price underreacts
to new information, which implies FLB: outcomes favored by the market occur
more often than probability implied by market prices and, conversely, longshots
win less frequently than the price indicates. They further show that wider disper-
sion of beliefs corresponds to more pronounced FLB.

In addition to those relatively standard set of explanations, Ottaviani and
Sørensen (2009, 2010) advance an additional theoretical explanation based on in-
formation and timing of bets in parimutuel markets. In Ottaviani and Sørensen’s
(2009) model, a large number of privately informed bettors who share a common
prior belief take simultaneous positions just before post time (i.e., simultaneous

16Jullien and Salanié (2000) estimate three functional forms for the probability weighting func-
tion, power function, a specification due to Cicchetti and Dubin (1994):

w(q)
1− w(q)

=

(
q

1− q

)γ ( q0

1− q0

)1−γ

,

where γ controls curvature and q0 specifies the crossing point, and the one proposed by Lattimore
et al. (1992). They obtain similar results from all of those specifications.

17Chiappori et al. (2012) estimate heterogeneity in preferences, rather than beliefs, from aggre-
gated betting data.
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Table 5.6: Potential explanations of the evolution of FLB.

In-play
Explanation horse race betting

Misestimation of probabilities ©
Preference for risk ×
Heterogeneous beliefs ×
Timing of bets ×

move game). FLB arises because bettors are not allowed to condition their behav-
ior on the final odds: they are statistically “surprised” ex post, by which favorite
emerges when the results of the simultaneous betting are announced. Bettors
would prefer to bet more on the revealed favorite and cancel bets on the revealed
longshot, but simultaneous-move assumption prohibits them from doing so. Ot-
taviani and Sørensen (2010) extend the analysis and show that the direction and
magnitude of FLB depend on the signal-to-noise ratio of private information in
the market.

What insights do those explanations provide in interpreting our results on the
observed evolution of FLB over time? We informally argue that misperception of
probabilities is the only likely candidate of explanation to our findings (Table 5.6).

First thing to note is that stronger FLB is observed during the last 40 seconds
of the races, the time window in which bettors’ beliefs would become increas-
ingly aligned. Thus, heterogeneous beliefs story a la Ali (1977) and Gandhi and
Serrano-Padial (2015) cannot explain our findings.

Ottaviani and Sørensen (2009, 2010) obtain their results on FLB as an ex-post
“surprise” mainly from the simultaneous-move assumption that implies inability
of changing trades after observing market odds. It is clear that traders in betting
exchanges are clearly not moving simultaneously and are able to make counter-
trades anytime if they wish to do so. Furthermore, information regarding which
horse is currently favored (and which ones are longshots) are continually updated
on the limit-order book, leaving no room for traders to experience “surprise.”
Therefore, this line of explanation is also unlikely to hold.

Preferences for risk is an often-cited explanation for FLB as described above,
but this will not be the full story. Golec and Tamarkin (1998), for example, show
that FLB is in fact consistent with risk averse traders with preferences for skew-
ness. Camerer (1998) points out that anecdotal evidence on bettors’ typical pref-
erence for a “dead heat,” in which two horses finish the race almost exactly tied
(and the track stewards cannot declare a single winner) and people who bet on
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either horse share the total pool of money, suggests that their wagering is not due
to convex utility per se (if they have convex utility, they should prefer to flip a
coin and either win alone or lose than to a dead heat declared).

Furthermore, if we try to explain our findings on the dynamics of FLB using
risk-loving framework, it is required to assume that either (i) bettors become in-
creasingly risk-loving over time or (ii) less risk-loving bettors gradually exit from
the market and only risk-loving ones remain. Further elaboration of data analysis
is necessary, although nontrivial given the aggregated nature of our data, to prove
or disprove this line of explanation.

One fruitful avenue for future analysis is to test if difference in race types
explains our finding on the dynamics of FLB. A maiden race is a race for horses
that have never won before (including those who are racing for the first time)
and a non-maiden race is a race for horses with a racing (and winning) history.
Thus, there is much less information about horses in maiden races as compared
to non-maiden races (Camerer, 1998). This analysis, if we are in fact able to
observe differences, potentially serves as a test discriminating belief-based story
and preference-based story, since the amount of information change beliefs but
not preferences for risk. 18

Misperception of probabilities is a likely explanation to our findings. In par-
ticular, we speculate that an affect-based story proposed by Rottenstreich and
Hsee (2001), who argue that the probability weighting function becomes more
inverse-S shaped for lotteries involving affect-rich than affect-poor outcomes, is a
key driver of the dynamics of FLB. 19 They propose that some outcomes are rel-
atively affect-rich and others are relatively affect-poor, even when the monetary
values associated with those outcomes are controlled. An example of affect-rich
outcomes is a $100 coupon redeemable for payment toward dinner for two at a
fancy French restaurant. They claim that this coupon is likely to evoke relatively
strong emotional reactions compared with a $100 coupon redeemable for payment
toward one’s phone bill.

Horse racing is a particularly affect-rich environment. 20 Wulfert et al. (2005),

18Exploiting this natural variation in race types, Gandhi and Serrano-Padial (2015) in fact ob-
serve that the magnitude of FLB is much more pronounced in maiden compared to non-maiden
races. They do not look at the dynamics, since their data are from parimutuel markets.

19Barberis (2013) points out that “it is interesting to think about the psychological foundations
of probability weighting. Tversky and Kahneman (1992) and Gonzalez and Wu (1999) offer an
interpretation based on the principle of diminishing sensitivity, while Rottenstreich and Hsee
(2001) give an affect-based interpretation. More recently, Bordalo et al. (2012) argue that salience
is an important driver of probability weighting.”

20One source of affective experiences may be “suspense” and “surprise” from dynamics of
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for example, measure experimental subjects’ heart rates while showing them a
videotaped horse race with an exciting neck-to-neck finish. Half of the subjects
bet $1 for a chance of winning $7 if they picked the winning horse while the other
half only predicted the winning horse. They find that subjects with a chance to
win money exhibited greater heart rate elevations and reported more subjective
excitement while watching the race compared with those who did not wager.
Furthermore, Coventry and Norman (1997) find that the average heart rate was
at a peak during the last 30 seconds of the race. Those observations support our
view that increasing affective reactions, especially during the late in the races, are
partly responsible for the observed dynamics of FLB.

One direction for future research is to test this affect-based interpretation di-
rectly, using a controlled laboratory experiment in which subjects make trades in
a short-horizon laboratory prediction market (as in Sonnemann et al., 2013) while
their physiological reactions, such as skin conductance responses, are recorded
(as in Kang et al., 2012).

5.5 Conclusion

We have shown in this study that the betting data from an online exchange ex-
hibit a dynamically increasing pattern of the favorite-longshot bias (FLB). More
precisely, we find that betting odds prior to races provide well-calibrated prob-
abilistic forecasts for winning horses, while market odds exhibit systematic FLB
and the degree of bias increases as races approach to the finish line.

These observations are interesting for following reasons. First, a substantial
amount of evidence in the literature (Table D.1) supports the existence of FLB in
many markets in several countries. Thus, the non-existence of FLB prior to races
in Betfair is somewhat surprising and is implicating the relative efficiency of this
new form of market, online betting exchanges, compared to traditional systems
such as parimutuel betting and bookmakers. Second, an increasing degree of FLB
over time is a new empirical fact in the literature. The availability of “in-play”
betting data makes this analysis possible.

What explanations can we offer? We argue, albeit informally, that our “dy-
namic” FLB is hard to reconcile with many of the leading theories behind the
“static” FLB such as preferences for risk and heterogeneous beliefs. One pos-
sibility is that bettors distort probabilities due to affective reactions. There is

subjective beliefs (Ely et al., 2015).
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an experimental evidence suggesting that the probability weighting function be-
comes more inverse-S shaped for lotteries involving affect-rich than affect-poor
outcomes (Rottenstreich and Hsee, 2001). Further analyses are necessary to vali-
date this line of explanation. For example, comparing the evolution of FLB across
several categories of races (such as competitive versus non-competitive), classified
based on text-mining methods applied to race descriptions on news media, is one
potential approach.

Another possibility is the market environment itself. In this regard, Ottaviani
and Sørensen’s (2015) dynamic market of Arrow-Debreu securities in which infor-
mation arrives to the market sequentially is a good starting point for a theoretical
investigation of behavior in online betting exchanges.
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Appendix A

Appendix to Chapter 2

A.1 Proof of Theorem 3

The proof that GTD rationality is equivalent to SAR-GTD is identical to the result
in Echenique and Saito (2015) with the changes of T to S and {D(t)}t∈T to {µs}s∈S.
In the following, we show the proofs for MTD and TSU.

A.1.1 MTD

The proof that SAR-MTD is equivalent to MTD rationality requires the following
modification of the argument in Echenique and Saito (2015).

To see that SAR-MTD is necessary, let (xki
ti

, xk′i
t′i
)n

i=1 be a sequence under the
conditions of the axiom. We present the proof under the assumption that u is
differentiable, but it is straightforward to use the concavity and the corresponding
monotonicity of the superdifferential of u, as we did in the proof of Theorem 1.
The first-order condition is D(t)u′(xk

t ) = λk pt. Then,

1 ≥
n

∏
i=1

u′(xki
ti
)

u′(x
k′i
t′i
)

=
n

∏
i=1

λki D(t′i)pki
ti

λk′i D(ti)p
k′i
t′i

=
n

∏
i=1

D(t′i)pki
ti

D(ti)p
k′i
t′i

=
n

∏
i=1

D(t′i)
D(ti)

n

∏
i=1

pki
ti

p
k′i
t′i

=
n

∏
i=1

D(t′
π(i))

D(ti)

n

∏
i=1

pki
ti

p
k′i
t′i

.

Since ti ≥ t′
π(i) and D is decreasing it follows that D(t′

π(i))/D(ti) ≥ 1. Therefore

we must have that ∏n
i=1 pki

ti
/pk′i

t′i
≤ 1.

For the proof of sufficiency, consider the setup in the proof of Theorem 1 of
Echenique and Saito (2015). Note that the GTD model is the same as the model of
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subjective expected utility. Let A and B be the matrices as constructed in the proof
of Theorem 1 of Echenique and Saito (2015). We need to add rows to B to reflect
that D(t′) ≥ D(t) when t ≥ t′. To put it precisely, we need an additional row
for each pair t, t′ such that t ≥ t′. In the row, we have −1 in the column of t and
have 1 in the column of t′. Remember in the matrix A, we have a column for each
t ∈ T, as we do for each s ∈ S in Echenique and Saito (2015). In the solution to
the dual, we follow the steps of the proof until we construct a balanced sequence

(xki
ti

, xk′i
t′i
)n

i=1. Such a sequence corresponds to a decomposition of A∗ into pairs of

rows (ri, r′i)
n
i=1 in which ri is original and r′i is converted.

Now consider the column corresponding to t. In the characterization of GTD
(and of SEU), the entries in that column are all zero. For MTD, the entries of B are
no longer all zero in that column. The sum of the rows of A∗+ B∗ equals zero. As
usual we can eliminate pairs of rows of B such that 1t′ − 1t + 1t − 1t′′ = 1t′ − 1t′′ .
So in the matrix B∗ all the entries in the column for t will be of the same sign. Let
us say that they are all −1.

Recall that each row of A is identified with a pair (k, t). If r is a row say that t
appears in row r if there is k such that r is the row associated with (k, t). In A∗ we
may have multiple copies of the same row.

Since the rows of A∗ + B∗ is zero, the number of times that t appears in an
original row minus the number of times that t appears in a converted row equals
the number of rows in B∗ in which t has a −1. Since we have assumed that there
are −1s in the column for t, then there are more original rows in which t appears
than converted rows. Let π(i) be an arbitrary original row, for each converted
row in which t appears. This defines π for all converted rows in which t appears.

There are then original rows in which t appears that are not the image through
π of some converted row. For each such row ρ of A∗ there is some −1 in B∗, as
A∗ + B∗ = 0. Let σ(ρ) be the the row of B∗ with −1.

