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Abstract 

This investigation is concerned with the notion of concen­

trated loads in classical elastostati cs and related issues. Following 

a li1nit treatment of problems involving concentrated internal and 

surface loads, the orders of the ensuing displacements and str e ss 

singularities, as well as the stress resultants of the latter , are 

dete rmined. These conclusions are taken as a basis for an alterna­

tive direct formulation of concentrated-load problems, the 

completeness of which is established through an appropriate unique­

ness theorem. In addition, the present work supplies a r ecipr ocal 

theorem and an integral representation-theorem applicable to 

singular problems of the type unde r consideration. Finally, in the 

course of the analysis presented here, the theory of Green's functions 

in elastostatics is extended . 
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Introduction 

Although the notion of a 11 concentrated load11 is a natural 

ingredient of the mechanics of particle systems and rigid bodies , it 

is inherently alien to the mechanics of deformable continua in general 

and to elastostatics in particular. Indeed, the introduction of concen­

trated loads into the linearized equilibrium theory of e lastic solids 

gives rise to singular solutions of the governing equations that violate 

the basic approximative assumptions underlying the classical theory. 

Further , the direct formulation of concentrated- load problems in 

elastostatics that has become traditional is not covered by the conven­

tiona l uniqueness theorem and is incomple t e in the sense of admitting 

a multiplicity of solutions, as was emphasized by Sternberg and 

Rosenthal [l] (1952). 

The foregoing uniqueness issue cannot be safely dismissed 

w i th a reference to the fictitious nature of concentrated loads: the 

point is that the fiction is us e ful provided it is made meaningful. 

Moreover, the fact that loads of thi s type r epresent merely a con­

venient idealization of certain physically realistic loadings hardly 

justifies conceptual vagueness or outright ambiguity in their mathe­

matical treatment. 

A comprehensive study aiming at a clarification and resolution 

of various fundamental questions connected with concentrated loads in 

elastostatics, was published by Sternberg and Eubanks [2] (1955). 

The program pursued in. [2] may briefly be outlined as follows . To 



-2-

begin with, the solution to a problem involving concentrated internal 

or surface loads is d efined as the limit of a sequence of regular solu­

tions, corresponding to distributed body-forces or surface tractions. 

Such a limit definition is natural on physical grounds and is suggested 

by Kelvin's [3 J original treatment of the problem of a concentrated 

load at a point of an elastic medium occupying the entire space. The 

n ext objective is to demonstrate the existence of the limit solution and 

to represent it in a manner suited to the determination of the orders 

and stress resultants of its singularities at the load points. Finally, 

the foregoing properties of the singularities - together with the 

boundary conditions for the regular surface tractions - are taken as a 

basis for an alternative direct characterization of the solution to 

concentrated-load problems, the compl eteness of which is the object 

of an appropriate uniqueness theorem. Such a direct formulation of 

concentrated-load problems obviates the necessity for carrying out 

explicitly a limit process that may in particular applications be highly 

cumbersome. 

The work in [2 ], which provides a conceptual guide for the 

present investigation, fell short of its purpose. Thus, the proofs in 

[2 J of the theorems concerning the limit definition, representation, 

and properties of the solution to a problem with concentrated surface 

loads (Theorems 7 .1, 7. 2) take for granted certain properties of the 



-3-

1 
Gre en's functions employed in these proofs . Further, the argument 

used in [2 J to establish a uniqueness theorem (Theorem 8.1) for 

concentrated loads, is inconclusive
2

. A r e medy of these d e ficiencies 

requires some additional hypotheses, as well as a substantially 

different approach to the proofs of the theorems affe cte d. 

The present study serves a dual purpose. First, it amends 

those results in [2 J that require modification and attempts to carry out 

rigorously the general program of [2 J. Second, the current work 

contains various results on Green's functions and integral r e presenta-

tions pertaining to the second boundary-value problem in elastostatics 

that are of interest in themselves. 

The subjects of concentrated loads and of Green's functions in 

linear elasticity are intimately related. In fact, the theory of Green's 

functions supplies a helpful means for the study of concentrate d loads, 

while at the same time the physical interpretation of the requisite 

Green's functions rests on the notion of conc e ntrate d loads. It should 

be emphasized, however, that this interconnection does not involve us 

1 
Specifically, it is assumed that u'. (Q, P, P

0
) (defined in Theor e m 6 .1 

of [2 ]) coincides on its domain of- definition - for fixed po in the 
interior - with a function that is jointly continuous with r e spect to Q 
and P for Q on the boundary and P on the closure of the r egi on, pro­
vided Q -/. P. ~~ is also assumed that uij(Q, P) (defined in Theorem 6.1 
of [2 ]) obeys uij(Q, P) = O(r- 2 ) as p ...... Q, for every Q on the boundary, 
if r is the distance from Q to P. 

2. In the derivation of Equation (8.15) of [2 J it is supposed that the dis­
placements of the "difference state" are uniformly continuous on the 
intersection of the region with a deleted neighborhood of each load 
point, whereas only their continuity is assured directly by the 
hypotheses of Theorem 8.1. 
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i n a logi cal circula rity since the u se we make of Green's functi ons i n 

the a n a l ysi s of concentr ated load$ is e ntir e ly independent of the physi­

cal significance of these functions. 

In Section 1 we dispose of various nota tional and geometric 

pre liminaries, and - for l a t e r e conomy- introduce the definition of an 

11 elastic state 11
, In Section 2 we r ecall briefly from [2 J a limit 

definition and certain r e l ev a n t properties of the solution to Kelvin' s 

prob l em. This expository material is included here be cause a limit 

treatment of Kelvin's p roblem provides a transparent model for the 

more intricate analogous issue r e lated to concentrated surface loads. 

In addition, Kelvin's solution plays an import ant role in connection 

with various Gree n' s functions introduced s u bsequ entl y. 

Section 3 is devoted to analytical pre r equisites fo r a t r eatment 

of concentrated surface loads . Here w e construct, fo r any region 

w i th a sufficiently smooth boundary, certain singular solutions to the 

e quations of elastostatics. The s e solutions, which possess a 

prescribe d singularity at a g ive n point of the boundary, a r e used at the 

e nd of the section to arrive at an integral repr e s entation - in terms of 

the given surface tractions - for the solution to the second bou ndary­

value problem appropriate to such a region. An e ss ential featur e of 

the representation obtained h e re is that it holds~ to the boundary. 

The basic ideas underlying the unfortunately rather lengthy and 

involved developments in Section 3 are drawn primarily from Weyl [4 ]. 

In Section 4 w e apply the integral repres e ntation just m e ntione d 

to a limit definition of the s olution to the problem of a concentrated 

surface load that is balanced by regular surface t ractions. Further, 
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after establishing the existe n ce of the limit solution, we confirm that 

the orders of its (surface) singularities are the san1.e a s those encoun­

tere d in Kelvin's problen1. and that the resultant of the stress 

singularity coincide s with the given concentrated load. All of the 

considerations in this section are once again confined to regions with 

'' smooth'' boundaries. 

The results regarding concentrated-load singul arities in 

Section 2 and S ection 4 suggest an alternative direct formulation of 

problems involving both concentrated internal and concentrated 

surface loads. The completeness of this direct formulation is 

established in Section 5 through a uniqueness theorem, which - in 

contrast to the results of Section 3 and Section 4 - appli es to a broad 

class of regions. The principal tool employed in the proof of this 

theorem is furnished by Green's functions for the displacements in the 

second equilibrium problem, which we introduce for this purpose and 

whose existence for the region at hand we postulate . For bounded 

regions, the Green's functions used here differ in two essential 

respects from the customary Green's functions used in [2 ]. First, 

the Green's functions defined in Section 5 possess only one internal 

singularity (of the Kelvin type), the equilibration of which is achieved 

by conveniently chosen regular surface tractions; second, they are 

symmetric. The proof of the uniqueness theorem for concentrated 

loads, as well as the proofs of the results given in S ection 6, is 

greatly facilitated by a generalization of the r eciprocal theorem to a 

class of singular elastostatic fields, which is carried out at the 

beginning of Section 5. 
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In Section 6 we apply the displacement Green's functions of 

S e ction 5 (together with their counte rpart for the str e ss e s) to the 

derivation of an integral representation for the solution t o 

concentrated-load problems in the formulation supplied by the unique­

ness theorem of Section 5. At the end of Section 6 we establ ish a 

connection between the Green 1 s f unctions entering the pr e ceding 

representation theorem and the singular elastostatic fi e lds i nvolved i n 

the representation theorem of Section 3 . This connecti on, in partic ­

ular, reveals the behavior of the Green1 s functions at the boundary of 

the region. 

Finally, we remark that the developments in Section 5 and 

Section 6 - with the exception of the last theorem in Section 6 - are 

essentially self- contained. 
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1. Notation and preliminary definitions . 

Throughout this investigation lower-case Latin or Greek 

letters, when not underlined, stand for scalars; lower-case L atin 

letters underlined by a tilde denote vectors, while lower-case Greek 

letters underlined by a tilde designate second-order tensors. Upper-

case letters are reserved for sets; in particular, upper-case script 

letters are used for sets of functions. We employ the letter E for the 

entire three-dimensional e u clidean space. If A is a set in Ewe write 

A and oA for the closure and the boundary of A, respectively. The 

symbol A r epresents the set obtained from A by deleting the point 
a ,..., 

with the position vector _e; in order to avoid cumbersome notation, we 

agree to write A and oA in place of (A) and (oA) • Further , we 
a a a a ,..., 

call D the diagonal set defined by 

D= [~.~)1~.x)EExE,~=x} (1.1)
1 

Finally, the open sphere (ball) of radius p centered at 25 is denoted by 

B (3), so that 
p 

( 1 • 2) 

Standard indicial notation is used in connection with the carte-

sian components of tensors of any order: Latin subscripts and super-

scripts, unless otherwise specified, range over the integer s (1, 2, 3), 

Greek i ndic es have the r ange (1, 2 ), summation over repeated indices 

being implied; subscripts preceded by a comma indicate partial 

1 
Here and in the sequel, we us e the conventional notation for the 
cartesian product of two sets. 
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differentiation with respect to the corresponding cartesian coordinate. 

For functions of mor e than one pqsition vector, the aforeme ntioned 

differ e ntiation will be understood to be performed with respect to the 

coordinates of the first position vector
1 

If u is a vector, we mean 

by 'ii'u the second-order tensor with the components u .. ; the corre-
,._, 1, J 

sponding nJ.eaning is to be attached to 'ii' 'T", where 'T" is a s econd order ,.., ,.., 

tensor. As usual, 6 . . stands for the Kronecker delta. 
lJ 

If cp is a function of two position vectors, then cp(., y) indicates 

the subsidiary mapping obtained by holding 'l fixed. To charac terize 

the smoothness of functions introduced, we write cpEC(A) if cp is 

defined and continuous on a subset A of euclidean n-space . Moreover , 

if mis a positive integer, we write cp ECm(A) when cpEC(A) and its partial 

derivative s of order up to and i n c luding m are defined as well as con-

tinuous on the interior of A and the re coincide with functions 

continuous on A. .Finally, if A is a surface in E, the statement 

cp El/(A) is to convey that cp is defined and uniformly Holder-continuous 

on A, i.e. that there exist k >O and a.E(O, 1] such that 

Analogous interpretations apply to t e nsor-valued functions. 

In the present investigation we requir e two class es of regions: 

regular and simple regions. W e say that R is a r egular r egion if it is 

an open region in E and there exists p >O such that for all p> p the 
0 0 

boundary of ROB (0) consists of a finite number of non-intersecting p,.., 

1 
Thus, cp . (x,y)=ocp(x,v)/ox .• 

,1,....,,....,, r-J!..., 1 
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c losed regular surfaces, the latter t e rm b e ing used in the sense of 

Kellogg [5] (p.112). Note that a r egular r egion, as d efined here, 

n eed not b e bounded and, if unbounded; ne e d not b e an exterior 

r egion since its boundary may extend to infinity. In addition, the 

boundary of a regular r egion may have edge s and corners. If ):E oR 

and oR has a unique tange nt plane at :1.,, w e always denote by _e (_z) the 

unit oute r normal to oR at:t,. Furthe r, in these c ir cumstances , we 

call O (y, ;\) the intersection of oR with a clos ed circular cylinder of ,...., 

radius ;\and height 2;\, centered at z, the axis of the cylinder being 

parallel to~{],). Also, IT {_r, A.) will always designate the intersection 

of this cylinder and the tangent plane of oR at :t,. Thus, choosing 

cartesian coordinates xi such that the x 3 -ax is points in the d irection 

of n (y), one has 
,...., -

2 
O (y, ;\)=[z lz E oR, (z -y )(z -y )s;\ , iz3 -y3 isA.}, ,....., ,.....,,....., a. o. a a. 

2 
IT(y, ;\)=[z lz EE, (z -y )(z -y ) :;:;:;\ , z 3 -y3 =0 } • 

...,,,, ,....,,....., a. a. a a 

A point y on the boundary of a regular region R is said to be a regular 
~ 

b oundary point i f: 

i) oR has a unique tangent plane at J,; 

ii) there exists ;\> 0 such that O (y, ;\), whe n referred to a 

rectangular cartesian frame with the origin at J, and the x 3 -axis 

pointing in the direction of n(y), is given by ,....., ,...., 

1 
Recall that Greek and Latin indices have. the r e spective range s (1, 2) 
and ( 1, 2, 3). 
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2 2 
0(0,A.)=[zjzEE, z z :::.::>..., z 3 =cp(z1 ,z2 )}, cpEC (TI{_Q,A.)) ,.._, ,.._,,.._, a a 

'Ne define n ext a simple region to be a boundecl regular r egion, 

the boundary of which is a sing le surface consisting of regular bouncl-

ary points exclusively. We shall make frequent use of the following 

two properties of a simple region R: 

(a) there exists A.>0 such that~' s)EC>Rx(O, A.] implies 

25+s_.e~) ~ R ; 

(b) there exists k > 0 such t hat 

IE~)-..e \r) I $ k 125 -r I for all (x, y)EoRxoR, 
,.._, ,.._, 

} (1. 5)2 

Prope rty (a) assures that for some A. >0 {depending only on R) any 

straight line segment of length A. is suing from a point of oR in the 

direction of the outer normal does not re-enter R. The existence of 

such a A. is a direct consequence of the present definition of R and the 

Heine-Borel theorem. The inequalities (1. 5) follow from the assumed 

smoothness of oR; the first of (1. 5) is elementary, whereas a proof 

of the second may be found in [5 J (p. 299). 

Turning to preliminaries conce rning the linearized theory of 

homogene ous and isotropic elastic solids, we now introduc e 

1 
Note that O (0, A) here has a higher degree of smoothness than that 
guaranteed 6y. Kellogg's definition of a regular surface element 
([5], p. 105). 

2 
The symbols "A 11 a nd 11 

• 
11 are used throughout to denote vectorial 

and scalar multiplication of vectors, respective ly. 
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Definition 1.1. (S tate , elastic state ). Let A be a region in E, i . e . 

~open connected set together with all, some , or none of its boundary 

points, and let A be the interior of A. If u is a vector-valued and T a 
-~-- --~-

second- order tensor valued function defined~ A, ~ call the ordered 

pair s=[i:, .r,J ~state on A. We~ that S=~, .rJ ~an e l astic state 

2E A , with the displacement field~ and the stress field .r,, corre -

sponding to the body-force!_, the shear modulusµ, and Poisson's 

ratio a, a nd w rite 

S=[);,,! ]Ee. (!_,µ. a;A)' 

pr ovided: 

1 ° 1 • 
(a ) ~EC (A)()C(A) , ,!, EC (A)nc (A) , LE C (A), whereas µ. and 

a are constants with µ. > 0, -1 <a< 1 /2; 

(b) ~· 1,, ! • µ and a satisfy 

'f . .. +f.=0' 'f .. =µ. [122a fi . . uk k+~ . . +u .. ] on A; 
Ji, J i iJ - a i J , i, J J, i -

(1. 6 ) 

(c ) i f A is unbounded, 

-1 -2 - 3 
~~)=O(x ) , r_,(e }=O(x ) , _!,~ ) =O (x ) as X -+ OO • (1. 7)

1 

The first of (1 . 6 ) r e presents the stres s equations of equilibrium - the 

second the str ess-displacement relations. In particular, (b} ensures 
0 

t h e symmetr y of the stress .tensor .r, on A. We recall that the 

inequa lities imposed i n (a) on the e lastic constants µ and a are 

necessary and sufficient for t h e positive d efiniteness of the strain-

1 
Here a nd in the sequel, we write x in place of Ix I· The orde r of 
magnitude symbols 11 0 11 and 11 0 11 are used throughout in their stand­
ard mathematical connotation. 



-12-

energy density . If A is an exterior <lon1ain and f =~, the order con-

ditions at infinity (1. 7) are implied by 

~~) =o(l) as· x ..... co . 

