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Abstract. Part I. 

Several approximate Hartree-Fock SCF wavefunctions for the 

ground electronic state of the water molecule have been obtained 

using an increasing number of multicenter s, p, and d Slater-type 

atomic orbitals as basis sets. The predicted charge distribution has 

been extensively tested at each stage by calculating the electric dipole 

moment, molecular quadrupole moment, diamagnetic shielding, 

Hellmann-Feynman forces, and electric field gradients at both the 

hydrogen and the oxygen nuclei. It was found that a carefully optimized 

minimal basis set suffices to describe the electronic charge distri­

bution adequately except in the vicinity of the oxygen nucleus. Our 

calculations indicate, for example, that the correct prediction of the 

field gradient at this nucleus requires a more flexible linear combi­

nation of p-orbitals centered on this nucleus than that in the minimal 

basis set. Theoretical values for the molecular octopole moment 

components are also reported. 
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Abstract. Part II. 

The perturbation-variational theory of R. M. Pitzer for nuclear 

spin-spin coupling constants is applied to the HD molecule. The zero­

order molecular orbital is described in terms of a single ls Slater-

type basis function centered on each nucleus. The first-order molec­

ular orbital is expressed in terms of these two functions plus one 
-r 

singular basis function each of the types er and e-r ln r centered on 

one of the nuclei. The new kinds of molecular integrals were 

evaluated to high accuracy using numerical and analytical means. 

The value of the HD spin-spin coupling constant calculated with this 

near-minimal set of basis functions is JHD = +96. 6 cps. This 

represents an improvement over the previous calculated value of +120 

cps obtained without using the logarithmic basis function but is still 

considerably off in magnitude compared with the experimental measure -

ment of JHD = +43. 0 ± 0. 5 cps. 
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PART I 

APPROXIMATE HARTREE-FOCK WAVEFUNCTIONS 

ONE-ELECTRON PROPERTIES AND ELECTRONIC 

STRUCTURE OF THE WATER MOLECULE 
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1. Introduction 

For several decades now the structure of molecules and 

crystals, meaning the arrangement of nuclear centers therein, have 

been successfully elucidated by spectroscopic and other means. The 

determination of electronic density distributions, however, poses to 

this date a formidable experimental problem. One approach is the 

extraction of the electronic density function from X-ray diffraction 

intensities.1 It appears, however, that the density function can be 

determined far more accurately through theoretical calculation of the 

electronic wavefunction than through any experimental means at the 

present time. This then provides a motivation for the calculation of 

molecular electronic wavefunctions. 

The first part of this thesis is concerned with the calculation of 

approximate Hartree-Fock wavefunctions and one-electron properties 

of the water molecule in the ground electronic state. Such a calcu­

lation is particularly of interest for the following reasons: (i) water 

plays a fundamental role in chemistry and biology by virtue of its 

unusual bulk properties; (ii) from a theoretical point of view, the 

water molecule is a prototype triatomic molecule since only one of 

the three atoms involved has inner shells; (iii) an extensive calcu-

lation on the water molecule is economically feasible; (iv) finally, 

experimental values for many of its properties are already known and 

hence facilitate the evaluation of the calculated charge distribution. 
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From the above considerations, it is not surprising that ab 

initio calculation of the electronic structure of the water molecule has 

received considerable attention. In the following subsection, the 

most well-known calculations are summarized. 

1. 1 Previous ab initio calculations on the water molecule 

The first ab initio wavefunction calculation that took into 

account all ten electrons in the water molecule is that of Ellison and 

Shull 2 who reported an approximate Hartree-Fock wavefunction for 

the molecule in the ground electronic state in 1955. Ellison and 

Shull 's wavefunction was based on inaccurate values for three-center 

integrals, however, and hence there would be no valid justification in 

discussing their results here. 

The pioneering calculation on the water molecule appears to be 

that of Boys et al. 3 who evaluated all necessary integrals accurately. 

Employing eight Slater-type atomic orbitals as basis functions, they 

went beyond the Hartree-Fock approximation by including more than 

one Slater determinant in the wavefunction. The Slater-type basis 

functions used were not specified and no wavefunctions were tabu-

lated. However, theoretical values for the dipole moment and 

vibrational force constants were given and compared favourably with 

experimental values. 

A later calculation by McWeeny and Ohno 4 also included 

configuration interaction but was based on Ellison and Shull 's 
r:: 

inaccurate integral values. Merrifield,) pcrrornw<l a more acc urate 

calculation by usin~ an extended basis sel and by independenlly 
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evaluating molecular integrals ; his work has not yet been completed, 

however. 

Although not yet reported in the literature, approximate 

Hartree-Fock wavefunctions for several molecular geometries of the 

water molecule have been obtained by Pitzer and Merrifield 6 using a 

minimal basis set of Slater-type atomic orbitals with optimized 

exponents. They calculated the dipole moment, the vibrational force 

constants, and the equilibrium molecular geometry, finding good 

agreement with experiment. 

Recently, calculation of the electric polarizability of the water 

molecule using Hartree-Fock perturbation theory was reported by 

Arrighini, . Maestro, and Moccia. 7 A large number of multicenter 

Slater-type basis functions were used. The calculations were based 

on unpublished molecular wavefunctions and integral values obtained 

by Salvetti and co-workers. The average polarizability calculated 

with their largest basis set agreed well with experiment. 

All the foregoing calculations were based on multicenter Slater­

type basis functions. Beginning in about 1964, a number of investi­

gators turned toward the use of gaussian basis functions. Krauss 8 

was interested in determining the equilibrium molecular geometry. 

Employing a medium-sized set of gaussian basis functions, he 

obtained a total molecular energy slightly superior to that obtained 

by Boys et al. who used eight Slater-type basis functions and included 

configuration interaction as mentioned above. The calculated 

equilibrium molecular geometry agreed very we ll with experiment. 
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Moskowitz and Harrison, 9 as well as Ritchie and King, lO 

obtained the lowest theoretical total energies so far reported in the 

literature for the water molecule by using large sets of gaussian basis 

functions. Of these two groups of workers, Moskowitz and Harrison 

obtained a slightly lower total molecular energy and also reported a 

calculated dipole moment in good agreement with experiment. 

Very recently, a number of one-electron properties of the 

water molecule have been calculated by J. F. Harrison 11 using 

unpublished wavefunctions obtained by Fink, Whitten, and Allen. 

The basis sets employed were small in size and consisted of gaussian 

lobe functions. The calculated dipole moment agreed rather poorly 

with experimental measurement. 

In addition to the above multicenter calculations, several single­

center wavefunctions for the water molecule have also been reported. 

Moccia 12 employed a large number of Slater orbitals centered on the 

oxygen nucleus while Bishop and Randie 13 used a smaller number of 

basis functions but included configuration interaction. Moccia 

obtained better agreement with experiment for the calculated total 

molecular energy, the equilibrium molecular geometry, and vibra-

tional force constants . He also calculated the dipole moment , report-

ing good agreement with experiment. 

Thus, essentially three kinds of basis functions have been 

employed in previous calculations of the ground-state electronic 

wavefunction of the water molecule. Single-center wavefunctions 

possess inherent theoretical limitations which have been discussed by 
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Moccia.14 Such wavefunctions are expected to give a particularly 

unreliable description of the molecular electronic charge distribution 

in the vicinity of nuclei located away from the center of expansion. 

The most appropriate basis functions to use in calculating molecular 

electronic wavefunctions are therefore the multicenter functions. 

From the results of previous calculations discussed in the foregoing 

paragraphs, the number of individual multicenter gaussian and 

Slater-type basis functions required to achieve the same variational 

energy for the water molecule would be in the approximate ratio 4:1. 

Thus, previous calculations on the ground electronic state of the 

water molecule show that multicenter Slater-type basis functions 

provide by far the most compact analytic representation of the 

unperturbed molecular electronic wavefunction. 

Finally, we mention two calculations which have been reported 

on excited electronic states of the water molecule. The first calcu­

lation is by La Paglia 15 and the second by Lin and Duncan.16 Both 

calculations were motivated by the known Rydberg term values of the 

water molecule. The calculations are based on approximate Hartree­

Fock wavefunctions for the ground state molecule and assume that 

excitation of the Rydberg electron does not affect the other electrons 

which thus remain in the ground state molecular orbitals. Useful 

results were obtained. They are not quantitatively reliable, however, 

since some approximations were made in the Hartree-Fock equation 

for the Rydberg orbital. In addition, La Paglia based his calculations 

on the inaccurate ground state wavefunction of Ellison and Shull, 



7 

while Lin and Duncan approximated the nuclear potential for the 

Rydberg electron. 

1. 2 Experimental measurements on the water molecule 

After summarizing previous theoretical investigations of the 

water molecule, a brief discussion will now be given on experimental 

measurements since the verification of any theoretical calculation 

ultimately depends on experimental observation. 

1. 2. 1 Properties measured 

Experimental data exists for a large number of bulk properties 

of water in the liquid, vapour and solid states. These include the 

heat capacity, 17 the dielectric constant, 18 the second and third virial 

coefficients, 19 the Joule-Thompson coefficient, 20 the viscosity, 21 

the Verdet constant, 22 and the surface tension in air . 23 

These bulk properties depend on the properties of the individual 

molecules and the intermolecular potential function via the theories 

of statistical mechanics. Properties which are characteristic of the 

individual water molecules and which have been measured to various 

degrees of accuracy are listed in Table I together with the methods 

used in the measurements. 

1. 2. 2 Problems involved in some of the measurements 

Measurement of the various molecular properties of water is 

by no means an easy task. Specifically, we cite the problems 

involved in measuring the 170 quadrupole coupling constants and the 

molecular quadrupole moment, thus pointing out the importance of 

the alternative approach of theoretical calculation. 
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Table I. Properties measured for the water molecule 

Property 

Ionization potentials 

Molecular structure, harmonic and 
anharmonic vibrational constants, 
centrifugal distortion coefficients, and 
rotation-vibration interaction constants 

Nuclear quadrupole coupling constants 
and spin-rotation interaction constants 
at the D nucleus 

Nuclear quadrupole coupling constants 
and effective spin-rotation interaction 
constant at the 170 nucleus 

Magnetic shieldings at the H and 170 
nucle i 

Electric dipole moment 

Rotational magnetic moment 

Magnetic susceptibility 

Electric polarizability 

H-D and H-
17

0 nuclear spin-spin 
i s otropic coupling constants 

Term values of Rydberg states 

Molecular structure of the (a1)
2 (a1)

2 

(b2 )
2 (a1 )

2 (b1 ) (3pa1), 
1B1 Rydberg 

state 

EI 

Method of a 
measurement 

Fine structure of 
IR bands 

Hyperfine structure 
of MW spectrum ; 
beam maser 
spectroscopy 

Conventional MW 
spectroscopy 

NMR 

MW Stark effect 

MW Zeeman effect 

Modified Quincke 
balance 

Refractive index 
extrapolation 

NMR 

EI and vacuum-UV 
spectroscopy 

Vacuum-UV 
spectroscopy 

IR: infrared 

Ref. 

24 

25 

26, 27, 
28 

29 

30,31 

32 

33 

34,35 

36 

37,31 

38,39 

39 

a EI : electron impact 
MW: microwave 
UV: ultra violet 

NMR: nuclear magnetic resonance 
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The 170 quadrupole coupling constants were measured by using 

a conventional microwave spectrometer. The 160 nucleus does not 

possess a quadrupole moment and the experiment was performed on 

HOO vapour containing 170 isotopic species in low natural abundance. 

Furthermore, the water molecule is an asymmetric rotor and is not 

easily subjected to study through microwave spectroscopy. The 

measured 170 quadrupole coupling constants were based on the 

220 - 221 rotational transition of HD170. The observed spectrum was 

poorly resolved. The derived 170 quadrupole coupling constants gave 

a value for the field gradient asymmetry parameter that corres­

ponds 29 to an unusually highs hybridization of 38% in the oxygen 

bonding orbitals of water according to the Townes-Dailey theory. 40 

This led the investigators to conclude that the structure of bonds 

involving oxygen needs reexamination. From the foregoing consider- . 

ations, there is clearly a need for an ab initio calculation of the field 

gradient at the oxygen nucleus in the water molecule . 

Measurement of the molecular quadrupole moment of water 

would apparently be even more difficult than that of the 170 quadrupole 

coupling constants. The magnitudes and signs of molecular quadru-

pole moments can be measured directly by the electro-optical method 

of Buckingham. 41 The quadrupole moment of a molecule with a 

vanishing dipole moment is independent of coordinate origin. For a 

dipolar molecule, Buckingham and Long1.iet-Higgins 42 have recently 

shown that contrary to earlier expectations, the coordinate origin of 

the molecular quadrupole moment measured in the electro- optical 
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experiment i t> not the molecular center of mass and, in fact, may not 

be easily determined, being dependent in a complicated manner on the 

optical frequency used in the measurement. Since knowledge of the 

coordinate origins, the signs, and the magnitudes of multipole 

moments is needed in specifying molecular fields, the direct measure-

ment of the higher multipole moments of molecules must be regarded 

as an unsolved problem at the present time. Therefore, theoretical 

calculation of the molecular quadrupole and octopole moments of the 

water molecule is a timely step to pursue. 

1. 3 Scope of this thesis research 

With such a wealth of experimental data and also a lack of it in 

some cases, it is highly desirable for a theoretical investigation of 

the water molecule to emphasize the ab initio calculation of its molec­

ular properties. In section 1. 1, previous ab initio calculations on 

the water molecule were summarized. As stated therein, good total 

molecular energies for the ground electronic state were obtained. 

However, few molecular properties were calculated. It has been 

pointed out 43 that a good total molecular energy does not necessarily 

imply a satisfactory description of the charge distribution in the 

molecule. 

In the thesis research reported herein, several approximate 

Har tree- Fock s elf- consistent-field wa vefunctions for the ground 

electronic state of the water molecule have been obtained using an 

increasing number of multicenter s, p and d Slater-type atomic 

orbitals as basis sets. At each stage, the elect ric dipole moment, 
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molecular quadrupole moment, diamagnetic shielding, Hellmann­

Feynman forces, and electric field gradients at both the hydrogen and 

the oxygen nuclei have been calculated and compared with available 

experimental measurements. This comparison furnishes an extensive 

quantitative test of the predicted charge distribution since the one­

electron properties calculated depend on different powers of the 

electron coordinate ranging from r- 3 to r 3
• Our calculated results 

are also compared with those calculated by Neumann and Moskowitz 44 

who independently investigated the water molecule using very large 

sets of gaussian basis functions and whose work came to our attention 

at the conclusion of our own investigation. As the final steps in our 

research, the charge distribution predicted by our most elaborate 

wavefunction is plotted out pictorially in the form of contour maps, 

and the nature of the chemical bond in the water molecule is discussed 

in terms of the Townes-Dailey theory of nuclear quadrupole inter­

action in molecules. 
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2. Hartree-Fock theory 

We briefly describe here the elements of molecular Hartree­

Fock theory. 45 

In molecular Hartree-Fock theory, the Born-Oppenheimer 

separability of nuclear and electronic motions 46 is first assumed. 

The many-electron wavefunction for a closed-shell system is then 

taken to be an antisymmetrized product of one-electron molecular 

spinorbitals which satisfies the Pauli Principle. The expectation 

value of the electronic Hamiltonian is next obtained in terms of 

spatial integrals of molecular orbitals after integrating trivially over 

the spin factors. To this is applied the variational principle under 

the constraint that the molecular orbitals remain orthonormal. The 

r esulting Hartree-Fock equations for the molecular orbitals are 

F</>. = E . </> . 
1 1 1 

(2-1) 

where F is a one-electron operator called the Hartree-Fock operator 

and is effectively the one-electron Hamiltonian governing the motion 

of an electron moving in the average field of all the other electrons. 

The eigenvalue Ei is called the Hartree-Fock orbital energy corres­

ponding to the ith molecular orbital <f\· 

In the approximate molecular Hartree-Fock theory first given 

a rigorous mathematical framework by Roothaan, 45 each molecular 

orbital <Pi is approximated by a finite linear combination of atomic 

orbitals ~: 
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m 

cf\ = .6 cpi x.. , 
p=l p 

(2-2) 

The matrix Hartree- Fock equations that result are 

FC = ESC (2-3) 

where 

f x *K. x_ dT = LJ ff x *(1) cp. (l) _!__ cp.*(2) x_(2) dT1 dT2 p i · 'l p i r 12 i · '! 

and h is the Hamiltonian operator for an electron moving in the field 

of the bare nuclei. 

The matrix C is solved for numerically by the method of trial ....., 

and error until a self-consistent solution is obtained. 
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3. Wavefunctions for the water molecule 

3. 1 Computer programs 

In the present thesis research, four approximate Hartree-Fock 

SCF wavefunctions for the water molecule have been calculated using 

an increasing number of multicenter s, p, and d Slater-type atomic 

orbitals as basis set s. The computer programs written by R. M. 

Pitzer, J. P. Wright, W. E. Palke, D. E. Ellis, and C. A. Christy47 

have been employed after some modifications. The programs will 

henceforth be referred to as the Cambridge programs. A few errors 

in these extensive and painstakingly detailed programs were found 

and corrected. These errors do not, however, affect any published 

results based on the programs and therefore need not be elaborated 

on any further. 

Most of these programs compute multicenter integrals by 

expanding each part of the integrand in terms of functions located on 

one of the centers . The expansion is done in such a way that angular 

integrations reduce any multiple infinite series to a single infinite 

series or to a finite number of terms. The systematic development 

of this procedure hinges on four basic steps. 

The first step is the generation of rotation matrices for 

expressing real spherical harmonics (angular parts of Slater-type 

atomic orbitals) defined in one coordinate system in terms of real 

spherical harmonics defined in a rotated coordinate system. 
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If unprimed coordinates refer to one right-handed coordinate 

system while primed ones r efer to another right-handed system 

rotated from the first through the Eurelian angles a, {3, and y as 

defined in Hirschfelder et al. , 48 then 

where 

a nd 

with 

n ?:- 0 

= (sin e)n ( d ) £+n (cos 2e - 1)£ 
2£ .e. ! d cos e 

= ( cos n<J>, 

sin n<f> , 

(J = 0 

naa' n+m n:m = (-) 
(£+n) ! (£-m) ! 
(.Q-n) ! (£+m) ! 

2 - 0 mo 
2 

[
(-)a' S a(a) Sa'( ) d + 

n m Y nm + 

(3-1) 

d
1

({3)nm is the unnormalized Jacobi polynomial in cos {3 as given by 

Hirshfelder et al. 49 
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If one or both coordinate systems have the polar axis reversed 

in direction so that spherical harmonics in one or both systems are 

now referred to a left-handed coordinate system, then the coefficient 

Dlaa' in (3-1) must be multiplied by one or both of the factors nm 
(- / +n and (-) l +m since 

By means of the rotation matrices, all molecular integrals 

involving three centers or less can now be referred to the standard 

coordinate systems of Figure 1 for which integrals are actually 

computed. 

The second basic step in the Cambridge programs for multi-

center integrals is the expansion of a real spherical harmonic on one 

center in terms of real spherical harmonics referred to a new 

coordinate system, obtained from the first by a translation along the 

polar axis followed by an inversion of the polar axis: 

l_ 

L ( )k+m (1m1+£) ! Rl_-~;;: r k p lm l (cos e ) s a (¢ ) 
- (lml+k )! (.f-k)! A k A !ml k=lml 

(3-2) 
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where R is the distance between centers A and B and r A' rB, e A' 

OB, and ¢ are spherical coordinates in the coordinate systems shown 

in Figure 2. 

The third step is the expansion of the radial part of a Slater 

orbital on one center in terms of zeta functions and Legendre poly­

nomials on another center:51 

oo -klr A -RI -
= .e.~o (2£+ 1) e tn,.e. (kr A' kR) P .e. (cos e A) 

(3-3) 

where the notation is that of Figure 2. 

The zeta functions In,.e.(kr A' kR) are identical to those of 

Barnett and Coulson 51 except for a scale factor. They are generated 

by an improved procedure due to R. M. Pitzer . 52 In this procedure, 

all zeta functions are assembled directly from Bessel functions 

without the use of recursion relations on the zeta functions themselves. 

This change in procedure gives improved accuracy particularly for 

the higher order zeta functions. 

Finally, the fourth basic step in the Cambridge programs is the 

multipole expansion of the electron repulsion potential. When the 

number of different centers in the integrand is three or less, the form 
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c 

ZC 

XA ..__ _________ __J XB 

A B 

Figure 1. Actual coordinate system for which molecular 
integrals are computed. All three y axes point up 
from the plane of the paper. Hence the coordinate 
systems on centers B and C are left-handed. 

,, ,, ,, 

,, 
,, ,, 

/ 

A ,, \ 

\ 
\ 
\ 

I 

rB\ 
\ 

\ XB 

.eB>! 
Figu.:1.·2 :; . Coordinate systems used in defining the change 

in origin of a Slater-type atomic orbital. 



19 

used for the expansion is 53 

1 
= 

f. 
2 

'>, (f.-m)! m m 
LJ pf. ,(cos el) p £. (cos 82) • 

m=l (f.+m)! 
cos m( </>1 - </>2 ) J 

(3-4) 

where r 12 is the distance between the two electrons and r <. and r > 

are respectively the smaller and the greater of r 1 and r 2 • (r1 , 817 ¢ 1 ) 

and (r2 , 82 , </>2) are the spherical coordinates of electrons 1 and 2, 

respectively, referred to the same origin. 