The construction is the same for columns t′ in which B∗ only has 1. Let σ be
defined in the same way. This defines π for some rows. For the remaining rows,
define π as follows. Let ρ be original, such that t appears in ρ, and t is not in the
image of π. There is t′ in row σ(ρ) with t′ ≤ t (the row σ(ρ) is 1t′ − 1t). There is
a unique converted row ρ′ with σ(ρ) = σ(ρ′), a row in which t′ appears. So let
π(ρ) = ρ′. This defines π for all rows.
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A.1.2 TSU

The proof that SAR-TSU is equivalent to TSU rationality is similar to the proof of
Theorem 1. In the following, we explain the differences.

Lemma 13. Let (xk, pk)K
k=1 be a dataset. The following statements are equivalent:

1. (xk, pk)K
k=1 is TSU rational.

2. There are strictly positive numbers vk
t and λk for t = 0, . . . , T and k = 1, . . . , K,

such that
vk

t = λk pk
t and xk

t > xk′
t =⇒ vk

t ≤ vk′
t .

The proof of Lemma 13 is very similar to the proof of Lemma 1 and omitted.

To see that SAR-TSU is necessary, let (xki
ti

, xk′i
t′i
)n

i=1 be a sequence under the
conditions of the axiom. We present the proof under the assumption that ut is
differentiable, but it is straightforward to use the concavity and the corresponding
monotonicity of the superdifferential of ut, as we did in the proof of Theorem 1.
The first-order condition is u′t(xk

t ) = λk pt. Since ti = t′i for each i, we obtain

1 ≥
n

∏
i=1

u′ti
(xki

ti
)

u′ti
(x

k′i
ti
)
=

n

∏
i=1

λki pki
ti

λk′i p
k′i
ti

=
n

∏
i=1

λki

λk′i

n

∏
i=1

pki
ti

p
k′i
ti

=
n

∏
i=1

pki
ti

p
k′i
ti

,

where the last equality holds because each k appears as k′i the same number of
times it appears as ki.

In the following, we prove the sufficiency. The outline of the proof is the same
as in the proof of Theorem 1.

Lemma 14. Let data (xk, pk)k
k=1 satisfy SAR-TSU. Suppose that log(pk

t ) ∈ Q for all
k and t. Then there are numbers vk

t , λk, β, δ, for t ∈ T and k ∈ K satisfying (2) in
Lemma 13.

Lemma 15. Let data (xk, pk)k
k=1 satisfy SAR-TSU. Then for all positive numbers ε̄, there

exists qk
t ∈ [pk

t − ε̄, pk
t ] for all t ∈ T and k ∈ K such that log qk

t ∈ Q and the dataset
(xk, qk)k

k=1 satisfy SAR-TSU.

Lemma 16. Let data (xk, pk)k
k=1 satisfy SAR-TSU. Then there are numbers vk

t and λk

for all t ∈ T and k ∈ K satisfying (2) in Lemma 13.

Lemma 15 and 16 hold as in the proof for Theorem 1.
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A.1.3 Proof of Lemma 14

We linearize the equation in system (2) of Lemma 13. The result is:

log vt(xk
t )− log λk − log pk

t = 0, (A.1)

xk
t > xk′

t =⇒ log vt(xk
t ) ≤ log vt(xk′

t ). (A.2)

In the system comprised by (A.1) and (A.2), the unknowns are the real numbers
λk and log vk

t for all k = 1, . . . , K and t = 1, . . . , T.
We shall define a matrix A such that there are positive numbers vk

t and λk,
the logs of which satisfy equation (A.1) if and only if there is a solution u ∈
RK×(T+1)+K+1 to the system of equations

A · u = 0,

and for which the last component of u is strictly positive.
Let A be a matrix with K × (T + 1) rows and K × (T + 1) + K + 1 columns.

The matrix A is similar to the matrix A defined in the proof of Theorem 1, only
the difference here is that we no longer have the δ-column. Thus, matrix A looks
as follows:


(1,0) ··· (k,t) ··· (K,T) 1 ··· k ··· K p

...
...

...
...

...
...

...
...

(k,t) 0 · · · 1 · · · 0 0 · · · −1 · · · 0 − log pk
t

...
...

...
...

...
...

...
...

.

Consider the system A · u = 0. If there are numbers solving equation (A.1),
then these define a solution u ∈ RK×(T+1)+K+1 for which the last component is 1.
If, on the other hand, there is a solution u ∈ RK×(T+1)+K+1 to the system A · u = 0
in which the last component is strictly positive, then by dividing through by the
last component of u we obtain numbers that solve equation (A.1).

In the second place, we write the system of inequality (A.2) in matrix form.
Let B be a matrix with K× (T + 1) + K + 1 columns. Define B as follows: one row
for every pair (k, t) and (k′, t) with xk

t > xk′
t ; in the row corresponding to (k, t)

and (k′, t) we have zeroes everywhere with the exception of a −1 in the column
for (k, t) and a 1 in the column for (k′, t).

In the third place, we have a matrix E that captures the requirement that the
last component of a solution be strictly positive. The matrix E has a single row
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and K × (T + 1) + K + 1 columns. It has zeroes everywhere except for 1 in the
last column.

To sum up, there is a solution to system (A.1) and (A.2) if and only if there is a
vector u ∈ RK×(T+1)+K+1 that solves the system of equations and linear inequali-
ties

(S1) : A · u = 0, B · u ≥ 0, E · u� 0.

The entries of A, B, and E are integer numbers, with the exception of the last
column of A. Under the hypothesis of the lemma we are proving, the last column
consists of rational numbers.

By Lemma 4, then, there is such a solution u to S1 if and only if there is no
vector (θ, η, π) that solves the system of equations and linear inequalities

(S2) : θ · A + η · B + π · E = 0, η ≥ 0, π > 0.

In the following, we shall prove that the non-existence of a solution u implies
that the data must violate SAR-TSU. Suppose then that there is no solution u and
let (θ, η, π) be a rational vector as above, solving system S2.

By multiplying (θ, η, π) by any positive integer we obtain new vectors that
solve S2, so we can take (θ, η, π) to be integer vectors.

For convenience, we transform the matrices A and B using θ and η. We now
transform the matrices A and B based on the values of θ and η, as we did in the
proof of Theorem 1. Let us define a matrix A∗ from A and B∗ from B, as we did in
the proof of Theorem 1. We can prove the same claims (i.e., Claims 2, 3, 4, 5, and 6)
as in the proof of Theorem 1. The proofs are the same and omitted. In particular,

we can show that there exists a sequence of pairs (xki
ti

, xk′i
t′i
)n∗

i=1 that satisfies (1) in

SAR-TSU. Moreover, by the definition of B matrix, we have ti = t′i because in
matrix B we have z >i z′ if there exist t ∈ T and k, k′ ∈ T such that there exist
xk

t = z and xk′
t = z′. Moreover, as in Claim 7, we can show that in the sequence

(xki
ti

, xk′i
t′i
)n∗

i=1, each k appears ki the same number of times it appears as k′i. Finally,

we can show that ∏n∗
i=1 pki

ti
/pk′i

t′i
> 1, which finishes the proof of Lemma 14 as the

sequence (xki
ti

, xk′i
t′i
)n∗

i=1 would then exhibit a violation of SAR-TSU. The proof is the
same as in the proof of Theorem 1 and omitted.
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A.2 Implementing Revealed Preference Tests

This section presents a method to implement the revealed preference tests for time
discounting models using Matlab R2014b (MathWorks). We use Andreoni and
Sprenger’s (2012a) experimental choice data as the model case, but our method is
applicable to other empirical/experimental data sets.

Dataset. Subjects in the Andreoni and Sprenger’s (2012a) experiment completed
45 intertemporal decisions with varying starting dates τ, delay lengths d, and
gross interest rates aτ+d/aτ and, in particular, they complete 5 decision problems
for each pair of (τ, d). See Figure A.1 for an illustration of budgets. For each
subject, the decision in every trial is characterized by a tuple (τ, d, aτ, aτ+d, cτ)

where cτ is the number of tokens allocated to sooner payment.
The following figure illustrates the budgets faced by the subjects in AS’s ex-

periment, fixing one time frame at (τ, d).

5 10 15 20

5

10

15

20

25

sooner $

later $

Figure A.1: An illustration of the CTB design in Andreoni and Sprenger (2012a). Budget
sets are represented in blue lines, fixing one time frame at (τ, d) = (0, 35).

In order to rewrite our data in price-consumption format as in the theory,
we set prices pτ = 1 + r = aτ+d/aτ and pτ+d = 1 (normalization), and define
consumptions xτ = cτ · aτ and xτ+d = (100− cτ) · aτ+d. This gives us a dataset
(xk, pk)45

k=1.
As we explained in Section 2.5, we implicitly set prices of consumption in

periods that were not offered to a subject as very high in order to ensure that
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consumption is zero. The idea is as follows. Think of EDU for concreteness. We
use first-order conditions, so that we are looking for a rationalizing u and δ such
that δtu′(xk

t ) = λk pk
t if xk

t > 0 and δtu′(xk
t ) ≤ λk pk

t if xk
t = 0. In setting up such a

system of equations we can ignore the t that was not offered to the agents in trial
k. Then whatever u we construct will have a finite derivative u′(0). Therefore,
we can set pk

t to be high enough so that the agent finds it optimal to consume
xk

t = 0. By this argument it is clear that one can ignore the (zero) consumption
in the periods that were not offered in trial k, as we think of consumption in
those periods as prohibitively expensive. This is of course consistent with the fact
that AS did not offer subjects any consumption in those periods; consumption
in those periods is infeasible. The set of time periods we are looking at is thus
T = {0, 7, 35, 42, 70, 77, 98, 105, 133}.

We are able to check whether a given dataset is consistent with TSU, GTD,
MTD, QHD, PQHD, or EDU, by solving the corresponding linear programming
problem. The construction of linear programming problems closely follows the
argument in the proofs of Theorems 1, 2, and 3. In particular, the key to this
procedure is to set up a system of linear inequalities of the form:

S :


A · u = 0

B · u ≥ 0

E · u > 0

,

which, in the case of EDU for example, is a matrix form of the linearized system:

log v(xk
t ) + t log δ− log λk − log pk

t = 0,

x > x′ =⇒ log v(x′) ≥ log v(x),

log δ ≤ 0.

A system of linear inequalities. We now construct three key ingredients of the
system, matrices A, B, and E, starting from those necessary for testing EDU. The
first matrix A looks as follows:


(1,0) ··· (k,t) ··· (45,133) δ 1 ··· k ··· 45 p

...
...

...
...

...
...

...
...

...
(k,t) 0 · · · 1 · · · 0 t 0 · · · −1 · · · 0 − log pk

t
...

...
...

...
...

...
...

...
...

.



131

Since we can ignore the t that was not offered to the agents in trial k, the matrix has
45× 2 = 90 rows and 45× 2+ 1+ 45+ 1 = 137 columns. In the row corresponding
to (k, t) the matrix has zeroes everywhere with the following exceptions: it has a
1 in the column for (k, t), it has a t in the δ column, it has a −1 in the column for
k, and − log pk

t in the very last column. This finalizes the construction of A.
Next, we construct matrix B that has 137 columns and there is one row for

every pair (k, t) and (k′, t′) with xk
t > xk′

t′ . In the row corresponding to (k, t) and
(k′, t′) we have zeroes everywhere with the exception of a −1 in the column for
(k, t) and a 1 in the column for (k′, t′). Finally, in the last row, we have zeroes
everywhere with the exception of a −1 at 91st column. We shall refer to this last
row as the δ-row.

Finally, we prepare a matrix that captures the requirement that the last com-
ponent of a solution be strictly positive. The matrix E has a single row and 137
columns. It has zeroes everywhere except for 1 in the last column.

Constructing matrices for other tests. In order to test models other than EDU,
we need to modify matrices A, B, and E appropriately.

For the QHD test, we insert another column capturing the present/future bias
parameter β, which we shall refer to the β-column. Therefore, three matrices A,
B, and E have 45× 2 + 1 + 1 + 45 + 1 = 138 columns. In the row corresponding
to (k, t) of the matrix A, the β-column has a 1 if t > 0 and a 0 if t = 0, indicating
“now” or “future”.



