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Abstract

This investigation is concerned with the notion of concen-
trated loads in classical elastostatics and related issues. Following
a limit treatment of problems involving concentrated internal and
surface loads, the orders of the ensuing displacements and stress
singularities, as well as the stress resultants of the latter, are
determined. These conclusions are taken as a basis for an alterna-
tive direct formulation of concentrated-load problems, the
completeness of which is established through an appropriate unique-
ness theorem. In addition, the present work supplies a reciprocal
theorem and an integral representation-theorem applicable to
singular problems of the type under consideration. Finally, in the
course of the analysis presented here, the theory of Green's functions

in elastostatics is extended.



-1V~

Table of Contents

Intrioductions e s & ewi & o weE & @ @ 50676 5 & T80 B & & 60 5 %5 58 S aeE s
Notation and preliminary definitions.....cceeeeeeenne vos
Internal concentrated loads. Kelvin's problem.ccececss.

Representation of elastic states corresponding to given
surface tractionS e e wsas e e waies & o ies s 5 e e s e sbe e ssese

Limit treatment of concentrated surface 10adSe.cocecooees

Alternative characterization and uniqueness of solutions to
concentrated-load problems iisessssssvssssmsssissss o

Integral representation of solutions to concentrated-load
problems. Behavior of Green's states at the boundary...

RELCTENCER o e w s oo e o 6@ e & 50600 0 50 % 09 & %85 80 6 6085 5 e b e u

14

17

56

67

89



Introduction

Although the notion of a '"concentrated load' is a natural
ingredient of the mechanics of particle systems and rigid bodies, it
is inherently alien to the mechanics of deformable continua in general
and to elastostatics in particular. Indeed, the introduction of concen-
trated loads into the linearized equilibrium theory of elastic solids
gives rise to singular solutions of the governing equations that violate
the basic approximative assumptions underlying the classical theory.
Further, the direct formulation of concentrated-load problems in
elastostatics that has become traditional is not covered by the conven-
tional uniqueness theorem and is incomplete in the sense‘of admitting
a multiplicity of solutions, as was emphasized by Sternberg and
Rosenthal [1] (1952).

The foregoing uniqueness issue cannot be safely dismissed
with a reference to the fictitious nature of concentrated loads: the
point is that the fiction is useful provided it is made meaningful.
Moreover, the fact that loads of this type represent merely a con-
venient idealization of certain physically realistic loadings hardly
justifies conceptual vagueness or outright ambiguity in their mathe-
matical treatment.

A comprehensive study aiming at a clarification and resolution
of various fundamental questions connected with concentrated loads in
elastostatics, was published by Sternberg and Eubanks (2] (1955).

The program pursued in [2] may briefly be outlined as follows. To
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begin with, the solution to a problem involving concentrated internal
or surface loads is defined as the limit of a sequence of regular solu-
tions, corresponding to distributed body-forces or surface tractions.
Such a limit definition is natural on physical grounds and is suggested
by Kelvin's [3 ] original treatment of the problem of a concentrated
load at a point of an elastic medium occupying the entire space. The
next objective is to demonstrate the existence of the limit solution and
to represent it in a manner suited to the determination of the orders
and stress resultants of its singularities at the load points. Finally,
the foregoing properties of the singularities — together with the
boundary conditions for the regular surface tractions — are taken as a
basis for an alternative direct characterization of the solution to
concentrated-load problems, the completeness of which is the object
of an appropriate uniqueness theorem. Such a direct formulation of
concentrated-load problems obviates the necessity for carrying out
explicitly a limit process that may in particular applications be highly
cumbersome.

The work in [2], which provides a conceptual guide for the
present investigation, fell short of its purpose. Thus, the proofs in
[27] of the theorems concerning the limit definition, representation,
and properties of the solution to a problem with concentrated surface

loads (Theorems 7.1, 7.2) take for granted certain properties of the
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Green's functions employed in these proofs1 . Further, the argument
used in [2] to establish a uniqueness theorem (Theorem 8.1) for
concentrated loads, is inconclusivez. A remedy of these deficiencies
requires some additional hypotheses, as well as a substantially
different approach to the proofs of the theorems affected.

The present study serves a dual purpose. First, it amends
those results in [2 ] that require modification and attempts to carry out
rigorously the general program of [2]. Second, the current work
~contains various results on Green's functions and integral representa-
tions pertaining to the second boundary-value problem in elastostatics
that are of interest in themselves,

The subjects of concentrated loads and of Green's functions in
linear elasticity are intimately related. In fact, the theory of Green's
functions supplies a helpful means for the study of concentrated loads,
while at the same time the physical interpretation of the requisite
Green's functions rests on the notion of concentrated loads. It should

be emphasized, however, that this interconnection does not involve us

1

. Specifically, it is assumed thatu,(Q, P, PO) (defined in Theorem 6.1
of [27]) coincides on its domain of definition — for fixed P° in the
interior — with a function that is jointly continuous with respect to Q
and P for Q on the boundary and P on the closure of the region, pro-
vided Q # P. It is also assumed that G;:(Q, P) (defined in Theorem 6.1
of [2]) obeys Gij(Q, P) = O(r‘z) as P-Q, for every Q on the boundary,
if r is the distance from Q to P.

A In the derivation of Equation (8.15) of [2] it is supposed that the dis-
placements of the '"difference state' are uniformly continuous on the
intersection of the region with a deleted neighborhood of each load
point, whereas only their continuity is assured directly by the
hypotheses of Theorem 8.1.
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in a logical circularity since the use we make of Green's functions in
the analysis of concentrated loads is entirely independent of the physi-
cal significance of these functions.

In Section 1 we dispose of various notational and geometric
preliminaries, and — for later economy — introduce the definition of an
"elastic state'. In Section 2 we recall briefly from [27] a limit
definition and certain relevant properties of the solution to Kelvin's
problem. This expository material is included here because a limit
treatment of Kelvin's problem provides a transparent model for the
more intricate analogous issue related to concentrated surface loads.
In addition, Kelvin's solution plays an important role in connection
with various Green's functions introduced subsequently.

Section 3 is devoted to analytical prerequisites for a treatment
of concentrated surface loads. Here we construct, for any region
with a sufficiently smooth boundary, certain singular solutions to the
equations of elastostatics. These solutions, which possess a
prescribed singularity at a given point of the boundary, are used at the
end of the section to arrive at an integral representation — in terms of
the given surface tractions — for the solution to the second boundary-
value problem appropriate to such a region. An essential feature of
the representation obtained here is that it holds up to the boundary.
The basic ideas underlying the unfortunately rather lengthy and
involved developments in Section 3 are drawn primarily from Weyl [4].

In Section 4 we apply the integral representation just mentioned
to a limit definition of the solution to the problem of a concentrated

surface load that is balanced by regular surface tractions, Further,
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after establishing the existence of the limit solution, we confirm that
the orders of its (surface)singularities are the same as those encoun-
tered in Kelvin's problem and that the resultant of the stress
singularity coincides with the given concentrated load. All of the
considerations in this section are once again confined to regions with
""smooth' boundaries.

The results regarding concentrated-load singularities in
Section 2 and Section 4 suggest an alternative direct formulation of
problems involving both concentrated internal and concentrated
surface loads. The completeness of this direct formulation is
established in Section 5 through a uniqueness theorem, which — in
contrast to the results of Section 3 and Section 4 — applies to a broad
class of regions. The principal tool employed in the proof of this
theorem is furnished by Green's functions for the displacements in the
second equilibrium problem, which we introduce for this purpose and
whose existence for the region at hand we postulate. For bounded
regions, the Green's functions used here differ in two essential
respects from the customary Green's functions used in [2]. First,
the Green's functions defined in Section 5 possess only one internal
singularity (of the Kelvin type), the equilibration of which is achieved
by conveniently chosen regular surface tractions; second, they are
symmetric. The proof of the uniqueness theorem for concentrated
loads, as well as the proofs of the results given in Section 6, is
greatly facilitated by a generalization of the reciprocal theorem to a
class of singular elastostatic fields, which is carried out at the

beginning of Section 5.
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In Section 6 we apply the displacement Green's functions of
Section 5 (together with their counterpart for the stresses) to the
derivation of an integral representation for the solution to
concentrated-load problems in the formulation supplied by the unique-
ness theorem of Section 5. At the end of Section 6 we establish a
connection between the Green's functions entering the preceding
representation theorem and the singular elastostatic fields involved in
the representation theorem of Section 3. This connection, in partic-
ular, reveals the behavior of the Green's functions at the boundary of
the region.

Finally, we remark that the developments in Section 5 and
Section 6 — with the exception of the last theorem in Section 6 — are

essentially self-contained.



1. Notation and preliminary definitions.

Throughout this investigation lower-case Latin or Greek
letters, when not underlined, stand for scalars; lower-case Latin
letters underlined by a tilde denote vectors, w‘hile lower=-case Greek
letters underlined by a tilde designate second-order tensors. Upper-~
case letters are reserved for sets; in particular, upper-case script
letters are used for sets of functions., We employ the letter E for the
entire three-dimensional euclidean space. If A is a set in E we write
A and 9A for the closure and the boundary of A, respectively. The
symbol Aa. represents the set obtained from A by deleting the point
with the szition vector a; in order to avoid cumbersome notation, we
agree to write Ka and aAa in place of (K)a and (SA)a. Further, we

call D the diagonal set defined by

D= {(x,y)|(x:3Y)€EXE, x.= y} . (1.1)!

Finally, the open sphere (ball) of radius p centered at x is denoted by
BpL}é), so that

Bp%) = {y ly eE, (1-35)2<p2} (p>0) . {1..2)

Standard indicial notation is used in connection with the carte-

sian components of tensors of any order: Latin subscripts and super-
scripts, unless otherwise specified, range over the integers (1, 2, 3),
Greek indices have the range (1,2), summation over repeated indices

being implied; subscripts preceded by a comma indicate partial

1 ; : .
Here and in the sequel, we use the conventional notation for the
cartesian product of two sets.
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differentiation with respect to the correspondiﬁg cartesian coordinate,
For functions of more than one position vector, the aforementioned
differentiation will be understood to be performed with respect to the
coordinates of the first position vectorl . If u is a vector, we mean
by Vu the second-order tensor with the components ui,j ; the corre-
sponding meaning is to be attached to VT, where T is a second order
tensor. As usual, 6ij stands for the Kronecker delta,

If © is a function of two position vectors, then ®(., X) indicates

the subsidiary mapping obtained by holding y fixed. To characterize

the smoothness of functions introduced, we write Q€C(A) if @ is

defined and continuous on a subset A of euclidean n-space. Moreover,
if m is a positive integer, we write cPECm‘(A) when ©€C(A) and its partial
derivatives of order up to and including m are defined as well as con-~
tinuous on the interior of A and there coincide with functions

continuous on A. Finally, if A is a surface in E, the statement

WEX(A) is to convey that ® is defined and uniformly Holder-continuous

on A, i.e. that there exist k>0 and a€(0,1] such that

a
le(f)"Cp(X,)' Sklpﬁc’-zl for all (x, }L)EAXA .
Analogous interpretations apply to tensor-valued functions.

In the present investigation we require two classes of regions:

regular and simple regions, We say that R is a regular region if it is

an open region in E and there exists Py >0 such that for all p> po the

boundary of RﬂBp(O) consists of a finite number of non-intersecting

1
Thus, ® ,(x, y)=20(x, y) /9x; .
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closed regular surfaces, the latter term being used in the sense of
Kellogg [57 (p.112). Note that a regular region, as defined here,
need not be bounded and, if unbounded, need not be an exterior
region since its boundary may ‘extend to infinity. In addition, the
boundary of a regular region may have edges and corners. If y€ OR
and OR has a unique tangent plane aty, we always denote by ,-.rf(,X) the
unit outer normal to OR at y. Further, in these circumstances, we
call Q(y, \) the intersection of R with a closed circular cylinder of
radius ) and height 2), centered at Y the axis of the cylinder being
parallel to n (,X)' Also, H(z, L) will always designate the intersection
of this cylinder and the tangent plane of 9R at y. Thus, choosing
cartesian coordinates %, such that the x3—axis points in the direction

ofg (v), one has

N 2
Qly, MV={z]z € 0R, (z -y Nz -y )=2”, |z3-y3[=a},

(1.3)

— 2 B
D(y, a)={z|z€E, (2 -y )z -y J<)° . 23-y;=0).

A point y on the boundary of a regular region R is said to be a regular

boundary point if:

i) OR has a unique tangent plane at y;
ii) there exists )}> 0 such that Q(y, \), when referred to a
rectangular cartesian frame with the origin at y and the Xy -axis

pointing in the direction of n(y), is given by

. Recall that Greek and Latin indices have the respective ranges (1, 2)
and (1, 2, 3).
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2 2 1
Q(0, \)={z|2€E, 2z 2z _<A", z3=0(z], z;)}, @CCT(M(0, ) . (1.4)

We define next a simple region to be a bounded regular region,

the boundary of which is a single surface consisting of regular bound-
ary points exclusively. We shall make frequent use of the following
two properties of a simple region R:
(a) there exists ) >0 such that (x, s)EOR x (0, A ] implies
xtsn(x) ¢R ;
(b) there éxists k > 0 such that

[n(x)-n(y) |sk|x-y| for all (x,y)edRxOR , 2
-~ o -~ (1.5)

| (x-y)*n(y) ng(x-y)z‘ for all (x,y)€E8R xOR .

~

Property (a) assures that for some ) >0 (depending only on R) any
straight line segment of length )\ issuing from a point of OR in the
direction of the outer normal does not re-enter R. The existence of
such a ) is a direct consequence of the present definition of R and the
Heine-Borel theorem. The inequalities (1.5) follow from the assumed
smoothness of OR; the first of (1.5) is elementary, whereas a proof
of the second may be found in [57 (p. 299).

Turning to preliminaries concerning the linearized theory of

homogeneous and isotropic elastic solids, we now introduce

! Note that Q(0, )) here has a higher degree of smoothness than that
guaranteed by Kellogg's definition of a regular surface element
([5]), p. 105).

