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Abstract

In the field of mechanics, it is a long standing goal to measure quantum behavior in ever

larger and more massive objects. It may seem like an obvious conclusion now, but up until

recently it was not clear whether a macroscopic mechanical resonator – built up from nearly

1013 atoms – could be fully described as an ideal quantum harmonic oscillator. With recent

advances in the fields of opto- and electro-mechanics, such systems offer a unique advantage

in probing the quantum noise properties of macroscopic electrical and mechanical devices,

properties that ultimately stem from Heisenberg’s uncertainty relations. Given the rapid

progress in device capabilities, landmark results of quantum optics are now being extended

into the regime of macroscopic mechanics.

The purpose of this dissertation is to describe three experiments – motional sideband

asymmetry, back-action evasion (BAE) detection, and mechanical squeezing – that are di-

rectly related to the topic of measuring quantum noise with mechanical detection. These

measurements all share three pertinent features: they explore quantum noise properties in

a macroscopic electromechanical device driven by a minimum of two microwave drive tones,

hence the title of this work: “Quantum electromechanics with two tone drive”.

In the following, we will first introduce a quantum input-output framework that we use

to model the electromechanical interaction and capture subtleties related to interpreting

different microwave noise detection techniques. Next, we will discuss the fabrication and

measurement details that we use to cool and probe these devices with coherent and incoher-

ent microwave drive signals. Having developed our tools for signal modeling and detection,

we explore the three-wave mixing interaction between the microwave and mechanical modes,

whereby mechanical motion generates motional sidebands corresponding to up-down fre-
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quency conversions of microwave photons. Because of quantum vacuum noise, the rates of

these processes are expected to be unequal. We will discuss the measurement and interpreta-

tion of this asymmetric motional noise in a electromechanical device cooled near the ground

state of motion.

Next, we consider an overlapped two tone pump configuration that produces a time-

modulated electromechanical interaction. By careful control of this drive field, we report a

quantum non-demolition (QND) measurement of a single motional quadrature. Incorporat-

ing a second pair of drive tones, we directly measure the measurement back-action associated

with both classical and quantum noise of the microwave cavity. Lastly, we slightly modify

our drive scheme to generate quantum squeezing in a macroscopic mechanical resonator.

Here, we will focus on data analysis techniques that we use to estimate the quadrature oc-

cupations. We incorporate Bayesian spectrum fitting and parameter estimation that serve

as powerful tools for incorporating many known sources of measurement and fit error that

are unavoidable in such work.
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Chapter 1

Theory

In this chapter, we will first present a classical model for the microwave cavity which we then

expand to include dispersive coupling to the motion of a mechanical oscillator. Later, we

develop a quantum theory of the electromagnetic and mechanical modes via the input-output

framework. We explore how this theory relates to the construction of the output microwave

noise spectrum as well as the electromechanical interaction between the microwave and

mechanical modes.

1.1 Classical microwave circuit analysis

1.1.1 Ideal circuit

Motivated by the geometry of our device, we model the microwave circuit as a lumped

element parallel RLC circuit. Given the resistance R, capacitance C and inductance L,

we consider a parallel array accessed via independent ports, which for the purpose of the

experiment we separately label the right port “R” as the output and the left port “L” as

the input port. Each port constitutes a coupling capacitor connected to a 50Ω transmission

lines that serves to couple microwave signal into and out of the device.

Though the parallel RLC circuit is a prototypical example of an electromagnetic resonator

and has been extensively analyzed [1], we will derive the circuit voltages and scattering

parameters here for a few reasons. First, this analysis helps clarify the connection between the

1



50 μm

b) c)a)

Figure 1.1: Electromechanical device and effective circuit schematics. a. Optical micrograph of a typical
device from the top view. A parallel plate capacitor (center) is connected to a planar spiral inductor.
Input and output coupling capacitors connect the cavity to external microwave waveguides. b. Simplified
rendition of the microwave circuit emphasizing the electromechanical nature of the device. The microwave
resonator is composed of lumped-element inductor and capacitor. The free-standing top gate of the capacitor
is a mechanical oscillator, such that changes in position modify the capacitance and hence the microwave
resonance frequency. c. Equivalent microwave circuit, including the most relevant experimental details:
input and output capacitors serve to couple microwave signals into and out of the circuit while internal
resistance degrades the quality of the resonator.

classical and quantum circuit models and will serve as useful consistency checks throughout

the following calculations. Second, we ideally treat our circuit as an RLC circuit given in

Fig. 1.1(a), but in reality our device has numerous features that are not captured in this

circuit. We will first analyze the ideal circuit and then extend the model to incorporate

technical issues specific to our system (Fig. 1.3(a)). Lastly, this circuit has been analyzed

previously within the Schwab group with Norton equivalent circuit analysis [2], which leads

to direct calculations for circuit parameters at the cost of potentially obscuring their physical

origins. As an alternative method, we will derive the circuit voltages and effective scattering

parameters via Kirchoff’s circuit law.

To simplify the calculation, we can split the circuit as a T-network with three effec-

tive impedances: one for the unloaded resonator, Zc (i.e., the RLC circuit ignoring the in-

put/output couplers), one for the left port ZL, denoted in this work as the left port “L”, and

one for the right port ZR, denoted as the right port “R”. For each grouping, the impedance

is calculated directly from the constituent passive components. In this work, we use the

engineering convention of j =
√
−1, which differs from the physics convention by a negative

sign: j → −i). Assuming the high-Q limit where we only consider frequencies confined

2



in out
ωc

κint

κRκL

T

CL CRVSMR Vamp

RL
RL

2Vo
R L C 2Vo

ZL ZR

Zc

a) b) c)

Figure 1.2: Equivalent microwave circuit. a. Full microwave circuit schematic including the supply Vo
incident on the input capacitor, the load impedances RL of the input and output transmission lines, the
capacitances of the input CL and output CR couplers, the effective impedances of the RLC microwave
resonator and the voltage drops across the resonator capacitor, Vsmr, and amplifier load Vamp. b. Equivalent
impedances. To simplify the calculation and aid intuition, the cavity is split into three effective impedances:
ZL is the input impedance, ZR is the output impedance, and Zcav is the impedance of the unloaded microwave
resonator. c. Scattering picture. In the high-Q limit, the microwave resonator and environment is fully
represented by a coupled-mode diagram. The microwave cavity (cyan) is characterized by a resonance
frequency ωc and dissipation rate κ =

∑
σ κσ. Each port represents a coupling channel that supports both

relaxation and excitation of the cavity mode. The cavity radiates energy into each bath which in turn
radiates incoherent noise, given by the equilibrium temperature Tσ, back into the cavity.

within a narrow bandwidth about ωo (i.e., κ� ωo), so that (ω2−ω2
o) ' 2ωo(ω−ωo), we find

Zσ(ω) = RL +
1

jωCσ
, (1.1)

Zcav(ω) =

(
1

R
+ jωC +

1

jωL

)−1

, (1.2)

' ωoZo
2

1

j(ω − ωo) + κint/2
, (1.3)

where we define the characteristic impedance Zo and bare resonance ωo as Zo =
√

L
C

and

ωo = 1√
LC

. By formulating the impedance in this manner, we can now easily identify the

cavity susceptibility as a Lorentzian factor with peak centered about ωo and internal loss κint.

The internal loss rate, also defined as the full width at half max (FWHM) of the unloaded

resonator, is defined via the circuit parameters as κint = 1/RC.

The total impedance of the network, Ztot, is defined in terms of the sub-unit circuit

3



impedances as

Ztot = ZL +
(
Z−1

cav + Z−1
R

)−1
, (1.4)

=
ZcavZLZR
Zcav + ZR

(
Z−1

cav + Z−1
L + Z−1

R

)
. (1.5)

1.1.2 Scattering parameters

We now derive the scattering parameters via the voltage drops over all relevant sections of

the circuit. The voltage in the superconducting microwave resonator, Vsmr, is given by the

voltage across the capacitor,

Vsmr = 2Vo

(
Z−1
L

Z−1
cav + Z−1

L + Z−1
R

)
, (1.6)

= Vo

√
1

RLC

j
√
κL

j(ω − ωc) + κ/2
, (1.7)

where we have omitted the explicit frequency dependence of the effective impedances. The

microwave resonance frequency ωc and total linewidth κ now include the effects of the input

and output coupling channels,

ωc = ωo +
∑
σ=R,L

δωσ, (1.8)

κ =
∑

σ=R,L,int

κσ. (1.9)

Arranging the cavity voltage in a Lorentzian format allows us to identify the scattering

parameters associated with each port in relation to the circuit elements. Assuming that the

coupling capacitors are sufficiently small (ω2C2
inR

2
L � 1), the induced frequency shifts scale

as

δωσ = −ωoZo
2
× Im(Z−1

σ ), (1.10)

=
ωo
2

(
Cσ
C

)
. (1.11)

4



The loss rate associated with each port follows

κint =
1

RC
, (1.12)

κσ = ωoZo × Re(Z−1
σ ), (1.13)

' ω2
oRL

(
C2
σ

C

)
. (1.14)

Regarding the voltage drop across the amplifier load, the output impedance behaves as

a voltage divider,

Vamp =
RL

ZR
Vsmr, (1.15)

= j
√
κRRLCVsmr(ω). (1.16)

Since the transmission lines are impedance matched to the signal generator, the power

incident on the microwave circuit is given as the average voltage drop across the load resis-

tance Pin = 〈V 2
o 〉/RL. The energy stored in the resonator is calculated via the maximum

voltage drop across the capacitor and is expressed as the number of coherent photons in the

cavity, np,

Uc =
|Vsmr|2

2C
(1.17)

=
κL

(ω − ωc)2 + (κ/2)2
Pin, (1.18)

= ~ωcnp. (1.19)

The internally dissipated power is calculated from the time-averaged voltage drop across the

internal resistance,

Pint =
〈|Vsmr|2〉

R
(1.20)

= ~ωcnpκint. (1.21)

5



Similarly, the output power follows from the time-averaged power dissipated across the am-

plifier load,

Pout =
〈|Vamp|2〉
RL

(1.22)

=
κLκR

(ω − ωc)2 + (κ/2)2
Pin, (1.23)

= ~ωcnpκR. (1.24)

This relationship is useful for calibrating the internal loss, as the the peak height on resonance

is given by the ratio
(
κLκR
κ2

)
.

Based on the format of these equations, we see that the previous definitions of the loss

rates κσ, initially motivated by identifying the circuit transmission as a Lorentzian lineshape,

are properly associated with the dissipation rate of each respective port.

1.1.3 Bypass channel

From Eq. (1.7), the magnitude of the microwave circuit transmission exhibits a Lorentzian

lineshape. However, a typical measurement of transmission through the microwave circuit

noticeably deviates from a Lorentzian lineshape at frequencies far beyond the resonator

linewidth. One distinct feature is the presence of an anti-resonance in the spectrum, in-

dicating interference of multiple current channels at the output of the microwave circuit,

in addition to a nearly flat transmission background that far exceeds the noise floor of our

measurement apparatus (Fig. 1.3(b)). As a first step to understand this behavior, we assume

the presence of a bypass channel that provides an alternate current path between the input

and output ports of the sample (Fig. 1.3(a)).

Applying Kirchoff’s Circuit Law over the equivalent circuit model, we recover the voltage

grop across the resonator, the voltage drop across the amplifier load, and, assuming waveg-

uide impedance matching, the complex transmission S21(ω) = Vamp(ω)/Vo. For simplicity,

we omit writing the explicit frequency dependence for the circuit impedances in the following

equations. Under the assumptions that 1/(ωCL), 1/(ωCR), |Xb| � RL, the voltages simplify
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Figure 1.3: Microwave circuit with bypass channel. a. Equivalent microwave circuit model of a parallel
RLC circuit probed with input and output capacitive couplers CL, CR, and including an additional bypass
channel characterized by the reactance Xb. b. Driven response data (dark blue) fit with a bypass model
(red) and ideal model (|Xb| → ∞).

to

Vsmr(ω) = Vo

√
1

RLC

j
√
κL

j(ω − ωc) + κ/2
, (1.25)

Vamp(ω) = j
√
κRRLCVsmr(ω)

[
1− j2RL

Xb

(ω − ωc)√
κLκR

]
, (1.26)

S21(ω) =
−√κLκR

j(ω − ωc) + κ/2
. (1.27)

We further assume that the bypass channel is approximately flat over the explored frequency

range. We can now pull out a frquency-dependent correction factor for the transmission

through the resonator,

Pout(ω) = ∆(ω)~ωcnpκR, (1.28)

where,

∆(ω) =

∣∣∣∣1− j2RL

Xb

(ω − ωc)√
κLκR

∣∣∣∣2 . (1.29)

Though the source of this reactance is not entirely clear, we believe this bypass channel

is associated with a sample package or chip mode of the device. Typically, we observe a

low quality microwave resonance between 9-12 GHz depending on the dimensions of our

fabricated chip. At the frequencies relevant to our measurements, the bypass transmission
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through this low-Q mode is sufficiently flat and, due to the large frequency detuning, can be

modeled as a positive, imaginary impedance that is consistent with this model.

We have also explored modeling this behavior from other known device features, such

as the shunt capacitance of the external couplers or the impedance mismatches between

sections of the on-chip waveguides; however, these attributes do not replicate the observed

Fano lineshape for cavity transmission.

1.1.4 Optomechanical coupling and sideband transduction

ωc

ωm

ωc

ωm

a) b)

Figure 1.4: Canonical examples of dispersive parametric coupling in opto- and electromechanical systems.
a. Optomechanical system. One end mirror of a Fabry-Perot cavity is a mechanical resonator such that
changes in position will alter the length of the optical cavity which in turns shifts the optical resonance
frequency. b. Electromechanical system. A mechanical resonator forms one gate of a parallel plate capacitor
in a lumped-element microwave resonator. Motion modifies the capacitance gap size which induces a shift in
capacitance and resonance frequency. This system is closely replicated for the devices studied in this work.

Motivated by the design of our system, we now consider an electromechanical device

that is composed of a LC microwave resonator with a flexible capacitor gate. The motion

of the resonator modulates the gap size of the capacitor which in turn shifts the microwave

resonance frequency

ωc =
1

LC
. (1.30)

We express the strength of the electromechanical coupling, g, as

g =
∂ωc
∂x

= − ωc
2C

∂C

∂x
. (1.31)

If we consider only a single resonant mode of the gate with resonance frequency ωm and
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amplitude xo, the microwave resonance frequency now has explicit time modulation,

ωc(t) = ωc

[
1− 1

2C

∂C

∂x
xo cos(ωmt+ φm)

]
. (1.32)

To help understand how this system behaves, we can calculate Vsmr by first assuming that

the cavity field instantaneously responds to the motion of the capacitor. The parametric

coupling induces a combination of phase and amplitude modulation for the cavity field. For

a small frequency shift δωc = ∂ωc
∂x
x(t) = gx(t) � ωc, we capture the first order corrections

by Taylor expanding the cavity transmission prefactor (Eq. (1.7)):

Vsmr = Vo

[
S21(ω) +

∂S21

∂ω
δωc(t)

]
ω=ωp

, (1.33)

= VoS21(ωp)

[
1 +

jg

j(ωp − ωc) + κ/2
x(t)

]
, (1.34)

= Vpe
i(ωpt+φp) +

∑
±
V±e

i[(ωp±ωm)t+φ±]. (1.35)

Parametrically modulating ωc at ωm generates sidebands detuned about the coherent pump

at integer multiples of the mechanical resonance frequency with amplitude and phase deter-

mined by the pump detuning from cavity resonance.

This calculation hinges on the assumption that the cavity responds to the position of

the mechanics much faster than the mechanical period. Since we are in the sideband re-

solved regime, ωm � κ, this assumption is explicitly violated – the cavity field responds to

parametric modulation with a time constant on the order of the loaded dissipation rate κ−1.

As a next step, we can extend the circuit model to account for the finite response time of

the cavity. The following treatment follows closely along with Sec. 2.4 of [2]. Motivated by

Fig. 1.2, the total current for a driven microwave resonator can be expressed as a parametric

Mathieu equation,

Io cos(ωpt) =
∂

∂t
(CV ) +

1

R
V +

1

L

∫
dtV, (1.36)

where the parametric modulation is implicitly included as the time-dependent capacitance

C and the circuit parameters R,L,C include loading effects of the drive and measurement
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circuits. Here, the microwave pump signal has been expressed as an incident source current

oscillating at drive frequency ωp and with amplitude Io which can be expressed in terms of

the cavity voltage Vsmr = IoZoωp
1√

(ωp−ωc)2+(κ/2)2
.

As it pertains to our experiments, we consider driving the system near cavity resonance

at detunings spanning ±ωm. As the cavity is sideband resolved, higher-order sideband terms

will be highly suppressed by the cavity response and so we only consider voltage contributions

from the first order sidebands. We consider a trial solution that includes the carrier drive

and nearest-neighbor sidebands:

V (t) = Vpe
−i(℘t+φp) + V−e

−i(ω−t+φ−) + V+e
−i(ω+t+φ+). (1.37)

Differentiating Eq. (1.36) and substituting in the trial solution, the phase and amplitude

for these three components can be solved under the following assumptions: the modulation

is sufficiently weak so that the coherent pump is unaffected and follows Vpe
iφp = Vsmr =

Vo
√

1
RLC

j
√
κL

j(ω−ωc)+κ/2 , the pump frequency is sufficiently close to cavity resonance so ωp ' ωc

simplifies the cavity susceptibilities, and ωm � κ ensures the coupling to higher order side-

bands is negligible. In terms of the pump detunings, ∆± = ω±−ωc, the voltage components

follow

V− = −gxo
1√

(κ/2)2 + ∆2
−
Vp, (1.38)

φ− = arctan

(
κ

2∆−

)
− φp + φm, (1.39)

V+ = −gxo
1√

(κ/2)2 + ∆2
+

Vp, (1.40)

φ+ = arctan

(
κ

2∆+

)
− φp − φm. (1.41)

With an entirely classical model, we already see that electromechanical systems exhibit

the Raman-like processes of up and down-conversion of photons resulting from the parametric

coupling between the mechanical motion and the electromagnetic modes of a resonant cavity.

These up and down-converted sidebands form the subject of this work and will be discussed
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Figure 1.5: Thermomechanical noise spectra. Typical microwave noise spectrum (blue) with Lorentzian fits
(red) of the up-converted motional sideband. As the cryostat temperature rises from 20mK to 200mK, we
observe the sideband power increase accordingly, as well as a small linear increase in the intrinsic mechanical
linewidth.

extensively in the following work. Foreshadowing for later discussion, note that there is a

sign difference for the transduced mechanical phase φm between the up and down converted

mechanical sidebands; this serves an important role in quantum noise correlations that arise

between the imprecision and back-action noise forces.

From this result, we can derive a useful relation for the integrated microwave noise power

under the transduced mechanical sidebands. Following Eqs. (1.38)-(1.41) and assuming

that the mechanics is uncorrelated with the drive voltage, the integrated microwave noise

power, normalized by the drive power, of the motional sidebands that are up- (+) and

down-converted (−) into the cavity center are proportional to the rms motional noise 〈x2〉,

〈V 2
±〉
〈V 2

p 〉
=

(
2g

κ

)2

〈x2〉. (1.42)

Since the normalized ratio
〈V 2
±〉
〈V 2
p 〉 is insensitive to fluctuations in the output gain of the mi-

crowave circuit, this is a useful relationship to extract the electromechanical coupling g .

In our experiments, we extract out the prefactor (2g
κ

) by monitoring the ratio between the

transduced motional sideband power (Fig. 1.5) and the coherent drive power (measured at

the detector output) as we regulate the cryostat temperature from base temperature up to

200mK via calibrated resistance thermometry. As a consistency check, we find that the me-

chanical bath thermalizes all the way down to the base temperature of our fridge (Fig. 4.2).
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1.1.5 Mechanical forces

We have now shown that a dispersive parametric coupling between the mechanical and

electromagnetic resonator gives rise to microwave transduction of motion, but that is not the

full picture. Through the electromechanical coupling, the electromagnetic resonator energy is

now position dependent and gives rise to microwave-induced mechanical forces. As a simple

illustration for a microwave resonator with a flexible capacitor gate, the resonator energy is

now a function of position, leading to electromagnetic-driven forces on the mechanics,

Fmech = −dUc
dx

, (1.43)

=
1

2
|Vsmr(t)|2

(
dC

dx

)
. (1.44)

From this simple result, we find that the mechanical forces are driven by microwave signal

mixing, reminiscent of the three-wave mixing that leads to phonon-photon transduction.

Since these mechanical forces are driven by microwave mixing, we must also pay careful

attention to microwave noise at ωp ± ωm for two reasons. First, the mechanical resonator is

in the high-Q limit and only responds to forces that are close to ωm in the Fourier domain.

Second, we typically rely on intense coherent drives at ωp to enhance the electromechanical

coupling, meaning that the dominant force terms at ωm are generated from mixing between

the coherent microwave drive at ωp and microwave noise in the narrow band about ωp±ωm.

This immediately sets up a feedback mechanism that will generally introduce correla-

tions between the microwave and mechanical signals. Furthermore, this feedback system is

dynamic in nature: the mechanical signals are transduced into microwave signals which in

turn mix back down into mechanical forces.

This feedback mechanism is a source of much of the major results in opto- and elec-

tromechanics, such as optomechanical induced transparency [3–5], mechanical cooling [6,7],

mechanical amplification [8], microwave squeezing [9,10]. These results represent major mile-

stones in the fields of mechanical sensing and mechanical state preparation at the quantum

level; the purpose of this section is to illustrate an analogous, and perhaps more intuitive,
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classical model for much of this behavior.

1.2 Quantum analysis

1.2.1 Transmission line quantization

As a first step to building up a quantum model for electromechanical measurements, we

consider the quantization of a microwave transmission line. This is a good place to start

since it will guide our treatment of microwave baths and will also shape our treatment for

noise spectrum calculations in later sections. This section closely follows the arguments and

calculations of [11].

For a transmission line with capacitance per length c and inductance per length l, it is

convenient to define the flux variable ϕ̂ and momentum conjugate q̂ (local charge density).

The Hamiltonian is given by

Ĥ =

∫
dx

[
1

2c
q̂2 +

1

2l
(∂xϕ̂)2

]
. (1.45)

The Hamiltonian is simplified with a normal mode expansion for the standing waves on an

infinite transmission line. With periodic boundaries, q = nπ/L for n ∈ Z,

b̂q ≡
1√
~ωqL

∫
dxe−iqx

[
1√
2c
q̂ − i

√
q2

2l
ϕ̂

]
. (1.46)

The Hamiltonian becomes

Ĥ =
∑
q

~ωq b̂†q b̂q, (1.47)

where ωq = vp|q| is the mode frequency and vp = 1/(lc) is the wave velocity of the transmis-

sion line.

