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ABSTRACT

Two general, numerically exact, quantum mechanical methods
have been developed for the calculation of energy transfer in
molecular collisions, The methods do not treat electronic tran-
sitions because of the exchange symmetry of the electrons. All
interactions between the atoms in the system are written as potential

energies,

The first method is a matrix generalization of the invariant
imbedding procedure, 17,20 adapted for multi-channel collision
processes. The second method is based on a direct integration of
the matrix Schrddinger equation, with a re-orthogonalization tran-
sform applied during the integration.

Both methcds have been applied to a collinear collision model
for two diatoms, interacting via a repulsive exponential potential.
Two major studies were performed. The first was to determine
the energy dependence of the transition probabilities for an H2 on
H2 model system, Transitions are possible between translational
energy and vibrational energy, and from vibrational modes of one
H2 to the other H2' The second study was to determine the vari-
ation of vibrational energy transfer probability with differences in
natural frequency of two diatoms similar to N2.

Comparisons were made to previous approximate analytical
solutions of this same problem. For translational to vibrational
energy transfer, the previous approximations were not adequate.
For vibrational to vibrational energy transfer of one vibrational

quantum, the approximations were quite good.
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1. INTRODUCTION

1.1 Background

Theoretical studies in the natural sciences are aimed at an
understanding of the physical world, but in many cases the
problems are unsolvable because of unknown laws of physical
behavior, or because of mathematical complexity alone. For
the latter instances, one might try two approaches: to do an
approximate treatment of a real physical system, or to do an
exact treatment of a simpler model system which has some
important features in common with the real one. The former
approach frequently contains errors which are difficult to estimate
or bound; one may become lost in trying to attribute significance
to the results, The model problem may bear little resemblance
to the real one, or may contain only one of several crucial
features.

In this work, we have developed and applied two theoretical
guantum mechanical methods to the problem of energy transfer
between various modes of molecular motion during collision
processes, We do not handle chemical reactions in the normal
sense, nor deal with non-adiabatic electronic motion. The concept
of a model enters our discussion because we present calculations
for collinear collision processes. The methods we use are
perfectly general for three-dimensional problems, but the compu-
tational time is prohibitive. It is our belief that an accurate treat-
ment of a collinear model is of more worth than an approximate

result for the real three-dimensional problem. This is not to say



that the real problem is not under investigation and calculation
by our methods; it is indeed.

Early theoretical studies of vibrational, rotational, and
translational energy transfer in collisions were based on approxi-
mate analytical solutions to the quantum mechanical and classical
equations of motion. The method of Zener, i later to become
known as the distorted wave method, and the Born approximation
are leading examples of approximate solutions to quantum
mechanical collision problems based on first order perturbation
theory. A very comprehensive survey of nearly all of the
theoretical work on atom-diatom and diatom-diatom scattering
prior to 1965 may be found in Takayanagi's reviews .2’ . Macro-
scopic phenomena and experimental data in the area are discussed
in Herzfeld and Litovitz. *

Before entering into the development of our theoretical
methods and the results of calculations, we present an outline
of formal scattering theory. The reason is two-fold: to state
some important distinctions between quantum mechanics and
classical mechanics in an understandable fashion, and to display
some of the subtle mathematics necessary for the treatment of a

relatively simple physical process.

1.2 Quantum Scattering Theory

1.2.1 The scattering process

The classical picture of the scattering process is
intuitively simple. One projects a beam of particles with uniform

cross sectional density and flux at a target consisting of particles



of such low density that they do not interact with each other nor
cause significant multiple scattering. Detectors measure the
various numbers of particles and states emanating from the
collision region. If all of the target lies within the bcam, then
the flux per unit solid angle of a species a’ coming from the
collision region, divided by the incident flux per unit area of
species q, and by the number of target particles, defines the
laboratory differential cross section for the species g, oaa,(e,cp).
o and g' are written as vectors since they may contain several
parameters: type of particle, momentum, internal states, etc.
Quantum mechanical scattering is just as simple in
principle as classical scattering. The previous paragraph applies
to either picture. However, the mathematical treatment of
quantum scatteriag theory is very involved. The book by Goldberger
and Wa.tson5 is a recommended text for the rigorous development of
the theory, especially chapters 3, 4, 5, and 11. The papers of
Faddeevﬁ’ L are also necessary, along with some references
contained therein. Perhaps it is of worth to mention that we use
scattering theory in a contrary way. The raison d'etre of scattering
theory is to understand the interactions and mechanisms involved
in fundamental processes; however, we are ascribed the problem
of calculating the results of scattering experiments, given the total

Hamiltonian of the interacting systems.

1.2.2 Postulates of quantum mechanics

In effect, all physics is defined by measurements. If
we have a machine that produces a definite physical state, that

state is defined by the production process. Other machines



measure certain physical properties, that is, they detect physical
states. Consider three machines A, B, and C. A produces a set
of states, labeled a5, at time tl; C detects states (which might be
o at time t3. We

define PcktS’ aii.l to be the probability that a, prepared at *c1 is

the same ones that A produces), labeled ¢

in state Cro at t3. If machine C is "complete', then % Pckt3, ait1
i
= 1. If C does measure the same states that A produces, it is

obvious from physical continuity that

Iimm FPet,, at
b k'3 i

3 1

1 = Bk

since N is equal to a. Suppose that at some intermediate time
t2 between tl and t3 we use machine B to measure states
produced by A. We label the states which B measures bj’ and
we assume they are complete. Once B has detected a state bj

at t2, we know that the state exists, and hence that it has been
produced. We might have observed from the beginning that state
preparation and detection are the same process. In classical
mechanics, the three measurement procedures we have described
obey the following law:

Z Peyty, bity Phity, ajt) = Peyty, ajty 1-1

b.
]
because the intermediate knowledge gained from the B measure-
ments does not affect the development of the states prepared by A.
Quantum mechanics does not assume 1-1 is true; rather, the

concept of amplitude <Ck’ t3\ai, t1> is introduced, so that the



probability of an event is related to the modulus of that amplitude:
Pc, t,, at,; = |{c,,t,]a t)l2 1-2
k'3 il K3y :

A postulate of quantum mechanics is that

(et l bj, to) (bj, t2| a,ty) = (¢, t3| a,,ty) 1-3

g

[y

replaces 1-1 as the addition law for states. Suppose that we
calculate a set of amplitudes (c,t, | bj’ ty), (bj, t2| a,ty,
(ck, t3| a.,t;) from some law of motion. If these satisfy 1-2

and 1-3, as they must, then any change in phase of the form,

(b].,t lai,t1>-e (bj,tzlai,t1>e 1-4

also satisfies 1-2 and 1-3. In order to make amplitudes unique,
certain conventions concerning these phases must be adopted.
Having adopted such conventions, nearly all of which are related

to invariance laws and transformations on the physical system,

we are prepared to discuss the time dependent Schriidinger equation,
which is the law of motion for quantum systems. We set out to
develop a scheme for the calculation of the quantities measured

in scattering experiments, that is, differential cross sections.

The following parallels in essence chapter 5 of Goldberger and

Watson. 3



1.2.3 Quantum equations of motion for scattering

Our scattering system has a total Hamiltonian H,
independent of time. In the remote past before the collision
occurs, certain parts of H associated to the interaction V between
incident and target particles are negligibly small because of the
large distance between these particles. This affects a separation
of H into KC + Vc’ where we use the label c to refegr to possible
different separations, called arrangement channels. = For example,
the three-body system A, B, and C can be separated into (A, B) + C,
(A,C) + B, and (B,C) + A, where (,) denotes a bound state of that
pair with the remaining particle very far away. The Schrddinger

equation is:

DI
3 P {0 PO -
in 5 H ‘l’c a(t) 1-5

?

where Y?I;(t) is a state vector |c,a,t) that coincided in the

remote past with a prepared state wave packet (WP) tpzvz(t):
WP WP
Yc’a(t) = ‘I’C,a(t) : 1-6

t--w

Let us use a to denote both of the labels ¢ and a for prepared
states. Analogously, we use B for the combined detected state
labels, ¢' and a'. The prepared state is a narrow wave packet

superposition of energy eigenstates of Kc:



~ —1Eat/ﬁ
Hemy = 2 A, x, e 1-7
a
where
-iE t/n
Ay e %) iE t/h
o B ga )
at a
1-8
KC X(I - EG, XG.

It is customary to refer to the different internal states of an

arrangement channel as channels. Thus, % =¥ has both

c,a
arrangement channel and channel labels. The Xq, have infinite
norms - they are plane wave states. They have orthonormal

properties within the same arrangement channel, but not in

general:

xa.lxa>=6(a,a) forc=c 19

Xa'lxo,>7£°(a’a) forc £ c'. 1-10

We use either the large box normalization or the delta function
process for the translational coordinates of the g If @Wp(t)
is normed to 1 (it is square integrable), V W (t) is normed to 1
WP(t)l ‘YWP(t)> is indeciaendent of time. The

probability of detecting a state | 8, ty» after the collision has
occurred is just:

for all time since (¥



W, WP, WP 2
P oty = [ ") [ ¥ )] 111

where t, is in the remote future, (bwp(t) is a wave packet

superposition of eigenstates of Kc" 6Expression 1-11 is almost
useless, for the simple reason of transient wave packet behavior,
The probability is a strong function of the relative positions of the
maximum density of ¢\;VP(t) and the same for the outgoing scattered
part of ‘PZVP('L). If they are out of phase, there is no contribution to
the integral in 1-11, A solution is to sum 1-11 over all phases of

final state detection, effectively:

- ‘ WP, WP 2
Pg =) (@p (-t " )] 1-12
ty
for t1 - ®
and tl—t2 >> 0

assuming that the collision occurs about t = 0, It is reasonable
that we should work with time-dependent quantities, since the
scattering process as descrined in 1. 2. 1 is not time-dependent,
nor is the differential cross section. We seek to develop a time-

independent formalism for the calculation of cross sections.



1.2.4 Development of time-independent cxpressions

for the wave function

The direct approach to the removal of time from
expressions such as 1-11 would be to relax the wave packet form
of d?zvp(t) so that the symbolic solution for YZVP(t):

‘i’WP(t) _ e-—iH(t-’r)/ﬁ (IJWP(T) 1-13
a a

-iH(t-7)/#

(where e is the evolution operator, defined by the

power series expansion of the exponential) is properly defined

-iE #
for ‘IJEIP(T) being replaced by X8 T :
y -iE 1/%
vy @) = HET/A e 1-14
a o
-iE T/h
Because of the non-square integrable nature of X = , this

equation is not a valid relation. L Instead of removing '"WP"
from 1-13 immediately, let us suppose that Yyp(t) has evolved
from a superposition of channel states prepared at different

past times T =

= T.) . 1-15

YWP( ) e‘lHt/ﬁ 5' A.eiHTi /fl (pWP(
fo d fig 1 a 1

1

Taking a continuous distribution of these times, we have:
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0 ;
WP = [ ar A e HET/M QWP 1-16

- O

T 11

A(t) is chosen to be the weighting function ne' , SO
8 T
r dr nen =1 for any positive, non-zero n. Our new solution

- 00"

is a function of the n parameter:

0 .
‘Y?P(n)(t) = r dr "qenT e-lH(t_T)/h @?P(T) . 1-17
. WP
Now, if we remove the wave packet form of each 2 (),
-iE 7/7
replacing them with x e e /!, we find:
0 A . -iE T/
‘l’(n)(t) _ J‘ i nenTe iHt/# elIiT/fx B a 1-18
a : a
can be symbolically integrated in T:
M),y _ -iHt/n -in
‘fa (t)—e (H-Ea_’)l/fi = iT] XC(. 3 1-19

Define q;én) = eth/h Yén)(t), =) lllg]) = ‘fc(:])(O). From 1-19 we have

L) - i)
AI!GJ = (H-E:)7_r ~ i'r| XCL - 1—20



Lk

The important result is that we have a well defined equation (1-20)
for any non-zero m, without the necessity of writing the prepared
state as a wave packet. The solution of 1-20 is ‘Hc(:])(O), from
which we could construct ‘l‘én)(t) = 8 iHt/ 1';;”)(0); however, this
latter time evolution away from t = 0 is not needed, as we will
later discuss.

Rewriting 1-20:

-in Xg = ((H - Ea)/fz - in)l[,rén) 1-21
H-E )/n
oy, , TE )
or lboc = Xg % tlJa 1-22
and substituting 1-20 into the RHS of 1-22,
(H-E )/a .
\lf(n) =x + n o - e 1-23
a o in —(H-Ea)/fz =-in *a
(n) _ 1/#
OI‘, \ba - Xa e (Ea = H)/fl 3 i’r] Vc Xa 1-24

using the fact that (H - Ea)xa = (B = Kc)xa =V, x, From {-120,
A-l(B- A)B,
in and obtain the

we can use the operator identity, A"l.p-1
with A = (H - Ea)/ﬁ - in and B = (K' - Ea)/h

equation:
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( )— I 1 ' (T)
wan T E_ - 1?)/ﬁ i X T (& - K)/h+in (H- K )/wa‘ . 1-25

= i.T] = i_n = #
If K'= Kc’ (Ea i Kc)/ﬁ g Xq n Xg = Xg? and we have:
(n) _ 1/ () )
ll10', —Xa+(Ea-KC)7ﬁ+in VC"ICI : 1-26

Thus far, all of our time-independent solutions depend on the

parameter n. From 1-21, we take the limit n - 0:

_ (0)
0= (H- Ea)/h ¥, 185

(0)
a
equation. Thus, we have arrived at a defining formula for the

and see that | is a solution to the time-independent Schr8ddinger

solution in terms of the plane wave incident state:

(0) , - in
= lim ( —)x . 1-28
a My (H—Ea)/ﬁ—m a

All of equations 1-20 through 1-26 could now be written in terms
of d:éo) and a limiting n —» 0 symbol on the operators alone. Now
we develop the interpretation of cross sections from the time-

independent solutions.
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1.2.5 Cross sections, transition rates, and probability

Our original statement regarding cross sections in
1. 2.1 is formulated:

Fy
aa’ (8,9) = F?

