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ABSTRACT

The design of a two-stream wind tunnel was undertaken to allow
the simulation and study of certain features of the flow field around
the blades of high-speed axial-flow turbomachineries. The mixing of
the two parallel streams with designed Mach numbers respectively
equal to 1.4 and 0.7 will simulate the transonic Mach number distri-
bution generally obtained along the tips of the first stage blades in
large bypass-fan engines.

The GALCIT hypersonic compressor plant will be used as an
air supply for the wind tunnel, and consequently the calculations con-
tained in the first chapter are derived from the characteristics and
the performance of this plant.

The transonic part of the nozzle is computed by using a method
developed by K. O. Friedrichs. This method consists essentially of
expanding the coordinates and the characteristics of the flow in power
series. The development begins with prescribing, more or less arbi-
trarily, a Mach number distribution along the centerline of the nozzle.
This method has been programmed for an IBM 360 computer to define
the wall contour of the nozzle.

A further computation is carried out to correct the contour for
boundary layer buildup. This boundary layer analysis included geome-
try, pressure gradient, and Mach number effects. The subsonic noz-
zle is calculated (including boundary layer buildup) by using the same
computer programs. Finally, the mixing zone downstream of the split-
ter plate was investigated to prescribe the wall contour correction nec-

essary to ensure a constant-pressure test section.
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INTRODUCTION
The use of transonic blades -- whose good efficiency is still
not understood -- in high-speed turbomachines has generated new

pfoblerns in the design of this kind of blade.

If the shank of the blade generally remains subsonic, the tip --
because of the rotational effect -- becomes supersonic, and a complex
flow field .char acterized by a transonic Mach number distribution is
created along the length of the blade. To simulate the velocity gradient
character of this flow field (note centrifugal effects are not present),
a wind tunnel has been designed wherein two parallel flows mix. The
two streams (with designed Mach numbers equal to 1.4 and 0. 7) will
respectiveiy si.:nul-ate the outer and inner regions of the flow through
the turbomachinery. The mixing region of these two streams, in the
test section of the wind tunnel, is a good image of the transonic re-
gion located at the middle of the blade.

A model blade will be set parallel to the velocity gradient and
the pressure field and relaxation of the shock waves will be studied. ,
The study of the interaction of obliqué shock waves with the two
streams and the constant pressure mixing of the two streams can also
be studied with this apparatus.

The different wall contours are computed in the first chapter.
A method developed by K. O. Friedrichs is used for the transonic part
of the nozzle. The boundary layer correction is developed in Chapter
II, and the mixing zone is treated in the last chapter. The general

characteristics of the wind tunnel are shown in the Conclusion.
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. CHARACTERISTICS OF THE WIND TUNNEL

1. Flow Rates

The test section (downstream of the splitter plate), where
both streams are allowed to mix, is a rectangle of 10X5 cm, with
each stream occupying a square of 5X5 cm. The Mach numbers
were chosen to be 1.4 for the supersonic stream and 0. 7 for the sub-
sonic stream. Downstream of the splitter, the design requirement is
that both streams must have‘the same static pressure. Given the
stagnation conditions upstream of the double nozzle in one‘streé.xn,
we can determine the pressurés at different stations and the flow
rates (Fig. 1) for both streams. Based on the capabilities of the
pumping system, we choose to fix the total pressure in the super-
sonic stream at one atmosphere.

At Mach number 1.4 we have Ps =0.3142 P so we get in

ot”’

the test section Pls = PZs = 0. 3142 atmosphere. But for the subsonic

flow at Mach number 0.7 we have - 0.7209 P so it is required

ot’
to drop the total pressure of the subsonic flow upstream of thle nozzle
to fit the value of the static pressure in the test section. The new
total pressure of the subsonic stream will be:

P_, = 0.3142/0.7209 = 0.44 atmosphere.
This pressure drop will be obtained in the valve controlling the sub-
sonic stream from the value of the static pressure in the test section

given by the supersonic stream.

Computation of the flow rate. For the supersonic stream we

get



3w
M) = A p vy = A p - Ma; = A p - MART],
and similarly for the subsonic stream; then
M = M+M, = AR [p M VT +p,MWT, ]
where subscript 1 refers to the supersonic stream and 2 to the
subsonic stream. Given TI = 210°K, T2 = 270°K, R = 2875/kg/0K;
Py = 0.43 Pot and Py = 0.34 Pot * We finally get

M = 0.77 kg/s .

2. Characteristics of the Compressor Plant

The first and second stages of the GALCIT hypersonic com-
pressor plant will be used for the wind tunnel. This arrangement
(see Fig. 2) consists of four Fuller C 300, four Fuller C 300 H, one
Fuller C 200, and one Fuller C200 H compressors. The perform-
ances of these compressors are described in ref. 1. The character-
istic charts 3 and 4 (compression ratio A as a function of total in-
take volume flow) will be used to determine the general performance

of the whole plant.

3. Characteristics of the Wind Tunnel

Knowing the supply conditions chosen for the tunnel (PS =
1.1 atmosphere, 'I"S = SOOOK, Py 5 1.28 kg/M3) and the mass flow
rate required by the wind tunnel (0. 77 kg/s), we can compute the vol-

ume flow rate at the intake as a function of the compression ratio A\ .

i 3 3 P
Qizﬁzﬂ.—s,but"rm'r_,so
Py ps pi 3 3
é :M‘.p_sz—tM_-k

¥ Psg” Pj Ps
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H. = 0.6°% mols = 1260+ & effme

1

Hence, the characteristic chart of the wind tunnel is a linear function

of the compression ratio.

4, Matching of the Two Characteristics (Fig. 5)

When the characteristics are reproduced on the séme map,
three solutions are found which will give the desired flow. For A,
the compression ratio is very small, and a very good recovery factor
would be needéd in the diffuser. Solutions B and C are very similar;
however, C will be con-sidered here because of its better distribution

of the power among the ten compressors.

5. Loss in the Pipes

We only can have an approximate value for the loss in the in-
stallation; however, we will use, to compute the different pressure
drops in the pipes, the following relation:

=2
AP pr

Ax 2D

where f is the loss factor and is taken to be 0. 03,

AP/ Ax is the loss per unit length,

p is the specific mass of the air,

D is the diameter of the pipe,

C is the mean velocity in the pipe.
Given the diameters of the pipes, we can calculate the loss and values
are shown in Fig. 6. Two examples were chosen and the results are

shown below for the upstream line (A) and the downstream line (B).
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For A For B
for diameter = 6''= 0. 15 m for diameter = 10" = 0,25 m
CA= 36 m/s CB=50m/s
= 6 - . 6
RA-4.10 RB—l.'t‘ 10
APA = 0. 02 atmosphere APB = 0. 004 atmosphere

Because the mean velocities considered are relatively small, the loss
will be almost negligible. However, we will adopt a pressure drop of
0.1 atmosphere for the upstream pipe and 0. 05 atmosphere for the

downstream one as a reasonable safety factor when a 10" downstream

and 6'' upstream diameter pipe are used.