This expansion is also used for off-center nuclear attraction 

potentials, with a nucleus replacing one of the electrons. 

3. 2 Calculations 

In Hartree-Fock calculations, radial integrals by far take up 

most of the computing time. Each set of p or d atomic orbitals on 

each center have therefore been given the same exponent in this work. 

Clearly, severa l such sets of p or d atomic orbitals must be used in 

order to have much flexibility in describing non-spherical charge 

distribution. 

Throughout this work, the experimentally determined equilib-
... 

rium OH bond length of 1. 8111 a. u. and HOH bond angle of 104 ° 2 7' 

for the water molecule 54 have been assumed. This same molecular 

geometry has been used in all the relevant experimental work quoted 

herein for comparison with our calculations. The coordinate axes x, 
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y, and z on all centers point in the directions shown in Figure 3. 

H 

0 

F igure 3. Coordinate axes employed in the calcula tion of 
the wavefunctions and properties of the water 
molecule. T he z"axis is parallel to the 
b isector of the OOH bond angle and the y axis 
points up from the plane of the molecule . 

z 

Values of the fundamental constants are taken from Cohen and 

Dul\l!.ond's recent work. 55 

Four SCF electronic wavefunctions were calculated in this work. 

T he wavefunctions are labelled I, II, III, and IV in order of increasing 

basis-set size (7, 10, 17, and 26 basis functions, respectively). 

Wavefunction I is one of several obtained by Pitzer and Merrifield 6 

and corresponds to the minimal basis set. An additional set of 2p 
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orbitals on the oxygen nucleus was included in wavefunction II. III 

differs from II by an additional ls orbital on each hydrogen nucleus, 

and a 2s and a set of 3d orbitals on the oxygen nucleus. Finally, 

wavefunction IV included an additional set of 2p orbitals on each center. 

The evaluation of molecular integrals took approximately 4 

minutes, 7~ minutes, 35 minutes, and 3 hours for wavefunctions I, II, 

Ill, and IV, respectively. All computations were done on the IBM 

7094 computer at Caltech. Orbital exponents were optimized in only 

the smaller wavefunctions I and II. It is interesting to note that only 

minor changes occur in optimal exponents of the oxygen orbitals from 

those of the free oxygen atom upon bond formation. This can be seen 

in Table II, where we compare the optimal exponents of the oxygen 

orbitals in wavefunctions I and II with those obtained using similar 

basis sets for the oxygen atom in the 3 P ground state. The atomic 

results for the minimal basis set (set A) are from the work of 

Clementi and Raimondi. 56 Those of the more extensive set (set B) 

have been calculated in these laboratories using the Atomic SCF 

Program Number 3 of Roothaan and Bagus. 57 

Table III lists the orbital exponents used for the atomic orbitals 

in wavefunctions III and IV. Several of these exponents were taken 

from our optimized wavefunction II but, as a whole, they were based 

on Cade and Huo's work on the OH radical 58 after scaling the opti­

mized values in the OH wavefunction according to the ratio of the OH 

bond lengths. This procedure is probably justified since for Slater 

orbitals the distance of the radial maximum from the nuclear center 
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Table II. Comparison of optimal orbital exponents of the 

oxygen orbitals in two similar approximate 

Hartree -Fock wa vefunctions for the 3 P oxygen 

atom and in the water molecule. 

Atom Molecule 

Set A 

ls 7.6579 7.66 

2s 2.2458 2.25 

2p 2.2266 2.21 

Set B 

ls 7.65 7.65 

2s 2.26 2.26 

2p 1. 66 1. 56 

2p' 3.69 3.60 



23 

TalJle III. Crite ria for the orbital e xpone nt value s 

used in wa ve functions III and IV . 

Wa ve function III Wa vefunction r: 
Orbital 

Expone nt Criterion Exponent Criterion 

lsH 1. 33 C- Ha 1. 40 arbitrary 

l s~ 2.47 C-H 

2s8 
2.33 C-H 

2pH 1. 85 C- H c 

i s 0 7.65 II b 7.65 II 

2s0 1. 74 C- H 1. 74 C-H 

I 

2s 0 2. 90 C-H 2.90 C-H 

2po 1. 56 II 1. 30 C- H 

' 
2po 3.60 II 2 . 16 C- H 

" 2po 3 . 8 1 C-H 

3ct0 1. 66 C- H 1. 66 C-H 

a Ca de and Huo' s OH va lue multiplied by the bond l ength ratio 

1.8342 
1. 8111 = 1. 0127 5. 

b R eta ined from wavefunction II. 

c Based on the 7T2pH orbita l e xponent in Ca de a nd Huo's OH 
wa vefunction . 
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is inversely proportional to the orbital exponent. In any case, since 

the OH bond lengths in water and the OH radical differ by less than 

2%, the change in the orbital exponents is not expected to be large. 

The futility of exponent optimization relative to increasing the 

basis-set size has been well established. 58 For example, in our case, 

for wavefunction II, exponent optimization took 5 hours of computer 

time producing only a small change of 0. 014440 a. u. in energy. 

Here, the optimal exponents in atomic wavefunction B above and a 

hydrogen exponent of 1. 2 7 were used as starting point for the optimi­

zation. The two sets of oxygen 2p orbitals were found to be strongly 

coupled together, necessitating double optimization of these two 

exponents in addition to single optimization of the other exponents. 

For wa vefunctions Ill and IV, multiple optimizations would be even 

more important. 

The basis functions, orbital exponents, molecular orbital 

coefficients, orbital energies, and total energies for all four wave-

functions are given in Tables IV to VII. A total of 34, 266 non-vanish­

ing integrals were needed in calculating wavefunction IV and it is 

therefore not practical to list the integral values here. 



Table IV. Molecular orbital coefficients and ener gies for the water molecule : Wa \'efunction I. 

Basis function a 
Molecular orbital coefficients 

Nucleus 
1a1 2a1 3a1 1 b2 1 b, 

D ls (1. 27) -0, 003634 -0. 151676 -0. 264407 0. 423525 0. 

H ls (1. 27) -0. 003634 -0. 151676 -0. 264407 -0.423525 0. 

0 ls (7. 66) 0.996808 0.221858 -0.093444 0. 0. 

2s (2. 25) 0.015189 -0. 842535 0. 515902 0. 0. 

2pz (2. 21) 0.003159 -0. 132019 -0.787220 0. 0. 

2px(2.21) 0. 0. 0. 0. 624043 0. ~ 
01 

2py(2.21) 0. 0. 0. 0. 1. 

--
Orbital energy b -20. 5559 -1. 2850 -0.4661 -0. 6242 -0. 4026 

Total energy = -75.703317 

Kinetic energy = +75.746186 

a Orbital exponents are given in parentheses. 

b All energies are in a. u. 
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TABLE V. Molecular orbital coefficients a nd e nergies for 

the water molecule: Wavefunction II. 
--=-·- · --~~~~------- -

Nucleus Basis Functiona Molecular Orbital Coefficients 

1~ 2a1 3a1 

D ls (1. 50) 0 .003658 - 0. 146790 0 . 160025 

H ls ( 1. 50) 0. 003658 -0.146790 0.160025 

0 ls (7 . 65) - 0 . 996661 0.224840 0. 083515 

2s (2. 26) - 0. 015427 -0. 857229 -0 . 410603 

2pz ( 1. 56) - 0.002251 - 0.104478 0.641687 

2px ( 1. 56) 0 . 0 . 0. 

2py (1 . 56) 0 . 0. 0. 

2 , 
Pz (3. 60) -0.001534 - 0.060003 0.284225 

2p~ (3. 60) 0. 0. 0. 

2p~ (3. 60) 0. 0 . 0 . 

Orbital energyb -20.5421 -1 .3534 -0.5638 

Total energy = - 75. 969347 

Kinetic energy = 75 . 927858 

aOrbital exponents are given in parentheses. 

b All energies are in a. u . 

1~ 

0 . 304599 

-0.304599 

0 . 

0. 

0. 

0.515880 

0 . 

0. 

0.270071 

0 . 

-0.7099 

l b1 

0 . 

0. 

0. 

0. 

0. 

0. 

0 . 753116 

0. 

0. 

0.329345 

-0 . 5077 
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TABLE VI. Molecular orbital coefficients and energies 
for the water molecule: Wavefunction III . 

- --- - -- --· 

Nucleus Basis Functiona Molecular Orbital Coefficients 
l~ 2a1 - - ---

3a1 l b..i lb! 

D ls (1.33) 0 . 006306 0 . 018442 0.183026 0. 179686 0 . 

l s ' (2 . 47) -0.002546 -0. 081749 0.004649 0.049496 0 . 

H l s (1. 33) 0.006306 0 . 018442 0 . 183027 - 0. 179686 0. 

ls' (2 . 47) - 0 . 002546 -0 . 081749 0 . 004649 -0.049496 0 . 

0 l s (7 . 65) 0.9927 12 0.232232 0 . 073543 0. 0. 

2s ( 1. 7 4) -0 . 018319 -0 . 638333 -0.292621 0 . 0 . 

2s' (2 . 90) 0.027634 -0.365527 -0 . 136794 0 . 0. 

2pz (1. 56) -0 . 004232 -0. 157274 0 . 627205 0 . 0. 

2px (1. 56) 0 . 0 . 0 . 0 . 592293 0. 

2py (1. 56) 0. 0. 0 . 0. 0. 752629 

2p~ (3 . 60) 0 . 003092 - 0.030438 0.289972 0 . 0 . 

2 ' Px (3. 60) 0 . 0 . 0 . 0 . 255533 0 . 

2p' y (3 . 60) 0 . 0. 0 . 0 . 0.328185 

3d3z2- r2 (1. 66) -0 . 000177 -0. 011287 0 . 054568 0. 0 . 

3dzx (1. 66) 0. 0. 0 . 0.103600 0 . 

3dx2- y2 (1. 66) - 0.001558 - 0 . 047446 0.006791 0 . 0. 

3dzy (1 . 66) 0. 0. 0. 0 . 0 . 053350 

3dxy (1. 66) 0. 0. 0. 0. 0 . 

Orbital energyb -20.5541 - 1 . 3356 - 0.5840 -0 . 7153 -0.5130 

Total energy - 76.000440 
Kinetic energy = 75 . 579000 

aOrbital exponents are given in parentheses . 

b All energies are in a . u . 



28 

TABLE VII. Molecular orbital coefficients and energies 
for the water molecule: Wa ve!uncUon IV . 

=---== --;-;.-:.----·----·· -·-----
Nucleus a Basis Function Molecular Orbital Coefficients 

la 2a 3a lb, lb., 

D l s (1. 40) -0.002742 0.155823 0. 178079 - 0. 288124 0. 

2s (2. 33) 0. 002204 - 0.009612 0. 018268 -0. 013111 0. 

2pz (l. 85) -0. 001112 - 0.020014 0.001162 0 . 028743 0. 

2px (1. 85) -0.001095 - 0.027048 -0.022159 0.020212 0. 

2py (1. 85) 0. 0. 0. 0. 0.026725 

H ls (1. 40) - 0. 002742 0.155823 0. 178079 0.288124 0 . 

2s (2 . 33) 0.002204 -0.009612 0.018268 0. 01311 1 0. 

2pz (1. 85) -0. 001112 -0.020014 0. 001162 -0. 028743 0. 

2px (1. 85) 0.001095 0.027048 0.022159 0.020212 0. 

2py (1. 85) 0 . 0. 0. 0. 0.026725 

0 ls (7. 65) -0. 993078 -0.239640 0 . 072220 0. 0. 

2s (1. 74) 0.010528 0 . 447181 -0.320504 0. 0. 

2s' (2 . 90) -0. 025587 0 . 410713 -0 . 132111 0. 0 . 

2pz (1. 30) 0. 001520 0.014437 0. 364844 0. 0 . 

2px (1. 30) 0. 0. 0. -0.243358 0. 

2py (1. 30) 0. 0. 0. 0 . 0.469982 

2p~ (2.16) -0.001052 0.080842 0.323899 0. 0. 

2p~ (2.16) 0. 0. 0. -0 . 338790 0. 

2 ' Py (2 . 16) 0. 0. 0. 0. 0. 354578 

2p'~ (3. 81) -0 . 001637 0.025196 0 . 219726 0 . 0. 

2 " Px (3. 81 ) 0. 0. 0. -0. 190513 0 . 

2 " Py (3. 81) 0. 0. 0. 0. 0. 248775 

3d3z'- r,(1. 66) 0.000238 0.007069 0. 042325 0. 0 . 

3dzx (1 . 66) 0 . 0. 0. -0.058474 0. 

3dx"-y' (1. 66) 0.000329 0. 018575 0 . 005437 0. 0. 

3dzy (1. 66) 0 . 0. 0. 0. 0.039069 

3dxy (1. 66) 0. 0. 0. 0. 0. 

- --- - - ------- -----· 

Orbital energyb -20.5654 - 1. 3392 -0. 5950 -0. 7283 -0 . 5211 

-----·-- - - -----

Total e nergy = -76.004682 
Kinetic energy = 75.662145 

=-=----;:.-:. . ...;;_.: 

aOrbltal exponents are given In parentheses. 

bAll energies are in a. u . 
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4. Electronic properties 

4. 1 Definitions and nature of one-electron properties 

If P is a one-electron operator, then for a closed-shell system 

of 2n electrons, the expectation value of P according to a Hartree-Fock 

f t . . . b 59 wave unc 10n is given y 

n 

<P> = 2 ~ «t\IPI <I\> 
i=l 

where the molecular orbitals </\ are defined in section 2 and the 

summation is over all occupied molecular orbitals. 

(4-1) 

The definitions of the one-electron properties calculated in this 

thesis for the water molecule are as follows in atomic units: 

(4-2) 

Electronic contributions to the components of the Hellmann- Feynman 

force at nucleus N 

(4-3) 

Average diamagnetic shielding at nucleus N 

d a (N) == (4-4) 

Dipole moment 

(4-5) 
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Molecular quadrupole moment tensor components 

Molecular octopole moment tensor components 

(4-7) 

Third moment tensor components 

(4-8) 

In the above definitions, Greek indices are used to denote cartesian 

components of vectors and tensors. Thus, r a is a cartesian compo­

nent of the vector r, the integration variable, while rka is a cartesian 

coordinate of the position vector rk of nucleus k with charge zk. 

6 af3 is the Kronecka delta. e and m are respectively the electron 

charge and mass while c is the velocity of light. qap is by convention 60 

the second derivative of the electrostatic potential with respect to the 

a and f3 position coordinates and hence -qa/3 is the corresponding field 

gradient component. The coordinate origin of the field gradient, 

Hellmann-Feynman force and average diamagnetic shielding operators 

is to be taken at the specified nucleus, N, indicated in parentheses. 

The index k runs over all the nuclei except that a prime on the 
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summation symbol indicates omission of the nucleus to which the one-

electron property is referred as origin. 

The first non-vanishing multipole moment of the water molecule 

is the dipole moment which is therefore independent of coordinate 

origin. The quadrupole and octopole moments have been defined 

according to Buckingham 41 and will be ref erred to the center of mass 

of H2 
160 as origin in the present calculations. Enough information 

will, however, be provided in this thesis to allow a translation to any 

other coordinate origin. 

The nature of some of the one-electron properties will now be 

discussed. 

The electric field gradient tensor appears in the expression for 

the energy of electrostatic interaction between electrons and a nucleus 

possessing a nuclear quadrupole moment. The zero order energy is 

that due to coulombic interaction between electrons and a point charge 

nucleus. Higher order corrections appear in the multipole expansion 

of the electron-nuclear electrostatic potential. 53 These corrections 

arise physically from the finite spatial distribution of the nuclear 

charge, the lowest order correction being the nuclear quadrupole 

interaction energy. For the case of an asymmetric top molecule 

containing a nucleus with a quadrupole moment, the expectation value 

of the nuclear quadrupole interaction Hamiltonian in a given rotational 

state may be reduced to the following convenient form: 60 

l I e I qJ Q [ 3 ] 
W Q - 2 . 1(21-1) J(2 J-1) 4C(C+1) - 1(1 +1) J(J +1) (4-9) 
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where jel is the proton charge, l the nuclear spin quantum number, 

and J the quantum number of total rotational angular momentum of the 

molecule including nuclei and electrons. The remaining symbols have 

the following meanings. 

-C = F(F+ 1) - 1(1+ 1) -J(J+ 1); F = l + J 

qaa [ / l) () (K+l) CJE()(/(K)] qJ = J ,J + + E K 
(J +1) (2 J +3) 

+ 
2 qbb CJE(K) 

(J +1)(2J +3) oK 

qcc l oE(K) ] 
+ (J +1)(2J +3) L J(J +1) - E(K) + (K-1) ClK 

Here, qaa' qbb' and qcc are as defined in (4-2), a, b, and c being the 

principal axes of inertia of the molecule in order of decreasing 

rotational constants , K is Ray's asymmetry parameter of the asym­

metric rotor 61 and E(K) the well documented reduced rotational 

energy of an asymmetric rotor with rotational constants 1, K, and 

-1. 5o, 62 
E(K), and hence CJ.:r' is a function of the rotational state. 

Q is called the nuclear quadrupole moment. p ( r ) is the nuclear n n 

charge density at the position rn referred to the nuclear charge 

centroid as origin. Zn is the component of rn along the direction of 1, 

and d~ the volume element of integration over all space. 
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The separations between nuclear quadrupole interaction energy 

levels are generally of the order of microwave and radio frequencies 

and have therefore been quite commonly observed under various 

degrees of spectroscopic resolution. Experimental results obtained 

via microwave spectroscopy are usually reported in terms of values 

for the quantities I e I qaa Q, I e I qbb Q, etc. which are called the nuclear 

quadrupole coupling constants and are conventionally denoted as Xaa• 

~b' etc. 

From the definitions, it can be seen that all field gradient 

components will vanish for a spherical charge distribution. The field 

gradient at an atomic nucleus is therefore zero for s electrons and for 

a closed shell of p electrons. It will differ from zero when the 

effective nurr.ber of p electrons around a nucleus is less than six. 

The relation ( \ f electric field gradient tensor components to hybridi­

zatiou :1nd other aspects of chemical bonding in molecules is thus 

possible and forms an objective of the Townes-Dailey theory on which 

further discussion will be made in section 5. 2. 

According to the Hellmann-Feynman theorem, 63 we have 

(4-10) 

where l/J and E are respectively the electronic wavefunction and energy 

of a molecule at a fixed nuclear configuration obtained assuming the 

Born-Oppenheimer separability of nuclear and electronic motions. 

H is the total Hamiltonian of the system excluding the nuclear kinetic 
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energy t e rms, and A. is one of any number of parameters specifying 

nuclear positions in H, for example a nuclear position coordinate. 

The integration indicated in the right-hand-side expression is over the 

electronic coordinates. 

The force on a nucleus defined by an increase in the nuclear 

coordinate R is - ~~. The actual evaluation of this quantity is based 

on the definition of a derivative as a limiting value and therefore the 

value of E at at least two neighbouring values of R must be known. 

This would involve the solution of Schrodinger's equation for the 

electronic wavefunction at at least two nuclear configurations. 

Application of the Hellmann-Feynman theorem, however , gives 

aE 
1
aH I - - = - ( t/I - t/I) aR aR (4-11) 

showing that the same result can be obtained through knowledge of t/I 

at the single nuclear configuration of interest. The right-hand-side 

expression of (4-11) is called the Hellmann-Feynman force. It is 

identical to the expression for the electrostatic force that would be 

derived by assuming that the electronic charge distribution has the 

probability density t/l*t/I. The Hellmann-Feynman theorem holds for 

the exact Hartree-Fock wavefunction for a closed-shell system, as 

well as for the exact wavefunction t/I. 

Molecular multipole moments arise in the quantitative expression 

for molecular electric fields. In the field of a molecule, the electro­

static potential at a distant point R referred to some coordinate origin 
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within the molecule is given by 41 

r/)(R) = 

2 

+!e 3RaRJ3-oaf3R 
3 a(3 Rs 

_ ! n 5 RaRJ3 Ry - R
2 

(o {3yRa + oyaR{3 + o a{3 R 1,) 
5 a{3y R7 

+ -------- (4-12) 

where the multipole moments, defined earlier in this section, have the 

same coordinate origin as the vector R. The indices a, (3, and y 

stand for cartesian components of vectors and tensors, and summation 

is implied over repeated indices in accordance with the Einstein 

t . t' 64 summa ion conven ion. 

Given the multipole moments of two polar molecules, a major 

contribution to the long-range intermolecular potential is in principle 

determined. In the case of the water molecule, although the dipole 

moment is large and the contributions of higher moments to the molec­

ular electric field decrease with the distance R, these higher moments 

may not be negligible in the intermolecular potential function. For 

example, the third virial coefficient of steam has been evaluated 

taking dipole-dipole interaction into account. 65 Distinct disagreement 

between calculated and experimental values was found and has been 

attributed to the neglect of higher multipole moments, in particular 

the dipole-quadrupole interaction. 
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4. 2 Computation of one-electron _E!:_Operties 

If the LCAO expansion (2-2) is used to approximate the Hartree­

Fock molecular orbitals in (4-1), the expectation value of a one­

electron operator P for a closed-shell system of 2n electrons becomes 

(P) 
m m 

= 2 ~ 6 c . c . < x I PI x_ > 
p=l q=l pl q1 p . '1 

= 2 Tr (Ct PC) 
"' "' "' 

where Qt is the transpose of the matrix C, P is the matrix with 
"' 

(4-13) 

elements P pq = ( xp I PI \i) , and Tr indicates the trace of a matrix 

product. 