(1,0) ··· (k,t) (k,t′) ··· (45,133) β δ 1 ··· k ··· K p
...

...
...

...
...

...
...

...
...

...
...

(k,t=0) 0 · · · 1 0 · · · 0 0 t 0 · · · −1 · · · 0 − log pk
t

(k,t′>0) 0 · · · 0 1 · · · 0 1 t′ 0 · · · −1 · · · 0 − log pk
t′

...
...

...
...

...
...

...
...

...
...

...

 .

The construction of matrix B for testing general QHD is the same as above (al-
though the size is now different). For the PQHD test, we add the β-row which
has zeroes everywhere except −1 in the β-column to capture β ≤ 1.

For the MTD and GTD tests, we have 9 columns capturing time-varying dis-
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count factors D(t)’s:


(1,0) ··· x̃` ··· (45,133) ··· D(t) ··· 1 ··· k ··· 45 p

...
... . . . ... . . . ... . . . ... . . . ... . . . ... . . . ...

...
(k,t) 0 · · · 1 · · · 0 · · · 1 · · · 0 · · · −1 · · · 0 − log pk

t
...

... . . . ... . . . ... . . . ... . . . ... . . . ... . . . ...
...

 .

In the matrix B, we add rows


(1,0) ··· (k,t) ··· (45,133) ··· D(t) D(t+1) ··· 1 ··· k ··· 45 p

... . . . ... . . . ... . . . ...
... . . . ... . . . ... . . . ...

...
0 · · · 0 · · · 0 · · · 1 −1 · · · 0 · · · 0 · · · 0 0
... . . . ... . . . ... . . . ...

... . . . ... . . . ... . . . ...
...


in testing MTD to impose the monotonicity restriction on D(t)’s.

The matrix A for testing TSU is similar to that appears in testing EDU. The
difference is that we no longer have the δ-column:


(1,0) ··· (k,t) ··· (K,T) 1 ··· k ··· K p

...
...

...
...

...
...

...
...

(k,t) 0 · · · 1 · · · 0 0 · · · −1 · · · 0 − log pk
t

...
...

...
...

...
...

...
...

.

Next, we construct B as follows: one row for every pair (k, t) and (k′, t) with
xk

t > xk′
t ; in the row corresponding to (k, t) and (k′, t) we have zeroes everywhere

with the exception of a −1 in the column for (k, t) and a 1 in the column for (k′, t).

Solve the system. Our task is to check if there is a vector u that solves the
following system of linear inequalities corresponding to a model M

SM :


A · u = 0

B · u ≥ 0

E · u > 0

.

If there is a solution u to this system, we say that the dataset is M rational.
We use the function linprog in the Optimization Toolbox of Matlab to find a

solution. More precisely, we translate the systems of linear inequalities SM into



133

constraints in a linear programming problem and solve

LPM :


min z · u
s.t. A · u = 0

−B · u ≤ 0

−E · u < 0

,

where z is a zero vector.
It is not possible, however, to specify strict inequality constraints in linprog.

As an alternative, we find a solution u that has 1 in the last element, i.e., up = 1.
In other words, we solve a normalized version of the problem,

LP′M :


min z · u
s.t. A · u = 0

−B · u ≤ 0

up = 1

,

where z is a zero vector as above. Here, the constraint E · u > 0 is omitted since it
is automatically satisfied by our normalization up = 1.

If the given dataset is EDU rational, we can recover upper and lower bounds
of the daily discount factor consistent with the observed choice data. Remember
that we include the δ-row in B. The constraint B · u ≥ 0 then implies that the 91st
element of any solution u∗ of LP′M, called u∗δ , captures the daily discount factor.
To be more precise, we can recover the daily discount factor δ by exp(u∗δ) since
we normalize u∗p to be 1. Therefore, a solution (if any) of LP′M in which the 91st
element of z is 1 and 0 elsewhere suggests an lower bound of δ and a solution
(if any) of LP′M in which the 91st element of z is −1 and 0 elsewhere suggests an
upper bound of δ. In a similar manner, we can recover bounds of present/future
biasedness β.

A.3 Ground Truth Analysis: Test Performance and
Parameter Recovery

We assess the basic performance of our revealed preference tests using simulated
choices. As in Andreoni and Sprenger (2012a), we assume a decision maker has a
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utility function (CRRA with quasi-hyperbolic discounting) of the form:

U(x0, . . . , xT) =
1
α

xα
0 + β ∑

t∈T\{0}

1
α

δtxα
t .

We simulate synthetic subjects’ choice data in Andreoni and Sprenger’s (2012a)
environment (i.e., time frames and budgets are identical to those actual subjects
faced in their experiment) under all combinations of parameters

α ∈ {0.8, 0.82, . . . , 1}, δ ∈ {0.95, 0.951, . . . , 1}, β ∈ {0.8, 0.82, . . . , 1.2},

resulting the total of 11,781 such synthetic subjects. We then perform our revealed
preference tests, in particular, tests for EDU and QHD rationality, and ask follow-
ing questions: (i) do our tests correctly identify EDU or QHD rational datasets?,
and (ii) can our tests recover “true” underlying model parameters?

A few remarks are in order. (1) For some parameter specifications, it is possible
that the slope of (linear) indifference curves coincide with those of budget lines.
This happens 21 times when (α, δ) = (1, 1). 1 If the slope of indifference curve
coincides with the budget line (i.e., every point on the budget yields the same level
of utility), we randomly pick one point from the budget as the optimal choice as
a tie-breaking rule. (2) In order to avoid the rounding issue in Matlab, we treat
numbers less than 10−10 to be 0. In other words, if the predicted allocation is
sufficiently close to a corner, we treat it as a corner choice. (3) Unlike Andreoni
and Sprenger’s (2012a) original experiment where subjects made choices from
“discrete” budget sets by allocating 100 tokens, we allow simulated choices to
be at any point on the continuous budget lines. We also prepare another set of
simulated choices (with the same set of parameters) which mimic behavior of
the Andreoni and Sprenger’s (2012a) experimental subjects for the purpose of
comparison.

Test results. The results are presented in Table A.1. We first look at our baseline
simulation in which choices were made from continuous budget sets. Of the
11,781 synthetic subjects, 3,950 (33.5%) passed the EDU test and 11,781 (100.0%)
passed the QHD test.

1For example, consider the case when (α, δ, β) = (1, 1, 0.8) and (1, 1, 0.9). Since the utility
function has the form xτ + βxτ+d when τ = 0, indifference curve coincides with budget line when
prices are 1.11 or 1.25. Another possibility is in the time frame (τ, d) = (7, 70), where the price of
1 (tokens allocated to sooner and later payments have the same exchange rate) is offered. In this
case, indifference curve coincides with budget line as long as (α, δ) = (1, 1).
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Table A.1: Test results using simulated choice data from continuous budgets (top panel)
and discrete budgets (bottom panel).

Parameters
α = 1 α < 1 α < 1

Continuous budget β = 1 β 6= 1 Total

No interior choice 1,050 38 700 1,788
Pass EDU 939 510 2,501 3950
Pass QHD 1,071 510 10,200 11,781

Sample size 1,071 510 10,200 11,781

Parameters
α = 1 α < 1 α < 1

Discrete budget β = 1 β 6= 1 Total

No interior choice 1,050 252 4,746 6,048
Pass EDU 939 510 6,913 8,362
Pass QHD 1,071 510 8,319 9,900

Sample size 1,071 510 10,200 11,781

We then split the sample into three groups. The first group of subjects have
the linear utility function (α = 1). They made no interior choices (except for
the knife edge case described above), and 939 of them passed the EDU test. The
second group of subjects have nonlinear utility and no present/future bias (α < 1,
β = 1). They all passed the EDU test (and hence the QHD test, too), as expected.
The third group of subjects have nonlinear utility and present/future bias (α < 1,
β 6= 1). We find that 2,501 of them passed the EDU test, even though their
underlying preferences were strictly present/future biased.

The bottom panel of Table A.1 presents the results with simulated data when
choices are assumed to be on the discrete points on the budget lines. As one can
imagine, the number of synthetic subjects who make no interior choices increases
and accordingly the pass rate for the EDU test increases from 33.5% to 71.0%. We
also find that “perturbations” induced by discretization of budget sets is powerful
enough for some of the subjects to become QHD non-rational.

Parameter recovery. Next we investigate how precise we can recover underlying
preference parameters using our revealed preference tests. Remember that the
revealed preference tests boil down to linear programming problems. As we
describe in Section A.2, we can find bounds of daily discount factor δ or present-
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biasedness β, which can be used to rationalize the observed choice data.
In this exercise we restrict our attention to the case of choices from continuous

budgets.

1. We look at subset of synthetic subjects who have non-linear instantaneous
utility (α < 1), no present/future bias (β = 1), and pass the EDU test.
We exclude synthetic subjects who make no interior allocation from this
sample. There are 510 subjects in this category. Of those, 304 have (0, δ̄i] for
some δ̄i < 1, 10 have [δi, 1] for some δi > 0, and 196 have [δi, δ̄i] for some
combination of δ̄i < 1 and δi > 0. Furthermore, within the last category
of subjects, the true underlying discount factors are always covered by the
ranges [δi, δ̄i]. See Figure A.2, left panel.

2. We focus on those who have non-linear instantaneous utility (α < 1), present
or future bias (β 6= 1), and pass the QHD test. We exclude synthetic subjects
who make no interior allocation from this sample. There are 10,200 subjects
in this category. Of those, 9,737 have (0, δ̄i] for some δ̄i < 1, 43 have [δi, 1] for
some δi > 0, and 420 have [δi, δ̄i] for some combination of δ̄i < 1 and δi > 0.
Within the last category of subjects, the true underlying discount factors are
covered by the ranges [δi, δ̄i] in 362 cases (86.2%). See Figure A.2, right panel.
Next we turn to present bias. Of a total 10,200 in this sample, 700 have (0, ∞)

(i.e., any value is possible), 76 have (0, β̄i] for some β̄i > 0, 60 have [β
i
, ∞)

for some β
i
> 0, and 9,364 have [β

i
, β̄i] for some combination of β̄i, β

i
> 0.

Within the last category of subjects, the true underlying present biases are
covered by the ranges [β

i
, β̄i] in 9,354 cases (99.9%). See Figure A.3.
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Figure A.2: Upper and lower bounds of daily discount factor implied by the revealed
preference test. Each synthetic subject has one pair of a blue circle (upper bound) and
a red circle (lower bound). (Left) The sample is 196 synthetic subjects who (i) have non-
linear utility (α < 1) and no present/future bias (β = 1), (ii) pass the EDU test, and (iii)
have recovered range [δi, δ̄i] with δi > 0 and δ̄i < 1. (Right) The sample is 420 synthetic
subjects who (i) have non-linear utility (α < 1) and present/future bias (β 6= 1) and
(iii) have recovered range [δi, δ̄i] with δi > 0 and δ̄i < 1. The dotted line represents the
45-degree line.
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Figure A.3: Upper and lower bounds of present/future biasedness implied by the re-
vealed preference test. Each synthetic subject has one pair of a blue circle (upper bound)
and a red circle (lower bound). The sample is 9,364 synthetic subjects who (i) have non-
linear utility (α < 1) and present/future bias (β 6= 1), (ii) pass the QHD test, and (iv) have
recovered range [β

i
, β̄i] with β

i
, β̄i > 0. The dotted line represents the 45-degree line.
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A.4 Additional Results from Empirical Application

In this section we provide additional results supporting the argument in Section
2.5.2 where we compare AS’s parametric estimation of a QHD model and results
from our nonparametric revealed preference tests and present our measure of
distance from M rationality.

Remember that AS estimate the per-period discount factor, present bias, and
utility curvature assuming a QHD model with CRRA utility over money:

U(x0, . . . , xT) =
1
α

xα
0 + β ∑

t∈T\{0}
δt 1

α
xα

t .

Here we focus on AS’s individual level nonlinear least squares (NLS) estimation.
We classify subjects in two groups, those who violate and those who satisfy

EDU based on the revealed preference tests. Panels (A)-(C) of Figure A.4 present
empirical cumulative distribution functions (CDFs) for the estimated preference
parameters in the EDU rational and EDU non-rational groups. Similarly, panels
(D)-(F) compare properties of individual’s choices (e.g., proportion of interior
choices) for the same two groups of subjects.

