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ABSTRACT 

Two general, numerically ex.act, quantum mechanical methods 

have been developed for the calculation of energy transfer in 

molecular collisions. The methods do not treat electronic tran­

sitions because of the exchange symmetry of the electrons. All 

interactions between the atoms in the system are written as potential 

energies. 

The first method is a matrix generalization of the invariant 

imbedding procedure, 17 ' 20 adapted for multi-channel collision 

processes. The second method is based on a direct integration of 

the matrix Schrtldinger equation, with a re-orthogonalization tran­

sform applied during the integration. 

Both methcds have been applied to a collinear collision model 

for two diatoms, interacting via a repulsive exponential potential. 

Two major studies were performed. The first was to determine 

the energy dependence of the transition probabilities for an H2 on 

H2 model system. Transitions are possible between translational 

energy and vibrational energy, and from vibrational modes of one 

H2 to the other H2. The second study was to determine the vari­

ation of vibrational energy transfer probability with differences in 

natural frequency of two diatoms similar to N2. 

Comparisons were made to previous approximate analytical 

solutions of this same problem. For translational to vibrational 

energy transfer, the previous approximations were not adequate. 

For vibrational to vibrational energy transfer of one vibrational 

quantum, the approximations were quite good. 
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1. INTRODUCTION 

1. 1 Background 

Theoretical studies in the natural sciences are aimed at an 

understanding of the physical world, but in many cases the 

problems are unsolvable because of unknown laws of physical 

behavior, or because of mathematical complexity alone. For 

the latter instances, one might try two approaches: to do an 

approximate treatment of a real physical system, or to do an 

exact treatment of a simpler model system which has some 

important features in common with the real one. The former 

approach frequently contains errors which are difficult to estimate 

or bound; one may become lost in trying to attribute significance 

to the results. The model problem may bear little resemblance 

to the real one, or may contain only one of several crucial 

features. 

In this work, we have developed and applied two theoretical 

quantum mechanical methods to the problem of energy transfer 

between various modes of molecular motion during collision 

processes. V./e do not handle chemical reactions in the normal 

sense, nor deal with non-adiabatic electronic motion. T he concept 

of a model enters our discussion because we present calculations 

for collinear collision processes. The methods we use are 

perfectly general for three-dimensional problems, but the compu­

tational time is prohibitive. It is our belief that an accurate treat­

ment of a collinear model is of more worth than an approximate 

result for the real three-dimensional problem. This is not to say 
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that the real problem is not under investigation and calculation 

by our methods; it is indeed. 

Early theoretical studies of vibrational, rotational, and 

translational energy transfer in collisions were based on approxi­

mate analytical i::olutions to the quantum mechanical and classical 
1 equations of motion. The method of Zener, later to become 

known as the distorted wave method, and the Born approximation 

are leading examples of approximate solutions to quantum 

mechanical collision problems based on first order perturbation 

theory. A very comprehensive survey of nearly all of the 

theoretical work on atom-diatom and diatom-diatom scattering 

prior to 1965 may be found in Takayanagi's reviews. 
2

' 
3 

Macro­

scopic phenomena and experimental data in the area are discussed 

in Herzfeld and Litovitz. 4 

Before entering into the development of our theoretical 

methods and the results of calculations, we present an outline 

of formal scattering theory. The reason is two-fold: to state 

some important distinctions between quantum mechanics a nd 

classical mechanics in an understandable fashion, and t o display 

some of the subtle mathematics necessary for the treatment of a 

relatively simple physical process. 

1. 2 Quantum Scattering Theory 

1. 2. 1 The scattering process 

The classical picture of the scattering process is 

intuitively simple. One projects a beam of particles with uniform 

cross sectional density and flux at a target consisting of particles 
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of such low density that they do not interact with each other nor 

cause s ignificant multiple scattering. Deb~ctors measure the 

various numbers of particles and states emanating from the 

collision region. If all of the target lies within the beam, then 

the flux per unit solid angle of a species ~· coming from the 

collision ref,rion, divided by the incident flux per unit area of 

species f!;, and by the number of target particles, defines the 

laboratory differential cross section for the species a' , a , (e, cp). 
~ aa 

5!; and E;' are written as vectors since they may contain several 

parameters: type of particle, momentum, internal states, etc. 

Quantum mechanical scattering is just as simple in 

principle as classical scattering. The previous paragraph applies 

to either picture . However, the mathematical treatment of 

quantum scatterL1g theory is very involved. The book by Goldberger 

and Watson 5 is a recommended text for the rigorous development of 

the theory, especially chapters 3, 4, 5, and 11. The papers of 

Faddeev6' 7 are also necessary, along with some references 

contained therein. Perhaps it is of worth to mention that we use 

scattering theory in a contrary way. The raison d'etre of scattering 

theory is to understand the interactions and mechanisms involved 

in fundamental processes; however, we are ascribed the problem 

of calculating the results of scattering experiments, given the total 

Hamiltonian of the interacting systems. 

1. 2. 2 Postulates of quantum mechanics 

In effect, all physics is defined by measurements. If 

we have a machine that produces a definite physical s tate, that 

state is defined by the production process. Other machines 
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measure certain physical propcrtiei:;, that is, they dctccl phy:'jical 

s tates. Consider three machines A, B, and C. A produces a set 

of states, labeled ai, at time t 1; C detects states (which might be 

the same ones that A produces), labeled ck, at time t 3. We 

define Pckt3, aitl to be the probability th~Lt ai prepared at t 1 is 

in state ck at t 3. If machine C is "complete", then ~ Pckt3, aitl 

= 1. If C does measure the same states that A produces, it is 

obvious from physical continuity that 

since c. is equal to a .. 
1 1 

Suppose that at some intermediate time 

t 2 between t 1 and t 3 we use machine B to measure states 

produced by A. We label the states which B measures b ., and 
J 

we assume they are complete. Once B has detected a state b. 
J 

at t 2 , we know that the state exists, and hence that it has been 

produced. We might have observed from the beginning that state 

preparation and detection are the same process. In classical 

mechanics, the three measurement procedure s we have described 

obey the following law : 

1-1 

because the intermediate knowledge gained from the B measure­

ments does not affect the development of the states prepared by A. 

Quantum mechanics doe s not assume 1-1 is true; rather, the 

concept of amplitude ( ck, t 3 1 ai' t 1> is introduced , so that the 



5 

probability of an event is related to the modulus of that amplitude: 

A postulate of quantum mechanics is that 

l (ck,t3 1bj,t2><bj,t21ai,t1> = (ck,t3 iai,t1> 

b. 
J 

replaces 1-1 as the addition law for states. Suppose that we 

calculate a set of amplitudes (ck, t 3 i bj' t 2>, (bj' t 2 1 ai' t 1>, 

<ck, t 3 i ai' t 1) from some law of motion. If these satisfy 1- 2 

and 1-3, as they must, then any change in phase of the form, 

1-2 

1-3 

1-4 

also satisfies 1- 2 and 1-3. In order to make amplitudes unique, 

certain conventions concerning these phases must be adopted. 
8 

Having adopted such conventions, nearly all of which are related 

to invariance laws and transformations on the physical system, 

we are prepared to discuss the time dependent Schrtfdinger equation, 

which is the law of motion for quantum systems. We set out to 

deve l o p a s cheme for the calculation of the quantities measured 

in scattering experiments, that is, differential cross sections. 

The following parallels in essence chapter 5 of Goldberger and 

Watson. 5 
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1. 2. 3 Qua.ntum equations of motion for scattering 

Our scattering system has a total Hamiltonian H, 

independent of time. In the remote past before the collision 

occurs, certain parts of H associated to the interaction V between 

incident and target particles are negligibly small because of the 

large distance between these particles. This affects a separation 

of H into K + V , where we use the label c to refer to possible 
c c 9 

different separations, called arrangement channels. For example, 

the three- body system A, B, and C can be separated into (A, B) + C, 

(A, C) + B, and (B, C) + A, where (,) denotes a bound state of that 

pair with the remaining particle very far away. The Schrl:ldinger 

equation is: 

iti 

o'¥ WP(t) 
c,a · =H'¥WP(t) 
ot c, a 1-5 

where 'i' WP (t) is a state vector I c, a, t > that coincided in the 
c ,a WP 

remote past with a prepared state wave packet (WP) <lJ (t): 
c,a 

'i'WP(t) 
c,a t-+- CO 

<lJ WP (t) 
c,a 1-6 

Let us use a to denote both of the labels c and a for prepared 

states. Analogously, we use 13 for the combined detected state 

labels, c' and a ' . The prepared state is a narrow wave packet 

superposition of energy eigenstates of K : c 
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ih 

7 

- iE t/ti 
= l Aa Xa. e a. 

a 

-iE t/ti 
o (x e a. ) 

a. 
at = E (x e 

a. a 

iE t / ti 
a. ) 

E X • 
a. a. 

It is customary t o refer to the different internal states of an 

arrangement channel as channels. Thus, x a :: Xe a has both 
' 

1-7 

1-8 

arrangement channel and channe l labels. The x have infinite 
a. 

norms - they are plane wave states. They have orthonormal 

properties within the same arrangement channel, but n ot in 

general : 

( x , Ix > = 6 (a, a' ) 
a. a 

for c = c' 

< x , I x > f. 6 (a, a' ) a. a 
for c f. c' . 

1-9 

1- 10 

We use either the large box normalization o r t he de lta function 

process for the translational coordinates of the x . If <I> ~p (t) 
is normed to 1 (it is square integrable), 'i' WP(t) i: normed to 1 

a. 
fo r all time since ('±' WP(t) I '±' WP(t) ) is inde pe ndent of time. The 

a a 
probability of detecting a state I ~' t 1> after the collision has 

o ccurred is jus t: 

,. 
I 
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1-11 

where t
1 

is in the remote future, <ll:p(t) i.s a wave packet 

superposition of eigenstates of K ,. Expression 1-11 is almost 
c 

useless, for the simple reason of transient wave packet behavior. 

The probability is a strong function of the relative positions of the 

maximum density of <ll :p(t) and the same for the outgoing scattered 

part of 'l' WP(t). If they are out of phase, there is no contribution to 
a. 

the integral in 1-11. A solution is to sum 1-11 over all phases of 

final state detection, effectively: 

pa.~ = 1 I (<1.l:p<t1-t2)l 'l':p<t1» 12 

t2 

for t ..... co 
1 

and 

1-12 

assuming that the collision occurs about t = O. It is reasonable 

that we should work with time-dependent quantities, since the 

scattering process as described in 1. 2. 1 is not time -dependent, 

nor is the differential cross section. We seek to develop a time­

independent formalism for the calculation of cross sections. 
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1. 2. 4 Development of time-independent cxpress~~ns 

for the wave function 

The direct approach to the removal of time from 

expressions such as 1-11 would be to relax the wave packet form 

of ~WP (t) so that the symbolic solution for '¥WP (t): 
a a 

'YWP(t) = e-iH(t-T)/h ~WP(T) 
a a 

(where e -iH(t-T )/h i s the evolution operator, defined by the 

power series expansion of the exponential) is properly defined 
WP -iE T /t1 

for cl> (T) being replaced by x e a : 
a a 

-iE T /h 
'¥ (t)=e-iH(t-T}/ h Xe a 

a a 

1-13 

1-14 

-iE T /h 

Because of the non-square integrable nature of x e a , this 

equation is not a valid relation. lO Instead of re:oving 'WP" 

from 1-13 immediately, let us suppose that '¥WP (t) has evolved 
a 

from a superposition of channel states prepared at different 
11 past times T.: 

1 

'YWP(t) = e-iHt/h \' A.eiH\ /h (l)WP(T.) . 
a L 1 a 1 

i 

Taking a continuous distribution of these times, we have: 

1-15 
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-oo 

A(T) is chosen to be the weighting function rie11T, 11 so 

0 

1-16 

J dT rie11 T = 1 for any positive, non-zero '11· Our new solution 

is a function of the ri parameter: 

1-17 

- 00 

Now, if we remove the wave packet form of each <I>WP(T), 
-iE T/ti a 

replacing them 'J.'ith x e a , we find : 
ex. 

( ) O d Tl T - iHt/ ti iH T / t1 - iE a TI ti 
'i' Tl (t) = r T 'Ile e e X e 1-18 a . a 

-00 

can be symbolically integrated in T: 

1-19 
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The important result is that we have a well defined equation (1-20) 

for any non- zero ri, without the necessity of writing the prepared 

state as a wave packet. The solution of 1-20 is 'f(ri)(O), from 

which we could construct '!' (ri) (t) = e -iHt/ti t\f (ri) (0); a. however, this 
a. a. 

latter time evolution away from t = 0 · is not needed, as we will 

later discuss. 

Rewriting 1-20: 

1-21 

or 
(ri) (H - E a.)/t1 ( ) 

~ =x + --.-- ~ri 
a. a. l Y] a. 

1-22 

and substituting 1-20 into the RHS of 1-22, 

1-23 

or, 1-24 

using the fact that (H - E )x = (H - K )x = V x • From 1-20, 
a. a. c a. c a. -1 

we can use the operator identity, A- 1 - B-1 :: A- l(B - A)B , 

with A = (H - E )/ti - iri and B = (K' - E )/ti - iri and obtain the 
a. a. 

equation: 
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(ri) - iri l (H- K')/ho/(ri). 1-25 
o/ a - ~ K')/11 + iri Xa + (E - K')/11 + iri a 

a a 

If K , = K iri - iri - a d e ha e 
c' (E - K )/Ii + iri Xa - iri Xa. - Xa' n w v : 

a c 

(ri) = + l/ti v ljl(ri). 
o/ a X a (E - K )/ti + iri c a. 

a c 

Thus far, all of our time-independent solutions depend on the 

parameter ri. From 1-21, we take the limit ri _, 0: 

0 = (H - E )/ti ljl (O) 
a. a 

1-26 

1-27 

and see that ljl (O) is a solution to the time-independent Schrtld:i.nger 
a 

equation. Thus, we have arrived at a defining formula for the 

solution in terms of the plane wave incident state: 

ljl (0) = 
a 

- iri 
lim ( (H - E )/ 11 - iri ) Xa • 

ri-+0 a. 
1-28 

All of equations 1-20 through 1-26 could now be written in terms 

of ljl (O) and a limiting ri .... 0 symbol on the operators alone. Now 
a 

we develop the interpretation of cross sections from the time-

independent solutions. 
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1. 2. 5 Cr1)SS sections, transition rates, and probability 

Our original statement regarding cross sections in 

1. 2. 1 is formulated: 

Fa' 
craa.' (e,cp) = F ~n 

a 
1-29 

where F , is the detected flux per solid angle of species a', F 
a ~ a 

is the inCident flux of E: per unit area normal to beam, and n is 

the number of target particles. We now re-interpret F ./n as 
a. 

the transition rate per target particle into final ::;tate ~·~and angle 

e , cp. The angles e and cp are hereafter included in the final state 

label _:: '. The incident flux is the incident beam velocity multiplied 

by the beam density, or equivalently, the incident velocity divided 

by the volume per incident particle. For a single scattering event, 

the transition rate is the time derivative of the detection probability, 

which we now examine. 

Previously, we wrote down the probability of detection 

using conventional wave packet states (1-11 and 1-12) and noted the 

resulting problem of transients. Our equation 1-12 is closely 

connected to the "beam feeder" state, 1-18, of Gell- Mann and 

Goldberger, which is also designed to remove transients. 
11 

Using 

1-18 for the time-dependent solution evolved from initial state a., 

we have the probability, depending parametrically on T), of detecting 

state (3: 

1-30 
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where, 

1-31 

1-32 

The hermiticity of H insures that N(ri) does not depend on time. 

Since the prepared state depends on~, the P~~(t) dependence on 

ri is not unphysical. Having established a relation of cross sections 

to transition rates via time rate of change of probability, we cannot 

immediately take the ri .... 0 limit of P ~~ (t), for we see: 

1-33 

using 1-27, 

1--34 

and, the refore, P~O~(t) does not depend on time. We compute the 

transition rate before taking the ri .... 0 limit, and find a meaningful 

answer. It so happens that we will only need the transition rate at 

t = 0 , the collision time. From 1- 30, 

1-35 



15 

where the dot symbol denotes the time derivative. We evaluate 

£~1(0) from 1-31: 

1-36 

which will simplify to: 

1-37 

The last expression serves as a definition for a transition matrix: 

1-38 

which will later appear in a reduced form in the connection of 

cross sections with properties of time-independent wave functions. 

From 1-31 again; using the equality of 'i' (ri )(O) and q/ri): 
a. a. 

1-39 

Replacing ljr (ri ) with its equivalent defined in 1-25 (with K' = K 
a. c'' 

H=Kc 1 +Vc 1 ): 



16 

Physically, we know that E 
13 

= Ea. because of energy conservation; 

this would tend to indicate that the last term in 1-40 is si.I1biular as 

TJ -+ 0. However, we always retain detected and pre pared energies 

as independent variables for mathematical convenience. Combining 

1-35, 1-37, 1-38, and 1-40, we have: 

Letting Aa.Q = <x Ix ) T(TJ) we have: 
I-' 13 a. a.13 ' 

Here it is mathematically convenient to integrate over a narrow 

band of detected state energies, knowing that any detector will 

accept a range of final state kinetic energies. This allows the 

use of the limiting definition of the delta function: 12 

lim 
T) -+ 0 

1-42 

1-43 
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for any continuous function g(ES) and 6 1, 62 positive reals. 

Representing the narrow band sum by L: , we can show that: 
a' 

lim N(ri ) \-' 
ri ... o a L 

a' 

= lim \, 2
1T 6 (E -E ) I T (ri) I 2 • 

L ti a. S a.s 
ri ... 0 a' 

Since, under the lim symbol and the sum l:: , the first term 
ri ... o a ' 

in the RHS of 1-42 vanishes. The delta function indicates that 

the only physically observed transitions are those in which 

Es= Ea. 

1-44 

The relation between ri and the physical properties 

of the system have not been discussed. 1/ri is the effective 

duration in time of the prepared wave "train". 13 Consequently, 

the box normalization volume V must be large enough to contain 

the wave train throughout the scattering process. That is:13 

1/3 V /v >> 1/ri 1-45 

where v is the velocity of the incident beam. Taking the ri ... 0 

limit in T ~~ must allow for V ... co, and it is necessary to remove 

any normalization volume dependence. We investigate this now. 

Consider the case of two particles in either initial or final state; 

the un-normalized plane waves are x , whose integral over a 
2 -0. 

volume V is proportional to V : 
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2 <x Ix > ~ v . -a. -0. v 
1-46 

This implies that the box normalized solutions x are inversely 
a 

proportional to V: 

because 

x ~ l/V 
a. 

1-47 

If we are in the barycentric subspace, there is no center-of-mass 

motion of the pair, leaving one integration for two particles: 

<x Ix> ~ v -a. -a v 

and x --~ v- 1/ 2 1-48 
a. 

so that ( Xa. I Xa. > v = 1 . 

For the case of n free particles in state x , in the barycentric 
a. 

subspace, 

n-1 

V
- --y-

x ~ 
a 

1-49 

The most general circumstance to concern us here is to have two 

particles in the prepared state and n ::::_ 2 in the final state. Note 

that a particle may consist of several bound components. Examining 
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the definition of T~~ , 1-38, we see that the localized nature of 

V , makes the integral proportional to the normalization factors 

inc x~ and ~ ~ri), for a sufficiently large box. The normalization 

of $ (ri) is seen from 1-26 to be the same as x . Allowing for 
a. a. 

two particles in xa. and n in x~, we expect: 

1 = v-n/2 
n-1 1-49 

v2 

We now define a reduced transition matrix T~~, introducing a 

Kronecker delta to conserve total momentum. Let the labels 

P and P Q denote total initial and total final momenta: 
~a. ~ t-' 

1-50 

Introducing 1-50 into 1-44, remembering that the sum over a' is 

only on final momenta, not internal particle states: 

( 3n 
N ( O) ') P ( O) ( 0) = lim \' ~TT 6 (E - E ) 2TT) 

a LJ a~ TI ..... 0 L a. ~ vn 
a' ., a' 

1-51 

The sum over momentum states is converted to an integral over 

the n-1 independent conjugate momenta, k ., of the n particles 
~J 
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in that final state, using the prescription14' 

where a'j is the label for momentum k.. Resulting: 
~J 

Rather than use o p p , we write o 
3 (!: - _£'), where _!: and £' 

~a. ~ f3 

are the initial and final total momenta and then we must restore 

integration over all n final momenta of the n particles. Then 

1-52 is written: 

N~o) l f,~Oi(o) = 
a' 

(2TI)
4 

3 3 
lim fdk ···dk 
ri .... o TV. 1 n 

Three questions remain concerning the ri .... 0 limit. The first 

is answered in that N(O) remains as 1 because of the box 

normalization of x . 1~ The second is answered in that :P<0} (0) 
a 1 a~ 

is our needed transition rate. It may be shown 5 that 

1-52 
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P~~ (t) is accurately given by P~~ (0) for rit << 1. The remaining 

observation is that T(~ is regular in the double limit V ..... 00 , Tl ..... 0 

with the condition pre~ented in 1-45. 
12 

The transition rate, d T Q' 

n 3 a..., 
into an element, f1 d k., of momentum space is found from 1-53 

j=l J 
by restricting integrations to a volume element: 

d T = (2rr)
4 

o(E -E )o 3(P-P') /T(O)l 2 ~ d3l 
a. Q - h V a. Q ,., ~, a. c L • .., .., .., j=l J 

1-54 

Dividing this by the incident beam flux will give us the differential 

cross section. As observed in the text following 1-29, the incident 

flux is equal to the beam velocity v divided by the volume per 

particle. The volume per particle is just the normalization volume 

V by definition. Finally, we have the differential cross section for 

scattering into the final state f3 in the element R d3k. of 
j=l J 

momentum space: 

Up to this point, we have presented a method by which 

one could fo::.:mally solve for the physically observed cross sections 

from the SchrtJdinger equation. Since this method is never used in 

practice, it is more a proof of physical validity than a calculational 

tool. 
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1. 2. 6 In and out states, scattering matrix 

Referring back to our time-dependent description of 

scattering, we assumed that '±' (t) was prepared in an approximate 
a. 

eigenstate of K in the past, and at some future time we take the 
c 

integral <qi 
13 

(t) I '±'a. (t) ) to obtain the amplitude fal3 (t) of detecting 

state 13. We equally well might have asked, why not use the 

SchrtJdinger equation of motion and find the state that becomes an 

approximate eigenstate of K , (the one detected) and take the c 
amplitude integral in the remote past with the prepared state ? 

The corresponding treatment for this problem parallels the previous 

discussion. Note that we are not talking about time- reversal 

invariance here. We use a minus sign to refer to the new solutions. 

In the future, we require: 

'±'-WP(t) 
13 

= 
t .... co 

qi WP (t) 
13 

(1-6) 1-56 

where the eque;.tion reference in parantheses gives the analogous 

previous one. Developing a time-independent equation of motion, 

we use the superposition of channel eigenstates prepared at different 

future times: 

co 

( ) - '!" - iHt/ti iH'T" /tz -iE QT /Ii '!'; 11 (t) = J d T 11 e 11 e e x
13 
e t.1 1-57 

0 
(1-18) 

where 11 is positive real. Letting ijl ~(TJ ) = eiHt/li '!' ~(11 )(t), we do 

the symbolic integration of 1-57 and obtain: 
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(1-19) 1-58 

From which one can show: 

(H-E)o/-(O)=O 
13 13 

(1-27) 1-59 

- (Tl) - l/ti 
o/13 - X13 + (E - H)/tt - ill Ve, X13 

13 

(1-24) 1-60 

1-61 

taking the Tl .... 0 iimit, we have: 

1-(0) 1. [ l/ti J v 1-(0) 
rn = X + Im ur 
y i:l Q (E - K )/ti - i - c I y Q • ..., ..., ll-+O 13 c' Tl ..., 

1-62 

The sole distinction between these and the previous time- independent 

solutions is the sign coefficient of T]. Let us characterize the 

previous solutions with a + sign, and write: 

$±(0) = x + 
a a 

. l/ti ±(0) 
hm [ (E K )/ti . I V $ 

0 
- ± l TJ C Q. Tl ..... a c 

1-63 

where a and c denote initial or final state labels. It is customary 

to refer to + solutions as "out" states and - solutions as "in" states. 
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Our previous expression, 1-31, for the amplitude 

of going from a to 13 can be written: 

. -iE t/t1 ( ) 
= ( iHt/ tz 13 

1
,,, + TJ ) . 

e x 13e 'Ya 

The latter matrix element can be given a meaning if we form a 

1-65 

wave packet of the 13 eigenstates, in particular, we form a super­

position of outgoing states detected at different times, as prescribed 

by 1-57, resulting in a new amplitude: 

the bra part has been defined as *-(ri') before, so: 
13 

f~~(TJ ') is thus independent of time. The limiting value of 1-67 

defines a new quantity, the scattering matrix or S matrix: 

lim 
T) _, 0 
ri' ... 0 

1- 66 

1-67 

1-68 

The unitarity relation for S 
13 

may be shown from 1-68, assuming 
- (0) +(O) a 

*a and * f3 are separately complete sets of states. It may be 

shown 16 from the defining equations for 'V ~ (ri ) and $ :(T1) that: 
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S = o ·· 2TTi o (E - E ) ((H- E ) I * +(O)) 
al3 a13 h2 13 a 13 X13 a 

= o -· 2TTi o (E i;i - E ) ( *: (O) I (H- E ) X ) . 
al3 h 2 tJ a tJ a a 

We define: 

T+ = _! < (H - E ) I I +(O) ) 
al3 ti 13 X13 ljla 

and note that T:i3 is the ri ..... 0 limit of our previous T ~~ as 

defined in 1-37 and 1-38. Although Sal3 is zero for Ea f. E
13

, 

the T:
13 

matrices have no such restriction. 

1. 2. 7 Uniqueness of time-independent solutions 

1-69 

1-70 

Even though we had pretended that all of the previous 

relationships of scattering cross sections to our time- independent 

equations and the time-dependent Schr~.1dinger equation were unique, 

there is a possible flaw present. It lies in the development of the 

time-independent solution. Rewriting 1-26 and 1-61 together: 

1-71 
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Define Ga (±ri) = -~E _ K 
1{J11

h ± iri , this is ref erred to as the 
a c 

resolvent of the operator (E - K ) ± irif'1 . In a coordinate 
a c 

representation, it is also called the Green's function. The 

limiting case of 1- 71 is 

x + a 
lim [ G (±ri )J V w ± ( O). 

0 a c a ri .... 
1-72 

Suppose we solve 1-71 by the method of successive approximations, 

better known as a Born expansion or iteration method. This gives 

the formal solution: 

ro 

\, ( G (±ri) V )n x . 
L a c a 

n=O 

The only other possible solution to 1-71 would occur when there 

is a solution o*:(ri) to the homogeneous equation: 

1-73 

1-74 

This additional solution could be added to w±(ri), so that w± (ri) + o*±(ri) 
a a a 

would solve 1- 71. However, for finite ri there are no solutions to 

1-74 acceptable in their physical behavior, as may be seen from its 

SchrtJdinger equation analog: 

[(E - K )/ti± iri] *± (ri) = l/11 V w±(ri ) 
a c 0 a c a 

1-75 
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or (K + V - (E :t- irp1 )) w±(ri) = 0 • 
c c a 0 a 

1-76 

For any finite r1 the imaginary part of the eigenvalue of Kc+ V c' 

: H, results in an exponential divergence of o*:(ri ) as some of 

the relative coordinates tend to infinity. This is easily realized 

from the behavior of a simple plane wave, eikx, when k = /E ± irili. 
a 

The trouble arises in that we do not use equations with 

finite Tl's for solving the Schrl1dinger equation; we use the limiting 

form 1-72. 1-72 has the Born expansion: 

lim [G (±ri )J V )n Xa, 
0 a, c 

Tl -+ 

and the homogeneous counterpart to 1-74: 

±(0) . ±(0) 
1~ = hm [ G (±ri) ] V w 

Oa, O a cOa, Tl -+ 

which has the Schr{jdinger analog: 

(K + V - E ) W±(O) = 0 • 
c c a,Oa, 

Equation 1-79 has no complex eigenvalue term, so it is not 

guaranteed to possess only unacceptable solutions. Thus the 

actual equation used to solve for w±(O) (1-72) may have other a, 
bounded solutions besides the one with the correct form for 

scattering. Faddeev6 ' 7 found the correct equation defining the 

1-77 

1-78 

1-79 



28 

unique solution for three particle scattering in the 11 - 0 limit. It 

is important to realize that only exchange scattering and re­

arrangement cause difficulties with the equations we have presented 

here. The reason is that we have only one arrangement channel in 

energy transfer problems, and the equation 1-72 is unique. 