A computer program for calculating the multicenter matrix 

elements P pq for the diamagnetic shielding, force and field gradient 

operators between s and p Slater-type orbitals has been described 

previously.66 We have added several subroutines, one due to W. E. 

Palke, so tha t all necessary rotations and labelling can be done 

completely automatically to minimize errors . For calculating 

integrals of all the one-electron operators involving ct-orbitals, the 

existing Cambridge computer program (see section 3. l) used in 

calculating three- and two-center coulomb integrals was suitably 

modified as explained below. 

The three-center coulomb integral is defined as 

AABC = ffA(l) A(l) _!_ B(2) C (2) dT 1 dT2 r i 2 

= jVA(2) B(2) C(2) dT2 (4-14) 
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where, for example, A(l) denotes an atomic orbital of electron 1 

centered on A, VA(2) is the result of integrating over the coordinates 

of electron 1 and represents the coulomb potential felt by electron 2, 

and dT 1 , dT 2 are the volUJ.i'le e lements of integration. 

In the existing Cambridge program for calculating AABC, the 

integration over electron 2 is done in the A coordinate system by 

expanding B(2) and C(2) in terms of zeta functions and real spherical 

harmonics centered on A. Thus, AABC may be converted into a 

three-center one-electron integral by replacing the function VA with 

a one-electron operator. If the angular part of A(l) A(l) is a product 

of two real spherical harmonics of orders £1 and i.2 , then by using the 

multipole expansion (3-4), VA(2) will be obtained as a linear combi­

nation of real spherical harmonics of electron 2 with orders I £ 1 - ~I 

to ( f 1 + £2 ). The correct angular dependence of the different one­

electron operators is generated by the following values of l.1 and £2 : 

Ql £2 Operator 

0 0 1/ r 

0 1 Hellmann-Feynman force and dipole moment 

0 2 Electric field gradient and molecular quadrupole 
moment (spherical tensor components) 

1 1 Electric field gradient and molecular quadrupole 
moment (cartesian tensor components) 

1 2 Molecular octopole moment 
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The conversion of AABC to an integral of a one-electron operator 

can thus be effected by modifying essentially only the radial part of the 

integration and the normalization constant. Two- and one-center 

integrals were obtained by making some changes in the original 

programs to make centers B and C collapsible onto A. 

The computer program for two-center coulomb integrals AABB 

was modified in a similar manner. By comparing values for integrals 

of one-electron operators obtained with this program and those from 

the modified AABC program, an internal check of the two original 

programs as well as of the modified programs was obtained. This 

check turned out to be a highly valuable one. 

These modified programs of course also work for s and p orbitals. 

An external check was thus possible by comparing integral values with 

those obtained by the program of R. M. Pitzer. 66 Values were found 

to agree to 10-6 a. u. or better. 

To sum the slowly convergent infinite series encountered in the 

three-center programs when the operator is on the molecular axis, 

the non-linear sequence-to-sequence transformation described by 

Petersson and McKoy 67 was indeed found to be effective and was used 

after independent testing for accuracy. The dipole moment r esults 

were checked with a program written independently by M. D. Newton 

and F . P. Boer 68 for s and p orbitals, and integral values were found 

to agree to 10-6 a. u. 
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4. 3 Results and comparison with experiment 

Calculated values for the various electronic properties obtained 

with all four wavefunctions are shown in Table VIII. Experimental 

values where available are given for comparison. 

In Table VUI, V, and T stand for potential and kinetic energies, 

respectively. Koopmans' Theorem 69 is invoked and the entries listed 

as calculated ionization potentials are just the negative of the three 

highest orbital energies associated with each wavefunction. 

Field gradient components (a. u.) at the D nucleus have been 

transformed to the coordinate system with axes parallel and perpen­

dicular to the OD bond (~, 1J in Figure 3) and converted into deuteron 

quadrupole coupling constants using the multiplication factor 70 

e
2
Q(D) x 10-6 = 0 65713 M / . c a. u. ha: 

for comparison with the experimental values of Posener 26 and 

Bluyssen et ai.27 a is the angle of rotation for diagonalization of the 

quadrupole coupling tensor at the deuteron (see Figure 3). 

The field gradient components -qxx(O) and -qzz(O) at the oxygen 

nucleus were converted to values for the 170 quadrupole coupling 

constant Xa.a (170) using a value of Q(170) = -0. 024 barn for the 170 

quadrupole moment for comparison with Stevenson and Townes' 

experimental value.29 The subscripts a, b, c refer to the principal 

inertial axes of HD170 (see Figure 3). 11(0) is defined as 29 

[qbb(O) - qcc(O)] / qaa(O). The experimental value for Xab(170) was 



TABLE Vlll. Calculated and exper imental energies and one-electron properties of the water moleculea. 
- --;-:--_-:,_. -- ··· ·-- -· . ~ --· -· --- -· -

n m IV Experiment Neumann-Moskowitzb 
- - - - -- -----------------------

Total energy (hartrees) -75.703317 -75.969347 -76.000440 -76.004682 -76. 481 c -76.05936 

-V/ T 1.998868 2.001093 2. 011152 2. 009054 2.ooooood 2.00066 

Ionization potentials (a. u . ) 0. 4026 0. 5077 0.5130 0. 5211 0 . 463 ±0.004e 0.5069 

0.4661 0. 5638 0 . 5840 0. 5950 0.533 ±0.0lle 0.5822 

0.6242 0 . 7099 0 . 7153 0. 7283 0. 595 ±0.0lle 0. 7190 

X~~(DJ (Mc/ sec) 0.3437 0. 3888 o. 3595 0.3626 0. 3152 ± 0. 0077! 0. 3411 

X~T/(D) (Mc/ sec) -0.0204 -0 . 0270 - 0.0041 -0.0085 -0 . 0088 ± 0 . 0087! -0. 0083 

~(D) (Mc / sec) - 0.1502 - 0.1741 - 0.1588 -0. 1586 -0.1393 ± 0. 0070! -0.1478 
a 2 °22' 2 °44' 0 °27' 0 °57' 1 "7' ± 1° 10' f o • 58' 

Xaa(110 ) (Mc/ sec) - 11. 584 -9.364 -9.072 - 8.331 -8. 13 ± 0. l g -8.34 

TJ(O) 1. 547 1. 525 1. 550 1. 484 0. 7 ± O. l g 1.506 
Xab(110 ) (Mc/ sec) 3.896 3.196 3.045 2.923 4.33h 2. 88 

fz(D) (a.u.) - 1. 4776 - 1. 4586 -1. 4620 - 1. 4975 - 1. 4940i - 1. 505 ~ 
0 

fx(D) (a.u. ) -1.9778 -1. 9401 -2.0136 -2.0482 - 2. 0498i - 2. 081 

fz(O) (a.u.) 0.1172 0.7946 2.6720 2.4261 2. 98801 2.928 

a~D) (ppm) 103. 6 101. 7 102.1 102.0 102. oi 102.9 
ad(O) (ppm) 415.3 415.8 415.0 415.0 416. l 

µ (Debyes) 1. 921 2.827 1.949 2.035 1. 85 ± o. o:f 1. 995 

<~ro'k> (10-10 cm2
) 4. 940 5. 349 5.367 5.462 5. 1 ± 0. 7l 5.371 

6 zz 
(Io-•• esu. cm') -0 . 008 -0. 123 -0. 053 -0 . 050 -0.108 

eYY (lo-•• esu . cm') -1. 485 - 2. 307 -2 . 496 -2 . 589 -2.422 

nzzz (10-
34 

esu .cm 3
) -1. 353 - 1. 337 

ozyy (10- 34 esu.cm3
) -1.136 -0.960 

Rzxx (10- 34 esu. cm3
) 1. 325 1.191 

- -- -- - -~ - ·----



41 

Footnotes for Table VIII. 

a For explanation of notations, see text. For each property, 

the relevant nuclear center is indicated in parentheses. 

b Calculated by Neumann and Moskowitz with their best 

gaussian basis wavefunction, Ref. 44. Note that the molecular 

geometry assumed by these workers differs slightly from ours. 

cOxygen atomic energy (-75. 1101 a. u.) from Ref. 58. 

Dissociation energies of 0 2 and H2 from P. Brix and G. Herzberg, 

Can. J. Phys. 32, 110 (1954) and G. Herzberg, Spectra of Diatomic 

Molecules (D. Van Nostrand Company, Inc. , Princeton, New Jersey, 

1950). Heat of formation of H20 from Ref. 1 7. Zero-point energy of 

H20 derived from data of Benedict, Gailar , and Plyler, Ref. 25. 

d Exact value according to the virial theorem. 

e Reference 24. 

f References 26, 27. 
a 
0 Reference 29. 

h Derived from the experimental values of "a.a (170) and 7](0). 

i Nuclear contribution to the force as derived from the 
experimentally determined equilibrium molecular geometry. 

j Based upon the spin-rotational constants of Ref. 28 and the 
equilibrium molecular geometry. 

k Reference 32 . 
1 Reference 35. 
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derived from Stevenson and Townes' values for Xaa (
17

0) and 77(0) using 

the symmetry relationship qzx(O) = 0. 

The quadrupole moment of 170 adopted in this work is that due to 

Bessis et al. 71 A slightly different value has been reported by Kamper, 

Lea and Lustig. 72 In the latter work, ( _!_) 2 and the quadrupole r3 p 

coupling constant were obtained from the e. s. r. spectrum of atomic 

oxygen, and these quantities were combined to yield a value of 

-0. 0265 barn for the 
17

0 quadrupole moment after making allowance 

for the Sternheimer factor. 73 The value of Bess is et al. is based 

upon the observed quadrupole coupling constant for the 3 P2 state of 

atomic oxygen (- 10 . 44 Mc/ sec) and the electric field gradient 

calculated with their configuration-interaction wavefunction, without 

correcting for the Sternheimer effect. The reliability of Bessis et al. 's 

values of the quadrupole moment for the 170 nucleus clearly depends 

upon the accuracy of the electric field gradient calculated with their 

configuration-interaction wavefunction. We have decided to use the 

value of Bessis et al. since their wavefunction also yields a value for 

(1/ r
3

) 2p which is in good agreement with experiment. In this connec­

tion, we have also computed (1 / r 3
) 2p and (P2° / r 3

) for the 3 P2 oxygen 

atom using the limited basis-set function A due to Clementi and 

Raimondi 56 and our atomic wavefunction B. The results of these 

calculations are compared with the values of Bessis et al. and with 

experiment in Table IX. It is interesting to note that while the 

expectation values obtained with the minimal basis set are in 
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Tal>le IX. Calculated and experimental values of 

1 P~ f 3 a ( - ) and ( - ) or the P2 oxygen atom. 
r3 2p r3 

Wavefunction Ab Wavefunction B Bessis et al. c Experimentd 

( _!_ ) (1025cm -3) 
r 3 2p 

2.48 3 . 26 3. 08 3. 10 

p (l 
<-=-> (10 

r 3 

'..!5 ~ cm- ) -0 . 50 -0.65 -0 . 62 -0 . 62 

Qc ff(0 17
) (barn) -0.030 -0. 023 -0. 024 -0. 024 

a The effe ctive quadrupole moment Qeff(0 17
) is derived using the observe d 

quadrupole coupling constant of -10. 44 Mc/ sec (Ref. 72, 74). 

b Re f. 56. 

c Re f. 71 . 

dRe f. 72, 74 . 
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poor agreement with experiment, the results obtained with set B are 

in reasonable agreement with the calculations of Bessis et al. and 

with experiment. These results provide some indication of the 

accuracy in the computed field gradient of Bessis et al. Finally, we 

note that the paramagnetic resonance results of Kamper et al., 72 as 

well as the more recent e. s. r. measurements of Harvey, 74 also yield 

an effective 170 quadrupole moment of -0. 024 barn when their deduced 
1 

values of ( r 3 >2p are combined with the observed 170 quadrupole 

coupling constant. 

The experimental value for fa(N), the a component of the 

Hellmann-Feynman force exerted by all the electrons on nucleus N, 

is obtained by considering the contribution to the force by the other 

nuclei at the known experimental equilibrium geometry of the mole­

cule. 

The experimental value of the diamagnetic shielding at the proton 

is 102. 0 ppm, and was determined using the well-known expression 75 

relating the nuclear magnetic shielding constant and the spin-rotation 

interaction constants. The absolute proton shielding was obtained 

from the absolute magnetic shielding 76 in H2 (26. 6 ppm) and from the 

known chemical shift 3o (3. 60 ppm) of gaseous H20 relative to gaseous 

H2 • Several sets of spin-rotational constants for the proton in H20 

and HOD have been reported in the literature. 77, 781 28 The best data 

appear to be those of Bluyssen et al., 28 and we have used their 

reported spin-rotational constants in the evaluation of the paramagnet­

ic part of the magnetic shielding. 
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No experimental value for the diamagnetic shielding at the 

oxygen nucleus is available . 

The electric dipole moment µ is defined positive for 

The sign has not been determined experimentally but is most certainly 

positive. 

The quantity ( ~ r~k) is the mean square distance of the electrons 
K 

160 from the center of mass of H2 • The quadrupole moment tensor E>, 

the octopole moment tensor Q and the third moment tensor Rare all 

referred to the center of mass of the H2
160 molecule as origin. 

In the last column of Table VIII, we have included for compari­

son with our calculated properties the recently calculated values of 

Neumann and Moskowitz 44 (after necessary conversions). These 

values are based upon their best g;aussian wavefunction. 

4. 4 Discussion of results 

4. 4. 1 Energies 

The best total energy obtained in this work is about 0. 47 a. u. 

higher than the experimental value. The energy calculated by 

Neumann and Moskowitz using their best gaussian wavefunction is 

somewhat better than ours, their value being lower by 0. 05468 a . u. 

An energy drop of as much as 0. 03 a. u. can be expected by including 

an additional ls0 function in our present largest basis set. 
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The virial ratio - V /T should be exactly 2. 0 for an exact wave-

function a t the equilibrium molecular geometry as well as for an 

exact Hartree-Fock wavefunction at the Hartree-Fock equilibrium 

geometry. Both the lack of geometry variation and the lack of orbital 

exponent variation in wavefunctions III and IV are certainly reasons 

for the deviations from the theoretical value in our results. The use 

of the virial theorem as a criterion for judging wavefunction accuracy 

has been critically discussed by Fraga and Ransil. 79 

As first pointed out by Koopmans, 69 Hartree-Fock orbital 

energies should be good approximations to the vertical ionization 

potentials of a closed-shell atom or molecule. The vertical ionization 

potentials predicted for the water molecule in the present calculations 

using Koopmans' Theorem increase monotonically with basis-set size. 

This is hardly surprising since each time the molecular orbitals are 

given more freedom, the wavefunction is varied to get a minimal 

energy for the neutral molecule. However, the optimal molecular 

orbitals so determined are not necessarily optimal for the ionized 

molecule, whose energy therefore does not necessarily get lowered 

each time. The difference in correlation energies in the neutral and 

ionized molecules is independent of basis-set size. Thus an increas-

ing gap between the two energy levels can be expected. In the case of 

water, because the ionization potentials predicted with the minimal -

basis-set wavefunction are already fairly close to the experimental 

values, they tend to diverge from the latter values as more and more 

basis functions are added, contrary to the hope expressed by Ellison 



and Shull 2 thirteen :vears ago. 

4. 4. 2 One-electron properties 

47 

In Table VIII, it is seen that the minimal-basis-set wavefunction 

I describes the molecular electronic charge distribution well except 

in the vicinity of the oxygen nucleus. The force and the field gradient 

at the oxygen nucleus are off, but other one-electr on properties agree 

with experimental data. Wavefunction II has a total energy lower than 

that of the minimal-basis - set one by about 0. 27 a. u . (7 e. v.) but the 

calculated properties did not improve much. The dipole moment in 

particular turns out to be far too high. The importance of a balanced 

basis set is clearly demonstrated here. From the results listed in 

the work of Arrighini, Maestro, and Moccia 7 on the water molecule, 

it is also clear that 3d functions on the oxygen nucleus can be impor­

tant in predicting the dipole moment. This point has been discussed 

by Mulliken. 43 

4. 4. 2. 1 Oxygen field gradient 

Agreement with the experimental value for the nuclear quad­

rupole coupling constant Xaa for 170 was achieved only with wave­

function IV. The biggest improvement in the calculated value for this 

quantity are seen to occur in going from I to II and from III to IV. 

This suggests that the correct prediction of field gradients at the 170 

nucleus requires a flexible linear combination of p functions centered 

on this nucleus . We noted that the ct-orbitals include d in wavefunctions 

III and IV contributed little to the calculated electric field gradient at 

the oxygen nucleus. 
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All four wavefunctions predict an asymmetry parameter TJ which 

is about twice the experimentally observed value. 2 9 Although the 

calculated electronic and nuclear contributions to each field gradient 

component at the deuteron nucleus are nearly equal in magnitude but 

opposite in sign, no loss of accuracy due to subtraction is possible for 

the oxygen field gradient since the nuclear and electronic contributions 

for this property have the same sign for each component. The elec­

tronic contributions to the one-electron operators are compared with 

the nuclear contributions in Tables Xa to Xe for the case of wave-

function IV. (For the sake of completeness, a breakdown of electron-

ic contributions into contributions from each occupied molecular 

orbital has been included in the tables.) 

Since qaa is accurately predicted, it would seem that the dis­

agreement for TJ between theory and experiment arises from an error 

in the calculated qbb (or qcc), or from uncertainties in the experi­

mental value. We note that if qaa is accurately determined and qbb 

is in error, then this error will be magnified twofold in the calculated 

value of 17, since the third component qcc is determined from the trace 

condition. It is doubtful that vibrational averaging, BO, 81 additional 

basis functions, or a different form of the wavefunction such as a 

configuration- interaction wavefunction or the recently developed GI 

wavefunctions 82 would alter the theoretical values for TJ(O) and 

Xab (170) 83 to the necessary extent. For example, our calculated 

values for TJ(O) and Xab(1
7
0) and those of Neumann and Moskowitz 

agree to about two significant figures. However, the 220 - 221 



Table Xa. Comparison of electronic and nuclear contributions to 

one-electron properties: Electric field gradients. a 

Property -qzz(D) -qzx(D) -qxx(D) -qzz(O) -qxx(O) 

la1 -0.042184 -0.489152 -0 . 294595 0.000919 0. 001695 

2a1 0. 040240 -0. 346716 -0.308852 -0. 163775 -0.009549 

3a1 0.052810 -0.144038 -0.250785 -5.310969 2. 643117 

lb2 -0.185831 -0.354437 -0.051539 2.244247 -4.588175 

lbl 0. 052007 -0.241018 -0.090067 3.341631 3. 338944 ~ 
tD 

Electronic -0 .082958 -1. 575361 -0.995838 0. 112054 1. 386033 
contribution 

Nuclear 0. 126664 1. 956111 1. 262620 0.042318 0.294350 
contribution 

Total 0.043707 0. 380749 0.266781 0. 154372 1. 680384 

-

a All values are in a . u. 



Table Xb. Comparison of electronic and nuclear contributions to one-electron properties: 

Hellmann-Feynman forces and a verage diamagnetic shieldings. a 

Property fz(D) fz(D) fz(O) ad(H) ad(O) 

la1 
-0. 373511 -0 . 482112 0. 343177 1. 104426 15.18699 

2a1 
-0.316506 -0.515743 2.238956 1. 235302 2.32239 

3a1 -0.145807 -0. 374381 -2.043296 1.050494 2.00872 

lb2 -0.422428 -0.352150 1. 498799 1. 376719 1. 78721 

lbl -0.239259 -0.323776 0.388431 0.977416 2.07619 01 
0 

Electronic -1. 497512 -2.048162 2. 426073 5.744356 23.38151 
contribution 

Nuclear 0. 0. 0. 0. 0. 
contribution 

Total -1. 497512 2.048162 2. 426073 5.744356 23.38151 

a All values are in a. u. 



Table Xe. Comparison of electronic and nuclear contributions 

to one-electron properties: Multi pole moments. a 

Property µ 6 zz e R R R yy zzz zxx zyy 

la1 -0.000683 -0.030657 0. 015311 -0.016829 0.004354 0.004346 

2a1 -0.673678 -0.002103 0.355941 0.776643 -0.222367 -0.455212 

3a1 0.203651 -1. 825047 1.128063 -0.513922 0. 290377 -0.205665 

lb2 -0 . 789870 0.884363 1.461588 1. 214701 -0.302474 -1. 481272 

lbl -0.157678 0.920456 -1. 804128 -0. 010714 0.009269 -0.038508 C.l1 ...... 

