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Abstract

Jet noise reduction is an important goal within both commercial and military aviation. Although
large-scale numerical simulations are now able to simultaneously compute turbulent jets and their
radiated sound, lost-cost, physically-motivated models are needed to guide noise-reduction efforts.
A vparticularly promising modeling approach centers around certain large-scale coherent structures,
called wavepackets, that are observed in jets and their radiated sound. The typical approach to mod-
eling wavepackets is to approximate them as linear modal solutions of the Euler or Navier-Stokes
equations linearized about the long-time mean of the turbulent flow field. The near-field wavepack-
ets obtained from these models show compelling agreement with those educed from experimental
and simulation data for both subsonic and supersonic jets, but the acoustic radiation is severely
under-predicted in the subsonic case. This thesis contributes to two aspects of these models. First,
two new solution methods are developed that can be used to efficiently compute wavepackets and
their acoustic radiation, reducing the computational cost of the model by more than an order of
magnitude. The new techniques are spatial integration methods and constitute a well-posed, con-
vergent alternative to the frequently used parabolized stability equations. Using concepts related to
well-posed boundary conditions, the methods are formulated for general hyperbolic equations and
thus have potential applications in many fields of physics and engineering. Second, the nonlinear
and stochastic forcing of wavepackets is investigated with the goal of identifying and characterizing
the missing dynamics responsible for the under-prediction of acoustic radiation by linear wavepacket
models for subsonic jets. Specifically, we use ensembles of large-eddy-simulation flow and force data
along with two data decomposition techniques to educe the actual nonlinear forcing experienced

by wavepackets in a Mach 0.9 turbulent jet. Modes with high energy are extracted using proper



vii
orthogonal decomposition, while high gain modes are identified using a novel technique called em-
pirical resolvent-mode decomposition. In contrast to the flow and acoustic fields, the forcing field is
characterized by a lack of energetic coherent structures. Furthermore, the structures that do exist
are largely uncorrelated with the acoustic field. Instead, the forces that most efficiently excite an
acoustic response appear to take the form of random turbulent fluctuations, implying that direct
feedback from nonlinear interactions amongst wavepackets is not an essential noise source mecha-
nism. This suggests that the essential ingredients of sound generation in high Reynolds number
jets are contained within the linearized Navier-Stokes operator rather than in the nonlinear forcing

terms, a conclusion that has important implications for jet noise modeling.
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Chapter 1

Introduction

1.1 Motivation

Worldwide dependence on air-travel is at an all-time high and continues to increase, with recent
growth in total flights around five percent annually (International Air Transport Association , 2014).
At the same time, boosted by greater public awareness of the adverse health effects of excess noise
pollution, airports and airlines are being required to progressively reduce their noise footprints.

Regulation of commercial aircraft noise began shortly after the introduction of jet-powered air-
planes. In the United States, the Aircraft Noise Abatement Act of 1968 required the Federal Avia-
tion Administration (FAA) to develop and enforce safe standards for aircraft noise (Bearden, 2006).
That same year, the International Civil Aviation Organization (ICAQO) instigated the establishment
of international specifications to control aircraft noise, which were eventually adopted in 1971 (The
Convention on International Civil Aviation, 2006). These standards, which were also adopted by
the FAA, became more restrictive in 1977 and again in 2006. Recently, the ICAO approved even
more stringent regulations that will be enforced beginning in 2017.

These increasingly demanding requirements have been achieved primarily by a steady increase
in the bypass ratio of commercial turbofan jet engines. A higher bypass ratio, defined as the ratio
between the mass that flows through an engine’s fan and the mass that flows through its core, results
in a lower nozzle exit velocity. Since aerodynamic noise is a strong function of jet exit velocity, a

higher bypass ratio yields a quieter jet. Modern high-bypass-ratio turbofan engines are around 20
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dB quieter than their low-bypass-ratio predecessors. Unfortunately, the potential for further noise
reduction by bypass ratio increase is limited. Increasing an engine’s bypass ratio necessarily increases
the engine’s size to maintain thrust. Modern engines have reached the point that any further increase
in size will soon require complete redesign of the aircraft. Therefore, further improvements will
require new approaches to noise reduction.

While great strides have been made toward quieting commercial aircraft, the noise levels pro-
duced by military tactical aircraft have not decreased and have even increased. Noise produced by
military aircraft is unregulated and is often disruptive in communities adjacent to military bases
and dangerous to airstrip and flight deck personnel. For example, the noise levels on Navy aircraft
carriers, which can reach over 150 dB, far exceed those which can be safely attenuated by state-of-
the-art hearing protection. This contributes to the approximately $1 billion per year that the U.S.
Department of Veteran Affairs spends on hearing loss cases (Naval Research Advisory Committee
2009). For tactical aircraft, the noise produced by the jet exhaust dominates all other sources of
noise. However, because of high performance requirements, using high-bypass-ratio engines to reduce
noise is not a viable option for these aircraft.

The search for innovative noise reduction technologies in both commercial and military aviation
will require accurate, low-cost models that can be used to guide and test potential strategies and
more generally attain a better understanding of flow-generated noise. This thesis is concerned with

the development of such models.