Translated into every man's language, it means that the resolvent, 

lim G (±11), when written in the coordinate representation as a 
11-0 a. 

Green's function, contains sufficient specifications on the asymptotic 

form of w±(O) to make it unique. For scattering into different 
a. 6 7 

arrangement channels, we must use the Faddeev equations. ' 

Further discussion along this line is found in the text. 

1. 2. 8 Relation of S matrix to the asymptotic form of the 

wav2 function 

Consider 1-72 for a single arrangement channel 

collision and the out state only, omitting the superscripts on w±(O): 
a. 

'V = X + lim [ (E K l{;titi . ] V 'V • 
a. a. 0 - + 111 c a. 11.... a. a. 

1-80 

Suppose that we insert the complete set of 13 channel states between 

the resolvant and V c' using I = ~ I x
13

) ( x
13 
I as the identity: 
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or = I x a > + l lim [ (E - K 1 )/tr + {- J I x 13 ) T~oi . 
TJ-+0 a a TJ 

13 

1-82 

T~O~ was defined in 1-38; we write the TJ .... 0 limit here. Since 

I x
13
> is in the channel c (same as I xa))' I x

13
> is an eigenfunction 

of the K operator, resulting in the equation: 
a 

1-83 

The I: represents a sum over internal channel states and integration 
13 

over all momenta. Further examination is not possible without a 

better knowledge of T~Oi behavior. Let us work with the collinear 

collision of two composite particles, in which case the barycentric 

volume dependence of T(Oi is 2n/L, where L is the box 

normalization length. ~:e replace T ~OJ with the reduced transition 

matrix: 

2n (0) 
-L op p T i:i. 

13 a af.J 
1-84 

In the coordinate representation we write: 

1-85 

where x1 and x2 are the coordinates of the composite particles, 

and r is all of their internal coordinates. Introducing 1-84 into 
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1-83, the op P eliminates the part of the 2:: over total momentum, 
S a S 

leaving one sum over momentum states and a sum over internal 

particle states. The remaining sum over momentum states is 

converted to an integration over momentum using the prescription: 

Using b for the internal state labels, we have: 

"ka. "ka. 
I 1 xl I 2 x2 *a. (x1, x2, r) = e e c.pa (r) 

1-86 

(k defined below). 

ft 2(ka.)2 
2 

2 + W , E Q is a similar expression 
m 2 a ... 

with a and a replaced with S and b, k~ + k~ = k~ + k~, and W a 

and Wb are the internal energies of c.pa(r) and c.pb(r). The ri --- 0 

limit is understood. If we use the center-of-mass variables, 

defined by: 



31 

a. a. 
kl+ k2 

expression 1-86 will reduce to: 

ika.x ,-. r(X) dk 1 
~a.(x, r) = e cpa(r) + l . (E ·- EQ)/ti + iTl 

b -<X> a. fol 

e ikx ( ) T(O) (Ko ka. . 0 b) cpb r a.~ , , a, K , k, 1-87 

with 

"KOX 
We have already removed the total center-of-mass motion, e 1 

from 1-87 and written T(Oi as a function of the Ko, k momentum 
a ikax 

argu~ents rather than k1 and k2• The plane wave states e 

and e1kx are here box normalized on the momentum scale: 

L 
1 f -ikx ik'x d 
L . e e x 0 (k - k') • 

0 
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If we are counting energy levels of plane waves, we wish that 

L 
1 J L 

0 

-ikx ik'x d e e x ,_, -----
N N 

0 (k - k') 
2 ;, k/µ 

This results in a /k. factor under each plane wave later. The 

integral in 1-87 is of the form: 

T(O} (Ko a. . Ko ) a. 
13 

, k , a, , k, b • 1-88 

The behavior of T~o; in the large positive imaginary region of the 

complex k plane determines if we can close a contour around the 

top half of the plane. Certainly the most favorable circumstance 

for doing this occurs for large x, for then eikx-+ e -A.x, 

A. = Imag [k] . We evaluate 1-88 as mentioned, using the first­

order pole at k = + /z
0 

+ iritz /2µ / tz 2 for the residue, and obtain, 

with ri now zero: 

vzlx 
e I = - 2nitz ----=--
~ (t1 2

/2µ) x-+ co 

where z 1 = z 0(2µ /tz 
2

). Replacing z 0 by its implied equality in 

1-87 and combining 1-87 and 1-88, we have: 

1-89 



ljl (x, r) 
a. = 

.ka. 1 x 
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e __ cp (r) + \ ' 
n ,a. a L 

x-+ <.J:> v n. 
b 

. µ (0) ( 0 a. . 0 ~ [ - 2n i - -'ii T Q K , k , a, K , k , b) I 1-90 
11 kt-' a.I-' 

where k~ = + ;(ka.)2 + (W a - W b)2µ/ 11
2

• The factor 11 k~ / µ is the 

relative velocity of the particles in the final state. Let us take 

the relation of the S matrix to the tra nsition matrix: 
16 

and sum over ene r gy states. Knowing the prescription for 

summing ove r momentum states : 

dk. 
1 

we infer that a sum over energy states is: 

i 

L dk. 

2n J dE
1
. dEi • 
1 

1-91 

Suppose that we sum over a unit energy range, then 1-91 becomes: 

1 L T (O) 
= 6 a.~ - 2nil1 dE/ dK 2n a.~ 1-92 
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where Ea. = E
13 

-·· E. We see from 1-84 that: 

1 
= oa.13 - 2rriti dE/dk op P 

a. ~ 

1-93 

From the expression following 1-87, we find dEr;i/dk = ti
2
k 13 /µ, 

2 2 tJ 

because E
13

= ti kl3 /2µ+Wb. Underthesuminl-90, Pa.=P
13

, 

so we may insert 1-93 directly into 1-90 and have the result: 

~ (x,r) = 
a. X-+ ro 

ika.x ik13 x 
e __ cp (r) + \ cpb(r) e __ 

/Ka. a L JKl3 
b 

Thus, we have fulfilled our goal of relating the asymptotic form 

1-94 

(x assumed large) of the scattering wave function to the S matrix. 

All of which was to show that it is not necessary to solve for T~~ 
or Sal' from their defining relations (.!_. ~· : 1-38 and 1-91). Rather 

they may be obtained from the asymptotic form of the time­

independent wa vefunction. 
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2. INVARIANT IMBEDDING 

The mathematical technique known aE: invariant imbedding 

has been applied to ordinary, second-order differential equations. 

Treatments have been given for the one-dimensional neutron 

diffusion problem 17 and the radial Schrljdinger equation for elastic 

scattering. 18 The general procedure is as follows: introduce a 

parameter r into a problem that we wish to solve; for every value 

of this parameter r, our problem has a solution S(r). For some 

value of r, say r 0, we know the solution S(r 0); the actual problem 

requires the solution for a value r = r 1. Then, if we can find the 

total derivative of S(r) with respect to r, or equivalently, the 

function f such that: 

d 
dr S(r) = f(r, S(r)) 2-1 

we can integrate S(r) from r 0 to r 1 and obtain the solution S(r 1) 

directly. 

2. 1 Review of One-Dimensional Invariant Imbedding 

For illustration of the method and one very important means 

of deriving dS(r)/dr for scattering problems, we consider the 

Schr&linger equation for a particle in one-dimension scattered 

by a potential, commonly referred to as a barrier reflection and 

transmission problem. 
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2. 1. 1 Non-· singular potentials 

Consider any one-dimensional potential U(x) that is 

finite everywhere and tends to zero faster than 1/ I xi for large 

positive and negative x. Without loss of generality, we suppose 

that U (x) vanishes outside the finite interval 0 tu L. The 

Schrtldinger equation is: 

h2 d2 
Hx) + U(x) Hx) = E Hx) • 

- 2m dx2 
2-2 

Outside the interval from 0 to L, the s olutions of 2- 2 are linear 

b. t • fth 1 ikx d -ikx h com ma 10ns o e p ane waves, e an e , w ere 

k = f2mE/ti. Aeikx defines a beam of free particles of flux 

A* Ah k/m moving in the positive x direction with momentum h k. 

Be-ikx defines another beam of flux B*Bti k/m with momentum 

h k moving in the negative x direction. The transmission (reflection) 

probability is the ratio of transmitted (reflected) flux to the flux 

incident upon the barrier. The scattering state solutions to 2-2 are 

made unique by specifying the asymptotic form of Hx). For this 

one-dimensional problem, there are two linearly independent 

solutions, these corresponding to a beam incident from either the 

right or the left. We choose to have the beam incident from the 

right, and require that all parts of Hx) in the asymptotic region, 

except the incident wave, be waves moving away from the potential. 

That is, we want an out state solution as defined in part 1. Thus: 

x ~ L: ~ (x) = e- ikx + Reikx 

2-3 
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x ~ 0: Hx) = e-ikx + Te-ikx . 

R is the reflection amplitude, 1 + T is the transmission amplitude; 

the flux ratios and probabilities are respectively, I RI 2 and I l+TI 2• 
2 Let U(x) = ti /2m V(x). In terms of it, 2-2 can be written in the 

simpler form 

d2 2 -2 \jf(x) + V(x) w(x) = k Hx) • 
dx 

2-4 

Together, 2-3 and 2- 4 uniquely specify our solution. As an 

alternative, we can write the integral equation for H x) incorporating 

both of these :
19 

co 

1lr (x) -ikx r 
y = e + . 

- CO 

ikl x - x ' I e . V(x' ) w (x ')dx' 21k 2-5 

Note that the limits on the integral could have been from 0 to L 

since the integrand vanishes outside this range. The S matrix for 

this simple problem is completely defined only if we have the 

solution incident from the left. Let the analogous transmitted 

and reflected amplitudes be T' + 1 and R'. Then: 

s = R ' l 
1 + T' 

2-6 
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We now introduce our invariant imbedding parameter r; it is a 

cutoff in the poteHtial V(x) at x = r. Define a new potential 

containing the cutoff as a parameter: 

x .$ r: V(x, r) = V(x) 

x > r : V (x, r) = 0 . 

This cut potential could also be represented with the help of a 

Heaviside unit step function H(s), defined by: 

s 2: 0: H(s) = 1 

s < 0: H(s) = 0 . 

So in terms of it we have 

V(x, r) = V(x) H(r-x) . 

The derivative of H(s) with respect to s is the definition of the 

delta function: 

d 
ds H(s) = o (s) . 

From 2-10 and 2-9, we see 

V(x) oH(r-x) = V(x) o(r-x) 
or 

2-7 

2-8 

2-9 

2-10 

2-11 
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this will be used Jater. The solution of the Schrlfdinger equation, 

or the integral equation, with V(x, r) as a potential is itself a 

function of r, Hx, r). We define Hx, r) from the integral equation: 

.k 
00 

ikl x-x' I 
iV (x,r) = e- 1 x+ J e 2ik V(x',r)ljl(x',r)dx' 2-12 

-00 

or, because of the vanishing of V(x, r): 

r 

-ikx j" ljl (x, r) = e + 
ikl x-x'I 

e 2ik V(x'h (x', r)dx' • 2-13 

0 

The asymptotic form of Hx, r) can be obtained from 2-13, 

( ) - ikx ( ) ikx x 2: r: ljl x, r = e + R r e 

2-14 

( -ikx -ikx x .::; 0: iV x, r) = e + T(r)e 

where: 

r 
1 J -ikx' R(r) = 2ik . e V(x') Hx', r)dx' 

0 

r 2-15 

1 J. ikx' T(r) = 2ik . e V(x') Hx', r)dx' • 

0 
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It is helpful to point out that $ (x, L) equals the $ (x) given by 2- 5, 

since, when r = L, V(x, L) is V(x) and W(x, L) is the solution of 

V(x). 

We now take the partial derivative of either equation 

2-12 or 2-13 with respect to r: 

,.r ikl x-x' I 
+ J ~ 2ik - V(x') o$ ~x;' r) dx' 2-16 

0 

We have used either the delta function property of oV(x, r)/ar 

or the rule for differentiating with respect to the upper limit of an 

integral, depending on whether we used equation 2-12 or 2-13. 

Having 2-16, which is valid for all x and r, we restrict the range 

of x and remove the absolute value sign from the inhomogeneous 

term. This gives an integral equation defining the solution 

oHx, r)/o r on the interval x s r: 

x.::;; r o $ (x, r) = - ikx ( _1_ ikr V( ) ,1, ( )) 
or e 2ik e r 't' r' r 

r ikl x- x' I 
+ J e 

2
ik V(x') o$~~',r) dx'. 2-17 

0 

Note that the inhomogeneous term in 2-17 is the same as that of 

2-13 multiplied by a function of r. In fact, the solution of 2-17 
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for x .:s: r is this same function of r times the solution of 2-13: 

o ljr (x, r) _ ( 1 ikr ( ) ( )) x .:S: r -
0 

r - 2 ik e V r ljr r, r ljr (x, r) . 2-18 

This may be verified by substitution of 2-18 into 2-17, which 

furnishes 2-13, or by noting that if cp(x) is a solution of the integral 

equation 

cp(x) = x (x) + J K(x, x') cp(x') dx' 

then Acp (x) is a solution of the integral equation obtained by 

replacing x (x) with AX(x): 

Acp (x) = Ax (x) + r K(x, x') Acp(x') dx' • 

From 2-14 we obtain: 

x 2: r oHx, r) = dR(r) eikx 
or dr 

and 

-ikr ikr 
Hr,r) = e +R(r)e • 

Setting x = r in 2-18 and 2-19 and equating the resulting 

expressions for oHx, r)/o rl x=r' we get: 

2-19 

2-20 

dR(r) ikr _ 1 ikr V( ) ( -ikr 0 ( ) ikr)
2

. 2-21 
dr e - 2ik e r e + n r c 
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Letting S(r) = e 2ikr R(r} and simplifying 2-21, we have: 

dS(r) . ) 1 2 -dr = 21k S(r + 2ik V(r} (1 + S(r)) . 2-22 

Thus, we have constructed a relation of the form dS(r)/dr = f(r, S(r)), 

where S(r) is related to the reflection amplitude R(r}. Equation 

2-22 cannot be integrated unless we know S(r} for some initial 

value of r; that is, we need a starting condition for the integration. 

This occurs at r = 0, for there the cutoff in V(x) has eliminated the 

whole potential: V(x, O} = O. The solution w (x, O) is just e -ikx 

everywhere, i.e., there is no scattering. We immediately see that 

R(O) = 0 and T(O) = 0. The solution for the actual, complete 

potential V(x) is found at r = L, for there V(x, L) = V(x) and R(L) 

is the reflection amplitude of w (x) as defined in 2-3. 

The complete invariant imbedding problem which is 

equivalent to the Schrtldinger equation with proper asymptotic 

conditions is therefore: 

S(O} = e 2ikr R(O} = 0 

d~~r) = 2ik S(r) + 2~k V(r)(l + S(r))
2 

2-23 

where P(r ,~) is the r eflection probability (as defined after 2-3) 

of a state incident from the right (~ ), scattering back to the right 
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(~). The transmission probability P(~ ,.f-) is just 1- P(-E--,~), 

because P( r, ~) + P( ~, ~) = 1. There is a more fundamental 

procedure for calculating P(~ ,~). Briefly, we have from 2-14: 

,1, ( ) -ikr R( ) ikr 'f' r,r= e +re 

2-24 

x .s O: oHx,_!) = dT(r) e -ikx 
or dr . 

Substituting 2-24 and 2-14 into 2-18 with x s et equal to zero gives: 

or 
dT(r) 1 

l+T(r) - 2ik V(r) (1 + S(r)) dr . 

Knowing that T(O) = 0, we integrate 2-26 from 0 to L directly: 

L 

J 
0 

dT(r') 
l +T\r') 

L . 

= 2~k J V(r ')(1 + S(r')dr ' • 

0 

The LHS of 2-27 is just -in(l + T(L)), so: 

L 

T(L) = exp ( 2~k J V(r ')(1 + S(r '))dr') - 1 • 

0 

2-26 

2-27 

2-28 
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Therefore the transmission amplitude can be computed from a 

definite integral of S(r), which can be obtained as we integrate 

2-23. It is intcrE!Sting to show that the solutions 2-28 and 2-23 

conserve probability, as we know they mus t. Defining transmission 

and reflection probabilities as a function of r: 

2 
P( ~, ~; r) = I 1 + T (r) I 

2 
P(~,-?; r) = jR(r)I 

2-29 

where we used expression 2- 28 to define T (r) by integrating from 

0 to r rather than 0 to L. We must show: 

P(r-,~; r) + P(~,~; r) = 1. 2-30 

Since we know T(O) = R(O) = 0, it is obvious from 2-29 that 2-30 

is true at r = O. It is now sufficient to show that the derivative of 

2-30 with respect to r is zero. Substituting the definition of T(r) 

into 2-30, introducing R(r) = e 2ikr S(r), and simplifying: 

r 

exp ( 2~k r V(r') (S(r') - S*(r'))dr') + S*(r) S(r) = 1 . 2-31 

0 

This equality is in doubt everywhere except at r = 0. Putting 

S*(r) S(r) on the RHS and taking the logarithm: 
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r 

2~k J V(r') (S(r') - S*(r'))dr' = -tn(l - S*(r) S(r)). 2-32 

0 

Again this holds at r = O. Taking the derjvative of both sides and 

using 2-22 reduces the derivatives of the RHS and LHS of 2-32 to 

an identity. Thus, we can prove that 2-32 is an equality for all 

r, proving 2- 30 for the same. 

2. 1. 2 Singular potentials 

If the potential in our one-dimensional problem tends 

to infinity in some region, we call that potential singular. The 

solutions to singular problems usually fall into two classes, 

regular and irregular. This will be discu::;sed later ; the present 

discussion is based on an impenetrable potential, which always 

has regular and irregular type solutions. By definition, we know 

that: 

P(~,~) = 0 

P(~,~) = 1 

for any such one-dimensional potential. There is no reason to 

calculate these numbers, per se, but if one is interested in the 

phase of the scattered wave, it must be obtained directly from 

the amplitude R(r), which cannot be determined from the 

modulus. For example, in the elastic scattering of a particle 

by a spherical potential (in three dimensions), the radial 

2-33 
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Schrt1dinger equation for each partial wave is similar to equation 

2-22 with V(x) substituted by the effective potential V ef/x) = 

V(x) + t(t + 1)/x2. The phase shift is determined from R(r) or 

S(r) as r becomes sufficiently large. 

Let our impenetrable potential have the properties: 

x ~ L V(x) = 0 2-34 

x << 0 V(x) - k2 
>> 0 . 2-35 

The cut potential is defined the same as before: 

V(x, r) = V(x) H(r - x) • 2-36 

The integral equation for ~(x) is the same as 2-5, and the integral 

equation defining Hx, r) is the same as 2-12. One might question 

the propriety of using G
0 

= eikl x-x' I / 2ik as the free particle 

Green's function for a potential that does not allow the asymptotic 

(x << x') e-ikx state to the left. However, this Green's function 

is correct, for one can continuously deform a potential allowing 

transmitted states into one which does not allow transmission. 

The same Green 's function must be used at each stage of the 

deformation. We clarify this as follows: consider V(x) to be a 

potential satisfying 2-34 and 2-35. Introduce the modified potential 

V (x) = V(x) H(x - a) ; for x < a, V (x) = 0. Because of this, a a 
V (x) is always penetrable in principle and we must use the given a 
form of G0. However, as a approaches large negative values 

(deformation of V (x)), we will find by calculation that penetration a 
drops toward zero. Since we do not use a deformed V(x) explicitly, 
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we have taken the limit a - -°". Only if the potential contained an 

infinite barrier at a certain point x = x0 , would we use 

1 
ik(x-x0) 

- k e sin k (x' - x0) x 2: x' 

G
0

(x, x') = 2-37 

1 
ik(x1-x0) 

- - sin k (x - x )e k 0 x ~ x' . 

Everything in our previous derivation of the invariant 

imbedding equation is the same for our new potential (2- 34 and 

2-35) except the starting point and starting condition. Looking at 

V(x, r), we see that the cut potential appears as a very high barrier 

at r if r is sufficiently far to the left. Select an r = r 0 such that: 

2 v (x, r 0) I >> k • x _:::; r 0 

We know the exact solution for an infinite barrier at r 0 : 

.kx .k -2ikr0 -1 1 x 
e + e (-e ) 

2-38 

0 

We can also write down the exact solution for the barrier potential, 

V (x, r 0) = { 
0 

V(r
0

) 
as: 
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·1 "k - 2ikro l "k/' - u:x 1 x ( _. + 1 fl. ) 

e + e -e l - ik/A. 

A.x ( -A.ro -ikro 2ik/A. 
e -e e --~) 1 - ik; A. 

where A. = /V(r 
0

) - k 2 . The usual condition here is that our 

potentials are uniformly increasing as we move to negative x; 

therefore 

Suppose we use the starting condition R(r
0

) = -e - 2ikro for the 

invariant imbedding equation. This would be exact if we had an 

infinite barrier at r 0, as seen from 2-38. It is intuitively 

obvious that the phase shift error indicated by a comparison 

2-39 

2-40 

of 2-38 and 2-39 is greater than the phase shift error in the actual 

solution to 2-40, because the actual solution penetrates less than 

solution 2-39. As r 0 moves to the left, A. becomes large and the 

solution 2-39 approaches 2-38. We have thus shown how to make 

the starting condition R(r 
0

) = -e - 2ikro, or S(r 
0

) = -1, arbitrarily 

accurate by choosing r 0 sufficiently deep in the high, classically 

inaccessable, region of the potential. In terms of the solution 

2-39, the phase shift error is approximately k/A. when S(r0) = -1 

is used. To test the actual error development in solving a 

problem, we integrated the invariant imbedding equation: 

dS(r) __ r 2 ctr iS(r) - ie - (1 + S(r)) 2-41 
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which corresponds to the Schrt1dinger equation: 

d2cp(x) 2 + e-x cp(x) = (1/2) ·:p(x) 
- ~x2 

describing scattering from a repulsive exponential barrier e -x 

The numerical stability and error damping properties of the 

equation are remarkable; we used several different starting 

points and integration step sizes. The variation in the solution 

as the starting point is moved farther back into the potential is 

shown in Figure 1. Note that the relative error in the starting 

condition does not build up, but decreases as we progress out 

of the region of high potential. Since e-x does not vanish any­

where to the right, integration is continued until the phase of R 

2-42 

is constant. In conclusion, we may begin our integration at some 

likely point r 0, calculate R outside the potential, choose another 

r 0 less than the previous, and calculate R again. If no significant 

change in R is found, we conclude that the starting conditions were 

adequate. 

2. 2 Multi-channel Invariant Irnbedding 

Consider one of the simpler non-separable Schr<:1dinger 

equations, 
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H
0 

(y) is a Hamiltonian operator in the coordinate space of y ;md 

v
1
(x, y) f. g(x) + f(y). We assume H

0
(y) ha:3 a complete discrete 

set of eigenstates cp (y) with eigenvalues W : n n 

2-42 

The cp (y) are orthonormal; later we will discuss the assumption 
n 

of discreteness. Equation 2-41 might describe the collinear 

scattering problem of an atom of mass m striking another atom 

of mass M which is bound in a harmonic well. The incident 

atom does not interact with the well, but only with the bound atom 

through the interaction potential V 1(x, y). The explicit form of 

H0 (y) would be: 

~ 2 o2 
1 2 H (y) = - _1_ -- + -2 k y 

0 2M oy2 

and the cp (y) are harmonic oscillator wavefunctions. For a 
n 

fixed E, there is a set of solutions to 2-41 which are linearly 

independent and have asymptotic behavior describing different 

kinds of scattering events. We label these $i(x, y), where i 

denotes the state of the bound particle before the collision. In 

other words, in the asymptotic form of $i(x, y) there is only 

2-43 

one term corresponding to a plane wave movin toward the bound 
- ik·x 2m ( ) particle. It is cp .(y)e I , where k. = + 2 E - W. . The 

1 1 t1 1 

imaginary unit i is not to be confused with the state label i. We 

have assumed that V 
1
(x, y) vanishes sufficiently rapidly as x .... 00 
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that, for large x, we may write Hx, y) as a linear combination 

(L. C. ) of a complete set of solutions to H ·- V 1: 

fz 2 0 2 
(H - V )x = (- -- - + H (y))x = Ex • 

I n 2m ox2 0 n n 
2- 44 

We see that these solutions are products of the separated solutions: 

So, for large x: 

. ±ik x 
i _ {' ±i _ { n } w (x, y) - L. C. Xnf - L. C. cpn(y)e . 

The x ± are our channel states; they are the solutions of 
n 

H - V = K as discussed in the introduction. 
c c 

2. 2. 1 Multi-channel integral equation 

In analogy to our previous one-dimensional work, 

2-45 

2-46 

we want to convert 2-41 to integral equation form, incorporating 

the correct asymptotic conditions for scattering, b ~· : a unit 

incident wave striking a state i of the bound system, and outgoing 

waves after the collision. We also must require that * (x, y) be a 

regular solution, not diverging anywhere. Scaling 2-41, we write: 
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i 1 o2 
i Hijl (x, y) = (- - - 2 + H0 (y) + Vlx, y)) ijl (x, y) = E ijl(x, y). 2-47 

m ox 

Knowing the channel solutions: 

2-48 

we want to construct the total Green's function or resolvent for the 

operator H - VI - E, defined by: 

(H- v
1

- E)G(x, y; x',y') = o(x-x')o(y-y') 2-49 

with the outgoing wave condition: 

G(x,y; x ',y')I , = L.c.{g (x',y')x+(x,y)}. 2-50 
x > x n n 

The solution is:
19 

G(x, y; x', y•) = - l c:pn(y)c:p~(y') 2~ 
n=O n 

It is easy to prove 2-51 satisfies 2-49 : 

e 
ik Ix - x' n 2-51 
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(H - VI - E) G(x, y; x', y') 

CX> J 02 ik lx-x'I 
\ ' (- _:..... - + H (y) - E)cp (y)cp*(y') ~ e n 
L rn ox2 0 n n 21kn 

n=O 

00 

1 0 2 ik I x-x' I 
\ (- - - + W - E)cp (y)cp*(y') ~ e n 
L m ox2 n n n 21kn 

n=O 

Now we must find what the second derivative does: 

2 .k ( ') ik (x'-x) 
1 o (H( ') 

1 
n x-x + H(x'-x)e n ) 

- - 2ik -2 x-x e 
n ox 

1 0 
ik (x-x') ik (x'-x) 

= - -. - - (ik H(x-x')e n - ik H(x'-x)e n ) 
21k ox n n 

n 

.k ( ') ik (x' -x) 
1 H( ') 

1 
n x-x + ik H(x'-x)e n + 2 6(x-x')) = - - (ik x-x e n 2 n 

ik ik I x-x' I 
=-6(x-x')-

2
ne n 

Inserting this into the previous gives: 



54 

(H-V1 - E)G(x,y; x',y') 

co 5.k I x- x' I - - l (Wn-E) cpn(y)cp~(y')~k en 

n=O n 

co ik ik I x-x' I 
+ l cpn(y) cp~(y') (o(x-x') + 2 n e . n ) 

n=O 

co 

= I 
n=O 

cp (y) cp*(y') o(x-x') n n 

k
2 

k 
since (W n - E) 2~'- = + ; 2~ = + 2~ , and the exponential terms 

n n 

in the above sums cancel exactly. The completeness relation says 

that 

co 

l cpn(y) cp~(y') = o(y- y') · 

n=O 

This completes the proof of 2-49. Writing 2-47 as: 

2-52 

we see that 
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00 00 • 

wi(x, y) = x~ (x, y) - I dx' I dy' G(x, y; x '' y')V I(x'' y'H
1
(x'' y') 

- 00 -00 

2-53 

is equivalent to 2-52 and has the desired asymptotic properties for 

scattering, namely: 

i 
iV (x, y) 

-ik.x oo • ik x 
cp. (y)e l + \ c1 cp (y) e n 

i L n n 
2-54 

x ..... oo n=O 

where 

oo oo -ik x' 
c~- 2~ J dx'Jdy'cpn(y')e n ViCx',y')wi(x',y'). 2-55 

n 
-00 -00 

The transition probability of the bound system from an initial 

state i to a final state n is just the ratio of the flux of the free 

particles in the final outgoing state to the flux of the incident 

state: 

k 
= I ci 

1
2 n 

Pi, n n k. · 
l 

2-56 

A further point should be mentioned: not all of the x± correspond 
n 

to states that are physical observables. Whenever n is sufficiently 

large such that W > E, k is a positive imaginary number and 
"k n n l x 

e n is a decaying exponential of zero flux. These are referred 
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to as virtual channel states. The inclusion of these in the Green1s 

function expansion or a state expansion of the wavefunction is 

necessary for completeness. Their omissi.on from a calculation 

could affect the values of P . significantl:r. 
i, n 

2. 2. 2 Matrix form of integral equation 

Having our multi-channel integral equation, 2-53, 

we do an expansion of $i(x, y) in the eigenstates of H
0

(y): 

00 

wi<x, y) = I fi (x) cp (y) 
n n 

n=O 
2-57 

where the fi (x) are unknown functions. Substituting 2- 57 into 2-53 n 
and taking inner products with the members of cp (y) gives a 

. n 
coupled set of integral equations for the f1 (x) . To simplify our 

n 
algebraic manipulations, define the matrices: 

( F(x)) = fm(x) 
~ nm n 

( K) =k o 
~nm n nm 

iKx iknx o 
(e ~ ) = e nm 

nm 

00 

Cy(x))1un = J dy cp~ (y)V I(x, y) cpm (y) 

-co 

2-58 
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where we count rows and columns beginning with 0 because our 

sums begin at 0. Having these defined, the coupled set of 

integral equations may be written: 

-iKx Jco d , m iKI x-x' I F(x) = e ~J + x 2IRe ~ Y,(x') ~(x') . 