If S = [u, r] is a state on A and L: is one side of a regular 
~ ~ 

surface with the unit outer normal vector ,.e, we call t the traction 

vector of S on L: if 

t.='f . . n. 
1 lJ J 

(1. 9) 

at all nonsingular points of L: . If A is a region, S is a state on A, and 

L: is a regular surface contained in A()oA, then - unless otherwise 

specified - we mean by the ''tractions of S on L:" the tractions of s on 

the side of L: facing the exterior (complement) of A . 

Equality of states, addition and multiplication by a constant, as 

well as differentiation and integration, are defined as follows . Suppose 

s=[~,.:[J, s'=i2::'·L'J, s"=[~" , ~'J are states on A and l et c be a 

constant. Then, 

S '= s" if u'=u", r'=r" on A, 
.-.....,; ~ .-.....,; .-.....,; 

S=S'+s'' if u=u'+u'', 
,..__, ,..__, ~ 'T = 'T' + 1.,'' on A 

S=cS' ifu=cu', T =er' onA. 

Next, 

S '=S". ifu'.=u'.'., ,,., -~" on A 
, 1 j J, 1 

1 jk - I jk, i 1 

provided the derivatives here involved exist. Further, if 

S( •, ;.)=[;:,(·, )._),!,(•,A.)] is a state on A for every A E [a, b], then 

1 
See Fichera r6 l and Gurtin and Sternberg [7 l (Theorem 5.1 ). 
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b b b 

S '= JS( ·, )..)dt._ if~.'= J ;:,(·, t._)d/,, ;_,'= J r._(·, ).)dt._ on A, 

a a a 

provided the preceding integrations are meaningful. Finally, we 

attach the obvious interpretation to the limit of a sequence of states. 
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2. Internal concentrate d loads. Ke lvin's problem. 

In the present section we deal with the problem of a concen-

trated load applied at a point of a medium occupying the e ntire s·pace E. 

The solution to this problem was fi rst given by Kelvin f 8 J; it is 

derived in Kelvin and Tait's treatise [3 J (p. 279) through a limit 

process, which is made fully explici t in [2 J. The limit formulation 

of Kelvin's problem to be presente d here follows closely that adopted 

by Sternberg and Al-Khozaie [9 J in treating the analogous problem of 

the linearized theory of viscoelasticity. W e first introduce 

D efinition 2. 1 . (S equence of body-force fields t e nding to~ concen­

trated load). Let ~EE and let ;t be ~ vector. We~ that . Lim} is~ 

sequence ~ body-force fie l ds on E tending to~ concentrated load i at 

(the point)~ if: 

m 2 
(a).£ EC (E) (m=l,2,3, .•. ); 

(b) fm=O onE-B (a) (m=l,2,3, .•• ), where fB (a)} is a 
....... - Pm...... · pm ...... 

sequence of spheres such that pm ..... O ~ m .... oo; 

(d) the sequence {J !!, m I dV} is bounded . 

E 

We cite next a theorem which supplies both a definition and a 

representation of the solution to the problem under present 

consideration. 
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Theorem 2.1. (Lin'lit definition of the solution to Kelvin 1 s problem) . 

Let a EE and let t be a v ecto r . ---- --- Further let f!,m1 be a sequence of 

body-force fields on E tending to a concentrated load t at a . Then: -- - -- -- ,..._, - ,..._, 

(a) the r e exists~ unique sequence of states f.Sm] such that 

m m m m s =[u , T ]Ee(f ,µ,a;E) (m=l,2,3, • •• ); 
,..._, ,....., ,..._, 

m 
(b) [ !::: } converges to a state S = [~, ~. J ~ Ea, the convergence 

being uniform~ any closed subset of Ea; 

(c) the limit state s is i ndependent of the sequence r ~ m} and 

admits the representation 

S (x)=S 1 (x, a)-e,. for all x EE 
""-J ~~ 1----,..., a 

(2. 1) 

where 

i i S (x,y)=S (x-y,O) for all (x,y)EEXE-D, 
~,,..._, ,..._,,,..._,,,..._, -...,,,..._, 

1 
while the displacements and stresses of S ( •, 0) are, for all~ E E

0 
, 

given~ 

[

x.x. l 
~2J +(3-4a)oijj, 

(2. 3) 

1. 1 [3x.x .x 1 ~ 1 J < 
'T.

1 
(x, 0) = - 3 2 +(l-2 a )( 6 .. x

1 
+f).

1
x . - 5 .

1 
x.) • 

J < ,....., ~., 8;r ( 1 - a )x x lJ < i < J J < i 

We call S the Kelvin state corresponding to a concentrated 

load {, at~ (and to the e lastic constants u and a ) • In particular, ~ 
~ 

~that Si(· , z> is the Kelvin state corresponding to a unit concen­

trated load at y in the x . -direction. 
------ ,....., --- 1 

1 
Recall from the definition of the diagonal set D in Section 1 that 
EXE-D=f(x,y),(x,y)EEXE,x fy}. 

-· '°'J - • ,,.....,, ,.._ __, 
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This theorem is proved in [2] 
1

. The need for condition ( d) in 

Definition 2 .1 is also established in [2 J, where it is shown by means 

of a counterexample that conclusions (b), (c) in Theorem 2.1 become 

invalid if this hypothesis is omitted. The foregoing requir ement is no 

longer necessary if ;£mis parallel and unidirectional, in which case 

condition (d) is implied by (c) of Definition 2.1. 

We now quote from [2 ], 

Theorem 2.2. (Properties of the Kelvin state). The Kelvin state S 

corresponding to~ concentrated load i at ,e has the properties: 

(a) s= [ u, T J Ee ( o, µ, a ;E ) ; 
,...._,,, rv rv a 

(c) J ,.!, dA=i , J (3-,e)t\!, dA=Q, for every p> 0 , 

where t is the traction vector on the side of oB (a) that faces a. ___ ,._.,___ ------- p,_., -- ""' 

As is pointed out in [2 ], the formulation of Kelvin 1 s problem 

in terms of (a) and (c ) alone, which appears to have become tradi-

tional, is incomplete in view of the existence of e lastic states on E 
a 

that possess self-equilibrated singularities
2 

at_e . In contrast, as will 

be shown in Section 5 (Theorem 5. 2), properties (a), (b) and the first 

of (c ) suffice to characterize the Kelvin state uniquely. 

1 
Although the uniformity of the conver gence asserted in conclusion (b) 
is not mentioned in [2 j, it is easily inferred from the argument 
used in [2]. 

2 
E.g., a center of dilatation at,e. 
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3. Repr e sentation of elastic state s corresponding to given surface 
tractions. 

The proof in [2] of Theorern 2. 1 concerning the limit defini-

tion of the Kelvin state rests on a representation of the sequence of 

approximating states in terms of their body-force fields. On the other 

hand, once the Kelvin state has been explicitly determined in this 

manner, the proof of Theorem 2. 2, which asserts various properties 

of Kelvin's solution, becomes entirely elementary• For a parallel 

treatment of the more involved issue of concentrated surface loads 

(in the absence of body forces) one requires first a representation of 

elastic states in terms of their surface tractions. A representation 

of this type - valid for the interior of the region at hand - is supplied 

by the theory of Green's functions for the second boundary-value 

problem of elastostatics, an exposition of which may be found in 

Section 6 of [2] • This theory is conveniently modified and generalized 

in Sections 5, 6 of the present investigation. Unfortunately, a rigorous 

proof of the analogues for surface loads of Theorems 2. 1, 2. 2 by 

means of Green's functions offers considerable analytical difficulties, 

which stem from the elusive behavior of these functions at the 

boundary. For this reason we deduce in the current section an 

alternative representation of elastic states - confined to simple 

regions - which holds~ to the boundary. This alternative repre-

sentation is better suited to a limit treatment of concentrated surface 

loads, which is carried out in Section 4. At the same time, as will 

become apparent in Section 6 (Theorem 6. 2 ), the representation 

arrived at in the present section enables one to ascertain the 
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boundary behavior of the Green's states introduced in Sections 5, 6. 

Although the basic idea underlying the subsequent clcvelop-

1nents is suggested by Weyl [4]1
, some of the results obtaine d in what 

follows go considerably beyond those contained in [4], while others 

are inore closely related to the work of Kellogg [5 ], Giraud [11] and 

Pogorzelski [12] (Chapter 12). We first introduce 

Definition 3.1. (Tangent states). Let R be a simple r egion, assume 

yEoR and A.E(O, oo). 
,..., -- We call 

-i c- i -i J 8 <- • X· "-)= r3 <-, X• "- ), 1. <-, X· A. ) 

the tangent state for the region R at ;y,, corresponding to the xi­

d irection, the parameter A., and the elastic constants µ, CJ if for all 25 

in the s e t 

R- [~ j~EE, ~ =;y,+s_B~), sE [O, A.]} , 

A. 

Si(3,;y,, A. )=4(1-a) s\~,X)-2(1- a)J ss! ji~.;i+s-BQ'.))ds 
0 

A. 

-2(1 - 2a)n.~)JL1si .(25,;y,+sn(y))-sj . (?s,x+sn(y ))]ds 
J ' J ,...., ,....., , l ,....., ,....., 

0 

where ,B is the unit outer normal to oR, while Si( · , _l) is the normalized 

K e lvin state of Theorem 2 .1. Further, we adopt the notation 

1 
See also Weyl [10] (p . 70), where an essential shortcoming of [4 ]is 
discussed. 

2 
According to an agreement stated in Section 1, the differentiations in 
(3 .1) are to be performed with respect to the first position vector . 
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(3. 2) 

-i 
The state S (•, J.; oo) in the preceding definition admits a simple 

physical interpretation. To this end hold R and :t, fixed and consider 

the half-space 

whose boundary coincides with the tangent plane of oR at l . Then 

Si(• •l• oo) is the Boussinesq-Cerruti solution to the problem of a unit 

concentrated load acting at yin the x.-direction on an elastic body 
,..._, l 

occupying H (see Love [13 ] , p. 242 et seq.). In the present context it 

is essential to remark that our use of the foregoing tangent state, 

though motivated by, in no way depends upon, its physical significance 

as the solution to a particular concentrated-load problem. This 

physical meaning of the Boussinesq-C erruti solution is, incidentally, 

readily confirmed by a limit process (see Love [13], loc. cit.) 

analogous to that employed in Theorem 2.1 to define the Kelvin state, 

but based on a sequence of distributed surface loads. The tangent 

state "Si( .' J.; A.) evidently differs from s 1
(. 'r· oo) by an e l astic state 

regular on H. 

Equations (3.1), (2.2), the first of (2. 3) and the second of (1.6) 

yield, after some computation, that for all x in the domain of definition 

-i 
of S ( • , X• oo) , 
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[ 

(x. -y.)(x. -y . ) 
o 1 1 J J +( 1 - o ) 

h-xl 3 
6 .. J 11 

1-2 0 [ J-+-4- n. (y)h . ~' y)-n. (y )h . (x , y)+(x -y )n (y)h .. (x, y) , 
Trµ 1 ....... ' J ....... J ....... ' 1 ....... ....... p p p ....... ' lJ .............. 

. 3 o (x .-y, )(x. -y.)(xl - y- \ 
- 1 - 1 1 J J ( k' 
T.1(3,y,co)--- 5 

J ( ....... Tr I I x -y .............. 

1 20 6 . . (xk- y 1J+6. 1 (x .-y.) 
- _-_ lJ '- 1 ( J J 

2rr L. 13 
~-x 

1-2 o [- .., + - 2- n. (y)h .k(c' v)+(x - y )n (y )h . . 1 (x,;y) I , 
Tr - 1 ....... ' J ,..., p p p ....... ' lJ ( ,....., .J 

where 

For future purpos e s we also note that 

-i 
T .1 (3, y,co)nk(y)= -

J ( ....... ....... 

3(x. - y . )(x .-y.)(x 1 - y 1 )n 1 (y) 
1 1 l J ( ( <: ....... 

21T lx-yj
5 

.............. 

(3. 3) 

(3 . 4 ) 

(3. 5) 

In connection with Definition 3 . 1 it is. essential to r ecognize 

that the tangent state S \ ·, x_,. co ) is not n ecessarily regular on R s ince 

the ray issuing from yE oR in t he direction of _.B (y) may re - enter R 
....... ....... 

unless R has certain convexity prope rties. Such internal singularitie s 

on R of B"i(· •X• A.) are precluded for suffi ciently small A.>O, as is clear 

from 

L emma 3. 1 (Prope rties of the tangent states) . Let R be a simple 

region and let A.> 0 be such that 

;t,E oR , ~ =x+s_.BQ:), s E (0, A.] implies~~ R . 

1 As was p ointed out in Section l, the existence of such a choice of A. 
is assured. 
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region R at!.: corresponding to the xi- direction, the parameter A, 

and the elastic constants µ, a. Then: 

(a) S
1
(.,X,, A)Ee(Q_,µ, o;R) for all yEClR, 
. 'l --.-,...., 

u1
(., ., >..)EC(RXClR-D), T 1

(·, ·, >..)EC(RXClR-D), ,..._, ,..._, 

(b) there exists r<. > 0 (independent of :l) such that 

l~\~·X.· A) l<x. l.e-:zi-
1 

for all (25.:t,)ERXoR-D' 

ll,i(?s,:z, ;\) l<x. l~:t, l-
2 

for all (;s.:t,)ERXoR-D, 

lli(.25 1 ,:z, >..) l< x. l;s-_l ,-l for all (25 1 ,l'.)EClRXoR-D, 

where ti(·, y, >..)is the traction vector of Si(·, y, ;\) on oR . ,..._, ,..._, --- -- ,...., - :l 

Proof. Conclusion (a) is easily inferred from (3. 1). To prove (b) 

observe on the basis of Definition 3. 1 that for every :t.,E 8R, 

- i -i u (25, y , A)=u (x,:t, co)+O(l) as x -+:i, , 
,...._, ""' ,......., ",-...J ~ 

- i -i 
~ (25,;t,, A)=:S \25•:t:• oo)+O(l) as ;s-+X, 

} (3. 7) 

these estimates holding uniformly with respect to all yE8R. The first ......, 

two of conclusions (b) now follow at once from (3. 7), (3.3), and (3.4). 

With a view toward the last of (b), note first the identiti es 

- i -i 
t j05<¥> ;\)=T jk\25':t:' ;\)nk(.25) 

=TA: (?s, :l> oo )nk(,¥;) +T }k 05, .~'.> >.. ) [nk(.25)-nk \l) J 

+['i"~1 (x ,y, A)n
1 
(v)-'T~k(x,:t,, oo)n

1 
(y)], 

J <: ......, "" <: r<., J ,...., <: ,..._, 

which hold for all (?s,;t,)EoRXoR-D. Now use (3.5), (1.5) together 

with the estimates already confirmed to verify the traction-estimate 

in (b). This completes the proof. 
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We now turn to 

Theorem 3. 1. (Generation of elastic states from surface d e nsities). 

-i 
L et R, A. a nd S (•,;t,, A. ) be~ in Lernma 3.1. Further,let~Of(oR) a nd 

define formally 

ulx)= J uilx , v, A.)e . lv )clA for a ll x ER , 
""'~ r>.J ~ ,.(.., l~ x-----

oR 

J-i 
T lx)= T l x , y, A.)e . (v)clA for all x E R , ,......,\,:::; ,......, ~,......., l""-' y ----,..._, (3. 8) 

oR ,..._, 

p 

i s-i T fx)=~ (x)e. (x )+ T lx, v, A.)e . (y)clA for all x EoR , 
,......,~ ,......, ,......, 1.,....,,, ,......, ~ r6 l,-..,; x-----

oR 

where 

, i _ 1 +2 a a 
1iJ •

1 
- 6. .n1 +o.1 n. -n.n.n1 + - 2- n. ( c5 .

1 
-n .n

1 
) on R 

J c lJ c 1 c J 1 J c 1 J c J c 
(3. 9) 

and the last integral i n (3. 8) is t o b e interpreted~ a Cauchy principal 

value in t he sense of ----------

The n: 

p 

Jyi ~.;[,, A. )e i(~)clA = lim J f,i~•:i• A.)ei(.~)clA • 
oR ::l e:- 0 oR- 0 (.25, e:) ::l 

(a) 

(b) 

( c) 

the integr a ls in (3. 8 ) exist; 

s = [ u, T ] EC.( O , µ, a ;R) ; 
,...., - ,...., 

t lx)=e ' x )+ J firx, v, A.)e . (y)clA for all xEoR, 
,......,~ ,.......,~ ,....., \.C r<,, 1 ""'-I :i -- __ ,...., 

oR 

1 
See (1. 3) for the definition of 0 (.25, e: ). 
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provided,!, ,Ii ( ·, :£,, A.)~ the traction vectors of s, s i( ·, -x,. A.)~ oR 

and oR , respectively. 
-- 1 

1 Proof . The existe nce of the first i-wo integrals in (3. 8) is as sured by 

Lemma 3. 1. Note in particular that the first integral, though 

irnproper for 25E oR, is convergent because of (b) in this lemma. 