The voltage at one end of an infinite transmission line is defined as the amplitude quadra-
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ture of the electromagnetic field.

V̂ (x, t) =
∑
q

√
~ωq
2Lc

[
b̂qe

i(qx−ωqt) + b̂†qe
i(qx+ωqt)

]
, (1.48)

where the explicit time-dependence of the bath operators are given by the Heisenberg equa-

tion of motion. Ignoring any coupling between bath and system, b̂q(t) = b̂qe
−iωqt.

Based on the form of Eq. (1.48), we can organize the voltage operator into right moving

fields, proportional to (t− x
vp

), or left moving fields proportional to (t+ x
vp

):

V̂ (x, t) = V̂ →(t− x

vp
) + V̂ ←(t+

x

vp
). (1.49)

Expanding Eq. (1.49) and noting that ωq ≥ 0 for all q,

V →(t) =

∫ ∞
0

dω

2π

√
~ωZo

2

[
b̂→[ω]e−iωt + b̂†→[ω]eiωt

]
, (1.50)

where the right-moving annihilation operator is defined as

b̂→[ω] ≡ 2π

√
vp
L

∑
q>0

b̂qδ(ω − ωq). (1.51)

Similarly, the left-moving field is

V ←(t) =

∫ ∞
0

dω

2π

√
~ωZo

2

[
b̂←[ω]e−iωt + b̂†←[ω]eiωt

]
, (1.52)

b̂→[ω] ≡ 2π

√
vp
L

∑
q<0

b̂q δ(ω − ωq). (1.53)

Note that the right and left movers are separated in the Fourier domain into positive and

negative frequencies. This frequency separation ensures that the field commutators are

nonzero only for identically moving fields,

[
b̂→[ω], b̂†→[ω′]

]
=
[
b̂←[ω], b̂†←[ω′]

]
= 2π δ(ω − ω′), (1.54)
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and also introduces Heaviside step functions into the correlators for the right-moving field,

〈b̂†→[ω]b̂→[ω′]〉 = 2π δ(ω − ω′)nσΘ(ω), (1.55)

〈b̂→[ω]b̂†→[ω′]〉 = 2π δ(ω − ω′)(nσ + 1)Θ(ω), (1.56)

and correlators for the left-moving field,

〈b̂†←[ω]b̂←[ω′]〉 = 2π δ(ω − ω′)nσΘ(−ω), (1.57)

〈b̂←[ω]b̂†←[ω′]〉 = 2π δ(ω − ω′)(nσ + 1)Θ(−ω), (1.58)

where the fields are taken to be in equilibrium with a bath at occupation nσ.

This transmission line quantization applies to standing electromagnetic waves on an iso-

lated transmission line. This is a rather simplified example of what we typically encounter

in experiments. For a finite length transmission line loaded on either side by measurement

equipment, the boundary conditions at each termination introduce explicit relationships be-

tween the right- and left-moving waves. These conditions potentially alter the manner in

which we treat the microwave fields. For example, a semi-infinite transmission line termi-

nated at x = 0 by an impedance-matched spectrum analyzer will absorb all incident signals.

For the left-moving signals, the microwave field propagates in the other direction and, at

least in theory, never reflects back to the analyzer. In this situation, the analyzer is only

sensitive to the right moving signal V̂ →. In Sec. 1.3, we explore how this behavior manifests

for the types of noise measurements considered in this work.

1.2.2 Input-output relations

We will now consider the dynamics between a quantum system coupled to a bosonic bath

continuum and will arrive at Langevin-Heisenberg equations for the system operator that

includes the effects of bath-induced dissipation and noise fluctuations. The arguments and

calculations presented here closely follow along with [11,12].
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The Hamiltonian for a system coupled to a bath is

Ĥ = Ĥsys + Ĥbath + Ĥint. (1.59)

The bath is a continuum of independent harmonic oscillators labeled by the quantum number

q,

Ĥbath =
∑
q

~ωq b̂†q b̂q, (1.60)

with commutation relations, [
b̂q, b̂

†
q′

]
= δq,q′ . (1.61)

We make the rotating wave approximation and only consider the resonant contributions to

the system-bath interaction Hamiltonian,

Ĥint = −i~
∑
q

[
fqâ
†b̂q − f ∗q â†b̂q

]
, (1.62)

where fq represents the coupling strength between system and bath operators. Terms like

b̂†â† and b̂â have been neglected since they are unphysical and are fast oscillating in the

interaction picture.

Next, we take the Markov approximation and assume the coupling is frequency indepen-

dent, ∑
q

|fq|2e−i(ωq−ωc)(t−t
′) = κδ(t− t′). (1.63)

Substituting between the Heisenberg equations for the system and bath operators, we ar-

rive at the Langevin-Heisenberg equations for the cavity mode that includes both dissipation

and coupling to bath fluctuations,

˙̂a =
i

~

[
Ĥsys, â

]
− κ

2
â−√κb̂in(t), (1.64)
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where the input and output field operators are defined in terms of the bath modes,

b̂in(t) ≡ 1√
κ

∑
q

fqe
iωq(t−t0)b̂q(t0), (1.65)

b̂out(t) ≡ 1√
κ

∑
q

fqe
iωq(t−t1)b̂q(t1). (1.66)

Solving for the system operator dynamics, we arrive at the Langevin-Heisenberg equation

for the system operator,

˙̂a =
i

~

[
Ĥsys, â

]
− κ

2
â−√κb̂out, (1.67)

with the input-output boundary condition,

b̂out(t) = b̂in(t) +
√
κâ(t). (1.68)

This final condition implies that the output microwave field consists of the system signal

coupling out of the external port in addition to the reflected input bath noise. This relation-

ship captures the behavior of a system coupled to the environment through a single port. In

our work, we deal with cavities that are coupled to the environment through multiple ports

that arise from both external and internal dissipation. We can generalize the input-output

relations for multiple ports σ, each associated with separate scattering rates κσ, and input

bath operators b̂σ,in. The only modification to the relations above is that we must now specify

an input-output boundary condition for each port,

b̂σ,out(t) = b̂σ,in(t) +
√
κσâ(t). (1.69)

Since the input-output conditions are linear, the system responds identically to the Heisenberg-

Langevin equation Eq. (1.68), except now the bath operator and scattering rate is given by

17



the weighted average of the port contributions,

κ =
∑
σ

κσ (1.70)

b̂in =
∑
σ

√
κσ
κ
b̂σin. (1.71)

As a final note, the input-output relations are a useful tool to model the linear propagation

of noise through our system. As it pertains to calculating experiment measurables like the

noise spectral density radiating out of the cavity or the complex transmission through the

microwave circuit, we only consider the “right-moving” fields of Eq. (1.48) which restricts the

summation in Eqs. (1.71) to only positive quantum numbers, q > 0. This restriction implies

that the input bath annihilation operator only has spectral weight at positive frequencies.

This frequency separation introduces Heaviside step functions that depend on the time-

ordering of the bath operators. For example, Fourier terms like

∫
dteiωt〈d̂†σ,in(0)d̂σ,in(t)〉 = nσΘ(ω) (1.72)

have spectral weight only at positive frequencies. Alternatively, terms like

∫
dteiωt〈d̂†σ,in(t)d̂σ,in(0)〉 = nσΘ(−ω) (1.73)

only have spectral weight at negative frequencies. Since the output microwave field b̂out will

be linearly proportional to the input field b̂in, we omit output-field correlation terms that,

following the input field correlators, have no spectral weight at positive frequencies.

1.3 Noise detection

In this work, we apply continuous wave signals and measure in the frequency domain. There-

fore, the bulk of the analysis is performed in the frequency domains and utilizes two main

techniques, microwave noise measurement and scanning homodyne detection. Here we con-
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sider the microwave noise spectrum, also referred to as the power spectral density of the

output voltage noise.

Consider output voltage noise normalized to units of quanta,

V̂out = d̂out + d̂†out. (1.74)

The power spectral density of the outgoing voltage noise is given by

SV V [ω] = 〈|V̂out[ω]|2〉. (1.75)

Assuming the voltage fluctuations are stationary and ergodic [11, 13], the Wiener-Kintchin

theorem connects the spectral density to the Fourier transform of the autocorrelatorGV V (t) =

〈V̂out(t)V̂out(0)〉,

SV V [ω] =

∫
dteiωt〈V̂out(t)V̂out(0)〉, (1.76)

=

∫
dteiωt〈d̂†out(t)d̂out(0) + d̂out(t)d̂

†
out(0)〉. (1.77)

1.3.1 Linear detection

A general approach to measure the power spectrum of the microwave field is to first measure

the time-dependent quadrature amplitudes of the output field and then use these elements

to calculate a power spectrum. We do this in our experiment by using a linear amplifier to

measure the voltage associated with the outgoing field.

This detection scheme is formally equivalent to a diode plus filter. The diode serves a

large bandwidth square-law power detector that is sensitive to the integrated voltage noise

over the full frequency domain. To isolate only a sharp peak of the noise spectrum, we

introduce a well-behave, normalized bandpass filter function f [ω] sharply peaked at the

designated ω. The voltage at the filter output is

V̂f [ω] = f [ω]V̂out[ω]. (1.78)
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With filter in place, the diode output is

I ∝ |V̂f |2 =

∫ ∞
−∞

dω|f [ω]|2SV V (ω), (1.79)

=
1

2
(SV V [ω] + SV V [−ω]) , (1.80)

= S̄V V [ω]. (1.81)

The second line follows from the fact that the filter function is real in the time domain,

f [ω] = f [−ω]∗ so that |f [ω]|2 = |f [−ω]|2. Moving to notation for the noise spectrum

emanating from the right port “R” port of the our device, we find that linear detection is

sensitive to the symmetrized output noise spectrum,

S̄R[ω] =
1

2

∫
dteiωt〈{V̂out(t), V̂out(0)}〉, (1.82)

=
1

2

∫
dteiωt〈d̂†R,out(0)d̂R,out(t) + d̂R,out(t)d̂

†
R,out(0)〉. (1.83)

This last line arises from the frequency separation of the transmission line modes to right- and

left-moving fields so that the output voltage is defined only for the single branch of positive

frequencies and terms with no spectral weight at the specified frequency are omitted.

Note that symmetric detection is sensitive to the shot noise of the electromagnetic field

since it contains terms like 〈d̂outd̂
†
out〉. Associating the field correlator 〈d̂†outd̂out〉 with pho-

ton destruction and 〈d̂outd̂
†
out〉 with photon emission, the symmetric spectrum can be rein-

terpreted as the average rate at which the detector absorbs and radiates energy with the

environment.

For the case of voltage digitization and fourier transformation, an ADC will sample a

time series of voltages across an impedance-matched load. Once the voltage stream is stored

as classical real data, the classical voltage commutes with itself at all times, giving rise to

a symmetrized noise spectrum. Alternatively, the voltage time series is complex conjugate

symmetric in the Fourier domain (V [ω] = V [−ω]∗), and so again the spectral density from

digitization must be symmetric in frequency.
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1.3.2 Nonlinear detection

What if one performs direct photon counting instead of linear noise detection? Since pho-

todetection is sensitive only to the absorption of photons, the corresponding noise spectrum

contains only to normal-ordered terms consistent with the Glauber formalism [11, 14]. In

terms of the microwave noise radiating out of the output port “R”, the photon-counting

spectrum is

SR[ω] =

∫
dteiωt〈: V̂out(t)V̂out(0) :〉, (1.84)

=

∫
dteiωt〈d̂†R,out(0)d̂R,out(t)〉. (1.85)

Since the normal-ordered detection only absorbs energy from the system, this measurement

scheme is not sensitive to the vacuum fluctuations of the electromagnetic field.

Note that the symmetrized and normal-ordered spectra are related through the commu-

tation relations of the output microwave field ([d̂σ,out, d̂
†
σ,out] = 1) and are thus necessarily

the same minus a white shot noise floor,

S̄R[ω] = SR[ω] + 1
2
. (1.86)

Since there is little question whether a microwave field behaves quantum mechanically, it

seems straightforward to relate the rates of emission to that of absorption. By formally ap-

plying the output field commutation relation, measurements can be framed as measuring only

photon absorption or both photon emission and absorption. Is this an important distinction?

If the question is whether or not the outgoing light field behaves quantum mechanically, then

perhaps not. But, as we show later, if the question extends to broader statements about

proving the quantum mechanical essence of macroscopic mechanical objects, then yes this is

an important distinction and raises ambiguity in measurement interpretation.
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∆

ωm + δωm + δ

ω− ω+
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ωc

Figure 1.6: General two-tone pump configuration. The drive field consists of two microwave tones (red and
blue peaks) detuned above and below the cavity resonance ωc (cavity DOS in black) at frequencies ω+ and ω−
and with amplitudes α± leading to enhanced optomechanical coupling strengthsG±. To simplify calculations,
we move into the interaction pictures with the cavity field rotating about ωc+∆ and mechanical field rotating
about ωm + δ. The detunings are defined via the microwave drive frequencies: ∆ = [ 1

2 (ω+ + ω−)− ωc] and
δ = [ 1

2 (ω+ − ω−)− ωm].

1.4 Optomechanical interaction

We are now ready to tackle modeling our electromechanical system within the input-output

framework defined above.

1.4.1 Linearized optomechanical Hamiltonian and quantum Langevin

equations

We consider the canonical optomechanical Hamiltonian,

Ĥ = ~ωcâ†â+ ~ωmb̂†b̂− ~g0â
†â
(
b̂+ b̂†

)
+ Ĥdiss + Ĥdrive, (1.87)

where â
(
â†
)

is the annihilation (creation) operator of the intra-cavity microwave field, b̂
(
b̂†
)

is the mechanical phonon annihilation (creation) operator, and g0 = ∂ωc
∂x
xzp is the bare

optomechanical coupling. The term Ĥdiss models the cavity and mechanical dissipation

channels to their respective baths, consistent with input-output relations of Eq. (1.67), and

the final term Ĥdrive captures the coherent cavity driving.

We will now begin to tailor this calculation to our experimental system. In our exper-

iment, the otpomechanical system is a two-port electromechanical system driven from the

left input port, which we designate (L), and measured via the right output port, which we

designate (R). We initially consider driving the system with two microwave tones detuned
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above and below the cavity resonance. The drive Hamiltonian reads

Ĥdrive = ~
∑
ν=±

αν
(
âeiωνt + â†e−iωνt

)
, (1.88)

where ω± = ωc + ∆ ± (ωm + δ) and α± are the red and blue pump amplitudes defined at

the input port. The detunings δ and ∆ are shown in Fig.1.6. In the following, we apply

standard linearization, i.e., we separate the cavity and the mechanical operators, â and

b̂, into a classical part, ā or b̄, plus quantum fluctuations, d̂ or ĉ. E.g., â → ā + d̂. In the

interaction picture with respect to Ĥ0 = ~ (ωc + ∆) â†â+~ (ωm + δ) b̂†b̂, we find the linearized

optomechanical Hamiltonian

Ĥlin = ĤRWA + ĤCR . (1.89)

Here,

ĤRWA = −~∆d̂†d̂− ~δĉ†ĉ− ~
[(
G+ĉ

† +G−ĉ
)
d̂† +

(
G+ĉ+G−ĉ

†) d̂] (1.90)

describes the resonant part of the linearized optomechanical interaction, whereas

ĤCR = −~
[
G+e

−2i(ωm+δ)tĉ+G−e
2i(ωm+δ)tĉ†

]
d̂† − ~

[
G+e

2i(ωm+δ)tĉ† +G−e
−2i(ωm+δ)tĉ

]
d̂

(1.91)

describes off-resonant optomechanical interactions. Note that G± = g0ā± describes the

driven-enhanced optomechanical coupling. Here, ā± is the intracavity microwave amplitude

due to the red and blue pumps, and we have assumed ā± ∈ R for simplicity and without loss

of generality.

Let us first consider the good cavity limit (ωm � κ) which allows us to work within the

rotating wave approximation, Ĥlin ≈ ĤRWA. In this case, the linearized quantum Langevin

equations (Eq.( 1.67)) read

˙̂
d = −

(κ
2
− i∆

)
d̂+ i

(
G−ĉ+G+ĉ

†)+
√
κd̂in, (1.92)

˙̂c = −
(γm

2
− iδ

)
ĉ+ i

(
G−d̂+G+d̂

†
)

+
√
γmĉin . (1.93)
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Here, d̂in =
∑

σ=L,R,I

√
κσ
κ
d̂σ,in is the total input noise of the cavity, where d̂σ,in describes

the input fluctuations to the cavity from channel σ with damping rate κσ. σ = L and

R correspond to the left and right microwave cavity ports, while σ = I corresponds to

internal losses. The noise operator ĉin describes quantum and thermal noise of the mechanical

oscillator with intrinsic damping rate γm. The input field operators satisfy the following

commutation relations:

[
d̂σ,in(t), d̂†σ′,in(t′)

]
= δσ,σ′δ(t− t′), (1.94)[

ĉin(t), ĉ†in(t′)
]

= δ(t− t′), (1.95)

〈d̂†σ′,in(t)d̂σ,in(t′)〉 = nth
σ δσ,σ′δ(t− t′), (1.96)

〈ĉ†in(t)ĉin(t′)〉 = nthmδ(t− t′), (1.97)

where nth
σ is the photon occupation in port σ, and nthm = [exp (~ωm/kBT )− 1]−1 is the

thermal occupation of the mechanical oscillator. The total occupation of the cavity is the

weighted sum of the contributions from different channels: nthc =
∑

σ
κσ
κ
nth
σ .

We include multiple bath temperatures (nthσ ) to describe the various sources of heating

in microwave circuits. Compared to optical cavities which are passively cooled well into the

ground state (< 104 K), microwave cavities can have significant thermal occupation even at

temperatures reached in the dilution refrigerator. Filtering on the input and output trans-

mission lines suprresses incident room tepmrerature noise; however, other issues may remain,

like internal dissipation in the cavity [15], or thermal noise from refrigerator components [16].

Additionally, there are other issues common to both microwave and optical systems, such

as source-phase noise [9] and cavity-frequency jitter [17]. Whatever the source, noise in the

system can be generalized into two categories based on how the noise contributes to the

measured signal, either by radiating directly into the cavity (nthl and nthi ) or by radiating

into both the cavity and detector (nthr ).

For microwave noise spectrum calculations, we will also encounter correlations between

the cavity operator and the output port bath. The input-output relations and cavity field
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correlations yield

〈d̂†R,in(t) d̂in(t′)〉 = 〈d̂†in(t) d̂R,in(t′)〉 =

√
κR
κ
nthr δ(t− t′) (1.98)

〈d̂R,in(t) d̂†in(t′)〉 = 〈d̂in(t) d̂†R,in(t′)〉 =

√
κR
κ

(nthr + 1) δ(t− t′) (1.99)

〈d̂†R,in(t)d̂†in(t′)〉 = 〈d̂R,in(t)d̂in(t′)〉 = 0. (1.100)

1.4.2 Optomechanical output spectrum and mechanical spectrum

In this section, we derive the optomechanical output spectrum and the mechanical quadra-

ture spectrum, first within the RWA and later in Sec. 1.3 including bad cavity effects.

For this, we solve the quantum Langevin equations (Eqs. 1.92, 1.93) in Fourier space.

It is convenient to define the vectors D =
(
d̂, d̂†, ĉ, ĉ†

)T
, Din =

(
d̂in, d̂

†
in, ĉin, ĉ

†
in

)T
and

L = diag
(√

κ,
√
κ,
√
γm,
√
γm
)
. We then find the following solution to the quantum Langevin

equations in frequency space:

D̂ [ω] = χ [ω] ·L · D̂in [ω] , (1.101)

where

χ [ω] ≡


κ
2
− i (ω + ∆) 0 −iG− −iG+

0 κ
2
− i (ω −∆) iG+ iG−

−iG− −iG+
γm
2
− i (ω + δ) 0

iG+ iG− 0 γm
2
− i (ω − δ)



−1

. (1.102)

We measure the output microwave spectrum through the undriven (right) cavity port.

One finds the input-output relation d̂σ,out[ω] = d̂σ,in[ω] +
√
κσd̂[ω],

d̂ = χ11

√
κd̂in + χ12

√
κd̂†in + χ13

√
γmb̂in + χ14

√
γmb̂

†
in, (1.103)
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where all explicit frequency dependence has been omitted. The complex transmission spec-

trum (driven response) is given by

S21[ω] = −√κLκRχ11(ω). (1.104)

The symmetric noise spectral density (Eq. (1.83)) is given by

S̄R[ω] =

∫
dteiωt〈d̂†R,out(0)d̂R,out(t) + d̂R,out(t)d̂

†
R,out(0)〉, (1.105)

= κRκ
(
|χ11|2 + |χ12|2

)
(nthc + 1/2) (1.106)

+ κRγm
(
|χ13|2 + |χ14|2

)
(nthm + 1/2) (1.107)

+ [1− κR (χ11 + χ∗11)] (nthr + 1/2). (1.108)

It is also useful to consider the normal-ordered spectrum, S̄R[ω] = SR[ω] + 1
2
:

SR[ω] =

∫
dteiωt〈d̂†R,out(0)d̂R,out(t)〉

= κRκ|χ11|2 nthc
+ κRκ|χ12|2 (nthc + 1)

+ κRγm|χ13|2 nthm
+ κRγm|χ14|2 (nthm + 1)

+ [1− κR (χ11 + χ∗11)] nthr .

1.4.3 Motional noise spectrum

The mechanical spectrum is obtained in a similar fashion. The mechanical annihilation

operator is defined via the scattering terms,

b̂ = χ31

√
κd̂in + χ32

√
κd̂†in + χ33

√
γmb̂in + χ34

√
γmb̂

†
in. (1.109)
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The position noise spectrum is calculated in the lab frame as

Sxx [ω] =

∫
dteiωt〈x̂(t)x̂(0)〉, (1.110)

= x2
zp

{
|χ31(ω)|2 + |χ32(−ω)|2

}
κ(nthc + 1) (1.111)

+ x2
zp

{
|χ32(ω)|2 + |χ31(−ω)|2

}
κnthc (1.112)

+ x2
zp

{
|χ33(ω)|2 + |χ34(−ω)|2

}
γm(nthm + 1) (1.113)

+ x2
zp

{
|χ34(ω)|2 + |χ33(−ω)|2

}
γmn

th
m. (1.114)

The symmetrized motional noise spectrum is defined in terms of symmetrized bath contri-

butions,

S̄xx[ω] =
1

2

∫
dteiωt〈{x̂(t), x̂(0)}〉, (1.115)

=x2
zp

(
|χ31(ω)|2 + |χ32(ω)|2

)
κ(nthc + α/2) (1.116)

+ x2
zp

(
|χ33(ω)|2 + |χ34(ω)|2

)
γm(nthm + β/2), (1.117)

=
x2

zpγtot

(|ω| − ωm)2 + (γtot

2
)2

[
γm
γtot

(
nthm +

β

2

)
+
γ+

op + γ−op

γtot

(
nthc +

α

2

)]
, (1.118)

=
x2

zpγtot

(|ω| − ωm)2 + (γtot

2
)2

(
nm +

β̃

2

)
. (1.119)

If necessary, bad cavity effects can be incorporated using the same truncation techniques as

outlined in the section below.