-CO 

The asymptotic form of ~(x) may be written down from this 

equation. 

2. 2. 3 Derivation of multi- channel invariant imbedding 

equation 

The invariant imbedding parameter r is again a 

cutoff in the potential, but only in the x coordinate of the 

interaction. Define the parametrized potential: 

V 
1
(x, y, r) = V 

1
(x, y) H(r-x) 

with 

The matrix form is simply: 

y(x, r) = Y,(x) H(r-x) . 

2-59 

2-60 

2-61 

2-62 
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Our parametrized solution is defined by: 

CD 

-iKx J m iKI x-x' I !(x, r) = e ~ + dx' 2iKe ~ y(x', r) ~(x', r). 2-63 

- CD 

Attention is immediately called to the formal similarity of 2-63 to 

the one-dimensional analog 2-12 . The construction of the invariant 

imbedding equivalent to 2-59 parallels the one-dimensional problem. 

It is helpful to keep in mind that the j'th column of F(x, r) relates 

to a particular scattering state ljlj(x, y, r), and that ~e i 'th row 

relates to the i'th terms in the state expansions of these ljl j, .!_.~., 
f~(x, r) cp . (y). From 2-63, noting that the upper limit on the integral 

1 1 

is effectively r: 

x~r 
-iKx iKx ( ) !(x, r) = e ~ + e ~ ~ r 

where 

r 'Kx' 
~(r) = 21I1K J dx' e- 1~ y (x', r) ~ (x', r) . 

2-64 

2-65 

The matrix elements of ~(r) give us the transition probabilities 

P. f(r) for the cutoff interaction. For sufficiently large r, these 
1, 

are the transition probabilities for the whole interaction V i<x, y): 

P. f 
1, 

2 kf 
= I (~(r))f, ii k. , for r large. 

1 

2-66 
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Our interaction V 1 does not allow the incident particle to pass 

through the bound one; this eliminates the necessity for including 

transmitted flux. Taking the partial deriva tive of 2-63 with 

respect to r: 

0 -~ (x,r) m iKlx-rl 
or = 2iK e --~ Y,(r, r) -~(r, r) 

m J
co "Kl 'I oF(x' ,r) 

d I 1 x-x V( ) 
+ 2iK x e ~ ~ x'' r or 2-67 

- co 

Y,(r, r) is just yC r) as defined in 2-58. Restricting the range of 

x in 2-67, and placing the effective upper limit r on the integral, 

we have: 

x ~ r oF(x, r) _ m -iKx + iKr ( 
or - 2iK e ~ -~ Y,(r) ! r' r) 

m Jr iKI x-x' I ~!:(x'' r) 
+ 2iK dx' e ~ Y,(x' ' r) or 

Because Kand ei&c are diagonal, e-i&c+i~r=e-i!9cei!51', 

and these diagonal matrices commute. We re-write the in­

homogeneous term (first term on RHS above) of 2-68: 

-iKx m iKr 
e ~ [ 2iK e ~ Y,(r) !:(r,r)] 

2-68 
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and note that it is a function of r times the inhomogeneous term 

of 2-63. Using the same method as presented in the one-dimensional 

section, we conclude: 

x .:5.. r o;E(x, r) = ( ) m iKr ( ) ( ) or !: x, r [ 2iK e ,...., y r F r, r J 

It must be remembered that non-diagonal matrices do not, in 

general, commute. From 2-64: 

or(x, r) = iKx dE(r) 
or e'"'"' ctr 

and 

) -iKr iKr !: (r, r = e ,...., + e ,...., !! (r) . 

Setting x = r in 2-69 and 2-70 and equating the resulting 

expression for 0E<x, r) I gives: 
or x=r 

iKr dB( r) _ ( -iKr iKr R( )) m iKr V( ) e ,...., - e ,...., +e ,...., r -.-e '"'"' r dr ,...., 21K ,...., 

2-69 

2-70 

-iKr iKr (e ,...., + e ,...., R(r)) 2-71 

where we used the expression in 2- 70 for !:(r, r). Let us define 

S(r) as a new dependent function: 

~(r) 
iKr iKr = e ,...., !_!(r) e ,...., • 2-72 
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Using this and the commutation property of diagonal matrices, 

2-72 becomes: 

~ = iKS(r) + iS(r) K dr ~~ ~ ~ 

+ (! + §(r)) 2~K y(r) (! + §(r)) . 2-73 

Either 2-71 or 2-73 is the invariant imbedding equation. The 

transition probabilities are related to the moduli of the _§(r) and 

!,! (r) matrix elements: 

2-74 

As r becomes large, P. f (r) approaches P. f , the transition 
1, 1, 

probability for the uncut interaction V 1(x, y). We have derived 

everything except the proper initial condition to begin the integration. 

It was stated previously that V 1(x, y) precluded penetration; more 

specifically we require that, for some r = r 0 : 

2-75 

where VB is the binding potential in H0 (y). 2-75 is simply the 

requirement that there exist an r 0 such that the part of x, y 

configuration space to the "left" of r 0 is energetically forbidden. 

We approximate the cut potential V 1(x, y, r 0) by an infinite barrier: 
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0 

v; (x, y, r 0) = 2-76 

co 

co 
and obtain the solutions to the Schrtldinger equation for V 1 : 

These solutions possess no inelastic transitions, _!_. ~- , they are 

diagonal, consisting of an incident wave and a reflected wave in 

the same channel. The starting condition for the integration of 

2-71 is !!(r0) = e- 2i~ro. Using 2-72, we see that the starting 

condition for 2-73 is 

S(r ) = - I 
.~ 0 ~ 

2-77 

2-78 

which we assume i s accurate to order VE/(V nn(r0)-E), the error 

introduced by the penetration of the n'th channel incident wave into 

the high, but finite, cutoff interaction. In practice, we need to 

carry through convergence tests on the answers, P if' as we move 

the starting point farther into the impenetrable region of V 1(x, y). 

This completes our detailed description of the multi-channel 

invariant imbedding procedure. 
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2. 3 Properties of the Invariant Imbedding Equation 

The most important feature of the invariant imbedding 

method is that the asymptotic boundary condition of a unit inci.dent 

wave and outgoing scattered waves has been built into the equation 

itself. Previously, only the integral equation had this property. 

The regularity boundary condition on the SchrCJdinger equation 

serves to determine the initial starting condition for integration 

of the first-order equation. 

Our derivation of the multi- channel invariant imbedding 

equation is more general than we have implied. For simplicity, 

we have taken the Ha part of the total Hamiltonian H to depend 

on one scalar coordinate y. However, we may define that y to 

represent several coordinates, so that the eigenfunctions of Ha 

are described by several quantum numbers, nl' n2, ... , the set 

of which is represented by n. If we order these indices 

consistently throughout the derivation, we obtain the same final 

result. Note that cp (y) might be cp (y
1

, y
2

, y
3

) as long as 
n nl' n2, n3 

they are complete, orthonormal, and discrete. The necessity of 

discreteness will be discussed later. 

We must mention here that a previous derivation of the 

multi- channel invariant imbedding method was found after our 

work was completed. The other work was of the same general 

applicability as ours, but arrived at by a different procedure. 2a 

--- -- ----- ---- -



64 

3. INTEGRATION OF THE SCHRODINGER EQUATION 

Any numerical method of calculation should have checks; the 

immediate answer for an alternative method to invariant imbedding 

is found in a direct integration of the Schr~.1dinger equation itself. 

This procedure is the most fundamental of all calculations in 

scattering theory. 

3. 1 One-dimensional Theory 

3. 1. 1 Non- singular potential 

Integration of the one-dimensional scaled Schrtldinger 

equation: 

d 2 ( ) 2 cp x + V(x) cp (x) = k cp(x) 
dx

2 3-1 

to find a solution conforming to prescribed asymptotic conditions 

could be accomplished as follows. We know that any solution of 

3-1 may be formed from a linear combination of two linearly 

independent solutions. The theory of Sturm-Liouville equations 

is applicable, 
21 

so we know that solutions are linearly independent 

if their Wronskian, which is a constant, does not vanish. Let 

cpl (x) and cp
2

(x) be two solutions to 3-1; if, at any point x
0

, the 

Wronskian is not zero: 

3-2 

or 

·---------·-··----···--·-
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dcp
1 

(x) dcp
2

(x) 

dx-
f dx 

at x = x0 cpl (X) cp2(x) 

then cpl (x) and cp2(x) are independent and we may form a correct 

scattering solution by taking a linear combination of them. In 

order to obtain cp1 (x) and cp2(x) by numerical integration, we 

choose function and slope boundary conditions at some x0 : 

3-3 

such that 3- 2 is satisfied, namely: 

3-4 

and integrate away from the point x0. This determines numerical 

solutions of 3-1 for all x that are assured of linear independence. 

To form the correct scattering solution, one analyzes cpl (x) and 

cp
2

(x) in the asymptotic regions, obtaining coefficients: 
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3-5 

and 

-ikx d ikx cp (x) = c 1 e + 1 e 
1 x small 

3-6 

Suppose we want a unit incident wave from the right and outgoing 

waves from the barrier V(x) (we have assumed V(x) is penetrable) : 

cp (x) 
-ikx Reikx = e + 

x large 

3-7 

cp( x) -ikx = Te • 
x small 

The scattering solution cp (x) is a linear combination of cp l (x) and 

cp2(x): 

3-8 

For large x, we see that 3-5, 3-7, and 3-8 imply: 



67 

3-9 

For small x, 3-6, 3-7, and 3-8 imply: 

Together, 3-9and3-10maybesolvedfor A and Bin terms of 

the coefficients. R and T are then found from these. 

3. 1. 2 Singular potentials 

3-10 

If V(x) tends to infinity in some region, for x either 

finite or infinite, we know that 3-1 has two types of solutions, 

which are classified as regular and irregular. The regular 

solution tends to zero as V(x) _. 00 , whereas the irregular solution 

diverges in that region. Proper solutions of 3-1 must be regular. 

A thorough treatment of singular potentials has been given by 

Kemble. 
22 

Suppose that V(x) is singular at x1• If we pick 

boundary conditions like 3-3 at x0 f xl' we will find in general 

that cpl (x) and cp2(x) each contain components of irregular solutions. 

We would then have to take an appropriate linear combination of cp1 (x) 

and cp
2 

(x) which eliminates the divergent parts. Rather than doing 

this, it is more practical to begin the integration near the singular 

point xl' using function and slope values corresponding to a regular 
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solution, and integrating out of the singular region of V(x). This 

necessitates finding only one solution instead of two. The correct 

asymptotic behavior at infinity is produced by multiplying the 

solution by an ove rall normalization constc.nt. If we do not know 

the form of the regular solution of V(x) near xl' we can approxi­

mate it with arbitrarily good accuracy by modifying V(x). Suppose 

V(x) = e -x, then the singular point x
1 

is at -co. The form of the 

regular solution of 3-1 is known for this potential, but it is not as 

simple as one would like. Our procedure is to define a new 

potential: 

V(x) = e x ~ r 

V'(x) = 1 
-x 

3-11 

V = V(r) >> k
2 

x.::::; r 

which differs from the actual one only in the very high regions of 

V(x). For x _::::; r, the regular solution to the modified problem is 

eA.x, A. = + yv(r) - k 2. At x = r, we choose the boundary conditions: 

cp(x)I x=r 
A.r = e 

and integrate into the asymptotic region. Note that any starting 

boundary conditions of the form: 

3-12 
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cp(x) I x=r = A 

3-13 
dcp(x)I = A.A 
dx x=r 

would only change the solution by an overaH normalization constant. 

An alternative approach could be to define V"(x) such that: 

j V

00

(x) 

V"(x) = l 

where V(r) >> k
2

, and let: 

cp(r) = 0 

x ~ r 

x < r 

dcp(x) I = A • 
dx x=r 

3-14 

3-15 

In any case, we expect the solutions to the modified potential to 

approach the regular solution of V(x) as the modification approaches 

the singular point. 

3. 1. 3 Re-normalization procedure 

Suppose we are integrating the equation: 

2 d cp(x) -x 
- + e cp(x) = cp(x) 

dx
2 3-16 
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by starting at x = -3 , using cp(-3) = 1 and rp '(-3) = dcp (x)/ dxl x=-
3 

= ./f9 ~ -Je3 - 1. At x = -3, the potential is 20 times the energy. 

The solution cp(x) will increase by several orders of magnitude as 

we progress towards large x; this is to be expected, for the proper 

regular solution is decaying to zero inside the potential. H we had 

chosen starting conditions cp(-3) = 10-5, cp '(-3) = /i9 x 10- 5, we 

might have found that cp (x) is of order 1 for large x. fustead of 

trying to guess ~ priori the correct order of magnitude for cp (x) at 

-3 to give cp (x) of order 1 as x becomes large, we could re­

normalize cp (x) at selected points during the integration. Using 

cp(-3) = 1, cp'(-3) = /19, we might find that cp (-2) = 100; consequently 

we divide cp (-2) by '100 and cp '(-2) by 100 and use these as new 

starting conditions at x = -2. Both function and derivative must be 

divided by the same number, otherwise we are doing m ore than 

changing the overall normalization of the wavefunction. This re­

normalization procedure is of no practical utility unless numbers 

are becoming so large that computer overflow occurs. 

3. 2 Direct futegration of Multi-channel SchrUdinger Equation 

We will find it convenient to work with matrix notation here 

that is almost identical to the previous development of the matrix 

integral equation for multi- channel scattering. There are some 

slight differences in definitions, so the process will be quickly 

repeated. 

3. 2. 1 Matrix Schrtldinger equation 

We begin with the scaled (dimensionless) form: 
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3-17 

where H0(y) has a complete, discrete spectrum of eigenstateE:. 

Label i denotes the initial state of the system prior to collision; 

as mentioned previously, both y and i may be regarded as 

symbols for several coordinates and quantum numbers. Using the 

solutions of 

as an expansion basis for ~\ we have: 

co 

6 nm 

ljli(x,y) = I f~ (x) cpn(y). 

n=O 

3-19 is substituted into 3-17 and inner products are taken with 

members of the set of cp (y). This gives a coupled set of m . 
differential equations for the f1 (x), which may be written in 

n 
matrix form. Defining: 

3-18 

3-19 
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(F(x)) = fm(x) 
~ nm n 

(K) = k o = + ~N ) o .~ nm n nm -V µ.\.1.:.1- n nm 

00 

(Y)nm = µ J dy cp~(y) VI(x, y) cpm(y) 
- <X> 

we have 

d2 2 - -:--2 E:(x) + y(x) I(x) = K I(x) . 
dx 

Note that the matrices "count" rows and columns the same way 

that the sums are written, .!_. ~· , from zero. We will assume 

V 
1
(x, y) does not allow penetration; then we are interested only 

in the asymptotic form of I(x) for large positive x, orienting 

3-20 

3-21 

the system so that the incident flux comes in from the right. The 

scattering solutions that we wish to calculate must have the 

asymptotic form: 

-iKx iKx = e ~ +e~ R 3-22 
x .... 00 

where !_! is the matrix of amplitudes from which we calculate the 

transition probabilities: 
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2 kf 
Pu = I <!!)f1· I - · k. 

1 

The object of our effort is to find the R m itrix as specified in 

3-22. 

3. 2. 2 Transformation of scattering states 

3-23 

Suppose for the moment that we have a complete set 

of linearly independent regular solutions to 3-17: 

j=0,1,2, •... 

These satisfy everything but the correct asymptotic form for 

scattering. Expand: 

00 

x j(x, y) = I ~(x) cp/y} 

i=O 

and define: 

(G(x)) . . = ~(x) • 
~ l] 1 

In the region of large x, 3-17 is separable, so we know that: 

3-24 

3-25 
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xj (x, y) = l 
n=O 

CXI 

+ l 
n=O 

Define: 

(A) .. = a~ 
~ 1) 1 
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-ik x 
a~ e n cpn(y) 

j 
(B) .. = b

1
. • 

~ lJ 

The above four equations tell us that 

Q(x) = 
-iKx iKx 

e ~ A+e ~ B 
X-+ CXI 

3-26 

3-27 

3-28 

G(x) is a solution of 3-21, but does not have the behavior required 

~r scattering. The correct solutions \j1 i(x, y) are expressible as 

linear combinations of the xj(x, y): 

CXI 

\j1 i (x, y) = l d ~ x j (x, y) • 

j=O 

Inserting expansions 3-19 and 3-24 into 3-29, using definitions 

3-20 and 3-25, we write the matrix equivalent of 3-29: 

~(x) = Q(x) D 

3-29 

3-30 
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where (D) .. = dL For large x, we use 3- 22 and 3- 28 in 3-30 and 
~ IJ l 

obtain 

-iKx iKx e -~ + e ~ R = ( -iKx iKx ) 
e ~ ~+e ~ ~~ 3-31 

which implies: 

I= AD R=BD 

or 

R = B A-l. 3-32 

Thus, once we have found a complete regular set of solutions to 

the Schrtldinger e quation, it is easy to examine their asymptotic 

behavior and form a correct set of scattering solutions. We see 

that A -
1 

is the correct linear transformation that relates Q(x) 

and ~(x), because, from 3-32, D = A- 1: 

!: (x) = Q(x) ~- l 

Our problem is now to determine the x j (x, y) solutions, or 

equivalently Q( x). 

3-33 
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3. 2. 3 Determination of regular solutions 

Consider the numerical procedure to determine any 

9(x) solution; again we must choose function and slope conditions 

at some x
0 

to uniquely determine 2(x) for all x. Suppose: 

d G(x) I = S 
dx ~ 

x=x 
0 

then equation 3-21 enables us to integrate away from x
0 

and 

determine 2(x). The fact that the Schrtldinger equation 3- 21 

3-34 

is written with ~(x) as a dependent function is immaterial; both 

F(x) and G(x) are solutions. The integration is straight-forward, 

~ut we mu~t ~ccomplish two things: (1) insure that the x\ corre­

sponding to columns j in G(x), are linearly independent, and (2) 

satisfy the regularity requ~rement on xj so that they do not diverge 

in the singular region of the interaction V r We need the following 

theorems. 

Theorem I. For any solution G(x), if the columns of G(x) I _ 
~ . ~ x-x 

are linearly independent, then the functions x3 are linearly inde1:. 

pendent for all x and y. 

Proof. Let us assume that two of the xj, x n and x m, are linearly 

dependent. This means that there exist en and cm such that: 
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0 = c xn(x, y) + c xm(x, y) for all x and y 
n m 3-35 

or 

n m 
0 = c g. (x) + c g. (x) n i m I 

for all x and i 3-36 

because the cp. (y) are linearly independent. 3-36 implies that the 
l 

columns n and m of G(x) I _ are dependent, in violation of our 
~ · x-x

1 
hypothesis. The theorem is true by contradiction. QED 

Theorem IL For any solution Q(x), if the columns of d~~) I 
x=x . 1 

are linearly independent, then the functions xJ are linearly inde-

pendent for all x and y. 

Proof. Again, suppose that xn and xm were dependent. This 

implies that: 

n m 
0 = c g. (x) + c g. (x) n I m I 

0 = c 
n 

dg1:\x) 
l 

-d=-x- +cm 
dg~(x) 

l 

dx 

for all x and i 

for all x and i • 

The latter violates the hypothesis for x = xl' so the theorem is 

true by contradiction. QED 

3-37 

3-38 

Consequently, it is a simple matter to insure the independence of 

our G(x) column vectors; we simply choose starting function and 

slope conditions as in 3-34, with either or both of det(C) f 0, det(S)'/-0. 
~ ~ 
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The rebrularity requirement is accomplished either by 

beginning the integration near the singular region with a regular 

asymptotic form, or by modifying the interaction potential in a 

region that has negligible effect on the regnlar wavefunctions. For 

problems of interest, we must do the latter, since we do not know 

the behavior of the regular solutions analytically. It is difficult to 

place bounds on the effect that a modification of V 1 has on the 

solutions or the transition probabilities. Intuitively one knows 

that, as the modification moves farther into the clas sically for­

bidden region of the interaction, the solutions to the modified 

problem approach the correct solutions of the unmodified problem. 

Examining the whole Schrtldinger equation, with H0 {y) = T 
0 

{y) + 

v0{y), where v0 (y) is the binding potential of the bound system: 

we place the modification in VI such that 

3- 40 

for x1 in the modified region. The same concept was used in the 

starting conditions for the invariant imbedding formalism. 

The regularity requirement on ~\x, y) and xj(x, y) is 

ultimately expressed on f~(x) and g~(x). The easiest modification 
J J 

to place on V i<x, y) is an infinite barrier at x = x0. Then we might 

use in 3- 34: 
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d2(x) I = 
dx I . 

x=x 0 

Another modification is to make y(x) diagonal for x < x0 : 

and use 

(V'(x)) .. = 
~ 1] 1 

(V(x)) .. 
~ 1] 

(V(x
1
)) .. o .. 

~ 1] 1] 

d 2<x> I = "" 
dx x=x 

0 

3-41 

3-42 

3-43 

where (A.) . . = ~ fcv (x1)) .. - k~ o.. . Having a diagonal potential ~ 1J V' ~ 11 1 1) 

enables us to decouple the system of equations implied by 3-21 in 

the x .::;; x0 region. The regular diagonal solution of the modified 

problem 3-42 is: 

3-44 

from which we observed 3-43. 
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This completes a tentative scheme of solution, but it is not 

generally useful because of a hidden difficulty that arises in practice. 

In the next section we will explain this problem and the method of 

re-orthogonalization used to circumvent the difficulty. 

3. 3 Method of Re- orthogonalization for Matrix Schrtklinger Equation 

3. 3. 1 Tendency to linear dependence 

Integration of the matrix equation, 

d2G( ) 2 - ~ x + V(x) G(x) = K G{x) 2 ~ ~ ~ r~ 

dx 
3-45 

reveals the same general increase in magnitude of the solution as 

we progress out of the interaction as was observed for the one­

dimensional problem in 3. 1. 3. Again this is no real difficulty, but, 

in addition, a new feature is observed which precludes solution of 

the whole problem. It turns out that the G(x) solution, when put in 
-i~ i~ ~ . 

the form e ~ A + e ~ B for large x, produces very ill-

conditioned23 m;trices A~ and B. We will define the term 

immediately. Our starting conditions for integration absolutely 

guarantee linear independence of the xj solutions, but we know 

nothing more definite than that. 

An operational definition of an ill- conditioned matrix 

is that it is more difficult to achieve a given numerical accuracy 

in the inverse than one would expect on the basis of size alone. 

Many matrix systems have been investigated by Todd, 
24 

who 
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decided that the measure of ill- conditioning was the magnitude of 

the ratio of the largest to the smallest eigenvalue, called the 

condition number. Consider the example, 

A = (~ a+ e:) 
b - e: • 

The eigenvalues of ~ are a+ b and - e ; as e becomes small, 

or a and b large, the condition number I (a+ b)/ e I increases. 

One could picture the increase in condition number as the columns 

of ~ tending toward linear dependence. In the limit of dependent 

columns, det(~) = O, but it is not necessary for the determinent to 

be near zero for A to be ill-conditioned. For example, if a= b = 
6 ~ 6 6 

10 and e = 1, det(~) = -2 x 10 and I (a+ b)/e l = 2 x 10 • Here 

we will set up a different definition of ill-conditioning, based on the 

concepts of linear independence of vectors. Consider any matrix 

C as a collection of column vectors c.: 
~J 

c = ( ••• c .... c ..•. ) . 
~1 ~J 

3-46 

Project out of c . the component of c. contained in it, leaving c .(i): 
~1 ~1 ~J 

c .(i) 
~1 

= c. -
~J 

c .. c. 
~1 -~3 

-Jc .. c. -Jc .. c. 
~1 ~1 ~1 ~1 

c. . 
---~1 

3-47 

If the norm of c.(i), llc.(i) ll , is small compared to the norm of c ., 
~1 ~1 ~J 

we say that c . and c. are nearly linearly dependent. If for any or 
~1 ~J 
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all pairs, i and j, of columns in a matrix ,.S we observe that 

llc.(i)ll //le.I/ is small, the matrix is ill-conditioned by our definition. 
~] ~] 

This is what we observe in the ~ and ~ of the asymptotic form of 

G(x) (3-28} and in the columns of G(x) itself at any point in the 
~ ~ 

asymptotic region when we directly integrate the matrix Schr&linger 

equation as prescribed in 3. 2 . 

Let us follow the behavior of two columns, g.(x) and 
~1 

g.(x), of G(x) using 3-43 as starting conditions. At the starting 
~] ~ 

point I/ g. (x0)1/, I/ g.(x0)1/, and I/ g.(i)I/ are all 1 because G(x0) = I . 
,...._,1 r-..JJ ,......,_,] ~ ,...._, 

As we progress out of the potential by integrating 3-21 (with 9-(x)), 

I/ g.(x)/I and I/ g.(x)I/ both become large, but l/g.(i)// remains small, 
~1 ~] ~] 

so that the ratio II g.(i) l//l/ g.I/ becomes small. In other words, we 
~] ~] 

do not observe a corresponding rise in magµitude of the degree of 

linear independence, defined by l/g.(i)I/, to compensate for the 
~] 

increase in magnitude of the g. vectors. This is the observed 
~1 

phenomenon which prevents the calculation of A- 1, needed in 3-32 

for the transition amplitude evaluation. In table 1 we give the 

numerical data illustrating the above discussion. 

3. 3. 2 Re-orthogonalization procedure 

In section 3. 1. 3 we described the re-normalization 

of solutions to the one-dimensional Schr&linger equation; it 

involved an operation on cp(x) at various points during the integration. 

The reason for that discussion was to lead into the method of re­

orthogonalization which follows. 

For purposes of numerical integration, we break 3-45 

into the two first order equations: 
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d Q'(x) 2 
dx = (y(x) - ~ ) Q(x) 

3-48 

dG(x) 
= 9.' (x) dx ·-

which are equivalent in all ways to 3-45. We remember that G(x) 

relates to the x j (x, y) solutions. Suppose we retain N + 1 ter~s 
in the state expansions; then our matrix solution is (N + 1) x (N + 1) 

in size, and the sums run from zero to N. Beginning with boundary 

conditions like 3-43 at ~' we use 3-48 to integrate to x1; there 

we have Q(x1) ~d Q '(x1) on hand as arrays of numbers. These 

also define the xJ(x, y) at x1 by means of 3-24: 

N 
x j(xl' y) = I 

i=O 

~ (xl) cp . (y) 
1 1 

oxj(x, y) I 
ox x=x 

N 
= I gij <x1> cpi<Y> 

1 i=O 

3-49 

where gj_j(x) : ~x ~(x). Since the xj are independent solutions, 

we may form a new linearly independent set by taking linear 

combinations of the x j(x, y). Let the new set be s \x, y): 

N 
s\x, y) = I c~ x j(x, y) • 3-50 

j=O 
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Expand: 

N 
s i (x, y) = \ h ~ (x) cp. (y) 

L J J 
3-51 

j=O 

and define the new matrices: 

m (H(x)) = h (x) 
~ nm n 

!!' (x) = :x !!(x) 

m = c n 

Combining 3-49, 3-50, and 3-51, we see that 

!!(x) = 9(x) £ 

and 

H'(x) = 2'(x) £ . 

Thus, transforming from the basis xj to the basis si is 

equivalent to multiplication of the solution G(x) on the right 

by a constant matrix £. The transformed solutions are !!(x). 

At the point xl' we had our old solutions as 9Cx1) and 2'(x1). 