1.2 Jet noise models

1.2.1 The Navier-Stokes equations

The most fundamental model for a jet and its radiated sound is the compressible Navier-Stokes
equations. Throughout this thesis, we write these equations in cylindrical coordinates and in terms

of specific volume v, pressure p, and cylindrical velocity components u;, w,, ug:
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All variables have been appropriately non-dimensionalized by an ambient sound speed ¢, density
Poo, and the nozzle diameter D. The fluid is approximated as a perfect gas with specific heat
ratio v, constant Reynolds number Re = pooCocD/pioo, and Prandtl number Pr = Cpuoo/k. Here,
loo is the ambient dynamic viscosity, C), is the specific heat at constant pressure, and k is the
thermal conductivity of the fluid. We have neglected viscous energy dissipation and assumed that
the gradient of the dilatation is small. The ideal gas law under this non-dimensionalization is

-1
p:LT/V,
Y
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where T is the thermodynamic temperature. When augmented with appropriate boundary and

initial conditions, equation (1.1) governs both the hydrodynamics and acoustics of the jet.

1.2.2 Large-scale simulations

Recent advances in computational methods and the increasing availability of computing power have
made possible numerical simulations of equation (1.1) capable of simultaneously predicting the near-
field hydrodynamics of the jet and its radiated sound.

At low Reynolds numbers, direct numerical simulation (DNS) is feasible (Freund 2001). At higher
Reynolds numbers, which are more practically relevant, the vast separation between the largest and
smallest length scales (for example, the potential core length and the Kolmogorov length scale, respec-
tively) makes direct numerical simulation impossible. The natural fall-back is to model the smallest
scales while explicitly computing the large scales via large-eddy-simulation (LES) (Bodony & Lele
2008). Only in the last few years has LES reached the resolution and sophistication required to
properly represent the thin, turbulent boundary layers that exist in the near-nozzle region of real
jets (Bres et al. 2015).

Despite the increasing feasibility and accuracy of large-scale jet-noise simulations, they have
at least two limitations as models. First, by any practical measure, these simulations are still
computationally expensive. The search for innovative noise reduction techniques, especially those
based on formal optimization frameworks, will likely necessitate an iterative approach requiring many
simulations. At present, this would be a monumental undertaking using DNS or LES. Second, on
their own, these simulations provide no insight into the physical mechanisms responsible for sound
production, nor guidance for leveraging them to reduce noise — the jet turbulence and acoustics come
as one intertwined bundle.

These two limitations of direct jet-noise simulation highlight the critical need for reduced-order
models that can be rapidly computed and used to uncover the physics that are acoustically relevant.
Such models do not supersede large-scale simulations; they critically rely on them for inspiration

and validation (see, for example, Chapter 3 of this thesis).



1.2.3 Acoustic analogy

On the opposite end of the spectrum from large-scale numerical simulations, Lighthill’s acoustic
analogy (Lighthill 1952, 1954) reduces the entire jet noise problem to a single inhomogeneous wave

equation for the density p:

2 2.
(%_cgow) = 6T”_. (1.6)

This is an exact rearrangement of the Navier-Stokes equations, provided that the source term
T;; is known exactly. The solution of equation (1.6) can be obtained in the far-field using a Green’s
function. A predictive model is obtained by approximating the source terms. If simulation data is
available for a given jet, one can compute the source, but despite over sixty years of concentrated
effort, any general approach for accurately prescribing the Lighthill source terms has been elusive.

Source terms that can be more easily modeled have been sought by generalizing Lighthill’s theory
by subsequently moving more and more terms from the source term to the left-hand-side propagator
(Phillips 1960, Lilley 1974). The culmination of this trend was realized by Goldstein’s generalized
acoustic analogy (Goldstein 2003), in which the complete linearized Navier-Stokes operator appears
on the left-hand-side, leaving only nonlinear interactions within the source term.

These nonlinear interactions play a central role in several existing theories of jet noise. For
example, vortex-pairing (Laufer 1974, Williams & Kempton 1978, Kibens 1980), nonlinear vortex-
ring breakdown (Hussain 1983), and nonlinear saturation of instability waves (Sandham et al. 2006,
Sandham & Salgado 2008, Suponitsky et al. 2010) have all been proposed as key sources of jet noise.
Within any acoustic analogy-based approach, these processes must be accurately represented by the
source term. Current strategies for approximating these source terms require high-fidelity flow data
as an input, limiting the utility of these theories as jet-noise models.

The modeling approach we develop in section 1.2.4.2 bears some resemblance to Goldstein’s
analogy. However, our philosophical outlook is quite different, and in fact essentially opposite, from

Goldstein’s (or that underpinning any acoustic analogy) — we regard the linear operator, rather than
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the source, to be of primary importance. This will become clear in Chapter 3.

1.2.4 Wavepacket models

An alternative, physically-motivated reduced-order approach centers around modeling certain large-

scale coherent structures, called wavepackets, that are observed in jets and their radiated sound.

1.2.4.1 Wavepackets in jets

Large-scale structures were first observed in turbulent jets by Crow & Champagne (1971). They
postulated that the eddies clearly seen at low Reynolds numbers also exist in high Reynolds number
turbulence and amplified these latent structures by periodically forcing the jet using a loudspeaker.
In unforced jets, these structures can be detected using multipoint velocity and pressure measure-
ments, which show that they are coherent over length and time scales far exceeding the integral
scales of turbulence (Fuchs 1972), and indeed take the form of advecting wavepackets with slowly-
varying wavelength and phase-speed. For example, Figure 1.1 shows the cross-spectral density of
pressure measurements taken along a cylindrical microphone array just outside the jet (with respect
to the microphone at x = 3) for a Mach 0.9 jet at two different frequencies (Reba et al. 2010). The
data exhibit a clear wavepacket structure, as demonstrated by the close fit achieved using a simple
Gaussian wavepacket model.

