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Abstract 

Neutron diffraction was used to study the high-temperature creep of in situ-reinforced 

silicon nitride (ISR Si3N4).  Full pattern and single peak fitting methods were used to 

calculate the average and hkl-specific mechanical properties, including thermal expansion 

coefficient, creep exponent, Young’s modulus, and Poisson’s ratio.  This is both the first 

in-depth study using time-of-flight neutron diffraction to examine materials at such high 

temperatures (above 1273K) and the first in situ microstructural study of creeping silicon 

nitride.  Two commercial grades of ISR Si3N4 were tested, AS800 and GS-44. 

 

The refractory grain boundary phase of AS800 prevented the onset of creep in the 

vacuum environment of the SMARTS furnace.  However, the high-temperature stress-

strain data allowed determination of the 1648 K single crystal elastic stiffness tensor, the 

first such calculation from neutron diffraction strain data.  Also determined was the 

coefficient of thermal expansion (CTE) tensor.  The 1648 K stiffness tensor indicated a 

less stiff C33 component compared to a room temperature stiffness tensor.  This lesser 

value is due either to microstructural (grain-grain interaction) or thermal effects. 

 

Creep was observed for GS-44.  A stress step-up test and four constant stress creep tests 

were performed.  Large strains were measured by an extensometer, though of much less 

magnitude than literature creep studies, with the difference attributed to the vacuum 

environment protecting the grain boundary phase from suffering reduced viscosity.  This 

is supportive evidence of the long-held notion that the grain boundary phase is the 

primary determinate of creep behavior.  The diffraction strains, though of significantly 
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lower magnitude than the extensometer strains, were measured as non-constant, though 

the silicon nitride lattice parameters behaved in an unexpected manner.  The two lattice 

parameters were seen to split or fork from a common initial strain, with the c lattice 

parameter indicating tensile strain and the a lattice parameter compressive.  The relative 

changes, however, corresponded to an essentially constant unit cell volume, as computed 

from simple geometry.  None of the potential inelastic strain effects on diffraction peaks, 

such as peak broadening, were observed, further supporting the notion that the grain 

boundary phase is the source of strain.  Neither was there any measured preferred 

orientation evolution due to creep.  The creep exponent of GS-44 was calculated as 3.18, 

a greater value than in literature, likely due to the same creep inhibition of the vacuum 

furnace. 

 

The classic Norton Equation for creep matched well with the steady-state creep rates as a 

function of applied stress, while a newer model by Luecke and Wiederhorn, incorporating 

multiple facets specific to Si3N4, matched the data comparably, though with an additional 

empirical stress dependence incorporated.  The effect of performing these experiments in 

a vacuum rather than in air likely prevented as accurate prediction by their model as with 

Norton’s.  This result is based on the much-reduced creep strain measured compared to 

literature measurements of the same material at like temperature and stress.  However, 

given the large disparity between the extensometer creep strain and the diffraction creep 

strain, it is clear that the grain boundary phase experiences the bulk of the deformation.  

Subsequent SEM observations of tested samples indicated no microstructural change due 

to the short duration of creep experiments.  As with AS800, the GS-44 CTE tensor was 
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found, while the stiffness tensor was incalculable due to extreme non-linearity of single 

peak data. 
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I.  Introduction 

Ceramics have achieved greater widespread use worldwide as their properties are 

enhanced and verified through the efforts of materials scientists.  Of particular interest is 

the use of ceramic materials for high-temperature structural applications, as ceramics 

have superior high-temperature properties, generally, than metals.  For ceramics to be 

used at elevated temperatures it is important, particularly for structural applications, to 

understand the mechanical properties at elevated temperatures.  Silicon nitride, Si3N4, is 

considered the most promising of ceramic materials for high-temperature structural 

applications [1, 2].  The history and processing of Si3N4 will be discussed briefly, with a 

focus on generalities and recent developments.  The properties subsequent to such 

preparation methods will be discussed as relevant, primarily mechanical properties, as 

well as applications currently involving Si3N4.   

1.1  Silicon Nitride 

Silicon nitride does not occur in nature.  There are two common polymorphs of Si3N4, α 

(trigonal) and β (hexagonal), while cubic Si3N4 has more recently been synthesized.  The 

β polymorph (space group P63/m) is the more stable phase, and is the commonly found 

phase in densified parts made of Si3N4 [2, 3].  The α form is known to convert into β at 

high temperature, while the reverse process is energetically unfavorable [3].  Thus the α-

β transformation is permanent, since the β-α transformation does not occur.  When 

properties are discussed they will be those of β-Si3N4; hereafter if Si3N4 is used, it is 

referring to β-Si3N4.  However, before solid parts can be made, Si3N4 powder must be 

synthesized.  This powder is then compacted and densified by one of several methods 
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requiring high temperature and, sometimes, high pressure. 

1.1.1  Powder Synthesis 

Si3N4 is synthesized in a variety of methods, with varying effects on the resulting 

properties.  First, however, high-quality powder must be prepared.  There are several 

techniques used in industry today.  These include direct nitridation, carbothermal 

reduction and nitridation, imide processing, and vapor phase reaction.  The starting 

materials are either silicon (Si) powder, silicon dioxide (silica, SiO2), or silicon 

tetrachloride (SiCl4), depending upon the process.  Regardless of which process is 

employed, it is desired to produce powders that are high-purity, free of agglomerations, 

spherical, sub-µm in size, and possessing a narrow size distribution [4, 5]. 

 

Direct nitridation of silicon is an older method, generally used to produce β-Si3N4 powder 

for refractory purposes [5].  The reaction proceeds according to: 

3Si + 2N2(g) → Si3N4    (1) 

Depending on the quality of the starting powders, reaction time and resulting quality are 

affected.  This process generally produces coarse, agglomerated particles, requiring 

milling to obtain a suitable powder.  Resulting powders are α-Si3N4, only being 

converted to β-Si3N4 during densification. 

 

Diimide decomposition utilizes SiCl4 and ammonia to produce Si3N4 powder [5].  The 

first step in this process produces an intimate mixture of ammonium chloride and silicon 

diimide.  Washing with liquid ammonia followed by a sublimation/calcination step 

produces silicon imide chloride.  A final evaporation of the ammonium chloride thus 
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produced yields a mixture of amorphous Si-N compounds which are crystallized above 

1250°C, influenced by conditions including such as impurities, heating time, and 

atmosphere.  There is usually residual chlorine impurity in the reaction products.  Again, 

fine powder requires milling to produce.  

 

The vapor phase reaction makes use of the high-temperature reaction [5] 

3SiCl4(g) + 4NH3(l) → Si3N4 + 12HCl(g) (2) 

Temperatures up to 1350°C can be required to effect this reaction, with some residual 

silicon diimide being common.  This must be removed by the same 

calcination/crystallization as for diimide decomposition.  The Si3N4 produced is 

amorphous and is crystallized by heat treating.   

 

Carbothermal reduction and nitridation is a commonly applied method, due to the low 

cost of starting materials and the relatively high-quality resulting powders [5, 6].  The 

starting materials are silica and carbon, both commercially available at low costs.  These 

are reacted at around 1500°C in the presence of nitrogen first to reduce the silica then to 

nitridate it.  The overall reaction is 

3SiO2(g) + 2N2(g) + 6C → Si3N4 + 6CO(g) (3) 

The powders are usually highly α phase, being the preferred phase for powders, with 

carbon contamination <1%.  While the powders are near-fine, milling is often employed 

to reduce the size. 

1.1.2  Powder Densification 

The various methods for densifying ceramic powders are general, and are used to densify 
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many different materials.  The methods include pressureless sintering, hot-pressing, and 

hot isostatic pressing, for example.  Another method is reaction bonding, which actually 

merges the powder synthesis and densification steps. 

 

Sintering is the general process by which ceramic powders are densified [4, 7, 8].  

Pressureless sintering is the process by which high temperature is applied to a compacted 

powder form (called the green state or green article) such that the energy input from the 

furnace heat drives a surface area reduction of the powders.  This is accomplished by the 

bonding of neighboring particles.  This bonding reduces the surface area of the particles, 

and thus their surface energy.  It is for this reason that fine-size (and thus high surface 

area) powders are desired.  Other factors affect the densification, like powder packing 

density, which is the motivation for obtaining spherical particles with a narrow size 

distribution, and low state of agglomeration.  Impurities affect the process by altering the 

temperature at which densification will occur, in addition to affecting the properties of 

the resulting final article [4]. 

 

In the case of many ceramics, including Si3N4, densification cannot be achieved at a low 

temperature in a short time (since grains grow at elevated temperatures by the same 

mechanism that drives sintering, reducing the time at the processing temperature is 

necessary to allow for small grain size, which relates to increased strength) unless 

sintering aids are used [4, 6].  In many cases, these aids are used to generate liquid phase 

sintering.  That is, the foreign particles melt during the processing.  By melting, they 

provide a transport mechanism to speed densification.  Provided the material to be 
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sintered is soluble in the liquid phase, a solution-precipitation process allows fast 

rearrangement of material into a lower energy state.  The liquid phase can also assist 

densification by creating substantial internal capillary pressure; this internal pressure aids 

in particle rearrangement (improving the particle packing) and increases the pressure 

between particles (increasing the rate of material transfer).  Note that this effect is 

enhanced when fine size particles are used.   

 

For Si3N4, there are many potential sintering aids, though oxides are preferred.  These are 

used with the intent of reacting with the pre-existing oxide layer (SiO2) on the Si3N4 

powder surface to form a silicate liquid, and result in a refractory second phase [4].  

Common sintering aids are magnesia (MgO), alumina (Al2O3), and yttria (Y2O3), though 

the latter two are used often as they have less detrimental effects on the mechanical 

properties when used in appropriate weight fractions.  The sintering aids are chosen to 

have similar thermal properties to the majority phase, if possible, so that upon heating, 

thermal expansion mismatch will not cause catastrophic failure of the part, as when one 

of the phases expands much more than the other phase and the material fractures. 

 

Liquid phase sintering is often used in concert with external applied pressure (hot-

pressing, e.g., as discussed later) to decrease further the sintering time and temperature 

[4].  The liquid phase composition plays a large part, in that the viscosity of the material 

affects the wetting of the Si3N4 particles, since greater wetting leads to greater benefit in 

that more particles are affected, and the surface tension increases the magnitude of the 

internal pressure.  Further, the final composition of the liquid phase, which forms a grain-
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boundary and triple-point phase after cooling, plays a major role in determining the creep 

behavior of the sintered material. 

 

Pressureless sintering is that in which the green article (ceramic powder compacted with 

sintering aids) is simply heated in a furnace [4].  This heating is usually carried out in an 

inert atmosphere to inhibit oxidation of the powders.  For Si3N4 the atmosphere can also 

be nitrogen, which would not be harmful to the part.  The sintering temperature for Si3N4 

is about 1750°C, depending on the amount and type of sintering aids, if any, as well as 

the quality of the Si3N4 powder itself [4].  Densities achieved through pressureless liquid 

phase sintering are generally high, but are not theoretical density (TD).  A value of 97% 

TD or higher can be expected.  As the green article can be in the shape and size of the 

final part (allowing for up to 15% shrinkage associated with the sintering process), this is 

an economical method, as post-machining is reduced. 

 

Hot pressing (HP) is a process which sinters the green article in concert with application 

of high pressure [4].  The addition of pressure reduces the sintering time and temperature, 

while still obtaining near-TD and a fine-grained microstructure, and optimizing strength.  

Also, hot pressing allows for an overall reduction in the amount of sintering aid, which 

greatly improves high-temperature properties, including creep.  Due to the application of 

pressure, there is commonly texture of the resulting parts, in that there are elongated 

grains perpendicular to the pressing direction.  This preferred orientation can cause a 20% 

difference in strength and other properties between the pressing and perpendicular 

directions.  Such materials with a bimodal grain size distribution (that in which two 
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different grain sizes are present with an insignificant presence of grains of intermediate 

sizes) are termed in situ-reinforced (ISR), as the longer grains in the material function as 

would reinforcements in a composite material, increasing the strength, fracture toughness 

and high-temperature creep resistance.  The use of hot-pressing can also reduce the 

amount of sintering aids required, thus allowing for a more pure product.  The parts 

produced by hot-pressing are generally very hard and dense, causing machining 

difficulties in addition to those due to the texture.  Densities of produced parts are often 

~100% TD. 

 

Hot isostatic pressing (HIP) is another processing method incorporating application of 

external pressure to speed the densification process [4].  The ability to apply very high 

pressures, more than one order of magnitude higher than hot-pressing, enhances the 

densification.  This higher pressure is believed to produce a more uniform microstructure 

of finer grains.  The green article, as with pressureless sintering, can be in the final shape, 

another advantage over hot-pressing; the green article often experiences about the same 

amount of shrinkage as in pressureless sintering, reducing post-machining costs.  A 

similar method is gas-pressure sintering, in which a high pressure atmosphere is used, but 

no preferred orientation results, unlike for HP or HIP.  The microstructure produced in 

the sintered Si3N4 resulting from these methods is different from that in which no 

pressure is applied, and this altered morphology has an effect on the mechanical 

properties. 

 

Reaction bonding is a process by which silicon powder is consolidated by some method 
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(slip-casting, e.g.), then pre-sintered in an inert atmosphere [4, 9].  The pre-sintering 

gives strength to the green article so that it can be machined to the desired shape and size 

for the final part.  The part is then nitrided under nitrogen atmosphere at ~1400°C for 

several days.  Thus does the part densify at the same time that Si3N4 is formed.  Resulting 

parts have high porosity, and thus have reduced strength compared to parts from other 

methods. 

 

For nearly all methods of producing dense Si3N4, sintering aids are used.  Sintering aids 

reduce the required time and/or temperature necessary to achieve TD.  For Si3N4, 

sintering aids assist liquid phase sintering, i.e., the sintering aid melts [4, 8].  The liquid 

phase assists the mass transport by providing a faster diffusion medium, allowing 

sintering to proceed faster.  For many ceramic systems, including Si3N4, the liquid phase 

is “persistent,” meaning that the second phase from the sintering aid remains in the dense 

final part.  This phase usually constitutes a grain boundary phase, being very thin and 

linking the Si3N4 grains.  This grain boundary phase (an oxynitride silicate glass, 

sometimes called a sialon glass (when the composition is of the form SiAlON); the grain 

boundary phase hereafter may be referred to as oxynitride glass or silicate) has 

considerable effect on the properties of the final part, especially high-temperature 

properties.  GS-44 is reported to use Al2O3, Y2O3, and MgO as sintering aids [10].  The 

grain boundary phase for AS800 has been reported as Y10Si7N4O23, referred to as the H-

Phase, and was found to be approximately 10wt% of the sintered material [11], a 

relatively typical amount of sintering aid.  This seems to indicate that only Y2O3 is used 

for production of AS800; as mentioned earlier, MgO is known to cause poorer high-
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temperature creep resistance in Si3N4-based ceramics, even when an ISR microstructure 

results.  Thus, it was expected that GS-44 would experience greater creep than AS800.  

This notion correlates with the earlier development of GS-44, while AS800 is a more 

recently-produced variety. 

 

1.1.3  Properties and Applications 

Silicon nitride has many desirable properties for structural applications, even at high 

temperature.  For turbine components, for example, materials need to possess high 

strength, low density, high toughness, resistance to corrosion and oxidation, and good 

creep resistance [7, 12].   Presently, turbine blades are made from nickel-based 

superalloys.  Si3N4 is considered a candidate to replace superalloys in this application.  

The density of Si3N4 is less than half that of nickel alloys (3.2 g/cm3 compared to 8.5 

g/cm3) [7, 12].  Metal alloys can have fracture toughness (KIC) of more than 100 MPa√m, 

while many ceramic materials have KIC of around 1 MPa√m.  Si3N4 has KIC ranging from 

4 to as high as 8 MPa√m, depending on the processing method [12].  Si3N4 has less 

tendency to oxidize than do nickel alloys above 1000°C, while also having better creep 

resistance, owing partially to higher melting temperature for Si3N4 (actually, Si3N4 does 

not have a melting temperature, per se, but it dissociates into Si and N2 at around 

1900°C) as opposed to nickel melting around 1450°C (note that structure and 

composition also influence this) [7, 12].  (There is a relation between the melting 

temperature of a material and its creep onset temperature, which is around 0.3-0.4 of the 

melting temperature for metals, and 0.4 and 0.5 of the melting temperature for ceramic 

materials [12].)  Si3N4 has a low thermal expansion coefficient (α, which is the relation 
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between the amount which a material expands due to a change in temperature) of around 

3.6 x 10-6 K-1, while metal alloys often have α > 10 x 10-6 K-1 [7].  Thus, for a given 

temperature change, ceramic components will tend to expand much less than metal 

components, easing the design allowances.  The limitations of nickel-based alloys, in 

terms of their susceptibility to oxidize and the creep properties, limit their applications in 

turbines to temperatures below 1000°C [12].  For fuel efficiency reasons, running at 

hotter temperatures is desirable, thus in addition to the weight reduction (thanks to low 

density), the improved mechanical properties at high temperature drive the interest in 

Si3N4 as a replacement material in such applications [11, 13]. 