The transformed solutions at x1 have function and slope values 

as given by 3-53 and 3-54: 

3-52 

3-53 

3-54 
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H'(x ) = G'(x ) C . 
-~ 1 ~ 1 ~ 

3-55 

3-56 

We have not yet specified C. Naturally, it. must not be singular 

or we could not claim the b~sis s i(x, y) was independent. What 

is desired is to find a transformation C that will remove the 

tendency of Q to linear dependence. We opt to this by minimizing 

the ill:-conditioning of !!(x1), which is 2(x1) £. This minimum of 

ill-conditioning occurs when h.(i) (defined as in 3-47) is h. for all 
~] ~] 

i and j, if. j. The obvious matrix having this property is the 

identity, I. All that is required is that the columns h. of H(x1) 
~ ~] ~ 

be orthogonal. Choosing C such that: 

3-57 

implies: 

3-58 

Consequently, from 3-55 and 3-56, 

3-59 

and from 3-53 and 3-54 



86 

) -1 
!!(x) = g(x) (g(x1 ) 

3-60 

The particular transformation evident in 3-60 has raised the 

conditioning of !!(x1) to the optimum value. Accepting this, we 

use 3-59 as starting conditions to begin integration at xl" If the 

columns of !!(x) again tend toward linear dependence, we repeat 

the process described at another point x2, and so on as necessary. 

In practice, ive repeat the "re-orthogonalization" transform 

(defined by 3-59) at regular intervals throughout the range of 

integration in x. A more efficient procedure would be to examine 

the trend toward dependence and re-orthogonalize only as often as 

necessary. 

3. 3. 3 Discussion of re-orthogonalization 

First of all, the succession of transformations 

applied to the original solution g(x) still leaves a set of linearly 

independent solutions to the Schrtldinger equation which are 

regular. The crucial point is that we examined the solutions 

that we were integrating and performed a transformation on them 

to remove a property that was developing. If we had waited until 

the whole integration had been performed, we would have found 

that this property precluded solution. At intermediate stages of 

integration, we can apparently rectify the bad property as it 

appears in small doses. To be more quantitative, let the 

su~cession of solutions be denoted by 2(i)(x): 
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3-61 

and so on 

where x. denotes the points at which we applied the re-
1 

orthogonalization transform. One can show by induction that 

3-61 implies: 

and, either by an analogous induction process, or directly from 

3-62: 

Now, if we had continued with the solution 9(o) {x) into the 

asymptotic region, we would have tried to determine ~{O)~C~) 
from: 

( ) -iKx iKx 
2(o) x = e ~ ~(O) + e ~ ~(O) 

x-+ co 

3-62 

3-63 

3-64 

as prescribed in 3- 32. Using re- orthogonalization, we determine 

B A-1 f 
~(n) ~(n) rom: 
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-iKx iKx 
9(n)(x) = e ~ A(n) + e ~ ~(n) • 

x ... to 

3-65 

Whether or not it is obvious, ~(O) ~C~) = ~(n) ~(~°>' simply because 
the correct scattering solution is unique. The advantage in 3-65 

is that the numerical solution is feasible, while it is observed not 

to be for 3-64 with the problems we have considered. One can 

show from 3-62, 3-64, and 3-65 that: 

When we invert A(n)' we have already "built in" the inverse of 

an ill-conditioned matrix, G(O) (xn_ 1). 

3. 3. 4 Relation to Ricatti equation 

If one repeats the process of re-normalization 

3-66 

(3. 1. 3) of the one-dimensional Schrtldinger equation at every 

increment of integration, one can construct a differential equation 

for the completely re-normalized solution. Starting with 

d 2 ( ) 2 
<t>
2 

x + V(x) cp(x) = k cp(x) . 
dx 

3-67 

Define d~~x) = cp'(x), so 3-67 may be written: 
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drn'(x) 2 
-<l-x- = (V(x) - k ) cp(x) 

d cp (x) = cp, (x) • 
dx 

Let the re-normalized solution be cp(x) and the re-normalized 

derivative be ci)'(x). Then: 

cp(x + 6x) = cp(x + tlx) = 1 
cp(x + 6x) 

- _ cp' (x + 6x) 
cp' (x + 6x) - cp(x + 6x) • 

From 3-68, in incremental form, 

2 cp' (x+ 6x) = cp'(x) + 6x(V(x) - k ) cp (x) 

cp(x + 6x) = cp (x) + 6x cp' (x) . 

Substituting 3-70 into the last expression in 3-69, we have: 

2 

3-68 

3-69 

3-70 

- ( ) = A (V (x) - k )cp (x) cp '(x) 
cp' X + 6X uX cp (x) + 6Xcp'(x) + cp (x} + 6Xcp'(x) • 3-71 

Dividing the fractions, keeping only order 6x and larger, we have: 
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cp'(x + 6x) = 6x(V(x) - k
2

) + ~ (1 - 6x ~) • 3-72 cp,x, cp ,x, 

The expression cp '(x)/cp(x) is just cp'(x), the re-normalized 

derivative at x. So, from 3-72: 

cp' (x + 6x) = cp' (x) + 6x(V(x) - k
2

) - 6x (cp' (x))
2 

• 

Dividing both sides of 3-73 by 6x and taking the limit 6x ..... 0, 

we have: 

dcp'(x) = 
· dx 

From the first of 3-69: 

2 - 2 
V (x) - k - ( cp ' (x)) • 

dcp(x) = 
dx O • 

The starting conditions are, 

cp(x) = 1 

cp' (x) = "-

3-73 

3-74 

3-75 

3-76 

deduced from 3-13 and 3-69. Equation 3-74 is just the Ricatti 

equation, 25 which might have been obtained from 3-67 by the 

dependent variable transformation: cp' (x) = ~~x) / cp(x). In exact 

analogy to this analysis, one could find that the incrementally 
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re- orthogonalized matrix equation, 

') 

ct'• G(x) 
- --:T + y(x) 9(x) = 

dx 

can be converted to the matrix Ricatti system: 

~x Q(x) = 0 

d
d G'(x) 
x ~ 

2 - 2 = y(x) - ~ - (2'(x)) 

with starting conditions: 

based on 3-43. 

We do not use equation 3-74 because it diverges 

periodically in the region where V(x) < k2
• This is obvious 

3-77 

3- 78 

3-79 

from cp '(x) = d~~) / cp (x) , because the SchrtJdinger equation 

solutions for impenetrable barrier problems have the asymptotic 

form cp(x) -+ sin(kx + o); consequently, cp'(x) -+ k cot(kx + o) x-+ro x-+ro 
and this diverges periodically in the asymptotic region. The same 

behavior is expected of Q'(x) for analogous reasons. One might 

use the Ricatti equation in high regions of V(x), .!: ~·, V(x) > k
2

, 
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and switch to the Schrtldinger equation thereafter. The 

efficiency of this method has not been examined. 
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4. RESTRICTIONS ON THE GENERALITY OF OUR METHODS 

As derived in sections 2. and 3., we have restricted our 

multi-channel invariant imbedding and re-orthogonalization 

methods to the case where H0 (y) has a complete, discrete 

spectrum of eigenstates. Thus, we have eliminated dissociation 

and reactive scattering from consideration, _!:. ~· , where the initial 

arrangement channel A+ (B, C) could end up as (A, B) + C, 

(A, C) + B, or A+ B + C. This notation is explained in 1. 2. 3. 

In this section we examine the reasons for the restriction to single 

arrangement channel scattering and give the attempts to overcome 

it. 

4. 1 Dissociation 

Consider a system allowing dissociation: H0(y) has a 

complete set of discrete and continuum eigenstates, cp (y) and 
n 

cpk(y), respectively. We assume v1(x, y) does not have enough 

binding character to form bound states. The expansion of the 

total wavefunction in eigenstates of H0(y) must be written as 

Hx, y) = l fn(x) cpn(y) + J dk fk(x) cpk(y) 

n 

and the resolvent of H - v1 - E (defined in 2. 2. 1) must be 

expressed as 

4-1 
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ik Ix - x' I n \ ' * e G(x, y; x'' y') = - L cpn (y) c:pn (y') 2ik 
n 

n 

ik (k I) I x - x I I 
- f dk' c:p;, (y) c:pk ,(y) e 2ik(k') 4-2 

Thus, neither the invariant imbedding nor re- orthogonalization 

methods would have a discrete matrix system of equations. More­

over, the matrix elements of V 1 between the continuum states of 

H0 (y) are singular. A possible resolution is to use the "eigen­

differential" method of Kemble, 
26 

replacing the continuous 

spectrum of H0(y) by a discrete one having square integrable 

properties. This is equivalent to using a large, but finite, box 

normalized system. Since we must attempt to extrapolate to the 

continuum limit, this procedure requires extensive investigation 

into convergence properties. We should add that the continuum 

is only a serious problem when it is accessible, or almost so, as 

a final state. Otherwise, we approximate H0(y) with a Hamiltonian 

having nearly the same low energy eigenstates, but with no 

continuum. This has been done in our diatom Hamiltonians, where 

we assume the binding potential is a harmonic well rather than a 

more realistic potential allowing dissociation at high energies. 

4. 2 Reactive Scattering 

For reactive scattering, H0 (y) must have a continuum and 

V 1(x, y) must be able to form bound states. The asymptotic form 
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of l\f (x, y) must allow for bound states in the initial arrangement 

channel A+ (B, C), and for bound states in the other arrangement 

channel (A, B) + C. We assume (A, C) + B does not exist for 

simplicity of discuss ion. The expansions 4-1 and 4-2 are still 

valid, since the whole spectrum of H0 (y) is complete, but the 

continuum solutions of H0 (y) are being used to form the bound 

states of v
1 

in the arrangement channel (A, B) + C. This 

necessitates the use of continuum expansions and restricts the re­

orthogonalization method as was previously discussed in 4. 1 . 

Our use of the resolvent of H - VI - E was to construct the 

integral equation incorporating the asymptotic scattering conditions 

on l\r(x, y). A new and serious difficulty arises when we use 4-2 as 

for the resolvent in reactive scattering, since it does not contain 

the explicit form of the outgoing states in the arrangement channel 

(A, B) + C. Faddeev6' 7 has resolved this by using two (or more) 

resolvents in a coupled system of integral equations. Together, 

the resolvents contain all of the necessary asymptotic behavior of 

the whole solution. The hope is that we can use the Faddeev system 

with only discrete terms in the resolvent expansions (like 4-2) and 

obtain a discrete matrix system that our methods will handle. 

4. 2. 1 The multi-arrangement channel integral equation 

Eyges27 has worked with three-body systems and 

developed a formalism incorporating the salient features of 

Faddeev' s theory. The following is based on both approaches. 

Consider a collinear system of three bodies, A, B, and C, in 

the barycentric subspace with two arrangement channels: (A, B) + C 

and A+ (B, C). There are two coordinate systems appropriate, one 
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for each arrangement. When A is removed to infinity, we have 

channel states: 

where y 1 is the separation of B and C, and x1 is the distance 

of A from the center of mass of (B, C). cpln (y 1) are the bound 

state eigenfunctions of (B, C). When C is removed to infinity, 

we have the channel states: 

4-3 

4-4 

where y2 is the separation of A and B, and x2 is the distance 

of C from the center of mass of (A, B). cr2n (y 2) are the (A, B) 

bound states. kln and k 2n are determined from energy con­

servation. The total wavefunction w is now written as w1 + w2, 

where \jl 1 is localized in the configuration space spanned by 4-3 

and w
2 

in that spanned by 4-4. Thus, we may expand: 

ljll::: I f! (xl) cpln (y 1> 

n 
4-5 

\jl2::: I 2 
fn (x2) cp2n (y 2) · 

n 
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The sums run over the bound states of (B, C) and (A, B) respectively. 

So far we have done no more than assume a two-basis expansion in 

bound states was sufficient for the total wa vefunction; 

W = W 1 + W2 = l f! (xl) cpln (yl) 

n 

4-6 

n 

which is very reasonable as long as the total energy is low enough 

to prevent dissociation. 

Channel states 4-3 and 4-4 are, respectively, the 

solutions of: 

± 
(H - V AB - E) X1n = 0 

± 
(H - V BC - E) x2n = 0 

where we assume there are only the two pair potentials, V AB 

and V BC, present in the total Hamiltonian H. The Schr~dinger 

equation is: 

(H - E) w = 0 • 

4-7 

4-8 

Introducing w 1 
+ w 2 for w, and rearranging some potential terms: 
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1 2 
(H - E) $ + (H - E) $ == 0 4-9 

or 

We write 4-10 as the sum of the two equations: 

1 2 
(H - V AB - E) $ = - V BC $ 

(H - V - E) $ BC 
2 1 

= -V AB$ 

which defines v1 and v2 
(4-10 only defines the sum v1 + v2). 

19 
The resolvents of H - V AB - E and H - V BC - E are known: 

4-11 

4-12 
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where we have used the outgoing form, retaining only bound states. 

The integral equations equivalent to 4-11 with correct scattering 

asymptotic forms for an incident wave in channel state x~i are: 

1 
- rr· w.= x1·-1 1 .. 

4-13 

Faddeev writes his equations in terms of the two-body T operators. 

Knowing operator identities of the form G0V = G0T , we see that 
a a 

4-13 is the same as his result. 

We now have the differential equation 4-8, into which 

we could substitute expansion 4-6, and try to obtain a matrix 

differential equation for the f!(x1) and f!(x2) functions. Because 

of the two coordinate systems present, the kinetic energy operators 

act on the unknown functions and the bound state solutions cpln(y1) 

and cp2n (y2). This is just restating the fact that cp ln and cp2n are 

eigenfunctions of different Hamiltonians. The simple fact is that 

we cannot set up a matrix differential like 3-21 for the system. 

System 4-13, however, has an appeal that deserves investigation. 

4. 2. 2 Matrix form of re-arrangement integral equations 

Using expansions 4- 5 for w 1 and $ 2 (with i to label 

initial state), and expansions 4-12 for G
1 

and G
2

, we write 4-13 as: 



and 
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ikH, I x1 - xi I 
+ J dxl J dyl l cplt (y 1> cp~t (yl.) e 2iklt 

t 

V BC (yl.) l f~ (x2) cp2m (y2) 

m 

ik2tl x2- x21 

cp;t (y2) e 2ik
2
t V AB(y2) l f~ (xi) cp lm (yi) 4- 14 

m 

where, under the integral, we know that xi = xl (x2, Y2) and 

Yi = Yi (x2, Y2) and the inverse coordinate relation also. These 

equations are simplified as follows: (1) Take inner products of 

the first equation in 4-14 with the functions cp1j (y 1); this generates 

a coupled set of equations without the sum over n and t present. 

Do the same for the second equation with cp2j(y2), giving another 

coupled set. (2) Substitute the expression resulting from the latter 

for f~i(x2) into the RHS of the former equation, giving one coupled 
] 1· 

system for the f j \x1) unknowns: 



where: 

101 

-ik1.x1 . 
= e l 6 . . + r dx1' f dx1" lJ . . . 

1· 
\ V. (x' x") f 1 (x") L Jm 1' 1 m 1 
m 

In these we have changed from the J dx2 J dy2 integration to 

J dxl J dyl. In 4-16, one must know that x2 = x2(x1, y1) and 

y
2 

= y
2

(x
1

, y1) as mentioned earlier. In matrix form, 4-15 is 

expressed as: 

-iK1x
1 = e ~ + r dx' r dx" . 1 . 1 

4-15 

4-16 

4-17 
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The scalar analog to this would be: 

.k ikl x-x' I 
f(x) = e- 1 x + J dx' J dx"~~ V(x',x")f(x"). 4-18 

If we cannot invariantly imbed 4-18, there is little hope of doing 

so for 4-17. We have no proof that it is impossible to construct 

a first order differential equation equivalent to 4-18, but the 

previous potential cutoff method does not work because of the 

non-local "potential", V(x ' , x"). Let us examine this. The 

SchrCJdinger-like equation for 4-18 is: 

d 2 f ( ) 2 - x + f dx' V(x, x') f(x') = k f(x) . 4-19 
dx2 · 

The potential term says that the value at x depends on f (x) over, 

possibly, all space. 4-19 is an integro-differential equation with 

no assurance of a pure differential equivalent. All physical 

potentials are local, as V(x, x') would be if it were V(x, x') o (x-x'). 

There are several ways of introducing cutoffs into 

4-18: in x', in x", or in both x' and x". None of these enable 

one to perform the same treatment as done in section 2. to develop 

the invariant imbedding equation. One simply cannot relate the 

amplitudes to the derivatives of the amplitudes with respect to the 

cutoff parameter. 
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5. NUMERICAL TESTING OF THE MULTI-CHANNEL METHODS 

There are several means available to check the accuracy of 

our calculations. Since all of these are used to some extent, the 

implications of each are discussed here. 

First, there are the properties of time- reversal and 

normalization of probability. 
19 

Time reversal necessitates that 

the probability of going from state i to state j, Pij' be the same 

as the probability of going from state j to state i, P .. , at the same 
]l 

total energy. Probability, by definition, necessitates that the sum 

of the individual probabilities of going to all possible final states 

from a given initial state is 1. In the methods we use, all P . . 
l ] 

are calculated independently; by examining how well our results 

obey the laws: 

P .. = P .. 
I] JI 

I P .. = 1 
IJ 

all j 

we have an internal test of accuracy for any calculation. This 

test, as will be pointed out later, serves mainly as an estimate 

of integration error. 

The second accuracy check is to compare results with 

calculations performed by other people. This does not enable 

5-1 

5-2 

one to check the accuracy of any new results of course. However, 

one can re-solve the old problems by the new methods and compare 

the results, or simply use both old and new methods on some 

problem that can be solved by both. 
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The third check lies in our possession of two methods based 

on different fundamental theories. We actually developed the re­

orthogonalization method to check the results of invariant imbedding. 

Throughout the remainder of the text, invariant imbedding will be 

referred to as II, and the re- orthogonalization method as DRILL, 

from Direct Reduction of ILL-conditioning. In a more specific 

sense, these code names r efer to calculations performed by the 

computer programs written by the author to implement those 

methods. 

5. 1 Hard-sphere Interaction Model 

A model problem in which the interaction potential V I(x, y) 

is replaced with a hard-sphere interaction can be solved with good 

numerical accuracy for a limited class of inelastic scattering 

problems. The interaction is not treated as a potential, but is 

used as a boundary condition on the wavefunction. Suppose there 

is only one internal coordinate y of H0 (y) and the interaction is 

a function of the separation of the incident particle and the bound 

particle. Our hard-sphere interaction is defined as: 

HS = VI (x- y) = { 5-3 
HS 

VI (x, y) 
0 x ~ y 

co x < y • 

The boundary condition on the wavefunction is that: 

~(x,y)I = o • x=y 
5-4 
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The scaled Schrtldinger equation is (see 5. 2. 1 for the procedures 

of obtaining this form from the equation written in natural units): 

1 o2 
HS i 

(Ho(y) - m ox2 + v I (x-y) - E) w (x, y) = o 5-5 

where i labels a particular incident state. For x ~ y, the equation 

is separable into product solutions, so 1jl i(x, y) is expressible as a 

linear combination of these : 

x~ y 
. . -ik x . ik x 

ij11(x, y) = \ (cn1 e n cp (y) + d1 e n cp (y)) 
L n n n 5-6 

n 

where cpn (y) are the known orthonormal eigenfunctions of H0 (y): 

5-7 

n, m = O, 1, 2, • • · 

and, 

5-8 

n = 0, 1, 2, · · · . 

The asymptotic conditions required for scattering (unit incident 
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wave and outgoing scattered waves) demand that 

x ~ y 

N-1 -ik.x . ik x 
i 1 l 1 n ljr (x, y) ::;; e cp. (y) + d e cp (y). 

i n n 
5-9 

n=O 

Then the excitation probabilities are given by 

5-10 

We have taken N terms in 5-9, so the sum terminates at N - 1, 

having begun at n ::;; O. Boundary condition 5-4 furnishes a unique 

determination of the di amplitudes. Combining 5-4 and 5-9: 
n 

Since the RHS of 5-11 is in the space spanned by the eigenfunctions 

of H0 (y), we take inner products of both sides of this equation with 

cr/Y) and obtain the coupled system of linear equations: 

"k N-1 ·1 -1 .y . l{ y 
0 = (cp .(y)j e 1 cp.(y)) + \ d1 (cp .(y)j e n cp (y)) 5-12 

J i L n J n 
n=O 

j = O, 1, 2, · · • N-1. 
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By using as many cp .(y) as there are terms retained in the state 
J 

sum (N), 5-12 contains a sufficient number of equations to 

determine the d~, i, n = O, 1, 2, · · · N-1. Defining matrices: 

ik.y 
(U) .. = (cp. (y)I e 1 cp .(y)> 
~ lJ 1 J 

(D) . . = d~ 
~ lJ 1 

i, j=O, 1, 2, • • ·, N-1 

we can write 5-12 as the matrix equation: 

* O=U +UD 

since the cp .(y) are real. The solution for the unknown involves 
J 

inverting £ : 

n = - u- 1 u*. 

5-13 

5-14 

5-15 

From D one calculates the transition probabilities as prescribed 

in 5-10. A particular case of this model, in which the binding 

potential of the target was harmonic, has been treated by Shuler 

and Zwanzig. 
28 

The same problem was also investigated by 
19 

Secrest and Johnson. 

Our formalisms do not allow for the incorporation of a hard­

sphere interaction explicitly. However, we can use instead a very 

high, infinitely thick, square barrier: 



108 

x ~ y 
SB v
1 

(x-y} = 
x < y 

or, using the Heaviside step function: 

VSB( ) vSB H(y-x} . I x-y = 

As VSB, the height of the barrier, becomes large compared to 

the total energy E, the solutions of the hard-sphere mo1el and 

the square barrier model should become identical. 

5. 1. 1 Square well binding potential 

5-16 

5-17 

There are two potentials which facilitate analytic 

handling of the bound states cpn (y) and furnish simple expressions 

for the V~B(x-y) matrix elements. These are the infinite square 

well and the harmonic oscillator potentials. Consider the square 

well first. Since we are only using this for a comparison of 

methods, we use the scaled equations directly without any reference 

to physical dimensions. 

Our target particle is bound in a square well of scaled 

width 'IT, and is struck by another particle of scaled mass m 

interacting with it via a hard- sphere interaction. The incident 

particle does not interact with the square well. Figure 2 presents 

a diagram of the collinear collision and a configuration space outline 

of the potentials. The bound particle eigenfunctions are 

2/'IT sin((n+l)y), n = O, 1, ... , with scaled energies (n+1)
2

; the 
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scaled wavenumbers of the incident particle are +~ m(E - (n+1)
2). 

For channels such that (n+1)
2 

> E, the wavenumbers are positive 

imaginary and these virtual channels decay exponentially as x 

becomes large. The £ matrix (5-13) is given by: 

2 n ik.y 
(U) .. = - J dy sin((i+l)y) e J sin{{j+l)y) • 
~ IJ TI 

5-18 

0 

For a given total scaled energy E and mass m, we solve 5-15 for 

increasing numbers, N, of states in the expansion 5-9 until con­

vergence is achie ved for the probabilities P. .. The number of 
lJ 

states in expansion 5-9 is the dimension of the square matrix U. 

It so happens that U is a very ill- conditioned
23 

matrix; one c;n 
-1~ 

seldom obtain U for N larger than 10. 

II (invariant imbedding) was compared to this hard­

sphere model. The matrix elements of the interaction potential, 
SB v
1 

{x-y), are: 

n 

(V(x)) . . = ~ J s in((i+l)y) v8B H{y-x) sin{(j+l)y)dy 
~ IJ TI 

5-19 

0 

i, j = o, 1, 2, ••• 

or: 



(V(x)) .. = 
~ 1] 
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VSB 6 .. 
l] 

ii 

x .:5 0 

~ VSB J sin((i+l)y) sin((j+l)y)dy 

x 

0 ii .:5 x 

i, j = 0' 1, 2' • . . . 

5-20 

Having these, we integrate 2-73 and obtain the probabilities from 

II. The convergence of the state expansion in II must also be tested, 

as well as the effective barrier height VSB. 

Figure 3 presents the convergence of the probabilities 

for the scaled parameters: E = 4. 5, m = MASS = 1. 0. There are 

two open channels at this total energy. VSB is taken to be 70, which 

is about 16 times the total energy. In figure 3, ERROR is the 

Romberg integrator error control, explained in Appendix A. The 

hard- sphere interaction model (referred to as a Shuler- Zwanzig 

(S-Z) model because they first used it)
28 

takes less than 1 sec per 

calculation of a set of probabilities for a fixed total energy and 

about 10 states in the state expansion. II takes on the order of 

1 '40" for a total number of states, N = 4, and with ERROR= 10-6. 

The S- Z model converges very slowly as N is increased; it is so 

slow that the ill- conditioning of £ prevents accurate solution for 

N larger than 10 or 11. II converges much more rapidly. The slow 

convergence of the S-Z probabilities as a function of N, P .. (N), 
1] 

encouraged an effort to extrapolate the P .. (N) to the limit P .. (cxi). 
1] 1] 
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The expression 

P .. (N) = P . . (co) + _l_ A 
IJ IJ (N)a 

5-21 

furnished a good empirical fit to the calculated P .. (N). a and A 
lJ 

also depend on i and j; they are obtained by guessing a and 

testing the consistency of the predicted P .. (co) for pairs P .. (N), 
lJ IJ 

P .. (N+l). Usually an a of 1 or 2 would be sufficient to give a 
lJ 

consistent P . . (co) for all P . . (N) calculated. See Appendix B. The 
l] l] 

S- Z results do not obey time reversal as well as II; in figure 3 

(and figures 4 and 5, to be discussed) P . . and P . . are given 
l] ]l 

separately. For II, they coincide to better than 6 digits. 

Figure 4 depicts the same problem as figure 3, except 

for the higher energy, E = 8. 5. There are still only two open 

channels. The same observations hold for these results as for 

figure 3. Here we see a much faster convergence for the S- Z 

method however. 

Figure 5 is for the higher energy E = 10. 5, where 

three channels are open. For II, the P.. and P . . coincide to 
l] ]l 

graphical accuracy. Here we show the effect of the square barrier 

height, VSB, on the II calculated probabilities. The effect is small, 

even when VSB is less than 5 times the total energy. 

In conclusion we summarize the important 

observations: (1) II gives the same results as the completely 

independent S- Z method, to well within the inherent accuracy 

limitations of that method. (2) II is about 2 or 3 orders of 

magnitude slower than the S- Z hard- sphere interaction method, 
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but the reason is that the II method is much more general than the 

S-Z one, which is only applicable to hard-sphere interactions and 

uses that property explicitly as a boundary condition. (3) II 

converges much faster than the S- Z method as the number of states 

retained in the expansion is increased. 

5. 1. 2 Harmonic oscillator binding potential 

Shuler and Zwanzig' s
28 

results for the excitation of 

a particle in a harmonic well by a hard- sphere collision are 

available. Secrest and Johnson
19 

repeated the same calculations 

and confirmed the results. We did calculations for the same values 

of the parameters used by these authors with the II method. This 

gives a completely external check on the method. The bound state 
2 2 2 

eigenfunctions of H0(y) = - o /oy + y are: 

1 
cpn (y) = 

.J2n n! /TI 

2/2 H (y) e-y 
n 

n=0,1,2, .... 

5-22 

H (y) are the Hermite polynomials. The eigenvalues are 2n + 1: n 

5-23 

and the corresponding incident particle wavenumbers are given by 
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kn=+ -Jm(E - (2n + 1)) 

n = O, 1, 2, • • •• 

The matrix elements of the infinitely thick square barrier are: 

(V(x)) = J 
~ nm 

SB cp (y) V H(y-x) cp (y)dy n m 

= VSB J c+>n (y) cpm (y} dy • 

x 

Expression 5-25 is not easy to evaluate efficiently. One could 

do a numerical quadrature for every x, but instead we related 

all of the elements of y(x) to simple analytic forms, some of 

5-24 

5-25 

which contained the error function. This is explained in Appendix 

C. Tables 2 and 3 give the comparison of II with the same 

problems solved by Secrest and Johnson and by Shuler and Zwanzig. 

The results again confirm the accuracy of II, within the limitations 

imposed by r 3ading the published graphs. 

We should mention that the Romberg integrator error 

control enables us to satisfy time reversal and the probability sum 

to 1 (5-1 and 5-2) as well as desired for a given problem simply by 

specifying a lower ERROR value. In table 2, for example, P 00 + 

P 01 + P 02 = 1. 0000 for 1 virtual state. Never are the sums in 

error by more than± • 0001. Time reversal was obeyed to the 

same accuracy (not shown). If we had integrated with a larger 
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error bound, the integration would have been faster but less 

accurate. Table 3 gives all of the probability elements of a 

lower energy problem to demonstrate the accuracy of the Romberg 

integrator. If one examines the time reversal and normalization 

of probability relations (5-1 and 5-2) for data in table 3, it turns 

out that they are true to 6 or 7 decimal digits for both the two and 

three virtual state calculations. However, each individual 

probability is not that accurate, as they are changing in the 

second or third decimal place as more virtuals are included. 