6. Pressure Recovery in the Diffuser

In order to isolate the test section from the diffuser, it was de-
cided to accelerate the ﬂéw at the entrance to the diffuser to insure
that all the flow outside of boundary layers was supersonic. This re-
quires that the remaining Mach 0.7 flow be accelerated to Mach 1. 10.
If this flow undergoes a simple normal shock in the diffuser, its static
pressure will be 0. 23 atmosphere,and to be conservative it was as-

sumed that the total head of ;ali the flow was reduced to this value.

7. Power Required

An isentropic compression of the fluid will be considered

through the compressors so we get, for the power required,

l__]_
- I :thTi[xY -1]

where P = power in kw

m = mass flow rate in kg/s
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Cp = specific heat at constant pressure = 1 kJ/kg
Ti = intake temperature in °K

A = compression ratio
We will adopt an efficiency of 0.7 for the plant to compute the actual
power required.

The arrangements B and C will require compression ratio of
5.30 and 6.15. The results of each stage are shown in the Tables 1

and 2.

Note. To compute the current in the lines we used the relation

P = UIJ/3 cos ¢
where
P = power required by the engine (watts)
U = voltage (2300 V) |
I = current (A)
cos ¢ = 0.8 , where ¢ is the phase angle.
The maximum currents are for the following arrangements:

2XC300 + 2XC300H

2X39 A

C200 + C200H 19 A

]

For each case we can check, the required currents are very much

lower than these maximum wvalues.

8. Conclusion

The arrangement C given by Fig. 2 will be adopted because of
its better distribution of power. In this case, a very high recovery

factor will not be required in the diffuser.
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II. DESIGN OF THE NOZZLE

1. Introduction

A double nozzle divided by a plate in its middle is required to
separate the two flows before their mixing (Figs. 1 and 8). The up-
per flow (the supersonic one) must be designed for a mass flow rate
of 0. 50 kg/s and the lower one for a mass flow rate of 0.27 kg/s.
The nozzle is also divided longitudinally into a double convergent noz-
zle (i; e., one which converges in two directions and is identical for
both streams) with an exit Mach number of 0. 5 and two-dimensional
nozzles which accelerate the two streams respectively to Mach

numbers 1.4 and 07

2. The Restriction Section

Wall contours wlgre obtained by fitting a fifth-degree polynomial
to six boundary conditions. At the inlet, the slope and curvature were
chosen to be zero; the inlet area was chosen to give a small inlet
speed (~10 m/s ). The exit conditions were chosen to give a Mach
number of 0.5. The slope and curvatures of the walls were chosen to
match the corresponding values for the one-dimensional transonic
nozzles. The nozzle length was arbitrarily chosen to be 1/2 to mini-

mize secondary flows. See Figs. 8 and 10 for details of the design.

3. Design of the Transonic Nozzle '

To simplify the construction of the nozzle, we considered a
two-dimensional inlet for the transonic flow to Mach number 1.4 and
also a two-dimensional nozzle to accelerate the subsonic stream to

Mach number 0. 7.
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The equation of the wall contour of the transonic part of the
nozzle between Mach numbers 0.5 and 1. 4 has been determined by
Friedrichs' method (see reference 3). The mathematical part of this
method was developed by Wilson (see reference 4). The wall contour
of the subsonic part of the nozzle will be fitted with a third-degree
polynomial after the boundary layer determination. The nozzle design
method to be used for the design of the transonic nozzle must have the
following properties:

1) it should be capable of absorbing the inlet conditions and
the design Mach number and then yielding a uniform flow
testing region with the desired accuracy;

2) it should pro:I:lucle a wall contour with continuous second
derivatives;

3) the method used must be adaptable to machine computation
in order to get a good accuracy for the contour.

The majority of the nozzles are designed using the method of
characteristics. However, this method can be used only for super-
sonic nozzles in the supersonic region. This implies an arbi-
trary assumption about the flow in the throat and an arbitrary subsonic
contour.

The method proposed by Friedrichs does not present any dis-

ruption at the sonic conditions and the computation will be available
from Mach numbers 0.5 to 1.4. |

The object of the method is to construct nozzles through which

the flow conditions are known completely; the development begins with
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prescribing more or less arbitrarily a velocity distribution along the

axis of symmetry of the nozzle. In our case we chose the centerline
Mach number distribution as the main parameter.

A flow having this Mach number distribution will be established
and the contour will be obtained by considering a particular streamline
of this flow. The Friedrichs' method consists of expanding the Car-
tesian coordinates (x, y), the flow direction (68) and the velocity ratio
{u/u) in power series of £ and 1 which are the equipotentials and
streamlines as shown in Fig. 9, and u is the velocity on the centerline.

The hydrodynamical equations. The flow is assumed to be

steady, irrotational, and isentropic; the viscous effects will be con-
sidered later = by a boundary layer correction.
The equation of continuity may be written
K 9
= (pu)+-a;(pv) = 0 (1)

and the condition for irrotationality is

du ov

a—y—E{-ZO- (2)

We can define a potential function ¢ and a stream function | ,such as

¢ = M : ‘b = =PV
¢Y = ¥ ¢Y = +pu

Note: the method used looks very much like the theory of incompres-
sible flows, but here the compressibility effect appears in § , which
is a function both of the velocity field (u and v) and p. Thus,
dé V
dy

¢.dx+ ¢ dy = ucos 8 dx + usin 8 dy ,
o ¥ (4)

‘dex+ ‘Vde = -pu sin 6 dx + pu cos 8 dy .

Combining these two equations we get



= ] 0=

cosb sinB 8x
= - = do +

dy = = d¢ S dy (o] Yd¢

sinf cos® 9y
dy = do + d d + d
y = $ ou L 36 ¢ 3y ¥

and

9x _ cosB . &x _  sing
8¢  u E oy pu
dy _ sinB ; dy _ cos8
90 u ; Y pu

Let us introduce the new variables £ and 7 as functions of the veloc-

ity distribution u along the centerline. Having the equipotential lines

£ = constant and the streamlines 7 = constant, we get

g_ ‘
‘I‘ u(x)dx and (5)
0

¢

p*u*‘!‘]

where (%) describes the critical conditions (M = 1.0).
The partial derivatives of x and y with respect to those new

variables are

Ox _ ox d¢ _cos® o . 9x _9x dV _ -sinb . .
9t ~ 99 dt u ' Bn 9y dn ou
and
dy _ 9y d¢ _ sinf 6 — dy _ 8y dy _ cos8 ..
—_g-- —8_71-) dg u i L T] - 8* dn . pu P*u . (6)

Forming the cross-partial derivatives and eliminating x and y from

these equations we get

— 2 2
9 ,u d x 0 x 0 Yu* .
p— 5] e, S
T’q( — cos ) = SmoE = agan 3E ( sinf )
and (7)
"] —E— sinB ) = Bzy = azy o (-E-——-"iuq‘ cos8 )
an T OnoE T BEAn ~ 0 ' pu s

but p*u*/pu= A/A%*: the area ratio enters by means of the continuity

of mass which also may be written h because of the one-dimensional
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analysis. Hence, by expanding (7),

9 ,u u
cose—a'ﬁ (;) - —

sine—-é«)—Ei = -hcose-g-‘f- - sinhb %h
u on )

A

5t 3

s - (8)
sinegaﬁ (%) +iu cose-g—g = -hsineg—g-+ coae-glg-

Combining these two equations we get

3 . u., _ 90
i (=) = -hgg (9)
and
u 96 _ oh
-~ T " (10)

These partial differential equations may be solved by expressing x,
y,u, 8 as power series of 7 with coefficients which are functions of §£.