Further, (a) and (b) in the present theorem imply (c), as follows at 

once from the third of (3. 8) together with (3. 9), (1. 9), and the final 

estimate in Lemma 3 .1 . Also, it is clear from the first two of (3. 8), 

in view of (a) in the lemma, that 

s = [ u, T J Ee( o , µ, a;R). ,.._, ,.._, ,.._, 

The preceding statement in particular guarantees the con­

tinuity of£, on R. To verify the continuity
2 

of£ on R, choose ~E oR 

and e > O. Then, because of (b) in Le1nma 3.1 and the boundedness of 

~ on oR, there exists p > 0 such that 

whence 

I I [ uifx, y, A. )-uifz, y, A.) J e. (y)dA I < 2 8 for all x ER . 
,......, \.:;.:; ~ ,...._,, \..:::::;, f"'t.,J i~ l 

oR()B p ~) 

1 
The following proof is suggested in part by Kellogg 1 s [ 5] 
Chapter IV, Section 5) treatment of the behavior at the boundary of 
the d e rivatives of N ewtonian potentials appropriate to surface 
distributions. 

2 
In connection with the subsequent argument see Kellogg [5 J 
(pp. 150, 160). 
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On the other hand, by virtue of the continuity of ,Bi(·,·, A.) asserted in 

(a) of Lemma 3 .1 and the boundedness of~ on oR, there exists o>O 

such that 

lf c,B \25·~· A.)-£.\~,X· A.)]eiCz)dAX I< e: for all25ER()Bo~). 
8R-Bp~) 

Combining the last two inequalities and using the first of (3. 8), one has 

Hence u is continuous on R • ....., 

To complete the proof it remains to be shown merely that the 

singular integral in the last of (3. 8) is meaningful in the sense of 

(3.10) and that ;[,EC(R). For this twofold purpose it is helpful to prove 

first that for all~ E 8R, 

lim lim J ii~-sE~)._l, A.)ei{_l)dAy=.li~)ei~) 
e:-- o s ..... o+ o~, e:) ...... 

(3 • 11 ) 

with 1 i given by (3. 9). 

We now establish (3. 11). Choose~ E oR and hold~ fixed . For 

convenience choose the coordinate frame in such a way that its origin 

is at~ (so that~ =Q) and the x 3 -axis points in the direction opposite to 

E(Q). In this frame, from (3. 9), 

(3. 12) 

Thus (3 ·• 11) now bee ome s 

(3. 13) 
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where 

(3. 14) 

Let 8 >0 be such that 0 (0, e ) admits the r e presentation (1. 4) and let 
0 ~ 0 

-X, be the function defined by 

(3 • l 5) 

where cp and II (0, E: ) are as in (1 . 4) and (1. 3 ), so that yETI(O, e: ) ,._ o ~ ,._o 

From (3 .15) one draws, for every e:E(O, e: ) , 
0 

-i - -
. T (25,~(v), A)e. (y(y)) 

I -1 A dA I ~ ~ l ~ ....... 
:!:. (25, X,• )ei (l) :t, = £.(l(l)). E (Q) 

0 ( O , e ) II ( 0 , e: ) 

dA for all25EL .(3 .1 6 ) 
:t 

~ 0 ~ 0 

Equation (3.16) may be used to simplify (3.13). Observe fi rst from 

(1. 5), (3. 15) that there exists k > 0 such that for all v E II (0, e: ), 
,..(,., ....... 0 

l..B<j(:L))-,.B(QJ I s: k li <v I , 
I Y3 ~)I= I [I_(:t,)- Q,J. ,.B(Q) I s; k[i_(y) J2. 

Therefore, since Ci (X,) J2 =z2 +[y 3 ~) J2, there exists k1 > 0 such that 

for all y E II (0, e ), 
....... ....... 0 

(3. 1 7) 

Equations (3.16), (3 .17), (3.7), together with the second of (b) in 

Lemma 3. 1 and the Holder-continuity of~ as sure that (3. 13) is 

implied by 

lim lim J "T\ (e, i (y), oo )dA = ~ .\ (0 ) 
E: __, 0 x--> 0 J c '"" ::l J c '"'"' 

xE L II(.Q, e:) 

(3. 1 8) 

....... 
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The verification of (3 .1 8 ) involves a lengthy computation, 

which may be shortened by noting from (3 .3) and (3. 5) that 

-i -i [ J T .
3

(3, y, oo)= T .
1 

(x, v, oo) o
13

+n
1
_(v) 

J ,...., J '- ,...,,<, <. , ;.<.. 

(3 • 1 9) 

( x. - y. ) ( x . - y . ) (x. - Y1 ) nl ( y ) +2 1 1 J J · K <. <_,...., 

2TI lx-yl5 ,...., ,.._, 

for all (.e,:t_)ELXO(Q,, e
0

). By way of illustration, w e confirm (3.18) for 

i=j=l, k=3. From (3. 3 ), (3. 1 7), since nk(Q)= - ok3 , follows 

lim lim I T~k(2s,x(.~), oo)[ ok3 +nk~(y))J dA Y=O , 
e;-+0 x -+O 

25EL IT(Q, e:) ,..., 

so that (3. 19) gives 

lim lim J 1'"~ 3 ~,i(.Y), oo)dA =lim lim 
e-+O x -+O TI(O e) ::t. e-+O x-+O 

xEL ~ xEL 

This relation, b ecause of (3 .17), (3 .15), a nd the inequality 

in turn yields 

2 

1. 1. I -1 (...,. -( ) )dA 3 1. l" j' y 1 X3 im im T 13\3, :t, :t., , oo = - ZTI im im 5 dA 
e:-+O x -+OTI(O) :t, e:-+Ox-+Oil(O )l x -:t:I x., 

xEL ;v 8 xEL ;::J 
8 '"" ,.._, ,...., 
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On subjecting the last integral to the change of variables s= p/ x
3 

one 

finds that 

00 

. . f - 1 - j' 3 s 
3 

1 . 
hm hm . T 13f.25,;:t,{x.,). oo)dA = - 2 5 /l <ls =-1=* 13 (Q) 
e-+Ox-+OTI(Oe) Y., 0 2(l+s) 

25EL ~· 

The remaining limits in (3. 1 8) may be verified in a similar manner. 

The existence of the singular integral in the third of (3. 8) now 

follows easily from (3. 11). Indeed, from (3. 11 ), given~ EDR and 

Tl> 0, there exists e
1
>0 such that O< € :s:: e

1 
implies 

so that 

But since z is ·not in O(z, e
1 
)-0(~ e), this inequa.lity is equivalent to ....... ,..., ...., 

and hence implies the existence of the limit in (3.10). 

W e turn finally to a proof of the continuity of.'.[, on R . To this 

end it suffices to show that 

lim 1,\3)=.'.!:.,(,V for all~EoR , (3. 20) 

where 1,(3) and .'.!:.,(~.) are defined by the second and third of (3. 8), 
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respectively. We prove first that (3. 20) holds true if x approaches z ,...., ,...., 

along the inner normal , i.e. that 

lim ,'.!:,(~-s~(.~))=!.,~) for all zE oR . 
s-+0+ 

(3 • 21 ) 

Choose ~ E BR and Tl> 0. Then, the existence of the limit in 

(3. 10) now being as sured, there is an e
1

(Tl)>0 such that 

p 

l J i\~'~' A. )e i {_z)dAY I< Tl (O< E: < r:.:1 ) . 

O~, 8) ,...., 

Next, according to (3. 11 ), there exists 8
2 

E{O, e
1

) and s 
1 

(Tl, 8
2

) such 

that 0 <s<s 1 implies 

I J 'i" i I z - s n t z ) y, A.) e . ( v ) dA - \jl if z ) e . t z ) l < Tl 
"-' \..::; ~\..::: · ' rv l ~ x "'~ 1 ~ 

o~, 82) 

Combining these two inequalities one has 

p 

I J f, i(3- S£.(~),;i, A.)ei ~)dAY- !\~)ei (3) - J i i(3,.:£, A.)ei(x_)dAY I< 2 Tl (3. 22) 

O(,~,e2) ,...., 0(3,e2 ) -

for all s E{O, s 1 ). On the other hand, since~ is not in oR-0~, e2 ), there 

exists s 2 (82 ,TJ) >Osuch that O<s<s 2 implies 

(3. 23) 

Equations (3.22) and (3.23) furnish 

p 

lim J Y,\~-s..n~),;y, A.)ei ~)dA,i=!i~)ei ~)+ J !, i~, .~:'.> A.)ei (y)dAY ' 
s-o+BR BR ,...., ,...., 

which is equivalent to (3. 21). 
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It is not difficult to verify that the limit in (3. 21) is uniform 

with respect to the choice of~ . In view of this uniformity one can 

pass from (3.21) to (3.20) by an argument analogous to that used in 

the proof of Theorem VII in Chapter VI of [5 ]. This completes the 

proof of Theorem 3. 1 in its entirety. 

Equations (3. 8) may be viewed as a representation of the state 

S = [_B, .r,J in terms of a generating surface density ~· What is needed 

for our purposes, . however, is a representation of a given elastic 

state on R in terms of its surface tractions on BR. As will become 

apparent shortly, (3 . 8) remain valid if S=[~, .r,J is a given elastic 

state and 2 is replaced by the traction vector _t of S on BR, provided 

the kernel states Si are modified suitably. Before introducing such 

11 modified tangent states 11
, we associate with any finite regular region 

a set of six fundamental vector fields that will be used repeatedly 

throughout the remainder of this investigation. 

Definition 3. 2. Let R be~ bounded regular region. Let c be the -- ----

position v ecto r of the centroid of the boundary BR and let ~m(m=l, 2, 3) 

be unit base vectors of~ centroidal principal frame for BR. Finally, 

l e t a and i.m denote r espectively the~ of BR and i t s (principal ) 

moment of inertia about the (centroidal) axis determined~ ~m. We 

m 
then write q (m=l, ... , 6) for the six vector fields defined E.y 

m 
m+3 05-£)1\Q, 

q (x )=----
"" ./T' 

(m=l, 2, 3), (no sum) (3. 24) 

m 

for all xER. ____ ,..... 
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The dual role played by the vector fields introduced above is 

apparent from 

Lem1na 3. 2. 
. m . 

Let R be~ bounded r egular r eg10n and let q (m=l ·, ... , 6) -
be the vector fields defined _£y (3 . 24). 

(a) Suppose L: is ~ . regular surface contained in R and ,t is a 

vector field integrable .9E L:. Then 

r m 6 j.!_·q dA=O (m=l, ..• ,) 

L: 

I _tdA=Q,, J~A!_dA=Q, , 
L: L: 

i.e. if and only if,!, is self-equilibrated .9E L:. 

(b) Suppose ~ is given _£y 

~~)=_.e+25/\~ for all~ ER , 

where ~ and~ are constant vectors, ~ that 32:, is~ (infinitesimal} 

rigid displacement field. Then 

r m 
j u · q dA=O (m=l, •.. , 6) implies a =w =0 

""-' """ ,.......,, ,..._, ,...., 
oR 

m 
Proof. L et )2, (m=l, 2, 3) and £, be as in Definition 3 . 2. Then t is 

self-equilibrated on L: if and only if 

J 12,m·,_!dA=O, J ~m. (3-,S)At_,dA=O (m=l, 2, 3), 

L: L: 

and these equations, together with (3. 24), establish part (a}. Turning 

to (b}, note first from Definition 3. 2 the orthonormality relations 
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I m t {o q • q d.A= 
......, ......, 1 

oR 

(rnf:t) 
(m, t = 1, ... , 6) • (3 . 2 5 ) 

Let c ,a, .i , bm (m=l, 2, 3 ) have the same meaning as in Definition ......, m......, 

3. 2 and set 

k =!Ci bm. (a +c/\w), k +3 =.!Z"""' bm. w (m=l, 2, 3) , (no sum) . m """ """__, ,..._ m m,..._ ,..._,, 

An elen~entary computation then yields 

6 
'\ 

u =j_ 
......, "-' 

k m onR 
m~ 

m=l 

It thus follows from (3. 2 5) and the assumed integral conditions on ~ 

that km=O (m=l, ... 6) . Hence~ and_e also vanish, so t hat the proof 

is complete . 

The integra l conditions app ea ring at the end of L e mma 3. 2 

s upply a convenient n ormalization of the d isplacement f i eld u a ppr o -......, 

priate to an elastic state defined as the solution of a second bounda r y-

value proble m . Such a normalization eliminates the usual arbitrary 

additive rigid displacement . W e now r e turn to our immediate 

objective. 

Definition 3 . 3 (Modified tangent states) . Let R be ~ simple region 

and l e t'!.., EoR. F u rth e r, l e t S i(·, y, ro) be ~ in D efinition 3 .1. We 

call 

•i ["i oi J S {• ,y)= u (·,y), T (·, y ) 
,,,...._, ,..._,, ,....._, ,...._, ,..._ 

the modified tangent state for the r egion R at x_, corresponding to the 

x . -directi on and the elastic constants µ, a if: 
l --------
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• i -
(a) S ( • , v) E e ( 0 , µ, a; R ) 

'""' ,...., J., 

li~,,.i)=f,i~,_:~> oo)+O( 125-1 l-1:..13) ~.25--.1 
6 

(c) t~~,x)= - I m m E q. fx)q. (y) for all x - BR J -,.::,; l ,...., ____ ,...., y 

m=l 

with qm(m=l, ... , 6) g iven EY Definition 3. 2; ,...., 

(m=l, .•• , 6 ). 

(13< 1 /2) 

0 i 
Note first that (c) defines the surface tractions of S (· ,;t) uniquely on 

BR , even though the principal base vectors entering the d e finition 
~ . 

of qm fail to be unique if the centroidal principal moments of inertia 

i (m=l, 2, 3) of oR are not distinct. It is eas ily seen that conditions 
m 

(a), (b), (c), (d) in the preceding defi nition suffice to characterize 

0 i 
the state S ( ·, 1) uniquely. To confirm this claim, note with the aid 

of an elementary modification of the classical uniqueness· proof that 

(a), (b), (c) determine i,1
( · ,,.i) completely

1
. Accordingly, ii(· ,;f,) is 

determinate except for an additive (infinitesimal) rigid displacement . 

This arbitrariness is removed by (d), as is clear from part (b) of 

Lemma 3.2 . 

We now state a theorem assuring the existence of the states 

•i S (·, y) and at the same time asserting certain additional properti es of 

the se states . 

1rn view of the limitations (b) upon the orders of the displacement and 
stress singularities at y , the difference of two states sharing prop­
erties (a), (b ), (c) has"'zero total strain energy . 
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Theorem . 3 . 2 . (Existenc e and properti es of the modified tangent 

states) . Let R be~ simple region. Then the modified t ange nt s tates 

Si(· , y) introduced in D efinition 3 . 3 exi s t fo r all y EClR . Moreover, 
......., - ------,...., 

these states have the properties: 

(a) ii EC(RXClR-D), i_iE C(RXClR -D), 

V'£iEC(RXoR)' '~tiEC(RXoR); 

(b ) the orders of magnitude in (b) of Definition 3. 3 hold 

uniformly with r espect to :t, for all :t,E oR . 

As a prerequisite fo r the proof of this theor em we require 

some auxiliary notation as well as t hree additional l emmas. 

Definition 3 . 4 . (Clas s es of funct i ons with surface nuclei). Let I: be 

the boundary of~ simpl e r egion. 

(a ) If aE (0, 2), we w rite v E'fl. a ( I: ) provided vEC(I: XI:;-D) and there 

exists k>O s uch that 

If a >2, we write vE?( a(Z::) p r ovided vEC( I: XI:). 

If, for each aE (O, 2 ), vE 7/.a(I:) , ~write vE ?c2 (I:) . 

(b ) If aE (O, 2] and y E(O, 1 ], ~write vE'!/.a,y ( I:) provided v E7/.a( I: ) 

and ther e exists k > 0 such that 

fo r all ~,,.l,~~ L: subject to 2125-~ I< l-3-xl· 
If a> 2 and yE (0, 1 ], we w rite vE'!/. a , y (I:) provided vE7/.a(L:) 

and there exists k > 0 such t h a t 
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It is clear fron-i the fo r egoing definition that a.> 2 and 

vE'Tf' y p:::) implies v( · , ,t) EU( I:) for a11 zE I: . Further, it is not difficult 

to verify tha t a.:;;; 13 implies /Za.( I:) :::> /Z f3 (I:), while a :;:; f3, Y :;:; 6 implies 

7Z ex., y( I:) ::::J ?( 13 ' 6 (I:) . 

W e turn now to a l emma which is closel y r e late d to results 

given by Giraud [11 ] (p. 256). 

L e mrna 3. 3 . (Composition of functions with surface nuclei) . Let L: be 

~in Definition 3.4 . Assume v
1 

E/Za.(I:), v
2

E7?13{2:::) a nd let 

v3~'_z)= J vl(is,~vz(~.:z)dAP 
L: 

for all Z5' z ~ L: except possibly Z5 = X. Then 

v 3 El? cx.+13 ( L:) • 

If ~addition to the original hypothese s) v
1 

E/Za., A.(I:) w hile TJ satisfies 

TJ E(O, A.] , TJ < a when a.+13 :;:; 2 , 
} (3. 26) 

TJE{O,A.), T)<a., T] <a+f3-2 whena.+f3>2, 

then 

Proof. To establish the first part of this l emma one needs to show 

that (a) in D efinition 3.4 holds true for v=v3 , provided ex. is replaced by 

a. +13 . The required continuity of v 3 is inferred from its definition by 

. . 1 h 1 an argument common in potentia t eory • On the other hand, the 

desired order of magnitude of v
3 

is a direct consequence of the known 

ine quality 

See Kellogg [5] (p. 3 01) and the first part of the proof of Theorem 2 . 1 
fo r closely related arguments. . 
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(3.27)
1 

for all ~,_y)EI:X 2::-D, where k 1 is a constant and a+[3<2. 