Electronic 1. 418259 -0.052988 1.156775 -1 .449879 -0.220841 -2.176310 
contribution 

Nuclear 2.218823 0.015478 3.081673 1. 897498 0. 4.038132 
contribution 

Total 0.800565 -0.037509 -1.924898 0.44761 9 -0.220841 1.861822 

-

a All values are in a. u . The dipole moment has been computed using the oxygen nucleus as 

coordinate origin. All higher moments are referred to the center of mass of H2
160 as origin. 
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microwave hyperfine transition frequencies which form t he basis for 

the experi ::nenta l quadr u;)ole coupling cic.!.ta cited in this wor k 29 are 

quite insensitive to the value of 17(0) between 0. 7 and 1. 5. Table XI 

gives the transition frequencies calculated with various values of 

71(0) and a, the effective spin rotational constant of Stevenson and 

Townes.29 The corresponding spectra are plotted in Figure 4 on the 

same relative scale. We thus find that the shifts in the transition 

frequencies of the hyperfine components upon increasing 17(0) from 

0. 7 to 1. 5 are of the same order of magnitude as the shifts due to 170 

spin-rotation interaction. Since the observed spectrum is not well 

resolved, it is probable that it is not possible to distinguish between 

these two values of 17(0). Furthermore, in Stevenson and Townes' 

work, the dependence of the effective spin-rotational constant upon 

rotational state was ignored in approximating the spin-rotation 

interaction as al . J. In the appendix, we show that ignoring this 

dependence in going from the 22 1 to the 220 rotational states is equiv­

alent to assuming that the rotational magnetic field per unit rota­

tional angular momentum is almost identical at the oxygen nucleus for 

rotations about the b and c inertial axes (Figure 3). This assumption 

may or may not be an accurate one. We therefore believe that a 

comparison between the theoretical and experimental values of 17(0) 

is not particularly meaningful at the present stage. 
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Table XI. The 220 - 221 microwave hyperfine transition frequencies 
of H0017 calculated with various values of 71(0) and a, 
the effectiy_e S_Ein !:otational constant of Stevenson and 
Townes. F = I + J and 1 and 2 indicate initial and final 
hyperfine levels. Relative intensities are also given. 

Relative Frequencies in Mc/sec relative to the unsplit line 

F2 -Fi intensities 
normalized 17(0) = 0. 7 17(0) = 1. 5 77(0) = 1. 5 

to 100 a = -15 kc/sec a= -15kc/sec a = -3.8 kc/sec 

~-1 
2 2 6.17 -1. 664 -1. 703 -1. 652 

3 5 
8.00 -1. 152 -1. 191 -1. 219 2-2 

1 3 
5.19 -1. 101 -1.211 -1. 228 2-2 

5 7 
8.57 -0.326 -0.287 -0.326 2-2 

1 1 
1. 48 -0.079 -0.189 -0.189 2-2 

3 3 

} 2-2 
27. 35 -0.028 -0.067 -0.967 

9 9 
2-2 
5 5 

3.43 0.028 0.067 0.067 2-2 
7 7 

11. 9 0.048 0.115 0.115 2-2 
7 5 

8.57 0.402 0.469 0.508 2-2 
3 1 

5.19 0.995 0.955 0. 972 2-2 
5 3 8.00 1. 152 1. 191 1. 219 2-2 
7 9 

6.17 1. 683 1. 750 1. 699 2-2 
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Figure 4. Hyperfine structure of the 220 - 22 1 microwave 

transition of H00
17 

calculated with various 

values of 77(0) and a, the effective spin 

rotational constant of Stevenson and Townes. 

All three spectra are plotted on the same 

relative scale, the unsplit line position (found 

experimentally at 10374. 56 Mc/ sec in Ref. 29) 

being taken as zero. 
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4. 4. 2. 2. Deuteron field gradient 

The previous calculation of deuteron quadrupole coupling 

constants by Bersohn 84 used Ellison and Shull's wavefunction, which 

as mentioned earlier was obtained using inaccura te integrals. In 

contrast to the earlier effort of Bersohn, our present calculated 

deuteron quadrupole coupling constants are in good agreement with the 

experimental values. We recall that in our earlier work on formal­

dehyde, 66 the calculated values for these interaction constants differ 

from the experimental values by a factor of 1. 7. 

4. 4. 2. 3 Hellmann-Feynman forces 

The sum of the net forces on all nuclei for any molecular 

geometry should be zero for an approximate wavefunction in the 

Hartree-Fock limit, as has been shown by Kern and Kar plus. 85 For 

an exact wavefunction, the net force on each nucleus in a molecule at 

the equilibrium geometry should be zero. The forces at the deuteron 

in water calculated with wavefunctions III and IV are very close to the 

true values but those at the oxygen nucleus are about as close as can 

be expected. 86 

4. 4. 2. 4 Diamagnetic shieldin~ 

An experimental value for the diamagnetic shielding at the 

oxygen nucleus in water is not available for comparison with our 

calculated value. However, if the electrostatic potential at the oxygen 

nucleus can be assumed to be independent of chemical bonding, then 

the diamagnetic shielding at the oxygen nucleus in water can be 

estimated from the Lamb term in atomic oxygen using the following 



. 87 express10n: 

57 

ad for the oxygen atom has been calculated by Dickinson. 88 Using 

this value and the equilibrium geometry of the water molecule, a 

value of 414. 6 ppm can be obtained, in excellent agreement with our 

calculated value. Finally, we note that both ad(O) and ad(H) are not 

particularly sensitive to the wavefunction. 

4. 4. 2. 5 Dipole, quadrupole, and octopole moments 

All four of our wa vefunctions as well as Neumann and 

Moskowitz 's yielded dipole moments which are all slightly larger in 

magnitude than the experimental value. A limited configuration 

interaction with our minimal-basis-set wavefunction I, 89 however, 

was found to decrease the calculated dipole moment from 1. 921 

Debyes to 1. 887 Debyes, bringing it closer to the experimental value. 

These results are in accord with Mulliken' s views. 43 Presumably, 

configuration interaction would also improve the agreement between 

theory and experiment in the case of the other wavefunctions. We 

note that the dipole moments calculated for the first- and second-row 

diatomic hydrides using Hartree-Fock-limit wavefunctions have also 

been found to be slightly larger in magnitude than the experimental 

values. 90 

A recent review on molecular multipole moments lists previous 

theoretical values for the quadrupole and octopole moments of water. 91 
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These values do not agree with our results, no doubt in part due to 

errors in the wavefunctions employed in these earlier works. On the 

other hand, our results for all components of the tensors agree quite 

closely with those of Neumann and Moskowitz both in sign and in 

magnitude. The same can be said of all the other one-electron 

properties calculated. This is remarkable in view of the large 

amount of computations involved and the somewhat artificial nature 

of gaussian basis functions. 



5. Electronic structure 

5. 1 Contour maps 
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The electronic charge distribution in the water molecule 

predicted with our most elaborate wavefunction, wavefunction IX, has 

been plotted out pictorially in the form of contour maps. Figure 5 

shows the map in the molecular plane and Figure 6 depicts that in the 

perpendicular plane bisecting the bond angle. The maps were 

generated by a computer program originally written in Fortran II by 

W. E. Palke and subsequently modified and adapted to the Fortran IV 

language by T. H. Dunning. The actual output generated by the 

program is a mesh of grid points at each of which a symbol repre­

senting the approximate electron density at that point is printed out. 

Contour lines of constant electronic density are then drawn manually 

by connecting lines through identical symbols. The maps therefore 

do not give accurate quantitative information about the charge distri­

bution. They provide, however, a direct qualitative visualization of 

the charge distribution. 

5. 2. Nature of the chemical bond 

As indicated by Stevenson and Townes, the asymmetry parame­

ter of the field gradient at the oxygen nucleus in the water molecule 

can be related directly to the amount of s hybridization of the oxygen 

valence bonding orbitals by means of the Townes-Dailey theory. 

Since neither this relation nor the detailed steps leading to its 

derivation were given by Stevenson and Townes, we shall present the 
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0.04 

:,.;:' igure 5. Contour map of foe electron density (in a. u.) 

in the plane of t he water molecule. 

Only a half-plane is shown. 
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0.29 

0.58 

1.2 -
9.3 

Figure 6. Contour map of the electron density (in a. u.) in the mirror plane bisecting ... 
the HOH angle. In this view, the two hydrogen nuclei coincide. 

~ 
1--4 
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derivation here and subsequently deduce the percentage s hybridi­

zation of the oxygen bonding orbital in water corresponding to our 

calculated value of the field gradient asymmetry parameter at the 

oxygen nucleus . 

Cons ider first a n atom with a closed outer shell containing two 

2s electrons and six 2p electrons. If qPx' qPy' and qPz are the 

contributions to the electric field gradient at the nucleus along any 

direction by each electron in the 2p , 2p , and 2p orbitals, 
x y z 

respectively, then the net field gradient in this direction is 

on account of the closed-shell charge distribution. For the field 

gradient along the z direction, we have 

1 and therefore q = q = - -
2 

q . 
Px Py Pz 

Thus for a non- closed shell atom or for a bonded atom, the net 

field gradient in the direction z is given by 
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where Nx, Ny, and N z are the effective number of electrons in the 

2px, 2py, and 2pz orbitals respectively, and Chio is the zz component 

of the field gradient tensor in the hydrogen atom with quantum 

numbers n == 2, i = 1, and m = 0. The quantity 

is called the number of unbalanced p electrons along the z direction 

according to Townes and Dailey. 40 Thus 

qzz = - Upz q_zlO 

with similar expressions for qxx and qyy· 

The oxygen valence orbitals in the water molecule are as 

follows: 

t/J1 = Ja 12 s ) + ( ~ - o:) J/2 12 p z ) + Jfl 2 Px ) 

t/J2 = Jal2s) + (~ - a)
112 

l2pz) - Jfl2Px> 

t/J3 = Jt - a I 2s) J;;°i2pz) + Jr12py) 

t/J1 = Jt - a I 2s) - Jal 2pz) - !fl 2py) 

where the axes point in the directions shown in Figure 6. 
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The first two orbitals are bonding while the last two are non­

bonding. The quantity a is the amount of s hybridization of the bonding 

orbitals. 

The following are the important valence bond structures for the 

water molecule: 

+ 
H H 

-/ 
0 

I(i) 

+ 
H H "' -0 

II(i) 

H /H 
"'-o 
III(l-2i) 

The fractional importance of each structure is given in parentheses 

wherein i is called the ionic character of the bonds. 

In calculating the field gradient at the oxygen nucleus, the 

contribution of each structure to Nx, Ny, and N z is found to be as 

follows: 

I II III 

N z (~+a) _l_ 
l+e: 

( 3 ) i 2+a l+e: (1 + 2a) (1 - 2i) 

Nx 
3 i 3 i (1 - 2i) 2 . 

l +e: 2 l+e: 

Ny 2 i 2 i 2 (1 - 2i) • l+e: l +e: 

The factor of -
1

1 is that by which the field gradient of the 
+e: 

oxygen atom is decreased due to negative ionization. 
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After a coordinate transformation, we thus find that the Townes­

Dailey theory gives the following expressions for the field gra dient 

components a t the oxyge n nucleus in the water molecule: 

qaa = (O. 5 + 0. 6008 a)( l~E + 1 - 2i} (-Chio) 

qbb = (0. 5 - 1. 6007 a)( l~E + 1 - 2i) (-Chio) 

qcc = (a - 1) (l!E + 1 - 2i) (-Chio) 

where a, b, and c are the principal inertial axes of HDi70 as shown 

in Figure 3. The field gradient asymmetry parameter 

77(0) = 

= 
1. 5 - 2. 6007 a 
0. 5 + 0. 6008 Q' 

is thus a function of a only, all terms in i and E cancelling away. 

On solving the simple algebraic equation, we find that a = 0. 38 for 

77(0) = 0. 7 (the experimental value of Stevenson and Townes) and that 

a= 0. 21 for 71(0) = 1. 5 (the value obtained in this thesis by ab initio 

calculation; see section 4. 4. 2.1). 

Thus, the amount of s hybridization of the oxygen bonding orbital 

in the water molecule corresponding to our calculated value of the 

field gradient asymmetry parameter at the oxygen nucleus is 21 %. 

This value lies between the values of 0% for pure p-bonds 92 and 25% 

for sp3 tetrahedral bonds, 93 but is closer to the latter. The 38% 
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s hybridization indicated by the experimental value of 11(0) is less 

reasonable. 

We note in passing that, through the percentage ionic character 

and hybridization of chemical bonds that it predicts in terms of the 

molecular electric field gradient, the Townes-Dailey theory provides 

a link between valence bond theory and any other theory of electronic 

wavefunctions with which one-electron properties can be calculated. 
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6. Conclusion 

This i:hed s ::es ear ch s hows. that molecular Hartree-Fock theory 

can predict quite accurate one-electron properties provided the basis 

set is sufficiently large and judiciously chosen. The results which 

have been obtained are indeed encouraging and suggest several paths 

of further inquiry. 

As pointed out at length in section 4. 4. 2. 1, a discrepancy exists 

between present calculated and experimental values of the asymmetry 

parameter of the field gradient at the oxygen nucleus in the water 

molecule. At stake is not merely a resolution of this discrepancy but 

also an understanding of the nature of the chemical bond in the ground 

electronic state of the water molecule. As discussed in section 5. 2, 

the present experimental value of the asymmetry parameter of the 

field gradient at the oxygen nucleus corresponds to an unusually high 

percentage of s hybridization in the oxygen bonding orbital according 

to the Townes-Dailey theory. The findings in this thesis indicate 

otherwise and suggest that it would be interesting to observe the 

220 - 221 rotational transition of HD17 0 at a resolution of about 

20 kc/ sec and subsequently analyse the high resolution microwave 

spectrum taking into account the dependence of the 170 effective spin­

rotation interaction constant upon rotational state. 

There is a considerable amount of experimental data on the 

energy levels of excited electronic states of the water molecule.38, 39 

Only a few of these Rydberg states have been characterized, however . 
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Recently, an electron impact excitation spectrum of the water mole-
94 cule was reported by Compton et al. A broad peak below the first 

excited singlet state of the water molecule was found, confirming 

somewhat less certain results reported earlier by Schulz.95 The 

possibility that the observed peak could be due to the first triplet state 

of the water molecule has been raised. The possible existence of a 

stable triplet state below the first excited singlet state in the water 

molecule is of importance in understanding the radiation chemistry of 

water. 96 A theoretical calculation of the excited states of the water 

molecule would therefore clearly be of interest. As a first approxi­

mation, the excitation of the Rydberg electron may be assumed as not 

affecting the remaining electrons which may thus be described by 

Hartree-Fock molecular orbitals taken from the unperturbed mole­

cular electronic wavefunction. The problem then reduces to the 

solution of the variational equation for the Rydberg orbital. Such a 

solution has recently been attempted by Lin and Duncan as mentioned in 

section 1. 1. However, it is important to avoid the additional approxi­

mations made in their ca lculations. Thereby the assignment and 

nature of the Rydberg states of water may be clarified. 97 

The electronic wavefunctions reported in this thesis for the 

ground electronic state of the water molecule would also be suitable 

for perturbational calculations of molecular properties that depend on 

excited electronic states, in particular the nuclear spin-spin isotropic 

coupling constants, the paramagnetic susceptibility, and the electric 

polarizability. 
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Calculation of t he Fer mi-conta ct part of t he nuclear s pin-spin 

isotropic coupling constants in the water molecule can be readily 

attempted via the method of Pople and Santry 98 using the molecular 

orbitals calculated in this research. The H-D coupling in water was 

previously calculated by Pople and Santry using Ellison and Shull 's 

inaccurate wavefunction,and a calculated value agreeing poorly with 

experiment was found. The paramagnetic susceptibility as well as the 

electric polarizability of the water molecule can be calculated 

according to the perturbed Hartree-Fock theory of Stevens, Pitzer, 

and Lipscomb. 99 Thereby our present understanding of these molec­

ular properties may be evaluated. 

In addition to the possibly fruitful investigations of the isolated 

water molecule mentioned above, we shall also point out several 

worthwhile paths of inquiry in connection with the intermolecular 

interactions of water. 

First, the calculation of the third virial coefficient of steam 

should be attempted taking dipole-quadrupole interaction into account. 

The theoretical values of the molecular quadrupole moment components 

of water would have to be used, in view of the lack of a suitable 

method of direct measurement of the quadrupole moments of dipolar 

molecules. The dipole-quadrupole interaction may possibly resolve 

the existing discrepancy between calculated and experimental values 

for the third virial coefficient, as discussed in section 4. 1.100 

In contrast, it has recently been concluded that the pressure broaden-

ing of the l. 64 mm rotational transition line of water vapour is 
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satisfactorily explained by dipole-dipole interaction alone. lOl It would 

be worthwhile to verify by actual calculation that the dipole- quadrupole 

contribution to the rota tional linewidth is indeed negligible a ccording 

to present theories of rotational linewidths. Thus a comparison may 

be made of the apparently differing dependence of the third virial 

coefficient and the rotational linewidth of water vapour on the inter­

molecular potential function. 

Finally, the nature of the hydrogen bond in water merits investi­

gation since hydrogen bonding is responsible for the unusual bulk 

properties of ice and liquid water. 

The energies of hydrogen bonds lie intermediate between 

chemical bond energies and van der Waals interaction energies. 102 

It thus appears that hydrogen bonds are not purely electrostatic in 

nature. This is supported by Morokuma and Pedersen's very recent 

theoretical study 103 of the water dimer via approximate Hartree-Fock 

wavefunctions for the entire 20-electron system. These investigators 

employed a medium-sized set of gaussian basis functions. Mulliken 

population analyses of the wavefunctions for several intermolecular 

configurations were interpreted to give the conclusion that hydrogen 

bond formation involves a delocalized transfer of electronic charge 

from proton acceptor to proton donor molecules. However, 

Morokuma and Pedersen found that the hydrogen bond strength, calcu­

lated as the difference between self-consistent-field energies of 

isolated and hydrogen-bonded molecules, was more than twice as 

large as experimental values. This appears somewhat surprising in 
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view of the fact that the same basis set was used in describing each 

water molecule in bonded and non-bonded form. 

It is suggested that some alternative approach to the study of 

dimeric water should be sought. This is motivated by the prohibitive 

amount of computer time necessary for a complete SCF calculation of 

the dimeric system and by the encouraging findings of this thesis on 

the isolated molecule. As a preliminary step, the energy of one water 

molecule in the multipole field of another should be calculated. This 

energy consists of essentially two parts: the electrostatic energy 

arising from the static electronic charge distribution in the first 

molecule and that arising from its polarizability via the induction 

effect. The calculation can be done using the calculated polarizability 

tensor of the water molecule. 7 The outcome of such a calculation 

would be information on the fraction of the total stabilization energy 

of the hydrogen bond which can be accounted for by multipole inter-

action alone. 

The complete intermolecular potential function for dimeric 

water includes, in addition to the above contributions from electro­

static and induction forces, three further contributions. These arise 

from the long-ranged dispersion forces, the intermediate-range 

second-order exchange forces, and the short-ranged valence forces. 

These forces have been calculated for simple atomic and molecular 

systems 104 but calculations of comparable accuracy have not been 
105 made on molecules as large as the water molecule. Clearly, 

development of a tractable approximate theory of intermolecular 
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forces would be a logical second step to pursue in elucidating the 

nature of the hydrogen bond. The theory can be directly tested through 

calculation of the van der Waals constant CH20-~0 for water vapour 

since a recent molecular beam scattering experiment 106 has yielded 

an experimental value for this constant. 

Note added in proof (November 15, 1968): The 220 --+ 221 rotational 

transition of HD170 has been observed under high resolution by 

Verhoeven, Dymanus, and Bluyssen (to be published) . For the value 

of TJ(O) as defined in this thesis, their best fit results give 71(0) = 

1. 583 in good agreement with the ab initio calculations reported herein 

and elsewhere [Aung, Pitzer, and Chan, J. Chem. Phys. 49, 2071 

(1968)] . Thus an existing discrepancy between theory and experiment 

has been resolved. 
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Appendix. Implication of Stevenson and Townes' Approximation 

concerning the 170 Effective Spin Rotational Constant in 

HD170 

The spin-rotational interaction Hamiltonian is 

-JCSR = - I . £ . J 

where £ is the spin rotational interaction tensor. This Hamiltonian 

has been discussed by Chan and Dubin 107 and we shall follow their 

discussion in some detail. 

-If F = I+ J and rotational states of an asymmetric rotor are 

labelled by JT, 60 then the first order spin-rotational interaction energy 

is 

- 6 
~ (FIJT I Jg I FIJT') (FIJ IJ. 11 FIJ) 

= c ' 
g, g' gg T' J(J+ l)li2 

x (FIJT' I Jg' I FIJT) 

-6 ( FIJ T I J J ' I FIJ T ) - -
= Cgg' g g 2 (FIJ!J·I!FIJ) 

g,g' J(J + l)li 

= - ~ c 
(JTIJ ~!Jr> 

(FIJ 11. YI FIJ ) (A-1) 
g gg J (J +l)ti2 
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The third equality holds by virtue of an identity prove d in 

Condon and Shortley.108 (The identity is far more easily proved 

using the Wigner-Eckart Theorem, 109 however.) 

The last equality follows from elementary group theoretical 

arguments. The asymmetric rotor belongs to the ~ or V group. 62 

The product of an asymmetric rotor wavefunction and its complex 

conjugate belongs to the totally symmetric representation of the above 

group. The operator J gJ g', however, transforms as a different 

irreducible representation unless g = g'. Thus the matrix element 

(JTIJgJg,IJT) vanishes for g ~ g'. 