Derivation of the series representations. The flow is re-

stricted to be symmetric with respect to the x-axis. Then the center
line can be taken as the streamline n = 0.
The variable x, therefore, is an even function of 1 equal to

g€ at the centerline. Hence

2 4
X = §+x2(§)'r] +x4(§)'r] + ... . (11)
The flow field is also an even function of 1, so

R R NI (12)
u

but ¢ and 6 will be, because of the coordinate choice, odd functions
of n, so

y = Yl(ﬁ)n+v3(§)n3+... (13)
and

8 = el(g)n+e3(§)n3+... . (14)

The coefficients of these series expansions are determined by the
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particular choice of the velocity distribution u(x) on the centerline.
But it is more convenient to express these coefficients in

terms of the area ratio (h) or the Mach number distribution M at the

centerline.

From Appendix A,

1

1 1 5 2\’
s ]
h _ u| a 2 (u*)
h i ]Ll_ﬁ(_i)z
27, 2 ux

and assuming the power series expansion (12),

L L N
- :
we get
1
2 T y-1
. +1 y-1 2 2\ Y
. R e TR
| — = (1+62(g)n 'l'ooo)
= - 2
h yt+1 X-_l_(u)
2 "2 ‘ux

sO

. 2 S
2 & (1-52n2+...)(1 - (“'12)“ — - 262n2+---) L
h (y+1l)u* -(y-1)u -

—2
= 1+( zuz — -1)62n2+.,. '
(y+l)u¥ -(y-1)u
But from Appendix A,
2 25°
M= ) =
(y+1l)u* -(y-1)u

80

h s 2

2 = 146, (MDA 4L, (15)

h .
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From the last equation of (6)

9 . cos8h .
an
Assuming f small we get
2
-9
COSQ = 1-_2+0|o )

but from (14),

3
B=8,(Em+0,(Em +...

Keeping the second order terms we get

2

8

8y _ . =2 2 ( 1 2

37%— he (1+6,(M"-1)n +> I-Tn+..‘)
2

. e
=1 ( +n2[52(ﬁz-1)--§1—]+---) ’ (16)
but from (13),
3
y = vty €M +...

After differentiation with respect to n

oy - 2
am = V) By (17)
After identification with (16) we obtain G
y, = h (18)
B2
o —2 1
vy = 3 (M50 -F) . (19)

From equation (9)
K2 2 -1 _ 2 o d 3
an (I+6,n +...) * = -F(1+52(M -1)n +.. ')'a-g (8,nt8;m +.u )
or, after differentiation,
-25,n + = -'H(1+5 (I\—dz-l) 24 l)(e' +0! By )
2 2 UIRSERDICE LT LIS ST

where primes denote differentiation with respect to £ .
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Equating first order terms we get

From equation (10) we have
u \ ¢h
ey
SO
0. +30.12 = (Lt6, 2 O (s, (M%-1)n +... ]
1 3N = z'n+...)' BE (1+ -)n
2 2 |
= b+’ Bs +d—g- [Rs, (M2-1)] ]
Therefore, '
81 = h' , (21)
and
1
8; = (h' £h6 (M -1)]) (22)
so from (20) and (21)
6, = z hh" ,
and from (19)
B, @ — 2
¥y = 2 [(M%-1R B"-R° 7

+1 17 u 2y Y- I
T = Myl y-1fu
h = == 2 2 (u* )
u
and
-2
MZ ¥ 2u- . K 2 ,
t_z 2 u*'\z
(y+1)ux"-(y-1ju (y+1)(?) -(y-1)
u :
S0
(u*)z 2 + (y-l)l\_/lz
u (y+1)1\7[2
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+1

. 1 [( _1)MZ+2 ]ZIY'”
x Lo nbts

M
After differentiation
‘ —2
— -1)M“+2 =2 h'
ZMM = Jj——— M™— .
(M -1) )Y

Thus, from (22),
- Ivrer o+ L4 r 5250 (il
8 Rh'h t 5 aE [A"h"(M"-1)] ,

3 6
SO
‘ —4
5 = lﬂ'ﬁ-ﬁn[___“*”M ) 1]+3-HZ’H'" (M%-1)
3 6 h—dz-l 6
Using the second equation of (6) and the approximation
3
sinf = @ -9—6+... , we get
3
Ox _ T 6
Br = -h[#8 'T+"'] ,
80
g3
3 e =2 1 ] 2
2x,n+ 4x,n> = - En{8 46,0, (2100, L |ne.. .}
After identification
X, = -%KT{' 5 )
and - 5 3
=2 1
’_4\:6291(M 18-~ ]

X =
4
Now assuming higher order expansions

y = v+ y3(§)n3 + y5(§)1’]5 ¥ wu
o = 8 (E)n+ &) + 8,(E) + ...

1+ 52(6,)712 + 54(g)n4 + oo

u
u

Considering the differential equations (9), (10), and (8), after differ-
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entiation with respect to £ and identification we get
- 1—2—,,2 —2 _l_— 1
64—8hh (M+1)+4h8
Z_
Yg = IH[ h"(M4M+2)+6(M -I)Z ""h'"'(M 21)11'93 2'4
85 =¥, (h'M+2hM'}i- (ee -hh'h”)+—h B (3RR+2RE )y ME-F42)
+ 55 BB 25N (2y 2 -14 3 B, (M2-1)
and whefe
1 —l(El hll_’_-ﬁ}_{llz_,_ﬁil—ﬁf”) (Y+1)M l}+ +1)hh'h”M'ﬁ3 MZ—Z
376 =2, b =2 2
M™-1 (M~-1)
E_H( 2R R 1) + 2 RO MM

Determination of the wall contour

One specific value of n has
to be chosen to determine the contour wall

At the throat for the criticaln_conchtlons we have

ﬂj:

pFukn
and at the exit of the nozzle
‘l’ = Ftﬁth » B
80 |
pru¥m = Ftﬁtyt (t for test section) .
Hence,
e . 1
prux Tt Ot
t
By definition
+1
Lo A p*u* _ AT y-1Me2 7N
Y- C - B
o n = Ytl/.Kt .
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In our case, Yy will be equal to 50 mm and Et' the area ratio corre-
sponding to Mach number 1.4, is 1.115.

Choice of the centerline Mach number distribution. The func-

tion used for the centerline distribution has to be analytic in order that
the high order derivatives will exist. Obviously, the Mach number
must equal one at the throat and 1. 4 downstream of the splitter plate.
In reference [ 17] it is shown that continuous derivatives of order (n)
for the centerline Mach number distribution produce a wall contour
with continuous derivatives of order (n+l). In our case, continuous
derivatives are required to the third order for the contour, which
means we will need at least I\_/I{'-_ = M;c' = 0 for the test section entrance.

It seems reasonable that the Mach number along the nozzle con-
tour wall should also be a smooth, monotonically increasing function.
A source flow provides such a function for part of the supersonic con-
tour, but it does not sa';isfy the boundary conditions I\_/-IL = i\—fii' =0,

However, we will take such a distribution up to the intermediate
Mach number 1.2. Between this value and the test section value, we
will fit the distribution by a 9th order polynomials satisfying the
boundary conditions to the fifth order derivatives at both Mach number
1.2 and 1. 4 (see Fig. 10).