 

Table I gives properties for the two grades of Si3N4 studied in this thesis, GS-44 and 

AS800 [14, 15].  While both have the ISR microstructure, AS800 is the more recently 

developed.  Both of these materials are produced by the same manufacturer (Allied 

Signal, originally, now Honeywell Ceramic Components, Torrance, CA).  Note that both 

have good strength retention at high temperature, with both retaining about 70% of their 

strength near their respective maximum use temperatures.  This is due to improved 

processing based on characterization of prior Si3N4 grades, such as GS-44; these studies 

determined the effects of sintering aids in terms of chemical composition and amount of 

additive [16-20]. 

 

Often, mechanical properties of Si3N4 are affected by the densification method, 

specifically when an ISR structure is produced.  Aided by the application of pressure, 

using HP, HIP, or gas-pressure sintering, some Si3N4 grains elongate and a bi-modal 
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grain distribution is produced in the sintered material.  While the different grain types are 

the same phase (β-Si3N4), there are both elongated (“acicular”) and more equi-axed 

grains present in the final microstructure, as shown in Figure 1 [18, 21].  Surrounding the 

grains is a grain boundary phase, usually vitreous (i.e., glassy, non-crystalline), produced 

by the liquid-phase sintering method.  Heat treatment can crystallize this phase to 

improve the creep resistance [22, 23], but this is not typically the case [24]. 

 

 

Elongated grains 
 
Equi-axed grains 

2µm 

Figure 1.  SEM image of the microstructure of as-received GS-44, polished and plasma 

etched, showing the ISR microstructure of elongated grains and equi-axed grains (dark) 

in the surrounding grain boundary phase (white). 

 



 12

Table I.  Properties of GS-44 and AS800 silicon nitride [14, 15] 

 GS-44 AS800 

Flexural strength (MPa) 

Room temperature (T = 293 K) 

High temperature 

 

977 

655 (at T = 1373 K) 

 

797 

580 (at T = 1640 K) 

Fracture Toughness  

(KIC, MPa√m, at 293 K) 

8.25 8.1 

Hardness (Vickers, 10 kg) 1460 1650 

Density (g/cm3) 3.2 3.3 

Coefficient of Thermal Expansion 

(CTE, 293-1273 K, x10-6 K-1) 

3.4 3.9 

Elastic Modulus (GPa)  

293 K 

1273 K 

 

300 

220 

 

310 

297 

Poisson’s ratio - 0.28 (293-1473 K) 

Maximum use temperature (K) 1373 1673 

 

1.1.3.1  Creep of ISR Si3N4 

Creep is time- and temperature-dependent plastic deformation due to an applied constant 

load.  This can happen at room temperature for some materials, but as with Si3N4, is often 

observed for applied load at high temperature. 
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Si3N4, including ISR grades such as GS-44, experiences classical tensile creep behavior, 

in that there is a fast creep rate regime, followed by a slower regime, and a final fast 

regime before failure, as shown in Figure 2.  These are termed the primary, secondary or 

steady-state, and tertiary creep regimes.  The regime of interest is the steady-state regime, 

the rate of which is often used to quantify the creep behavior.  The steady-state creep rate 

is an important design consideration for long-life applications in which excessive strain is 

unacceptable, as with turbine blades; the time to rupture, the time at which fracture 

occurs due to creep, is also used as a design characteristic [7].  The purpose of creep tests 

is to gather data regarding the longevity of these materials at the conditions under which 

they will be utilized.  The data are used to compare with models of creep to determine 

what mechanism allows the creep to occur.  In many cases, the nonconformity of the data 

to an established model has motivated new model construction. 

Fracture 

Primary 
creep 

C
re

ep
 st

ra
in

, ε
 

Secondary 
creep 

Tertiary 
creep 

Initial elastic strain

Creep time, t 
 

Figure 2.  Generalized creep curve, showing the three typical creep regimes. 
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The steady-state creep rate of metals and ceramics has traditionally been modeled using 

the Norton equation, shown in Equation (4), 
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in which σ is the applied stress, D is the diffusion coefficient, G is the shear modulus, b is 

the Burger’s vector, k is the Boltzmann constant, T is the absolute temperature, d is the 

average grain size, p is the inverse grain exponent, n is the stress exponent, and A is a 

constant.  For cases when the grain size is (assumed) constant and there is no dependence 

on the presence of the grain boundaries, as with intergranular mechanisms, p = 0.  When 

this is not the case, p typically has values from 1-3.  Often, Equation (4) is rewritten as 

Equation (5), combining all the non-stress factors into a single constant, which is valid in 

that the deformation mechanism should not be dependent upon stress at a given 

temperature.  Thus, the value of p in this case is not a factor.  (As will be discussed later, 

Si3N4 creep is grain boundary-controlled, thus p ≥ 1.) 

nBσ    (5) 

The stress exponent (also called the creep exponent) is determined using Equation (5) by 

plotting the logarithm of the steady-state creep rate versus the logarithm of applied stress, 

for several stresses at a single temperature.  The slope of the data in this case is the creep 

exponent.  For Si3N4, the creep exponent n ranges from 2-4, with some results reported as 

high as 16 [3, 10, 25-27].  For GS-44, the creep exponent has been reported as 2.24 by 

Wei et al.[25, 27].  Note that the value of n depends upon the mechanism of creep.  For n 

= 1, a diffusion or solution-precipitation mechanism, such as Lifshitz or Rachinger 

sliding, determines the creep behavior.  Lifshitz sliding is that in which the grains 
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elongate in addition to sliding due to the grain boundary phase, while Rachinger sliding is 

for grain boundary sliding without grain elongation [27].  These simple cases, however, 

are not valid for Si3N4, since n ≠ 1.  Note that what occurs in Si3N4 is similar to 

Rachinger sliding, in that the sample elongation is attributed to the grain boundary phase, 

but is aided by the formation of cavities that facilitate the rearrangement of grains and 

redistribution of stress.  Given that the stress exponent is often ~2, recent efforts have 

attempted to model tensile creep through either an interface reaction-controlled diffusion 

mechanism, or cavity nucleation in the vitreous grain boundary phase in addition to its 

viscosity [3, 13, 22, 24, 27-33]. 

 

The grain boundary phase is known to be the major factor in the creep of Si3N4 at high 

temperature [2, 10, 22, 24-26, 29, 32, 34].  Depending upon the sintering aids used 

(composition and amount), the creep behavior is affected.  For example, MgO has a 

degrading effect on the creep behavior (i.e., the creep is more pronounced, greater 

deformation occurs at a faster rate) compared, e.g., to Y2O3 additives.  In any case, Si3N4 

with an acicular grain structure is known to possess greater creep resistance than Si3N4 

with a uniform equi-axed microstructure; this greater resistance is attributed to the 

interaction of the grains with one another, in a locking manner, as rearrangement occurs 

due to creep and flow of the grain boundary phase.   

 

Creep studies of ISR Si3N4 indicate creep exponents of n = 1.5-4, with values of n = 2-2.5 

being typical [3, 10, 25, 26].  Such a value indicates that diffusion is not the dominant 

creep mechanism (which would have n = 1), when there is no grain size influence.  The 
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stress exponent n is determined by plotting on a log-log plot the steady-state creep rate 

for multiple stresses at a single temperature.  The data are usually linear, with the slope 

being n.  Various mechanisms have been proposed to account for the creep mechanism of 

ISR Si3N4, including grain boundary sliding, and solution-precipitation of Si3N4 in the 

grain boundary phase, though the non-Newtonian nature of the flow of the grain 

boundary phase is often noted as the primary determinant of the creep behavior [22, 24, 

29, 32].   

 

Standard creep tests are performed in air, which accurately simulates the service 

environment for Si3N4.  However, this allows ambient oxygen to decrease the viscosity of 

the grain boundary phase, thus allowing creep to proceed faster [2, 23, 35].  The viscosity 

of the grain boundary phase plays a significant role.  In oxynitride glasses such as the 

silicate glass grain boundary phase, the higher the nitrogen to oxygen ratio, the higher the 

viscosity.  Given that most creep tests take place in air, oxygen is available to diffuse into 

the grain boundary phase, and as a result decrease its viscosity [3, 23].  This leads to a 

faster creep rate.  A creep test in vacuum or inert atmosphere would limit this effect [36], 

and would be a more accurate measure of both the creep of Si3N4 and the inherent 

properties of the grain boundary phase. 

From tensile creep experiments of an ISR Si3N4, Gasdaska noted that the high creep 

exponent and large creep activation energy precluded a diffusion mechanism from the 

major creep determinant.  The conditions of those tests also eliminated dislocations as the 

major factor, as he verified with post-test TEM imaging.  Gasdaska concluded that, while 

cavitation was likely a factor in the creep behavior, that it was not the cause of the high 
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creep exponents.  However, he drew a correlation between the stress dependence of the 

ISR Si3N4 creep and the non-Newtonian flow of silicate glasses.  Given that the grain 

boundary phase was such a glass, Gasdaska developed a model for the steady-state creep 

strain rate.  The model was developed assuming that, as stress is applied at high 

temperature, the grain boundary phase softens, allowing grain boundaries to slide due to 

the grain boundary viscosity at that stress and temperature; this sliding of grain 

boundaries was attributed for the primary creep behavior.  This leads to a steady-state 

creep rate when there are sufficient mechanisms within the grain boundary phase to 

accommodate the sliding of grain boundaries, including cavitation and flow.  Building 

upon work by Eyring regarding fluid viscosity Gasdaska’s equation, which better 

approximates creep behavior than Norton’s equation (Equation (4)), is shown in Equation 

(6) (for stresses greater than 50 MPa) [22]. 
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In this model, ∆Hs and Ωs are the apparent activation energy and activation volume, 

respectively, R is the universal gas constant, As is a pre-exponential constant, and T is the 

absolute temperature.  Activation energies for various temperatures were comparable to 

that for viscous flow in glasses, supporting this formulation.    

 

Luecke and Wiederhorn developed a model for tensile creep of ISR Si3N4 based on 

general observations of the creep behavior, including the formation of cavities in the 

grain boundary phase as the primary source of creep strain, the inactivity of dislocations, 

and the curvature of plotted tensile creep data.  Cavities have been reported after TEM 

investigations of crept samples [3, 22, 32].  These cavities form in multi-grain junctions.  
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From this information, they inferred that diffusion mechanisms were not responsible for 

the accumulation of tensile creep strain, but that a rearrangement of the rigid grains in the 

microstructure facilitates the creep, requiring the grain network to dilate.  The increase of 

cavity volume fraction with creep strain indicated that the tensile creep depends heavily 

on that cavitation.  They assumed three possible rate-limiting steps in the tensile creep:  

nucleation of cavities, grain boundary sliding during the microstructural dilation, and 

flow of the grain boundary phase away from a nucleated cavity.  Noting that the 

cavitation of the grain boundary phase from tensile creep does not affect a volumetric 

expansion, but only contributes to the elongation, they assumed that the volume change 

was equal to the creep strain.  Due to the low creep exponent for Si3N4 they demonstrated 

that cavity nucleation was not the rate-limiting step.  They further eliminated grain 

boundary sliding as the possible rate-limiting step, as the predicted flow rate was much 

faster than that observed in Si3N4; thus the non-linear viscosity of the grain boundary 

phase did not explain the exponential relation of the tensile creep rate due to the applied 

stress. 

 

Thus, Luecke and Wiederhorn assumed that the redistribution of the grain boundary 

phase was the limiting step.  From this they derived a model based on the assumption that 

the axial strain during creep is equal to the volume fraction of cavities that have been 

nucleated in the grain boundary phase.  They further assumed an Arrhenius relation with 

temperature for the grain boundary viscosity [22, 24, 32].  Their resultant creep equation 

is shown in Equation (7), 
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in which f is the volume fraction of second phase, α is a constant incorporating the 

critical stress to nucleate a cavity, and the other terms are as before.  This formula 

includes terms for the dependence of the steady-state creep rate on the applied stress, and 

the effective viscosity and volume fraction of the grain boundary phase.  The temperature 

dependence of the creep rate is preserved by the Arrhenius form of the viscosity.  They 

demonstrated that this equation matched the curvature of creep data plotted on a semi-log 

basis for various ISR silicon nitrides. 

 

The creep mechanism of ISR Si3N4 remains undetermined in that experts cannot agree on 

the nature of the creep, despite numerous creep studies on different grades; however, it is 

certain that the creep depends heavily upon the grain boundary phase, its viscosity and 

the cavities that are nucleated within it.  Based upon the creep exponent, some possible 

mechanisms have been ruled out, while new models have been developed in efforts to 

provide predictive power for these materials.  What is lacking in the creep literature is an 

in situ microstructural study.  There have been investigations of the microstructure of ISR 

Si3N4 using SEM and TEM, but the images are only comparisons of pre- and post-crept 

samples.  While this shows the effects of creep on the microstructure, there is no 

knowledge of what occurred in situ during creep.  This absence of an in situ 

microstructural study is due simply to a lack of suitable equipment.  Given the high 

temperature required for creep of ISR Si3N4, actual imaging of the microstructure is 

impossible.  At present, only a diffraction method can provide bulk microstructural 

information in situ while applying mechanical stress at high temperature.  This study was 

undertaken in an effort to perform a creep test as have other researchers, at like 
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temperatures and stresses, while collecting neutron diffraction data.  Since Luecke and 

Wiederhorn indicate that Si3N4 stays elastic while the grain boundary phase flows, 

diffraction data should be measurable, since diffraction is capable of obtaining only 

elastic strains.  It was intended that the creep mechanism might be deduced based on 

effects of creep noted in the diffraction patterns, including but not limited to, peak 

broadening, changes in preferred orientation (evident as changes in relative intensity of 

diffraction peaks), and/or peak position changes indicating internal strain. 
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II.  Experimental Methods 

2.1.  Neutron Diffraction 

Neutron diffraction was applied in the latter half of the twentieth century for the study of 

materials.  The following is a brief summary of the technique as applied for this thesis 

and is not intended as a full technical review.   

 

The demonstration that crystal structures diffract neutrons first occurred in 1936 [37].  

However, it was not until the development of nuclear reactors, and the incumbent 

production of sufficient neutrons to allow collimation into a beam as well as control of 

neutron wavelength, that the technique of neutron diffraction was “born.”  Nuclear 

reactors became sources of monochromatic (single wavelength) neutrons, and are still 

used thusly today; however, such reactor sources have several shortcomings, including 

long data collection times which limit data collection to a select few peaks for time-

sensitive experiments.  The desire for faster and more comprehensive data collection led 

to the development of the time-of-flight (TOF) method of neutron diffraction [37]. 

 

Monochromatic neutron diffraction obeys the same Bragg’s Law of diffraction as X-rays 

(save that neutrons diffract from atomic nuclei rather than orbiting electrons), see 

Equation (8), in which λ is the neutron wavelength, d is the spacing between planes 

parallel to the diffracting crystal (often referred to as d-spacing), and θ is the incident 

diffraction angle (equal to the diffracted angle), all of which are shown schematically in 

Figure 3 [37-39].   
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θλ sin2d=    (8) 

 

λ 

θθ 

d

Figure 3.  Idealized schematic of concept of neutron diffraction, with relevant parameters 

for Bragg’s Law indicated. 

 

Basically, a beam of neutrons strikes a sample and is diffracted from the crystal planes 

within the sample.  For each crystal plane of different orientation (or composition or 

structure for multi-phasic materials) within a polycrystalline sample, the neutron beam 

will require a different angle to diffract and be detected.  Thus, for a single wavelength 

neutron source, the incident angle (and thus diffraction angle) is altered by rotating the 

sample with respect to the incident beam, which itself cannot move and always admits 

the beam from the same direction.  Thus, for the case of monochromatic diffraction, the 

only unknown is d, while λ is fixed and known, and θ is known but varied and controlled. 
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TOF diffraction, however, due to the presence of multiple wavelengths of neutrons 

cannot make use of Equation (8) directly, since one needs first determine the wavelength 

of the neutron which is detected.  Modern spallation neutron sources create neutrons by 

sending pulses of protons at a heavy element target, which when hit by the proton beam, 

emits neutrons of random wavelength in random directions.  This neutron production 

method is called spallation.  A neutron spectrometer uses a beam guide to channel 

neutrons form the source to the sample, collimating the beam and eliminating very fast 

and very slow neutrons.  The time of flight is simply the time from creation of the 

neutron by the proton pulse hitting the target until the neutron is detected after diffracting 

from the sample [37, 40].  Once the TOF is known, Bragg’s Law, Equation (8), can be 

modified into Equation (9).  This modification makes use of the neutron wavelength 

dependence on the velocity of the neutron, i.e., λ=h/mv, where m is the neutron mass, h is 

Planck’s constant, and v is the neutron velocity.  Also needed is the simple relation 

between velocity and time, namely v = L/t, where L is the distance from the neutron 

source to the detector (termed the “flight path”), and t is the time that the neutron takes to 

traverse L.  Also, with the use of multiple wavelengths, sample motion is no longer 

necessary, thus θ is fixed in TOF neutron diffraction.  Since the times are known 

(determined from the time passed between neutron creation and detection), the unknown 

is again d.   

d
h

mLt θsin2
=    (9) 

 

Neutron diffraction, much like other diffraction methods, can be used for elastic lattice 

strain measurement [39, 41].  It is well known that the strain of a particular crystal is 
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evident from a change in the d-spacing measured with diffraction.  The same relation 

holds true for the TOF method.  The general methodology for strain determination is 

discussed in the Section II (Experimental Procedure).  