The figure shows how our test is consistent with AS’s estimates. Consider
panel (B). The CDF for EDU rational subjects concentrates a large mass at β = 1.
The non-EDU group has no such jump in mass at β = 1, and instead exhibits
a substantial fraction of subjects with estimated β different from 1. The CDF
for EDU-rational subjects is significantly different from the CDF for EDU non-
rational subjects: the null hypothesis of equality-of-distribution is rejected by the
two-sample Kolmogorov-Smirnov test (p < 0.01).

Figure A.4 panel (B) also shows that subjects who fail our EDU test have esti-
mates of β that differ clearly from 1. An OLS regression of the absolute difference
between estimated present bias and 1, |β̂ − 1|, on a dummy variable for EDU
rationality (takes 1 if that subject fails the EDU test) reveals that β̂ for EDU non-
rational subjects is further away from 1 compared to EDU rational subjects (Table
A.2, column 1). A similar result holds for subjects who are not EDU rational but
TSU rational and those who are not TSU rational (Table A.2, column 2).

However, β 6= 1 is not immediately translated into evidence for present or
future bias. As we have shown above, most of the subjects who fail the EDU test
also fail the QHD test (no additional subject passes the test for PQHD, and most
of the subjects who failed EDU even fail MTD). In this sense, the interpretation of
estimated β for EDU non-rational subjects in Figure A.4 panel (B) requires some
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Figure A.4: Empirical CDFs for preference parameters and properties of choices. Panels
(A)-(C) include 86 subjects whose preference parameters are estimable. Panels (D)-(F)
include all 97 subjects.

caution. The model is arguably misspecified for such subjects.
One of the advantages of our revealed preference tests is that we can go beyond
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Table A.2: OLS regression of |β̂− 1| on rationality dummies.

(1) (2)

nonEDU 0.046 ***
(0.007)

TSU\EDU 0.055 ***
(0.019)

nonTSU 0.043 ***
(0.007)

Constant 0.002 ** 0.002 **
(0.001) (0.001)

R2 0.139 0.147
# Obs. 86 86

Notes: nonEDU is a dummy for subjects who fail the EDU test, TSU\EDU is a dummy
for those who fail the EDU test but pass the TSU test, and nonTSU is a dummy for those
who pass the TSU test. Robust standard errors are reported in parentheses. Level of
significance. ∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.10.

the class of QHD utility function by weakening the restrictions in the relevant
revealed preference axioms.

Consider Figure 2.2 again. It is interesting to note that the estimated values
of β̂ for subjects who fail our EDU test are symmetrically distributed around 1.2

The “average” subject looks, in some sense, as an EDU agent, even though the
majority of subjects are not consistent with that model according to our test. It is
therefore possible that AS’s finding in favor of EDU in their aggregate preference
estimation reflects the choice behavior of such an average subject.

A.4.1 Estimated Daily Discount Factors

As in Figure 2.2 where we show AS’s estimated present-bias parameter β̂ for each
class of rationality, Figure A.5 demonstrates the similar comparison for the case
of AS’s estimated daily discount factor δ̂. The subjects who pass the EDU test
have estimated δ̂ very close to 1 (many of them have δ̂ = 0.9997). The subjects
who do not pass any of the tests (i.e., TSU non-rational subjects) have estimated
δ̂ which are far from 1 in magnitude compared to the other groups of subjects.

2We test symmetry using the two-sample Kolmogorov-Smirnov (K-S) test. We first sort es-
timated β̂ in an ascending order, calculate |β̂ − 1|, and split them into the first half (smaller β̂)
and the last half (larger β̂). We apply K-S test for equality of distribution for those two empirical
distributions of |β̂− 1|. The null hypothesis of equal distribution is not rejected (p = 0.132).
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Figure A.5: Estimated daily discount factor for each category of subjects.

Furthermore, those who have δ̂ > 1 are all in this category.

A.4.2 Parameter Recovery

As we described in Section A.2, we can find bounds of daily discount factor δ or
present-biasedness β, which can rationalize the observed choice data.

Table A.3 lists bounds of discount factor (together with estimated values pro-
vided by AS) for 29 EDU rational subjects, and Table A.4 lists bounds of present-
biasedness for the same 29 QHD rational subjects.
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Table A.3: Recovered bounds for daily discount factor (29 EDU rational subjects).

Upper bound Lower bound AS estimates

0.9899 0.0000 0.6951
0.9899 0.0000 N.A.
0.9985 0.9985 0.9985
0.9993 0.9993 0.9994
1.0000 0.9995 0.9997
1.0000 0.9995 0.9997
1.0000 0.9995 0.9997
1.0000 0.9995 0.9997
1.0000 0.9995 0.9997
1.0000 0.9995 0.9997
1.0000 0.9995 0.9997
1.0000 0.9995 0.9997
1.0000 0.9995 0.9997
1.0000 0.9995 0.9997
1.0000 0.9995 0.9997
1.0000 0.9995 0.9997
1.0000 0.9995 0.9997
1.0000 0.9995 0.9997
1.0000 0.9995 0.9997
1.0000 0.9995 0.9997
1.0000 0.9995 0.9997
1.0000 0.9995 0.9997
1.0000 0.9995 0.9997
1.0000 0.9997 1.0000
1.0000 1.0000 0.9981
1.0000 1.0000 0.9989
1.0000 1.0000 0.9997
1.0000 1.0000 1.0000
1.0000 1.0000 1.1118
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Table A.4: Recovered bounds for present-biasedness (29 QHD rational subjects).

Upper bound Lower bound AS estimates

1.0000 0.9676 0.9788
1.0000 0.9972 0.9986
1.3194 0.9500 1.0139

∞ 0.9500 0.9856
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0011
∞ 0.9500 1.0030
∞ 0.9500 1.0030
∞ 0.9500 1.0781
∞ 0 N.A.
∞ 0 N.A.
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A.5 Implementing Minimum Price Perturbation Test

We describe details on calculation of the distance measure based on minimum
price perturbation. Here we focus only on the case of EDU.

Let Dtrue = (qk, xk)K
k=1 denote a “true” dataset and Dobs = (pk, xk)K

k=1 denote
an “observed” dataset. The true and observed datasets are connected by the
relationship qk

t = pk
t εk

t for all t = 0, . . . , T and k = 1, . . . K, where εk
t > 0 is a

random variable.
Let H0 and H1 denote the null hypothesis that the true dataset Dtrue is EDU

rational and the alternative hypothesis that Dtrue is not EDU rational. Consider a
test statistic, which is the solution to the following optimization problem given a
dataset Dobs = (pk, xk)K

k=1:

min
(δ,vk

t ,λk,εk
t )t,k

K

∑
k=1

T

∑
t=0

1
K(T + 1)

∣∣∣log εk
t

∣∣∣
s.t. t log δ + log vk

t − log λk − log pk
t − log εk

t = 0 (?)

xk
t > xk′

t′ =⇒ log vk
t ≤ log vk′

t′ .

Under the null hypothesis, the true dataset Dtrue = (qk, xk)K
k=1 is EDU rational.

Lemma 1 then implies that there exist strictly positive numbers δ̃, ṽk
t , and λ̃k for

t = 0, . . . , T and k = 1, . . . , K such that

t log δ̃ + log ṽk
t − log λ̃k − log qk

t = 0 and xk
t > xk′

t′ =⇒ log ṽk
t ≤ log ṽk′

t′ .

Substituting the relationship qk
t = pk

t εk
t for all t = 0, . . . , T and k = 1, . . . K yields

t log δ̃ + log ṽk
t − log λ̃k − log pk

t = log εk
t and xk

t > xk′
t′ =⇒ log ṽk

t ≤ log ṽk′
t′ ,

which implies that the tuple (δ̃, ṽk
t , λ̃k, εk

t)t,k satisfies the constraint in problem
(?) but not necessarily the one that minimizes the objective function. Letting
Φ∗
(
(pk, xk)K

k=1

)
denote the optimal value of the problem (?), we have

Φ∗
(
(pk, xk)K

k=1

)
≤

K

∑
k=1

T

∑
t=0

1
K(T + 1)

∣∣∣log εk
t

∣∣∣ = Φ̂
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under the null hypothesis. Then, we can construct a test as follows:
reject H0 if

∫ ∞

Φ∗((pk,xk)K
k=1)

fΦ̂(z)dz < α

accept H0 otherwise
,

where α is the size of the test and fΦ̂ is the pdf of the distribution of Φ̂ =

∑k,t | log εk
t |/(K(T + 1)). Given a nominal size α, we can find a critical value Cα

satisfying P(Φ̂ > Cα) = α; we set Cα = F−1
Φ̂

(1− α), where FΦ̂ denotes the cumula-

tive distribution function of Φ̂. However, because Φ∗
(
(pk, xk)K

k=1

)
≤ Φ̂, the “true

size” of the test is P(Φ∗ > Cα) ≤ P(Φ̂ > Cα) = α.
Given an observed dataset Dobs = (pk, xk)K

k=1, we solve the optimization prob-
lem (?) using fmincon function in Matlab. We set up a problem

min g(z)

s.t. A · z = 0

B · z ≥ 0

E · z > 0

to run the function. We now construct three key ingredients of the problem,
matrices A, B, and E, focusing on the case of EDU model.

The first matrix A has K × (T + 1) rows and K × (T + 1) + 1 + K + 1 + K ×
(T + 1) columns, defined as follows: we have one row for every pair (k, t), two
columns (for log vk

t and log εk
t) for every pair (k, t), one column for δ, one column

for each k, and one column for p. In the row corresponding to (k, t) the matrix
has zeroes everywhere with the following exceptions: it has a 1 in the column
for log vk

t , it has t in the column for δ, it has a −1 in the column for k, − log pk
t

in the column for p, and it has a −1 in the column for log εk
t . This finalizes the

construction of A. The resulting matrix looks as follows:


(1,0) ··· (k,t) ··· (K,T) δ 1 ··· k ··· 45 p (1,0) ··· (k,t) ··· (K,T)

...
...

...
...

...
...

...
...

...
...

...
...

(k,t) 0 · · · 1 · · · 0 t 0 · · · −1 · · · 0 − log pk
t 0 · · · −1 · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

 .

Next, we construct matrix B that has K × (T + 1) + 1 + K + 1 + K × (T + 1)
columns and there is one row for every pair (k, t) and (k′, t′) for which xk

t > xk′
t′ . In
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the row corresponding to xk
t > xk′

t′ we have zeroes everywhere with the exception
of a −1 in the column for (k, t) and a 1 in the column for (k′, t′).

Finally, we prepare a matrix that captures the requirement that the last com-
ponent of a solution be strictly positive. The matrix E has a single row and
K× (T + 1) + 1 + K + 1 + K× (T + 1) columns. It has zeroes everywhere except
for 1 in the column for p.

Consider the system of linear equalities and inequalities
A · z = 0

B · z ≥ 0

E · z > 0

.

If there is a solution z to the system, then by dividing through by the K × (T +

1) + 1 + K + 1-th component of z, we obtain numbers (δ, vk
t , λk, εk

t)t,k that satisfy
the constraints in the problem (?).

A.6 Distance Measure Based on Maximal Subset: A
Robustness Check

In Section 2.5.2, we introduce a measure to characterize the distance from a given
dataset to rationality, be it EDU, QHD, and so on. The ideal method for obtaining
such a measure is to check all the possible sequences of dropping observations,
starting from dropping one observation, until we can find a largest subdata that
pass the test. However, exhaustive checking is computationally extremely chal-
lenging. Therefore, we take an alternative approach: randomly drop observations
and iterate this procedure. We demonstrate that the distance measure obtained
by our approach does not depend on the random procedure heavily.

We prepare three different sets of distance measures, each of which is obtained
from 10,000 iterations, for each distance measure d′EDU, d′QHD, and d′TSU. As we
see in Figure A.6, three sets result in statistically indistinguishable distributions of
distance measures: the null hypothesis of equal distribution is not rejected at all
conventional levels in the two-sample Kolmogorov-Smirnov test. For the analyses
in Section 2.5.2, we merge three sets and take the shortest path from the total of
30,000 iterations.
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Figure A.6: Comparing the distance measures obtained from three sets of 10,000 itera-
tions.