From equation (A-1), we can write 

;reSR = al. J 

where the effective spin rotational constant is given by 107 

a = - 6c 
g gg 

(JT\J ~ IJr) 

J(J +l)n
2 

It is therefore a function of the rotational state and will henceforth 

be so indicated, using the more modern notation J K K in place of 
-1 l 

JT for rotational state. 60 

We wish to investigate the implications of the assumption 

a(220) = a(221 ) for spin-rotation interaction in H0017
• 

The matrix element (JK K \Jg
2

IJK K) may be evaluated by 
-1 1 -1 1 

expanding the asymmetric rotor wavefunction in terms of prolate 
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symmetric top wavefunctions t/IJ Kin which representation the matrix 
' 

elements of J ~ are easily evaluated: 

The summation is over all integral n values such that I K_ 1 + 2n I :s;; J. 60 

The determination of the expansion coefficients aJ K 2 and the 
' -1+. n 

subsequent evaluation of ( J K K I J g2 I J K K ) are effected in practice 
-1 1 -1 l 

by first setting up the rotational Hamiltonian matrix of HD170 and the 

J ~ matrix in the prolate symmetric top representation. For J = 2 and 

K_ 1 = 2, these matrices are of dimension 3 x 3. The transformation 

which diagonalizes the Hamiltonian matrix is then determined and 

applied to the J ~matrix to give the matrix of J ~in the representation 

of asymmetric top wavefunctions. The following results are found 

(in units of n2
): 

Therefore, the approximation 

implies that 
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1 
(3. 9785 caa + 1. 2642 ebb + o. 7573 ccc) 6 

From the physical meaning of the spin rotational interaction tensor, 

this in turn implies that the rotational magnetic field at the nucleus 

in question per unit rotational angular momentum is very nearly the 

same for rotations about the band c inertial axes of HD170 (Figure 3). 
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PART II 

PERTURBATION-VARIATIONAL CALCULATION OF THE 

NUCLEAR SPIN-SPIN ISOTROPIC COUPLING CONSTANT IN HD 
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1. Introduction 

1. 1 Discovery of nuclear spin-spin isotropic coupling 

The existence of fine structure in the nuclear magnetic 

resonance spectra of liquids was first reported by Proctor and Yu.1 

Subsequent investigators found the separations between multiplet 

components to be independent of temperature 2 and the strength of the 

external magnetic field.2' 3 From a consideration of these experi­

mental findings, Gutowsky, McCall, and Slichter, 2 as well as Hahn 

and Mah.'Well 3 successfully deduced that the interaction responsible for 

the splittings is a coupling between neighbouring nuclei N and N' of 

the form 

(1-1) 

where JNN' is a coupling constant that is independent of the magnitude 

and direction of the applied magnetic field but is a function of the 

molecular electronic structure. 

1. 2 The origin of the coupling 

An important mechanism for spin-spin isotropic coupling was 

first proposed by Ramsey and Purcell. 4 Using the HD molecule as an 

example, they suggested that the H and D nuclei can be coupled 

together via the electrons in the following qualitative manner: Each 

nuclear spin exerts an orienting influence on the electron spin of its 

atom via Fermi-contact interaction; the orienting influence is such 

as to align the electron spin anti-parallel to the spin of its nucleus. 
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The two electron spins, however, have a tendency to be aligned 

anti-parallel to each other. Thus there results a coupling between the 

two nuclei through the electrons, the effect of the coupling being a 

preferential alignment of the two nuclear spin directions relative to 

each other . 

The general quantitative theory behind nuclear spin-spin coupling 

has subsequently been given by Ramsey 5 in terms of perturbation 

theory. From a consideration of the Hamiltonian for the interaction 

between the charges and magnetic moments of electrons with nuclear 

magnetic moments, Ramsey showed that the perturbational Hamiltonian 

giving rise to the spin-spin coupling consists of four terms: 

= JC (1) + JC (2) + JC + JC 
l 1 2 3 (1-2) 

where 

JC i (1) = 6 2 1 . ~ . ~ . n Y ( IN x r kN) . vk 
k N 2m c i N 3 

' rkN 

( ) ~ 1 ez IN x rkN IN' X rkN, 
JC1

2
= u -·-·y n·y ,fi 

k,N,N'~N 2m c2 N N 
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m, e, g8 are the mass, charge and g-factor (~ 2) of the electron, yN 

is the gyromagnetic ratio of nucleus N and IN its nuclear 

-spin angular momentum in units of n. rkN is the position vector of 

the kth electron referred to nucleus N as origin. Sk is the electron 

spin angular momentum of electron k in units of n and {3 is the Bohr 

magneton. o(rkN) is the Dirac delta function defined such that its 

integral over all space containing nucleus N is unity: 

All remaining symbols have conventional meanings. JC3 is the 

Hamiltonian for Fermi-contact interaction 5, B, 7 between electronic 

and nuclear magnetic moments. 

The nuclear-spin Hamiltonian for the electron-coupled inter­

action between nuclei N and N' is obtained by collecting terms linear 

in each of the nuclear spins IN and IN' from the expectation value of 

JC' over electronic wavefunctions perturbed to first order in :re'. 

The isotropic coupling constant was thus found by Ramsey to consist 

of four contributions: 

where 

(1) 
JlNN' 

J J (1) 
NN ' = lNN' 

(2) 
+ J lNN' + J2NN' + J 3NN' (1-3) 
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-o = 1 lel.~ 
mkN - 2m · c i 

. < n I o(i=".N')s.10) 
] J 

For the HD molecule, Ramsey estimated that 

(1) (2) 
JlHD + JlHD < l cps 

J2HD ~ 3 cps 

and ~ 40 cps 

Since the experimental value is .T HD = 43. 0 ± 0. 5 cps, 8 the dominant 

contribution to the couplinr; therefore appears lo arise from Fermi­

contact interaction. Subsequent independent calculations 9, lO have 
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lent support to this conclus ion . 

1. 3 Theoretica l calculations of the coupling constant 

There have been essentially three different ab initio approaches 

to the calculation of nuclear spin-spin isotropic coupling constants, 

namely the molecular orbital approach of McConnell, 11 the variational 

approach of Stephen, 9 and the valence bond approach made known by 

Karplus and Anderson.12 Recently, a refinement of McConnell's 

molecular orbital approach has been developed by Pople and Santry.13 

Both the McConnell and the Karplus-Anderson approaches are 

based on the perturbational formulas of Ramsey. Each infinite sum 

of integrals over excited state wavefunctions in Ramsey's formulas was 

replaced by a single term through the introduction of an "average" 

excitation energy AE: 

( 0 IJei In> ( n jJej I 0 > ~ 
WO - WO 

n o 
(1-4) 

A~ [<ojJci;rejjo> - <6l:ie1-io> <ol;rejjo> J 

McLachlan 
14 

has pointed out that it is dangerous to regard AE 

as an average excitation energy unless 

has the same sign for every excited state n. This means that the 

nature of the excited states must be carefully examined in each 
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application of the McConnell and the Karplus-Anderson approaches. 

The approaches thus lack genera l validity and a t b est r equir e an 

uncerta in es timate for the value of ~E. 

In the Pople-Santry refinement of McConnell's procedure, the 

average excitation energy approximation is avoided. Direct use is 

made of Ramsey's expressions for the various contributions to the 

coupling constant. The excited electronic states are assumed to 

arise from excitations of single electrons from an occupied molecular 

orbital </\ into a virtual orbital <f>j' the excitation energy being taken 

as the difference in orbital energies, Ej - Ei. 

Virtual orbitals are extraneous solutions to the Hartree-Fock 

equations. These extraneous solutions are obtained along with the 

ground-state molecular orbitals whenever the matrix Hartree-Fock 

equations of Roothaan 15 are solved and the number of basis functions 

used in the LCAO expansion exceeds the number of ground-state molec­

ular orbitals. Since these extraneous molecular orbitals are eigen­

functions of the H-F operator defined in terms of ground-state molec­

ular orbitals, they do not represent excited electronic states. For 

this reason, it appears that a justification of Pople and Santry's 

approximation of excited electronic states in terms of virtual orbitals 

will have to be based on an extensive comparison of the calculated 

nuclear spin-spin coupling constants with experimental measurements. 

An approach to the calculation of nuclear spin-spin coupling con­

stants which avoids the average excitation energy approximation and by­

passes the need for knowledge of excited electronic state wavefunctions 
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is the variational approach developed by Stephen. 9 In this approach, 

Ramsey's perturbational formulas for the coupling constant are 

abandoned. The molecular electronic wavefunction is taken to be of 

the form 

l/I = l/1
0 

( 1 + L; I f(N) + L..; I , f(N')) 
a Na a a Na a (1-5) 

where l/;0 is the unperturbed wavefunction, N and N' denote the two 

coupled nuclei, a denotes a cartesian component of a vector, and 

f (N), f (N ') are unknown functions or linear combinations of known 
a a 

functions with unknown coefficients to be determined. The expectation 

value of the perturbational Hamiltonian JC', equation (1-2), is then 

taken and the energy term of the form 

is extracted, J a.(3 being thus a function of flN) and flN') By applying 

the variational principle to ENN, , equations determining f lN) and 

flN') result. The solution of these equations then enables a determi­

nation of the nuclear spin-spin coupling constant J = -
3
1 .6 J to be 

a a.a 
made. 

In Stephen's calculation and a similar calculation by O'Reilly, 16 

a delta function was included in the trial functions f (N) in equation 
a 

(1-5). The ambiguous results arising from the use of trial functions 

with delta-function singularities have been pointed out by Schaefer and 

Yaris. 17 
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Ishiguro, lO and also Das and Bersolm, 18 did not restrict the 

electronic wavefunction to be of t he for m (1- 5) but ins tead e mployed 

a more general expansion for the wavefunction. They observed that 

the calculated coupling constant oscillated with the number of terms 

in the expansion although it never appeared to be far from the correct 

value. 

Schaefer and Yaris 17 have critically discussed all the foregoing 

perturbation-variational calculations and performed an exploratory 

perturbation-variational calculation of the coupling constant in HD by 

including electron correlation in the electronic wavefunction. They 

found that the inclusion of electron correlation could improve the 

calculated coupling constant significantly. However, this conclusion 

appears to be only a tentative one since their best calculated value, 

obtained by including two electron-correlation terms in the wave­

function, is still very far from the experimental value. 

1. 4 Object of this thesis research 

The calculation of nuclear spin-spin coupling constants is of 

importance because a comparison between calculated and experimental 

values for the constants provides an evaluation of our understanding 

and treatment of perturbed molecules. In cases where the coupling 

constants are previously unknown, approximate theoretical values can 

greatly facilitate the analyses of nuclear magnetic resonance spectra 

and can lead to the correlation of magnetic shielding and spin-spin 

coupling constants with electronic and molecular structures. 19 
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In the preceding section, various theoretical approaches to the 

calculation of nuclear spin-spin coupling constants were summarized. 

The difficulties encountered in these approaches were discussed. 

Although encouraging results have been obtained in certain cases, 

there is evidently room for much improvement in theoretical develop-

ment. 

Recently a general perturbation-variational approach for calcu­

lating the Fermi-contact contribution to the nuclear spin-spin coupling 

constant in molecules has been developed by Professor R. M. 

Pitzer . 20 The approach avoids the average excitation energy approxi­

mation necessitated in the McConnell and the Ka.rplus-Anderson 

approaches. The basis of the approach is molecular orbital theory; 

the Pople-Santry approximation of excited electronic states in terms 

of virtual orbitals is circumvented, however. The perturbational 

correction to the electronic wavefunction due to Fermi-contact inter-

action is described by using the proper functions, as has not been the 

case in the variational approach of Stephen and others. The form of 

the new kinds of basis functions is obtained from the exact first-order 

wavefunction of the hydrogen atom perturbed by Fermi-contact 

interaction. Although the approach requires the evaluation of a new 

kind of molecular integrals, these integrals have the same general 

forms for all molecular systems, so that initial efforts spent in 

developing the necessary computer programs will largely be non­

recurrent and the calculation of coupling constants in molecule s could 

become systematized. The approach thus attempts to achieve a level 
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of general applicability higher than possible in any of the existing 

approaches. 

At its present stage of development, the theory behind the 

Pitzer approach lacks mathematical rigor owing to the assumption 

that electrons and nuclei are point particles. However, the intuitive 

arguments given where mathematical rigor cannot be given appear to 

be sound. A further point about the approach is that it does not take 

electron correlation into account. However, in the case of other 

electric and magnetic interactions due to one-electron perturbing 

Hamiltonians, Lipscomb and collaborators 21 have recently shown 

that electron correlation probably plays only a minor role insofar as 

these interactions could be calculated in good agreement with experi-

ment without the inclusion of correlation corrections. The Pitzer 

approach assumes that such is also the case with the nuclear spin-spin 

coupling interaction, although this interaction involves a one-electron 

perturbing Hamiltonian which depends on electron spin. In any case, 

any question about the importance of electron correlation cannot be 

settled until calculated results obtained without using correlated wave­

functions are compared first with experimental measurements and 

then, if possible, with results calculated using correlated wavefunctions. 

From the considerations given in the preceding paragraphs, it 

is clearly of interest to submit the perturbation-variational theory of 

R. M. Pitzer to a test. In this thesis research, therefore, the theory 

is applied to the calculation of the nuclear spin-spin coupling constant 

in the HD molecule. This molecule has been chosen for three reasons. 
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First, the sign as well as the magnitude of the coupling constant in the 

HD molecule has been determined experimentally 8 and a comparison 

of the calculated value with experiment is therefore possible. 

Secondly, the new kind of molecular integrals encountered make the 

HD molecule the simplest molecule to which the approach can be 

applied. Lastly, molecular orbital wavefunctions for its unperturbed 

electronic ground state are either already available in the literature 22 

or can be computed to various degrees of accuracy. The immediate 

purpose of this thesis r esearch, however, is to investigate the 

practicality of the new approach and we shall therefore employ only a 

minimal basis set description of the unperturbed molecule. 
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2. The perturbation-variational approach of R. M. Pitzer 

In the next four sections, we give a brief discussion of R. M. 

Pitzer 's perturbation-variational theory of nuclear spin-spin 

coupling constants. The material presented in section 2. 2 and the 

first half of section 2. 3 closely follows the contents of a set of 

Professor Pitzer's personal notes by permission. Full details of the 

theory will be found in a forthcoming publication.20 

2. 1 Basic idea 

The Pitzer approach to the calculation of nuclear spin-spin 

coupling constants assumes that the only important contribution to the 

coupling arises from Fermi-contact interaction. Since the coupling 

we are interested in is an isotropic one, only a single term in the 

vector dot product of the Fermi-contact Hamiltonian need be taken and 

the perturbational Hamiltonian therefore takes the form 

(2-1) 

where A denotes one of the two coupled nuclei and the subscript z 

denotes cartesian components of the spin vectors along an arbitrary 

direction of spin quantization. The remaining rotation follows that of 

section 1. 2. 

The Pitzer approach employs the molecular orbital description 

of molecules. The aim is to calculate the small amount by which the 

electron spin distribution in the unperturbed molecule is distorted by 

Fermi-contact interaction at one of the two coupled nuclei. The 
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distortion takes the form of a first-order perturbational correction for 

each molecular spinorbital. The form of the basis functions neces­

sary to describe the first-order perturbational correction to each 

molecular orbital may be investigated by solving for the first-order 

correction to the wavefunction of the hydrogen atom due to the Fermi-

contact interaction. To obtain the form of the first-order wavefunction, 

the perturbational Hamiltonian may be taken as 

h1 = o(r) 
2 

r 
(2-2) 

where the one-dimensional Dirac delta function is defined such that 

a 
f o(r) dr = 1 , a > o 

0 

The first order perturbational equation in atomic units for the 

ground-state hydrogen atom is thus 

where l.f,to w -Zr e 

Eo = - !_ z2 
2 

E1 = ( lfto j h1 j i.J,to) = 4 z3 

a nd z = nuclear charge 

(2-3) 
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The solution, first given by Schwartz 23 and derived in Appendix A, is 

i %3 
( 1 2 Zr 1JI = 2 - - - + 2 Z f n r + 2 Z r + C) e -

1T r 
(2-4) 

where fn denotes the natural logarithm and C is a constant. The 

solution indicates that in addition to the usual Slater-type orbitals, 

two new types of basis functions are needed to describe the perturba­

tional correction to the wavefunction. The new functions have the 
-r 

forms er and e-r .Qn r. That orbitals of these types are necessary 

is also indicated by the cusp equations derived in section 2. 4. 

The form of the basis functions for the first-order molecular 

orbitals being thus specified, the Pitzer theory proceeds to derive 

equations for the first-order molecular orbital coefficients by means 

of the variational principle. 

The energy of interaction between two nuclear magnetic 

moments in a molecule can be written in the form 18 

(2-5) 

where y A and yB are the gyromagnetic ratios of the two nuclei A and 

B. In the Pitzer approach, the variational principle is applied to 

either one of the two self-coupling terms, say J AA y A, under the 

appropriate constraints and assuming that the only important contri­

bution to the coupling energy arises from Fermi- contact interaction. 

One factor of y A comes from the perturbational Hamiltonian (2-1) ; 

the other factor comes from the first-order correction to the 
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molecular spinorbitals due to this perturbation. The equations 

resulting from the application of the variational principle are solved 

for the first-order molecular orbital coefficients. The effect of this 

distortion in the wavefunction on the energy of Fermi-contact inter­

action at the other coupled nucleus B is then calculated and gives the 

desired internuclear spin-spin coupling. The final step in the calcu­

lation of the nuclear spin-spin coupling constant between nuclei A and 

B in a closed shell system of 2n electrons thus consists of extracting 

terms linear in each of the gyromagnetic ratios y A and yB from the 

expectation value 

2n 

L: < l/l::i + l/I~ I JC~ I l/I~ + l/I ~ > 
m=l 

where l/J ~ is an unperturbed molecular spinorbital and lj; .:nA the 

perturbational correction to lj;~ due to JCl defined in (2-1). The 

result is 

2n r 1 

JAB 1Az 1Bz = m~l l (l/J~IJC~ll/I~) + (l/J~IJC~ll/I~) j (2-6) 

It is to be noted that in Stephen's variational approach, the 

internuclear coupling term JAB y A yB in (2-5) is made stationary. 

It has been pointed out in general by Das and Bersohn 18 that if the 

exact unperturbed wavefunction is used, then equivalent results for 

the coupling constant JAB would be obtained by making any one of the 

three terms in (2-5) stationary and that if an approximate unperturbed 
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wavefunction is used, then there is no criterion for a preference. 

2. 2 The equations for the first-order molecular orbital coefficients 

Consider a closed-shell sys tem with 2n electr ons . l/I and </> 

each with an appropriate index denote a molecular spinorbital (MSO) 

and a molecular orbital (MO) respectively. Pitzer used the following 

rotation for indices: 

a, b going from 1 to 2n over MSO 's 

(1 · · · n for up spins, n+l · · · 2n for down spins) 

i, j, k going from 1 ton over MO's 

p,q going from 1 to m 0 over basis functions 

a, {3, Y going from 1 to m 1 over basis functions 

The values a, {3, y = m 0 + 1, m0 +2 · · · · · m 1 ref er to basis functions 

used exclusively in the expansion of the first-order molecular orbitals. 

The nuclear spin factors are regarded as constants and, together 

with the numerical constants in the Fermi-contact Hamiltonian, may 

be suppressed until the very last stage of the calculation indicated by 

equation (2-6). Hence the one-electron perturbational Hamiltonian 

corresponding to (2-1) becomes 

H1 = 2 o(~) . sz (2-7) 
r 

dropping the nuclear label from H1 for convenience. The correspond­

ing spin-free operator is 
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o(r) 
2 

r 

The following expansions from Hartree-Fock perturbation 

theory 24 are made: 

t/la = t/I 0 
a + 1/11 

a + ..... 

</>. = </>~ ± </> .1 + ..... 
1 1 1 

</>~ = L: cpi )> 1 p 

</> .1 = L· c 1
• x 

1 a a.1 a 

h = ho + hl + ..... 

(2-8) 

(2-9) 

h0 is the unperturbed Hamiltonian for an electron moving in the field 

of the bare nuclei. tJ; ~ is assumed to have the same electron spin 

factor as 1/1~. That is, the perturbation to first order is assumed to 

affect only the spatial part of each MSO. From the form of H1 in 

(2-7), the first-order correction to each molecular orbital is expected 

to be the same in magnitude but to differ in sign for up and down 

electron spins, hence the two signs in the expansion for cf>- in 
1 

equations (2-9). To elaborate, if 

t/la = cf>. a 
1 

and t/I a+n = </> . f3 
1 

(2-10) 
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then to first order in the pertur bation, we shall have 

(2-11) 

and 

The starting point in the theory is the variational function 

(2-12) 

which is to be an extremum to all orders in the perturbation. The 

electron labels in the integrand of the electron repulsion integrals 

(l/I al/I a\ l/lb l/lb) and (l/I al/lb\ l/I al/lb) are in the usual sequence [see, for 

example, equation (4-14) of Thesis Part I]. The Eab 's are the usual 

Lagrange multipliers and have the following expansion in orders of 

the perturbation: 

where oab is the Kronecka del. 

The first order part of E' can be shown to vanish by virtue of 

ct>; having opposite signs for up and down electron spins as indicated 

in (2 -10) and (2 -11) . 