~

1-29

~ o~

where Fa‘ is the detected flux per solid angle of species o', F

is the incident flux of ¢ per unit area normal to beam, and n is

the number of target particles. We now re-interpret Fa,/n as

the transition rate per target particle into final state o' and angle
8,p. The angles 6 and ¢ are hereafter included in the final state
label a'. The incident flux is the incident beam velocity multiplied
by the beam density, or equivalently, the incident velocity divided
by the volume per incident particle. For a single scattering event,
the transition rate is the time derivative of the detection probability,
which we now examine,

Previously, we wrote down the probability of detection
using conventional wave packet states (1-11 and 1-12) and noted the
resulting problem of transients. Our equation 1-12 is closely
connected to the "beam feeder" state, 1-18, of Gell-Mann and
Goldberger, which is also designed to remove transients. L Using
1-18 for the time-dependent solution evolved from initial state «,

we have the probability, depending parametrically on n, of detecting
state B:

Pé”s) ) = | fé”B) (t)] z/Né”) 1-30
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where,

-iE _t/#
f((;B)(t) = {548 P jwé’”(t)) 1-31
M) _ ;™) (n)
Na“ & ¢ “’aﬂ B 1tmy . 1-52

The hermiticity of H insures that Nén) does not depend on time.
Since the prepared state depends on 7, the ng(t) dependence on

n is not unphysical. Having established a relation of cross sections
to transition rates via time rate of change of probability, we cannot

immediately take the n = 0 limit of Péns)(t), for we see:

-iE _t/#

fg)ﬁ)(t)=<xse B 1 1Bt/ D] 1-33

a

using 1-27,

(0) ) ei(E 8 Ea)t/fz

a

0) _
faB = <xel ] 1-34

(0)
af
transition rate before taking the n — 0 limit, and find a meaningful

and, therefore, P' ’(t) does not depend on time. We compute the
answer, It so happens that we will only need the transition rate at

t = 0, the collision time. From 1-30,

1

NV
a

bg’g () = 2Re {[fgé) )7 %((:g (o)} 1-35
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where the dot syrnbol denotes the time derivative. We evaluate
: () _21-
fOLB (0) from 1-31:

-iE _t/#

(TT) (0) - B Ie_th/ﬁ q;gq)) - 1-36

( X g€
which will simplify to:

100 =31 - By 148

=3 (xg] ¥y, ¢§“)> : 1-37

The last expression serves as a definition for a transition matrix:

)] 1 (n)
ca(, a'_??(ca'lv q; ) 1-39

which will later appear in a reduced form in the connection of
cross sections with properties of time-independent wave functions.
From 1-31 again; using the equality of Yg])(O) and lllén):

fé”s) (0) = (xg | 4;&”) . 1-39

Replacing lllgr])

H=K  +V_):
¢ c

with its equivalent defined in 1-25 (with K' = K.,
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M) gy = ____in 4
fop O = 7mm Yel%e) * @ E 7 Xl Ve

vy, 1-40
a

Physically, we know that EB = Ea because of energy conservation;

this would tend to indicate that the last term in 1-40 is singular as
n — 0. However, we always retain detected and prepared energies
as independent variables for mathematical convenience. Combining
1-35, 1-37, 1-38, and 1-40, we have:

(ﬂ)l

5, (), Tag
T'(o) I\—I(—72Re{(E E)/h m<x |X>T (E E)/ﬁ m}

a

1-41

; _ (n) ;
Letting Ac.B = (xlea> TonB , we have:

Ng‘) pM ) = 3y [(E_-E)/» (AQB+AQB*) + in(AaE-Aa; )]

(E -E ) /fr +1

+ I ]T((:é) = 1-42
(EQ—EB) /i 7+

Here it is mathematically convenient to integrate over a narrow
band of detected state energies, knowing that any detector will
accept a range of final state kinetic energies. This allows the

use oi the limiting definition of the delta function:

Ea+.a2 n g(E )

B (E -E )2/ﬁ2+ &

=Th g(Ea) 1-43
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for any continuous function g(E B) and A4, A, positive reals.

Representing the narrow band sum by £ , we can show that:

al
lim N(”) Z P(”)(O) > P (0)
wer g e a“.
. N 2m (11) 2
= =0 6(E -E )[T : 1-34
nl—vmo% g |

Since, under the 1lim symbol and the sum £ , the first term
n—-0 a'

in the RHS of 1-42 vanishes. The delta function indicates that

the only physically observed transitions are those in which

E 8 = Ea.
The relation between n and the physical properties

of the system have not been discussed. 1/n is the effective
duration in time of the prepared wave 'train'’, e Consequently,

the box normalization volume V must be large enough to contain

the wave train throughout the scattering process. That is:13

1/3/v 2> 174 1-45

where v is the velocity of the incident beam. Taking the n—~ 0

T(nﬁ)
any normalization volume dependence. We investigate this now.

limit in must allow for V = «, and it is necessary to remove
Consider the case of two particles in either initial or final state;
the un-normalized plane waves are Xq? whose integral over a

volume V is proportional to V2:
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2

(g[8 by = ¥ 4 1-46

This implies that the box normalized solutions X, arc inversely

proportional to V:
~ 1/V -4
Xq / 1-47
because ( chl X, >v = 1.

If we are in the barycentric subspace, there is no center-of-mass

motion of the pair, leaving one integration for two particles:

Xy | Agig ™ ¥
and xy ~ V2 1-48
so that (g | Koty = 2

For the case of n free particles in state Xg? in the barycentric
subspace,

_n-1
2

Xy ™ \Y% = 1-49

The most general circumstance to concern us here is to have two
particles in the prepared state and n > 2 in the final state. Note

that a particle may consist of several bound components. Examining
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the definition of foﬂB) , 1-38, we see that the localized nature of
v
¢
in XB and
( ) .

., makes the integral proportional to the norinalization factors

('ﬂ)’ for a sufficiently large box. The normalization

of is seen from 1-26 to be the same as Xy Allowing for

two pdrt](.lcb in : and n in XB’ we expect:

(n) 1 1 =V—n/2
OLB }Wﬁ n-1 )

VZ

We now define a reduced transition matrix Té.nﬁ) , introducing a
Kronecker delta to conserve total momentum. Let the labels

P and 13 8 denote total initial and total final momenta:

3n/2
(n) (2m) (n)
—7—n 5 EB TO.B . 1-50

Introducing 1-50 into 1-44, remembering that the sum over a' is

only on final momenta, not internal particle states:

NO 5200 - tim Y2 e, -E )(2")

oy n—-0 or V

2
°p p |Té”5)| . 1-51
o B

The sum over momentum states is converted to an integral over

the n-1 independent conjugate momenta, L«:j, of the n particles
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in that final state, using the prescription14

).

a'j

where a'j is the label for momentum k.. Resulting:

O 2000 = (21'7) 3
N, § B (0) = lim f d k dk 4
. 7 =0
a
_ (n) |2
zs(EOL EB) 6BCLEB lTaa - 1-52

Rather than use 5, p, , we write 6 (P - P'), where P and P!
e, B

are the initial and final total momenta and then we must restore

integration over all n final momenta of the n particles. Then

1-52 is written:

Ny 200 - g (2”) [ ak en a
o
5(E - Eg) 53(p- p) |T$) 12, 1-53

Three questions remain concerning the n - 0 limit. The first
is answered in that N ( ) remains as 1 because of the box
normalization of Xg! 14 The second is answered in that P(O)(O)

is our needed transﬂ:lon rate. It may be shown15 that
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(Tl) (t) is accurately given by P(n)(O) for nt << 1, The remaining
observation is that T n) is regular in the double limit V- =, n =0

ap
with the condition presented in 1-45, 12 The transition rate, dTaB’
n
into an element, II dskj, of momentum space is found from 1-53

=1
by restricting integrations to a volume element:

4 n .
6(E -B )5 (P P) [T(O)l2 | d3ki. 1-54
=1 ‘

- (2m)
dT o = 55

Dividing this by the incident beam flux will give us the differential
cross section. As observed in the text following 1-29, the incident
flux is equal to the beam velocity v divided by the volume per
particle, The volume per particle is just the normalization volume

V by definition. Finally, we have the differential cross section for

n
scattering into the final state 8 in the element I d3kj of
momentum space: =1
4 n
o =20 & _E) @ - P) |T(0)|2 (11 d°k).  1-55
a.R v a B ~ =1 ]

Up to this point, we have presented a method by which
one could formally solve for the physically observed cross sections
from the Schrddinger equation. Since this method is never used in
practice, it is more a proof of physical validity than a calculational
tool.
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1.2.6 In and out states, scattering matrix

Referring back to our time-dependent description of
scattering, we assumed that ‘i’a(t) was prepared in an approximate
eigenstate of Kc in the past, and at some future time we take the
integral (@B(t) | ‘J!a(t)) to obtain the amplitude fch(t) of detecting
state B. We equally well might have asked, why not use the
Schrddinger equation of motion and find the state that becomes an
approximate eigenstate of Kc' (the one detected) and take the
amplitude integral in the remote past with the prepared state ?

The corresponding treatment for this problem parallels the previous
discussion. Note that we are not talking about time-reversal
invariance here, We use a minus sign to refer to the new solutions.

In the future, we require:

Y VLR = AR (1-6) 1-56
8 o

where the equation reference in parantheses gives the analogous
previous one. Developing a time-independent equation of motion,
we use the superposition of channel eigenstates prepared at different

future times:

<]

. g -iE _t/h
‘fé(n)(t) = [ drne™™ e_lHt/h elHT/h Xg® P 1-57
0
(1-18)
where n is positive real. Letting wé(n) = elHt/ﬁ ‘ifé(n)(t), we do

the symbolic integration of 1-57 and obtain:
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n) _ in

From which one can show:

-(0) _
(B Ea) Vg " = 0 (1-27) 1-59
-(n) _ 1/4
'JJB e Xg " (EB_ H)/# - in Vc' Xg (1-24) 1-60
-(n) _ 1/4 ~(n)
Yo X *TE,TK_ /i Ver's (720 161

taking the n - 0 limit, we have:

-(0)
i

. 1/# -(0)
=y, + lim [ — ]V i 2 1-62

The sole distinction between these and the previous time-independent
solutions is the sign coefficient of n. Let us characterize the

previous solutions with a + sign, and write:

) _

@

1/h +(0)
(€ K )/" &1 | ¥ ¥ 1-63

x_+ lim [
S

where o and c denote initial or final state labels. It is customary

to refer to + solutions as "out' states and - solutions as "in'' states.
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Our previous expression, 1-31, for the amplitude

of going from o to B can be written:

-iE t/a
i Bt/

Xse l ¢+(T])> 1-65

My - (LiHE/A
fa B(t) = (e wh
The latter matrix element can be given a meaning if we form a
wave packet of the B eigenstates, in particular, we form a super-

position of outgoing states detected at different times, as prescribed

by 1-57, resulting in a new amplitude:

f((Lng(n'L <eth/ﬁ\Pé(ﬂ')(t) | ¢};(ﬂ) ) 1-66
the bra part has been defined as q;é(n') before, so:
féns)(n') _ <¢;‘”" | L],;L(n) ; 1-67
fg;)(”') is thus independent of time, The limiting value of 1-67
defines a new quantity, the scattering matrix or S matrix:
lim f(gs)(”') =8 = <¢'B(°)| q;;(o)) : 1-68

1] = 0
n'=0

The unitarity relation for SaB may be shown from 1-68, assuming
11!_(0) and w+(0) are separately complete sets of states. It may be

shown16 from the defining equations for xb;(ﬂ) and w;(ﬂ) that:
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Sup = %8 " fﬁ_zl 6(Eg-E) (H-Eg)xg | %)
ol 2"—21 a(EB-Ea) (wé(0)| (H-Ea)xa) " 1-69
We define:
o= E (E-E)xy 5
T;LB =% <¢;(0) | (H - E )x, 1-170
and note that T;B is the n - 0 limit of our previous Tcan) as

defined in 1-37 and 1-38. Although SocB

+ . o
the TaB matrices have no such restriction.

is zero for Ecc # EB’

1.2.7 Uniqueness of time-independent solutions

Even though we had pretended that all of the previous
relationships of scattering cross sections to our time-independent
equations and the time-dependent Schrddinger equation were unique,
there is a possible flaw present. It lies in the development of the

time-independent solution. Rewriting 1-26 and 1-61 together:

+(n) _ 1/# +(n)
q!a R +IECL - Kc)/fz + in VC LI'ch, - 1-71
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. _ 1/n b e
Define Ga(i-n) z —LEOL - Kc)/h I this is referred to as the

resolvent of the operator (Ea - Kc) + inf. In a coordinate
representation, it is also called the Green's function. The
limiting case of 1-71 is

+(0) i(())
¥

=5+ lim [G (t?’})JV ‘l‘ 1-'72

n=0
Suppose we solve 1-71 by the method of successive approximations,

better known as a Born expansion or iteration method. This gives

the formal solution:

i(“) Z (G_ (_m)v) X, - 1-73
n=0

The only other possible solution to 1-71 would occur when there

is a solution Olllz(n) to the homogeneous equation:
+(n) _ +(n)
Oljja Gu(in) VC Owa . 1-74
This additional solution could be added to q;i(”), so that wz('”) Oq;*(“")

would solve 1-71, However, for finite n there are no solutions to
1-74 acceptable in their physical behavior, as may be seen from its
Schrddinger equation analog:

[(E_- K)/n & injodgz(n) =1/0 V ¢i(“) 1-75
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- K +V - E® 7im)F™ =0 1-76
c c a N7l a :

For any finite n the imaginary part of the eigenvalue of K +V ,

3 3 x +(r
= H, results in an exponential divergence of L{Ja( ) as some of

the relative coordinates tend to infinity. Thig is easily realized

from the behavior of a simple plane wave, eikx, when k = ./E?t—in—h .
The trouble arises in that we do not use equations with

finite n's for solving the Schrddinger equation; we use the limiting

form 1-72. 1-72 has the Born expansion:

wi(ﬂ) =) ( lim [G 1V )" x, 1-77

n=0 n=0

and the homogeneous counterpart to 1-74:

+(0) _ .. +(0)
L nh—'mO [G &Em]IV, o¥y 1-178
which has the Schrddinger analog:
+(0) _
R, +V,-E) v,  =0. 1-79

Equation 1-79 has no complex eigenvalue term, so it is not
guaranteed to possess only unacceptable solutions. Thus the
actual equation used to solve for d;z(o) (1-72) may have other
bounded solutions besides the one with the correct form for

scattering. Faddeev6’ 1 found the correct equation defining the
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unique solution for three particle scattering in the n - 0 limit, It
is important to realize that only exchange scattering and re-
arrangement cause difficulties with the equations we have presented
here. The reason is that we have only one arrangement channel in
energy transfer problems, and the equation 1-72 is unique.
Translated into every man's language, it means that the resolvent,

lim Gc, (xn), when written in the coordinate representation as a
n—0
Green's function, contains sufficient specifications on the asymptotic
+(0)
- 6,7
arrangement channels, we must use the Faddeev equations. ’

form of to make it unique. For scattering into different

Further discussion along this line is found in the text.