Between 0.5 and 1.2, the equatit;n for the centerline Mach num-

ber distribution is:

= 1
—m x M =
8 = M— . [ in: B k(ﬁt'm)n]
M M, -1

t

where m and n are integgrs and k a real positive number, with the
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restrictions that

m>0
1
e i
B Soagresst 3
Mt -1
to assure continuity and at least continuity for the second derivatives.

In our case, we chose:

m = 2

7 = 3

'k = 1inch = 25.4 mm

:;:t = 10 fnehies = 254 gran

The centerline distribution between 1.2 and 1. 4 will be automatically
fitted with a 9th order polynomial in the computer program.

The results for the double convergent nozzle (to Mach number
0. 5) and the transonic nozzle are shown in Tables 5 and 6. The method
used to compute the subsonic nozzle between Mach numbers 0.5 and
0. 7 will be described further after the boundary layer analysis.

Computer program to design the nozzle (Tables 3 and 4).

Friedrich's method was used between Mach number 0.5 and 1. 4.
To Mach number 0.5 a double convergent nozzle was computed using

5th order polynomials to represent the wall contours. Thus, we have

the following schedule.
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x Mach Method Centerline Mach Number
t Number Used Distribution ‘
0<x<350 0sM=0.5 polynomial | determined from the con-

wall contour| tours
double con-

vergent
. 1
_ M™ 1 xtMt _ _nmn
350sx<600 0.5sM<1.2 Friedrichs' £ = —|— -k(Mt-M) :]
method M t-l

600<x<720 | 1.2sM<1.4 | Friedrichs' | 9th order polynomial

method
x 2 720 M=1.4= constant M = 1.4 = constant
constant properties
of the flow

The derivatives to the fourth order of the area ratio (h ) as functions

of the derivatives of the centerline Mach number distribution are given
in Appendix B. In Appendix C ‘we will find the derivatives of the inverse
function M(£) é;s a function of £(M) and the derivatives of the Mach
number distribution. |

4. Conclusion

The Friedrichs' method gives us a very smooth wall contour
and a constant Mach number distribution downstream of the splitter
plate. This theoretical wall contour will now be modified to take ac-
count of the boundary layer.

The input of the first part of the computer program (Friedrichs'
method), y, dy/dx, M, dM/dx, will be used directly for the com-

putation of the boundary layer correction. The displacement thickness
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(8*) will be calculated and the nozzle contour used in constructing the
nozzle will be obtained by adding values of 6% to the contour calcu-
lated by the Friedrichs' method. The subsonic nozzle (between 0.5 and
0. 7) will be computed from this new wall contour after boundary layer

correction.
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III. BOUNDARY LAYER CORRECTION

1. Introduction

In the previous chapter the boundary layer effect was not taken
into account in the calculation of the nozzle wall contour. The bound-
ary layer displacement thickness (6%) characterizing the deficit of
mass flow rate due to the boundary layer is the parameter usually used
to compute the actual wall contour. To keep the computed Mach num-
ber distribut_ion, the actual flow section will be obtained by adding the
product of &%+ p (where p is the perimeter of the flow section) to the
value of flow section previously calculated.

Because of the constant thickness of the splitter plate and the
constaI;t width of the test section, all the correction will be applied to
the top and bottom walls of the nozzle block.

'The intera.ctibn of the shock waves with the boundary layer was
not considered in this simple computation of the displacement thick-
ness. The main flow will be assumed isentropic, compressible, and
with a pressure gradient; it will be characterized by the centerline
Mach number distribution previously chosen.

The velocity profile of the turbulent boundary layer will be de-

scribed by the following defect law (see reference 15):

U-u 1 y "{(x)[ y ]
uT_-RLOg(6)+ 7 Z'W(ﬁ)
with U: mean velocity at the centerline

u : velocity in the boundary layer

u,: defined as ./I,B‘f’- , friction velocity
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K : Karman's constant = 0,41
& : boundary layer thickness
E Coles' parameter for the wake component of the

boundary layer

W(%): Coles' wake component function,

usually w(¥) = 1 + cos (v L)

The integration of the differential equation giving 6 will be performed

numerically on the computer by using 4th order Runge-Kutta's method.

2. Compressible Boundary Layer Function of the Wall Contour and

the Mach Number Distribution

The coordinates the the notations used in this chapter are
shown on Fig. 14. Let us now write the basic equations for the
boundary layer:

- equation of continuity

%(Bpu) + %{r (Bpv) =0 (1)

- momentum in the x direction

du ou _ dP or
pu5-;+ pvﬁ—--ﬂ-ray . (2)

Immediately outside the boundary layer u = U and also 8U/dy = 0,

to the scale of the boundary layer thickness. Therefore,

so that (2) becomes



du du _ = dU |, a7
e PGy TP U I T oHy (3)

Tt = To = constant (4)

If we introduce the velocity defect in the x-direction (U-u) and

the x-momentum defect, (pe-ﬁ - pu), we obtain from (3)

+pu—[U u]-pv—(Uu)--é—;;'r g (5)

Multiply (1) by (U-u) and (5) by B(x) and add to get:

B(x) [p,T-pul 3 + %5 [Bx)pulT-ul] - 5 [Bx)pv(T-ul] = - Blx) 37

(6)

where B(x) is the cross-section distribution.
Integrate (6) with respect to y from 0 to § and use the conditions that

u(x, 0) = 0 and u(x, §) = U(x). The result is:

6 & ‘
B(x) g—}gg[peﬁ- puldy + == B(x) S pu(T-u)dy = B(x)T_ (7)
0
Note &
- g;_ dy = - (TG-TO) ot o8 ;
0
When we introduce the integral parameters
5 6
6% = ((1- 2 )ay and 0 = (2% -2 jay,
0 peU 0 peU v

we get
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al = * d 2
B(x) e P ué + <y l:B(x) Pe §) 9] = B(x) T (8)
and after expanding the second term:

B Y U8 + B p, U 5 [Brae, o] = BT, . )

After dividing by B(x) p 'I_JZ and introducing the shear wall coefficient

(;f —le , we get:
Pe U
2
1 dT0 .* _ df : d =2 " 1
= — & +— + _Z—I:BpU:]= —2=—Z_Cf' (10)
U dx dx Bp U® dx e p U
e e
-1
_ -1 2 v-1
But pe-pt[l-f-%—MJ ,
S0
1 P -§° 4T
Pe dx U X
and U = Ma = MJ/YRT .
1 2\
with T = Tt(1+-'£LM ,
3 1 dU 1 1 dM
o —_— —_— = 1 =3 r—
g9 1+L2 M M dx
Hence, after introducing H = T (10) becomes
I
1+5~ M Mdx

2
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In the case of incompressible flow, with a 1/7 th power ve-
locity distribution law for the boundary layer which leads to H = 1. 28,
equation (11) might be integrated directly. In our case we must as-
sume a more complex velocity profile which will give us values for H
and Cf. For this purpose we introduce the Howarth transformation,
Jy_& d sO dv. = —E— d .
oo n ¥ o, : 4
Then the integral parameters become
6.
* ® u trPe u
e [ Yy = (e 2y,
0 p. 0 o*P T’ ?