In turbulent jets, these structures make up a modest portion of the total flow energy
(Michalke & Fuchs 1975, Cavalieri et al. 2013). However, their spatiotemporal coherence makes
them acoustically efficient compared to the more energetic incoherent turbulent fluctuations
(Jordan & Colonius 2013). In particular, wavepackets are strongly correlated with far-field acoustic
radiation, particularly at low angles to the jet axis, where sound is most intense (Lee & Ribner
1972, Hileman et al. 2005, Tam et al. 2008). The spatial growth and decay of wavepackets
Crighton & Huerre (1990), and especially their breakdown near the end of the potential core
(Morrison & McLaughlin 1979, Hussain 1986, Hileman et al. 2005), have been shown to be espe-

cially relevant as sound source mechanisms.
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Figure 1.1: Cross-spectral density of pressure measurements (®) taken along a cylindrical micro-
phone array just outside the jet, with respect to the microphone at x = 3, for a Mach 0.9 jet at
Strouhal number (a) 0.25 and (b) 0.40 (Reba et al. 2010). A simple Gaussian wavepacket model
(= — —) can be tuned to closely match the data.

1.2.4.2 Wavepackets as modal solutions

These observations suggest that a reduced-order jet noise model could be constructed by modeling
wavepackets. The typical approach to modeling wavepackets is to approximate them as linear modal
solutions of the Euler or Navier-Stokes equations linearized about the long-time mean of the turbulent
flow field. This approach dates to the 1970s, when it was found that the wavelength and phase-speed
of experimentally-measured wavepackets could be explained by linear stability theory (Michalke 1971,
Mattingly & Chang 1974, Crighton & Gaster 1976, Tam & Burton 1984). Further justification for
this approach was provided by Suzuki & Colonius (2006), who showed that wavepackets in the near-
acoustic field can be quantitatively identified as instability waves.

The mathematical formulation of this approach begins with the full compressible Navier-Stokes

equations, which can be written conceptually as

F=F. a.7)

where ¢ = [v, um,ur,ug,p]T and the nonlinear operator F is implicitly defined by equation (1.1).
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Substituting the standard Reynolds decomposition

q(z,r,0,t) = q(z,7) + ¢ (x,7,0,1) (1.8)

into equation (1.7) and isolating the terms that are linear in ¢’ yields an equation of the form

(Z_i/ _A(Cj) q’:f(:v,r,H,t), (19)
where
A =5 @ (1.10)

and f contains the remaining nonlinear terms.
Sine our interest is in round, statistically stationary jets, it suffices to decompose ¢’ and f into

azimuthal and temporal Fourier modes:

¢ (2,7,0,6) = > Gum (w,7) M0, (1.11a)

F@,r0,8) =Y fum (x,r)eme ™", (1.11b)

Substituting these decompositions into equation (1.10) leads to an equation of the form
Ew,quw,m = fw,m (112)

for each (w,m) mode pair, where L, ., = —iwl — A,,, and A,, is the operator A with % replaced

by im. Note that no approximation has been made to this point; equation (1.12) exactly defines the

jet if the forcing term fu,’m, as well as the incoming fluctuations at the jet inlet, is exactly known.
A predictive model is obtained by replacing the exact forcing term and boundary conditions, as

well as in general the baseflow g, with user-specified approximations thereof. This is represented



schematically in Figure 1.2.

~BC
qw,m

Figure 1.2: Schematic of the frequency domain wavepacket model given by equation (1.12). The
model takes as inputs a baseflow ¢, an inlet boundary condition GZ¢ , and a volumetric forcing term

w,m?

fuw,m, and returns g, m.

1.2.4.3 Solution methods

This thesis will focus on two aspects of the wavepacket modeling approach outlined above. First,
irrespective of the various modeling choices, equation (1.12) must ultimately be solved for g, ,. This
is an elliptic boundary-value problem. Numerical discretization in x and r leads to a large matrix

equation of the form

Lw,mqw,m = fw,ma (113)

where the matrix L, ,, is the discrete representation of the operator L, ., the vector q, m, is the
numerical approximation of g, ., and the vector f, ,, contains the discrete representation of fw,m
as well as terms needed to enforce the boundary condition (jffn. The size of Ly, ,, is proportional
to the total number of spatial grid points (or an equivalent measure in non-collocation methods),

which is typically O (105). Even though this matrix is sparse when sparse discretization methods
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are used, solving equation (1.13), usually via LU decomposition, is computationally expensive in
terms of CPU time, and even more so in terms of memory usage (see section 2.2.7.3 for an example).

An alternative approach is to revert to the time domain and time-step the equations, i.e., an
azimuthally transformed version of equation (1.9), using an explicit time integrator, until the solution
becomes statistically stationary. This avoids the need to solve a large matrix equation, but the
number of time steps required to reach a stationary solution is extremely large because the linearized
flow equations are notoriously stiff. See section 2.2.5 for more discussion on the computational scaling
of these methods.

Because of the substantial computational cost of these direct solution methods, a number of alter-
native approaches have been employed to obtain low-cost, approximate solutions of equation (1.12)
by leveraging the slow axial variation of the mean jet. Michalke (1971) and Mattingly & Chang
(1974) applied classical linear stability theory to experimentally measured velocity profiles to com-
pute local eigenvalues and found good agreement with experimental growth rate and wavenumber
estimates. These methods also provided early insight into the key role of the Kelvin-Helmholtz
instability and its sensitivity to various flow parameters. However, the local nature of such methods
limits their ability to accurately capture nonparallel effects and the downstream growth and decay
of the wavepackets, which are essential to sound production.

To address this limitation, a variety of weakly-nonparallel methods were developed based on the
method of multiple scales (Crighton & Gaster 1976, Tam & Morris 1980) and matched asymptotic
expansion (Tam & Burton 1984). These methods partially account for the slow divergence of the
jet mean flow and deliver reasonable approximations of the wavepackets, especially in the near-field.