A general principle of perturbation theory states that the second 

order energy can be obtained by using the wavefunction correct to 
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first order in the perturbation.25 The second order part of (2-12) may 

be reduced to the following forms: 

where 

and 

"'--- l l ') , l o l '\ , 1 l I .. = 4 w e . h . + 2 Li c . h""r.:l c f3 . + 4 Li c . c
13

. (af3 JJ) . cu a 1 (3. (}' 1 Uf-' 1 rvfJ. • • a 1 1 
(}' 1 (}' 1 .....,_,lJ 

Y' l l ·1· '\"""' o l 1 - 2 L· c . cf3. (a.i 1{3) - 2 L' E. c . cf3. sa'f:J 
iVP.. • (}' 1 J ,-,;().° 1 (}' 1 1 
~~ ~l 

'\"""' i' l 
-4L.JE . . C . S. 

.. l] 0.1 Q'l 
<l' l ] 

saf3 = (Xa xf3) 

s . = (xa <t>jo) Q'] 

, E . . + E .. 
E .1. = l J J 1 is a symmetric matrix element. 

l] 2 

(2-13) 

The 
l , 

prime will subsequently be dropped for convenience so that E . . will 
l] 

henceforth be denoted simply as E.
1 
.• 

l ] 

E' (
2

) contains divergent integrals. These are listed in Table I 

where x is any basis function which is finite and non-zero at r = 0, 



Table I. Divergent integrals in the second order self coupling energy expression a 

Integral Diverging vaiue 

-k r 

J(N e a ) o(r) 
a r 2 xdV 

r 

1 o (rXa)r=O (x)r=O 4 7T 

( 
-kal' ) o(r) J Na e .fn r ? x dV .fn o ( .f~ lr=o (x) r=O 411" 

( 
-kar ) ( -k,gr) J Na e r (- t \72) N {3 e r dV 

1 
0 (rXa)r=O (rx.,g)r=O 2 7T 

J ( N" e -k.,r £nr) (- tv') [ N~ e -:~r) dV .fn 0 ( Xa ) (r Xr.) 2 1T 
.fn r r=O ,.., r=O 

( 
-kar ) ( -k,gr ) J Na e r (- ~ ) N {3 e r dV .fnO (rXa)r=O (rxf3)r=O (-47T)(-Z) 

ax is any basis function which is finite and non-zero at r = 0. 

....... 
0 
(JI 
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Na and N f3 being constant factors used in the definitions of the singular 

basis functions. 

The expression (2-13) for E
1

(
2

) therefore consists of three 

groups of terms listed below in decreasing orders of magnitude : 

is 

(i) a group of terms having a common factor diverging as !· 
{ii) a group of terms having a common factor diverging as in 0. 

(iii) a group of finite terms. 

The first group of terms, save for the common divergent factor, 

">-- o Y' l 161fL, (<f>.) _0 uc .(rx) _0 . 1 r- a1 a r-
1 a 

+ 4 rr 2.: [ _0 C 
1 

• {rX ) - OJ 
2 

i a a1 a r-
{2-14) 

Since by ! we mean 1 divided by an arbitrarily small number, the 

first group of terms are arbitrarily more important than the other 

terms and therefore any coefficients involved should be determined by 

minimizing the first group of terms by themselves. Thus we have 

a.0 C 1
. (r x ) 0 a aJ a r = 

so that 

{2-15) 
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This is Pitzer's first equation for the fir st-or der molecula r orbital 

coefficients . It gives in conjunction with (2 - 14) 

(2-16) 

In the second group of terms of E'(2
), the finite factor multiply­

ing in 0 is found to be uniquely determined by (2-15). Save for the 

common divergent factor, this group of terms is found to be 

E'(2
) = 321T Z ~ [(¢?) ]

2 

in 0 i 1 r=O 

and therefore does not give any new condition on the first-order 

molecular orbital coefficients. 

(2-17) 

Finally the group of finite terms in E'<2
> is to be an extremum 

under the constraint (2-15) for which a new set of Lagrange multipliers 

~\ have to be introduced: 

(2-18) 

Differentiating (2-18) with respect to C~k gives, after rearrangement 

of terms, 

l ~ l '\'(O O l 
h k - LI S . Eik. + LI f - Ek S ) C k 'Y i y1 a ya ya a 
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where 

f 0 
= h 0 + ~ [ 2 (ya I ii) - ( y i I a i) ] 

ya ya 1 

(2-20) 

The freedom to a first-order unitary transformation of the molecular 

orbitals amounts only to the mixing of zero order molecular orbitals 

into first-order molecular orbitals with first-order coefficients. This 

transformation is used to diagonalize Efr' giving 

l l ~( 0 0 l 
h k - EkS k +Li f - EkS ) Cak y y a ya ya 

(2-21) 

This is Pitzer's second equation for the first-order molecular orbital 

coefficients. In this equation, all divergent terms must be excluded 

except that any finite part of a divergent integral must be retained. 

From orthogonality and normalization requirements, we have 

("" o ""l I ""o 1) 0 '+'j + '+'j '+'k + ¢k = ' j ~ k (2-22) 

and (2-23) 

Since the right-hand-side numbers are exact to all orders in the 

perturbation, we have 

j ~ k (2-24) 
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and (2-25) 

To see whether any of these conditions are already contained in 

(2-21), we note that (2-21) holds for any basis function x.y, be it a 

basis function used exclusively for the first-order molecular orbitals, 

or one originally present in the unperturbed molecular orbitals, say 

x_. In the latter case, multiplying by C 0 . and summing over p gives 
·v PJ 

i i (o o"\·' i 
h.k - Ek 6.k + E. - Ek) LI S. C k J J J a ]a a 

(2-26) 

where j and k indicate matrix elements involving ¢j0 and <Pk. . For 

j ,r:. k, interchanging j and k gives (2-24) so that this orthogonality 

condition is contained in (2-21). For j = k, (2-26) gives 

Ek
1 = hkk

1 
- 2 ~ C 

1 
. (ka I ik) 

• Q'.l 
Q'l 

Thus, the normalization condition (2-25) is not contained in (2-21) 

and may be written as 

6 sk c lk = o 
a a a 

(2-27) 

This is Pitzer's third and last equation for the first-order molecular 

orbital coefficients. 
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The three equations (2-15) , (2-21), and (2-27) provide a set of 

n(m 1 + 2) equations in the same number of unknowns C~, E~, A.k 

(a = 1 · · · · · m 1 ; k = 1 · · · · · n). 

2. 3 Rationalization and treatment of divergent integrals 
1 Pitzer considered the infinite quantities appearing as 0 and 

fn 0 as being not infinite in reality but only very large in magnitude. 

Since nuclei and electrons are actually finite in size, the zeroes must 

actually be replaced by some parameter r 0 of the order of the classi-

cal electron radius re in atomic units. Now, re in atomic units is 

given by the fine-structure constant squared: 

2 
r = a e 

while the numerical factor in the perturbational Hamiltonian H1
, 

equation (2-7), which has been suppressed in the development of the 

theory is 

87T 1 
3 yNn Ysn .aJ 

fi
2 / ma; 

= 81T g ( e fi . e fi ) 
3 . gN S 2 me 2 Mc 

811" 4 
er g e 

3 ° N S 4 ti2 c2 
m 
M 

1 
- 3. 

ao 
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,.., a 

103 
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where M is the proton mass and the remaining notations have 

conventional meanings. Therefore 

E'(2) ,._, { a
2 

) 2 1 
103 • re 

r2 1 
!::::!. ~-

106 re 

,._, re 

106 

so that E '(2) would in fact be finite. 

We further rationalize that since the divergent factors have 

coefficients which do not depend on the first-order molecular orbitals, 

[see equations (2-16) and (2-17)] these divergent terms in the second-

order energy expression may be considered as constants as far as 

variations in the first-order molecular orbital coefficients are 

concerned. 

A list of the divergent integrals occurring in the Pitzer theory 

was given in section 2. 2. As already noted, equation (2-21) was 

derived under the condition such that all divergent terms must be 

excluded from that equation except for those terms arising from the 

finite parts of divergent integrals. 

In Table II, we give a list of divergent integrals which have 

finite parts for the general case where an arbitrary number of singular 



Table II. Finite parts of divergent integrals a 

Divergent integral Finite part 

oo -kar 
(1) J [N e ) o(;) xr2dr 

o Ci. kc}' r 
- Na (x)r=O 

00 k 
(2) J [ N"" e - al' .fn (2 y k r) ] 0 (;) x r 2 dr 

o '-" Ci. r 
Na [ .fn (2 ka)] (x)r=O 

ao ( - kar ) ( -k f3r ) 
(3) J N e (-l.\7

2
) N e r 2 dr 

o Ci. kcf 2 f3 k{3r 
l. NaNJ3 ( k@ ka) 

-
2 

ka ka+k/3 + k/3 

ao ( -k13r ) k 
(4) J N{3 ek (-iv2)[N e- cE .fn(2 yk r)]r

2 
dr 

o Br a a 
[ 

k (2 k@+ k ) ( 2 k ) 
t N Ci.N f3 k:(kl'I+ k_.)~ 1 + in kR+ ~rv 

- 1 1 l 

k{3 + kf3 in (k/3 + ka) J 

00 r.. -kar ) [ -k r ) 
(5) J lNa ek (- ~) N{3 ek: r2 dr 

o . J . R 

1 
Z NaN {3 kak{3 ln (ka + k/3) 

ax is any basis function which is finite at r = 0. 

....... 

....... 
N> 
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basis functions with different exponents a re used in expanding the 

first-order molecular orbital. In this table, the singular basis 

functions have been defined as 

and 

-ka1' 
N _e __ 

a k r 
a 

-k r 
N {3 e f3 £n (2 y k/3 r) 

where y is a constant such that 

£n Y = 
00 J e-x £n x dx 

0 

= 0. 577215670 · · · · · · , the Euler constant (2-28) 

These forms of the singular basis functions are convenient for sub­

sequent integral evaluations. The form chosen for the logarithmic 

basis function is such that, wit~ N~ = jkf , its normalization integral 

would have the simple value ( ~ + 1) . 

Since ln(a. 0) = £n 0 

and .Qn(a. 0) = tna + fnO 

there is a certain amount of arbitrariness in deciding what actually is 

the finite part of a logarithmically divergent integral. It can be shown 

that this arbitrariness will not affect the values of the first-order 

molecular orbital coefficients provided only that the separation of 
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logarithmically divergent integra ls into infinite and finite parts is 

made in such a way that all the infinite parts have the common factor 

In E, where E has the same value (tending to zero in the limit of a 

point magnetic dipole model of electrons and nuclei) for all the 

separated infinite parts. 

In listing the finite parts of divergent integrals in Table II, each 

logarithmic divergence has been separated into a finite and an infinite 

part as follows: 

K is a linear combination of orbital exponents and varies from one 

divergent integral to another. In K gives rise to a contribution to the 

finite part of the divergent integral and .fn (y r 0 ) is taken as the 

common divergent factor of the infinite parts of all logarithmically 

divergent integrals. The parameter r 0 is the value of the electron 

coordinate r in atomic units at the lower limit of integration and 

tends to zero in the limit of a point magnetic dipole model of electrons 

and nuclei. 

The derivation of entry (4) in Table II is based on the following 

expression for the Laplacian of In r : 

v2 .Qnr = o(r) + 1 
r 2, 

r 
r;::::. 0 

The arguments used in the derivation of this expression are 

summarized in Appendix B. 

(2-30) 



115 

2. 4 Cusp conditions on the first-order molecular orbitals 

In this section we shall derive the cusp conditions on the first­

order molecular orbitals. The conditions may be derived from an 

analysis of the integro-differential equations which the exact first­

order molecular orbitals obey. These equations may be obtained by 

applying the variational principle to the expression for E ,(2
) given by 

the first equality of equation (2-13). The cusp conditions are derivable 

from the resulting equation, namely 

(2-31) 

where the notations of section 2. 2 have been retained and the coulomb 

and exchange operators operating on the coordinates of, say, electron 

2 are defined by 

J .0 (2) = f dv 1 ¢?(1) cp.0 (1) i_ 
J J J r12 

P12 
K~ (2) = f dv1 cp.0 (1) - cp.0 (1) 

J J r 12 J 

P12 
= fdv 1 cp.1 (1) - ¢.0 (1) 

J r12 J 

P 12 being the operator which interchanges electrons 1 and 2. 
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The cusp conditions at the nuclear center of Fermi-contact 

perturbation are obtained by letting r - 0 in (2-31). Near r = 0, 

(2-31) reduces to 

r-0 (2-32) 

We can always expand ¢~ and ¢k in terms of spherical harmonics 

having origin at r = 0: 

00 1 

¢~ = 6 :[; r 1 fim(r) Yim (cos e, ¢) 
i=!' m=-1 

00 1 

¢~ = ~ L, r 1 gim(r) y im (cos e, ¢) 
i=i' m=-1 

where 1' is the lowest value of ! appearing in the expansions. 

Then (2-32) gives 

[ - !_ ( d2 + ~ _i_ ) - Z A + 1 ( 1+1) J r ! g nm 
2 dr2 r dr r 2 r2 x. 

l £ f + h r £m = O; r-0 

(2-33) 

(2-34) 

(2-35) 

where Z A is the charge of the nucleus A, the origin of the Fermi­

contact perturbation. 

For £ > 0, the delta function in h1 in equation (2-35) is multi­

plied by powers of r and therefore has no effect. Thus h1 may be 

dropped from (2-35) when £ > 0, giving 
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[ _!d
2 _!~+£(£+l) _ ZA]r£g" = O; £>0, r-0 

2 dr2 r dr 2 r2 r x.m 

(2-36) 

A trial solution in the form of a power series 

00 

£ ~ a rn+s (2-37) y = r g£m = 
n=O n 

leads to 

s = £ 

and r ZA ]; g£m (r) = ao l 1 - -- . r + ...... l. > 0 (2-38) 
£+1 

This is identical in form to the well-known behaviour 26 of the 

unperturbed molecular orbital (2-33) near any nucleus with charge Z, 

namely 

f £m (r) = a~ [ 1 - £: 1 · r + · · · · · · J; £ ~ 0, r - 0 

(2-39) 

The behaviour of g £m (r) for f = m = 0 and r - 0 is different 
l 

because the h term may not be dropped. We have 

[ _! d2 _!~ - ZA_]goo+h1foo = O· r-0 
2 dr2 r dr r ' 

(2-40) 
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From the similarity between (2-40) and the equation (2-3) for the 

first-order wavefunction of the hydrogen atom near r = 0, we expect 

the solution for g00(r) to contain } and lnr. Hence we write 

(2-41) 

Inserting (2-41) and (2-39) into the left-hand side of (2-40) and 

equating coefficients on left- and right-hand sides gives 

and A = - 2 ZA A_ 1 log 

Hence 

r-0 (2-42) 

A similar analysis of equation (2-31) in the neighbourhood of a 

nucleus B away from the origin of the Fermi-contact perturbation 

giving rise to ¢~yields 

ZB 
g £m {r) = b (1 - .f + 

1 
· r + · · · .. ) ; £ ~ O, r - 0 (2-43) 

where the coordinates r, e, and ¢ in the expansion (2-34) defining 

g .fm (r) are now referred to nucleus B as origin. 

The cusp value of <Pk. at a nucleus is defined as the ratio of the 

coefficient of the second leading term in g 11 , (r) to the coefficient of 
x. Ill 
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the leading term in the expansion of the wavefunction about that 

nucleus. Hence from the preceding paragraphs, we have the following 

theoretical conditions on the exact first-order molecular orbitals: 

Cusp value of <Pk. at nucleus 

A (origin of perturbation 

giving rise to <Pk) 

Cusp value of <Pk. at nucleus 

B (away from nuclear origin 

of perturbation giving rise 

to <Pk_) 

= 

Q' ;z!; 0 

(2-44) 

Q' = 0 

ZB 
/J' ~ 0 

l' + 1 ' x. 
(2-45) 

Except for the spherically symmetric component Q = Q' = 0, the 

theoretical conditions on the first-order molecular orbitals are 

therefore identical to those on the unperturbed molecular orbitals.26 
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3. Application to the HD molecule 

The perturbation-variational approach of R. M. Pitzer has been 

applied to the calculation of the nuclear spin-spin isotropic coupling 

constant in the HD molecule. The calculation is based on a bond 

length of R = 1. 4 a. u. for the molecule. This is very close to the 

experimentally found equilibrium bond length of R = 0. 74136 A = 
27 1. 4010 a. u. 

3 . 1 Basis functions 

The unperturbed electronic ground state of the molecule is 

represented by a minimal-basis-set wavefunction. That is, a single 

ls Slater-type atomic orbital is used on each of the hydrogen and the 

deuterium nuclei. The value of the orbital exponent, chosen to 

minimize the total electronic energy of the unperturbed molecule, 20 

is 1. 1895 . The two basis functions are labelled as 

w -krH 
X1 = e 

1T 

x4 = w -krD. 
e ' k = 1.1895 (3-1) 

with X2, X3 (centered on H) and ><s, \; (centered on D) being antici­

pated additions to the basis set at some future date. Dropping molec­

ular orbital subscripts since there is but one molecular orbital, the 

normalized unperturbed molecular orbital used in this research for 

the HD molecule is thus 

(3-2) 
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This analytic representation of the unperturbed molecular orbital has 

a cusp value of -1. 0003 compared to the value of -1. 0 for the exact 

zero-order molecular orbital. 

Two singular basis functions, one of each kind, have been 

included in the expansion of the first-order molecular orbital. They 

are labelled as follows: 

k=l.1895 (3-3) 

where y is defined as in (2-28). We note that neither ~ nor Xa is 

normalized: 

f Xr Xr dv = 2 

J 
1T2 

XaXadv = - +1 
6 

The first-order molecular orbital takes the form 

(3-4) 

(3-5) 

where the subscripts in each first-order molecular orbital coefficient 

refer to the basis function. The literal subscript H denotes the 

origin of the perturbation. 



3. 2 Evaluation of integrals 

3. 2. 1 Divergent integrals 
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Since both singular basis functions ~ and Xa have the same 

exponent, all logarithmically divergent integrals are found to diverge 

as .fn(2 ykt0 ) where r 0 - 0 is the parameter defined in section 2. 3. 

Hence logarithmically divergent terms in the expression (2-13) for 

E '(2
) will be grouped together with .fn(2 yk r 0 ) as common factor. 

The finite parts of divergent integrals then take the simple forms 

shown in Table III. This is to be contrasted to the general case (see 

Table II) where different exponents are present and logarithmic 

singularities appear as £n(2 yk1 r 0 ), fu y(k1+k2)r0 , etc. In the general 

case, the only common logarithmically divergent factor is £n(yr0): 

The parts .Qn(2 k 1), .fn(k1 +k2 ), etc. have to be separated out and 

included in the finite parts of the integrals. 

3. 2. 2 Finite integrals 

In order to evaluate the finite molecular integrals encountered, 

various types of numerical quadrature have to be tested on integrals 

involving the logarithmic function. The simple integral 

00 J e -t .Qn(y t) dt (3-6) 
0 



123 

Table Ill. Finite parts of divergent integrals encountered 

in the calculation of the nuclear spin-spin 
coupling constant in HD a 

Divergent integral 

<~lo(~)lx> 
r 

< Xa I 0 (~ > I x > 
r 

<~1-;IX-r> 

Finite part 

0 

.! k 2 
- 2 

.!. k 2 
- 2 

0 

a x is any basis function that is finite at r = 0. 
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was first studied. This integral has been chosen since, of all the 

types of integrals encountered, it has the most extreme kind of an 

integrand for which a polynomial approximation may not be adequate. 

Although the integral is finite, the integrand has a singularity at the 

origin. This type of integral always occur in an electron-repulsion 

integral whenever both singular basis fnnctions are present as 

functions of the same electron coordinate. We have 

(3-7) 

In the second equality above, use has been made of the 

multipole expansion for rl as given in equation (3-4) of Thesis Part I. 
12 

r > is the greater of r 1 and r 2 • The second integral in the square 

brackets of (3-7) gives rise to an integral of the form (3-6) for small 

values of r 2 , the coordinate of integration over the second electron. 

The integrand of (3-6) has the qualitative form shown in Figure 

1. The integrand gives a negative contribution to the integral in the 

interval 0 ~ t ~ } and a positive contribution in the remaining interva l. 

These contributions should have the same magnitude since the exa ct 
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-t e £n yt 

(0, 0) 

Figure 1. Qualitative form of the function e-t .Qn y t 
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value of the integral is zero. 

In table IV, we list some typical values calculated for the 

positive and negative parts of this integral using various types of 

quadrature, as well as the accurate values obtained with a computer 

program written by J. B. Hughes.28 The table shows that Gauss­

Legendre and Gauss-Laguerre quadratures 29 are clearly unsuitable 

for this kind of an integral. 

It is possible to construct quadrature formulas based on poly­

nomials Gn (t) orthonormal with respect to int as weight function in 

the interval 0 ::::; t ::::; 1. Such polynomials up to degree 4 can be found 

exactly and have been given by H. Berthod-Zaborowski 30 together 

with the ordinates and weights for numerical quadrature based on 

these polynomials. The determination of the coefficients in the higher 

order polynomials cannot be done exactly and requires approximate 

numerical techniques. Approximate ordinates and weights for 

numerical quadrature based on ·polynomials Gn (t) up to degree 16 have 

been given by Stroud and Secrest. 31 In the next-to-last column of 

Table IV, we have given the calculated contribution to the integral 

(3-6) from the range 0 ::::; t ::::; .!.. using an 8-point quadrature based on 
y 

the data of Stroud and Secrest. The result obtained agrees very well 

with the accurate value. In conjunction with a 56-point Gauss-Legendre 

and Gauss-Laguerre quadrature for the range ~ ::::; t ::::; oo, this gives a 

highly accurate value for the entire integral. 