Across the boundary layer

~ pe Te
P — constant, 80 —P = T ’

and assuming constant total temperature

c7 +%ﬁz = CT+§u2
P € P
we get
=2 2 2
T . 1 U u _ -1 52 u
71‘—‘1+'270T(1':2"1+]_2M(1'—_2)
e P e U
and ;
2
u 1 =2 u =1 =2 W u
(——--—) (1+LM)(1-EZ-)+:{Z—M E(I_E),

which gives for 5*

5. 6
= (1 +l5—li\712)j’ (1 -—-—)dy +1—M?‘j' 2 (1 -1)dy

£ y-1 <28\ % y-1 =2
5 = (1+—2 )51 + 2w 0 (12)

With the same transformation of coordinates, we get



9= B . = (13)

Equation (11) may be written

ds, o2 5
- + Bi[(2+Hi - i R ) <L - N PO (14)

2 (1+Xil 1—\-{2) i dx Bdx f

where
&

_ i
By = g »

Let us now assume the velocity profile in the incompressible

boundary layer given by the velocity defect law (ref. 15):
y.u Y.
u 5 m(x) hi
u, C f( Y )+ g (61)

W2 w
T P

where

For the purpose of computing integral properties we can choose

(1o (7 ) + €]

where K is the ‘Ka.rman's constant = 0.41 ; C = 2.05; and

_ T it
SR\ TR )
1
Therefore,
yu Ty.
u 1 T ~ i ]
il f_log +¢+w(1 - cos 5= )] - (15)

At y=6 and u= U, (15) becomes

_Ej_:—-[log iT)+C+??]. (16)
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Therefore,

U-u

L
Tl

1 Yy ]
R[-log-5;+1r 1+cos——) (17)

We now have

A O T

0

From the velocity profile (17) we obtain

1 xS
61 E K
So
*
. TR P 1+7
5. K
1
where f = (uTi)/U a &
Let us now define the value for Hi = BL . We have, in terms
of the new variable ¥;
5. ~ '
i v 1+
6. £ K ;- 18]
1
We also have
(85 -9 Tou ¥, Vi
ﬁiui'r 0 iT i

The partlcular proﬁle chosen for the Ve10c1ty will give:

o e AT 1 T T e T LT e e SR
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* =2
(6. -6.)U it il 2 ‘
__61_;1.2.._1___ = [Z+2[1+%Si(ﬂ')]1¥+%“’ ]/K ) (20)
iir
50
% _ w26 [1+ 1+ Sim) Yz 3~z] -
_6_i_ = 74 -Ez- ( — Tf‘f‘z ( )
where
T sinu
si(m) = [ du
0,

But we have

sinu u3 u5
§ =gy tEEr™ ,
so after computation to the seventh order —Sl—Tf_ﬂ = 0.59, (21) becomes
& 0 [1. 201+ L59F ¢ 0. 7572]
Bs 5. K(l+7)
and
6=E= 2 -1 .
R T [1 2f[1 4+ 1.597 + 0.757 ]]
i .5, - ~
: I e K(l1 + 1)
If we choose K = 0.40,
T = 0.56 (good value for small pressure gradient) ,
then for - f = 0,03
we obtain
B = (1-6.819"" = 125 |

1
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The differential equation (14) giving Gi will become
de, 2

i y-1
--------dx-Hai (3.25+ >

)dM +2B [ 2c (22

M
(1+L£1-ﬁ2) it dz Hds f
We must now find a relation for Cf in the case of an isentropic com-
pressible flow with Mach number effect. We will use the results of

Ref. 10 which states that:

T 1.268
Gy =10 2460150 H; e 9)‘0 2686 ('T_ ) (23)
ref
Tref l w aw )
where —€f - 2( T +1) +o0. zz[ -1] (24)
Given:
T = T = T = 300K
aw w o
we get
Tref To
e e
but :
T
.._o_ = +L]'
T 2 .
e
so
ref _ ) 4o0.144 % ¢
F
e
We also have
— et [7R T, ca T 3
Re = u e = — J—R_ M ° 9
9 Fh ot « T, g
Vref Vref Vref 1+Z-2—-1-M2
but
Vref Preg Pe " Hret Tref A it
~ m with m = T
e e ref e e



-30-

If Pe 4 Pref we get
T T 1.75 u
g - ( ref v =( ref) e
ref T e T : p
e e e
uo
Introducing L , We obtain

15 p

G G

and finally

' C; may now be written

-0.134 _,\0.134 _ -0.268
C. = 0.00235.T (1+7—:—M) .M
f o) 2
1,268
(1 +0.144 1\712) y 0.268 5-0.268
ref

R — e oA A ety

The differential equation (22) may be written in the form

de..
i _ -0. 268
i ; fx) = g(x) 8 (25)

This inte'gré.tién mé.y be pel"fb‘rméa'bﬁ' theucomputer using Runge-
Kutta's method. f(x) and g(x) are defined point by point for every
value of x (see Appendix D).

Because of the Howarth's transformation we obtained

(et )
*

but 8, = 8 and H =5

I

— " [(1 + L1 Meym + 2L 1\712] 5
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Taking H.1 = 1,25 we have

x i
i = [Hi + 2L (Hi+1)] 0
* _2
- 6% = (1.25 + 0.45 M%) 0 . (26)

The results for 6 and 6* corresponding to the supersonic stream are
shown in Tables 7 and 8 and in Figure 15.

The differential equation (25) was integrated numerically up to
x = 1100 mm; but from x = 700 mm a close form solution is available.
From x = 700 mm (end of the splitter plate) we have f(x) = 0 and

g(x) = constant = 0. 0011 so (21) may be written

48 _ g.00119°0-268
dx

We directly obtain after integrating for x> 700 mm

o)} 268 _ 5(700)1- 268 - 0, 0011: 1. 268(x-700).

With 8(700) = 0.298 we get

q 8(x) = (1.3951073 x-0.76)0 79, L@
Since (26) where M = 1.4 from x = 700
8T x) = 2. 1401, 3951077 x-0, 76)>* 77 (28)

*

sWe can now use (27) and (28) to determine 6(x) and & (x) in the test
section up to x = 1900 mm. The results for these values of x are en-
closed in Table 8 and shown in Figure 15.

3. Computation of the Boundary Layer in the Subsonic Nozzle

To save time, we are going to use an approximative method to
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define the boundary layer in the subsonic nozzle. Up to x = 350 mm
the two-dimensional restriction nozzles for both streams are similar.
The subsonic part of the transonic nozzle, with values of x varying
between 350 mm and 455 mm (i.e. a Mach number between .5 and . 7),
may be transformed into the subsonic one-dimension restriction
nozzle, corresponding to the same Mach number distribution, by
stretching the x-coordinate (see Figure 16). In this transformation
A and B of the supersonic wall contour nozzle respectively become
A' and B' of the subsonic nozzle.
Let x' be the new x-coordinate available for the subsonic nozzle.

We must have

405

x' = (X-350).ﬁ-5—

+ 350 (29)

where x is the coordinate corresponding to the supersonic nozzle
block.