 

While TOF ND is often applied for engineering analyses, there are a number of specific 

test methods that have not lent themselves well to integration with diffraction.  X-ray 

diffraction requires small beam sizes to give high-resolution information, and even with 

high-energy X-rays (as from a synchrotron), typically only small sample sizes can be 

tested.  While such tests do provide essential information, engineering materials are 

rarely used in very small sizes.  Thus there is ambiguity as to whether the information 

provided from micro-diffraction measurements scales with, and allows predictive 

modeling of, large samples.  Neutron diffraction, however, being fundamentally different, 

allows for diffraction from larger size samples than X-rays, at least as regards diffraction 

from the volume and not the surface.  Nonetheless, some mechanical tests are still in their 

infancy as regards mating with diffraction, e.g., high-temperature creep studies, in which 

the literature contains no studies over 1000°C. 

 

Tests involving application of mechanical stress are numerous, and have been used to 

study a myriad of materials, using both X-rays and neutrons.  There have also been a 

number of high-temperature experiments, again with both X-rays and neutrons, for 

measuring such things as thermal expansion and phase changes.  However, there is a 

dearth of literature combining the two, as for creep studies.  Winand et al. [42], and 

Madgwick et al. [43], performed tests on particulate-reinforced aluminum-matrix 
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composites at low temperatures (270-320°C) using TOF ND.  Winand et al. [42], used 

diffraction pattern collection times of 25-30 minutes, noting the typical lack of increased 

elastic diffraction strain during primary and steady-state creep.  Madgwick et al. [43], 

determined the creep rates for comparison to models, concluding that the effective creep 

exponent of the composite was less than that of the matrix material under steady-state 

conditions, contrary to prior findings.  Madgwick et al. [44], studied creep of an 

A359/SiC composite at 300°C using single wavelength neutron diffraction, noting only 

elastic strains.  They related the degradation of room temperature properties of crept 

specimens to damage induced by creep.   Daymond et al. [45], examined a Mo-reinforced 

Cu matrix alloy using TOF ND up to 350°C.  They compared their data to finite element 

models, and found some agreement between predictions and observations.  Choo et al. 

performed heating experiments with TOF ND to measure the CTE and internal strain 

evolution up to 1170 K of a Ti-SiC composite, with no stress application  [46, 47].   

While they presented data on internal strain evolution from two phases, the CTE data 

presented was for GSAS-refined lattice parameters only, with no tensorial quantities 

detailed.  Rangaswamy et al., measured the residual strain with TOF ND and compared 

the results to finite element model predictions and residual strains measured by X-ray 

diffraction [48].  Latella et al., studied the liquid phase sintering of alumina ceramic 

compacts up to 1400°C, but these were using reactor source, single wavelength neutrons, 

with count times as long as 2 hours for a single pattern [49].   Note that there have been 

no TOF ND experiments studying creep at temperatures greater than 1000°C.  This type 

of experiment requires two things:  first, a sample that can survive high temperatures and 

is intended for use under such conditions, and second, a facility to perform the 
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experiment.  Until recently, there has been no such apparatus for performing creep at high 

temperature.   

2.2.  SMARTS 

The new SMARTS neutron spectrometer at the Los Alamos Neutron Science Center, 

however, is such an instrument, and was developed specifically to carry out such tests 

through an integrally-designed load frame-furnace setup [50, 51].  As silicon nitride is a 

high-temperature material, and has been the subject of numerous creep studies of which 

none used neutron diffraction in situ, the SMARTS spectrometer was chosen to perform 

this line of research.  

 

The SMARTS diffractometer has available a high-capacity (250 kN) load frame (Instron) 

that can mate with a high-temperature (1600°C) furnace (MRF), shown assembled in the 

photograph from the SMARTS cave Figure 4.  Hot rods are of a refractory metal (W-

10wt% Th).  The furnace elements (TaW) are susceptible to oxidation, and thus failure, 

so samples are heated only in vacuum.  Figure 5 shows the inside of the furnace, with the 

hot rods, furnace elements, and a mounted sample with attached sample thermocouples, 

while Figure 6 shows the sample as viewed through the sight glass at temperature, in 

which the controller thermocouple is visible.  The vacuum level is always kept below 

5x10-2 torr.  While this ensures the furnace functions safely, there are effects of testing a 

sample in a vacuum.  The furnace center coincides with the center of diffraction for the 

diffractometer.  An aluminum (Al) window allows the incident neutron beam to reach the 

sample with minimal loss.  Similarly, Al windows allow diffracted neutrons to exit the 

furnace [50]. 
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Figure 4.  Photograph from inside the SMARTS cave with labeled points of interest.  The 

load frame and furnace are assembled together.  The longitudinal detector bank is visible 

in the background.  For diffraction pattern collection, the collimator is moved nearly into 

contact with the entrance Al window (not shown) of the furnace. 

 

SMARTS is a time-of-flight (TOF) neutron diffractometer.  A standard material (CaF2), 

for which the diffraction pattern is well-characterized, is used to calibrate the 

diffractometer and determine the proper “time-focusing” necessary to reconstruct the 

diffraction pattern from the detected neutrons.  An instrument parameter file is generated 

on the basis of the CaF2 pattern, and this pattern is used for preparation (“binning”) of all 

diffraction data.  Since the detector banks cover a range of angles, but data are given as 

though detected at only ± 90º 2θ, a calculation is performed within the binning program 
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to account for this effect.  The exact time-focusing is determined with the use of the 

standard material.   

 

 

W-10 Th grip 
and pins 

Al exit window

W-Ta 
elements 

Heat 
shielding 

Sample thermocouples

GS-44 

Figure 5.  Photograph of the inside of the SMARTS furnace, with a GS-44 sample 

mounted in the W-10Th grips. 

 

Diffracted neutrons are detected by one of two detector banks.  Each bank consists of 144 

3He tubes, in three rows of 48, in which each tube is aligned vertically.  These banks are 

parallel to the incident beam on opposite sides of the sample.  The furnace and frame are 

aligned at 45° to the incident beam, thus the detector banks are at Bragg angles of ±90° 

2θ (actually, the detector tubes cover approximately ±75-105°, with time-focusing to 90°) 

[50].  These angles allow for collection of neutrons that diffract from grains whose 

crystal planes are aligned along the sample axis (-90°) and perpendicular to the sample 

axis (+90°); these two directions give longitudinal and transverse diffraction data, 
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respectively (see Figure 7).   The TOF method with this detector arrangement allows the 

diffraction patterns for both directions to be collected simultaneously and in relatively 

short times.   

 

GS-44 

Control thermocouple

Heat shielding

Figure 6.  Photograph of a GS-44 sample at temperature, viewed throu

on the SMARTS furnace.  The control thermocouple is shown in relat

which was shown in the furnace in Figure 5.  The two unlabeled arrow

beads of the sample thermocouples in contact with the sample.   

 

Diffraction data for Si3N4 was collected on the SMARTS diffractomet

Alamos Neutron Science Center (Los Alamos National Laboratory, L

For this study, typical data collection times for a quality diffraction pa

GSAS pattern fitting residuals were reduced, typically under 10%) we

(though actual data collection sometimes took longer for room temper

for which there was less concern about inelastic effects since Si3N4 is 
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temperature).  The SMARTS data collection system allows for automated data collection 

in either a specified time or a specified neutron count.  For high-temperature work, 

especially creep experiments, time resolution is of greater import, so a time-specific data 

collection routine was employed whereby single patterns were collected for the time 

mentioned above, with different collection times for different samples.  Room 

temperature experiments were completed on the basis of total neutron counts, rather than 

time; 170,000 monitor counts was determined as sufficient to result in diffraction patterns 

which were fit by GSAS with under 5% fitting residuals in some cases. 

 

 

Figure 7.  Time-of-flight neutron diffraction schematic.  Q⊥ and Q// are the diffraction 

vectors, indicating the orientation of crystal planes from which the diffracted neutrons 

originate, either those perpendicular to (transverse strains) or those parallel to 

(longitudinal strains) the loading direction, which is indicated as σ. 

Bank 1 
Transverse 
strains (Q⊥) 

Bank 2 
Longitudinal 
strains (Q//) 

Q⊥ 
Q// 

Diffracted 
neutrons 

Diffracted 
neutrons 

Incident 
neutrons

-90° +90° 
σ 

σ
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2.2.1.  Mechanical Test Methodology 

The SMARTS load frame is of horizontal orientation, as shown in Figure 5.  This 

geometry requires that a tensile stress be applied to the pin-loaded dog-bone sample 

(shown in Figure 8) to keep it in the correct position for diffraction.  Without an applied 

stress, the sample sags away from the ideal position for diffraction.  By applying the 

tensile stress, the sag due to gravity is compensated for.  In addition, if the sample is 

allowed to sag, it will lose contact with the high-temperature extensometer.  The SiC-

bladed extensometer is placed in contact with the top surface of the sample gage section.  

The extensometer has a spring to reduce any vertical position fluctuation, but this is only 

effective in a short range.  Should the sample sag, due either to gravity inadequately 

compensated for or to sample fracture, the macroscopic strain data from the extensometer 

would be lost, eliminating the ability to compare the diffraction strains to any other 

measurement. 

WG

L

LG

W

 

Figure 8.  Schematic of tensile specimen.  Approximate dimensions were: L = 89 mm, LG 

= 51 mm, W = 19 mm, WG = 6.3 mm.  The sample thickness was 5.0 mm unless 

otherwise noted for individual samples. 

 

2.2.2.  High Temperature and Applied Stress 

For room temperature experiments, since time was deemed less important as the 
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deformation was expected to be fully elastic, a larger number of stress levels were 

applied in order to obtain an accurate measure of the mechanical response.  The 

increment in stress was typically 10 MPa, though initial load increases fluctuated 

depending upon the starting stress, while the decrement in stress level from the maximum 

was typically 25 MPa.  Samples were loaded to a maximum stress of 150 MPa.  If 

different stresses were applied to a sample, it will be noted in the discussion for that 

sample.   

 

High-temperature experiments collected diffraction patterns at fewer stress levels.  This is 

because of the importance of reaching the maximum stress for that experiment in as short 

a time as possible.  Since at the test temperature, creep was expected to occur for 

increased stress, minimizing that stress was necessary for the load-up procedure.  

Typically, diffraction patterns were collected for every 25 MPa of stress, up to the 

maximum for that experiment.  Upon reaching the desired stress, the load was held 

constant while diffraction patterns were collected in succession.  At the end of creep 

experiments, the stress was reduced quickly to the initial stress level (that needed at room 

temperature to hold the sample in the diffraction position) for creep recovery, during 

which diffraction patterns again were collected in succession.  Eventually, the furnace 

was cooled back to room temperature, and one or more (nearly) room temperature 

diffraction patterns were collected before the sample was removed.   

2.3.  Heating Experiments  

For early experiments with each type of Si3N4 studied, the heating portion of the 

experiment was not carried out in a single step.  Rather, the furnace temperature was set 
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to intermediate values and the system was allowed to equilibrate.  Such temperature 

equilibration was determined by observing a lack of strain increase in the extensometer 

data, corresponding to a cessation of thermal expansion.  Thermal expansion is that 

change in dimension (length change is often measured) which occurs in a material due to 

a change in temperature.  The coefficient of thermal expansion (CTE), α, is the relation 

between the temperature change and the resulting dimensional change.  When the thermal 

expansion is plotted versus temperature, for many materials the slope of the data is linear, 

the value of which is α with units of inverse temperature (K-1).  When measuring a single 

dimension, the determined CTE is called the linear CTE (as opposed to the volumetric 

CTE from measuring the volume change due to a temperature change), and generally 

conforms to the relation shown in Equation (10), in which l0 is the initial length, ∆l the 

change in length, and ∆T the temperature change.   

T∆= α
l

l∆

0

  (10) 

For Si3N4, the measured thermal expansion was for the length of the material, so the 

CTEs reported are linear CTEs.  After thermal expansion had completed, a diffraction 

pattern was obtained from the sample.  Typical temperature increments were 200 K.  The 

patterns from these scans were used to determine the CTE from full diffraction pattern 

fits (see Section 2.4).  Single peak fits to reflections in these patterns were used to 

calculate the CTE tensor, a mode shown by Jessen and Küppers  to be of greater validity 

[52].  Jessen and Küppers showed that of the two methods, one determining the lattice 

parameters from thermal expansion from diffraction data, then using the result to 

determine the CTE tensor required extraneous computations, and a series of propagated 
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errors reduced the precision of the obtained CTE tensor.  Essentially, by fitting the entire 

pattern the hkl-anisotropy of the structure can be lost in the resulting lattice parameters 

due to the averaging of the full-pattern fit.  For non-cubic materials, the CTE anisotropy 

is not reflected properly in the full-pattern-derived lattice parameters.  Jessen and 

Küppers found that by obtaining information from at least six different hkls for the 

temperature range of interest, and using the d-spacing of those reflections directly to 

refine the CTE tensor via a least-squares method, preserved the hkl-behavior and resulted 

in greater precision of the CTE tensor.  Only by refining the behavior for individual 

reflections are errors minimized.  They demonstrated this reduction of accuracy for two 

different triclinic materials, finding that the direct CTE tensor determination method was 

of great precision by at least a factor of 2 compared to the CTE tensor results based on 

lattice parameters.  The errors are introduced when the experimental error of the d-

spacing (due to factors that affect diffraction pattern accuracy, for example, absorption or 

displacement error) is incorporated into the determination of the lattice parameters.  This 

error is propagated when using these refined lattice parameters in turn to refine the CTE 

tensor.  If there were no such propagation of errors, then the two methods would yield 

tensor components of the same precision, but they do not.  The method and computer 

program (ALPHA) of Jessen and Küppers  were used for CTE tensor computation from 

the d-spacing of individual hkl reflections [52].  

2.4  Mechanical Loading (Elasticity and Creep) 

For high-temperature experiments, upon reaching the test temperature, the stress on the 

sample was increased incrementally to the desired test stress.  At each stress level, a 

diffraction pattern was obtained.  Based upon the very small extensometer strain increase 
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over time for each of these load levels, the sample was considered still to be in the elastic 

strain regime, and calculation of the elastic properties (modulus and stiffness tensor 

depending upon sample) proceeded; this procedure was successful for AS800 but 

unsuccessful for GS-44–a likely indicator that despite relatively small changes in strain 

over time for GS-44, the sample was not completely elastic.  The stress level was then 

maintained while diffraction patterns were collected over time.  Some early experiments 

with GS-44 were stress-jump tests, a method shown to allow for calculation of the creep 

exponent.  This technique subjects a single sample to multiple stresses at a single 

temperature.  Creep is allowed to occur at that stress, and the slop of the steady-state 

creep for each stress is determined.  These data are plotted as creep rate versus stress on a 

log-log plot, and a linear fit is applied.  The slope of the linear fit (if indeed the data are 

linear) is the creep exponent.   

2.5  Data Analysis 

Diffraction patterns were analyzed using the GSAS program [53].  This program uses a 

least square refinement (the Rietveld method) to fit the diffraction data [54].  Phase 

information, including space group (P63/m), atomic types and positions, and lattice 

parameters (a = 7.608 Å, c = 2.911 Å) were input [55].  These were refined along with 

the background function (six term), scale factor, peak profile coefficients, absorption 

factor, and atomic thermal parameter (Debye-Waller factor).  Each refinement was 

repeated until convergence was achieved, indicating that further variation of these 

parameters could no longer improve the fit.  The fitted values were then used to 

determine the lattice strains from the lattice parameters, according to Equation (11).  