The symbols '"A'" and "'-'" are used throughout to denote vectorial
and scalar multiplication of vectors, respectively.
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Definition 1.1. (State, elastic state). Let A be a region in E, i.e.

an open connected set together with all, some, or none of its boundarz

points, and let j; E the interior _qf A _I_f_ u is a vector-valued and 7 a

~

second-order tensor valued function defined on A, we call the ordered

pair S:[;g, 7] a state on A. We say that S=[u, 7] is an elastic state

on A, with the displacement field}& and the stress field T, corre-

sponding to the body-force f, the shear modulus y, and Poisson's

ratio g, and write

S:['Lla’:l: ]Ee (:,fva Mo CT;A) ’

Erovided:
(a) BECI(;\)QC(A) R :LECI(A)FIC(A) , £ €ec(A), whereas | and

o are constants with uy> 0, -l<g<l /2;

(b) u, 7,f,u and o satisfy

- _ 20 ' ] : 5
T R0 Ty (TR Ay R, 7, 5] on A G- B
(c) if A is unbounded,
wl 2 =3 , 1
u(x)=0(x "), 7(x)=0(x "), £(x)=0(x ") as x~o0 . (1.7)

The first of (1.6) represents the stress equations of equilibrium — the
second the stress-displacement relations. In particular, (b) ensures
the symmetry of the stress tensor 71 on A We recall that the
inequalities imposed in (a) on the elastic constants ; and o are

necessary and sufficient for the positive definiteness of the strain-

4 Here and in the sequel, we write x in place of [x |. The order of
magnitude symbols "O'" and ""o'" are used throughout in their stand-
ard mathematical connotation.
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energy density. If A is an exterior domain and =0, the order con-
ditions at infinity (1.7) are implied by

u(x)=o(l) as x— oo . (1.8)"

If S=[u, 7] is a state on A and ¥ is one side of a regular
surface with the unit outer normal vector n, we call t the traction
vector of Son ¢ if

ti:Tij nj (1.9)

at all nonsingular ‘points of ¥. If A is a region, S is a state on A, and
Y is a regular surface contained in ANBA, then — unless otherwise
specified — we mean by the '"tractions of 5 on T' the tractions of § on
the side of ¥ facing the exterior (complement) of A.

Equality of states, addition and multiplication by a constant, as
well as differentiation and integration, are defined as follows. Suppose
S=[w, 1], S ':[B', l'] 5 S”:[.E”’ IJ”"} are states on A and let ¢ be a

constant., Then,

Next,

St=gh, ifui=nwl . , 7L =% . ond& ,
o i i 35t Tjk ik, i

provided the derivatives here involved exist. Further, if

S(*,A)=[u(*, ) 7(+,2)] is a state on A for every ) €[a, b7, then

! See Fichera ré 1 and Gurtin and Sternberg [77 (Theorem 5.1).



b b b
s'= [, drif w'= [ut, 0dn, 1= [1(-,3)d) ona,
a a

provided the preceding integrations are meaningful. Finally, we

attach the obvious interpretation to the limit of a sequence of states.
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2. Internal concentrated loads. Kelvin's problem.

In the present section we deal with the problem of a concen-
trated load applied at a point of a medium occupying the entire space E.
The solution to this problem was first given by Kelvin [8]; it is
derived in Kelvin and Tait's treatise [37] (p. 279) through a limit
process, which is made fully explicit in [2]. The limit formulation
of Kelvin's problem to be presented here follows closely that adopted
by Sternberg and Al-Khozaie [9] in treating the analogous problem of

the linearized theory of viscoelasticity., We first introduce

Definition 2,1. (Sequence of body-force fields tending to a concen-

trated load). Let a€E and let { be a vector., We say that {im} is a

—_— e A —

sequence of body-force fields on E tending to a concentrated load { at

(the point) a if:
(a) £™ec*(E) (m=1,2,3,...);

(b) £™=0 on E-B (a) (m=1,2,3,...), where {B_ (a)} is a

sequence of spheres such that pm.*O as m—0o ;

(c) lim [f™av=y ;
m_o0 E ~

(d) the sequence {J‘ |fm|dv}i_s bounded.
E

We cite next a theorem which supplies both a definition and a
representation of the solution to the problem under present

consideration.
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Theorem 2.1, (Limit definition of the solution to Kelvin's problem).

Let a €E and let £ be a vector. Further let {I } be a sequence of

body-force fields on E tending to a concentrated load 4 ata. Then:

~

(a) there exists a unique sequence of states {Sm} such that

§7=[2™, 1168 £™, 1, 0iE) (=L, 28, vun)s

(b) Qm} converges to a state S=[u, 7] on E_, the convergence
} SE8 o8 Ay T80 Sy g

~

being uniform on any closed subset of Ea;

~

(c) the limit state S8 is independent of the sequence ffm} and

admits the representation

S(x):si(x,a),f/i for _a_lleEa . (2::1)
where
sitx, y)=8'x-y,0) for all (x,y)€EXE-D, .2

while the displacements and stresses of Sl(-, 0)are, for all x EEO y

givenﬂ
uj(z’,Q): 16TTU.(1"O')X [ XZ +(3—4g)513J ,
(2.3)
3xx x
1 k ]
'rk(?f:g)— - 3 { 2 +(1- 20)(6 Xk‘”’ 61{ 1)
8r(l-g)x X

We call S the Kelvin state corresponding to a concentrated

load 4 at a(and to the elastic constants |; and g). In particular, we

say that Sl(-, y) is the Kelvin state corresponding to a unit concen-

trated load at y in the xi—-direction.

: Recall from the definition of the diagonal set D in Section 1 that
EXE-D={(x,y) [(x, YIEEXE,x #y}.
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This theorem is proved in [2]1. The need for condition (d) in
Definition 2.1 is also established in [2 ], where it is shown by means
of a counterexample that conclusions (b), (c) in Theorem 2.1 become
invalid if this hypothesis is omitted. The foregoing requirement is no
longer necessary if £m is parallel and unidirectional, in which case
condition (d) is implied by (c) of Definition 2.1,

We now quote from [2],

Theorem 2.2. (Properties of the Kelvin state). The Kelvin state S

corresponding to a concentrated load £ at a has the properties:

(a) S=[u,T1€E(Q, 1 0E ) ;
(b) u(x)=0( Iz-glnl), 1(5)=O(|5~,§,l'2)a5 26

() [taa=t, [ (x-a)AtdA=0Q for every p>0,
E 9
B, () B,(a)

where t is the traction vector on the side of 3Bp(a) that faces a.

As is pointed out in [2], the formulation of Kelvin's problem
in terms of (a) and (c) alone, which appears to have become tradi-
tional, is incomplete in view of the existence of elastic states on E
that possess self-equilibrated singularitiesz ata, In contrrast, as :vill

be shown in Section 5 (Theorem 5.2), properties (a), (b) and the first

of (c) suffice to characterize the Kelvin state uniquely.

. Although the uniformity of the convergence asserted in conclusion (b)

is not mentioned in [2 , it is easily inferred from the argument
used in [2].

- E.g., a center of dilatation ata.
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3. Representation of elastic states corresponding to given surface
tractions.

The proof in [2] of Theorem 2.1 concerning the limit defini—
tion of the Kelvin state rests on a representation of the sequence of
approximating states in terms of their body-force fields. On the other
hand, once the Kelvin state has been explicitly determined in this
manner, the proof of Theorem 2.2, which asserts various properties
of Kelvin's solution, becomes entirely elementary. For a parallel
treatment of the more involved issue of concentrated surface loads
(in the absence of body forces) one requires first a representation of
elastic states in terms of their surface tractions. A representation
of this type — valid for the interior of the region at hand — is supplied
by the theory of Green's functions for the second boundary-value
problem of elastostatics, an exposition of which may be found in
Section 6 of [2]. This theory is conveniently modified and generalized
in Sections 5, 6 of the present investigation, Unfortunately, a rigorous
proof of the analogues for surface loads of Theorems 2.1, 2.2 by
means of Green's functions offers considerable analytical difficulties,
which stem from the elusive behavior of these functions at the
boundary. For this reason we deduce in the current section an
alternative representation of elastic states — confined to simple
regions — which holds up to the boundary. This alternative repre-
sentation is better suited to a limit treatment of concentrated surface
loads, which is carried out in Section 4. At the same time, as will
become apparent in Section 6 (Theorem 6.2), the representation

arrived at in the present section enables one to ascertain the
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boundary behavior of the Green's states introduced in Sections 5, 6.
Although the basic idea underlying the subsequent develop-
ments is suggested by Weyl [4]1, some of the results obtained ip what
follows go considerably beyond those contained in [4], while others
are more closely related to the work of Kellogg (5], Giraud [11] and

Pogorzelski [12] (Chapter 12). We first introduce

Definition 3.1. (Tangent states). Let R be a simple region, assume

y€OR and A€ (0, ©). We call

—Si("z: )‘-)z[,:éi(':'z: )\) s I_,l(':;x: K)]

the tangent state for the region R at y, corresponding to the X, -

direction, the parameter A, and the elastic constants W, 0 if for all x

in the set

— —— ———

it |

R-{z|z€E, z=y+sn(y), s€[0,1]},

N
_Si%,’g, A)=4(1- G)Si(ic,fg)—z(l- o)‘[ssf'ji(g,x%,g(z))ds
0

A

i j 2
—Z(I—ZG)nj(x)jLSij:é,l+SE(Z))—Sgi@,x+SE(Z))]dS . (3 ..1)
0

where’e is the unit outer normal to 9R, while Sl(-,rX) is the normalized

Kelvin state of Theorem 2.1. Further, we adopt the notation

gee sliu Weyl [10] (p. 70), where an essential shortcoming of [4]is
discussed. :

According to an agreement stated in Section 1, the differentiations in
(3.1) are to be performed with respect to the first position vector.
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Ei(',z: OC)):llm -Si("z’ )\) . (3.2)

A= coO

The state _L‘i'.l(- » Ys co) in the preceding definition admits a simple
physical interpretation. To this end hold R and y fixed and consider
the half-space

H={z |z €E, (z-y) - aly)so0},

whose boundary coincides with the tangent plane of R aty. Then
Ei(-,rz, o) is the Boussinesq-Cerruti solution to the problem of a unit
concentrated load acting at ¥y in the x;-direction on an elastic body
occupying H (see Love [13], p. 242 et seq.). In the present context it
is essential to remark that our use of the foregoing tangent state,
though motivated by, in no way depends upon, its physical significance
as the solution to a particular concentrated-load problem. This
physical meaning of the Boussinesq-Cerruti solution is, incidentally,
readily confirmed by a limit process (see Love [13], loc. cit.)
analogous to that employed in Theorem 2.1 to define the Kelvin state,
but based on a sequence of distributed surface loads. The tangent
state -Si(- 2 Yo A) evidently differs from-gi(- > Ys o) by an elastic state
regular on H.

Equations (3.1), (2.2), the first of (2.3) and the second of (1.6)

yield, after some computation, that for all x in the domain of definition

Of‘gi('.vzs Q)),
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-

X -y ) (% -y, -
by dloe VJ)+(1_O) i

4 _ 1
uj(_é’x: CX))— 21.”_1

1B
k-y x-yl
+2229 0 (y)h (x, y)-nilyhh (s y)Hex -y o (yh LGy |
4 AL T JRITLIRTA P pipli, iR L
5 (343)
4 e EpR)G-w ) g6 QPN 0g BT
Ty 4o 3 OSY=I = = 5 - 7w 3
|-y | e |
+ 152900 (b (s y)HE -y )n (B Lo (5) |
2w LMWER, 5k DTGV IR i Y
where
h(x,y)=logl|x-y |- (x-y)- n(y)] . (3.4)
For future purposes we also note that
: 3(x, -y, ).~y ) (=~ vy Iny (Y)
?;i{(_}é,z,oo)nk(z):_ i e i e R e 3.5)

am l,zs-vi5

In connection with Definition 3.1 it is essential to recognize
that the tangent state §i(-,z, o) is not necessarily regular on R since
the ray issuing from .XE OR in the direction ofg(z) may re-enter R
unless R has certain convexity properties., Such internal singularities
on R of S'i(-,x, A) are precluded for sufficiently small A>0, as is clear
from

Lemma 3.1 (Properties of the tangent states). Let R be a simple

region and let A >0 be such that

YEOR, z=y+sn(y), s€(0, 1] implies zf R . G.6)

As was pointed out in Section 1, the existence of such a choice of A
is assured.
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Further, for each y& IR, E—Sl(- > Yo ) jgg the tangent state for the

region R ;t_tz, corresponding to the xi-direction, the parameter A,

and the elastic constants U, 0. Then:

(a) Ei(_,z, NEE(Q, 1, c;ﬁx) for all y€OR ,
T,lf(-, -, \)EC(RXOR-D) , ‘ff(-, -, \)ECR XOR-D) ,
Vt}vi(-, *, A)EC(RXOR) , vii(-, -, M ECRXIR) ;
(b) there exists x>0 (independent of y) such that
|2tz y, M [<# |z-y [ for all (x,y)€RXR-D,
T g M < ey 172 for all (x, y)€RXOR-D ,

B,y M I<nlx-y [ for all (x,y)€oRx8R-D ,

where El(- ¥, A) is the traction vector ifngl(- »¥> A) on 9R

Proof. Conclusion (a) is easily inferred from (3.1). To prove (b)
observe on the basis of Definition 3.1 that for every y€0R ,
T v, A= (x, v, ©)+0(1) as x~y |

. . (3.7
il (=, v, ?\)=i1(§,x, ©)+0(1) as x~y ,

these estimates holding uniformly with respect to all y€90R. The first

two of conclusions (b) now follow at once from (3.7), (3.3), and (3.4).

With a view toward the last of (b), note first the identities
-E;(?E’X’ )‘):?jk(ﬁ’x’ Moy (%)
=T L @I )T 5 G 1 M Iy e)-my ()]
+[$§k(,§’2,’ Mnk(z)_F;k(f"X’ °°)nk(2) P
which hold for all (x,y)€ORX8R-D. Now use (3.5), (1.5) together

with the estimates already confirmed to verify the traction-estimate

in (b). This completes the proof.
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We now turn to

Theorem 3.1. (Generation of eclastic states from surface densities).

Let R, A and _S_i(-,(y, A\) be as in Lemma 3.1. Further, let SE?{(aR) and

define formally

w@= | 8.y Ne,(y)da_ for all x €R, ;
oR L
T fx)= j fr;i (%, v, )\)ei(x)dAY for all x €R , ’ (3.8)
OR -~
- p -
i =1
T(x)=V (z)ei(zs)+ Ty, Mei(X)dAX for all x €0R ,
3R J
where
K‘,lizﬁn-i-é n-nnn+—l—ﬁ-gn(<5 -n.n, ) on OR (3.9)
jk ik ik ik 2 it ik ik — .

and the last integral in (3.8) is to be interpreted as a Cauchy principal

value in the sense of

p - -
[T e yaa = uim [ ey, Me;()aa, . G.10"
oR L e 05r ag, ¢

Then:

(a) the integrals in (3. 8) exist;

(b) S=[u,1]€€0,n, o;R);

(@) Liglse@t By Ney(y)aa, for all xR ,
OR

L See (1.3) for the definition of Q(g, € )
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}21'ovided£,:f;i (+,y,\) are the traction vectors of S, Ei(-,x, A) on 9R

and aRy' respectively.