A.7 Jittering: Perturbing Choices

We demonstrate robustness of revealed preference tests to small perturbation in
underlying preferences in Section 2.5.2. Here, instead of perturbing preference
parameters, we add jitters on choices predicted by a QHD model with a fixed set
of parameters.3

Assume a QHD model

U(x0, . . . , xT) =
1
α

xα
0 + β ∑

t∈T\{0}
δt 1

α
xα

t

as in AS. For each budget in the AS experiment (there are 45 of those), the model
predicts demand for sooner payment, x(p, τ, d; α, δ, β). We then add “jitters” to
these predicted demands so that we observe x̂(p, τ, d; α, δ, β, σ) = x(p, τ, d; α, δ, β)+

3Andreoni et al. (2013) introduce and discuss this way of assessing the goodness-of-fit in the
context of revealed preference tests, which they call the jittering measure.
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ε. Jitters are assumed to be drawn from a normal distribution, but we ensure that
the jittered demand x̂(p, τ, d)’s are on the budget line. In other words, jitters are
drawn from a truncated normal distribution. 4

In this exercise, we take parameters from AS aggregate estimates: α = 0.897,
δ = 0.999. For the present bias parameter, we take AS aggregate estimate β =

1.007 together with other “reasonable” values such as 0.974 (aggregate estimate
from Augenblick et al., 2015), 0.995, 1, and 1.05. As for standard deviation of the
normal distribution, we use σ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}.

For each set of parameters and standard deviation of white noise (α, δ, β, σ), we
simulate 1,000 sets of observations {x̂(pb, τb, db; α, δ, β, σ)}45

b=1. We then perform
our EDU and QHD tests.

Table A.5 reports pass rates for the QHD test for each set of parameters and
standard deviation. When the standard deviation is σ = 0.001, the simulated
dataset always pass the QHD test. As the standard deviation increases, pass rates
decrease at the speed depending on the parameter configuration.5

Table A.6 reports the same statistics for the EDU test. A notable feature in this
simulation is that the dataset generated by non-EDU preferences (i.e., β = 0.995
and 1.007) pass the EDU test in many occasions. As in the case of the QHD test,
pass rates decrease at the speed depending on the parameter configuration.

This exercise has demonstrated that our revealed preference tests detect irreg-
ularities induced by white noise, but we cannot provide a definitive answer to
whether the degree of irregularities necessary to violate EDU/QHD rationality is
big or small (in other words, how sensitive our tests are) because we do not have
a clear benchmark to compare with.

AS provide standard error of NLS error in the aggregate estimate (correspond-
ing to parameter set #4), which is 6.13.

Alternatively, one can use variations observed in the actual experimental data
to compare with standard deviations used in this exercise. Let xi(pb, τb, db) denote
subject i’s demand for sooner payment in budget b. Then, we calculate the root
mean squared error (RMSE)

vi =

√√√√ 1
45

45

∑
b=1

(
xi(pb, τb, db)− x(pb, τb, db; α, δ, β)

)2

4Andreoni et al. (2013) note that “truncating is known to bias the frequency of corner solutions
downward”. An alternative approach is “censoring,” which would have a bias in the opposite
direction.

5We also confirm that predicted choices indeed pass the QHD test in the absence of jittering
(4th column in the table).
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Table A.5: QHD test pass rates.

Parameters Standard deviation (σ)

# α δ β 0 0.001 0.005 0.010 0.050 0.100 0.500 1.000

1 0.897 0.999 0.974 1.00 1.00 0.99 0.83 0.21 0.02 0.00 0.00
2 0.897 0.999 0.995 1.00 1.00 1.00 1.00 0.47 0.16 0.00 0.00
3 0.897 0.999 1.000 1.00 1.00 1.00 1.00 0.46 0.18 0.00 0.00
4 0.897 0.999 1.007 1.00 1.00 1.00 0.98 0.30 0.10 0.00 0.00
5 0.897 0.999 1.050 1.00 1.00 1.00 0.92 0.23 0.05 0.00 0.00

Table A.6: EDU test pass rates.

Parameters Standard deviation (σ)

# α δ β 0 0.001 0.005 0.010 0.050 0.100 0.500 1.000

1 0.897 0.999 0.974 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.897 0.999 0.995 1.00 1.00 1.00 1.00 0.47 0.16 0.00 0.00
3 0.897 0.999 1.000 1.00 1.00 1.00 1.00 0.46 0.18 0.00 0.00
4 0.897 0.999 1.007 1.00 1.00 1.00 0.96 0.25 0.09 0.00 0.00
5 0.897 0.999 1.050 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

for each subject i. Table A.7 reports summary statistics for the distribution of
vi’s. It is clear that the variation of the observed data measured by RMSE is
much higher than the standard deviation of white noise at which we achieve 50%
pass rate for the QHD test. This may suggest that about 50% of the subjects are
not rationalized by QHD model because of structural irregularities rather than
trembling on their choices. However, we emphasize again that we do not have
clear guidance for the benchmark: we demonstrate the case of vi’s but this may
not be the right one to compare with.
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Table A.7: Distributions of vi’s.

Parameters Percentile

# α δ β 5-th 10-th 25-th 50-th 75-th 90-th 95-th

1 0.897 0.999 0.974 3.00 3.76 4.68 5.93 6.33 7.83 10.50
2 0.897 0.999 0.995 2.91 3.66 4.60 5.93 6.17 7.94 10.61
3 0.897 0.999 1.000 2.93 3.68 4.63 5.94 6.15 7.97 10.64
4 0.897 0.999 1.007 2.95 3.71 4.62 5.91 6.18 8.02 10.67
5 0.897 0.999 1.050 3.10 3.58 4.48 5.61 6.13 8.28 10.92
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Appendix B

Appendix to Chapter 3

B.1 Gaze Data Processing

Prior to analysis, blinks and saccades were removed using a velocity threshold
of 8 pixels/4 ms. That is, any rapid gaze movement whose velocity is greater
than 200 pixels/100 ms was considered as blinks or saccades and discarded. It is
known that little or no visual processing can be achieved during saccades (Fuchs,
1971).

Any problem related to the calibration was noticed and addressed during the
first trial (which was immediately after the calibration procedure). Further, sub-
jects would often ask a question during the first trial. This affected overall trial
durations and the integrity of fixations in the first trial. Therefore, for eye tracking
data analysis, the first trial of each eyetracking part was discarded unless noted
otherwise.

Regions of interests (ROIs) for the product were defined individually within
the boundary of each image padded with a 25-pixel-wide band around the edge.
The padding was added to accommodate noise of the eyetracker and viewing of
the product through peripheral vision. ROIs for the price were defined as a rect-
angular block containing the displayed price. The rest of the area was considered
blank. We defined a fixation as the event when the gaze enters, stays in, and
leaves an ROI; in this definition, any continuous eye movement within a given
ROI is considered as one fixation. Therefore, a fixation time was defined as the
time elapsed from the moment when the gaze entered the ROI to the moment
when it left the ROI, and a cumulative fixation time was defined as the sum of
fixation times within a trial.

We constructed spatial gaze distribution maps for the hypothetical and real
conditions (and further for Yes and No decisions) that reflect the frequency of the
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gaze at any coordinate on the screen. For the construction of group heat maps,
we took two subsets of the screen pixel space: one area of 370× 370 (width by
height) in size that includes the product image and the other of 370× 150 in size
that includes the price. We then placed the product image area above the price
area to reconcile the counter-balanced display with the product-top/price-bottom
display; this resulted in the 370× 520 pixel space for gaze distribution. For each
subject, a gaze distribution map was computed by summing the duration of gaze
at each pixel within a trial and averaging it across all relevant trials, and then
smoothing it with a 2D Gaussian kernel (σ = 10 pixels). The smoothed individ-
ual maps were averaged across subjects for each condition to create Figure 3.3,
panel A. We also performed statistical comparisons of gaze distributions between
the hypothetical and real conditions (and further for Yes and No decisions), ap-
plying a procedure adapted from (Caldara and Miellet, 2011). Specifically, we
took the difference of individual heat maps between conditions of interest, aver-
aged across subjects, and then converted all pixel values into z-scores relative to
the mean and standard deviation of the group difference heat map. Significance
was established with the statistical threshold provided by a two-tailed Pixel test
(|z| > 4.3125 for p < 0.05; Chauvin et al., 2005), which corrects for multiple
comparisons in the heat map pixel space.

B.2 Additional Results

B.2.1 Monotonicity of Preferences

In each condition, participants faced the same item three times with three different
prices, low, medium, and high. If a participant has a monotonic preference and
she chooses to purchase an item at price P, she should also purchase at any
lower prices P′ < P. We count the number of monotonicity violations at item
level for each subject in each condition. In experiment I, the average number of
monotonicity violations is 0.857 in the Hypothetical condition and 0.357 in the
Real condition. In experiment II, those numbers are 1.471 and 0.294.

When we aggregate responses across items at each price level, we observe
monotonically decreasing purchase rates as in Figure B.2.
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B.2.2 Estimating the Size of Hypothetical Bias

Following Kang et al. (2011), we define the adjusted consumer surplus from item i
by aCSi = θ ×WTPi − Pi, where θ is a discount factor. We then estimate θ for
each condition as follows: (i) let Pr(x) denote a probability of Yes decision at
x; (ii) estimate logistic regression Pr(aCS) = 1/(1 + exp(−(α + β · aCS))); and
(iii) find θ at which Pr(0) = 0.5. Median θHyp (0.98 in Experiment I; 0.98 in
Experiment II) is not significantly different from 1 (signed-rank tests, p’s > 0.05),
median θReal (0.61 in Experiment I; 0.51 in Experiment II) is significantly less than
1 (signed-rank tests, p’s < 0.001), and median difference between θHyp and θReal

(0.36 in Experiment I; 0.49 in Experiment II) is significantly larger than 0 (signed-
rank tests, p’s < 0.001) in both experiment. Consistent with the previous finding
(Kang et al., 2011), the observed pattern suggests that subjects behaved as if they
used their (hypothetically) stated WTPs in the hypothetical condition, but that
the values subjects placed on the objects were about 35% to 50% lower in the
real condition. It is not surprising that θHyp is close to 1, since subjects stated
“hypothetical” willingness to pay during the first part of the experiment.

B.3 Supplementary Figures and Tables

Table B.1: Summary statistics in Experiment I (mousetracking) and Experiment II (eye-
tracking).