Strains were determined separately for the two lattice parameters of Si3N4. 
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0

0

a
aa −

=aε    (11a) 

0

0

c
cc −

=cε    (11b) 

The values for a0 and c0 varied depending upon the calculation being made.  They were 

the lattice parameters for the initial room temperature pattern for CTE calculations, while 

for creep calculations they were the first pattern acquired at high temperature; one single 

value sufficed as the reference lattice parameter value (a0 or c0) for all the strains in that 

particular calculation; the particular data used as for these strain reference values is 

identified for each analysis set.  Strains were plotted versus temperature (for CTE 

purposes), stress (for elastic loading data), or time (for creep data).  Note that strains are 

typically plotted as microstrain (µε), which is simply, e.g., 106*εa.  Also, an overall strain 

εd, was calculated with the same formalism as in Equation (11), where d replaces a or c 

and d0 replaces a0 or c0, and d is found using Equation (12). 

3
2 ca +d =    (12) 

This quantity d is used here for convenience only, as something of a polycrystalline 

average d-spacing. 

 

Single peak fits, using the Voigt peak profile, were also carried out with the GSAS 

program, though only the Rawplot module was used.  Nine different reflections were fit 

for both bank 1 and bank 2.  Strains were determined as for full pattern fits as discussed 

above (see Equation (11)), though for single peak fits, the d-spacing of an individual peak 

was used rather than an averaged lattice parameter.  These strains were plotted in the 
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same manner as the full pattern GSAS fits described previously.  In addition, some of the 

single peak fit data were used to determine hkl-specific properties.  First, single peak fit 

data from diffraction patterns were used to determine the CTE tensor [52, 56].  

Subsequent calculation indicated the degree of anisotropy, A (also called the aspherism 

index) for the material based on the tensor components, determined by Equation (13), the 

equation for A for hexagonal crystals.  A purely isotropic CTE will give A=0 [57]. 

3311

3311

23
2

αα
αα

+
−

=A   (13) 

The components of the CTE tensor are the αij shown in Equation (13).  Note that the 11 

axis corresponds to the a-axis of β-Si3N4, while the 33 axis corresponds to the c-axis.  

Thus, when comparing the tensor results to those from full-pattern refinements, α11 is 

compared to a, and α33 to c.  Single peak fits of diffraction patterns from mechanical 

loading experiments were used to attempt refinement of the stiffness tensor for the 

sample.  Often, systematic errors prevented obtaining the tensor, but the high-temperature 

stiffness tensor for AS800 was determined in this manner. 

 

For mechanical loading experiments, both full-pattern fits and single peak fits were used 

to determine properties.  By plotting the diffraction strains versus applied stress, average 

mechanical properties were determined.  The slope of a linear fit to the longitudinal strain 

data yielded the Young's modulus, E.  The ratio of slopes to linear fits to both the 

longitudinal and transverse diffraction strains yielded the Poisson's ratio, ν.  In some 

cases, the diffraction data from multiple patterns at a given stress and temperature were 

averaged in order to improve the statistics.  This was only performed when there was 
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little variation between the patterns, thus indicating a lack of inelastic effects.  For high-

temperature applied stress, this lack of inelastic behavior is necessary for determination 

of elastic properties, since plastic deformation (i.e., creep) is more easily induced at 

elevated temperature.  Before a stiffness tensor could be determined, this lack of 

elasticity was ascertained first. 

   

There has been past success using elastic-plastic self-consistent (EPSC) polycrystal 

deformation models for predicting diffraction elastic constants (DECs, the elastic 

constants derived from the stress-strain behavior of lattice reflections measured by 

diffraction) for several materials [58-61], requiring only the input of single crystal 

stiffnesses for the given material.  However, for silicon nitride, there is an absence of 

high-temperature stiffness data.  Thus, a reversed calculation was performed using the 

measured DECs and a least squares fitting routine to obtain the best fit for the single 

crystal stiffnesses for AS800.  The starting point for the calculation was the isotropic 

stiffness tensor obtained from the measured macroscopic DECs (the Young’s modulus, E, 

and Poisson’s ratio, ν) determined using full-pattern GSAS fits to stress-strain data from 

1648 K diffraction data for AS800.  For this starting tensor, the tensor components were 

determined as shown in Equations (14)-(16).   

)21)(1( υυ12
υλ

−+
==

EC    (14) 

)1(2 υ+
==

EG44C     (15) 

υλ 2+=11C      (16) 
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In these equations, G is the shear modulus, λ is a Lamé constant, E is the Young’s 

modulus, and ν is the Poisson’s ratio.  For isotropic materials, the elastic stiffness tensor 

only has two independent components, since C11 = C22 = C33 and C12 = C13 = C23; note 

that (C11 - C12) = 2C44, and that C44 = C55 = C66.  The data were insufficient to allow this 

refinement, in that the tensor components were possessed of greater error bars, so, in the 

case of multiple patterns (when several patterns were collected for a particular applied 

stress), data were summed into a single pattern.   Then, strains from single peak fits for 

nine reflections were used to refine the stiffness tensor by attempting to match the hkl 

stress-strain behavior.  As mentioned, this method was successful for AS800 at 1648 K, 

and the resulting values were compared to literature values for room temperature elastic 

stiffness.    After the tensor was refined, the macroscopic Young’s modulus and Poisson’s 

ratio were determined from the tensor components by solving Equations (15) and (16) 

simultaneously.  However, the refinement was not possible for GS-44, likely due to some 

inelastic effects due to loading, despite the precaution of reducing the time at each 

applied stress. 

 

While there is a lack of literature data for elevated temperature stiffness tensors for 

materials, there has been some prior work to determine the room temperature stiffness of 

Si3N4.  Vogelgesang et al., determined the stiffness tensor of this material (Si3N4) using 

single crystal β-Si3N4 samples [62].  It was desired to compare the Young’s moduli 

determined from linear fits to single peak strains to an expected value based on literature.  

The easiest method was to determine the hkl-dependent elastic properties using s1 and s2, 

which relate to the Young’s modulus, E, and Poisson’s ratio, ν (see Equations (16) and 
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(17)).  Gnaupel-Herold et al., developed a program to calculate s1 and s2 for a given 

crystal system (hexagonal for β-Si3N4) for any hkl [63].  This program assumes that all 

grains are spherical and embedded in an isotropic matrix, with grain-grain interactions 

allowed, which is neither the Voigt approach (which assumes constant strain in all grains) 

nor the Reuss approach (which assumes constant stress in all grains), but an adaptation of 

the Kröner approach; this approach gives greater accuracy than the typically good 

agreement obtained from the average of the Voigt and Reuss methods, which can account 

for grain shape as well as grain interactions within the isotropic matrix [63].  The 

stiffness tensor of the material must be input, as well as the crystal system of the material 

and the lattice parameter(s).  The program then calculates s1 and s2, from which Ehkl and 

νhkl were determined by solving Equations (17) and (18) simultaneously, to compare with 

those values from diffraction data.   

hkl

hkl

E
hkls

υ
=)(1    (17) 

hkl
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1
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1   (18) 

 

For determining s1 and s2 with the Gnaupel-Herold program, the tensor of Vogelgesang et 

al. [62], was used for the stiffness tensor of Si3N4.  The lattice parameters were those that 

were refined for the Si3N4 (either GS-44 or AS800) under consideration.  Note that the 

Vogelgesang et al. [62], tensor was determined from a room temperature measurement of 

a single crystal and would not represent accurately the high-temperature polycrystal 

material being tested here.  Similarly, the calculated 1648 K AS800 stiffness tensor was 

used to acquire s1 and s2 for comparison.  Though the AS800 tensor was for that grade at 
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1648 K, and the Vogelgesang et al. [62], tensor for single crystals at room temperature, 

this effort was intended for order-of-magnitude level comparison with both AS800 and 

GS-44.  The lattice parameters used were the initial room temperature lattice parameters 

from GSAS.  This prediction of hkl-dependent properties was compared with the results 

from diffraction data.  Comparison was hindered when the single peak stress-strain data 

behaved non-linearly, as one might expect, even for the AS800 predictions compared 

with the AS800 data.   

 

2.6  Microscopy 

Scanning electron microscopy (SEM) was used to image the grain morphology of the 

Si3N4 samples tested in various experiments.  First, the samples were cut with a diamond 

saw in the middle of the gage section (where the diffraction data originated).  The surface 

was polished using established materialographic procedures [64].  The polished surfaces 

were then sectioned off, again with a diamond saw.  The polished surfaces were plasma 

etched to reveal the microstructure.  Plasma etching has been determined to be the 

optimum etching method for Si3N4 [64].  Specifically, the sample was etched using 

chemical assisted ion beam etching (CAIBE).  CAIBE was carried out with the settings in 

Table II, using a Kaufman-type ion source, Xe as the background gas, and Cl to etch.  The 

etched samples were carbon coated then imaged in a field emission SEM (LEO 1550VP, 

LEO Electron Microscopy, Inc., Thornwood, NY).  The samples had to be carbon coated, 

since Si3N4 is a semiconductor and charging of the samples prevented imaging otherwise.  

The accelerating voltage of the electron beam was 10 keV.  Images were obtained from 
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both the untested material and samples tested at high temperature on SMARTS for 

comparison.   

Table II.  CAIBE conditions 

Filament current 3.24 A 

Discharge current 0.21 A 

Discharge voltage 40.0 V 

Beam current 17 mA 

Beam voltage 750 eV 

Accelerator current 2 mA 

Accelerator voltage 120 V 

Neutralizer emission current 9 mA 

Neutralizer filament current 2.98 A 

 

2.7  Ultrasonic Elastic Modulus Measurement 

The elastic modulus of untested samples and samples tested on SMARTS were measured 

using an ultrasonic technique.  In this technique, a sonic wave was input to the sample 

surface with a transducer (V112 10 MHz normal transducer and V156 5 MHz shear 

transducer, both manufactured by Parametrics, Waltham, MA), and an oscilloscope 

recorded the reflection of that sound wave.  The samples tested were those from creep 

experiments, with the dimensions indicated in Figure 8, unless otherwise noted when the 

results are discussed.  Two reflections were observed, one from the normal transducer 

and the other from the shear transducer.  Each sample was tested at two locations, one 
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near the middle of the gage section, and the other region near the grip.  Only one result is 

reported, as the results were the same for the two regions.  These observations gave VL 

and VS, respectively, the velocity of the wave in that sample.  The wave velocities and the 

sample density ρ were used to determine the elastic modulus E and shear modulus G as 

follows. 

( )2 SVρ=G      (19) 
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The Poisson’s ratio υ is related to E and G according to Equation (21), a simple 

rearrangement of Equation (15). 
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The density ρ used in these calculations was the manufacturer quoted density (see Table 

I).  Results of these calculations were compared to literature values and to experimental 

data (both diffraction and extensometer when possible).   Note that Equation (21) is a 

relation for isotropic materials.  While Si3N4 is not isotropic, from a macroscopic point of 

view it is assumed to be isotropic, and this method is effective in providing a boundary 

value for these elastic constants. 
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III.  Results and Discussion 

3.1  AS800 

Several AS800 samples were tested.  The experiments performed on AS800 are 

summarized in Table III.  Significant data were collected from AS800, it being the first 

ISR Si3N4 to be tested.  New data include both the CTE tensor for 298-1648 K, and the 

1648 K elastic stiffness tensor.  Subsequent room temperature experiments were aimed at 

obtaining similar data to the 1648 K experiment with which to determine the effect of 

temperature on mechanical properties.  Diffraction patterns (see Figure 9 for an AS800 

pattern) contain only peaks from β-Si3N4, indicating either that the grain boundary phase 

remained vitreous, or that crystallization was an insufficient fraction to appear in the 

patterns.  The exact amount of secondary phase is unknown, but ranges from 6-12 wt%.  

Typically, a crystalline phase will not appear if it is less than 2wt% of the material, 

depending on its neutron scattering power, which does not increase with an element’s 

atomic number as does X-ray scattering. 

Table III.  AS800 experiments 

CTE High-
Temperature 
Loading 
 

Room 
Temperature 
Loading 

Date 

Yes Yes No December 2001 

No No Yes October 2002 

No No Yes September 2003 
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3.1.1.  CTE data 

The CTE of AS800 was determined from diffraction data.  The sample was held under a 

30 MPa stress to ensure it was in the center of diffraction of the SMARTS furnace.   

D-spacing, A        

N
o
r
m
.
 
c
o
u
n
t
/
m
u
s
e
c
.
 
 

 1.0     2.0     3.0    

 

-
2
.
0
 
 
 
 

 
0
.
0
 
 
 
 

 
2
.
0
 
 
 
 

 
4
.
0
 
 
 
 

111 
230 

020 
002 

031 221 
130 120 

011 

Figure 9.  Diffraction pattern for AS800 at 298 K, 25 MPa.  Labeled peaks are those fit 

singly. 

 

Diffraction patterns were obtained at room temperature (298 K), and at isotherms of 473, 

773, 1073, 1373 and 1648 K.  The furnace was heated at 20 K/min after each pattern was 

acquired, until the test temperature of 1648 K was reached.  After reaching each 

isotherm, diffraction patterns were not acquired until the extensometer reached a constant 

value.  Strains were calculated using Equations (11) and (12); the room temperature 

diffraction data was the strain reference for thermal expansion.  Multiple patterns were 
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collected at each isotherm.  Plotted strains are the average of the strains from each 

isotherm. 

 

The measured thermal expansion is plotted in Figure 10 for longitudinal diffraction data 

(bank 2).  Though not shown, the transverse (bank 1) thermal expansion diffraction data 

were similar, while the longitudinal data are plotted as they are an appropriate 

comparison to the similarly oriented extensometer.  Included in Figure 10 are the 

diffraction data for both the a and c lattice parameters, the polycrystalline average d, the 

extensometer thermal expansion measurement, and the calculations from the program 

ALPHA [52].  The plotted results for ALPHA are similar to the polycrystalline average, 

in which the two independent CTE tensor components are used to determine the average 

CTE value according to Equation (22). 
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CTE results for all the plotted quantities are summarized in Table IV.  The ALPHA 

calculation was based on the strains from single peak fits of the following hkls:  (02·0), 

(01·1), (12·0), (11·1), (13·0), (03·1), (22·1), (23·0), and (00·2).  Data used were from the 

initial and final temperatures to give a single value for the entire thermal expansion (as 

opposed to using each isotherm to give a piecewise CTE for the full temperature 

interval).  The CTE tensor resulting from these single peak data is given in Equation (23).  

These tensor components are the αij used in Equation (22) to obtain αavg (see Table IV). 
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Figure 10.  Thermal expansion of AS800 based on SMARTS measurements.  Error bars 

are for GSAS fitting residuals to the lattice parameters. 
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Table IV.  CTE values for lattice parameters (a, c and d), ALPHA (αavg), all from 

longitudinal diffraction strains, and the extensometer, as shown in Figure 10. 

Parameter CTE (*10-6 K-1) 

a 3.54 

c 4.12 

d 3.64 

αavg 3.69 

Extensometer 3.44 

 

Table V.  CTE of individual reflections shown in Figure 11 for both longitudinal and 

transverse diffraction data.  CTE values are based on linear fits to single peak thermal 

expansion strains, with r2 for linear fits given in parentheses.  All values are *10-6 K-1.   

hkl CTE (longitudinal) CTE (transverse) 

(02·0) 3.24 (0.99) 3.20 (0.99) 

(01·1) 3.75 (0.99) 3.65 (0.98) 

(12·0) 3.38 (0.99) 3.19 (0.98) 

(11·1) 3.58 (0.99) 3.51 (0.99) 

(13·0) 3.29 (0.99) 3.22 (0.98) 

(03·1) 3.46 (0.98) 3.44 (0.99) 

(22·1) 3.42 (0.99) 3.39 (0.98) 

(23·0) 3.31 (0.99) 3.20 (0.98) 

(00·2) 3.82 (0.99) 3.73 (0.98) 
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The errors in the CTE tensor are fitting errors from the least-squared refinement of the 

ALPHA program.  Single peak CTE behavior is shown in Figure 11 for all nine 

reflections, while individual hkl thermal expansions for both detector banks are given in 

Table V.  (Note that error bars are not shown in Figure 11, as the data point overlap 

eliminates the clarity of error bars.  However, strain errors range from 40-300 µε, varying 

for hkl and detector bank.)  As shown in Figure 10 and Figure 11 and Tables IV and V, 

the c-axis of AS800 experiences a greater thermal expansion than the a-axis.  Note, as 

shown in Table V, that the greatest CTE is for the purely c-axis (00·2) reflection.  The 

(01·1) reflection has the next highest CTE, and it also has the highest c-character of the 

remaining eight reflections, while those reflections with zero c-character, namely, (02·0), 

(12·0), (13·0) and (23·0), have the lowest CTE.  Mixed hkl reflections, e.g., (11·1), have 

intermediate CTEs.  The aspherism index, computed from Equation (13) using the tensor 

components of Equation (22), is A = 0.034.  Given that the CTE is anisotropic, and that 

this material is manufactured at high temperature, it is clear that upon cooling the 

material will shrink in a non-isotropic manner, causing some residual strain which may 

be alleviated, in part, by the grain boundary phase. 