1.4.4 Calculation of bad cavity effects

In the frequency domain, the explicit time-dependence of ĤCR couples sytem operators at

different frequencies to each other,

D̂CR [ω] = χCR [ω] ·LCR · D̂CR,in [ω] . (1.120)
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Here, D̂CR [ω] contains infinitely many sidebands detuned by Ω = 2 (ωm + δ),

D̂CR[ω] =
(
... D̂[ω − 2Ω], D̂[ω − Ω], D̂[ω], D̂[ω + Ω], D̂[ω + 2Ω] ...

)
,

while D̂ [ω] is defined in the same manner as in Sec. 1.4.2.

The updated scattering matrix χCR iteratively builds up the bad-cavity couplings,

χCR(ω) =



. . .

χ− χ−1(ω − Ω) χ+ 0 0

0 χ− χ−1(ω) χ+ 0

0 0 χ− χ−1(ω + Ω) χ+

. . .



−1

, (1.121)

with

χ− =


0 0 −iG+ 0

0 0 iG− 0

0 0 0 0

iG− iG+ 0 0

 , (1.122)

and

χ+ =


0 0 −iG− 0

0 0 iG+ 0

−iG+ −iG− 0 0

0 0 0 0

 . (1.123)

In order to solve the equations of motion, we truncate the number of sidebands that we

take into account, i.e., we truncate the length of D̂CR to the nth sideband at frequency

(ωm ± nΩ). As the analytic solutions are unwieldy even for first order corrections, we instead

numerically calculate the spectrum at frequencies specified by the data. In this fashion,

the likelihood function can still be evaluated and, with proper choice of numerical methods,

maximum likelihood estimation techniques can still be utilized for data fitting and parameter

estimation.
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Chapter 2

Fabrication and measurement

This chapter will discuss the measurement details that are common to the experiments

discussed in this work. We first describe the design and fabrication of our electromechanical

device, then describe relevant details following how we package, probe and analyze the

system.

2.1 Device design

Previous electromechanical work in the Schwab group at Cornell and Maryland utilized

metalized nitride nanowires coupled to superconducting half-wave resonators. Using these

kinds of devices, mechanical cooling [18] and back-action evasion measurements [19] closely

approached the quantum regime but were hindered by technical nonidealities induced by

relatively weak electromechanical coupling and sufficiently large second order capacitance

nonlinearities. Motivated by electromechanical devices fabricated at JILA [4,20], the work in

the Schwab group at Caltech focused on a similar device design that incorporates a vacuum-

gap planar capacitor and lumped element spiral inductor. Compared to the nanowires, the

drastic increase in capacitance and mechanical stiffness of the planar capacitor mitigated the

previous difficulties with cooling and BAE measurements. Furthermore, we hoped to develop

alternative processing techniques that would ideally suppress known microwave issues such

as two-level system noise. Our design of these devices is discussed below.
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Figure 2.1: Device images. a. Top view optical micrograph of the device. The microwave circuit is fabricated
from aluminum (grey) on a silicon substrate (blue). A parallel plate capacitor, center, is surrounded by a
spiral planar inductor to form a microwave resonator. Input and output coupling capacitors transmit signals
into and out of the device. b. Simplified circuit model. The top gate of the capacitor is a compliant
membrane that supports drumhead acoustic modes. c. Electron micrograph side view of the capacitor. The
gap between the capacitor gates is roughly 100nm at cryogenic temperatures.

2.1.1 Device modeling

We simulate the microwave resonators in Sonnet, a commercial 2.5D electromagnetic field

solver that incorporates the Method of Moments applied to Maxwell’s equations. Shooting

for a microwave resonance between 5 and 7 GHz, we model a 40µm×40µm capacitor placed

at the center of 6-turn spiral inductor. The capacitor is placed in the center of the inductor

for technical reasons; we have no way of producing clean interconnects between different

metalization layers so the capacitor serves as the interconnect between the bottom spiral

and top airbridge layers of the inductor. From simulation, we extract out the dissipation

rates associated with intrinsic dissipation and radiation loss channels. For high-resistivity

silicon with a loss tangent of 2×10−4 [21], we expect a loss rate on the order of 2π×100 kHz

stemming from eddy currents induced in the substrate. Radiation loss is a much weaker

effect, only contributing around 2π × 5 kHz of loss.

Ignoring other dissipation sources such as those associated with fabrication imperfections,

30



like dirt in the capacitor gap or trapped between the inductor metalization and subtrate,

the total internal loss is expected to be about κint = 2π× 165kHz. To mitigate the effects of

dielectric loss, we have attempted to switch from the device substrate from silicon to sapphire

but have encountered difficulties with modifying the fabrication recipes as the subtrate alters

the behavior of the sacrificial layer.

We can also extract the equivalent circuit parameters for the inductance and parasitic

capacitance. We extract a total inductance of approximately 15 nH, consistent with ana-

lytic calculations for planar spiral inductors [22]. For the parasitic capacitance, the series

capacitance of the air bridges and the capacitive coupling of the inductor to ground account

for roughly Cp = 30 fF. Given that we can achieve capacitor gaps of approximately 100 nm,

the parasitics roughly account for 20% of the total capacitance and hence the participation

ratio of the position-dependent capacitance is on the order of one: η = C
C+Cp

' 0.8.

As an aside, we have fabricated suspended top gates in both squares and circle patterns.

Though we do expect to see improved mechanical behavior of circular boundaries [23], in

practice we observe worse performance probably due to fabrication issues associated with

the altered design.

2.1.2 Suppressed parametric effects

We can perform a simple calculation to compare the onset of parametric amplification be-

tween nanowire [19] and planar capacitor devices. In both devices, the capacitance depends

on the position as 1
x

and hence contains terms to all orders in a Taylor expansion. Only

considering the second order term, ∂2C
∂x2 , the mechanics responds to the electromechanical

coupling with a power dependent spring shift, ∆ωm = 1
2
kEM

k
, where k is the bare mechanical

spring constant and the induced electromagnetic spring constant is

kEM =
~ωcnp

2C

∂2C

∂x2
. (2.1)

With two tone drive detuned by ±ωm, the spring shift modulates the mechanical reso-

nance at twice the mechanical frequency. Such modulation supports mechanical parametric
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amplification [12] such that the amplification factor scales with the ratio of the frequency

shift compared to the linewidth, ∆ωm
γm

. Calculating this factor for a set optical scattering rate

(ignoring differences in xzp scales), we find that it scales inversely with spring constant and

participation ratio:

∆ωm
γm

=
Qm

2

kEM

k
, (2.2)

=
~γop

2

(
Qm

Qc

)(
1

k

)(
1

η

)
. (2.3)

Assuming the consistent resonator Q’s between nanowire and planar devices, we find that

the amplification factor at a given cooperativity is highly suppressed in the planar devices

by nearly six orders of magnitude, mainly due to the enhanced participation ratio.

2.2 Fabrication

In this section, we will first describe the fabrication recipe for processing the current gen-

eration of electromechanical devices. Though this recipe may appear circuitous, it is the

result of multiple years of work spread between four graduate students and postdocs and

is informed by many iterations of alternative failed recipes. To elucidate these steps and

hopefully save other graduate students untold hours in the cleanroom, the remainder of

the section will discuss process development details of three older recipes that incorporated

alternative choices for deposition techniques, film materials and sacrificial layers. The dif-

ferent recipes are denoted by their most relevant fabrication details: “NbTin and SiO2”,

“Germanium and thermal”, “PMGI and e-beam” and “Polymer and sputter”.

2.2.1 Device recipe

We start with high-resistivity silicon wafer (> 10kΩ/cm2) prepared with a modified RCA

clean and BOE oxide strip. A 100 nm thick aluminum layer is sputter deposited at 6 Å/s in

a 5 mTorr Argon environment via a UHV-compatible DC magnetron sputter gun mounted
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sputter deposition spin & pattern 2-step wet etch
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& oxide strip

Figure 2.2: Fabrciation steps. The device is processed on a high-resistivity silicon wafer (blue). 100nm
aluminum (grey) is sputter deposited and patterned via a wet etch. Photoresist (green) serves as both an
etch-stop for the device and a sacrificial layer, defining the capacitor’s gap size and protecting the bottom
layer from later processing steps. The sacrificial layer is removed in a solvent soak in Remover PG (yellow)
and device is dried via critical point drying to ensure the top gate does not collapse.

in a UHV chamber with a base pressure of < 10−9 Torr. The bottom layer design is

patterned with contact photolithography using an S1800 series photoresist. A two-step

subtractive wet etch, consisting of Transene Aluminum etchant followed by CD-26, removes

the exposed bottom layer. Following polymer removal via Remover PG, the sacrificial layer

is patterned and thinned via double-exposure contact photolithography. After reflow and

surface preparation of the sacrificial layer with O2 plasma descum, the top layer is sputter

deposited and patterned under the same conditions as the bottom aluminum layer. The

sacrificial layer is removed via overnight soaking in PG Remover. To avoid collapse of the

top gate, the device is dried in a critical point drier followed by a final O2 plasma clean.

Next, we will discuss previous iterations of the recipes for older generations of devices.
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2.2.2 NbTiN and SiO2

In the Schwab group, the electromechanics work at Caltech began with the work of a postdoc,

Matt Shaw, who fabricated a suspended, planar capacitor device entirely out of NbTiN. The

aim for using such a material was to achieve exceedingly high microwave Q (Q ∼ 106 seen

in λ/4 resonators made of NbTiN [24]) and potentially overcome nonlinearities associated

with two-level system defects that are typically encountered in aluminum-based microwave

cavities [25]. Coincidentally, the group had access to a cleanroom at the Jet Propulsion

Laboratory (JPL) with a high-quality NbTiN sputter chamber up and running.

The device was fabricated on high-resistivity silicon substrate and the NbTiN was reactive

ion sputtered in argon environment [15]. The top gate of the capacitor was suspended via

a silica sacrificial layer removed in a buffered-oxide etch (BOE) release soak. This recipe

proved difficult to control as the BOE soak altered the film stress of the NbTiN. Despite

attempts to diagnose and fix the issue, this device exhibited low microwave Q and significant

Ohmic heating at the pump powers required for sufficient optomechanical coupling.

Interestingly, this device showed a thermal-induced parametric instability in BAE pump

configuration (see Fig. 4.1). With pumps detuned by twice the mechanical resonance fre-

quency, the power in the cavity modulates at twice the mechanical frequency. The mechanical

mode had a small enough specific heat and fast enough thermal time constant for the phonon

bath to track along with the modulating cavity power. Due to a thermal-induced mechanical

resonance frequency, this pump configuration modulated ωm at twice its frequency, eventu-

ally reaching a parametric instability at elevated pump powers [15].

We attempted to diagnose the different possible causes for the low microwave Q and

associated heating issues by repeating fab processing steps on quarter wave resonators, but

we failed to find a smoking gun. After months, we moved on to fabricating new devices out

of aluminum and relying only on Caltech facilities.
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2.2.3 Germanium and Thermal Evaporation

At the time, our group had a custom built thermal evaporator mounted in a UHV cham-

ber that had only been exposed to aluminum. For the next device, we chose to work with

thermal-evaporated aluminum because of the group’s past experience and because the cam-

pus cleanroom had few options for producing clean superconducting films from Nb or NbTiN.

Since the group was also familiar with metallized nitride films for mechanical resonators

[18, 19], the first device iteration was designed around a vacuum gap capacitor with a thick

(∼ µm) top gate and mechanical mode in the bottom gate formed by a nitride membrane

coated with 100nm of aluminum. We used LPCVD nitride deposited on high-resistivity

silicon (> 10 kΩ/cm2). For the sacrificial layer, we chose to work with e-beam evaporated

germanium so that we could take advantage of a dry XeF2 etch that aggressively attacks

Si/Ge with undercut etch rates in excess of 40µm/min [26]. This etch step fit nicely into the

processing steps: the nitride coating protected the silicon substrate, XeF2 does not attack

aluminum, and the aluminum is not exposed to any flourine-containing plasmas.

Using this technique, we achieved reasonable gaps and optomechanical coupling. How-

ever, the device had significant frequency jitter that worsened with aging and thermal cycling.

The device also showed significant TLS nonlinearities [17]. Thout we were unable to diagnose

the problem, we believe that these defects were likely associated with the choice of sacrificial

layer (germanium alloys with aluminum and absorbs water) and the sacrificial etch (XeF2

slowly attacks nitride).

2.2.4 PMGI and E-Beam Evaporation

In an effort to develop as gentle a sacrificial layer removal etch as possible, we next began

working on devices based around polymer sacrificial layers. We kept the same device design

as before – a doubly clamped beam at the center of a spiral inductor – and also kept the

mechanics as a metalized membrane on the bottom plane.

To achieve sacrificial layers on the order of 200-500nm, we used an underlayer resist,

PMGI. We also moved from thermal-evaporated aluminum to e-beam evaporation in hopes
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Figure 2.3: Aluminum stress control. a. E-beam deposited aluminum with PMGI sacrificial layer. The
top gate stress was difficult to control. With nearly identical processing conditions, the top gate would b.
collapse, c. appear nearly flat or d. pop up from compressive stress.

of getting better deposition control. The aluminum was patterned with a wet etch and

the sacrificial layer was removed with an overnight soak in Remover-PG. The new devices

showed consistent optomechanical coupling rates but with improved TLS behavior. Despite

much effort to get better control of the capacitor gap size, the stress in the top gate was

inconsistent between depositions – sometimes tensile stress, sometimes compressive stress –

and hence it was very difficult to control the behavior of the top gate after release (Fig. 2.3).

We attempted to shape the top gate to control the deformation with compressive stress,

but the stress varies enough between runs that there is no way to do this repeatedly despite

attempts at thermal annealing [27]. As another last ditch effort, we split the e-beam deposi-

tion of the top layer into seven steps and mounted the device to a thermal heat-sink. Alas,

there was no obvious improvement and we were unable to control the film stress.

2.2.5 Polymer and Sputtered Aluminum

After the last iteration of devices, we needed a method to control stress of the aluminum

film. To accomplish this, we removed our thermal evaporator and replaced it with a UHV

compatible magnetron sputter system. The move to a sputter deposition system allows for

control of the aluminum film stress via control of the backing argon pressure.

Ideally, replacing the e-beam deposition with sputter deposition would work with minimal

recipe modification; unsurprisingly, this was not the case. The sputtered films differed from
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2.5μm 1μm

Figure 2.4: PMGI adhesion issues. a. The PMGI sacrificial layer (black) exhibits poor adhesion to the
sputtered aluminum (light grey) and poor resistivity to the wet aluminum etchant. As evidenced by the
thinning of the inductor air bridges, the device could not survive full aluminum patterning . b. Poor adhesion
between the PMGI and aluminum causes the etchant to rapidly penetrate the edges of the top layer.

e-beam deposition in multiplecurcial ways. First, sputter deposition is nearly isotropic, so

that there is no option of lift-off – all patterning must be done with a subtractive etch

process.

Another important issue is that our sputtered films do not etch cleanly with transene

etchant. After sufficient etch time, the substrate surface is left with a spackled residue. XDS

analysis of the residue confirmed that it was aluminum oxide, which is not surprising since

we have no in-situ surface prep and are unable to control our subtrate surface chemistry.

Since we were unable to strip reside with designated aluminum etchant, we attempted a

low dosage of TMAH common to photoresist developers (CD-26), which worked to remove

the residue. Thus, we use a two-step wet etch: Transene aluminum etchant A followed by

CD-26. The final dip in CD-26 cleans off surface residue over a short enough time that the

remaining film is insignificantly attacked.

However, the recipe still did not work as is. Sputtered films that are annealed above 130◦

display hillock formation [28,29]. PMGI requires baking at temperatures in excess of 170◦ and

so this problem is somewhat unavoidable. Hillocks on the scale of 50nm significantly perturb

the behavior of the gap; however, the polymer can conformally coat such topolographical

defects and this recipe could still work.
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Finally, the adhesion between the PMGI and sputtered aluminum is so poor that we are

unable to wet etch the top aluminum layer without destroying the air bridges of the spiral

inductor. After attempts to reactive-ion etch (RIE) and descum to activate and roughen

up the PMGI surface, there is still no improvement. Attempts to move to dry etch the top

layer were futile as the etch would chlorinate the top polymer layer, rendering it difficult to

remove. As an aside, we also considered a lift-off technique for sputtered films but, due to

the isotropic nature of the deposition, the sidewall quality tapers off over microns, which is

unsuitable for bridges or inductors.

Serendipitously, we explored aluminum adhesion with different polymers and a fellow

graduate student, Chan U Lei, explored new recipes based around the Shipley S-series pho-

toresists. Initial tests exhibited good adhesion between sputtered aluminum and S1800. To

optimize the adhesion, we found that thinning the photoresist with a weak flood-exposure

followed by surface activation with a short oxygen plasma descum created sufficient adhe-

sion to survive the remaining fabrication steps. Since S1800 spins down to around 1.5µm,

we moved to a thinner resist in the same series, S500, in hopes of directly spin-coating a

500 nm sacrificial layer with higher precision than the double-exposure techniques required

for S1800, however the thinner resist had similar adhesion issues despite similar surface

preparation steps.

Based on our experimentation so far, the only recipe compatible with sputtered aluminum

and polymer sacrificial layers is based around S1800 series spun to around 1.5µm and thinned

to around 500nm via flood exposure. To control the thickness of this layer, we must calibrate

with spin speed and exposure time. However, the contact photolithography equipment we

use only controls exposure time steps within 0.10s steps. Given the lamp power drifts and

aging, this is not a very accurate method to control the polymer thickness. Since the polymer

behavior also differs with age and humidity, the trick was to calibrate and then fab as many

devices as possible.

Though we did not have a chance to attempt different sacrificial layer types, combining a

dielectric sacrificial layer with a wet etch removal might be possible with alternative silicon

etches [30,31] that do not attack aluminum.
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a) c)

b)

Figure 2.5: Device mounting. a. The device is mounted and wirebonded into a copper sample package. b.
Each sample package is mounted to the mixing plate and shielded with superconducting and mu-metal shields.
The microwave switches (blue cans) are visible. c. Our dilution refrigerator is an Oxford Kelvinox400.
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2.3 Measurement techniques

2.3.1 Device packaging

We process our devices on 6mmx6mm and 6mmx3mm silicon chips. We found that moving

to 3mm chips pushed out chip modes, doubled our fab output, and was directly compatible

with existing 6x6mm packaging equipment. These chips are clip-mounted into copper sample

packages though we have also explored PMMA gluing. The chip waveguides are wirebonded

out to grounded CPW tranmission lines onto an arlon PCB that is impedance matched

to the silicon wafer. The arlon circuit boards are indium soldered into the copper sample

packages and the PCB transmission lines are soft soldered to coax ferrule adapters that

launch the microwave signals through the sample package. These coax adapters mate to field

replaceable SMA connectors which are commercially available from Southwest Microwave in

both standard and non-magnetic options. We have tested both kinds of connectors and have

observed no obvious differences in device behavior.

The sample package is mounted to a cold finger on the mixing plate of an Oxford Kelvinox

400 wet dilution refrigerator. The mixing plate has a cryoperm radiation shield, however we

also shield each device within superconducting and mu-metal shields. Alternating between

different shielding configurations, we see no obvious signs of flux noise [32] or quasiparticle

induced dissipation [33] though our devices are less susceptible to these issues compared to

superconducting qubit circuits.

2.3.2 Fridge circuit

Since it takes days to cycle our dilution refrigerator, we have added a set of passive microwave

switches that allow us to probe up to 6 different devices with the same fridge circuit. Our

switches are commercially available from Radiall. We learned about them from other research

groups that modify these switches for optimal operation at cryogenic temperatures [34],

though we initially installed our switches out of the box (unmodified). For a single switching

operation composed of two pairs of reset and set pulses, we typically heat our mixing plate
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Fridge circuit, ver. 1 Fridge circuit, ver. 2
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device

20dB

20dB coupler

50Ω

50Ω

300K

4K

1K

100mK

10mK

in out

Switch & 
device

HEMT
+37dB

19dB

10dB

9dB

300K

4K

1K

100mK

10mK

in out

CuNi Nb

Isolators
4-8 GHz

Figure 2.6: Fridge circuit. a. Version 1 as used in asymmetry and BAE measurements. An input waveg-
uide composed of copper-nickel coax (blue) provides approximately 55dB of total attenuation to sufficiently
suppress room temperature Johnson noise. The output of the device runs to a cryogenic amplifier (HEMT)
at 4K through superconducting niobium coax (red). A pair of isolators cut out the 4K noise radiating back
from the amplifier. b. Version 2 as used in squeezing measurements. To reduce heating of the mixing plate
due to Ohmic heating of attenuators under intense microwave drive, the input line utilizes a directional
coupler that does not dissipate the incident power. Furthermore, the first stage of the attenuator is shifted
to the mixing plate to ensure the output port is in the ground state (nthr = 0).
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Figure 2.7: Switching circuit. Multiplexing with a latching microwave switch allows up to five sample
packages and an impedance matched through connection to be accessed in a single cooldown.

to nearly 150mK, requiring between 30min - 90min to cool back down to base temperature

depending on the fridge pump configuration. This is a minor nuisance for the kinds of

experiments we do though modifying the switches is something that should be done in the

future.

To probe the device, the fridge is wired with separate input and output microwave coax

lines. The input lines is composed mainly of CuNi coax with an additional 40dB of isola-

tion distributed over the dilution fridge stage temperatures. This isolation filters out room

temperature Johnson noise while minimizing ohmic heating and re-emission of thermal noise

from attenuators. On the output side, superconducting Niobium coax feeds the microwave

signals first through a pair of circulators and then to a cyrogenic amplifier at 4K. The cir-

culators provide over 25dB of isolation from 4K noise radiating out of the input port of the

amplifier. The cryogenic amplifier is a cryogenic compatible low noise HEMT amplifier with

gain of 37dB and a noise temperature of 3.6K (manufactured at Caltech by S. Weinreb).