1.2.8 Relation of S matrix to the asymptotic form of the

wave function

Consider 1-72 for a single arrangement channel

collision and the out state only, omitting the superscripts on Lp:;(()):

1/n

ERN ﬂll-l.no [@a' K )/#+in We by 11}

Suppose that we insert the complete set of 8 channel states between

the resolvant and V , using 1= % | XB> ( Xg | as the identity:

o . 1/7‘1 :
o) = Ix >+ nh_'mo [(Ea'Ka)/“i“ 1) |%g) (xgl Vo¥, >  1-81
B
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_ W I 1 (0)
or Ill'C(.) - |XCX./+Z. llmo [(E —KT/fI-I-i‘I’] JIXB> T(IB. 1-82
g N~ a a
Tc(xOB) was defined in 1-38; we write the n - 0 limit here. Since

IXB> is in the channel c¢ (same as |Xa>)’ |Xﬁ> is an eigenfunction

of the KOL operator, resulting in the equation:

_ T 44 1 (0)
|¢a> = 'Xa> % Z hino E-EA T 'XB> T8 1-83
5 n a B

The ¥ represents a sum over internal channel states and integration
B
over all momenta. Further examination is not possible without a

better knowledge of 7 0) behavior. Let us work with the collinear

(
af
collision of two composite particles, in which case the barycentric

volume dependence of T(O) is 2m/L, where L is the box

ap
normalization length, We replace ng with the reduced transition
matrix:
(0) 2m (0)
I = = & T 1-84
L. "P P : :
o B a o
In the coordinate representation we write:
ik %, ik%x
x) =e " te ? % () 1-85

where Xy and Xy are the coordinates of the composite particles,

and r is all of their internal coordinates. Introducing 1-84 into
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1-83, the Sp p eliminates the part of the © over total momentum,
B a B
leaving one sum over momentum states and a sum over internal

particle states. The remaining sum over momentum states is

converted to an integration over momentum using the prescription:
L
Z 2m f 5«
i

Using b for the internal state labels, we have:

ik%x, ik%x

1 272
b G EpT)=e T le 2 %y @)

.8 B
kix, ikax
¢ 1 e B e
+) [ m ey e e © Toyr)
b o B
0,0 o _. B ;B
TaB (kl’ Ky A kl’ kz, b) 1-86
(k defined below).
267 2)?
Where E = 5 + +W_, E_ is a similar expression
a m, 2m2 a g

with o and a replaced with B8 and b, k?_ + kg = kci‘ + kg, and Wa

and Wb are the internal energies of cpa(r) and cpb(r). The -0
limit is understood. If we use the center-of-mass variables,

defined by:
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X = (mlx1 + mzxz)/(m1 + m2) X=X, = X
KW = x4+ = i)+ kb
k = mlkg /(rn1 + mz) - mzki/(m1 4 mz)
K = mlko"z/(:n1 + mz) - mzl{c;/(m1 + mz)
o= mlmz/(m1 + mz)

expression 1-86 will reduce to:

e
ik x

- 1
I (x,r)=e o (r) + dk ’
o a é L E - EJ)/m+

0

5,0 T &, 1, 25 &°, k, b) 1-87
20 a2 2, 2
: (k) ATk
with Ea - EB == + VVa T Wb.
0

iK™ X

We have already removed the total center-of-mass motion, e 5

(0)
afp
arguments rather than k1 and kz. The plane wave states e

as a function of the KO, k momentum
1l

from 1-87 and written T

ikx .
and e are here box normalized on the momentum scale:

L
[elmeTgy sk,
0

g IS
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If we are counting energy levels of plane waves, we wish that

1 ¢ -ikx ik'x 222 3% sk - k)
-L_‘ j e e - ) - -

dx - {)(
2u 24 h 2.k/p.

This results in a /k factor under each plane wave later., The

integral in 1-87 is of the form:

@

ikx

I==4 f dk ez 5 T(O) (KO, k%, a; KO, k, b). 1-88
. ap
- (Z, - 2= ) + inh
0~ "2 d
0)

The behavior of Tc(:LB in the large positive imaginary region of the

complex k plane determines if we can close a contour around the
top half of the plane. Certainly the most favorable circumstance
for doing this occurs for large x, for then eikx = e—kx,
» = Imag [k]. We evaluate 1-88 as mentioned, using the first-

order pole at k = + ‘fZO + inn /Zu/hz for the residue, and obtain,

with n now zero:

ifZl X
G s S— T(OB) &%, 6% a; K,/Z,,b)  1-89
X - 2./21 n/2u) ©

where iy = ZO(2u/h 2). Replacing Z, by its implied equality in
1-87 and combining 1-87 and 1-88, we have:



33

ol X T ik x
i (xr) = o, (r)+ ) o (r)e™ T//KP
X— w /ku'
b
[-2mi - ng(xp,k“,a; kY, kP, b)) 1-90

nk

where kP = +./(k°‘)2 + (Wa - Wb)2u/h 2. The factor th/u is the
relative velocity of the particles in the final state. Let us take

the relation of the S matrix to the transition nrla,trix:16

S =45 - %MamB-EJTm)

aB B aB L

and sum over energy states. Knowing the prescription for

summing over momentum states:

we infer that a sum over energy states is:

dk,
3 EIF;[ ?E}idEi'

i
Suppose that we sum over a unit energy range, then 1-91 becomes:

(0)
(],B - 2min -—E7d-K ZTT 1-92
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where EOL = EB = K. We see from 1-84 that:

_ e 1 r©

From the expressmn following 1-87, we find dE /dk = & ks/u,
because Eg = # 282 /2u + W,. Under the sum in 1 %, P_= P,
so we may insert 1-93 directly into 1-90 and have the result:
k% JikPx
b (x,r) = P, (r) + z Py, (r)
X — ™ ‘/-ka b ﬂ(B

(SO.B - 60(8)' 1-94

Thus, we have fulfilled our goal of relating the asymptotic form

(x assumed large) of the scattering wave function to the S matrix.
All of which was to show that it is not necessary to solve for T( )
or Sas from their defining relations (i.e.: 1-38 and 1-91), Rather
they may be obtained from the asymptotic form of the time-

independent wavefunction.



35
2. INVARIANT IMBEDDING

The mathematical technique known as invariant imbedding
has been applied to ordinary, second-order differential equations.
Treatments have been given for the one-dimensional neutron
diffusion problem17 and the radial Schrddinger equation for elastic
scattering. i The general procedure is as follows: introduce a
parameter r into a problem that we wish to solve; for every value
of this parameter r, our problem has a solution S(r). For some
value of r, say rg, We know the solution S(ro); the actual problem
requires the solution for a value r = ry. Then, if we can find the
total derivative of S(r) with respect to r, or equivalently, the
function f such that:

250) = £lr,5()) 2-1

we can integrate S(r) from ry to ry and obtain the solution S(rl)

directly.

2.1 Review of One-Dimensional Invariant Imbedding

For illustration of the method and one very important means
of deriving dS(r)/dr for scattering problems, we consider the
Schrddinger equation for a particle in one-dimension scattered
by a potential, commonly referred to as a barrier reflection and

transmission problem,
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2.1.1 Non-singular potentials

Consider any one-dimensional potential U(x) that is
finitc everywhere and tends to zero faster than 1/ | x| for large
positive and negative x. Without loss of generality, we suppose
that U(x) vanishes outside the finite interval O to L. The
Schrddinger equation is:

ﬁz d2

- 5= —35 1®) +UE V) =E i(x) . 2-2
dx

Outside the interval from O to L, the solutions of 2-2 are linear
combinations of the plane waves, elkx 1kx,
k =/2mE/a, Aelkx defines a beam of free particles of flux

A*Ank/m moving in the positive x direction with momentum #k.
Be_lkx defines another beam of flux B¥*B#k/m with momentum

and e where

#k moving in the negative x direction. The transmission (reflection)
probability is the ratio of transmitted (reflected) flux to the flux
incident upon the barrier. The scattering state solutions to 2-2 are
made unique by specifying the asymptotic form of y(x). For this
one-dimensional problem, there are two linearly independent
solutions, these corresponding to a beam incident from either the
right or the left. We choose to have the beam incident from the
right, and require that all parts of y(x) in the asymptotic region,
except the incident wave, be waves moving away from the potential.
That is, we want an out state solution as defined in part 1. Thus:
x> L y(x) = o IR . el
2-3



37
x< 0: ¥(x) = g Te—ikx .

R is the reflection amplitude, 1 + T is the transmission amplitude;
the flux ratios and probabilities are respectively, |R| 2 and [ 1+T| 2.

Let U(x) = 2/Zm V(x). Interms of it, 2-2 can be written in the
simpler form

2

- L@+ Ve ¥ = K 2-4
dx

Together, 2-3 and 2-4 uniquely specify our solution. As an

alternative, we can write the integral equation for y(x) incorporating
19
both of these:

ply = o™ 5, [ wa') ¥ (x")dx' 2-5
L ; 2ik :

-0

Note that the limits on the integral could have been from O to L
since the integrand vanishes outside this range. The S matrix for
this simple problem is completely defined only if we have the
solution incident from the left. Let the analogous transmitted

and reflected amplitudes be T' + 1 and R'. Then:

+ T R’

47!
I

2-6
R 1+T
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We now introduce our invariant imbedding parameter r; itisa
cutoff in the potential V(x) at x = r. Define a new potential

containing the cutoff as a parameter:

x<r: Vxr) =V
2-1
x>r: V(xr)=0
This cut potential could also be represented with the help of a
Heaviside unit step function H(s), defined by:
s>0: H() =1
2-8
s<0: H = 0.
So in terms of it we have
V(x,r) = V(x) H(r-x) . 2-9

The derivative of H(s) with respect to s is the definition of the

delta function:

£ Hs) = 8(s) . 2-10

From 2-10 and 2-9, we see

%:l) - V() a—@g‘—ix’ = V(&) 5(e-x) 2-11
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this will be used later. The solution of the Schrddinger equation,
or the integral equation, with V(x,r) as a potential is itself a

function of r, y(x,r). We define y(x,r) from the integral equation:

-ikx . eikl x-x'|
j(x,r) = e + r ———z—i—rV(x', r)y(x', r)dx’ 2-12
or, because of the vanishing of V(x,r):
:
. k] x-x|
¢(x, 1) = e_]‘kX + J (—a—~—2—i—l-{—-—V(x')¢(x', rydx' . 2-13
0

The asymptotic form of y(x,r) can be obtained from 2-13,

x>r: yxr)= g X, R(r)eikx
2-14
x<0: (xr)= o TEX T(r)e” ikx
where:
r
1 ¢ -ikx' ,
R(r) =55 | e V(x') §(x', r)dx
0
. 2-15

TG = —2—1—5{ J RS V(x') ¢(x', r)dx’
0
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It is helpful to point out that ¥(x, L) equals the {(x) given by 2-5,
since, when r = I, V(x,L) is V(x) and ¥(x, L) is the solution of
V().

We now take the partial derivative of either equation
2-12 or 2-13 with respect to r:

d(x,r) 1 ik| x-r|
5r .~ 2k °© V(r) y(r,r)
ik| x-x'|
n v, ) .,
0

We have used either the delta function property of 3V(x,r)/3r
or the rule for differentiating with respect to the upper limit of an
integral, depending on whether we used equation 2-12 or 2-13.
Having 2-16, which is valid for all x and r, we restrict the range
of x and remove the absolute value sign from the inhomogeneous
term. This gives an integral equation defining the solution
3l (x,r)/3r on the interval x < r:

o (x, r -ikx , 1 ikr
X &£ r uq,—a(??—-)=e (me V(r) ¥(r, r))
k| x-x'|
e T T gk LT g 2
+ J(; STk V(x') == dx' . 2-17

Note that the inhomogeneous term in 2-17 is the same as that of

2-13 multiplied by a function of r. In fact, the solution of 2-17
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for x < r is this same function of r times the solution of 2-13:

A(x,r) 1
xsr == = (g

5 V(o)u(e, D))o lx, 1) 2-18

This may be verified by substitution of 2-18 into 2-17, which

furnishes 2-13, or by noting that if ¢(x) is a solution of the integral

equation

ox) = x(x) + f K(x, x") p(x') dx'

then Awp(x) is a solution of the integral equation obtained by
replacing x(x) with AX(x):

Ap(x) = Ax(x) + fK(x, x') Ap(x')dx' .
From 2-14 we obtain:

# 3y (x,r) _ dR(r) oikx

Xz or dr 2-19
and
y(r,r) = e-lkr+R(r)e1kr : 2-20
Setting x = r in 2-18 and 2-19 and equating the resulting
expressions for ay(x,r)/ar| wepr WE get:
dR(r) ikr 1  ikr -ikr iklr)2 2-21
e =3 € V(r) (e + R(r)e .

dr k
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2ikr

Letting S(r) = e R(r) and simplifying 2-21, we have:

‘lg_f}"l = 2ik S(r) + EliTc V() (1+8()” . 2-22

Thus, we have constructed a relation of the form dS(r)/dr = f(r, S(r)),
where S(r) is related to the reflection amplitude R(r). Equation
2-22 cannot be integrated unless we know S(r) for some initial
value of r; that is, we need a starting condition for the integration.
This occurs at r = 0, for there the cutoff in V(x) has eliminated the
whole potential: V(x,0) = 0, The solution |(x,0) is just e-ikx
everywhere, i.e., there is no scattering. We immediately see that
R(0) =0 and T(0) = 0. The solution for the actual, complete
potential V(x) is found at r = L, for there V(x, L) = V(x) and R(L)
is the reflection amplitude of {(x) as defined in 2-3.