 

3.1.2.  High-Temperature Stress Application 

After heating AS800 to 1648 K and collecting thermal expansion data, the stress on the 

sample was increased incrementally.  Applied stresses, in addition to the initial 30 MPa, 

were 50-175 MPa, in 25 MPa steps.  At each stress, 2-4 diffraction patterns were 

collected.  The applied stress was decreased, collecting patterns at 125 and 75 MPa, 

finally returning to the initial 30 MPa.  During stress increase, the extensometer ceased 
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functioning, thus there is no macroscopic data to compare with the diffraction strains 

hereafter presented.   

 
Figure 12 shows the diffraction strains εd as a function of applied stress at 1648 K.  Note 

the linear behavior for both longitudinal and transverse strains.  The strain reference for 

these data was the 30 MPa (initial stress) data at 1648 K; essentially thermal expansion 

strain has been subtracted.  The error bars shown are computed as per Equation (12) but 

using a and c strain errors instead of strains.  A linear fit to the longitudinal data gave the 

Young’s modulus as Ed = 339 GPa.  The Poisson’s ratio was determined from the 

negative ratio of the longitudinal data slope to the transverse data slope (giving the 

negative ratio of the transverse and longitudinal strains) as νd = 0.32.  Note that the 

literature values (Table I) for these parameters are 310 GPa at 298 K (297 GPa at 1273 

K) and 0.28 (up to 1473 K), respectively.   

 

It is uncertain why the measured mechanical properties showed an increase with 

increased temperature, though it might be due to diffraction strain error.  More likely, 

however, is the lack of information from the grain boundary phase.  Only Si3N4 was 

sampled in these experiments, thus only Si3N4 strains were measured.  The degradation of 

properties noted in literature [14, 15], as with the effect on creep resistance, must be 

attributed to the grain boundary phase.  This loading occurred in vacuum rather than air, 

unlike typical mechanical tests.  It is known that the grain boundary phase of ISR Si3N4 

experiences a viscosity decrease at high temperature aided by oxygen, a decrease 

inhibited here by lack of oxygen.  Clearly, the mechanical properties of AS800 should 

degrade with temperature.  Unfortunately, there is no extensometer data for comparison. 
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Figure 11.  Single peak thermal expansion diffraction data for AS800.  Note that 

reflections with a c-axis component experience greater thermal expansion, also indicated 

in Figure 10.
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Figure 12.  Applied stress versus diffraction strain εd for AS800 at 1648 K.  Young’s 

modulus, Ed, and Poisson’s ratio, νd, are indicated with the linear fits used to determine 

them.  Error bars are from fitting residuals of the GSAS-determined lattice parameters. 



 53

As with CTE calculations, mechanical anisotropy was assumed intrinsic to the AS800 

system.  Figure 13 and Figure 14 show the GSAS results for a and c lattice strains, 

respectively.  Note the large difference between the two elastic moduli, with Ea = 359 

GPa and Ec = 257 GPa.  The Poisson’s ratios of the two lattice parameters are similar, 

though, at 0.31 and 0.33 for νa and νc, respectively.   

 

When examining individual reflections, there is little non-linearity of diffraction strains, 

within the fitting error, as with the full pattern fit-derived a and c lattice parameters.  

Since the single peak method is known to be more accurate than the averaging effect of 

the GSAS full-pattern fits for CTE calculations, the same should hold true for elastic 

strain calculation (for the same reason of propagation of errors in using lattice parameters 

for calculating strain versus determining strain from individual reflections first).   

 

Strains are shown in Figure 15 for selected reflections, for longitudinal and transverse 

strains, while Figures A1-A9 in the Appendix show stress-strain data for both directions 

for all nine reflections fit as single peaks.   gives the properties determined from 

Figures A1-A9 based on linear fits.  Numbers in parentheses for E are the r

Table VI

2 values from 

linear fits to the longitudinal data, while the numbers in parentheses for ν are the r2 

values for the linear fits to the transverse data.  A value of r2 = 1 would be a perfect fit, 

with greater difference indicating greater non-linearity.  Note the poor linear fit for the 

transverse strain of (03·1) and the resulting unrealistic value (ν > 1) for the Poisson’s 

ratio.   
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Figure 13.  Applied stress versus diffraction strain εa for AS800 at 1648 K.  Young’s 

modulus, Ea, and Poisson’s ratio, νa, are indicated with the linear fits used to determine 

them.  Error bars are from fitting residuals of the GSAS-determined lattice parameter. 
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Figure 14.  Applied stress versus diffraction strain εc for AS800 at 1648 K.  Young’s 

modulus, Ec, and Poisson’s ratio, νc, are indicated with the linear fits used to determine 

them.  Error bars are from fitting residuals of the GSAS-determined lattice parameter. 
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Table VI.  Elastic constants for specific hkl reflections for AS800 from diffraction data, E 

given in units of GPa.  E is presented for linear fits to diffraction data (first two columns), 

and is compared to predicted values using the AS800 tensor of Equation (24) and the 

tensor from [62]. 

hkl E (long. 

fit r2) 

E [62]  

(% diff) 

E, Eqn (24) 

(% diff) 

ν (trans. 

fit r2) 

ν [62]  

(% diff) 

ν, Eqn (24) 

(% diff) 

(02·0) 252  

(0.98) 

312  

(19) 

336  

(25) 

0.302  

(0.86) 

0.275  

(10) 

0.327  

(7.7) 

(01·1) 200  

(0.93) 

261  

(23) 

368  

(47) 

0.278  

(0.91) 

0.279  

(0.3) 

0.323  

(14) 

(12·0) 292  

(0.89) 

312  

(6.3) 

336  

(13) 

0.460  

(0.89) 

0.275  

(67) 

0.327  

(41) 

(11·1) 304  

(0.99) 

305  

(0.4) 

330  

(7.8) 

0.339  

(0.98) 

0.296  

(14) 

0.302  

(12) 

(13·0) 297  

(0.92) 

312  

(4.7) 

336  

(12) 

0.475  

(0.89) 

0.275 

(73) 

0.327  

(45) 

(03·1) 312  

(0.83) 

339  

(8.0) 

313  

(0.2) 

1.080  

(0.04) 

0.300  

(260) 

0.294  

(268) 

(22·1) 317  

(0.97) 

341  

(6.9) 

313  

(1.4) 

0.288  

(0.99) 

0.298  

(3.4) 

0.296  

(2.7) 

(23·0) 333  

(0.99) 

312  

(6.9) 

336  

(0.8) 

0.332  

(0.94) 

0.275  

(21) 

0.327  

(1.5) 

(00·2) 226  

(0.98) 

225  

(0.6) 

426  

(47) 

0.373  

(0.98) 

0.250  

(49) 

0.342  

(9.0) 

 

Also shown in Table VI are the predicted results for the Young’s modulus and Poisson’s 

ratio based on the stiffness tensor of Vogelgesang et al., and for the AS800 stiffness 

tensor of Equation (24), using the program of Gnaupel-Herold et al., to get s1 and s2, and 
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solving Equations (17) and (18) for Ehkl and νhkl.  It is not unexpected that the AS800 

tensor predictions closely match the data from which they were obtained, but it is 

important to note that the predicted values from the literature room temperature tensor 

data of Vogelgesang et al. [62], are also in good agreement with these high-temperature 

measurements.  Single peaks with less linear behavior do not match the predicted values, 

while the better the linear fit, the better the agreement with the prediction.   

 

There is no clear trend to note regarding the hkl-effect on elastic modulus.  The least stiff 

hkl is the (01·1), which has mixed a- and c-character.  The second-least stiff hkl is the 

(00·2) reflection, while the (02·0) is third-least, with regards to longitudinal strains, 

despite (00·2) being purely c-axis and (02·0) purely a-axis, with both having comparable 

quality linear fits.  However, the (00·2) Poisson ratio is greater than for (02·0).  The 

(23·0) reflection has the highest Young’s modulus and a high Poisson’s ratio, while the 

(11·1) is comparable. However, the lack of literature values prevents any meaningful 

comparison of these data. 

 

The single peak strains were used as described in the experimental procedure for refining 

the stiffness tensor.  The starting point for the refinement was the full-pattern fit results 

for Ed and νd.  For simplicity, the initial starting tensor was generated from these values 

as though for an isotropic material.  In this case, with Ed = 339 GPa and νd = 0.32, the 

starting tensor values were C11 = C22 = C33 = 485 GPa, C12 = C13 = C23 = 228 GPa, and 

C44 = C55 = C66 = 128 GPa using Equations (14) - (16).  This starting tensor was used in 

the EPSC method solving the inverse problem.  The EPSC method uses an Eshelby-type  
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Figure 15.  Stress versus strain for three AS800 reflections.  Open symbols are transverse 

strains, while filled symbols are longitudinal strains.  Error bars are omitted for clarity.  

(See Figures A1-A9 for individual plots with error bars.) 
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model to determine plastic deformation properties of materials.  A homogeneous matrix 

is assumed in which the grains of the material are embedded.  Based on the behavior that 

a grain of a particular hkl orientation would experience, derived from the single crystal 

stiffness tensor for that material, the model determines what strains might be observed in 

diffraction based on an input stress.  This method requires the single crystal stiffness 

tensor to predict hkl-behavior, but that tensor was unknown.  Instead, the measured hkl 

strains were input and the stiffness tensor refined.  The resolved stiffness tensor for 

AS800 at 1648 K is given in Equation (24).  This is the first time such a stiffness tensor 

has been determined for Si3N4 at this temperature (or for any material at this temperature 

using TOF ND).  Thus, there are no like comparisons for determining its veracity.  This 

stiffness tensor information is important for those who produce predictive behavior 

models for material systems.   

GPa














=ijC

4014900000
0111440000
0011144000
000403112123821238
000212383145640158
000212384015831456


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
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±
±

±
±±±
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±±±

  (24) 

 

However, there are some literature stiffness values, though for different test conditions 

and different grades of Si3N4.  Table VII compares these results to these literature data.  

As might be expected, the present tensor differs from the literature.  Besides the 

temperature difference of the test methods, Vogelgesang et al.,[62] tested single crystal 

Si3N4 samples.  As the present work made use of polycrystalline material produced under 

different conditions, discrepancy is unsurprising.  Note, though, that the C33 component is 
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noticeably less (i.e., softer) than the literature, while other values are more similar.  This 

coincides with the previously mentioned softening along that crystallographic direction 

for AS800.   

 

Table VII.  Stiffness tensor comparison of AS800 at 1648 K (“Current work”) to room 

temperature results [62] on non-ISR Si3N4 single crystals.  All values are GPa. 

 C11 C33 C44 C66 C12 C13 

Current work 456 311 144 149 158 238 

[62] 433 574 108 119 195 127 

 

From the stiffness tensor components of Equation (24), the macroscopic Young’s 

modulus and Poisson’s ratio were determined according to Equations (15) and (16).  

These values were EAS800, 1648 K = 313 GPa and νAS800, 1648 K = 0.31, respectively.  Again, 

these 1648 K values are greater than those quoted by the manufacturer for this material at 

1473 K, 293 GPa and 0.28.  However, the results from the tensor components are closer 

to the cited values than those from the full-pattern GSAS d results shown in Figure 12.  

Again, this is attributed to the use of single peak data being more accurate than the use of 

full-pattern fit data.  Nevertheless, the discrepancy still exists, and is likely due to the 

issue mentioned above, namely, the effect of vacuum on the grain boundary phase. 

 

Data from scans taken after applied stress was removed (back to the holding stress of 30 

MPa) were used to check for any residual strain in the sample.  Table VIII shows the 

longitudinal strains measured at 30 MPa and 1648 K after unloading, relative to the initial 
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30 MPa data at 1648 K.  Table VIII also shows the averaged strains for the lattice 

parameters a and c, polycrystalline average d, and the nine single peaks.  Also shown are 

the residual strains after cooling down to room temperature, strains relative to the initial 

pre-heating room temperature scans.  Table IX gives the transverse strains for the same 

conditions. 

 

Table VIII.  Residual longitudinal strains for AS800 after reducing stress at 1648 K and 

after cooling to 300 K.  Values are given in microstrain (µε).  Presented values are the 

average of strains from multiple patterns after unloading and after cooling. 

hkl or lattice parameter Residual strain at 1648 K Residual strain at 300 K 

a -80 ± 20 -30 ± 20 

c 30 ± 30 110 ± 30 

d -70 ± 30 -10 ± 20 

(02·0) 20 ± 130 -10 ± 80 

(01·1) 30 ± 120 70 ± 70 

(12·0) -60 ± 160 70 ± 100 

(11·1) -50 ± 50 40 ± 30 

(13·0) -70 ± 180 0 ± 160 

(03·1) -160 ± 210 -100 ± 120 

(22·1) -10 ± 50 20 ± 30 

(23·0) -10 ± 110 70 ± 60 

(00·2) -40 ± 60 160 ± 40 
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Table IX.  Residual transverse strains for AS800 after reducing stress at 1648 K and after 

cooling to 300 K.  Values are given in microstrain (µε).  Presented values are the average 

of strains from multiple patterns after unloading and after cooling. 

hkl or lattice parameter Residual strain at 1648 K Residual strain at 300 K 

a -100 ± 10 -32 ± 10 

c -140 ± 20 -36 ± 20 

d -20 ± 20 -32 ± 10 

(02·0) -30 ± 70 10 ± 40 

(01·1) -20 ± 60 -50 ± 40 

(12·0) -60 ± 80 -90 ± 50 

(11·1) -40 ± 30 0 ± 20 

(13·0) -140 ± 100 -50 ± 100 

(03·1) 120 ± 100 50 ± 70 

(22·1) -10 ± 30 0 ± 20 

(23·0) -30 ± 60 -70 ± 40 

(00·2) -90 ± 40 -100 ± 40 

 

As seen from the values in Table VIII and Table IX, slight residual strains exist in both 

directions for all reflections and lattice parameters, but these strains are minor and nearly 

all are zero within the fitting error.  This lack of significant residual strains corroborated 

the elastic nature of the high-temperature experiment, and so the computation of the 

elastic stiffness tensor was not invalidated. 
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Figure 16.  Stress-strain plot for longitudinal diffraction data and extensometer for first 

room temperature loading experiment of AS800.  Both a and c are plotted from 

diffraction data for both banks, plus the extensometer data.  Error bars are omitted for 

clarity (see text for typical values). 
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3.1.3  Room-Temperature Stress Application 

As mentioned in Table III, there were two separate attempts to test AS800 at room 

temperature.  The stress-strain curve from the first experiment (October 2002) is shown 

in Figure 16.  Only the a and c lattice parameters and extensometer data are shown.  Error 

bars are not shown (in order to maintain clarity of the presented data), but maximum error 

bars for a were 20 µε and 15 µε for longitudinal and transverse data, respectively.  

Correspondingly, the c error bars were 30 µε and 20 µε.  The Poisson’s ratio for these 

data was 0.81, which is an unrealistic value.  The Young’s modulus from the 

extensometer data seems realistic at 270 GPa, but this result is noticeably different from 

the diffraction strain value of 446 GPa.  It was concluded that some manner of systematic 

error was present in this data, perhaps a displacement error, causing the measured strains 

to be unrealistic.  Single peak fits were similarly erroneous.  This systematic error 

prevented the calculation of the room temperature stiffness tensor. 

 

The second room-temperature experiment of AS800 was performed in September 2003.  

The stress-strain data are shown in Figure 17, though only longitudinal data are shown as 

the transverse data indicated tensile strains.  As this results in a negative Poisson’s ratio, 

and is unknown for Si3N4, the transverse data are believed to be erroneous.  In this case, 

there is believed to have been another systematic error; however, the instrument 

parameter file was out of date for the transverse detector bank (bank 1) and could have 

played a role in the inherent unrealistic results for the elastic constants.  Single peak fits 

indicated tensile strains in the transverse direction as did the full-pattern fit lattice 
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Figure 17.  Stress-strain plot for longitudinal diffraction data and extensometer for second 

room temperature loading experiment of AS800.  Transverse data are not plotted, as they 

indicated tensile strain.  There is acceptable agreement, however, of the longitudinal data 

and the extensometer. 
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parameters.  Thus, the room-temperature stiffness tensor was incalculable for AS800.  

Note, however, that in Figure 17 the longitudinal diffraction strains agree well with the 

extensometer.  The Young’s modulus from the extensometer was E = 255 GPa, while the 

polycrystalline average (not shown) was 249 GPa.  Both the extensometer and diffraction 

strain-derived Young’s moduli are significantly less than their corresponding values from 

both literature and at high-temperature.  The origin of this discrepancy is unknown, but 

the agreement between the longitudinal diffraction data and the extensometer point to the 

present results’ accuracy. 