Experiment I Experiment II

Average Hyp S-Real Hyp S-Real

Purchase percentage (%) a, b*** 55.99 27.14 55.88 18.69
Response time (sec) a, b*** 4.01 3.09 2.30 1.74
Cumulative image viewing time (sec) b*** 0.95 0.87 1.32 0.99
Cumulative price viewing time (sec) a, b*** 0.70 0.51 0.49 0.40
# of image clicks/fixations b*** 1.27 1.23 2.44 2.12
# of price clicks/fixations b** 1.21 1.12 1.54 1.31
Image viewing time per click/fixation (sec) a** b*** 0.72 0.60 0.53 0.43
Price viewing time per click/fixation (sec) a*** b** 0.60 0.45 0.32 0.29

Notes: Asterisks indicate statistical significance between hypothetical and real condition. ∗∗∗ :
p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.10, for Experiment I (a) and II (b). In Experiment II, average for
purchase percentage is calculated including first trial of each condition.
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Figure B.1: Distribution of WTP and CS (= WTP−price) in the hypothetical and real con-
ditions. (Top) Distribution of WTP (left: Experiment I; right: Experiment II). Bin size = 5,
bin center = [2.5, 7.5, . . . , 47.5]. (Bottom) Distribution of in CS (left: Experiment I; right:
Experiment II). Bin size = 4, bin center = [−10,−6, . . . , 22]. The first trial of each condi-
tion in Experiment II is included.
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Figure B.2: Average purchase rate by condition and price level in Experiment I (left) and
Experiment II (right). All comparisons of means between hypothetical and real condi-
tions are significant at p < 0.0001, two-sided paired sample t-test. The first trial of each
condition in Experiment II is included.
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Figure B.3: Average RT by condition and decision in Experiment I (left) and Experiment
II (right). Error bars indicate standard errors. ∗∗ : p < 0.001, ∗ : p < 0.01, two-sided
paired sample t-test.
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Figure B.4: The average number of clicks/fixations on the occluded areas by condition
and decision. Clicks on the image and on the price in Experiment I (top panels) and
Fixations on the image and the price in Experiment II (bottom panels). Error bars indicate
standard errors. ∗∗∗ : p < 0.005, ∗∗ : p < 0.01, ∗ : p < 0.05, two-sided paired sample
t-test.
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Figure B.5: Average viewing time and latency/else (sec) in hypothetical trials, sorted by
decision in the matching surprise real trials. Image and price viewing times in Experiment
I (top) and in Experiment II (bottom). Error bars indicate standard errors. ∗∗∗ : p < 0.001,
∗∗ : p < 0.005, ∗ : p < 0.05, two-sided paired sample t-test. The comparison between
hypothetical Yes and No is not significant.
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Figure B.6: Gaze distribution maps by condition and decision from Experiment II. A.
Average gaze prevalence. B. Statistical significance of the difference between surprise real
and hypothetical conditions. Red indicates gaze bias toward surprise real choice and blue
indicates gaze bias toward hypothetical choice. C. Statistical significance of the difference
between Yes and No decisions within each condition. In Panels B and C, product images
are shown in the background for illustration. Red indicates gaze bias toward Yes and blue
indicates bias toward No. The threshold for two-tailed Pixel test p < 0.05 is |z| > 4.3125,
corrected for multiple comparisons.
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Figure B.7: Gaze distribution maps by condition and decision from Experiment II. A.
Average gaze prevalence. B. Statistical significance of the difference between real and
surprise real conditions. Red indicates gaze bias toward real choice and blue indicates
gaze bias toward surprise real choice. C. Statistical significance of the difference between
Yes and No decisions within each condition. In Panels B and C, product images are shown
in the background for illustration. Red indicates gaze bias toward Yes and blue indicates
bias toward No. The threshold for two-tailed Pixel test p < 0.05 is |z| > 4.3125, corrected
for multiple comparisons.



160

Table B.2: Summary statistics in the hypothetical condition in Experiment I (mousetrack-
ing) and Experiment II (eyetracking). First trials are excluded from data in Experiment II.
“Stick” indicates hypothetical Yes trial for which participants stick to Yes decision in later
surprise real condition, while “switch” indicates hypothetical Yes trials for which they
later change their mind to no in the surprise real condition. Two participants who never
“switched” are excluded in Experiment I.

Experiment I Experiment II

Average Stick Switch Stick Switch

WTP ($) a** 24.55 22.64 26.73 27.96
Price ($) a** b*** 17.00 19.10 18.53 23.66
Response time (sec) a*** 3.65 4.51 2.27 2.44
Cumulative image viewing time (sec) a*** 0.87 1.03 1.35 1.39
Cumulative price viewing time (sec) a*** b* 0.63 0.77 0.47 0.51
Latency/Else (sec) a*** 0.62 0.86 0.18 0.20
Standardized response time a*** b** -0.06 0.21 0.00 0.18
Standardized image viewing time a** -0.10 0.00 -0.00 0.13
Standardized price viewing time a*** b*** 0.03 0.30 0.04 0.21
Standardized latency/else a*** -0.02 0.32 0.05 0.18

Number of observations 627 676 253 580
Notes: In the bottom three rows, RT and viewing times are standardized within subject across
conditions. Asterisks indicate statistical significance between hypothetical and real condition.
∗∗∗ : p < 0.01, ∗∗ : p < 0.05, ∗ : p < 0.10, for Experiment I (a) and II (b).
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Table B.3: List of 120 consumer products used in the study.

# Product Name

1 Accudart Classic Bristle Dartboard
2 Allied 180-pc. Household Tool Set
3 Angry Birds Speaker
4 Apple 2 GB iPod Shuffle
5 AUDIO TECHNICA Noise-Canceling Headphones
6 Austin Bazaar Full Size Acoustic Guitar with Carrying Bag and Accessories
7 Black & Decker Toast-R-Oven 4-Slice Toaster Oven
8 Black and Decker 12 cup SmartBrew plus Coffeemaker
9 Boss Fabric Deluxe Posture Chair

10 Braun Free Control Men’s Shaver
11 Bushnell Perma Focus 10× 50 Wide Angle Binocular
12 Canon Color Image Scanner
13 Canon PIXMA Wireless Inkjet Photo All-In-One
14 Casio Mens G-Shock Classic Watch
15 Celestron 60mm PowerSeeker Telescope
16 Celestron Handheld Digital Microscope Camera
17 Cisco-Linksys Dual-Band Wireless-N Gigabit Router
18 Classic Pillow by Tempur Pedic
19 Coby 1.8” Digital TFT LCD Photo Keychain
20 Coca-Cola Personal 6-Can Mini Fridge
21 Coleman Crescent Mummy Bag
22 Columbia Sportswear Men’s Northbend Wide Hiking Boot
23 Columbia Sportswear Men’s Steens Mountain Sweater
24 Cooler Master Notepal U2 Notebook Cooler with Two Fans
25 Corsair 32 GB USB 3.0 Flash Voyager
26 Crane 2.3 Gallon COOL Mist humidifier
27 Energizer Rechargeable 15 Minute Charger with 4 AA Batteries
28 Eureka Hand-Held Vacuum
29 Febreze Odor Removal Appliance
30 Fossil Men‘s AM4369 Stainless Steel Analog with Blue Dial Watch
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# Product Name

31 Garmin eTrex Handheld GPS Navigator
32 GODIVA Chocoiste Solid Milk Chocolate Bars (24 pc)
33 GODIVA Thankyou Ballotin (36pc)
34 Green Laser Pointer (5 mW, Class IIIa Laser Product)
35 GSM Quadband Voice Dialing Watch Cell Phone Unlocked
36 Homedics Shiatsu Massage Cushion
37 HoMedics Shiatsu Neck Massager with Vibration and Heat
38 Honeywell Compact Air Purifier with Permanent HEPA Filter
39 Hoover Tempo Widepath Bagged Upright Vacuum
40 iMPROV Electronics 8.5” Boogie Board Tablet
41 iNeed Lumbar Massage Cushion
42 Intex Raised Downy Queen Airbed with Built-in Electric Pump
43 Kensington DomeHub 7-port USB 2.0 Hub with FlyLight
44 Kodak Easyshare 12 MP Digital Camera with 5x Digital Zoom
45 Kodak PlayFull Waterproof Video Camera
46 Koolatron Kool Fridge-1.7 Cu. Ft.
47 La Crosse Technology Projection Alarm Clock with Outdoor Temperature
48 LAVA 20-oz. Motion Lamp
49 Levi’s Relaxed Straight 559 Jeans
50 Logitech 2 MP Portable Webcam
51 Logitech Gaming Keyboard G110
52 Logitech Wireless Marathon Mouse M705 with 3-Year Battery Life
53 Logitech Wireless Presenter R400 with Red Laser Pointer
54 Lumian Design LED Desk Light (built-in night light)
55 M-51 Engineers Field Bag - Military Style
56 M-Audio E-Keys 37 MIDI Keyboard
57 Memory Foam Travel Pillow
58 Microsoft Natural Ergo Keyboard
59 Monopoly The Mega Edition
60 Monoprice 10× 6.25 Inches Graphic Drawing Tablet with 8 Hot Key
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# Product Name

61 Mr. Coffee Espresso/Cappuccino Maker
62 New Plantronics Bluetooth Headset- Volume Control/Hands Free/ Wind Noise Reduction
63 Nike Team Training Duffel Bag
64 Nike Tear-away II Mens Pants
65 Nikon Action 8× 40 Binocular
66 Northface Jester Backpack
67 Northface Men’s Divide Jacket
68 Northface Utility Waist - Sport Hiker
69 Oral B Pulsonic Sonic Electric Rechargeable Power Toothbrush
70 Oregon Scientific Weather Forecaster with Projection Clock
71 Oster Stainless-Steel 1-2/3-Liter Electric Water Kettle
72 Pail of Treats - Mrs. Fields 48 bite-sizes cookies and 36 brownie bites
73 Panasonic Upper Arm Blood Pressure Monitor
74 Perpetual Calendar
75 Philips 7-Inch LCD Portable TV/DVD Player
76 Philips MP3 Portable Speaker Universal
77 Philips Norelco 7340 Cordless Men‘s Shaving System
78 Planet Earth - The Complete BBC Series (DVD)
79 Post-it Desktop Organizer
80 Premium Diamond Suited Poker Chip Set
81 Ray Ban RB 4115 Sunglasses - Smoky Black/Green
82 Raytek MiniTemp No-Contact Thermometer with Laser Sighting
83 Samsung Blu-Ray Combo Internal 12XReadable and DVD-Writable Drive with Lightscribe
84 Scosche Flexible Bluetooth Mini Keyboard
85 Scrabble Premier Wood Edition
86 SentrySafe Security Safe, 0.5 Cubic Feet
87 Sigma PC 15 Heart Rate Monitor
88 Sketchers Men’s Alley Cats
89 Sony CD/Cassette Portable Boombox
90 Sony Digital 2 GB Flash Voice Recorder
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# Product Name

91 Sony Stereo CD Clock Radio with Dual Alarm
92 Sony Walkman 8 GB Video MP3 Player
93 Sony Water-Resistant Weather Band Shower Radio
94 Sony Wireless Headphone System
95 Star Wars: The Original Trilogy (Episodes IV - VI) [Blu-ray] (2011)
96 Stellanova Series 4” Magnetically Levitating Globe
97 Swiss Gear 7× 7-Foot 3-Person Sport Dome Cheval Tent
98 Syma S107G 3 Channel RC Radio Remote Control Helicopter with Gyro
99 Tanita Duo Scale with Body Fat/Water Monitor

100 Tempur-Pedic Neck Pillow
101 Texas Instruments TI-83 Plus Graphing Calculator
102 T-Fal Avante Deluxe 4-Slice Toaster
103 The Lord of the Rings - The Motion Picture Trilogy (Blu-ray)
104 The Simpsons - The Complete Tenth Season (1998)
105 Three Classic Games All in One Convenient Box - Deluxe Wooden Chess, Checker & Backgammon
106 Three-Way Use Desktop Organizer, Medium Oak
107 Timberland Earthkeepers Campus Quad Messenger Bag
108 Timberland Men’s Full-Zip Thick Stripe N.H. Hoodie
109 Timex Men’s Expedition Watch with Leather Strap
110 Toshiba Canvio 500 GB USB 3.0 Portable Hard Drive
111 Transcend 16 GB JetFlash 700 Super Speed USB 3.0 Flash Drive
112 Vantec NexStar 2.5”/3.5” SATA to USB 2.0 and eSATA Hard Drive Dock
113 Veho MUVI Micro digital camcorder with 2GB Memory
114 Victorinox Hanging Toiletry Kit by Swiss Army
115 Victorinox Swiss Army Credit Card-Size Multi-Tools with LED Light
116 Victorinox Swiss Army Explorer Multi-Tool Knife
117 Viewsonic 8-Inch Digital Photo Frame with 800× 600 High Resolution
118 VIOlight Ultraviolet Travel Toothbrush Sanitizers
119 WearEver Deluxe Aluminum Hi-Back Backpack Chair
120 X Rocker V-Rocker SE Wireless Game Chair



165

B.4 Instructions

B.4.1 Experiment I: Mousetracking

Part 1

Thank you for participating in this study of consumer preferences for various
products. Please follow these instructions carefully and do not hesitate to ask the
experimenter if you have a question. This task will take up to 15 minutes and you
will be paid $15 for completion of this task, including a $5 show-up fee. Upon
completion of this task, we may invite you to participate in another experiment.

This experiment consists of 120 trials, during which time we will show you
120 images of different consumer products. In each trial, one product is shown
and you will be asked to state the maximum amount of money that you would be
willing to pay to buy this one item; this amount is referred to as your willingness-
to-pay. Please determine this amount under the restriction that, whatever you buy,
IT MUST BE FOR YOURSELF (i.e., it cannot be purchased as a gift for someone
else or for resale).