5. 2 Comparison of DRILL and II with Published Soft Atom on 

Diatom Calculations 

The method developed by Secrest and Johnson (S- J) appeared 

in publication 
19 

while we were developing our multi- channel 

theories. We used their results as a final check on both of our 

methods, the II (invariant imbedding) and DRILL (re-orthogonalization). 

The problem considered is the following: an atom A of mass m A 

collides collinearly with a diatom BC, . whose atoms have masses 

mB and me, respectively. We label BC so that A collides with 

B. The bond between B and C is approximated by a harmonic bond 

with a force constant kBC" The interaction between A and B is a 

repulsive exponential function of the separation, s A - sB. This 

interaction is chosen for mathematical simplicity, and because of 

its previous use in the distorted wave
29 

and semiclassical time­

dependent perturbation 
30 

solutions for the same problem. 
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5. 2. 1 Transformations on the Schrtldinger equation 

fu laboratory coordinates, the Schrtidinger equation 

is: 

where e. is the total energy, L is the length parameter that 

characterizes the range and steepness of the interaction, and 

5-26 

sEQ is the equilibrium separation of BC. Let us apply the 

following transformations: (1) remove the center-of-mass energy 

from e., (2) measure energies in units of the ground state (zero 

point) energy of BC, and (3) measure length in units of 

(11 2 /µBC kBC) l / 4• The resulting scaled equation is: 

(-~ + y2 - ! o22 + e-a(x-y) - E) ijli(x, y) = 0 
oy ox 

5-27 

where y is the scaled separation of BC, x is the scaled distance 

of A from the center of mass of BC, and a is proportional to the 

reciprocal of a scaled L. See S-J19 for details. The three scaled 

quantities m, a, and E now characterize our proble m. The 
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2 2 2 
eigenfunctions of H0 (y) = - o /oy + y are the solutions defined 

in 5- 22. The interaction matrix elements are: 

(V(x)) = (cp (y) I e-a(x-y) I cp (y)> 
~ nm n m 

5-28 

Thus, we need not evaluate y(x) for every x, we only need evaluate 

the exponential e -ax since it factors out. The matrix elements 

(cp (y)j eayl cp (y)> are evaluated only once in any given integration. n m 
Since some references

31 
for these elements are in error, we give 

the correct analytic form here: 

2 m 2 t 
_ m! ,a )n-m a /4 \ n!(a / 2) 5 29 
- i1T V2 e L (m-t ) ! (n+t -m) !t ! · -

n ~ m t =O 

5. 2. 2 Testing of II and DRILL with atom on diatom problem 

There are four variations in this problem with either 

II or DRILL that can effect the agreement with the published 

results. They are: (1) position of starting point for integration, 
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(2) position of stopping point for same, (3) number of states 

retained in the state expansions, and (4) the integration error. 

Our practice has been to vary these until our own calculations 

indicate convergence has been achieved to some prescribed 

accuracy, and then to compare the results to other calculations. 

It turns out that these four preceding variations are 

almost independent in their effects. The integrator error is 

easiest to examine: we test the probability sum to one and time 

reversal conditions on our results. Let us define 6 and e: as: 

max 
6 = i I\-, P .. - 11 

L iJ 
j 

max 
€ = i, j I (P .. - p .. ) I 

l] ]l 

5-30 

This makes 6 and e: the maximum errors observed in the sum 

and time reversal; 6 and e: turn out to be of the same magnitude 

and vary directly with the local truncation error control on the 

Romberg integrator. 

The starting point variation must be checked by 

repeating calculations until the individual probabilities no longer 

change as we move the starting point farther back into the classically 

inaccessible region of the interaction. A rule of thumb observation 

is that the starting point is adequate when the diagonal elements of 

y(x) are 10 times larger than the total energy at that point. 

The stopping point may be checked during any 

integration by temporarily stopping, calculating the probabilities, 
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then integrating farther, re- calculating probabilities and checking 

for consistency. The long tail of the repulsive exponential inter­

action causes significant effects until the diagonal elements of 

~(x) are less than 1/ 5, 000 of the total energy E. 

The convergence of the state expansions is the all­

important remaining topic. For the atom or diatom problems, 

we can always increase the total number of states, N, until the 

probabilities do not change. This increase in dimension of our 

matrix equations, however, causes a large increase in computational 

time. One can easily reason that matrix multiplication and inversion 

times increase as the cube of the dimension, simply because N3 

multiplications are involved in one matrix multiplication, and 

roughly that in an inversion. We will discuss this shor tly. 

Figure 6 shows the convergence of DRILL for a 

solution of 5-27 with E = 4. 9455, a. = ALPHA = . 2973, m = MASS 

= 1. 25. There are two open channels. The top gra ph of figure 6 

indicates that two virtual channels are sufficient for an accuracy of 

1% in P01, because adding one more channel changed P01 by less 

than that amount. The lower graph shows the variation of P 01 with 

the starting point, using two virtual channels. A starting point of 

-10. 0 gives P 01 to 1 % also. The results presented in figure 6 
- 4 -4 

converge to a P 01 of O. 87 x 10 • This should be 1. 12 x 10 as 

given in table 4; we had used in our preliminary calculations an 

expression31 for 5-29 that was in error by a small amount. The 

error does not affect the convergence properties we are testing, 

and it was corrected shortly after the calculations in figure 6 were 

performed. 

Table 4 give s the II r e sults for the same problem: 

E = 4. 9455, MASS = 1. 25, ALPHA = O. 2973. The published results 
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of S-J are also given for comparison. 

Table 5 gives DRILL results for the problem E = 6. o, 
MASS = 0. 2, ALPHA= O. 114. Here there are three open channels. 

In figure 7 we make a comparison of execution times 

(ET) on the Caltech IBM 7040- 7094 for DRILL and TI running under 

various conditions. The important feature is the variation of ET 

with total number of states, N. The previously mentioned fact that 

matrix multiplication times increase as the cube of the dimension 

shows up in a near cubic dependence of ET on N for similar ERROR 

control. The dependence of ET on ERROR can be seen from the 

DRILL calculations at N = 4. The execution time is almost 

perfectly linear in -log(ERROR). The relative speed of DRILL and 

II can also be checked; II requires almost four times the ET of 

DRILL for N = 4, ERROR= 10-8. The starting point is seen to 

make only a small effect in total ET. We should add that DRILL 

and II give equally accurate results when the same number of states 

are retained (matrix systems of same dimension) and the integrator 

ERROR control is the same. We observed earlier that DRILL was 

four times faster than II. 

Table 6 represents an effort to speed up the calcu­

lations, maintaining the minimum acceptable accuracy of about 1 % 
in the individual probabilities. Section (a) is the standard double 

precision (16 decimal digits) Romberg integrator with DRILL. 
-4 ERROR= 10 was found to give a reasonable 1% error for all P .. , 

lJ 
measured from the time reversal average (P . . + P .. )/2. Conversion 

IJ Jl 
to single precision arithmetic (8 decimal digits) reduced the ET by 

1/3 and gave the same probabilities to 4 or more significant figures. 

This is mentioned in section (b). 
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Section (c) of table 6 results from the use of a 5 'th 

order Adams- Moulton predictor integrator with a Runge- Kutta 

starter. 33 The step size, h, was increased from . 035 to. 37 over 

the range of integration according to: 

h ~ 1. 1 5-31 

The integrator performed 30 integrations of size h, stopped, 

evaluated a new h from 5-31, repeated another 30 integrations, 

evaluated another h, and so on. e - a.x is proportional to the 

elements of y(x). The guess was that a smaller step size was 

needed in the range of x where the off-diagonal elements of V(x) 

were large and strongly coupling the system of differential 

equations (represented by !:(x) in section 4.) that we are integrating. 

When the elements of y(x) become small, the system of equations 

become uncoupled and a larger step size is tolerable. This 

executed rapidly, reducing ET to 1' 28 ". Section (d) is the results 

of S-J and an estimate of their computational time on a n IBM 7040-

7094 of 1 '45". 32 

In conclusion, we have no difficulty obtaining agreement 

with the published calculations of either Shuler and Zwanzig or 

Secrest and Johnson. Only the latter authors have a method of the 

same general nature as our methods. The long range problem of 

computation time arises here, since calculations with, say, hundreds 

of states retained in either II or DRILL are out of the question if 

they must be done in minutes rather than hours on the computer. 

We feel that our methods have advantages over the method of S-J, 
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both in an analytical and computational sense. This cannot be 

discussed here, especially since the computational comparisons 

have not been thorough or perhaps fair. As to analytical 

comparisons, we will only say that the S-J method is more akin 

to II than DRILL. S-J calculate with a set of equations that, if 

one takes the limiting differential form, become the invariant 

imbedding equations. 
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6. COLLlliEAR DIATOM ON DIATOM COLLISIONS 

The previous calculations have involved the excitation of a 

bound target system by an incident structureless particle. Energy 

transfer occurs between kinetic translational motion and the 

vibrational energy of the target; for atom or diatom systems with 

realistic soft interactions, the probability of this transfer is quite 

small. However, when two diatoms collide, not only i s trans­

lational to vibrational (T-V) energy conversion possible, but also 

transfer of vibrational energy from one diatom to the other (V-V) 

with differing degrees of translational contribution can occur. It 

is expected that the probabilities of these V- V transfer s may be 

large. In our investigation of this problem, we will pr esent more 

details than previously given in section 5. for the numerical testing 

of the methods. In particular, we will give all of the explicit 

scaling transformations of t he SchrCfdinger equation. 

6. 1 Scaling and Coordinate Transformations 

Consider a collinear collision configuration between two 

diatoms, AB and CD, interacting via a function of the separation 

of the nearest end atoms B and C. Let us call CD the target, 

and AB the incident projectile. The laboratory coordinates of 

A, B, C, and D are s A' sB, sc, and sn; their masses are 

m A' mB, me, and mD respectively. The SchrCfdinger equation 

for this system is: 
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6-1 

where V AB and V CD are the binding potentials of AB and CD, 

and v1 is the interaction potential. We want to convert to the 

barycentric (stationary center of mass) system and use the internal 

coordinates of AB and CD. The new coordinates are: 

6-2 

where M = m A+ mB +me + mD. In these variables 6-1 becomes: 
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6-3 

+ V AB(x) + V1(r - y ABX - YcDY) - e) $(x, y, r, R) = 0 

where the reduced masses and mass ratios are 

mA 
y = ----

AB mA+mB 

Note the arrangement of the new coordinates implied by 6-2: 

D c B A 

• >• • ~· y x 

~ > X' 
r 

r is the distance from the center of mass (COM) of CD to the 

COM of AB. We remove the energy of motion of the COM of 

the whole system, and keep the internal part only. Define: 

6-4 
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E = e - TCOM. 

This enables us to factor out the R dependent part of the wave 

function as given in 6-3: 

*(x, y, r , R) 
iKCO~ 

= w(x, y, r)e 

6-5 

6-6 

2 2 
where TCOM = tz KCOM/2M. tz KCOM is the momentum of the 

whole system. 

We now introduce harmonic bonds into AB and CD 

with force constants k AB and ken· The equilibrium separations 

are x and y • Combining 6-5 and 6-6 and introducing the 
eq eq 

harmonic oscillator potentials: 

6-7 

The reduced oscillator coordinates for CD and AB are defined as: 
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The frequencies are 

Introducing 6-8 and 6-9 into the Schrtldinger equation 6-7, it 

becomes: 

1 o2 -2 1 o2 -2 
(- 2 h wCD(- - 2 + y ) - 2 h w AB(- -2 + x ) 

oy ax 

- E) ~ ( x, y, r) = 0 • 

We choose to use a repulsive exponential interaction between 

6-8 

6-9 

6-10 

B and C. This simplifies somewhat the evaluation of the matrix 
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elements of the interaction, and enables us to make direct 

comparisons of our calculations with previous approximate 

treatments of the same problem. We have therefore, 

-(s - s )/ L 
V (i:: i:: ) = voe B c I '='B - '=' C 6-11 

where L is the characteristic length that determines the steepness 

of the interaction. We can ignore any translational displacement 

in the argument of V 1 that corresponds to a shift in the origin of 

our r coordinate. Suppose we have ljr(x, y, r), the solution to 6-7 

with interaction v 1(r - y ABx - Ycny). Then the solution of 6-7 

with interaction V 1(r - r O - y ABX - y CDy) is just ~ (x, y, r - r 0). 

This may be shown directly by replacing r with a new coordinate 

s and transforming the Hamiltonian. We then define s = r - r 0. 

The asymptotic forms of the correct scattering solutions of 

Hx, y, r) and tlt(x, y, r - r 0) can differ only by phases of the form 
:kp(r o> 

e as r - 00 (see equation 6-33). Since these phases become 

unity when the probability modulus is taken, there is no change in 

the results. For a particular physical problem, we would choose 

V 0 such that the incident particle and the target do not penetrate. 

However, because of the collinear model and the subsequent 

invariance of the solution under a change in the r origin, we see 
-(SB - scJ/L 

that constant positive factors multiplying e . can be 

taken into the exponent as an irrelevant displacement. Any V 0, 

for example, can be included in the argument of the interaction 

as tn(V 0). This is peculiar to exponential interactions, of course. 

The argument of v1 in6-10 is 
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r - y ABX - y coY 6-12 

which, by 6-8, C•)nverts to: 

ti
2 

1/4- ti
2 

)1/4-
r - YAB( µ k ) x - Yen( µ l y 

AB AB CD(CD 

6-13 

For the reasons we gave prior to 6-12, we may ignore - y AB xeq 

- Yen yeq in 6-13. Let: 

Thus, energy is measured in units of the ground state energy 

(zero point) of CD, and the separation r is measured in units 

of the reduced oscillator length of CD times the mass ratio 

6-14 

y CD" Substituting 6-14 into 6-10, using the exponential interaction, 

gives: 
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0 
2 

-2 o2 
-2 

( (- . -2 + y ) + w AB (- -2 + x ) 
oY ox 

v 0 1 ti 2 1/ 4 - -- -
+ (1 )exp(- - Y. ( ) (r-y-13 x}}-E) 

LCD µCDkCD 2 tiuiCD 

H x, -y, r) = o 6- 15 

where: 

6-16 

The factor mulhplying o 2 /or2 
can be simplified; we note that 

ti 1 µCD kCD l/2 µCD mC + mD 2 
µ 2 ( 2 ) =-µ-( m ) 

WCD ~ D Yen " 

mCM 

= (mA + mB)mD • 
6-17 

Let us define an effective dimensionless mass m by 
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m = 

and a dimensionless reciprocal characteristic length by 

we set vol ( i Ii wen> = 1, since this factor could be taken into 

the argument of the exponential as an irrelevant displacement. 

Combining 6-15, 6-17, 6-18, and 6-19, we have the scaled, 

dimensionless Schrtldinger equation for the internal motion of 

the system: 

2 2 '.:>2 
((- _i_ + -y2) + w (- _o_ + X.2) _ __!__ o 

-2 AB -2 - -2 
oY ox m or 

6-18 

6-19 

+exp(- a(r - y - ~x)) - E) w(x, y, r) = o. 6-20 

The dimensionless parameters E, a, m, ~' and w AB are related 

to the physical parameters consisting of all the masses, the force 

constants, the interaction length, and the total energy. From 

here onward, we drop the bars over these and the scaled coordinates, 

and the AB from w AB. 
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6. 2 Explicit Relations 

The dimemiionless form of the H0 p~_rt of our total 

Hamiltonian is 

o2 2 o2 2 H
0 

(x, y) = - - 2 + y + w (- - 2 + x ) . 6-21 
oY ox 

Here we have two internal coordinates in H0, and we also need 

two quantum numbers to label the H0 eigenfunctions. The 

orthonormal solutions of 

H
0

(x, y) cp . . (x, y) = W .. cp . . (x, y) 
lJ lJ lJ 

i, j = 0' 1, 2' ... 6-22 

are products of harmonic oscillator wavefunctions as defined in 

5-22. We now establish the following convention: the left index 

in a pair, ij, refers to CD with internal coordinate y, and the 

right index to AB with internal coordinate x: 

cp . . (x, y) = cp . (y) cp . (x) 
lJ 1 J 

i, j = o, 1, 2, ... 

and 

6-23 
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W .. = (2i + 1) + w(2j + 1) 
l] 

i, j = 0' 1, 2' • . . . 6-24 

The wavenumbers of the relative motion associate d with coordinate 

r are defined as 

k .. = +~m(E - W .. ) 
l] l] 

i, j = 0' 1, 2' . . . . 

The matrix elements of the interaction potential are : 

• < cp (x)!ea.(3xl cp ,(x) ) . 
m m 

The analytic expression for each of the matrix elements in the 

product was given in 5-29. We now have all of the e lements 

6-25 

6-26 

that go into a DRILL or II calculation. In addition to the previous 

variations in starting point, stopping point, and so on, we must 

choose the number of states retained in each of the two state 

expansions for the two different systems, AB and CD. In DRILL, 

we must choose N and M in: 
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N-1 M-1 
nomo . 

f (r) cp (y) cp (x) 6-27 nm n m 
n=O m=O 

nm 
where f O O (r) are the unknown functions of the separation. 

nm 
Labels n

0 
and m0 denote a particular initial state of the system. 

For convenience of discussion, it is helpful to relate the dual 

index nm uniquely to one number. Once we have chosen an N 

and M (the number of states of CD and AB included in the 

expansion) we can do this as follows. Let i == i(n, m) be: 

i = n+N· m 6-28 

n = 0, 1, 2, .•• N-1 

m = o, 1, 2, ... :w-1 
i=0,1,2, ... ,K· M-1. 

This is sometimes referred to as converting a matrix to a 

super-vector; the essence is the unique relation of any pair 

nm to one index i. 

The matrix elements of the interaction are now expressed 

in matrix form: 

(y:(r))ij = (y(r))i(n, m) j(n', m ') 

= m (m (x y)j e-a(r-y-Sx)j rri (x y)). 
'!"'nm ' 't'n•m ' ' 6-29 
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Similarly the unknown matrix of solutions is given by: 

n'm' 
(~(r})ij = (!:(r))i(n, m) j(n', m') = fnm (r) 6-30 

and the wavenumber matrix: 

<!9ij = (!9i(n,m) j(n' ,m') = knm 6nn• 6 mm' · 6- 31 

Consequently the re-orthogonalization method (DRILL) is based 

on integration of the matrix system (see 3-48): 

d 2 
dr ~'(r) = Cy(r) - ~ ) E:(r) 

:r F(r) = ~'(r) 6-32 

which is equivalent to the coupled system of differential equations 

obtained by substituting 6-27 into 6-20 and taking inner products 

with cp , , (x, y). Note that 6-32 does not have a mass factor; it 
nm 

was absorbed into the definition of y(r) in 6-29, and ~ in 6-25, 

rather than l eft in front of d/ dr. 

The asymptotic form of F(r) for large separation, where 

y(r) tends to zero, is: 

~(r) = -iKr A ' iKr B' e ~ +e ·~ • 
r ._. co 

6-33 
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This is obtained by integrating 6-32 into the asymptotic region; 

A' and B' are to be determined from the solution. Since this is 

rather obscure, we will give the actual pro•2edure of analyzing 

E_'(r) at large r. 

6. 3 State Analysis for DRILL Method 

At some point r 
1 

in the asymptotic region, our numerical 

solution will consist of the two matrices of numbers, !~ (r 1 ) and 

!'.' (r 
1

). The latter is the derivative matrix, as seen from 6-32. 

Equating these to the expressions defined by 6-33 gives 

-i~1 i~r 1 F'(r ) = iK(-e A'+ e B') 
r~ 1 6-34 

therefore we have 2 • N · M equations to solve for the 2 · N · M 

unknowns A' and B '. Actually we wish to find ~' ~, - l, the matrix 

of transition amplitudes (3-32), from which we determine the 

transition probabilities (3-23) according to: 

6-35 
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in which we use the notation implied by 6-28. Rather than 

calculating the exponentials e±i!Sr1 present in 6-34, we may 

write the asymptotic form of ~(r) as 

~(r) = 
-i~(r - r 1) i~(r - r 1) 

e A+e B. 
r -+ oo 

At r = r 1, ~(r) and ~' (r) would be : 

6-36 

6-37 

-1 F:rom 6-36, we see that the transformation !!:, , applied to ~(x), 

gives the asymptotic form 

~(r) !!:,-1 = 6-38 
r-+oo 

or 

-iKr -iKr - iKr iKr ' v 1 - 1 ,~ 1 = e ~ + e -~ e BA e 
r ..... oo 

6-39 
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The reason for writing 6-38 and 6-39 was to show that the prob­

abilities calculati~d from 6-33 and 6-39 are the same (they involve 

a phase change ht the defi11itions ~ and ~). Expression 6-35 gives 

P if based on 6-33. From 6-39, the probabilities are 

-i!Y 1 -1 -i~ 1 2 kf 
Pif = I (e ~ ~ e >1-1· I -l · L 

1 

6-40 

Smee k is real for open channels, and these are the only observed 
n 

ones, the exponentials in 6-40 cancel when the modulus is taken. 

Consequently, 

6-41 

-1 
We have just shown that ~ ~ , dete rmirn:!d from 6-37, 

which was based on asymptotic behavior 6-36, is the correct 

expression to use for determming Pu· The reason for avoiding 

6-33 was to elimhnte the computation of several exponentials at 

p0mt r 
1
. Let us proceed with the numerical calculation of P if 

from 6-37. Solvi11g for A and B: 

6-42 
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F and F' are real, K is real for open channels and pure positive 
~ ~ ~ 

imaginary for virtual channels. Since we desire to use only real 

arithmetic, we define: 

R 
~ =Re (!9 

A. = Imag ( ~) 

K=~+iA. 6-43 

The inverses are defined as 

-1 -1 2:, = -Imag (~ ) 

6-44 

So, from 6-42, 

6-45 

From the known real matrices ~(r 1) and ~· (r 1), we form: 
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6-46 

Therefore the expressions 6-45 for A and B may be written as: 

1 - . 
B = -(F - ID) 
~ 2 ~ r-J 

from which we wish to calculate 

£ = Re (£) + i !mag(~) = :~ ~ - 1 
. 

After considerable algebraic manipulation, one can use 6-47 to 

reduce 6-48 to: 

- :+-1 + + -1 -1 Imag(C) = -(D + F (F) D)(F + D(F ) D) . 
,....,__, ,....,_, ,......._, ,....._. ,......._, ,....,_, ,....,_. ,....._. ,......._, 

6-47 

6-48 

6-49 

The numerical operations are now explicit: (1) Use ~(r 1) and 

!:'(r1) to form ~+, ~-, and D according to 6-46. (2) Invert F+. 
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(3) Form expression ~+ + ~(~+f 1 !2· (4) Invert this. (5) Construct 

the real and imar~inary parts of £ by matrix multiplication as 

prescribed in 6 - ·19. Transition probabilities are obtained from 

the moduli of the C elements, i.e. , (Re(C) .. )
2 

+ (Imag(C) . . )
2

• 
~ - - ~ l] ~ l] . 

multiplied by the flux normalizing factor k./k., according to t-3 - 41. 
1 J 

6. 4 II Adaption for Diatom on Diatom Problem 

The invariant imbedding problem has been set up in principle 

with 6-29 and 6-31, except that we do not include the mass factor 

m in the definition of V(r) (see 2-58). The probabilities are 

obtained directly from the moduli of the asymptotic form of ~(r) 

(2-74): 

2 kf 
P = P = I (S(r)) I k. . 6-50 

no mo nm i(no, mo) f (n, m) r - (X) fi 1 

As there is possible confusion on the nature of the invariant 

imbedding independent variable, we state the following: In the 

derivation of the II equation, the coordinate r used in the cutoff 

disappeared and the cutoff point r 0 , which is a variable, 

effectively took its place. The II differential equation has the 

cutoff point r 0 as the independent variable; we treat this cutoff 

point, however, as if it were really the original coordinate r. 
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6. 5 Translational Energy Dependence of Energy Transfer 

Probabilities in H
2 

on H2 Collisions 

The number of physical systems that we could study is almost 

unlimited. After some trial calculations, we limited most of our 

investigations to two tasks. One was to find the energy dependence 

of H2 on H2 transition probabilities, and the other was to dete rmine 

the variation of vibration to vibration (V- V) energy transfer 

probability with fr equency ratio w(w = w AB/wCD' see 6-14) for N2 
on N2-like collisions. H2 on H2 will be treated first. 

6. 5. 1 Parameters for the H2 on H
2 

system 

The dimensionless parameters E, m, a.., ~' and w are 

calculated as follows. Since both H2 molecules have the same 

frequency, w = 1 (6-14), and ~ = 1 also (6-16). m is seen to be 

1/ 2 from 6-18. E is simply the total energy measured in units of 

the zero point energy of H2 (6-14). The remaining parameter is 

a., which is the hardest to choose, because there is no accurate 

physical measurement that can determine this interaction constant. 
19 0 

Secrest and Johnson uniformly used L = 0. 2 A for all atom on 

diatom calculations, regardless of the identity of the species. For 
0 

H2 on H2 we happened to choose L = • 212 A, which is a slightly 

softer interaction. This L converts to a.. = • 2973 when the physical 

parameters for H2 are substituted in 6-10~4For calculational and 

comparison purposes, the scaled parameters are more significant 

than the physical ones, because the analytical methods to which we 

compare our calculations can also be put into our dimensionless 
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system. Consequently a. is exactly . 2973 in our computations, and 

L can be calculated from this number using 6-19. 

6. 5. 2 Previous approximate analytical solutions to ~-~ato1~ 

on diatom collision proble m 

There have been no previous numerical calculations 

on this problem. As the physical process is very fundamental and 

interesting, previous workers have utilized some of the perturbation 

methods of quantum mechanics and obtained analytic solutions to the 

identical collinear, exponential interaction, harmonic oscillator 

model we are solving. We summarize these now. 

6. 5. 2. 1 Distorted wave solution 

Takayanagi36 has used the distor ted wave (DW) 

method on the diatom-diatom problem, generalizing previous studies 

of atom-diatom collisions. l, 29 Essentially, DW treats the off­

diagonal solutions in ~ (r) (6-32) as perturbations on the zero-order 

diagonal solutions, which may be obtained analytically. In our 

dimensionless parameters, the resuit36 is: 

PDW _ (V (a.))2 (V (a.t:1))2 1 
n m .... nm - n n m m t-.1 A-2 

0 0 0 0 "%1 1 

6-51 



2 TT k . . 
where q .. = IJ and 

lJ a 

V .. (x) = J 
1) 
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2 
e -y H.(y) H. (y) exy dy 

1 ] 
6-52 

are the same matrix elements evaluated previously in 6-26. For 

exact resonance energy transfer, involving no change in translational 

energy, ~ m = <\im· We must use L' Hopita l's rule for evaluating 

the indeter&iJ>exte form 0/0 which results from 6-51. Conside r the 

ratio: 

and assume q is the variable approaching am: no mo 11 

Substituting 6-54 into 6-51, we get the expression for exact 

resonance transfer (ERT): 

6-53 

6-54 
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This shows that DW predicts a linear dependence of ERT 

probabilities on r Jlative kinetic energy. For (0, 1) to (1, 0) 

transfers in a homonuclear system, we use the known forms 

of v
01

(a.) and v
10

(af3) (5-29) and obtain 

2 2 2 2 
PERT, DW = E:__ a /2 0!2_ (af3) /2 _i_ (l )2 6 _56 (0, 1)(1, 0) 2 e 2 e a.2 cl, 0 • 

Since f3 = 1 for identical diatoms, using 6-25 and 6-24, we get: 

2 
PERT, DW _ a. 2 (E 4) 

(0, 1)(1, 0) - e a. m - • 6-57 

E-4 is just the relative k inetic energy in units of 1/2 f1 wH • 
2 

Mies37 has publis hed a corrected DW treatment which indicates 
2 

that the term ea in 6-57 should be neglected. 

6. 5. 2. 2 Time-dependent quasi- classical 

perturbation method 

Rapp and Englander- Golden 3
8 

have studied 

diatom on diatom collisions in the framework of the time-dependent 

quasi-classical (TD- QC ) pertu rbation method. For ERT processes, 

their result is, in our units: 

2 
P ERT, TD-QC _ . 2(k a. /2) 

(0 1) (1 0) - sm 01 a e . 
' ' 

6-58 
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Expanding sin in a power series and retaining the first term gives 

the DW result, 6-57, when we introduce (k01)
2 = m(E - 4). This 

shows that both DW and TD-QC are consi:::tent to the lowest orders 

in a, which is assumed small compared to unity. 