3.1.4  Ultrasonic Elastic Constant Measurement 

Table X shows the results from the ultrasonic measurement method.  These results were 

obtained by ultrasonic testing of an as-received AS800 sample, that is, a sample that had 

not been exposed to any mechanical or thermal testing.  The sample was tested in both 

the grip and gage regions, with the results being the same.  The Young’s modulus, E, 

shear modulus, G, and Poisson’s ratio, ν, are given.  The corresponding values from the 

manufacturer are shown for comparison.  The similar results suggest that this method 

perhaps was that used by the manufacturer for determining these quantities.  The fact that 

the samples subjected to applied stress for diffraction data collection came from the same 

sample material as that tested with the ultrasonic method, yet all give very different 

results, indicates that there are additional experimental variable affecting the diffraction 

data collection.  The high degree of correlation using the ultrasonic method seems to 

indicate that the manufacturer’s quoted values are acceptable, but that some aspect of the 

SMARTS setup prevents obtaining comparable results.  These results are vastly different 

from the data collected on SMARTS for AS800 at room temperature.  This discrepancy 
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may be related to the pull-rods and grips used for the SMARTS room temperature testing.  

The rods and pins are made from stainless steel, while the grips are made from a Mo-

containing steel.  These are replaced with the better-characterized high-temperature W-

10Th grips and rods.  If the cold rods and grips were not machined precisely, then the 

applied load may not have been uniaxial, resulting in the lower value for E from 

SMARTS, which was consistent between the diffraction and extensometer.  

Alternatively, the applied load may have been recorded incorrectly.  The latter possibility 

is discounted, as the high-temperature data, with the W-10Th equipment, are more in line 

with literature values than are the room temperature data. 

 

Table X.  Ultrasonic measurement results for room-temperature elastic constants of 

AS800.  Data were collected at two regions of a non-tested AS800 sample (i.e., not 

exposed to heat or applied stress), the grip region and the gage region with the same 

results obtained.   

 E (GPa) G (GPa) ν 

Present results 317 ± 4 124 ± 2 0.28 ± 0.01 

Manufacturer 310 122 0.28 

 

3.2  GS-44 

Multiple GS-44 samples were tested at various conditions.  Table XI summarizes these 

experiments.  The less refractory grain boundary material precludes testing this grade of 

Si3N4 at the same temperature as AS800.  However, while the manufacturer indicates a 

maximum use temperature of 1273 K, samples were tested at 1473 K.  This test 
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temperature was chosen, first, because there is creep literature for this grade at 1473 K, 

and second, in effort to alleviate the creep inhibition due to the SMARTS vacuum 

furnace. 

Table XI.  GS-44 Experiments  

CTE High-

Temperature 

Loading 

Creep stress 

(MPa) 

Room 

Temperature 

Loading 

Date 

Yes Yes 120-150-175 No October 2002 

No No - Yes October 2002 

No No - Yes September 2003 

No Yes 100 No November 2003 

No Yes 125 No November 2003 

No Yes 150 No September 2003 

No Yes 175 No September 2003 

Yes Yes - No November 2003 

 

3.2.1  CTE Data 

The CTE of GS-44 was determined in the same manner as for AS800.  Note that there 

were two measurements of the GS-44 CTE.  The earlier measurement was performed 

with a sample from a different block of material as the second.  The second block of 

material was the source for all the specimens tested in November 2003.  The second 

measurement was intended to determine whether there were any significant differences 

between the two materials.  Figure 18 shows the diffraction data for thermal expansion 

strains from the 2002 measurement, while Figure 19 shows the same for the 2003 

measurement.  In both cases, the thermal expansion is linear and agrees well with the 

extensometer data.  The 2003 measurement made use of data from more temperatures, 
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though the results are similar.  Note that both samples were under a 25 MPa holding 

stress, as discussed earlier, to keep the sample in the center of diffraction.  For both 

samples, the same nine hkls as with AS800 were used to determine the tensor using 

ALPHA, with results shown in and Equations (25) and (26).   

1
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Table XII   CTE values for lattice parameters (a, c and d), ALPHA (αavg), and the 

extensometer, as shown in Figure 18 and Figure 19, indicated as “2002” and “2003,” 

respectively. 

Parameter 2002 CTE (*10-6 K-1) 2003 CTE (*10-6 K-1) 

a 3.19 3.37 

c 3.65 3.84 

d 3.27 3.53 

αavg 3.25 3.49 

Extensometer 3.18 3.28 

 

Table XII summarizes the CTE parameters plotted in Figure 18 and Figure 19, while 

Table XIII gives the CTE for each of the nine single peaks.  These CTE values for 

diffraction data-derived parameters (namely, a, c, and d) in these tables are the slopes to 

linear fits of the thermal expansion diffraction data.  As previously presented, αavg is 

determined from the tensor components of Equations (25) and (26) using Equation (22).  
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Comparison of the two measurements indicates that while the CTE values are 

consistently higher in the 2003 measurement (for all parameters, ranging from 10-26 µε 

K-1 greater than the 2002 measurement), the difference is not extreme.  The 2003 

measurement, however, seems closer to the literature value of 3.4 x 10-6 K-1.  Also, the 

fitting errors from ALPHA were less with the 2003 data, indicating that the 2002 data 

may not have been optimal.  Table XIII gives the single peak CTE values from linear fits 

to the 2003 data. 

 

Table XIII  CTE of individual reflections from both longitudinal and transverse 

diffraction data (September 2003), from linear fits to single peak data.  All values are 

*10-6 K-1. 

hkl CTE (longitudinal) CTE (transverse) 

(02·0) 3.6 3.1 

(01·1) 3.9 3.6 

(12·0) 3.4 3.2 

(11·1) 3.7 4.1 

(13·0) 3.4 3.2 

(03·1) 3.4 3.4 

(22·1) 3.5 3.4 

(23·0) 3.4 3.3 

(00·2) 3.9 3.8 
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Figure 18.  Thermal expansion of GS-44 based on 2002 SMARTS measurements.  Error 

bars are included for a and c, based on GSAS fitting errors, but they are too small to 

appear. 
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Figure 19.  Thermal expansion of GS-44 based on 2003 SMARTS measurements.  Error 

bars are included for a and c, based on GSAS fitting errors. 
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Regarding hkl-dependent CTE properties, the 2003 data are considered in the following 

discussion, due to the greater confidence inspired by the improved ALPHA fitting.  As 

shown in Figure 19 and Table XIII, the c-axis of GS-44 experiences a greater thermal 

expansion than the a-axis, as was the case with AS800.  Note, as shown in Table XIII, 

that the greatest CTE is not possessed by the (00·2) reflection, but by the (11·1).  The 

(00·2) and (01·1) reflections have the next highest CTEs; as they have the highest c-

character of the remaining eight reflections this is not unexpected.  As for AS800, 

reflections with zero c-character, i.e., (02·0), (12·0), (13·0) and (23·0), have the lowest 

CTE, while the other mixed hkls, e.g., (03·1), have intermediate CTEs.  The aspherism 

index, computed from Equation (13) using the tensor components of Equation (26), is A 

= 0.02.  This indicates that GS-44 has a less anisotropic CTE than AS800, which can be 

seen by the lesser difference between the a and c CTE values from Table XII for GS-44 

compared to those for AS800 in Table IV.  This would indicate that there would be a 

more uniform microstructural shrinkage from high-temperature when cooling from the 

processing temperature.  This may be due to the different chemistry of the GS-44 grain 

boundary phase, and its lower viscosity at lower temperatures than the grain boundary 

phase of AS800, indicated by creep at lower temperature than AS800.     

 

3.2.2  High-Temperature Stress Application 

3.2.2.1  High-Temperature Young’s Modulus 

The first GS-44 sample tested at high-temperature on SMARTS was subjected to multiple 

loads.  At 1473 K, after heating under a stress of 25 MPa (and collecting CTE data) the 

sample was loaded up to 100 MPa stress in 10-15 MPa increments.   The stress-strain 
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curve for this loading is shown in Figure 20, with longitudinal strains only;  note that 

strains shown are relative to the initial 25 MPa 1473 K pattern, i.e., CTE strains are 

subtracted.  Note that in this case, the c-axis very closely follows the behavior of the 

extensometer, and is much less stiff than the a-axis, as was seen with AS800.  Though the 

polycrystalline average is not plotted, the Young’s modulus was calculated as Ed = 302 

GPa.  The extensometer indicated a modulus of just 225 GPa, which is the slope of the 

line in Figure 20.  The transverse data for this experiment was very non-linear and 

erroneous, with the c-axis showing tensile strains primarily.  The data gave a Poisson’s 

ratio for νd of nearly 0.5.  Subsequent experiments attempted to obtain better quality 

stress-strain data for GS-44.   

 

The best stress-strain curve, in terms of quality of linear fits from both banks and the 

resulting elastic property values, was from the 125 MPa creep sample, which was loaded 

at 1473 K in 25 MPa increments.  The data for this experiment are shown in Figure 21, 

with CTE strains subtracted.  As with Figure 20, the c-axis strains similarly to the 

extensometer, which had E = 235 GPa.  The calculated polycrystalline average (not 

plotted) was Ed = 293 GPa, in close agreement with the manufacturer but not with the 

extensometer.  The Poisson’s ratio was νd = 0.22, again a very reasonable value.  For the 

a and c axes, respectively, had E = 320 and 239 GPa, ν = 0.34 and 0.18.  The plotted 

strain errors were approximately 21 µε for a and 35 µε for c.   Table XIV shows elastic 

properties for single peaks.  Note the poor quality of the linear fits (r2 far from 1).  This 

non-linear behavior was dominant for all the GS-44 samples, preventing determination of 

the 1473 K stiffness tensor.  Aside from CTE data, only full-pattern fit data were used.   
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Figure 20.  Stress-strain data up to 100 MPa for GS-44 at 1473 K.  A linear fit to the 

extensometer data is shown.  Error bars based on GSAS fitting residuals are provided. 
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Figure 21.  Stress-strain data up to 125 MPa for GS-44 at 1473 K.  A linear fit to the 

extensometer data is shown.  Error bars based on GSAS fitting residuals are provided. 
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Table XIV.  Elastic constants for specific hkl reflections for GS-44 from diffraction data, 

E given in units of GPa.  E is presented for linear fits to diffraction data (first two 

columns), and is compared to predicted values using the AS800 tensor of Equation (24) 

and the tensor from [62].  Values in parentheses are fitting r2 values (columns 1 and 2) or 

relative difference of columns 3 and 4 compared to column 1. 

hkl E  

(fit r2) 

ν 

(fit r2) 

E [62]  

(% diff) 

E eqn (24)  

(% diff) 

(02·0) 316  

(0.746) 

0.491  

(0.252) 

336  

(5.9) 

312  

(1.4) 

(01·1) 203  

(0.768) 

0.320  

(0.819) 

368  

(45) 

261  

(22) 

(12·0) 103  

(0.140) 

0.276  

(0.111) 

336  

(69) 

312  

(67) 

(11·1) 327  

(0.865) 

0.225  

(0.585) 

330  

(0.8) 

305  

(7.1) 

(13·0) 385  

(0.679) 

4.332  

(0.014) 

336  

(15) 

312  

(24) 

(03·1) 263  

(0.734) 

0.688  

(0.186) 

313  

(16) 

339  

(22) 

(22·1) 289  

(0.745) 

0.347  

(0.444) 

313  

(7.6) 

341  

(15) 

(23·0) 114  

(0.104) 

0.727  

(0.025) 

336  

(66) 

312  

(63) 

(00·2) 308  

(0.911) 

0.305  

(0.368) 

426  

(28) 

225  

(37) 

 

Also in Table XIV are the predicted values for Ehkl as with AS800.  Since the transverse 

data was of low quality, the predicted Poisson’s ratios are not compared here.  Since the 
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tensor for GS-44 was not obtainable, comparing it to AS800 is unsuitable.  The inability 

to obtain the GS-44 tensor was likely due to the GS-44 experiencing inelastic strain due 

to increased stress at temperature compared to AS800.  Note that AS800 was tested 

below it maximum use temperature, while GS-44 was tested above its maximum use 

temperature. 

 

3.2.2.2  Creep Experiments 

There were five creep experiments performed on GS-44 at 1473 K.  The first was a stress 

step-up experiment, while the other four were longer-term, single-stress experiments.  All 

experiments ended with an unload to allow creep recovery, after which the sample was 

cooled back to room temperature.  Creep recovery took place at the minimum 25 MPa 

used for sample position maintenance.  Note that the single-stress creep tests incorporated 

an unload to 25 MPa during the creep test, to determine any effect on the elastic 

properties, followed by a reloading to the creep stress.  These unloads were performed 

after steady-state creep had initiated.  Creep was then continued for a significant time 

before the sudden unload for creep recovery.  These in-creep unloads were performed in 

steps rather than the sudden unloading used for creep recovery. 

 

The stress step-up creep test first subjected the sample to 100 MPa, then 120 MPa, and 

finally 150 MPa.  Figure 22 and Figure 23 show the stress-strain data for both directions 

for the a and c lattice parameters, respectively, with the extensometer data also shown.  

Strains are relative to the initial 1473 K, 25 MPa data.  When comparing these two 

figures, note from Figure 23 that the c strain at the start of the creep test is nearer the 
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extensometer strain than the a strain of Figure 22.  This is the same phenomenon as when 

loading elastically and the c strain more closely approximated the extensometer than did 

the a strain.  However, during the constant load portions of the test, the strain remains 

constant within the data fitting error, while the extensometer clearly shows a strain 

increase at constant stress, indicating that creep was occurring.  Only when the load was 

increased did the strain experience a noticeable strain increase.  Note that the 

approximate strain increase due to stepping up the stress in the longitudinal c-strain was 

closely correlated with the strain increase of the extensometer.  The increase from 100 to 

120 MPa added 115 µε to the extensometer and 85 µε to the c-strain, while the 120-150 

MPa increase added 150 µε and 140 µε, respectively.  The strains were compared to the 

predictions of Hooke’s Law, shown in Equation (27), with applied stress σ, strain ε, and 

Young’s modulus E.  This relation holds for materials subjected to tensile stress, 

generally at low levels, for which the resulting strain is proportional to the applied stress 

with E the constant of proportionality, with the material behavior referred to as elastic in 

this region [7].  Note that while Equation (27) is a relation for the initial elastic part of the 

stress-strain curve, for some materials such as cast iron, the initial stress-strain behavior 

is non-linear and other methods are used to determine the Young’s modulus. 

εσ E=   (27) 

The increase from 100 to 120 MPa was a 20 MPa increase, while that from 120 to 150 

MPa was a 30 MPa increase.  Since Hooke’s Law is a linear relation, the change in stress 

was used to determine the predicted change in strain.  The value used for E (220 GPa) 

was the manufacturer’s value for 1273 K (see ), the closest literature value to the 

test temperature of 1473 K.  A change in stress of 20 MPa is predicted to result in a strain 

Table I
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change of 90 µε, very close to the c-strain of 85 µε.  A change of 30 MPa should result in 

a strain change of 140 µε, again, closely matching the c-strain.  Thus it was concluded 

that Si3N4 grains were elastic within the sample, as Hooke’s Law is a relation for elastic 

stress-strain in materials.  

 

In Figure 22, when the unload and creep recovery began, the transverse and longitudinal 

a-strains switched sense, meaning that the longitudinal strain went from tensile to 

compressive, and vice versa for the transverse strain.  This did not occur for the c axis in 

Figure 23, though the transverse strain alone did change sense.  (The error bars in the 

creep recovery portion of Figure 23 have been omitted so that the two directions can be 

seen.)  The unload decreased the extensometer strain by 560 µε, with the longitudinal c-

strain dropping by 450 µε.  A greater discrepancy than for the stress increases, but the 

two are still comparable.  Note that the transverse strain jumps by 200 µε due to the 

unload.  The longitudinal a-strains, by comparison, increased by 70 and 100 µε for the 

two stress increases, while the unload induced a drop of 330 µε for the longitudinal and a 

jump of 175 µε for the transverse a-strains.  The a axis of GS-44 attained residual strain 

of the opposite sense (compressive to tensile and vice versa) from that induced by stress 

application in both detector banks.  The c axis, however, exhibited tensile residual strain 

from both detector banks.  This could be an indication of grain sliding which prevented a 

return to the initial state.  Given that the c axis has been demonstrated to be more 

compliant, the different nature of its residual strain is acceptable.  Single peak data, 

however, were deemed unusable, for the same reason as in the previous section (poor 

results, lack of trends). 
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Figure 22.  Longitudinal and transverse diffraction strains for a lattice parameter of GS-

44, and extensometer strain, under various stresses at 1473 K.  Diamonds are longitudinal 

data, triangles are transverse data.  Strains are relative to 25 MPa, 1473 K data.
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Figure 23.  Longitudinal and transverse diffraction strains for c lattice parameter of GS-

44, and extensometer strain, under various stresses at 1473 K.  Diamonds are longitudinal 

data, triangles are transverse data.  Strains are relative to 25 MPa 1473 K data. 
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Using the extensometer strain for each stress, the stress exponent for GS-44 in vacuum 

was determined.  A linear fit was applied to the strain data.  For the 100 MPa data, this 

was done in the region after approximately 8 hours of creep, when the slope changed.  