~

Ml. The existence of the first two integrals in (3.8) is assured by
Lemma 3.1. Note in particular that the first integral, though
improper for x€9R, is convergent because of (b) in this lemma.
Further, (a) and (b) in the present theorem imply (c), as follows at
once from the third of (3.8) together with (3.9), (1.9), and the final
estimate in Lemma 3.1. Also, it is clear from the first two of (3. 8),
in view of (a) in the lemma, that

S=[u, 1]€€(Q, 1, oiR).

The preceding statement in particular guarantees the con-
tinuity of u on R. To verify the c:ontinuity2 of u on R, choose zC€OR
and ¢> 0. Then, because of (b) in Lemma 3.1 and the boundedness of

e on 9R, there exists p > 0 such that

] fgi@,x,x)ei(x)dAyl< ¢ for all x€R
8RNB (2) ’“

whence

| [ 184y 0-Biz 3, W1e;(y)aa_ | <ze for all x€R .
BRNB ,(z) <

L ke following proof is suggested in part by Kellogg's [5]
Chapter IV, Section 5) treatment of the behavior at the boundary of
the derivatives of Newtonian potentials appropriate to surface
distributions.

In connection with the subsequent argument see Kellogg [5]
{pp. 150, 160).



w2 e

On the other hand, by virtue of the continuity of }El(- ,*» A) asserted in
(a) of Lemma 3.1 and the boundedness of g on 9R, there exists §>0

such that

|I [u (N Y, A)-u (N Yo )\)]e (y)dA |<e for all \GRGBG(’V)
OR - BpL)
Combining the last two inequalities and using the first of (3.8), one has

lu(x)-u(z)[<3e for all x €RNB4(z)

Hence u is continuous on R.

To complete the proof it remains to be shown merely that the
singular integral in the last of (3.8) is meaningful in the sense of
(3.10) and that LEC (R). For this twofold purpose it is helpful to prove
first that for all z €9R,

lim lim IT z-sn(z), ¥, Ne. (,X)dA =y (v)e (z) (5= 1)

e~ 0 s—=0+ Oz, €)
with ¥ given by (3.9).

We now establish (3.11). Choose z€0R and hold z fixed. For
convenience choose the coordinate frame in such a way that its origin
is at z (so that z=0) and the X,-axis points in the direction opposite to

n{0). In this frame, from (3.9),

i i 3 1+20
Thus (3.11) now becomes
lim lim J L, s Ae. (x)dA *.Y, (ﬁ)e 9), (3.13)

e—0 x—0

X€EL Q(0, e)
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where

L:{EIBER’pQZO’p3>O} - (3.14)

Let eo>0 be such that Q (0, eo) admits the representation (1.4) and let
y be the function defined by

To(0)=y g » Talg)=- @y}, v,) for all y€M(Q, ¢ ), (3.15)

where ¢ and (0, E:O) are as in (1.4) and (1.3), so that yEH(Q, c-:o)

implies E(X)EQ (9, eo). From (3.15) one draws, for every e€(0, 60) .

p s T Ty Ve ((y))
,J ilg’)ﬁ’ k)ei(z)dAy = j R(?(,X‘X))‘B (913”"’ dA,X for all x€L.(3.16)
(€ ) ~ O O(o,e ) T

Equation (3.16) may be used to simplify (3.13). Observe first from

(1.5), (3.15) that there exists k> 0 such that for all y€II (0, E:O),
lBFEN-20) | <kly @l ,
|y =15 (1)-01- 2(@) | = k7)) 1%

Therefore, since [E(y)]2=y2+[?3 (y)]z, there exists kl > 0 such that

for all y €11(0, e ),
1T <k gl 1750 <k 3% aGe)-n@lsk .  ¢.17)

Equations (3.16), (3.17), (3.7), together with the second of (b) in
Lemma 3.1 and the Holder-continuity of e assure that (3.13) is

implied by

lim lim | 7% (x, ¥ (y), co)dA. =2 (0) . 3.18
i lim | ik T, o1aa =vi @) (3.18)

'-.}EEL 4. %)
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The verification of (3.18) involves a lengthy computation,
which may be shortened by noting from (3.3) and (3.5) that
=i, " .
T35 ¥ )= T 3 (5,3, @)[8 34y (y)] )

53 (3773 M~ 95 00 9y I8, ()
2m

x-y1°
(3.19)
3 T2, » B V3

e -
Top &Y )= T3 (Ea Y, M58, L

+1322 | m, (YIh op (% y)-ng(y)b 35&5’1)] j

for all (x, y)ELXQ(Q, eo). By way of illustration, we confirm (3.18) for

i=j=1,%k=3. From (3.3);, (3.17), since nl{(g)=-6 follows

K5

X . -1 - —

lim lim f 11 Y (), m)[5k3+nk(z(z))] dAV:O,
EJ(EL (‘-"

so that (3.19) gives

) = _

3y, () -y (y) I n, (¥ ()
lim lim I ﬂg.(x»z_(x):oo)d/—\ aifes s 1 AR TYY 1<~(.X
e~ 0 x—0 I ~ 2L e-0 x=0 I(

= 5 .
2w |x-3(y) | 4
xeL @@ x€EL ) o

0,¢e

This relation, because of (3.17), (3.15), and the inequality
lz-3 - Ix-yll< ¥ @)-yl=l¥301 .

in turn yields

2
. . | = 3 . S
lim lim | T750 §(y), 00)dA = - 2 lim lim l 5da,
€20 x~0 o o b4 =0 %0 po o |x-v|
HEL, T x€L T\~
£ x30°

3 .
-= lim lim ————72dp "
2 e—'0x3—'0 '(J) ([32+x32)5



BT

On subjecting the last integral to the change of variables s:p/x3 one
finds that

CO

o
- el =
lim lim f 71303 X(y) VA = - ——W?dsﬂl 4413(0)
e=0 %0 10" ¢) Lo 2(l+s

ST

The remaining limits in (3.18) may be verified in a similar manner.
The existence of the singular integral in the third of (3. 8) now
follows easily from (3.11). Indeed, from (3.11), given_gEaR and

N >0, there exists €,>0 such that 0<e=<g, implies

1

|1im r T (3 sn(z), ¥y, ?\)el(’}f)dA -lIJ (z)e; )l<n,
s—0+ Q(.% e)

so that

Ihm Jﬂ T (z. sn(z) x,?&)e (y)dA |<ZT] for all ¢ €(0, g )
-0+ Q(z, 61) Q(z, €) b A

But since z is not in {(z, el)-Q(z, €), this inequality is equivalent to

1] Ziteg beyian, | <21 cor et ey
z,¢,)-0(z, €) -

and hence implies the existence of the limit in (3.10).
We turn finally to a proof of the continuity of T on R. To this
end it suffices to show that
lim T (x)=7(z) for all z€oR , (3.20)

X7
~OAS

XER

where T(x) and T(z) are defined by the second and third of (3.8),
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respectively. We prove first that (3.20) holds true if x approaches z
along the inner normal, i.e. that

lim T(z-sn(z))=T(z) for all zCOR . (3::21)
s—0+

Choose z € OR and M> 0. Then, the existence of the limit in

(3.10) now being assured, there is an 61(1'])>0 such that

lj'l’ (2.3, Me, (y)dA |<m (0<e<e)) .
Q(z, €)

N ext, according to (3 .‘11), there exists EZE(O, el) and sl(ﬂ, ez) such

that 0< s<s, implies

| | THe- sn@y,x)e {gida - Pzle,(2)] <.
Q(_V €,

Combining these two inequalities one has

P
FERCEETORAVRIEN -¥z)e,(2) - | Tz, y, Ney AR, <20 (3.22)
Q(z,¢,) {(z,e5)

for all s€(0, sl). On the other hand, since z is not in aR-Q(g, 62), there

exists sz(ez,‘r])>0 such that 0<s<s2 implies

I‘jr ii(g—sg(,g),yj X)ei(z)dA F T L 2 X5 Ao (y)dA |<n . {5::23)
OR-(z,6,) 2 aR-Q(z €,)

Equations (3.22) and (3.23) furnish

P
im [ Tie-en(z)p e (0dA =¥zl e+ [ THe, y e (s,
s->0+aR 5R il

which is equivalent to (3.21).
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It is not difficult to verify that the limit in (3.21) is uniform
with respect to the choice of z. In view of this uniformity one can
pass from (3.21) to (3.20) by an argument analogous to that used in
the proof of Theorem VII in Chapter VI of [5]. This completes the
proof of Theorem 3.1 in its entirety.

Equations (3.8) may be viewed as a representation of the state
S:I;L:L, 7] in terms of a generating surface density €. What is needed
for our purposes, however, is a representation of a given elastic
state on R in terms of its surface tractions on 8R. As will become
apparent shortly, (3.8) remain valid if S=[u, 7] is a given elastic
state and e is replaced by the traction vector t of S on dR, provided
the kernel states §i are modified suitably. Before introducing such
"modified tangent states', we associate with any finite regular region
a set of six fundamental vector fields that will be used repeatedly

throughout the remainder of this investigation.

Definition 3.2. Let R be a bounded regular region. Let ¢ be the

position vector of the centroid of the boundary 9R and let Em(mzl, 2,3)

be unit base vectors of a centroidal principal frame for 8R. Finally,

let cz,a.nd,(',m denote respectively the area of R and its (principal)

moment of inertia about the (centroidal) axis determined by E,m We

then write q m(m:l, ...,06) for the six vector fields defined by

B (% -Ab
m Gad m+3 ~
q (x)= — , (e Y= = (=l 25.3) 4 s ) (3.24)
(_V E, 3¢ = no sum
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The dual role played by the vector fields introduced above is

apparent from

Lemma 3.2. Let R be a bounded regular region and let q Mm=1,...,6)

be the vector fields defined by (3.24).

(a) Suppose b3 is a regular surface contained inR a ndt is a

vector field integrable on Z. Then

Jt - gmdAzo (m=1,...,6)
)
_i_f_ and only if
.JridA=9,s Jrsz\NdAiQ ;
z )3

i.e. if and only if t is self-equilibrated on .,

(b) Suppose u is given by

ix)=aixAw for all x€R ,

where a and w are constant vectors, so that u is an (infinitesimal)
= 2 Ra s B

rigid displacement field. Then

Ju- MaA =0 (m=1,...,6) implies a =w=0 .
oR

Proof. Let Em (m=1, 2,3) and c be as in Definition el 'I‘henfE is

self-equilibrated on Z if and only if

Jr - t jb -xc)/\tdAO =1 25 3)s
2

and these equations, together with (3.24), establish part (2). Turning

to (b), note first from Definition 3.2 the orthonormality relations
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0 (m#4)
R qJLdA: (m, £=1,...,6) . (3.25)

-
OR o o

Let g,a,,ém, Rm (m=1, 2, 3) have the same meaning as in Definition

3.2 and set

k_=/& b7 (2 +cAw) , k =/4m')3m-z (m=1,2,3), (no sum) .

m-+3

An elementary computation then yields

6
o m -
},1_,—/_‘ kmi on R
=1

It thus follows from (3.25) and the assumed integral conditions on u
that km:O (m=1,...6). Hence W Andg also vanish, so that the proof
is complete.

The integral conditions appearing at the end of Lemma 3.2
supply a convenient normalization of the displacement field u appro-
priate to an elastic state defined as the solution of a second boundary-
value problem. Such a normalization eliminates the usual arbitrary
additive rigid displacement. We now return to our immediate

objective.

Definition 3.3 (Modified tangent states). Let R be a simple region

and let y €@R. Further, _l_gglb »¥» ®©) be as in Definition 3.1. We
call

54 y=[ai.y), 2. )]

~

the modified tangent state for the region R at y,corresponding to the

xi—direction and the elastic constants M, O _1_f_
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(@) &', y)€e0, 1, oR,) ;

(B) 41 y)=Ei v, @)+0([x-y | P) as x~y,

il(-‘S’Xhil%xz, m)"’O(L}S-’XI—l-B) "a'._S_g""}: (B<l/2) ,
) 6
() Boy)= - ) aP (e (y) for all x€OR,

~

m=1

with qrn(rnzl, ...,0) given by Definition 3.2;

~

(d) Jgi@,x)-imz)mx=o (m=1, ..., 6).
OR =

Note first that (c) defines the surface tractions of éi(' ,y) uniquely on
OR_, even though the principal base vectors entering the definition
of g™ fail to be unique if the centroidal.principal moments of inertia
l:m (m=1,2,3) of OR are not distinct. It is easily seen that conditions
(a), (b), (c), (d) in the preceding definition suffice to characterize
the state éi(- ,z) uniquely. To confirm this claim, note with the aid
of an elementary modification of the classical uniqueness proof that
(2), (b), (c) determine ii("l) completelyl. Accordingly, gi(-,x) is
determinate except for an additive (infinitesimal) rigid displacement.
This arbitrariness is removed by (d), as is clear from part (b) of
Lemma 3.2.

We now state a theorem assuring the existence of the states

él(' ,v) and at the same time asserting certain additional properties of

these states.

lIn view of the limitations (b) upon the orders of the displacement and
stress singularities aty,the difference of two states sharing prop-
erties (a), (b), (c) hasTzero total strain energy.
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Theorem 3.2. (Existence and propertics of the modified tangent

states). Let R be a simple region. Then the modified tangent states

S-,y) introduced in Definition 3.3 exist for all y €@R. Morcover,

these states have the properties:

(2) 4'€C®xXOR-D), T'€CRRXSR-D),

viiec(RxaR) , viiec (RXBR) ;

(b) the orders of magnitude in (b) of Definition 3.3 hold

uniformly with respect to y for all yEOR.

As a prerequisite for the proof of this theorem we require

some auxiliary notation as well as three additional lemmas.

Definition 3.4. (Classes of functions with surface nuclei). Let Z be

the boundary of a simple region.

(2) If a€(0,2), we write VEWQ(Z) provided vE€C(Z XZ-D) and there
exists k>0 such that

lviz, y) <k |x-y [*% for an (x, y)€ZxZ-D.