The signals are then fed out to room temperature analysis. Refer to Fig. 2.6 for details of

the fridge circuit.

2.3.3 Drive circuit

For our measurements we rely on intense multi-tone pumping as well as weak noise injection.

To achieve this, we construct the circuit outline in Fig. 2.8. Multiple drive tones are produced

either via independent single tone sources, coupled into the same line with passive summers

or direction couplers, or with a multi-tone vector source (Agilent E8267C). At the necessary
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Figure 2.8: Drive circuit.a. Multiple microwave sources, both single tone and vector sources, are summed
generate the desired pump configuration. b. A bank of room temperature filter cavities isolate source phase
noise to ensure the cavity does not get excited by classical noise on the input line. c. Noise injection. A
white noise source can selectively inject classical noise into the cavity on the order of one to ten microwave
photons.

powers, the phase noise of the sources at detunings near ωm is large enough to directly

excited our microwave cavity with sufficiently large classical noise.

To remedy this, we implement a bank of tunable copper-can filter cavities that isolate

injected phase noise by over 30dB (typically 50dB) over a narrow band ≈ 450 kHz. These

cavities are mounted at room temperature and typically have loaded quality factors of Q∼
5 × 103. Depending on measurement requirements, the cavities can be set up in either

transmission or rejection mode and hence can serve either as bandpass filters or notch filters.

Despite all of this filtering, we then add a pseudo-white microwave noise source to inject

a weak amount of classical microwave noise into our circuit. The purpose of this noise is

to allow us control over classical occupation of the microwave resonator with occupations

on the order of one. This serves as an important measurement feature since our system

almost always exhibits classical noise effects. By controlling the amount of classical noise in

the cavity, we can calibrate out classical noise contributions and reveal the desired quantum

behavior.
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Chapter 3

Sideband asymmetry

3.1 Introduction

A fascinating aspect of quantum measurement is that the outcome of experiments and the

apparent nature of the object under study depend critically on the properties of both the

system and the measurement scheme [35]. An excellent illustration is found when considering

measurements of the quantum harmonic oscillator. If measured with an ideal energy detector,

the observed signals will demonstrate energy level quantization [36, 37]; measured instead

with an ideal position detector, no evidence of quantized energy levels are found and the

measured signals appear to be that of a very cold, classical oscillator [6, 18]. The details of

the measurement are as essential to the apparent nature of the system under study as the

properties of the system itself – succinctly expressed by Roy Glauber: “A photon is what a

photodetector detects.” [38]

To describe the measured noise of quantum systems, it is often useful to make use of

so-called quantum noise spectral densities, which in general are not symmetric functions

of frequency: Sxx(−ω) 6= Sxx(+ω), where Sxx(ω) is the spectral density of the observable

x(t), defined as the Fourier transform of 〈x̂(t)x̂(0)〉 [11]. For a quantum harmonic oscillator,

the negative and positive frequency sides of this spectral density describe the ability of the
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system to emit or absorb energy,

Sxx [ω] =

∫
dωeiωt〈x̂(t)x̂(0)〉 (3.1)

= x2
zp |χm(−ω)|2γmnthm + x2

zp |χm(ω)|2γm
(
nthm + 1

)
, (3.2)

with the mechanical susceptibility defined as χm(ω)s = [−i(ω − ωm) + γm/2]−1. In the

ground state, nthm = 0, there is no ability for the harmonic oscillator to emit energy so that

Sxx(−ωm) = 0. It can, however, absorb energy and as a result, Sxx(+ωm) = 4
γm
x2

zp, where

xzp =
√

~/2mωm is the amplitude of zero point fluctuations for a mechanical oscillator

with mass m, resonance frequency ωm, and damping rate γm. This asymmetric-in-frequency

motional noise spectrum was first measured in atomic systems prepared in quantum ground

states of motion [39–41], where the motional sideband absorption and fluorescence spectra

were detected via photodetection.

Analogous quantum noise effects can also be studied in macroscopic mechanical systems,

using electro-mechanical and opto-mechanical devices prepared and probed at quantum lim-

its [6, 7, 10, 42]. These systems exhibit the Raman-like processes of up and down conversion

of photons, resulting from the parametric coupling between mechanical motion and electro-

magnetic modes of a resonant cavity; the rates of these processes should naturally mirror

the asymmetry in the mechanical quantum noise spectral density Sxx(±ωm). Recent exper-

iments in optomechanics have demonstrated this expected imbalance between up and down

converted sidebands [43,44]. Here, we demonstrate the analogous physics in a quantum cir-

cuit, where it is now microwave photons (not optical photons) which probe the mechanical

motion.

3.1.1 Toy model

As a first step to understand how the motional sideband asymmetry manifests in an electro-

mechanical system probed through the cavity mode, we consider the following simplified

expressions for the microwave noise spectrum. For a single microwave drive at ideal red
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(∆ = −ωm) and blue (∆ = ωm) detunings, the Langevin equation for the cavity operator

under RWA is

χ−1
c (ω)d̂[ω] = −√κ d̂in[ω]− iG∓ b̂(†)[ω],

where b̂ (b̂†) and G∓ is associated with detuning ∆ = ±ωm.

The microwave noise spectrum is specified by the output field correlators in the frequency

domain. Relating the microwave correlators with the corresponding mechanical correlators

yields different results depending on the drive detunings. For the up-converted signal,

〈d̂†R,out [ω] d̂R,out [ω′]〉 ∝ 〈b̂†in [ω] b̂in [ω′]〉,

∝ nthm δ(ω + ω′),

 (∆ = −ωm) (3.3)

whereas the down-converted signal includes quantum fluctuations,

〈d̂†R,out [ω] d̂R,out [ω′]〉 ∝ 〈b̂in [ω] b̂†in [ω′]〉,

∝ (nthm + 1) δ(ω + ω′),

 (∆ = ωm), (3.4)

so it does appear that the detection of microwave sideband asymmetry serves as an accurate

proxy for motional sideband asymmetry. Per the discussion in Sec. 1.3.1, however, linear

microwave detection senses the symmetrized noise spectrum that is calculated as the average

of both normal and antinormal ordered terms,

〈{d̂†R,out [ω] , d̂R,out [ω′]}〉 ∝ 〈{b̂in [ω] , b̂†in [ω′]}〉,

∝ (2nthm + 1) δ(ω + ω′).

 (∆ = ±ωm). (3.5)

Now it appears that the mechanical asymmetry is averaged out by the process of microwave

measurement. What happened to the mechanical zero-point fluctuations? In the following,

we will model this system within an input-output framework and resolve this contradiction.
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Figure 3.1: Sideband asymmetry pump configuration. Two probe tones (red and blue bar) monitor the up
and down-converted motional sidebands while a third tone (green bar) cools the mechanics. The probe tones
are balanced in power with associated optomechanical coupling strengthcs G and are detuned symmetrically
about cavity resonance (black line) at frequencies ω± = ωc±(ωm+δ). The up-converted (red are) and down-
converted (blue area) motional sidebands are sufficiently detuned to avoid sideband overlap. Generally, we
assume the cavity is occupied with classical noise (beige area) that can mix down to produce real forces on
the mechanics.

3.2 Optomechanical sideband asymmetry

For our analysis, we consider a sideband-resolved system simultaneously probed with two

pumps at near ideal red- and blue-detunings. This model is useful because it closely resem-

bles our measurement routine, models multitone effects that could arise between direct and

indirect coupling between the probe tones, and simplifies to a single drive model in the limit

of setting either probe amplitude to zero.

In contrast, the actual experiment consists of a two-port electro-mechanical system that

we simultaneously pump with three microwave tones, all detuned from cavity resonance.

Two balanced probe tones are detuned symmetrically about the cavity center and are used

to simultaneously monitor the motional sidebands that are up- and down-converted near

cavity resonance but with sufficient detuning to avoid sideband overlap. A third red-detuned

cooling tone dampens the mechanical motion via dynamical back-action and is used to cool

the mechanics to near the ground state. Refer to Fig. 3.1 for a schematic of the pump

configuration. In a frame rotating at the cavity frequency ωc, the drive Hamiltonian is

Ĥdrive =
∑
ν=±

aν(âe
iν(ωm+δ)t + â†e−iν(ωm+δ)t) + acool(âe

i(ωm+δc)t + â†e−i(ωm+δc)t), (3.6)

where drive amplitudes are all assumed to be real. We will initially ignore the coupling to

the cooling beam and instead model the electromechanical dynamics in response to the two
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balanced drive tones. As we later show, separating the transduced sidebands (compared to

the effective mechanical damping rate) allows one to treat the drives independently so that

we will later incorporate the additional cooling tone without altering the following analysis.

3.2.1 Equations of motion

Following the steps in Sec. 1.4, we make unitary transformations to a rotating, displaced

frame with â = e−iωct[a(t) + d̂] with a(t) = 〈âeiωct〉 and b̂ = ĉe−i(ωm+δ)t). In this frame, the

coherent drive amplitude follows

a(t) = a−e
i(ωm+δ)t + a+e

i(ωm+δ)t + acoole
i(ωm+δc)t, (3.7)

where the phases of all drive tones can be arbitrarily defined and assumed zero so that a±,cool

are real. This assumption holds for sufficiently large detunings δ, δc � γtot that suppress

any direct correlations between the separate drives. If this were not the case, the relative

phases between the drive tones could play an important role. Along the lines that the probe

tones act independently, the cooling tone will be temporarily ignored. Now, the interaction

Hamiltonian becomes Ĥint = Ĥlin + ĤCR, where

Ĥlin = −iG−(d̂ b̂† + d̂†b̂)− iG+(d̂ b̂+ d̂†b̂†), (3.8)

ĤCR = −iG−ei2ωmt(d̂ b̂+ d̂†b̂†)− iG+e
−2iωmt(d̂ b̂† + d̂†b̂). (3.9)

The enhanced optomechanical couplings are defined via the microwave amplitudes, G± =

g0a±, which lead to optical scattering rates γ±op = 4G±
κ

. Given that we typically operate in

the sideband-resolved regime, we make the rotating wave approximation and only treat the

linear contribution, though we can later incorporate counter-rotating effects if necessary.

With Eq. (3.8) and standard input-output relations, the Heisenberg-Langevin equations

in the frequency domain are formatted in matrix notation: D̂ [ω] = χ(ω) · L · D̂in [ω], with

mode operators D̂ = (d̂, d̂†, b̂, b̂†)T , bath operators D̂in = (d̂in, d̂
†in, b̂in, b̂†in)T , and L =

diag(
√
κ,
√
κ,
√
γm,
√
γm). As before, the microwave input field is defined as the weighted
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average over the bath contributions from the input (L), output (R), and internal (int) ports,

d̂in =
∑

σ=L,R,int

√
κσ/κ d̂σ,in.

To reiterate, the inverse scattering matrix for this system is

χ−1(ω) =


κ
2
− iω 0 −iG− −iG+

0 κ
2
− iω iG+ iG−

−iG− −iG+
γm
2
− i(ω + δ) 0

iG+ iG− 0 γm
2
− i(ω − δ)

 . (3.10)

The relevant scattering parameters are discussed below.

3.2.2 Zero-point bath designations

The bath commutators and correlations for the microwave and mechanical bath operators

are given by Eqs. (1.94)-(1.97). In the following analysis, we will instead designate the bath

commutation relations with separate variables α and β:

[d̂σ,in(t), d̂†σ,in(t′)] = αδ(t− t′), (3.11)

[b̂in(t), b̂†in(t′)] = βδ(t− t′). (3.12)

Here, α represents the quantum fluctuations of the microwave field while β represents those

of the mechanics. Similarly, the updated bath correlations read

〈d̂σ,in(t)d̂†σ,in(t′)〉 = (nthc + α)δ(t− t′), (3.13)

〈b̂in(t)b̂†in(t′)〉 = (nthm + β)δ(t− t′). (3.14)

Formally, the field operators obey the canonical commutation relations such that α =

β = 1. The purpose of this labeling is not to adjust the commutation relations but rather to

provide a straightforward method to track how the microwave and mechanical fluctuations

propagate throughout the measurement. The ultimate goal of such a labeling scheme is to

49



help clarify the origins of the sideband asymmetry: does the observed asymmetry stem from

zero-point motion of the mechanics or the shot noise of the microwave field?

3.2.3 Dressed mechanics

As a first consistency check, we can explore how the motional noise power is modified by

electro-mechanical coupling with microwave drive tones at near ideal red- and blue-detunings.

The Langevin equation for the mechanical operator b̂ (defined in the frame rotating at ωm+δ)

is defined via the scattering parameters

b̂ = χ31

√
κd̂in + χ32

√
κd̂†in + χ33

√
γmb̂in + χ34

√
γmb̂

†
in, (3.15)

where all explicit frequency dependence has been omitted. In this notation, the mechanical

susceptibility is given by the scattering factor χ33. We can explicitly calculate the change

in the mechanical frequency and damping due to the interaction with the cavity by looking

at the corresponding“self energy” (i.e. difference in inverse mechanical susceptibilities eval-

uated on resonance with and without the cavity, see e.g. [45]). Making the rotating-wave

approximation (ω � κ) and assuming sufficient frequency separation between the sidebands

(δ � γtot), the total mechanical damping is

γtot = 2Re
[
χ−1

33 (ωm)
]

(3.16)

= γm + γ−op − γ+
op, (3.17)

while the optical spring shift is

δωm = Im
[
χ−1

33 (ωm)
]

(3.18)

= − δ
κ

(γ+
op − γ−op). (3.19)

Note that in both the damping and frequency shift, the effects of the red- and blue-detuned

drives conspire to cancel.
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We can now calculate the motional noise spectrum in the lab frame, where we assume

the mechanics is in the high-Q limit so that the sidebands are tightly confined at positive

and negative frequencies and the bath operators can be assumed to behave Markovian:

Sxx [ω] =

∫
dteiωt〈x̂(t)x̂(0)〉,

= x2
zp

{
|χ31(ω)|2 + |χ32(−ω)|2

}
κ(nthc + 1)

+ x2
zp

{
|χ32(ω)|2 + |χ31(−ω)|2

}
κnthc

+ x2
zp

{
|χ33(ω)|2 + |χ34(−ω)|2

}
γm(nthm + 1)

+ x2
zp

{
|χ34(ω)|2 + |χ33(−ω)|2

}
γmn

th
m,

=
γtot

(ω − ωm)2 + (γtot

2
)2
x2

zp

(
nm + β̃

)
+

γtot

(ω + ωm)2 + (γtot

2
)2
x2

zpnm.

Here the mechanical occupation factor is given by the detailed balance rate equation

nm =
γmn

th
m + γ−opn

th
c + γ+

op(nthc + α)

γtot

, (3.20)

while β̃ denotes the zero point fluctuations of the dressed mechanical mode with coupling to

both the intrinsic mechanical bath and additional optical bath channels,

β̃ =
γmβ + (γ−op − γ+

op)α

γtot

= 1. (3.21)

In the limit of sufficiently small cooperativity (
γ±op

γm
� 1) or carefully balanced drives (γ+

op =

γ−op), the mechanical fluctuations consist almost entirely of the zero-point fluctuations of

the intrinsic bath β̃ → β. For a large red-detuned drive (γtot � γm), the optical damping

dominates over the intrinsic dissipation and the mechanical dynamics is entirely determined

by the microwave field fluctuations, β̃ → α.

This behavior is notable for two reasons. First, the optical contribution to the mechanical

fluctuations ensures that the backaction-imprecision product for position measurement obeys

a strict lower bound enforced by quantum mechanics [11]. It would appear from Eq. (3.20)
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that a single red-detuned drive with high cooperativity (γtot ' γ−op) pumping a cavity with

zero classical noise (nthc = 0) generates no back-action heating of the mechanical mode and

the detector noise product would be zero. This argument is incorrect because it ignores

the contribution of the quantum fluctuations of the optical field. The pump-dependent

asymptotic heating of β̃ serves as the measurement back-action and ensures adherence to

quantum bounds.

Second, distinguishing between the source of “quantum motion” is a serious issue for

measurements that aim to detect mechanical zero-point fluctuations. If such a measurement

implies the detection of the intrinsic mechanical bath, then the optically-induced damping

must be small. If instead the purpose of such an asymmetry measurement is to measure

quantum-induced motion, i.e., the mechanical response to quantum fluctuations of either

the intrinsic microwave or mechanical noise, then the source of such fluctuations is not

relevant. In this view, there is no limit to the back-action induced damping, which is more

aligned with typical measurement schemes to date, i.e., most systems require intense red-

detuned pumping to generate sideband cooling near the motional ground state. However,

in such a limit the mechanical signal can be treated as a classical transducer of microwave

noise and the sideband asymmetry is then traced entirely back to the quantum shot noise

of the microwave field, regardless of how the noise is measured. From this viewpoint, such a

measurement is closely related to experiments that detect the shot noise of electromagnetic

fields via back-action heating of macroscopic mechanical transducers [10,42].

To date, sideband asymmetry has been measured in mesoscopic mechanical resonators

cooled near the ground state via either passive cooling [46] or active sideband-cooling [16,

43,44,47], and thus both high and low cooperativity regimes (γtot ' γm vs. γtot � γm) have

been explored. To simplify notation in what follows, we will ignore the subtlety in defining

“quantum motion” in an electromechanical device and associate β̃ → β with intrinsic zero-

point fluctuations of the mechanics.
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As a final note, the symmetrized mechanical noise spectrum scales as expected,

S̄xx[ω] =
1

2

∫
dteiωt〈{x̂(t), x̂(0)}〉, (3.22)

=
x2

zpγtot

(|ω| − ωm)2 + (γtot

2
)2

(
nm +

β̃

2

)
. (3.23)

3.2.4 Microwave spectrum

Amplitude of the output field V̂out(t) = d̂R,out(t) + d̂†R,out(t). The output operator defined via

standard input-output relations d̂σ,out = d̂σ,in−
√
κσd̂. In terms of the scattering parameters,

d̂R,out = d̂R,in − χ11

√
κRκd̂in − χ12

√
κRκd̂

†
in − χ13

√
κRγmĉin − χ14

√
κRγmĉ

†
in. (3.24)

For illustrative purposes, we present the scattering parameters for the microwave field

assuming weak coupling (κ� γtot) and large sideband separation (δ � γtot):

χ11(ω) =
2

κ

[
1 +

∑
±

±γ±op

γtot − 2i(ω ∓ δ)

]
, (3.25)

χ12(ω) =
2

κ

∑
±

±√γ+
opγ
−
op

γtot − 2i(ω ∓ δ) , (3.26)

χ13(ω) =
2
√
γ−op

γtot − 2i(ω + δ)
, (3.27)

χ14(ω) =
2
√
γ+

op

γtot − 2i(ω − δ) . (3.28)

Note that χ11 captures the various different ways cavity noise can propagate through

the system. As we discuss below, |χ11|2 will contain non-vanishing mixing terms that can

be interpreted either as interference between scattering channels or as correlations between

back-action and imprecision measurement noise.

For calibration, we typically measure the complex transmission through the device, given

by

S21(ω) = −√κLκRχ11. (3.29)
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Figure 3.2: Comparison between linear detection and photon counting. a. Pump scheme. We consider
a single microwave cavity (dotted line) pumped at ωc ± (ωm + δ) (green bars). The up -converted (red
bar) and down-converted (blue bar) motional sidebands are placed tightly within the cavity linewidth. For
figure clarity, the occupations of the microwave and mechanical modes are assumed to be zero. b. Linear
detection. The quantum contribution from the symmetrized motional noise S̄xx is present in both sidebands.
Microwave shot noise (brown band) and amplifier noise (beige band) combine to form the imprecision noise
S̄II . This measurement is sensitive to noise correlations between the microwave and mechanical odes (S̄IF ),
which results in asymmetric squashing (red region) and antisquashing (blue region) of the noise floor. c.
Photodetection. Normal-ordered detection is sensitive to the asymmetric motional noise spectrum Sxx. The
detector is not sensitive to microwave shot noise, and the noise floor (SII) is from detector nonidealities
(beige band), analogous to dark counts for a photodetector. Although the source is different, the sideband
imbalance is identical in both photodetection and linear detection.

3.2.5 Symmetric noise detection

Since we implement a linear detection scheme in this experiment, we construct the sym-

metrized microwave noise spectrum by substituting the above scattering parameters into the

expression for symmetric detection, except now the mechanical and microwave zero-point
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bath fluctuations are separately specified:

S̄R[ω] =

∫
dteiωt〈{V̂out(t), V̂out(0)}〉, (3.30)

=

∫
dteiωt〈d̂†R,out(0)d̂R,out(t) + d̂R,out(t)d̂

†
R,out(0)〉, (3.31)

= κRκ
(
|χ11|2 + |χ12|2

)
(nthc + α/2) (3.32)

+ κRγm
(
|χ13|2 + |χ14|2

)
(nthm + β/2) (3.33)

+ [1− κR (χ11 + χ∗11)] (nthr + α/2), (3.34)

= S̄o +
κR
κ

∑
±

γtotγ
±
op

(ω ∓ δ)2 + (γtot/2)2

[(
nm +

β

2

)
±
(
neff +

α

2

)]
. (3.35)

The noise floor is

S̄o [ω] =
α

2
+ nthr +

4κR
κ

(nthc − nthr ), (3.36)

and we have defined neff = 2nthc − nthr . The noise floor is shaped by the cavity response due

to interference from noise that reflects off the port correlated with noise that is re-radiated

from the cavity. The underlying components of this spectrum are outlined in Fig. 3.2(b).

One sees explicitly that the sideband imbalance is proportional to (2neff + α) and hence

is entirely due to fluctuations in the microwave fields driving the cavity. This interpretation

is true both when this noise is thermal and when it is purely quantum (i.e., nthr = nthl = 0).

These terms in the spectrum result from the interference between the two ways the incident

field noise can reach the output: either by directly being transmitted through the cavity

or by first driving the mechanical resonator whose position then modulates the amplitude

quadrature of the outgoing microwaves. This interference is the basic mechanism of noise

squashing, which in the case of thermal noise was previously observed in a microwave-

cavity-based electromechanical system [18]. This mechanism can also be fully described

using a general linear measurement formalism [48], where it is attributed to the presence of

correlations between the backaction and imprecision noise of the detector [9, 49].

The above calculation also shows that both the thermal and zero-point force noise em-

anating from the mechanical bath contribute symmetrically and hence play no role in de-
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termining the asymmetry of the sidebands. This suggests that the sideband asymmetry

observed using linear detection of the scattered field is not directly probing the asymmetric

quantum noise spectrum of the mechanical mode.