The complete invariant imbedding problem which is
equivalent to the Schr8dinger equation with proper asymptotic

conditions is therefore:
_2ikr
S(0) = e R(O) = 0
ds(r) . 1 2
S 2ik S(r) + TR V(r)(1 + S(r)) 2-23

P(&, ) = |s(L)| 2

where P(¢ ,—) is the reflection probability (as defined after 2-3)
of a state incident from the right (¢), scattering back to the right
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(=»). The transmission probability P(€—,¢~) is just 1 - P(€~,—»),
because P(¢—,—>) + P(¢—,€) =1, There is a more fundamental
procedure for calculating P(€—,€-). Briefly, we have from 2-14:

¥(r,r) = e-ikr + R(r)elkr
2-24
= o B 3y (x,r)_ dT(r) o ikx
- Jr dr .

Substituting 2-24 and 2-14 into 2-18 with x set equal to zero gives:

dgér) _ _%ﬂ_{eikr V(r)(e_ikr N R(r)eikr) C 1+ T@) 55
o 13%"7) - zlik V(r) (1 + 8(r))dr . 2-26

Knowing that T(0) = 0, we integrate 2-26 from 0 to L directly:

i L.
B e[ s e
0 0

The LHS of 2-27 is just 4n(1 + T(L)), so:

L
T(L) = exp(—g-]i-ﬁ f V(')A + S(r"))dr") - 1. 2-28
0
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Therefore the transmission amplitude can be computed from a
definite integral of S(r), which can be obtained as we integrate
2-23. It is interesting to show that the solutions 2-28 and 2-23
conserve probability, as we know they must, Defining transmission

and reflection probabilities as a function of r:

P(e,<; r)=|1+T@)|?

9-29
2
P(¢,—; r) = |R(r)|

where we used expression 2-28 to define T(r) by integrating from
0 to r rather than 0 to L. We must show:

P(¢—,—>; r)+ P(¢,¢; r)=1. 2-30

Since we know T(0) = R(0) = 0, it is obvious from 2-29 that 2-30
is true at r = 0, It is now sufficient to show that the derivative of
2-30 with respect to r is zero. Substituting the definition of T(r)

into 2-30, introducing R(r) = e21kr S(r), and simplifying:

r
GXD(—z—l-l-E [ vE) @) - s*@))ar') + s¥(r)sx) = 1. 2-31
0

This equality is in doubt everywhere except at r = 0. Putting
S*(r) S(r) on the RHS and taking the logarithm:
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i oy
_zlﬁ [ V) 6@ - $5(e))dr' = £n(l - 8 () S@)) 2-32
0

Again this holds at r = 0. Taking the derivative of both sides and
using 2-22 reduces the derivatives of the RHS and LHS of 2-32 to
an identity. Thus, we can prove that 2-32 is an equality for all

r, proving 2-30 for the same.

2.1, 2 Singular potentials

If the potential in our one-dimensional problem tends
to infinity in some region, we call that potential singular, The
solutions to singular problems usually fall into two classes,
regular and irregular, This will be discuissed later; the present
discussion is based on an impenetrable potential, which always

has regular and irregular type solutions. By definition, we know
that:

P&, 4)

1l
=]

2-33
P(&, )

1}
[y

for any such one-dimensional potential. There is no reason to
calculate these numbers, per se, but if one is interested in the
phase of the scattered wave, it must be obtained directly from
the amplitude R(r), which cannot be determined from the
modulus. For example, in the elastic scattering of a particle

by a spherical potential (in three dimensions), the radial
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Schridinger equation for each partial wave is similar to equation
2-22 with V(x) substituted by the effective potential Veff(x) =
V(x) + (2 + 1)/x2. The phase shift is determined from R(r) or
S(r) as r becomes sufficiently large.

Let our impenetrable potential have the properties:
x>L Vi =0 2-34
x<< 0 V(- k2 >> 0, 2-35
The cut potential is defined the same as before:
V(x,r) = V(x) H(r - x) . 2-36

The integral equation for y(x) is the same as 2-5, and the integral
equation defining y(x,r) is the same as 2-12. One might question
the propriety of using GO = eik| x-x'| /2ik as the free particle
Green's function for a potential that does not allow the asymptotic
(x << x') e_ikX state to the left. However, this Green's function
is correct, for one can continuously deform a potential allowing
transmitted states into one which does not allow transmission.

The same Green's function must be used at each stage of the
deformation. We clarify this as follows: consider V(x) to be a
potential satisfying 2-34 and 2-35. Introduce the modified potential
Va(x) = V(x) H(x - a); for x< a, Va(x) = 0. Because of this,

Va(x) is always penetrable in principle and we must use the given
form of GO' However, as a approaches large negative values
(deformation of Va(x)), we will find by calculation that penetration

drops toward zero. Since we do not use a deformed V(x) explicitly,
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we have taken the limit a - -«, Only if the potential contained an

infinite barrier at a certain point x = X would we use

1 ik(x—xo)
- %€ Smk(x—xo) X > X
GO(X, x") = 2-37
ik(x'-x.)
1. 0 ,
—l—{smk(x-xo)e X <X

Everything in our previous derivation of the invariant
imbedding equation is the same for our new potential (2-34 and
2-35) except the starting point and starting condition. Looking at
V(x,r), we see that the cut potential appears as a very high barrier

at r if r is sufficiently far to the left. Selectan r = r, such that:

2
V(x, I'O)]X < 1, >> k

We know the exact solution for an infinite barrier at rO:

i fee, AT,
e +e ( )

¥ (x, ro) = 2-38

We can also write down the exact solution for the barrier potential,

X(x,ro) = { 0 > Ty as:
V(ro) X <1
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-2ikr :
-ikx ikx 0 1 +ik/x
e +e (-e T ) x> 1
- -Ar, -ikr .
ekx ( 0 0 2ik/x =

=€ e rm) X

where \ =J6(r0) - k2 . The usual condition here is that our
potentials are uniformly increasing as we move to negative x;

therefore

.. oo 12
Vix, o)l o ry > V(ry, rg) = Virg > k°. 2-40

Suppose we use the starting condition R(ro) o g TR for the
invariant imbedding equation. This would be exact if we had an
infinite barrier at ry, as seen from 2-38. It is intuitively
obvious that the phase shift error indicated by a comparison

of 2-38 and 2-39 is greater than the phase shift error in the actual
solution to 2-40, because the actual solution penetrates less than
solution 2-39, As r, moves to the left, . becomes large and the
solution 2-39 approaches 2-38. We have thus shown how to make
the starting condition R(ro) 5 —e_2ikr0, or S(ro) = -1, arbitrarily
accurate by choosing o sufficiently deep in the high, classically
inaccessable, region of the potential. In terms of the solution
2-39, the phase shift error is approximately k/» when S(ro) = -1
is used. To test the actual error development in solving a

problem, we integrated the invariant imbedding equation:

Qasai@ll) - iS() - ie” T (1 + 8(@))2 2-41
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which corresponds to the Schrddinger equation:

2

- 4o L X o) = (1/2)% 3() 2-42
dx

describing scattering from a repulsive exponential barrier e .
The numerical stability and error damping properties of the
equation are remarkable; we used several different starting

points and integration step sizes. The variation in the solution

as the starting point is moved farther back into the potential is
shown in Figure 1, Note that the relative error in the starting
condition does not build up, but decreases as we progress out

of the region of high potential. Since e”* does not vanish any-
where to the right, integration is continued until the phase of R

is constant, In conclusion, we may begin our integration at some
likely point To calculate R outside the potential, choose another
r, less than the previous, and calculate R again. If no significant
change in R is found, we conclude that the starting conditions were

adequate.

2.2 Multi-channel Invariant Imbedding

Consider one of the simpler non-separable Schrdinger
equations,

h2 2

HY = (- o= -i? + Hy(y) + Vi, )i, 3) = Ei(x,y) . 2-41
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Ho(y) is a Hamiltonian operator in the coordinate space of y and
VI(x, y) # g(x) + f(y). We assume HO(y) hais a complete discrete

set of eigenstates cpn(y) with eigenvalues Wn:

Hy(y) o () =W o (). 2-42

The cpn(y) are orthonormal; later we will discuss the assumption
of discreteness. Equation 2-41 might describe the collinear
scattering problem of an atom of mass m striking another atom
of mass M which is bound in a harmonic well. The incident
atom does not interact with the well, but only with the bound atom
through the interaction potential VI(x, y). The explicit form of
HO(y) would be:

2 2

_ 4% 3
HoW =-am—3+
3y

iy 9-43

Do =

and the cpn(y) are harmonic oscillator wavefunctions., For a
fixed E, there is a set of solutions to 2-41 which are linearly
independent and have asymptotic behavior describing different
kinds of scattering events. We label these li;i(x, y), where i
denotes the state of the bound particle before the collision. In
other words, in the asymptotic form of \lti(x, y) there is only

one term corresponding to a plane wave moving toward the bound

particle, It is cpi(y)e_lkix, where k; = +\f‘2_nza (E - Wi)' The
A
imaginary unit i is not to be confused with the state label i. We

have assumed that VI(X, y) vanishes sufficiently rapidly as x » =
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that, for large x, we may write y(x, y) as a linear combination

(L. C.) of a complete set of solutions to H - VI:

2 32
(H - ¥y, = b 5 —5 + Hylghh, = Bx
X

. 2-44
n

We see that these solutions are products of the separated solutions:

-~

ilknx ]
n

X, = ® (Ve 2-45

So, for large x:

i e :tiknx
Ve y) = LC{x ) =LC{o (e "} . 2-46

The x:; are our channel states; they are the solutions of

H - VC = KC as discussed in the introduction.

2.2.1 Multi-channel integral equation

In analogy to our previous one-dimensional work,
we want to convert 2-41 to integral equation form, incorporating
the correct asymptotic conditions for scattering, i.e.: a unit
incident wave striking a state i of the bound system, and outgoing
waves after the collision. We also must require that y(x,y) be a

regular solution, not diverging anywhere. Scaling 2-41, we write:
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a2

Hy'(x,y) = (- ll—n — + Hy(y) + V(x, ¥) Vo, y) = Ed(xy). 2-47
X

Knowing the channel solutions:

Hy) o (y) =W o ()

2-48
==
(H = VI 2 E)Xn(x, Y) =0

we want to construct the total Green's function or resolvent for the

operator H - VI - E, defined by:

(H - VI - B)G(x,y; x',y") = 6(x-x") 8(y-y") 2-49

with the outgoing wave condition:

R S B!

+
Glx, v; x', 3| = L.C.{g (x,y)x (x,9)}.  2-50

The solution is :19

= m ik Ix-x
Gloy; x,¥) =- ) @ (eEG) 55— e . 2-51
n

n=0

It is easy to prove 2-51 satisfies 2-49:
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(H-V;-E)Gk,y; %',y

S oy e
= Z (- =g * HO(Y) - E)CPH(Y)CPH(Y )E‘ﬂj:“ e
X n
n=0
© 1 32 . iknl x-x'|
= - s s " *
n=0 X n

Now we must find what the second derivative does:

1 52 (m elkn[x-x'l
m 2ik
X
. ik (x'-x)
2 ik (x-x") : *n
- 2 Hex)e bR ;
n 9x
ik (x-x') ik (x'-x)
= - "2%1-; Sa-}-{ (ik H(x-x')e " - ik H(x'-x)e " )
n
. ik (x'-x)
k (x-x') . !
= - %(ik H(X—X')e1 i} " Hx'-x)e * + 26(x-x")
n

ik ikn| x-x'|
=-8(x-x)-5-e

Inserting this into the previous gives:
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(H- V;- E)G(x,y; x',y")

® m i.kn|x—x'[
= - - K 1

Y W -E)e )¢ i ©
n=0

°° ik ik |x-x|
) o (ex) Gx)+5- e )
n=0

=) o (y) o*(y") s(x-x)
n=0

k

2
k
. m_ _ mn m_ _ n :
since (Wn - E) 2ikn ki Zikn t 37 and the exponential terms

in the above sums cancel exactly. The completeness relation says
that

o
¥(xr1) = —x7!
Y o () eX(y) = 8(y-y) .
n=0
This completes the proof of 2-49, Writing 2-47 as:
i

H-V -B) ' = -V 2-52

we see that
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e y) =x 6 y) - [ ax [ ay Gy, y) Vo, v G, )

2-53

is equivalent to 2-52 and has the desired asymptotic properties for
scattering, namely:

) —ikix ® i ian
¢V (x,y) = P (y)e + z c, cpn(y)e 2-54
X — @
n=0
where
i WOr = -iknx' i
“n = 2ik_ [ ax [ aye (e Vi, y)v,y).  2-55

The transition probability of the bound system from an initial
state i to a final state n is just the ratio of the flux of the free

particles in the final outgoing state to the flux of the incident
state:

_ i 2 n
Pi,n_ | Cn] -k‘—' . 2-56

A further point should be mentioned: not all of the xi correspond
to states that are physical observables., Whenever n is sufficiently
large such that Wn > E, kn is a positive imaginary number and

ik x
e is a decaying exponential of zero flux, These are referred
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to as virtual channel states. The inclusion of these in the Green's
function expansion or a state expansion of the wavefunction is
necessary for completeness. Their omission from a calculation

could affect the values of Pi n significantly.

]

2.2, 2 Matrix form of integral equation

Having our multi- channel integral equation, 2-53,

we do an expansion of wl(x, y) in the eigenstates of Ho(y):

@

lbi(X, y) = 2 fli,l(X) @ () 2-57
n=0

where the f (x) are unknown functions, Substituting 2-57 into 2-53
and taking inner products with the members of Py (y) gives a
coupled set of integral equations for the f (X) To simplify our

algebraic manipulations, define the matrlces.
_ . m
(E&),, =1 &

(K) =k b (e1~ng =e " %mm
~’nm~ n nm nm

(V&)= [ ay e*x0)Vilx, e ) 2-58

-0
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where we count rows and columns beginning with 0 because our
sums begin at 0. Having these defined, the coupled set of

integral equations may be written:

E(X) # e—1§X+ f dx' -E-in-ir(elgl x-x'| Vx') F(x') . 2-59

-0

The asymptotic form of F(x) may be written down from this

equation.