If a>2, we write VE‘??OL(E) provided vE{Z XZ),
If, for each a€(0,2), v€ 7’(&(2), we write VGWZ(Z).
(b) If 0€(0,2] and Y€(0, 1), we write v€N™Y(Z) provided ven™(¥)

and there exists k> 0 such that

=P
v, y)-v(z, y) | Sk [x-2 | Vx-y | 9757

for all x,y,z on X subject to 2 |x-z|< [x-y]|.
If a>2 and Y€(0,1], we write v&7 % Y(Z) provided VEWG'(Z)

and there exists k> 0 such that

hr%,z)-V(E,_z)ISkls-elY for all x, y,z on B
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It is clear from the foregoing definition that a> 2 and
ven™ Y(£) implies v(-, y)€¥(Z) for all yE£. Further, it is not difficult
to verify that a < p implies ﬁa(Z)DWﬁ(Z), while & =B, Y=©& implies
7% YmonP: 4.

We turn now to a lemma which is closely related to results

given by Giraud [11] (p. 256).

Lemma 3.3. (Composition of functions with surface nuclei). Let X be

as in Definition 3.4. Assume VIEWQ(E), VZEWB(Z) and let
Va5 y)= | v) (5 p)vy (e, y)dA
30 L= | Vi e RIVaAR 0,
Z ~

for 2ll x, y on X except possibly x=y. Then

— —— i~

a+3

vy €N T (Z) .

If (in addition to the original hypotheses) vy EWQ’A(E) while T satisfies

Neo, Al Mo when a+3<2 ,
(3.26)
MeEO,A), N<a , NM<o4B-2 when a+3>2 ,

then

v3e??°‘+ﬁ’”(2).

Proof. To establish the first part of this lemma one needs to show

that (a2) in Definition 3.4 holds true for v=v,, provided @ is replaced by

3}
a+pB. The required continuity of vy is inferred from its definition by
an argument common in potential 'chc-:ory.1 . On the other hand, the

desired order of magnitude of'v3 is a direct consequence of the known

inequality

lSee Kellogg [5](p. 301) and the first part of the proof of Theorem 2.1
for closely related arguments.
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a+p-2

- P
J s 2%3<k1|511[ (3.27)
51 | |P"FXI

for all (x,x)EZX I-D, where k, is a constant and a+3<2.

1
To confirm the second part of the lemma, choose " consistent
with (3.26) and fix x, y, z on Zwith x#yfz. Next define two comple-
mentary subsets of T through
{

Z ={plp€zx, IR;§]SZL§15l}, £,=5-Z, . (3.28)
In view of (3.28),

lp-z|<|p-x|+|x-2[=3|x-z| for all p€x, .
Therefore, since 1271>0,

3%ﬁfghkgm,zkﬁpaufynfwaﬂp@ﬁ. (3.29)

Now observe from the definition of Vs ‘that

r
lV3 Q{:'X)'v:‘)(\zﬁzﬂs J’r |‘V1 (‘%’B)”vz(,\p_,’z)ldAp-*-J |vl(ﬁz_‘12)”V2(EwZ) IdAp
b3 ~z ~
1

1
+J vy (£ )-vy (2. pllvy (e y) [aA
. 2
2

Hence, bearing in mind (3.28), (3.29), one has

1See, for example, Pogorzelski [12] (p. 81 et seq.), where this
inequality is established on the assumption that X is a plane; the
argument used there is easily adapted to the present circumstances.
Cf. also Kellogg [5], Chapter XI, Lemma II (p. 301).
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by p)-vy (2 y) 52 52 (1) Lsop vy G p)liva (e y)laa

f
b

43 |x-z |7 | lz-p [y (2, pllv, (p.y)las
Z ~

+] s p-vi@plva ey laa, . (3.30)
An application of the first part of the lemma to the pair of

functions with the values

-
IE"B[ lvl(z,{:'}a)l: IVZ.(»-E’.-Y.)l >
yields the existence of a constant k, (independent of the particular

choice of,:;c,x) such thatl

ap-1-2 |
K, |-y | B-N-2 it qup=2

J[-|5~,Bl-n'vl Qi:,B)“vz(»B’rX)[dAp < (3.31)
> =

k, if 04B>2 .

Further, (3.28), (3.26) and the assumed properties of vy entitle one
to assert the existence of k>0 (independent of = y, z) such that for all

BEE;

C-T-2 :¢ <2

klx-z " |x-p|
vy G p)-vy (2 p) | =
k|x-z | if a>2 ,

Hence, invoking once again the first part of the lemama and taking

: Observe on the basis of (3.26) that a+B3=<2 implies a+3-M<2, whereas
a3 >2 implies a+B-M>2.
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account of the assumptions on v, and M, one infers the existence of
k3>0 (independent of x,y, z) such that

Ky |x-2 | [x-y FP172 if asps2
[ b s p)-vi zp)va (e y laa =

2 ky |x-2 lTI if a+>2 .

On combining this inequality with (3.31), (3.30), there follows
E-EInBZkZH%)[i(—_X]G'+B_ni2+3kzlﬁza—zlaﬂa_n_z] (a+p=2)

[z y)-vy(z, y)| < - (3.32)

Iic—Nzln(5k2+k3) (a+p>2) .

Finally recall that Vs, is continuous on XXX for a+3>2 and note
that the assumption

2]2__;-5 |< J:\f',Y,I if a4B=<2

furnishes

Iz-x|S21§—x|+2 ]5—5l-‘&;—x|<2|5—x] if aH<2 ,

In view of these observations, the desired property of V3 follows from

(3.32) and the first part of the lemma. The proof is now complete.

Lemma 3.4. (Generation of elastic states from densities with surface

nuclei). Let R, A, 31(- 2 Yo A) be as in L.Lemma 3.1. Further, let

a>0, 0<y=<l, assume
g €N% YRy,

and define functions u, T through

3. )= j (x, p, Mgy (R,Y)clA for all (x, y)ERXBR
oR
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except possibly for x=y,

~

Ts.3)= i (& plp gy, for all Do y)ERMR. |
OR

e
= y)=y (\)g (%, )+f Q,p, )g; (p,y)dA for all (x,y)€dR X0R
R

except possibly for x=y, where R'JIE given by (3.9) and the last integral

is to be interpreted in the sense of (3.10). Then:

@) S, p=fa(,y), 10,y JEEQ, 1, O ) for all y €3R ;
(b) wEC(RXOR-D) if a<l, uECRXOR) if a>1 ,
T EC(RXOR-D) if as2, T EC(RXOR) if a>2 ,
Vi €EC(RXBR) , VT EC(RXOR) ;
() u(x, y)=O(lx—Yln'1) as x~y ifas<l,
L300 sy %) 28 gy if a5 2

for any fixed M<a, these estimates being uniform with respect to y

for _ail'XEBR;

E‘no‘“’ v

(d) t-g (9R) for some V€(0,1),

provided t(-,y), for each y€dR, are the t:ra.ctionS:l of 5(+,y) on BRy.

~

Proof. Conclusions (a) and (b) are readily reached through an elemen-

tary modification of the argument employed in the proof of Theorem

3.1. Note that (b) assures the regularity of S(~,z) on R if a>2,
Turning to (c), observe first that given €>0, 6>0 with €+8>2,

there exists k>0 such that

E If a€(1,2 ], we define t(x,y)-g (h,y) also for x= =¥ in such a way as to

render t - -£ continuous on R%R.
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f’i}"E jo-= lp-y lé‘szpq( for all (x, y)€RXR, (3.33)

OR s

as is clear from the continuity of the left-hand membcrl on RXR .
Consider first a< 1. Then, in view of Lemma 3,1, the

present hypotheses on g, and Definition 3.4, there exists kl >0 such

that

|- Ip;,xl“"szp for all (x, y)ERX8R-D. (3.34)

~

lu yl< Xk [ lx-p
oR

Choose n <a, (x, y)ERXOR-D, and define
l h
alR:{B [p€OR, k-pl>7lx-ylf. 8,R=0R-O R .
Since
1
lp-y |z [z-y |- |x-pl 25 |x-y | forall p€d,R,
one has

o el Q=2 11 -1 - a-2
IIPE:EI lp-y |7 "aa <2 x-y " fl,z;—g[nlg-gl A,

8, R oR

-1 -2 1-M -1 -1 a-n-1
[Lepl™ p-y P %aa_s2' " x-y|" Jlep ey %M aa
9, R 9R
2
These inequalities, together with (3.33), (3.34), yield the first of (c).
Next assume <2, In view of conclusion (b) in the present
lemma, the second of (c) holds true if, given N<a, there exists

k2 > 0 such that

|26 y) <k, [x-y |12 for all (x, y)ERXOR . (3.35)

i Cf. the first footnote in the proof of Lemma 3.3.
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Choose <a and suppose without loss in generality that N >a-v.
Further, choose (x,y)€RX2R and let z€OR be such that

x-7z | =min |x- , PEOR ,

whence

[§_E|s l-z,“‘,E s |2‘,EIS|,E',§I+|,§',E[SZIP"51 for all p€OR. (3.36)

Consider first

lz-y = |z-x]. (3.37)

Then (3.36), (3.37) give

IE'YIS IE’EI+IE’YISZIX'Z| SZL{){—pl for all pEaR . (3.38)

In view of the properties of g and Lemma 3.1, there exists k>0
(independent of the particular choice of x, y ) such that

-2 -2
|7 |p-y |* “aa

|ty i< [lxe »

oR

Ligb

Therefore and from (3.38),

el <2® Mg xy 172 [ ls-gl"nlg'zla'zd%

OR ~
This last inequality, because of (3.33), yields (3.35) provided (3.37)
holds true.
Next, verify (3.35) for
| lz-y|> |z- x|,

in which case

|lz-yl= |z-xl+|z-yl<2|z-y| . (3.39)

To this end note from tl'_xe definition of T that
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~ o~

11(5,5)|S1Jrii(x, p- W ley(zy)-gp Y 1A | +lz gz Yl l[iigc.g,?\)dA’Bl - (3.40)
R ~ IR

Apply Theorem 3.1 with By = 61{1 to sce that

| [T e naa

9R o
is uniformly bounded on R. Accordingly (3.39) and the present hypoth-
eses on ’g_’and N imply the existence of k4 >0, independent of x,y, such
that

szl [ T e Maa ] <, Ly 112 (3.41)
oR ~

In order to bound the leading term in (3.40) introduce

r 1 i
8,R=1p[p€OR , |z-p|<3[z-y ||, 3,R=0R-O,R . (3.42)

~

Then,

l jnii(gg._e,l)[gi(wz,,z)—gi(,g,z)]dAp |< Ilii(gg,g,)\) lgs(z y)-g e, y)lda

oR o= 83R

o S

+ [T ple ey laas [ 1T e lle(e p)laa )
84R 84R

Thus, bearing in mind that ¥ > a-7, one concludes from Lemma 3.1,

(3.42), and the hypotheses on g that there exists 1(5 >0, independent

of X ¥ such that
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| T, p Nz y-2fps yaa, |<ig | Ls-pl2lz-p % le-y |1 2aa

P
R &R ~
o o ¢ =2 2 1
g jlgg—g! |z-yl dA_+kg | -2l ™ [p-yl da . (3.43)
34R §4R

Further, from (3.36), (3.39),
=) = 2 2+a-2 N-2 -2 40
[ls-pl 12" -yl ™% <2® 7 g2 [ aropl *7% s 3. 40)
83R 83R
In addition, (3.42), (3.36) furnish
]£-X|52]E—B|S4]E-5| for allB€34R i

so that

i 2 - -2 -N-2
J sl #lemyl® Pan < 45N 5oy | [ls-pl® ™ 2aa_,

9 5 £

4R 4R

f2 a-2 2.1 2 _n a2
Jls-pl o=yl %an = 4% zay 1 [ lx-pl 7 [p-yl an
EER ZQR

Combining the last two inequalities with (3.33), (3.39), (3.40), (3.41),
(3.43), (3.44) one obtains again (3.35).
This disposes of conclusion (c) for a< 2. Since ’%GWZ’Y(BR)
implies iéﬁﬁ’Y(BR) for any <2, the second of (¢) holds also for a=2.
With a view toward conclusion (d), note first from the defini-

tion of S(- ,x) that

a, a-Nn

Note that the assumption N >0-Y, which ensures that 067? (9R),

was essential in the derivation of (3.43).
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s Y)=g6s 1)+ [T0x p Mgy (pr y)dA for all (x, y) @R XIR

~

9R

~

except possibly when x=y. Thus, according to Lemma 3.3, (d) holds
true if
't'jl(-, ent Ler) . (3.45)

On the other hand, (3.45) is implied by (a) and (b) in Lemma 3.1 if
there is a constant #> 0 such that

—1i —i -2

(€560 p M-t (2, y, M =n |-zl x-y | (3.46)
for all x,vy, z on @R subject to |x-z |<-é— Ix-zl. The inequality (3.46)
is confirmed through an argument strictly analogous to that employed

in the first part of the proof of Lemma I, Chapter XI in [5] (p. 300)

provided one establishes the existence of %1>O such that

9 —i -2
l_a_s-tj(},f,’ Yo A) |<}t1 b'::’-x] for all (),5’ X)EaRxaR-D . (3.47)
Here, the left-hand side is the derivative ofjc-;(., v, A) with respect to
the distance "'s'" measured along any smooth arc on 9R and evaluated
at x. To see that (3.47) holds observe first that for all (x, y)€9RXIR-D,
-1 _ =i o
tj (E: Z: A = Tjk(i{:’ :)L: 7\)111((?:)
_=i =
—Tjk(i{f X’: >\) [nk(}i)"nk(Z)] +Tjk(§a’ X:m)nk(X)
=i -1
+[Tjk(35. ¥ My (y)- Tjk(g,g,m)nk(x)] , (3.48)
Further, note from Definition 3.1 that there exists K2>0 such that
=1 -3 =
I‘Tjk, 2% v, )| <n, lz-zl for all (x, y)€ERXOR-D ,
while, as pointed out in [5] (p. 299), because of the smoothness of 8R,

there is a }t3>0 such that



£

il

oY )

£ = } |<;L3lx—y|—2 for all (x, y)€OR X0R-D .

55 [ 3
k-l

~

By virtue of these two inequalities, (1.4), (1.5), (3.5), and conclusion

(b) in Lemma 3.1, there exists ;t4>0 such that

0 [=1i 1 =2
5= 1T w A Iy (x)-ny (v) 1) [<n,lx-y]™7,
s L kA K k'’ o (3.49)

g =i - ;
I—a—s— T;I{(i;,z, co)ny (y) ]<;{,4 ]3_2[ 2 ,

for all (x, y)€9R X0R-D. From (3.48), (3.49), upon noting that

7 LT el 3 M ()= )]
F&?‘. j<‘f§’,¥’ nk(,g- jk(f’z’oo)nk(,z

is uniformly boundedl for (x,v) on @R X0R-D, one obtains (3.47) and

hence (3.45). This completes the proof.