Where the logarithmic singularity at t = 0 is weakened by the 

presence of a linear or higher power in t in the integrand, we have 



Table IV. Typical results obtained in evaluating the integral (3-6) using various 

types of quadrature compared with accurate values a 

Range 

(0, ~) 

1 (-,oo) 
'Y 

(O, oo) 

Value and 
method used 

-0. 49092720 

G-LGN(24) 

0.49155335 
G-LGN(l2) + G-LGR(6) 

0.000626 

Value and 
method used 

-0. 49118606 

G-LGN(32) 

0.49153744 

G-LGN(l6) + G-LGR(8) 

0. 000351 

Value and 
method used 

-0.49153429 

L-Q(8) 

0.49153406 

G-LGN(48) + G-LGR(8) 

-0.00000023 

Accurate 
value 

-0. 49153424 

0.49153424 

0. 

aG-LGN: Gauss-Legendre quadrature 

Gauss-Laguerre quadrature G-LGR: 

L-Q Quadrature based on polynomials orthonormal with respect to the 
logarithm function as weight function, References 30 and 31. 

Parentheses indicate number of points taken in the quadrature. 

~ 

1:-.? 
-:J 
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found that Gauss-Legendre and Gauss-Laguerre quadratures give 

accurate results. This indicates that the difficulty encountered with 

the integral (3-6) is not due to the presence of the logarithm function 

itself but rather is associated with the difficulty in approximating an 

integrand having a singularity by means of a simple polynomial of 

finite degree. 

Although workable numerical quadrature techniques have thus 

been found for the new kinds of molecular integrals, we have decided 

in practice to evaluate all integrals of the types 

x ni-1 J tn+l (in yt) e -t dt 
0 

00 1 nn-1 J tn- (in yt) x. e -t dt; 
x 

n ~ 1, n.f ~ 1 (3-8) 

by using analytical means since a computer program for such a 

purpose has already been written by Prof. R. M. Pitzer on the basis 

of analytical formulas developed by M. Geller. 32 We note that 

00 -t 00 

J e -x J -t - dt = - e in x + e in t dt 
- x t x 

(3-9) 

so that all single-center one-electron parts of electron repulsion 

integrals can be computed using the above mentioned program. In 

addition, the program can also be used to calculate the off-center 

nuclear attraction integral (A \ _!__ I A ) . 
rB 
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Most of the new kinds of molecular integrals have therefore 

been evaluated in this research using a combination of analytical 

methods and numerical quadratures. Integrals involving orbitals on 

different centers were computed by means of the zeta function method 

described in section 3. 1 of Thesis Part I, the expansion center being 

the H-nucleus where the singular basis functions are located. The 

infinite series arising from the two- center exchange integrals converged 

rapidly and no transformation of any kind on the series was necessary. 

Wherever possible, integral values obtained using the foregoing 

procedures were compared with exact values obtained by Professor 

R. M. Pitzer without using numerical quadrature. Where comparisons 

with exact values were not possible, check values for electron 

repulsion integrals were obtained by reversing the order of integration, 

that is, by integrating over the coordinates of electron 2 first instead of 

electron 1, or vice versa. 

3. 3 Results and discussion 

We give in Table IVa and IVb all integral values found in this 

research. Entries given for divergent integrals are values of their 

finite parts as defined in section 3. 2. 1. 

Using these integral values, equations (2-15), (2-21), and 

(2-27) are treated as a system of simultaneous equations linear in the 

unknowns consisting of first-order molecular orbital coefficients and 

Lagrange multipliers. The simultaneous equations are solved by 

matrix inversion and the solutions found are given in Table V. The 

results previously obtained 20 without using the logarithmic basis 



Table IVa. Values of one-electron molecular integrals employed in the 

perturbation-variational calculation on the HD molecule. 

Labels of basis functions are as explained in the text. 

~ 
v,, 
0 



LlNt:-CcNTER l N TE GRAL S 
s v T 

8 8 0.26449340E 01 -0.19566491E 01 O.l8711721E Cl 
8 7 0.99999838E 00 o. -0.707455l3E OC. 
8 1 0 • 1 5 00 0 0 0 lt c l -O. ll894981E 01 O. 35372525E-OC 
7 7 0.19999997£ 01 o. -0.70745512E 01 
7 l 0.99999993E 00 -o. 23789997E 01 0.21223649E 01 
l l 0.99999996E OC -0.11894999E 01 o. 70745505E CC 
4 4 0.99999999E OC -0. lld94999E 01 0.70745513E 00 

Two-CENTER INTEGRALS 
s VA VA T 

4 l 0.67893548E 00 -0.59962527E OC -0. 59962524E OC :l.23293788E-OO 
7 4 o. 5040985% 00 -0. 78893ll2E 00 -0.44994953E-OO O.l7a5B788E-C0 
8 4 0.12754761E 01 -o. 765596l6E 00 -0.94428542E OC 0.3')!>54708E-OO 

T~O-CE:NTER NUCLEA R ATTRACTION INTEGRALS 
8 8 -0.15296l66E 01 
8 7 -o. 65 7566 73E: 00 

...... 
C,.j 

8 l -0.9l594466E 00 ...... 
7 7 -0.14184056E 01 
7 l -O.!>E87347CE CO 
l l -0.646l8421E OC 
4 4 -0.646l8421E: 00 

Hl INTEGRALS 
l l 0.6732l42 '1E Cl 
4 l 0.12732764E 01 
7 l -O. l3464235E 02 
4 4 0.24081974E-OG 
7 4 -0.127327b4c 01 
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Table !Vb. Values of two-electron molecular integrals employed in 

the perturbation-variational calculation on the HD molecule. 

Labels of basis functions are as explained in the text. 

8 8 4 l 0.9930277':> 
8 7 4 l 0.44293506 
8 4 e l 0.<17423343 
d l 7 4 0 . 5 l 0 6 7C, 9 7 
8 l 4 l u.60:; .. 1b6 3 
7 7 4 l l.l2C39609 
8 4 7 1 u.75806794 
7 4 7 l 0.49220'114 
7 l 4 l 0.50342CH3 
8 4 l 1 0.6952806G 
7 4 1 l c. 3<16( 0462 
<t l l l 0.4<t2473::>b 
8 8 l l l. 5 8 l 34 l 3C 
8 7 1 l 0.7332'iE54 
d l 8 1 l.3'1l3159C 
8 l 7 1 l.C982496C 
8 1 l 1 0.97828057 
7 1 l l 2.10849318 
7 1 7 l l. ld949C,9 C 
7 l l l 0.89212497 
l l 1 1 0.7434376(· 
4 4 4 4 0.74343760 
8 4 4 4 o. 7 5002 845 
7 4 4 4 0.339Y9j37 
4 4 4 l G.442.47372 
6 8 4 4 1.32579999 
8 7 4 4 0.5627303fl 
8 l 4 4 0. 78897724 
7 7 4 4 1.26146439 
7 1 4 4 o.oco1111& 
4 4 l l 0.55741654 
4 l 4 l 0.30421472 
7 4 7 4 0.2273782C 
8 4 8 4 o.8264458b 
8 4 7 4 0.3~568619 
1 4 4 1 o.25242043 
8 4 4 1 0.49645272 
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Table V. First-order molecular orbital coefficients and 
La grange multipliers obtained as solutions 
to the Pitzer equations a 

Basis functions 
I II 

-9.954656 -10.413533 

11. 337698 9.116926 

-1. 543808 -1. 543808 

1.620968 

3.055234 3.503636 

-1. 295589 -1. 420249 

al: without using the logarithmic basis function. 

II: using both singular basis functions. 
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function have a lso been included in the table. 

The nuclear spin-spin coupling constant in cycles per second 

is given by the relation 

JHD 
ma; 

(3-10) 

where J3N is the nuclear magneton, ao the Bohr radius, gH and gD the 

nuclear g factors, and r D the integration variable referred to the D 

nucleus as origin; all remaining symbols have meanings given 

previously. 

The calculated value of J HD is found to be +96. 6 cps. As 

summarized in Table VI, this represents an improvement over the 

calculated value of +120 cps obtained previously 20 without using the 

logarithmic basis function but it is still about a factor of two too large 

compared with the experimental value of +43.0±0. 5 cps. 

Table VI also gives the cusp values of the first-order molecular 

orbital at both the Hand D nuclei. These cusp values have been 

defined in equations (2-44) and (2-45) and their exact theoretical 

values are -2 and -1 at the Hand D nuclei, respectively. The cusp 

conditions are clearly poorly satisfied in the first-order mole cular 

orbital calculated both with and without the logarithmic basis functions. 

It is of interest to note that the cusp value at the D nucleus is almost 

unaffected by the addition of a logarithmic basis function on the H 

nucleus. 



Table VI. Values of the nuclear spin- spin coupling constant and energy quantities 

calculated for the HD molecule (I) without using the logarithmic 

basis function, and (II) using both singular functions 

J HD (cps) 

Cusp value at H 

Cusp value at D 

(2) 
Ef (a. u.) 

a Reference 20. 

b Reference 8. 

Ia 

+120 

-1.4533 

-130. 5243 

II Exp er im ental measurement 
or theoretical condition 

+96.6 + 43. 0 ± 0. 5 b 

-1. 2490 -2.0 

-1. 4425 -1. 0 

-120. 7245 

..... 
~ 
c.n 
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The quantity Ef(
2

) listed in the last row of Table VI is the finite 

part of the second-order self coupling energy 

(3-11) 

which, as shown in Appendix C, may be re-written in the form 

(3-12) 

In these expressions, the origin of the perturbation has been explicitly 

emphasized by means of a literal subscript on both the first-order 

molecular orbital and on the perturbational Hamiltonian. The operators 

J 0 and K° have been defined in connection with (2-31). X is the 

Lagrange multiplier occurring in equation (2-21) and E
0 the unperturbed 

orbital energy. A numerical subscript referring to the molecular 

orbital has been suppressed in </>ii_, <f>0
, J

0
, K

0
, X, and E

0
• 

The apparent increase in the value of Et) upon addition of a 

logarithmic function to the basis set causes no concern in view of the 

fact that the logarithmically divergent part of the energy arising from 

the logarithmic basis function has a negative sign, as can be seen 

from (2-17). In general, a comparison of the finite parts of the 

second-order energy obtained with two different basis sets requires 

considerable care and may not be meaningful. 
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In Figure 2, the induced spin density 

p(R) = 4 < <t>if Io(;_ R) I <t>o> (3-13) 

calculated using the first-order molecular orbital obtained in this 

research is plotted as a function of R, the position along the HD 

internuclear axis. On the same plot, the induced spin density function 

previously found 20 without using the logarithmic basis function is 

given for comparison. The induced spin density at the D nucleus is 

directly proportional to the nuclear spin-spin coupling constant, as is 

evident from a comparison of (3-10) and (3-13). The decreased peak 

of the induced spin density function at the D nucleus upon the addition 

of the logarithmic basis function is therefore reflected in the decrease 

in the calculated coupling constant from +120 cps to +96. 6 cps. 



Figure 2. The indiced spin density in the HD molecule as a 

function of position along the internuclear axis 

calculated (I) without using the logarithmic basis 

function and (II) using both singular basis functions. 

..... 
c..:> 
co 
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4. Conclusion 

This thesis research shows the practicality of the perturbation­

variational approach to the calculation of nuclear spin-spin coupling 

constants . In particular, it has been found that the new kinds of 

molecular integrals encountered can be evaluated without great 

difficulty. However, the calculated value of +96. 6 cps for the nuclear 

spin-spin coupling constant in HD is disappointing compared with the 

experimental value of +43. 0 ± 0. 5 cps. Since the coupling constant is 

clearly sensitive to the unperturbed electron density at both coupled 

nuclei [see equations (2-15) and (3-10)] an accurate description of the 

unperturbed electronic wavefunction is essential. Prior to the addition 

of more basis functions of the conventional type to the wavefunction, 

we are therefore unable to arrive at a concrete conclusion as to 

whether or not a refinement of the present theory or the inclusion of 

electron correlation in the wavefunction would be necessary. 
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Appendix A. The first-order wavefunction of the hydrogen atom 

perturbed by Fermi-contact interaction 

From equation (2-3) , the equation for the first-order wave­

function of the hydrogen atom perturbed by Fermi-contact intera ction 

is 

(A-1) 

Now 33 

v 2 !_ 
r = - 411 o(r) 

= 
o(r) ---2 (A-2) 
r 

Therefore we look for a solution of the form 

1J;1 = Jz3 (-~ + f)e-Zr 
rr r (A-3) 

s o that (A-1) becomes, after simplification, 

( d
2 2 d - 2·z ~) f 4 z _ 8 z3 

dr2 + r dr = 
dr 2 r 

(A- 4) 

Le t df f' O' = = 
dr b (A-5) 

Then 

g' + ( ~ - 2 Z) g 4Z - a z3 
= 7 r 

(A-6) 
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The integrating factor for this first-order differential equation is 

r 2 e - 2 Zr and we have 

2 -2 Zr 4 z2 2 -2 Zr 4 z -2Zr K re g = re + re + 

where K is an integration constant. 

From the boundary condition that t/11 must be zero as 
atJ;1 

we have - - 0 as r- oo. This gives ar 

1. 2 -2 Zr O im r e g = 
r-oo 

so that K = 0. 

Therefore = 4 z2 
+ 4 z · !. g r 

and 
2 f = 4Z r + 4Z fur + C 

Hence, 

The constant of integration C may be chosen to be 

(A-7) 

r -oo 
' 

(A-8) 

(A-9) 

(A-10) 

(A-11) 

C = Z [2 Z .f.n(2y Z)- 5] so that (tJ;0 + 1//) is normalized to first order. 

We note that the solution (A-11) will satisfy (A-1) only if we take 

V2 .f.nr = 1 
2 

r 

for all values of r including r = 0. If the Laplacian of .f.n r is taken 

as given by equation (B-7) of Appendix B, then the insertion of the 

right-hand-side of (A-11) into the left-hand-side of equation (A-1) gives 
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( -~v2- z + z
2

)l/11 = -(o(r) + 2 zo(r) _ 4 z 3)Jz
3 

e-Zr 
r 2 r 2 r 1f 

(A-12) 

which differs from the right-hand-side of (A-1) in the appearance of a 

second delta function term. This apparent difference has no signifi-

cance inasmuch as the Fermi-contact interaction Hamiltonian could 

have a second delta function term, namely 

(A-13) 

without violating Fermi's original derivation of the interaction. 6 In 

this case, the right-hand-side of (A-1) would be identical to that of 

(A-12) . 
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Appendix B . The Laplacian of ln r 

This appendix gives the arguments used in arriving at the form 

(2-30) for the Laplacian of f.nr. The arguments start from Poisson's 

equation in cgs units: 

2 
V <I> = - 4rrp (B-1) 

where q, is the electrostatic potential and p the charge density. 

For a line charge 

<I> (r) = - 2. d. (.tn r - .. for 0 ) (B-2) 

where r is the perpendicular distance from the line charge, d the 

charge per unit length of the line charge, and the arbitrary zero level 

of potential is set at r = r 0 • Integrating both sides of (B-1) over a 

cylindrical volume element enclosing the line charge and having length 

L and radius a gives 

2rr a L 
2 

- d. J J J 2 [ V ( ln r - f.n r 0 ) ] dz r dr d <P = - 4 1T. d. L (B-3) 
0 0 0 

where r, z, and cf> are cylindrical coordinates. This simplifies to 

a ( d
2 

1 d ) ~ r dr2 + r dr lnr dr = 1 (B-4) 

Hence ( d
2 

1 d ) o(r) 
- +-- lnr = --
dr2 r dr r (B-5) 
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where the Dirac delta function is defined such that 

b 
f o(r) dr = 1; 

0 
b>O (B-6) 

Equation (B-5) is a mathematical identity and holds for any variable r 

including the radial spherical coordinate. Therefore, in spherical 

coordinates, 

2 
V .fnr 

=(L+!~) 
dr2 r dr 

= 
o(r) 
--+ r 

1 
"°2' r 

1 d .fnr + - - £nr 
r dr 

r ~ 0 (B-7) 
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Appendix C. The second-order self-coupling energy in HD 

This appendix gives the derivation of the equation (3-12) which 

is the actual form in which the finite part of the second-order self­

coupling energy of HD is computed. 

Multiplication of Pitzer's second equation (2-21) by C~k and 

summing over y gives 

~ (c;kh;k - Ekc;ksyk + ~ (C~kf;O! - EkC~kSyJ cllk 

- ~ c~kc~i[(yalik) + (yilka)]) = L AkC~k(r Xy)r=O 
O!l . y . 

(C-1) 

If there is only one occupied molecular orbital, as in the HD 

molecule, then (C-1) becomes (dropping the M. 0. label) 

(C-2) 

Hence 

A = 

(C-3) 
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= -!· ol [(<t>1\h1l<t>o)+(<P1\ho+Jo-2Ko\<t>1) 
(<t> )r=O 

- E
0 

(</>1 
\ 4/) J (C-3) 

The last step made use of equation (2-15). 

From (3-11), we have 

(C-4) 

which is identical to (3-12). 
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PROPOSITION I The Proton-Proton Distances in the Ferrocene 

Molecule from the Second Moment of the Nuclear 

Magnetic Resonance Spectrum 

The feasibility of determining the proton-proton distances in 

f errocene from the second moment of the nuclear magnetic resonance 

spectrum is proposed. 

X-ray studies 1 have located the positions of the iron and 

carbon atoms in the ferrocene molecule. Owing to their low scattering 

power, the exact locations of the hydrogen atoms remain unknown, 

although they have been depicted 2 as lying outside the two planes of 

the carbon rings. The molecular structure has therefore not been 

completely elucidated. 

Free rotation of the two rings relative to each other in ferro­

cene has been predicted 3 and largely confirmed in the vapour phase 4 

and in solution. 5 A small potential barrier similar to that in ethane 

cannot be ruled out. 6 Steric contribution, though small by itself, may 

form a significant fraction of such a low barrier, hence a reason for 

knowledge of the proton positions. 

Ferrocene has previously been subjected to NMR studies in the 

solid state by Mulay et al. 7 and by Holm et al. 8 The narrow line width 

at room temperature obtained by the former group of workers was 

taken as evidence for rotation of the rings. The second group, 

however , interpreted results as supporting no reorientation of the 

cyclopentadienyl rings around the fivefold axis between 300°K and 
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ll0°K. 

In their study of polycrystalline benzene Andrew and Eades 9 

found convincing evidence that motion of the benzene rings occurs 

only above 70°K. At sufficiently low temperatures, it is therefore 

probable that motion of the cyclopentadienyl rings in ferrocene would 

likewise be frozen out. 

Since Pake's pioneering work, lO nuclear magnetic resonance 

has been applied a great deal to structural problems. From appar­

ently shapeless humps in the nuclear magnetic resonance spectra of 

solids,accurate values for structural parameters have been obtained. 

Andrew and Eades 9 determined the distance between adjacent protons 

in benzene after ingeniously finding the intramolecular contributions 

to the NMR second moment. By extending the spirit of their work, 

one might wonder whether the intra- and inter-ring contributions to 

the second moment in the ferrocene molecule may not be found, 

leading to values for the proton-proton distances in this molecule. 

In this proposition, we show that this is indeed possible. Although 

more than one structural parameter cannot usually be obtained from 

a study of polycrystalline samples, it will be seen that this is not the 

case in ferrocene. 

The key step in Van Vleck's derivation of the expressions for 

the NMR second moment 11 was utilizing the invariance of the trace of 

a matrix under a unitary transformation. If I stands for the spin of 

the nuclear species at resonance and I' that of any other species of 

nuclei, then the contributions to the NMR second moment from like 
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and unlike species of nuclei are respectively 

S(r;r) 

S(r ; r') 

where Yr and Yr' are the magnetogyric ratios for nuclear species r 

and r' 

N is the total number of spins r 

j , k are labels for nuclei of spin r 

.Q is the label for nuclei of spins r' 

and ejk is the angle between the magnetic field direction 

and the line joining nuclei j and k; 

the summations extend over all nuclei in the sample. Methods have 

been developed to correct for any torsional oscillations.12 The total 

second moment is given by S = S(r; r) + S(r ; r'). 