To simplify the notation in the following, we consider the mechanical noise occupations

inferred from the output spectrum about the up- and down-converted sidebands

n±m =
1

γ±op

κ

κR

∫
dω

2π

(
S̄R[ω ∓ δ]− S̄o

)
(3.37)

=

(
nm +

β

2

)
±
(
neff +

α

2

)
. (3.38)

3.2.6 Photon counting

An alternate measurement strategy to amplitude detection is to first filter the output signal

to a narrow bandwidth around a frequency ω and then perform direct photodetection. One

is thus measuring power directly without first measuring field amplitudes, and in a manner

that is only sensitive to the absorption of photons. As a result, such a measurement is

described by the normal ordered spectrum

SR[ω] =

∫
dteiωt〈d̂†R,out(0)d̂R,out(t)〉

= κRκ|χ11|2 nthc
+ κRκ|χ12|2 (nthc + α)

+ κRγm|χ13|2 nthm
+ κRγm|χ14|2 (nthm + β)

+ [1− κR (χ11 + χ∗11)] nthr .

Substituting in the above scattering parameters, we find

SR [ω] = So +
κR
κ

∑
±

γtotγ
±
op

(ω ∓ δ)2 + (γtot/2)2

[(
nm +

β

2

)
±
(
neff +

β

2

)]
, (3.39)
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where the symmetrized noise floor is defined in the vicinity about cavity center as So = S̄o−α
2
.

3.2.7 Spectrum comparison

Comparing the symmetrized microwave noise spectrum with the normal-ordered spectrum,

it is clear that the spectra appear identical up to a flat background given by the microwave

shot noise,

S̄R[ω] = SR [ω] +
α

2
. (3.40)

This is no coincidence. Both spectra are formally related via the canonical commutation

relation of the output microwave field

[d̂R,out(t), d̂
†
R,out(t

′)] = αδ(t− t′). (3.41)

Regardless of the physical details of the detection scheme, if one assumes this commuta-

tion relation, then one can legitimately interpret symmetric or normal-ordered detection

as measuring the same thing. On a formal level, this substitution requires that the input

fluctuations of the microwave and mechanical baths are identical. If α 6= β, the output

commutator would differ from the input commutator,

[
d̂R,out(ω), d̂†R,out(ω

′)
]

=

[
α +

∑
±

±γmγ±op

(ω ∓ δ)2 + (γtot/2)2
(β − α)

]
δ(ω + ω′). (3.42)

This commutation relationship is associated with the relationship between detector ab-

sorbs and emits energy into the system. There is a fundamental difference between the two

detection schemes: linear detection is sensitive to both absorption and emission of photons

(and hence does sense the microwave quantum shot noise) whereas photon counting only

absorbs energy from the environment (and hence does not sense the shot noise fluctuations

of the electromagnetic field). If the purpose of the sideband asymmetry experiment is to

directly compare the rates of energy scattering into and out of the mechanical mode, then

one can interpret the commutator substitution as also asserting the mechanical commutator.
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However, a deeper issue is that it is beyond the scope of input-output theory to tune the

mechanical commutator since such a model would violate the canonical commutator for the

output microwave field.

In the face of such subtleties, we adhere to the interpretation that most closely approaches

the physical techniques used in the measurement: sideband asymmetry with symmetric

detection is most naturally attributed to the shot noise of the microwave field. Similarly,

sideband asymmetry via photon counting is most naturally attributed to the zero-point

fluctuations of the mechanical bath.

As a final note, Eq. (3.42) is asymptotically true for γtot/γm → ∞ with α 6= β, which

again supports the idea that under large optical damping, the mechanics acts as a classical

transducer responding to the microwave fluctuations. In this limit, the asymmetry is at-

tributed to the shot noise of the microwave field regardless of the choice of detection scheme

or choice of interpretation.

3.2.8 Cooling tone

So far, we have modeled the motional sidebands transduced via two probe tones while ignor-

ing a third cooling tone. From the format of Eq. (3.35), we can now generalize the system

to additional drive tones.

Assuming large frequency separation of the sidebands, the probe tones indirectly interact

by modifying the mechanical susceptibility and mechanical occupation factor. Following

the same behavior as the red-detuned probe, the additional cooling tone mainly increases

the mechanical damping rate and subsequently cools the mechanical occupation factor c.f.

Eq. (3.20). To reflect this behavior, the mechanical parameters in Eq. (3.35) are updated to

capture the effects of the cooling tone:

γM = γm + γcool
op , (3.43)

γMn
th
M = (γmn

th
m + γcool

op nthc ). (3.44)
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We consider moderate cooling in the weak-coupling regime and hence ignore deviations that

arise from strong coupling or bad cavity corrections.

3.3 Results

Having explored the interpretation subtleties associated with sideband asymmetry, we now

turn to presenting the experimental observation of this imbalance in a microwave-cavity

based electromechanical system.

Our system is composed of a superconducting microwave resonator, also referred to as

“cavity”, where the resonance frequency is modulated by the motion of a compliant mem-

brane. This frequency modulation leads to the desired parametric coupling between mi-

crowave field and mechanical motion (Fig. 3.3(a)). Measurements of the cavity response

below 100 mK yield the resonance frequency ωc = 2π×5.4 GHz, total loss rate κ = 2π×860

kHz, output coupling rate κR = 2π × 450 kHz, and input coupling rate κL = 2π × 150

kHz. The capacitor top gate is a flexible aluminum membrane (40µm×40µm×150nm) with

a fundamental drumhead mode with resonance frequency ωm = 2π × 4.0 MHz and intrinsic

loss rate γm = 2π × 10 Hz at 20mK. Motional displacement of the top gate modulates the

microwave resonance frequency with an estimated coupling rate of g0 = ∂ωc
∂x
xzp = 2π × 16

Hz.

In Fig. 3.3(c), we present a schematic of the measurement configuration used in this

work. Tunable cavity filters at room temperature reduce the source phase noise to the

thermal noise level at 300K; cryogenic attenuators further reduce the noise down to the shot

noise level [18]. A pair of microwave switches at the device stage select between the device or

a bypass connection for high precision noise floor calibration of the cryogenic amplifier. The

output signal passes through two cryo-circulators at ∼100mK followed by a cryogenic low-

noise amplifier at 4.2K, and finally to a room temperature circuit for analysis. The occupation

factor of the microwave resonator, nthc , which is expected to thermalize below 5 × 10−3 at

temperatures below 50mK, can be increased and controlled by the injection of microwave

frequency noise from amplified room temperature Johnson noise. From careful measurements
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Figure 3.3: Device, calibration, and measurement scheme. a. Electron micrograph of the measured device.
A suspended aluminum (grey) membrane patterned on silicon (blue) forms the electro-mechanical capacitor.
It is connected to the surrounding spiral inductor to form a microwave resonator. Out of view, coupling
capacitors on either side of the inductor couple the device to input and output co-planar waveguides. b.
Motional sideband calibration. The cryostat temperature is regulated while the mechanical mode is weakly
probed with microwave tones set at ωc+ωm+δ (blue) and at ωc−ωm−δ (red) detunings, with δ = 2π×500
Hz. The observed linear dependence provides the calibration between the normalized sideband power and
the mechanical occupation factor. Inset, up-converted motional sideband spectra collected at 20mK (top)
and 200mK (bottom), with ∆ω = ω − (ωc − δ). c. Schematic of the microwave measurement circuit.
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of the noise power emanating from the cavity at zero pumping and comparing this to power

spectra with the bypass switched in place, we conclude that there is a small contribution to

nthc due to thermal radiation from the isolated port of the cryogenic circulators, given by the

occupation factor nthr = 0.34± 0.03.

When a single microwave tone is applied to the device at ωp, the parametric coupling

converts mechanical oscillations at ωm to up and down-converted sidebands at ωp ± ωm. In

this experiment, we apply microwave tones at frequencies near ωc± ωm and at powers given

by the mean number of photons in the resonator, np. The microwave resonance suppresses

motional sidebands outside of the linewidth and we consider only the contributions of signals

converted to frequencies near ωc. These are the Lorentzian components of the noise power

spectra of Eq. (3.35), which for the remainder of the paper are denoted by “+” and “-”,

respectively.

Throughout the measurement, we simultaneously apply three microwave tones. We place

a cooling tone at ωc − ωm − δc to control the effective mechanical damping rate, γM , and

mode occupation, nm, via back-action cooling [45, 50]. Two additional probe tones, placed

at ωc ± (ωm + δ), produce up and down converted sidebands symmetrically detuned from

cavity center (Fig. 3.5(a)). The detunings are chosen to ensure no interference between the

sidebands (δc = 2π× 30 kHz, δ = 2π× 5 kHz) so that we may consider the probe sidebands

as independent measurements of the dressed mechanical mode.

3.3.1 Calibrations

To convert the motional sideband powers into equivalent mechanical occupation, we turn

off the cooling tone and measure the probe sidebands (δ = 2π × 500 Hz) with low optical

damping (n+
p = n−p ' 5× 102) and high mechanical occupation set by the cryostat temper-

ature. Regulating the temperature to calibrated levels between 20 to 200mK, we calculate

the integrated noise power under the sideband Lorentzians, P±m , normalized by the respec-

tive microwave probe power transmitted through the device, P±thru. In the limit of high

thermal occupation, the normalized power is directly proportional to nm [51]. As we vary
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the cryostat temperature, T , we compare the normalized power to the thermal occupation

factor [exp( ~ωm
kBT

) − 1]−1 (Fig. 3.3(b)). A linear fit yields the conversion factors for the up-

converted (n−m) and down-converted (n+
m) sidebands: n−m = (9.9± 0.2)× 108 · P+

m/P
+
thru and

n+
m = (5.4± 0.1)× 108 · P−m/P−thru. The factor of c.a. two between calibration factors at the

two pump detunings is due to the presence of a parasitic bypass channel in the microwave

circuit that allows pump signals to weakly transmit across the input and output ports of the

device while completely bypassing the microwave resonator (see Sec. 1.1.3).

3.3.2 Sideband ratio and imbalance

Further detuning the probe tones (δ = 2π × 5 kHz) and turning on the cooling tone (δc =

2π×30 kHz), we explore the sideband ratio, n+
m/n

−
m, over various mechanical and microwave

occupations. To reduce nm to values approaching 1, we increase the cooling tone power

up to ncool
p = 4 × 105. For sideband characterization, the probe tone powers are set to

n−p = n+
p = 105 and the probe sideband spectra are analyzed using the conversion factors

described above. The imbalance between n+
m and n−m is clearly evident in the noise spectra

(Fig.3.5(b)).

As further demonstration of the asymmetry with respect to neff , we plot n+
m/n

−
m as a

function of n−m in Fig. 3.5(c). Each curve corresponds to one setting of injected microwave

noise. The data shows excellent agreement to the expected ratio, n+
m/n

−
m = 1+(2neff +1)/n−m.

This relationship highlights the combined effect of quantum and classical noise in Eq. (3.35).

By fitting each curve to a two parameter model, a+ b/n−m, we find an average constant offset

a = 0.99± 0.02 for all curves, accurately matching the model and confirming our calibration

techniques. Fitting for b, the data indicates neff spanning 0.71 to 4.5 with uncertainty all

within ±0.09 quanta.

To quantify the contributions due to quantum fluctuations and classical cavity noise, we

fix the cooling tone power at ncool
p = 4×105 (γM = 2π×360 Hz) and measure the imbalance

n+
m−n−m as we sweep neff . At each level, we measure the average noise power density, η, over

a 250 Hz window centered at ωc and away from any motional sideband. Over this range, η
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Figure 3.4: Sideband imbalance. Microwave spectrum centered about the up-converted (red) and down-
converted (blue) sidebands and with the noise floor of the measurement chain subtracted off. As the classical
noise in the cavity is increased from neff = 0.6 to 2.5, the noise floor increases, the average sideband
occupation increases, and the sideband imbalance grows.

contains two contributions: the noise radiating out of the microwave resonator, proportional

to neff , and the detector noise floor, set by the noise temperature of the cryogenic amplifier

(TN ≈ 3.6K). We directly measure the detector noise floor by switching from the device to

an impedance-matched bypass connection and measure the noise power density, η0, over the

same window with matching detected tone powers.

In Fig. 3.5(d), we plot the sideband imbalance against the noise floor increase, ∆η =

η − η0, which is expected to follow: n+
m − n−m = 2neff + 1 = 4λ · ∆η + 1, where λ is the

conversion factor for ∆η in units of cavity quanta, nthc . The detected noise spectrum at each

noise level measured relative to the floor is shown in Fig. 3.4. The data clearly follows a

linear trend with a slope of λ = (2.7±0.1)×10−1 (aW/Hz)−1. More importantly, we observe

an offset of 1.2± 0.2, in excellent agreement with the expected quantum imbalance of “+1”

from the quantum fluctuations of the microwave field.

As an additional check, we also consider the sideband average, (n−m+n+
m)/2, as a function

of ∆η. Averaging the up and down-converted Lorentzian components of Eq. (3.35), we see

that the resulting occupation, nm + β
2
, does depend on neff due to the coupling between the

mechanical and microwave modes, nm = γm
γtot

nthm + γop

γtot
(2nthc + α) +

γcool
op

γtot
nthc , where γop (γcool

op )

is the optical coupling rate for the individual probe (cooling) tones. Accounting for this so-

called back-action heating of the mechanical mode [42,45], we recover λ = (2.5± 0.2)× 10−1

(aW/Hz)−1, consistent with the imbalance results above.

Notably, the average sideband occupation does contain contributions from mechanical

zero-point fluctuations. Future experiments could infer the mechanical quantum contribution
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Figure 3.5: Sideband asymmetry. a. Pump scheme. Three tones are placed about the microwave resonance.
Two probe tones generate up-converted (red) and down-converted (blue) sidebands. An additional tone
(purple) cools the mechanical mode. b. Sideband spectra. S̄R[ω] measured at neff = 0.60 (blue) and 2.5
(orange) with nm = 4.7 ± 0.1. c. Sideband asymmetry. The ratio n+

m/n
−
m vs. n−m is plotted for increasing

noise injection. d. Sideband imbalance (blue) and sideband average (purple) vs. the measured noise increase,
∆η. Sideband imbalance, n+

m−n−m, and average, (n+
m+n−m)/2, exhibit a linear trend with ∆η. The imbalance

at ∆η = 0 is the quantum imbalance due to the squashing of fluctuations of the microwave field.

of β
2

with a method to independently calibrate nm to high accuracy, for example, with a

passively cooled high frequency mechanical mode thermalized to a primary low temperature

thermometer.

3.3.3 Output port occupation

We estimate the occupation factor of the output port, nthr , by measuring the microwave noise

spectrum absent any microwave pumping. In this setup, we assume that nthc is solely due to

noise radiating into the device from the the isolated port of a cryogenic circulator, so that

nthc = nthr κR/κ. This noise source generates a dip in the broadband noise floor,

S̄R[ω] =
1

λ

[
κ2

κ2 + 4(ω − ωc)2

(κR
κ
− 1
)
nthr +

(
κ

4κR

)(
αR + 2nthr

)]
. (3.45)

Taking κR
κ

from independent calibration measurements and λ from the sideband imbal-

ance measurements, we fit the observed Lorentzian to find nthr = (3.4±0.3)×10−1. A typical

noise floor spectrum is shown in Fig. 3.6.
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with Lorentzian fit (dark blue).

3.3.4 Noise floor calibration

The increase in the device noise floor at cavity resonance is measured relative to the noise

floor of an impedance matched through connection with matching amplifier conditions. With

the device switched in place, the broadband microwave noise floor is

S̄o[ω] =
κ

ω2 + (κ/2)2

(
nthc − nthr

)
+ nthr + α/2. (3.46)

Since this noise floor dip is not present when switching in the impedance-matched through,

the observed noise floor increase has a small correction that is proportional to neff and nthr ,

∆η =
1

2λ

[
neff −

(
2κR − κ

2κR

)
nthr

]
, (3.47)

where neff = 2nthc −nthr as above, and where λ is the conversion factor for ∆η in units of nthc .

To see how this behavior affects our measurements, we consider the sideband powers in

the presence of classical noise nthc , nthr . Integrating the noise power under the transduced

sidebands of Eq. (3.35), we find that

n+
m − n−m = 4λ∆η +

(
2κR − κ
κR

)
nthr + 1, (3.48)
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and

n+
m + n−m

2
=

(
2γop + γcool

op

γM

)[
λ∆η +

(
4κR − κ

4κR

)
nthr

]
+
γm
γM

nthm +
γop

γM
+

1

2
, (3.49)

where we follow the notation of Eq. (3.43) and have set α = β = 1, γ+
op = γ−op = γop.

The nthr contribution does not affect the slope of either data set. For sideband imbalance

and average measurements, we expect linear dependence on ∆η with slope proportional to λ.

The nthr factor does, however, add fixed offsets to both data sets. For the sideband difference,

the contribution is suppressed relative to the quantum offset of “+1”. With the experimental

parameters nthr = 0.34± 0.03, κ = 2π × (860± 10) kHz, and κR = 2π × (450± 30) kHz, we

estimate an offset correction of
(

2κR−κ
κR

)
nthr ≈ (3± 4)× 10−2, well within the measurement

uncertainty for sideband imbalance. This is not the case for the sideband average, where

we expect a correction to the offset that is significant when compared to the mechanical

quantum contribution of “+1/2”.

3.3.5 Conclusion

In summary, we report the quantum imbalance between the up and down-converted motional

sideband powers in a cavity electro-mechanical system measured with a symmetric, linear

detector. We show that for linear detection of the microwave field, the imbalance arises

from the correlations between the mechanical motion and the quantum fluctuations of the

microwave detection field. For normal-ordered detection of the microwave field, however,

the imbalance arises directly from the quantum fluctuations of the mechanics. By further

assuming that the output microwave field satisfies the canonical commutator, which also

determines the quantum fluctuations of the mechanical mode, the measurement can be

interpreted as performing either symmetric or normal-ordered detection regardless of the type

of detector utilized. In both scenarios, the imbalance in motional sidebands is a fundamental

quantity originating from the Heisenberg’s uncertainty relations and provides a quantum

calibrated thermometer for mesoscopic mechanical systems.
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Recently, four other groups have measured the motional sideband asymmetry in micron-

scale opto- and electro-mechanical systems with both linear [52, 53] and nonlinear [46, 47]

detectors, akin to the photon-counting techniques described here. Whatever the interpreta-

tion choice of the reader, quantum motion in a macroscopic mechanical resonator has now

been demonstrated unambiguously.
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Chapter 4

Back-action evasion detection

In the previous section, we explored the behavior for detuned two-tone probing of an elec-

tromechanical system. Detuning the sidebands was crucial to simultaneously probe the up-

and down-converted motional sidebands without introducing direct correlations between the

two drive tones. Though the probes indirectly interact via the dressed the mechanical mode,

either by modifying the occupation factor or mechanical susceptibility, there are no back-

action imprecision correlations between separate sidebands. What happens when this is no

longer the case?

Let us first consider a pair of balanced red- and blue-detuned drive tones (G− = G+ = G)

that are arranged so that the up- and down-converted motional sidebands perfectly overlap

(Fig. 4.1). In this configuration, the cavity field becomes

α(t) =
∑
±
α±e

−i(ω±t+φ±), (4.1)

= α± cos(ωmt)e
−iωct, (4.2)

with balanced drive amplitudes, α± = α+ = α−. At this point, we ignore the drive phases

and set φ± = 0 – refer to Sec. 4.1.3 for further discussion of the role of φ±.

The cavity field now consists of a fast oscillating carrier tone at ωc modulated at the

mechanical resonance ωm. Since cavity field drastically boosts the coupling between the

cavity and mechanics, the interaction strength will be modulated in time at the mechanical
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G G

ωcωc − ωm ωc + ωm

ωc

Figure 4.1: BAE pump configuration. In a back-action evading (BAE) scheme, two drive tones are detuned
about the microwave cavity (black line) at frequencies ωc±ωm and have balanced amplitudes with associated
optomechanical couplings G. The up- and down-converted sidebands are converted into the center of the
cavity and are perfectly overlapped (purple area). Backaction forces generated via cavity noise (beige area)
mixing exhibit correlations resulting from the red-detuned drive (red bar) and blue-detuned drive (blue
bar) mixing with the same region of cavity noise near ωc. Though suppressed by the cavity DOS, sidebands
converted outside the cavity (small red and blue peaks located ωc±2ωm) do not exhibit noise floor correlations
and hence will generate quadrature-independent heating.

resonance frequency, and hence the cavity detector will be sensitive only to motion that

is in-phase with the modulation signal while out-of-phase motion will average to zero over

many mechanical periods. To show that this is indeed the case, we can analyze this drive

scheme within the input-output framework.

4.0.1 Interaction Hamiltonian

From these equations, we can now consider the linearized interaction Hamiltonian

Ĥ = ~g0[α(t)d̂† + α(t)∗d̂](b̂e−iωmt + b̂†eiωmt). (4.3)

Substituting in the cavity field α(t), we separate the Hamiltonian into constant DC terms

and counter-rotating terms, Ĥ = Ĥlin + ĤCR,

Ĥlin = G(d̂+ d̂†)(b̂+ b̂†), (4.4)

ĤCR = G(d̂+ d̂†)[(b̂+ b̂†) cos(2ωmt)− i(b̂− b̂†) sin(2ωmt)]. (4.5)

with G = g0α± and d̂ (b̂) is the annihilation operator for the microwave (mechanical) mode

defined in the interaction picture. Assuming sufficient sideband resolution, the counter-

rotating effects are suppressed by the cavity susceptibility and thus ĤCR will be initially
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ignored in the following analysis.

The operator Langevin equations directly follow from the transformed Hamiltonian as

χ−1
c (ω) d̂[ω] = −√κd̂in[ω]− iG±(b̂[ω] + b̂†[ω]), (4.6)

χ−1
m (ω) b̂[ω] = −√κb̂in[ω]− iG±(d̂[ω] + d̂†[ω]). (4.7)

In this rotating frame, the susceptibilities χ−1
m (ω) = −iω + γm

2
and χ−1

c (ω) = −iω + κ
2

are

Hermitian invariant, i.e., χm(ω) = χ∗m(−ω) and χc(ω) = χ∗c(−ω), so that the above equations

transform directly into a closed system of equations between the microwave and mechanical

field quadratures X̂1 = (b̂+ b̂†) and Û1 = (d̂+ d̂†),

χ−1
c (ω) Û1[ω] = −√κ Û1,in[ω], (4.8)

χ−1
m (ω) X̂1[ω] = −√γm X̂1,in[ω], (4.9)

with bath inputs X̂1,in = (b̂in+b̂†in) and Û1,in = (d̂in+d̂†in). It appears that the probe tones have

no effect on this specific pair of oscillator quadratures. If we instead consider the orthogonal

quadratures X̂2 = −i(b̂ − b̂†) and Û1 = −i(d̂ − d̂†) with bath inputs X̂1,in = (b̂in + b̂†in) and

Û1,in = (d̂in + d̂†in),

χ−1
c (ω) Û2[ω] = −√κ Û2,in[ω]− 2iG±X̂1[ω], (4.10)

χ−1
m (ω) X̂2[ω] = −√γm X̂2,in[ω]− 2iG±Û1[ω], (4.11)

with bath inputs X̂2,in = −i(b̂in − b̂†in) and Û2,in = −i(d̂in − d̂†in).