2. 2.3 Derivation of multi-channel invariant imbedding

equation

The invariant imbedding parameter r is again a
cutoff in the potential, but only in the x coordinate of the

interaction. Define the parametrized potential:

Vi, y,1) = Vi(x, y) H(r-x) 2-60
with
BVI(x, y,T)
—_a_r——'—— = VI(Xa Y) 6(1"}{) . 2-61

The matrix form is simply:

Y(x, r) = X(x) H(r-x) . 2-62
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Our parametrized solution is defined by:

-iKx | p iK| x-x'] .
F(x,r)=e Ly J' dx' EripgeNIX x'| V(x',r) F(x', r). 2-63

-

Attention is immediately called to the formal similarity of 2-63 to
the one-dimensional analog 2-12 . The construction of the invariant
imbedding equivalent to 2-59 parallels the one-dimensional problem.
It is helpful to keep in mind that the j'th column of F(x,r) relates

to a particular scattering state wj (x,y,r), and that the i'th row
relates to the i'th terms in the state expansions of these \llj, e,

fg(x, r) cpi(y). From 2-63, noting that the upper limit on the integral
is effectively r:

-iKx iKx

X>7T E(x,r) =@ ~ + @~ E(r) 2-64
where
m -iKx!
R(r) =g [ dx'e =" V(x,r) F(x, 1) . 2-65

-

The matrix elements of g(r) give us the transition probabilities

Pi f(r) for the cutoff interaction. For sufficiently large r, these

J

are the transition probabilities for the whole interaction VI(x, y):

2 &
| f » for r large. 2-66

P ¢ R ,°
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Our interaction VI does not allow the incident particle to pass
through the bound one; this eliminates the necessity for including
transmitted flux. Taking the partial derivative of 2-63 with

respect to r:

aF(x, r) :
S G i 4 B 2
2 2K ° V(r,r) F(r,r)

m < olK|x-x'| , 3F (x', 1)
__E 'J‘ ~ X(X,I") —ar—*—- . 2'67

V(r,r) is just V(r) as defined in 2-58. Restricting the range of
X in 2-67, and placing the effective upper limit r on the integral,

we have:

3F(x,r) _ m IKX + iKr

e 215 V(r) F(r, )
m_ g JEl=w| o, o BEELT) 2-68
+ 3K J‘ X' e~ V(x', r) g -

@

iKx " =i i -i i
Because K and e~ are diagonal, e okl S s o eler,
and these diagonal matrices commute, We re-write the in-

homogeneous term (first term on RHS above) of 2-68:

B[ I 3K = v(r) Er, 1) ]
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and note that it is a function of r times the inhomogeneous term
of 2-63. Using the same method as presented in the one-dimensional
section, we conclude:

dF(x, r iKr
X< T %’%_—) = E(X’ r) [“"zr—?g o= V(r) E(r,r) 1 2-69

It must be remembered that non-diagonal matrices do not, in

general, commute. From 2-64:

(K, r) _ iKx dR(r)

Xx=zr dr “dr

and 2-70

F(r,r) = o BT 4 5T R(r)

Setting x = r in 2-69 and 2-70 and equating the resulting

expression for —=—2-- gives:

1Kr dR(r) _ (e-i? 1Kr

iKr
= R(r) g3z €'~ V(r)

(e X" + !B R(r)) 2-71

where we used the expression in 2-70 for F(r,r). Let us define

S(r) as a new dependent function:

1Kr iKr

S(r) R(r) e'~ . 2-172
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Using this and the commutation property of diagonal matrices,
2-72 becomes:

'('i%ll) = iKS(r) + iS(r)K
+ (1 + 8(x)) % V(r) (I +8(r)) . 2-73

Either 2-71 or 2-73 is the invariant imbedding equation. The
transition probabilities are related to the moduli of the §(r) and
B(r) matrix elements:

k k
Py g0) = IR g = 16wyl £ 2-74

As r becomes large, Pi,f(r) approaches Pi,f , the transition
probability for the uncut interaction VI(x, y). We have derived
everything except the proper initial condition to begin the integration.
It was stated previously that VI(x, y) precluded penetration; more
specifically we require that, for some r =r

0
VB(y) + VI(X, v, rO) >> B for x < r, 2-75

where V5 is the binding potential in H, (y). 2-75 is simply the
requirement that there exist an Ty such that the part of x,y
configuration space to the "left'" of rg is energetically forbidden.
We approximate the cut potential VI(x, v, rO) by an infinite barrier:
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0 X > Ty
v, &, ry) = 2-76

@ X<I‘0

@®

and obtain the solutions to the Schr8dinger equation for VI:

kx 2T

-iKx i
~T+ e~ (-e

e

) X2 r,
Fo(x,1) = 2-17

These solutions possess no inelastic transitions, i.e., they are
diagonal, consisting of an incident wave and a reflected wave in
the same channel. The starting condition for the integration of
2-71 is B(ro) = e—2il§r0. Using 2-72, we see that the starting

condition for 2-73 is

S(rg) = -1 2-78

which we assume is accurate to order -\/E/(Vnn(ro)—E), the error
introduced by the penetration of the n'th channel incident wave into
the high, but finite, cutoff interaction. In practice, we need to
carry through convergence tests on the answers, Pif’ as we move
the starting point farther into the impenetrable region of VI(x, v).
This completes our detailed description of the multi-channel

invariant imbedding procedure.
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2.3 Properties of the Invariant Imbedding Equation

The most important feature of the invariant imbedding
method is that the asymptotic boundary condition of a unit incident
wave and outgoing scattered waves has been built into the equation
itself. Previously, only the integral equation had this property.
The regularity boundary condition on the Schrddinger equation
serves to determine the initial starting condition for integration
of the first-order equation.

Our derivation of the multi-channel invariant imbedding
equation is more general than we have implied. For simplicity,
we have taken the HO part of the total Hamiltonian H to depend
on one scalar coordinate y. However, we may define that y to
represent several coordinates, so that the eigenfunctions of H0
are described by several quantum numbers, Ny, Ny eve, the set
of which is represented by n. If we order these indices
consistently throughout the derivation, we obtain the same final

result. Note that cpn(y) might be P non (yl,yz, y3) as long as
177278

they are complete, orthonormal, and discrete. The necessity of
discreteness will be discussed later,

We must mention here that a previous derivation of the
multi-channel invariant imbedding method was found after our
work was completed. The other work was of the same general

applicability as ours, but arrived at by a different procedure. =
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3. INTEGRATION OF THE SCHRODINGER EQUATION

Any numerical method of calculation should have checks; the
immediate answer for an alternative method to invariant imbedding
is found in a direct integration of the Schrddinger equation itself.
This procedure is the most fundamental of all calculations in

scattering theory.

3.1 One-dimensional Theory

3.1, 1 Non-singular potential

Integration of the one-dimensional scaled Schr8dinger

equation:

2

- 490 | vx) o) = Ko(x) 3-1
dx

to find a solution conforming to prescribed asymptotic conditions
could be accomplished as follows. We know that any solution of
3-1 may be formed from a linear combination of two linearly
independent solutions., The theory of Sturm- Liouville equations

is applicable, 2 so we know that solutions are linearly independent
if their Wronskian, which is a constant, does not vanish. Let
cpl(x) and cpz(x) be two solutions to 3-1; if, at any point Xq» the

Wronskian is not zero:

W (e, (), CPZ(X))Ixzxo # 0 3-2

or .
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dep; (x) dep o (x)
dx dx

t =
NG N N

then cpl(x) and cpz(x) are independent and we may form a correct
scattering solution by taking a linear combination of them. In
order to obtain cpl(x) and cpz(x) by numerical integration, we

choose function and slope boundary conditions at some

XOI
dep; ()
P () = ¢y % il |
X=X
0
3-3
dep o (x)
P9(xg) = C9» —a% ‘ =9
X=X
0
such that 3-2 is satisfied, namely:
S S
c—l 7 ;:—2 3-4
1 2

and integrate away from the point Xy This determines numerical
solutions of 3-1 for all x that are assured of linear independence.
To form the correct scattering solution, one analyzes cpl(x) and
cpz(x) in the asymptotic regions, obtaining coefficients:

-ikx N ikx

b.,e

4 () N 1

X large



Py (x) = aze_lkx + bzelkX 3-5
x large
and
cpl(x) = cle_lkx + dle1kx
x small
3-6
cpz(x) = cze_lkx + dze1kX
x small

Suppose we want a unit incident wave from the right and outgoing

waves from the barrier V(x) (we have assumed V(x) is penetrable):
o(x) _ e-1kx & Relkx
X large
3-17
(%) = g X
X small

The scattering solution ¢(x) is a linear combination of cpl(x) and

Po(x):

v(x) = Ap;(x) + Bpy(x) . 3-8

For large x, we see that 3-5, 3-7, and 3-8 imply:
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1 = Aal + Ba2
3-9
R = Abl + Bb2 .
For small x, 3-6, 3-7, and 3-8 imply:
0 = Ad, + Bd,
3-10
T = Ac1 #* Bc2 .

Together, 3-9 and 3-10 may be solved for A and B in terms of

the coefficients. R and T are then found from these.

3.1.2 Singular potentials

If V(x) tends to infinity in some region, for x either
finite or infinite, we know that 3-1 has two types of solutions,
which are classified as regular and irregular. The regular
solution tends to zero as V(x) - », whereas the irregular solution
diverges in that region. Proper solutions of 3-1 must be regular.
A thorough treatment of singular potentials has been given by
Kemble. 42 Suppose that V(x) is singular at Xy If we pick
boundary conditions like 3-3 at X # Xy, We will find in general
that cpl(x) and cpz(x) each contain components of irregular solutions,
We would then have to take an appropriate linear combination of cpl(x)
and cpz(x) which eliminates the divergent parts. Rather than doing
this, it is more practical to begin the integration near the singular

point X4, using function and slope values corresponding to a regular
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solution, and integrating out of the singular region of V(x). This
necessitates finding only one solution instead of two, The correct
asymptotic behavior at infinity is produced by multiplying the
solution by an overall normalization constant. If we do not know
the form of the regular solution of V(x) near Xy, We can approxi-
mate it with arbitrarily good accuracy by modifying V(x). Suppose
V(x) = e_x, then the singular point Xy isat -, The form of the
regular solution of 3-1 is known for this potential, but it is not as
simple as one would like. Our procedure is to define a new

potential:

Vix) =e ¥ X
Vi(x) = 3-11
V=V(r)>>1<:2 % £ 1

v
=

which differs from the actual one only in the very high regions of

V(x). For x < r, the regular solution to the modified problem is

e)‘x, A =+/V(r) - k2, At x = r, we choose the boundary conditions:

AT
o&)| . = ©

3-12

do(x)

AT
dx Ix=r = &

and integrate into the asymptotic region. Note that any starting

boundary conditions of the form:
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o), = A

3-13

dx 'x=r

would only change the solution by an overall normalization constant.

An alternative approach could be to define V''(x) such that:

V(x) X>T
V'(x) = 3-14
) X <T
where V(r) >> kz, and let:
p(r) = 0
3-15
do(x)

dx ]xzr =&
In any case, we expect the solutions to the modified potential to
approach the regular solution of V(x) as the modification approaches

the singular point,

3.1.3 Re-normalization procedure

Suppose we are integrating the equation:

2
el L o o) = o) 3-16
dx
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by starting at x = -3, using ®(-3) =1 and ¢'(-3) = dcp(x)/dx]

=/19 = 1/e3 - 1. At x = -3, the potential is 20 times the energy.
The solution ¢(x) will increase by several orders of magnitude as
we progress towards large x; this is to be expected, for the proper
regular solution is decaying to zero inside the potential. If we had
chosen starting conditions o(-3) = 10_5, 9'(-3) = /19 x 10—5, we
might have found that ¢(x) is of order 1 for large x. Instead of
trying to guess a priori the correct order of magnitude for o(x) at
-3 to give o(x) of order 1 as x becomes large, we could re-
normalize o (x) at selected points during the integration. Using
o(-3) = 1, ©'(-3) =/19, we might find that (-2) = 100; consequently
we divide o(-2) by '100 and o'(-2) by 100 and use these as new
starting conditions at x = -2. Both function and derivative must be
divided by the same number, otherwise we are doing more than
changing the overall normalization of the wavefunction. This re-
normalization procedure is of no practical utility unless numbers

are becoming so large that computer overflow occurs.

3.2 Direct Integration of Multi-channel Schrddinger Equation

We will find it convenient to work with matrix notation here
that is almost identical to the previous development of the matrix
integral equation for multi-channel scattering. There are some
slight differences in definitions, so the process will be quickly
repeated.

3.2.1 Matrix Schridinger equation

We begin with the scaled (dimensionless) form:




Tl

] 2 . .
Hi=(1 2, tH @+ Vi = Byl 3-17
12 I
(4

where Ho(y) has a complete, discrete spectrum of eigenstates.
Label i denotes the initial state of the system prior to collision;
as mentioned previously, both y and i may be regarded as
symbols for several coordinates and quantum numbers. Using the

solutions of

Hy(y) o, () = W o (¥)

3-18
(o M e (1)) =5
as an expansion basis for qjl, we have:
i -
Yy = ) £ e ). 3-19

n=0

3-19 is substituted into 3-17 and inner products are taken with
members of the set of cpm(y). This gives a coupled set of

differential equations for the f:l(x), which may be written in

matrix form. Defining:
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(EG), =1

— = —‘— -
(Ix{)nm kn 6nm & Vu(E Nn) Gnm d=itl

W), =0 [ dyex®) Vi e )

-0
we have

a2 2
- F(x) + V(x) F(x) = K” F(x) . 3-21

Note that the matrices ""count” rows and columns the same way
that the sums are written, i.e., from zero. We will assume
VI(x, y) does not allow penetration; then we are interested only
in the asymptotic form of F(x) for large positive x, orienting
the system so that the incident flux comes in from the right, The
scattering solutions that we wish to calculate must have the
asymptotic form:

F(x) = i elKX

l
1=,

3-22

where R is the matrix of amplitudes from which we calculate the

transition probabilities:
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121:'

P = I(B)ﬁ = 3-23

The object of our effort is to find the R matrix as specified in
3-22,

3. 2.2 Transformation of scattering states

Suppose for the moment that we have a complete set
of linearly independent regular solutions to 3-17:

Yy i=0,1,2,... .