6. 5. 3 Exact two state solution at exact resonance 

Retaining only two states (say (0, 1) and (1, O)) in the 

state expansion of the SchrtJdinger equation, we obtain: 

2 
d 2 -ax ( ) ) ( (~ + k )f = e (v00 a v11 (a~ f + v 01 (a)v10 a~)g) dx 

where k = k 01 = k 10 and f = f(x) = rg~(x}, g = g(x) = f~~(x). 6-59 is 

the system 6-32 written out for a two by two system of equations, 

considering only the incident state (0, 1). We take ~ = 1 (identical 

diatoms) so that, using: 

6-60 

6-59 may be written: 
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d
2 2 f - a.x v Vo f ( - 2 + k ) ( ) = e ( ) ( ) • 

dx g V V g 
0 

6-61 

If the diagonal potential elements were not equal (~ f 1), we would 

apply a unitary transform and diagonalize 6-61. For the present 

case, we add and subtract the components of 6-61 to obtain the 

de- coupled system: 

2 
d 2 ) -a.x ) ( -:-2 + k ) (f + g = e (V + v 0) (f + g 
dx 

The solution to equations of this form was obtained by Zener. 
1 

+ -Let f + g = R (x), g - f = R (x), then the regular solutions are: 

1 
- - a.x 

R+ (x) = A K. ( ~ v + Vo e 2 ) 
iq a. 

1 
- - a.x 

R- (x) = B K. ( ~ V V e 2 ) iq a. - 0 

2k 
with q = - • 

a. 

The asymptotic form as x ..... 00 can be shown to be:40 

6-62 

6-63 
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R + (x ) = A 6 ( Y: e ikx - Y + e - ikx ) 
x -> co 

= 
x-+ co 

B 6 (y* eikx -ikx) Y e 

v ± v 0 iq 1 
where 6 = 2 sin Ci 

11 
q) , y ± = ( a. ) iq I' (iq) . Scattering 

conditions r equire that: 

-ikx R ikx f(x) = e + e 
x .... co 

( ) T ikx 
g x = e . 

+ -If we represent f and g in t erms of R (x) and R (x), 6-65 

allows us to determine R and T in terms of A and B, which 

are uniquely determined also by 6-65. That is: 

1 + -
g = 2 (R (x) + R (x)) • 

Using 6-64 and 6-66 and comparing to 6-65, we find that: 

6-64 

6-65 

6-66 
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B = oy 
1 

A = 

This enables us to calculate R and T, 

* 1 Y+ 
T = - - (-2 y 

+ 

* y 

y 
- ) 

* y 
- --=- ) 

y 

1 
oy 

+ 

and their moduli from the definition of y ±: 

2 .2k V+VO I TI = sm ( - -in( --- ) ) 
a. V-V

0 

Using matrix elements defined in 6- 26, 

2 
PETS = sin2( _!5 .in( 1 + a. /2 )) 

(0, 1)(1, O) a. 1 _ a. 2 ; 2 

6-67 

6-68 

6-69 

6-70 

where ETS stands for Exact Two State. An expansion of -ln gives, 

correct to 0 (a. 5), : 

PETS = sm· 2( .!5 a.2) = sm· 2 (k a.) 6-71 
(0, 1)(1, 0) a. 01 . 
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This is similar to the TD-QC result. After we developed this 

ETS solution, we found that it had been obtained previously
39 

but was apparently unknown to the authors of reference 38. 

6. 5. 4 Results and discussion of H2_?~IJ2 calculations 

We did a series of calculations for the H2 on H2 
system at different total energies, using the parameters prescribed 

in 6. 5. 1, namely: a= ALPHA= . 2973 (corresponding
44 

to an L of 
0 

. 212 A), 1JJ = OMEGA= 1. 0, and masses of the atoms MA = MB 

= MC = MD = 1. 0 (since only the mass ratios enter the calculation 

of ~ and m). 

The starting point for integration, XST, was determined 

using DRILL calculations at E = 4. 9455, ERROR = 10-
5

, and an 

N = 2, M = 2 state expansion. The change in the probabilities as 

we moved from XST == -15 (table 7(a)) back to XST = -18 (table 7(b)) 

was insignificant. The ERROR control of 10- 5 gave roughly six 

digit "sum to one" and time reversal accuracies. An increase in 

N and M to N = 3, M = 3 gave probabilities and execution time ET 

listed in table 7(c). For diatom on diatom problems, ET increases 

as the cube of N · M, since we have an N · M by N · M dimension 

matrix syste m. We did not try to confirm this by several expansions, 

as was presented in figure 7 for the atom on diatom problem, but it 

appears to be true for all the cases we have done. The larger 

probabilities have changed by little more than 5% in going from 

table 7(a) to table 7(c), but we choose to use N = 3, M = 3 in our 

series of calculations for H2 on H2 to maintain the more accurate 

results for the smaller probabilities. The II m e thod was compared 

to DRILL also. The II results given in table 8 are for the identical 
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problem solved by DRILL in table 7(a), with the sam e starting 

point and ERROR control. The results agree, helping to confirm 

both answers. Be cause our II program requires considerably 

more computation time, we use DRILL for the major studies on 

all diatom-diatom problems. 

Tables 9(a) through 9(g) give our series of calculations 

for the H2 on H2 problem. In figures 8 and 9 we plot the more 

interesting of these and the DW results from Takayanagi's formula 

6-51. Figure 8 contains the probabilities for translational to 

vibrational (T- V) energy conversions. The DW results are too 

large by an order of magnitude for one quantum T-V excitations. 

DW is even more seriously in error for two quantum T-V 

processes (not shown), in exact analogy to the conclusions in atom 

or diatom studies. 
19 

Figure 9 displays the vibrational to vibrational (V-V) 

energy transfer probabilities. Here the DW is very accurate for 

one quantum transfers, but too small by a factor of 100 for the two 

quantum (0, 2) ...... (2, 0) process. The result of Mies37 indicates 

that the exponential term in 6-57 should be omitted. This brings 

the DW expression for ERT processes (6-57) into better agreement 

with the ETS (6-71) solutions at low incident kinetic energies. 

Figure 9 shows that Mies' corrected DW method does give a better 

slope at the (0 , 1) .... (1, O) threshold. 

Apparently the (0, 1) ...... (1, 0) DW result is ve ry 

accurate because the ETS method is valid when only those two 

channel states domina te in the expansion of the wavefunction. We 

have seen that DW and ETS are nearly identical at low energies. 

At high energies, we know that the DW result is grossly in error 

because it exceeds a probability of unity. The TD-QC result, 
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which will be used later, may also base its accuracy for (0, 1)-+ 

(1, 0) on the dominance of the wavefunction::; by those channels. 

The plots in figures 8 and 9 have total energy on the 

abscissa. To obtain incident relative kinetic energies (KE) for 

the initial state (n
0

, m
0

) at a total energy E, we subtract off the 

initial internal energies from E, leaving 

KE = E - (2n0 + 1) - w(2m0 + 1) 6-72 

measured in units of the zero point energy of H
2

. From this one 

can easily calculate the kinetic energy, and velocity, before the 

collision. For H
2 

on H
2

, the frequency ratio u1 is 1, in later 

discussions, w is not unity. 

6. 6 N2 on N2-like Collisions 

As we s~e from figures 8 and 9, V-V processes are 

considerably m ore probable than T-V processes in H2 on H2 
collisions (assuming our model for the system). The collision 

of two identical diatoms is a special case of an almost infinite 

spectrum of problems in which the diatoms are different. It 

would be profitable to study the dependence of V-V probabilities 

and T-V probabilities on mass ratios, diatom frequencies, and 

interaction parameters. This is too extensive a task; compu­

tational time is prohibitive and the significance of the results 

might be confusing. We chose to investigate the dependence of 

the transition probabilities (particularly the V- V transfer) on 

differences in natural frequency of the colliding diatoms. To 

effect a frequency difference without bringing in an additional 
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dependence on masses, we vary the ratio of the force constants 

kAB/kCD and keep the masses unchanged. 

6. 6. 1 Para meters for N2 _9n N2-lik1~ s ystem 

We constructed a model for a collision between an 

N
2 

m::>lecule and another N2-like molecule with the same atomic 

masses, but varying force constant, k'. We chose the interaction 
0 

parameter L to be 0. 2 A. This is done solely because of its 

. . . 1 tt . bl 19 A previous use m numerica sea ermg pro ems. s was 

mentioned previously, no accurate knowledge of L has been 

obtained from experiment. This L converts 
44 

to a = • 113 in 

our dimensionless system of parameters (6-19). We take ALPHA 

= a= . 113 as the exact parameter in our computations. The 

masses in AU are MA = MB = MC = MD = 14. 0. Since the 

masses always appear as ratios in the evaluation of m and 13, 

the units have no effect. Our independent parameter to be varied 

is w =OMEGA= kAB/kCD = k'/kN . We keep a constant 
2 

incident relative kinetic energy of one zero point (ground state) 

vibration energy of N2 for the incident state (0, 1). This may be 

shown to be a velocity of 1. 42 x 105 cm/ sec in the laboratory 

system. 

6. 6. 2 Results and discussion of N2~n N2-like system 

Our series of calculations covered the range of w 

from • 6 to 1. 2. These are given in tables ll(a) through ll(j) 

with the correct total energy to give the initial relative kinetic 

energy of 1 (ground state units) for initial state (0 , 1). These 
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calculations wer e run with DRILL, using ERROR = 10- 5, XST 

= -40, and N = 2, M = 2. The starting point produced no 

significant changE! when moved back to -45 at OMEGA = 1. The 

use of only four states in the expansion of the wavefunction was 

sufficient for the P (O, l) ..... (l, O) probabilities. We ran N = 3, 

M = 3 at w = • 85 (corresponding to table ll(c)) and obtained 

r esults shown in table 10. The N = 2, M = 2 expansion was of 

sufficient accuracy for our P 01 _, 10 probabilities. 

Figure 10 displays the variation in P (O, l) ..... (l, O) 

with w. We evaluated the DW formula (6-51) and the TD-QC 

f la . b 38 . •t ormu , given y ; m our uni s: 

2 
PTD-QC _ . 2( a. / 2) 2( w - 1 ) 

(O, l)--(l, O) - sm k0, 1a.e sech a.k o, 1 
6-73 

for a diatom-diatom collision with all atomic masses the same. 

The DW result was much better than the TD-QC far away from 

w = 1. The TD-QC is symmetrical about w = 1, and the exact 

curve is not. The full width of the resonant peak is . 15 at half 

height. The peak height is • 0063, and occurs at w = 1. 

Again, we attribute the excellent a gr eement of DW 

and TD-QC to the dominance of channel state s (0, 1) and (1, 0) 

in the wavefunction. The ETS s olution does not help us he re, 

except at w = 1. We have taken advantage of the two state 

dominance, in fact, by keeping only the first two state s for each 

diatom in our calculations. This gives us a total of four states, 

but we are solving for the incident channel (1, 0) also. 
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There are two points to be made in summary of this 

section. The first is that we have demonstrated the accuracy of 

the distorted wave method for V-V one quantum energy transfer 

in our two model systems. Perhaps the DW method will prove 

adequate for more general problems in near- resonant energy 

transfer. Of course, if T-V processes are more important for 

the systems, DW is inadequate. 

The second point is the strong dependence of V-V 

processes on natural frequencies of the colliding species. Although 

DW had predicted this, (accurately it turns out) the fact is seldom 

mentioned. 
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APPENDIX A 

The Romberg integrator we have used is rather novel, so 

the following pages give a listing of the program. This Fortran 

IV version was translated from Algol by Mr. Robert Deverill of 

the Booth Computing Center at Caltech. The "in press" reference 

in the explanitory section is reference 34 of the text. This 

r2ference contains the Algol program. In the listing here, the 

maximum dimension of the dependent vector integrated by DIFSYS 

is set at 10. We enlarged this to 200. 
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c, I JP R (l t I T T ~ l I- fl T F c , Y C, ( F , i\I , H , X , Y , F P c, , c; , N FY.I H ) 
r 
(***·~*** ***** *** * *~**************** ******************** ***** ***** ******* 
( 

( F y e; T HF M!\~.1F ( 1F (\ C,IJ f\l~ OlJTTNF (ALLFD f:I Y • CA LL F c x , z . 1)7.) I \•IH I CH 
r c, T<JR Fc; JN TH E VFCH'1R fJZ THEN COMPOl\\ F. l'lTC, OF T HI- DFRIV/\TIV F. 
( n1 1 n x /\ l(C·R O TNG TO TH ::: D TF FfRFNTI A L f(..} lJ/\TJ ON \vHl"C H I .S flF JN G 
r ~OLVFn . 02/DX=F ( X ,?J. 
r x , 7, /\i\lf) f)7 f-11! .',T F\ F DOI JHL F PRFCJ C,l() I ~ . 

( 

( ~1 Jc; T HF rwr~ 1- 1~ ()F TH F S Y S TFM OF D JFFfl~ E N TJ /\L FQU/\TI OMS . 
( ~ ! "It t c. T 0 • F ''.in (, F F /\ T F R T I ~ A N M t. X 0 I~ D \•I H T C H J c: .C, F T r~ f l O\.J • 

f"l f\Tf\ ~/\X ()P fl/ 1 fl / 

r 

r: I ~ F"' c. r () 1\1 y /\ ( l r ) ' y L ( ] () ) ' y M ( 1 n ) ' Dy ( J n ) ' D 7 ( 1 n ) ' D T ( 1 n • 7 ) 
f) l v F N c, l n "I y G ( 8 ' l n ) ' y H ( 8 • 1 f') ) 

r !~ y e T HF P f\C" Jc c,T F P c; T7F . 
r, n 11•l t_F ppr: ry c; f ()f\1 1-l 

r 
( X /\ND Y ( V l« TO l< l /\RF THF l N TTl /\.L. \/,f\.LlJ F.S . 

( 

JJ(J l 1q 1_ F PPF\ J C, J ()I\\ X , Y 
[) I MF ~-1 c, I () 1\1 Y ( ~l l 

( r. P c, /\l'W c, ( \I F r T () P l /\. RF T HF F RR () R r~ ()l JN D S • 
( ~f.fH ( FPc. ) <:. H OIJ l_f) RF NO c, Mi\ Ll . E P T H/\N l · OD -1 3 . 

nOt IP L F DD F ( re, T ()~I F P c, , C, 

n r • ~ c N c; r n "' c; < ~' 1 
( 

r ~I E\l ' H re, f\ FLAG Y.!HTCH I S SET [ QlJ/\ L TO . T R LJF . IF TH E S TEP S TZF. LJSED 
( 11c, F r• RY DTF("",YS TC, nTFFFR F NT F ROM TH F ~,T l-P S l lF .-l G IV EN I N TH E 
r P f, R ll ;..• F T F R L l c, T • N F v.' H T .c, c, F: T F QI J Al T 0 • F A L S E • 0 TH E R W T S F • 

LOG J(t, L t..tF\•1H 
( 

(***************•~**************** *****•*********************** ******* * * 
( 

( 

11() I IR l . F DI~ F. C T <; I ON YA , Y l , Y M , DY , J) l , J) T , J) , Y G , Y H 
n 1 ~.1 FM c. r 0 ~1 n < 1 1 
Tl'ITFGF R P , c;p 
1or:, yrA t vn~1v , n.n , R H 

1.nr:: rr- 11. L r-pc, FR P 
DA T h FPc;FRR /. F ,f\.Lc;F ./ 
l"lOtl RL F P Rl- I TS ! ON F , /\ ,F( , G , R , lJ ,V , C ,TA, B l 
TF( N . GT . O . ftN~ . N .L F . ~hXORG l GO T O 1 

"' p I T F ( 6 • 1 n n ) 
1 '. 1 n F 0 P t.i1 A T ( ? RH f10 Rf) FR T 00 L ARGE F 0 R D I F S Y S • > 

c: TnP 
F = l")f,p, c; ( FP .<; l 

TF ( F . GF . 1 . 011-1 3 1 GO TO? 
TF(FPSFR R l G() Tn 1 0? 
FP<:,FRP= •T R I IF • 
1,1 P T T c ( A , 1 ° 1 l 

11"' 1 F 0 p ,,, A T ( ') 1 H (\ F R p ()p L n,, TT T () n .<: M /\ l. L F () p D T F c, y c, • l..f E l J s F l • () D - 1 3 • ) 
1 '1 7 F = 1 • () I} -1 ~ 

( ************ *»*******************~***********•* ** *** * ***** ************* 
( 

I F ACH ( /\LL OF D TFSYC, PFPFORM .<; ONE J N T f(j[<'. AT TON S T FP OF TH f 
c F Oll,f\. Ti m i nY/I JX= F ( X , Yl A((ORD l ~·l G TO T H i- ~'1FT H0{) OF R . mJLi f-< SC H At'-11) 
r . J. C,T(Jf°P ( ~!llMF" R J <; nff M~ T l l P.f/ITJ !< , TN P[-ffC,<", ). THF ~, T E P S I ZE vJ l LL 
( nr- t_ F<; <~ T Hl\~J nq F()IJfll_ T ri H . TH E P R()(,[~/\ M TA KFS TH F: F I RS T OF TH F 
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r f \IJ ~,mFfH, H . 1-1 1 7 , H/4, •••• /\ .C::, S T E P ST7 F F OR \•JH TCH NO MORF TH .b.N 9 
r rx r R t. P Ol_ f. TT nt,I .C, T f'.'.' PC, l\RF 1'IFF f1 F D T() () f' T l\ TN A Sl JFF TC I F rnLY ACCURATF 
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c r . 1vn1 Tl\! THF' Pt· R A"-1 F='T F R L T<; T, THF I\! H IF [_()(,Y(/\l. FLAf.1 l'IFWH WILL RF 
r ' ,FT t-QlJ /IL T () .T RLJ F ., n TH FR v./ I C, F IT WTL L RF SF T r-QlJ/\L TO . F ALS E •• 
r X /1!\ID Y /IR.c TH F TMTTT l\ L V/ILl JF S FOR !HF S TF P TO BF COMPU T E[) . AFTE R 
r LF t. vP·~C TH I' <:, t lHRO l JT TNF t THF OR I G J N/\l. Vf\LlJF S ()F TH F P/\RAM l:. TFr~ c, x 
( urn y 1!1 r L. l. H f , v F n F F N R F. p I.. fl. r F D IW x + H ' ti N I) y ( x + H I ) ' f-i F ,c; p F c T T v F L y ' 
C '·IHFPF. H • TS T HF S T E P rdzE /\rT tJAL.LY t JS t-:D . IN ADD ITI ON THI: S TlP 
C c, J 7F l1I TL1 . H /\V F P,F FN Cl-tAN C1H i /\ IJTOM/\ Tf C AL.LY TO /IN F :, T J MAT ED OPTI MAL 
C ' . T F P C. T7 F FOi~ TH F NFX T I NT F GRA TT OM ~; T [ P . TH E /\RR/\Y S /\NL> TH E 
r I Ol'J<; T t\ NT f"' p c; t .. RF lJ c,FD TO IO MTROL THF /\ CC tJ RACY CJ F THf:. COMP LJT F. D 
( It A L 1 JF c:., • T H f c, l I P, R Ol JT T N F I S !_ F F T , I F F 0 R /\. L L I = l , 2 , •• • , N T W O 
r r,t J(("' f'.'.'<:. <:,f\I F. \f/\L.t JrS FOR Y! J l f)T F FF R AT MOS T fW 1\N AMO lJMT F P S *SC I l. 
r rp c Cf·if') l l L f) MfH n F c,fvl /\L L F R TH/\ N 1.nD-13. F OR THF F T r~S T INTF GRA -
r T T () "' c; T r. p T T 1 •, /\ [) v T c; /I R 1 .. F T n c F T c; ( T ) = () • () • I:\ F F 0 R F R F T l J R N T () T H F 
( C/ll.L P :r, P !) n \, f:> f', ~v1 , TH F ARR/IY <; \•I TLL HAVE HA [) lTS ( O NTFMTr) MODT FT F D 
r c, (l Tt-11'- T <: (fl = M/', X(<'", ( j ),AFl :', ( Y(T,Xl l, WH F.: R f TH F MAXIMUM I .S .T/\.KFN OVE R 
I T HF I 1'! T F r, R fl T J m : T NT F P \/ A L ( X , X + H ' ) • 
r 
( * ~ ***« * **~~*****"* * * * *************** * * * ** * ** ******************** ** * * * ** 
( 

7 < ALL r= ( x , y , rv 1 
P H = . Ff\ L_ c.r- 0 

l'I FVIH= . FA I ""F • 
no -:i, T = 1 , f'I 

".\ YA CTl =Y CTl 
l1 f', = X +H 

FC =l • '1 
P. O=. F f\l.S F . 
M=l 
P = ? 
c, R= -:i, 
.U=-1 
DO 1 nr;o Jl=l • io 
J = . J~ - 1 

f) (/)= 7 · 7 5 
TFCPOl [) ( 7l=4.0/0 ( 7 ) 
n c 4 1 =4. ''* fJ c 7 l 
n t A l= 4 · " * f'l !4l 
Y 0 ~.! V = . J • G T • ? 
TF ( J e LF . A l \,() TO S 
1. =6 
f) ( 7 ) = 6 {1 • () 

F (= f'1 • 6 * F < 
GO TO 6 

s I_= ' J 
I ) ( l + 1 ) = M*"'1 

6 ~v1 = 7*M 

G=H/D R LF ! F L Of\ T( "'1 )) 
O. = ? . n *G 
TF!RH.Af'·ln • . J.LTeRl GO TO 7 
l<\(: ( M - 7)/2 

~l': M -1. 

no R T = l , 1'! 
YL(Tl= Y/\! Il 

R Y M ( I l = Y /\ ( I > +G * D 7 ( I l 
TFC MeL F . n ) GO TO q 
!JO 1 () K. =] , "-' 

IA L L FC X+G* nR L F CFLOA TC K l l ,y M, f)Y) 
n 0 l l T = 1 , 1"-1 
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·, l c:, ( T l =ll l'J. /I. x l (I J ' c (Tl l 
TF ( V. NF .V K. nR . K. FO .?l Gn rn in 
.JJ=JJ+l 

110 l ? l = l '"' 
YH( J.J+] , T l=Y M( I l 

1 ? YG IJJ+l,J l=YLCil 
1 ri (01\I TI "1lJF 
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PFTliPl\1 

FNn 
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APPENDIX B 

The use of extrapolation formula 5-21 will be explained and 

illustrated for the hard-sphere, square well data shown in figures 

3 and 4. Repeatiltg 5-21: 

P .. (N) 
1) 

1 = P .. (CXl) + A. 
lJ (N)a. 

This formula says that the error found by using N states in a 

B-1 

state expansion, rather than the complete set, is of the order of 

1/ (N)a . Suppose we have calculated probabilities for two different 

expansions with N and M states: 

cp (N) cp (ex>) 1 A ;:::: + --
(N)a 

cp (M) cp(o:>) + 1 
A B-2 = --

(M)a. 

where cp represents any particular probability P. .. Eliminating 
1) 

A between B-2, and solving for cp ((X)): 

cp (a>) = cp(N) (N)a. - cp (M) (M)a. 

(N)a. - (M)a. 
B-3 
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Our simple procedure (which might be improved; see final 

paragraph in this appendix) is to guess an ex. and use our calcu­

lated values of cp(N) to solve for cp(ex>). Each pair of calculated 

cp (N) defines cp (ex>) for a given a . We check the consistency of 

the predicted cp (ex>) for all pairs and repeat the whole procedure 

for a new a if needed. 

Example lfl. The complete table of P
00 

and P 11 values 

obtained by the S- Z method for the problem presented in figure 

3 is as follows: 

Total number of states, N 

4 
5 
6 
7 
8 
9 

10 

. 4806 

. 5104 

. 5262 

. 5357 

. 5418 

.5461 

. 5496 

Using a= 1 , we solve for cp (00) from B- 3 using adjacent pairs in 

the above table: 

Pair used 

4,5 
5,6 
6,7 
7,8 
8,9 
9,10 

. 5700 

. 5736 

. 5737 

. 5723 

. 5719 

. 5741 
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The cp (00 ) predictions are consistent within .. 572 ± • 002. This is 

adequate for our needs so no further impro V'ements on a. were 

tried. The P
01

(00) = P
10

(00) extrapulation is required to be 

Example #2. The complete table of P 00 and P 11 values 

corresponding to the S- Z solution presented in figure 4 are: 

Total number of states, N 

4 
5 
6 
7 
8 
9 

10 
11 

An extrapolation based on a. = 1 gave: 

Pair used 

4,5 
5,6 
6,7 
7,8 
8,9 
9, 10 

10,11 

. 8636 

. 8337 

. 8231 

. 8181 

. 8153 

. 8136 

. 8125 

. 8122 

. 7739 

. 7913 

. 7981 

. 8013 

. 8034 

. 8048 

. 8098 

The predicted cp (00) are not very consistent. Using a. = 2, and 

letting the labe l N be the number of virtual states rather than 

the total number present gave a better result: 



Pair used 

4,5 
5,6 
6,7 
7,8 
8,9 
9,10 

10,11 
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cp(cx>) 

. 8098 

. 8095 

. 8092 

. 8089 

. 8089 

. 8089 

. 8111 

The extrapolations are consistent to . 8094 ± • 0005 neglecting 

the 10, 11 pair result. The latter is questionable because of 

inaccuracies in obtaining the inverse of the ill-condjtioned matrix 

U (5-15) for large dimension. 

The foregoing treatment is unique in its simplicity. The 

sole object was to demonstrate that the S- Z results can be 

drastically improved in spite of the slow rate of convergence 

(see figure 3) and the limiting of state expansions by ill-conditioning. 

It would be easy to use a higher order (more parameters) error 

formula and do least squares fitting to the P . . (N) for several N. 
1) 

This destroys the simple nature of the extrapolation and was not 

thought to be worthwhile. 
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APPENDIX C 

The matrix elements defined in 5- 25 are 

00 

n, m = 0, 1, 2, ... 

where cp (y) are the normalized eigenfunctions of 5-23. Let: 
n 

co 

1nm(x) = 0nm - J cpn(y) cpm(y) dy 

x 

x 
2 

= f e -y H (y) H (y) dy . . n m 
-CO 

H (y) are the normalized Hermite polynomials defined by 
n 

2 d n 2 
H (y) = (- 1) n e Y ( -d ) ( e - y ) • 

n y 

The first few are 

C-1 

C-2 

C-3 
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We know that the derivative of these polynomials is given by 

d
d H (y) = 2n H 

1
(y) for n > 0 . 

y n n-

Also , from C-2 we see that 

I (x) = I (x) • 
nm mn 

Substitution of C- 3 into C- 2 gives: 

x 

I (x) = f nm . 
- CD 

2 
-y e 

Let us integrate this by parts for n and m > 0: 

I (x) = nm 
n-1 2 J x 1 (-l)n (~) (e-y ) H (y) 

In Y m 
-v2 n!/rr 

-CD 

C-4 

C-5 

C-6 
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x 

= [-~ e -y2 iln-l(y) ilm(y) J 
-CO 

2 
-y - -

e Hn-1 (y) Hm-1 (y) dy . 
-CO 

Therefore : 

2 
( ) 1 -x - ) -

Inm x = - / 2n e Hn-1 (x Hm (x) 

+ fm I 1 1 (x) . l/n n- 'm-

This recursion relation enables us to reduce the calculation of 

any Inm (x) to I0M(x), IN0 (x), or 100 (x). Consider first the 

evaluation of 100 (x): 

x 

1oo<x) = Jrr J 
2 

e-y dy 

from C-2 and C-4. The error function, erf(x), is:35 

x 2 
erf(x) = Jrr J e -y dy 

0 

for x ~ 0 

C-8 

C-9 

C-10 

C-11 
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erf(-x) = - erf(x) for x ~ O . C-12 

In terms of erf (xj: 

Ioo<x) 
1 

= 2 (1 + erf(x)) all x . C-13 

To c '.Jmpute erf(x), we used an approximation
35 

such that the 
-7 

absolute erro r was less than 1. 5 x 10 for all x. Having calcu-

lated a particular 100 (x) from C-13, we obtain all needed Inn (x) 

by means of C-9. Integrals of the form I0N(x) = INO (x) are treated 

as follows: 

x 2 
e-y H (y) dy 

In 
1 1 .J· 1om (x) = 4/n 

,[2mm!./n 

1 = 
-CO 

1 
= (-l)m 

-J..-2-m_m_!_n 

1 -x 
2 

- - e 
-./ 2m.fn 

-CO 

[ 
m-1 21 ( :y) (e-y ) 

x 

- co 

C-14 
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Using C-4, we have: 

The normalized Hermite polynomials are calculated for each x 

from the recursion relation: 

- /"Zx - rn -H 
1 

(x) = -- H (x) - -- H 1 (x) 
n + .Jil+T n -Jil+f n-

beginning with .H0 (x) = 1~, .H1 (x) = ~x . 