In this new system the differential equation (25) providing Bi
(or ) becomes:

de,

—L 4 g put)= glwye 0 208 ‘O (30)
dit i i
but f(x) is proportional to STM and %{ so we must have f(x') 211(— f(x).
_ 405
where k = 105 °
Coming back to the x-coordinate (30) may be written
de
i f -0.268
or
de
i _ 1w n-0.268
e + f(x). Gi =k g(x")0 (32)
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This equation is exactly the equation (25) where g(x) is replaced by

k g(x').
T 1.268
- -1.56 H; -0.268 [ e
but C, = 0.246e i (Reg) Y (23)
ref
-0.134 0.134
or ~ glx)=0.00117T_ (14,12;:_1_1\-/—12) §j-0-268
-1.268
(1 +0.144 %) Ly 0.268
ref
where
1. 75 0.75
voo=(2et) (Ze) (Leyy
ref T T o .
e o e

because of the pressure drop in the valve upstream of the subsonic
nozzle (Fig. 1) another value must be adopted for Voo At the level
of the valve Po drops to 0. 44 o to fit the pressure equilibrium down-

stream in the test section so we get:

Vref for the subsonic stream:,equals 2,28 Vref for the supersonic

stream and
gl(x) = 2,28 g(X) .

The differential equation (32) becomes

de
- 405 -0, 268
_Cﬁ + £(x)8, = {5z - 2.28 g(x) (33)

So by multiplying g(x) by 8. 42 and by assuming f(x) = 0 for x > 455
we obtained the differential equation for the subsonic nozzle from the

equation (25) valid between A and B.



-34-

The solution obtained is only a good approximation of the real
solution because by stretching the coordinates we assume values for

the slope at A' and B' which are slightly diffrent from the real values.

4. Conclusibn

T his method allowed us to find a good approximation for the
boundary layer solution in the subsonic nozzle and in the test section
corresponding to the subsonic flow. Using the results shown in
Tables 9 and10 and Figure 17 the real wall contour will be fitted by
a 3rd degree polynomial providing the exact geometric boundary
conditions to the first order at A' and B'. At B' the slopé will be
chosen equal to the boundary layer growing rate in the test section
found by the previous solutionf

We have for the subsonic nozzle-block: (see Figure 16)

at A' x = 350 mm
y = 67.35 mm
y' =12, 10'2

at B! x = 755 mm
e yrem B4y 00 T ciee v

y'=-6.10'3

The coordinates of the contour wall of the subsonic inlet are shown in

Table 11 .
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IV. THE MIXING ZONE

Downstream of the splitter plate the characteristics of the
two jets are: (see Fig. 18)
1) for the supersonic stream

M=1.4, T=210°K, a; =290 m/s, v, =405m/s, p, =0.43 p

H
2) for the subsonic stream

M=0.7, T =270°K, a, =328 m/s, v, =229m/s, p,=0.35 p

If b is the thickness of the zone of mixing, we can define the non-
dimensional parameter b = -E where x is the x-coordinate starting
from the edge of the plate (see ref. 16).

Using Abramovich's formulatioﬁ available for compressible

turbulent jet we get

= _ b _ 1+p, l-m
B = 2= St

where C = constant = 0.27 .
m = U2/UI .
P = py/p

so in our case

m = 0.565
p = 0.81
50 b = b/x = 0.074x

Because the stagnation temperatures and speeds of the two jets are e-
qual we can suppose with good approximation that the mixing zone will be

symmetrical with respect to the x axis defined by the splitter plate.
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From Abramovich's theory we now can define the geometry
of the mixing zone (see Fig. 18) by:

Y"YZ Y'YZ

7 b

and i
Au = (uz—u)/(uz-ul).

and u = constant outside of the mixing zone,
2
_— 2
by adopting Au = f(z) = (1-z2) we get a relationship between x, b

and the velocity profile in the jet (see Table 13) . By assuming the
continuity of mass and the continuity of momentum in the x-direction
we can get the velocity profile everywhere in the mixing zone.

So we get

(b +3b) 1
_r pudy = plulhl(x) + pzuzhz(x) + bx % pudz = constant (1)
-(hy+3b)
and
il 2 hy I 2
j‘ puz dy = plulhl(x) + pzuzhz(x) + bx _f pu dz = constant (2)
- (h,+3b) -
Assuming a zero gradient pressure, we obtain
(h,+2b) (h,+2b) (h;+2b)
S pu2 dy = 11_:{_ S % u2 dy = 'yg Mzdy = constant. (3)
A=hytzb) .. (hyt3b) (-h,+3b)

Again using Abramovich's theory we must define a temperature pro-
file to get the Mach number profile, so we get
T,-T
AT = 7% so T=T, - AT(T,-T,)
2 1 1 "2
with AT = 1-2z

and by assuming AP = 0 we directly have
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= — =

The different profiles involved in the two equations of continuity are
shown in Table 14 and Figures 19 and 20 . By integration of the
two integrals (1) and (2) h1 and h2 may be determined and also the
new height of the test section.

Without boundary layer correction and for x = Ilm downstream
of the Splitterrpla.te the new height of the test section was found equal
to 98 mm instead of 100 mm at the edge of the splitter plate (see
Figures 19and 20 . The height-variation due to the mixing zone
seems negligible corﬁpared to the boundary layer correction. Hence
a variable height which may vary between 110m and 120 mm will be
adopted at the end of the test section (1150 mm downstream of the
splitter plate). A linear variation of the height will also be assumed
in the test section starting downstream of the nozzle block (see

Fig. 41 ).
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CONCLUSION
The wind tunnel was built from the previous calculations, and
all the drawings are retained in the Graduate Aeronautical Labora-
tories at the California Institute of Technology. However, the main
characteristics of the tunnel are shown in the sketches of Fig. 22.

a) Structure

The main structure consists of four beams (3%" X 1%” in cross
section) which support the different parts of the nozzle and the test
section. These four beams are welded between two flanges and the
load is transmitted from the walls of the test section to the beams by
eight T-supports located along the test section.

To correct the boundary layer effect and keep a constant pres-
sure in the test section, the height of the test section may be adjusted
over 3''range. This variation is obtained by use of adjustable rails
on which the T-supports are supported. These rails are attached to
the main beams with bolts and pins.

b) Nozzle Blocks

The supersonic and subsonic nozzle blocks are machined using
the X-Y coordinates of the contour given in Tables 11 and 12.

c) Test Section

The top and bottom walls of the test section are segmented in
three parts to facilitate the experimental work in the tunnel. The
vertical walls are made of glass to allow the visualization of the flow
field by using the Schlieren system. A system of movable wedges is
used downstream of the test section to adjust the length of the metal

walls which support the ends of these two windows.
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d) Characteristics of the Wind Tunnel

structure
4 beams, 31" x 111 x 571n
4 rails, 1" X 1" X 49%1:
8 T-supports
4 angles

nozzles and test section

supersonic stream, M = 1.4

subsonic stream, M = 0.7

height at the entrance of the test section, 107.20 mm
height at the exit of the test section = 120 mm

length of the test section, 100 cm

width of the test éec;tion, 5 cm

experimental devices

pressure probes

Schlieren system
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COMPRESSOR ARRANGEMENT B

4 Fuller C300 and 4 Fuller C300H

P, =0. 21 atmosphere , PS = 1.1 atmosphere , X = 5.30
Compres- Power Actual Power | Current in the
sion Ratio Required Required Lines