A simpler, more robust approach for incorporating slow mean flow divergence is an ad hoc
generalization of linear stability theory called the parabolized stability equations (Herbert 1997).
The efficiency of the method is achieved by using a spatial marching technique in the streamwise
direction. Initial conditions are specified at the jet inlet and propagated downstream by integration
of the equations.

The parabolized stability equations produce quantitatively accurate approximations of the
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near-field wavepackets for both supersonic (Colonius et al. 2010, Sinha et al. 2014) and subsonic
(Gudmundsson & Colonius 2011) turbulent jets. For supersonic jets, the far-field noise is also pre-
dicted with reasonable accuracy (Rodriguez et al. 2013, Sinha et al. 2014). On the other hand, the
parabolized stability equations severely under-predict far-field noise for subsonic jets compared to
direct solution methods (Cheung & Lele 2007).

In the first part of this thesis, we will develop alternative approximate solution methods that are
inspired by the parabolized stability equations, but are able to properly capture acoustic radiation

and other multi-modal effects.

1.2.4.4 Nonlinear volumetric forcing

Second, this thesis will investigate the role and form of the nonlinear volumetric forcing term fwym
on the wavepacket dynamics. In the majority of previous wavepacket models, this term is entirely
neglected and wavepackets are excited exclusively by the boundary conditions at the nozzle inlet
(Mohseni et al. 2002, Gudmundsson & Colonius 2011, Baqui et al. 2013, Sinha et al. 2014). The
near-field wavepackets obtained from these homogeneous models show compelling agreement with
those educed from experimental and simulation data for both subsonic and supersonic jets. For
supersonic jets, these solutions also contain, with reasonable accuracy, the corresponding far-field
acoustic radiation (Sinha et al. 2014). On the other hand, linear modal solutions for subsonic jets
have been shown to under-predict far-field acoustic radiation by as much as 40 dB despite the close
match in the near-field wavepacket (Baqui et al. 2013, Jordan et al. 2014).

The source of the discrepancy has been hypothesized to be ‘jitter’ of the wavepackets caused by
one of several mechanisms that can be associated with nonlinear volumetric forcing of the wavepack-
ets. The idea is that while the homogeneous linear models can predict reasonably the typical near-
field wavepacket, small instantaneous modifications to these wavepackets (jitter) caused by nonlinear
forcing can amplify their radiative efficiency. We will use LES data along with mode decomposition

techniques to educe and analyze the actual forces experienced by wavepackets in a Mach 0.9 jet.
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1.3 Contributions and outline

This thesis makes a number of specific contributions to the two aspects of the general wavepacket
modeling approach described in the previous section. The summary of these contributions given
here also serves as an outline for the remainder of the thesis.

Chapter 2 focuses on spatial integration methods that can be used to obtain approximate solu-
tions of equation (1.12). In section 2.1, we analyze the parabolized stability equations in order to
reveal the reason for their inability to capture acoustic radiation in subsonic jets. Specifically, we find
that this is caused by the regularization that is required to resolve the well-known ill-posedness of the
method. The results of this analysis can be used to qualitatively and quantitatively understand how
any quasi-local instability mode of the linear flow equations is effected by the PSE parabolization.

In section 2.2, we introduce a new spatial integration method that can be used to efficiently
model wavepackets in jets. Unlike PSE, the new method is well-posed and can capture both near-
field wavepackets and their acoustic radiation. The method, which is inspired by outflow boundary
conditions, is formulated for general hyperbolic equations and thus has potential applications in
many fields of physics and engineering.

In section 2.3, a second well-posed spatial integration method is formulated that resolves two
limitations of the first method. Of critical importance, the second method can accommodate in-
homogeneous volumetric forcing terms. The foundation of the method is a particular projection
operator that distinguishes between upstream and downstream waves. Again, it is formulated for a
general hyperbolic system.

Chapter 3 investigates the role of nonlinear volumetric forcing on the dynamic and acoustic of
wavepackets using data from a Mach 0.9 jet. To aid in the analysis, we formulate a novel data
decomposition technique, called empirical resolvent-mode decomposition, that identifies modes that
maximize the gain between input and output data sets. Using this method along with proper
orthogonal decomposition, we find that, unlike the flow and acoustic fields, the forcing field lacks
energetic coherent structures. The structures that do exist are inefficient sound sources. Instead,

the forces that are most efficient at exciting loud wavepackets seem to take the form of random



13

turbulent fluctuations. This suggests that linear models that capture both the coherent flow and
acoustic fields can be constructed if appropriate parameterizations of the turbulent forces can be
found.

Finally, Chapter 4 summarizes the thesis and discusses some further extensions of the research.
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Chapter 2

Spatial Integration Methods

This chapter focuses on spatial integration methods that can be used to obtain approximate solutions
of equation (1.12). A spatial integration method is a solution technique in which perturbations are
specified at some spatial location and propagated by spatially integrating an appropriate evolution
equation in the frequency domain. Naturally, these methods can only capture waves that propagate
in the direction of integration. In fact, as we’ll discuss in detail throughout this chapter, waves
that propagate in the opposite direction must be properly eliminated to achieve stability. For
wavepacket-based jet noise models, computing only the downstream propagating waves is reasonable
because both the dominant acoustic waves and the wavepackets that excite them are downstream
propagating.

For wave propagation problems, spatial integration methods are often referred to as one-way
equations. One-way approximations of various forms of the wave equations are routinely used in
diverse fields, for example, geophysical migration (Claerbout 1976, 1985) and underwater acoustics
(Collins 1989, Jensen et al. 2001). When transformed back to the time domain, they can also be
used as approximate nonreflecting boundary conditions (Engquist & Majda 1977, Givoli 2004).