To confirm the second part of the lemma, choose Y] consistent 

with (3. 26) and fix x, y, z on I: with x:f. y/= z . Next define two comple-
~ "-'~ ~r..J,.....,, 

ni.entary subsets of I: through 

2::1 ={!:_,1£,EI:, l£,-25l:>:2j~-~j}, 2::2=2::-I:l. (3 • 2 8) 

In view of (3. 28), 

Therefore, since 1 ~ TJ >O , 

(3. 2 9) 

Now observe from the definition of v 3 that 

Hence, bearing in mind (3. 28), (3. 29), one has 

1 See, for example, Pogorzelski [12] (p. 81 et seq .), where this 
inequality is established on the assumption that I: is a plane; the 
argument used the re is easily adapted to the present circumstances. 
Cf. also Kellogg [5], Chapter XI , Lemma II (p. 301 ). 
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Iv 3 ~· .. ~) - v 3 ~>,}'.) Is; 2 ~-~ 171 J l~-,E i- 71 Iv 1 (,?S, _E) llv 2 \£• 2'.) I dAP 
~ ~ 

(3. 3 0) 

An application of the first part of the lemma to the pair of 

functions with the values 

yields the existence of a constant k 2 (independent of the particular 

choice of ~. ,.:i) such that
1 

I la.+j3 - T) - 2 
k2 ~-;[, if a.+f3 s; 2 

(3 . 31 ) 

k2 if a.+f3>2 . 

Further, (3. 2 8), (3. 26) and the assumed properties of v 1 enti~le one 

to assert the existence of k>O (independent of x, y, z ) such that fo r all . _..,~ ,...._, 

I lri I 1°'-ri - z k x - z x - p if a. s; 2 ,...._, ~ ,....._, ,...._, 

k 1.3-~ 171 if a.>2 . 

Hence, invoking once again the first part of the lemma and taking 

1 
Observe on the basis of (3.26) that a.+f3s:2 implies a.+j3 -'ll<2 , wher e as 
a.+(3>2 implies a.+f3 -'ll >2. 
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account of the assumptions on v 2 and T), one infers the existence of 

On combining this inequality with (3.31), (3.30), there follows 

( a.+13 :5:2) 

(3. 3 2) 

Finally recall that v 3 is continuous on L:XL: for a.+13>2 and note 

that the assumption 

2 125-~ I< . £5-x l if a.+13 s: 2 

furnishes 

In view of these observations, the desired property of v 3 follows from 

(3. 32) and the first part of the lemma. The proof is now complete . 

Lemma 3. 4. (Gene ration of elastic states from densities with surface 

nuclei) . Let R, A., s\. •;f,• A.) b e as in Lemma 3 .1. Further, let 

a.>O, O<yS:l, assume 

and define functions ~'.'.!:_.through 
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except possibly for~=)'.;, 

p 

i J-i T(3, y)= * (x)g. (x, y)+ T rx, p, A.)g. (p, y)dA 
r..J ,._ """'-' r._; lr._;~ ,._~,....._, l.......,,._ p 

BR ,...., 

except possibly fo r ~=z, where _ti is given~ (3. 9) and the last integral 

is to be interpreted in the sense of (3 .10) . Then: 

(a) S (· ,_y)= [3l (· ,_z), ,t,( · ,_z) ]E e(Q,, µ, o;Ry) fo r all _z E BR; 
,.._, 

(b) uEC(RXoR-D) if a.:;;1, uEC(RXoR) if a.> 1, ,...., - ,.._, -

T EC(R XoR-D) if 0.$2' T EC(RXoR) if a.>2 ' 
,._ - __. -
'il~ EC(R x oR) ' 'il 1, EC(R XoR) ; 

( ) I I 11- 1 
c £(3, _z)=O( 25-J; ) ~ 25 ->:t, if a.:;; 1 

;r:,(3,:t,)=0( k;-x, 1ri -2)E 25-.:t, i f a.$ 2 , 

for any fixed Tl< a., these estimates being uniform with r e spect to :t, 

for all _y EoR; 

(d) ,t-[ E77a.+l, v(oR ) for some vE(O, 1 ), 

provided,!.( · ,~), for each xEoR, are the tractions
1 

of S(·,x) on oRY. 

Proof. Conclusions (a) and (b) are readily r eached through an elemen-

tary modif ica tion of the argument employed in the proof of The orem 

3 . l. Note that (b) assures the regularity of S( ·, )') on R if a. >2 . 

Turning to (c), obse r ve first that given e >O, 6 >O with e + 6>2 , 

ther e exists k>O such that 

1 
If a.E(l, 2 J, we define t (¢, y )- g (x, y) a ls o for x=y in such a way as to 
render t - g continuou;' on tjR~R.""' ""' ,...., ,.._, ,.._, 
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I I IE:-21 10- 2 - -
~-,E _.e-,r d.Ap <k for all ~' r)ERXR, 

oR '"'"' 
(3. 3 3) 

as is clear f ro1n the continuity of the l eft-hand membcr 1 on R XR. 

Consider first as: 1. Then, i n view of Lemma 3. l, the 

present hypothes es on ,e• and Definition 3. 4 , there exists k
1 

>O such 

that 

l~~·,.l)i< kl I t~-£1- 1 
l:e,-_yla-

2
d.Ap for all ~.z)ERXElR-D. (3.34) 

ElR ~ 

Choose T) <a:, (¢.z)ERXElR -D, and define 

Since 

one has 

These inequalities, toget h er w i th (3. 33 ), (3 . 34), yield the first of (c). 

Next assume a<2 . In view of conclusion (b) in the present 

lemma, the second of (c) holds true if, given T] <a , there exists 

k 2 > 0 such that 

l,'.[, ~._y) I< k2~-x1ri- 2 
for all (2s.,r)ER XElR . (3 . 3 5) 

1 
Cf. the first footnote in the proof of Lemma 3. 3. 
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Choose TJ <a. and suppose without loss in generality that TJ >a.-Y. 

Further, choose (2:5,,.l)ERXoR and let~EoR be such that 

jx-z I =minl x -nl, pEoR, .......,,...._,, ,...._,, ,..c, ,-...; 

whence 

(3. 36) 

Consider first 

(3 • 3 7) 

Then (3.36), (3.37) give 

l,~-x Is: l_.e-~I+ l~-i Is: 2 I~-~ I s: 2 t~-g I for an g EoR . (3. 3 8) 

In view of the properties of~ and L emma 3. 1, there exists k 3 > 0 

(independent of the particular choice of x, y) such that ,.._, ,.._, 

11 ~·.x) I< k3 I 1~--E 1- 2 1g-z la.-
2

dAP • 

oR -

Therefore and from (3.38), 

11~.,.Y) 1<22 -rik3 i~-,.l1ri- 2 I1.3-;:; 1-ri lg-xla.-
2

dAP. 

oR "' 

This last inequality, because of (3.33), yields (3. 35 ) provided (3.37) 

holds true. 

Next, verify (3.35) for 

lz-yj>jz-xJ, 
f""oJ """-' ,..._ ,...._,, 

in which case 

125-;i l s: I~-~ l + l~-.x I <2 l~-x l (3. 3 9) 

To this end note from the definition of 'f that 
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Apply Theorern 3 . 1 with ek=6ki to see that 

is uniformly bounded on R. Accordingly (3. 3 9) and the present hypoth-

es es on [and 1'] imply the existence of k 4 > 0, independent of~·:!.,• such 

that 

(3 . 41) 

In order to b ound the leading term in (3 . 40) introduce 

(3. 42) 

Then, 

Thus , bearing in mind that y > a - 1'], one concludes from Lemma 3. 1 , 

(3 . 42), and the hypotheses on [that there exists k.
5 

>O, independent 

of~1 :t, , such that 
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I I-i [g J I r i.. 1- 2 I ~ I a.- 'l'l 1., 1ri-2 T ~' p,A) a.(z, y) - g.(p, v) c1A <k5 J 1-0- P l-3-P ~-v clA 
........, ........, 1-..., ........, l,...._. ~ p ,..._, ........, ,.(,_, p 

oR ,....., o
3

R 

(3. 43) l 

Further, from (3.36), (3.39), 

In addition, (3.42) , (3.36) furnish 

so that 

Jr-I 1
-2 fp 

1
0.-2 2-ri 1 

1
ri-2 r 1,. 1

-ri 1 
1
a._2 

,3-~ ,...., -z dAP ~ 4 ,?:, -:t, j ~-__r _£-_z dAP. 
a R ,....., a R "" 
4 4 

Combining the last two inequalities with (3. 33 ), (3. 3 9), (3. 40), (3. 41 ), 

(3.43), (3.44) one obtains again (3.35). 

This disposes of conclusion (c) for a.< 2. Since [E?? 
2

• y (oR) 

implies [E??f3 'Y(oR) for any f3<2, the second of (c) holds also for a.=2 . 

With a view toward conclusion (d}, note first fro1n the defini-

tion of S(·,:t,) that 

1 
Note that the assumption T) >a.-y, which ensures that gE?? a., a.-10R), 
was essential in the derivation of (3.43). "' 
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J-i t(x, y)=g(x, y)+ t (x, p , A.)g . (p, v)d.A 
,._rv,..._, r;;.,,,.....,,,._ rv ,..._,,.....,, 1,..._,,,l...., p for all (~, x.,) EoR XoR 

BR '"" 

except possibly when :::_=x.,. Thus , according to Lemma 3. 3, (d) holds 

true if 
-i 1 1 
t. ( · , · , A. ) E?? ' ( o R) . 
J 

(3. 45) 

On the other hand, (3 . 45) is implied by (a) and (b) in Lemma 3.1 i f 

there is a constant K > 0 such that 

It ~ ( x, y' A ) - t ~ ( z' y , A) I :s;; /{. Ix - z 11 x - y , -
2 

J ,.....,, ,.....,, J ,.....,, ,..._, ,.....,, ,.....,, ,.....,, ,.....,, (3. 46) 

for all ~· '!..: ~ on BR subject to I~-~ I< ~ /~-xi· The inequality (3. 46) 

is confirmed through an argument strictly analogous to that employed 

in the first part of the proof of Lemma I , Chapte r XI in [5 J (p. 300) 

provided one establishes the existence of Kl> 0 such that 

(3. 4 7) 

Here, the left-hand side is the derivative oft~(., y,A. ) with respect to 
J ...... 

the distance "s 11 measured along any smooth arc on BR and evaluated 

at x. To see that (3.47) holds observe first that for all(~, y)EoRXoR -D, 
. . 

-1 -1 
t.(x, y,A.) = 'T.

1 
(x , y,A.)n

1 
(x ) 

J"'...... ]<.-... ...... <: ...... 

=T.ik(x, y , A.) [n
1 

(x)-nk (v)] +"T.i
1 

(x, v,ro)n
1
_(y) 

J "''"" <: ...... A., J<.-...N ,_,.... 

+["f.i1 {x, v, A.)nk(y) - T~l (x , y ,ro)nk(y) J . (3. 48) 
J<,-..,_.(.., ...... ] < """' ,..,, 

Further, note from Definition 3.1 that there exists ;t
2

>o such that 

l"T}k, .e,(~, ;y;,A.)I <K2 l~- Y.,l- 3 for all(~, Y.,)ERXoR-D, 

while , as pointed out in [5] (p . 299), because of the smoothness of BR, 

there is a K3 > 0 such t hat 
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8 [(xk-Y1.)11k{_y)] -2 j...,,-
3 

I < tt3 Jx-yJ for all (x, y)EElR XElR-D . 
OS I I ,..., ,..., ,.., ,.., x-y ,..., ,..., 

By virtue of these two inequalities, (1. 4), (1 . 5), (3. 5), and conclusion 

(b) in Lemm.a 3. 1, there exists it
4

>0 such that 

(3. 49) 
la r-i c JLI I 1-2 -is--·lT .1_(x, y,A.) n1 (x)-n1 (y) 1 <n4 x-y , as J,,....,,,...._, <.........., <,...., .J ,...._,,,...., 

for all (x, y)EoRXoR-D. From (3.48), (3.49), upon noting that ,..., ,..., 

!-- [:r- ~1_(x, y, A.)n
1
_ (y )- T .i

1 
(x, y, oo )n

1
_ (y )-] 

OS ]'-'""'"" ,_,..., ]~,...,,.., ,_,..., 

l ' 
is uniformly bounded for (x, y) on oRXoR-D, one obtains (3. 47) and ,..., ,..., 

hence (3. 45). This completes the proof. 

Lemma 3. 5. (A continuity property of~ family of elastic states) . 

Let R be a simple region. Suppose 

S(· ,y)= [u( ·, y), T(·,y)]EC'{O,µ,a;R) for all yEoR , 
,......,, ,...._, ~ ,...._, ,...._, ,,...., ----,..., 

s~(~; :;:)· ~m(~)dAx=O for all 1, E oR (m=l, ••. , 6) , 

oR 

with qm given.!?_y Definition 3 .2. Further, assume --,.., 

,!E ??
3

'a(oR) (O<a<l), 

where t (-, y), for each y E oR, are the tractions of S(·, y) on oR . Then ,.., ,..., -----,...., ---- - ,.., -
~ EC(RXoR) ' T EC(RX oR) ' 

'i7u EC(RXoR)' 'i7T EC (RXoR) . 

1 
By (3. 5) and Definition 3 .1, both ";:f/k(· ,,l,A.)nk{_r) and 1'".t(· •X• oo)nk(_y) 
are differentiable on 8Ry, while tlieir difference is dffferentiable on 
a neighborhood of z. ,..., 
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Proof. Note first from Definition 3. 4 that the tractions t of S are 

continuous on oRXoR and are Holder-continuous in their first argu-

ment, uniformly with r espect to the second argument. 

Let A., ·s 1( ·, X• A.) be as in Lennna 3. 1 and consider the system 

of Fredholm integral equations of the second kind 

e(x)=t(x)- lti(x, y,A.)e.(y)d.A for all x EoR , 
,....,,...., ,.._,...._, t! ,._ ('V ,._ 1,...., y (3.50)

1 

oR ,..., 

and the adjoint homogeneous system 

v.(y)= - Jt(x,y,A. ) · v(x)d.A for allyE oR 
l,_ ('V('V,...., ,...._,,..._, x ·-

(3. 51) 

oR 

m 
We now show that the functions i (m=l, . .• 6) are solutions 

of (3.51), i.e., 

m r- i m 
qi (;~)= - J ~ (;:,, r• A.)· i ~)d.Ax for all zE oR (m=l, .•. 6) . (3. 52 )

2 

oR 

To this end note from Theorem 3 . 1 that if e E'JI (oR ), the v ector field ,..., 

defined through 

e (x)+ Jti(x, y,A.)e.(y)d.A for all x E oR 
,._,.._, ,...., ,.....,,.._, 1,..._, y 

oR "' 

represents the surface tractions of an elastic state on R and is accord-

ingly self- e quilibrated on oR . Thus, in view of (a) in Lemma 3 . 2, 

1 
Observe from Theorem 3. 1 that if (3. 50) has a Holder - continuous 
solution, the latter may be us ed as a surface density to ge n e rate an 
e lastic s tate on R whose tractions on oR coincide with t . 

2 
Equation (3. 52) asserts that the tractions of Si(·, y,A.) on oR equili-
brate a unit load in the xi-direction, applied at X.,..., Z 
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I in ,. 1,-i n1 
e.(y )q. (y)dA + I j t (x, y,A.) · q (x )e.(y)clA clA = 0 (m=l , . . . , 6). 

lr-v 1 ,._ y v ,._ ,._,._ ,._ ,._ lrv X Y 
aR ,..., aRoR ,..., ,..., 

Since this equation must hold true for every choice of ~EJi'(oR ), (3. 52) 

follows. 

-1 
The conti nuity and orde r- of-magnitude properties of,! g iven 

1 
in L emma 3.1 guarantee the applicability of Fredholm. 1 s theory to the 

pair of systems (3. 50), (3. 51) . H e nc e (3. 51 ) has at most a finite 

number of linearly i ndependent continuous solutions vm (m= l, ... , k) ,.._, 

which, because of (3 . 52) and (3.25), may be assumed to satisfy 

mm x, =~ on oR (m=l, .. • , 6) 

(3 . 53) 

I m -!'., 
v . v dA 
,.._, ,..., 

oR (m, -l'.,=l, ... k) . 