This was the onset of secondary or steady-state creep.  The 120 and 150 MPa strains were 

fit as a line over their entirety.  While the data are not perfectly linear, the quality of fits 

was acceptable.  The slope of the linear fits is the steady-state creep rate.  When this 

creep rate is plotted as a function of applied stress on a log-log plot, the creep exponent is 

determined from the slope of a linear fit.  This gave a creep exponent for GS-44 of n = 2, 

comparable with the results of others.  Wei et al. [25] reported a creep exponent of n = 

2.24, while values for ISR Si3N4 range from 2-4, with even greater values sometimes 

reported [3, 27].  Since n is not unity, it is clear that diffusional creep is not the 

mechanism observed here.   

 

After the multi-stress step-up test described above, it was clear that creep of GS-44 could 

be realized in the SMARTS vacuum furnace.  Further creep tests were performed, each 

applying a different stress to the sample for a longer period than the 12 hours or less of 

the step-up experiment.  Four tests were conducted, at 100, 125, 150, and 175 MPa.  

Figures (24) through (27) show the a and c longitudinal strains for these four stresses.  

Note that the magnitude of creep is much less than that obtained by Wei et al. [25], for 

like stresses and temperature.  At t = 10 hr, they measured strains of 2500 and 4500 µε 

for 100 and 120 MPa applied stresses, respectively, at 1473 K.  This is compared to 550 

µε for the present 100 MPa results at t = 10 hr, less than 25% of Wei et al.’s reported 
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value.  The present 175 MPa creep strain at t = 10 hr was 2000 µε, less than their 100 

MPa result. 

 

Unfortunately, the transverse data from these experiments were not particularly useful 

and are not presented here, though they are included in the appendix (Figures A10-A13).  

(They behaved not appreciably different from the transverse data of the stress step-up 

test, being essentially constant throughout the experiment.  While there was a slight 

change noted for the 175 and 150 MPa tests, this change indicated a tensile strain for both 

lattice parameters, which seems to invalidate the accuracy of this data.  Note that the 

instrument parameter file for the transverse bank was out of date when these data were 

collected.)  As noted earlier, after steady-state creep was in progress, these four samples 

were unloaded then reloaded.  These data are not shown in Figures (24) - (27), but are 

evident as gaps in the extensometer data.  Gaps in diffraction data other than at this point 

in the creep experiment were due to loss of the neutron beam, save for the 150 MPa data 

of Figure (26), in which a data collection error prevented data acquisition for the first 

eight hours of creep and the first pattern at 150 MPa.  Regarding the 150 MPa plot, note 

further that the initial data at 150 MPa were lost in the same error, with the first plotted 

data point being the 125 MPa diffraction data obtained during the load increase.  Data 

were collected for all four samples at 25 MPa, 1473 K; these data are the reference for 

strain for each sample, to provide as similar as possible a comparison between samples.  

It can be seen quite clearly that for lower creep stress, there is less effect from unloading 

and reloading.  The first extensometer strain measured at the creep stress for each sample 

was compared to the strain predicted by Hooke’s Law, Equation (27).   
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Figure 24.  GS-44 creep at 1473 K with 100 MPa applied stress.  Longitudinal diffraction 

data are shown.  Strains are relative to data from 25 MPa, 1473 K.  Horizontal line 

indicates the initial d-strain at 100 MPa, 1473 K. 
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Figure 25.  GS-44 creep at 1473 K with 125 MPa applied stress.  Longitudinal diffraction 

data are shown.  Strains are relative to data from 25 MPa, 1473 K.  Horizontal line 

indicates the initial d-strain at 125 MPa, 1473 K.
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Figure 26.  GS-44 creep at 1473 K with 150 MPa applied stress.  Longitudinal diffraction 

data are shown.  Strains are relative to data from 25 MPa, 1473 K.  Horizontal line 

indicates the initial d-strain at 150 MPa, 1473 K for the 175 MPa test sample (since the 

first 150 MPa data was lost for this sample). 
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Figure 27.  GS-44 creep at 1473 K with 175 MPa applied stress.  Longitudinal diffraction 

data are shown.  Strains are relative to data from 25 MPa, 1473 K.  Horizontal line 

indicates the initial d-strain at 175 MPa, 1473 K. 
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Table XV.  Comparison of measured strains at 1473 K to Hooke’s Law prediction for 

manufacturer’s quoted E for 1273 K.  Values for a and c are longitudinal diffraction 

strains.  Recall that the initial 150 MPa strain was lost due to a data collection error. 

 Measured strain (µε)  

Applied stress (MPa) Extensometer a c Hooke’s Law 

100 280 180 250 460 

125 410 310 400 570 

150 550 - - 680 

175 770 580 770 800 

 

The highest temperature for which the manufacturer quotes a value for the Young’s 

modulus is 1273 K, with E = 220 GPa (see Table I), the predicted strains per Equation 

(27) are shown in Table XV, compared to the measured strains for the extensometer and 

the lattice parameters from diffraction.  The use of Hooke’s Law for the calculation of 

these values requires the assumption that the samples were elastic until the final load was 

reached, which since creep was observed for all four stresses is uncertain.  However, the 

time was minimized while loading to each final stress value, though the discrepancy 

between the measured and Hooke’s Law values indicate that the effective Young’s 

modulus was not the same as the literature value, in addition to any imposed inelastic 

effects.  The first thing to note in Table XV is the similarity between the extensometer 

and c-axis strains for all applied stresses.  This can be noted also in the creep plots of 

Figures (24)-(27).  For σ = 100 and 125 MPa, Hooke’s Law indicates that the strain 

should be higher than measured, while at 175 MPa the predicted strain is not much 

greater than the measured strain (4% difference).  However, since the manufacturer listed 

the Young’s modulus for 1273 K, 200 K below the test temperature for these data, it is 
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concluded that the samples possessed a Young’s modulus greater at 1473 K than 

expected even at 1273 K.  Again, this effect is attributed to the lack of oxygen to reduce 

the viscosity of the grain boundary phase, as the reported literature value was likely from 

a test performed in air. 

 

At 100 MPa (Figure 24), after reloading the extensometer strain rate is essentially the 

same as before the unloading took place, while for each of the higher stresses, the 

difference after reloading increases with increasing stress.  A very interesting result is the 

trend exhibited by the a and c strains at constant stress.  The c strain shows a distinct 

increase, while the a strain a decrease.  The effect is more pronounced for the higher 

stresses, for which the strain is large enough to overshadow the fitting error bars.  

Unfortunately, the data for the 150 MPa sample were lost, preventing a suitable 

comparison with the 175 MPa data, which show a distinct trend.  Note that, after steady-

state creep has begun, the diffraction strains level off, at about 8 hours and later in terms 

of creep time.  Comparing these data with those from the stress step-up test ( ), it 

can be seen that the longitudinal strain of the a axis in that sample was not appreciably 

different from the behavior seen in the single stress creep tests.  However, after unloading 

and reloading, the diffraction strains returned to their previous levels and remained 

essentially unchanged.  This indicates that whatever had occurred previously during creep 

was not lost with the unload, nor was any further alteration needed to resume the prior 

state.  Note that the d strains plotted in all four creep plots are essentially constant over 

time.  Horizontal lines have been drawn at the initial creep strain (the first diffraction 

strain value for d obtained at the creep stress) value as a guide to the eye.  Thus, the 

Figure 23
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“forking” of the c and a lattice parameters still preserves the expected constant diffraction 

strain, since, assuming that everything remains elastic one would expect a constant strain 

for a constant applied stress.  Recall that diffraction only measures elastic lattice strains.  

The forking, then, is likely an elastic effect in which volume conservation is present, thus 

the expansion of the shorter c-axis is balanced by a contraction along the longer a-axis.  

This shape change of crystallites aligned with the load axis is attributed to the flow and 

redistribution of the grain boundary phase straining the GS-44 grains.  Single peak creep 

strains are of no use for interpreting this behavior, as the strains have wide scatter and are 

without a trend.  Only the full-pattern derived lattice parameters indicate a pattern, thus 

the single peak strains are not provided. 

 

The forking of the diffraction strain data is unexpected, and there is nothing similar in the 

literature.  In order to determine if the different behavior is based on geometric 

considerations,  was created.  This figure shows, first, the c/a ratio of the GS-44 

sample at 175 MPa, relative to the 25 MPa 1473 K reference data.  Obviously, there is an 

increase over time.  However, also shown in Figure 28, and plotted on the secondary y-

axis, is the volume of the unit cell.  The volume was calculated simply based from the 

lattice parameters for a right regular hexagonal cylinder, and is plotted as the change in 

that volume relative to the reference data already mentioned.  Unlike the creep data plot, 

this plot shows the data from the patterns obtained during the stress increase.  These are 

the data points with a negative time, which was simply an arbitrary constant value 

subtracted from the elapsed creep time.   

Figure 28
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Figure 28.  Relative change of c/a ratio and unit cell volume (relative to 1473 K, 25 MPa 

diffraction data) for 175 MPa creep of GS-44.  Data are from longitudinal 175 MPa creep 

at 1473 K; typical error bar shown at left (± 5%) is based on error from strains as seen in 

. Figure 27
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From Figure 28 it is interesting to note that after initial application of the 175 MPa stress, 

the volume change proceeds to decrease from its maximum over the course of the 

experiment, reaching a constant value at approximately 8 hours creep time, the same time 

determined as the onset time of steady-state creep.  Even after this, the c/a ratio is seen to 

increase.  Thus, while the c axis is experiencing a tensile strain and the a axis a 

compressive strain and increasing the c/a ratio, the volume has reached a balance.  The 

same is seen to occur after the two unload cycles, though the max volume is less than that 

of the first stress application, and the relaxation proceeds faster.  Thus it is concluded that 

while the lattice parameters in the longitudinal direction indicate a change, these changes 

are in fact balancing one another in order to maintain a steady-state volume.  This balance 

perhaps is maintained by the constraint of space in which to expand in the densified GS-

44 microstructure, with some change being facilitated by the redistribution of the grain 

boundary phase.  Since the bulk of the diffraction strain occurs in the primary creep 

regime, when the fastest strain rate is experienced, the grain boundary phase is being 

strained the most and redistributing the most in that regime.  This redistribution will be to 

move out of the tensile straining GS-44 grains, and relocating to the sides of those grains.  

This would allow strain to occur in the loading direction, while constraining the lateral 

direction.  Thus, the diffraction data would indicate that the c axis is aligned with the 

loading direction, as that axis expands, while the a axis is compressed due to the 

redistributed grain boundary phase, and the volume of the unit cell reaches a constant 

value.  The reason that strain appears in the pattern is that additional load is transferred to 

the Si3N4 grains as the redistribution allows the grain boundary phase to shed load to the 

Si3N4.  As the applied stress is unchanged, this strain would be expected to reach a 
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maximum value, once the redistribution was functionally complete, as is seen by the 

reduction of diffraction strain change once secondary creep begins.  This supports the 

notion of creep of Si3N4 as postulated by Luecke and Wiederhorn as a redistribution of 

the grain boundary phase out of the tensile direction due to cavity nucleation and 

redeposited along the lateral (transverse) sides of grains, since cavitation during tensile 

creep of Si3N4 gives strain in the loading (axial) direction but not a uniform volume 

expansion [24].  The extensometer creep curves before unloading are plotted together in 

.  Unsurprisingly, the creep rate is much faster for the higher stresses than the 

lower.  The steady-state regime is reached earlier for the lower stresses.  This agrees with 

literature data for GS-44 creep.  This can be interpreted by realizing that a lower stress 

cannot perturb the system as much as the higher stress, thus less change is possible before 

the steady-state condition is reached.  Since there is no absolute definition of when 

steady-state creep begins, it was decided arbitrarily, by fitting a line to the extensometer 

strain data over a large region while still obtaining a reduced r

Figure 29

2 value.  This was between 

8 and 10 hours after the creep stress was reached until the (first) unload for the four 

stresses performed.  Note that these steady-state creep rates give a creep exponent of n = 

3.18 (see Figure 30, in which the slope of the plotted line is the creep exponent).  The 

discrepancy between this result and the prior result is very likely the effect of time.  The 

stress step-up test did not allow sufficient time for steady-state creep to begin, beyond the 

100 MPa stress at least.  However, this result is different from that of Wei et al., who 

reported a value of n = 2.24 [25].  It is possible that the preservation of the grain 

boundary phase properties by the vacuum furnace of SMARTS had some effect.  Note 

that the strains attained in these creep tests is much less than that of Wei et al.  For 
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example, at 1473 K and 100 MPa, they reported a creep strain of over 2000 µε, while the 

present results have a creep strain of under 700 µε for the same conditions, except for the 

atmosphere in which the test was performed [25].  Given that the creep rate depends 

heavily upon the grain boundary phase viscosity, and since the grain boundary phase in 

the present experiments was not exposed to oxygen, thus suffering no decrease in 

viscosity, such a result is not wholly unexpected. 

 

Given that the steady-state creep rate is linear with stress, as shown in the log-log plot of 

, the Norton formulation of Equation (4) fits the data well.  However, the 

equation developed by Luecke and Wiederhorn, Equation (7) (repeated below for 

convenience), predicts a non-linear behavior when plotted on a semi-log basis.   

Figure 30
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However, in this case, the log-log plot would not exhibit the linearity evident in 

.  While attempt was made to fit the data on a semi-log basis using the Luecke and 

Wiederhorn equation, it was necessary to tailor the pre-exponential constant for each 

stress in order to fit the data with any quality.  The constant included the activation 

energy term, since at a given temperature it is a constant; 75 MPa was used as the critical 

stress to nucleate a cavity, determining the other exponential term.  This value (75 MPa ) 

was chosen because while performing the unloads and reloads during the four creep tests, 

the extensometer strain at 75 MPa was nearly constant, meaning that no creep was 

occurring, nor was creep recovery, during the short scan time that 75 MPa was applied.  
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The pre-exponential constant was determined based on a linear function of the applied 

stress, namely, 

( ) 





 −= 3

25
*08.0 σ′ σA    (28) 

 

Given that the volume fraction of the grain boundary phase, f, is included in the A’ 

formulation of Equation (28), the stress dependence is not wholly unexpected.  Given that 

more cavities should nucleate for a higher stress, then the value of f should depend on 

stress.  This formulation was determined by first finding the constant necessary to match 

the 100 MPa strain rate (the source of the 0.08 term), through a simple iterative approach, 

then observing that the subsequent strain rates increased relatively linearly.  While an 

empirical relation, it indicates an additional dependence on stress that Equation (7) could 

not match.  Note that if the value of the critical stress is altered from 75 MPa, this would 

only modify the entire equation by a constant value.  Note that the volume fraction of the 

grain boundary phase was also included in the constant term, as indicated by Luecke and 

Wiederhorn.  Given that this value should not be constant, this is acceptable.  The 

prediction based on Equations (7) and (28) is shown in the semi-log plot of Figure 31.  

Note that while the data are linear on the log-log plot of , there is a very slight 

curvature evident in the semi-log plot of .  For GS-44, then, as tested in 

vacuum, it seems that the Norton Equation (Equation (4)) predicts the steady-state creep 

rate as well as the Luecke and Wiederhorn equation (Equation (7)).  Note that the latter 

formulation accounts for the viscosity of the grain boundary phase, which is known to 

behave differently in the present test environment than in air.[24]  Again the reduced 

viscosity decrease, due to vacuum, plays a major role in the creep behavior. 

Figure 30

Figure 31
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Figure 29.  Extensometer creep curves for GS-44 under various applied stresses at 1473 

K prior to any unloading-reloading cycle.  Strains are relative to the data from 1473 K, 25 

MPa for each individual sample. 
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Figure 30.  Log-log plot of creep rate versus applied stress for GS-44 at 1473 K.  Data are 

fit as a line, in accord with Equation (5), the classic Norton creep equation.  The r2 for the 

linear fit is 0.996, with the slope being the creep exponent, n = 3.18. 
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Figure 31.  Semi-log plot of creep rate versus applied stress, with data prediction as per 

Equations (7) and (28).  The predicted values approximate the data well (r2 was 

calculated as 0.989), but require an additional dependence on the applied stress than 

indicated.   
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3.2.2.3.  Intra-Creep Elastic Modulus Measurement 

During each of the single stress creep experiments, an unload was performed after the 

steady-state creep regime was entered.  Though these tests were not performed at the 

exact same time for each applied stress, since each took place in the secondary regime, 

the exact time after which that stage was entered is irrelevant.  Each sample was unloaded 

to 25 MPa, then reloaded to the creep stress.  The slopes of the (longitudinal) diffraction 

data (a and c lattice parameters) and the extensometer from these various tests are 

provided in Table XVI.  Note that the initial Young’s moduli are inconsistent.  Recall that 

the 150 and 175 MPa samples were from one sample source, while the 100 and 125 MPa 

samples were from a different source.  The extensometer data show that even samples 

from a given batch of material can have varied properties.  However, the diffraction data 

for the 150 and 175 MPa samples are very similar to one another, while the diffraction 

data for the 100 and 125 MPa samples are not.  The increase in Young’s modulus from 

the first loading to the second indicates stiffening has occurred due to creep.  The 100 

MPa data and the a axis data for the 125 MPa are exceptions.  This stiffening is also 

evidenced in the extensometer results, in the same way, though not to the same degree. 