These satisfy everything but the correct asymptotic form for

scattering. Expand:

ey =) g6 w0) 3-24
i=0
and define:
(Q(X))ij = g}(x) . 3-25

In the region of large x, 3-17 is separable, so we know that:



74

i n
Wiy = y al e Cpn(y)
X - @ ;0
= iknx
i Z bl e o () 3-26
n=0
Define:
(A).. =al (B).. = b 3-27
gy i =i j *

The above four equations tell us that

G(x) = e-igxé+ oE B 3-28

~

X—OW

G(x) is a solution of 3-21, but does not have the behavior required
for scattering. The correct solutions wl(x, y) are expressible as

linear combinations of the x](x, y):

vz, y) = l d; W (x,y) . 3-29
j=0

Inserting expansions 3-19 and 3-24 into 3-29, using definitions
3-20 and 3-25, we write the matrix equivalent of 3-29:

F(x) = G(x) D 3-30
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where (Q)ij = di. For large x, we use 3-22 and 3-28 in 3-30 and
obtain

e-1}§x o eﬂrgx R = (e_ﬂéX A& elgx B)D 3-31
_ = s e
which implies:
1=AD R=BD
or
_ -1
R=BA " . 3-32

Thus, once we have found a complete regular set of solutions to
the Schrddinger equation, it is easy to examine their asymptotic
behavior and form a correct set of scattering solutions, We see
that A" ! is the correct linear transformation that relates G(x)
and F(x), because, from 3-32, D = é’l

Flx) = Gx) AL . 3-33

Our problem is now to determine the XJ (x,y) solutions, or
equivalently G(x).
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3.2.3 Determination of regular solutions

Consider the numerical procedure to determine any
G(x) solution; again we must choose function and slope conditions

at some x; to uniquely determine G(x) for all x. Suppose:

G(XO) =C
3-34
d G(x)
dx X=X -2
0

then equation 3-21 enables us to integrate away from X and
determine G(x). The fact that the Schrddinger equation 3-21

is written with F(x) as a dependent function is immaterial; both
F(x) and G(x) are solutions, The integration is straight-forward,
but we must c.ccomphsh two things: (1) insure that the XJ , corre-
sponding to columns j in g(x), are linearly independent, and (2)
satisfy the regularity requirement on Xj so that they do not diverge
in the singular region of the interaction VI. We need the following
theorems.

Theorem I. For any solution G(x), if the columns of G(x)| shcs
are linearly independent, then the functions X] are linearly inde-

pendent for all x and y.

Proof. Let us assume that two of the X], Xn and Xm, are linearly

dependent. This means that there exist ¢y and C such that:
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0=c, Xn(x, y) + o xm(X, y) for all x and y 3-35

or

B n m '
0= c, 8 (x) + oy & (%) for all x and i 3-36

ecause the o.(y) are linearly independent, 3-36 implies that the
b th 1() 1li ly ind dent, 3-36 implies that th

columns n and m of G(X)Ime are dependent, in violation of our
- e |
hypothesis. The theorem is true by contradiction. QED

Theorem II. For any solution g(x), if the columns of g—ga(%)—’
X=X
1

are linearly independent, then the functions X] are linearly inde-
pendent for all x and y.

Proof, Again, suppose that Xn and Xm were dependent. This
implies that:

; n m :

0=c g (%) + c, & (%) for all x and i 3-37
dg; (x) dg;"(x) _

O—cn~—a—x—+cm = for all x and i. 3-38

The latter violates the hypothesis for x = Xy, SO the theorem is
true by contradiction. QED

Consequently, it is a simple matter to insure the independence of
our G(x) column vectors; we simply choose starting function and

slope conditions as in 3-34, with either or both of det(C) # 0, det(S) #0.
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The regularity requirement is accomplished either by
beginning the integration near the singular region with a regular
asymptotic form, or by modifying the interaction potential in a
region that has negligible effect on the regular wavefunctions. For
problems of interest, we must do the latter, since we do not know
the behavior of the regular solutions analytically. It is difficult to
place bounds on the effect that a modification of VI has on the
solutions or the transition probabilities. Intuitively one knows
that, as the modification moves farther into the classically for-
bidden region of the interaction, the solutions to the modified
problem approach the correct solutions of the unmodified problem,
Examining the whole Schrddinger equation, with Ho(y) = To(y) +
V0 (y), where V0 (y) is the binding potential of the bound system:

2
1 . .
2 25+ T () + Vo) + Vil ¥ = E ¢ 3-39
W axz 0 0 I
we place the modification in VI such that
Vo(y) + VI(xl, y) >> E 3-40

for Xq in the modified region, The same concept was used in the
starting conditions for the invariant imbedding formalism.

The regularity requirement on ¢i(x, y) and Xj (x,y) is
ultimately expressed on f;(x) and g]?(x). The easiest modification

to place on VI(X, y) is an infinite barrier at x = Xg Then we might
use in 3-34:
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g(xo) = §

3-41
dG(x)

dx

Another modification is to make V(x) diagonal for x < Xy

(X(X))]-Lj X > X
(V' ()5 = 3-42
(Yf(xl))]-lj b XS X

and use

where Qﬁ)ij = '\/(y: (Xl))ii - ka_ 61]' . Having a diagonal potential
enables us to decouple the system of equations implied by 3-21 in

the x < X region, The regular diagonal solution of the modified
problem 3-42 is:

Gix) = e &%) 3-44

from which we observed 3-43,
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This completes a tentative scheme of solution, but it is not
generally useful because of a hidden difficulty that arises in practice.
In the next section we will explain this problem and the method of

re-orthogonalization used to circumvent the difficulty.

3.3 Method of Re-orthogonalization for Matrix Schrdinger Equation

3.3.1 Tendency to linear dependence

Integration of the matrix equation,

2
] d_d%gf? + V(x) G = K2 G(x) 3-45

reveals the same general increase in magnitude of the solution as
we progress out of the interaction as was observed for the one-
dimensional problem in 3. 1.3. Again this is no real difficulty, but,
in addition, a new feature is observed which precludes solution of
the whole problem. It turns out that the G(x) solution, when put in

the form e” k= A + el~ng B for large x, produces very ill-

conditioned23 matrices A and B, We will define the term
immediately. Our starting conditions for integration absolutely
guarantee linear independence of the xj solutions, but we know
nothing more definite than that,

An operational definition of an ill-conditioned matrix
is that it is more difficult to achieve a given numerical accuracy
in the inverse than one would expect on the basis of size alone.

Many matrix systems have been investigated by Todd, 8 who
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decided that the measure of ill-conditioning was the magnitude of
the ratio of the largest to the smallest eigenvalue, called the

condition number, Consider the example,

_ a a+e
7 = (b b—e)'

The eigenvalues of A are a + b and -¢; as e becomes small,

or a and b large, the condition number |(a + b)/e| increases.
One could picture the increase in condition number as the columns
of A tending toward linear dependence. In the limit of dependent
columns, det(é) = 0, but it is not necessary for the determinent to
be near zero for A to be ill-conditioned. For example, if a = b =
10% and € = 1, det(a) = -2 x 10° and | @@ + b)/e| = 2 x 105, Here
we will set up a different definition of ill-conditioning, based on the
concepts of linear independence of vectors. Consider any matrix
C as a collection of column vectors g].:

g: (--- C.**° C_---). 3-46

Project out of < the component of ¢; contained in it, leaving Sj(i):

> C.
it |

i
z = C:
] ~i
-\/Ni' Ei\/jgj . Ej

~

c.(i) = ¢

3-417

If the norm of _g].(i), |[5j(i)1|, is small compared to the norm of <

we say that <5 and Sj are nearly linearly dependent. If for any or
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all pairs, i and j, of columns in a matrix ¢ we observe that

Il Ej(i)H il E]” is small, the matrix is ill-conditioned by our definition.
This is what we observe in the A and B of the asymptotic form of
G(x) (3-28) and in the columns of G(x) itself at any point in the
asymptotic region when we directly integrate the matrix Schrddinger
equation as prescribed in 3. 2 .

Let us follow the behavior of two columns, gi(x) and
gj(x), of G(x) using 3-43 as starting conditions. At the starting
point ||~gi(x0)H, |Igj(x0)[|, and ||gj(i)|| are all 1 because g(xo) =1,
As we progress out of the potential by integrating 3-21 (with G(x)),
]Igi(x)ﬂ and ||g.(x)|| both become large, but |[§].(i)|| remains small,
so that the ratio || gj(i)||/ I gjll becomes small. In other words, we
do not observe a corresponding rise in magnitude of the degree of
linear independence, defined by || g; (i), to compensate for the
increase in magnitude of the 8; vectors. This i_slthe observed
phenomenon which prevents the calculation of A ~, needed in 3-32
for the transition amplitude evaluation. In table 1 we give the

numerical data illustrating the above discussion.

3.3.2 Re-orthogonalization procedure

In section 3. 1. 3 we described the re-normalization
of solutions to the one-dimensional Schrddinger equation; it
involved an operation on ¢(x) at various points during the integration.
The reason for that discussion was to lead into the method of re-
orthogonalization which follows.

For purposes of numerical integration, we break 3-45

into the two first order equations:
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dG'
;;X(X) - (V(®) - k%) G(x)
3-48
dG(x) |
- 9%

which are equivalent in all ways to 3-45., We remember that g(x)
relates to the xj(x, y) solutions. Suppose we retain N + 1 terms

in the state expansions; then our matrix solution is (N+1) x (N+ 1)
in size, and the sums run from zero to N, Beginning with boundary
conditions like 3-43 at X5, We use 3-48 to integrate to Xy there

we have g(xl) a.qd G '(xl) on hand as arrays of numbers. These
also define the yJ(x,y) at x; by means of 3-24:

. N
M=) g x) @)

i=0
3-49
j N .
AR - gy o)
X1 i=0

where gi](x) = ((ii—x gi(x). Since the X] are independent solutions,
we may form a new linearly independent set by taking linear
combinations of the X](x, y). Let the new set be g‘l(x, y):

. N & .
e'(x,y) = z c; x(x, ) . 3-50
j=0
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Expand:

N
i _ i B
g (x,y) = Z hj x) cnj(y) 3-51
=0
and define the new matrices:
. m
(HE), = h ()

d

H'(x) = ﬁg(x) 3-52
_ m
(g)nm = ¢y v

Combining 3-49, 3-50, and 3-51, we see that

H(x) = G(x) C 3-53

and

H(x) = G'x)C . 3-54

Thus, transforming from the basis xj to the basis §i is
equivalent to multiplication of the solution g(x) on the right

by a constant matrix g The transformed solutions are g(x).
At the point Xy, We had our old solutions as g(xl) and g'(xl).
The transformed solutions at Xy have function and slope values
as given by 3-53 and 3-54:
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H(x,) = Glx,) C 3-55

E'(xl) g'(xl) C . 3-56
We have not yet specified C. Naturally, it must not be singular

or we could not claim the basis Ei(x, y) was independent. What

is desired is to find a transformation C that will remove the
tendency of G to linear dependence. We opt to this by minimizing
the ill-conditioning of E(xl), which is g(xl) C. This minimum of
ill-conditioning occurs when llj(i) (defined as in 3-47) is hl}}. for all

i and j, i #j. The obvious matrix having this property is the
identity, I. All that is required is that the columns 111. of g(xl)

be orthogonal. Choosing C such that:

I= E(Xl) = g(xl) C 3-57

implies:

C=(G(x)) . 3-58

3-59
H'(x,) = G'(x,)(Glx,)) !

and from 3-53 and 3-54
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H(x) = GG (Glx,)) ™"

3-60
H'(x) = G'(x) (Glx,)) 1.

The particular transformation evident in 3-60 has raised the
conditioning of E(xl) to the optimum value. Accepting this, we
use 3-59 as starting conditions to begin integration at Xq- If the
columns of H(x) again tend toward linear dependence, we repeat
the process described at another point Xg) and so on as necessary.
In practice, we repeat the "re-orthogonalization" transform
(defined by 3-59) at regular intervals throughout the range of
integration in x. A more efficient procedure would be to examine
the trend toward dependence and re-orthogonalize only as often as
necessary.

3.3.3 Discussion of re-orthogonalization

First of all, the succession of transformations
applied to the original solution G(x) still leaves a set of linearly
independent solutions to the Schridinger equation which are
regular, The crucial point is that we examined the solutions
that we were integrating and performed a transformation on them
to remove a property that was developing, If we had waited until
the whole integration had been performed, we would have found
that this property precluded solution. At intermediate stages of
integration, we can apparently rectify the bad property as it
appears in small doses. To be more quantitative, let the

succession of solutions be denoted by G,.\(x):
~(i)
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d
) = )@ ()=

3-61
-1
=G G
g(z)(X) ~(1)(x)(~(1)(x1))
and so on
where X, denotes the points at which we applied the re-
orthogonalization transform. One can show by induction that
3-61 implies:
_ -1
Gnr1)® = G(0)® Gy &) 3-62

and, either by an analogous induction process, or directly from
3-62:

Glns1)® = Gy (G g)(x)) . 3-63

Now, if we had continued with the solution g (0)(1:) into the

asymptotic region, we would have tried to determine E(O)ézol)
from:

_ . -iKx iKx

as prescribed in 3-32, Using re-orthogonalization, we determine
B, . A7L from:
~(n) ~(n) .
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-iKx iKx

g(n)(x) = e é(n) + e~ g(n) . 3-65

K= ®
Whether or not it is obvious, B, ézol) =B éEI})’ simply because
the correct scattering solution is unique. The advantage in 3-65
is that the numerical solution is feasible, while it is observed not
to be for 3-64 with the problems we have considered. One can
show from 3-62, 3-64, and 3-65 that:

-1
Am) = 20) G(0) *n-1)

3-66

=1
Bw = 20 %0 %1

When we invert A(n)’ we have already 'built in' the inverse of
an ill-conditioned matrix, G(O) (xn_ 1).