Further, (3. 50) is solvable if and only if t is orthogonal to the k ,..., 

v e ctor fields vm in the sens e of 

I t · vmdA=O (m=l,2, ... k ). ,.._, ,.._, 

oR 

We now define 

(3. 54) 

Then (3. 5 3 ), (3 . 54), (a) in Lemma 3 . 2, and the self- e quilibration of 

t ( · , y ) on oR, furnish ,..., ,..., 

s ;:.1 ( ~.' y) · ~n-\~~)dAx=O 
oR 

(m=l, ... ,k) for all yE8R . ,..., 

1 
See , for example , [12 J, Chapter III. 
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Thus, the system of integral equ a tions 

g (x, y)=t'(x , y)- Jti(x, p, /...)g.(p, y)dA for all (x , y)EoRX8R 
,._,.....,,...._, ,.....,,.....,,..._, ,-....,J ,..._,,....., l,..._,,....., l) ,.....,,..._, 

(3.55) 

oR 

which, for fixed ::t, E oR, is of the form (3. 50), has a (non.unique ) 

solution. This solution may b e chosen so as to e nsur e that 

g EC (ElR XoR) . (3. 56) 
1 

We show n ext that any solution g of (3. 55) that conforms to 
~ 

(3. 56) also obeys the stronge r regularity condition 

(3. 57) 

For this purpose one may use an argument analogous to that employed 

in deducing (3. 45 ) to show that t~ defined by 
J 

=i -j t. (y, x, /...)=t . (x, y, /... ) for all (x, y)EoRXoR-D, 
],..._,,..._, 1,.....,,....., ,.....,,._ 

has the property 

H e nce (3. 51) and Lemma 3 . 3 furnish 

~mO/(oR) (m=l, . .• , k) , (3 • 5 8) 

1 
This c la im may be confirmed as follows. One first r educe s (3 . 55) 
through the usual iteration process to an equivalent system o f inte ­
gra l equations whose kernel is c o n tinuous on 8R XoR. Subsequently 
one constructs a r e solve nt of the latter system in infinite series 
form and deduces the continuity of the resolve n t on 8RXoR . Finally , 
one verifies (3. 56) by an appeal to the repres entation of g in terms 
of the r e solvent and the given (c ontinuous) data. Cf. [12J , 
Chapters 2 , 3 . 
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the exponent of this I-Iolder - condition
1 

being any number in the 

interva l (0, 1). From (3. 58), (3. 54) and the assumed regularity of t 

follows 

and this conclusion, together with (3 .55), (3.56), (3.45) and Lemma 

3.3, implies (3. 57). 

In view of (3. 57) we may employ ff in conjunction with 

Lemma 3 . 4 to generate a family of states 

with 

;:_
1 EC(RX0R)' 'f 1 EC(RXoR)' 

'V;:_'EC(RXoR)' 'VT'EC(RXoR)' 

(3. 59) 

} (3. 60) 

whose tractions on oR, because of (3.55) , are t'(• ,y) for eachyEoR . ,...., ,...., ,....., 

"With a view towards constructing an elastic state with the 

surface tractions _! (·,_z) we recall (3.54) and bea r in mind that the 

fields vm (m=7, ... k) are self-equilibrated and Holder-continuous on 
,....., 

the boundary of the simple r egion R. The foregoing p r operties of R 

and of vm (m=7, ... , k ) e ntitle us to conclude from Korn's [14]
2 

existence theorem for the second bou ndary-value problem of elasto-

static s the existence of elastic states Sm (m=7, ... , k) on R whos e 

tractions on oR coincide with vm (m=7 , ... , k). T hus the family of 

states S" defined by 

1 
See Section 1. 

2 
See also Korn [15 ] . 
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k 

\' {J rn } m S"(x,y)=S1 (x,y)+; v (p)·t(p,y)clA S (x) 
,...._,,...._, ,.....,,...._, ,;.__J ,.....,, f"Jr-...;r.J,-...,, p ,...._, for all (x, y)ERXoR , 

,.._, ,.._, 

rr1=7 oR 

because of (3 . 54), (3. 59), (3.60), has the p roperties 

s 11 (·,y)=[u"(·,y), '1"
11 ( · ,y)]EC'..(O, µ, a;R) for all yEoR , 

,..._, ,...,._, ,...., r-v ,....., rw ,...._, 

u"EC(RXClR), 'f"EC(RXoR), ,.._, ,.._, 
(3 . 61 ) 

'i7u11 EC(RX0R), 'i7'f 11 EC(RX8R)' ,.._, ,...., 

t"(x,y)=t(x,y) for all (x,y)E8RX8R, ,...., ,...., ,....,., ,...._, ,...._,,......, ,......_, ,...._, 

wher e t "(·, y) are the surface tractions of S
11
(·, y) for each y EoR . The ,...., ,....., ~ ,....., 

given state S(·, y) evidently differs from S
11

( · , y ) by a rigid displ ace-
,..., ,.._, 

ment field. By virtue of (3. 2 5) and the assumed normalization of the 

displaceme nts belonging to S( ·, J) we arrive at· the representation 

for a ll (x,y)ERXoR. This representation, together with (3.61), implies 
,.._, ,.._, 

the desir ed continuity property of S. This completes the proof. 

We are now ready to turn to the 

Proof of Theorem 3. 2. Our initial objective here is to reduc e the 

construction of the (singular) modified tangent states to the solution of 

a regular boundary-value problem in elastostatics . Let A. and the 

tangent states S 1
(· ,_y,A.) be as in Lemma 3.1. Define !ii through 

i (x ,y,A.)='ti(x ,y,A.)- Jtk(x, p,A.)1
1
i(p, y,A.)dA for all (x, y ) EClRXClR-D, (3. 62) ,......,,...._,,.....,, ,....,,......,,,,......, ,....,,.....,,...._, <,.....,, ,...._, p ,...._,,...., 

oR 

so that from (3. 45) and L emma 3 . 3, 
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gi(·, ·, A.)E7/l'y(ElR) for any yE(O, 1) (3. 6 3) 

f • ~l rv l b f De ine u , '1" y rneans o ,...., 

(3.64) 

p 
"' . . -J rJ(x, p,A.)g~(p, y,A.)d.A for all (x, y)EoRXoR-D, 

f""W f"J""' J,.....,,,.....,, p f"tJ ~ 

ElR 

with *j given by (3.9). Then, in view of Lemma 3 .1, (3.6 3 ), L emma 
rv 

3.4, and (3. 7), 

~ [""i rvi J e -S (·,y, A. )= u (·,y, A.), '1" (·,y,A.) E (0, µ,o;R for all yEElR, 
rv ,....., ,....,, ,....,, ,....., ,....., Y "" 

rv 

ui(·'.' A.)EC(RXElR-D), zi (·'. , A. )EC(RXoR-D) ' 

'Vui(·'. ,A.)EC(RXoR), 'V'Ti(·'. ,A.)EC(RXoR)' 
rv rv 

(3 • 6 5) 

for any f3 > 0, uniformly in y for all y E oR. From (3. 64), (3. 9), (3. 62 ), 
rv 

after a brief computation, follows 

(3. 66) 

ry]. f"Ji 
where t ( ·, 'f.: A.) are the surface tractions of S (·, y 1 A.) for each 
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rn. 6 y EaR, 9, (m=l, ..• ) is as in D efinition 3. 2, while 

6 
"i J 1-j - k - i l m m t (x, y, A.)= j t {x, p,A.)t . (p, v,A.)t

1 
(v, y,A.)dA dA + q (x)q. (y} ,._,...._,,....., ~,.....,,....., Jrv,....., <,.....,,....., p V ..J ,.....,,..._,l""'J 

aRaR ,...., ,....,m=l 

(3. 6 7) 

for all (x, y ) E oRXoR. ,...., ,...., 

Next, (3.67), (3.45), Lemma 3.3, (3.52) and (3 .25) yi e ld 

'li 3 y J"i m a _: (·, •,/..)E7l , (aR), :, (~,~ /..)·9, (~)dAX=O for all rE R (m=l,. .. 6 ) (3.6 8 ) 

oR 

for any yE(O,l). In particular, (3.68) implies that the fi e lds ti( ·,X,, A) 

are Holder-continuous and self- e quilibrated on oR for each yEoR. ,...., 

Thus, from Korn 1s [14] existence theor em, (3 .6 8), and Lemma 3.5, 

one infers the existence of states §i with 

·J-ti1(x, y) . qm(x )dA =0 fo r all yEoR (m=l, .•• 6 ), ,....., ,....., ,..._, ,....., ,....., x ,....., 
aR (3 • 6 9) 

Q_i(., ',A)EC(RXoR), ~i(., ',A) EC (R XoR), 

V'Q_\ ·,. ,/.. )EC(RXoR), V'~i( ·,., /..)EC(RXoR) , 

"i whose tractions on oR are_! ( ·, y_, /.. ) for each '!.,EoR . 

Finally, define state s 

0 i [ oi o i J S (x , y)= u (x , y), T (x, y ) 
f"Y ,._ ,....., l'"V,....., ,...._, """,._ 

for all (x, y)E R XoR-D through ,.., ,.., 
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6 
o i ,...,i Ai ) \" m ) J,..., i ') m ) u (x ,y)=u (x ,y, A. )-u (x,y,A. -L· q (x u (p ,y,11. · q (p c1A , "" ~ ,..._, ,..._, ,..._, ,..._, ,..._, ,..._, ,..._, ,..._, ,..._, ""' ,....,, ,....,, ,......,, ,.....,, p 

m=l oR "' 
oi ,....,,i \ "i 
T (x , y)= 'i (x , y, 11. )- T (x , y, A.) 

"""" ,...._, ,..._, ,..._, ,..._, ,..._, 

0 i 
It is clear from (3.65), (3.66), (3 .69), (3.25) that S so construc ted 

conforn1s to Definition 3. 3 of the modified tangent states and 

possess e s the additional prope rties (a ), (b), asserted in the present 

theor e m. This completes the proof. 

T he prec e d ing existence theorem f or t h e modified tangent 

states, together with Theor em 3 . l on the generation of elastic states 

from given s urface d e nsities, enabl e s us to establish 

Theorem 3 . 3 . (f:: representation of elastic states on s i m ple r egions in 

terms of their surfac e tracti o.ns). L et R be a simple re gion and let 

Assume 

S=[u, T]Ee(o, µ , a;R) ,..., ,..., ,...., 

J ~ · ~mdA=O (m=l, ..• 6),:, EAr(oR) , 

oR 

where _.3m is g iven _£y D e finit ion 3 . 2 and!_ are the t r actions of S on oR. 

Let Si (·, X) be the modified tangent state for t h e region Rat '!.., corr e ­

sponding to the xi direction and the e l a stic cans tan ts µ, CJ, in the s e nse 

of D efinition 3. 3 . Then S admits the r epr e s entation 

for all xER , 

I oi 
T(x )= T (x, y)t . (y )dA 
,......,,.....,,, ,..._,,..._,,....,,lrw Y fo r all x ER , 

oR "' 
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p 
i I 0i T(x)= W (x )t . (x)+ T (x, y )t. (y )dA 

,._,...., ,.._""' l,._ ,..._, ,._,._ i,._ y for all xEElR , ----,..., 
oR 

whe re J'..i is given £y_ (3. 9 ) and the l ast integral is to be inte rpreted 

~in(3.10). 

- i 
Proof. L et /..., S ( ·, y, /... ) be as in L emma 3. 1 and define ,..., 

u'(x)=Jui(x, y, /... )t . (y)dA for a ll xER , 
,._,..._, ,..._, ,._,......, 1,....., y 

oR "' 

I J-1 T (x)= T (x, y , /...)t. (y)dA 
"' ""' ,..._, ,,_ ,..._, 1 ,......, y 

forallxER, (3 • 7 0) 

oR "' 

p 

I i J - i T (x ) =~ (x)t. (x)+ T {x , y, /... )t. (y )dA 
""',._ ,......, ,..._, 1,....., ,._ ,......., ,....., _ l ,._ y for all xEoR 

ElR ,..., 

These defining equ ati ons are meaningful in view of Theorem 3 . 1 and 

the assumed regularity oft . Furt h e r, Theorem 3. 1 furnishes ,..., 

(' . 
I I t ]E - t I -1 S =[u, T G(O, µ, a ;R), t =t+J' t (·, y , /...)t . (v)dA 

,.....,,..._, ,._ ,..._, ,......,,......, ""'1 1- y on oR , (3. 71 ) 
oR ,..., 

I -1 I 
where t and t ( ·,y, /...) are the respective surface tractions of S and ,..., ,..., 
-i 
S (·,y, /...)on oR. ,..., 

Vl 
Next, intr oduce S through 

(3 . 72) 

and note on the basis of L emma 3 . 1, D efinition 3. 3; Theorem 3 . 2, 

and (3 . 7) that 
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(3. 7 3) 

vi I 1-f3 vi I ,-1-[3 I u{x,y,A.)=O ( x - y ), T (x ,y,A.)=O( x - y ) as x-+y (f3<1 2), 
,...., ,._ ,._ ,._ ,-....,; ,._ ,._ rv ~ ,._ ,._ ,._ 

these estimates being uniform with respect to y EoR. B e caus e of (3. 73), ,..., 

the state S
11 

defined by 

S
11
=Jsi(·,v, A.)t.(y )dA onR 

lo., l ,..., y (3. 7 4 ) 

oR '"" 

has the properties 

11 Iv i 
S

11
=[u11

, T
11

]Ee{O, µ, a;R) , t =JI t (·,v,A.)t.(y)dA on oR . 
,....,, /""tJ "' ,....,, Iv 1,....,, y (3. 7 5) 

oR "' 
II "i II "i 

Here_!, and_!, ( ·, r: A.) are the tractions of S and S ( ·, "f.; A. ) on oR. 

By virtue of (3 . 70), (3. 72), (3. 74) the proof will be complete 

if we show that 

1 II 1 11 -
u = u +u , T = T + T on R . ,..., ,..., ,..., (3. 76) 

On the other hand (3 . 76) is implied by the first of (3 . 71), the fi r st of 

(3. 75), the present hypotheses on S, (b} in Lemma 3.2, and the 

unique ness theorem for the s e cond boundary-value proble m of 

elastostatics, provided 

1 II 
t = t +t 

r I II m 
onoR, j (~+~)·~ dA=O (m=l, .•. 6 ). (3. 77) 

oR 

To confirm (3. 77) observe from (3. 70), (3. 71), (3. 72), (3. 74), (3. 75) 

that 



-55-

t I oi -u (x)+u"(x)= u (x, v)t.(y)d.A for all x ER , 
,..._,rv ,._ rv ~ ,._~ lrv "l "" 

aR 
(3.78) 

t 1 (x)+t11 (x)=t(x)+Jti(x, v)t . (v}dA for all x EoR. 
f"'Y f""Y ~ ~ ,.....,,-...,,J ""'""~ i>-<.. x 

aR 

Finally use (c}, (d) in Definition 3. 3, together with (a) in Lemma 3. 2 

and the self-:- equilibration of the tractions _t of S on oR, to see that 

(3. 78) implies (3. 77). 

The preceding theorem, which constituted the main objective of 

this section, will be used in what follows for a limit treatment of con-

centrated surface loads. In view of the rather elaborate develop-

ments that were required to arrive at this theorem, it should be 

emphasized once more that the integral representation of elastic 

states deduced here - though confined to simple regions - is es sen­

tially stronger than the representation in terms of Green's states
1

, 

which is not applicable to points on the boundary of the region. The 

us efulness of the present representation, which is free from this 

deficiency, transcends the particular purpose for which it was derived. 

Thus, for example, Theorem 3. 3 supplies also a convenient tool for 

the study of singularities induc e d by discontinuous surface loads, 

which are beyond the scope of this investigation. 

1 
Cf. Theorems 6. 1, 6. 2 in [2 ], as well as our Section 6. 



-56-

4. Lin1it treatrr1cnt of concentrated surface loads . 

The present section contains a counterpart for concentrated 

surface loads of the limit treatment of Kelvin's problem in Section 2. 

Thus , we first define the solution to a problem involving concentrated 

surface loads through an appropriate limit process and subsequently 

examine the nature of the singularities inherent in the solution so 

defined. In carrying out this task we shall confine our attention 

exclusively to simple regions and to a single concentrated load that is 

equilibrated by regular surface tractions, in the absence of body 

forces. The generalization of what follows to any fini te numbe r of 

concentrated s u rface loads and to non- vanishing body forces is 

entirely elementary. Further, the extension of most of the results 

deduced in this section to the broader class of regular regions pre -

sents no essential difficulties , provided the point of application of the 

given concentr ated surface load lies within a sufficiently smooth 

subset of the boundary. 