A number of spatial integration methods have been developed for solving the Euler and Navier-
Stokes equations. One class of methods, collectively known as parabolized or reduced Navier-Stokes
equations, relies on special treatment of the streamwise pressure gradient to obtain an equation
that can be stably spatially integrated. A number of variations exist in which this term is treated

differently, ranging from neglecting it partially (Korte 1991) or entirely (Rubin & Tannehill 1992)
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to prescribing it based on experimental data (Rubin & Tannehill 1992) or empirical approximations.
Classical boundary layer equations fall into this category.

As discussed in the introduction, the parabolized stability equations can be used to spatially
integrate the linearized Euler or Navier-Stokes equations. We will introduce and analyze this method,
with special focus on the reasons behind its inability to capture acoustic radiation, in section 2.1.

In sections 2.2 and 2.3, we introduce two novel spatial integration methods. Unlike the parab-
olized stability equations, these methods rigorously eliminate upstream propagating waves and are
able to properly capture downstream propagating acoustic radiation. They are formulated for general
hyperbolic equations and thus have potential applications in many fields of physics and engineer-
ing. In particular, we show that they offer a systematic, convergent alternative to the parabolized

stability equations for wavepacket modeling.

2.1 Parabolized stability equations

The parabolized stability equations (PSE) have been widely used to compute wavepackets in
mixing-layers (Day et al. 2001, Cheung & Lele 2009) and jets (Gudmundsson & Colonius 2011,
Cavalieri et al. 2013, Sinha et al. 2014). As discussed in the introduction, these models provide
rapid approximations of the near-field wavepackets, but for subsonic jets in particular, are unable
to capture the associated acoustic radiation. To be clear, the comparison here is between the PSE
solutions and direct solutions of equation (1.12). Whether the model predicts the actual sound levels
observed in experiments or large-scale simulations depends critically on the model inputs regardless
of the solution method (the role of one of these inputs, nonlinear volumetric forcing, is addressed in
Chapter 3).

In the following subsections, we briefly review and summarize the PSE equations, their well-
known ill-posedness, and the most common regularization techniques that are used to stabilize
the method. Then, we give a novel presentation and analysis of the effect of these regularization

techniques on acoustic waves, and more generally on any quasi-local mode of the flow equations.
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2.1.1 A brief introduction to PSE

The fundamental assumption of the PSE method is that the axial behavior of the solution g, ., can
be decomposed into a rapidly-varying wave-like component and a slowly-varying modulation of this

wave. This is embodied by the PSE ansatz:

Qo (2,7) = G (,7) €' 2o (@) (2.1)

This ansatz is similar to that of classical linear stability theory, except that here both the shape
function g, ., and wavenumber agym are allowed to vary in x. It also bears resemblance to WKB and
multiple-scale expansions of ¢, ., but PSE adopts a unique approach for computing the wavenumber
and shape-function. There are two parts to this solution strategy. First, an additional constraint is
imposed to eliminate the ambiguity associated with permitting = variation in both the wavenumber
and shape-function. The substantive goal of the constraint is to force the exponential term to capture
as much of the streamwise variation as possible, thus rendering the shapefunction slowly-varying.

such that the logarithmic streamwise derivative of g, m

The most common choice is to set a2

matches the logarithmic streamwise derivative that would be obtained by classical linear stability

theory, which leads to the constraint

0o _ —z'fT ||qw,m| 2% (lnqw,m) dr

— 2.2
i T i mlPdr 2.2)

Finally, the PSE governing equations can be obtained by substituting equation (2.1) into equa-
tion (1.12) and neglecting axial second derivatives. This equation is then spatially integrated in x,

while also iteratively enforcing equation (2.2), to yield ¢, » and agﬁm.

2.1.2 Ill-posedness and instability

It was noticed soon after the introduction of PSE that its spatial march is unstable if an explicit

integrator, or an implicit integrator with a sufficiently small axial step-size, is used (Chang et al.
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1991). This instability is a consequence of the fact that PSE is ill-posed as a spatial initial value
problem due to the existence of upstream propagating modes within the PSE operator (Li & Malik
1996, 1997). In this section, we will illustrate this ill-posedness and summarize the most common
regularization techniques used to stabilize the integration.

To introduce these issues, it is sufficient to use the Euler equations, which are the inviscid limit
of equation (1.12), with zero forcing. Solving for the axial derivative term results in an equation of
the form

e,

e My mbw,m- (2.3)

The operator M, ,,, governs the spatial evolution of G, . We will drop the (w,m) subscripts
from here on out for notational simplicity. The essential features underpinning the ill-posedness of
solving this equation, under the PSE ansatz, as a spatial initial-value-problem can be demonstrated
by examining the eigenvalues of M for a spatially uniform baseflow ¢ in two-dimensional Cartesian

coordinates. These eigenvalues are

(2.4a)

—M, + u(z)

.4 .
=ik
iat(z) =1 S TER

(2.4Db)
where M, = @ /Co0 is the Mach number (which we assume for now to be subsonic), k = w/éx is the

reduced frequency, ¢ is the sound speed of the baseflow, n is the transverse Fourier wavenumber,

z =n/k is a scaled transverse wavenumber, and the function p(z) is given by

1(z) = VI — (1 - M2)22. (2.5)

The first eigenvalue, ia®, is a double root and describes the evolution of entropy and vorticity.
These modes convect downstream with group velocity @,. The eigenvalues ia™ represent acoustic

branches of the spectrum, consisting of acoustic waves propagating in all directions as well as evanes-
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cent waves which decay exponentially in y. It can be easily verified (Hagstrom et al. 2007) that for
all z, ia® have positive and negative group velocities, respectively. These eigenvalues are shown
graphically in Figure 2.1. The parts of the acoustic branches that lie along the stability boundary
are the propagating acoustic waves, and the vertical parts are the evanescent modes. Although the
preceding analysis is strictly valid only for a uniform baseflow, inhomogeneous flows like jets and

mixing layers contain modes with the same qualitative properties as these uniform flow modes.