3.3.4 Relation to Ricatti equation

If one repeats the process of re-normalization
(3. 1. 3) of the one-dimensional Schridinger equation at every
increment of integration, one can construct a differential equation

for the completely re-normalized solution. Starting with

2
- %"2‘3‘2 + V) o) = ko) . 3-67

Define dé’%}gx) = '(x), so 3-67 may be written:
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3-68

Let the re-normalized solution be ©(x) and the re-normalized

derivative be ¢ '(x). Then:

o(x + Ax) _ 1

E(X + AX) =m

3-69
i = o'(x + AX)

o' (x+ AX P ey

From 3-68, in incremental form,

o' (x+4x) = 9'(x) + ax(V(x) - kz)CP(X)
3-70
px + A%) = o) + Axe'(x) .

Substituting 3-70 into the last expression in 3-69, we have:

V() - Kol) b 9 3-71

A Ey Tl I v

Dividing the fractions, keeping only order Ax and larger, we have:
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o' (x + A%) = Ax(V(x) - kz) 3 %%'(%.) (1 - ax _i_'(}%(_)) ]

The expression ¢'(x)/w(x) is just ¢'(x), the re-normalized
derivative at x. So, from 3-72:

P(x + 8%) = 5'(x) + 6x(VE) - k2) - 8x(3'@)2 .

Dividing both sides of 3-73 by Ax and taking the limit Ax - 0,

we have:

.dc_g;((X) = V(®) - k- (?p'gx))z .

From the first of 3-69:

do(x) _
dx 0.

The starting conditions are,

deduced from 3-13 and 3-69. Equation 3-74 is just the Ricatti

equation, i which might have been obtained from 3-67 by the

dependent variable transformation: o'(x) = -d—cg—}(—zi) /o(x). In exact

analogy to this analysis, one could find that the incrementally

3-72

3-173

3-74

3-75

3-176
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re-orthogonalized matrix equation,

49, v 6@ = K 6l 3-77

dx

can be converted to the matrix Ricatti system:

L3

dx g(x) = 1
3-78
d = 2 = 2
& &'® = Vi - K" - (G'(x)
with starting conditions:
G(xg) = I
3-79
G'(XO) = 1

based on 3-43.

We do not use equation 3-74 because it diverges
periodically in the region where V(x) < kz. This is obvious
from o'(x) = iedp%/ © (%), because the Schrédinger equation
solutions for impenetrable barrier problems have the asymptotic
form o(x) o sin(kx + §8); consequently, o'(x) o k cot(kx + 8)
and this diverges periodically in the asymptotic region. The same
behavior is expected of g’(x) for analogous reasons. One might

use the Ricatti equation in high regions of V(x), i.e., V(x) > kz,
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and switch to the Schridinger equation thereafter. The

efficiency of this method has not been examined,
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4., RESTRICTIONS ON THE GENERALITY OF OUR METHODS

As derived in sections 2. and 3., we have restricted our
multi-channel invariant imbedding and re-orthogonalization
methods to the case where Ho(y) has a complete, discrete
spectrum of eigenstates. Thus, we have eliminated dissociation
and reactive scattering from consideration, i.e., where the initial
arrangement channel A + (B,C) could end up as (A, B) + C,

(A,C) + B, or A+ B+ C, This notation is explained in 1. 2, 3.
In this section we examine the reasons for the restriction to single

arrangement channel scattering and give the attempts to overcome
.

4.1 Dissociation

Consider a system allowing dissociation: Ho(y) has a
complete set of discrete and continuum eigenstates, cpn(y) and
cpk(y), respectively., We assume VI(X, y) does not have enough
binding character to form bound states. The expansion of the

total wavefunction in eigenstates of HO(y) must be written as

by =) £ @ e (v)+ [ dk £ () o () 4-1
n

and the resolvent of H - VI - E (defined in 2. 2. 1) must be
expressed as
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ik |x- x'|
1 ¥ e
Gz, y; x,¥)=-) w0 e 0 ——gmp—
n
n

. ()| x - x'|

Thus, neither the invariant imbedding nor re-orthogonalization
methods would have a discrete matrix system of equations. More-
over, the matrix elements of VI between the continuum states of
Ho(y) are singular. A possible ;éesolution is to use the "'eigen-
differential'’ method of Kemble, ™~ replacing the continuous
spectrum of Ho(y) by a discrete one having square integrable
properties. This is equivalent to using a large, but finite, box
normalized system. Since we must attempt to extrapolate to the
continuum limit, this procedure requires extensive investigation
into convergence properties. We should add that the continuum

is only a serious problem when it is accessible, or almost so, as
a final state, Otherwise, we approximate Ho(y) with a Hamiltonian
having nearly the same low energy eigenstates, but with no
continuum. This has been done in our diatom Hamiltonians, where
we assume the binding potential is a harmonic well rather than a

more realistic potential allowing dissociation at high energies.

4,2 Reactive Scattering

For reactive scattering, HO(y) must have a continuum and

VI(X, y) must be able to form bound states. The asymptotic form
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of y(x,y) must allow for bound states in the initial arrangement
channel A + (B,C), and for bound states in the other arrangement
channel (A, B)+ C. We assume (A,C) + B does not exist for
simplicity of discussion. The expansions 4-1 and 4-2 are still
valid, since the whole spectrum of Ho(y) is complete, but the

continuum solutions of Ho(y) are being used to form the bound

states of V in the arrangement channel (A, B) + C. This
necessitates the use of continuum expansions and restricts the re-
orthogonalization method as was previously discussed in 4.1

Our use of the resolvent of H - VI - E was to construct the
integral equation incorporating the asymptotic scattering conditions
on (x,y). A new and serious difficulty arises when we use 4-2 as
for the resolvent in reactive scattering, since it does not contain
the explicit form of the outgoing states in the arrangement channel
(A,B) + C. Faddeevﬁ’ £ has resolved this by using two (or more)
resolvents in a coupled system of integral equations. Together,
the resolvents contain all of the necessary asymptotic behavior of
the whole solution. The hope is that we can use the Faddeev system
with only discrete terms in the resolvent expansions (like 4-2) and

obtain a discrete matrix system that our methods will handle.

4. 2.1 The multi-arrangement channel integral equation

Ey{g;es27 has worked with three-body systems and
developed a formalism incorporating the salient features of
Faddeev's theory. The following is based on both approaches.
Consider a collinear system of three bodies, A, B, and C, in
the barycentric subspace with two arrangement channels: (A,B) + C

and A + (B,C). There are two coordinate systems appropriate, one
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for each arrangement. When A is removed to infinily, we have

channel states:

% ) d:iklnx1
Xln(xl’ yl) =e

cPln(yl) 4-3
where Yy is the separation of B and C, and X4 is the distance
of A from the center of mass of (B, C). cpln(yl) are the bound
state eigenfunctions of (B,C). When C is removed to infinity,

we have the channel states:

+ _ i:ianX2
in(xzy YZ) = e

Py, (Vo) 4-4
where Yo is the separation of A and B, and Xo is the distance

of C from the center of mass of (A, B). cpzn(yz) are the (A, B)
bound states. kln and k?,n are determined from energy ci).n- .
servation. The total wavefunction ¥ is now writtenas ¢~ + §°,
where 1111 is localized in the configuration space spanned by 4-3
and q;z in that spanned by 4-4. Thus, we may expand:

¢1= Z frll(xl) A
n

=Y 2(x,) 0, (v,) -

n
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The sums run over the bound states of (B,C) and (A, B) respectively.
So far we have done no more than assume a two-basis expansion in

bound states was sufficient for the total wavefunction:

b= ¢1-+$2==§:f;(x1)m1n(yl)

n
4-6

* ) T (xg) @ 75)
n

which is very reasonable as long as the total energy is low enough
to prevent dissociation.

Channel states 4-3 and 4-4 are, respectively, the
solutions of:

(H-V

|
o

+
AB -~ E)xy, =

4-17
(H-V

1
o

+
BC ~ E) Xon

where we assume there are only the two pair potentials, VAB
and VBC’ present in the total Hamiltonian H, The Schrtidinger

equation is:
(H-E)y =0, 4-8

Introducing \Ul + qsz for |, and rearranging some potential terms:
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H-E) ¢+ @-E)2=0 4-9
or

1 2

3 2
(H - VAB -E)y + (H- VBC -E)y” = —VABlp —VBCQJ . 4-10
We write 4-10 as the sum of the two equations:
1 2
(H-Vyp - B) = -Vpo !
4-11
2 1
(H-Vpo - B)¥" = -Vpp
; . 1 2 : 1 2
which defines §~ and §“ (4-10 only defines the sum = + §°).
The resolvents of H - VAB - E and H - VBC - E are known:19
cley, vy %), ) = (%, L =y,
j el s g | 1’1H—VAB—E 177}

ikln[xl-x'l]
=—Zcp (y) or (yy) <
In*™1/ "1n“1 2111‘:1
n
n
Gz(x Vi XL, Vo) = {x [ 2 | 2L, yL)
20 Y9r X9:¥9 22 Y9 H- Vg - E 20 Y9
gl %935 |

= * 1 e
== ) %9, () @y (3) 71k, 4-12
n n
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where we have used the outgoing form, retaining only bound states.
The integral equations equivalent to 4-11 with correct scattering

asymptotic forms for an incident wave in channel state Xii are:

i - pp 1 2
vi=xyy - ] A7 G Vg ¥

4-13
Becff ety

Faddeev writes his equations in terms of the two-body T operators.
Knowing operator identities of the form GOLVOL = GOTa’ we see that
4-13 is the same as his result.

We now have the differential equation 4-8, into which
we could substitute expansion 4-6, and try to obtain a matrix
differential equation for the frll(xl) and fﬁ(xz) functions. Because
of the two coordinate systems present, the kinetic energy operators
act on the unknown functions and the bound state solutions cpln(yl)
and cpzn(yz). This is just restating the fact that ¢, and ¢, are
eigenfunctions of different Hamiltonians. The simple fact is that
we cannot set up a matrix differential like 3-21 for the system.

System 4-13, however, has an appeal that deserves investigation.

4, 2.2 Matrix form of re-arrangement integral equations

Using expansions 4-5 for 1|;1 and 1]:2 (with i to label
initial state), and expansions 4-12 for G1 and GZ, we write 4-13 as:



Y £l ) o, (7)) = e

n

, . ikl %=
+ [axy [dyy ) o, 009 @3, ) 55
£

12

Vo) Y oGy oy (v3)
m

and

) T Geg) 0 7g) = [ dxy [ayy ) wg,(5,)
n €

ikZLI xz-x'zl

* o) € 3% Al ,
Do (V5) 21k, Vo)) foGq) ey (7)) 4-14

m

- where, under the integral, we know that xj = Xi(X:Z’ y'z) and

¥y = y’l(x'z, yé) and the inverse coordinate relation also. These
equations are simplified as follows: (1) Take inner products of

the first equation in 4-14 with the functions cplj(yl); this generates
a coupled set of equations without the sum over n and 4 present.
Do the same for the second equation with cpzj(yz), giving another
coupled set. (2) Substitute the expression resulting from the latter
for f] (xz) into the RHS of the former equation, giving one coupled
system for the f, 1(xl) unknowns:
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-ik.,.x
1i _ e e
f]. ](XI) " 6ij 3 r dx1 I dx1

ikljl xl-x'll
e

1 " 1i " -
21K Z Vim® ¥ Iy () 4-15
m

where:

Vi &5 = [ayy [ayy 91;%) Vpe )
gy % %5 |

). gy (7) @5, (73) =
Pop V! P Vg 21k
£

24

e "

In these we have changed from the f dx'z’ j dy'z' integration to
J dx} J‘ dyj. In 4-16, one must know that x, = xz(xl, yl) and
Yo = yz(xl, yl) as mentioned earlier, In matrix form, 4-15 is
expressed as:

-iK,.x

Fi(x) = e -0+ [ax [ax)

1 6151| X=Xy |

2iK

1 1 1 "
K, Y(XP Xl) ) (xl) - 4-17
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The scalar analog to this would be:

ik| x-x'|

ZT V(X',X”)I(X”). 4-18

£(x) = e X

+ I‘ dx' [ dx" £

If we cannot invariantly imbed 4-18, there is little hope of doing
so for 4-17. We have no proof that it is impossible to construct
a first order differential equation equivalent to 4-18, but the
previous potential cutoff method does not work because of the
non-local "potential", V(x',x'). Let us examine this. The
Schrddinger-like equation for 4-18 is:

2
| a7 fdx’ Vi, x') f(x') = K2 f(x) . 4-19
dx '

The potential term says that the value at x depends on f(x) over,
possibly, all space. 4-19 is an integro-differential equation with
no assurance of a pure differential equivalent. All physical
potentials are local, as V(x,x') would be if it were V(x,x') &(x-x").
There are several ways of introducing cutoffs into
4-18: in x', in X", or in both x' and x'". None of these enable
one to perform the same treatment as done in section 2. to develop
the invariant imbedding equation. One simply cannot relate the
amplitudes to the derivatives of the amplitudes with respect to the

cutoff parameter.
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5. NUMERICAL TESTING OF THE MULTI-CHANNEL METHODS

There are several means available to check the accuracy of
our calculations. Since all of these are used to some extent, the
implications of each are discussed here,

First, there are the properties of time-reversal and
normalization of probability. 19 Time reversal necessitates that
the probability of going from state i to state j, Pij’ be the same
as the probability of going from state j to state i, Pji’ at the same
total energy. Probability, by definition, necessitates that the sum

of the individual probabilities of going to all possible final states

J
are calculated independently; by examining how well our results

obey the laws:

from a given initial state is 1. In the methods we use, all P,

P.. B
ij i

Z P.. = 1 5-2
ij
all j

we have an internal test of accuracy for any calculation. This
test, as will be pointed out later, serves mainly as an estimate
of integration error,

The second accuracy check is to compare results with
calculations performed by other people. This does not enable
one to check the accuracy of any new results of course. However,
one can re-solve the old problems by the new methods and compare
the results, or simply use both old and new methods on some
prbblem that can be solved by both,
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The third check lies in our possession of two methods based
on different fundamental theories. We actually developed the re-
orthogonalization method to check the results of invariant imbedding.
Throughout the remainder of the text, invariant imbedding will be
referred to as II, and the re-orthogonalization method as DRILL,
from Direct Reduction of ILL-conditioning. In a more specific
sense, these code names refer to calculations performed by the
computer programs written by the author to implement those
methods.