Note that there will be no actual purchase involved. Whatever amount you
state, it is not binding; that is, you will not actually have to buy any of the items
shown to you.

Although this is a purely hypothetical task, please keep in mind the following
points when reporting your maximum willingness to pay.

• You should rate the value of each item independently from the others, as-
suming during each trial that the product shown is the only purchase you
would make.

• The products should be evaluated from your perspective, not that of some-
one else. In other words, your willingness-to-pay should reflect how much
you would like to keep an item for yourself, not for your friends or family,
etc.

• Your current ownership of a particular item might affect your willingness
to pay for the item—this is perfectly appropriate. For example, if you al-
ready own item A, your willingness to pay for item A might be high or low
depending on whether you want a second one for yourself or not.
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In each trial you will be allowed to enter an amount between $0 and $50 using
a sliding scale. You can change the dollar amount by pressing the UP, DOWN,
LEFT and RIGHT arrows keys on the keyboard. The effect of each key upon the
willingness-to-pay value is described below:

RIGHT +$1
LEFT −$1
UP +$5
DOWN −$5

Amounts are entered by pressing the SPACE BAR. Other keys will not work.
If you have any questions, please ask the experimenter.
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Part 2

You are invited to take part in an experiment on decision making. This experiment
consists of three different parts and will generally take up to 45 minutes. We
will describe the details of each part of the experiment as it comes up. Upon
finishing the entire experiment, you will be paid $50, including the $15 that you
have earned from the previous task.

In the first part, we will show you different consumer products, one at a time,
each with its own sale price. Your task is to make a hypothetical purchase deci-
sion. Assume that you are being offered the chance to buy the product (only one
unit) from us at the end of the experiment with the $50 given to you, and that
if you bought the product, you had to keep it only for yourself (i.e., you cannot
give or sell it to someone else). This is a hypothetical exercise as in the previous
task—you are not actually being offered the chance to buy anything. However,
please take every decision seriously—when evaluating products for this hypothet-
ical purchase, please assume that the product is only for yourself and treat every
decision as if it were the only one. This last point is important—even though
you are going to be presented many different products and making a decision
for each, please make each decision as if that product was the only one you were
thinking about buying at this time.

How the product image and the offer price are displayed At the beginning of
each trial, you will see two gray boxes (Figure 1 on the next page). A product
image and the offered price are hidden behind the gray boxes. Click the bigger
gray box with the left mouse-button and hold to see the product image (Figure 2
on the next page). If you release the button or the cursor leaves the boxed area,
the image will disappear. Click the smaller gray box with the left mouse-button
and hold to see the offered price (Figure 3 on the next page). There is no time
limit on this task. You can take as much time as you wish to click and make a
decision.
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Figure 1

Figure 2

$35.79

Figure 3
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Once you decide whether to buy or not, your decision can be entered by press-
ing one of the two keys on the keyboard as described below:

No Yes
z c

You might find it easy to respond if you place your left ring finger on the ‘z’
key and your left index finger on the ‘c’ key. The key press will terminate the trial
and a fixation cross at the center of the screen will appear briefly before a new
trial begins. If you are left-handed and use your left-hand to hold a mouse, please
let the experimenter know.

There will be 90 trials in this part and the same product might appear more
than once with a different price each time.

All decisions are hypothetical and will not be implemented. However, please
take each decision seriously.

In order to familiarize you with the software used in this task, we will present
you with 5 practice trials.
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Part 3

In this part, we will show you different consumer products one at a time with
a different offer price. The procedure of this part is almost the same as in the
previous decision making part. However, the most significant difference is that in
this part we ask you to make a real purchase decision. It is real in the sense that
any decision made in this part can count as real at the end of the experiment and
you may actually be purchasing the product—more on this follows herein.

During the next 90 trials in this part, you will see various consumer products,
which are different from those presented in the earlier hypothetical purchase de-
cision making part of the experiment. In each trial, you are offered the chance to
buy a product (only one unit) from us at the end of this experiment at the price
listed below the product image. So in each trial, your task is to decide whether
or not you want to buy the product from us at the stated price. At the end of
the entire experiment, exactly one of the 90 trials will be chosen at random, and
whatever decision you made in the chosen trial (to buy or not at the offered price)
will be carried out for real by us at the end of this experiment!

When you make an actual purchase decision, note the following points:

• Since only one decision will count, you do not have to spread out your
funds among the different purchase decisions. Therefore, you should treat
each choice as if it is the only one that you are making. Indeed, only one
trial will be chosen at the end of the experiment to be carried out for real.

• If in the selected trial you chose to purchase the item, the cost will be de-
ducted from your $50 earnings; you get the item and the remaining cash. If
in the selected trial you did not choose to purchase the item, you keep your
$50 in earnings in cash and do not receive any product.

• If you buy an item from us, we will ship it to you and pay the shipping
costs.

We would like to stress that honesty is the best policy here. Any of the 90
trials has an equal chance of being chosen, whether or not you expressed an
interest in purchasing the item—that is, your decision about purchasing DOES
NOT affect the chance of a particular trial being chosen. For example, if you
were to decline purchasing every item presented to you, except for the one item
you really want, you do not increase your chances of getting that item—you have
only increased the chance that you will not get any item and you may miss out
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on other deals you would have liked. In each trial, you should make a purchase
decision, independent of anything you have seen in any other trial.

Another important note is that any item you buy here must be for personal
use. You should not buy the product in order to resell it or to give it to someone
else—only consider whether or not you want to purchase the item for your own
personal use. Your participation in this experiment is covered by the Caltech
Honor Code, including your agreement to follow these instructions honestly and
in particular, to evaluate items only for your personal use. Thinking about the
value of the product in terms of its resale or gift value impairs our ability to
understand the scientific basis of personal valuation.

As before, at the beginning of each trial you will see two gray boxes, behind
which a product image and the offered price are hidden. Click the gray boxes
with the left mouse-button to see the product image and the offer price. There is
no time limit on this task. You can take as much time as you wish to click and
make a decision.

Once you decide whether to buy or not, your decision can be entered by press-
ing one of the two keys on the keyboard as described below:

No Yes
z c

Again, keep in mind that you are asked to make real purchase decisions in
this part. One of the decisions you make will be actually implemented.

If you have any questions or if anything is unclear, please read the instructions
again or ask the experimenter.
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Part 4

This is the last part of the experiment and consists of 90 trials. In this part, we
will ask you again to make real purchase decisions on the same items you have
already seen in the previous hypothetical purchase decision making part of the
experiment. This task is identical to the previous purchase decision making tasks.

Note that at the end of the experiment, exactly one of the 180 real trials (90
from the real purchase decision making part that you have just finished and 90
from this part) will be randomly selected and the decision you made in the chosen
trial will be implemented for real (i.e., based on your choice in the selected trial,
you might buy that item at the suggested price).

As before, at the beginning of each trial you will see two gray boxes, behind
which a product image and the offered price are hidden. Click the gray boxes
with the left mouse-button to see the product image and the offer price. There is
no time limit on this task. You can take as much time as you wish to click and
make a decision.

Once you decide whether to buy or not, your decision can be entered by press-
ing one of the two keys on the keyboard as described below:

No Yes
z c

Keep in mind that you are asked to make real purchase decisions in this part.
One of the decisions you make or have already made will be actually imple-
mented.
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B.4.2 Experiment II: Eyetracking

Part 1

Thank you for participating in this study of consumer preferences for various
products. Please follow these instructions carefully and do not hesitate to ask the
experimenter if you have a question. This task will take up to 15 minutes and you
will be paid $15 for completion of this task, including a $5 show-up fee. Upon
completion of this task, we may invite you to participate in another experiment.

This experiment consists of 120 trials, during which time we will show you
120 images of different consumer products. In each trial, one product is shown
and you will be asked to state the maximum amount of money that you would be
willing to pay to buy this one item; this amount is referred to as your willingness-
to-pay. Please determine this amount under the restriction that, whatever you buy,
IT MUST BE FOR YOURSELF (i.e., it cannot be purchased as a gift for someone
else or for resale).

Note that there will be no actual purchase involved. Whatever amount you
state, it is not binding; that is, you will not actually have to buy any of the items
shown to you.

Although this is a purely hypothetical task, please keep in mind the following
points when reporting your maximum willingness to pay.

• You should rate the value of each item independently from the others, as-
suming during each trial that the product shown is the only purchase you
would make.

• The products should be evaluated from your perspective, not that of some-
one else. In other words, your willingness-to-pay should reflect how much
you would like to keep an item for yourself, not for your friends or family,
etc.

• Your current ownership of a particular item might affect your willingness
to pay for the item—this is perfectly appropriate. For example, if you al-
ready own item A, your willingness to pay for item A might be high or low
depending on whether you want a second one for yourself or not.
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In each trial you will be allowed to enter an amount between $0 and $50 using
a sliding scale. You can change the dollar amount by pressing the UP, DOWN,
LEFT and RIGHT arrows keys on the keyboard. The effect of each key upon the
willingness-to-pay value is described below:

RIGHT +$1
LEFT −$1
UP +$5
DOWN −$5

Amounts are entered by pressing the SPACE BAR. Other keys will not work.
If you have any questions, please ask the experimenter.
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Part 2

You are invited to take part in an experiment on decision making. This experiment
consists of three different parts and will generally take up to 45 minutes. We
will describe the details of each part of the experiment as it comes up. Upon
finishing the entire experiment, you will be paid $50, including the $15 that you
have earned from the previous task.

In the first part, we will show you different consumer products, one at a time,
each with its own sale price (see Figure 1 below). Your task is to make a hypo-
thetical purchase decision. Assume that you are being offered the chance to buy
the product (only one unit) from us at the end of the experiment with the $50
given to you, and that if you bought the product, you had to keep it only for
yourself (i.e., you cannot give or sell it to someone else). This is a hypothetical
exercise as in the previous task—you are not actually being offered the chance to
buy anything. However, please take every decision seriously—when evaluating
products for this hypothetical purchase, please assume that the product is only
for yourself and treat every decision as if it were the only one. This last point is
important—even though you are going to be presented many different products
and making a decision for each, please make each decision as if that product was
the only one you were thinking about buying at this time.

$35.79

Figure 1
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Once you decide whether to buy or not, your decision can be entered by press-
ing one of the two keys on the keyboard as described below:

No Yes
z c

You might find it easy to respond if you place your left ring finger on the ‘z’
key and your left index finger on the ‘c’ key. The key press will terminate the trial
and a fixation cross at the center of the screen will appear briefly before a new
trial begins. There is no time limit on this task. You can take as much time as you
wish to make a decision.

At the beginning of each trial, you will see a blank screen with a fixation
marker at the center. Please fixate on this central marker before proceeding—this
is performed so the eyetracker can adjust to small head movements. Then press
the space bar to begin the task.

There will be 90 trials in this part and the same product might appear more
than once with a different price each time.

All decisions are hypothetical and will not be implemented. However, please
take each decision seriously.

In order to familiarize you with the software used in this task, we will present
you with 5 practice trials.
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Part 3

In this part, we will show you different consumer products one at a time with
a different offer price. The procedure of this part is almost the same as in the
previous decision making part. However, the most significant difference is that in
this part we ask you to make a real purchase decision. It is real in the sense that
any decision made in this part can count as real at the end of the experiment and
you may actually be purchasing the product—more on this follows herein.

During the next 90 trials in this part, you will see various consumer products,
which are different from those presented in the earlier hypothetical purchase de-
cision making part of the experiment. In each trial, you are offered the chance to
buy a product (only one unit) from us at the end of this experiment at the price
listed on the screen. So in each trial, your task is to decide whether or not you
want to buy the product from us at the stated price. At the end of the entire
experiment, exactly one of the 90 trials will be chosen at random, and whatever
decision you made in the chosen trial (to buy or not at the offered price) will be
carried out for real by us at the end of this experiment!

When you make an actual purchase decision, note the following points:

• Since only one decision will count, you do not have to spread out your
funds among the different purchase decisions. Therefore, you should treat
each choice as if it is the only one that you are making. Indeed, only one
trial will be chosen at the end of the experiment to be carried out for real.