Lemma 3.5. (A continuity property of a family of elastic states).

Let R be a simple region. Suppose

S(-,y)=lul-, y), 7(-, Y J€&O,1,0;R) for all y €0R ,

J}i(i" y)-q™(x)dA_=0 for all y €8R (m=l,...,6) ,
R e

with qm given by Definition 3.2. Further, assume

ten> %eR)  (0<a<1),

where t(+,y), for each y €9R, are the tractions of S(+,y) on 89R. Then

uECRXIR), TECERXOR),

Vu €C(RXOR) , VT EC (RXOR) .

1 b — =]
By (3.5) and Definition 3.1, both T4 (- ' Yo )L)nk(z) and T -11{(- » ¥ 0)ny (y)

are differentiable on aRy, while their difference is differentiable on
a neighborhood of y. ~



By

Proof. Note first from Definition 3.4 that the tractions tof S are
continuous on @R XdR and are Holder-continuous in their first argu-
ment, uniformly with respect to the second argument.

Let A, Si(-,'lr,k) be as in Lemma 3.1 and consider the system

of Fredholm integral equations of the second kind

e(x)=t(x)- [ i, y.Me(y)dA  for all x R , (3.50)?
OR ~

and the adjoint homogeneous system

v (y)= - IT(X, y:\) *v(x)dA_ for all y €8R . (3.51)
OR ~
We now show that the functions qm (m=1,...6) are solutions

~

of (3.51), i.e.,

qirn(y): e Jr?i(x, v,\) -qn](x)dAx for all y€9R (m=1,...6). (3.52)2
R ~

To this end note from Theorem 3.1 that if SEN(BR), the vector field
defined through
e (x)+ ITI(X, y,}\)ei(y)dAY for all x €9R
OR ~
represents the surface tractions of an elastic state on R and is accord-

ingly self-equilibrated on 8R. Thus, in view of (a) in Lemma 3.2,

Observe from Theorem 3.1 that if (3.50) has a Holder-continuous
solution, the latter may be used as a surface density to generate an
elastic state on R whose tractions on 9R coincide with .

. Equation (3.52) asserts that the tractions of S*(-, y,\) on OR_ equili-
brate a unit load in the xi—direction, applied at y.” b4



-46 -

m

'I(E’X’M'% (}ﬁ(’)ei(z)dAXdAy:O (m=1,...,6).

~ o~

QO
3]
Q.
A e

Since this equation must hold true for every choice of ¢ €¥(9R), (3.52)

follows.

The continuity and order-of-magnitude properties ofzi given
in Lemma 3.1 guarantee the applicability of Fredholm's ’cheory"1 to the
pair of systems (3.50), (3.51). Hence (3.51) has at most a finite
number of linearly independent continuous solutions xm (m=1, ..., k)

which, because of (3.52) and (3.25), may be assumed to satisfy

szqm on @R  (m=1,...,6)

J‘vm-v%dA = {
oR

Further, (3.50) is solvable if and only if ¥ is orthogonal to the k

9 s (3.53)

1 (m=4) (m,4=1,...k).

vector fields vm in the sense of

f%. v?dA =0 (m=1,2,...k).
dR

We now define

' p)-t(p,y)dAp for all (x, y)EORXOR. (3.54)
m="7 oR ~

Then (3.53), (3.54), (2) in Lemma 3.2, and the self-equilibration of

t(+,y) on 9R, furnish

jt'(E, y) v (x)dA_=0 (m=1,...,k) for all y €8R .
R =

lSee, for example, [12], Chapter III.
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Thus, the system of integral equations

gix,y)

~

=t'(x, y)- | T (x, p, A)g.(p, y)dA_ for all (x, y)€EORXOR (3.55)
R &

which, for fixed y €9R, is of the form (3.50), has a (nonunique)
solution. This solution may be chosen so as to ensure that
g EC(OR XOR) . 3,567

We show next that any solution g of (3.55) that conforms to

~

(3.56) also obeys the stronger regularity condition
5,
gEN {BR.) . {(3.57)

For this purpose one may use an argument analogous to that employed

in deducing (3.45) to show that ?} defined by

=tj1(y, x, A)=TJ (x, y, 1) for all (x, y)€BRXOR-D ,

has the property
(-, -, NENt LRy .

Hence (3.51) and Lemma 3.3 furnish

XmEi‘[(aR) (m=1, ...,k), (3.58)

i This claim may be confirmed as follows. One first reduces (3.55)
through the usual iteration process to an equivalent system of inte-
gral equations whose kernel is continuous on 9RXOR. Subsequently
one constructs a resolvent of the latter system in infinite series
form and deduces the continuity of the resolvent on 9RX0R. Finally,
one verifies (3.56) by an appeal to the representation of g in terms
of the resolvent and the given (continuous) data. Cf. az7,

Chapters 2, 3.
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the exponent of this I—Ifilder-—conditionl being any number in the
interval (0,1). From (3.58), (3.54) and the assumed regularity of t
follows

tren> %oRr) ,

and this conclusion, together with (3.55), (3.56), (3.45) and Lemma
3.:35 implies (3.57).
In view of (3.57) we may employ g in cénjunction with
Lemma 3.4 to generate a family of states
S'(, y)=lu'(-, y), (-, y) 1€€(0, 1, OiR) for all yEIR, (3.59)
with
WECRXOR), T'ECRXOR) ,
e ~ (3.60)
VE'EC (RX@8R) , Vi'EG (RX0R) ,
whose tractions on 0R, because of (3.55), are ’E’(', Z) for eachzé oR..
With a view towards constructing an elastic state with the
surface tractions ,E(' ’,X) we recall (3.54) and bear in mind that the
fields X,m (m=7,...k) are self-equilibrated and Holder-continuous on
the boundary of the simple region R. The foregoing properties of R
and of Y.,m (m=7, ..., k) entitle us to conclude from Korn's [14]2
existence theorem for the second boundary-value problem of elasto-
statics the existence of elastic states S (m=7,...,k) on R whose
tractions on R coincide with v\ (m=7,...,k). Thus the family of

~

states S8'" defined by

See Section 1.

2See also Korn [157.
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Ik )
16k, y)=S e y)4y | [ v

tp)ytip, Y)d‘Ap}Sm(X) for all (x, y)ERX8R ,
m=7 OR ~

~ ~ ~

because of (3.54), (3.59), (3.60), has the properties
s" (-, y)=[u" (-, y), 7'(-, y) JEE(0, 1, o;R) for all yEBR ,
W' EC@RXOR), TIECEXIR) ,

(3.61)
Vu"EC(RXBR) , VT"EC(R XOR)) ,

=, v)=t (%, ¥} for all {x, y)IEBR X R ,

~ o~

where t''(+,y) are the surface tractions of 8''(*,y) for each y €0R. The
given state S(-,y) evidently differs from S'(-,y) by a rigid displace-
ment field. By wvirtue of (3.25) and the assumed normalization of the

displacements belonging to S(-,y) we arrive at-the representation

6
r
860 Y= y)- ) 06 [ iR y)- g TRA L T y)=T"6s y)
m=1 R ~

for all (x, y)ERXOR. This representation, together with (3.61), implies
the desired continuity property of 8. This completes the proof.
We are now ready to turn to the

Proof of Theorem 3.2. Our initial objective here is to reduce the

construction of the (singular) modified tangent states to the solution of
a regular boundary-value problem in elastostatics. Let A and the

tangent states ENC ’,.X’}\) be as in Lemma 3.1. Define gl through

~

g,y A=t

~ ~ ~

(v, A )- J«"Ek(ic, s }\)Tli(p, y,l)dA.p for all (x, y)EORXOR-D, (3.62)
R Gl

so that from (3.45) and Lemma 3. 3,
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i

g+, -, MentY(OR) for any Y €(0, 1) . (3.63)

. P 1
Define 7,7 by means of
~ ~

-~

¥ (x, v, M= (x, —mﬂja Y, p Vg (p, Y, WA for all (x, y)ERXOR-D,
IR i

Flr, v, 0= 7.0 [ T, 20l (p Y, )4A_for all (x, y) ERXOR

OR ~
5> (3.64)
Ty 0=T16s v, M-plglen v, )
E :
-‘j EJ(},E,’ E,X)g;(g, X’MdAp for all bff Z)EBR X0R-D ,
OR o )

with Y given by (3.9). Then, in view of Lemma 3.1, (3.63), Lemma

~

3.4, and (3.7),

2 £ " ~
rsll(. A A-):I:.a“l(‘ » Vo )\), ?l(', Y,)\)]EE’(O, H,G;ﬁ.y for all YE aR, 5

Ni

gl(-, -, \)EC@®XOR-D), T (-, -, 1) EC(RXOR-D) ,
VGi(- , *»A)EC(RXOR), vi‘i(-, *,A)EC(RXOR) , (3.65)

El(};: Y, )\):al(X, v, 00)+O( |x -y rﬁ) as x-vy,

¥(x, X N)=T(x, v, 00)+O( |x-y|—1_ﬁ) as x-vy,
~ ~ ~ ~ ~ ~ ~ ~ .

for any > 0, uniformly in y for all y €9R. From (3.64), (3.9), (3.62),

after a brief computation, follows

6 ;
T, v, M=t v, 0-) @ x)a () for all (x, y) ORXOR-D , (3.66)
m=1

where 'f‘l(- ¥, A) are the surface tractions of gl(", v, A) for each
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y €9R, o (m=1,...6) is as in Definition 3.2, while
6
. oy . "
oy =] [Tex pVE R v NEN Y, y0dA, s +§qm(xq y)  (3.67)
gROR R =]

for all (x,y)€9RXIR.

Next, (3.67), (3.45), Lemma 3.3, (3.52) and (3.25) yield

(., -, ner Yor), Jt (5, N+ g™x)dA_=0 for all yEOR (m=l,...6) (3.68)
R r

for any Y€(0,1). In particular, (3.68) implies that the fields "Ei(- , Vs A)
are Holder-continuous and self-equilibrated on 0R for each y€0R.
Thus, from Korn's [14] existence theorem, (3.68), and Lemma 3.5,

one infers the existence of states él with

.
§3-,y,0=[8C, y,0), 71+, v, )I€E(0, 1, oR) for all yEdR ,
Al m
ju (}i’ y)-q (x)dAX=O for all yEOR {mn=l, .. .6},
8R ~ > (3.69)
83, - MECEXOR), Ti(., -, \)ECRXOR) ,
Vi'(-, -, AJECRXOR) , TFH(-, -, NECRXOR) , )

whose tractions on 9R are %1(- , ¥sA) for each y€oOR.,

Finally, define states
S*ee, )=l v), 7%, y)]

for all (%, y)ERXOR-D through



6
o i - ai T m Al -
4 (x, v)=U"(x, N,l)-gl(i, M= 94 () jgl(g, YA q (R)dAp,
m=] OR ~
T, y)= T o M)-T M, v, A)

It is clear from (3.65), (3.66), (3.69), (3.25) that $* so constructed
conforms to Definition 3.3 of the modified tangent states and
possesses the additional properties (a), (b), asserted in the present
theorem. This completes the proof.

The preceding existence theorem for the modified tangent
states, together with Theorem 3.1 on the generation of elastic states

from given surface densities, enables us to establish

Theorem 3.3. (A representation of elastic states on simple regions in

terms of their surface tractions). LetR be a simple region and let

S=[u, TEEWO, u, o;R) .

Assume
m
JE' q dA=0 (m=l,...6), t€¥(9R),
oR

where qmi_s given by Definition 3.2 and t are the tractions of § on oR.

~

Let él(', y) be the modified tangent state for the region R at y corre-

~

sponding to the %, direction and the elastic constants W, 0, in the sense

of Definition 3.3. Then S admits the representation

U-(X)=J 4 (x, Y)ti(y)dA or all x€R ,
oR

U<

T(x):f’?‘i(x, y)ti(y)dA for all x €R ,
oR &
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P
T(x)= L!rl(x)ti(x)+j"?l(x, 'y)ti(y,r)c’iA.Y for all x€9R ,
OR ~

where ¢i_i_s given by (3.9) and the last integral is to be interpreted

~

as in (3:10).
Proof. Let A, El(-,y, A) be as in Lemma 3.1 and define

u'(x):fai(x,y, A)ti(y)dAx for all xR ,
oR

w(x)=j'+"i(£, v, M (p)dA  for all x€R Y (3.70)
9R o=

P
: T](x):g‘;l(x)ti(x)-kj THx, v K)ti(y)dAY for all x€8R .
oR

~ o

These defining equations are meaningful in view of Theorem 3.1 and

the assumed regularity of t. Further, Theorem 3.1 furnishes

i

s'=[u', lx]ee(g, iy R), £=% +Jf Ty, x)t.l(x)dAy on 9R , (3.71)

R
where ;c" andzi(-,x, A) are the respective surface tractions of S and
gi(_ ' Yo \) on 9R.,
Next, introduce éi through

S(x, vy, M)=8"(x, y)-S'(x, y, X) for all (x,y)€RX8R-D (3.72)

and note on the basis of Lemma 3.1, Definition 3.3, Theorem 3.2,

and (3.7) that



B4 ..

éi(' 2 Yo K)=[Iii(' Y M) 'Ti(-, > NIEE(O, 1, O';T{Y) for all yEOR ,

~

4l(., -, YECRXGR-D), ii(', ., \)EC(RXOR-D) ,
- (3.73)
val(s, -, \)EC(RXOR), VII(+, -, A)EC(RXOR) ,

s, v, 0=00x-y1™®), 5, 7, 0=001x-y/ 7Py as x -y B<1/2),

these estimates being uniform with respect to y€OR. Because of (3.73),

the state S' defined by

1 vi -
S —IS ( s Yo K)ti(}:)dA.Y on R | (3.74)
OR T
has the properties
S”:[u”, T“:IEEI/(O, u, O;I_{__) ) t”__“JrEi(.’ z, )\')ti(y)dAy on BR & (3. 75)
oR .

Here t'' and “El(' , V>A) are the tractions of S'' and él(°, vy, A) on 2R,
By virtue of (3.70), (3.72), (3.74) the proof will be complete

if we show that

u=u'+u", 1=7+7"" onR. (3.76)

On the other hand (3.76) is implied by the first of (3.71), the first of
(3.75), the present hypotheses on S, (b) in Lemma 3.2, and the
uniqueness theorem for the second boundary-value problem of

elastostatics, provided

r'
on 9R , J'(u'+u”)-qmdA:o (m=1, ...6). (3.77)
9R

1 1
t=t <+t

To confirm (3.77) observe from (3.70), (3.71), (3.72), (3.74), (3.75)

that
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u‘(x)+u"(x)=Jgi(x,z)t.(y)dA for all x €R ,

~ ~ ~ ~ 8 ~ 1~ X
R

(3.78)

~

t'(x)+£"(g:£(§)+ji:li(}i,x)ti(r¥)dAy for all x €0R .