2 X C300 3.08 89 Kw 173 HP

2 X C300H 1. 72 40 Kw 78 HP

Total 5.30 129 Kw 251 HP 2X29 amps

TABLE 1. Results for Compressor Arrangement B

COMPRESSOR AR_RANGEMENT C

4 Fuller C300, 4 Fuller C300H, 1 Fuller C200, and 1 Fuller C200H

P, = 0.18 atmosphere , Pg=1.1 atmosphere , A = 6.15

Compres- Power Actual Power | Current in the
sion Ratio Required -Required Lines
2XC300 3.10 76 Kw 148 HP
2 X G300 1.98 - S < al 84 HP 2X27 amps
C200 2.85 12 Kw 24 HP
C200H 2,15 6 Kw 12 HP 8 amps
Total 6.15 137 Kw 268 HP
TABLE 2. Results for Compressor Arrangement C
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M=0.5
X=350

>0

0>
>0
CALL BOUNDARY LAYER

TABLE 3 COMPUTER PROGRAM USED FOR THE
FRIEDRICHS' METHOD DESIGN



. ..

Friedrichs' Method

l

Boundary Layer
Correction

>0
X=-350

<0

Double Conve_r_genf
Nozzle, X,Y, M
M, Y'

¥

Ditferential Equation

g, 8*

+

| New Profile,Actual Y

:

Print Results

TABLE 4 COMPUTER PROGRAM USED TO DESIGN

THE WHOLE NOZZLE WITH BOUNDARY
LAYER GCORREGTION
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. S~ ; - _ S 2 dS/dx Mach No.
mm (mm)

0 250 100 50, 000 0 0
25 244,75 97.91 47,931 -145 0. 03
50 232,12 92. 47 43, 041 ‘ -236 0. 04
75 215 53 84.76 36,539 -275 0. 04

100 195. 20 75. Tb 29,577 -2‘75 0. 05
125 173.48 “GbraT 225995 -247 0.06
150 151. 82 56.98 17,304 -205 0.08
175 131. 40 48. 43 12,729 -160 0.11
200 113.07 41. 02 9,277 -117 0.15
225 97. 43 35.00 6. 821 - 80.7 0.20
250 84.79 30. 49 5,172 - 52.5 0.27
275 75.15 27. 47 4,129 - 32 0. 34
300 68.22 25.78 3, 518 - 18 0.41
325 63. 46 25.10 3,186 - 9.4 0. 47
350 60. 00 25.00 3,000 - 6 0. 60
TABLE 5. Characteristics of the Double Convergent

Nozzle Used for Both Streams to Mach

Number 0.5 .




x_ 1‘\71# aM/ dx (107%) Foesn dy/dx (107%)
350 0.507 0. 151 59,774 ~12. %6
375 0. 540 0. 166 56. 685 -11.8
400 0. 585 0.188 53, 850 -10.7
425 0. 636 0.212 51.309 - 9.5
450 0. 693 0.239 49,110 - 8.0
475 0.758 0.267 47.305 - 6.4
500 0. 830 0.298 45.950 - 4.5
525 0.910 0. 329 45.008 e B
550 0.998 0. 360 44. 847 -107%
575 1. 094 0. 389 45.237 * 2.6
600 1.197 0.414 46,332 + 5.4
625 1.300 0. 382 47,677 + 7.3
650 1.374 0.196 49, 042 + 4.5
675 1.398 0. 026 49, 594 + 0. 64
700 1.399 1077 49.967 1076
725 1.399 0 49.997 0
750 1.400 0 50. 000 0

TABLE 6. Mach Number Distribution and Wall Contour

for the Supersonic Nozzle before Boundary
- Layer Correction.
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(mm) M, ®tmm) 5% (mm)
0 0 0. 000 ; 0.000

50 . 0. 04 0.2088 0.2612
100 ‘ 0. 05 0.1940 0.2428
150 0.08 0.1526 0.1912
200 0.15 0.1233 0.1554
250 0.27 0.1136 0.1457
300 0.41 0.1296 0.1718
350 a) 0.50 0.1769 0.2410
400 0.58 0.2137 0.3000
450 0. 69 0.2281 0, 3345
500 0.83 0.2295 0.3581
550 (2) 1. 00 0,2253 0.3827
600 1.20 0.2208 0.4186
650 1.37 0.2326 0.4885
700 3) | 1.40 0. 2980 0. 6352
750 1:40° 0.3689 - 0.7866
800 1.40 0.4364 0. 9304
850 1.40 0.5012 1. 0685
900 1,40 0. 5638 1.2019
950 1.40 0. 6245 1.3315
1000 1.40 0. 6838 1.4578
1050 1.40 0.7417 1.5812
1100 1.40 0. 7984 1.7021

*
TABLE 7. Values of 6 and 6§ for the Supersonic Stream
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X (mm) ~ 8(mm) 5* (mm)
700 0.298 0. 635
800 0.436 0. 930
900 0.564 1.202
1000 0. 684 1,458
1100 0.798 1.702
1200 10.909 1.937
1300 1,043 - 2.170
1400 118207 . 2.470
1500 1.254 2. 69

1600 1.356 2.91
1700 1. 456 3.12
1800 1.570 3.36
1900 1,665 3. 56

TABLE 8. Values of  and & for the Supersonic Stream

and for Values of x CorresPdnding to the Test Section
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(mm) M, ® oam) 6 nm)

0 0 0 0
- 50 ' 0. 04 0.2484 0.3107
100 | 0.05 0.2291 - 0.2867
150 0. 08 0.1796 0.2250
200 0.15 0.1451 0.1850
250 0. 27 0.1338 0.1716
300 0.41 0.1529 0.2026
350 0.50 0.2090 0.2848
400 0.5095 10,2848 0. 4028
450 0. 5400 0.3730 0.5152
500 0.5620 0.4404 0. 6040
550 0.5853 0.4970 0.6978
600 0. 6001 0.5487 0. 7709
650 0. 6362 0;5829 0.8348
700 0.6641 1 0.6150 0.8908
750 0.6936 0.6413 0. 9405
800 0. 700 0.7139 1.0498

TABLE g9, Evaluation of 6 and 6=°= in the Subsonic Nozzle
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*

(mm) My 9 (mm) % (mm)
900 - 0.7 0. 9242 | 1.3591
1000 0.7 1.0775 1.5844
1100 0.7 1.2251 1.8015
1200 0.7 1.3681 2.0117
1300 0.7 |77 1, 5070 2.2162
1400 0.7 11,6428 2.4158
1500 0.7 1.7756 2.6110
1600 0.7 - 1.9057 2.8024
1700 3.2 & - 2.0335 2. 9903
1800 0.7 2.1592 3.1751
1900 0.7 i 2. 2830 3.3571

TABLE 10. Evaluation of 8 and 5* for the Subsonic Stream

. and for Values of x Corresponding to the Test Section
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X (mm) Y G ) Mach Number
350 67. 35 0.50
400 62. 14 0.52
450 58. 39 0.54
500 55. 87 - 0.56
550 54, 35 . 0.58
600 53. 62 0.61
650 53. 46 0.63
700 | 53, 65 0.67
750 53,97 0.69
800 54,20 0.70

TABLE 11. Wall Contour Coordinates after Boundary Layer Correc-
tion and Mach Number Distribution for the Subsonic Two-

Dimensional Nozzle
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X(mm) Y(mm) Mach Nu.friber
350 60, 83 0.500
400 55. 09 0.585
450 50. 84 0. 681
500 47. 32 0. 830
550 46. 30 1. 000
600 47.94 1.198
650 50.97 1.374
700 52.51 1.400
750 53. 14 1. 400
800 53. 72 1.400

TABLE 12. Wall Contour Coordinates after Boundary Layer Cor-
rection and Mach Number Distribution for the Supersonic

Two-dimensional Nozzle ‘
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z Au u(m/s) u(m/s)
without B. L. with B. L.