C-15 

C-16 

To evaluate the required matrix elements (C-1) at point x, 

we first gener at e all needed H (x) from C-16. We then calculate 
n 

r00 (x) from C-13 and use C-9 to get all Inn(x) diagonal e lements . 

All remaining elements are obtained from .C-15 using C-9. 
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APPENDIX D 

Some of the authors work was directed toward the problem 

of dissociation induced by high energy collisions. There are no 

quantum mo:;chanical methods suited for this problem in atomic 

and molecular scattering. An untested method based on the 

impulse approximation is proposed as a means of obtaining 

approximate cross sections for dissociation processes. 

Consider the following problem: Let atom #2 with mass m 2 
bound in a fixed potential V 2 be struck by atom #1 with mass m 1. 

Interaction of 1 (atom 4H) and 2(atom #2) is given by V 12<l_e1 - ,e21) 
and 1 does not interact with V 2; m 2 has bound states cpn (_e2), 

binding energies wn' and continuum states cp~(_e2) with energy 

ti 
2 

t 
2 

/ 2m 2. The exact _scattering amplitude for transit_ion from 

1:!so • .e1 - ~f • .e1 
cp0 (_e2) e to final state cp~f ~2) e is incident state 

. b 41 given y: 

where $ O is the solution to the Lippman-Schwinger equation: 
~o 

D-1 
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or the SchrtJdinger equation: 

2 2 2 , 2 0 T 0 
[- ti / 2m. v - ti ; 2m2 v + v2(x2) + v12<1 x1 - x 21 )] *k = E ~k 

1 x x2 ~ ·~ -~ . 0 0 ~ 1 ,...._, ,...._, ,,....,_, 

D-3 

with ET = ti 
2k~ /2m

1 
- w 0 and the correct asymptotic boundary 

conditions on *~ . The impulse approximation is developed as 
~o 

follows. 41 We must approximate ~~ , as it is the solution to the 
~o . 

whole problem, which is unknown to us. Introduce: 

which arc the m omentum representations of the states n = 0 and 

~f of particle 2. Interpret g0(!9 as the amplitude of 2 to have 

momentum ti !S before 1 collides. Now, we can find e xactly the 

state xk K~l' ~2) representing the scattering of 1 with incident 
·~0' ~ 

wave vector ~O from 2 with wave vector !S x k K would describe 
~O' ~ 

the collision exactly if 2 were a free particle with momentum ti K. 

The impulse approximation consists in replacing ~~ by 
3 ~o J d K g0(!9 x~0 , !S~l' ~2). This averages the two particle 
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scattering states over the momentum distribution of the bound 

particle, but does not account for the presence of V 
2 

except in 

producing the momentum distribution g0 (~) of 2. The impulse 

approximation to T~0 , ~f' ~f) is: 

D-4 

If we introduce the center of mass and internal coordinates of the 

1, 2 subsystem; namely, 

then the integral J d3x1 J d3
x2 becomes: 

I = J d3
R .r d3 

r exp(-i~f · R - ik · r m
2 

- iK' · R 
~ ~f ~ m

1 
+ m

2 

ml i~o + !9. R 
+ iK' . r x v

12
(r) e ~ cpk (r) 

~ ml + m2 ~~INT ~ . 



171 

erk ~) is the scattering state xk K with the center of mass 
~INT i(k + K) . R ~O~ 

~o ~ ~ 
motion of 1 and 2, e , factored out. Also, 

}:INT = m2-~0 - m 1~/(m1 + m 2), the relative (internal) wave vector. 

Performing lhe ct3H integral, we have: 

3 3 
I = (2n) o q~0 + !S - ~f - !S') 

3 m~f - mi!S' 
x f ct r exp(-i · E) v12(r) c:pk (}:). 

· ml + m2 "-INT 

Recognizing J d3r e-i~· E v
12

(r) cpk(r) as r12(l:,~), the scattering 

amplitude of particles 1 and 2, we tinally write: 

D-5 

3 3 , . m2-~0-m1!S m~f-ml ~·). 
x (2n) 0 ~~O + !S- -~f- !S)fl2( ml+ m2 ' ml+ m2 

Note that the delta function conserves momentum in the 1, 2-

subsystem and thus restricts the contribution of r
12 

to on-shen42 

scattering in the subsystem. Because we are calculating an inelastic 

three-body process, it would be necessary to use off-shen
42 

two­

body amplitudes to allow the all-over scattering event to conserve 

energy. Since it is impossible to find off-shell amplitudes without 

solving integral equations, we will use the calculable on-shell 
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amplitude as a first approximation to the o.ff-shcll: 

k denotes a unit vector with direction K. This has been done in the 

literature in other circumstances. 
42 

Since the bound state function g0 (!9 is peaked at magnitudes 

of K much smaller than _!s0 , we neglect ~ in the first argument of 

f 12. Now we define t15h as the momentum transfer to 1, and Ii _g2 
as the momentum imparted to 2. If 2 were free, !h = -_g1, but we 

want to account better for the binding effect of V 2 by letting 

- I * · th t / 
2 2

/ 2 - .... 
2 2

; 2 * * · · ff t· ,g2 - - m 2 m 2 _g, so a 1 q2 m 2 - " q1 m
2

. m
2 

is an e ec ive 

mass which controls the energy and momentum imparted to 2 during 

the collision. Letting ,.g,1 =}Sf - 150 , we have: 

In orde r to transfer an effective _g2 to the bound particle 

rather than -,gl' we must replace _g
1 

in the 6 function. The 

result is: 

(D-6) 
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Here £12 appears off-shell, because we have not insured that 

~~ = l~f - m 1/ m 2 ;!S'l 2. However, we invoke our on-shell 

approximation and have: 

where 

q
1 

= 2k
0 

sin(e/ 2) . 

If we are not detecting the scattered flux of 1, but are 

interested in the production of continuum states of particle 2, 

D-8 

then we s um (integrate) over all the final states of 1, or equivalently, 

over the m omentum transfer _g1: 
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D-9 

m2 m2 
x go(!<, ' - m2/m*2 ql) f12< ko, (ko + ql)) .. ~ ml+ m2 ~, ml+ m2 ~ ~ 

or rather, with kf = k0 : 

Equation D-10 implies integration over the angular space spanned 

by ~o · ~r 
Another form of D-10 is: 

I* r r 3 -* T ~0, ~~f) = . d(k0 • kf . d z qi~f (z) 

D-11 

m2 m2 
x exp[-i m 2/ m*2 (kf-k0) · z] qi0 (z) f12( k0, kf). 

~ ~ ~ ~ ml+ m2 ~ ml+ m2 ~ 

The essence of these expressions is the presence of m2, the 

effective mass. By correlating with energy transfer in simple 

linear syst ems, and possibly making m2 dependent on the angle 

between !h and ~' (kf - ~0) · ~' in D-11, we might carry out this 
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quadrature to determine realistic dissociation probabilities for 

atom- molecule collisions. A shielding- effect correction for the 

multicenter scattering in our problem is appropriate because 

heavy atoms are not significantly diffracted by the molecule. 43 
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• l 64f.' - 7 . 741E- 8 
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x = 10.2 x = 23.2 

. 117E 3 .2 15E 3 .29gE 3) (!SSE 3 .319E 3 .583£ 3 

. 45 1E 3 . 824E 3 .114E 4 .601E 3 .123E 4 . 225E 4 
• 306£ 4 .560E 4 • 77 6E 4 .417E 4 . 855E 4 .156E 5 
. 30'3E 6 .564E 6 .782F. 6 .202E 8 . 414E g .758E '3 

Development of linear dependence during the integration 
of the Schrodinger matrix equation for the atom on diatom 
problem defined by: E = 4.9455 , ~i.ASS = 1.25 , ALPHA= .2973, 
2 open channels, 2 virtual channels. 3ee section 5.2.2 of 
the text for definition of these parameters. 

Tab le 1 

. 264E I) 
• '3 7 9E' 1 
. 350E 2 
.139£ 3 

• gQgE 3) 
. 312E 4 
. 217E 5 ..,. 
.1 05E 9 ~ 



P Qo 

Po, 

P o:l 

p II 

P 12 

P Ol2 

ET: 

Estimates from 
Number of virtual s tates in 11. Ex trapolated 11 . 

19 
3ecr es t and J ohnson. 

1 

• 0085 

.7 014 

.2901 

. 0987 

. 1998 

.51 01 

2 139 11 

2 3 

. 0048 . 0044 . 0043 . 01 + . 007 

. 6695 .6525 . 63 . 62 ± .02 

.3257 .3430 .36 .36 + .02 

.1301 .1474 . 16 not given 

. 2004 .2 001 . 2002 .20 + . 02 

. 47 40 .4569 .44 .42 ± . 02 

4 1 59 11 7 1 45 11 

~onvergence of II state expansion f or t he hard -s phere, 
harmonic oscillator problem; E = 5.5, MASS = 0.5, 3 open 

~ B _, 
channe ls. 11 uses v:~ = 35. 0 , ERROR = 10 

Table 2 

~ 
o:i 
~ 



Poo 

Po, 

P,o 

Pu 

Estimates from 
Number of virtual states in II. Shu ler and Zwanzig.28 

I 

2 3 

. 83683646 .85905178 .87 ± .02 

.16316352 .14094795 . 11 + .02 

.1631 6352 .14094786 not given 

. 83683646 .85905178 not given I 
ET: 2'36" 5 1 00" 

Convergence of II state expansion for the hard-sphere, 
harmonic oscillator ~roblem: E = 4.5, MASg = 0.5, 2 open 
channels. 11 uses v~B = 35,0, ERROR = io- • 

Table 3 

... 
00 
N) 
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Double precision Romberg integrator, ERROR 
2 virtua l channe ls. 

(
. 9 9913R 912 
. 00011 23 6 

. 00011236) 

.999q~ 769 

Results of 3ecrest and Johnson. 

Comparison of 11 with Secrest and Johnson's 
published data for the atom on diatom problem: 
E = 4.9455, ~.ASS = 1.25, ALPHA= . 2973, 2 open 
channels . 

Table 4 
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Double precision Romberg integrator, ERROR == 10- 6 
, 

2 virtual channels. 

(

. 9992933 5 

. 7 06646l'dE-3 

.902233 15E-9 

.70665095E-3 

.9992qq25 

.51047396E-5 

Results of Secrest and Johnson • 

. 706E-3 

.SllE-5 

. 902 23l3 09E-9) 

.51047324E-5 

.99999489 

Comparison of DRILL with .:)ecrest and Johnson's 
publishe d data for the atom on diatom problem: E == 
6 . 0, MASS == 0 . 2, ALPHA= 0.114, 3 open channels. 

Table 5 
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( a) Double precision Romberg integrator, E:RRuR = 1 o-it , ET 
= 4 ' .3 •I • 

.6309 .3l92 . 4899F.'-1 .2440E-2 .31Rl E-4 .43~3E-7 

.3176 .3036 .33 70 . 4412E-1 . llOOF: -2 .240,5E -5 
. 4 7 5l~I~ -1 .32137 .3193 .2790 .17 30E-l . 7153£~-4 
.2420E-2 • 44.00E- l .2!353 • 5077 .1622 .1549E-2 
.3154E-4 . 1097E-2 .1769E-1 . 1622 .7876 .31571': -l 
.4342E-7 .2477E-5 .731 3E-4 .1549E-2 .3157E-l .9668 

(b) ~ ing le precision Romberg integrator, operating under 
the same conditions, gave almost identical results, 
with EI'= 2'40 11

• 

(c ) Sing le precision 5'th order Adams-Moulton integrator, 
with a step size increasing from 0.035 to 0.37 over 
the range of integration. ET = l '28" . 
. 63 1 ~ .3170 .4849E-1 .2491E-2 . 3346£-4 
. 3173 .3018 .3351 .4479E-l .1127~-2 
.4q 54E -l .3352 .3150 . 2q37 .1760[-l 
. 2492~ - 2 .4478E-l .2R36 .5056 .1 6 20 
. 3347~ - 4 .1126E - 2 .1759E-l .1 6 19 . 7~ 77 
.47 99E - 7 . 2566E-5 .7274E-4 .1 547E-2 . ~.:ll57E-l 

.493 8E-7 

. 2563c-5 

.72qOE-4 

. 1 5l~8E - 2 

.315RE-l 

.966q 

(d) Results of .:> ecrest and Johnson. ET estimate: 1'45". 
...•. .317 .4S36E-1 .250E-2 ..... . •... 
. 317 .••.• . 335 .447E-l 

Comparison of DRILL with ~ecrest and J ohnson's 
publis hed data for the atom on diatom problem: 
E = 12. 83 65, MAS3 = 1/1 3 , ALPHA= .12 q 7, 6 open 
channels and 1 virtual. The i,j e l ement g ives the 
probab ility of trans ition from state i to j. 

Table 6 



(0,0) (1, O) ( 0' 1) 

(0,0) .99964181 .00017906 .00017906 

(1, O) .00017913 .96133468 .03848623 

( 0' 1) .00017913 .03848623 .96133468 

System: H2 on H2, £ = 4.9455, ALPHA= .2973, OMEGA= 1 .0 , 
MA = r1B = MC = :tvID = 1 . 0 , N = 2 , M = 2 . 

Integration: DRILL with double precision Romberg integrator, 
ERROR= 10-5, XST = -15.0 , ET= 33 11

• 

Table 7(a) 

..... 
co 
O') 



(0 , 0) (1,0) ( 0 ' 1 ) 

(0,0) . 99964327 . 00017746 . 00017746 

(1, 0) . 00017928 .96133686 .03848478 

( 0' 1 ) .0001792g • 038413478 . 96133 68 6 

System: Hz on H?, E = 4.9455, ALPHA = .2973, O~~GA = 1. 0 , 
MA = MB = AC = MD = l . 0, N = 2 , M= 2 . 

Integration: DRILL with doub le prec ision Romberg integrator, 
ERROR = l0-5, XST = - 18.0, ET = 37•i. 

Table 7( b ) 

....... 
co 
~ 



( O,O) (1 , O) ( 0 ' 1) 

(O , O) .99890878 .00054626 .00054626 

(1, 0) .00054496 .95824503 .04120936 

( 0' 1) .00054496 . 04120936 .95824503 

System: H2 on H2 , E = 4 .9455, ALPHA = .2973, OMEGA = 1.0, 
MA = MB = l"!C = MD = l • 0 , N = 3 , M = 3 • 

Integration: DRILL with double precision Romberg integrator, 
ERROR = l0-5, XST = -15.0, ET = 4'39". 

Table 7( c) 

,.... 
ex:> 
ex:> 



(0,0) (1, O) ( 0' 1 ) 

(0,0) .99966R44 . 00017906 . 00017906 

(1, 0) .00017906 .96133274 .o3g48814 

( 0' 1) .00017906 .0334~!314 .96133274 

System: H2 on H2 , E = 4.9455, ALPHA = . 2973, OMEGA = 1.0, 
MA = MB = MC = MD = l • 0 ~ N = 2 , M = 2 • 

Integration: II ~ith double precision Romberg integrator, 
ERROR = 10-), XS T = -15.0, ET = 2 1 33 11

• 

Table 8 

...... 
co 
CD 



(0,0) (1, 0) ( 0 ' 1) 

(0,0) .99999662 . 00000172 . 0000017 2 

(1, 0) .00000166 .99539831 .00410000 

( 0' 1) .00000166 . 00410000 .99589831 

All of the calculations presented in tables 9(a) through 9(g) 
are for an energy dependent study of the H2 on H2 sys ~em: _ _ ~ 
ALPHA = • 297 3, OMEGA = l. 0 , MA = MB = MC = MD = 1. 0, r~ = 3, M = ,;>. 

The integrationswere done using DRILL with the double precision 
Romberg integrator, ERROR = 10-5, XST = -15. 0 . 

E = 4.1 ET = 4 I SS II 

Table 9(a) 

~ 

~ 
0 
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(O,O) (1, 0) ( 0' 1) 

(O,O) .99870050 .00064976 .00064976 

(1,0) .00064975 .95559070 .04375955 

( 0' 1) .00064975 .04375955 .95559070 

E = 5.0 ET = 4 1 46" 

Table 9(c) 

..... 
(.0 
!:-.:> 



(O,O) (1, 0) ( 0' 1) 

(O,O) .9953g051 .00231001 .00231001 

(1,0) .00230948 .92964395 .06304631 

( 0' 1) .00230948 .06804631 .92964395 

E = 5.5 ET = 4 154 11 

Table 9(d) 

I-' 
co 
CJ:) 



(0,0) (1, 0) (2,0) ( 0' 1) (1, 1) (0,2) 

(O,O) .98717897 .00641025 . 35 E -8 .00641025 .15 E -7 .35 E - S 

(1, 0) .00641076 .89464854 • 00000111 . 09893784 .00000195 .56 E -7 

(2,0) .35 E -'3 . 00000111 .99216035 .56 E -7 .007S2153 .00001695 

(0,1) .00641075 .09893784 .56 E -7 .89464854 .00000195 .00000111 

(1, 1) .15 E-7 .00000195 .007S2153 .00000195 .98435303 .00782153 

(0,2) • 35 E - B .56 E-7 .00001695 .00000111 .00782153 .99216035 
~ 
co 
~ 

E = 6.1 ET = 5 I 10 II 

Table 9(e) 



(O,O) (1, 0) (2,0) ( 0' 1) (1, 1 ) (0,2) 

(0,0) • 965248 ].g .01736563 .00000189 .01736563 .00002233 .000001 '3 9 

(1, 0) .01735943 .83569<357 .00015178 .14591555 .00082601 .00004553 

(2,0) .00000189 .000151 81 .92214656 .00004553 • 07 607607 .00157122 

( 0' 1) .01735943 .14591555 .00004553 . 83569857 .00082601 .0001517g 

(1, 1) .00002238 . 00082604 .0760"3993 .00082604 .84615957 .07608993 
'""'" 

(0,2) .00000189 .00004553 .00157122 . 00015181 .07607607 .92214656 ~ 
01 

E = 7.0 ET = 5 1 29" 

Table 9(f) 



(0,0) (1, 0) (2,0) ( 0' 1) (1, 1) (0 ,2) 

(O,O) .93437993 .0325i3572 .OOOOlSOS .032513 572 .00039713 .00001130~ 

(1, 0) .03260094 .77253625 .000443B6 .18743031 .00653283 .00041256 

(2,0) . OOOOP305 .00044417 . g62256Y~ .00041269 .13170313'3 .00516479 

( 0' 1) .03260094 .1874S3031 .00041256 .77253625 .00653283 .000443136 

(1, 1) .00039743 . 00653411 .13170397 .00653410 .7231 2793 .13170397 
..... 

(0,2) .00001805 .00041269 . 00516479 . 00044417 .13170388 .8622565g co 
c:r.i 

E = 7.9 ET= 5 1 33 11 

Table 9(g) 



(0,0) (1, 0) ( 0' 1) 

(O,O) 1.00000000 • 44 E -11 • 338 E -8 

(1, 0) . 43 E -11 .99957560 .00042439 

( 0' 1) .337 E -8 .00042439 .99957560 

System: Nz on Nz, E = 4.55, ALPHA= .113, OMEGA = .85, MA= 
MB = MC = MD = 14.0, N = 3, M = 3. 

Integration: DRILL with double precision Romberg integrator, 
ER.R.OR = 10-5, X3T = -40.0, ET= 11'47". 

Table 10 

...... 
c.o 
-:J 



(O,O) .99999999 .11 E -11 • 41 E -8 

(1, O) .47 E -7 1.00000000 • 35 E -8 

( 0' 1) • 20 E -7 .14 E -8 .99999999 

All of the calculations presented in tables ll(a) through ll(j) 
are for the frequency ratio (OMEGA) study of the N2 on N2-like 
system: ALPHA = .113, MA= MB= MC= MD= 14.0, N = 2, M = 2, 
and an incident relative kinetic energy of 1 for the initial 
state (0,1) . We list the total E and ET individually. ERROR 
and XST are lo-5 and - 40 . 0 for all results in this series. 

CiMEGA = 0.6 
E = 3. 8 ET = 1 1 3 II 

Table ll(a) 

I-' 
(C 
co 



(O,O) (1, 0) ( 0' 1) 

(0,0) .99999995 . 20 E - 8 .l~ E -7 

(1, 0) .54 E -8 .99992649 .00007352 

( 0' 1) .18 E -6 .00007351 .99992643 

.... 
co 
co 

OMEGA = 0.8 

E = 4. 4 ET = 1 I l" 

Table ll(b) 



(O,O) (1, 0) ( 0' 1) 

(O,O) 1.00000000 .63 E -9 .42 E -10 

(1, O) .18 E -10 .99956567 .00043419 

( 0, 1) .80 E -9 .00043447 .99956567 
~ 
0 
0 

OMEGA = 0.85 
E = 4. 5 5 ET = 1 I 3 ti 

Table ll(c) 



(0,0) (1, 0) ( 0' 1) 

(O,O) 1.00000000 .65 E -9 .55 E -9 

(1, O) • 33 E -8 .99821700 .00178268 

( 0' 1) .13 E -8 .0017~332 .99821700 
N 
0 ..... 

OMEGA = 0.9 

E = 4. 7 ET= 1 1 6 11 

Table ll(d) 
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~ 

(0,0) (1, 0) ( 0' 1) 

(0,0) 1.00000000 .17 E -10 .17 E -10 

(1, 0) .57 E -8 .99369823 .00630177 

( 0' 1) • 57 E -8 .00630177 .99369823 
~ 
0 
c..:> 

OMEGA = 1. 0 

E = 5.0 ET= 1'7" 

Table ll(f) 



(O,O) (1, O) ( 0' 1) 

(O,O) 1.00000000 .13 E -10 .53 E - 8 

(1, O) .93 f_' -1 0 .99435696 .00564320 

( 0' 1) .30 E -1 0 . 00564288 .99435696 
I.\:) 

0 
~ 

GMEGA = 1.03 

I' = 5. 09 ET = 1 I 10" 

Table ll (g) 



(O,O) (1, O) ( 0 ' 1) 

(O,O) . 999998 12 . 00000044 . 00000009 

(1, O) .00000008 .99778400 .0022031 4 

( 0' 1) . 00003176 . 00222S60 . 99778246 
I:'-' 
0 
01 

OMEGA = 1.1 

E = 5 . 3 ET = 1 15 11 

Table ll (h) 



(0,0) (1, 0) ( 0' 1) 

(O,O) .99999999 .00000004 . 11 E -9 

(1, O) .27 E -8 .99920441 .0007961 8 

( 0' 1) .15 E -7 .00079499 .99920442 t-..:> 
0 
O':l 

OMEGA = 1. 15 

E = 5.45 ET=l'l6 11 

Table ll(i) 



(O,O) (1, 0) ( 0' 1) 

(O,O) 1.00000000 .26 E -9 . 88 E -12 

(1, 0) .65 E -10 .99974685 . 00025257 

( o, 1) . 69 E -12 . 00025342 .999746q5 
~ 
0 
-:J 

OMEGA = 1. 2 

E = 5.6 ET = 1'1 6" 

Table ll (j) 



-5.0 

Heal part of :> 

Imaginary part of 3 0 0 

o(r)t 1. 0 

0.5 

Integration of dS ( r)/dr = i .3( r ) - ie-r(l + S ( r)) 2 with starting 
condition S ( r 0 ) = -1. Three sclutions are s hown, correspond L"! g to the 
starting points r 0 = -2, -3, and -4. At r = 2, the solutions d iffer 
at most by 1 part in 1000. 

Fi gure 1 

3. 0 
r 

t'-' 
0 

°' 
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( a ) 

• • 

x 

( bj 

(a) Diagram of co11iQear collision of particle in an 
infinite square well,V~ , with incident particle. 

x 

(b) Confi~uration space outline of potentials. Potent~Ql 
is infinite for $ ~ 0 and y ::!::: 7T in hatched areas la be led v . 
~or x ~ y' the v~ interaction region is likewise infinite 
in the .:l-L. model, but a hi~h square barrier in our 
calculations. 

Figure 2 
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Comparison of rates of convergence of the state expansions for the 
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Symbol ¢denotes extrapolation. 

2 3 4 
Number of virtual 

states in 11 method. 
vSB = 7 0. 0 , ER.Ji.OR = to-.' 

Comparison of rates of convergence of t he state expans ions for the 
hard-sphere, square well problem: E = 8. 50, ~iAS3 = 1. 0, 2 open channels. 
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1 2 3 
Number o f virtual channels 

(starting poin t = -R ) 

-9 -10 -11 
Starting poin t 

(2 virtual channels) 

Convergence of DRILL as number of channels and 
starting point are varied. E = 4.9455, 2 open channels. 
Data converges to 0. 87><1 o-<+ because of an error in 
thE' potential matrix evaluation. 3ee text for a 
discussion of this. 

Figure 6 
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-12,10- 10 x 

-12 lo-6 
' 

-11,1 0- ~ x 

= .5 +.056N3 

ET = .21 +.02N3 

- 1 2 ,10- 6 

-1 0 10-R 
- 9 i o-~ 

- 8 i o-R 
' 

0 1 2 3 4 5 6 
Total number o f states, N 

Comparison of execution times (ET) of 11 (X) and 
DRILL ( •) for the atom on diatom problem: E = 4.9455, 
t-"iAS3 = 1. 25 , ALP HA = .2973, 2 open channels. The 
numbers paired by a comma are the starting point and 
ERROR control: X:3 T , ERROR . 

Figure 7 
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2113 

LISTING OF COMPUTER PROGRAMS 

#1. II for the diatom on diatom problem. Main deck 

is II2, followed by subroutines DS3(double precision 

Romberg integrator), OUT(subroutine to print out 

probabilities at periodic intervals during inte­

gration), and XDR(evaluates derivative from the 

invariant imbedding differential equation). 

#2. DRILL for the diatom on diatom problem. Main 

deck, IT2, only. Program uses BNDINV matrix inver­

sion (given next) and DS3 integrator. The derivative 

of the Schrodinger equation is called from DS3. This 

derivative subroutine is similar to DR2 (given later), 

but is in double precision arithmetic. 

#3. BNDINV double precision matrix inversion. 

#4. Takayanagi's distorted wave evaluation for diatom 

on diatom problem. 

#5. DRILL for atom on diatom problem in single preci­

sion arithmetic. Main deck is SPS, which contains 

the formula for increasing the step size of the 

integrator. Following are the subroutines: DR2(eval­

uation of the derivative of the matrix Schrodinger 

equation), INS(single precision matrix inversion), 

and AMS( S'th order predictor Adams-Moulton integrator). 
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PRO POSITION I 

R. N. Doremus has investigated the optical absorption 

spectra of small gold and silver particles formed in glass. l, 
2 

The experimentaJ results are compared to the calculations of 

Mie, 3 using measured bulk values of the dielectric constants and 

electrical conductivities of gold and silver in Mie's equation: 

1. 

y is the absorption coefficient for N/ cm 3 spherical particles in 

a medium having refractive index n0• V i.s the volume of each 

particle. E:l and E: 2 are the real and imaginary parts of the metal's 

dielectric constant, and A. is the wavelength of the light in the 

medium surrounding the particles. This relation has been derived 

under the assumptions: 1) that the diameter of the particles is 

much smaller than the wavelength of the light, 2) that the particles 

scatter light independently, and 3) that no multiple scattering 

occurs. The latter placing some restriction on the number density 

for a given sample. 

Assuming that free electrons are responsible for the 

dielectric properties of a metal; one determines the dielectric 

constant from: 
4 

2. 
4nN e

2 
A. 

2 

( e 2 ) + 
(2nc) m e 

4nN
2 

e 4 
A. 

3 
•( e ) 1 3 2 

(2 TTC) m cr e 



2 

where e
0 

is a frequency independent constant, Ne is the number 

density of free electrons, cr is the d. c. conductivity, A. is the 

wavelength of light, m is the electron mass, and e is the 
e 

electronic charge. 

Doremus used the combined form of 1. and 2. : 

3. y == 

3 
9rrNVn0 c 

CJ 

2 2 2 
where "-m = "-c (e 0 + 2n0 ), 

2 
2 (2rrc) m 

A. - e 
c - 4rrN e2 

e 

to predict the optical absorption of the metal sols and to compare 

with his measurements. The maximum absorption occurs at 

A. == A. , and the height and peak width at half height are given by: 
m 

4. 
A.2 

m 

"-a 
== --...,,.---

2 CJ 

Doremus prepared the gold and silver sols in glass of the 

composition 71. 5% Si02, 23% Na2o, 4% AI2o 3, and 1% ZnO. • 02 

to • 1 % Ceo2 was added as a nucleating agent for the Au or Ag, 

which was introduced as chloride and irradiated to form atomic 

metal. Heating at 400°C to 630°C caused diffusion and growth of 

metal particles. Investigation showed that the particle size could 

be controlled to about 25% in radius, and that the particles were 
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nearly spherical. The spectrometer had a sample furnace so that 
0 

spectra could be taken at temperatures up to 500 C. 