 

The residual strains of GS-44 were also obtained.  Note that for several samples, fracture 

occurred before complete cooling to room temperature, due to load frame malfunctions.  

Thus, only residual strains at 1473 K after unloading are presented in Table XVII.  

Residual strains for all four stresses are given, but only longitudinal strains, as the 

transverse strains, as mentioned, are of dubious quality at best. The presented values are 

from patterns obtained shortly before cooling, i.e., at the end of the recovery period.  
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Table XVI.   Effective Young’s modulus before and during creep of GS-44 at 1473 K as 

obtained from linear fits to stress-(diffraction and extensometer) strain data measured 

during loading and unloading cycles.  Values in GPa.   

Applied Stress 175 MPa 150 MPa 125 MPa 100 MPa 

a axis     

First load 250 250 320 410 

First unload 310 310 300 300 

Second load 280 280 300 280 

Second unload 330 -- -- -- 

     

c axis     

First load 200 200 240 290 

First unload 240 280 260 240 

Second load 260 280 290 290 

Second unload 270 -- -- -- 

     

Extensometer      

First load 170 200 240 260 

First unload 180 210 240 230 

Second load 220 240 250 240 

Second unload 180 -- -- -- 
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Table XVII.  Residual longitudinal strains for GS-44 after unloading at 1473 K, for 

various stresses.  Values are presented in microstrain (µε).  GSAS fitting errors are 

presented under the strain values. 

hkl or lattice 
parameter 

100 MPa 125 MPa 150 MPa 175 MPa 

a -130  
± 20 

-40  
± 20 

130  
± 20 

30  
± 20 

c 80  
± 30 

120  
± 30 

370  
± 40 

350  
± 30 

d -60 
 ± 20 

10  
± 30 

210  
± 30 

130 
 ± 20 

(02·0) 60  
± 100 

-160  
± 120 

150  
± 70 

0  
± 80 

(01·1) -80  
± 90 

190  
± 110 

410  
± 70 

210  
± 70 

(12·0) -50  
± 100 

-170  
± 120 

-50  
± 80 

110  
± 90 

(11·1) 50  
± 40 

10  
± 40 

170  
± 30 

260  
± 30 

(13·0) 5  
± 200 

-170  
± 180 

110  
± 170 

-160  
± 170 

(03·1) -200  
± 150 

30  
± 170 

230  
± 110 

400  
± 110 

(22·1) -70  
± 40 

-20  
± 50 

110  
± 30 

170  
± 30 

(23·0) -120  
± 80 

50  
± 90 

230  
± 70 

150  
± 70 

(00·2) 70  
± 60 

160  
± 60 

480  
± 50 

450  
± 50 

 

While the tabulated residual strains do not follow a definite trend, per se, it is clear that 

the higher stresses imparted residual strains in GS-44.  The residual strains for the 100 

MPa sample are either near unchanged or slightly negative, with a slight change for the 

125 MPa sample.  The 150 and 175 MPa sample residual strains are of noticeably higher 

magnitude, and are tensile for the most part, even when considering the peak fitting error.  

This is further corroboration that the samples suffered inelastic strains due to creep. 
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3.2.3  Room-Temperature Stress Application 

As indicated in Table XI, two samples of GS-44 were tested under applied stress at 298 

K, both of which were from the first sample batch.  The stress-strain curve from the first 

sample is shown in Figure 32, while the second is shown in Figure 33.  Note that some 

experimental error affected the October 2002 data of Figure 32, as the strain was non-

linear.  The September 2003 sample, however, exhibited behavior in close agreement 

with the extensometer ( ); only longitudinal strains are shown.  As with prior 

room temperature tensile tests on SMARTS, the transverse data for the September 2003 

sample were erroneous.  In this case, the data indicated tensile strains, yielding a negative 

Poisson’s ratio.  Some systematic error again precluded stiffness tensor determination; 

perhaps the use of a special set of room temperature grips caused the error.  The 

September 2003 data gave E

Figure 33

a = 246, Ec = 254, and Eext = 254 GPa.  As at 1473 K, the c 

strain more closely matched the extensometer than the a strain.  However, in this case a 

was more compliant than c, unlike AS800 at room temperature, indicating a significant 

stiffness change with temperature, since the two lattice parameters exhibited comparable 

stress-strain behavior at 298 K, but not at 1473 K.  This is illustrated when comparing the 

Sept. 2003 room temperature stress-strain data of Figure 33 with the 1473 K stress-strain 

data of Figures 20 and 21.  At room temperature (Figure 33), the two lattice parameters 

strain similarly, while at high temperature (Figure 21, e.g.), the a lattice parameter is 

stiffer than the c lattice parameter. 
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Figure 32.  Stress-strain curve from GS-44 at room temperature, October 2002.  Linear fit 

to extensometer data is shown.  Error bars based on GSAS fitting residuals are provided. 
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Figure 33.  Stress-strain curve from GS-44 at room temperature, September 2003.  Linear 

fit to extensometer data is shown.  Error bars based on GSAS fitting residuals are 

provided. 
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3.2.4  Ultrasonic Elastic Constant Measurement 

Some of the samples tested at high temperature were later examined with the ultrasonic 

method to determine their elastic constants.  The sample that was tested at room 

temperature on SMARTS was first tested with the ultrasonic method, in order to compare 

the extensometer and ultrasonic methods.  The ultrasonic method is considered in this 

case to be more precise, since the SMARTS extensometer is less characterized.  

 shows the results of the various samples tested.  Note that not all samples 

measured with SMARTS were tested with the ultrasonic method.  While there is a slight 

difference between the Young’s moduli from the various samples tested on SMARTS at 

1473 K and compared the sample later tested on SMARTS at room temperature (“RT 

sample”), the difference is negligible, and all agree with the manufacturer’s quoted value 

of 300 GPa at 298 K within 7% at their maximum scatter.  However, given that the 

ultrasonic method gave 311 GPa and the load frame of SMARTS later gave a value of 

254 GPa (for the September 2003 room temperature test shown in Figure 33), a 

discrepancy greater than 15% from the manufacturer’s result, more doubt is cast upon the 

reliability of the SMARTS load frame at low temperature.  Note that the SMARTS data 

are self-consistent in that the diffraction data agree with the extensometer data.  The 

reason for this notable difference between results obtained at like conditions for the same 

sample is unresolved as yet.  The similar values obtained for all samples tested at room 

temperature indicates that despite the measured effects at high temperature, upon cooling 

the grain boundary phase seems no longer the determinate factor in the mechanical 

response, or that its room temperature properties are unaffected by high temperature 

Table 

XVIII
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creep, since at room temperature the grain boundary phase is no longer liquid (or at least 

more viscous). 

 

Table XVIII.  Ultrasonic measurement results for room-temperature Young’s modulus of 

GS-44.  E given in GPa.  Samples (except RT sample) were the post-creep-test samples 

tested at SMARTS (See Figure 8 for dimensions).  Error bars are from uncertainty of 

maxima in ultrasonic measurements.  All samples were tested at both the gage center and 

the grip, with results being the same.  Note that there is no literature value for the 

Poisson’s ratio of GS-44.   

 RT sample 175 MPa creep 150 MPa creep Step-up creep 

E  

Present results 311 ± 3 307 ± 6 315 ± 4 315 ± 3 

Manufacturer 300    

ν  

Present results 0.27 ± 0.01 0.28 ± 0.01 0.28 ± 0.01 0.28 ± 0.01 

 

3.2.5  SEM of GS-44 

As described in Section 2.6, effort was made to polish, plasma etch, and examine the 

microstructure of GS-44 with SEM.  Several samples were examined, though there was 

no observed difference between them, in terms of microstructure.  Two samples 

illustrated best this lack of microstructural effects due to the creep experiments on 

SMARTS; these were a piece of untested material and a slice of the gage section from the 
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175 MPa creep sample.  Microstructures imaged at like magnifications are provided in 

.     Figure 34

Figure 34.  
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samples after creep experiments with much longer time periods (order(s) of magnitude 

difference), sometimes reaching tertiary creep.  The lack of long time creep experiments 

in the present research likely reduces the number and size of cavities that can form in the 

grain boundary phase in any case. 
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IV.  Conclusions 

Silicon nitride was subjected to applied stress at high temperature in vacuum.  Two 

different varieties of Si3N4 were tested, one (AS800) possessed of a more refractory grain 

boundary phase than the other (GS-44).   

 

AS800 was subjected to stresses up to 175 MPa at a temperature of 1648 K.  While the 

stress was maintained for a short period of time, there was no indication of incipient 

creep.  Diffraction strains obtained for various applied stresses exhibited linear behavior, 

and the single crystal elastic stiffness tensor was determined from the behavior of nine 

individual reflections using the self-consistent method [58-61].  The same nine reflections 

were used to refine the CTE tensor, using data obtained from various temperatures during 

the process of heating to 1648 K, with the method of Jessen et al. [52].  Both of these 

tensors yielded satisfactory comparison with literature values for bulk properties of 

AS800.  Room temperature testing of AS800, in attempt to obtain a room temperature 

stiffness tensor for comparison with the 1648 K stiffness tensor, was unsuccessful.  While 

the diffraction strains from the 1648 K patterns were possessed of linear behavior as a 

function of applied stress to allow the tensor refinement, the GSAS-derived lattice strains 

yielded impossible values for elastic properties, while the single peak fits were non-linear 

in nature.  The origin of this behavior is undetermined and may be due to a systematic 

error, though the fact that GS-44 experiences inelastic behavior under these conditions is 

the more likely cause of the strange behavior. 
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GS-44 was tested at 1473 K.  Five creep experiments were performed.   The first was a 

stress step-up test, performed initially to determine if creep could be observed with GS-

44, since none had been observed with AS800.  GS-44 has a less creep-resistant grain 

boundary composition than AS800 [36], thus creep was in fact observed to occur.  The 

subsequent experiments were single stress creep tests, at 100, 125, 150, and 175 MPa 

applied stress.  For all these experiments, the two lattice parameters of Si3N4 were seen to 

diverge as creep proceeded.  The a axis indicated a relative compressive strain, while the 

c axis a tensile strain.  This was the first observation of a diffraction strain due to creep.  

As evidenced by the 175 MPa data (Figure 27), the a compression was a balancing effect 

to maintain a constant unit cell volume despite the c elongation, as determined through 

simple geometry (considering the unit cell to be a right regular hexagonal cylinder).  This 

effect is believed to corroborate the notion that the grain boundary phase is flowing and 

redistributing, with the bulk of this diffraction strain occurring in the primary creep 

regime and settling to a constant, unchanging level after the secondary creep regime 

begins.  It also suggests that the c axis is oriented along the loading direction, despite no 

indication of texture in the diffraction patterns.  The strain measured by diffraction is 

believed to be additional elastic strain imposed by load shedding from the grain boundary 

phase to the Si3N4 grains as the grain boundary phase redistributes from the loading 

direction to the lateral sides of grains.  The creep exponent was determined from the 

steady-state creep rates for the four applied stresses, with a value of 3.18 obtained.  While 

this is higher than the creep exponent reported in literature, the vacuum environment is 

believed to affect the creep rates, as the grain boundary phase viscosity is known to be 

reduced when creep tested in air.  Thus, these experiments are a more true measure of the 
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creep since there was no contamination by atmospheric oxygen, while experiments in air 

simulate the service environment and are more realistic for predictions relating to 

lifetime.  While the diffraction strains from stress application were unsatisfactory for 

determining the elastic stiffness tensor (for either 1473 K or room temperature), patterns 

obtained from various temperatures during heating allowed determination of the CTE 

tensor.  It was found that the CTE of GS-44 is of greater isotropic character than AS800, 

evidenced by the smaller aspherism index and the lesser degree of difference between the 

11 and 33 tensor components.  Thus, upon cooling from processing temperatures, it is 

expected that there will be a more uniform thermal contraction of GS-44 than AS800, 

though both will result in residual strain.  The different chemistries of their grain 

boundary phases also will have an effect on residual strain. 

 

Thus, creep experiments on refractory materials are possible on SMARTS.  The vacuum 

environment required that the maximum use temperature per the manufacturer be 

exceeded, in order to offset the greater viscosity of the grain boundary phase relative to 

air experiments.  Diffraction data acquired from stress application are problematic for 

obtaining detailed elastic property data, while data from heating experiments are more 

useful in terms of calculating the CTE tensor.  Room temperature loading was 

unsuccessful, despite multiple attempts with different samples.  The use of different grips 

at room temperature than at high temperatures might be the cause of the poor results 

obtained. 
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V.  Recommendations for Future Work 

• Of paramount importance for future high-temperature creep experiments of GS-

44 is performing similar creep experiments as presented here but at differing 

temperatures.  Performing tests at like stresses but different temperatures will 

allow determination of the activation energy for creep.  Given that the creep 

exponent determined in this research is markedly different from that in literature 

for this particular variety of Si3N4, due to the atmosphere, the activation energy 

might exhibit unique results as well. 

 

• Determination of the systematic error affecting room temperature measurements 

is also very important.  Clearly, the ability to refine stiffness tensors from applied 

stress-diffraction strain data exists, as it was done here at high temperature, but all 

attempts to obtain the same for room temperature met with failure.  Then the 

room temperature stiffness could be compared to the high-temperature stiffness to 

illustrate temperature effects, for example if specific components degrade with 

temperature increase.  

 

• Once the ability to refine stiffness tensors is regained, it might be possible to 

apply an elasto-plastic self-consistent model to interpret the strains due to stress 

application, and perhaps to develop a similar model to predict creep.  This might 

be possible through adaptation of an existing model, or creation of a new one. 
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• Perform creep tests on other material systems.  While there were difficulties in 

testing Si3N4, it was examined since it is a very important material, 

technologically.  Other materials might undergo creep more easily than either 

AS800 or GS-44, allowing for faster experimental completion. 
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Figure A1.  Stress versus strain for (02·0) reflection of AS800, both directions.  Linear 

fits used to obtain the data in Table VI are shown. 
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Figure A2.  Stress versus strain for (01·1) reflection of AS800, both directions.  Linear 

fits used to obtain the data in Table VI are shown. 
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Figure A3.  Stress versus strain for (12·0) reflection of AS800, both directions.  Linear 

fits used to obtain the data in Table VI are shown. 
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Figure A4.  Stress versus strain for (11·1) reflection of AS800, both directions.  Linear 

fits used to obtain the data in Table VI are shown. 
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Figure A5.  Stress versus strain for (13·0) reflection of AS800, both directions.  Linear 

fits used to obtain the data in Table VI are shown. 
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Figure A6.  Stress versus strain for (03·1) reflection of AS800, both directions.  Linear 

fits used to obtain the data in Table VI are shown. 
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Figure A7.  Stress versus strain for (22·1) reflection of AS800, both directions.  Linear 

fits used to obtain the data in Table VI are shown. 
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Figure A8.  Stress versus strain for (23·0) reflection of AS800, both directions.  Linear 

fits used to obtain the data in Table VI are shown. 
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Figure A9.  Stress versus strain for (23·0) reflection of AS800, both directions.  Linear 

fits used to obtain the data in Table VI are shown. 
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Figure A10.  Transverse diffraction strain for GS44 at 1200°C under an applied creep 

stress of 100 MPa.  Error bars are omitted for clarity.  Typical error bar values were 17 

µε for a and 30 µε for c. 



 13

-200

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35

Creep time (hr)

40

E
xt

en
so

m
et

er
 s

tra
in

 (*
10

-6
)

Extensometer

a

c

 
Figure A11.  Transverse diffraction strain for GS44 at 1200°C under an applied creep 

stress of 125 MPa.  Error bars are omitted for clarity.  Typical error bar values were 18 

µε for a and 30 µε for c. 
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Figure A12.  Transverse diffraction strain for GS44 at 1200°C under an applied creep 

stress of 150 MPa.  Error bars are omitted for clarity.  Typical error bar values were 16 

µε for a and 27 µε for c. 
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Figure A13.  Transverse diffraction strain for GS44 at 1200°C under an applied creep 

stress of 175 MPa.  Error bars are omitted for clarity.  Typical error bar values were 13 

µε for a and 22 µε for c. 
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