The correlations between the backaction forces conspire to direct the measurement-

induced backaction noise onto a single mechanical quadrature, i.e., the motional heating

is driven entirely by fluctuations in Û1. Similarly, the mechanical-induced heating of the

microwave field (i.e., the motional sideband) is transduced entirely into the conjugate mi-

crowave quadrature. That is, X̂1 is transduced entirely onto Û2 while X̂2 is not sensed. Thus,

there is no time-dependent feedback mechanism to drive dynamical backaction effects like
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damping or amplification.

4.0.2 Quadrature definitions

In the previous section, we briefly introduced the harmonic oscillator quadrature fields as

quantum variables that naturally arise from this balanced and overlapped drive scheme. Now,

we will now discuss the motivation and significance of the harmonic oscillator quadrature

fields.

In general, a one-dimensional oscillator is defined via the dynamics of two conjugate

variables and can thus be instantaneously defined classically in a two-dimensional phase

space. Motivated by the form of the electromechanical interaction, we shall consider the

quadrature amplitudes that are defined in the basis of the cosine (in-phase) and sine (out-

of-phase) components of the oscillating signal. Thus, we can explicitly separate the position

in to the quadrature components 1,

x̂ = xzp(ĉ+ ĉ†) = X̂1 cos(ωmt) + X̂2 sin(ωmt), (4.12)

where the mechanical quadrature operators are defined via the ladder operators in the in-

teraction picture (ĉ = b̂e−iωmt) as

X̂1 = xzp(b̂+ b̂†), (4.13)

X̂2 = −ixzp(b̂− b̂†), (4.14)

with canonical commutation relations,

[X̂1, X̂2] = 2ix2
zp. (4.15)

1There are two commonly used quadrature definitions: X̂1 = xzp(d̂+ d̂†) or X̂1 = (d̂+ d̂†)/
√

2. Relevant

to this discussion, the definitions carry different commutation relations: [X̂1, X̂2] = 2ix2
zp versus [X̂1, X̂2] = i

and energy prefactors (d̂†d̂ + d̂d̂†) = (X̂2
1 + X̂2

2 )/2x2
zp versus (X̂2

1 + X̂2
2 ). In this work, we use the former

definition.
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These definitions can be generalized to an arbitrary axes rotation in quadrature space,

X̂φ = xzp(eiφb̂+ e−iφb̂†), (4.16)

= X̂1 cosφ− X̂2 sinφ. (4.17)

For the purpose of the experiment, this phase angle is controlled by the drive tone phases in

the lab frame; refer to Sec. 4.1.3 for more information.

In terms of the quadrature definitions, the bare dynamics of the mechanical resonator is

prescribed by the system Hamiltonian,

Ĥo =
~ωm

2
(â†â+ ââ†), (4.18)

=
~ωm
4x2

zp

(X̂2
1 + X̂2

2 ). (4.19)

Moving into the Heisenberg picture, the bare quadrature time evolution follows from the

quadrature commutator and explicit quadrature time-dependence:

d

dt
X̂φ =

i

~
[Ĥo, X̂φ] +

∂

∂t
X̂φ, (4.20)

= 0. (4.21)

There is no dynamic coupling between the conjugate quadrature variables X̂1 and X̂2 (or any

other pair of orthogonal quadratures) and ignoring environmental dissipation, the quadra-

tures are constants of motion. Perturbing one quadrature will not affect the other and hence

the quadratures are candidate quantum non-demolition (QND) measurables [54–56].

We have assumed the existence of the microwave field quadratures in the above. Since

the microwave cavity is also a harmonic oscillator defined in a two-dimensional phase space

for electromagnetic field analogs to position and momentum (i.e., conjugate variables defined

between functions of voltage and current), the microwave quadratures are well-defined quan-

tities with near identical operator definitions, commutation relations, and bare dynamical
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behavior,

Û1 = d̂+ d̂†, (4.22)

Û2 = −i(d̂− d̂†), (4.23)

[Û1, Û2] = 2i, (4.24)

d

dt
Ûφ|Ĥo = 0. (4.25)

We can reinterpret the interaction Hamiltonian as a linear coupling between the quadra-

tures,

Ĥlin = ~G±X̂1Û1. (4.26)

which immediately motivates features of Eqs.(4.8)-(4.11): the mechanical transduction of

X̂1 onto Û2, the optical back-action of Û1 onto X̂2, and the associated stationary behavior

for both X̂1 and Û1 .

The microwave field acts as a X̂1 detector and will induce optical back-action forces

on the orthogonal X̂2 that are dynamically uncoupled from the measurement. This is the

purpose of setting up balanced, overlapping drive tones – by isolating the back-action forces

from the detected parameter, the drive configuration forms a QND measurement of a single

mechanical quadrature. In the following, this measurement scheme is referred to as back-

action evasion (BAE) detection [35, 57, 58]. This type of measurement is fundamentally

different than continuous position measurement where the measurement will increasingly

perturb both position and momentum with increasing measurement strength, leading to the

so-called standard quantum limit (SQL) for position detection [11]. Over the past decade,

position measurements have reached imprecision levels below that at SQL [59,60]. Similarly,

the back-action heating driven via quantum fluctuations of the measurement field have been

observed in mechanical system via electrons [61] and via photons [10,62].
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4.0.3 Noise spectrum

To support the claims of QND detection, we now calculate the mechanical quadrature spec-

trum and the output microwave noise spectrum. Starting with the mechanics, the sym-

metrized quadrature noise spectrum is,

S̄X̂φ [ω] =
1

2

∫
dteiωt〈{X̂φ(t), X̂φ(0)}〉 (4.27)

=
1

2

∫
dω′

2π
〈{X̂φ[ω′], X̂φ[ω]}〉. (4.28)

Substituting in Eqs. (4.8-4.11) along with the quadrature bath correlations

〈X̂φ,in[ω]X̂φ,in[ω′]〉 = x2
zp(2nthm + 1) 2πδ(ω + ω′), (4.29)

〈Ûφ,in[ω]Ûφ,in[ω′]〉 = (2nthc + 1) 2πδ(ω + ω′), (4.30)

〈X̂φ,in[ω]Ûφ,in[ω′]〉 = 0, (4.31)

yields the quadrature spectrum,

S̄X1 [ω] /x2
zp =

γm
ω2 + (γm

2
)2

[
1 + 2(nthm + nbad

m )
]
, (4.32)

S̄X2 [ω] /x2
zp =

γm
ω2 + (γm

2
)2

[
1 + 2(nthm + nba + nbad

m )
]
. (4.33)

The back-action heating of X̂2 manifests via the occupation factor,

nba =
2γop

γm
(2nthc + 1), (4.34)

where the optical scattering rate is defined as γop = 4G2/κ.

In Eqs.(4.32, 4.33), we have included bad-cavity effects generated by the counter-rotating

terms of ĤCR. To first order in drive power, the counter-rotating terms introduce weak back-

action forces that are included here in the form of quadrature-insensitive heating given by the

occupation factor nbad
m = 1

32
( κ
ωm

)2nba [58]. For the parameter regime typically encountered
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in our experiments, this heating term is of order unity at the highest measurement strengths

and hence plays no significant role for interpreting results.

The output microwave field is connected to the cavity field via standard input-output

relation d̂σ,out =
√
κσd̂ + d̂σ,in, and is defined in terms of the field leaving the output port

(right) of the device, d̂R,out. Solving for the output spectrum

S̄R[ω] =
1

2

∫
dteiωt〈{d̂R,out(t), d̂

†
R,out(0)}〉, (4.35)

=
κR
κ

γop

x2
zp

S̄X̂1
[ω] + S̄o[ω]. (4.36)

where the noise floor identifies the classical occupation of the microwave baths and the shot

noise of the microwave field,

S̄o [ω] =
κRκ

ω2 + (κ
2
)2

(
nthc − nr

)
+ nr +

1

2
. (4.37)

4.0.4 Scattering matrix formalism

As a consistency check, we can rederive the above relations within the scattering framework.

With the drive configuration for BAE, the scattering matrix is

χ(ω) =


−iω + κ

2
0 −iG −iG

0 −iω + κ
2

iG iG

−iG −iG −iω + γm
2

0

iG iG 0 −iω + γm
2



−1

. (4.38)

Solving for the mechanical scattering terms,

χ31(ω) = 4iG
(γm−2iω)(κ−2iω)

, χ32(ω) = 4iG
(γm−2iω)(κ−2iω)

.

χ33(ω) = 2
γm−2iω

, χ34(ω) = 0.
(4.39)
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The symmetrized quadrature spectra are

S̄X̂1
[ω] = S̄xx[ω] + ∆[ω], (4.40)

S̄X̂2
[ω] = S̄xx[ω]−∆[ω], (4.41)

where ∆[ω] incorporates the cross terms associated with 〈b̂[ω]b̂[ω′]〉 and 〈b̂†[ω]b̂†[ω′]〉,

∆[ω] = 2 Re(χ31[ω]χ32[−ω])κ(2nthc + 1) (4.42)

+ 2 Re(χ33[ω]χ34[−ω]) γm(2nthm + 1) (4.43)

= −2
γop

ω2 + (γm
2

)2
κ(2nthc + 1). (4.44)

Solving for the quadrature spectra yields identical results as Eqs. (4.32), (4.33).

For the microwave spectrum, the relevant scattering terms are

χ11(ω) = 2
κ−2iω

, χ12(ω) = 0,

χ13(ω) = 4iG
(γm−2iω)(κ−2iω)

, χ14(ω) = 4iG
(γm−2iω)(κ−2iω)

,
(4.45)

which reproduce the output BAE spectrum of Eq. (4.36).

4.1 Back-action and imprecision definitions

4.1.1 BAE configuration

In terms of spectral density, that we directly accesses via FFT analysis of the full measure-

ment chain, SI , we must include the power gain, G2[ω], and uncorrelated noise floor, S̄add[ω],

of the amplifier chain,

SI [ω] = G2
(
S̄R[ω] + S̄add[ω]

)
. (4.46)

The final expression references the measured spectrum in terms of the components of
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the mechanical quadrature spectrum. By splitting up the spectrum into three main com-

ponents, it is now easy to identify the contributions from the intrinsic thermal motion, nthm,

measurement back-action, nba, and detector imprecision, nimp.

Regarding the amplifier noise floor, we initially assume the amplifier gain and noise floor

are sufficiently flat about the cavity resonance frequency over a bandwidth on the order of

κ, G2[ω]→ G2 and S̄add[ω] = ~ωcnadd[ω].

Per the typical definition of measurement imprecision [6, 11], nimp is defined as the

measurement-induced mechanical occupation evaluated at mechanical resonance. Here, how-

ever, the measurement system is a single quadrature detector opposed to a position detector

and hence we only consider the imprecision noise for the sensed parameter X̂1:

SI [0] = γ±op

κR
κ

8

γm

[(
nthm +

1

2

)
+ nimp

]
, (4.47)

where,

nimp =
κ

κR

γm
8γ±op

(
S̄o[0] + S̄add[0]

)
. (4.48)

For ideal BAE, there is no back-action heating of X̂1 and the single quadrature detector

noise product is zero. This does not break the quantum bounds on detector noise products

since the BAE measurement manifests through back-action imprecision correlations.

In practice, there is drive power dependent heating of the mechanics induced either

through resistive ohmic heating or other mechanical nonlinearities [42,63]. To conservatively

model any drive-dependent heating, we define the amount of motional backaction heating

as the net increase in mechanical occupation induced from the measurement drive tones

regardless of the microscopic origin. As such, the measured backaction, nba , is calculated in

this work as the net increase between the dressed mechanics in the presence of BAE driving

and the bare mechanics, which here refers to the system without the BAE tones (but still

including the cooling tones).

For a quantum limited phase-insensitive amplifier, S̄add = 1
2

and the minimum impreci-

sion level for a zero-temperature cavity is equal to one quanta. Referenced to the mechanical

77



spectrum, however, the imprecision can be made arbitrarily small by increasing the drive

powers (γop). Though this would seem to ensure that sufficiently high powers can, in prin-

ciple, be applied to suppress imprecision below the xzp level, there are various cavity and

mechanical nonlinearities that pose limits to the applied power. Historically, such a mea-

surement has proven difficult due to the effect of relatively small optomechanical couplings

in combination with mechanical Kerr nonlinearities that have combined in the past to limit

the imprecision above zero-point level [15,17,19].

4.1.2 DTT configuration

We have now shown that ideal BAE detection generates back-action forces on the mechanics

that are entirely routed to the un-detected mechanical quadrature X̂2. To confirm that this

is indeed the case, we can directly observe the back-action heating generated by the BAE

tones in numerous different ways. As a first step, we compare the BAE detection scheme to

a 〈x̂2〉 measurement with identical drive strengths. We designate this position measurement

scheme as a “detuned two-tone” (DTT) identical to the pump configuration summarized for

sideband asymmetry measurements in Fig. 3.1.

Detuned two-tone pump configuration consists of two balanced drive tones (γ+
op = γ−op)

placed symmetrically about the cavity at frequencies ωc ± (ωm + δ). Compared to the total

mechanical linewidth, the transduced sidebands are sufficiently separated in frequency space

(δ � γm) to prohibit direct drive interference.

Using the analysis developed for sideband asymmetry measurements of the previous sec-

tion, we now further restrict the drive configuration to balanced red and blue drives, such

that G− = G+ = G and by extension γ+
op = γ−op = γop = 4G2

κ
. The DTT output microwave

spectrum exhibits electromechanical noise contributions from the intrinsic mechanical mo-

tion, the measurement imprecision, and back-action imprecision correlations in the form of

noise squashing and anti-squashing.

We can reinterpret the detuned two tone (DTT) configuration as a measurement of

position (∝ 〈x̂2〉) by averaging the up and down-converted sidebands in Eq. (3.35) to remove
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the effects of cavity noise correlations in the form of squashing and anti-squashing,

1

2

∑
±
S̄R[ω ± δ] = S̄o[ω] +

κR
κ

γmγ
±
op

ω2 + (γm
2

)2
(nm + 1/2), (4.49)

where we have assumed the noise floor S̄o is flat over the designated frequency range. The

mechanical occupation now exhibits optically induced quadrature-independent back-action

heating, nm = nthm +
γ±op

γm
(2nthc + 1).

Following the imprecision formalism from above, the detected output noise spectrum is

SDTT
I [ω] = G2

(
1

2

∑
±
S̄R[ω ± δ] + S̄add[ω]

)
,

with DTT back-action factor as

nDTT
ba =

γ±op

γm
(2nthc + 1), (4.50)

= nBAE
ba /2, (4.51)

and imprecision factor,

nDTT
imp =

κ

κR

γm
4γ±op

(
S̄o[0] + S̄add[0]

)
(4.52)

= 2nBAE
imp . (4.53)

Note that the back-action and imprecision noise in DTT differs from the BAE configura-

tion by a factor of two. The scaling between BAE and DTT back-action heating factors

implies that the total back-action heating for position is equal in both BAE and DTT pump

configurations. The different scaling arises because the heating is spread equally between

the quadratures in DTT configuration but is entirely concentrated to a single quadrature in

BAE configuration. The imprecision also differs by a factor of two due to the distribution

of the sidebands in frequency space. Spacing out the sidebands effectively adds twice the

amount of imprecision noise compared to the overlapped sidebands in BAE configuration.
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4.1.3 Microwave drive phase dependence

So far, we have completely ignored the phases of the microwave drive tones. Now we can

explicitly include the phase information and explore how it may affect the BAE measure-

ment. Modeling the cavity field generated via two balanced drives (α− = α+) symmetrically

detuned from ωc by ±ωm,

α(t) =
∑
±
α± cos(ω±t+ φ±), (4.54)

= α±
[
e−i(ωmt+∆) + ei(ωmt+∆)

]
e−i(ωct+φ̄) + c.c., (4.55)

where the above frequencies and phases are defined via the drive parameters,

1
2
(ω+ + ω−) = ωc,

1
2
(ω+ − ω−) = ωm,

1
2
(φ+ + φ−) = φ̄, 1

2
(φ+ − φ−) = ∆.

(4.56)

In terms of the incident microwave power and phases that are available for experimental

control,

α± =

√
κL

ω2
m + (κ/2)2

P±in , (4.57)

φ̄ = φ̄in, (4.58)

∆ = arctan

(
κ

2ωm

)
+ ∆in. (4.59)

Plugging this drive field into the Langevin equations for the mechanical and microwave

fields in a rotating, displaced frame (â → [α(t) + d̂]e−iωct and ĉ → b̂e−iωmt) with enhanced

optomechanical couplingsG± = g0α± and rotating wave approximation, the field quadratures

follow

χ−1
m (ω) X̂φ[ω] = −√γm X̂φ,in[ω]− iG±Ûφ[ω]

(
e−i(φ−∆) − e−i(φ−∆)

)
xzp,

χ−1
c (ω) Ûφ[ω] = −√κ Ûφ,in[ω]− iG±X̂∆[ω]

(
e−i(φ−φ̄) − e−i(φ−φ̄)

)
/xzp.
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As one would expect for power detection, the output spectrum derived with drive phase

information has no absolute phase dependence,

S̄R [ω] = S̄o +
κR
κ

γ±op

x2
zp

SX̂∆
[ω].

The phase difference ∆ determines the mechanical quadrature axes in the lab frame. The

absolute phase φ̄ determines the lab frame axis of the microwave quadrature that carries

the mechanical quadrature signal. Our measurement techniques are unable to differentiate

between the microwave quadratures (this could be addressed with an IQ-mixer for quadrature

detection) so we only concern ourselves with the relative phase ∆.

4.2 BAE results

Having analyzed the BAE measurement within an input-output framework and confirmed

its QND behavior, we will now discuss our experimental results in an electromechanical de-

vice. For this experiment, we implement BAE with the same device and measurement circuit

utilized in sideband asymmetry measurements. To reiterate, we study a lumped-element mi-

crowave LC resonator (denoted in this work as “cavity”) in the high-Q regime with resonance

frequency ωc = 2π×5.4 GHz and total linewidth κ = 2π×860 kHz. From independent tests

at 300mK, the output port scattering rate is κR = 2π × 450 kHz. The capacitor top gate

that supports out-of-plane acoustic modes, of which we study the fundamental mode with

resonance ωm = 2π × 4.0 MHz and intrinsic dissipation γm = 2π × 10 Hz at 20mK. Motion

of the top gate modulates the capacitance and shifts ωc by 2π× 16 Hz (= g0) per xzp, where

xzp ' 1.8 fm.

4.2.1 Calibrations

To calibrate the measurement circuit, we perform linewidth-broadening and thermo-mechanical

noise calibrations for a single red-detuned drive. A microwave pump is placed at ωc−ωm and

and the complex cavity transmission is measured via sweeping heterodyne detection. As the
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Figure 4.2: System calibrations. a. Calibration of the up-converted motional sideband against calibrated
thermal motion (blue circles). At the base temperature of the fridge (and outside the range of resistance
thermometry) the mechanics thermalizes to an extracted temperature of 7.2 ± 0.2mK (light blue square)
consistent with the expected base temperature of the cryostat. b. Backaction damping and pump photon
calibration. As the system is pumped with elevated drive power, the total linewidth of the up-converted
sideband (blue circles) is monitored via scanning homodyne detection. Fit to back-action damping theory
(red line) result in a calibration for pump photons np versus detected output power.

pump power is increased, we monitor the detected output pump power, P−, as well as the

back-action damping γop from linewidth broadening of the transduced mechanical sideband.

Next, we decrease the pump power to a sufficiently low level (γop ' γm/100) and then plot

the integrated noise power in the up-converted sideband, Pm, as we sweep the calibrated

temperature of the cryostat between 20mK to 200mK. The two measurements are cast in

linear form and yield the calibration factors a− and b−,

γop =
4G2

κ
= a−

(
4

κ

)
P−, (4.60)

Pm
P−

=
1

b−

kBT

~ωm
, (4.61)

where κ is observed to be constant over the relevant pump configurations so that power-

dependent linewidth shifts are ignored. Converting the calibration factors to readily acces-

sible formats for measurement, we find

np
P−

=

(
a−
g2

0

)
= (2.25± 0.7)× 1011 W−1, (4.62)

nm
(Pm/P−)

= b− = (9.92± 0.16)× 108. (4.63)

82



S
x
/
x
2 z
p

S
X

1
/x

2 z
p (H
z-

1 )

1.2

0.8

0

0.4

-5 -4.8-5.2 0 0.2-0.2 54.8 5.2

(ω − ωc)/2π (kHz)

Figure 4.3: BAE and DTT noise spectrum. Measured noise spectrum converted to units of motional zero-
point fluctuations. The BAE spectrum (red area) clearly shows reduced noise area compared to the sidebands
generated in DTT pumping (blue area).

Though BAE and DTT experiments incorporate both red and blue-detuned drives, accu-

rately balancing the drive powers provide full system analysis entirely via the red-detuned

drive calibrations. Refer to Fig. 4.2 for calibration measurement results.

4.2.2 Measurement

For the actual experiment, a third cooling tone is added to suppress mechanical frequency

jitter on the scale of the intrinsic linewidth. To do this, we apply a cooling tone at ncool
p ∼ 105

detuned from cavity center by δc (refer to Fig. 4.5). Sufficiently large detuning (δc � γtot)

ensures that the cooling tone dresses the mechanics – it broadens the mechanical damping

and cools the mechanical occupation from the intrinsic bath the lower occupation – without

otherwise affecting behavior of the BAE detection scheme.

For the measurement, we aim to perform three tasks: measure the intrinsic mechanical

motion dressed via the cooling tone, balance and measure DTT noise spectrum, and measure

the BAE spectrum. We accomplish this with the following protocol:

1. First, measure the cavity transmission with all tones set to estimated powers and fre-

quencies. Fit the transmission spectrum to extract system frequencies and detunings.
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Reconfigure the pumps to ensure ωcool = ωc − (ωm + δc) with δc = 2π × 35 kHz and

ω± = ωc ± (ωm + δ) with δ = 2π × 5 kHz.