9R

Finally use (c), (d) in Definition 3.3, together with (a) in Lemma 3.2
and the self-equilibration of the tractions t of S on 9R, to see that
(3.78) implies (3.77). “

The preceding theorem, which constituted the main objective of
this section, will be used in what follows for a limit treatment of con-
centrated surface loads. In view of the rather elaborate develop-
ments that were required to arrive at this theorem, it should be
emphasized once more that the integral representation of elastic
states deduced here — though confined to simple regions — is essen-
tially stronger than the representation in terms of Green's sta,tesl,
which is not applicable to points on the boundary of the region. The
usefulness of the present representation, which is free from this
deficiency, transcends the particular purpose for which it was derived.
Thus, for example, Theorem 3.3 supplies als;o a convenient tool for
the study of singularities induced by discontinuous surface loads,

which are beyond the scope of this investigation.

) Cf. Theorems 6.1, 6,2 in [2], as well as our Section 6,



4, Limit treatment of concentrated surface loads.

The present section contains a counterpart for concentrated
surface loads of the limit treatment of Kelvin's problem in Section 2.
Thus, we first define the solution to a problem involving concentrated
surface loads through an appropriate limit process and subsequently
examine the nature of the singularities inherent in the solution so
defined. In carrying out this task we shall confine our attention
exclusively to simE‘ le regions and to a single concentrated load that is
equilibrated by regular surface tractions, in the absence of body
forces. The generalization of what follows to any finite number of
concentrated surface loads and to non-vanishing body forces is
entirely elementary. Further, the extension of most of the results
deduced in this section to the broader class (ﬁ regular regions pre-
sents no essential difficulties, provided the point of application of the
given concentrated surface load lies within a sgfficiently smooth

subset of the boundary.

With a view toward our present objective we first introduce

Definition 4.1. (Sequence of traction fields tending to a concentrated

surface load and to regular surface tractions). LetR be a simple

region and a€9R. Let 4 #0 be a vector and :"EE&’(E)R). We say that {Lm}

is a sequence of traction fields on 9R tending to a concentrated load 4

at (the point) a and tractionsi on 9R if:

(2) t™=t+1™ on 8R, PTEN(OR) (m=1,2,3,...);

~

(b) £™=0 on 8R-Bp (a) (m=1,2,3,...), where {By (2)] is

~



5By Pl

a sequence of spheres such that pm-O as m-0oo0;

(c) lim f:gmdA:i’:;
m—*ooaR

(d) the sequence {J [im]dA} is bounded;
9R

(e) jtmdA=[xA Maa=0 {m=1,2,3, ...}

In connection with the foregoing definition, which is an ana-
logue of Definition 2.1, it is natural to ask whether an approximating
sequence of traction fields {t™} exists for given t and 4. This

question is answered by

Theorem 4.1. (Existence of a sequence of traction fields tending to a

concentrated surface load and to regular surface tractions). Let R,

a, £ and % be as in Definition 4.1. Then necessary and sufficient for

the existence of a sequence of traction fields on 9R tending to a concen-

trated load 4 at a and tractions :”Eﬁl 9R is that the entire given loading

vy i g

3@ self-equilibrated, i.e.,

T dA+L=0, | xAtdA+aN L=0 . (4.1)
R R

Proof. To confirm the necessity of (4.1), observe first from (a) and
(e) in Definition 4.1 that

j‘{dA+[‘gn1dA:0 , ijEdA+aAEmdA+f(£-a)/\%mdA=g (=], 2y By s v o

o) ~

IR 9R oR 9R R
(4.2)



-58-

Now let m—co, use (c) in Definition 4.1, and note that because of (b)
and (d), the last integral in (4.2) tends to zero. Thus, (4.1) holds.

To establish the sufficiency of (4.1), one merely needs to
exhibit a sequence {Em} such that

%m

~

€¥(dR), £™=0 on 8R-B_ (&) (m=1,2,3,...), (4.3)
with {pm} a null sequence, and

[PMga =2, \Jr(x-a)l\imdAz’Q‘, f]§m|dA<k (m=1,2,3,...), (4.4)

J

OR R ‘ OR
where k is a constant.

Without loss of generality, assume henceforth that £ is a unit
vector. Suppose first that i is not tangential to 9R at a, 50 that

i: % ’1:1‘(2)?,{0 3 (4.5)

where n(a) is the unit outer normal to dR at a. Choose a rectangular
cartesian frame with the origin at a, such that the X;-axis points in
the direction of n(0) while the x, -axis is perpendicular to . Further,

consider the cylinder
2
F(8)={x|x€E, x x =67, |x3lsa} .

It then follows from (1.3), (l1.4) and the present hypotheses on R that
for some A> 0,

Q(0,A)=F (WNOR={x |x€F(A), 8(x)=01, (4.6)

where

9(x)=x3-tp(xl,x2) for all EEF(K) 3
~ (4.7)

PEC(I(Q, 1), (0, 0)=p (0, 0)=0 .
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!
Next, introduce cartesian coordinates X, through a rotation
about the xl—a.xis that brings the xé—axis to coincidence with 4, i.e.,

xl—xl, }‘2_{’ x5 -&2 3 x3 2 2+'f} X3 - (4. 8)

If {i denotes the components of 4 in this new frame, evidently

1 ] 1
Lo=ty=0, =1 . (4.9)

Equations (4.7), (4.8) now yield

e(§)=e'(x'l,x +£, X cp(:»,l, %x2+& x3) for all Xx€F(}), (4.10)

1 1 _
g Ty)==
whence

9p' | - =£ - n(0)#0 , (4.11)

since 4 is at present non-tangential to 8R. Thus, adopting the notation

1 1 2 !
F (6, h):{;in:’EE, x&xasé s |x3 |<h},
(4.12)
H(O B)e= {xleE Xy x'SfJ ,x =0} ,

one concludes from (4.6), (4.7), (4.10, (4.11) and the implicit-
function theorem the existence of v> 0 and of ®' GCZ(H'(O, A)) such that

F'(v, WNOR = x|xer'(v, v), x _cp (xl, xz)} (4.13)
Now define

2 - 2 .
3m6 (lé - X?'X?) |nl3(§)1£ for all ;\{‘EBRQFl(%, V)
™V m

x)= , : (4.14)
0 for all anR—Fl(r—\;l, v) (m=1,2,3,...) .

The sequence {t } so constructed clearly conforms to (4.3). Further,

because of (4.13), (4.14),



wh D=

- 3l , 1 (S __2_2¥
Paa=3 g [ (L alPxlf) dast (m=1,2,3,...) 5
81: TV m

tor: N
H(Q’E)
and similarly from (4.9), (4.13), (4.14),

j(x-a)A%mdA=o , Jl?:mldA=I£l:1 (m=1,2,3,...) .
R R
This completes the proof provided (4.5) holds. If, finally, :?;
is tangential to 9R at a, so that £ - n(a)=0, consider the unit vectors
L-n(a)

4 =n(§;)’,{’, ) e —
sl 2 |t-n@) |

m
l }!

{3?} satisfying (4.3), (4.4) with £ replaced by :?.1’ iZ’ respectively.

which are not tangential to 9R. Then, there are sequences {t

Hence, the sequence {1™"} defined by
Em=%11n+ |Z-n(2) L%,Iznon 9R (m=1,2,3,...)

fulfills requirements (4.3) and (4.4). The proof is now complete.

It is clear from the foregoing theorem that Definition 4.1 is
empty unless the self-equilibration relations (4.1) hold true. On the
other hand, (4.1) in conjunction with (a) and (e) in Definition 4.1

imply

f%mdmﬁj (m=1,2,3,...), (4.15)
3R -

which is stronger than (c) in this definition.
The following theorem supplies a definition through a limit

- process, and at the same time a representation in terms of the load
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data, of the solution to a problem corresponding to a given concen-
trated load that is equilibrated by preassigned regular surface

tractions. In analogy with Theorem 2.1 one has

Theorem 4.2. (Limit definition of the solution to a problem involving

a concentrated surface load). Let R be a simple region and a€dR.

Let 4 #0 be a vector a.ndEEN(aR). Assume

tda+t=0, JIEAEdA+EA£: 0.
R R

Further, let {tm_} be a sequence of traction fields on OR tending to a

concentrated load 4 at a and tractions —'1‘:21 OR. Then:

(a) there exists a unique sequence of states {s™} such that

5%=[g™, 77 1€(Q M oR), Tin=t" on R (m=1,2,3,...),

~

[ u™.qPan=0 (m=1,2,3,...,p=L,...,6),
oR

with qp given by Definition 3.2;

(b) {Sm} converges to a state S= [E’I].gr—lia’ the convergence

~

being uniform on any closed subset of —f{a;

~

(c) the limit state S is independent of the sequence {t™} and

admits the representation

_‘,i ni i . I
u(x)=u" (x, %’)&ﬁa{{g (=, y) iQ’)dAE or all §€R;ab ;

. ot > (4.16)
T)=T G, ;%)%ﬁff(z’,x)'imdAx&il_l XER ,
R
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P

=2 G, )t Gt )+ [#6s, m’%igy)cuxy for all x€OR
oR >

; (4.16)
= (Cont))

where él(-,y) is the modified tangent state for the region R at y corre-

sponding to the xi—direction and the elastic constants W, 0, in the sense

of Definition 3.3, while ILfli_s given by (3.9) and the last integral in

(4.16) is to be interpreted as in (3.10).

We call S the state corresponding to a concentrated surface.

ta and tractions 3521_1 oR (s well as to the elastic constants

Proof. Conclusion (a) follows immediately from the present hypoth-
eses, in view of (a), (e) in Definition 4.1, with the aid of Korn's [14]
existence theorem, (b) in Lemma 3.2, and the uniqueness 1:hec>rernl
for the second boundary-value problem of elastostatics.

To reach the remaining conclusions, note first from Theorem

3.3 that S™ (m=1,2,3,...) admits the representation

Em(x): jﬁi(x, y)tin(y)dArX for all x €R , 3
OR

T (x)= jii(§= y)t;n(y)dA,X for all x ER , > (4.17)
R '

p
Tm(x)zq:l(x)t‘.;n(xnf%1(x,z)t§n(y)dAy for all x€0R .
OR ~

Now define u, T through (4.16). Then, by virtue of (4.17) and (a) in

1 Recall that u™ has been normalized so as to preclude an arbitrary
additive rigid displacement field.



=63

Definition 4.1,

r\ 5 - ~ U. —
s )-nle= [ E il gt A R B, fovaliad, )
R ~
o' Eyeet bi
T6-160= [ 2 e - B 2, for all xR, (4.18)
OR ~
. P .
lm(x)_fr(x):qﬂ(x)’t‘f‘(x)Jr ] i, x)'ﬁin(z)dAi— #(x, a)t, for all x€9R _ . J
R ~

To complete the argument it remains to be shown that the left-
hand members in (4.18) tend to zero uniformly on any closed subset

of ia' Let G be such a set and let {pm}be the null sequence of radii

~

associated with ’{Em} in the sense of (b) in Definition 4.1, Further,

let m  be such that B_ (a)NG is empty whenever m=>m . Then,
o~
because of (4.18), (4.15) and (b) in Definition 4.1,

wPe-uto= [ e y-Te 2l

~

ORNB_ (a)
pm~
Pe-160= [ (e y)-Fep )18 maa
8RNB, (2) ~
mN

for all x€G and every m>m . Hence,

l}f,m(},f,)'}f,(f) [Skin ;r I?:ll‘n |dA for all x€G, m>m_ ,
9R
(4.19)
]Im(x)-I(x)[snin _f [%’imldA for all x€G, m>m _ ,

OR



il

where
k= max [4H(x, y)-ﬁl(;i, a)|l, x€G, yeaRﬁﬁp @),
1 ~ o~ A ~ ~ ~ ~ o
%;nz max | ¥ (x, y)-#(x,2)[, xee,yeaRnTap (a) .
m

Observe that the existence of these maxima is assured by the first
continuity assertion in (a) of Theorem 3.2; for the same reason and
. y m m
since [pm} is a null sequence, ki and Ki tend to zero as m—oo. The
desired conclusion thus follows at once from (4.19) and (d) in
Definition 4.1. This completes the proof.
The next theorem is an analogue for the problem under present

consideration of Theorem 2.2 on properties of the Kelvin state.

Theorem 4.3. (Properties of the state corresponding to a concen-

trated surface load and to regular surface tractions). LetR, a, 4, T

and S be as in Theorem 4.2, Then S has the properties:

(2) S=[u, T1€E(0, b, G;I_{a) ;

(b) u@)=0(lx-2|™), T)=0(|x-a|™%) asx~a;

(c) the tractions of S on aRa coincide with t ;

~

(d) lim J‘i:’ dA={ , lim (x-a)AtdA =0 ,

P~0pneB {2 p= ORﬂaBp(a)

where t are the tractions of S on the side of RﬂaBp(a) that faces a.

~

Proof. Define u' and T' on R through
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u‘(x):jgi(x,y)’ii(y)dAY for all x€R ,

R e
1 _ o ol s
T (’::)—.}l T (}i’z)ti(x)dAy for all :ﬁcJER . (4.20)
OR =

2
T'(§)=¢l(x)%;(x)+f'“r1(x,y)’%.l(y)dAx for all x€0R ,
9R
where éi(- ,x) is once again the modified tangent state of Definition
3.3 and llii is given by (3.9). An elementary modification of the argu-
ment employed in the proof of Theorem 3.3 yields
s'=[u', 7'1€€(0, u, ;R) . (4.21)
Further, from (4.16), (4.20),

5=8'+8'(-,a}t, on R _. (4.22)

Conclusions (a) and (b) now follow directly from (4.22), (4.21), (a)
and (b) in Definition 3.3, (3.7), and (b) in LLemma 3.1.
Turning to (c), note first from (4.22), the last of (4.20), and

(3.9); [1.9) that

£=,'?,+f %1(-,g)'%i(z)dAy +i1(-,i)4;i on OR_, (4.23)

~ a

R ot

where t is the traction vector of § on aRa and ¥ is given by (c) in

~

Definition 3.3. Observe that the integral in (4.23) is proper. Next,

(4.1) and (a) in Lemma 3.2 furnish

J.gm(g)-ii(g)dAyﬂm(i)-i:o (=, v es8) o (4.24)
OR w~



.