Downstream
acoustic branch

e

Stable

Convective
mode

¥

=
E —_—

Unstable

Upstream
acoustic branch

Re[a]

Figure 2.1: Spatial spectrum of the uniform flow Euler equations. The equations support downstream
convective modes and downstream and upstream acoustic branches. The upstream acoustic branch
makes spatial integration of the equations ill-posed.

Overall, the linearized Euler equations support three downstream propagating modes (double
root of ¢ and ia™) and one upstream mode (™). This result is reflective of the inherent boundary
value nature of the subsonic Euler equations. For well-posedness, the downstream modes should be

specified at the domain inlet and the upstream mode should be specified at the domain outlet.

If instead the problem is solved as an initial value problem in space — by specifying all modes at
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the inlet and marching the solution downstream — the upstream acoustic mode will cause instability
in the march. Functionally, this instability occurs because i~ takes on complex values with negative
imaginary part (see Figure 2.1), causing exponential growth of the mode as it is integrated in the
positive z-direction. Applying the PSE ansatz does not change this; it results in a modified equation
04 ~
—~ = M3, 2.6
Ox 4 (2.6)
where M = M — il (assuming a locally parallel flow). Therefore, the PSE ansatz simply shifts

the eigenvalues of M by a constant factor equal to the PSE wavenumber.

2.1.3 Regularization

Several different regularization techniques have been proposed to stabilize PSE. The standard ap-
proach numerically damps the unstable upstream acoustic waves by using implicit Euler integration
with a restriction on the minimum step size. This is illustrated in Figure 2.2. The gray region in
each plot is the stability region of the implicit Euler integration, while the inner circle is the unstable
region. If a sufficiently large step-size is used, the upstream acoustic branch falls entirely inside the
region of stability, as shown in Figure 2.2(b). Therefore, the PSE equations can be stably integrated.
However, if the step-size is made to be too small, part of the upstream branch enters the unstable
region, as shown in Figure 2.2(c), and the integration becomes unstable once more. Therefore, there

exists a minimum stable step-size. Using the uniform eigenvalues, the condition for stability is

1
Az > Az = 2.7
' " Re [a®] + whd; 0
1— M2
Setting M, = 0 recovers the more commonly quoted incompressible step-size restriction Az >
1/ Re[a®].

Although this regularization technique successfully stabilizes the march, it has some serious

drawbacks. For one, from Figure 2.2(d) we see that the propagative downstream acoustic modes,
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Figure 2.2: Damping of the uniform Euler equations by the implicit Euler PSE regularization. The
shaded regions shows the stability region of the implicit Euler integrator. The convective mode
(O) has been given a negative imaginary part to represent a convective instability. (a) The PSE
wavenumber o has the effect of shifting the spectrum so that the convective mode sits at the origin.
(b) Using a sufficiently large step-size numerically stabilizes the upstream acoustic branch ( ).
(c) If the step-size is reduced too much, the upstream acoustic branch again destabilizes the march.
(d) Therefore, there exists a minimum step-size restriction for stability. Notice that at this step-size,
the propagative part of the downstream acoustic branch ( ), which should be neutrally stable,
is damped.

which should be neutral, are numerically damped. This explains, for the first time, why PSE struggles
to properly capture acoustic radiation. This is actually just one symptom of a more general issue

— the minimum step-size restriction makes it impossible to numerically converge the solution. We
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will quantify the effect of this in the next section. The inability to reach convergence is clearly an
undesirable trait for any method, and the step-size restriction is especially problematic for nonlinear
versions of PSE.

The inability to converge the PSE solution led to the conception of two alternative regularization
techniques meant to alleviate or eliminate the step-size restriction while still maintaining stability.
The first consists of neglecting the streamwise derivative of the pressure component of the shape-
function (Chang et al. 1991, Haj-Hariri 1994, Li & Malik 1996). This reduces the minimum stable
step-size by roughly an order of magnitude. However, since acoustic waves are inextricably linked to
the pressure gradient (consider, for example, the wave equation), this technique has a devastating
impact on acoustics. Therefore, we will not consider it further.

The second method stabilizes the PSE march by explicitly adding a damping term (Andersson et al.
1998). Specifically, equation (2.6) is replaced by the modified equation

q_ vy ~ 04
— =MGg+sM_——, 2.8
ox 175 5% (28)
where s is a parameter that controls the magnitude of the new damping term. The condition for

the stability of implicit Euler integration of this equation can be shown to be
Az > Axg — 2s, (2.9)

where Az is given by equation (2.7). Therefore, the step-size restriction can be eliminated by
setting s = Axg/2. Although this is useful, especially for nonlinear PSE, it does not resolve the
issue at hand; we’ll show in the next section that the acoustic eigenvalues, as well as other modes of

M, are still damped and distorted.

2.1.4 Eigenvalue error analysis

At its core, PSE is designed to track the spatial evolution of a single downstream-propagating

wave, usually the most spatially-amplified wave supported by the system. This is inferred by the



22

identification of a single dominant slowly-varying wavelength and growth rate . In reality, however,
M supports waves with a range of wavenumbers. This is evident for the uniform flow scenario
introduced above, and real flows support even more diverse spectra. In this section, we will analyze
the effect of the standard implicit Euler and explicit damping PSE regularization techniques on these
other eigenvalues, which we refer to as “secondary” modes.