2. Turn off BAE tones, check cooling tone fedthru power and take cooling spectra. Extract

γm and ncool
m . Treat these as the initial, unperturbed system parameters γom and nom,

ncool = b−

(
Acool

Pcool

)
, (4.64)

= nom. (4.65)

3. Turn on DTT tones, take noise spectrum, and balance to γm. Power balancing is

achieved by matching the linewidth of the dressed mechanical system to the intrinsic

linewidth γm. We assume the intrinsic linewidth does not appreciably change with

applied BAE tone which is consistent with mechanical occupation extracted from BAE

measurement at lower powers.

4. Measure DTT noise spectra. Fit each sideband to a Lorentzian lineshape then calculate

the average integrated sideband power as ADTT = 1
2
(Ared + Ablue). We then convert

the sideband powers to equivalent occupation,

nDTT = b−

(
ADTT

P−

)
, (4.66)

= nom + nDTT
ba +

1

2
. (4.67)

A typical DTT noise spectrum is presented in Fig. 4.3.

5. Measure the BAE noise spectra. Reconfigure the pumps to overlap the mechanical

sidebands. Measure the fed through power of each drive, then measure the BAE

spectrum. Refer to Fig. 4.3 for a typical BAE spectrum. In comparison to the DTT

spectrum, it is clear that the back-action is significantly reduced in BAE configuration.

Extract the integrated area under the BAE Lorentzian, ABAE. With calibration factors,
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convert the integrated power to equivalent quanta,

nBAE = b−

(
ABAE

2P−

)
, (4.68)

= nom + nBAE
ba +

1

2
. (4.69)

Note that the conversion factor between integrated sideband power and mechanical

occupation differs between BAE and DTT configurations by a factor of two. Further-

more, the backaction definition also differs by two between BAE and DTT. To properly

account for both these effects, we define the number of pump photons in BAE as twice

the number of pump photons in DTT.

6. Extract the back-action and imprecision components of the BAE and DTT occupation

factors. Associate any mechanical heating deviation from step (1) as measurement

backaction nBAE
ba . For the two pump configurations (σ = BAE, DTT), the backaction

can be directly isolated in the above calculations, whereas the imprecision can defined

in terms of the detected noise floor, sideband peak height, and equivalent sideband

occupation:

nσba = nσ − nom, (4.70)

nσimp =

(
nσ +

1

2

)(
background

peak

)
. (4.71)

For probe powers spanning np = 104 − 107, the detected nBAE
ba , nDTT

ba for are plotted in

Fig. 4.4.

At the highest powers reached in the experiment, we demonstrate BAE detection that

avoids total backaction heating by approximately 10dB. More importantly, we observe quadra-

ture heating that is 8.5±0.4 dB below the noise associated with quantum limited back-action

heating from the microwave shot noise. Simultaneously, the quadrature imprecision is be-

low the zero-point level, corresponding to 〈X̂2
1 〉imp = 0.6x2

zp. Reframing these quantities in

terms of the detector spectral densities associated with backaction (SX̂1,imp) and imprecision
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Figure 4.4: BAE and DTT occupations. a. Integrated sideband power for DTT (dark blue), BAE (red), and
no-pump (light blue) configurations. There is a clear reduction in the total observed noise power between
DTT and BAE configurations. In no-pump, the BAE tones are turned off and the cooling tone sideband is
monitored to check system drift. b. Back-action noise for DTT (blue) and BAE (red) pumping defined as
the increase in motional noise relative to the undriven mechanical occupation, i.e., the occupation extracted
from no-pump measurements. Even with zero classical noise, the BAE quadrature detection reaches below
the level of quantum-limited backaction for position detection (green line). Example spectra at the highest
powers (dotted grey box) are featured in Fig. 4.3. c. Imprecision noise as a function of pump power. At the
highest powers, the BAE imprecision reaches 0.6 x2

zp. A quantum limited amplifier would drastically reduce
this level (green line).

(SF,ba), we reach a detector noise product of
√
SX̂1,impSF,ba ' 2.5~ [42] that is lower than

other comparable micro- and nano-mechanical devices [11].

4.3 Double BAE

So far, we have used the DTT position measurement as a way to highlight the QND nature

of the BAE measurement. Comparing the two measurements, the effective sideband area in

BAE is highly suppressed, consistent with backaction avoidance. However, this measurement

does not entirely verify or validate that the BAE measurement is acting as intended. To

exclude any loopholes, such as miscalibrated pump power or electromechanical couplings

(which would effect both BAE and DTT measurements and therefore are not realistic issues)

or a mechanical parametric effect, we now consider directly measuring the backaction of one

set of BAE tones (denoted below as “pump”) with an additional, weaker BAE set (“probe”).

Refer to Fig. 4.5 for a schematic of the full pump configuration. In the following, we will

first confirm that double BAE works as we suspect and will then present results of the direct

measurement of BAE measurement backaction.
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Figure 4.5: Double BAE pump configuration. Five drive tones are placed about the cavity (black line). A
pair of BAE pump tones (red bars), each inducing the enhanced optomechanical strength G, are placed at
ωc ± ωm. A weaker set of probe BAE tones (blue bars) are placed at ωc + δ ± ωm with coupling strength
Gprobe. A fifth cooling tone (green bar) with coupling strength Gcool is detuned outside of the BAE tones and
serves to optically damp the mechanics. Inset: the BAE pump (red area) and probe (blue area) sidebands
are sufficiently detuned to avoid overlap. During measurement, both sets of sidebands are monitored as we
vary the relative phases between the probe drives. Additionally, we regulate the cavity noise occupation
(beige) which resembles a flat noise floor over the relevant measurement bandwidths.

4.3.1 Double BAE

Assuming the pump and probe BAE are sufficiently isolated from each other, each set of

BAE tones are sensitive only to the quadrature phase set by their respective drive phases:

the pump signal at ω ' 0 senses φ = 0, the probe signal at ω ' δ measures φ = θ,

χ−1
c (ω)d̂[ω] = −√κd̂in[ω]− iGX̂1[ω]/xzp − iGprobeX̂θ[ω − δ]/xzp. (4.72)

We immediately find that the microwave field will carry information about the desired

quadratures in spectrally-distinct regions of frequency space.

For δ � γtot, the mechanics now incorporates two distinct phase-dependent heating tones

with measurement axes rotated by φ2.

χ−1
m (ω)X̂φ[ω] =−√γmX̂φ,in[ω]

− ixzpG
(
eiφ − e−iφ

) (
d̂in[ω] + d̂†in[ω]

)
− ixzpGprobe

(
ei(φ−θ) − e−i(φ−θ)

) (
d̂in[ω + δ] + d̂†in[ω − δ]

)
,

where we have ignored cross-terms that scale as (γm
κ
δ
κ
nba). Unlike the case of single BAE

drive, the mechanical quadratures now exhibit cross-correlations, i.e., SX̂1X̂2
6= 0. However,

we only concern ourselves with the quadrature spectrum for the experimentally accessible
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Figure 4.6: Mechanical noise ellipse. a. For a single BAE drive, the mechanical noise ellipse (blue) resembles
a thermal squeezed state whereby all the back-action noise is added to the undetected quadrature X̂2 of
the thermal noise ellipse (beige). With single BAE alone, we only access the X̂1 quadrature fluctuations
and there is no direct way to assess the full noise ellipse. b. Double BAE noise ellipse. Considered as
separate measurements, the pump BAE elongates the mechanical noise ellipse along the X̂2 quadrature axes.
Set to measure X̂φ, the probe BAE acts in kind and funnels noise into its associated conjugate quadrature

X̂φ+π/2. Operating simultaneously, each BAE set is sensitive to the back-action of the other (green and
orange crosses).

phases φ = θ, 0:

SX̂θ [ω] =
1

ω2 + (γm
2

)2

[
γm(2nthm + 1) + 4γop(2nthc + 1) sin2 θ

]
(4.73)

= S̄o
X̂1

[ω] cos2 θ + S̄o
X̂2

[ω] sin2 θ. (4.74)

where the spectra S̄o
X̂1,X̂2

denote the quadrature spectra derived in Eqs. (4.32)-(4.33) for

single BAE drive. Additionally, the pump BAE signal will be perturbed by the probe tones

in a symmetric fashion,

SX̂1
[ω] =

1

ω2 + (γm
2

)2

[
γm(2nthm + 1) + 4γprobe

op (2nthc + 1) sin2 θ
]
. (4.75)

Though the full system Hamiltonian can no longer be considered QND, the sets of pump

and probe BAE drive act as independent QND measurements of their respective quadrature

axes; each respective signal is only sensitive to the back-action heating of the other (Fig. 4.6).

By sweeping the phase θ of the probe BAE, we perform a QND measurement of the rotated

quadrature X̂θ and directly measure the back-action forces of the pump BAE measurement

in-situ.
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Figure 4.7: Quadrature variance over the full noise ellipse. a. The probe BAE senses the noise ellipse
generated by the pump BAE tones. The quadrature ellipse follows the expected trend whereby all the
measurement back-action is added to only a single quadrature. The pump BAE senses the back-action of
the probe BAE which here are too weak to be detected above measurement noise. b. Quadrature noise
variance in polar axes. Since we directly measure the noise variances, the noise ellipse resembles a peanut
instead of an oval.

4.3.2 BAE phase locking

According to Eq. (4.74), introducing a second pair of probe BAE tones measures the mechan-

ical noise ellipse dressed by the pump BAE drive. However, implementing this routine in

our experiment requires one new technique that has not yet been discussed: phase control of

the drive tones. In the following, we will discuss technical details for phase locking between

the pair of BAE drive tones.

For simplicity, we align our lab frame clock such that the phase difference between the

pair of pump BAE drives is zero. In this frame, the probe BAE measurement quadratures

are rotated by θ = (φ+ − φ−)/2, where φ+ and φ− are given by the incident phases of the

probe drive tones. Due to the phase reduction by a factor of two, the incident drive phases

must be controlled within [0, 4π] to achieve quadrature detection over a full 2π rotation.

We can imagine performing this with open loop control by manually setting the relative

phase of the microwave signal generators with internal or external phase control. Open loop

control is accurate up to the quality of sources’ phase drift. For phase stability, all signal

generators are locked via a 10 MHz rubidium standard. However, in practice, we observe

rms phase drifts on the scale of one degree per 10 minutes. We were unable to reduce the
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Figure 4.8: Phase locking circuit.

phase drifts beyond this nominal level despite optimizing the BNC timing circuit to increase

mechanical stability, minimize delays between different sources and reduce pickup noise.

To remedy this phase drift issue, we implement closed loop control with manual feedback.

Though we did implement an active feedback circuit for real-time phase control, we found

that the manual phase control was more robust and more than adequate to deal with the

timescale of our phase drifts. The feedback circuit is designed around phase readout for the

pump BAE detection quadrature θ.

We will now discuss how we generate an error signal that is proportional to this phase.

First, we peel off a small amount of power from a set BAE tones and feed it into a power diode

(square law detector) followed by a RF low-pass filter with 11MHz cut-off frequency. This

combination generates a low-frequency (LF) signal at the modulation frequency. Focusing

on the component oscillating at twice the mechanical frequency,

LF(t) = (α(t))2
∣∣
2ωm

(4.76)

= α± cos(2ωmt+ 2θ), (4.77)

Note that this error signal doubles both the frequency and phase of the modulation signal

which causes complications for the detection. Suppose we generate the LF modulation signals

from both pump and probe BAE signals and then read out the phase difference with a lock-

in amplifier. The lock-in is sensitive to a single branch of phase spanning 2π and so, since

mixing down to produce the LF signal doubles the phase shift, the lock-in can only supply
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half of the full sweep, θ ∈ [0, π].

To get closed loop control over the entire 2π range, we use an additional RF signal gen-

erator and create two signals on separate channels, oscillating at the mechanical frequency.

Each channel is further divided in two, feeding into a frequency doubling circuit and a lock-

in amplifier. The frequency-doubled signal from both channels are fed into separate PLL

circuits that phase lock each channel to the pump and probe BAE LF signals, respectively.

Refer to Fig. 4.8 and 4.9 for a schematic of the circuit. The phase difference between the

un-doubled signals is monitored via a lock-in amplifier, which now supplies a one-to-one cor-

respondence between error signal and relative BAE phase. We now have close-loop control

over the entire quadrature noise ellipse.

4.3.3 Double BAE results

Using these phase-locking techniques, we are now able to directly measure mechanical back-

action forces generated by a single BAE drive at np = 1.1 × 106. We place a second set of

probe BAE tones, 20dB weaker and detuned than the pump and detuned by 2π × 30 kHz.

As we rotate the probe phase, it is clear that the back-action onto the mechanics is highly

quadrature-dependent and follows closely along with Eq. 4.74 (Fig. 4.10(a)). Similarly, we

see no apparent change in the X̂1 quadrature variance as measured by the pump tones which

is consistent with the reduced back-action generated from the much weaker probe tones.

Fitting the probe noise ellipse to this model, we can now directly extract out the back-

action onto the X̂2 quadrature. As we inject more and more classical noise into the cavity

(following the same noise injection and noise floor calibration techniques of Sec. 3.3.2), we
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Figure 4.10: Backaction heating versus cavity noise. a. The mechanical quadrature variances are measured
for increasing levels of cavity occupation. At elevated noise levels, the back-action heating of X̂2 increases
while that of X̂1 stays fixed. b. As the cavity occupation increases, the noise floor shift ∆η, representing
the peak height of the cavity noise Lorentzian, is plotted against the X̂2 quadrature heating. Extracting to
zero classical noise reveals the contribution of the quantum backaction induced by the quantum fluctuations
of the microwave field.

repeat this measurement at each setting and extract out the back-action heating onto the

X̂2 quadrature (〈X̂2
2 〉ba) as a function of the noise floor increase (Fig. 4.10(a)). According

to Eq. (4.34), the measurement back-action is proportional to both classical and quantum

noise, 〈X̂2
2 〉ba = (2γop/γm)(2nthc + 1), such that the intercept at nthc = 0 reveals the back-

action heating entirely due to the quantum fluctuations of the microwave field. Fitting our

data (Fig. 4.10(b)) reveals an intercept of 1.1±0.1, in excellent agreement with the expected

quantum contribution of “+1”. This is the first time that the quantum fluctuations of

the microwave field [64, 65] is demonstrated via mechanical detection. Notably, this point

corresponds to real mechanical motion that is driven by a completely empty cavity.
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Chapter 5

Mechanical squeezing

5.1 Introduction

We now focus on generating a quantum squeezed mechanical state where the variance of a

single motional quadrature is suppressed below the zero-point level [66], similar to squeezed

states that have been produced in various other systems [67–73], . Given that ideal BAE

detects the X̂1 quadrature while avoiding backaction heating, it would seem that BAE it-

self could generate a squeezed mechanical state. However, this is not the case. Due to the

QND nature of this kind of measurement, the X̂1 quadrature is completely unaffected from

measurement. For a single realization of the measurement on the timescale governed by the

total mechanical dissipation, the mechanics is indeed squeezed. After repeated continuous

measurement, however, the state is averaged out over the thermal distribution of the me-

chanics and we instead measure a conditional squeezed state. In this fashion, we observe

no reduction in the quadrature noise from the initial thermal level as expected for a QND

measurement.

There are numerous other proposals to generate mechanical squeezing via continuous

measurement plus feedback, such as BAE quadrature detection with feedback [56,58,74,75],

position measurement with detuned parametric drive [76]. Implementing BAE with feedback

is technically challenging as it requires an active feedback circuit for signal processing and

sufficiently small measurement imprecision noise. Alternatively, we could implement a sim-

pler parametric squeezing scheme [77], though single quadrature cooling is limited to 3 dB
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before the mechanics reaches a parametric instablility [78] and hence quantum squeezing via

parametric modulation is beyond our current capabilities. However, there are many other

theoretical proposals to surpass this 3 dB limit [79–82].

Instead, we consider a dissipative bath engineering scheme that can produce arbitrarily

large steady-state mechanical squeezing [83]. By simply increasing the strength of the red-

detuned drive in the two-tone BAE drive configuration (Fig. 5.2), we no longer perform a

QND measurement on X̂1. Instead, the backaction fores are correlated with the mechanical

motion in such a way that, instead of quadrature-insensitive cooling, the electromechanical

interaction forms a coherent feedback circuit that generates both steady-state mechanical

squeezing and net cooling of both quadratures from their initial thermal levels. This scheme

can be interpreted as a manifestation of reservoir engineering [84] realized in other bosonic

systems [85–88].

Recently, we performed such a measurement and observed quantum squeezing [63]. Since

then, two other groups have reported similar results in the microwave domain [89, 90]. In

this chapter, we will briefly discuss the electromechanical squeezing interaction as it directly

pertains to our system, followed by discussion of measurement and analysis techniques. The

bulk of this chapter will address the issue of error analysis in such a routine: how can we

systematically address correlated error between calibration uncertainty and fit uncertainty

for error propagation to the quadrature occupations? Though there are multiple ways to

tackle this problem, we will explore a Bayesian analysis routine that provides a relatively

direct way to resolve this issue.

5.2 Squeezing and detection

We will first outline the squeezing interaction and, making a series of approximations, show

that arbitrarily large steady-state mechanical squeezing is achievable with two-tone driving

of an electromechanical system such as ours. However, as many of these approximations

turn out to be violated due to nonidealities like power-dependent cavity [17] and mechanical

heating [63], we will later relax these assumptions and show that mechanical squeezing is
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still within reach.

5.2.1 Generating steady-state mechanical squeezing

G+

G−

ωcωc − ωm ωc + ωm

Figure 5.1: Mechanical squeezing pump configuration. A red- and blue-detuned pump (red and blue bars)
are placed at ideal detunings ωc±ωm about the cavity Lorentzian (beige). The pumps are power imbalanced
such that there is excess red power, G− > G+.

As a first step, we model the interaction in the good cavity limit (ωm
κ
� 1) with perfectly

aligned and overlapped sidebands (δ,∆ = 0) for a cavity mode deep in the ground state

(nthc = 0). Moving to the interaction picture rotating at ωc, ωm and displaced by a large

coherent field |ā±| � 1, the Hamiltonian simplifies to

Ĥint = −~d̂†(G+b̂
† +G−b̂) +H.c. , (5.1)

= −~G(d̂†β̂ + d̂ β̂†). (5.2)

with enhanced optomechanical couplings G± = g0ā±. In the second line, we have expressed

the electromechanical interaction in terms of a mechanical Bolgoliubov mode, β̂, where

β̂ = b̂ cosh r + b̂† sinh r, (5.3)

with squeezing factor

tanh r =
G+

G−
, (5.4)

and effective coupling strength

G =
√
G2
− −G2

+. (5.5)

Analogous to sideband cooling (G+ = 0) where the mechanical mode is cooled via cou-
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pling to a cavity mode that is near the ground state, two tone drive (G− > G+ > 0)

instead couples a mechanical Bolgoliubov mode to the cavity mode. For the imbalanced and

overlapped two-tone drive configuration of Fig. 5.1, the mechanical Bolgoliubov mode, β̂,

represents the annihilation operator of a squeezed mechanical state. That is, β̂Ŝ(r) |0〉 = 0

where Ŝ(r) = exp[r(b̂ b̂+ b̂†b̂†)/2] is the squeeze operator. From the form of this interaction,

cooling via cavity dissipation is capable of generating steady-state mechanical squeezing. In

Sec. 5.3 we relax some of the above assumptions but show, via an input-output framework

that we can indeed generate mechanical squeezing for experimentally accessible regimes.

5.2.2 Bolgoliubov mode detection

Following the assumptions outlined above – perfectly overlapped and centered drive tones, a

cavity deep in the ground state (nthc = 0) and highly suppressed bad-cavity effects – we can

analyze and detect mechanical squeezing by following the measurement protocol outlined

in [83]. Here, the expressions for the quadrature occupation and squeeze factor simplify

to compact equations in terms of the red drive cooperativity, C = 4G2
−/(κγm), and the

mechanical bath occupation, nthm. The squeeze factor r follows

e−2r ≈ 1

2

√
1 + 2nthm
C , (5.6)

while the squeezed quadrature occupation is

2〈X̂2
1 〉 ≈

γm
κ

(1 + 2nthm) +

√
1 + 2nthm
C . (5.7)

In terms of experimental measurables, the squeezing can be estimated directly from the

output microwave noise spectrum, SR[ω] =
∫
dteiωt〈d̂†R,out(0)d̂R,out(t)〉. Specifically, the inte-

grated noise power is proportional to the Bolgoliubov mode occupation,

∫
dω

2π
SR[ω] ' 4κG2

4G2 + κ(κ+ γm)
〈β̂†β̂〉. (5.8)
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For the limit of high cooperativity such that nthm/C � 1, this relationship is sufficient for

quadrature detection. In terms of β̂ and β̂†, the quadrature occupation is

〈X̂2
1 〉 =

e−2r

2

(
〈β̂†β̂〉+ 〈β̂β̂†〉+ 〈β̂†β̂†〉+ 〈β̂β̂〉

)
. (5.9)

Asserting the Cauchy-Schwarz inequality, the squeezing occupation obeys a rigorous upper

bound

〈X̂2
1 〉 ≤ e−2r[1 + 2〈β̂†β̂〉]. (5.10)

This bound approaches an equality up to corrections on the order of 1/
√
C.

The above Eqs. (5.8)-(5.10) show that the integrated noise output noise spectrum serves

as a proxy for mechanical squeeze detection. In practice, however, we implement a different

measurement routine for the following reasons. First, we must relax various assumptions in

the above analysis that are not applicable to our measurement system. Most importantly, we

must account for classical cavity noise (nthc > 0) that is pump power dependent and internally

generated within the microwave cavity. The cavity occupation changes the dependence of

Eqs. (5.6)-(5.7) on both optimal cooperativity and optimal pump ratios. Furthermore, the

sideband resolution of our device (ωm
κ
≈ 8) introduces corrections to the microwave spectrum

lineshape and quadrature occupations that, though small, are necessary for accurate squeeze

estimation. Finally, we will show below that, due to pump-dependent cavity and mechanical

heating, our optimal squeezing generates moderate levels of quantum squeezing. At these

levels of squeezing, the rigorous upper bound of Eq. (5.10) overestimates the quadrature

occupations above the zero-point level.

For these reasons, we take a different approach: we will calculate the quadrature oc-

cupations via the scattering matrix techniques outlined in Sec. 1.4. Instead of integrating

over the output spectrum, we instead fit the detected noise spectrum to the output spec-

trum model, extract out the system parameters, then calculate the squeezed and amplified

quadrature occupations as functions on the system parameters. In the following sections, we

first discuss these techniques for perfectly overlapped and centered pumps. Later, we will
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relax these assumptions and include all deleterious effects driven by the electromechanical

interaction: imperfect pump tuning, bad cavity effects from finite sideband resolution, and

sources of calibration error.