Equations (4.23) and (4.24), together with (c) in Definition 3.3, imply
conclusion (c).

Finally, turn to conclusions (d). As a consequence of con-
clusion (a), the tractions;c, of § are self-equilibrated on the boundary
of the region R—Bp(i) for all sufficiently small p>0. Thus,

o
P tdA 4+ JidA:g. (4.25)

ROIB (a) OR

lim
p=0

Also, because of (4.1) and conclusion (c),
' r
Jt¢A+&=Q : (4.26)
9R

Combining (4.25) with (4.26) one obtains the first of (d). The second
of conclusions (d) is immediate from the second of (b), so that the
argument is complete.

It will become apparent through specialization of a general
uniqueness theorem for concentrated-load problems established in the
next section that properties (a), (b), (c) together with the first of (d)
suffice_ to characterize the limit state S uniquely (except for an
additive rigid displacement) and therefore furnish an alternative
definition of S.

The orders of the displacement and stress singularities at the
point of application of the concentrated surface load are given by (b)
in Theorem 4.3 regardless of the particular shape of the boundary.

We emphasize, however, that the detailed structure of these

singularities depends upon the specific geometry of the boundary in a

neighborhood of the load point, as is apparent from the results in

[13; [i67, T197.
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5. Alternative characterization and uniqueness of solutions to
concentrated load problems.

We have so far defined the solution to a problem involving
concentrated loads through a limit process applied to a sequence of
solutions corresponding to regular loadings. We then examined the
solution generated by means of the foregoing limit process and in
particular determined the orders of the ensuing displacement and
stress singularities, as well as the stress resultants of the latter.

This program was carried out for internal concentrated loads in

connection with Kelvin's problem in Section 2 (Theorems 2,1, 2.2);

the analogous results for concentrated surface loads were obtained in

Section 4 (Theorems 4.2, 4.3) with limitation to simple regions.

The results to which we have just referred provide the
motivation for an alternative formulation of concentrated-load
problems. This direct formulation rests on the a priori specification
of the conceﬁtrated—loa.d singularities as to their orders and stress
resultants, in addition to the assignment of the regular body forces
and surface tractions.

In this section we seek to establish the completeness of such
an alternative formulation of concentrated-load problems through an
appropriate uniqueness theorem. For this purpose we first extend
Betti's reciprocal theorem to elastic states with singularities of the
type arising in the limit treatment of concentrated loads. The
generalized reciprocal theorem, which is of interest on its own
merits, greatly facilitates the proof of the uniqueness theorem that

is our primary objective.
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A1l of the results given in the present section are applicable to
arbitrary regular regions, in contrast to those in Section 4, which are

confined to simple regions.

Theorem 5.1. (Generalization of the reciprocal theorem to a class of

singular elastic states). Let R be a regular region. Let

P':{i'l, o7 ,gj{.}, P”:{il’ ...,i'l’c,,},

be two sets of points in R which have no elements in common and

consist of k' and k' distinct (interior or boundary) points. Further,

let 8', 8" be two states with the properties:

(2) s'=[w', T']€&(f, u, o;R-P'), £'€CR) ,

s'=[u", 7" Je(f", b, oR-P"), £ECR);

1 o oyl - 1 1 » _at j-2 . _ i
(b) m'()=O(|x-a_[), 7'(x)=0O(]x 1ml ) as x~a  (m=l, ..., k),
g”(f):O(lg-g'r;ll"l), L"(§)=O(l§-2';n|‘2)£_s_ x=a_ (m=l, ..., Kk);
(c) lim t’dA:&;n(mﬂ, .., kY, lim _fg"dA:Q'n (m=1, ..., k'),
=0 "y PO A (g
m m
where
1
!\.[In(p)rRﬂaBp(im) (m=1, ...k'), A;_;l(p):RﬂaBp(i];,n) (m=1,...,k'"),

while ’5' are the tractions of s' on the side of A;n(p) that faces a.;n,

and t”_ig defined analogously;

(d) .the tractions of S' and 8" on 9R are integrable.

Then



~u'dv , (5:..1)

i t" here denote the tractions of S', S'" on OR.

Proof. Let po>0 be such that any two spheres (balls) of radius Py

centered at points of P'UP'" are disjoint. Define

k' Yt
R(p)=R- U B (a )- U B (r’i'I ) (0<p<p.), (5.2)
ms= m=1 W

and let ple (0, po) be such that R(p) is a regular region whenever
0<p< Py Applying Betti's reciprocal theorem to the pair of elastic

states S', 8" on R(p) (O<p<p1) one has1

[eograns]s giavs [o gaas [ wav 0<o<y . (5.3)
R (p) R(P - 9R(p R(p)

Next, hypothesis (c) implies

jt (x) u"(x dA J\t (x) [u”(x) u”(a )]dA +‘f' U- (i;n)‘m(l) as p—0

A_(P) ~A! (9
(5.4)

for m=1, . «u, k:, and

J£1'(§)'E'(£)dAX= J,E”(E)‘ [u'(x)-u' (i;rﬂdAx+£'Irn'E'(il;n)+o(l) as p-0
N (P ~ Al (o) ~
m m (5.5)

Observe from (1.7) that the reciprocal theorem holds also if R is
unbounded.



T

for m=1,...,k'". Since s' is regular on the intersection of R with a
neighborhood of P”, and 8 is regular on the intersection of R with

a neighborhood of P, equations (5.4), (5.5) and hypothesis (b)

furnish

r 1 11 _p! 1" [} 11 1 - - P !

jt'u dA‘f’_,m'E (im)+o(l)’ J dA=0(1) as p~0 (m=1,...k),

A (o) Al (p)

m m (5.6)
v[fg-.u'dA:i'l',n-B‘(i';n)ﬂuo(l), Ji'-g"dA=o(l) as p~0 (m=l, ...k').

1 % N

AL (D A (9

Now proceed to the limit as p—0 in (5.3), using (5.2), (5.6)
and bearing in mind hypothesis (d), as well as the continuity of i’, 5’1
on R, to obtain the desired identity (5.1).

It is not difficult to see from the foregoing proof that the con-
clusion in Theorem 5.1 continues to hold if hypothesis (d) is omitted
provided the surface integrals in (5.1) are interpreted é,s suitable
principal values. Note also that Theorem 5.1 reduces to Betti's
reciprocal theorem if 8' and 8" are regular on R. Finally, the
generalization of the preceding theorem to inhomogeneous and aniso-
tropic linearly elastic materials is elementary.

As a further preliminary to thé uniqueness theorem at which

we are aiming we require

Definition 5.1. (Green's states for the displacements in the second

boundary-value problem). LetR be a regular region and y€R. We

call




.

the displacement Green's states for the region R aty, corresponding

to the elastic constants u and 0, provided:

(a) éi(-,g)=si(-,1)+%i<-,g)ﬂiz,

where Si(- ,¥) is the normalized Kelvin state introduced in Theorem 2.1;

k) T, =8¢, 9, ¥,y ] €€ 1 o) 5

6
_ —”\cli(-,z)—z nc;m(- )q;n(z) on OR if R is bounded
(c) T, y) = -

-t'(+,y) on dR if R is unbounded,

where zl(-, v)s tl(.,y) are the surface tractions of §1(_ »Y)s Sl(- ’,X)’

while ™ (m=1,...,6) is given by Definition 3.2;

(d) jéi(}i,z)-gm(i)dAx=O (m=1,...,6) if R is bounded.
OR = '

The regular part gi(-,ny;) of the Green's state éi(-,z) is defined
through (b), (c) as the solution of a second boundary-value problem for
the region R. Thus requirements (b), (c), because of (1.7),
determine gi(-,wy) uniquely1 if R is unbounded but, if R is bounded,
leawve this state determinate merely within an additive rigid displace-
ment field. Accordingly, éi(' ’,X) is defined by (a), (b), (c) to the same

degree of indeterminacy. This indeterminacy is eliminated by the

normalization condition (d), as is clear from (b) in Lemma 3.2.

k Cf. the remark immediately following Definition 3.3.
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The surface tractions Ii(- ’X,)’ defined by (c), are self-
equilibrated on 9R if R is bounded, as is easily verified with the aid
of (¢) in Theorem 2.2, together with Definition 3.2 and (3.25);
further, they evidently possess the same smoothness on the boundary
as does the unit normal vector of dR. Consequently the existence of
of gi(- ,z) — and hence of the Green's states éi(- ’,.Y)_ is assured for
simple regions by Korn's [14] existence theorem. The existence of
éi(-,’y’) for the broader class of regular regions hinges on the solv-
ability of the second bouﬁdary—va.lue problem for such regions in the
presence of surface tractions with the degree of smoothness of the
unit normal vector of 9R, Note also that gi(-,z) is known explicitly
(in elementary form) for the special cases of the entire space and the
half space: in the former instance it coincides with the Kelvin state
Si(- ’,X)’ while in the latter it is furnished by Mindlin's [18] solution to
the problem of a half-space under an internal concentrated load.

It is worth mentioning that the Green's states in Definition 5.1,
which are related to those used by Bergman and Schiffer in [19]

(p. 223), differ from the analogous traditional Green's states employed
“in [2 ]1 (Theorem 6.1). There, the equilibration of the concentrated
load at Y induced by the Kelvin state Si(- ¥ z) is effected through the
introduction of a second internal singularity; further, the normaliza-
tion of the displacement field is achieved by requiring the displace-
ments and rotations to vanish at the location of this supplemental

singularity.

1 See also [9] (Definition 3.2).
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The Green's states of Definition 5.1, in contrast to their

counterpart in [2], are symmetric in the sense of
ﬁ;(x, y)=ii(y,x) for all (x,y)ERXR-D . (5.7)

These symmetry relations follow at once from an application of
Theorem 5.1 to the pair of states éi(-,z), éj(-,i). We shall show
later on that there is a simple connection between the Green's states
éi(- s Z) and the modified tangent states defined in Section 3 (Defi-
nition 3.3).

Definition 5.1 will be used in Section 6 to deduce an integral-
representation theorem for solutions to problems involving concen-

trated internal and surface loads. We now turn directly to

Theorem 5.2. (A uniqueness theorem for problems involving con-

centrated interial and surface loads). Let R be a regular region and

assume the displacement Green's states for the region R at y, intro-

duced in Definition 5.1, exist for all yE€R. Let

P:[al, cond
~ k

be a set consisting of k distinct (interior or boundary) points E_l_R-.

Further, let S', g be two states with the properties:

(a) s'=[u', r'J€L(f, u, oR-P) ,

S“:[E,”: in]é&(f, s O‘;f{..P) 2
b) wiEd=olle-a_ ™Y, 1 @)=0r e-a [ a8 w~a_ (=i, ., k)
~ e~ ~ ~INn ’_N ~ ~ ~IND = = Im FRXT] »

11 - - =
ug=olze, |



P

() lim [t'da=lim [t"dA (m=1,...,%),

p—-»O p-—)O %
A_(0) A_{®

where

Ap(P)=RMIB (a ) (m=1,...,k), (5.8)

while t', t" are the tractions of s', a on the side of Am(p) that

faces a__;
— am

(d) t!'=t" on OR-P .

~ o~

if t', t'" here denote the surface tractions of s, 873

(e) ju'-qmdA:o , fu"-gmdA:o (m=1,...,6) if R is bounded,
oR OR

with qm given by Definition 3.2,

Then

§=S onR-P.

Proof. Choose y€R-P and hold y fixed. Let §i(~, y) be the displace-
ment Green's states for the region R at y, corresponding to the
elastic constants U, 0. Then, in view of (a), (b) in Definition 5.1 and

(2), (b), (c) in Theorem 2.2,one has
éi("x)z[ﬁi(':‘zL il(':’z)]ee(gs M, O';_R—-x) > 1
~i -1, 2l -2
86 =0lx-yI™), T y)=0lx-yI™ ) as x-y . | (5.9)

1
= »
~

lim j i, y)dA_
P03 (y) ~ g



T

where "El(- ,y) are the tractions of Sl(', y) on the side of aBp(y) that
faces y, while e’ is a unit vector in the x,-direction, Further, from

(a) and (c¢) in Definition 5.1,

6
-y qm(' )qirn(y) on 9R if R is bounded
B g =1 B (5.10)

0 on 9R if R is unbounded ,
provided ?:1(-, X.) here are the tractions of él(-, y) on 9R.
Next, define the state S=[u, ”I;:l through
S=3-8" onR-P, (5.11)
so that by (a), (b), (c), (d),

s=[y, 7]€€(Q, w,oR-P) , |

ﬂ -1 _ 2 i}
u(x)=0(|x-2 _[77), 1(x)=0(lx-2 |™") as x-a  (m=1,...,k), 5.12)

.

lim J tdA=0 (m=1,...,k),
o 4~ -

7T (o

t=0 on 9R-P

where t are the surface tractions of S and A__ (p) is given by (5. 8).
Taking account of (5.9), (5.10), (5.12) and applying the gener-
alized reciprocal theorem (Theorem 5.1) to the pair of states S, §i(- 'X)’

one draws
u;(7)+ | 26 y)- uGx)da, =0 . (5.13)
OR ~
The integral in (5.13) vanishes if R is unbounded because of (5.10).
On the other hand, if R is bounded, (5.10), (5.11), and hypoth-

esis (e) yield
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6
(\. v-‘
JE e p-uean = - o 0] a6 uegaa, =0
R ~ m-=1 R Fit

Thus, (5.13) implies ui(y)=0. Therefore, since y was chosen arbi-

trarily in R-P,

u=0 on R-P . (5.14)

Equations (5.14), (1.6) assure that T also vanishes on R-P. The
desired conclusion now follows immediately from (5.11) together with
the continuity of u and T on R-P.

The hypotheses in Theorem 5.2 may be weakened in several
respects. First, as may be shown by considerations strictly
analogous to those employed in the proofs of Theorems 5.1, 5.2 in
7, & a is an interior point, then

1 Y -1 i u 1 w -2 -
E(’i)—o(lii'imf ) if and only if T (E)-O(|§’-a [7")as x a
" 'l . . 1 —2
ul (X):O“X-iml ) if and only if T (Jfg):O(Ix—aml Yas o .

Hence for internal singularities, hypotheses (b) — though mutually
consistent — are redundant. Second, note tha,t the regularity conditions
on f at infinity, implied by hypothesis (a) and the last of (c) in
Definition 1.1 if R is unbounded, were not used in the preceding

uniqueness proof. Suppose, in particular, R is an exterior region

and all of conditions (c) in Definition 1.1 are replaced by the weaker
requirement

I(},E):O(l) as x— oo .