Our strategy for analyzing the standard implicit Euler regularization is to determine the spectrum
that when exactly integrated produces the same solution as PSE when numerically integrated at
the minimum allowable step-size. The properties of this spectrum, which we call the equivalent
PSE spectrum (Towne & Colonius 2014), then quantify the treatment of the modes of the original
operator by the standard PSE regularization.

The implicit Euler integration of standard PSE advances the coefficient 1 of an arbitrary mode

of M with eigenvalue 1 as

" - 1
T TC Az (1 — 200)

e’ By, (2.10)

where here the subscript & refers to the discrete axial position. Now consider a different operator
that supports the same eigenvector but with a different eigenvalue 1a®. The exact advancement of

this mode (assuming locally parallel flow) is

Prgr = €' AP (2.11)

The effective eigenvalue ia® describes the PSE approximation of i« if the propagators in equa-

tions (2.10) and (2.11) are equal:

wAxr 1 eszAz

¢ 11— Az(ta —1a0)

(2.12)



23

Solving for ia® results in the following PSE approximation of ia:
1 =10’ — € log (1 — Az(1ax —1a°)) . (2.13)
Az

As Az — 0, the correct eigenvalue 2« is recovered, but this limit cannot be approached because of
the PSE step-size restriction. At a fixed Az, the distortion of each eigenvalue depends on its distance
from the primary eigenvalue oy and the step-size. This error is represented graphically in Figure 2.3.
Here, the magnitude of the difference between the original and effective PSE eigenvalue, scaled by
the original eigenvalue (a.k.a. |(a® — a) /al), is plotted as a function of the distance of the original
eigenvalue from ayg, scaled by Axz. The error is zero for a = o, implying that the dominant mode
is perfectly captured. In reality, the constraint from equation (2.2) does not force a’ to precisely
lock on to the true dominant instability mode, so the actual error in its representation is finite but
small. This is why PSE can accurately approximate the dominant convective instabilities in many
shear-flows. Moving away from « = o, the error quickly becomes large; the radius of the region
where the error is less than 30% is less than one. For comparison, the range of relevant wavenumbers
in jets is O (10). The conclusion, then, is that standard PSE can accurately capture only modes
that lie within a narrow range of wavenumbers and growth rates surrounding the dominant mode.
We will use this analysis to specifically address the PSE treatment of acoustic waves later in this
section.

Quantifying the effect of the explicit damping regularization technique on secondary modes is

straightforward. The eigenvalues of the damped system in equation (2.8) take the form
(2.14)

where i« is again any eigenvalue of M.
We set s = Axp/2 so as to remove the step-size restriction. Then, since the resulting system
can be exactly integrated, we can make direct comparisons between o® and «. The scaled error

|(a® — @) /a| is plotted in Figure 2.4 as a function of Az and the distance of the original eigenvalue
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Figure 2.3: Eigenvalue error as a function of @ and Az for PSE with implicit Euler regularization.
The definition of the error is given in the text.

from ag. The story is the same for the explicit damping method as it was for the implicit Euler
method — the dominant mode and its near-neighbors can be accurately captured while all other
modes will be dominated by error.

Next, this general analysis is applied to the uniform flow acoustic modes given in equation (2.4b).
We set M, = 0, corresponding to a quiescent fluid. These eigenvalues provide a reasonable, analytical
approximation of the far-field acoustic modes that exist in many real flows. For this analysis, a
specific value must be specified for a”/k. We choose k/a® = 0.6 to match the approximate convection
velocity of wavepackets in high-subsonic jets.

The exact eigenvalues and the eigenvalues associated with the three regularization techniques,
scaled by k = w/¢, are plotted in Figure 2.5 as a function of the scaled transverse wavenumber
z = n/k. The real part of o/k is the inverse axial phase-speed, while the imaginary part gives the
damping. For z < 1, the exact eigenvalues have zero imaginary part — these are propagating acoustic

waves. For z > 1, the modes are evanescent.
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Figure 2.4: Eigenvalue error as a function of a and Az for PSE with explicit damping regularization.
The definition of the error is given in the text.

Both versions of PSE underestimate the phase-speed of the propagating waves and cause erro-
neous damping. To get a grasp on the level of damping, note that the wave will dissipate by a factor
of exp (—Im[a]) per acoustic wavelength of axial propagation distance. Taking Im [a] =~ 0.2 as an
estimate for the typical damping of the two PSE methods gives an estimated loss of approximately
2 dB per wavelength of propagation.

Finally, we note that Figures 2.3 and 2.4 give a hint as to why PSE is able to partially capture
acoustic radiation in supersonic jets, but not in subsonic jets. In these jets, the dominant mode is
associated with the well-known Kelvin-Helmholtz instability. Therefore, modes that are farther from
the Kelvin-Helmholtz mode in the « plane are more seriously damaged. The lower phase-speed of
the Kelvin-Helmholtz mode in subsonic jets increases the distance of this mode from the sonically-
propagating downstream acoustic modes, effectively increasing the error compared to supersonic jets.

We will show this quantitatively in section 2.2.8.1.
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Figure 2.5: Uniform flow Euler downstream acoustic eigenvalue ay as a function of the scaled
transverse wavenumber z. The PSE wavenumber has been set to ap = 1/0.6: exact ( );
Standard PSE ( ); PSE with explicit damping (— — —).