With a view toward our present objective we first introduce 

Definition 4 . l. (Sequence of traction fields tending to~ concentrated 

surface load and to regular surface tractions). Let R be~ simple 

region and ~EBR . Let :!::,=1£ be~ vector and1EU(8R). We say that (.!:,m} 

is~ s eguence of traction fields on ElR tending to~ concentrated load !::, 
-·· 

at (the point) ~and tractions 1, on oR if: 
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a sequence of sphe res such that pm -o ~ m-•oo; 

JAm 
(c) lim t d.A=-t ; ,..., ,...., 

m--+oooR 

(d) the sequence { J limld.A} is bounded; 

oR 

(e) J ,! md.A= J ~'\!.md.A=~ (m=l, 2, 3, ... ) . 

oR oR 

In connection with the foregoing definition, which is an ana-

logue of D efinition 2. 1, it is natural to ask whether an approximating 

sequence of traction fields Ltm} exists for given t and -t. This 
,...., ,..., ,...., 

question is answered by 

Theorem 4 . 1. (Existence of~ sequence of traction fields tending to~ 

'concentrated surface load and to regular surface tractions). Let R, 

-·· 
a, -t and 'f be as in Definition 4. 1. Then necessary and sufficient for 
,.._, ,...,--,.... ---

the existence of~ sequence of traction fields ~ oR tending to~ concen-

-·· 
trated load!:, at ~and tractions l on oR is that the entire given loading 

be self-equilibrated, i·~·, 

J'f d.A+-t =0, J xi\'f d.A+a/\ t=O . 
r- rv""" /"">..I~ ,....,l"V,....,, 

( 4. 1) 

oR o:R. 

Proof. To confirm the necessity of (4 ~ 1 ), observe first from (a) and 

(e) in Definition 4. 1 that 

J'f d.A+ I tmd.A=O , Jxi·.'f d.A+a A rtmd.A+J(x-a)J\ tmd.A=O (m=l, 2, 3, ..• ) . 
,....., J,....,, ,.....,, ,...,,,. ,....., "" ~ f""'J """ f'J ,...., 

oR oR oR OR oR 
( 4. 2) 
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Now let m->oo, use (c) in Definition 4. l, and note that becaus e of (b) 

and (d), the last integral in (4. 2) tends to zero . Thus, (4.1) holds. 

To e stablish the sufficiency of (4. 1 ), one merely needs to 

exhibit a sequence ~m} such that 

(m=l,2,3, •.• ), (4. 3) 

with [ p } a null sequence, and 
m 

J,imdA=!:,, J(~-.~)/\,!mdA=Q, .f l,!mjdA<k (m=l,2,3, ... ), (4.4) 

BR BR BR 

where k is a constant. 

Without loss of generality, assume henceforth that -t is a unit 

vector. Suppose first that!:, is not tangential to BR at~· so that 

!:_ • ;::(~):iO, (4.5) 

where ;::(~) is the unit outer normal to BR at a. Choose a rectangular 

cartesian frame with the origin at~, such that the x
3

- axis p ·oints in 

the direction of ;::(2) while the x 1 -axis is perpendicular to i, . Further, 

consider the cylinde r 

It then follows from (1. 3 ), (1. 4) and the present hypotheses on R that 

for some A.> 0, 

where 

0 (0, A. ) =F (A.)nBR= [x lxEF (A.), 9(x)=O}, 
,....,, "' ,-.....,; ,....,, 

9(~) =x3 - cp(x1 , x 2 ) for all ~EF (A.) , 

2 
cpEC (IT (_~,A.)), cp(O, O)=cp, a(O, 0) =0 . 

(4. 6) 

} (4. 7) 
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I 

Next, introduce cartesian coordinates x. through a rotation 
1 

about t h e x 1 -axis that brings the x~- axis to coincidence with~· i.e., 

J I I 
x 1=x1 , x 2 =t3x 2-t2x 3 , x 3 =t 2x 2 +t3x 3 (4. 8 ) 

If -t '. denotes the components of t in this new frame, evidently 
1 

Equations (4. 7), (4. 8) now yield 

whence 

(4. 9) 

(4.11) 

since t is at present non-tangential to BR. Thus, adopting the notati o n 

1 (4, 12) 

one concludes from (4. 6 ), (4. 7), (4. 10, (4 . 11) and the implicit­

function theorem the existenc e of v > 0 and of cp ' EC
2 

(II
1 
(0, A.)) such that 
rv 

I "'8 [ I I I I I I } F (v, ~· ' R= ~ ~EF (v, v), x 3 =cp (x 1, x 2) . 

Now define 

"m ) ,! (x = 
a I \) 0 for all xE R-F (-, v) (m=l, 2, 3, ... ) . 

rv rv m 

(4.1 3 ) 

(4 .1 4 ) 

The sequence Q_m} so constructed clearly conforms to (4. 3 ). Furthe r, 

b e caus e of (4.13), (4.14), 
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(m= 1, 2, 3, ... ) , 

and similarly from (4. 9), (4 .13), (4. 14), 

J (~-~)'\!_mdA=.£, J!_!mldA= l ~l=l (m=l, 2, 3, .•. ) 

oR oR 

This completes the proof provided (4. 5) holds. If, finally, ~ 

is tangential to oR at a, so that {, · n(a)=O, con s ide r the unit vectors 
. l"'J ,-....; ,,....,, l"'J 

which are not tangenti al to oR . Then, there are sequences f_!~J, 

ll,~J satisfying (4.3), (4.4) with~ replaced by !::
1

, !:: 2 , respectively. 

Hence, t h e sequence Lt m} defi ned by ,._, 

f ulfi lls requirements (4 . 3 ) and (4. 4). The proof is now complete . 

It is clear from the fo r egoing theorem that Definition 4 . 1 i s 

empty unless the self- equilibrat i on relations (4 . 1) hold true . On the 

other hand, (4. 1) in conjunction with (a) and (e) in Definition 4 . 1 

imply 

I tmdA=-l (rn=l, 2, 3, .•. ) , ,..., ,..., (4 .15) 

oR 

which is stron ger than (c ) in this definition. 

The fo llowing theorem supplies a definition through a limit 

process, and at the same time a r epr esentation in terms of the load 
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data, of the solution to a problern corresponding to a given concen-

trated load that is equilibrated by preassigned regular surface 

tractions. In analogy with Theorem 2. 1 one has 

Theorem. 4. 2. (Lirnit definition of the solution to~ problem involving 

a concentrated surface load). Let R be~ simple region and ~EoR. 

•'· 
Lett fO be a vector and l EJ/(oR). Assume 
--rv ,..,-- --rv 

J'f dA+t = 0 , J x f\'£ dA+a/\ t = 0 . 
rv ,....., ""-J ,.....,,....,, ,..._,,,....., ,..._,, 

aR oR 

Further, let f,!m} be a sequence of traction fields on oR tending to~ 
·'· 

concentrated load tat a and tractions l on oR. Then: --,._,-,..,--

(a) there exists~ unique sequence of states [Sm} such that 

Sm [ m m]E e(O -R) ~1.m. n.=tm. on !:IR = u , T , µ., 0; , u ,.., ,.., ,.., lJ J 1 - (m=l, 2, 3, .•• ) , 

J 32:,m-~pdA=O (m=l,2,3, .•. ,p=l, . • . ,6), 

oR 

with 51P given .£y Definition 3 . 2; 

(b) [Sm} converges to~ state S=[u, T] on R , the convergence 
a 

being uniform on any closed subs et of R ; 
~ 

(c) the limit state S is independent of the sequence {tm} and 

admits the representation 

T(x)=Ti(x, a)t.+J Ti(x, v)f.(y)dA for all xER, 
,....., rv ,....., ,....., ,....., l rv rw rG 1 rv y_,-- -- ,-.., 

oR 

(4.16) 
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p 

'T(x)=Ti(x, a)-t. +l(x)L (x)+ J fi (x,_y)C {.y)d.A for all xEoR 
,.....,,..._,,.....,,._rv l ,.....,1,._ ,.....,,....., l y ----,..., a 

oR ,..., 
l (4.16) j (Cont .) 

wher e Si(., y) is the ni.odified tangent state fo r the region R at y corre -
,..., ,..., 

sponding to the xi- direction and the elastic constants µ,a, in the sense 

of Definition 3. 3, while ~i is g ive n ..£y (3. 9) and the last integral in 

(4.16) is to be interpreted as in (3 .1 0) . 

We call S the state corresponding to~ concentrated surface. 

··-
load .{, at a and tractions 't on oR (as well~ to the elastic constants -- ,.._, - ,...,--
µ' a ). 

Proof. Conclusion (a) follows immediately from the pr e sent hypoth-

eses , in view of (a), (e) in Definition 4 .1, with the aid of Korn 1 s [ 14] 

l existence theorem, (b) in L emma 3. 2, and the uniqueness theorem 

for the second boundary-value problem of elastostatics . 

To reach the remaining conclusions, note first from Theorem 

3. 3 that Sm (m=l, 2, 3, ••. ) admits the r epresentation 

m J"i m u (x)= u (x, y)t. (y)d.A 
,....., ,._ ,...., ,.....,,....,, 1 ,....., ;t 

oR 
for all x ER , l 

I 

m I 0 i m 'T (x)= 'T (x, y)t. (y)d.A 
,....., ,....., ,....., ,....., ,....., l . r- :t 

oR 
forallxER, ,..., (4. 1 7) 

p 
m 1 i m I oi m 'T (x )='l' (x)t. (x)+ 'T (x, y)t. (y)d.A 

,..._, ,....., ,....,, ,.._ 1 ,....., ,....., ,.....,,....., 1 ,._ y 
oR ,..., 

for all xEoR 

Now define ~· 1 through (4.16). Then, by virtue of (4. 17) and (a) in 

1 
Recall that um has been normalized so as to preclude an arbitrary 
additive rigid displacement field. 
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Definition 4. 1, 

m r oi "'lTI ui -
u (x}-u(x}= ju (x, y)t. (y}dA -u (x, a) t. for all xER , 
,-...,; ,....., r.Jl"'-.J ,._ ,-...,;,-...,; l ,._ y rv ,._,._ 1 ,,....., a 

oR ,..., 

p 
rn, i ..... m r oi ..... m oi 

'f \X)- r(x)= ~ (x)t. (x }+j 'f (x, v}t. (y)d.A - 'f (x, a)t. for 
,..._, ,._ rv ,._ ,._ rv l ,._ ,._ ,._ ,t..J l ,._ ;[, ,._ ,._ ,.....,, 1 

oR 
all xEoR . 

a 

(4.18) 

To co1nplete the argument it remains to b e shown that the left-

hand members in (4.18) tend to zero uniformly on any closed s ubs et 

of R . Let G be such a set a nd let [ p }be t he null sequence of radii 
a m 

associated with ~m} in the sense of (b} in Definition 4.1 . Further, 

let m be such that B (a }nG is empty whenever m>m . Then, 
o plll ,..., o 

because of (4.18), (4 . 15) and (b) in Definition 4. 1, 

for all xEG and every m>m . H e nce, 
,..., 0 

lulll(x }-u(x } I s:I<:U r lt:U I cl.A for all xEG, Ill>m ' 
rv ,._ rv rv l .J l ,...., 0 

oR 

l!m(?,9-1,(~)l s:x.~ J lt~jd.A for a ll ~EG, Ill>Ill
0

, 

oR 

l 
J (4. l 9) 
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where 

m I oi oi )I -k. =max u (x, y) -u (x, a , xEG, yEoRl)B (a) , 
l ,....,, ,....., ,.....,, ,....,, ,._ ,......,, ,....,, ,....., fu ,..._, 

Observe that the existence of these maxima is assured by the first 

continuity assertion in (a) of Theorem 3. 2; for the same reason and 

since [p } is a null sequence, k:U and K:U tend to zero as m-oo . The 
m i i 

desired conclusion thus follows at once from (4. 19) and (d) in 

Definition 4 . 1. This completes the proof. 

The next theorem is an ana logue for the problem under present 

consideration of Theorem 2. 2 on properties of the Kelvin state. 

Theorem 4 . 3 . (Properties of the state corresponding to~ concen-

··-
trated surface load and to regular surface tractions) . Let R, a, ~! ·t 

and S be as in Theorem 4. 2. Then S has the properties: 

(a ) 

(b) 

( c ) 

( d) 

S= [u, 'f]Ee(o, µ, a;R ) ; ,._ ,......,, ,......,, a 
"' 

u(x)=O( Ix-a 1-l) , 'f(x)=O( /x-a 1- 2
) as x ->a ; 

,....., r-....1 ,..._, ,....,,, ,....., ,....., ,._ ,._ - "' 

·'· 
the tractions of S on oR coincide with .t ; 
-- -- -- a --"' 

lim It d.A=-t 
p--o RneB (a)"' 

p"' 

where t are the tractions of S on the side of RnoB (a) that faces a . 
---"' ---- - - -- --- -- p "' -----

Proof. Define u' and 'f 1 .on R through 
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u' {x)= I ui{x, y}t (y)dA for all xER , 
,...,, ,,..._, ,._ ,....,,._ 1,...., y 

oR "' 

t r oi ::~ 
T (x)= I T (x, y)t. (v)dA for all xER , 

,...., ,..., J,...., ,...., ,..., l"" y 
ElR "" 

p 

T 1 (x)=tJri(x)~'.(x)+Jfi(x,y}t(y)c1A for all xEClR, 
,,..._, ,._ ,._ ,....,, 1 ,._ ,._ ,._ ,._ 1 ,._ "';!.., 

oR 

(4. 20) 

•i 
where S ( ·, r_,) is once again the modified tangent state of Definition 

3. 3 and _ii is given by (3. 9). An elementary modification of the argu­

ment employed in the proof of Theorem 3. 3 yields 

1 r: I I -S =LU , T ]Ee(O, µ, a;R ) ,..., ,..., ,...., {4. 21) 

Further, from (4.16), (4. 20), 

I 0 i -
S = S +S ( · , a )-t. on R . 

,...., i a (4 .22) 

Conclusions (a) and {b) now follow directly from (4. 22), (4. 21 ), (a) 

and (b) in Definition 3. 3 , (3. 7), and (b) in Lemma 3. l. 

Turning to (c), note first from (4. 22), the last of (4. 20) , and 

( 3 • 9), ( 1. 9 ) that 

(4.23) 

where t is the traction vector of 8 on oR and ti is given by (c) in 
~ ,...., 

Definition 3 . 3 . Observe that the integral in (4. 23) is proper. Next, 

(4. 1) and (a) in Lemma 3 . 2 furnish 

J qm(y)· 'i (y)dA +qm(a). -t= O {m=l , ••• , 6 ) . ,._ ,._ ,._,....,, y ,....,, ,....,, ,....,, (4. 24) 

oR 
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Equations (4. 23) and (4. 24), together with (c) in Definition 3. 3, imply 

conclusion (c). 

Finally, turn to conclusions (d). As a consequence of con-

clusion (a), the tractions_!, of S are self-equilibrated on the boundary 

of the region R-B (a) for all sufficiently small p,..., 

lim r tdA + jr tdA=O • 
t.! ""' rv rv 

p-+OR.f\8B(a) oR 
p,..., 

p>O. Thus, 

(4.25) 

Also, because of (4. 1) and conclusion (c), 
r 
J_!,dA+~=Q (4.26) 

oR 

Combining (4. 25) with (4. 26) orie obtains the first of (d). The second 

of conclusions (d) is immediate from the second of (b), so that the 

argument is complete. 

It will become apparent through specialization of a gene ral 

uniqueness theorem for concentrated- load problems established in the 

next section that properties (a), (b), (c) together with the first of (d) 

suffice to characterize the limit state S uniquely (except for an 

additive rigid displacement) and therefore furnish an alternative 

definition of S . 

The orders of the displacement and stress singularities at the 

point of application of the concentrated surface load are given by (b) 

in Theorem 4. 3 regardless · of the particular shape of the boundary. 

We emphasize , however, that the detailed structure of these 

singularities depends upon the specific geometry of the boundar y in a 

neighborhood of the load point, as is apparent from the results in 

[l], [16], [17]. 
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5. Alternative characte ri zation and uniqueness of solutions to 
concentrated load proble1ns. 

We have so far defined the solution to a problem involving 

concentrated loads through a limit process applied to a sequence of 

solutions corresponding to regular loadings. We then examined the 

solution generated by means of the foregoing limit process and in 

particular determined the orders of the ensuing displacement and 

stress singularities, as well as the stress resultants of the latter. 

This program was carried out for internal concentrated loads in 

connection with Kelvin's problem in Section 2 (The orems 2. 1, 2. 2); 

the analogous results for concentrated surface loads we r e obtained in 

Section 4 (Theorems 4 . 2, 4 . 3 ) with limitation to simple regions. 

The results to which we have just referred provide the 

motivation for an alternative for.mulation of concentrate d-load 

problems. This direct formulation rests on the a priori specification 

of the concentrated-load singularities as to their orders and stress 

resultants, in addition to the assignment of the regular body forces 

and surface tractions. 

In this section we seek to establ ish the completeness of such 

an alternative formulation of concentrated-load problems throug h an 

appropriate uniqueness theorem. For this purpose we first extend 

Betti's reciprocal theorem to elastic states with singularities of the 

type arising in the limit treatment of concentrated loads. The 

generalized reciprocal theorem, which is of interest on its own 

merits, greatly facilitates the proof of the uniqueness theorem that 

is our primary objective. 
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All of the results g iven in the p resent s ect ion are a pplicabl e to 

arbitrary regular r egi ons, in contrast to those in Section 4, which are 

confined to si1nple r egions. 