Here some of the pertinent results are summarized: For 

Ag, the location of the absorption peak agreed with the prediction 

from Mie ' s equation (h) using the bulk dielectric values. The band 

shape agreed with the free electron theory (equation~). The band 

width was inversely proportional to the particle radius, agreeing 

with a free electron model (equation 4.) if one uses a = N e
2
R/mu - e 

as an estimate of the d. c. conductivity when the particle radius R 

is small compared to the electron mean free path. 5 u = electron 

velocity at Fermi level. For Au, the particles seemed to fall into 
0 0 

two groups according to size. Those 85 A to 200 A diameter had 

e: 1 almost the same as bulk Au, but e: 2 was considerably greater. 

This is determined from 1.. The absorption peak at . 525 was 
- 0 

unaffected by particle radius down to 85 A. This does not agree 
. 0 

with the free electron model. For particles below 85 A, the peak 

was proportional to diameter, in agreement with the free electron 

model for particles with dimensions smaller than the mean free 

path. It was observed that the peak broadened with increasing 

temperature for all sizes of particles. 

It is proposed that inclusion and/ or diffusion of impurities 

into the metal particles from the surrounding glass has occurred. 

The presence of impurities would necessitate a recomparison of 

the observed absorption spectra with the predictions of the free 

electron model. The impurities would affect the conductivity of the 

metal and the dielectric constant. Possible impurities are the 

components of the glass, Na2o, Si02, Al2o
3

, ZnO, and Ceo
2

, 

trapped larger fragments, or even unanalyzed parts of the glass 

structure. 
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The effects of impurities can only be estimated. Doremus 

discounts the presence of them, but states that metallic crystal 

imperfections might occur and cause difficulty before the particles 

were annealed. The effect of impurities on the Au and Ag metal 

would be: 1) the free electron model mean free path would be 

smaller than the particles' dimensions, 2) the d. c. conductivity 

would be lowered, and 3) the imaginary part of the dielectric 

constant would be proportionally larger. 4 

The relevance of impurities to the conclusions of Doremus' 
0 

work are the following: 1) the 85 A Au particle diameter, below 

which the absorption peak height was proportional to the diameter, 

would indicate an electron path that has been effectively reduced to 
0 0 0 5 

85 A. The electron mean free path in Au at 0 C is 410 A. 2) For 

Au and Ag, band widths calculated from bulk dielectric constants 

were less than one tenth of those observed. The free electron model 

predicts a band width inversely proportional to conductivity. A 

decrease in conductivity by a factor of ten in ~ would raise the band 

width by that amount. 3) The discrepancy between the e:
2 

for small 

particles and bulk (e: 2 particle/e: 2 bulk ranges from 5 to 25) would 

be lessened if impurities lowered the electron mean free path. 

It appears that one cannot determine the amount of 

impurities in the particles directly. However, one can measure the 

electrical effect of possible diffusion into Au and Ag layers. By 
0 

preparing pure 50- 200 A thick layers of Au or Ag on glass of the 

composition used by Doremus and nearly identical layers on pure 

silica, one can compare the electrical conductivity as a function of 

temperature. Because of the similarity of silica and glass, a 

difference in the conductivity of the samples would be attributed to 
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components in the glass. Pure silica diffusion would not be 

detected however. Techniques for preparing metal films may 

be found in reference 6. 

If the experiment revealed a definite effect of glass 

composition on the metals' electrical properties, then the 

validity of the free electron model predictions may be reconsidered. 
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PROPOSITION II 

One might classify quantum mechanical descriptions of 

interactions into analytical, perturbation, and semiclassical 

methods. All of these involve numerical analysis, but not as 

an explicit means of solution. High speed computers have made 

it possible to attack simple or simplified problems in quantum 

mechanics at a fundamental level. Consider the simple Schrtldinger 

equation: 

1. 
ti 

i 
o 1jt (x, t) 

at 

1jt is a complex scalar and may be broken into Reicp or cpR + i cp1 
where R, cp, cpR' cp1 are real. Using the latter, we have: 

2 
ocpR ti 0 cpl 

at = - 2m --2 
oX 

2. 

2 
ocpI fz o cpR 

at = 2m -2-
ox 

These are two real, coupled differential equations, which are of 

parabolic form. The general spirit of numerical differential 

equation solving is to replace derivatives by differences and, in the 

case of parabolic equations, advance from an initial given solution 

1jt = ijt(x, t0) to a later time in finite time increments. For example, 
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the equations ~ become the difference equations: 
1 

3. 

cpR (ntix, t + tit) - cpR (ntix, t) 

Lit 

n=··· -2, -1, O, 1, 2, ··· 

Ii cp
1
((n+l)6x, t) - 2cp

1
(n6x, t) + cp

1
((n-1)6x, t) 

- - 2m (6x)2 

cp
1
(ntix, t + tit) - cp

1
(ntix, t) 

6t 

11 
cpR((n+l)6x, t+tit) - 2cpR(n6x, t+6t) + cp((n-1)6x, t+6t) 

- 2m (6x)2 

if we divide the x coordinate into a point mesh x = ntix and the n 
time into intervals \ = kl'.t. For convenience, let cp~ = cp A (t6x, kl'.t). 

t 
The s olution at time t = \ + 6t i s obtained from the solution at \ 

by rearranging equations ~: 

4. 

k+l k 6t ( Ii ) { k+l 2 k+l k+l } cp = cp +-- -- cp - cp + cp 
It It (6x)2 2m Rt +l Rt Rt-1 • 
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Note that cp·~+l is computed from the differences of cpR(x, t) at 
.f, 

(k+l) 6t, not k6t. This was found necessary for stability of this 

particular difference scheme. 
1 

Finite difference methods involve 

problems of convergence and stability;
2 

a general discussion of 

this will not be given here, but may be found in references 2 and 3. 

Specific conditions on SchrtJdinger's equation in one space variable 

are discussed in references 1 and 4. 

Mazur and Rubin computed the collision induced reaction 

probability of a system representing H2 and H in the following 

manner. 
1 

They approximated the potential interaction surface by 

an "L"- shaped region in coordinate space with zero potential within 

the bounds of the region. The wavefunction was kept zero at the 

boundaries of the "L". 

coordinates: 

III 

(V == CX>) 

II I V==O 

r2 

"Actual" Potential Surface Mazur & Rubin Analog 
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The Schrtldinger equation for the interaction in center-of-mass 

coordinates, r 1 and r 2, 

5. 

was put into difference form with m 1 == m 2 == m 3 and with V(r1 ,r2)= O. 

The initial state was in region I of the "L". Iteration showed the 

packet to move into region II and then divide, part entering region 

IIL The probability of reaction was computed from the probability 

density of the wave in III, before reflection from the far end 

changes the character of the solution. The wave packet at time 

zero was s e parable: Hr1,r2,o) == cp(r1)e (r2), with cp(r1) a sine 

wave r epresenting the lowest vibrational state and 8(r2) a wave 

moving to the left with a momentum distribution corresponding to 

thermal averaging of H atoms at a given temperature. The results 

are discussed by Mazur and Rubin. 

It is proposed that numerical difference solutions for 

potential interactions are feasible for better models than those 

with only boundary conditions as used by Mazur and Rubin. 

Specifically, the stability of the difference method will be 

demonstrated for a Schrl:Jdinger equation in two space variables 

of a modified form of 5 • • 
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Equation~ is written as: 

6. 

And the difference analog is formed: 

7. 

c k k k ' k + ---2 (iji p 1 - 2iji p + ijl p _ 1) + V (.i6r 1, m6r 2)L 
(6r 2) -v ,m+ -v,n1 -v,m -v , m 

k 
where: ijl = ijl (t6r1, mtir2, ktit) 

t ,m 

.i = 1, 2, .•. , N m = 1, 2, •.. , N k = 1, 2, .•.. 

The time difference is chosen to be symmetric; also it is found 

necessary t o replace the potential function by a constant, V' -+ V • c 
This was done in the stability analysis of one s pace dimensional 
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Schrtklinger equations. 
4 

This is a restrictive assumption to make, 

but the author could find no alternative. 

Just as the Hamiltonian operator has eigenfunctions, the 

difference equation analog has also. These are of the form 
irrk1t6r1 irrk2m f'ir 2 e e Let 

8. 

where Tk depends only on the index k. Placing~ into 2=._ and 

simplifying: 

9. 

9. 

+ V Tk cp ~ c .,_, ,m 

Letting 46 t [above quantity in brackets ] = fl., and canceling the cp t m' 

' 

10. 

an iterative equation for the quantities Tk' k = 1, 2, · · ·• This 

e quation has solutions:4' 5 
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11. 

where p l and p 2 are the roots of 

12. 
2 

p l=f\p. 

One may substitute 11. into 10. and use 12. to confirm the solutions. 

c 1 and c2 are constants related to the initial solution. 

Now, ifthemaximumof IP 1 1 and IP 2 1 isgreaterthanl, 

we see from Tk = c1p~ + c2p~ that Tk will increase in absolute 

value as k becomes large. If max I p11, I p 21 < 1, then Tk decreases. 

If max I P11, I p21 = 1, then Tk is bounded. Thus, the k'th iteration 

at mesh point (t, m), tjf~ = Tk cp p , will grow unbounded in -v, m -v, m 
absolute value unless we can restrict max I p 1 1 , I p 2 1 s 1. Assuming 

the stability of the differential equation itself, that condition is the 

generally accepted criterion for stability, and consequently of 

convergence. The reverse is not true however. The above result 

possibly is derived easier via the route of Gerschgorin 's theorem. 

For usage of this, see references 1, 2, and 6. 

Solving 12. for p gives the two roots: 

13. 
- 1 /\2 1/2 - 1 /\ 2 1/2 

p l - 2 /\ + [ 4 + l] P2 - 2 /\ - [ 4 + l ] 

Replacing /\ by its defined value, and A, B, and C from~ by their 

values, and then requiring I p 1 1 and I p 2 1 ~ 1 shows that 

max I P1!, I P2 1 = 1. This is true when: 
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14. 

< 1 . 

The result is similar to that for the one-dimensional case. 4 We may 

simplify this for specific cases. For example, if m 1 = m 2 = m 3 = m 

and t.r1 =t.r2 = 11r, we get: 

15. 6t 
< 

(6 r)2 

1 
- m/ti 8 

V m 2 
1 +~for) 

4ti 

v > 0. c 

This has in effect only demonstrated stability for constant 

potential. It follows from the derivation that the stability criterion 

applies to a regionally constant potential in the r 1 and r 2 coordinate 

surface. The stability of the difference method near a discontinuity 

in a sectionally constant potential is unknown. However, Mazur and 

Rubin calculated one-dimensional square barrier penetrations and 

got difference equation vs exact solution agreement to within ten 

percent. 
1 

What should be known is a stability criterion for a 

functional potential, but only estimates or trial and error tests seem 

available. Regardless, the stability of the difference method can be 

insured for some two-dimensional problems and estimated for the 

rest with reasonable judgment. 
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PRO POSITION Ill 

Integral equations of the first kind appear regularly in 

physics and chemistry. They are of the form: 

1. 

b 

y(x) = J f (t) K(t, x) dt 

a 

where f(t) is an unknown function, and is to be determined. Let 

us assume here that y(x) is known by measurement at a set of 

points xl' x2, · · ·, xN. Each measurement inherently contains 

error, so let m . represent the measured value of y(x.), i=l, • · ·, N. 
l l 

The problem is to obtain a function f(t) which gives a best fit of all 

y . to the m., where y . is: 
l l l 

b 

2. y. = r l . 

a 
f (t) K(t, x .) dt . 

l 

This proposition intends to show that a Gaussian least 

squares fit of the y. (defined above) to the m easured m . furnishes 
l l 

a direct and preferable means of obtaining an approximate solution 

to the integral equation. The function f(t) is assumed expandable 

in a series of linearly independent functions, cp/t) : 

3. 

n 

f(t) = I: 
j=l 

c. rp .(t) 
J J 

n ~ N . 
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Introducing~ into ~: 

n b 

4. c. f cp. (t)K(t,x.)dt 
J . J 1 

j=l a 

b 

The known integral r cp. (t) K(t, x .)dt is now labeled <ll.. and is a 
. J 1 Jl 
a 

constant. 

We wish to minimize the sum of squared differences of y. 
1 

and mi with respect to the unknown expansion coefficients c 1, ···,en' 

and thereby determine them. Let 

The o are weight factors related to the reliability of the measure­
v 

ment. The function S(c1, · · · , en) has a unique minimum given by 

the solution of the normal equations:1 

The solution may be written in compact matrix form if we define: 
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0 

c = m= A= 

0 

c 
. n 

<J?l 1 • • • <l>lN 

<l>nl • <l>nN 

7. So: 

If one has a two variable integral equation of the form: 

b d 

8. y(x
1

, x
2

) = J J f (t
1

, t
2

) K(t
1

, t
2

, x
1

, x
2

) dt
1 

dt
2 

a c 

and measured data: mij' i=l, · · ·, N, j=l, · · ·, N, then an expansion 

n 

of f (t1, t 2) as \ c c:p (t1, t 2) results in: L \) \) 
v=l 
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n b d 

9. Yij = y(x:, xf) =I cv J J cp)t1, t
2

)K(t1, t
2

, x:, xf)ctt
1 

ctt
2

. 

v=l a c 

A least squares fit of y .. to m .. requires the minimization 
lJ lJ 

of equation 10. with respect to the cv. Let 

10. 

b d 

<llvij = J I 12 1212 1 2 
cp (t , t )K(t , t , x. , x . ) dt dt 

v 1 J 
a c 

N N 

S(cl' .. . 'en) = l l 
i=l j=l 

N N 

= I I 
i=l j=l 

1 2 
-2- [ m . . - y .. ] 

lJ lJ a . . 
lJ 

The normal equations are: 

N N n N N 

l 
\ · 1 mij <ll p ij = I I I 1 

11. l 2 <ll .. <ll • • c 
V lJ pl] V 

i=l j=l a .. 1 i=l j=l 
a .. 

IJ v= lJ 

p = 1, 2, · · · , n • 

N N 

Define M l l 1 <ll . . <ll .. = 2 pv VlJ p l] 

i=l j=l a .. 
l] 
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N N m .. 
v = l l 1) <I? •.• 

p 2 pl) 
i=l j=l a . . 

I) 

Then 11. may be written a s: 

n 

12. I M c = V 
pv v p 

v=l 

where c is the coefficient vector and V is an n component column 

vector. 

The advantages of this method of solving integral equations 

are: 1) knowledge of the relative and overall accuracy of the 

measurements can be weighted into the solution through the weight 

factors a. or a. .. 2) An a priori knowledge of the form of the 
1 1] - -=----

unknown function may allow one to use a minimal number of terms 

in its expansion. 3) Random errors in measurements are usually 

Gaussian distributed, implying that a least squares fit is the best 

way to remove them. Non-random instrument errors, for example, 
2 should be analyzed by other means. 
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PROPOSITION IV 

Simple collision theory predicts the following reaction 

rate - cross section relationship for structurely averaged gas 
1 

phase processes: 

1. 

co 

1 2 3/ 2 E / kT ~(T)= 172 (kT) J dEEe- C(E). 
(rrµ) 0 

It would be desirable to take measured rate data 
2 

and solve for 

C (E), the total energy-dependent reaction cross section, but this 

is very difficult because of the nature of Laplace transform 

inversion. We discuss some approaches and propose a method 

that converts a maximal amount of information contained in k(T) 

into C(E). We avoid making use of any particular reaction theory 

to indicate forms of C (E) or k(T). 

Method 1. We have the measured information k = k(T ) -n - n 
taken at the temperatures T . We wish to calculate C (E) at a 

n . 
series of points E . Since C (E) appears under an integral, we 

m 
approximate it by a series of delta functions and have: 

2. 

3. 

C(E) ~ l cm o(E - Em) 

m 
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Choosing as many points in E as we have points in T, we have a 

linear system of algebraic equations to solve for the unknowns. 

This effectively necessitates the inversion of the matrix 

-E /kT 
K = e m n . It turns out that this system is very ill-

nm 
conditioned, 3 as are nearly all direct attempts of this nature. 

Method 2. If one examines the overlapping part of E e -E/ kT 

and C (E) (which contributes to the integral in~), one notices that 

the distribution function overlaps C (E) progressively more for 

higher temp•3ratures. Reaction rates are measurable only within 

certain ranges because of physical limitations. This means that we 

will not have ~(T) measurements for temperatures such that the 

distribution overlaps C(E) greatly or very little. In any case, the 

rate constant arises from the near-threshold part of C (E). Only if 

C (E) increased exponentially would the overlap of C (E) at energies 

far above threshold contribute to ~(T). We want to avoid inversion 

of the Laplace transform type integral in~; this can be done by the 

following: choose an expansion for C (E) in some set of functions 

such that~ can be integrated, resulting in an expansion for ~(T). 

Conversely, we could expand ~(T) in a series such that~ is term 

by term analytically invertable; then we have a series for C (E). 

This is not so wonderful, for we are just replacing the difficulty of 

inverting the transform with fitting a series of functions to the 

measured data. One of the best expansions for C (E) near threshold 

is a simple power series. For convenience, we expand the product 

EC(E), including a threshold step function, H(E-E0), to make C(E) 

vanish at the threshold EO" Also, a non-integer power is included. 

Let: 
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00 

4. EC (E) = H(E-Eo)(E-Eo)a. l en (E - Eo)n 

n=O 

For a. > -1, we can substitute 4. into 1. and obtain:4 

3/2 -E / kT 
k(T) = l ( ~) e O (kT)a. + l 

(rrµ)l/2 kT 

5. 
00 

I C r (n + a. + 1) (kT)n . n . 
n=O 

This is a power series in T about T = O, times an exponential 

factor. If we could determine the set of numbers E 0, c0 , C 1 , • • • , 

CN by fitting~ to the rate measurements for some finite number 

of terms in the expansion 5., then we would have an expansion for 

C (E) via i:_. Wray5 has measured Ar + o 2 dissociation rate data. 

This is not bimolecular, but we use his published forms of ~(T) to 

illustrate the method and pitfalls. The analytic for ms are given as 

6. 

and 

7. 1 -E0/ kT 
e 

Our inversion procedure gives the cross section forms: 



8. 

4 

1 1 
H(E - EO) E (E - E )1/2 

0 

from~' and 

9. 

from!:_. The first is singular at E = E 0. We believe that this gives 

credence to the second form, although one must remember that we 

are determining C (E) from an integral and the singular form is a 

good solution in the sense that it gives~ when inserted into~-

If we had expanded EC (E) in dimensionless arguments: 

CD 

10. 
E-E E-E a 

EC (E) = H( E 0 )( E 0) l 
0 0 n=O 

we would have obtained: 

11. 

1 2 3 I 2 - E o/kT kT a + 1 
k(T) = 1/2 ( kT) e ( E) 

(rrµ) 0 

CD 

l 
n=O 

kT n 
C I' (n + a + 1) ( -E ) 

n 0 

For measurements of ~(T) at the lowest poss ible tempe ratures, 

kT/E0 << 1 ; therefore, 
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12. 
l 2 3/2 kT a.+ 1 -E0/kT _ . 

~(T) ~ 1/2 ( kT) ( E ) e co r(a. + l) · 
(rrµ) 0 

Implying, 

13. d ( ( ) ( )1/2 - a. -d(l/kT) [ tn ~ T kT J - -Eo 

for kT small. 

This is a best determination of E
0

, with a chosen to make the 

logarithmic derivative as constant as possible. The remaining 

parameters c0, C 1, · • · are to be determined by doing a least 

squares fit of the power series in kT/E
0 

to the reduced data: 

14. 
1/2 kT 3/2 Eo a.+1 Eo/kT 

~(T) (rrµ) ( 2> ( kT) e 

at the measured temperatures T .. The envisioned difficulty is that 
1 

we do not know rate constants at low enough temperatures to justify 

13. accurately, this then interferes with the determination of the C. 
- 1 

constants from 14.. A more thorough analysis would involve a non-

linear least squares fit of E 0, a., E0, E 1, · · · with error estimations. 

Method 3. We propose the following scheme be investigated 

and compared to the results of Method 2.. We assume a definite 

threshold exists at some E0, so let: 

15. EC (E) = H(E - Ea) P(E - Eo) 
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where H(E - E
0

) is the unit step function. Then .h_ becomes: 

16. 

(l) 

1 2 3/2 -E0/kT E'/ kT 
k(T) = (-) e J P(E')e- dE' 
- ( )1/2 kT 

TIµ Q 

where E' = E - E0 has been introduced. P(E ') is the unknown 

function to be determined, along with the threshold E0• Suppose 

that the rate data has been measured over some range of temperature 

from T 
1 

to T 2. Over this range, we want to fit the data to an 

expansion of k(T) in a series of functions whose inve rse Laplace 
--1 

transforms, L , are known. It so happens that 

17. k(T) 
-E / kT 

= e O (kT)a: I 
n=O 

has exact inverse transforms for certain a: 's. 
4 

We are free to 

choose To· Placing TO in the interval from Tl to T 2 centers 

the power s eries in 17. about a point in the midst of our rate 

m easurements. This is important for a power series fit in which 

successive terms are to be converging rapidly to the function. 

Equating 16. and_!~ gives: 

18. 
T - T n 

(kT)a:+3/ 2 \ A ( 0) = 1 23/ 2 f dE'P(E')e-E'/ kT 
L n T0 ( )1/2 . 
~o ~ o 
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which has the solution for P(E'), obtained by using known L-l 
4 

transforms, for a = - 1/ 2: 

19. P(E') = l 
n=O 

A n 

where L (x) is the Laguerre polynomial: 
n 

n 
n 

20. L (x) = 
n 

(-l)m ( ) 
n-m 

m=O 

1 m 
ml x 

The predictions and behavior of this method have not been tested; 

we propose to do this. The major formal result is the introduction 

of a series expanded about an arbitrary point in the temperature 

scale. This enables one to obtain a better and more rapidly 

convergent fit to the rate data. One must investigate the convergence 

of 19. as more terms are included in the fit to k(T) in 17 •• 
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PROPOSITION V 

Invariant imbedding1' 2 furnishes a powerful means of 

converting certain types of quantum mechanical problems, defined 

by the second- order Schrtfdinger equation with asymptotic boundary 

conditions, into first- order initial value problems. The procedure 

has never been formalized or tested for the solution of the bound 

state Schrtfdinger equation by conversion to a first- order initial 

value problem. We will show that the standard perturbation theory 

for bound systems leads directly to a first-orde r differential 

equation for the eigenvalues and eigenfunctions. 

For any one-dimensional bound system, the orthonormal 

eigenfunctions and eigenvalues are determined from 

1. 

by requiring square-integrability of the solutions. If we add a 

perturbation 6H to H, the first order changes in E and v are:3 
n n 

2. 

3. 

with normalization of 3.: 



2 

<* +6* I* +6* >=0 n nm m nm 

4. 

+ o( < * j 6Hj * > )
2 

• n m 

Suppose we wish to determine the solutions of the scaled 

Schr&linger equation: 

5. 

Assume we know the solutions to some simpler problem: 

6. 
1 d2 0 0 0 0 

(- -2 -n + V (x)) w (x) = E * (x) • 
dx..:::.; n n n 

Introduce a parameter x
0 

into V(x) so that: 

7. 

0 
V(x, x0) j = V (x) 

x = 0 
0 

V(x, ~) j x = L = V(x) • 
0 

This parameter carries the parameterized potential V(x, x0) 
0 from V (x) to V(x) as x0 goes from 0 to L. For any value 

of x0, we define the solution to the potential V(x, ~) to be w (x, x0): 
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8. 

The eigenvalues are naturally dependent on x
0

. We see from :I.:_, 

and ~ and ~' that the "boundary conditions" on the variation of 

x0 are: 

9. 1¥ (x, 0) n 
E (0) = EO 

n n 

because, when x0 = 0, ~is the same as~- Likewise, when 

x0 = L, 8. is the same as 5. : 

10. E (L) = E • 
n n 

We have set up Xo as an invariant imbedding parameter, 1 

but lack the differential equation which describes the change in the 

* n (x, x0) as x0 changes. Suppose we know the w n (x, x0) solutions 

and the En (x0) for a particular x0. An incremental increase in 

x0 changes the potential: 

11. 

The last term in 11. is a perturbation of the variety used in~ and 

3. . Equation 8. tells us that the first order changes in 1¥ (x, x0) 
~ n 

and En (x0) due to the first order change in V(x, x0) are 
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12. 

If we expand the ljl (x, x0) in an orthonormal set q:i (x): 
n n 

14. ljl (x, x,..) = \ ' c (x
0

) q:i (x) 
n u L nm m 

m 

then 

15. 

Using 14. and 15., we can write the differential forms of 12. and 13., 

taking the limit tix0 ... O, 
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16. 

and 

17. 

Or, using only the cp (x) basis and the c (x0) functions: n nm 

18. 

and 

19. 

where 

20. 
oV(x, x0) 

V .. (x
0

) = (cp . (x) I I cp . (y)) • 
1) 1 ox ) 0 
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If we had chosen the basis cp (x) to be * O (x), the initial conditions 
n n 

on 18. and 19. would be: 

E (O) 
n = 

21. 

c (0) = 0 
nm nm 

so that ljt (x, 0) = *O(x). This is seen from expansion 14 .. The first-
n n --

order (refering to the derivative, not an approximation) system 18. 

and 19., together with initial conditions 21., enable us to integrate 

from x0 = 0 to x0 = L. At x0 = L, the expansion 14. gives us the 

wavefunctions * (x, L), which are the desired solutions of V(x, L) n 
= V(x). The energies E (L) are the eigenvalues E of 5. . Thus, n n -
we have completed the setting up of a first-order system equivalent 

to the second-order Schr&linger equation. 

Before seriously investigating the utility of this method, 

one should try to integrate system 18. and 19. for a simple problem 

to determine if the highly non-linear and coupled nature of the 

system leads to numerical difficulties. We have done the following: 

The known solutions cp (x) = * O (x) were taken to be the eigenfunctions n n 
of an infinite square well with ends at 0 and 11: 

22. 

23. 

w0 (x) = (2/11)112 sin(n+l)x 
n 

for n = 0, 1, 2, • • • • 
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We desired to calculate the solutions to a harmonic well centered 

at TT/2: 

24. V(x) 25 2 = 2 (x - TT /2) . 

Of course the solutions and energies are known: 

25. 

26. 

ljJ (x) = 1 
172 H (/5(x- ~2))e n (2nn!JTT) n 

E = 5(n + 1/2) 
n 

2 
5(X-TT/2) 

2 

n = 0, 1, 2, • • • • 

For the parameterized potential we used: 

27. ) 25 TT )2 ) V(x, XO = v SQ + 2 (x - 2 H(xo - x 

where H(x
0 

- x) is the unit Heaviside step function and V SQ 

represents the infinite square well potential. From 27. , using 

the definition of the delta function, 

28. 25 TT 2 ) = 2 (xo - 2 ) o (xo - x • 
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Substituting this into 20. along with 22. gives: 

We must integrate 18. and 19. to x0 =TT, for there the basis functions 

cp (x) vanish. At this point our solutions should solve the potential: 
n 

30. 25 TT )2 
V (x, TT ) = V SQ + 2 (x - 2 

which is an infinite square well with a parabolic bottom. Using a 

first-order integrator and a 10 state expansion in the cp (x) basis, n 
we obtained the following eigenvalues: 

TABLE 1 

Infinite Square Calculated Pure Harmonic 

n Well Oscillator 

0 o. 5 2. 55 2. 5 
1 3. 0 7. 87 7. 5 
2 4. 5 13.48 12. 5 
3 8. 0 19. 32 17. 5 
4 12.5 25.22 22. 5 
5 18.0 31. 16 27. 5 
6 24. 5 37.39 32. 5 
7 32. 0 44.30 38.5 
8 40.5 54.49 43.5 
9 50.0 62.36 48. 5 
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The ground state is accurate to 2%; a better integrator might 

improve on this. The system of equations indicated no unstable 

behavior, a favorable indication that the method is practical to 

solve in general. A few comments must be made about the results 

in table 1. As n becomes large, the bound particle sees more of 

the infinite square walls of V SQ" The parabola in the bottom of 

V SQ only influences the lower energy states. For n larger than 

4 the spacing of the calculated eigenvalues is roughly that of the 

square well. 

We propose that this novel method of solving bound state 

problems be further investigated, especially on higher dimensional 

problems (via state expansions), and compared to the variational 

method in speed and accuracy. 
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