2.2 One-way spatial integration — an outflow approach

Motivated by the computational efficiency of PSE, in this section we develop a new spatial marching
method that can be used to compute wavepackets and their acoustic radiation. This is accomplished
by formally removing support for upstream-traveling waves from the equations using concepts related
to outflow boundary conditions, resulting in well-posed equations that can be solved by spatial
marching without the need for additional regularization. As a result, downstream acoustic modes,
as well as all other downstream-traveling waves, are accurately retained, allowing far-field acoustic
radiation to be properly captured.

We will formulate the method for a general hyperbolic system. This generality helps place the
method on firm theoretical ground and opens up applications in many fields of study. To reflect this
generality, we replace our downstream/upstream terminology with the universal terms rightgoing
and leftgoing.

After setting up the problem in section 2.2.1, we first derive exact one-way equations in sec-
tion 2.2.2 based on concepts related to the well-posedness of hyperbolic boundary value problems

and then in section 2.2.3 show how the exact equations can be efficiently approximated using tech-
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niques that were originally developed for generating high-order nonreflecting boundary conditions.
The method is applied to the Euler equations in section 2.2.6, and the accuracy and efficiency of the
resulting one-way Euler equations is demonstrated in section 2.2.7 using three example problems.

The method is applied to jets in section 2.2.8. Finally, we summarize the method in section 2.2.9.

2.2.1 Problem formulation

We begin with a system of linear, strongly hyperbolic partial differential equations:

d—1
9q 9q 9q
—+ A — B; —+C =0. 2.15
Here, x € R is the axis along which we will parabolize the equations, y = {y1,...,yq_1} € R¥~! are

additional, transverse spatial dimensions, and d is the total spatial dimensionality of the problem.
The coefficients A, B;, C € CNe*Na are smooth matrix functions of z and y and do not depend on
t. The vector ¢ = q(x,y,t) € CNa is the solution to be determined.

We discretize equation (2.15) in the transverse directions using a total of N, degrees of freedom.
Standard finite difference discretizations are used throughout this thesis, but in principle any col-
location method could be used. We represent the discrete analog of each continuous variable and
operator with a bold variable of the same name. The semi-discrete approximation of equation (2.15)

can then be written

Jq Jq B
5 TA@) 5 +B(@)q=0, (2.16)

where B = Z?;ll B;D; + C and the matrix D; approximates the derivative a%j. At this point,
transverse boundary conditions must also be incorporated into B. It is important that these bound-
ary conditions do not alter the structure of A. Common options such as damping layers, perfectly
matched layers, and characteristic boundary conditions satisfy this requirement.

Equation (2.16) is a one-dimensional strongly hyperbolic system. In other words, A is diago-

nalizable and has real eigenvalues. This follows from the fact that the entries of A are a discrete
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sampling of the continuous matrix A. Specifically, A can be written as a block-diagonal matrix,
where each block contains the matrix A evaluated at one of the collocation points. This structure
guarantees that A is diagonalizable and that its eigenvalues are real, since they are precisely the
eigenvalues of A at the collocation points.

In the preceding development, equation (2.16) inherited strong hyperbolicity from equation (2.15).
This is not, however, the only way to arrive at a system equivalent to equation (2.16). For example,
higher order y derivatives could be added to equation (2.15), destroying its hyperbolicity, without
destroying the hyperbolicity of equation (2.16). The method described in the remainder of this paper
can be applied to any linear, one-dimensional, strongly hyperbolic equation, regardless of its origin.

For simplicity, we restrict our attention to the case in which A is invertible for all z. This
restriction is not necessary but simplifies the discussion. The case where A is singular is treated in
Towne & Colonius (2015). Under this assumption, the number of positive and negative eigenvalues
of A is fixed for all z, and we denote these quantities as N, and N_, respectively. The total size of
the semi-discrete system is N = NyN, = Ny + N_.

It proves useful to work with the characteristic variables of equation (2.16). Since A is diagonal-
izable, there exists a transformation T'(x) such that

L - A, o0
TAT ' = A=

, (2.17)
where A, € RN+*N+ > 0 A__ € RN-*N- < 0, and A are diagonal matrices. The diagonal
entries of A++ and A__ are precisely the positive and negative eigenvalues of A, respectively. The
transformation 7' is known analytically since it is the discretization of the matrix 7" that diagonalizes
A.

The characteristic variables of equation (2.16) are then ¢(z,t) = T'(z)g(x,t), and can be sepa-
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rated into positive and negative parts based on the positive and negative blocks of A:
= (2.18)

with ¢, € RV+ and ¢_ € RV-. In terms of the characteristic variables, equation (2.16) becomes

o =

gl

+B(z)¢ =0, (2.19)

where B = TBT ' + AT 4L __.

Since we wish to obtain a one-way equation in the frequency domain, we proceed by applying a

Laplace transform in time to equation (2.19), giving

-

+B(z)$ =0, (2.20)

gl

where (;3(:1:, s) is the Laplace transform of ¢(x,t) and s = n —iw (n,w € R) is the Laplace dual of
t. We have assumed zero initial conditions, but that is unimportant since we are only interested
in the long-time stationary behavior of the solution. We will ultimately take n = 0 and set w to a
particular value to obtain the stationary solution at that frequency, but keeping the possibility of
non-zero 1 will help us distinguish between upstream and downstream solutions of equation (2.19).

Solving equation (2.20) for z-derivatives gives

dép R

e M (x,s) ¢ (2.21)
with

M=-4" (SI+B). (2.22)

It is useful to partition M into blocks according to the sizes of the positive and negative characteristic
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variables:
d ¢g+ My, M,_ ¢3+
e 