• If in the selected trial you chose to purchase the item, the cost will be de-
ducted from your $50 earnings; you get the item and the remaining cash. If
in the selected trial you did not choose to purchase the item, you keep your
$50 in earnings in cash and do not receive any product.

• If you buy an item from us, we will ship it to you and pay the shipping
costs.

We would like to stress that honesty is the best policy here. Any of the 90
trials has an equal chance of being chosen, whether or not you expressed an
interest in purchasing the item—that is, your decision about purchasing DOES
NOT affect the chance of a particular trial being chosen. For example, if you
were to decline purchasing every item presented to you, except for the one item
you really want, you do not increase your chances of getting that item—you have
only increased the chance that you will not get any item and you may miss out
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on other deals you would have liked. In each trial, you should make a purchase
decision, independent of anything you have seen in any other trial.

Another important note is that any item you buy here must be for personal
use. You should not buy the product in order to resell it or to give it to someone
else—only consider whether or not you want to purchase the item for your own
personal use. Your participation in this experiment is covered by the Caltech
Honor Code, including your agreement to follow these instructions honestly and
in particular, to evaluate items only for your personal use. Thinking about the
value of the product in terms of its resale or gift value impairs our ability to
understand the scientific basis of personal valuation.

As before, at the beginning of each trial you will see a blank screen with a
fixation circle at the center. Please fixate on this central marker before proceeding.
After fixating on the marker for a moment, you can proceed by pressing the space
bar. There is no time limit on this task. You can take as much time as you wish to
make a decision.

Once you decide whether to buy or not, your decision can be entered by press-
ing one of the two keys on the keyboard as described below:

No Yes
z c

Again, keep in mind that you are asked to make real purchase decisions in
this part. One of the decisions you make will be actually implemented.

If you have any questions or if anything is unclear, please read the instructions
again or ask the experimenter.
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Part 4

This is the last part of the experiment and consists of 90 trials. In this part, we
will ask you again to make real purchase decisions on the same items you have
already seen in the previous hypothetical purchase decision making part of the
experiment. This task is identical to the previous purchase decision making tasks.

Note that at the end of the experiment, exactly one of the 180 real trials (90
from the real purchase decision making part that you have just finished and 90
from this part) will be randomly selected and the decision you made in the chosen
trial will be implemented for real (i.e., based on your choice in the selected trial,
you might buy that item at the suggested price).

As before, there is no time limit on this task. You can take as much time as
you wish to make a decision.

Once you decide whether to buy or not, your decision can be entered by press-
ing one of the two keys on the keyboard as described below:

No Yes
z c

Keep in mind that you are asked to make real purchase decisions in this part.
One of the decisions you make or have already made will be actually imple-
mented.
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Appendix C

Appendix to Chapter 4

C.1 Behavioral Responses to a Change in Payoff Struc-
ture

As we repeatedly mentioned in the series of analyses, values of the panels during
the first two rounds were all doubled on November 26, 2001. Since other features
of the game were unchanged, this one-time structural change in payoff structure
can be seen as a natural experiment (inside the natural experiment). In this section
we investigate how players responded to this structural change.

In order to gain a sufficiently large sample size, we focus on the Daily Double
situation rather than Final Jeopardy! wagering. As we described in Section 4.2,
special panels called Daily Doubles are hidden on the boards during the first two
rounds. Unlike the case with usual panels, only the contestant who selects the
panel has an opportunity to respond. Before the clue is revealed, the contestant
has to decide how much to bet (the minimum amount is $5 and the maximum is
bigger one of her/his current score and the highest dollar clue in the round).

A preference relation % is homothetic if an agent is indifferent between two
options c1 and c2 then she is indifferent between λc1 and λc2 for any nonnega-
tive scaling factor λ. In other words, homotheticity requires that ranking of any
two payoffs is not reversed if all amounts are scaled by the same constant. It is
essentially a scale invariance property and is ubiquitous in models in macroeco-
nomics and finance (e.g., Epstein and Zin, 1991). The class of constant relative
risk aversion (CRRA) utility functions is a special case of homothetic preferences.
Comparing wagering decisions in Daily Double situations before and after the
structural change, we aim to test whether the scale invariance property holds.
Essentially, this is testing if players have homothetic preferences and the popula-
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tion distribution of risk preferences is stable over time. Note that the hypothesis
we are testing is joint of homotheticity and stability of preferences. The latter is
unavoidable since we do not observe same player making decisions both before
and after the structural change.

To get some idea regarding how players wager in general, we estimate the
following model:

Wi = β0 + β1Timingi + β2xi + β3Diff i

+ β4Positioni + β5Malei + β6Gaini + εi,
(C.1)

where Timing ∈ (0, 1] codes when this Daily Double panel was opened (number
of panels opened so far, including the current one, divided by the total number
of panels opened in the round), Diff codes the absolute difference between i’s
score and the highest score of the rest of the two players (i.e., |xi −maxj 6=i xj|),
Position ∈ {1, . . . , 5} codes on which row the panel was hidden (possibly reflecting
difficulty level of the question), Male is a dummy variable for male players, and
Gain is the value added to the player’s score immediately before picking a Daily
Double panel. With slight abuse of notation, here we represent score and wagering
amounts at the time of Daily Double by xi and yi.

We estimate equation (C.1) for round 1 and 2, leading players and trailing
players, separately. The first four columns in Table C.1 present estimation results
where Wi = yi, i.e., raw wagering amounts, as the dependent variable. Similarly,
the first four columns in Table C.2 present estimation results where Wi = yi/xi,
i.e., share of wager.
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Since main messages are the same we focus on Table C.1. Positive and sig-
nificant β1 and β6 are as expected. The difference between own score and the
maximum of others’ scores (|xi −maxj 6=1 xj|) is significant only for trailing play-
ers. Furthermore, positive β3 implies that those trailing players wager more as the
difference from the leading player becomes larger, in order to fill this gap. The
coefficient on Timing is negative and significant, implying that players become
conservative in making wagering decisions as the timing of opening Daily Double
panels gets later. The effect of position of Daily Double panels is negative, but not
significant. There is also a “gain effect”: players who earned more immediately
prior to Daily Double panel tended to wager more. The finding is similar to what
is commonly known as the “house money effect,” where prior losses increase risk
aversion and prior gains increase risk seeking (Thaler and Johnson, 1990). Finally,
there is a strong gender effect as discussed in Section 4.7: male players wager
more aggressively compared to female players.

In order to test the scale invariance property, we extend equation (C.1) by
incorporating several dummy variables:

Wi = β0 + γ0Double + β1Timingi + γ1Timing×Double

+ β2xi + γ2xi ×Double (C.2)

+ β3Diff i + β4Positioni + β5Malei + β6Gaini + εi,

where Double takes 1 if the game is played after panel values were doubled. If
investors have the same homothetic preference but different wealth levels, they
will allocate to risky assets the same fraction of their respective wealth. This
observation provides several constraints on coefficients. First, when we take Wi =

yi as the dependent variable, the set of coefficients (γ0, γ1, γ2) which satisfies

γ0 = β0 (SI-w-1)

γ1 = β1 (SI-w-2)

γ2 = 0 (SI-w-3)

is consistent with predictions of scale invariance property. Second, when we take
Wi = yi/xi as the dependent variable, the set of coefficients (γ0, γ1, γ2) which
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Table C.3: p-values from scale-invariance tests

Round 1 Round 1 Round 2 Round 2
Leading Trailing Leading Trailing

Wi = yi
H0: γ0 = β0 0.0519 0.3904 0.2526 0.0502
H0: γ1 = β1 0.6026 0.2085 0.9784 0.5989
H0: γ2 = 0 0.6765 0.1652 0.1047 0.2824

Wi = yi/xi
H0: γ0 = 0 0.9976 0.0502 0.2027 0.0019
H0: γ1 = 0 0.7983 0.9561 0.9344 0.0002
H0: γ2 = −β2/2 0.4705 0.5823 0.5200 0.0146

satisfies

γ0 = 0 (SI-s-1)

γ1 = 0 (SI-s-2)

γ2 = −β2/2 (SI-s-3)

is consistent with predictions of scale invariance property. The idea behind those
sets of constraints is worth discussing. Constraints (SI-w-1) and (SI-s-1) require
that after panel values were doubled players’ baseline wager amounts were also
doubled while the wager shares were kept constant. Similarly, constraints (SI-w-3)
and (SI-s-3) require that doubling panel values should influence the effect of tim-
ing on wagering solely through the wealth effect.

The results of estimating equation (C.2) are presented in columns (5) to (8) in
Tables C.1 and C.2. The signs and significance of baseline coefficients (β’s) are in
line with the first four columns in each Table. We now examine implications of
scale invariance. Table C.3 presents p-values from a series of Wald tests for con-
ditions (SI-w) and (SI-s). Those values imply that wagering patterns before and
after the structural change are consistent with predictions from the joint assump-
tion of homotheticity and stability, with a notable exception of the trailing players
in Double Jeopardy! round where players were in general more conservative and
became significantly more conservative as the timing gets later.
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Appendix D

Appendix to Chapter 5

D.1 The Favorite-Longshot Bias in the Literature

Table D.1: Evidence on the favorite-longshot bias.

Study Market Event Country Bias

Dowie (1976) Fixed-odds Racetrack U.K. FLB
Henery (1985) Fixed-odds Racetrack U.K. FLB
Bird et al. (1987) Fixed-odds Racetrack Australia FLB
Vaughan Williams and Paton (1997) Fixed-odds Racetrack U.K. FLB
Jullien and Salanié (2000) Fixed-odds Racetrack U.K. FLB
Direr (2013) Fixed-odds Soccer U.K. FLB
Lahvička (2014) Fixed-odds Tennis U.K. FLB
Griffith (1949) Parimutuel Racetrack U.S. FLB
McGlothlin (1956) Parimutuel Racetrack U.S. FLB
Ali (1977) Parimutuel Racetrack U.S. FLB
Snyder (1978) Parimutuel Racetrack U.S. FLB
Hausch et al. (1981) Parimutuel Racetrack U.S. FLB
Asch et al. (1982) Parimutuel Racetrack U.S. FLB
Busche and Hall (1988) Parimutuel Racetrack Hong Kong No bias
Busche (1994) Parimutuel Racetrack Hong Kong, Japan No bias
Golec and Tamarkin (1998) Parimutuel Racetrack U.S. FLB
Gandar et al. (2001) Parimutuel Racetrack New Zealand Reverse FLB
Walls and Busche (2003) Parimutuel Racetrack Hong Kong, Japan No bias
Gramm and Owens (2005) Parimutuel Racetrack U.S. FLB
Snowberg and Wolfers (2010) Parimutuel Racetrack U.S. FLB
Gandhi and Serrano-Padial (2015) Parimutuel Racetrack U.S. FLB
Zuber et al. (1985) Point spread NFL U.S. FLB
Gandar et al. (1988) Point spread NFL U.S. No bias
Woodland and Woodland (1994) Point spread MLB U.S. Reverse FLB
Sauer (1998) Point spread NFL U.S. FLB
Woodland and Woodland (2001) Point spread NHL U.S. Reverse FLB
Woodland and Woodland (2003) Point spread MLB U.S. Reverse FLB
Tetlock (2008) Betting exchange Sports, financial U.S. FLB
Hartzmark and Solomon (2012) Betting exchange NFL U.S. FLB
Page and Clemen (2013) Betting exchange Politics, sports U.S. FLB
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D.2 Additional Figures
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Figure D.1: Pre- and in-race dynamics of implied probabilities.



188

0
.0

2
.0

4
.0

6
.0

8
.1

Im
p

lie
d

 p
ro

b
a

b
ili

ty

0 .02 .04 .06 .08 .1
Actual probability

Calibration curve

95% CI

600 seconds before start

0
.0

2
.0

4
.0

6
.0

8
.1

Im
p

lie
d

 p
ro

b
a

b
ili

ty

0 .02 .04 .06 .08 .1
Actual probability

Calibration curve

95% CI

60 seconds before start

Figure D.2: Nonparametric estimation of calibration curves φs
t , t ∈ {600, 60} seconds

before races start for p ≤ 0.1.
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