0 (subsonic) 1 229 220
0.25 : 0.7 269 257

0.5 0.42 332 313
0.75 0.12 384 360

1 (supersonic) 0 . 405 380
®

TABLE 13. Evaluation of the Velocity Profile Without and With

Boundary Layer in the Turbulent Mixing Zone

@FOrx= 100 cm
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2 u
M M _bu
0 270°K 0. 34 0.7 0. 49 77.8
0. 25 260°K 0.36 0.85 | 0.721 96. 9
0.50 245°K 0. 38 1.08 | 1.162 | 126.5
0. 75 230°K 0.40 | 1.29 | 1.68 156
1. 00 210°K 0.43 | 1.40 | 1.96 176.3

TABLE 14. Table Showing the Different

Profiles in the Mixing Zone
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(] C-300 [ r— C 300H ;\

4 c-300 H —{ ¢ 300H

~ m —
Intake Supply
—> 4 ¢300 [ A c3oon B —
F:g |7 : R=l1at.

L - - -

- G300 [T Pl G 300H =

o c200 [ \ C200H [—/

First Stage o Second Stage
| 600 RPM

FIG. 2 COMPRESSOR PLANT STAGE ARRANGEMENTS
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X=0 - X=755
(mm) b, M Y=60 v
Y=Y =0 ; Y'=0
b M=o Y'=-0.12 Y'=0
M=1.49
Splitter
: Plate
Supersonic
Stream
l -
Subsonic__7 ~ Test Section — | X(mm)
Stream
M=0.50 M=0.7
Two Dimension_b_ One Dimension
Restriction Restriction
) Test Section——-—‘ X‘(Tnm)
(TOP VIEW)

FIG.8 GENERAL DESIGN OF THE NOZZLE
BEFORE BOUNDARY LAYER CORRECTIONS
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APPENDIX A

Review of Some Fundamental Relations Characterizing

an Isentropic Flow through a Nozzle

The equation of energy may be written considering a perfect
non-viscous gas

'uz uZ YRT

—

y-1 = constant.

Introducing the local sonic velocity a = o/yRT and the critical condi-
tions at the throat we get

u2 + az - (Y+l)u*2 )
y-1 2(y-1)
Hence,
-1 -1
2 y-1 2 » Y 2, p Y
:l'—"ziu* -Xz—u = a :yRT=Y‘E=YIp)—:(-%) =u*(—%) ,
P P
S0 1
B = [Iil st O S ]Y-l
p¥ - 2 @ 2 u¥ ?
but because of the one-dimensional analysis
‘ -
hoo A erer _wrfyn oy w7V
Ax pu u 2 2 u*
Applying this relation for the centerline we get
- 1/(v-1)
h = Eﬁ‘:lil I;l(__. ]
= - 5 .
u
Hence,
e
— -1
Y
o f AL M=k g I
h _ u 2 2 (u*)
Y 2
h v y+l y-1, u
2 2 (u*)



-78-
Rewriting the energy equation for the centerline:

T a2 y+l1 2

u

g v - A
so

(Y-1E2+2a2 = (\{+1)u=i=2
and |

2 _ ‘(\(+1)u>¥=z-(\(-1)—ﬁ2
2

But M- = '1—12/a2 , SO

_2 2a°
(Y*l)l;z-(Y-l)Ez
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APPENDIX B

From Appendix A we get, for the area ratio as a function of the

centerline Mach number distribution,

+1
1T §-UM+2 Z6-1)

y+1 !
and for the derivatives we have
— =2 —_— =2
h'M[(y-1)M“+2] = 2hM'(M -1)

BMI(y-1)M%+2]

2R (M -1 )+4RM AN - B M [ (3y-5)M5+4]

3

'H"'ﬁ[(y-l)ﬁzmj 231\711"(ﬁ2-1)+1zﬂﬁ'ﬁ”ﬁ+4m' .E"ﬁ'[(ey-s)ﬁzwj

_E'IT/I"[(3\'-7)1\_/12+6]-(6\!—14)F'IV£'21\_/[

e = i o N T . = S -
BRI (y-1)0M%42] = 2RM" (M2 -1 16RM M M+ 125M " M +24hM 1 M

-h'"'M! [(9y_11)1~712+8].ﬁ"1\_4" [(9\(-15)1\_/12+12 ]
-(18y-30 R M MR M [ (3y-9)M%+8]

-(18y -54 )R M'M" M- (6y - 18K M
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APPENDIX C

Derivatives of the inverse function used in the computations:

£ = f(M) ,
SO

M' = (ag/am)" !

MY o= M3 (d%e/aii?)

M= PR aPe/dM? + M2 adt/avd)
— f— 2 S & X A A

M"Y o= S32M'MM +M'2M”')' dzg/sz

3

S wn . adgsamd - e - atesamt

The derivatives of the chosen centerline distribution are as follows:

—m x, M 1/n
O et g D BOEE, - JF ey BN
M M, -1 .
so we get
- 1 1
—d sl o T gy e B
My = mMmN b kM) |+ X @@, -R),
aMm M1
- 1
2 x M n
—m=-2 == 2 e U (B
MLE 425 - mmopn™ b L - M) + 2R MLy -0
aM M1 P 5
5 L
(Xl-n) @mo1)@,-¢) ;
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— 1
3 2 x M e
M2t +3858 - mm-Dm-2)M™ 3| b i -M) ]
= — m t
am am M -1
L
+ 3km(m-1) ﬁm‘z(ﬁ —IV[)n
n t
L
3km(l-n) —m-1 n -

i k(l-n)(1-2n) =m

n

W
g

and

4 3
1\71‘1_%.1 +4 d—_% = m(m-1)(m-2)(m-3)M™"
dM aMm

" 4krn(rrI11-1 )(m-2) - 3

6km(m-1)(1-n) mm-z
- P
n

" 4km(1 -1¥(I-Zn) Mm-l

n

" k(1-n)(1-2n)(1-3n) =m
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In Runge-Kutta's method of integration we must integrate

B osm = 870208 g (25)
or
X r.-0.268
B(x) = 6(0) + 8 g(x)-0f(x) |dx
S, L ]
or
X :
B(x) = 8(0) +S d(8, x)dx
0

Taking a discrete number of equal steps (hn)‘ and considering the

fourth order method we get

1
B(n+l)-0(n) = + [k1+2k2+2.k3+k4:|

where: kI = hn.d(xn, Gn)
k, = h_.d( xn+-§;hn, en+§k1)
ky = hn.d(xn+—§—hn,~ en+%k2)
ky = h_.d(x_+h, 8_+k,)