On replacing a nucleus of spin r in any site by one of spin r', the 

contribution of this site to the second moment is just the old contri­

bution times the following factor: 

2 I ( I 

4 Yr' r r + 1) 

9 y; r (r + 1) 
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If I and I' are the spins of H and D nuclei, this ratio is 

a = 0. 0236 

The deuteron derivatives of ferrocene which will effect a separation 

of intra- and inter-ring contributions to the second moment are found 

to be I, II, and III as shown below: 

H H D D 
H<B>H H<B>D 

H D 

H H D 
~-, 

H<.Q>H H<§>H D~ D 

H H H H D D 

I II III 
(S) (S ') (S ") 

In the following discussion, a single subscript, 1 or 2, indicates the 

total intra- or inter-molecular contributions respectively to the 

proton NMR second moment. Let 

Su = 

812 = 

s = 

s' = 

intra-ring contribution of each proton to 8 1 

inter-ring contribution of each proton to S 1 

second moment of proton resonance line in ferrocene 

second moment of proton resonance line in II, where 

all five of the H-atoms in one of the two rings have 



Hi5 

been replaced by deuterons 

S" = second moment of proton resonance line in III, where 

all but one of the H-atoms have been replaced by 

deuterons 

The iron isotope Fe
57 

has a magnetic moment. However, its 

natural abundance (2. 245%) and magnetic moment (0. 05 nuclear 

magnetons) are very small. Hence the effect of the iron nucleus on 

the NMR spectrum may be neglected. Then from the figures , it is 

seen that 

s1 = 10 (S11 + S12) (1) 

s' l = ( ' ' 5 Su + S12) = 5 (Su + aS12) (2) 

s = sl + S2 (3) 

s " = s" s" l + 2 = Ct ( 1 9 
10 s l + 10 + 10 Ct ) s 2 (4) 

S' ' ' ' ( 1 Q' = sl + S2 = sl + 2 + 2) S2 (5) 

From the experimental values for S, s', ands", (3), (4) , and (5) may 

be solved for S1 and s 1' which are then substituted in (1) and (2) to get 

S11 and S12. From these two quantities, the evaluation of the two 

unknown structural parameters (h, the distance between the two 

planes containing the proton rings and a, the distance between adjacent 

protons in the same ring) is essentially a problem in ele mentary 

geometry. 
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PROPOSITION II The Sign of the Electric Dipole Moment in the 

Carbon Monoxide Molecule 

It is proposed that the existing experimental determination of the 

sign of the electric dipole moment in the carbon monoxide molecule 

suffers from the same inherent uncertainty as the ab initio calculations. 

The sign of the electric dipole moment in the carbon monoxide 

molecule was determined by Rosenblum, Nethercot, and Townes 1 in 
. 2 

1958 using a method proposed by Townes et al. It was apparently the 

first measurement of the sign of the electric dipole moment in any 

molecule. The sign was found to be c-o+. 

In 1964, Huo 3 determined the sign from ab initio calculation and 

found it to be c+o- in disagreement with experiment. Since her calcu­

lation was based on an electronic wa vefunction which is very near the 

Hartree-Fock limit, the disagreement between theory and experiment 

has aroused considerable interest. 4 However, it is known that the 

ab initio calculation involves taking the difference between electronic 

and nuclear contributions which are nearly equal in magnitude since 

the net dipole moment is very small. Therefore, a relatively small 

error in calculating the electronic contribution could give an opposite 

sign of the dipole moment. This has apparently been confirmed by a 

recent configuration-interaction calculation 5 (based on Huo's ground­

state determinantal wavefunction) which resulted in a dipole moment 

-0. 17 D (c-o+) in agreement with experiment. 
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We propose that the inherent inaccuracy present in the ab initio 

calculations is also present in the experimental determination from 

the isotopic variation of the rotational magnetic moment. 

The rotational magnetic moment along a principal axis x of 

inertia may be written as 2 

(1) 

where Mxx, etc. , are components of a tensor as given by Townes 

et al. 2 and are functions of the electronic structure of the molecule. 

J X' etc., are components of the rotational angular momentum along 

the principal axes of inertia and Ix, etc., the principal moments of 

inertia. For a diatomic molecule, the principal axes of the tensor 

M coincide with the principal axes of inertia. Therefore 

(2) 

Upon isotopic substitution, we have, considering the same rotational 

state before and after substitution, 

(3) 

We shall use the subscript 1 to denote the atom where an 

isotopic substitution is made and label the molecular axis as the y 

axis, the positive direction pointing from atoms 1 to 2. If y 1 and y / 

denote the coordinates of atom 1 referred to the center of mass of the 

molecule before and after isotopic substitution, then it is found that 
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' Y1 - Y1 = (4) 

where Mi denotes the mass of atom i and AM1 is the change in mass 

of atom 1 upon isotopic substitution. This relation may be used to 

find A.Ix. The expression for A.Mxx has been given by Townes et al. 2 

Thus (3) becomes 

d· (5) 

- Y1 = (6) 

where µ.;_ is the rotational magnetic moment of the molecule after 

isotopic substitution, Mp is the proton mass, e the electron charge and 

re the equilibrium bond length. dis the dipole moment (defined 

positive for M1- - M2+). We shall denote the first term on the left-hand­

side of (5) by A and the second term by B. 

When the rotational magnetic moment data of Rosenblum et al. 

for different isotopic species of CO are used in (5), the following 

results are obtained as shown in Table 1 (atomic masses from 

Leighton, 6 equilibrium bond length re = 1. 12826 A from the rotational 

consta nts of CO isotopic species reported by Rosenblum et al. 1). 

Thus we see that the four sets of data do not give entirely 

consistent signs for the dipole moment of CO. It appears that, 



Table 1. Determination of the sign of the dipole moment of CO from 

isotopic variation of rotational magnetic moments 

Isotopic substitution A 

i2c160 ___. i2crno 0. 11244913 

i2c160 ___. 13cl60 0.10529010 

i2c160 ___. 14cl60 0.19608753 

13cl60 ___. 14cl60 0.09498496 

B 

-0. 11212146 

-0. 10349639 

-0.19166585 

-0.09235699 

A+B 

0.0003 

0.0018 

0.0044 

0.0026 

Sign of 
dipole moment 

c+o-

c-o+ 

c-o+ 

c-o+ 

1--" 
m 
0 
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regardless of the method of data treatment, this inherent uncertainty 

of the experimental results would remain. Clearly this arises from 

the same limitation that is present in ab initio calculations. 
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PROPOSITION III The Vibrational Force Constant and the Equilibrium 

Bond Length of the Hydrogen Molecule 

The derivation of a relation between the vibrational force 

constant and the equilibrium bond length in the hydrogen molecule from 

Reitler-London theory is proposed. 

In 1934, Badger 1 proposed his empirical equation 

-1/3 ( ) k = a . . r - b .. 
lJ e lJ 

relating the vibrational force constant k with the equilibrium bond 

length re through the constants aij and bij which have values 

depending on the nature of the bonded atoms. With this equation, 

Badger was able to correlate a large amount of spectroscopic data. 

The equation has also been demonstrated to be of predictive value .2 

Much effort has been spent in attempting to understand the 

theoretical basis for the equation 3 but these efforts have not yet been 

successful. A simple general relationship is evidently very hard to 

obtain from first principles. We therefore propose that the simplest 

molecule of all, the hydrogen molecule, be examined prior to any 

investigation of more general molecular systems. 

The hydrogen molecule is unique in that its total electronic 

energy can be obtained as a function of the internuclear separation in 

closed form by using the Reitler-London wavefunction. This wave-

f t . . 4 unc 10n is 
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tJ; = ~ [a(l)b(2) + b(l) a(2)][a(l) {3(2) - /3(1) a(2)] I 2(1d) 

where a(l) and b(l) are normalized Slater ls atomic orbitals of 

electron 1 centered on atom a and b, respectively, and 

S = J a(l) b(l) dv1 

The total energy of the molecule corresponding to this wave­

function is given by 4 

E(R) = 
2 cl- (1 - KS - S2

) 

1 + S
2 

a ( 2 ' , 2a + -- -4 + J + J + 4KS + K) + -
1 +S2 w 

where R is the internuclear separation, w = aR, and a is the 

orbital exponent. The terms K, S, etc. are given explicitly in 

Slater 4 and we shall reproduce here only the expression for K' : 

K' 2 { -2W( 25 23 2 1 2 
= 5 -e - S + 4W + 3 W + 3W ) 

+ ! [ S2 (C + .fn w) + S '2 Ei(- 4w) - 2 SS' Ei(- 2w)] } 

where S ' = w (1 1 2) e - W + 3W 

C = Euler's constant 



and Ei(-x) 
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00 -t 
= -J ~ dt. 

t ' x 
x>O 

E (R) may be expanded in a Taylor series about the equilibrium 

internuclear distance R = Ro : 

E (R) = E (Ro) + E '(Ro) (R - R0 ) 

" (R - Ro )2 
+ E (Ro) 2 + ..... 

where E(R0 ) = -D, the dissociation energy (1) 

and (2) 

The force constant is given by 

(3) 

In practice, the Taylor expansion has to be made for each of the 

terms KS, S2
, etc. A preliminary effort at carrying out these 

expansions has indicated that a certain amount of bookkeeping would be 

involved. The expansion for K' contains Ei(-4a:Ru) and Ei(-2aR0 ). 

It would be desirable to express these exponential integrals in terms 

of more easily identifiable quantities. They can possibly be eliminated 

using the conditions (1) and (2). 

There is no doubt that a relation between the force constant and 

the equilibrium bond length Ro can be obtained for the hydrogen mole-

cule using the above procedure. The question appears to be whether 
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or not the relation has any interesting features and whether it can be 

reduced to a form comparable to Badger's equation in simplicity. 
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PROPOSITION IV The Stability and Structure of Bound Molecular 

Dimers in Gaseous Hydrogen and Oxygen 

A theoretical construct is proposed with the object of elucidating 

the stability and structure of bound molecular dimers in gaseous 

hydrogen and oxygen. 

Direct spectroscopic evidence for bound states of dimeric 

hydrogen at low temperatures has been reported by Watanabe and 

Welsh 1 in 1964. More recently, indirect evidence for bound dimers 

of oxygen molecules has been reported by Blickensderfer and Ewing, 2 

following evidence obtained by Badger and collaborators 3 for the 

existence of collision pairs of oxygen molecules at room temperature. 

The evidence in the case of oxygen consists of a dramatic 

increase in induced absorption in the (0-0) band of the (1 ~g - 3~~) 

system as the temperature is lowered to 87°K. The evidence in the 

case of hydrogen consists of fine structure in the pressure-induced 

fundamental infrared band components in addition to an increase in the 

absorption coefficient. The frequencies of the eight absorption 

maxima observed were successfully expressed in the form 

where vH is one of the transition frequencies of the free hydrogen 
2 

molecule, Q 1 (0), S1 (0) , and Q 1 (0) + S1 (0). The vQ's are a set of four 

frequencies with Q" = 0, 2 and Q' = 1, 3. The integer Q was identified 

with the quantum number of the angular momentum of the relative 
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motion of the two H2 molecules. From the deduced effective 

rotational constant of the dimeric molecule, the equilibrium inter­

nudear separation in the dimer was estimated to be in the range 

4. 2 - 4. 6 .A. 
Previously, the existence of bound dimeric oxygen molecules 

has been predicted by Stogryn and Hirschfelder .4 Approximating the 

intermolecular potential by a Lennard-Jones potential function and 

using the WKB energy-level condition for a particle moving in a 

potential well, they predicted that the maximum number of bound 

vibrational levels in (02 ) 2 is 8 and estimated the dimer concentrations 

to be very small at several temperatures. 

In view of the low concentration of molecular dimers in both 

hydrogen and oxygen gases, experimental characterization of their 

stability and structure is difficult. We therefore propose an approxi-

mate theoretical construct in order to facilitate experimental investi­

gations. The basic construct is essentially that used by Bernardes 

and Primakoff 5 in their theoretical investigation of molecule forma­

tion in the inert gases. These investigators fitted a Lennard-Jones 

interatomic potential function to a Morse potential function for which 

the Schrodinger equation can be solved to give the energy eigenvalues 

in closed for m. 

The intermolecular potential function of two identical homonuclear 

diatomic molecules may be written as 6 

v = y(dis) + y(Q) + y(val) 



170 

where V(dis) is the dispersion energy, V(Q) the electrostatic quad­

rupole-quadrupole interaction energy, and v<val) the valence energy 

arising from overlap of the wavefunctions. 

An approximate form of the dispersion energy has been obtained 

by Gray and Van Kranendonk 7 while the form of the quadrupolar 

energy has been given by Van Kranendonk. 8 If r is the intermolecular 

distance and l\, <f\ are the polar angles of the internuclear axis of 

molecule i = 1, 2 relative to the intermolecular axis as polar axis, 

then 

V(dis) 

and 

= - 4€(~)6 (1+41T(411)1/2 (y/ a) 
r \.. r /45 

. [ ~ C(202; m O) Y 2, m (811 <f>1) Y 0, 0(82, cp2) Y 2: m (O, O) 

I 

+ 'L.c(022 ; 0m) Y0 0(8u cp1) Y2 (82, <P2) Y2* (O,o) J m , ,m ,m 

= 

i/2 ( I 2 + 4 7T (411 ) y a) 3 6 
9 45 J70 

. ~ 

41TQ2 
5 

r 

y4* m +m (O, O)) 
' l 2 

2 

~ am Y2 m(8u<f>1) Y2* m(82,<P2) 
m=-2 ' ' 

where E and a are the usual parameters in the Lennard-Jones 



171 

intermolecular potential function. y and a are the anisotropy and the 

average value of the polarizability of the monomeric molecule and Q 

the molecular quadrupole moment. C(f 1 f 2 f; m 1 m 2 ) is the Clebsch­

Gordan coefficient and a 2 = a_2 = 1, a 1 = a_ 1 = -4, 3.o = 6. The 

spherical harmonics are as defined in Condon and Shortley. 9 

The dependence of the valence energy V(val) on r may be taken 

to be an inverse twelfth power repulsion as in the usual Lenna rd-Jones 

potential function. The dependence on ei, cf\ (i = 1, 2) will, in general, 

consist of all possible orders of spherical harmonics allowed by the 

inversion symmetry of each molecule. However, from the forms 

already obtained for V(dis) and y(Q), it appears to be a convenient 

approximation to restrict V(val) to be of the following form: 

2 
(val ) a 12 

[ "" * J v = 4 ( - ) 1 + L.1 b I [ Y2 (el ct> 1) Y2 ( e 2, cf>2) r _ 2 m ,m ,m 
in--

where the b J m ! 's are constants. 

The constants E, a, and b Im J may be obtained from data for 

the second virial coefficient B(T) at high temperatures by inversion 

of the formula 

B(T) = N Joo f21T f 1 Jl - e-V / kT) 
4 0 0 -1 -1 (l 

where N is Avogadro's number . It has, however, been shown that 

the inversion of second virial coefficient data gives uniquely only the 
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positive single-valued part of the intermolecular potential as a 

function of internuclear separation; the potential well cannot be 

uniquely determined and only its width as a function of its depth can 

be obtained.10 It is proposed that this lack of uniqueness be partially 

resolved through the determination of the long-range part of the 

potential from thermal-energy molecular-beam scattering data, as 

has recently been reviewed by Bernstein and Muckerman.11 The total 

cross section for H2 - H2 scattering has been reported by Minten and 

Osberghaus 12 who have in fact deduced a value for the orientation-

averaged inverse sixth- power van der Waals attraction constant. 

Similar data for 0 2 -02 scattering have yet to become available, 

however. In view of the unique nature of the systems, a detailed 

investigation of both H2 - H2 and 0 2 - 0 2 thermal-energy scattering is 

clearly of importance. 

The form of the intermolecular potential function V(r, 811 </> 11 

82 , </>2 ) having thus been specified, we propose to study the relative 

translational motion of two homonuclear diatomic molecules by 

neglecting the vibrational and rotational degTees of freedom of each 

molecule . For a fixed set of angles e. = e:, <f>. = cp.', i = 1, 2, we have 
1 1 1 1 

the intermolecular potential as a function of r only. This can now be 

fitted to the Morse potential 

Ideally, the three parameters D, a, and r 0 should be determined by 



173 

requiring V M(r) to have a second-order contact with V(r, 81', ¢ 1' , 

e2', ¢ 2') at the position of the latter's minimum. From the form of 

V(r, e/, ¢ 1', e2' , ¢ 2' ), however, it would instead appear to be more 

convenient to require functions and derivatives (up to second order) 

to match at the point 

1/6 r = 2 (J 

where the isotropic Lennard-Jones potential is a minimum. 

The energy eigenvalues of the Schrodinger equation for the 

relative translational motion governed by the potential function V M(r) 

have been given in Pauling and Wilson. 13 

If µ is the reduced mass of the collision pair, and if 

2/ ( 2 2 5 13 li 2 µr 0 D) = x « 1, then ' 

E 
K, s = -[l-6x(s +%)]

2
+x2 K(K+l) 

D 

- ~ x 3 
K(K+l) (s+%) 

s = 0 1 2 · · · s · K = 0 1 2 . . · K (s) ' ' max' ' ' max 

Bound vibrational states of the dimeric molecule are given by 

negative values of EK . The maximum number of bound vibrational ,s 
states is (smax + 1) and occurs for K = 0 . 

It may be that no negative eigenvalues are found, in which case 

' we rule out the assumed set of orientation angles ei = ei , ' cp . = ¢· ' 1 1 
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i = 1, 2 in considering the possible structure of the stable dimeric 

molecule. However, from the spectroscopic evidence cited earlier, 

we can expect that at least one set of orientation angles would lead to 

negative eigenvalues. 

By requiring each molecule to have only translational freedom, 

we have neglected the possibility of a change in rotational state 

accompanying the translational motion. In this respect, our construct 

is therefore no better than that of Stogryn and Hirschfelder. 4 However, 

we do allow the intermolecular potential function to be anisotropic. 

A possible check on the usefulness and results of the construct exists 

in that the spectroscopic evidence of Watanabe and Welsh 1 indicate 

the existence of probably two bound states in (H2) 2 • 
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PROPOSITION V The Position and Height of the Potential Maximum 

in He2 (ls
2

, ls 2s; 3E~) 

Experimental and theoretical evidence available at the present 

time 1 shows quite conclusively the existence of a maximum in the 

interatomic potential function of He2 (ls2
, ls 2s; 3E;). It is proposed 

that the height and location of this maximum be estimated by 

establishing the limiting curve of dissociation 2 from spectroscopic 

data and from the velocity dependence of the total cross section for the 

scattering of He *(ls 2s, 3S) metastable atoms from ground-state 

He(ls2
, 

1S) atoms. 

If U0 (r) is the interatomic potential function (in units of cm - i) of 

two atoms, then the effective potential in the equivalent one-body 

problem is given by 

1 n.2 
UJ(r) = U0 (r) + -h · J(J + 1) 

c 2 µ.r2 

where µis the reduced mass and J the quantum number of rotational 

angular momentum of the pair of atoms. If U0 (r) has a maximum, 

say, at r = rm' then Herzberg 3' 2 has very early pointed out that the 

maximum in UJ(r) will always occur at the same value of r , at least 

for small values of J. Hence a plot of the maximum energies of 

UJ(r) against J(J+l) (limiting curve of dissociation) should give a 

straight line with slope equal to 
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1 li
2 

he · 2 µr 2 

m 

The intercept of the straight line is U0 (r m). From the slope and 

intercept, the location and height of the potential maximum may 

therefore be determined. 

Limiting curves of dissociation may be established by plotting 

rotational term values in each vibrational level as a function of J(J+l). 

Providing the effect of quantum mechanical tunneling through the 

potential barrier is negligible, the last observed term value in each 

vibrational level lies just beneath the potential maximum in U J (r) 

while the first missing term value corresponds to a predissociated level 

that lies just above the maximum. The limiting curve of dissociation 

must pass through these two points. 

A number of rotational term values for each of several 

vibrational levels in He2 (ls2
, ls 2s; 3z;~) may be obtained from the 

spectroscopic data of Ginter 4 who has recently observed and analyzed 

the 3 pa, 3z;; __, 2 s, 3z;; emission band system of He2 • However, 

Ginter was apparently unsuccessful in extending the rotational analysis 

far enough to unambiguously identify the expected predissociation 

phenomena and therefore the construction of the limiting curve of 

dissociation from his data alone is not possible at the present time. 

It is proposed that, in order to complement the spectroscopic data and 

establish the limiting curve of dissociation, the total cross section for 

the scattering of metastable He* (ls 2s, 38) atoms from ground-state 
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He(ls2
, 

18) atoms be obtained as a function of relative velocity. 

It is known 5 that as the relative kinetic energy of two atoms is 

increased, the scattering phase shift flJ corresponding to U J(r) 

increases abruptly by 1T whenever the energy passes through the 

energy level of a quasi-bound state [semi-discrete state with energy 

above the energy of di~sociated atoms but below the potential maximum 

of U J (r)] . This increase in the phase shift is manifested as a 

resonance (a maximum and/ or a minimum) in the total scattering 

cross section Q(v) as a function of the relative velocity v. 

Bernstein 5 has pointed out that only for the states of short life­

times [ i. e. , the levels near the maxim um in U J (r) ] will resonance 

widths in the scattering cross section be sufficiently large to allow 

observation of the resonances in Q(v) with presently available 

experimental velocity resolution. He further emphasized that these 

are just the levels which are too broad for spectroscopic observation. 

This consideration therefore shows that the location of the resonances 

in Q(v) , together with a plot of spectroscopically observed rotational 

term values in each of a number of vibrational levels as a function of 

J(J+l), would determine the limiting curve of dissociat ion. The same 

consideration might also possibly provide one reason for the absence 

of resonances in the velocity dependence of the cross section for 

scattering of metastable He*(ls 2s, 38) atoms from ground-state 

He(ls2
, 

18) atoms as obtained by Rothe et al. 6 Rothe and collaborators 

obtained the total scattering cross section in the range of r elative 

velocities 1000-3300 meters/ sec. However, if the r ecent ab initio 
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calculations of Matsen and collaborators 1 are accurate enough, then 

the height of the maximum in the interatomic potential function is 

about 0. 15 ev. This corresponds to a relative velocity of 3, 800 

meters/ sec. It is therefore proposed that the measurements of Rothe 

and collaborators be extended to higher relative velocities. 
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