5.3 Squeezing models

We will first analyze the squeezing interaction assuming perfectly aligned drive tones and

infinite sideband resolution. Under these assumptions, it is possible to generate relatively

simple analytic models for the microwave spectrum and the quadrature occupations. We

will later relax both of these assumptions and instead develop numerical spectrum models

that will be used for spectrum fitting and quadrature extraction routines.

5.3.1 Ideal pumping with RWA

In this section, we calculate the quadrature occupations assuming ideal pump configuration

and making the rotating wave approximation, and show that the two-tone drive does generate

steady-state mechanical squeezing. To start, we derive all relevant spectrum and occupations

from the scattering framework introduced in Sec. 1.4 and setting δ,∆ = 0. The complex

transmission is given by Eq. (1.104) and follows

S21[ω] =
−√κRκL(γm − 2iω)

4G2 + (κ− 2iω)(γm − 2iω)
. (5.11)

For a given pump configuration with G± independently calibrated from measuring the drive

powers at the detector, the driven response ensures that the transduced sidebands are over-

lapped and centered in the cavity. We also extract κ in-situ (with identical pump configura-

tion) by fitting the measured spectrum to the model.
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The output noise spectrum is given as

SR[ω] =
1

2

∫
dteiωt〈{X̂i(0), X̂i(t)}〉, (5.12)

= 4κR
(4ω2 + γ2

m)κnthc + 4G2
−γmn

th
m + 4G2

+γm(nthm + 1)

|4G2 + (κ+ 2iω)(γm + 2iω)|2 . (5.13)

With all the S21 parameters specified, the only fit parameters in the noise model is the

cavity bath occupation nthc and the mechanical bath flux γmn
th
m. We keep the mechanical

bath contribution specified as a flux opposed to separating into rate γm and occupation

nthm since the flux is the most relevant parameter and we have no sensitivity to γm at these

measurement powers, i.e., γm � γtot, κ.

The mechanical quadrature spectrum is

S̄X̂i [ω] = 4x2
zp

4(G− ∓G+)2κ(nthc + 1
2
) + (κ2 + 4ω2)γm(nthm + 1

2
)

|4G2 + (κ+ 2iω)(γm + 2iω)|2 , (5.14)

with associated quadrature occupations

〈X̂2
i 〉 =

∫ ∞
−∞

dω

2π
S̄X̂i [ω] (5.15)

= x2
zp

4(G− ∓G+)2κ(2nthc + 1) + [4G2 + κ(κ+ γm)]γm(2nthm + 1)

(κ+ γm)(4G2 + κγm)
, (5.16)

where the quadrature designation i = 1, 2 is associated with ±, respectively, leading to

suppression or enhancement of measurement backaction forces proportional to nthc . As pre-

dicted, the electromechanical interaction does produce steady-state mechanical squeezing via

reservoir engineering.

5.3.2 General spectrum model

The above model is sensitive not only to the bath occupations nthc and ṅthm ≡ γmn
th
m, but also

the coupling rates G±, linewidths κ and γm, and detunings δ,∆. Though we do our best to

calibrate these parameters, we must extract all such parameters from signals that come from
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Figure 5.2: General pump configuration. Here, we include deviations from the ideal squeezing pump con-
figuration in the form of detunings ∆ = (ω+ + ω−)/2− ωc associated with how well the drives are centered
around the cavity and δ = (ω+−ω−)/2−ωm associated with how well the motional sidebands are overlapped.

microwave transmission and power detection spectra and hence we must always deal with

numerous sources of measurement and calibration error that can propagate throughout such

measurements. This outlines a general issue with how we make this measurement, there are

eleven total system parameters that can effect the electromechanical squeezing interaction

and we must consider how these parameters influence our results.

For accurate estimation and error analysis, we want a spectrum model that incorporates

all system parameters that affect quadrature estimation, captures relevant system correc-

tions like bad cavity or Kerr effects, and is defined entirely in terms of directly accessible

measurement parameters. Fortuitously, the full scattering framework handles these issues in

a compact fashion. We can define the scattering matrix elements as functions on calibration

parameters and can iteratively expand the matrix to sufficiently large sideband order to

include bad cavity effects or include Kerr cross-terms directly in the scattering matrix.

With arbitrary pump detunings and first-order bad cavity corrections, the analytic forms

of Eqs. (5.13)-(5.16) become unwieldy and unfit for model fitting. After much effort to

develop analytic models, it turns out to be sufficiently fast and much simpler to calculate the

output spectrum via numerical inversion of the scattering matrix at each specified frequency.

5.4 Measurement

5.4.1 Calibration measurements

We begin by performing two measurements that calibrate the pump powers detected at

the output of our measurement chain, P± = gain × ~ω± × κR∆±n±p , in terms of enhanced
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optomechanical coupling rates, G±, as well as the effective intracavity photon levels, ∆±n±p .

Here, ∆± is a correction factor that modifies the cavity transmission off resonance [16] and

has no significance in the following analysis.

With scanning homodyne detection (i.e., via a driven response), we first measure the

mechanical linewidth, γtot = γm + γop, as we increase the power, P−, of a single pump

red-detuned from the cavity center by ωm. Here, γop = 4G2
−/κ is the optically-induced

mechanical damping. For γtot � κ, the mechanical response is a simple Lorentzian dip and

we fit γop vs. P± to obtain a calibration for G2
−. As γop becomes comparable to κ, we fit the

transmission data to a strong coupling model with G+ = 0 and δ = 0.

Next, we place two balanced pumps, detuned from cavity center by ±(ωm + 2π× 500 Hz)

and with powers P±, at sufficiently low powers so as not to add any damping or amplification

of the thermal noise, and we measure the integrated mechanical noise power of up- and

down-converted motional sidebands, P±m , over a range of cryostat temperatures T . Due to

weak temperature and power dependence of κ [17], we monitor the cavity linewidth at each

measurement power or temperature. The results of these calibrations are cast in a linear

form and fit with ordinary least squares to extract the calibration factors a, b− and b+,

(κ
κ̄

)
γopt =

4G2
−
κ̄

= a

(
4

κ̄

)
P−, (5.17)(κ

κ̄

)2 Pm
P±

= b±

(
2

κ̄

)2
kBT

~ωm
, (5.18)

where κ̄ is the cavity linewidth averaged over the respective parameter range. We find

a = (3.25± 0.09)× 1016 rad2 s−2 W−1,

b− = (3.82± 0.14)× 104 rad2 s−2,

b+ = (6.84± 0.22)× 104 rad2 s−2.
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We now are able to formulate the pump-dependent model parameters in terms of P±,

G2
− = a× P−, (5.19)

G2
+ = a

(
b−
b+

)
× P+, (5.20)

∆−n
−
p =

(
a

b−

)
× P−. (5.21)

Eq. (5.20) follows from the balancing condition
(
P−
P+

)
balanced

=
(
b−
b+

)
.

Next, we introduce a second, blue-detuned drive and directly measure the pump powers

P± which we use to extract the enhanced optomechanical coupling rates G± via Eqs. (5.19-

5.21). Using an RWA model akin to Eq. (5.11), we fit the transmission spectrum via nonlinear

least squares estimation and extract the frequency of the microwave resonator ωc, the cavity

linewidth κ, the frequency of the mechanical oscillator ωm, and the pump detunings ∆, δ.

The two pump tones are iteratively aligned to overlap the mechanical sidebands at the center

of the cavity to ensure that δ is close to zero.

At this point, we now have a set of calibration parameters acquired in three methods:

either directly measured (P±), estimated from fits to transmission data (ωc, ωm, κ, ∆, δ), or

extracted from independent calibration measurements (a, b±). Each parameter represents

an underlying probability distribution that captures the precision of each respective calibra-

tion. To simplify the following analysis, we assume the fit parameters are independent and

normally distributed such that each parameter is associated with an underlying probability

density function modeled as a Gaussian distribution with mean and variance given by the

statistical estimators generated via measurement and fitting.

5.4.2 Noise spectrum measurement

Keeping the same two-tone pump configuration from the transmission calibration, we mea-

sure the microwave noise spectrum via linear detection. Calibrating out the gain of the
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Figure 5.3: Squeezing noise spectrum. a. Raw noise spectrum (grey dots) and binned noise data (blue dots)
fit to the squeezing spectrum model (red line). We include a linear noise floor offset (black dotted line) which
we subtract off in later analysis. b. We calculate the data residuals (blue dots) by subtracting off the fit.
We estimate the measurement noise from the sample variance of the residuals over a range far outside the
cavity linewidth (red region).

output amplifier chain, the measured spectrum is given by

S̄out (ω) = S0 (ω) + SR (ω) , (5.22)

where SR (ω) is the noise spectrum of the electro-mechanical system and S0 (ω) is the noise

floor of the system. The noise floor is dominated by the noise figure of the cryogenic HEMT

amplifier in addition to smaller power-dependent offsets due to phase noise from the entire

amplifier chain. We spend an equal time interleaving measurements of the pumped and

unpumped noise spectra over the same bandwidth. We subtract off the unpumped floor,

then account for power-dependent amplifier effects by removing a linear floor offset that

we fit over a span roughly seven times greater than the cavity linewidth. The linear offset

matches independent measurements of the phase noise from our room temperature amplifier

with matching pump configuration.

103



5.5 Bayesian parameter estimation and error analysis

Essential to any claim of sub-zero-point squeezing is the error bar for the reported quadrature

occupation. Here, we consider a systematic approach to incorporate the uncertainty from all

the sources of our measurement, including systematic calibration error, measurement noise,

and the uncertainty from fitting the model to a measured noise spectrum. This problem has

been addressed by Bayesian analysis techniques that explicitly incorporate all known sources

of error. In the following, we largely follow the analysis outlined in Ch. 3 of [91]. Our purpose

for using this analysis is to address the issue of estimating error bars from nonlinear fitting

with a fit model that also has uncertainty.

In what follows, we develop statistical estimators for the quadrature occupations, 〈X2
1,2〉,

from two sets of measurements: the detected noise spectrum and the system calibrations.

Here, system calibration refers to the combination of initial calibrations (a, b−, b+), driven

response data (κ,∆, δ) and power detection (P−, P+). We refer to such parameters as β =

{a, b−, b+, κ,∆, δ, P−, P+}. The only remaining unknowns are the bath contributions, here

denoted as α = {nc, ṅthm}.
To systematically incorporate the uncertainty from our calibrations and spectrum mea-

surements, we consider the Bayesian posterior distribution

p (α, β|D, I) =
1

Z
p (D|α, β, I) p (α, β) , (5.23)

where D is the observed noise data, I is the set of all assumptions required for this analysis,

Z = p (D) is a normalization constant that is not necessary for sampling of the posterior,

p (D|α, β, I) is the likelihood function, and p (α, β) is the prior distribution for α, β.

The prior distribution captures how well we have confined our calibrations in parameter

space. Assuming all system parameters are independent, the prior simplifies to a product of

single-parameter normal distributions, i.e., p (β) is a product of Gaussian distributions with

mean and variance set by the statistical estimators (ᾱi and σαi , respectively) for each system
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calibration.

P (α) =
∏
i

1

σαi
√

2π
exp

[
−(α− ᾱi)2

σ2
αi

]
. (5.24)

For the unknowns, p (α) is the product of uninformed Jeffreys priors [91]; these priors are

uniform in log space to be scale-invariant and are set here to span a decade above and below

initial estimates for nc, ṅ
th
m specified by minimum bound βi,min and maximum bound βi,max:

P (β) =


∏

i
1

log(βi,max/βi,min)
1
βi
, for βi ∈ [βi,min, βi,max],

0, otherwise.
(5.25)

Since we operate in the high cooperativity regime and have no sensitivity to the intrinsic me-

chanical linewidth, we assume that the calibration parameter γm also follows an usninformed

Jeffrey’s prior.

The likelihood captures how well the data matches the noise spectrum model with speci-

fied α, β. We calculate residuals of the detected noise data {Ni} by subtracting off the noise

spectrum model {Si} calculated at frequencies matching the data. Next, we assume the

measurement noise at each measured frequency is independent and Gaussian with identical

variance. The measurement noise σ is directly sampled from noise data over a 150 kHz

window detuned outside cavity center by ±3κ (see Fig. 5.3). Hence, the likelihood is the

product of residual probabilities derived from N(0, σ),

P (D;α, β, I) =
∏
i

1

σ
√

2π
exp

[
−(Ni − Si)2

2σ2

]
. (5.26)

All together, we construct the posterior distribution as

P (α, β;D, I) ∝ p(D;α, β, I)P (α)P (β). (5.27)

Since the posterior distribution is difficult to calculate analytically, we instead model the

posterior via an affine-invariant Markov chain Monte Carlo (MCMC) ensemble sampler [92].

We implement this calculation with emcee, an open-source Python package developed in the
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Figure 5.4: Markov chains generated via emcee. One hundred parallel walkers traverse the multi-dimensional
parameters space over a period of one thousand steps. In steady-state, the walkers generate pseudo-random
chains that accurately sample the Bayesian posterior distribution. As evidenced by the transient relaxation
for many chains, the first five hundred steps (grey region) is discarded to ensure proper burn-in and parameter
estimation is evaluated over the remaining samples.

astronomy community with over three hundred citations since 2012 [93]. With emcee, we

generate a sufficiently large number of of pseudo-random parameter chains (α, β)i sampled

from the posterior distribution. For the calculation, we initialize a hundred walkers and run

for a minimum of a thousand steps. We discard the first half to ensure that the resulting

distributions are steady state (allowing initial transients to relax) but maintain a large enough

sample size to render the Monte Carlo uncertainty negligible. These chains are displayed in

Fig. 5.4 for the pump ratio n+
p /n

−
p = 0.4.

In Fig. 5.5, we display the single parameter and pairwise histograms evaluated over the

collection of MCMC chains. The single parameter histograms represent the marginalized dis-

tributions for each system parameter. Intriguingly, the pairwise distributions clearly display

any correlations between system parameters.

Finally, we calculate expectation values and 1-σ intervals for nc, ṅ
th
m and 〈X2

1,2〉. For nc

and ṅthm, we construct the marginalized distributions from their respective Markov chains

and then tabulate the statistical estimators for mean and variance. For the mechanical
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Figure 5.5: Triangle plot of single and pairwise parameter distributions. The posterior distribution is
projected into pairwise distributions and single parameter histograms. MCMC sampling techniques provide
direct access to visualize all correlations between system parameters. All parameters are normalized by their
respective estimates acquired from calibration measurements or maximum likelihood estimation. Again, the
first five hundred steps are discarded to ensure MCMC burn-in.
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function evaluation over the entire set of MCMC chains for all system parameters. From these chains, we
evaluate the mean (solid red line), 1-σ interval (dotted red lines) defined via the sample variance, as well as
the median (solid black lines) and 95% quantiles (dotted black lines).

quadratures, we calculate expectation values for functions of system parameters, f (α, β),

with function evaluation over the entire MCMC ensemble,

〈f〉 =

∫
f (α, β) p (α, β|D, I) dαdβ, (5.28)

' 1

N

N∑
i=1

f (α, β)i. (5.29)

The mean and standard deviation for 〈X2
1,2〉 are generated via Eq. (5.29) with f (α, β) set

to the mechanical quadrature functions discussed in Sec. 5.3.2. Examples of the quadrature

chains with associated histograms and parameter estimators is presented in Fig. 5.6.
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5.5.1 Comparison to Monte Carlo calibration simulation

As a consistency check, we also perform a more typical data analysis routine that is based

on nonlinear least square fitting. Instead of incorporating the calibration uncertainty in

the form of Bayesian priors, we will instead use Monte Carlo techniques to simulate a large

set of random calibration parameters α sampled from the multivariate normal distribution

described in Eq. (5.24). For each random set of calibration factors, we generate a new

noise spectrum model and then use maximum likelihood estimation to extract the mean and

variance of the fit parameters β. We repeat this process over the entire population of the

simulated calibration sets and, via function evaluation over the entire sample population of

α and β, calculate the mean and variance of that quadrature occupations. At this point,

the quadrature variance is entirely due to the calibration uncertainty. It is not clear how

to incorporate the fit uncertainty since we have no way of tracking correlations between

the calibration uncertainty in α (incorporated here via Monte Carlo simulation) and fit

uncertainty in β (estimated from least squares parameter estimation). Instead, we assume

here that the fit error, σβi , independently propagates into the quadrature occupations via

standard linear error propagation,

σ2
X̂1

= σ2
X̂1

∣∣∣
cal

+
∑
i

(
∂〈X̂2

1 〉
∂βi

)2

σ2
βi
. (5.30)

At optimal squeezing, this Monte Carlo analysis estimates the quadrature occupation

as 〈X̂2
1 〉/x2

zp = 0.80 ± 0.04, consistent with the Bayesian analysis results. The strength of

the Bayesian analysis is that it does not rely on assumptions about correlations between

calibration and fit uncertainty.

5.6 Results

We now present mechanical squeezing results over the full range of pump power ratios used

in the experiment. At each configuration, we adjust the ratio between red- and blue-drive
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Figure 5.7: Squeezing results. a. Example noise spectrum and fits for pump ratios n+
p /n

−
p = 0.3, 0.4, 0.5,

0.6 and 0.65 (ordered from blue to red). b. Bath occupation factors nthc (yellow) and ṅthm (blue). We observe
ratio dependent heating in both the cavity and mechanical bath contributions. c. Quadrature estimation
for 〈X̂2

1 〉 (red) and 〈X̂2
2 〉 (blue). d. We observe quantum squeezing 〈X̂2

1 〉 < x2
zp at pump ratios between 0.3

to 0.55. At the lowest point, we cool a single quadrature of the mechanics to 0.80±0.03 times the zero-point
level.

powers while keeping the total pump power fixed at n−p + n+
p = 1.76 × 107 and repeat the

calibration and measurement routines. Typical noise spectra for a selection of power ratios

is presented in Fig. 5.7(a). We then extract the bath occupations {nthc , ṅthm} and quadrature

occupations 〈X̂2
1,2〉 as shown in Fig. 5.7(b)-(d). Though we observe ratio-dependent heating

for both the mechanical and cavity baths, we achieve mechanical squeezing with quadrature

occupation below the zero-point level for a range of pump configurations.

In Fig. 5.7(c) and (d), we observe optimal squeezing at an intermediate power ratio

consistent with the trends of [83]. We can understand this behavior as follows. As the pump

ratio approaches zero, the pump configuration corresponds to sideband cooling [45] such that

the quadrature occupation is asymptotically limited to the zero-point level. At the other

end, as the pump ratio approaches unity, the pump configuration becomes BAE detection
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which again ensures single quadrature occupation at or above the zero-point level.

The trend of the quadrature occupation of Fig. 5.7(c) – the gradual decrease in occupation

as the pump ratio increases from zero followed by an abrupt increase for ratios approaching

unity – is similar in appearance to the trend of Eqs. 5.16 derived with zero bath heating.

The main affects of the microwave and mechanical bath heating is to reduce the squeezing

efficiency, modify the optimal cooperativity, and skew the squeezing extrema to lower ratios.

All of these effects will crucially depend on how the bath heating scales with the drive

powers. Keeping the total power fixed, we observe increased bath heating as the red and

blue powers ratio tends to unity (see Fig. 5.7(b)). The source of this heating is not entirely

clear however we believe it is consistent with a nonlinear dielectric composed of two-level

fluctuators [17,25,94,95].

In addition to the issue of bath heating, both the mechanics and cavity also exhibit Kerr

nonlinearities [15, 17] leading to noise squeezing and quadrature-dependent amplification

at sufficiently large drive powers. These effects introduce off-axis correlations between the

mechanical (microwave) quadratures that can potentially alter our spectral analysis. In our

current measurements, we rule out the influence of the Kerr effects in in the following manner.

For the mechanics, we directly observe any quadrature-dependent linewidth narrowing and

broadening, a feature that is directly related to parametric squeezing [77], by performing

single quadrature BAE detection over the full quadrature phase space. At the drive powers

used in our work, we observe no significant mechanical linewidth modulation. For the cavity,

we extract the Kerr factor by directly measuring the four-wave mixing at the relevant pump

powers. We find that the effect is not relevant in our parameter regime.

5.7 Conclusion

In conclusion, we have generated a non-classical state of a macroscopic mechanical res-

onator [63] and have extracted a single quadrature variance as small as 0.80 times the zero-

point level. Most significantly, our squeezing is limited due to power-dependent heating of

the mechanical and microwave baths. If this heating behavior is indeed associated with
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a nonlinear dielectric, then we can imagine a few device modifications that could poten-

tially mitigate these effects. Increasing the bare optomechanical coupling would allow us to

reach sufficiently large cooperativity at lower drive powers. Alternatively, we could work to

suppress the influence of the intrinsic bath by increasing the external coupling to the mi-

crowave cavity and thereby dilute the contribution of the internal loss, though it is difficult

to understand this behavior without a full microscopic model for TLS-induced bath heating.

Another possibility would be to increase the sideband resolution of our device. Larger pump

detunings could sample a higher frequency range of the 1/f phase noise envelope of the TLS

dielectric noise [96], assuming our mechanical frequency is well below the white noise cut-off

frequency of the dielectric noise spectrum.

In terms of continued work in this area, the next logical step is to verify mechanical

squeezing via quadrature-sensitive mechanical detection, i.e., QND quadrature detection via

BAE. We have already implemented this in our current device by introducing two additional

BAE tones sufficiently detuned from the squeezing pumps [63]. However, we again are limited

by bath heating issues that, with the introduction of BAE tones, degrade the amount of

motional squeezing to above the quantum level. By shifting the BAE tones off of cavity

center on the order of the cavity linewidth, we necessarily filter out our mechanical signals

which significantly reduce the signal to noise ratio of the mechanical signals. Even at the

lowest available BAE pump powers, we observe elevated cavity and mechanical bath heating

that limits the squeezed mechanical quadrature occupation to 1.09 times the zero-point level.

There are numerous ways to overcome this issue of limited BAE sensitivity. One such

technique, implemented elsewhere [90], is to engineer additional cavity modes that are all

coupled to the mechanics via the standard optomechanical interaction. With additional

cavity modes, the squeezing and BAE drive tones can address separate cavity modes and

thereby eliminate any direct correlations between the drives. One can now place all me-

chanical signals tightly in the center of their respective cavity lineshapes and resolved weak

BAE detection becomes feasible. Alternatively, one could also engineer an improved device

to reach the quantum squeezing regime at lower cooperativities. By squeezing in the weak

coupling regime, one can fit all necessary signals tightly within the cavity linewidth. Assum-
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ing the BAE drive powers can be decreased to the extent that bath heating is insignificant,

it is now possible to reach mechanical squeezing and BAE detection at the quantum level.

This last topic is the focus of current work.
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