5.1 Hard-sphere Interaction Model

A model problem in which the interaction potential VI(x, y)
is replaced with a hard-sphere interaction can be solved with good
numerical accuracy for a limited class of inelastic scattering
problems. The interaction is not treated as a potential, but is
used as a boundary condition on the wavefunction. Suppose there
is only one internal coordinate y of Ho(y) and the interaction is
a function of the separation of the incident particle and the bound

particle. Our hard-sphere interaction is defined as:

0 X
V?S(X, y) = VFS(X'Y) = Jl 5-3
@ X< Y.

v
<

The boundary condition on the wavefunction is that:

¢(X,y)IX=y = 0 . 5-4
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The scaled Schridinger equation is (see 5. 2. 1 for the procedures

of obtaining this form from the equation written in natural units):

2 :
(Hy () - -11.1—1 9—5 + V}IIS(XW) -E) ¥'(x,y) = 0 5-5

X

where i labels a particular incident state. For x > y, the equation
is separable into product solutions, so qxl(x, y) is expressible as a
linear combination of these:

i i —iknx i iknx
x2y Vxy) =) (e e, +d e 7 o () 5-6

n

where cpn(y) are the known orthonormal eigenfunctions of Ho(y):
Hy®) o (v) = W_ o ()
Co @ o ()>=86_ 5-17

nm=0,1,2,...

and,

kn = +4/m(E - Wn) 5-8

n=0,1,2-°" .

The asymptotic conditions required for scattering (unit incident
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wave and outgoing scattered waves) demand that

: N-1 ’
i —1kix v 4 1knx
xzy Vvy=e "o+ ) de o). 5-9
n=0

Then the excitation probabilities are given by
P, = [dilz k./k 5-10
if f A R

We have taken N terms in 5-9, so the sum terminates at N - 1,
having begun at n = 0, Boundary condition 5-4 furnishes a unique
determination of the d:l amplitudes. Combining 5-4 and 5-9:

. N-1 .

i -1y i Ky

Pyl =0=e To@sY de ¥ o@. 51
-0

Since the RHS of 5-11 is in the space spanned by the eigenfunctions
of HO (y), we take inner products of both sides of this equation with
cpj(y) and obtain the coupled system of linear equations:

: N-1
- X,y i
0 = (p;(y)| e o7 + ) A ;e
n=0

ikny
¢, (¥)) 5-12

j=0,1,2,--+N-1.
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By using as many cp].(y) as there are terms retained in the state
sum (N), 5-12 contains a sufficient number of equations to

determine the d:l, i,n=0,1,2,---N-1. Defining matrices:

ik].y
U)y; = (ele © » D
5-13
(2)1] = di 1,§=0,1,2,¢+,N-1
we can write 5-12 as the matrix equation:
0=U"+UD 5-14

since the cpj (y) are real. The solution for the unknown involves
inverting U :
1

D=-U"U". 5-15

From Q one calculates the transition probabilities as prescribed
in 5-10. A particular case of this model, in which the binding
potential of the target was harmonic, has been treated by Shuler
and Zwanzig. =i The same problem was also investigated by
Secrest and Johnson., 1

Our formalisms do not allow for the incorporation of a hard-
sphere interaction explicitly. However, we can use instead a very

high, infinitely thick, square barrier:
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VfB(x-y) = 5-16

VB oy

or, using the Heaviside step function:

V?B(x—y) = v°B H(y-x) . 5-17

As VSB, the height of the barrier, becomes large compared to

the total energy E, the solutions of the hard-sphere model and

the square barrier model should become identical.

5.1.1 Square well binding potential

There are two potentials which facilitate analytic
handling of the bound states cpn(y) and furnish simple expressions
for the V? B(x—y) matrix elements. These are the infinite square
well and the harmonic oscillator potentials. Consider the square
well first. Since we are only using this for a comparison of
methods, we use the scaled equations directly without any reference
to physical dimensions,

Our target particle is bound in a square well of scaled
width m, and is struck by another particle of scaled mass m
interacting with it via a hard-sphere interaction. The incident
particle does not interact with the square well. Figurc 2 presents
a diagram of the collinear collision and a configuration space outline
of the potentials. The bound particle eigenfunctions are

2/m sin((n+1)y), n=0,1,..., with scaled energies (n+1)2; the
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scaled wavenumbers of the incident particle are +-\/ m(E - (n+1)2).
For channels such that (n+1)2 > E, the wavenumbers are positive
imaginary and these virtual channels decay exponentially as x
becomes large. The U matrix (5-13) is given by:

5 1'r ik.y
U); =2 [ aysin(@+)y) e ¥ sin(G+1)y) . 5-18
0

For a given total scaled energy E and mass m, we solve 5-15 for
increasing numbers, N, of states in the expansion 5-9 until con-
vergence is achieved for the probabilities Pij' The number of
states in expansion 5-9 is the dimension of the square matrix U.
It so happens that U is a very ill- conciitioned23 matrix; one can
seldom obtain H—l for N larger than 10,

II (invariant imbedding) was compared to this hard-

sphere model. The matrix elements of the interaction potential,

B(x-y), are:
(V(x) % J. sin((i+1)y) VSB H(y-x) sin((j+1)y)dy 5-19
0
,j=0,1,2,...

or:
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SB

Vv bs: x<0
1]
™
2 3B - -
(V&) == 5V [ sin(i+1)y) sin((G+1)y)dy 5-20
X O<x=<m
0 T X

i,§=0,1,2,... .

Having these, we integrate 2-73 and obtain the probabilities from
II. The convergence of the state expansion in II must also be tested,
as well as the effective barrier height VSB.

Figure 3 presents the convergence of the probabilities
for the scaled parameters: E =4.5, m = MASS = 1,0. There are
two open channels at this total energy. VSB is taken to be 70, which
is about 16 times the total energy. In figure 3, ERROR is the
Romberg integrator error control, explained in Appendix A. The
hard-sphere interaction model (referred to as a Shuler- Zwanzig
(S-Z) model because they first used it)28 takes less than 1 sec per
calculation of a set of probabilities for a fixed total energy and

about 10 states in the state expansion. II takes on the order of
6

1'40" for a total number of states, N = 4, and with ERROR = 10~
The S-Z model converges very slowly as N is increased; it is so
slow that the ill-conditioning of U prevents accurate solution for

N larger than 10 or 11, II converges much more rapidly. The slow
convergence of the S-Z probabilities as a function of N, Pij(N)’

encouraged an effort to extrapolate the Pij (N) to the limit Pij ().
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The expression

1
()~

Pij(N) = Pij(w)+ A 5-21

furnished a good empirical fit to the calculated Pij(N)‘ a and A
also depend on i and j; they are obtained by guessing o and
testing the consistency of the predicted Pij(w) for pairs Pij(N)’
Pi].(N+1). Usually an o« of 1 or 2 would be sufficient to give a
consistent Pij(w) for all Pij(N) calculated, See Appendix B. The
S-Z results do not obey time reversal as well as II; in figure 3
(and figures 4 and 5, to be discussed) Pij and Pji are given
separately. For II, they coincide to better than 6 digits.

Figure 4 depicts the same problem as figure 3, except
for the higher energy, E = 8.5. There are still only two open
channels. The same observations hold for these results as for
figure 3. Here we see a much faster convergence for the S-Z
method however,

Figure 5 is for the higher energy E = 10.5, where
three channels are open. For II, the Pij and Pji coincide to
graphical accuracy. Here we show the effect of the square barrier
height, V>0, on the II calculated probabilities. The effect is small,
even when VSB is less than 5 times the total energy.

In conclusion we summarize the important
observations: (1) II gives the same results as the completely
independent S-Z method, to well within the inherent accuracy
limitations of that method., (2) II is about 2 or 3 orders of
magnitude slower than the S-Z hard-sphere interaction method,
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but the reason is that the II method is much more general than the
S-Z one, which is only applicable to hard-sphere interactions and
uses that property explicitly as a boundary condition. (3) I
converges much faster than the S-Z method as the number of states

retained in the expansion is increased.

5.1.2 Harmonic oscillator binding potential

Shuler and Zwanzig'528 results for the excitation of
a particle in a harmonic well by a hard-sphere collision are
available. Secrest and Johnson19 repeated the same calculations
and confirmed the results. We did calculations for the same values
of the parameters used by these authors with the II method. This
gives a completely external check on the method. The bound state
eigenfunctions of HO(y) = - 32/ ay2 - y2 are:

2
H (y) e’ SR 522

=01 % ee =
Hn(y) are the Hermite polynomials. The eigenvalues are 2n + 1:

H)(y) o, (v) = @n+ 1) o (y) 5-23

and the corresponding incident particle wavenumbers are given by
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k =+ -\/m(E - (2n + 1)) 5-24
neEl,l s »

The matrix elements of the infinitely thick square barrier are:

[==]

We, = [ o, V" Hiy-x) o_(y)dy

- 00

5-25

(=]

=V [ o e, ) dy.
X

Expression 5-25 is not easy to evaluate efficiently. One could

do a numerical quadrature for every x, but instead we related

all of the elements of V(x) to simple analytic forms, some of
which contained the error function. This is explained in Appendix
C. Tables 2 and 3 give the comparison of II with the same
problems solved by Secrest and Johnson and by Shuler and Zwanzig.
The results again confirm the accuracy of IlI, within the limitations
imposed by r:ading the published graphs.

We should mention that the Romberg integrator error
control enables us to satisfy time reversal and the probability sum
to 1 (5-1 and 5-2) as well as desired for a given problem simply by
specifying a lower ERROR value. In table 2, for example, P
P

error by more than + ., 0001, Time reversal was obeyed to the

00"
o1+ P02 = 1. 0000 for 1 virtual state. Never are the sums in

same accuracy (not shown). If we had integrated with a larger
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error bound, the integration would have been faster but less
accurate. Table 3 gives all of the probability elements of a

lower energy problem to demonstrate the accuracy of the Romberg
integrator, If one examines the time reversal and normalization
of probability relations (5-1 and 5-2) for data in table 3, it turns
out that they are true to 6 or 7 decimal digits for both the two and
three virtual state calculations. However, each individual
probability is not that accurate, as they are changing in the

second or third decimal place as more virtuals are included.

5.2 Comparison of DRILL and II with Published Soft Atom on
Diatom Calculations

The method developed by Secrest and Johnson (S-J) appeared
in publica,tion19 while we were developing our multi-channel
theories. We used their results as a final check on both of our
methods, the II (invariant imbedding) and DRILL (re-orthogonalization).
The problem considered is the following: an atom A of mass m A
collides collinearly with a diatom BC, whose atoms have masses
mp and ms, respectively. We label BC so that A collides with
B. The bond between B and C is approximated by a harmonic bond
with a force constant kBC' The interaction between A and B is a
repulsive exponential function of the separation, £ A EB' This
interaction is chosen for mathematical simplicity, and because of
its previous use in the distorted wave29 and semiclassical time-

dependent perturbationgo solutions for the same problem.
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5.2.1 Transformations on the Schridinger equation

In laboratory coordinates, the Schridinger equation
is:

2 2 2 2

h ) h =) 1 2
(- Img .2 Zmp 5.2 2 kpcCp-5c - fpg)
28 B 2ty
5-26
2 2 -, - Ex)/L .
A~ °B
- 2ﬁm % + € - 8>¢1(§A’ gB, EC) =0
A 38

where € is the total energy, L is the length parameter that
characterizes the range and steepness of the interaction, and

§E Q is the equilibrium separation of BC. Let us apply the
following transformations: (1) remove the center-of-mass energy
from €, (2) measure energies in units of the ground state (zero
point) energy of BC, and (3) measure length in units of

(# 2/“BC kBC)1 4. The resulting scaled equation is:

2 2 i
(- % + y2 - r—:}— 1—2 + e"a(XFY) - E)i'(x,y) =0 5-27
oy 90X

where y is the scaled separation of BC, x is the scaled distance
of A from the center of mass of BC, and o is proportional to the
reciprocal of a scaled L. See S- J19 for details. The three scaled

quantities m, a, and E now characterize our problem. The
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eigenfunctions of HO(y) = - az/ay2 + yz are the solutions defined
in 5-22, The interaction matrix elements are:

(W6, = @ e Vg )

5-28
= e ™ (@ ) e 6] .

Thus, we need not evaluate ‘Nf(x) for every x, we only need evaluate
the exponential e”®* since it factors out. The matrix elements
(cpn(y)l eaylcpm(y)> are3<leva1uated only once in any given integration.
Since some references ~ for these elements are in error, we give

the correct analytic form here:

Co (0] e™ o ()

1 1 m _Yz o
= J eV *YH (y) H_(y)dy
‘\/2nn'ﬁr“‘\/2m m! /7 - ! ®

ml o jnem go/4 167/2)"
m\/;——r(az)n m o L (m_g)l%n%_m)!“ . 5-29
£=0

YA

n

5.2.2 Testing of II and DRILL with atom on diatom problem

There are four variations in this problem with either
II or DRILL that can effect the agreement with the published
results. They are: (1) position of starting point for integration,
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(2) position of stopping point for same, (3) number of states
retained in the state expansions, and (4) the integration error.
Our practice has been to vary these until our own calculations
indicate convergence has been achieved to some prescribed
accuracy, and then to compare the results to other calculations.
It turns out that these four preceding variations are
almost independent in their effects. The integrator error is
easiest to examine: we test the probability sum to one and time

reversal conditions on our results. Let us define 6 and ¢ as:

max
5 = i |2Pij'1l
]
5-30

max

0]
|

This makes 6 and ¢ the maximum errors observed in the sum
and time reversal; 6 and e turn out to be of the same magnitude
and vary directly with the local truncation error control on the
Romberg integrator,

The starting point variation must be checked by
repeating calculations until the individual probabilities no longer
change as we move the starting point farther back into the classically
inaccessible region of the interaction, A rule of thumb observation
is that the starting point is adequate when the diagonal elements of
V(x) are 10 times larger than the total energy at that point.

The stopping point may be checked during any

integration by