Theorem 5.1. (Ge neralization of the reciprocal theor em to~ c lass of 

s ingula r e lastic states) . Let R be a regular region. Let 

P l [ I I } II [ I I II } = ~l' .• ·~k ' ' p = ~l' .•. ' ~k11 ' 

be nvo sets of points in R w hich have no e l ements in common and 

consist of k' and k " distinct (inte rior.£!_ boundary) points. Furthe r, 

let s'' S 11 b e two states with the properties: 

where 

(a) s '=[!::',;::_']Ee(t', µ, a ;R-P
1 ),_tEC(R), 

S
11

=[u11
, T

1 1
]Ee (f

11
, µ, cr;R-P

1

\ f ' EC (R) ; "" ,...,,.. ,.....,, ,......,, 

(b) u'(x)=O( jx-a ' i- 1), T
1 (x )=O( jx -a' 1-2 ) as x-+a ' (m=l, . .. , k'). 

r"J '""' ,.....,, '""'m "" ,.....,, ,.....,, ,.....,, - '"'"' "'In m 

II . I "1 -1 II I 111-2 II II u (x)=O( x -a ), T (x )=O: x - a ) as x-+a (m=l, ... , k ); 
,......,, ,..._, rv rvm rv ,..._, '""' rvm - '"'"' "'In 

(c) lim ft'dA =-t ' (m=l, ... , k 1
), 

'"'"' ,...,m 
p -+ 0 A' m( p) 

(m=l, ..• , k
11

) , 

I I 1 II II 11) 
A ( p )=R()oB (a ) (m=l, ... k ), A ( p)=RnoBP(a ) (m=l, ... , k , m p,...,m m ,..., m 

while t ' are the tractions of s' on the side of A' ( p ) that faces 
'"'"'---- - -------- m --

and _!11 
is defined analogously; 

(d) .the tractions of s ' ands" on oR ~integrable. 

Then 
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k ' 

l:!'.:'m·;i;:11 (~ )+ J .!,'·~11 dA+Ji'·~"dV 
m=l m oR R 

( 5. l) 

if t', t 11 h e r e denote the tractions of s', S 11 on oR. 
-~ ~ -- -- --

Proof. Let p > 0 be such that any two spheres (balls) of radius p 
0 0 

centered at points of P 1 UP11 are disjoint. D efine 

k' k 11 

R(p)=R- U B (a' )- U B (a 11 
) 

m=l p~m m=l p ~m 
(O <p<p ) I 

0 
(5. 2) 

and let p
1 

E (0, p
0

) be such that R(p) is a r egular reg ion whenever 

0< p< p
1

. Applying Betti's reciprocal theorem to the pair of elastic 

I II 1 
states S, S on R(p) (O< p<p

1
) one has 

I,!'· ~II dA + f !'.~II dV = f .!_11
• ~· dA + J,~11 • 3t' dV (0 < p< fl) . ( 5. 3) 

oR(p) R(p) oR(p) R(p) 

Next, hypothesis (c) implies 

J
t'(x)·u11 (x)dA =Jt'(x)· [u"(x)-u"(a ' )]dA +t' .J.'(a' )+o(l) as 

rv "" "' "" x "' "' """ ,,....,, ,...,,, "'m x ""'-'In. ,..._,. .......,m 
p-+ 0 

f\. I ( p) ~ f\. I ( p) 
m m 

(5. 4) 

for m=l, ... ,k', and 

1 
Observe from (1. 7) that the reciprocal theorem holds also if R is 
unbounded. 
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for m=l, ... , k 11
• Since s' is regular on the intersection of R with a 

• II d S 11 
neighborhood of P , an is regular on the inters ection of R with 

a neighborhood of P
11

, equations (5.4), (5 . 5) and hypothesis (b) 

furnish 

Jr t I • U 
11 cJ.A = t I • U 

11 (a I ) +o ( 1 ) , r t II • U I cJ.A = 0 ( 1 ) ,._ ,._ ,...._,m ,....., ,._m J,.....,, ,._ 
A I ( p) A I ( p) 

lTI m 

I 
as p-+O (m=l, ... k ), 

I I pll I II 
t 11 

• u dA = "-' • u (a ' \ +o ( 1 ) , ""' ,._ rvm ,....., ,...._,nt Jt'.u"d.A=o(l) as p-+O (m=l, ••. k 11
). ,...., ,...., 

A II ( p) 
m 

A II ( P) 
m 

(5.6) 

Now proceed to the limit as p -+O in (5 .3 ), using (5.2), (5 . 6) 

b dh h · (d) 11 h 0££
1
,£

11 
and earing in min ypot es1s , as we as t e continuity ,...., ,...., 

on R, to obtain the desired identity (5.1 ). 

It is not difficul t to see from the foregoing proof that the con-

clusion in Theorem 5 . 1 continues to hold if hypothesis (d) is omitted 

provided the surface integrals in (5. 1) are interpreted as suitable 

principal values. Note also that Theorem 5 . 1 r educes to Betti's 

r eciprocal theorem if s' and s" are regular on R. Finally, the 

generalization of the preceding theorem to inhomogeneous and aniso-

tropic linearly elastic materials is e l ementary. 

As a further preliminary to the uniqueness theorem at which 

we are aiming we require 

Definition 5.1. (Green's states for the displacements in the s econd 

boundary-value problem). Let R be~ regular region and ,rER . We 

call 

"i ["i "i J s (·,y) = u (·,y), 'i (·,y) 
,....., ,....., ,...., rv ,._ 



-71-

the displacen1ent Green's states for the region R at X' corresp onding 

to the elastic constants µand a , provi ded: 

(a } 
hi i ?t'i -
S ( • , y ) = S ( • , y) +;:, ( • , y) on R , ,...., ,...., ,...., - x 

where s\·, y) is the normalized Kelvin sta t e introduced in Thoorem 2.1; 
,...., --- --- -

,....,1 
(c) t ( •, y ) = ,...., ,...., 

6 

-,!i( ., ,Z)-L ,.gm(. }q~(_t} 2E oR i f R is bounded 

m=l 

i -t ( •, y) 2E oR if R ~ unbounded, ,...., ,...., 

,....,i i ,...., i i 
where,!, (., ,Z), ,! (•,,Z) are the surface tractions of s (., x), s ( .. ,.r ), 

while s_m (m=l, ••• , 6 ) is given E_y Definition 3 . 2; 

I hi m 
(d) ~ <;:_,,Z)·s_ <;:)d.Ax=O (m=l, . • . ,6) if R is bounded . 

oR 

"'l h i 
The regular pa rt S (· ,,Z) of the Green1 s state S ( · ,,Z) is defined 

through (b) , (c) as the solution of a second boundary- value probl em for 

the region R. Thus requirements (b), (c}, because of (1 . 7), 

"'-'i 1 
determine S ( •, ,Y) unique ly if R is unbounded but, if R is bounded, 

leave this sta t e determinate merely w ithin an additive rigid displace­

ment field. Accordingly, Si (· •,Y) i s defined by (a}, (b), (c } to the same 

d egr ee of indeterminacy. This indeternrinacy is eliminated by the 

normalization condition (d}, as is clear from (b) in L e mma 3 . 2. 

1 
Cf. the r emark immediate ly following D efinition 3 . 3 .• 
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The surface tractions ~i (·, x:_), defined by (c), are self­

equilibrated on oR if R is bounded, as is easily verified with the aid 

of (c) in Theorem 2.2, together with Definition 3 .2 and (3.25); 

further, they evidently possess the same smoothness on the boundary 

as does the unit normal vector of oR. Consequently the existence of 
. . 

~l Al 
of u (. ')'.") - and hence of the Green Is states s (. 'x)- is assured for 

simple regions by Korn 1 s [14 J existence theorem. The existence of 

"i S (· .,r) for the broader class of regular regions hinges on the solv-

ability of the second boundary-value problem for such regions in the 

presence of surface tractions with the degree of smoothness of the 

unit normal vector of oR . Note also that Si(·,)'.") is known explicitly 

(in elementary form} for the special cases of the entire space and the 

half space: in the former instance it coincides with the Kelvin state 

Si( ·, ,r}, while in the latter it is furnished by Mindlin 1s [18] solution to 

the problem of a half-space under an internal concentrated load . 

It is worth mentioning that the Green's states in Definition 5.1 , 

which are related to those used by Berg1nan and Schiffer in [19] 

(p. 223 ), differ from the analogous traditional Green's states employed 

in [2 ]
1 

(Theorem 6. 1). There, the equilibration of the concentrated 

load at y induced by the Kelvin state Si( ·, y) is effected through the 
~ ~ 

introduction of a second internal singularity; further , the normaliza-

tion of the displacement fie ld is achieved by requiring the displace-

ments and rotations to vanish at the location of this supplemental 

singularity. 

1 
See also [9] (Definition 3 .2). 
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The Green 1 s states of Definition 5.1, in contrast to their 

counterpart in [2 ] , are sym1netric in the sense of 

"i " j ) u.(x, y}=u .(y, x) for all (x, y ERXR.-D . 
JrvroJ l,._,...._, rv,..._, 

( 5. 7) 

These sy1nmetry relations follow at once from an application of 
. . 

"l "J Theorem 5.1 to the pair of states S (·, y), S (·, x). We shall show ,.., ,.., 

later on that there is a simple connection bet.-ween the Green 1 s states 

"l 
S ( ·, l) and the modified tangent states defined in Section 3 (Defi -

nition 3. 3 ). 

Definition 5. 1 will be used in Section 6 to deduce an integral-

representation theorem for solutions to problems involving concen-

trated internal and surface loads. We now turn directly to 

Theorem 5.2. (A uniqueness theorem for problems involving~ 

centrated inter i1a l and surface loads) . Let R be~ regular r egion and 

assume the displacement Green 1 s states for the region Rat y, intro--,.., 

duced in Definition 5.1, exist for all yER. Let -------,.., 
P=[a 1, ••• a J 

,.., "'k 

be a set consisting of k distinct (interior or boundary) points in R. 

,..J II • 
Further, let o::i , S be two states with the properties: 

(a) S
1
=[u 1

, T
1 ]Ee(f, µ, a;R-P), ,.., ,.., ,.., 

I 1
-1 I I ,- 2 (b} u 1 (x)=O( x-a ) , T (x )=O( x -a ) as x-a (m=l, •• ,k), 

rv """"" rv ,...._,m , ,....,, ,....., ,....,,, ,....,m - "' ,.._,m 

II ) I ,-1 II I ,-2 u (x =O( x-a ) , T (x)=O( x-a ) as x -a (m=l, ... , k); 
,.....,, rv ,...., rvm rv ,...., rv ,..._,m - "' "-'ID 
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( c) lim J ,!_' dA =lim J _!
11 

dA (m= 1, .•• , k) , 
p-+OA (p) p-+O A ( p) 

in m 

where 

A (p)=RnoB (a ) (m=l, .~.,k), m p,.__.m (5. 8) 

while t', t" are the tractions of s' , s" on the side of A ( P) that 
,.__. ,.__. ---- - -------- m --

faces a ; 
--- ,...,m 

(d} t'=t" on oR-P, 
"' "' -

if t I 1 t" here denote the Surface tractions Of S 1
1 s"; 

- "' "' 

(e) J u'· qm dA=O , Ju"· qmdA=O (m=l, •.• , 6) if R is bounded, ,....,, ,....,, ,....,, ,....,, 

oR oR 

with qm g iven .£y Definition 3. 2. -- ,.__. 

Then 

s' =S
11 

on R-P • 

Proof. Choo.se yER-P and hold y fixed. 
"' ,.__. 

"i Let S ( ·, y) be the displace-
"' 

ment Green's states for the region Rat"'£• corresponding to the 

elastic constants µ,CJ. Then, in view of (a), (b) in Definition 5.1 and 

(a), (b), (c) in Theorem 2.2,one has 

Ai I ,-1 "i I ,-2 ~ (~; Y.,)=O( ~-Y., ), ,! (~;,Y)=O( ~-_y ) as ~-+x_, (5. 9) 
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where ii< · ,_z) ar e the tra ctions of Si(•, x) on the side of oBp<-x) that 

faces y, while e i is a unit vector in the x. -direction. Further, from 
"' ,.., 1 

(a) and (c) in Definition 5. 1, 

6 

-f g_m(· )q~~) on oR if R is bounded 

m=l 

0 on oR if R is unbounded , 

ni "i 
provided,!_ ( · , x:_) here are the tractions of S ( •, _z) on oR. 

Next, define the state S = [ u, 'f ] through ,.., ,...., 

S= S -S11 
on R-P, 

so that by (a}, (b}, (c}, (d}, 

S=[u, T]EC'..(O, µ,cr;R-P), 
"' ,.., ,.., 

r 
lim j ,!_dA=£ (m=l, •• • , k) , 
p-0 A (p) 

m 

t =0 on oR-P ,...., "' 

(5.10) 

(5.11) 

(5.12) 

where tare the surface tractions of S and A ( p) is given by (5. 8) . ,.., m 

Taking account of (5. 9), (5.10), (5.12) and applying the gener-

Ai 
alized reciprocal theorem (Theorem 5.1) to the pair of states S, S (· 1 'X] 1 

one draws 

J
~Ai 

u. (y)+ t (x, y) • u(x)dA =0 • 
1"'-' ,.....,l""W""'-J~,..., x (5.13) 

oR 

The integ ral in (5. 13) vanishes if R is unbounded because of (5. 10). 

On the other hand, if R is bounded, (5. 10), (5.11 ), and hypoth-

esis (e) yield 
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6 

J-.i \·· m J m 
t (x, v}·u(x}dA ,= - ) q . (y) q (x).u(x)clA = 0. 
rv rv /....., ,....,,,..._, X '--J 1 ......... "'-' rv ,...._,,..._, X 

oR m=l oR 

Thus, (5.1 3 ) implies u. (y}=O. Therefore, since Y. was chosen arbi-
1 ,...., ·-

trarily in R-P, 

u=O on R-P • (5.14) 

Equations (5.14), (1.6) assure that 'f also vanishes on R-P. The ,..,, 

desired conclusion now follows immediately from (5.11) together with 

the continuity of u and 'f on R- P. ,...., ,..,, 

The hypotheses in Theorem 5. 2 may be weakened in several 

respects. First, as may be shown by considerations strictly 

analogous to those employed in the proofs of Theorems 5.1, 5. 2 in 

[7 ], if a is an interior point, then ,..,,m 

u' (x)=O(jx-a 1-l) if and only if 'f
1 
(x)=O(jx-a 1- 2

) as x -+a , ,....., ,...._, ,....., ,..,.,m ,..._, ,..._, ,.....,, l"Jl'I1. ,....., ,....., m 

I I -1 II I 1- 2) u 11 (x)=O( x-a ) if and only if 'f (x)=O( x -a as x--+a . ,....., ,...._, ,...._, ......... m · ,..._, ,....., ,....., ......... m ,._ ,-...,m 

Hence for internal singularities, hypotheses (b} - though mutually 

consistent - are redundant. Second, note that the regularity conditions 

on£ at infinity, implied by hypothesis (a) and the l ast of (c) in 

Definition 1. l if R is unbounded, were not used in the preceding 

uniqueness proof. Suppose, in particular, R is an exterior region 

and all of conditions (c) in Definition 1. l are replaced by the weaker 

requirement 

'f (x}=o(l) as x--+ co • ,...... ,..,, 

Then hypotheses (a). (b}, (c}, (d} ensure that the states S 1 and S 11 can 
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differ only by a rigid displac ement field, as is easily seen from 

Theorem 5 . 2 in [7]. F urther, in view of the remarks made in con-

nection with Definition 5. 1, the hypothesis concerning the existence of 

the Green's states becomes superfluous if R is a simple region, a 

half- space, or the entire space. Next, it is worth mentioning that the 

positive- definiteness of the strain-energy density assumed in (a) of 

Definition 1. 1 nowhere entered the proof of Theorem 5 . 2; conse­

quently, uniqueness prevails for all values of µ a nd a for which the 

requisite Green's states exist. Finally, it would appear that a 

generalization of The orem 5. 2 to anisotropic elastic solids can be 

carried out with the aid of Fredholm's [ 20] work on basic singular 

solutions in the linearized equilibriuin theory for such media. 

It is an immediate consequence of Theorem 5. 2 that the prop­

e rties of the Kelvin state listed in Theorem 2. 2 uniquely characterize 

that state. Similarly, Theorem 5. 2 g uarante e s that the solution to the 

problem of a concentrated surface load balanced by regular tractions 

on the boundary of a simple region defined in Theorem 4. 2 through a 

limit process, is uniquely characterized by the properties listed in 

Theorem 4. 3 - provided the displacements are suitably normalized . 

We emphasize that the conclusion in Theorem 5. 2 no longe r 

follows if hypotheses (b) are omitted, i.e. if the orders of the singu­

larities at the load points are not preassigned . This lack of unique­

ness is due to the existence of elastic states with higher-order self­

equilibrated point singularities. 
1 

In particular, [I J contains 

1 
Cf. the remark at the end of Section 2. 
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examples of 11 pseudo- solutions'' to concentrated-load problems for the 

half-space and the sphere that possess singularities with the r equisite 

stress-resultants at the load points and that satisfy the prescribed 

boundary conditions for the regular surface tractions, but fail to 

coincide with the corresponding limit solutions. These examples 

demonstrate the incompleteness of the commonly employed direct 

formulation of concentrated-load problems, in which the orders of 

the singularities are not specified. 