Then hypotheses (a), (b), (c), (d) ensure that the states S' and S" can
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differ only by a rigid displacement field, as is easily seen from
Theorem 5.2 in [7]. Further, in view of the remarks made in con-
nection with Definition 5.1, the hypothesis concerning the existence of

the Green's states becomes superfluous if R is a simple region, a

half-space, or the entire space. Next, it is worth mentioning that the

positive-definiteness of the strain-energy density assumed in (a) of

Definition 1.1 nowhere entered the proof of Theorem 5.2; conse-
quently, uniqueness prevails for all values of W and 0 for which the
requisite Green's states exist. Finally, it would appear that a
generalization of Theorem 5.2 to anisotropic elastic solids can be
carried out with the aid of Fredholm's [20] work on basic singular
solutions in the linearized equilibrium theory for such media.

It is an immediate consequence of Theorem 5.2 that the prop-
erties of the Kelvin state listed in Theorem 2.2 uniquely characterize
that state. Similarly, Theorem 5.2 guarantees that the solution to the
problem of a concentrated surface load balanced by regular tractions
on the boundary of a simple region defined in Theorem 4.2 through a
limit process, is uniquely characterized by the properties listed in
Theorem 4.3 — provided the displacements are suitably normalized.

We emphasize that the conclusion in Theorem 5.2 no longer
follows if hypotheses (b) are omitted, i.e. if the orders of the singu-
larities at the load points are not preassigned. This lack of unique-
ness is due to the existence of elastic states with higher-order self-

equilibrated point singularities. 1 1a particular, [1 ] contains

L Cf. the remark at the end of Section 2.
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examples of '"pseudo-solutions' to concentrated-load problems for the
half-space and the sphere that possess singularities with the requisite
stress-resultants at the load points and that satisfy the prescribed
boundary conditions for the regular surface tractions, but fail to
coincide with the corresponding limit solutions. These examples
demonstrate the incompleteness of the commonly employed direct
formulation of concentrated-load problems, in which the orders of
the singularities are not specified.

The usefulness of Theorem 5.2 sterms from the fact that the
direct formulation of concentrated-load problems furnished by this
theorem enables one to validate the solution to such problems without
carrying out a possibly cumbersome limit process. In conclusion we
. observe that Theorem 5.1 may now be viewed as a generalization of the

classical reciprocal theorem to problems involving concentrated loads.
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6. Integral representations of solutions to concentrated-load
problems. DBehavior of Green's states at the boundary.

This section aims primarily at integral representations for
solutions to concentrated-load problems in the direct formulation
supplied by the uniqueness theorem (Theorem 5.2) of the preceding
section. In particular we show that the displacement fields of such
solutions may be represented in integral form with the aid of the
i

Green's states §° of Definition 5.1. To obtain an analogous represen-

tation for the associated fields of stress we require

Definition 6.1. (Green's states for the stresses in the second

boundary-value problem). Let R be a regular region and y€R. We

call

é:LJ(' :Z)=[EIJ(' s X)’ iij(. 3 Z)]

the stress Green's states for the region R at y, corresponding to the

elastic constants W and 0, provided:

() 89(, y)=8(-, p+8Y(,y) on R,

where
S'.( ’5‘) U 6 S ( ls‘)lsl ( ’S‘)!S‘ ( !5‘) OIJ‘:E:' H (6'1)
~ 1—20 ii ,k ~ ,. ~ ,i ~ — y

~

while Sl(- ,y) are the normalized Kelvin states introduced in

Theorem 2.1;
(b) ¥V, y)=[E(,y), T, y)1€E(0, 1, oR) 5
(c) "t'ij(-,y)=-tij(-,v) on R ,

whers EIJ(.,Ny), ,.E,IJ(-',X) are the surface tractions of glj(',z), SiJ(':z);
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(d) ! a9(x,y) g™ (x)dA_=0 (m=1,...,6) if R is bounded,
9R ~

with gln given by Definition 3.2,

Note that the state Sij(o . }:,) defined through (6.1) is a linear
combination of a center of dilatation and of two force doublets with
equal and opposite moments, and hence has a seclf-equilibrated singu-
1arity1 at Y- Thus, from (c), the tractions of gij(- 3 Z.) are self-
equilibrated on 9R.

The remarks made in connection with Definition 5.1 that con-

cern the existence and uniqueness of the displacement Green's states

A

§', are equally applicable to the stress Green's states éij of
Definition 6.1. In particular, the existence of the latter states is
assured when R is a simple region, a half-space, or the entire space.
A connection between the Green's states and the modified tangent
states of Definition 3.3 will be established later on. We now proceed

to

Theorem 6.1. (Integral representation of solutions to concentrated-

load problems). Let R be a regular region. Assume the displace-

ment Green's states Sl(-,y) of Definition 5.1 and the stress Green's

states SY(., y) of Definition 6.1, for the region R at y, exist for all
yER. Let

Pl eeezy]

l8es [2] [Theorem 5.2,
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be a set _':L_gﬁ » which consists of k distinct (interior or boundary)

points. Further, let S be a state with the properties:

() 8=[u, T1€E(t, u, ;R-P), £ ECR) ;

; -z
(b) g(§)=0(l>i-gm| b, T)=0(|x-a |7") as x~a  (m=], ..., k);

(c) lim jtdA:{,m (Fh=l, vve, k),

where

A (P)=ROOB J(a ) (m=l,..., k),

while t are the tractions of S on the side of Am(p) that faces a

~

(d) the tractions of S on OR are integrable;

(e) [ w-q™da=0 (m=1,...,6) R is bounded,
8R

with qm given by Definition 3.2,

Then S on R-P admits the representation

w(g= 8l y)tean_+ [8ie y)-teav,

~

OR ~ R
k
N7 oAd

) R Em ) iy fer Al yR-P, (6-2)
m=1

_ [ aii : [a¥
T~ B GG A N Rt
9R ~ R

e

k
,+Z ﬁij(am. y)-4 for all yER-P , (6.3)
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_i_f t here denotes the tractions of S on oR.

~

Proof. Let y&R-P. Then, bearing in mind (a), (b), (c), (d) and

(5.9), and applying Theorem 5.1 to the pair of states S, éi(' »¥), one

obtains
[0 y)-um)aa, tu (y)= [ 656, petooaa,,
8R ~ oR re
m
AT v A‘
80 29V, ) T @ D e k)
R ~ k=1

It follows from (5.10) and hypothesis (e) that the integral in the left-
hand member of (6.4) vanishes. Hence (6.4) implies (6.2). Turning

to the proof of (6.3), we recall first from Theorem 2.2 that
S, =l (L0, 7L y) 180, R )

. o ,
u'(, y)=0( -y |7, T y)=0(lx-y " as x-y , (6. 5)

~

i
=e 3
~

lim Jf' t'(x, ¥) dA.X
p—0 8Bp(‘>i) ~

where ti(-, y) are the tractions of Sl(- , v) on the side of aBp(y) that

faces ¥s while e” is a unit base-vector in the xi-dlrectlon. Hence, an
~

application of Theorem 5.1 to the pair of states S5, s'(-, X) yields

u(y)= | [l y)£60)- £ ) uGo) Jaa,
oR ~
- lc .
i f ', )+ £G0)AV_ + Z ) LR (6.6)
R 72 m=1
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Since v was chosen arbitrarily in R-P, (6.6) holds for all yER-P.

From (6.6), (2.3), (2.2) follows

0 A ) 9 i, Py
U, j(z)=af [-s—y. u ) St i) jda

k
d i T 0 i 1
+ Ty.—gl(x,y).i(}i)dv Tt Ty S @y y)-4_ for all yER-P. (6.7)
R J ~ m=1 Y

According to (2.2), (2.3), Sl(x,y) is differentiable with respect to both

of its arguments, provided x#y. Further, (2.2) gives
ol y)= - el 1)) g T, Y)= - e T, )
yJR T xjm o Ll yerN’z_ xjN o L

so that (6.7), (6.1), and (1.6) imply

T35(0)= [ a6 p oot 9 -utg Tan,

8R -
k
+ IEIJ (x,y)-£ (ii)deJ“Z EIJ(EZIn’ }L)-im for all yER-P . (6.8)
R ~ m=l

Next, for each y€R-P, let gl‘](-,y) be the '"regular part' of the stress
Green's state élJ(- ,y) in Definition 6.1. Then (b) in this definition,
together with the present hypotheses on S and Theorem 5.1 applied

to S, 'Sij(-, y), furnish

1 The differentiation under the integral sign of the improper volume
integral in (6.6) is easily justified with the aid of (2.3), (2.2).
Cf. the proof for the differentiability under the integral sign of
Newtonian potentials of volume distributions in Kellogg [5] (p. 151).
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0= [ (&M, y)-£09-¥ (s, y) ulx) Tda

~

IR e

k

+J§”( ,y)e £ ()dV + u (a oY)t for allyeR-P .  (6.9)
R ~ m= 1

Finally, add (6.8) and (6.9), and use (a), (c) in Definition 6.1 to obtain
(6.3). This completes the proof.
We now establish a connection between the Green's states of

Definitions 5.1, 6.1, and the modified tangent states of Definition 3.3.

Theorem 6.2. (A connection between the Green's states and the

modified tangent states). Let R be a simple region. Let él, élj, &

respectively denote the displacement Green's states of Definition 5,1,

the stress Green's states of Definition 6.1, and the modified tangent

states of Definition 3.3, for the region R. Then:

o\i o A‘ 1l o k
@) S e =80 G060 =FSy ) for a1l G y) ORIR

(b) lim u (x, z)= u (A, y) for all (x, X)ERxaR -D.
z-y

Proof. Let x€9R and let ék(- » X) be the modified tangent state for the
region R at x corresponding to the xk-directionl . Let q (rn=1, ..., 6)
be given by Definition 3.2, Then (a) in Definition 3.3 and (a) in

Lemma 3.2 imply

h Recall that the existence of Sk(- ,x) is assured by Theorem 3.3.
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J\Eli(}z, i)'gm(EdA =0 (m:l, .--;6) 3
2 [R-B (x)] -

for all sufficiently small p>0. Thus, from (c) in Definition 3.3 and

(3.25),
6
i [ 009 @an =) of0 [ o' g pIaa,
=% (o) =1 3R
=gy (%) (=l v.0,6) , (6.10)
where

MP)=RNOB (x) .

while Ek(-,x) in (6.10) are the tractions of ék(-,x) on the side of A(p)

that faces x. For m=1,2,3, Equations (6.10) in conjunction with

~

Definition 3.2 yield

Jim I%k(p,x)dApz o= 6.11)
P=0h(p) v

k. . . : :
where e 1s a unit vector in the xk»dlrectlon.

~

Next, (b) in Definition 3,3, (3.7), and (b) in Lemma 3,1 imply
ok =1, ob =2
(R, x)=0(|p-x177), T(p, x)=0(lp-x17%) as p~x . (6.12)

In view of (6.11), (6.12) and (a), (c), (d) in Definition 3.3, it follows

from Theorem 6.1 that ék(- » x) admits the representation
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ﬁ];(y, S Jr G (p, y)-ff;k(p, x)dAp+ﬁi((x, y) for all y€R ,
oR =

(6.13)
ok _ [ ~ij Lk s1j -

He = [ 890 ) Eieaa, + 86y y) for a yer .

OR
The integrals appearing in (6.13) vanish because of (d) in Definition
5.1, (d) in Definition 6.1, and (c) in Definition 3.3. Thus, since x
was chosen arbitrarily on 9R, (6.13) implies conclusion (a).

We turn next to the verification of conclusion (b). To this end
first choose (35’}5? on ORX0R-D and observe that (6.11), (6.12) together
with (a), (c) in Definition 3.3 guarantee the applicability of Theorem
5.1 to the pair of states éi(-, X)’ éj(-, ZC). Indeed, one obtains in this
manner

G+ Ve S gy o [Pep fega, ey
oR P SR ~
for all (i’ y)€ OR X0R-D. Hence, invoking (c), (d) of Definition 3.3, one
sees that each of the two integrals in (6.14) vanishes, and arrives at
the symmetry relations
G‘j(?ﬁ’ Z):ﬁg(x, x) for all (}ff X)E@Rx OR-D . (6.15)

o

In addition, recall from (5.7) that
ﬁ;(x, y)zﬁ‘;(x, x) for all (x, y)ER*R-D . (6.16)

From (a) in Definition 3.3, (a) in Definition 5.1, conclusion (a) in the

present theorem, (6.15), (6.16), it follows that
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ﬁ}(x, y) =ﬁ2(y, x)=1lim ﬁi(z, x)

2y
=i (x, z) for all (x, y)ER X8R , (6.17)
zvy T N
and

ﬁ%(x, v) =ﬁq(y, x)=1lim ﬁ“.](z,x)
J ~ o~ 1~ ~ Z-"y' 1 ~ ~

=limﬁ3(x, z) for all (x, y)EORXdR-D . (6.18)
By W ~

~ o~

Relations (6.17), (6.18) imply conclusion (b), so that the proof is
complete,

It is apparent from (6.2), (6.3) in Theorem 6.1 that one
requires merely a knowledge of the Green's displacements Ei(- . ;3\('),

ﬁlJ(- »y) on the boundary 9R in order to arrive at an integral repre-

sentation of E(Z)’ I(X)’ in the absence of body forces and internal
concentrated loads. Conclusion (a) in Theorem 6.2 now reveals that
this limited information concerning the two types of Green's displace-
ments is supplied completely by the displacements and stresses of the
modified tangent states, if the region is simple. This observation is
apt to be of practical interest in connection with the actual construc-
tion of the general solution to the second boundary-value problem for
such regions. Beyond this, the theoretical significance of Theorem
6.2 stems from the fact that it reveals the behavior at the boundary
of the Green's states gi, éij since the corresponding behavior of the

modified tangent states §' is known a priori from Definition 3.3.
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In connection with the original definition of the modified tan-
gent states we note from (6.11), (6.12), in conjunction with the
uniqueness theorem for concentrated-load problems (Theorem 5.2),

that (b) in Definition 3,3 may now be replaced by:

(') &, y)=0(

“1, i -
x-v | ),11(35,1;):0”:;5-1[ ) as x~y,

lim [P0 paasels AR08,
h )

"

e

where Ei(- : }L) are the tractions of éi(- s X) on the side of Ap(x) that
faces ¥ while Si is a unit vector in the xi—direction. This alternative
and more transparent charaéterization of £he modified tangent state
é(' " X) identifies the latter as the solution to a problem corresponding

to a unit concentrated load at the boundary point y together with the

equilibrating regular surface tractions

specified in (c) of Definition 3.3.
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