The usefulness of Theorem 5. 2 stems from the fact that the 

direct formulation of concentrated- load problems furnished by this 

theorem enables one to validate the solution to such problems without 

carrying out a possibly cumbersome limit process. In conclusion we 

observe that Theorem 5. 1 may now be viewed as a generalization of the 

classical reciprocal theorem to problems involving concentrated loads. 
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6 . Integ r al representations of solutions to concentrated- load 
probl e1ns. Behavior of G r een 's states at the boundary. 

This s ection a ims primarily at integral representations for 

solutions to concentrated-load pr oblem s in the direct formulati on 

supplied by the uniqueness theorem {Theorem 5. 2) of the preceding 

section. In particular we show that t h e displacement fields of such 

solutions may be repres ented in integral form with the a i d of t he 

Green' s states Si of Definition 5.1. To obta in an a n alogous r e pres en-

ta ti on for the associated fields of stress we r e quire 

D efinition 6. 1 . (Green's states for the stresses in the second 

boundary- value problem). L e t R b e a r egula r r egion and yER . We -- ,...., 

call 

s ij (. ':!,) = [ ~ij (. ' y)' i i j (. ' y) J 

the stress Green ' s states for t h e region Rat 'f:: correspond ing to the 

e lastic constants µ and a, provided: 

where 

ij - [ 2 (J k i j J -S (·, y )--µ -
1 2 

6 .. S k(· , y)+S .(·, y)+S . (·, y) on R , 
,...., - (J lJ ' ,..., ' J ,...., ' 1 ,...., - y 

(6 . l) 

while Si( ·, y) are the normalized Kelvin sta t e s introduced in 
,..., ----

Theorem 2. l; 

ij ij ,...,ij ij 
where t ( •, y), t ( ·, y) are the surface tractions of S ( ·, y), S ( ·, y); 

,...., ,...., ,...., ---- - ,...., 
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(d) (m=l, .•. , 6) if R is bounded, 

with qm given E_y Definition 3. 2. --,..., 
Note that the state Sij ( ·, y) defined through (6. 1) is a linear 

combination of a center of dilatation and of two force doublets with 

equal and opposite moments, and hence has a self- equilibrated singu-

1 
. 1 

arity at X: rvlJ 
Thus, from (c), the tractions of S (·, y) are self-

equilibrated on aR·. 

The remarks made in connection with Definition 5. 1 that con-

cern the existence and uniqueness of the displacement G r een 1 s states 

--i --ij 
S, are equally applicable to the stress Green 1s states S of 

Definition 6. 1 . In particular, the existence of the latter states is 

as sured when R is a simple region, a half- space, or the entire space. 

A connection between the Green 1s states and the modifi ed tangent 

states of Definition 3. 3 will be established later on. We now proceed 

to 

Theorem 6. 1. (Integral representation of sol utions to concentrated-

load problems). Let R be a regular region. Assume the displace­

ment Green1 s states Si(· , y ) of D efinition 5.1 and the stress Green1 s --- ,..., - ----
states Sij ( · , y) of Definition 6. 1, for the region R at:!,, exist for all 

P=[a 1 ••• ,a 1 } 
,..., rv <: 

1 
See [2 J (Theorem 5. 2). 
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be~ set in R, which consists of k distinct (inte rior 2-E. boundary) 

points. Further, l et S be a state with the propert ies: 

where 

(a) S=[u,'f]Ee(f,µ,o;R-P), fEC(R) 
rv ,..._, rv rv 

(c) lim JtdA=t (1n=l , .•• ,k), 
~ ~m 

p-+O A (p) 
m 

as x-+a 
- ~ ~m 

A ( p)=Rn oB (a ) (m=l, ••. , k) , 
m p~m 

(m=l, ..• , k); 

while,! are the tractions of S on the side of Am(p) that faces ~m; 

(d) the tractions of S ~ BR~ integra ble; 

(e) J u . · qmdA=O (m=l, ••. , 6 ) if R is bounded, 
~ ~ 

oR 

with qm given ..£y Definition 3. 2. 
--~ 

Then S on R-P admits the representation 

~ i p 
u (a ,y)· -v for all yER-P 
rv ,....,m,..._, rvm-- ~ 

(6. 2) 

m=l 

'f .. (y)= J u ij (x, y) · t(x)dA + Ju ij (x, y) · f(x}dV 
lJ rv rv rv rv rv rv X "" rv rv ,..._, rv rv X 

oR ~ R 

k 
\ A lJ + /_ u (a , y)• -l for all Y.ER-P , _, ~ ~m ~ ~m ·- (6. 3 ) 

m=l 
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if t here denotes the tractions of S on oR. 

Proof. Let yER-P. Then, bearing in mind (a), (b), (c), (cl) and 

A i 
(5. 9), and applying Theorem 5. 1 to the pair of states S, S ( ·, 'f)• one 

obtains 

r ti(x, y)· u (x)clA +u. (y)= r ui(x, y)· t(x)clA 
"'rv ,.._ ,._ ,......, ,.....,, X l rv •J ,._ ,.....,l"V ,.....,,....., X 

BR BR 

m 

+I u i(x, v). f(x)dV + f_\ ui(a 'y)· ,e, • 
· ,._ ,.....,, /.J ,....., ,....., x _.J ,._ ,._ m ,....., ,....., m (6. 4) 

R ,...., k=l 

It follows from (5.10) and hypothesis (e) that the integral in the left-

hand member of (6.4) vanishes. Hence (6.4 ) implies (6.2). Turning 

to the proof of (6. 3 ), we r ecall first from Theorem 2. 2 that 

. . . 
Si(· •X)=[;:_1(·' X)• ;r,1(·' I) ]Ee(2_,µ, cr;RY,)' 

i I 1-1 i I 1- 2) u (x, y)=O( x -y ), T (x, y)= 0( x-y as x-+y , 
,..._, ,...._, ,._ ,._ ,....., ,.....,, ,...., ,....., ,....., ,....,,, ,._ ,...._, 

(6. 5) 

1. r i< )clA i im j ~ ;:_, x., x =~ , 
p-+O oB (y) 

p"' 

where ti(•, y) are the tractions of S \ ·, y) on the side of oB (y) that ,._ ,._ p,....,., 

faces x_,, while ~i is a unit base-vector in the x c direction. Hence, an 

application of Theorem 5. 1 to the pair of states S, Si(·, y) yields 

ui (y_)= J [;:_\~~,' x_,)·,!(~)- ,!i(~; x_,). ::_(~) J clAx 

oR 
k 

+Jui(x,y)·f(x)dV +L\ ui(a ,v)•-l . ,..._, ,....., ,...., ,._ ,._ x ,._ ,....,,, m /-¥ ,..._,n'l 
R ,...., m=l 

(6. 6) 
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Since J.., was chosen arbitrarily in R - P, (6. 6) holds for all x_ER-P. 

From (6.6), (2.3), (2.2) follows 

k 
ra i \"a i 1 

+J~u(x,y).f(x)dV.+ j .,.,-u(a ,y).,f, forallyER-P . (6.7) oy. ,._ ,......, ,...., ,...., ,._ x t-J oy . ,._ ,._m rw ,...., m ,._ 
R J ,..., m=l J 

According to (2. 2), (2. 3 ), Si(~, y) is differentiable with respect to both 

of its arguments, providedxfy. Further, (2.2) g ives ,..., ,..., 

a i a i a i a i 
.,.,-- u (x, y) = - -.:r--U (x , x)' ~ T (x, v)= -~ T (x, X) ay . ,._ ,......, ,...., ox.,....., ,._ y. ,._ ,._Iv x. ,._ ,._ 

J J J J 

so that (6.7), (6.1), and (1.6) imply 

T •. (y)= J [uij (x, y) • t (x)-tij (x, y) · u(x)] dA lJ ,._ ,._ ,...._, rv ,......, ,._ rv ,....., ,._ ,._ ,......, X 

BR ,..., 

k 

+Juij(x,y)· f(x)dV .+\' uij(a ,y)·,f, for all yER-P. ,......, ,._ ,....., ,._ ,......, x L,....., ,.....,m ,...., ,..._,m ,......, (6. 8 ) 

R "'m=l 

Next, for each yER-P, let Sij(·, J..,) be the 11regular part11 of the stress 

Green's state §ij ( ·, y) in Definition 6 . 1. Then (b) in this definition, 

together with the present hypotheses on S and Theorem 5.1 applied 

to S, 'S'ij(·, y), furnish ,..., 

1 
The differentiation under the integral sign of the improper volume 
integral in (6.6) is easily justified with the aid of (2.3), (2.2). 
Cf. the proof for the differentiability under the integral sign of 
Newtonian potentials of volume distributions in Kellogg [5] (p. 151). 
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0= I [~ij (~, '!) ·!_(~)-!ij (~, '!). ~(~) J dAX 

oR 

k 

+jr7i'.i\x,y).f(x)dV ,+\ ui\a ,y)· .{, ~ ,.....,, ,.....,, ,.....,, ,._ x L ,.....,, ,....,,J.n ~ ,.....,,m 
R "' in=l 

for all yER-P • (6. 9) ,..., 

Finally, add (6. 8) and (6. 9), and use (a), (c) in Definition 6. 1 to obtain 

(6. 3). This comple tes the proof. 

We now establish a connection betwe en the Green's state s of 

Definitions 5.1, 6 .1, and the modified tange nt states of Definition 3 . 3 . 

Theorem 6. 2. (A connection between the Green's states and t h e 

d . f . d t t t t ) L t R b · 1 · L e t s"i, s"ij , s·i mo i i e angen s a e s • _ e_ ~ ~ s1mp e r egi on. 

respe ctive ly denote the displacement Green's states ....s?.i D e finition 5. 1, 

the stress Green ' s state s of D e finition 6 .1, a nd the modified tangent 

states of Definition 3 . 3 , for t h e region R. Then: 

Ai ok Aij 0 k ".:> 

(a) uk(~<~~)=ui(I: ~9 , uk {~, )')=Ti/:¥:;~) for all {~, y:)EuRXR 

{b) lim u~{x, z)=u~{x, t) for a ll (;:, t )ERXoR-D • 
~--t J ,..., ,..., J ,..., -- --

Proof. Let xEoR and let S k (., x) b e the modified tan gent state for the ,..., ,..., 

region Rat~ corresponding to the xk-dir e ction
1

• Let qm (m=l, •.• , 6 ) ,..., 

be given by Definition 3. 2. Then (a) in D efinition 3. 3 and (a) in 

Lemma 3. 2 imply 

1 "k Recall that the existence of S ( • , x ) is assured by Theorem 3 . 3. 
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I 0 1- m 
t '- ( p' x) • q ( p) dA = 0 ,..._,,..._,,....,,,._,....., p 

o [R-B (x)] ,...., p,...., 

(m=l, .•. ,6), 

for all sufficiently small p>O. Thus, from (c) in Definition 3. 3 and 

(3.25), 

6 

. r .,._k m " .i I .i m llm I .: {n, x}· q (n}dA =L q
1 

(x } q (n) · q (p}dA -.o """' ""' ,....., ,..._, ~ £ '"__, """ ~ ,....., ,....., E 
p A(p) -l=l oR 

= q
1
m(x) (m=l, ••• , 6) , c ,...., (6.10) 

where 

k o~ 
while t (•, x) in (6 .10) are the tractions of S ' ( ·, x ) on the side of A(p) ,...., ,...., ,...., 

that faces x . For m=l, 2, 3, Equations (6.10) in conjunction with ,...., 

Definition 3. 2 yield 

. I ~k k hm .: {p, x }dA = e , 
-+ 0 ,...., ,...., ,...., p ,...., 

P A( p) ,...., 

(6. 11) 

where ek is a unit vector in the x
1 
-dir ection. 

,...., c 

Next, (b) in Definition 3.3, (3 . 7), and (b} in L emma 3.1 imply 

uk I 1-l ok I ,-2 u (p, x )=O( p - x ) , T {p, x )=O( p - x ) as p-+ x . ,..._, ,.....,,...., ,...,,,,......., ,....,,,.....,,,..._,, ,.....,,...,,, ,.....,,,,.....,, (6 . 12) 

Inviewof(6.ll}, (6.12)and(a), (c), (d}inDefinition 3 .3, itfollows 

from Theorem 6.1 that Sk(·, x ) admits the representation ,..., 
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uk I Ai yk Ai u. (y, x)= u (p, y)· -i: (p, x)dA +u
1 

(x, y) for all yER , 
l ,.._ rv ,.._ ,.._ rv "-' ,.._ rv p <: ,.._ ,.._ 

oR "" 
(6. 13) 

ok I A ij ) ok( )dA Aij( ) f ER T .. (y,x)= u (p,v ·t p,x +u1 x,x., orally • lJ ,.._ ,..._, ,........ f'V Iv ,.._ ,.._ ,.._ p < ,.._ ,.._ 
oR ,..., 

The integrals appearing in (6 .13) vanish because of (d) in Definition 

5.1, (d) in Definition 6.1, and (c) in Definition 3.3. Thus, since~ 

was chosen arbitrarily on oR, (6. 13) implies conclusion (a). 

We turn next to the verification of conclusion (b). To this end 

first choose (x,y) on oR XoR-D and observe that (6.11), (6.12) together 
,..., "' 

with (a), (c) in Definition 3. 3 guarantee the applicability of Theorem 

5.1 to the pair of states flc·.y). s\.,~) . Indeed, one obtains in this 

manner 

(6.14) 

for all (:;::_, x.,) E oR XoR-D. Hence, invoking ( c ), (d} of Definition 3. 3, one 

sees that each of the two integrals in (6.14) vanishes, and arrives at 

the symmetry relations 

ui oj 
u.{x,y)=u. (y,x) for all (~_,v)EoRXoR-D. 
]"'"" 1,..,,..., ·-"" 

(6. l 5) 

In addition, recall from (5. 7) that 

Ai ) Aj E u . (x, y =u. (y, x) for all (x, y) R XR-D • J ,.....,, !'.I 1 ,.._ ,,...., ,.._ ,.._ 
(6. 16) 

From (a} in Definition 3. 3, (a) in Definition 5. 1, conclusion (a) in the 

pre sent theorem, (6.15), (6.16), i t follows that 
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u~(x, y) = u\y, x)= lim u~ (z, x) 
]"""" i,._,..._, 1,._"" 

~;:, 

= lim u~ (x , z ) for all (~: _x) ER XoR , ,:, _. r J ,.., ,.., 

oi ) oj( . uj u.(x,y =u. y,x)=lim u.(z,x) 
],..._,,._ 1,..._,,,....., . l,.....,,..._, 

z-+y 
"' "' 

. = lim u~(x, z) for all (x, y ) EoRXoR -D • 
z-+y J ,....., ,._ ,....., ,._ 
"' ,..., 

(6. l 7) 

(6. l 8) 

Relations (6. 1 7), (6 . 1 8) imply conclusion (b), so that the proof is 

complete . 

It is apparent from (6. 2 ), (6. 3) in Theor e m 6 . 1 that one 

requires merely a knowledge of the Green 1 s displacements Q_i (., y ), 

uij(·, y) on the boundary oR in order to arrive at an integral r e pr e -
"' ,..., ---
sentation of u(y), T(y), in the absenc e of body forces and internal ,....., ,._ ,....., ,._ 

concentrated loads. Conclusion (a) in Theorem 6 . 2 now r eveals that 

this limited information conc e rning the two t y pes of Green 1 s displace-

m e nts is supplied completely by the displacements a nd str e sses of the 

modified tangent states, if the region is simple. This obs e rvation i s 

apt to be of practical interest in connection with the actual constr ue-

tion of the general solution to the second boundary-value problem for 

such regions. Beyond this, the theoretical s i gnificance of Theorem 

6. 2 stems from the fact that it reveals the behavior at the boundary 

Ai A ij 
of the Green 1 s states S, S since the corresponding behavior of the 

modified tangent s tates Si is known a priori from D efinition 3. 3. 
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In connection w ith the original definition of the modified tan-

gent states we note from (6.11), (6.12), in conjunction with the 

uniqueness theorem for concentrated-load problems (Theorem 5. 2), 

that (b) in D efinition 3.3 may n9w b e replaced by: 

(b I) 0 i ( ) ( I ,- 1 ) 0 i ( ) ( I , -2) ;: ~· X:, =O ;;,-x:_ , 2°, ;;,.;t =O ;;,-y as ;:---y_' 

where !,i( ·, y_) are the tractions of s\., y_) on the side of A.pCJ) that 

faces v, while ei is a unit vector in the x.-direction. This alternative 
~ ~ l 

and more transparent characterization of the modified tangent state 

0 

S(•, y_) identifies the latter as the solution to a problem corresponding 

to a unit concentrated load at the boundary point I. together with the 

equilibrating regular surface tractions 

6 
oi \ m m 
,!. ( • • Yl = - L ~ (. )qi (y_) 

m=l 

on oR 
I. 

specified in (c ) of Definition 3. 3. 
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